
IBM ILOG Plant PowerOps V3.2

 Documentation

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Getting Assistance...11
Contacting IBM Support...12

How to use the documentation..15
Publications in the documentation set..16
The documentation formats..17
Accessing the CHM, PDF, and HTML documentation..18
Disclaimers...19
Acknowledgement..20

System requirements..21

IBM ILOG Plant PowerOps V3.2 Release Notes...23
System requirements..25

User Interface improvements...27
Model checker and data reader..28
Data exchange with Microsoft Excel...29
Improved navigation and filters...30
Editing data in the GUI...31
New design and function for some views and tools..33

Modeling changes...35
Promised demand used in interactive planning..36
Modeling initial stock..37
Persistence of planning decisions..38

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Enhancements to planning, batching, and scheduling...39
Planning module enhancements..41

Dynamic safety stock..42
Infeasibility management..43

Batching algorithms..45
Scheduling..46

Relational model changes..47
Separation of master data and transactional data..48
Migration to schema version 4.0...49
Data schema modeling changes..50

Reporting with Tableau...54

Documentation, acknowledgement...55
Publications in the documentation set..56
Accessing the CHM, PDF, and HTML documentation..57
Acknowledgement..59

Implementation of Plant PowerOps..61
Introduction to planning and scheduling with PPO...63
Overview...64
What Is IBM ILOG Plant PowerOps?..65
How Plant PowerOps solves the problem...67

Optimization and KPIs..69
Optimization modules and solution..70
Key Performance Indicators...73
Optimization profile...76
Advanced optimization...79

Production planning advanced options...80
Detailed scheduling advanced options..82
Constraints..83
Post processing...84
Parameters for optimization..86
Complexity considerations..89
Problem decomposition...90

The basic data model..91
Overview of data modeling for PPO...93

Introduction to a data model, master data, and transactional data...94
Costs and revenue..96
Methods of modeling data...97

Global model information...99
The model environment..100
Time units and time buckets..101
Planning horizon, scheduling horizon, and end max...102

I B M I L O G P L A N T P O W E R O P S V 3 . 24

Materials...103
Resources..105
Demands and due dates..109
Recipes..111
Production orders and material flow arcs...115
Procurements...117
Firm or fixed information...118

Extended use of the data model..119
Production planning considerations...121

Inference of the planning problem from the scheduling problem..122
Defining time buckets..123
Recipe validity periods..124
Formula optimization and blending...125

Resources: Extended usage..127
Planning with super resources..128
Setup times and costs...130
Cleanups...132
Resource validity periods..133

Calendars...135
Why use calendars?..136
Calendar intervals...137
Overlapping calendar intervals..138
Calendars on modes or resources..139
Breaks and shifts...140
Productivity..141

Activity constraints, validity periods, and names..143
Precedence constraints...144
Spanning constraints...145
Compatibility constraints...146
Activity validity periods..147
Activity names...148

Material lifespan and inventory...149
Maturity, shelf life, waste recipes...150
Managing inventory stock...153

Applied use of Plant PowerOps..161
Using the PPO GUI..163
GUI tool and navigation tips...165

Menus and toolbars...167
Accessing the plan views..179
Splitting and synchronizing plan views..181
Using the Filter tool on the Master and Transactional Data tables..183
Comparing multiple scenarios...184

I B M I L O G P L A N T P O W E R O P S V 3 . 2 5

Repair extent, capacity and magnetism..185
Stock Coverage view..186
The Inspector...188
The Parameters window...190
Using the checker...191
Copying an existing recipe...193

Database usage and connectivity..195
Supported databases...196
Basic database connectivity...197

Opening a database in PPO...198
Automatic bucket generation...202
Save scenario in a database...205

Adding custom database connectivity..206

Using service levels, lead time, and demand variability to manage stock levels..............209
Manually defining stock levels and corridors..210
Service level concepts..211

Uncertain demand and forecast error...212
Production lead time...213
Service levels..215

Examples of using service levels, demand variability, and production lead time variability........................221
Service level in the GUI...222
Using the cycle service level...224
Using the fill rate service level...228
Dynamic service level example...229
Uncertain production lead time example...231

Decomposition framework...233
Introduction to decomposition..234
Building the decomposition framework...235
Optimization using scopes in the GUI..240
Advanced usage of the decomposition framework using Java API..241

Production planning simulations...243
Interactive planning..244

Advanced usage: Distribution planning..247
General concepts...248
The distribution plan calculation...250
Modeling the distribution plan...251

Key modeling tables..252
Building a distribution plan model...253
Viewing the results..263

Examples and tutorials..267
Modeling a simple problem: A “bottleneck” resource...269

I B M I L O G P L A N T P O W E R O P S V 3 . 26

Overview...271
Describe the problem...273

Overview...274
Objective and costs...275
Before creating the model...277

An overview of the PPO data model...279
Model the process...281
Materials...282
Demands...283
Activities..284
Resources...285
Recipes...286
Modes...287
Material production...288
Production orders..289
Production to demand arcs...290
Weighted objectives..291
Overview of the process..292
Table of data model objects..293

A quick tutorial on csv and mdb usage in PPO..296
Model the problem..298
Solving..309

Overview...310
Solve in the PPO GUI...311

View and study the plan...312
Review..317

Using the PPO API for C++ to model and solve...319
Solving using csv files with C++...320
Model and solve using the API for C++..323

Overview...324
General approach to C++ modeling for Plant PowerOps..325
Define the necessary C++ functions...326
Build the C++ program..329

Using the PPO API for Java to model and solve..345
Solving using csv files with Java...346
Model and solve using the API for Java...347

Differences between C++ and Java..348
Define the program Java functions..350
Build the Java program...353

Modeling a dairy plant with PPO Java API..367
Overview...368
The fresh dairy plant and its yogurt process..369
Building the overall model structure...373

I B M I L O G P L A N T P O W E R O P S V 3 . 2 7

Overview...375
Setting up the model...376
Defining the time buckets..377
Defining semi-finished intermediate products...378
Defining finished products...379
Days of supply...380
Resources for finished products..381
Defining the units of measure...382
Modeling a warehouse as a storage unit..383
Defining the production recipes for the finished products...384
Defining cleanup recipes...386
Defining initial stock..388
Defining the demand...389
Dealing with setups and obtaining the preferred sequence..390
Defining the costs and the weights...393

Modeling the manufacturing process..395
Representing process equipment...396
How to represent equipment connections...398
Modeling the intermediate materials and process activities..399
Internal constraints of the recipe...401
Tanks as storage units..403
Production, consumption and destination...404
Cleaning policy..405
Calendars and breaks...406

Reference Documentation...407
Customizing and Extending PPO..409
Authentication and access rights..411

User role determines access..412
Adding a login panel to PPO...413
Advanced configuration of roles and access rights...415
General security considerations..416

Customizing report generation with Tableau..417
GUI extension mechanism...419

Overview...420
Format of plug-in manifest files - plugin.xml..421
Extensions and extension points...424
Specific customizations...425
Overview of extension points..427

Plan view customization...431
Overview...432
PlanViewTypes extension point...433
PlanViewContainer.Configuration extension point..441
PlanViewContainer.Defaults extension point...448

I B M I L O G P L A N T P O W E R O P S V 3 . 28

Plan view extension example..451
Customizing views, menus, and toolbars...455

Adding new table layouts..456
Inserting a new panel view..457
Insert a new panel and toolbar in an existing view..463
Insert a new item in the menu and a new icon button in the main toolbar......................................465
Remove menu item and button from the main toolbar..466

Engine optimizer extensions...467
Overview...468
Write the engine optimizer factory class...469
Write the engine optimizer class to solve data..473

Configuring the data views...479
Overview...480
Activate the customization in a plug-in..481
Add a new table..483
Remove a table...489
Modify a table..490

Database customization...491
Installing JDBC jars...493
Customizing PPO data model tables..497

Options of the PlantPowerOps executable file..504

Using PPO with Microsoft products..505
Overview...506
Build and run Plant PowerOps examples...507
Creating a project workspace and link the target with PPO...508

Entity Relationship Diagrams...511
General tables..513
Activities, modes, and recipes..514
Cleanup constraints..515
Demands..516
Manufacturing resources..517
Material flow...518
Materials and storage units..519
Procurements...520
Production orders...521
Production plans...522
Production schedules...523
Setup times and setup costs..524

Universal Modeling Language diagrams...525

Date and time display..529
Overview...530
C++ runtime date/time output...531

I B M I L O G P L A N T P O W E R O P S V 3 . 2 9

Overview...532
C++ API date/time methods..534

Java runtime date/time output..535
Overview...536
Java API date/time methods...539

Time zone settings...540

Index..557

I B M I L O G P L A N T P O W E R O P S V 3 . 210

Getting Assistance

This section provides information on customer support and IBM® ILOG® Plant PowerOps
(PPO) documentation.

In this section

Contacting IBM Support
Contains information on how to obtain technical support from IBM worldwide, should you
encounter any problems in using IBM products.

How to use the documentation
Describes Plant PowerOps (PPO) documentation.

System requirements
This section lists the system requirements.

© Copyright IBM Corp. 1987, 2009 11

Contacting IBM Support

IBM Software Support Handbook
This guide contains important information on the procedures and practices followed in the
service and support of your IBM products. It does not replace the contractual terms and
conditions under which you acquired specific IBM Products or Services. Please review it
carefully. You may want to bookmark the site so you can refer back as required to the latest
information. The "IBM Software Support Handbook" can be found on the web at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html.

Accessing Software Support
When calling or submitting a problem to IBM Software Support about a particular service
request, please have the following information ready:

♦ IBM Customer Number

♦ The machine type/model/serial number (for Subscription and Support calls)

♦ Company name

♦ Contact name

♦ Preferred means of contact (voice or email)

♦ Telephone number where you can be reached if request is voice

♦ Related product and version information

♦ Related operating system and database information

♦ Detailed description of the issue

♦ Severity of the issue in relationship to the impact of it affecting your business needs

Contact by Web
Open service requests is a tool to help clients find the right place to open any problem,
hardware or software, in any country where IBM does business. This is the starting place
when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online
problem management to open, edit and track open and closed PMRs by customer number.
Timesaving options: create new PMRs with prefilled demographic fields; describe problems
yourself and choose severity; submit PMRs directly to correct support queue; attach
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports
on open and closed PMRs. You can find information about assistance for SR at http://
www.ibm.com/software/support/help-contactus.html

System Service Request (SSR) tool is similar to Electronic Service request in providing
online problem management capability for clients with support offerings in place on System

I B M I L O G P L A N T P O W E R O P S V 3 . 212

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/support/electronic/uprtransition.wss?category=2&locale=en_us
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/help-contactus.html
http://www.ibm.com/software/support/help-contactus.html
http://www14.software.ibm.com/webapp/set2/ssr/slprob

i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2,
Isogon, Candle on OS/390 and Consul z/OS legacy products.

IBMLink SoftwareXcel support contracts offer clients on the System z platform the IBMLink
online problem management tool to open problem records and ask usage questions on
System z software products. You can open, track, update, and close a defect or problem
record; order corrective/preventive/toleration maintenance; search for known problems or
technical support information; track applicable problem reports; receive alerts on high
impact problems and fixes in error; and view planning information for new releases and
preventive maintenance.

Contact by phone
If you have an active service contract maintenance agreement with IBM , or are covered by
Program Services, you may contact customer support teams by telephone. For individual
countries, please visit the Technical Support section of the IBM Directory of worldwide
contacts.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 13

http://ibm.com/ibmlink
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

I B M I L O G P L A N T P O W E R O P S V 3 . 214

How to use the documentation

Describes Plant PowerOps (PPO) documentation.

In this section

Publications in the documentation set
Describes the information delivered with Plant PowerOps.

The documentation formats
Explains the different formats in which the documentation is provided.

Accessing the CHM, PDF, and HTML documentation
Describes how to access each of the different documentation formats.

Disclaimers
Documentation disclaimers.

Acknowledgement
Use of algorithm for computing the inverse normal cumulative distribution function.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 15

Publications in the documentation set

Information delivered with Plant PowerOps is organized as follows:

♦ The Release Notes

Introduces the new functionality and features of the most recent release.

♦ Implementation of Plant PowerOps

Describes the optimization process, data modeling, optimization criteria and Key
Performance Indicators. Serves as a companion reference to the data schema and API
manuals.

♦ Applied use of Plant PowerOps

Shows how to use the PPO GUI and data model to handle industry concerns such as
managing stock corridors and service levels, and planning using available-to-promise
calculations. Also includes some information on basic use of the GUI.

♦ Examples and tutorials

Examples of creating data models to represent manufacturing processes, ranging from
the basic to complex. Choose from examples using the data schema, C++ API or Java
API.

♦ Reference Documentation

Reference information includes the following:

● Customizing and extending Plant PowerOps

Modifying your PPO installation through customization, configuration changes, and
extension by plug-in.

● Plant PowerOps Entity Relationship Diagrams

Diagrams showing model entities.

● Data schema

The complete list of data schema tables and fields with concise descriptions.

● C++ Reference Manual

The C++ API reference for PPO.

● Java Reference Manual

The Java™ API reference for PPO.

There is additional information available within the PPO GUI on tooltips, messages, and
descriptive help text in various windows. The GUI also has the Online Help which provides
basic information about system requirements, the menu and toolbars of the application, and
shortcut keys.

I B M I L O G P L A N T P O W E R O P S V 3 . 216

The documentation formats

Most PPO documentation is available in several formats:

♦ CHM (Microsoft® Compiled HTML)

♦ PDF (Adobe® Portable Document Format)

♦ HTML (Cross-platform compatible)

Features and search
The CHM format provides a quick and easy-to-use search tool that functions across the
entire PPO documentation set. It is a very thorough search mechanism; you may prefer to
put your search term in quotes to enforce a strict search.

PDF files are useful for annotation, search, and printing purposes. As with CHM, each search
hit is highlighted. You can download the Adobe Reader product for free from:

http://www.adobe.com/products

Cross-platform HTML contains all PPO documentation. This format is used with standalone
browsers on Windows® and other platforms. There is no built-in search function available
on the HTML documentation.

Note that search results may vary slightly across the documentation formats. For example,
if searching for only part of a file or path name, you may get more useful results by searching
the PDF documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 17

http://www.adobe.com/products

Accessing the CHM, PDF, and HTML documentation

CHM and PDF
CHM is available from the PPO GUI by selecting Ctrl + D. You can also launch the
documentation from the PPO menu bar: Help > Documentation.

You can also access the documentation without starting PPO. For example on Windows®
XP select: Start > All Programs > ILOG > IBM ILOG Plant PowerOps > Documentation
Plant PowerOps.

The CHM and PDF documentation is located within your PPO product installation directory
(represented as <PPOInstallDirectory>). You can find the CHM files in the folder:

<PPOInstallDirectory>\doc\chm

The PDF documentation is in the folder:

<PPOInstallDirectory>\doc\pdf

The naming convention for these files is as follows:

♦ ppodoc: The core information of the documentation set. In CHM format, this document
includes access to all content.

♦ ppocplus: The Plant PowerOps C++ Reference Manual.

♦ ppojava: The Plant PowerOps Java Reference Manual.

♦ pposchema: The Plant PowerOps Data Schema.

If a title does not exist in the folder, then that publication is not available in that format. For
example, the Plant PowerOps Java Reference Manual is not available as a PDF file.

HTML documentation
The HTML documentation is available at <PPOInstallDirectory>\doc\html\en-US\
documentation.html. The HTML documentation is cross-platform compatible and includes
all available publications.

I B M I L O G P L A N T P O W E R O P S V 3 . 218

Disclaimers

Examples, graphics, and solutions used in this documentation are designed to illustrate
certain features of PPO. Information is presented for the value of education and for the
convenience of the reader. Examples should not necessarily be viewed as the recommended
method or approach, nor viewed as the only way to approach implementation of PPO, nor
assumed to exactly match a specific version or implementation of PPO. This software is
provided 'as is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 19

Acknowledgement

IBM® ILOG® Plant PowerOps includes code based on Peter J. Acklam's algorithm for
computing the inverse normal cumulative distribution function:
http://home.online.no/~pjacklam/notes/invnorm.

I B M I L O G P L A N T P O W E R O P S V 3 . 220

System requirements

♦ CPU of 2 GHz or faster.

♦ Memory of at least 2 GB.

♦ Windows® XP or Windows Vista.

♦ A large monitor with a 16:9 aspect ratio.

Recommended system specification for the database server
Oracle® 10g or 11g; or Microsoft® SQL Server® 2000 or 2005.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 21

I B M I L O G P L A N T P O W E R O P S V 3 . 222

IBM ILOG Plant PowerOps V3.2 Release
Notes

IBM® ILOG® Plant PowerOps V3.2 is officially supported in English (American), Japanese
and Chinese (Simplified).

In this section

System requirements
This section lists the system requirements.

User Interface improvements
Improved tools, increased functionality, and redesign of views.

Modeling changes
There are changes in modeling demand used for interactive planning, modeling initial stock,
and enforcement of planning mode decisions.

Enhancements to planning, batching, and scheduling
Describes new functionality available in the optimization modules for Plant PowerOps (PPO)
V3.2.

Relational model changes
This section introduces the Plant PowerOps (PPO) schema version 4.0. The data schema
goes through a major upgrade for PPO V3.2 due to separation of master and transactional
data.

Reporting with Tableau
Tableau version updated to 4.1.

© Copyright IBM Corp. 1987, 2009 23

Documentation, acknowledgement
For the 3.2 release, PPO documentation features improved organization and full search in
CHM format.

I B M I L O G P L A N T P O W E R O P S V 3 . 224

System requirements

♦ CPU of 2 GHz or faster.

♦ Memory of at least 2 GB.

♦ Windows® XP or Windows Vista.

♦ A large monitor with a 16:9 aspect ratio.

Recommended system specification for the database server
Oracle® 10g or 11g; or Microsoft® SQL Server® 2000 or 2005.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 25

I B M I L O G P L A N T P O W E R O P S V 3 . 226

User Interface improvements

Improved tools, increased functionality, and redesign of views.

In this section

Model checker and data reader
More rules, better checking.

Data exchange with Microsoft Excel
Improvements in exchange of data.

Improved navigation and filters
You can filter by recipe or resource.

Editing data in the GUI
Enhancements to editing production order data and master data directly in the PPO GUI.

New design and function for some views and tools
A summary of GUI redesign efforts.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 27

Model checker and data reader

The model checker contains more rules to guide you while building your model.

The data reader enforces more checking, logged in the PPO console.

I B M I L O G P L A N T P O W E R O P S V 3 . 228

Data exchange with Microsoft Excel

When importing data from Microsoft® Excel® , a new scenario is created in PPO, which
merges the model of the current scenario with the imported tables.

When exporting data to Excel, you can limit the number of exported tables. You can select
the exact tables for export by individual table or by relational model group (such as recipe
tables, production order tables, and so forth). Also, when exporting data, all dates are now
real dates in the time zone of the model, instead of integer format.

Performance during import and export has greatly improved; re-importing spreadsheet data
is up to 100 times faster than in previous versions.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 29

Improved navigation and filters

When displaying two or moreMaster Data or Transactional Data tables, you can filter
the displayed data by various criteria, including by materials, recipes and resources.

For example, the following image shows twoMaster Data views, the lower of which is
focused on theMaterials tab with the material bio-muesli selected. The upper view is
focused on the Recipes tab, where the user had selected the filter icon with the result that
the only recipe displayed is the one associated with the bio-muesli material.

I B M I L O G P L A N T P O W E R O P S V 3 . 230

Editing data in the GUI

There are numerous enhancements to your ability to edit data in the PPO GUI.

Production order editing with the Inspector
You can adjust the batch size of a production order by changing the quantity produced or
the quantity consumed directly in the inspector. Moreover, the batch size, consumption,
and production can be specified in different units if enabled in the model (secondary units
for material declared). The batch size is updated automatically when fields are edited.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 31

Master data editing in the GUI
The master data available for editing in the GUI continues to expand. Use the Edit selection
on the contextual menu on theMaster Data tables to display a dialog box that allows you
to see and modify your model data.

You can edit the secondary units of materials on the Advanced Options tab of theMaterial
editing window.

On the recipe editor window, you can edit the secondary resource requirements of an activity
mode.

Setup activities and constraints are now visible on the recipe editing window.

Two new tabs on theMaster Data view give you access to Units of Measure and Bucket
Sequences. Both contain editable data. You can add or remove bucket templates, with the
effects immediately visible on a time scale in the editor window. You can create buckets the
same way when generating a new model with the model wizard (File -> New Model)

I B M I L O G P L A N T P O W E R O P S V 3 . 232

New design and function for some views and tools

Optimization windows
The Batching advanced options selection has been removed from the Optimize the
scenario dialog box. The Slack on Planned Start Time and Slack on Planned End Time
selections have been moved to the Scheduling advanced options page.

The Optimization in Progress window has been redesigned to provide better access to
details of the optimization modules.

Start page
The Start Page has a new appearance, and the Installed Plugins are listed along with
version number.

Stock Coverage view
The Stock Coverage view now has different layouts selectable by a combo box, and you
can add your own layouts. Each layout corresponds to a different use case: Inventory balance,
inventory target, transport layout, demand fulfillment, and available to promise production.

In previous versions of PPO, twomodes of inventory consumption by demandwere considered;
one was called "optimizer result" that used the decision of demand satisfaction of the
optimizer as output. The other mode was called FIFO, which always decreased the inventory
by the amount of material requested at due date. This last mode was used for interaction
but did not satisfy all constraints, such as the availability (the stock could be negative),
storage unit compatibility, maturity and shelf life constraints. With PPO 3.2, there is now
an automatic repegging to the demand at each interaction that enforces the constraints and
may not satisfy the whole demand. The stock displayed can no longer be negative, and no
immature or obsolete stock can be consumed by the demand. A red bar indicates the
unsatisfied demand. A gray bar indicates the obsolete inventory thrown away at expiration
time. An inflow bar indicates the amount of missing intermediate material. This automatic
demand repegging is based on a linear optimization taking the scheduling weights into
account in the objective function. It pegs the procurements and production orders to the
demand while taking the scheduling solution into account. If detailed scheduling is not
required by the optimization profile, and for time windows beyond the scheduling horizon,
the planned productions from the planning solution are also pegged to the demand.

For more information see Stock Coverage view.

Stock Event view
In the Stock Event view you can see applicable events that occur before the origin; this
includes past procurements that are in fact stock elements or past demand reserving a stock
element.

Waste events are automatically created to retract the obsolete material.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 33

Changes with tools
You can now hide the tooltip of activities on the Gantt diagram, using a plugin installer class
in Java™ and the method:

plantApplication.setShowingTooltipsOnResourceChart(false);

A new Inspector tool is available for the Plant Layout view.

There are new icons and new overall appearance in the PPO 3.2 GUI. The Online Help has
a full listing of all icons and shortcut keys.

I B M I L O G P L A N T P O W E R O P S V 3 . 234

Modeling changes

There are changes in modeling demand used for interactive planning, modeling initial stock,
and enforcement of planning mode decisions.

In this section

Promised demand used in interactive planning
“Firm” demand is renamed as promised demand.

Modeling initial stock
There is now one unique method of modeling initial stock.

Persistence of planning decisions
Planning decisions are now available in the model, and can be enforced upon scheduling.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 35

Promised demand used in interactive planning

Promised demand (previously known as firm demand) is a concept useful for editing a
production plan in the GUI. For example, suppose you have optimized a production plan,
and are now wondering if it is possible to add more demand and what the effects would be.
Use promised demand to indicate demand that is already promised to a customer; such a
demand is not included in the "Available-To-Promise" (ATP) calculation in the next
optimization. You can then run planning simulations based upon ATP, capable to promise
(CTP), and profitable to promise (PTP) calculations. The Stock Coverage view has two
columns (hidden by default) useful in this context: ATP and Cumulative ATP.

On the PPO_DEMAND table the column FIRM has been renamed as PROMISED. In the API, the
affectedmethods of IloMSDemand have been renamed setPromised(boolean) and isPromised
().

Note that promised demand is used only in the ATP calculation; also note that marking a
demand as promised is not enough to make the demand delivery mandatory for the optimizer.
For more information, see Production planning simulations.

I B M I L O G P L A N T P O W E R O P S V 3 . 236

Modeling initial stock

In PPO V3.2 there is one unique method to enter initial stock into your model, and that is
via procurement: Use the PPO_PROCUREMENT table or API class IloMSProcurement. Any
procurement with a reception date before the start of the model is considered to be a stock
element. The associated production date is used to compute the age of the stock.

Several model elements are now obsolete, but the CSV reader is still able to read these
tables and generate the equivalent elements in the new model. See Migration to schema
version 4.0 for more information.

Obsolete model elements due to this change:

♦ PPO_MATERIAL|INITIAL_QUANTITY and PPO_STORAGE_UNIT_MATERIAL|INITIAL_QUANTITY.

♦ PPO_STORAGE_TO_xxx_ARC and PPO_xxx_TO_STORAGE_ARC tables.

♦ IloMSMaterial.setInitialQuantity(double) and IloMSStorageUnit.
addStorableMaterial(IloMSMaterial.double)

I B M I L O G P L A N T P O W E R O P S V 3 . 2 37

Persistence of planning decisions

Decisions taken by the planning engine regarding resource assignment are conserved by
production orders, and are available in the PPO_PRODUCTION_ORDER_PLANNED_MODE table.
You can enforce the scheduling engine to respect the planning decisions made on resource
usage with the parameter modeOfPlanningOnly in the PPO_SETTING table.

I B M I L O G P L A N T P O W E R O P S V 3 . 238

Enhancements to planning, batching, and
scheduling

Describes new functionality available in the optimization modules for Plant PowerOps (PPO)
V3.2.

In this section

Planning module enhancements
Describes improvements in PPO in the areas of dynamic safety stock and infeasibility
management. Also see the section Persistence of planning decisions.

Batching algorithms
There are three batching algorithms available, and the constraint based algorithm has been
greatly improved.

Scheduling
A new scheduling model for pegging arcs is available in PPO V3.2.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 39

I B M I L O G P L A N T P O W E R O P S V 3 . 240

Planning module enhancements

Describes improvements in PPO in the areas of dynamic safety stock and infeasibility
management. Also see the section Persistence of planning decisions.

In this section

Dynamic safety stock
Dynamic fill rate and dynamic service level are innovative approaches in PPO, and are
improved for this release.

Infeasibility management
Describes infeasibility management and the multipass planning algorithm.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 41

Dynamic safety stock

The 3.1 release of PPO introduced the ability to define safety stock based on fill rate or cycle
service level, depending upon demand and cycle time variability with a standard approach
based on average lead time. Also in V3.1, PPO introduced an innovative approach to define
safety stock dynamically, depending upon planned lead time (taking into account the planned
date of the next production). This allowed users to manage inventory according to safety
stock settings in conjunction with manufacturing optimization; previously, one could manage
only through direct manipulation of safety stock settings.

In PPO V3.2, the management of dynamic safety stock has been improved, leading to an
average inventory reduction of 25%.

For more information on using this technology, see Using service levels, lead time, and
demand variability to manage stock levels.

I B M I L O G P L A N T P O W E R O P S V 3 . 242

Infeasibility management

With Infeasibility Management, you can make selections for automatic generation of
inflow or waste recipes, and choose between several planning algorithms.

These selections are available in the relational data model, API, and on the Planning
advanced options tab of the Optimize the scenario dialog box.

The inflow and waste recipes are used to deal with infeasible balances (missing ingredients,
perished materials, surplus materials). These artificial recipes introduce slack variables to
repair infeasible balance of materials for fixed orders. High costs are generated automatically,
so use of these recipes is a fallback option in case the model is infeasible. At each optimization
run, the old automatic inflow and waste recipes and orders are discarded, and new ones are
generated. The artificial recipes are labeled with a type of “Automatic” (see
PPO_RECIPE|RECIPE_TYPE).

You can let PPO decide which algorithm to use for planning (Automatic) or choose yourself
between single pass or multipass.

The single pass approach solves a single mathematical programming model with a single
weighted objective function, combining business objectives and "technical" costs. With this
approach, the costs of processing these recipes must be carefully computed so that the
optimizer uses them only as a fallback position, in case of infeasibility. The drawback of this
approach is the potentially wide range in numerical values that coexist during optimization,
which can lead to numerical stability issues. The business objectives could get diluted in an
objective function containing high technical costs. A bad solution with respect to the business
objective may result if the relative gap limit stops optimization when the solution is "good
enough."

The multipass approach uses goal programming to deal with infeasible material flow. The
business objective is kept separate from technical costs such as inflow and waste recipe
costs or nondelivery costs. This approach assumes it is always better to deliver a product,
as compared to other considerations.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 43

To summarize, the standard approach with a single pass and a single objective function is
not always appropriate. Some considerations of using a single objective function include:

♦ Waste and Inflow recipe mode costs are technical costs that must dominate the others;

♦ Non delivery costs must dominate the business costs;

♦ Business cost contains all the other costs: inventory, inventory deficit, setups, processing
costs, and so forth.

Using a single objective function in a single pass may lead to:

♦ Numerical problems because of the very different magnitudes of the costs;

♦ The gap limit is meaningless because the business costs become negligible as compared
to technical costs;

♦ The optimizer spends a lot of time before it manages to satisfy the demand.

Using the multipass algorithm will minimize certain goals in the following order:

♦ First minimize the business objective with mandatory demand and no inflow/waste;

♦ If that fails, then:

● Minimize inflow and waste;

● Minimize nondelivery, enforcing inflow and waste levels as previously found;

● Minimize the business objective, enforcing nondelivery, inflow, and waste levels as
found previously.

These choices are also available in the data schema (PPO_OPTIMIZATION_PROFILE table) and
in the API in the enumeration IloMSPlanningAlgorithm.

I B M I L O G P L A N T P O W E R O P S V 3 . 244

Batching algorithms

Three batching algorithms are available: Basic heuristic, advanced heuristic, and constraint
based. There is also an automatic selection, which means that PPO first tries the heuristic
algorithms and if these fail to respect constraints, then the constraint based algorithm is
invoked.

The constraint based algorithm has been greatly improved to yield better decision making.
Numerical precision issues have been addressed.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 45

Scheduling

The setting bUseNewSchedulingModelForPeggingArcs brings greater accuracy to the
scheduling of pegging arcs. This may lead to improvements in tardiness and nondelivery in
the 1:N (one producer, several consumers) and N:1 cases. In many-to-many relationships
involving storage tanks, the new scheduling model allows ending the storage activity at the
end of the last consumption than can occur before the end of the latest consuming activity.

For more information see Parameters for optimization.

Also, you can enforce planning decisions upon the scheduling engine now; see the section
Persistence of planning decisions for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 246

Relational model changes

This section introduces the Plant PowerOps (PPO) schema version 4.0. The data schema
goes through a major upgrade for PPO V3.2 due to separation of master and transactional
data.

In this section

Separation of master data and transactional data
Prototype tables have been added to the data schema.

Migration to schema version 4.0
Describes how to migrate your existing database and csv files to the new schema version.

Data schema modeling changes
Lists the changes to the data schema for PPO V3.2.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 47

Separation of master data and transactional data

The 3.1 release of PPO separated the master data from the transactional data into two
corresponding views in the GUI. For V3.2, this process continues in the relational model
with the separation of the recipe prototype data from the generated instances of production
orders. Many of the recipe prototype tables are identified with a name ending with _PROTO,
while the corresponding generated instance table names have not changed. For example,
some recipe table names are PPO_RECIPE, PPO_ACTIVITY_PROTO, and PPO_MODE_PROTO that
model your master data, while the generated production order data resides in tables such
as PPO_PRODUCTION_ORDER, PPO_ACTIVITY, and PPO_MODE.

I B M I L O G P L A N T P O W E R O P S V 3 . 248

Migration to schema version 4.0

This section provides suggested migration pathways to move your csv and mdb files from a
previous version to the PPO schema version 4.0.

Spreadsheet csv files
The suggested process to migrate your csv files to the new schema:

♦ Open the original csv file in the PPO 3.2 GUI. The data is automatically ported to the new
schema.

♦ Save the scenario as a csv file (named accordingly) to save the migration changes.

Database mdb files
The suggested process to migrate your mdb files to the new schema:

♦ Open the mdb file with the 3.0 or 3.1 version of the PPO GUI.

♦ Save the scenario as a csv file type using File—> Save Copy Of Scenario As and specify
*.csv in the Files of type field.

♦ Open your saved csv file in the PPO 3.2 GUI. The data is automatically ported to the new
schema.

♦ Save the scenario as a database mdb file to save the migration changes.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 49

Data schema modeling changes

This section lists the changes to the data schema for PPO V3.2. To see the full descriptions
for the new fields and tables please refer to the Plant PowerOps Data Schema.

Renamed tables
Tables have been renamed in order to better support precedence and compatibility
constraints:

♦ PPO_ACTIVITY_COMPATIBILITY has been renamed to PPO_PROD_PROD_COMPAT.

♦ PPO_PRECEDENCE has been renamed to PPO_PROD_PROD_PRECED.

New tables
Many new tables have been added to support the separation of the prototype information
from the generated data, and to support precedence and compatibility constraints:

♦ PPO_ACTIVITY_CHAIN_PROTO

♦ PPO_ACTIVITY_PROTO

♦ PPO_ACTIVITY_SETUP_STATE_PROTO

♦ PPO_MATERIAL_PRODUCTION_PROTO

♦ PPO_MODE_PROTO

♦ PPO_PROD_ORDER_PLANNED_MODE

♦ PPO_PROD_PROD_COMPAT_PROTO

♦ PPO_PROD_PROD_PRECED_PROTO

♦ PPO_PROD_SETUP_COMPAT

♦ PPO_PROD_SETUP_COMPAT_PROTO

♦ PPO_PROD_SETUP_PRECED

♦ PPO_PROD_SETUP_PRECED_PROTO

♦ PPO_SECONDARY_RESOURCE_PROTO

♦ PPO_SETUP_ACTIVITY_PROTO

♦ PPO_SETUP_MODE_PROTO

♦ PPO_SETUP_PROD_COMPAT

♦ PPO_SETUP_PROD_COMPAT_PROTO

♦ PPO_SETUP_PROD_PRECED

I B M I L O G P L A N T P O W E R O P S V 3 . 250

♦ PPO_SETUP_PROD_PRECED_PROTO

♦ PPO_SETUP_SECONDARY_RES_PROTO

♦ PPO_SETUP_SETUP_COMPAT

♦ PPO_SETUP_SETUP_COMPAT_PROTO

♦ PPO_SETUP_SETUP_PRECED

♦ PPO_SETUP_SETUP_PRECED_PROTO

♦ PPO_SPANNING_PROTO

Also the PPO_DATA_SCHEMA table has been added for database persistence to record the
schema version of PPO.

Deprecated and removed tables
The following tables have been removed (previously deprecated):

♦ PPO_SHIPPING_COST_FCT

♦ PPO_SHIPMENT_TYPE

♦ PPO_BATCHING_CRITERON_WEIGHT

♦ PPO_MATERIAL_SHIPMENT_TYPE

♦ PPO_SHIPMENT

♦ PPO_SHIPMENT_PRODUCTION_ORDER

The following tables have been deprecated:

♦ PPO_PROD_TO_STORAGE_ARC

♦ PPO_STORAGE_TO_PROD_ARC

♦ PPO_STORAGE_TO_DEMAND_ARC

♦ PPO_PROCUREMENT_TO_STORAGE_ARC

Changes to columns within tables
This section lists internal changes to tables since PPO 3.1.

Changes to the PPO_MODE table
The following columns of the PPO_MODE table have been renamed:

♦ FIXED_PROCESSING_TIME_MIN has been renamed to PROCESSING_TIME_MIN

♦ FIXED_PROCESSING_TIME_MAX has been renamed to PROCESSING_TIME_MAX

♦ FIXED_COST has been renamed to COST

I B M I L O G P L A N T P O W E R O P S V 3 . 2 51

The following columns have been added to the PPO_MODE table:

♦ FIX_PROCESSING_TIME_MIN_PROTO

♦ FIX_PROCESSING_TIME_MAX_PROTO

♦ VARIABLE_PROCESSING_TIME_PROTO

♦ FIXED_COST_PROTO

♦ UNPERFORMED_COST_PROTO

The following columns have been removed from the PPO_MODE table:

♦ FIXED_PROCESSING_TIME

♦ VARIABLE_PROCESSING_TIME

♦ VARIABLE_COST

Changes to tables of type: _MATERIAL
From table PPO_MATERIAL, the following columns have been removed:

♦ INITIAL_QUANTITY

♦ LENGTH

♦ WIDTH

♦ DEPTH

♦ VOLUME

♦ WEIGHT

♦ INTERNAL_LENGTH_MAX

♦ INTERNAL_WIDTH_MAX

♦ INTERNAL_DEPTH_MAX

♦ INTERNAL_VOLUME_MAX

♦ INTERNAL_WEIGHT_MAX

In table PPO_MATERIAL_PRODUCTION:

♦ Column VARIABLE_QUANTITY has been removed

♦ Column FIXED_QUANTITY has been renamed to PRODUCED_QUANTITY

♦ Column VARIABLE_QUANTITY_PROTO has been added

♦ Column FIXED_QUANTITY_PROTO has been added

In table PPO_STORAGE_UNIT_MATERIAL:

♦ Column INITIAL_QUANTITY has been removed

I B M I L O G P L A N T P O W E R O P S V 3 . 252

♦ Column MERGING_LIMIT has been removed

Changes to other table columns
In table PPO_DEMAND the column FIRM has been renamed to PROMISED, and SHELF_LIFE_MIN
has been renamed to REMAINING_SHELF_LIFE.

In table PPO_OPTIMIZATION_PROFILE a new column PLANNING_ALGORITHM has been added,
and the columns BATCHING_HORIZON and BATCHING_TIME_LIMIT have been removed.

In table PPO_PROD_TO_PROD_ARC the column STORAGE_UNIT_ID has been removed.

In table PPO_PROD_TO_STORAGE_ARC the column STORAGE_UNIT_ID has been removed.

In table PPO_ACTIVITY the column RECIPE_ID has been removed.

In table PPO_STORAGE_TO_DEMAND_ARC the column STORAGE_UNIT_ID has been added.

In table PPO_PRODUCTION_ORDER the column PLANNED_SUB_RECIPE_INDEX has been removed.

In table PPO_STORAGE_TO_PROD_ARC the column STORAGE_UNIT_ID has been added.

In table PPO_PROCUREMENT_TO_DEMAND_ARC the column SHIPMENT_ID has been removed.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 53

Reporting with Tableau

Tableau has been updated to version 4.1 in PPO V3.2. When generating Tableau reports, all
dates are now real dates in the time zone of the model, as opposed to integers.

Tableau allows you to generate detailed, customized reports about your problem data.
Tableau is integrated as a plug-in to PPO, and is shipped with several default templates. For
Tableau documentation either press F1 when Tableau starts or go to http://
www.tableausoftware.com. Note that Tableau is enabled for Unicode and is compatible with
data stored in any language; however the user interface and supporting documentation are
available in English only.

For more information on customizing Tableau within PPO, see Customizing report generation
with Tableau.

I B M I L O G P L A N T P O W E R O P S V 3 . 254

http://www.tableausoftware.com
http://www.tableausoftware.com

Documentation, acknowledgement

For the 3.2 release, PPO documentation features improved organization and full search in
CHM format.

In this section

Publications in the documentation set
Describes the information delivered with Plant PowerOps.

Accessing the CHM, PDF, and HTML documentation
Describes how to access each of the different documentation formats.

Acknowledgement
Use of algorithm for computing the inverse normal cumulative distribution function.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 55

Publications in the documentation set

Information delivered with Plant PowerOps is organized as follows:

♦ The Release Notes

Introduces the new functionality and features of the most recent release.

♦ Implementation of Plant PowerOps

Describes the optimization process, data modeling, optimization criteria and Key
Performance Indicators. Serves as a companion reference to the data schema and API
manuals.

♦ Applied use of Plant PowerOps

Shows how to use the PPO GUI and data model to handle industry concerns such as
managing stock corridors and service levels, and planning using available-to-promise
calculations. Also includes some information on basic use of the GUI.

♦ Examples and tutorials

Examples of creating data models to represent manufacturing processes, ranging from
the basic to complex. Choose from examples using the data schema, C++ API or Java
API.

♦ Reference Documentation

Reference information includes the following:

● Customizing and extending Plant PowerOps

Modifying your PPO installation through customization, configuration changes, and
extension by plug-in.

● Plant PowerOps Entity Relationship Diagrams

Diagrams showing model entities.

● Data schema

The complete list of data schema tables and fields with concise descriptions.

● C++ Reference Manual

The C++ API reference for PPO.

● Java Reference Manual

The Java™ API reference for PPO.

There is additional information available within the PPO GUI on tooltips, messages, and
descriptive help text in various windows. The GUI also has the Online Help which provides
basic information about system requirements, the menu and toolbars of the application, and
shortcut keys.

I B M I L O G P L A N T P O W E R O P S V 3 . 256

Accessing the CHM, PDF, and HTML documentation

CHM and PDF
CHM is available from the PPO GUI by selecting Ctrl + D. You can also launch the
documentation from the PPO menu bar: Help > Documentation.

You can also access the documentation without starting PPO. For example on Windows®
XP select: Start > All Programs > ILOG > IBM ILOG Plant PowerOps > Documentation
Plant PowerOps.

The CHM and PDF documentation is located within your PPO product installation directory
(represented as <PPOInstallDirectory>). You can find the CHM files in the folder:

<PPOInstallDirectory>\doc\chm

The PDF documentation is in the folder:

<PPOInstallDirectory>\doc\pdf

The naming convention for these files is as follows:

♦ ppodoc: The core information of the documentation set. In CHM format, this document
includes access to all content.

♦ ppocplus: The Plant PowerOps C++ Reference Manual.

♦ ppojava: The Plant PowerOps Java Reference Manual.

♦ pposchema: The Plant PowerOps Data Schema.

If a title does not exist in the folder, then that publication is not available in that format. For
example, the Plant PowerOps Java Reference Manual is not available as a PDF file.

HTML documentation
The HTML documentation is available at <PPOInstallDirectory>\doc\html\en-US\
documentation.html. The HTML documentation is cross-platform compatible and includes
all available publications.

Features and search
The CHM format provides a quick and easy-to-use search tool that functions across the
entire PPO documentation set. It is a very thorough search mechanism; you may prefer to
put your search term in quotes to enforce a strict search.

PDF files are useful for annotation, search, and printing purposes. As with CHM, each search
hit is highlighted. You can download the Adobe Reader product for free from:

http://www.adobe.com/products

Cross-platform HTML contains all PPO documentation. This format is used with standalone
browsers on Windows® and other platforms. There is no built-in search function available
on the HTML documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 57

http://www.adobe.com/products

Note that search results may vary slightly across the documentation formats. For example,
if searching for only part of a file or path name, you may get more useful results by searching
the PDF documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 258

Acknowledgement

IBM® ILOG® Plant PowerOps includes code based on Peter J. Acklam's algorithm for
computing the inverse normal cumulative distribution function:
http://home.online.no/~pjacklam/notes/invnorm.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 59

I B M I L O G P L A N T P O W E R O P S V 3 . 260

Implementation of Plant PowerOps

This section describes what you need to know to create a successful model of your plant
data in Plant PowerOps (PPO).

In this section

Introduction to planning and scheduling with PPO
This section describes how you can use PPO to meet the challenges of production planning
(PP) and detailed scheduling (DS) in your manufacturing environment.

Optimization and KPIs
This section describes the optimization process that finds a solution to your manufacturing
decision problem. There are three optimization modules: planning, batching, and scheduling.
You can apply Key Performance Indicators to guide optimization.

The basic data model
This section describes the fundamental elements of a data model for Plant PowerOps. This
information helps you populate a problem model in the context of a given application.

Extended use of the data model
This section serves as a continuation of The basic data model, describing additional modeling
considerations and possibilities of Plant PowerOps. Themodeling extensions presented here
can improve the accuracy and precision of your model. However, some of these features
may make the problems more complex to solve, so it is recommended to use only those that
significantly improve the plan.

© Copyright IBM Corp. 1987, 2009 61

I B M I L O G P L A N T P O W E R O P S V 3 . 262

Introduction to planning and scheduling with
PPO

This section describes how you can use PPO to meet the challenges of production planning
(PP) and detailed scheduling (DS) in your manufacturing environment.

In this section

Overview
An overview of the challenges in the industry.

What Is IBM ILOG Plant PowerOps?
IBM® ILOG® Plant PowerOps (PPO) is a powerful tool for creating manufacturing rough
plans and detailed schedules.

How Plant PowerOps solves the problem
Plant PowerOps integrates planning and scheduling.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 63

Overview

You know the challenges: Unpredictable availability of raw material and unpredictable
energy costs. Widely dispersed suppliers, production facilities, and storage facilities. Demand
for green technology. Greater product differentiation than ever before (more SKUs),
simultaneously with greater volatility in customer demand. All this, in the midst of striving
for greater efficiency to compete in the global marketplace.

Among all industry sectors, those that utilize batch processing are some of the most capital
intensive and capacity constrained. Batch processing includes the food and beverage,
consumer packaged goods, pharmaceutical, and chemical manufacturing industries, where
volumes are typically high and plant efficiency must be at a maximum level. These industries
have already reached high levels of efficiency, but during latter years plant managers have
been asked to achieve even greater efficiencies. In these industries a small percentage
increase in plant efficiency can bring a large reduction in operating costs. Often, the most
cost-effective and potent method of improving plant productivity is to optimally plan and
schedule the production resources (including production, maintenance, and quality control
resources). However, given the unique characteristics of batch processing industries, human
planners and schedulers cannot reach higher levels of efficiency using traditional planning
and scheduling systems. That's where IBM® ILOG® Plant PowerOps comes in: To provide
plant planners and schedulers the optimized production plans and schedules that take
company operations to previously unreachable levels of efficiency.

This publication describes how to implement IBM ILOG Plant PowerOps (PPO) at your facility.
It introduces how to model data for PPO, the PPO optimization process, and how to use PPO
to solve your manufacturing planning and scheduling problems.

I B M I L O G P L A N T P O W E R O P S V 3 . 264

What Is IBM ILOG Plant PowerOps?

PPO is a powerful tool for creating manufacturing rough plans and detailed schedules. You’ll
find PPO vital for creating both long term production plans and detailed, optimized
manufacturing schedules. PPO has fully integrated planning and scheduling. You define the
problem once in the PPOmodel, and PPO plans the volumes, production orders, and schedules
using the planning, batching, and scheduling modules.

PPO is based on the standard production model used in batch processing industries: the
RecipeModel. The recipemodel strictly integrates material data and process data (contrasted
to discrete manufacturing industries which use the data model standard which decouples
materials data from process data). PPO is a third generation APS product, based on the most
advanced optimization engines available on the market. Prior to suggesting a plan or a
schedule to the user, PPO explores thousands or millions of possibilities in a very short
period of time.

Planning and scheduling in batch processing industries is a challenging task. First, a feasible
schedule must satisfy a variety of constraints including:

♦ Temporal constraints

♦ Resource assignment and capacity constraints

♦ Shelf life and maturity constraints

♦ Limited capacity tanks/silos

♦ Quality control constraints

♦ Equipment connection constraints

♦ High material flow synchronization between upstream and downstream equipment

♦ Variable standard efficiencies

♦ Energy constraints

♦ Changeovers and Cleaning In Place (CIP) constraints

In addition, an appropriate schedule must respond to a number of potentially conflicting
optimization criteria. It must:

♦ Respond to all or at least to the most important customer demands and production orders
driven by those demands;

♦ Deliver the products on time (that is, not so late that they cannot be delivered to the
customer on time, and not so early that the goods require storage);

♦ Manufacture the products at the lowest possible cost while managing inventory to
optimized levels;

♦ Account for variability in demand and lead time in order to achieve a targeted service
level;

♦ Avoid lengthy and costly machine setups while allowing time slots for cleaning in many
industries.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 65

These constraints and optimization criteria, and more, can all be expressed using PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 266

How Plant PowerOps solves the problem

PPO optimization components
The optimization algorithms provided in PPO are based on proprietary state-of-the-art
optimization technology. They automatically perform the difficult task of establishing the
most appropriate trade-offs between various cost factors to generate feasible, low-cost
production schedules.

Optimization occurs within three modules in PPO: Planning, Batching, and Scheduling. The
PPO optimization planning engine has a mixed integer and linear approach based on IBM®
ILOG® CPLEX® . This approach captures the trade-off between the supply chain objective
(keeping the right amount inventory to avoid stock deficit or waste) and the manufacturing
objectives (such as minimizing setups and cleanups). The PPO optimization scheduling
engine features a constraint-based scheduling approach dedicated to manufacturing
scheduling and is based on IBM ILOG CP. These modules are described in greater detail
throughout the documentation.

PPO visualization components
In PPO, the optimization algorithms are integrated with an interactive graphical user interface
(GUI). The PPO GUI provides many views of the scheduling problem as well as the plans,
inventory, and resource utilization data generated by the PPO optimization engine. The
graphical planning board is built with IBM ILOG JViews Gantt Chart. These views can be
displayed simultaneously and are automatically updated at each user interaction. The impact
on demand coverage of resizing or delaying an order in the Gantt is seen immediately.

The Gantt Diagram displays the best solution found by PPO, and you can edit the problem
data. You can change constraints, resources, criteria and Key Performance Indicators, and
regenerate a new plan. With several plans displayed in the GUI, you can easily compare the
results.

Each plan has multiple views to enable users to view data in tables, graphs, and in Gantt
chart format. Importantly, PPO is interactive, allowing users to manually override the
generated plan. For example, you can:

♦ Modify orders data

♦ Change production sequences

♦ Simulate adding overtime or extra shifts, as well downtime periods

♦ Modify the efficiency or capacity of resources.

♦ Postpone or anticipate activities of a production order

♦ Change resource assignments

♦ Fix or firm production orders

♦ Manage multiple scenarios.

There is immediate graphical rescheduling to help the user interactively change the scheduled
activities, while maintaining a certain level of consistency.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 67

I B M I L O G P L A N T P O W E R O P S V 3 . 268

Optimization and KPIs

This section describes the optimization process that finds a solution to your manufacturing
decision problem. There are three optimization modules: planning, batching, and scheduling.
You can apply Key Performance Indicators to guide optimization.

In this section

Optimization modules and solution
Describes the production planning, batching, and detailed scheduling modules of PPO.

Key Performance Indicators
Key performance indicators are used to affect the optimization process and to track various
costs and revenue.

Optimization profile
Optimization profiles are used to contain parameters that tune or direct the optimization
engines.

Advanced optimization
Describes various considerations regarding optimization, including advanced options, post
processing, parameters, complexity considerations and problem decomposition.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 69

Optimization modules and solution

Planning, batching, and scheduling present different programming challenges, and so require
that the PPO optimization modules use different technologies to find an optimal solution.
By default, the three modules are called in sequence, passing results from one to the next.
If desired, you can create a more complex decomposition by using a plug-in (see Customizing
and Extending PPO).

Generally, after selecting the Optimize button in the PPO GUI or calling the solve method
on the IloMSModel class:

♦ The production planning module infers an abstraction of the scheduling problem
transparently, and determines (under finite capacity constraints) the volume to produce
per time bucket while optimizing criteria.

♦ Then the batching engine creates production orders respecting batch size constraints
and the material flow.

♦ The scheduling engine assigns to the production order activities the modes, start times,
and end times that satisfy the constraints. Along with the detailed schedule you can find
data regarding resource utilization, inventory levels, bottlenecks, and much more.

♦ Finally, the demand repegging algorithm is called to create the final arcs to demand. If
Post processing options have been selected, then those modules are called.

The production planning module
The PPO production planning module generates rough production plans as well as lot
recommendations if appropriate, while taking into account operational level constraints
such as multidimensional changeovers, capacity limitations, inventory costs, push and pull
production strategies, and so forth. It also provides replanning capabilities, allowing the
planner to manually change the plan, partially freeze portions of the plan, and automatically
replan.

Based on the data model, this module divides the time line into appropriate time “buckets”
and creates the production plan by determining for each bucket the amount of each recipe
to execute, and the amount of each demand to satisfy. Note that it may be desirable for you
to define the length of time buckets yourself, seeDefining time buckets for more information.

The incentive to create material production plans comes from nondelivery costs and revenue.
Nondelivery costs on demands are mandatory in order to provide an incentive for optimization
to fulfill those demands. An infinite nondelivery cost is equivalent to a mandatory demand.
Revenue represents the gain achieved by satisfying customer demand, and provides additional
incentive to produce final products. Without either nondelivery costs or revenue, the planning
module may decide not to produce anything (unless target stock has been defined). See
Costs and revenue for more on that subject. In the PPO GUI, you may notice an additional
component of the global objective called perturbation. This is a technical cost that the
planning engine uses to break the symmetries of the problem

The planning results are called planned productions. This data is displayed in the Plant
PowerOps GUI, which enables the planner to directly edit the plan. Planning results are
available in several views, most concisely on the Planned Productions tab in the
Transactional Data view, shown below. For those working with data tables, the planning
results are stored in several tables: PPO_PLANNED_PRODUCTION, PPO_PLANNED_DELIVERY, and

I B M I L O G P L A N T P O W E R O P S V 3 . 270

PPO_PLANNED_PRODUCTION_MODE. Decisions of resource assignment taken by the planning
engine are conserved by the production orders, and are available in the table
PPO_PRODUCTION_ORDER_PLANNED_MODE.

The batching module
The PPO batching module generates production orders and, more generally, structures the
overall material flow from raw material procurement to the satisfaction of demands for final
products. Batching is the module that links planning to scheduling.

Given the results of the production planning, the batching module computes a list of
production orders, and pegs them together as necessary (for example, when an order
produces intermediate products consumed by other orders). The batching module also pegs
the production orders with the specific demands. The batching results are available in the
GUI relational tables, most concisely on the Production Orders and Arcs tables in the
Transactional Data view, as shown below. For those working with data tables, the
production orders are stored in the PPO_PRODUCTION_ORDER table, and the pegging relations
(arcs) are stored in arc tables such as PPO_PROD_TO_PROD_ARC and PPO_PROD_TO_DEMAND_ARC.

The data model and GUI allow for the choice between several different engines to perform
batching. The Heuristic engine batches first, then pegs the production orders. Advanced
Heuristic is "smarter" than the simple heuristic in the sense it batches on the fly while
pegging orders. Constraint Based uses constraint programming to solve batching, and
Automatic tries successively the previous engines, until one succeeds. The constraint based
batching engine provides improvements in batching and pegging production orders, demands,
and procurements when complex pegging cardinalities are involved.

The scheduling module
The PPO scheduling module allocates production orders to resources, and builds detailed
schedules with precise start and end times. It handles complex manufacturing constraints
such as resource compatibility constraints, resource calendars, multidimensional changeovers
and cleaning, while maximizing resource efficiency and service levels. It also provides
rescheduling capabilities, allowing the planner to manually change the schedule, partially
freeze portions of the schedule, and automatically reschedule

For each production order and each activity of the corresponding recipe, the scheduling
module selects a production mode, a start time and an end time. The Plant PowerOps GUI
allows the planner to visualize and edit the schedule in the Gantt Diagram. The scheduling
results also appear in the Transactional Data view, Scheduled Activities tab. The evolution
of inventories over time can be viewed in the Stock Event and Stock Coverage views. The
data table results are stored in the PPO_SCHEDULED_ACTIVITY table.

Note that the scheduling engine does not necessarily use the exact resource allocation
decided upon by the planning module, as scheduling observes constraints at a finer gradation
(time unit as opposed to time bucket). You can, however, enforce the planning decisions
with respect to resource allocation upon the scheduling engine (mode of planning); see PPO
parameters.

Demand repegging
Demand repegging is an optimization-based algorithm that pegs production orders and
procurements to independent demands. The result of this module is the creation of arcs to
demand. If scheduling is not required by the optimization profile, or during time windows

I B M I L O G P L A N T P O W E R O P S V 3 . 2 71

when the planning horizon extends past the scheduling horizon, repegging pegs the planned
productions to the demand. Note that demand repegging is called at each interaction even
if not required by the optimization profile. In the event of a production shortage, demand
repegging will leave as unsatisfied those demands which have the smallest impact on the
total cost. Scheduling weights, such as total nondelivery cost, are taken into account during
optimization.

Optimization solution in the PPO GUI
The following image shows optimization results in the Transactional Data view. More
solution data can be found on the Gantt Diagram and other views mentioned previously.
For example, resource activity, availability, batch sizes and production time per bucket are
available in the Planning Sheet orWorkload Table views, and the Stock Summary view
provides details on materials.

Tuning optimization processes
There are numerous controls you have over optimization. You can set module time limits
and optimization criteria; choose time bucket size and algorithms for planning and batching;
and apply a variety of parameters and constraints.

Refer to the following topics for more information.

♦ Optimization criteria and Optimization profile.

♦ In the Data Schema, tables such as PPO_OPTIMIZATION_PROFILE, PPO_MODEL, PPO_BUCKET,
PPO_PLANNING_CRITERION_WEIGHT, and PPO_SETTING.

♦ In the API documentation, classes such as IloMSOptimizationProfile, IloMSModel,
IloMSBucket, IloMSBatchingEngine, IloMSPlanningEngine, and IloMSSchedulingEngine.

♦ Advanced optimization topics, especially Production planning advanced options and
Detailed scheduling advanced options.

I B M I L O G P L A N T P O W E R O P S V 3 . 272

Key Performance Indicators

Key performance indicators are used in PPO to track particular costs and revenue in the
optimized solution; many KPIs can also be used to affect or guide the optimization process.
There are several classes of KPIs in PPO:

♦ Standard KPIs are predefined in the product and are used for tracking purposes. The
user can select which of these KPIs to visualize.

♦ Optimization criteria (weighted criteria) constitute a subclass of the standard KPIs.
Optimization criteria are commensurable indicators that can be directly taken into account
and balanced one against the other by the Plant PowerOps optimization algorithms. These
indicators can be prioritized by assigning different weights to each, and they can be
conveniently grouped together to form specific Optimization profile. This enables the
user to easily obtain different solutions depending on, for example, a desire to minimize
inventory costs or late delivery costs.

♦ Custom KPIs are not predefined in the product but can be added to meet the demands
of any particular plant, process, or industry. Custom KPIs are not taken into account in
the objective function of the optimizer. They are computed on a solution to judge its
quality with respect to specific business objectives.

Optimization criteria
There are a number of optimization criteria available for your use. Note that not all criteria
are available to (or make sense to use with) both the planning and scheduling modules; for
example, the setup cost is a pure scheduling cost, and resource and idle costs are used by
the planning engine to balance resource usage. Also, when only a planning solution is
optimized, the value of some of these criteria must be approximated (since the exact value
depends upon the detailed schedule created by the scheduling engine).

The available optimization criteria are described here in terms of the PPO data schema.
However, the same concepts apply whether using a database, one of the APIs, or selecting
the criterion from the Optimize the scenario dialog box in the PPO GUI.

♦ Total Nondelivery Cost: For each demand, the PPO_DEMAND table provides a
NON_DELIVERY_VARIABLE_COST per unit of material that is not delivered to the customer.
The total nondelivery cost is the sum, over all demands, of this
NON_DELIVERY_VARIABLE_COST multiplied by the number of units of the demand that are
not delivered to the customer. It is mandatory to assign a nondelivery cost in order to
provide an incentive for the optimizer to fulfill the demand. An infinite nondelivery cost
is equivalent to a mandatory demand. Note that when a demand is not satisfied, there
are two potential costs: A nondelivery cost and a lack of revenue.

♦ Total Revenue: For each demand, the PPO_DEMAND table provides REVENUE per unit of
material delivered to the customer. The total revenue is the sum, over all demands, of
this REVENUE multiplied by the number of units of material shipped from inventory to
fulfill a demand.

♦ Total Processing Cost: For each mode, the PPO_MODE_PROTO and PPO_MODE tables provide
a FIXED_COST and a VARIABLE_COST. For a given production order with batch size B, the
cost of executing the corresponding activity in this mode is computed as FIXED_COST +
B * VARIABLE_COST. The total processing cost is the sum, over all activities, of the cost of
the selected modes.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 73

♦ Total Unperformed Cost: For each mode, the PPO_MODE_PROTO and PPO_MODE table provide
an UNPERFORMED_COST of leaving an activity "unperformed" but planned to be executed
in this mode. The total unperformed cost is the sum, over all activities, of the cost of
leaving activities unperformed.

♦ Total Setup Cost: For each setup (transition between states of the same setup feature),
the PPO_SETUP_MATRIX table provides a SETUP_COST. The total setup cost is the sum, over
all transitions and over all features of a given plan, of this SETUP_COST. The setup cost is
a scheduling cost and has no effect in planning.

♦ Total Cleanup Cost: The PPO_MODE_PROTO and PPO_MODE tables provide the processing
costs of recipes; for cleanup recipes the processing cost is the cleanup cost. The total
cleanup cost is the sum of the processing cost for all cleanups of all resources.

♦ Total Earliness Cost: For each demand due date, the PPO_DUE_DATE table provides a
EARLINESS_FIXED_COST and a EARLINESS_VARIABLE_COST. For each unit of the demand
that is delivered E units of time early, the earliness cost of this unit is computed as
EARLINESS_FIXED_COST + E * EARLINESS_VARIABLE_COST. The total earliness cost is the
sum, over all units of all demands that are delivered early, of this earliness cost.

♦ Total Tardiness Cost: For each demand due date, the PPO_DUE_DATE table provides a
TARDINESS_FIXED_COST and a TARDINESS_VARIABLE_COST. For each unit of the demand
that is delivered T units of time late, the tardiness cost of this unit is computed as
TARDINESS_FIXED_COST + T * TARDINESS_VARIABLE_COST. The total tardiness cost is the
sum, over all units of all demands that are delivered late, of this tardiness cost.

♦ Total Waste Cost: The waste criterion is used in the material rebalancing engine to
penalize the excess of semi-finished materials to be thrown away due to a mismatch
between semi-finished and finished products. In planning, the waste criterion is used to
penalize the amount of material discarded due to expired shelf life, enforced by waste
recipes. The total waste cost is defined for planning as the sum of the processing costs
of all "planned productions" of waste recipes.

♦ Total Resource Cost: For each resource and each point in time, the
PPO_RESOURCE_CAPACITY_COST table references a piece-wise linear function, allowing
computation of the cost of using resource capacity. The purpose of this criterion is to
allow you to balance resource usage in planning; it should not be used in scheduling. The
total resource cost is the sum, over all resources and over time, of the obtained cost.

♦ Total Idle Cost: For each resource and each point in time, the
PPO_RESOURCE_CAPACITY_COST table references a piece-wise linear function, allowing
computation of the cost of leaving resource capacity unused. The purpose of this criterion
is to allow you to balance resource usage in planning; it should not be used in scheduling.
The total idle cost is the sum, over all resources and over time, of the obtained cost.

♦ Total Inventory Cost: For each material and each point in time, the
PPO_INVENTORY_MAX_COST table references a piece-wise linear function, allowing
computation of the cost of maintaining a given quantity of the material in inventory. The
total inventory cost is the sum, over all materials and over time, of the obtained cost.
Note that PPO provides other mechanisms for managing inventory that may be more
appropriate for your facility: Setting a days of supply target, or through use of service
levels and production lead time.

♦ Total Inventory Deficit Cost: For each material and each point in time, the
PPO_INVENTORY_MIN_COST table references a piece-wise linear function, allowing
computation of a penalty for not maintaining a given quantity of the material in inventory.

I B M I L O G P L A N T P O W E R O P S V 3 . 274

The total inventory deficit cost is the sum, over all materials and over time, of the obtained
cost. Note that PPO provides other mechanisms for managing inventory that may be more
appropriate for your facility: Setting a days of supply target, or through use of service
levels and production lead time.

Custom KPIs
Examples of custom KPIs can include:

♦ Average cleaning frequency for a given set of resources.

♦ Throughput at a given step of the process.

♦ Average inventory at a given step of the process.

♦ Number of tardy deliveries of a given class of customers.

♦ Resource operational efficiency: Operational time divided by the net production time.

♦ Resource operational utilization: Operational time divided by the calendar time.

Operational time of a given set of resources is the calendar time without bank holidays, idle
time, or research and development trials on the resource.

Net production time of a given resource is the output of the production divided by the
maximal speed of the resource (expressed as a quantity per unit of time).

I B M I L O G P L A N T P O W E R O P S V 3 . 2 75

Optimization profile

Optimization profiles are used to contain parameters that tune or direct the optimization
engines. An optimization profile can ensure that you have a steady set of criteria ready to
solve your model data in a consistent way over time. For example, you could create pure
planning profiles, or emphasize manufacturing objectives such as minimizing setups and
cleanups, or focus on supply chain objectives to respect inventory targets. You could create
profiles to optimize for these objectives, and access them in the GUI as shown in this image:

I B M I L O G P L A N T P O W E R O P S V 3 . 276

You can control all of the following with an optimization profile:

♦ Which modules are included in the optimization;

♦ The horizon (end time limit) for the production and scheduling modules;

♦ The time limit allowed to the production and scheduling engines for solving;

♦ Optimization criteria (such as TotalSetupCost as described in Optimization criteria) and
their associated weights (values) used by planning and scheduling;

♦ Other advanced options, such as constraints and gap limit in planning, or which batching
algorithm is used;

♦ Use of the post processing options such as material rebalancing.

In the data schema, the PPO_OPTIMIZATION_PROFILE and PPO_CRITERION_WEIGHT
tables are used to control aspects of optimization profiles. In the API, start with the classes
IloMSOptimizationProfile and IloMSOptimizationCriterion.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 77

I B M I L O G P L A N T P O W E R O P S V 3 . 278

Advanced optimization

Describes various considerations regarding optimization, including advanced options, post
processing, parameters, complexity considerations and problem decomposition.

In this section

Production planning advanced options
Describes advanced options for the planning module.

Detailed scheduling advanced options
Describes advanced options for the scheduling module.

Constraints
Describes constraints enforced by the three modules.

Post processing
Describes post processing options such as material rebalancing.

Parameters for optimization
Optimization parameters can be used to affect the solution process.

Complexity considerations
Factors that introduce complexity to the planning module.

Problem decomposition
Methods available to simplify the problem model.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 79

Production planning advanced options

Planning advanced options on the Optimize the scenario dialog box include Criterions,
Constraints, and on theMisc tab, the ability to alter settings for the Gap Limit and
InfeasibilityManagement. Criterions are described inOptimization criteria. TheConstraints
tab lists hard constraints for the planning module.

Under the miscellaneous settings, the Gap Limit sets a stop used on planning optimization.
For example, if the gap limit is 1%, then planning will stop as soon as it is proven that the
cost of the current solution is at most 1% above the optimum. See CPLEX parameters for
more information.

With Infeasibility Management, you can make selections for automatic generation of
inflow or waste recipes, and choose between several planning algorithms.

The inflow and waste recipes are used to deal with infeasible balances (missing ingredients,
perished materials, surplus materials). These artificial recipes introduce slack variables to
repair infeasible balance of materials for fixed orders. High costs are generated automatically,
so using these recipes is a fallback in case the model is infeasible. At each run, the old
automatic inflow and waste recipes and orders are discarded, and new ones are generated.
The artificial recipes are labeled with a type of “Automatic” (see PPO_RECIPE|RECIPE_TYPE).

You can let PPO decide which algorithm to use for planning (Automatic) or choose yourself
between single pass or multipass.

The single pass approach solves a single mathematical programming model with a single
weighted objective function, combining business objectives and "technical" costs. With this
approach, the costs of processing these recipes must be carefully computed so that the
optimizer uses them only as a fallback position, in case of infeasibility. The drawback of this
approach is the potentially wide range in numerical values that coexist during optimization,
which can lead to numerical stability issues. The business objectives could get diluted in an
objective function containing high technical costs. A bad solution with respect to the business
objective may result if the relative gap limit stops optimization when the solution is "good
enough."

I B M I L O G P L A N T P O W E R O P S V 3 . 280

The multipass approach uses goal programming to deal with infeasible material flow. The
business objective is kept separate from technical costs such as inflow and waste recipe
costs or nondelivery costs. This approach assumes it is always better to deliver a product,
as compared to other considerations.

To summarize, the standard approach with a single pass and a single objective function is
not always appropriate. Some considerations of using a single objective function include:

♦ Waste and Inflow recipe mode costs are technical costs that must dominate the others;

♦ Non delivery costs must dominate the business costs;

♦ Business cost contains all the other costs: inventory, inventory deficit, setups, processing
costs, and so forth;

Using a single objective function in a single pass may lead to:

♦ Numerical problems because of the very different magnitudes of the costs;

♦ The gap limit is meaningless because the business costs become negligible as compared
to technical costs;

♦ The optimizer spends a lot of time before it manages to satisfy the demand.

Using the multipass algorithm will minimize certain goals in the following order:

♦ First minimize the business objective with mandatory demand and no inflow/waste;

♦ If that fails, then:

● Minimize inflow and waste;

● Minimize nondelivery, enforcing inflow and waste levels as previously found;

● Minimize the business objective, enforcing nondelivery, inflow, and waste levels as
found previously.

These choices are also available in the data schema (PPO_OPTIMIZATION_PROFILE table) and
in the API in the enumeration IloMSPlanningAlgorithm.

Note that you can enforce that the scheduling engine must respect planning decisions with
respect to resource assignment; see Parameters for optimization.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 81

Detailed scheduling advanced options

Scheduling advanced options on the Optimize the scenario dialog box include
Criterions, Constraints, and on theMisc tab, the ability to set slack on planned start and
end times. Criterions are described in Optimization criteria. The Constraints tab lists hard
constraints for the scheduling module.

The choices on theMisc tab allow you to assign some flexible time for the scheduling module
with regards to decisions made by the planning engine. Slack on Planned Start Time is
an integer value that defines the number of time units of anticipation allowed to the
scheduling engine with respect to the start of the time bucket chosen by the planning engine.
Slack on Planned End Time is an integer value that defines the number of time units of
delay allowed to the scheduling engine with respect to the end of the time bucket chosen
by the planning engine.

Two more advanced scheduling options that are not available on theOptimize the scenario
dialog box are the settings modeOfPlanningOnly and
bUseNewSchedulingModelForPeggingArcs. For more information see Parameters for
optimization.

These options are also available as parameters in the data schema (PPO_SETTING table) and
API (classes IloMSModel of IloMSOptimizationProfile). Note that you can enforce that
the scheduling engine must respect planning decisions with respect to resource assignment;

I B M I L O G P L A N T P O W E R O P S V 3 . 282

Constraints

Different hard constraints are taken into account by all three optimization modules. The
following list of constraints includes the module which enforces each (Planning, Batching,
or Scheduling).

♦ Resource capacity (at time bucket granularity for planning, time unit granularity for
scheduling)

♦ Minimal and maximal batch size constraints (P and B)

♦ Batch size integrality constraints (P and B)

♦ Setup time constraints (approximated in planning, detailed in scheduling)

♦ Cleanup constraints (approximated in planning, detailed in scheduling)

♦ Calendar constraints (P and S)

♦ Resource connection and compatibility constraints (P and S)

♦ Precedence constraints (P and S)

♦ Spanning constraints (P and S)

♦ Pegging cardinality constraints (B)

♦ Maximal inventory constraints (P and S)

♦ Tank constraints (P and S)

♦ Shelf life and maturity constraints (all modules)

♦ Campaign duration constraints (P)

♦ Secondary resources on setup activities (in some cases planning, in cases scheduling)

Depending on the model data, it may be possible to relax some constraints during
optimization.

Another constraint for planning is general integralitywhich, if relaxed, means that all boolean
and integer variables are considered to be floating points; a pure linear model results. This
relaxation is possible only for planning.

Another constraint for scheduling is Reservoir capacity; this is discussed as the parameter
RESERVOIR_ALLOWED in PPO parameters.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 83

Post processing

Material rebalancing is a post processing option; that is, it can be invoked after the main
optimization process of planning, batching, and scheduling occurs. It is available on the
Optimize the scenario dialog box in the GUI, as well as in the data model via the
optimization profile data schema table and API classes.

Material rebalancing is provided for two primary use cases. The first is to correct the balance
of semi-finished products by resizing and repegging finished product orders. This is a typical
use-case when using problem decomposition, and the semi-finished orders are a little late
with respect to the finished product plan.

The second main use case is for late differentiation, or adapting the plan of finished products
to a change in demand while keeping the same semi-finished product plan.

In either case, there are a set of common guidelines:

♦ The semi-finished product schedule is not changed at all;

♦ Only finished product orders are changed;

♦ Existing non-firm finished product orders are resized and can be removed if too small;

♦ Existing finished product orders can be moved within the time bucket that they are
scheduled in, but cannot change resource;

♦ CIPs and fixed orders are not moved;

♦ Existing finished product orders cannot jump over existing CIPs, breaks, or fixed orders;

♦ Setup times are managed;

♦ Sequence is conserved in that there is no appearance of new types of finished products,
only a resizing of existing finished products;

♦ Alternative pegging is taken into account, but a finished product on a previous time bucket
cannot be pegged to a semi-finished product of the next time bucket;

♦ Inventory corridor costs and waste cost are minimized.

Note that there are some limitations upon the recipes of finished products:

♦ Recipes for finished products must have a single production activity;

♦ The processing time must be purely proportional to the batch size;

♦ Secondary resources are not handled.

Example
This example shows how material rebalancing would be used in the case of correcting the
balance of semi-finished products by manipulating the finished product orders. The two
semi-finished orders fill two storage tanks (ST1 and ST2) but with tardiness problems.

I B M I L O G P L A N T P O W E R O P S V 3 . 284

With material rebalancing, the semi-finished products are balanced again, as shown below.
The horizontal arrows show orders moved by rebalancing.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 85

Parameters for optimization

Parameters are available to modify optimization in Plant PowerOps.

PPO parameters
The parameter modeOfPlanningOnly is a boolean value (default is false). If the value is true,
then the scheduling engine is forced to respect the decisions taken by the planning engine
with respect to chosen resources. Note that if super resources have been defined, then the
scheduling engine choices are restricted to the subresources of the super resource chosen
by the planning. This is a way to limit a possible combinatorial explosion of modes in
scheduling.

The parameter slackOnPlannedStartTime is an integer value (default is zero if inventory
corridors are defined; otherwise IloMSIntPlusInfinity). It defines the number of time
units of anticipation allowed to the scheduling engine with respect to the start of the time
bucket chosen by the planning engine.

The parameter slackOnPlannedEndTime expects an integer value (default is
IloMSIntPlusInfinity). It defines the number of time units of delay allowed to the
scheduling engine with respect to the end of the time bucket chosen by the planning engine.

The parameter RESERVOIR_ALLOWED (and the constraintReservoir Capacity on Scheduling
advanced options) is a boolean value that manages constraints on storage unit and inventory
capacity. The capacity constraints are implemented through the use of a scheduling structure
called the "reservoir." If you set this parameter to false (or relax the constraint on the
Scheduling advanced options) then you inhibit overflow constraints on storage units
(PPO_STORAGE_UNIT|QUANTITY_MAX) and on inventories (PPO_MATERIAL|INVENTORY_CAPACITY).
Relaxing this constraint could result in overflow on storage units and inventory.

Reservoirs are also used to manage inventory excess and deficit costs, inventory min and
max cost functions, and used with service levels. In some exceptional cases, the use of the
reservoir data structure may be costly in memory or CPU time. To prevent the use of
reservoirs, the parameter must be set to false (or relax the constraint) and the inventory
excess and deficit weights must be set to zero.

bUseNewSchedulingModelForPeggingArcs
The parameter bUseNewSchedulingModelForPeggingArcs permits greater accuracy in the
scheduling of pegging arcs with continuous production or consumption. Using this parameter
potentially brings improvements in tardiness and nondelivery costs.

The following diagram represents the 1:N case (one continuous producer and several
consumers). The blue graphic represents a single continuous production activity, feeding
two consuming activities. The right side illustrates use of the parameter, allowing pegging
to occur at times other than the start or end of the continuous production. This may bring
the most benefits when the production speed is slower than or equal to the consumption
speed.

I B M I L O G P L A N T P O W E R O P S V 3 . 286

In the N:1 case (many producers and one consumer), the corresponding benefit arises:
Pegging is allowed to occur at times other than the start or end of the continuous
consumption. This may bring the most benefits when the production speed is equal to or
greater than the consumption speed.

The bUseNewSchedulingModelForPeggingArcs parameter also brings benefits in the
many-to-many case (N:M) with storage tanks. Previously, N:M relationships with storage
activities were not allowed in the scheduling engine (so the scenario for the parameter's
default false case is not shown in the following graphic). Using the parameter allows for
N:M pegging with tank storage activities as shown in the following diagram.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 87

Multiple storage tanks can be used in a serial manner to meet continuous consumption.

Note that the parameter bUseNewSchedulingModelForPeggingArcs affects use of the
Material flow extent repair mode. When swapping two consumers pegged statically to the
same producer, the consuming and producing intervals are recomputed.

CPLEX parameters
Parameters of the type CPX_PARAM_*** are applicable when solving using the planning
engine, as this engine is based on IBM ILOG CPLEX.

CPX_PARAM_EPGAP (numeric, between 0.0 and 1.0): the default value for this parameter
is 0.01 (1%). When the value is E > 0.0, a planning solution of cost C is known, and a lower
bound for the cost of the best (unknown) solution Cmin is known, search will stop if the
relative difference between Cmin and C is less than E. For example, if the value of this
parameter is set to 0.01, optimization will stop as soon as it is proven that the cost of the
current solution is not more than 1% above the optimum.

I B M I L O G P L A N T P O W E R O P S V 3 . 288

Complexity considerations

The response time of the planning engine is a function of several characteristics of the
problem.

First, there is the size of the problem, which is mainly a function of:

♦ Number of buckets * number of recipes

♦ Number of buckets * number of resources

♦ Number of buckets * number of materials.

Another complexity issue is the existence of noncontinuous variables, which depends upon:

♦ The type of setup approximation (adds binary variables)

♦ The existence of fixed processing times and costs (adds integer variables)

♦ The use of integral constraints for batch size (adds integer variables)

These variables complicate the problem and may transform it into a complex MILP (Mixed
Integer Linear Problem).

I B M I L O G P L A N T P O W E R O P S V 3 . 2 89

Problem decomposition

Several methodologies are available to help you simplify the resolution of a problem model.
One method is to use super resources; see Planning with super resources. Another method
is to decompose the model into submodels which can then be solved separately.

Several schema tables are available to assist in creation of a submodel: PPO_RECIPE_FAMILY,
PPO_RECIPE_FAMILY_FILTER, and PPO_SCOPE.

A column in the PPO_OPTIMIZATION_PROFILE called SCOPE_ID can be used to limit the
scope of the optimization process, thus performing a natural problem decomposition. There
is no need to write code to decompose a problem into a submodel, simply define the necessary
recipes and optimization profiles in the database. The resulting scopes will be available on
the Optimize the scenario dialog box in the PPO GUI.

Advanced decomposition is also available, for use within plug-ins. The classes in the object
model are IloMSRecipeFamily, IloMSRecipeFamilyFilter, and IloMSScope. The following
API is available to deal with submodels:

♦ masterModel.newScope();

♦ optimizationProfile.setScope(scope)

♦ masterModel.newRecipeFamilyFilter(scope)

♦ filter.addFrozenRecipeFamily(familyX) // freeze any order from recipes of
familyX

♦ filter.addPlannedRecipeFamily(familyY) // plan only with recipes of familyY

♦ IloMSModel subModel = scope.buildSubModel()

♦ if (subModel.solve()) scope.transferResults(subModel, masterModel)

Problem decomposition is discussed in greater detail in Decomposition framework.

I B M I L O G P L A N T P O W E R O P S V 3 . 290

The basic data model

This section describes the fundamental elements of a data model for Plant PowerOps. This
information helps you populate a problem model in the context of a given application.

In this section

Overview of data modeling for PPO
Includes a definition of a simple data model, description of costs and revenue, and methods
of modeling data.

Global model information
Describes overall information relating to the model environment, time, and horizons.

Materials
Describes the modeling of materials. In PPO, the term material includes products,
intermediates, and raw materials.

Resources
Resources include machines, tools, workers, vehicles or equipment.

Demands and due dates
Describes modeling customer orders and forecasts.

Recipes
Recipes are a set of activities with alternative modes.

Production orders and material flow arcs
Together these items comprise the batching solution.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 91

Procurements
Procurements represent materials procured from outside the plant, and are also used to
represent initial stock.

Firm or fixed information
Firm information is used to model certain orders and quantities that cannot be changed.

I B M I L O G P L A N T P O W E R O P S V 3 . 292

Overview of data modeling for PPO

Includes a definition of a simple data model, description of costs and revenue, and methods
of modeling data.

In this section

Introduction to a data model, master data, and transactional data
A list of what is included in a simple data model, master data, and transactional data.

Costs and revenue
Describes costs and revenue.

Methods of modeling data
Describes the ways available to you to create models of your manufacturing data.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 93

Introduction to a data model, master data, and transactional data

A basic data model for PPO can include some or all of the following:

♦ Overall model information, such as time unit, start time, and Optimization profile;

♦ A list of materials that represents the raw materials, manufacturing intermediates, and
final products;

♦ A set of resources—objects such as machines, workers, and vehicles, which add value to
a product or service in its creation, production, or delivery;

♦ Demands and due dates that represent customer orders or forecasts for a given amount
of material at a given time;

♦ A set of recipes that describe the process by which resources are used to transform the
raw materials into final products;

♦ Production orders that implement recipes, and material flow arcs that describe the
resulting flow of material through the process and plant;

♦ A set of procurements representing initial stock quantities or material obtained from
outside the plant;

♦ Firm information representing parts of a schedule that are not changeable, for example
because certain production operations are already in process.

This model information is grouped into one of two categories: master data or transactional
data. Master data represents the base information for your manufacturing problem and
facility, and includes the model, materials, resources, and recipes. This information does
not change often nor does it include solution data (data optimized by PPO). TheMaster
Data view in the PPO GUI is shown below.

Transactional data, on the other hand, is subject to frequent change (perhaps on a daily
basis), and includes demands, procurements, production orders, and firm information.
Transactional data can contain solution data, as shown in the following image.

I B M I L O G P L A N T P O W E R O P S V 3 . 294

Vital components of any manufacturing plan are costs and revenue. These items are not
separate modeling objects, but rather are elements of master and transactional data objects.
For example, inventory costs are attached to material objects, whereas nondelivery costs
and revenue are attached to demand. For more information see Costs and revenue.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 95

Costs and revenue

Costs can be organized into three categories.

Manufacturing costs:

♦ Processing costs (also called mode costs); recipes and modes can be used to manufacture
materials with differing methods and costs

♦ Resource setup costs

♦ Resource capacity costs; several levels of capacity may be available at different costs for
each resource over each bucket

♦ Resource cleanup costs

Holding costs:

♦ Inventory costs

Customer “dissatisfaction” costs:

♦ Earliness and tardiness costs (delivery)

♦ Inventory deficit costs

♦ Nondelivery costs (also called unsatisfied demand)

Nondelivery costs on demands are mandatory in order to provide an incentive for optimization
to fulfill those demands. An infinite nondelivery cost is equivalent to a mandatory demand.
Revenue is essentially the opposite result; it represents the gain achieved by satisfying
customer demand, and provides additional incentive to produce final products.

All costs and revenue can be weighted by Optimization criteria contained in the current
optimization profile. The overall solution objective of optimization is to minimize the weighted
costs while maximizing revenue. In the PPO GUI, you may notice an additional component
of the global objective called perturbation. This is a technical cost that the planning engine
uses to break the symmetries of the problem

I B M I L O G P L A N T P O W E R O P S V 3 . 296

Methods of modeling data

Your manufacturing plant data can be created and input to PPO in different ways:

♦ Use features of the PPO GUI, including the new model wizard, data editors, and import
and export toMicrosoft® Excel® . The newmodel wizard is available from the Filemenu
of the GUI, and assists you in creating the base information for your model. On theMaster
Data view, you can edit a lot of data directly in the tables (blue fields), or access data
editors via the contextual menu (right-click), or click the plus icon on the view's toolbar
to add a new data row. These editors allow you to add or edit materials, resources, recipes,
and more. The Plant Layout view allows you to add resources and visually organize the
layout. Data exchange with Excel is useful because it allows you to do large global data
changes, which is particularly useful in the case of transactional data and when defining
a setup matrix.

♦ Create a file in either comma-separated values (*.csv files) or in a Microsoft Access®
database (*.mdb files) format which includes tables of the model data. The Data Schema
is the defining document for creating a data model, detailing all the available tables,
fields, default values and ranges. Once created, the data file can be solved by loading
into the GUI, or with C++ or Java™ programs if you prefer. PPO documentation provides
examples and tutorials to show you how to analyze your problem data and model it.

♦ Use the Plant PowerOps C++ application programming interface (API) to describe the
constraints and criteria of your problem. The C++ API reference manual is located in the
Reference Documentation section.

♦ Use the Plant PowerOps Java API to describe the constraints and criteria of your problem.
The Java API reference manual is located in the Reference Documentation section.

♦ PPO also accepts input from Oracle® and SQL Server® databases. This is described in
Database usage and connectivity.

Consider which modeling method best fits the situation at your facility. For example, building
an entire model starting with empty csv or mdb files is not likely to be the quickest method.
Spreadsheet and .mdb files are a convenient way to store a scenario, but a poor solution for
creating a data repository or for integration of a real project. Prototyping your model will
be achieved more efficiently through use of the PPO GUI features mentioned above, the load
and save file features of the GUI, and by editing or loading data files from outside PPO as
desired. Integration with a live project could be achieved using a true database or using the
API to map an intermediate model to PPO.

Examples and descriptions in the documentation tend to rely on the relational model of the
data schema. The schema tables makes it easy to illuminate concepts in a step by step
manner, and this fits the needs and comprehension of many users. However, almost all PPO
features are readily available across all model formats. Note that regardless of the technology
used, PPO uses a single object model for representation of both the planning and scheduling
problems.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 97

I B M I L O G P L A N T P O W E R O P S V 3 . 298

Global model information

Describes overall information relating to the model environment, time, and horizons.

In this section

The model environment
An instance of the model provides the environment for the problem.

Time units and time buckets
How time units and time buckets are used in PPO.

Planning horizon, scheduling horizon, and end max
Describes how these model elements interact.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 99

The model environment

The model contains information such as:

♦ A name for the model.

♦ The current optimization profile used by default when solving. The profile includes solving
parameters and describes the purpose for which you use PPO: Pure planning, pure
scheduling, or integrated planning and scheduling.

♦ The time zone for displaying time in the local time zone of the plant. The PPO GUI respects
the daylight savings time.

♦ A date origin that corresponds to time zero in the model, with which all relative times
are interpreted. The given date is provided in the defined time zone or in UTC, depending
upon your method of data modeling.

♦ A minimal start time (start min) for all the activities in the model, that represents the
earliest possible time that an activity can start on a resource. This defines a date for the
initial state of the problem scenario. Any procurement received before this date is
considered to be initial stock.

♦ A maximal end time (end max) that represents the latest end time available to activities
in the model.

♦ The time unit in seconds, used to express durations in your model. For example, use a
time unit of 60 if you wish to provide data and see scheduling results in minutes (or 1 in
seconds, 3600 to work in hours, and so on). The start min, end max, and other temporal
data is typically expressed in the declared time unit. Your choice of time unit depends on
the desired detailed scheduling precision; the scheduling module will check constraints
based on the time unit.

♦ The bucket sequence used in the model, which defines how time buckets are defined.

These items are all elements of the model data object, represented by the PPO_MODEL table
in the relational model, or the IloMSModel class in the API. However, this data closely
interacts with elements from the optimization profile, discussed in Time units and time
buckets and Planning horizon, scheduling horizon, and end max.

See also:

♦ The PPO_MODEL, PPO_OPTIMIZATION_PROFILE, PPO_BUCKET, PPO_BUCKET_SEQUENCE, and
PPO_BUCKET_TEMPLATE tables in the data schema.

♦ The classes IloMSModel, IloMSOptimizationProfile, IloMSBucket,
IloMSBucketSequence, and IloMSBucketTemplate in the API documentation.

♦ Optimization profile.

♦ An example of the PPO_MODEL table in Step 3 Create the environment ofModeling a simple
problem: A “bottleneck” resource.

♦ In the PPO GUI on theMaster Data view, overall model information appears on the
Model tab. The New Model wizard, available from the File menu, is an easy way to
create global model information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2100

Time units and time buckets

Although the scheduling module checks constraints at the time unit, the planning engine
generally requires a larger time boundary for long term planning; this requirement is fulfilled
by the time bucket. While creating the production plan, the planning engine checks
constraints at time bucket boundaries. PPO will create the time buckets automatically if you
do not model them, but you may wish to define your own. For example, you can define two
time bucket sequences so that a daily time bucket is used for optimization, while the GUI
reports weekly planning data. See Defining time buckets for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 101

Planning horizon, scheduling horizon, and end max

The horizons for the model are declared in the optimization profile, and they define the end
times for production planning and for detailed scheduling. Separate horizons are available
in PPO since it is common to make short-term detailed schedules and long-term production
plans.

The end max is declared in the model object, and it defines a common latest end time
associated with all the activities of the model.

The horizons and end max use positive infinity as a default value, but as these elements can
be set independently it is important to understand how they interact. For example, if you
do not set the planning and scheduling horizons, but define a model end max, then the
horizons are effectively limited by the model end max. If the planning module has been too
“optimistic” with production, this will lead to an infeasible problem.

A good practice is to specify the horizons and end max such that:

Scheduling horizon < model end max

Scheduling horizon < planning horizon

Compare these relations in terms of time bucket values (rather than time unit) in order to
ensure significant differences.

There is another consideration to be noted in regards to solution display in the GUI. For
integrated planning and scheduling problems, if the scheduling horizon is less than the
planning horizon, then for time periods before the scheduling horizon the solution data is
based on the scheduling solution. For time periods after the scheduling horizon, the planning
solution data (planned productions and planned deliveries) are displayed in the appropriate
views of the GUI.

I B M I L O G P L A N T P O W E R O P S V 3 . 2102

Materials

Materials in PPO are used to represent raw materials, intermediate products, and final
products. Every final product, whether ordered by a customer or destined for inventory,
must be modeled. Generally, you only need to model the raw materials or intermediate
products for which some supply issue or shelf life constraint may exist, or for which a flow
discontinuity exists (batch splitting or merging).

A material may have unique characteristics of size, style, and inventory, corresponding to
unique stock-keeping units (SKU). For example, consider two models of white shirts that
are stored in the same warehouse but differ in size or style; each model of shirt would be a
different PPO material (as a record of the PPO_MATERIAL table or an instance of
IloMSMaterial). Likewise, one type of shirt with an inventory spread across two warehouses
would likely be modeled as two materials. In this latter case, the two materials could be
grouped together into one or more Material families.

It's possible to define more than one unit of measurement per material. The primary unit is
used for all computations: Production, consumption, inventory, and so forth. Secondary units
can be declared, each of which has a conversion factor that relates it to the one primary
unit. Then you can select one of these secondary units as the display unit for use in the GUI.
Also, several materials may share the same unit with different conversions.

Crucial concerns with materials are inventory levels, storage, maturity, and shelf life. You
can specify a maximal inventory capacity for a material in either a fixed-storage location
manner or in an as-available location. These subjects are discussed in greater detail in
Managing inventory stock and Maturity, shelf life, waste recipes.

You can specify an initial quantity of material that is available independently of any material
flow arc or manufacturing operation. This means the actual quantity of material available
at time start_min is equal to the initial quantity, plus the quantities brought or removed
by past material flow arcs. Note that you cannot model shelf life, maturity constraints, or
storage information for an initial material quantity.

Material families
A material can belong to one or more material families, which allows for customized data
organization and tracking. For example, you can view production and inventory reports in
the GUI organized by individual materials or by material family. Use the family type and
aggregate materials selections on the Parameterswindow to control views such as Stock
Event and Stock Coverage.

The material family provides a useful planning constraint; you can limit the maximum number
of different materials of a family produced in a time bucket. The time buckets used on this
constraint do not have to be the same size as those used for planning optimization. For
example, you could produce no more than three different types of organic vegetarian soups
per week while planning all soup production on daily buckets.

See also:

♦ PPO_MATERIAL, PPO_MATERIAL_FAMILY, PPO_MATERIAL_FAMILY_CARD_CONSTRAINT, and
PPO_MATERIAL_SECONDARY_UNIT tables in the data schema.

♦ Classes IloMSMaterial, IloMSMaterialFamily, and
IloMSMaterialFamilyCardinalityConstraint in the API documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 103

♦ Managing inventory stock

♦ Maturity, shelf life, waste recipes

♦ Material production and consumption is discussed in Recipes.

♦ An example of the PPO_MATERIAL table in Step 5 Define the materials ofModeling a simple
problem: A “bottleneck” resource.

♦ In the PPOGUI on theMaster Data view, materials information appears on theMaterials,
Material Families, and Units of Measure tabs, and may be available for editing.

I B M I L O G P L A N T P O W E R O P S V 3 . 2104

Resources

Resources include items such as machines, tools, workers, vehicles or equipment which add
value to a product or service in its creation, production, or delivery. By default, a resource
is available for use throughout the time horizon of the problem, but that can be modified
for cleaning, maintenance, or other reasons. Raw materials and intermediate products are
not considered resources in PPO; use Materials to model those items.

When several resources are roughly equivalent in terms of function, capability and availability,
and do not require any setup or cleanup, it is recommended that the set of resources be
modeled as a single resource. Then derive the capacity of the single resource based on the
capacity of the group; for example, if you have eight workers with interchangeable skills,
model this as a single worker resource of capacity eight.

You can define resource usage and idle costs with a resource capacity cost function. The
cost for using a resource often increases with the capacity used; this resource capacity cost
can be defined as a piecewise linear function or as a stepwise linear function. Idle cost can
be defined as a piecewise linear function.

Resource costs and idle costs enable you to more evenly distribute resource usage in
production planning. These planning-related costs are not to be confused with processing
costs, which are applied to resource use for production activities (in defined modes).
Processing costs are discussed further in Recipes.

Several factors can affect resource availability: Setup requirements, cleaning requirements,
and regularly scheduled events (like worker breaks) which can be modeled with calendars.
For more information on these subjects see Setup times and costs, Cleanups, and Calendars.

Several options are available regarding resource capacity. One is the required capacity,
which defines the amount of capacity of the resource that is required to execute an activity
in a certain mode (discussed in Recipes). Another option is the planning capacity reduction
factor, which allows you to limit the bucket capacity of the planning engine so that production
planning is not too optimistic regarding resource availability with respect to real scheduling
constraints.

Not surprisingly, resources play a central role in several views in the PPO GUI: The Gantt
Diagram,Workload Table, Planning Sheet, andCalendars all display aspects of resource

I B M I L O G P L A N T P O W E R O P S V 3 . 2 105

usage. The Plant Layout view provides an interface for easily adding, removing, and editing
resources and resource connections.

I B M I L O G P L A N T P O W E R O P S V 3 . 2106

Resource organization
As mentioned previously, it is recommended that whenever possible you should model similar
resources together into one resource and assign an appropriate capacity for the group. A
relatedmethod of grouping resources is to use super resources, which group similar resources
together to allow the planning engine to consider the grouped capacity of all the resources.
The purpose of using super resources is to lighten the planning problem; the scheduling
engine utilizes the individual resource entities, not the super resource. For more information
see Planning with super resources.

Since activities may require the use of more than one resource, you can define one primary
and multiple secondary resources in a mode, along with the capacity required from each.
Note however that a resource cannot be used as the primary resource by one activity and
as a secondary resource by other activities. Also, a secondary resources cannot support
setups and cleanups.

Note that you can define a resource connection that models a physical connection between
resources so that you can enforce the usage of two connected resources as primary resources
of two activities. The point of this constraint is to enforce that two given activities will be
executed in compatible modes. It is permitted to model connections between super resources
and individual resources. In addition to connecting the resources you must model a
compatibility constraint of type ConnectedPrimaryResource on the two activities of the
recipe.

Another modeling structure is the resource family. The point of the resource family is to
permit organization of data in the PPO GUI for better visibility. For example, the following
image shows theWorkload Table with an Average load graph displaying usage rates of
various resources. The resources have been grouped, so that the planner can get a quick
overall view of how busy all the fermenters or lines are on that day. The resources have
been grouped according to their family on the Parameters window, using the aggregate
resource check box and resource family type selection. The selections on the Parameters
window has similar effects on other views such as the Gantt Diagram. A resource may be
a member of several families, provided that the families are of different types.

See also:

♦ PPO_RESOURCE, PPO_RESOURCE_CAPACITY_COST, PPO_RESOURCE_FAMILY,
PPO_SECONDARY_RESOURCE, PPO_RESOURCE_HIERARCHY, and PPO_PROD_PROD_COMPAT_PROTO
tables in the data schema.

♦ Classes IloMSResource, IloMSResourceCapacityCostFunction, IloMSResourceFamily
, and IloMSActivityCompatibilityConstraint in the API documentation.

♦ Planning with super resources

♦ Resource validity periods

I B M I L O G P L A N T P O W E R O P S V 3 . 2 107

♦ Calendars

♦ An example of the PPO_RESOURCE table at Step 4 Define the resource, ofModeling a simple
problem: A “bottleneck” resource

♦ In the PPO GUI on theMaster Data view, resource and resource family information
appears on theResources andResource Families tabs, and may be available for editing.

I B M I L O G P L A N T P O W E R O P S V 3 . 2108

Demands and due dates

A demand object in PPO represents a forecast or customer order request for a certain
quantity of finished products. A time window for delivery can be specified, with an optional
preferred due date. The due date defines the optimal time for delivery of demanded material,
and is used to compute any earliness and tardiness costs. It is highly recommended to narrow
the delivery time window in order to limit the complexity of the planning problem.

It is mandatory to apply a nondelivery cost to a demand in order to provide an incentive to
the planning engine to meet that demand. An infinite nondelivery cost creates a mandatory
demand. You can also apply revenue to satisfaction of demand. Nondelivery cost and revenue
are calculated on a “per unit of demand” basis. The model checker of PPO issues a message
if both revenue and nondelivery cost are undefined or if both are set to 0.

Plant PowerOps places a higher priority on satisfying demands with high revenues and high
nondelivery variable costs. Typically, customer demands have higher nondelivery costs than
stock orders and estimated forecasts. It is possible to set the nondelivery cost to infinity,
thereby making a delivery mandatory; however, do this only when you are certain that the
demand can be met. Otherwise, PPO may conclude that your problem has no solution.

A demand may be delivered in several subdeliveries. Hence, part may be tardy and part may
be early; part may be delivered, and part may not. For each unit of material that is delivered,
the revenue is obtained. For each unit of material that is not delivered, the nondelivery cost
is incurred. For example, suppose D is a demand for 100 units of material M that provides
a revenue per unit of 100 and a nondelivery cost per unit of 50. Suppose that 70 units are
delivered; then the total revenue for this demand is 7000, and the total nondelivery cost
1500.

Each subdelivery can be considered as an activity of duration at least 1. For each of these
subdeliveries, the inventory of the demanded material is decremented at the subdelivery
end time; tardiness is incurred if the subdelivery end time strictly exceeds the due date;
earliness is incurred if the subdelivery end time strictly precedes the due date. If the earliest
delivery start time is defined, none of the subdeliveries can start before this time. If the
latest delivery end time is defined, none of the subdeliveries can end after this time. Note
that the earliest delivery start time must be strictly lower than the latest delivery end time,
otherwise it is not possible to deliver.

To define the optimal time, four costs may be defined on the due date:

Earliness fixed cost: A fixed cost to be paid per unit of material if the demand is delivered
early, regardless of how much it is early. In the planning model, this cost will be incurred
if the material is delivered in any bucket that precedes the due date.

Earliness variable cost: A cost to be paid per unit of material and per unit of time that the
delivery is early. In the planning model, this cost will be multiplied by the difference between
the due date and the end time of the bucket in which the material is delivered.

Tardiness fixed cost: A fixed cost to be paid per unit of material if the demand is delivered
late, regardless of how much it is late. In the planning model, this cost will be incurred if
the material is delivered in any bucket that follows the due date.

Tardiness variable cost: A cost per unit of material and per unit of time that the delivery
is late. In the planning model, this cost will be multiplied by the difference between the start
time of the bucket in which the material is delivered and the due date.

There are several optional requirements that you can place on a demand. You can specify
the storage unit from which the material must be delivered to meet this demand. You can

I B M I L O G P L A N T P O W E R O P S V 3 . 2 109

require a minimal remaining shelf life of any material delivered to meet this demand. You
can also specify a maximum number of arcs associated with this demand; that is, ensure the
number of deliveries to meet this demand does not exceed a certain value.

See also:

♦ PPO_DEMAND and PPO_DUE_DATE tables in the data schema.

♦ Classes IloMSDemand and IloMSDueDate in the API documentation.

♦ An example of the PPO_DEMAND table at Step 10 Define the demand ofModeling a simple
problem: A “bottleneck” resource.

♦ An example of the PPO_DUE_DATE table at Step 11 Define due dates for the demands of
Modeling a simple problem: A “bottleneck” resource.

♦ In the PPO GUI on the Transactional Data view, demand and due date information
appears on the Demands tab, and may be available for editing.

I B M I L O G P L A N T P O W E R O P S V 3 . 2110

Recipes

Generally, recipes model the processes at your plant facility. This includes all production
processes as well as the supporting, non-production processes: Cleanup recipes are used
to clean resources, transport recipes transfer material from one storage unit (or location)
to another, and waste recipes are used to discard obsolete material.

Recipes are essentially a set of activities; each of which can be performed in one or several
alternate production modes, and each may produce or consume materials. The activities
can be affected by various constraints, and may have differing resource requirements
depending upon the production mode. Recipes are implemented by Production orders and
material flow arcs in order to meet demand.

The following image shows the Recipes tab on theMaster Data view in the PPO GUI. It
shows the name of the activity, and the batch size which is a multiplication factor on the
recipe. The batch size is used by production orders to compute the quantities of materials
produced or consumed, and also adjusts the processing times and costs of activities (if
variable processing times and costs have been specified). The valid start and valid end
times allow you to specify when the recipe can be used; see Resource validity periods for
more information.

As with materials and resources, recipes can belong to families, with corresponding
information available on the Recipe Families tab shown aboveMaster Data view. Recipe
families are an important method of problem decomposition and partial resolves; recipe
families are a way to define submodels and to perform a partial database load of the data.
Loading a submodel from a database is discussed in Opening a database in PPO.

If you right-click a recipe in the Recipes table, a contextual menu appears with an Edit
selection; this selection displays the Recipe Editor window, part of which is shown here.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 111

In this example, the editor window is open to a recipe called DHR_Recipe, which consists
of five activity prototypes which model processes like cocoa grinding and chocolate mixing.
The next image shows the editor windowwith one of these activity prototypes open, revealing
that this prototype contains a setup activity with two possible modes (both of which prepare
the resource for use) and two material production modes that produce mixed chocolate.
These terms (modes, prototypes, constraints, and material production) are discussed further
in the next sections. Generally speaking, it can be said that all of these objects together to
create the recipe.

Activities
There are three types of activities in PPO: Production, cleanup, and setup activities. A cleanup
activity is considered to be a special type of production activity. This section describes
production activities; setup activities are considered in greater detail in Setup times and
costs.

Generally, an activity has three phases in PPO: As prototype, generated instance, and
scheduled. The activity prototypes belongs to recipes, and the generated instances belong
to production orders. An activity prototype is used in production planning as the abstract
model of an actual activity that may be performed many times in a plant. The activity
prototypes are used as the model or template to create the generated activities that are
necessary to fulfill the production plan. Detailed scheduling then assigns each of the
generated activities to precise start and end dates, and the results can be viewed in the
Scheduled Activities data table in the GUI. The generated activities are cloned from the
prototypes at the end of the batching process. just before the detailed scheduling module
is called.

In most cases, your modeling responsibility is to create the activity prototypes, and allow
PPO to generate the activities and detailed schedule. Using the data schema, this means
modeling using the PPO_ACTIVITY_PROTO table, and PPO creates the generated activities in
the PPO_ACTIVITY table; whereas when using the C++ or Java API a single class
IloMSActivity is used.

When modeling the activity prototype, you define the recipe to which the activity belongs,
and can assign a color and name to appear in theGantt Diagram. Some production activities
cannot be performed unless the resource is “ready” or in a certain setup state (for example,
blue paint in a reservoir); see Setup times and costs for more information. You can specify
the performed status of an activity as Performed,Unperformed, or PerformedOrUnperformed;
the last status means that the engine has the option of relaxing the capacity constraint (as

I B M I L O G P L A N T P O W E R O P S V 3 . 2112

if the activity were to possibly be outsourced, so no longer under capacity limitations of
modeled resources).

You can specify if the activity is a cleaning activity, that is, if it is used to clean a resource.
Resource cleaning is described in Cleanups.

Activities can have due dates, with associated earliness and tardiness costs. As examples,
the earliness fixed cost is a fixed price to be paid if the activity is early. For example, it
represents the cost of entering a final product into a warehouse, rather than shipping it
directly to the customer. The earliness variable cost is the price to be paid (in addition to
the earliness fixed cost) per time unit that the activity is early. For example, it represents
the cost of using additional space in a warehouse for an early final product.

You can create an activity chain which is a sequence of production activities that are
performed successively on the same primary resource with the same setup state. This could
be useful in certain cases, such as where each individual activity requires different scarce
secondary resources that need to be taken into account to build a realistic schedule. Another
example is if some of the individual activities cannot be interrupted by "breaks" (such as
lunch breaks), but breaks are allowed within the activity chain (that is, between the individual
activities).

You can apply various constraints to or between activities; see Precedence constraints for
more information.

Modes
A mode is a way of performing an activity; for example, which resource is used, how long
the activity takes, howmuch it costs to perform. Depending on the resource used, an activity
might have a longer or a shorter processing time or a lower or higher cost, and you can
express this through modes.

The processing time consists of two parts: a fixed part independent of the batch size, and a
variable part that depends upon the batch size. The effective processing time of a generated
activity (for a given production order with a given batch size) is computed as follows:
Effective_Processing_Time = Fixed_Processing_Time(prototype) +
Variable_Processing_Time(prototype) * Batch_Size. Note that the prototype
Fixed_Processing_Time may vary between a given Fixed_Processing_Time_Minimum and a
given Fixed_Processing_Time_maximum. Processing costs also have a fixed part and a
variable part. The processing cost of a generated activity is: Effective_Processing_Cost =
Fixed_Cost(prototype) + Variable_Cost(prototype) * Batch_Size. The total processing cost
(a criterion) is the sum, over all activities, of the cost of the selected modes.

You can specify a minimal and maximal batch size for the mode, a maximal break duration
for the activity in this mode, and whether or not an activity in this mode can overlap a work
shift change.

Note that you can also specify a minimal or maximal batch size on recipes. For example,
twomodes which use tanks of different maximum batch sizes may be available to an activity;
this can be modeled with one recipe, that restricts the batch size of the production orders
implementing the recipe.

Modes are one of the two data elements that you can associate with a calendar (resources
being the other). See Calendars for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 113

Material production
The material production data object specifies which activities and modes produce and
consumematerials, in what quantity, and to/from which storage units. Material consumption
is defined as a negative material production. Production and consumption can be discrete
or continuous. Discrete production means that the material is not available before the end
of the activity, while continuous production means that the material becomes available as
the activity executes, that is, the first units of material are produced as soon as the activity
begins and the last units are available only as the activity ends.

An activity may produce or consume multiple materials. Within each recipe, a material can
only be produced or consumed by one activity; the activity may have multiple modes to
produce the material but all must produce the same quantity. No other activities of that
recipe may produce that same material but they may produce other materials.

You can set a minimum or maximum material ratio used for blending purposes; that is you
can specify that a certain material represents 25% (for example) of all production or
consumption. Also you can set the maximum number of material flow arcs associated with
this material production in a production order.

See also:

♦ Tables in the Recipes, Activites, and Modes section of the data schema: PPO_RECIPE,
PPO_ACTIVITY_PROTO, PPO_MODE_PROTO, and PPO_MATERIAL_PRODUCTION_PROTO.

♦ The IloMSRecipe, IloMSActivity, IloMSMode, and IloMSMaterialProduction classes in
the API documentation.

♦ An example of the data tables PPO_RECIPE, PPO_ACTIVITY_PROTO, PPO_MODE_PROTO, and
PPO_MATERIAL_PRODUCTION_PROTO in Step 6 Define the recipe through Step 9 Define the
material production of Modeling a simple problem: A “bottleneck” resource.

♦ Activity constraints, validity periods, and names.

I B M I L O G P L A N T P O W E R O P S V 3 . 2114

Production orders and material flow arcs

A production order implements a recipe to (for example) meet demand, storage requirements,
transportation needs, or cleanup requirements. Material flow arcs represent the flow of
material through the plant, for example from production order to demand or to another
production order. Together, production orders and material flow arcs comprise the batching
solution from optimization, and are viewable on the Transactional Data view in the GUI
as shown in Optimization solution in the PPO GUI.

While in the general case recipes represent the prototypes of the manufacturing process,
the production orders represent the actual instances that are necessary to carry out the
manufacturing process. This means that when using spreadsheet or database files, one must
distinguish between the recipe tables (such as PPO_ACTIVITY_PROTO) and the production
order tables (such as PPO_ACTIVITY). In the object model, these items are typically accessed
via the same classes.

Production orders use the batch size as a multiplication factor on the recipe, as needed. The
batch size is used to compute the quantities of materials produced or consumed, and also
to adjust the processing times and costs of activities (if variable processing times and costs
have been specified on the modes of the activity prototypes of the recipe).

Material flow arcs specify the quantity of material that flows between stock, procurements,
production orders, and customer demands. In general, such a flow of material induces a
temporal constraint (precedence) between the corresponding nodes. As examples, a
production-to-demand arc means that some material produced by a given production order
will be used to (partially or totally) satisfy a demand.

A production order can be used to produce intermediate materials or finished materials
(that is, finished manufactured products). A production order that makes finished goods
may partially or wholly satisfy a single demand, or may satisfy several demands. A production
order producing only intermediates does not (directly) satisfy a PPO demand object.

Production orders and material flow arcs are typically part of the optimized solution provided
by PPO, but there are times when you provide these objects as part of the data model to be
solved. Firm or fixed information discusses the situation when part of your production plan
is already in effect, cannot be changed, and any newly generated production plan must take
that into account.

Production orders may consume or produce a proportional (variable) quantity of material
based on batch size, or a fixed quantity of material, independent of batch size. Also, there
is great flexibility when specifying material quantities associated with a production order.
For example the batch size, material production, and material consumption can all be
specified in different units, and you can change these fields using the GUI Inspector tool
and PPO automatically adjusts the batch size as appropriate.

The planning module supports a constraint on the maximum number of production orders
per time interval; this constraint is called the campaign cycle constraint. This is available
on the recipe data object. Note also that decisions of resource assignment taken by the
planning engine are conserved as part of the production orders, and can be enforced on the
scheduling engine (see Parameters for optimization).

See also:

♦ Tables in the Production Orders section of the data schema: PPO_PRODUCTION_ORDER,
PPO_PRODUCTION_ORDER_ACTIVITY, PPO_PRODUCTION_ORDER_PLANNED_MODE, and
PPO_ACTIVITY.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 115

♦ Tables in the Material Flows section of the data schema: PPO_PROD_TO_DEMAND_ARC.

♦ Classes IloMSAbstractProduction, IloMSProductionOrder and
IloMSAbstractMaterialFlowArc in the API documentation.

♦ Firm or fixed information.

♦ In the PPO GUI you can edit production order data using the Inspector tool, and data
on the Production Orders and Arcs tabs of the Transactional Data view may be
available for editing.

I B M I L O G P L A N T P O W E R O P S V 3 . 2116

Procurements

Procurements are used to represent materials in initial stock or materials procured from
outside the plant.

Each procurement corresponds to a given quantity of material with an age according to its
optional production date; there is no need to specify a production time if there is no shelf
life or maturity constraint. A procurement may override the default shelf life and maturity
characteristics of the material. You can also specify a required storage unit to receive the
material (optional).

Procurements are the only way to represent initial stock in PPO. Any procurement with a
reception date before the start of the model is considered a stock element. The associated
production date is used to compute the age of the stock.

See also:

♦ PPO_PROCUREMENT table in the data schema.

♦ Class IloMSProcurement in the API documentation.

♦ In the PPO GUI on the Transactional Data view, procurement information appears on
the Procurements tab, and may be available for editing.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 117

Firm or fixed information

In practice, there are times during the production planning process when some of the
production orders, pegging arcs, and scheduled activities become “firm.” This happens
when, for example, production orders have already been released at the plant floor level;
produced materials have been assigned to satisfy demands; or scheduled activities have
been assigned to specific resources with start and end times. To accommodate this,
production orders, material flow arcs, and scheduled activities can provide “firm” information
that is respected by the planning, batching and scheduling modules.

A firm production order or arc means that the order (or arc) cannot be abandoned and must
be present in the next optimization. Additionally, constraints can be placed on the batch
size or quantity involved to ensure that at least a certain amount or no more than a certain
amount is provided. Note that although the planning module will not move a firm production
order, the scheduling module is able to do so. To prevent the scheduling engine frommoving
the activities of the production order it must be fixed.

Note that a firm production order must be scheduled in order to be taken into account in
the planning module (each of its activities must be scheduled).

Note that moving the resource start min forward on theGantt Diagram fixes the production
orders scheduled to start before this time fence.

See also:

♦ PPO_PRODUCTION_ORDER and any _ARC table in the data schema.

♦ Class IloMSProductionOrder and any material flow arc class in the API documentation.

♦ Production orders and material flow arcs.

♦ In the PPO GUI on the Transactional Data view, you can check for firmed information
on the Production Orders, Arcs, Planned Productions, and Planned Deliveries tabs.

I B M I L O G P L A N T P O W E R O P S V 3 . 2118

Extended use of the data model

This section serves as a continuation of The basic data model, describing additional modeling
considerations and possibilities of Plant PowerOps. Themodeling extensions presented here
can improve the accuracy and precision of your model. However, some of these features
may make the problems more complex to solve, so it is recommended to use only those that
significantly improve the plan.

In this section

Production planning considerations
Discusses aspects of modeling data for production planning, including defining your own
time buckets and recipe usage.

Resources: Extended usage
Describes additional modeling capabilities when using resources in PPO, including super
resources, setups, and cleanups.

Calendars
Calendars are a way to model work shifts, breaks, and other events that affect resource
utilization.

Activity constraints, validity periods, and names
Discusses activity constraints, validity periods, and controls over generated activity names.

Material lifespan and inventory
Describes material maturity periods, shelf life, and inventory.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 119

I B M I L O G P L A N T P O W E R O P S V 3 . 2120

Production planning considerations

Discusses aspects of modeling data for production planning, including defining your own
time buckets and recipe usage.

In this section

Inference of the planning problem from the scheduling problem
Only one source of the data model is necessary despite different technologies at work in
PPO.

Defining time buckets
You may determine the specific time buckets to best model your problem.

Recipe validity periods
You can specify time periods during which certain recipes can or cannot be used.

Formula optimization and blending
Recipes with flexible ratios of ingredients are allowed.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 121

Inference of the planning problem from the scheduling problem

In PPO there is a single description of the model, and that is the detailed scheduling problem.
Although the planning engine uses a very different technology as compared to the scheduling
engine (mathematical programming versus constraint programming), there is no need to
input the data model twice. For example, a specific mechanism infers the possible routing
from the multi-mode recipes.

When considering the planning problem, be aware of:

♦ The size of time buckets (see Defining time buckets) .

♦ Organizingmultiple resources into one super resource (see Planning with super resources)
.

♦ Defining a setup approximation level (see Setup times and costs).

I B M I L O G P L A N T P O W E R O P S V 3 . 2122

Defining time buckets

The scheduling module creates a schedule based on enforcing constraints at the level of the
declared time unit for the model. The planning engine, however, enforces constraints at
time bucket granularity in order to make a longer term production plan.

Defining time buckets is an important task. For example, resource capacity is seen as an
energy in the time bucket; inventory max is enforced at each end of the bucket; material
balance is global to the bucket; maturity and shelf life constraints are enforced pessimistically
with respect to bucket size, and so forth.

By default, the planning module attempts to plan on time buckets that make sense with
respect to the remainder of the model. In other words, if you do not define the time buckets,
the planning module will create them based on the model data. However, it is strongly
recommended that you impose your own time buckets. For example, you might want to
generate plans for coming weeks in a detailed manner (using one-day buckets), and for
longer-term planning use aggregated buckets (such as one-week buckets).

You canmanually create time buckets, starting with the PPO_BUCKET table or the IloMSBucket
class. An easier method is to make PPO generate the necessary time buckets from a template
that you create. To do this using a database, see Automatic bucket generation, and for API
documentation start with the class IloMSBucketTemplate.

Note that if a recipe requires a fixed processing time greater than the bucket size, the
inference mechanism will automatically detect it and will enforce the resource capacity
constraints on a gliding window of several buckets.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 123

Recipe validity periods

You can specify that a recipe shall not be used before or after a certain date. This often
occurs when a new recipe replaces an old one. The old recipe is to be used up to a certain
date and the new recipe starting from a certain date, generally with a short overlap.

Note that although this could be represented using calendar breaks (see Calendars), it is in
general simpler to specify earliest and latest start and end times for the usage of recipes,
resources, and modes.

In the data schema, columns are provided for this purpose:

♦ In the PPO_RECIPE table: START_MIN and END_MAX, meaning execution of the recipe shall
occur between START_MIN and END_MAX.

♦ In the PPO_RESOURCE table: START_MIN and END_MAX, meaning usage of the resource shall
occur between START_MIN and END_MAX.

♦ In the PPO_MODE_PROTO table: START_MIN, START_MAX, END_MIN, and END_MAX, meaning
the execution of an activity in this mode shall always start between START_MIN and
START_MAX, and end between END_MIN and END_MAX.

The API classes IloMSRecipe, IloMSResource, and IloMSActivity have methods providing
analogous function.

Note that whenever firm information conflicts with the given bounds, the firm information
applies and the bound is discarded. Note also that these bounds are all optional with the
minimal values defaulting to –INF and the maximal values to +INF.

I B M I L O G P L A N T P O W E R O P S V 3 . 2124

Formula optimization and blending

The production planning engine supports recipes with flexible ratios of ingredients for
blending purposes. When using this feature the planning engine may create recipe instances
as a side effect on the model. For each flexible recipe, a recipe instance with fixed ratios of
ingredients may be created for each time bucket. This features allows formula optimization
based on quality of materials. The assumption is that qualities blend linearly. See the file
examples/data/oil/refinery.csv for a blending example.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 125

I B M I L O G P L A N T P O W E R O P S V 3 . 2126

Resources: Extended usage

Describes additional modeling capabilities when using resources in PPO, including super
resources, setups, and cleanups.

In this section

Planning with super resources
The planning module can use aggregated resources to simplify the problem.

Setup times and costs
Resources will often need a setup activity to prepare the resource for use.

Cleanups
Describes the methods available to model the cleaning of resources.

Resource validity periods
You can specify the time periods that resources can be used.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 127

Planning with super resources

A super resource is an aggregated group of similar resources with the same connectivity.
The reason to create a super resource is to lighten the planning problem, or perform a
problem decomposition. Note that only the planning engine uses super resources; the
scheduling engine utilizes the individual resource entities as specified in the modes of the
activities.

Since the individual resources that compose an aggregated resource are not distinguished
by the planning engine, the planning solution may possibly overload an individual resource
and under-load another. In practice, if most of the activities that can be executed on a
resource R1 can also be executed on R2 (and conversely), it is worth creating a super resource
consisting of R1+ R2. If more than half of the production that can go to R1 cannot go to R2
(or conversely), then resources R1 and R2 should not be grouped.

You can define a super resource as the primary resource of a mode; when the production
orders are instantiated from the recipe, PPO automatically generates the alternative modes
on the subresources belonging to the super resource. This has multiple benefits:

♦ No need to add alternative modes in a recipe to handle extra resources;

♦ Referring to super resources in modes makes adding new subresources much easier;

♦ In the GUI Plant Layout view you can graphically manipulate super resources;

♦ This will factorize the connectivity at the super resource level.

Super-resources are very useful to decompose a problem, and use them wisely in order to
split the problem complexity between planning and scheduling. Imagine you are considering
how to best model 200 alternative resources. Here are four possible options:

♦ Create one super resource containing 200 resources. Planning will be very easy as there
is only one resource to manage, but scheduling has 200 alternatives to consider which
is too complex.

♦ Do not use super resources at all; then both planning and scheduling are too complex
with 200 alternatives each.

♦ Create 20 super resources with 10 resources each. Planning has 20 resource groups to
manage; this seems reasonable. However scheduling still has 200 alternatives to consider.

♦ Do the same as before (20 super resources, 10 resources each) but use the keep modes
of planning parameter in the PPO settings. Planning will work with alternatives of 20
groups which seems reasonable. Scheduling is not allowed to change the group decided
by planning, therefore for each activity you have an alternative of 10 resources which
seems reasonable.

Note that since setups in planning are never considered sequence dependent, then planning
can have setups on discrete resources as well as unary resources. When you model a super
resource including N unary resources, the planning engine considers a discrete resource
of capacity N. If the N resources have setups, and you define a setup matrix on the super
resources, then the planning engine considers a discrete resource of capacityNwith setups.

See also:

♦ The PPO_RESOURCE_HIERARCHY, PPO_SETTING, and PPO_RESOURCE tables in the data schema.

I B M I L O G P L A N T P O W E R O P S V 3 . 2128

♦ The class IloMSResource and IloMSOptimizationProfile::putSetting in the API
documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 129

Setup times and costs

PPO provides a very flexible framework for representing setup times and costs. Be aware,
however, that modeling setups greatly complicates planning and scheduling problems so it
is recommended that you represent setup times and costs only when they are significant.
To avoid generating an overly complex planning model, it is possible to specify the level of
precision at which the planning model must consider setups.

Four setup approximation models are considered:

♦ Per bucket per recipe means that the fixed capacity requirements including setups will
be counted independently for each bucket and each recipe.

♦ Cross bucket per recipe is similar to per bucket per recipe except that the continuation
of the same recipe from a bucket to the next will not necessitate redoing the setups in
the second bucket.

♦ Per bucket per setup means that the fixed capacity requirements including setups will
be counted independently for each bucket and each setup feature.

♦ Cross bucket per setup is similar to per bucket per setup except that the continuation of
the same setup features from a bucket to the next will not necessitate redoing the setups
in the second bucket.

Another option is to ignore setups in production planning.

You can select a different setup model for each resource and, on each resource, even vary
the setup model over time. Use the PPO_RESOURCE_SETUP_MODEL table or the method
IloMSResource::setPlanningSetupModel to define the setup approximation.

All these models are approximations of what really happens in the factory. A more precise
model would require representation of the sequence of activities that occurs on each resource,
that is, to go from a planning to a scheduling model.

Some other considerations when using setups:

♦ Setup times and costs are not assumed to satisfy any triangular inequality; that is, the
setup between products A and C might last longer or cost more than the setup from A to
B plus the setup from B to C. Nevertheless, whenever triangular inequalities are satisfied,
Plant PowerOps exploits them to plan and schedule more efficiently.

♦ Setup times are not required to be smaller than bucket durations. However if a setup
time is greater than the time bucket, then the planning engine will use a group of buckets
to implement the associated resource capacity constraint.

♦ It sometimes occurs that setups require secondary resources or are subject to calendars
that differ from the calendars of production activities. In such cases, it is possible to
explicitly add setup activities to the production recipes. Modes are then associated with
setup activities exactly as with production activities with two implicit constraints. The
first constraint is that in a valid schedule, the setup activity that precedes a production
activity must use the same primary resource; secondly, the processing time and cost of
the setup activity derive from the setup matrices. Secondary resources and calendars
can then be associated with each mode of the setup activity. Precedence constraints can
also be associated with setup activities if, for example, a minimal or maximal delay applies
between the setup activity and the corresponding production activity.

I B M I L O G P L A N T P O W E R O P S V 3 . 2130

♦ Setups can be described along several features. A typical case in which this is useful is
a liquid product packaging line: (a) the configuration of the line changes with the
packaging and (b) the pipes that feed the line have to be cleaned or changed when the
product to be packaged changes. Rather than describing the transitions between all of
the (packaged product, packaging) combinations, Plant PowerOps allows you to provide
times and costs for the change of packaging on the one hand, and times and costs for the
change of packaged product on the other. Setup features are additive; so when both the
packaging and the packaged product change, the overall setup time is the sum of the two
setup times and the overall setup cost is the sum of the two setup costs.

See also:

♦ The PPO_ACTIVITY_SETUP_STATE_PROTO, PPO_RESOURCE_SETUP_MODEL,
PPO_SETUP_ACTIVITY_PROTO, PPO_SETUP_MODE_PROTO, PPO_SETUP_MATRIX, and
PPO_RESOURCE_SETUP_STATE tables in the data schema.

♦ The classes IloMSSetupMatrix IloMSSetupActivity, and IloMSResource, and the
enumeration IloMSCleaningStatus in the API documentation.

♦ Modeling a dairy plant with PPO Java API for an extended example that includes setups.

♦ In the PPO GUI, the Resources tab on theMaster Data can be edited to change some
setup requirements.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 131

Cleanups

The cleaning of resources is a vital part of manufacturing plans and schedules. Cleaning is
modeled in PPO using production orders of a cleanup recipe. A cleanup recipe is composed
of an activity with a cleaning status (PPO_ACTIVITY|CLEANUP_STATUS or
IloMSCleaningStatus.Cleaning). The cleaning time is the processing time of this activity.
The cleaning cost is the processing cost of the cleaning recipe.

Some cleanup requirements are specified on the resource: Clean the resource every ten
hours, or after five hours of idle time, or every ten batches. Some cleaning requirements
are based on the product transition or setup state: Clean the resource after processing an
allergen, or clean the resource as part of the setup to process a certain product. These latter
requirements are specified in a setup matrix.

You can use the PPO_RESOURCE_CLEANUP_STATE table, the IloMSResource class, or the GUI
(Master Data > Resources > Edit resource) to specify the following cleanup requirements:

♦ Maximum time before a cleanup: This specifies the maximal number of time units that a
resource can remain without a cleanup. After this time value, a cleanup is required before
any subsequent resource usage. This time is counted from the end time of the previous
cleanup. The default is infinity.

♦ Maximum idle time before a cleanup: This specifies the maximal number of time units
that a resource can remain idle without requiring a cleanup. After this time value, a
cleanup is required before any subsequent resource usage. The default is infinity.

♦ Maximum number of batches before a cleanup: This specifies the maximal number of
batches that can be processed between two cleanups. The default is infinity.

You can use the PPO_SETUP_MATRIX table or IloMSSetupMatrix class to specify whether a
cleanup is required in between the processing of two production activities on the same
resource (that is, in the transition from one resource state to another). The default for all
transitions is false.

There are some requirements when modeling cleanups in PPO. The cleanup recipe must
have one and only one activity, and that activity must have a cleanup status of cleaning. The
activity must also have one and only one mode executable on the resource under
consideration, which defines the time and cost, and possibly the secondary resources,
required to clean the resource.

See also:

♦ The PPO_ACTIVITY, PPO_SETUP_MATRIX, and PPO_RESOURCE_CLEANUP_STATE tables in the
data schema.

♦ The classes IloMSSetupMatrix and IloMSResource, and the enumeration
IloMSCleaningStatus in the API documentation.

♦ Modeling a dairy plant with PPO Java API for an extended example that includes cleanup
requirements.

♦ In the PPO GUI, the Resources tab on theMaster Data can be edited to change cleanup
requirements.

I B M I L O G P L A N T P O W E R O P S V 3 . 2132

Resource validity periods

There are two main ways to control the temporal availability of resources. You can use
calendars, as described in Calendars. There is a simpler way that might be more applicable
in certain situations. For example, if you're replacing an old machine with a new one it might
be easier to just specify the earliest start and latest end times for the resources.

The PPO_RESOURCE table has the fields START_MIN and END_MAX, meaning usage of the resource
shall occur between START_MIN and END_MAX. In the API, the methods
IloMSResource::setStartMin and IloMSResource::setEndMax provide that function.

Note that whenever firm information conflicts with the given bounds, the firm information
applies and the bound is discarded.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 133

I B M I L O G P L A N T P O W E R O P S V 3 . 2134

Calendars

Calendars are a way to model work shifts, breaks, and other events that affect resource
utilization.

In this section

Why use calendars?
Calendars are vital for modeling resource availability.

Calendar intervals
Each calendar is composed of calendar intervals.

Overlapping calendar intervals
Combined interval capacities can either be added or constrained.

Calendars on modes or resources
Calendars can be associated with modes and with resources.

Breaks and shifts
Calendar intervals can be breaks and end of shift periods.

Productivity
The productivity directly affects activity duration.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 135

Why use calendars?

In most settings, resources do not operate homogeneously over time:

♦ The capacity of a resource may vary over time; for example, in a given work center five
machines may operate during the day but only two during the night.

♦ The productivity of a resource may vary over time; for example, the human operator is
slower at night.

♦ Production may be stopped during lunch periods, breaks, or shift changes.

♦ In some cases, it is not possible to start an activity in one shift and finish it in another,
for example, because one must track during what shift the production was performed.

Plant PowerOps allows you to define calendars to take all these issues into account.

Calendars can be associated withmodes, or assigned directly to resources. There are different
effects depending which is used, and this is discussed in Calendars on modes or resources.
By default, calendars are assigned neither to modes nor to resources.

I B M I L O G P L A N T P O W E R O P S V 3 . 2136

Calendar intervals

Each calendar is composed of calendar intervals, and each interval has properties of resource
capacity, productivity, break times, and end of shift characteristics. The default values for
these properties are that the default capacity is the resource capacity to which the calendar
is attached; the default productivity is 1.0; and by default, a calendar interval is neither a
break nor an end of shift.

Calendar intervals are often intended to be used repeatedly: the day shift, the night shift,
the maintenance schedule, and so on. If you create calendar intervals with a periodicity,
then you create one model interval that is repeated according to your specifications. This
lets you easily set the desired characteristics for an entire shift, and as necessary, easily
modify the shift properties because the periodic intervals remain linked as a single modeling
object.

If the interval has a periodicity of zero, then it appears only once in a calendar; but it is
possible to copy this aperiodic interval in the PPO GUI Calendars view. The copies of the
original aperiodic interval are not linked; so if you change one, then you change only that
one interval, not its unlinked copies.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 137

Overlapping calendar intervals

When calendar intervals overlap in time, there are two possibilities for calculating the
resulting resource capacity. Either the capacities can be added together, or the most
constraining interval dictates the available capacity. If the calendar is additive, and several
calendar intervals overlap, then the corresponding capacities from each interval are added
together to determine the actual capacity of the resource at any given time. If the calendar
is not additive, then the most constraining capacity from the overlapping intervals determines
the (limited) capacity available at any given time.

To prevent confusion, it is recommended to avoid using overlapping intervals if the calendar
can easily be represented in such a manner. Note that in all cases, limitations induced by
the capacity provided by the resource itself (as modeled with PPO_RESOURCE, IloMSResource,
and so forth) also apply. The additive property applies only to resource capacity, not to
productivity.

I B M I L O G P L A N T P O W E R O P S V 3 . 2138

Calendars on modes or resources

Calendars can be associated with modes and with resources. If a mode has a calendar, then
this calendar applies to activities executed in this mode. If the mode does not have a calendar
but the primary resource of the mode does have a calendar, then the calendar of the resource
applies to the activities executed in this mode. You can think of the calendar on the resource
as the "default" calendar used when no mode calendar has been specified.

Calendars provide slightly different modeling capabilities depending on whether they are
attached to the mode or the resource. Breaks and work periods are taken into account on
calendars assigned to modes, but resource capacities are not. Resource capacities are taken
into account by calendars on resources, and for determining capacity limitations, the
calendars associated with resources always apply.

Note that for “block planning,” it is useful to use calendars on modes.

As mentioned, when the calendar is associated with the mode, then breaks are taken into
account. See Breaks and shifts for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 139

Breaks and shifts

You can specify that a calendar interval is a break. Breaks are time intervals when activities
generally cannot be executed because, for example, a resource is not available. So you could
use a calendar interval to model a lunch break, or a daily afternoon worker break of 15
minutes.

You can specify that a calendar interval is an end of shift period; for example, an interval
ending at 5:00 p.m. is the end of the day shift. Some activities cannot be executed across a
shift change. If a calendar has no shift intervals, it is assumed that there are no shifts (or
equivalently that all activities executed in the calendar are breakable by shifts).

When the calendar is assigned to a mode, there are additional controls that you can provide
in regards to breaks and shifts: maximal break duration, maximal end duration in a break,
and shift-breakable permission.

Themaximal break duration (PPO_MODE|BREAK_DURATION_MAX) specifies the longest duration
that a break can be and not interrupt an activity which is executing in this mode. If a break
lasts longer than the maximal break duration, then the activity must either be completed
before the break, or it must start after the break. If a break is less than the maximal break
duration, then the activity can be interrupted by the break, with no corresponding restrictions
on the activity start or end time. If the break maximal duration is zero, then the activity is
not breakable.

The maximal end duration in a break setting is used to specify that it is permissible to
continue an activity into a break period if the activity can be completed within a certain time
limit after the start of the break. This can be set by the
PPO_MODE|MAX_END_DURATION_IN_BREAK field.

An activity that is shift-breakable can overlap a shift change; an activity that is not
shift-breakable must be completely executed within a single shift. So if a calendar interval
is an end of shift, then a non-shift-breakable activity cannot both start before and end after
the end time of this interval.

I B M I L O G P L A N T P O W E R O P S V 3 . 2140

Productivity

The productivity of an interval specifies the speed at which the activity executes over time.
By default, productivity is equal to 1.0. The productivity is used to relate the processing
time and the duration of the activity. When the productivity is 0.5, two units of duration are
necessary to execute one unit of processing time. When the productivity is 2.0, one duration
unit will execute two units of processing time.

When the productivity is greater than 1.0, the processing time of the mode will usually not
be fixed; that is, the difference between the maximal processing time and the minimal
processing time will usually exceed "productivity - 1.0" in order to allow an appropriate
rounding of both the processing time and the activity duration. For example, if in a solution
the productivity is 2.0 from the start time to the end time of the activity, and if the duration
is 10, then the processing time in this solution is 20. If the minimal and maximal processing
times are both equal to 19, then the engine would regard this solution as invalid.

See also:

♦ PPO_CALENDAR, PPO_CALENDAR_INTERVAL, PPO_MODE, and PPO_RESOURCE tables in the data
schema.

♦ Classes IloMSCalendar, IloMSCalendarInterval, IloMSMode, and IloMSResource in the
API documentation.

♦ An C++ example of modeling a problem that uses calendars Using the PPO API for C++
to model and solve.

♦ A Java™ example of modeling a problem that uses calendars at Using the PPO API for
Java to model and solve.

♦ In the PPO GUI, the Calendars view lets you visualize and edit calendars information;
right-click to display the contextual menu. Also on theMaster Data view, Resources
tab, you can select the calendar a resource uses.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 141

I B M I L O G P L A N T P O W E R O P S V 3 . 2142

Activity constraints, validity periods, and
names

Discusses activity constraints, validity periods, and controls over generated activity names.

In this section

Precedence constraints
Describes precedence constraints between activities.

Spanning constraints
Describes spanning constraints on activities.

Compatibility constraints
Describes constraints that enable you to impose that two activities be performed in related
ways.

Activity validity periods
You can specify the time period during which certain activities can be performed.

Activity names
You can control the names of the generated activities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 143

Precedence constraints

You can define precedence constraints between two activities of the same recipe, referred
to as the “predecessor” activity and the “successor” activity. The activities can be production
or setup activities. Four types of precedence constraints are distinguished:

♦ EndToStart is in many cases the only type of precedence constraint that is needed. An
EndToStart constraint means that the predecessor activity must end before the successor
activity starts or, equivalently, that the successor cannot start before the end of the
predecessor. A minimal delay and a maximal delay between the end of the predecessor
and the start of the successor can also be imposed.

♦ StartToStart means that the predecessor activity must start before the successor activity
starts or, equivalently, that the successor cannot start before the start of the predecessor.
A minimal delay and a maximal delay between the start of the predecessor and the start
of the successor can also be imposed.

♦ StartToEnd means that the predecessor activity must start before the successor activity
ends or, equivalently, that the successor cannot end before the start of the predecessor.
A minimal delay and a maximal delay between the start of the predecessor and the end
of the successor can also be imposed.

♦ EndToEnd means that the predecessor activity must end before the successor activity
ends or, equivalently, that the successor cannot end before the end of the predecessor.
A minimal delay and a maximal delay between the end of the predecessor and the end of
the successor can also be imposed.

See also:

♦ PPO_PROD_PROD_PRECED_PROTO and other *_PRECED_PROTO tables in the data schema.

♦ Classes IloMSPrecedence and IloMSAbstractActivity in the API documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2144

Spanning constraints

The spanning constraint can be considered to be a special type of precedence constraint.
This constraint spans over multiple activities such that one activity spans over the elapsed
times of others. The time bounds of the spanning activity are computed as a propagation of
the time bounds of its spanned activities. More precisely, it means that the start time of the
spanning activity is equal to the earliest of the start times of the spanned activities, and that
the end time of the spanning activity is equal to the latest of the end times of the spanned
activities.

The main difference between precedence and spanning constraints is that with precedence
constraints, although one can specify that an activity “covers” the elapsed times of a set of
activities, if there is no known activity order then one cannot constrain the covering activity
so that:

♦ The start time of the covering activity is equal to the start of the earliest covered activity;

♦ The end time of the covering activity is equal to the end time of the last covered activity.

The spanning constraint may be enforced only on activity start, only on activity end, or on
both.

See also:

♦ PPO_SPANNING_PROTO table in the data schema.

♦ The class IloMSActivity in the API documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 145

Compatibility constraints

Compatibility constraints refers to a collection of restrictions that you can enforce on modes
and activities. The activities can be production or setup activities.

You can constrain:

♦ That the two modes (of the two activities) have the same primary resource;

♦ That the two modes have the same primary resource and the same capacity requirement;

♦ That the two modes have the same line identifier;

♦ That the primary resources of the two activities are connected;

♦ That the two activities must have the same (or opposite) performed status;

♦ That the performed status of one activity logically implies the status of the second.

When one states that two activities must execute on same line identifier, then the optimizer
will choose modes that share a common line id.

Resource connections
The resource connection is used to define physical connections between resources so that
one can enforce the usage of two connected resources as primary resources of two activities.

When one states that two activities must execute on connected primary resources, then the
optimizer will enforce that their respective modes refer to primary resources for which a
connection has been defined. To specify the connections use the PPO_RESOURCE_CONNECTION
schema table or the IloMSResource::addConnectedResource method.

Note that a resource A is connected with a resource B if one of the following is true:

♦ A is directly connected with B

♦ A is directly connected with superResource(B)

♦ superResource(A) is directly connected with B

♦ superResource(A) is directly connected with superResource(B).

See also:

♦ PPO_PROD_PROD_COMPAT_PROTO, PPO_RESOURCE_CONNECTION, PPO_MODE_PROTO,
PPO_ACTIVITY, PPO_RESOURCE and *_COMPAT_PROTO tables in the data schema.

♦ Classes IloMSActivityCompatibilityConstraint, IloMSActivity, IloMSMode,
IloMSResource, and enumeration IloMSActivityCompatibilityType in the API
documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2146

Activity validity periods

You can specify that an activity mode cannot be used before or after a certain date. This
could be useful, for example, if one activity mode is obsolete and a new one is replacing it.

You can control this through calendars (see Calendars) but there is an easier method in the
relational and object models. In the PPO_MODE table, you can use the fields START_MIN,
START_MAX, END_MIN, and END_MAX, which mean that the execution of an activity in this mode
shall always start between START_MIN and START_MAX, and end between END_MIN and END_MAX.
In the API, the class IloMSActivity has methods for analogous function.

Also of potential interest, from the relational model:

♦ In the PPO_RECIPE table: START_MIN and END_MAX, meaning execution of the recipe shall
occur between START_MIN and END_MAX.

♦ In the PPO_RESOURCE table: START_MIN and END_MAX, meaning usage of the resource shall
occur between START_MIN and END_MAX.

Note that whenever firm information conflicts with the given bounds, the firm information
applies and the bound is discarded. Note also that these bounds are all optional with the
minimal values defaulting to –INF and the maximal values to +INF.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 147

Activity names

The name you give in the model to an activity prototype (for example on
PPO_ACTIVITY_PROTO|NAME) is not, by default, the name that will appear on the Gantt
Diagram for the scheduled activities cloned from this prototype. Rather, activities generated
from activity prototypes have an automatic long name based on a concatenation of the
production order name and the activity prototype name, separated by a dot.

To override the default and use the original name of the activity prototype that you modeled,
you must set the setting bShortName to true. When the bShortName setting is true, the activity
label from the activity prototypes interprets the following special characters as shown:

♦ ^a = abbreviated main product name to 3 first letters (does not support multibyte
characters)

♦ ^b = abbreviated main ingredient name to 3 first letters (does not support multibyte
characters)

♦ ^i = main product identifier

♦ ^j = main ingredient identifier

♦ ^m = main ingredient name

♦ ^n = order index

♦ ^o = order identifier

♦ ^p = main product name

♦ ^q = quantity of main product or batch size; if missing round up as an integer

♦ ^r = recipe name, or if missing then the recipe identifier, or if missing the recipe id

♦ ^s = batch size

You can define multiline names using \n to start a new line. To properly see multiline names
in the Gantt Diagram, increase the row height using the Activity and Resource Chart
Row Height in the Tool > Options menu in the GUI.

See also:

♦ PPO_ACTIVITY_PROTO and PPO_SETTING tables in the data schema.

♦ The class IloMSActivityCalendar andmethod IloMSOptimizationProfile::putSetting
in the API documentation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2148

Material lifespan and inventory

Describes material maturity periods, shelf life, and inventory.

In this section

Maturity, shelf life, waste recipes
Discusses maturity, shelf life, and the use of waste recipes to remove obsolete inventory.

Managing inventory stock
Managing stock levels is a vital part of a manufacturing plan.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 149

Maturity, shelf life, waste recipes

The planning and scheduling engines of PPO allow you to set the time window during which
a material is consumable. Maturation is defined as the minimal number of time units that
must elapse after material production completes before that material can be consumed.
Shelf life is defined as the number of time units before the material expires and is no longer
consumable. The default maturation time is zero and the default shelf life is infinite.
Production orders and demands can consume only mature, non-expired items. Demands can
also specify a requirement that materials have a minimal remaining shelf life.

The age of the item is computed starting at the end of the producing activity of a production
order, or at the specified production time of a procurement. Maturity and shelf life constraints
are handled pessimistically by production planning. For instance if a material shelf life is
less than the size of a bucket, it must be consumed in the same bucket as it is produced.
Note that in the case of a procurement, this age is dependent upon the receipt time at which
the material enters inventory. One can override the maturity and shelf life of a procured
item using the PPO_PROCUREMENT table or IloMSProcurement class.

Waste recipes
By default, obsolete material is held in inventory forever. In order to discard expired material,
one must define awaste recipe. A waste recipe is simply a recipe that consumes the material
and produces nothing. The waste cost is the cost incurred to throw away one unit of material.
The waste recipe is typically composed of one activity prototype consuming the material
with a minimum batch size of zero and an infinite maximum batch size. This activity prototype
may have several modes, each being a way of consuming the material from the different
storage units. Note that when using the API there is a helper function to help you create a
waste recipe in one call; see the method newWasteRecipe in the IloMSModel class.

The contextual menu on theMaterials tab of theMaster Data view allows you to create a
waste recipe directly in the GUI.

I B M I L O G P L A N T P O W E R O P S V 3 . 2150

See also:

♦ The PPO_MATERIAL and PPO_PROCUREMENT tables in the data schema.

♦ The classes IloMSMaterial and IloMSProcurement in the API documentation.

♦ Materials

♦ Managing inventory stock

♦ An example of the PPO_MATERIAL table in Step 5 Define the materials ofModeling a simple
problem: A “bottleneck” resource.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 151

I B M I L O G P L A N T P O W E R O P S V 3 . 2152

Managing inventory stock

Managing stock levels is a vital part of a manufacturing plan.

In this section

Overview of three approaches
Planners must balance the costs of maintaining inventory with having enough product to
satisfy customer demand.

Material inventory costs
Modeling numerous levels of inventory, each with a particular cost.

Safety inventories
Discusses the method of maintaining a minimal inventory.

Setting days of supply targets
Typically a range of acceptable inventory levels and costs is specified.

Service levels
How service levels provide superior management of inventory.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 153

Overview of three approaches

Planners must balance the costs of maintaining inventory with having enough product to
satisfy customer demand. The ultimate goal is too ensure that inventory levels are just right;
not too big, thereby causing unnecessary expense, and not too small, thereby risking stock
outages.

PPO provides three increasingly sophisticated methods of achieving those goals. The first
method applies cost functions directly to inventory levels. You can create threshold levels
in the cost function; if, for example, inventory at a certain size requires you to access a new
storage facility, it's easy to model that cost increase. Conversely, if inventory gets so small
that you risk a stock outage, you can model an increased potential cost (risk of unsatisfied
customers) at the lower threshold. This method is described inMaterial inventory costs and
Safety inventories.

Another method is to apply a cost function based on demand coverage, expressed in days
of supply (DOS). The point is to create a target inventory corridor that is allowed to change
over time; the change can be due to different DOS targets or to demand fluctuation.
Production may have to be tuned in order to stay within the corridor. This method is described
in Setting days of supply targets.

These methods can be used to manage inventory levels, however there are some
shortcomings. You have to predict and compute the customer demand levels in advance
yourself, and tune production as necessary. This can lead to forecast error. Neither technique
reliably accounts for variability in production lead time. Neither lets you directly manage
stock using industry-standard service levels, which allow you to predict or control the
potential of running out of stock.

The section Service levels introduces the PPO technology available to handle those concerns.

I B M I L O G P L A N T P O W E R O P S V 3 . 2154

Material inventory costs

For each instance of material inventory, one or several cost functions with different periods
of validity can be provided. This allows the cost of maintaining inventory to depend on time,
such as due to seasonal effects. Note that the same functions may be used for different
materials.

In most cases, the cost of inventory varies linearly with the amount of material in inventory.
In some cases, however, some threshold effects occur, such as when the inventory goes over
a given limit, an outside tank must be rented thereby increasing the cost. For this reason,
inventory cost functions are represented in levels; each level is described by a maximal
inventory for this level, a fixed cost for entering this level, and a variable cost paid for each
unit of material throughout this level. Needless to say, optimization is easier when there is
a unique level and no fixed cost, so it is recommended to use multiple levels only when cost
variations are significant.

Both the fixed and the variable costs are paid per unit of time. The following image represents
the fixed and variable costs for each level of inventory.

In the relational model, see the tables PPO_MATERIAL, PPO_INVENTORY_MAX_COST_FCT, and
PPO_INVENTORY_MAX_COST. In the API documentation see the classes
IloMSInventoryMaxCostFunction and IloMSMaterial.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 155

Safety inventories

Preferences for maintaining safety stock (or minimal) inventories can be represented in a
similar manner to that used for maximal inventory costs.

The following image represents the fixed and variable costs for each level of minimal or
safety stock inventory.

As for maximal inventory costs, both the fixed and the variable costs are paid per unit of
time. In the relational model, see the tables PPO_MATERIAL, PPO_INVENTORY_MIN_COST_FCT,
and PPO_INVENTORY_MIN_COST. In the API documentation see the classes
IloMSInventoryMinCostFunction and IloMSMaterial.

I B M I L O G P L A N T P O W E R O P S V 3 . 2156

Setting days of supply targets

For some facilities, it is convenient to set inventory cost functions based on demand coverage,
expressed in days of supply (DOS). PPO provides a shortcut for that case. You provide the
minimum and maximum days of supply targets, along with the corresponding variable costs
per unit of material for exceeding those DOS bounds. A maximal inventory for the material
can also be provided. For short term planning, this data is sufficient for PPO to automatically
derive the inventory cost functions.

For midterm planning, an additional level in-between the min and max can be defined. This
level is called the days of supply target, and represents the ideal number of days of supply
that you want to hold in inventory at the end of each time bucket. This value must be between
the min and max, is considered a strong preference but not necessarily obeyed, and is best
used when the time bucket duration is greater than the width of the stock corridor (between
min and max).

Using the notion of target minimum days of supply to define the inventory min cost creates
a cost function like the following.

Using the notion of target maximum days of supply to define the inventory cost creates a
cost function like the following.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 157

See the table PPO_MATERIAL in the data schema or the class IloMSMaterial in the API
documentation for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2158

Service levels

In PPO you can control stock levels by your desired service level and service level type. This
can include calculation of lead time, safety stock, and variability in demand and production
time.

For each controlled material provide:

♦ A service level target which is a percentage between 50% and 100%. 50% represents no
safety stock;

♦ A service level type to interpret the semantics of the target, based on industry-standards
of cycle service level (alpha, type 1, or event-based level) and fill rate (beta, type 2, or
quantity-based level);

♦ A demand variability ratio to express demand uncertainty including forecast error;

♦ An average lead time with a standard deviation.

The alpha and beta service levels also have dynamic versions, which are based on the time
bucket of the next production, not the average lead time. The PPO planning module supports
dynamic safety stock where the safety stock is a decision variable depending on the decision
regarding the next production.

See Using service levels, lead time, and demand variability to manage stock levels for more
information.

By default, the service level type is disabled, and the method of entering days of supply
targets is used to define a stock corridor (see Setting days of supply targets).

I B M I L O G P L A N T P O W E R O P S V 3 . 2 159

I B M I L O G P L A N T P O W E R O P S V 3 . 2160

Applied use of Plant PowerOps

This section describes various aspects of using and applying IBM® ILOG® Plant PowerOps
(PPO), focusing on tasks involving the GUI. The first section introduces general basic tasks
in the GUI. This is followed by topics describing database usage, using service levels to
manage inventory, problem decomposition, and editing production plans.

In this section

Using the PPO GUI
Description of some tools, tasks, and views of the PPO GUI.

Database usage and connectivity
This describes the supported databases of PPO and their usage; for advanced topics see
Database customization.

Using service levels, lead time, and demand variability to manage stock levels
This section describes how to manage stock inventory levels to help prevent stock outages
even when faced with uncertain demand and production time.

Decomposition framework
How to decompose a planning problem into smaller components.

Production planning simulations
The planning solution is editable in the PPO GUI and allows you to run simulations and
re-optimize with planning.

Advanced usage: Distribution planning
This advanced section describes how to use PPO to optimize your distribution network. Any
usage of PPO for distribution planning, supply chain planning, or multi-plant planning must
be validated with the PPO product management team.

© Copyright IBM Corp. 1987, 2009 161

I B M I L O G P L A N T P O W E R O P S V 3 . 2162

Using the PPO GUI

Description of some tools, tasks, and views of the PPO GUI.

In this section

GUI tool and navigation tips
An overview of some of the tools and aids to navigation in the PPO GUI.

Stock Coverage view
Describes the Stock Coverage view.

The Inspector
Describes some aspects of the Inspector tool.

The Parameters window
Describes the selections on the Parameters window.

Using the checker
Describes how to use the Checker to test your plan and model data.

Copying an existing recipe
As recipes can become complex, it's sometimes easier to copy a recipe and modify it as
necessary, as opposed to creating a new recipe.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 163

I B M I L O G P L A N T P O W E R O P S V 3 . 2164

GUI tool and navigation tips

An overview of some of the tools and aids to navigation in the PPO GUI.

In this section

Menus and toolbars
This section describes the menus and toolbars in the IBM® ILOG® Plant PowerOps (PPO)
graphical user interface.

Accessing the plan views
Using the view types bar.

Splitting and synchronizing plan views
Allows visualization of more scenario data.

Using the Filter tool on the Master and Transactional Data tables
You can filter by recipe or resource.

Comparing multiple scenarios
New horizontal or vertical groups.

Repair extent, capacity and magnetism
Describes the use of repair extent, repair capacity and magnetism in Plant PowerOps.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 165

I B M I L O G P L A N T P O W E R O P S V 3 . 2166

Menus and toolbars

This section describes the menus and toolbars in the IBM® ILOG® Plant PowerOps (PPO)
graphical user interface.

In this section

Overview
Provides an overview of the user interface menus and toolbars.

The menu bar
Describes the menus available on the main menu bar.

Main toolbar
Describes the row of icon tools at the top of the PPO interface.

Plan View toolbar
Describes the icon tools available on the Plan View toolbar.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 167

Overview

Menus and toolbars provide your control over and interaction with PPO.

The following image shows the menu bar (File, Edit, and other menus) and the main toolbar
(the row of icons).

After you select an icon on the toolbar, the icon switches from its standby state with a blue

background to an orange background.

See The menu bar and Main toolbar for information about the selections and icons above.
The exact menus and icons that are active depend upon which windows you have open. Not
all items are available in all views

Although there is only one menu bar in PPO, there are numerous toolbars. Shown here is
the toolbar for the Gantt Diagram view.

See the Plan View toolbar for information about these tools.

I B M I L O G P L A N T P O W E R O P S V 3 . 2168

The menu bar

The menu bar has the following menus:

The File menu

The Edit menu

The View menu

The Tools menu

The Window menu

The Help menu

The File menu
The first selections on this menu allow you to bring data into the GUI. The Open Scenario
selection opens a file browser so that you can locate and open an existing problem data file
in .mdb or .csv format. The Excel Import selection allows you to import Microsoft® Excel®
spreadsheet files. Use Open Scenario from Database to input plan data from an Oracle®
or Microsoft database. The next group of selections provide methods to save or export your
data from PPO in different formats. The Excel Export selection allows you to export data
to Excel spreadsheet files.

More information on using PPO with a database is available in the documentation set. Note
also that several options regarding database files are set on the Parameters page on the
Options window.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 169

NewModel... opens theNewModel Wizard, which helps you create a new problemmodel
in the GUI itself, bypassing the need to build a database or spreadsheet model. Generate
Report... is useful to get a comprehensive look at capacity, demand and inventory using
Tableau.

Close Workspace will close the currently active workspace and all scenarios contained
within, but not close other problems you may have open.

Recent Data Files provides a shortcut to files that you may have worked with recently.
Quit will close PPO.

The Edit menu
The appearance of the Editmenu changes depending on what window in PPO is active. The
following image shows all available choices.

The Highlight selection lets you reveal production orders, activities, arcs and constraints
on the Gantt Diagram. Note that this choice displays or blinks items on the Gantt but does
not select them.

Select does allow you to select items on the view displayed on the Gantt Diagram. This
includes activities highlighted from the previous Highlight menu item, the start min, and
more. Color allows you to reset the colors displayed in theGantt Diagram in order to better
visualize information in the plan.

Show/Hide also works with the Gantt Diagram; if an item is selected on the Gantt chart,
then selecting Show —> Primary product stock coverage displays the Stock Coverage
view for the primary product of that selected activity or production order. Show Pegging
arcs reveals the material flow arcs for the selected production orders on the Gantt chart.
There is also a selection available to hide any displayed arrows and turn off any highlighting.

New Scenario allows you to create a new scenario for the problem; use this choice to have
two or more scenarios open in the interface for which you can generate independent plans.

The last two choices on the Edit menu are undo and redo. The image above showsMove
because the last action performed by the user was to move an object on the Gantt chart.

I B M I L O G P L A N T P O W E R O P S V 3 . 2170

The View menu
The View menu allows you to display or hide various windows of the PPO GUI. An orange
background to the icon (as shown for the Start Page and Console below) indicates that
the item is currently displayed.

Hiding theWorkspace View does not close the problem or scenarios, it merely hides that
window in order to provide more space in the application window.

The Console is the communications window of PPO which lists details of optimization and
other information. The Navigate choices allow you to page forward and backward through
the (already-displayed) views within the active scenario.

The Tools menu
TheKPI Comparison Panel selection displays a table that allows you to compare the values
of the Key Performance Indicators across numerous scenario plans. KPIs are discussed in
the documentation set.

Checker displays a window that keeps you informed of any error messages; selecting an
error message in the Checker window highlights the associated constraints, activities and
other items in the Gantt Diagram.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 171

The Inspector is an information window used to display details of activities and other items
on the Gantt chart; you can edit information colored in blue in this window. See The Inspector
for more information.

TheChanges to scenariowindow keeps track of changes youmake to the plan, and provides
undo and redo commands. The Parameters window lets you organize how inventory and
material information is displayed in various views; items colored in blue in the Parameters
window provide scroll boxes with available options. See The Parameters window for more
information.

Optimize the scenario displays a dialog box that allows you to direct PPO to find a solution
for production planning, batching, and scheduling. Finally, you can set various Options
regarding the views, magnetism, database usage, and traces.

The Window menu
TheWindow menu provides controls for you to customize and navigate through the open
Plan View windows in the interface.

The selections Previous Window and Next Window allow you to page backwards and
forwards through the open scenarios in the active workspace.

The selections New Horizontal Group and New Vertical Group allow you to arrange the
scenario windows into two horizontal or vertical layouts. There must be at least two scenarios
open for these commands to function. SeeComparingmultiple scenarios for more information.

Move to Previous Tab Group restores the scenarios to one view. The list of files at the
bottom provides a quick link to the various open scenarios.

The Help menu
The Help... selection displays the IBM ILOG Plant PowerOps Online Help.

I B M I L O G P L A N T P O W E R O P S V 3 . 2172

TheDocumentation selection displays the documentation set. The documentation includes
implementation information, reference manuals, entity relationship diagrams, the data
schema, and more. Documentation in CHM features search across the full documentation
set. Individual publications in CHM and PDF format are available in the
<PPOInstallDirectory>\doc\chm or <PPOInstallDirectory>\doc\pdf directories. HTML
documentation is available at <PPOInstallDirectory>\doc\html\en_US\documentation.html.

The About... selection displays information about your PPO installation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 173

Main toolbar

The main toolbar is the row of icons at the top of the PPO interface. It gives you quick access
to the main windows and tools of PPO. When an icon is selected, its background changes to
orange as shown for several icons below.

What the icons do:

Displays the Open Scenario file browser window, allowing you to open a data file.

Saves the current, active scenario.

This tool lets you import data from Microsoft® Excel spreadsheet files.

This tool lets you export data to Microsoft Excel spreadsheet files.

Shows or hides theWorkspace View.

Shows or hides the KPI Comparison Panel.

Shows or hides the Checker.

Shows or hides the Console.

Shows or hides the Inspector. See The Inspector for more information.

Shows or hides the Changes to scenario window, which allows you to undo and redo
changes made to the Gantt chart.

Shows or hides the Parameters window which allows you to control how material and
inventories appear in the Plan View. See The Parameters window for more information.

Starts Tableau enabling you to create a variety of reports regarding your data. See
Customizing report generation with Tableau for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2174

Optimizes the problem data to create a plan. See Optimization and KPIs for more
information.

Allows you to undo or redo changes made to the Gantt Diagram.

Also refer to The tool icons on the Plan View toolbar.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 175

Plan View toolbar

The toolbar for theGantt Diagram view is shown below, with its many icons. The Plan View
toolbar changes depending on which view is displayed. For example, KPIs Summary is a
view-only page and so has very few tools.

Above the toolbar is the title bar; the Start Page tab allows you to return to the initial
starting page of PPO. Next to that are tabs for each of the open scenarios; here there is just
one, Scenario 1.

Most of the icon tools on the Gantt Diagram view have the same or similar function when
appearing on a different view.

Gantt Diagram toolbar
The first selection available on the toolbar displays the view types bar. Selecting it gives
you access to the various views of the plan:Master Data, Calendars, KPIs Summary and
Stock Summary, for example.

I B M I L O G P L A N T P O W E R O P S V 3 . 2176

The tool icons
Next on the toolbar are the many icons of the Gantt Diagram view.

Here’s what these tools do.

These arrows allow you to page forwards and backwards through your viewing history
of the Plan Views for the current scenario. Only views which you have previously viewed
are accessible through these navigation arrows.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 177

These icons change the viewable window size on the Gantt chart.

The first three of these icons (from left to right) zoom in, zoom out, and allow you to draw
a zoom expandable box on the Gantt chart (the box shape that you draw will expand to fill
the Plan View window). The next icon fits the horizontal contents of the Plan View to the
current window size, leaving the vertical contents unchanged. The last of these icons fits
the horizontal contents too, and also centers the top of the Gantt chart in the current Plan
View window size.

The pan tool; “grab” the chart and move to see other sections of the plan.

Activates the selection tool, allowing you to select activities and production orders on
the Gantt Diagram to view information or move them.

Packs the activities to the left on the chart.

Activates magnetism, used as an aid to drag and drop operations performed on the
Gantt Diagram. See Repair extent, capacity and magnetism for more information.

Tools that set the repair extent and capacity, which determine how PPO interprets
your changes to the Gantt Diagram. See Repair extent, capacity and magnetism for more
information.

Two icons to assist and control printing.

Refreshes the current view.

This tool lets you synchronize the Gantt Diagram chart with other views such as the
Calendars and Planning Workload. Select this icon on each desired view, and when you
scroll horizontally through the time scale on one view, the other synchronized views will
remain correlated, making it very easy to compare data for a particular time. See Splitting
and synchronizing plan views for more information.

Icons that control the view of a single plan. See Splitting and synchronizing plan
views for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2178

Accessing the plan views

After you optimize a scenario, PPO presents the solution data in a number of plan views. By
default, the Gantt Diagram displays first, but you can access the other views by using the
view types bar; click Gantt Diagram as shown in this image to reveal the other plan views
available to you.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 179

I B M I L O G P L A N T P O W E R O P S V 3 . 2180

Splitting and synchronizing plan views

By default you can only see one of the plan views at a time. Undoubtedly you'll eventually
want to look at two of the plan views at once to compare data. Use the split view controls
(highlighted below in red) to achieve this.

Once two views within a scenario are displayed, there are several techniques to help control
the data you see. One method is to filter the data; this is discussed in Using the Filter tool
on the Master and Transactional Data tables.

Another technique is to synchronize views; this “locks” two or more views together such
that when you pan or move one view along its time line, the other view moves in
synchronization with the first. The synchronization tool is located on the toolbar, and when

activated has an orange background as shown here:

The following image shows the synchronization tool activated (on toolbar, far right), and
the pan tool selected (hand icon on toolbar, orange background). The pan tool has been
used to move the Gantt Diagram to the right, and the Calendars view has moved with it,
revealing the start min area for both views.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 181

I B M I L O G P L A N T P O W E R O P S V 3 . 2182

Using the Filter tool on the Master and Transactional Data tables

When displaying theMaster Data or Transactional Data tables, you can filter the displayed
data by various criteria, including by materials, recipes and resources.

For example, the following image shows twoMaster Data views, the lower of which is
focused on theMaterials tab with the material bio-muesli selected. The upper view is
focused on the Recipes tab, where the user had selected the filter icon with the result that
the only recipe displayed is the one associated with the bio-muesli material.

The filter tool also works in combination with other views; for example, if you select an
object on theGantt Diagram, and then select the filter tool on theMaster or Transactional
Data views, then only the data rows associated with the selected items will continue to
display.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 183

Comparing multiple scenarios

One of the notable features of PPO is the ability to create multiple scenarios that have been
optimized from different data sets, and keep these scenarios available simultaneously in the
PPO workspace. To compare two scenarios, use the New Horizontal Group and New
Vertical Group tools on theWindow menu.

Either command allows you to simultaneously display views from both scenarios; you can
compare theGantt Diagram charts of both, theWorkload Tables, Stock Coverage views,
and so forth. You can even display two views within each scenario, as described in Splitting
and synchronizing plan views.

I B M I L O G P L A N T P O W E R O P S V 3 . 2184

Repair extent, capacity and magnetism

When you edit a plan with a drag and drop action in the Gantt Diagram view, it is possible
to interpret that action in a variety of ways due to the constraints and material flows involved
with the activity or production order that you are editing. Repair extent and repair capacity
solve that problem. They specify to Plant PowerOps exactly how to interpret your changes.
Additionally, magnetism aids in specifying your target location on the Gantt chart. Repair
extent and capacity are set using the following icons on the Gantt Diagram toolbar. The
left icon allows you to set the repair extent, and the right one sets the resource capacity of
the repair.

The following image shows the choices available for repair extent (some nearby icons have
been removed from the image for clarity). You can choose an Activity extent, which means
that only the activities that are actually selected on the Gantt will have their constraints
enforced; this means that duration and calendar constraints are respected, but not precedence
constraints. Production order extentmeans that all activities that belong to the production
order(s) of the selected activities will have their constraints enforced; this adds enforcement
of precedence constraints for those activities.Material flow extent adds enforcement of
the pegging constraints for the clusters of production orders of the selected activities.

The following image shows the choices available for repair capacity. Infinite capacity
extent means that resource capacity constraints involved with the edit are ignored. One
resource extentmeans that the capacity constraints of the primary resource of the selected
activities are enforced, and overlapping activities are changed to eliminate the conflict. To
use this selection, all selected activities should have the same primary resource, and this
resource should have a unary capacity.

The magnetism tool is provided by this icon: . Magnetism is an “attraction” between the
activity you are moving and the closest graphical object near to where you place it. This
helps to eliminate any empty time slot on the chart, as the objects “snap” together.. When
magnetism is activated, the icon has an orange background.

You can decide to include shifts and breaks in the magnetismmove on the Tools —> Options
—> Advanced Parameters window.

Be aware that any change you make to a plan is lost if you optimize the problem again,
unless you firm or fix your changes.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 185

Stock Coverage view

The Stock Coverage view has selectable Layouts, as shown in the figure below: ATP,
Demand Fulfillment, Inventory Balance/Target (default), and so forth. Each layout
changes the visible data columns in the table below the graph, and is tailored to specific
needs such as inventory management, transportation, ATP (available to promise) calculations,
and so forth.

You can also temporarily add or remove columns from a layout with the contextual menu;
right-click and on the menu select Visibility. For long-term custom changes, you can edit
these layouts and create your own. Each layout is stored in the <PPOInstallDirectory>/data/
gui/table directory in a file named in the manner stockcoveragedisplayxxxx.xml. See
Customizing and Extending PPO for more information.

A description of some standard layouts:

♦ ATP: This layout is for the available-to-promise use case and shows the ATP, Promised
and Cumulative ATP columns. See Production planning simulations for a use example.

♦ Demand Fulfillment: This layout shows how much of the demand due in a bucket is
satisfied (over all buckets included in its delivery window).

♦ Inventory Balance: This layout focuses on the different terms of the material balance
equation: inputs and outputs are detailed.

♦ Inventory Target: This layout focuses on the inventory target corridor and alerts when
the inventory goes below or above the corridor.

Regarding inventory consumption by demand and how this affects this view, there is
automatic repegging to demand at each interaction that enforces the constraints and may
not satisfy the whole demand. The stock displayed can not be negative, nor can immature
or obsolete stock be consumed by the demand. A red bar indicates the unsatisfied demand.
A gray bar indicates the obsolete inventory thrown away at expiration time. The inflow bar
indicates the amount of missing intermediate material. The automatic demand repegging
is based on a linear optimizer taking the scheduling weights in its objective function. It pegs
the procurements and production orders to the demand taking the scheduling solution into
account. If scheduling is not required by the optimization profile, and for time periods past
the scheduling horizon, the planned productions coming from the planning solution are also
pegged to the demand.

I B M I L O G P L A N T P O W E R O P S V 3 . 2186

Column descriptions
Inventory is computed for each time bucket as follows:

♦ Final inventory = Initial inventory + Input - Output

♦ Input = Procured + Produced + Inflow

♦ Output = Satisfied Independent Demand + Dependent Demand + Waste

Demand fulfillment is determined as follows:

♦ The demand fulfillment gives the percentage of satisfaction of the independent demand:
100*(Independent Demand - Unsatisfied Demand)/ Independent Demand

♦ The independent demand indicates the amount of material requested per bucket. The
demand is assigned to the bucket containing the due date -1, or the delivery end max -1
if the demand has no due date. Note that a demand may not necessarily be satisfied in
its due bucket.

♦ The unsatisfied demand gives the part of the independent demand due in a bucket that
is left unsatisfied (over the whole delivery window).

Inventory targets information:

♦ The stock min and stock max give the lower bound and the upper bound of the inventory
target corridor.

♦ This may be expressed in quantity (display unit of the selected material) or in days of
supply, which is the number of days of demand to cover with the inventory at the end of
a bucket.

♦ The Alert column warns if the final inventory is above or below the inventory target
corridor.

Available-to-promise is calculated as follows:

♦ The promised values is the part of the independent demand that has been already promised
to customers. The rest the of the independent demand is a forecast.

♦ Available-to-promise gives the part of the production of a bucket that is still available to
promise.

♦ The cumulative ATP gives the total inventory available to promise in a given bucket.

The In Transit inventory gives the amount of material in transit at the end of a bucket and
is expected to arrive in future time buckets.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 187

The Inspector

The Inspector is a tool used in conjunction with the Gantt Diagram. It provides details
about items selected on the Gantt, including setup activities, production orders, and
maintenance and cleanup operations. The Inspector can be displayed or hidden through the
Tools —> Inspector selection on the menu bar.

The following image shows a typical example of the Inspector when an activity has been
selected on the Gantt Diagram.

The Inspector typically includes information from both a selected activity and from the
production order to which it belongs. The Name is the name of the selected activity, and
Identification reveals the associated production order. Fields colored in blue indicate data

I B M I L O G P L A N T P O W E R O P S V 3 . 2188

you can edit in the Inspector; for example, you can add a Production Order Comment or
edit dates and sizes.

You can adjust the batch size of a production order by changing the quantity produced or
the quantity consumed directly in the Inspector. Moreover, the batch size, consumption,
and production can be specified in different units if enabled in the model (secondary units
for material declared). In the image above, the consumption is specified in tons, and the
production and batch size is in pallets. The batch size is updated automatically when fields
are edited. The modification of the batch size may influence the size of all activities on the
production order and the production/consumption of intermediates and finished products.

The Expiry Date is the expiration date of the material. A default expiration date is computed
from the shelf life of the product produced by a production order. The plant scheduler can
override this expiration date. When moving an order, the expiration date is recomputed
automatically from the shelf life data of the corresponding product.

Batch size to balance intermediates is the proposed batch size of the selected production
order to best utilize intermediate products.

Batch size for covering next idle time is the proposed batch size to utilize the resource
idle time that is located to the right of the selected production order on the Gantt Diagram,
for the next production order on the same resource.

The following image shows the Inspector displaying start min information for a resource;
this is a convenient way to change the start min value.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 189

The Parameters window

The Parameters window allows you to control visibility aspects on the stock, inventory,
planning and workload charts. For example, in the following image the user can select from
displaying data according to Daily orWeekly time buckets. The time buckets must be
defined in the data model to be available here.

You can also display data organized according to material type and resource family type.
For example, select the aggregate material check box, then use the combo box in the
family type value field to select the appropriate material family.

I B M I L O G P L A N T P O W E R O P S V 3 . 2190

Using the checker

The Checker is a tool that you can use to test your Plan andModel data. You can keep the
checker open while you edit a data view or the Gantt chart to ensure that your changes don't
violate constraints or cause other problems. The Checker synchronizes with the Gantt
Diagram view to help you locate problems

To display the Checker, press the F12 key, or select Tools --> Show Checker on the The

menu bar, or select the checker icon. The Checker window displays in the bottom
portion of the GUI in the same space as the Console and KPI Comparison Panel.

In the image above, messages for the Plan are displayed; you can choose to view messages
for theModel if desired. The user is selecting Error which means that only messages of at
least that level will display in the Checker (informational and warning messages would be
filtered out). This is a useful filtering mechanism as some plans or models generate many
messages.

If you select the Refresh icon, a test is performed for data plan and model integrity.
The refresh checks both the Plan and theModel, and will switch views if one has errors
and the other does not.

Filtering error messages and synchronizing with the Gantt
As already mentioned, you can filter the messages displayed in the Checker window
according to relevancy to the Plan or to theModel, and according to message severity
(informational, warning, error, or fatal).

Once the messages are narrowed down to a manageable number, the simplest method of
using the Checker is to simply select the message in the Checker; the associated activity
object and production order will be highlighted in the Gantt Diagram.

You can also “filter” the messages by selecting an object on the Gantt Diagram, then

selecting the synchronize icon in the checker, as shown in the following image. The result
is that only messages associated with the selected Gantt object will appear in the Checker.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 191

Remember to deselect the synchronize icon when finished.

I B M I L O G P L A N T P O W E R O P S V 3 . 2192

Copying an existing recipe

Recipes can become quite complex in a modern facility. Suppose you have a very intricate
process already modeled, and need a new recipe that is identical except for the material
produced, production time, or storage unit. Using the contextual menu on the Recipes tab,
it's easy to model this by copying the first recipe and then making the changes.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 193

I B M I L O G P L A N T P O W E R O P S V 3 . 2194

Database usage and connectivity

This describes the supported databases of PPO and their usage; for advanced topics see
Database customization.

In this section

Supported databases
Several databases are supported.

Basic database connectivity
Basic use of a database in the GUI of PPO.

Adding custom database connectivity
Describes how to streamline interactions with the database.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 195

Supported databases

This is the list of supported databases for PPO:

♦ Microsoft® Office Access® as a file-based database directly in the GUI (You can load
and save PPO scenarios in Microsoft Access format using File>Open scenario and File
> Save scenario. Microsoft Access is supported only on the Microsoft Windows® 32-bit
platform.)

♦ Oracle® Database 10g and 11g.

♦ Microsoft SQL Server® 2000 and 2005.

I B M I L O G P L A N T P O W E R O P S V 3 . 2196

Basic database connectivity

Basic use of a database in the GUI of PPO.

In this section

Opening a database in PPO
Describes the Open Scenario from Database dialog box.

Automatic bucket generation
Time buckets can be automatically created based on model data.

Save scenario in a database
Explains options while saving.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 197

Opening a database in PPO

To open a PPO scenario from a database, select File > Open Scenario from Database to
connect to the database server.

Choose the database provider in the first combo-box.

Choose one of the supported database versions in the second combo-box.

The Database URL is Like text field contains an example of proper connection string syntax.
Follow that example and enter your data in the Database URL field.

Enter the user name and the password.

You can test the connection to the database by pressing the Test button

Pressing Ok will load the scenario stored in the database.

Loading submodels from database
When loading a model from a database, a window displays allowing the user to select a set
of recipes to load (a submodel):

I B M I L O G P L A N T P O W E R O P S V 3 . 2198

If the model contains records in the table PPO_RECIPE_FAMILY, the left-hand column
contains a list of recipe families rather than individual recipes as shown in this image:

I B M I L O G P L A N T P O W E R O P S V 3 . 2 199

When a submodel is loaded, you can run the engine and save the solution back into the
database. In this case you have a partial solution of the whole model.

You must be careful when designing your submodels to be loaded and solved with
PPO. To ensure a coherent global solution you must ensure that your submodels

Warning:

do NOT share resources. When a submodel is loaded, PPO is not able to take
into account the solution (planned/scheduled activities) on resources shared by
the other recipes (that is, recipes which are not part of the loaded submodel).

In the recipe selector window, you can set the Horizon start of your model and choose to
apply the time fence of the resources. This time fence is defined in the column TIME_FENCE
of the PPO_RESOURCE table.

I B M I L O G P L A N T P O W E R O P S V 3 . 2200

You can stop PPO from displaying this window again with the Never show this dialog
again checkbox. You can reactivate this window in the Advanced Parameters tab of the
Options panel (menu Tools->Options), shown below.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 201

Automatic bucket generation

When loading a model from a database (Microsoft® Office Access® file or database server
like Oracle® or SQL Server®) and the model contains records in the table
PPO_BUCKET_TEMPLATE, then PPO generates bucket instances starting from the Horizon
Start of your model based on the TIME_UNIT of your model. The horizon is set in the recipe
selector window or with the column START_MIN of the PPO_MODEL table.

As an example take a model with a time unit of 60 seconds and the following
PPO_BUCKET_TEMPLATE table:

Then PPO will generate the following time buckets if your horizon start is April 2nd 2008:

I B M I L O G P L A N T P O W E R O P S V 3 . 2202

In this case, for the daily bucket sequence, PPO generates seven buckets of type Day (from
Daily-3-03 to Daily-3-09) for the bucket rank 1; and 12 buckets of type Day (from Daily
-3-10 to Daily-3-21) for the rank 2. For the weekly bucket sequence, PPO will generate

I B M I L O G P L A N T P O W E R O P S V 3 . 2 203

five buckets; the last four are one week length while the first one is five days in length (from
Wednesday to Sunday).

The NAME field of the PPO_BUCKET table, above, has been generated in a typical
day-month format. The values in the BUCKET_ID field denote the end of the time

Note:

bucket, with the first month of the year represented by zero and the first day of a month
starting at one.

By default the week buckets start on Monday. To change the starting day of the week buckets
you can use the method ilog.plant.persistence.loader.DefaultBucketGenerator.
setBeginningOfTheWeek(int).

I B M I L O G P L A N T P O W E R O P S V 3 . 2204

Save scenario in a database

Select File > Save Scenario in Database to connect to a database server and save a PPO
Scenario.

Choose the database provider in the first combo-box, and choose one of the supported
database versions in the second combo-box.

The Database URL is Like text field contains an example of proper connection string syntax.
Follow that example and enter your data in the Database URL field.

Enter the user name and the password. You can test the connection to the database by
pressing the Test button.

Pressing Ok will save the scenario in the selected database.

You can check the Drop Tables option to drop PPO tables and/or create the tables in the
database, and you can also export the PPO database description to a .ddl file using the
Export ddl… button.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 205

Adding custom database connectivity

In a production environment, you may want to avoid having to enter URL and credential
information at every database read or save operation. You can declare data source extension
points in a plug-in to define all parameters needed to access a given database instance.

In the “plugin.xml” file you can define multiple xml elements as follows:

<extension point="DBDataSource" id="databse1" name="Oracle 10 Database"
database="Oracle10"
url="jdbc:oracle:thin:@GV7503J:1523:ppoorcl"
userName="scott"
password="tiger"
hideCredentials="true">

</extension>
<extension point="DBDataSource" id="databse2" name="SQLServer 2000 Database"

database="SQLServer2000"
url="jdbc:sqlserver://GV7503J:1433"
saveSolutionOnly="true">

</extension>

After deploying the plug-in, when the user selects the menu item File -> Open Scenario
from Database or File -> Save Scenario in Database, the Read from Database dialog
box displays requesting the data source, and user and password information if not already
provided in the plug-in file.

The Advanced button displays the generic database access dialog box.

I B M I L O G P L A N T P O W E R O P S V 3 . 2206

The advanced options button can be hidden with the menu item Tools —> Options —>
Advanced Parameters.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 207

I B M I L O G P L A N T P O W E R O P S V 3 . 2208

Using service levels, lead time, and demand
variability to manage stock levels

This section describes how to manage stock inventory levels to help prevent stock outages
even when faced with uncertain demand and production time.

In this section

Manually defining stock levels and corridors
Using stock cost functions or “days of supply” targets is easy to implement but has limitations.

Service level concepts
Describes managing stock levels through the use of service levels, including the capacity
to handle forecast error and variability in demand and production lead time.

Examples of using service levels, demand variability, and production lead time variability
This section includes examples that show the effects of using service level functionality. The
examples use the file yogurt_factory.csv which is available from the GUI start page and
in the standard distribution. The examples are best followed sequentially.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 209

Manually defining stock levels and corridors

One way to ensure that you have adequate levels of stock is to define inventory cost functions
or apply a minimum andmaximum “days of supply” requirement to compute inventory levels.
These methods are relatively easy to apply, but do have some limitations.

Demand for products, even in the short term, may vary considerably due to many
uncontrollable factors, leading to forecasting errors. Production lead time must be assumed
yet may also vary. The planner must “manually” include these concerns into a cost function
or days of supply target, leading to the possibility of not having sufficient inventory or of
maintaining too much stock at an unnecessary cost. Inevitably, these methods rely heavily
on the forecasting abilities of the planner.

A more precise method of managing stock levels is to implement industry-standard service
levels, and take into account variability in demand and production lead time as part of the
planning model. The following sections describe how to utilize these technologies in your
PPO data model.

I B M I L O G P L A N T P O W E R O P S V 3 . 2210

Service level concepts

Describes managing stock levels through the use of service levels, including the capacity
to handle forecast error and variability in demand and production lead time.

In this section

Uncertain demand and forecast error
How PPO lets you manage demand uncertainty.

Production lead time
How PPO lets you manage production lead time.

Service levels
Implementing service levels in your data model.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 211

Uncertain demand and forecast error

Demand for products may vary, and forecasting efforts may not always be accurate. PPO
calls this uncertainty demand variability, and you can model it based on the following
assumptions.

♦ Demand variability depends only on the demanded material.

♦ Demand variability is assumed to follow normal distribution laws, with an average value
read from the data. The standard deviation is computed using a coefficient of demand
variation.

♦ Demand variability is taken into account for a given planning bucket, over a period
extending from the bucket end up to an average lead time, which depends only on the
material.

The DEMAND_VARIABILITY column in the PPO_MATERIAL table allows you tomodel demand
variability. This field is a ratio with a value between 0 and 1, and is used to compute the
deviation of a demand for this material. Its default is zero (fully certain).

Demand variability data can also be provided in the API. In the GUI, Demand Variability
is available in the Service Level area (see Service level in the GUI).

I B M I L O G P L A N T P O W E R O P S V 3 . 2212

Production lead time

PPO allows you to include production lead time data with the service level model by following
these assumptions:

♦ The lead time follows a normal probability distribution, having the expected value of the
average lead time. The deviation of lead time is represented by the lead time standard
deviation, which is modeled as a duration expressed in time units with a default of zero.

♦ When the lead time standard deviation is not null, the computation of the target stock
takes into account an additional variance contribution. This contribution estimates the
potential extra demand that may occur during an extra period of lead time.

All service level types can incorporate lead time uncertainty.

The PPO_MATERIAL table models the average lead time in the AVERAGE_LEAD_TIME field,
and variation is provided in the LEAD_TIME_STD_DEVIATION field as a duration with a
default of zero.

Lead time data can also be provided in the API. In the GUI, lead time data is available in
the Service Level area (see Service level in the GUI).

I B M I L O G P L A N T P O W E R O P S V 3 . 2 213

I B M I L O G P L A N T P O W E R O P S V 3 . 2214

Service levels

Implementing service levels in your data model.

In this section

Service level types and targets
Describes the theory and definitions you need to know to implement service levels.

Model elements for service level
Describes the schema elements to model the service level.

Computing target stock from the service level
Describes the computation of the inventory target stock at the end of each time bucket to
ensure the desired service level.

Service level target stock in planning
The planning engine uses the service level stock values as targets in its objective function.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 215

Service level types and targets

A service level essentially denotes a KPI to measure customer satisfaction. For a given
material you provide a service level type (for example fill rate) and a service level target (a
numeric value) which together define your desired service level.

There are two primary service level types: Service Level (also known as cycle), and Fill
Rate. Both of these also have dynamic versions. The service level target can be between
50% and 100% (not allowed).

Along with the service level type and the service level target value, PPO includes demand
variability (with forecasting error) and production lead time values to compute the stock
level necessary to reach your defined service level. This calculated stock level represents
an ideal value that the PPO engine will try to achieve as closely as possible; we refer to it
as the target stock level, service level target stock, or simply, target stock. When you have
implemented service levels, the target stock is represented in the GUI by the stock min (red)
line on the Stock Coverage view.

Cycle service level
The Cycle Service Level measures the probability that a stock out event will not happen. A
stock out event occurs in a given time bucket if the total demand due in the bucket exceeds
the inventory quantity that is available in the bucket. The cycle service level sets a limit on
the frequency of stock out events. The service level target is between 50% and 100% (not
allowed) and denotes the minimal frequency of non-stock-out events. For example, a service
level target value of 95% means that, on average, no more than five cycles (buckets) out of
100 will contain stock out events. The cycle service level is known variously as the alpha,
type 1, or event-based service level. In the PPO GUI it is usually referred to simply as Service
Level.

Fill rate service level
The Fill Rate Service Level measures the expected percentage of overall demand quantity
which is satisfied. It denotes the minimum demand satisfaction ratio that can be expected
on average (while dealing with uncertain demands following probability distributions). This
level is based on the overall quantity of customer demand that is met by stock on hand,
irrespective of the number of cycles (buckets) when stock out events occur. The associated
service level target is a value between 50% and 100% (not allowed) representing the ratio
of satisfied demand. For example, a target value of 98% means that the expected demand
satisfaction ratio based on quantity must be over 98%. This level is referred to as Fill Rate
in the PPO GUI but is also known as the beta, type 2, or quantity-based service level.

Dynamic service levels
PPO uses service level data to compute a target stock level based on dependent and
independent demands, using stochastic computations. The target stock level is computed
by estimating the variance of the demand over a fixed look-ahead period, using an
approximation of when the next production will occur.

Dynamic service levels take this process further by exactly taking into account the time of
the next production. For each bucket, a target stock level is computed using the exact
demand variance until the next production time.

I B M I L O G P L A N T P O W E R O P S V 3 . 2216

Consider an example using daily buckets with the next production five days away, and an
average lead time of two days. The target stock level is computed from the cumulated demand
over the next five days to cover the risk until the next production.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 217

Model elements for service level

The service level data consists of the type and the target value, and is modeled using two
columns in the PPO_MATERIAL table:

♦ SERVICE_LEVEL_TYPE: An enumerated value which describes the type of service level
used to compute the target stock. Possible values are: Disabled, ServiceLevel, FillRate,
ServiceLevelDynamic, and FillRateDynamic. The default value Disabled means that
no service level computation is used, so the stock values are computed either through
the days of supply or by an explicit inventory min function.

♦ TARGET_SERVICE_LEVEL: A float value between 0.5 and 1 (not allowed), used to denote
the target value of the service level. The semantics of this target value depend on which
type of service level is active for the material. The default value is 0.95.

Note that service level type and target value are properties of the material, and are
independent of time.

I B M I L O G P L A N T P O W E R O P S V 3 . 2218

Computing target stock from the service level

Once an active service level type has been assigned to a material, PPO computes a target
stock level from the service level information. To accomplish this feat PPO estimates for
each bucket the variance of the demand in the future of the bucket.

This period extends from the bucket’s end time with a duration equal to the material’s
average lead time for static types; for dynamic types, this duration extends to the next
production. PPO computes the total demand variance over this look-ahead period from the
bucket, and computes a target stock from this variance. The precise way to compute the
stock depends on the service level type and involves stochastic computations based on the
normal distribution.

When active, the target stock computation supersedes the usual computation of minimum
stock, even if a minimum days of supply (or explicit minimum inventory function) has been
provided. It does not impact the computation of a maximum stock, if a maximum days of
supply value has been provided.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 219

Service level target stock in planning

As described previously, PPO computes a target stock level from the service level data,
which supersedes the minimum days of supply. The target stock is computed to guarantee
a minimal service level value, guarding against random variations of demands during a
look-ahead period (equal to the average lead time). This target stock level is the sum of the
total demand quantity in the look-ahead period (starting at the bucket’s end with average
duration lead time, and of a safety stock quantity calculated from the demand variability).

The calculated target stock is displayed in the PPO GUI as the minimum stock curve (red
line) in the Stock Coverage view. The maximum stock curve is not impacted by the service
level, and is still calculated from the maximum days of supply. As the target stock is actually
an ideal stock level, a maximum days of supply stock value is not necessary when the service
level is active, although it can be used to enforce penalties.

Costs are calculated by the planning engine when actual stock levels deviate from the target
stock level. Deviations below the target stock level are penalized using the
PPO_MATERIAL|TARGET_MIN_VARIABLE_COST value, and deviations above are penalized
using PPO_MATERIAL|TARGET_VARIABLE_COST (if this cost is zero, deviations above the
target stock are not penalized). The diagram below shows how PPO computes costs for
deviations from the service level stock value.

I B M I L O G P L A N T P O W E R O P S V 3 . 2220

Examples of using service levels, demand
variability, and production lead time

variability

This section includes examples that show the effects of using service level functionality. The
examples use the file yogurt_factory.csv which is available from the GUI start page and
in the standard distribution. The examples are best followed sequentially.

In this section

Service level in the GUI
Describes how to access service level data and stock results in the PPO GUI..

Using the cycle service level
An example of editing the cycle service level data.

Using the fill rate service level
An example of editing the fill rate service level data.

Dynamic service level example
Dynamic service level takes into account the time of the next production.

Uncertain production lead time example
Describes how to model uncertain lead time in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 221

Service level in the GUI

The service level data is available for viewing and editing through theMaterials tab of the
Master Data view. Navigate to that view, then right-click on a material to display the
contextual menu. Select Edit, and the material data editing window displays. Select the
Inventory tab and a window similar to the following image displays.

In this window you have access to all the inventory management controls: Service levels,
days of supply targets, and inventory costs. Within the Service Level area, you can set the
service level type, target, demand variability, the average lead time and deviation. The
examples that follow refer to this Inventory tab to manipulate data to show the different
effects of using service level technology.

The results of using inventory controls can be seen in the Stock Coverage view. A partial
image of this view follows. The red Stock Min line is of particular interest, because when
a service level has been enabled, this line represents the ideal service level target stock that
is calculated. When service levels are disabled, this line represents the stock min calculated
from the appropriate inventory cost function or days of supply target.

I B M I L O G P L A N T P O W E R O P S V 3 . 2222

When you edit the service level data, the stock curve on this view is updated. However, the
current solution data cannot be updated until you relaunch a solve. So after editing the
service level information, optimize the scenario again to ensure that the displayed planning
solution is consistent with the master data.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 223

Using the cycle service level

The following image shows the example file yogurt_factory.csv loaded in PPO, optimized,
and open to the Stock Coverage view. The stock corridor for the Bio.Strawberrymaterial
is displayed according to days of supply, between 3 (min) and 5 (max) days of supply. (Images
shown here may not exactly match results displayed in your version of PPO for a variety of
reasons.)

We'll introduce service level into this example, by editing the material inventory data.
(Accessing the Inventory editing window is described in Service level in the GUI).

Split the PPO view into two views, with theMaster Data view in the bottom pane as shown
in the image below. Edit the Bio.Strawberry material, and on the Inventory tab, set the
Service Level Type field to Service Level, and select OK. Notice that in the Stock
Coverage view, the maximum stock curve does not change for Bio.Strawberry, but the stock
min curve (now acting as the service level target stock curve) goes to zero. This happens
because the average lead time is zero, and both total demand in the look-ahead period and
demand variability are zero.

Edit the material again. Note that the Inventory Capacity is set to 800. Change the
maximum days of supply to positive infinity (Target Max of Inventory Corridor Days of
Supply), and select OK. This action removes it from view so that we can focus on the target
and final stock curves.

Edit the material again, changing the Average Lead Time to two days (2880, assuming
time units in minutes). The stock min (target stock) curve changes again reflecting the fact
that for each bucket, stock min is now equal to two days of demand. There is no variability
of demand however, so edit the material and change Demand Variability to 0.1 (10%).

I B M I L O G P L A N T P O W E R O P S V 3 . 2224

SelectOK and the target stock curve (stock min curve) increases lightly as it now takes into
account demand variability.

Examine the values shown in the Stock Min column of the Stock Coverage view, as shown
in this image representing all the changes made thus far.

The effect of using this 95% service level, low demand variability, and short average lead
time is to lower (overall) the minimum stock levels as compared to the default case of this
example file, which uses the three “days of supply” data. Be sure to compare values after
optimization.

After an optimization with the changes made so far, the final stock curve is above the target
stock, because deviations below the target stock are penalized using the Target Min Cost
value (equal to 10). Deviations above the target cost incur no cost because the Target Cost
is zero by default. If you edit this material again and set the target cost to 1.0 and relaunch
optimization, in the resulting plan you’ll see that the final stock curve changes. Costs are
now incurred for deviations above or below the target level, so optimization has an incentive
to keep the final stock curve closer to the target stock level (stock min).

Next, increase the demand variability to 0.5 (50%) and relaunch optimization. This results
in the following image, where the minimum stock curve increases significantly. As demand
variability increases, so does the variance of the demand in the lead-time period; this causes
target stock levels to increase in all buckets.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 225

Next, increase the average lead time to four days (5760) and the target service level to 0.98,
and relaunch an optimization. The target stock level (stock min curve) increases significantly.

To summarize, the cycle service level causes the target stock level to change as follows:

I B M I L O G P L A N T P O W E R O P S V 3 . 2226

♦ Increase with demand variability

♦ Increase with the average lead time

♦ Increase (slowly) with the target service level.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 227

Using the fill rate service level

The previous example showed the effects of using the cycle service level; this example takes
the same problem and applies the fill rate service level. All else being equal, it is intuitive
that meeting a percentage of total demand quantity should be less constraining than ensuring
the same percentage of non-stock-out events. So we can presume that switching the service
level type to Fill Rate should lower the computed target stock levels, as compared to using
the cycle service level.

Using the example file yogurt_factory.csv, edit the Bio.Strawberry material, and on the
Inventory tab change the Service level Type to Fill Rate. (Accessing the Inventory editing
window is described in Service level in the GUI). Some of the other settings include a service
level target of 0.98, average lead time of 5760, variability of 0.5, and a target cost of 1.

Optimize the scenario, and notice that the target stock (stock min) values are lower than
with the cycle service level.

To summarize, the fill rate target stock level varies as follows:

♦ Increases with demand variability

♦ Increases with the lead time

♦ Increases (slowly) with the target service level.

I B M I L O G P L A N T P O W E R O P S V 3 . 2228

Dynamic service level example

Dynamic service levels incorporate the time of the next production when calculating target
stock levels.

Use the example file yogurt_factory.csv and edit the Bio.Strawberry material. On the
Inventory tab, set the type to Service Level, with 50% (0.5) demand variability, 98% target
service level and a four day (5760) average lead time. (Accessing the Inventory editing
window is described in Service level in the GUI)

Optimize and check the results. Then edit the material again, this time selecting Service
Level Dynamic, and optimize. The results should be similar to the following image. In the
displayed corridor, all stock min values are zero for buckets that precede a production. So
once again, the look-ahead period is empty, hence both demand variance and lead-time
expected demand are null.

Next, modify the planned production and examine how this affects the stock levels. Go to
theMaster Data view,Recipes tab, and for the bio-strawberry recipe, edit the valid start
column to show a date of “9 Dec 2006 00:00:00” instead of minus infinity. This will prevent
material production on December 8th, as occurs in the previous image. Launch planning
again and look at the Stock Coverage view.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 229

The first production of Bio.Strawberry has shifted to Dec 9th, and the target stock level has
been recomputed accordingly.

To summarize dynamic service levels:

♦ Dynamic service levels estimate demand variability up to the exact next production time,
not using the approximation of average lead time.

♦ Alpha and beta (cycle and fill rate service level) dynamic types behave in the same way;
only the method of taking into account demand variability varies.

I B M I L O G P L A N T P O W E R O P S V 3 . 2230

Uncertain production lead time example

To demonstrate how uncertain lead time affects stock calculations, use the example file
yogurt_factory.csv and edit the Bio.strawberry material. On the Inventory tab, set the
type to Service Level, with a 95% target level, and 50% (0.50) demand variability. Let’s
assume that the production lead time is two days, plus or minus one day. So set Average
Lead Time to 2880 and Lead Time Std. Deviation to 1440.

Optimize the scenario and check the Stock Coverage view.

Lead time uncertainty introduces an additional factor in the accumulated demand variance
for each bucket; therefore minimum stock increases with lead time deviation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 231

I B M I L O G P L A N T P O W E R O P S V 3 . 2232

Decomposition framework

How to decompose a planning problem into smaller components.

In this section

Introduction to decomposition
Explains why decomposition is useful and how to do it.

Building the decomposition framework
Using database tables to perform the problem decomposition on the yogurt manufacturing
process.

Optimization using scopes in the GUI
The result seen in the GUI.

Advanced usage of the decomposition framework using Java API
Using a plug-in and API to decompose the problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 233

Introduction to decomposition

Creating a decomposition framework is useful for two main reasons. One reason is to allow
planners to separate the problem or process so that they can validate one level before
tackling the next part of the process. Another reason is simply that the problem is too difficult
or time consuming to be appropriately solved, and so decomposition is used to reduce the
problem complexity.

The decomposition process
This section describes some general ideas about how to implement a decomposition.

First, planners are usually familiar with decomposing the problem at their plant, and that
experience is valuable. Following a known and tested decomposition strategy may prevent
duplication of effort, thereby saving time and analysis work. This approach also allows
planners to gain better insight into the problem solving methods of PPO, since they already
understand the decomposition itself.

Tracking and understanding the material flow is important. In most manufacturing cases a
semi-finished material or product is prepared, which is then transformed into a finished
product. These two processes (producing the semi-finished material and producing the
finished product) can therefore be solved separately and consecutively providing a natural
break point for decomposition.

Additionally, a crucial principle based on constraint theory is to identify the bottleneck
point or level and solve this stage of the process first.

These factors are used to help decide between two types of decomposition: Pull by demand,
or Push raw materials.

Pull by demand
Pull by demandmeans to solve the finished products first and freeze the associated planning
schedule. Then, enough semi-finished product must be produced in time to feed the finished
product production lines.

The advantage of this approach is that the finished product orders are in phase with real
demand. A potential disadvantage is that you may not be able to produce all the semi-finished
material needed to supply the filling and finishing lines as scheduled. The result is that it
may not be possible to supply all the finished product to meet demand.

Push raw materials
The push raw materials approach means to solve the semi-finished production first, and
freeze the associated planning schedule. Then the semi-finished production is used to input
materials for the finished product calculation.

The advantage of this approach is that raw materials are efficiently utilized to produce the
semi-finished product. A potential disadvantage is that you could produce more semi-finished
material than is necessary to supply the finished product lines, resulting in possible waste.

I B M I L O G P L A N T P O W E R O P S V 3 . 2234

Building the decomposition framework

This section demonstrates the creation of a decomposition framework in the context of the
yogurt manufacturing example. In the dairy industry, the semi-finished material or product
is called the white mass. So the first part of making fresh yogurt is to create the white mass
with pasteurizers, fermenters, and storage tanks. The white mass is then used in the filling
and finishing lines to create the finished product, fresh yogurt.

The aim of this decomposition example is to first build the schedule of finished products.
Given that schedule, next create a schedule of semi-finished white mass production that
provides the materials necessary to support the finished products schedule. This is pull by
demand decomposition.

The result is displayed in the following Gantt Diagram, with the finished product schedule
outlined in green and the white mass process outlined in red.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 235

The general principle is to group recipes by similar level in the production process in order
to describe the decomposition. Then we can describe the solving approach of this
decomposition by associating a scope with the optimization profile.

Each recipe must be attached to a recipe family. The recipe family is used to describe a
stage of the production process, and so group recipes appropriately for the decomposition.

We start modeling the decomposition with the PPO_RECIPE_FAMILY table used to create
two types of recipe families. Note that the TYPE column below contains the same value for
both the finished product and white mass recipes; this is to indicate that the two recipe
families are members of the same partition layer of the problem; in this example, that is
called the PROCESS_STAGE.

I B M I L O G P L A N T P O W E R O P S V 3 . 2236

The next table is the PPO_RECIPE_RECIPE_FAMILY table and it is used to organize the
recipes into their appropriate recipe families. Note that a recipe can belong to only one
recipe family.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 237

Next you must create the scopes. Scopes are used to control which part of the manufacturing
process that you intend to solve; in other words, which part of the decomposition is solved.
A scope can contain several recipe families, each with a different status (frozen or planned).

In this example, we create one scope for the finished products and one for the white mass.
As we are using push demand and want the finished products scheduled first, the
SCOPE_FP_ONLY gets a POSITION_INDEX of “1” and the white mass is second in position.

The next table is used to associate the recipe families with a scope, and to indicate a status
of frozen or planned. Recipe families can belong to more than one scope, as necessary for
the decomposition. The status of Planned means that the orders of that recipe family are
to be planned when this scope is solved. The status of Frozen means that the orders of the
recipe family are fixed — they cannot be changed or moved during the solve. Therefore
these recipe orders act as a component entry constraint or as a dependent material
requirement.

From the PPO_SCOPE table, you know that the first scope to be solved in a decomposition
is the SCOPE_FP_ONLY, containing only finished products recipes. This scope creates a
schedule of finished products depending on the real demand for those products, regardless
of any constraints on white mass availability. Next the SCOPE_ADD_WM is solved, which
plans the manufacture of semi-finished white mass to balance the already created and frozen
finished product orders.

Once you create the scopes, you must associate them with an optimization profile to make
the scopes available to the solve process. An optimization profile contains particular methods
of solving, such as algorithms and parameters. You may even want to have two optimization
profiles solving with the same scope but with differing algorithms or parameters, but in this
example each scope is associated with only one profile. The following table makes the scope
available for use in the PPO GUI.

I B M I L O G P L A N T P O W E R O P S V 3 . 2238

I B M I L O G P L A N T P O W E R O P S V 3 . 2 239

Optimization using scopes in the GUI

The scope appears in the Optimize the scenario dialog box which displays when you
optimize the problem. The scope appears nowhere else in the GUI. It is associated with the
optimization profile set in the PPO_OPTIMIZATION_PROFILE table.

In the previous example, to solve the entire decomposition problem, you would first select
PROFILE_FP_ONLY and optimize the scenario; this results in a schedule of finished products.
Next select PROFILE_ADD_WM and optimize. This adds a schedule for white mass
manufacture, which corresponds to the requirements to make the finished products. The
result is a full schedule of white mass and finished product.

I B M I L O G P L A N T P O W E R O P S V 3 . 2240

Advanced usage of the decomposition framework using Java API

If you plug your own algorithm in PPO you may use the Java™ API to help decompose the
problem. This API simplifies the submodel creation and the reporting of results of a submodel
on a master model.

Example of decomposition with a two step optimization; first finished goods then semi-finished
products are scheduled.

class MyEngineOptimizer extends IloMSEngineOptimizer

{

boolean solveSubModel()

{

IloMSModel subModel = scope.buildSubModel();

boolean solved = subModel.solve();

if(solved)

scope.transferResults(subModel, scope.getModel());

subModel.end();

return solved;

}

boolean solve(IloMSModel masterModel)

{

IloMSScope scopeFP = model.getScopeByIdentifier("SCOPE_FP_ONLY");

boolean result = solveSubModel(scopeFP);

if (result) {

IloMSScope scopeWM = model.getScopeByIdentifier("SCOPE_ADD_WM");

boolean solved = solveSubModel(scopeWM);

result = result && solved;

}

return result;

I B M I L O G P L A N T P O W E R O P S V 3 . 2 241

}

}

Such a class must be instantiated by a subclass of IloMSOptimizerFactory.

class MyOptimizerFactory extends IloMSOptimizerFactory

{

public IloMSEngineOptimizer create()

{

return new MyEngineOptimizer();

}

}

The singleton of the subclass must be set in the plug-in initialization code.

IloMSOptimizerFactory.setFactory(new MyOptimizerfactory());

I B M I L O G P L A N T P O W E R O P S V 3 . 2242

Production planning simulations

The planning solution is editable in the PPO GUI and allows you to run simulations and
re-optimize with planning.

In this section

Interactive planning
Describes some of the views that enable you to run planning simulations.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 243

Interactive planning

The planning solution is editable. This means that you can freeze sections of the plan, make
simulations, and re-optimize with the planning engine. You can set promised demand
representing material that is already promised to a customer, then re-optimize to determine
if you can deliver more product, how much it would cost, and how much revenue you would
receive.

The following image shows the Demands tab of the Transactional Data view. Note that
the fulfillment column shows 100% for all demands within the scheduling and planning
horizons. The promised field can be set to true in preparation to run a simulation to
determine howmuchmore demand could bemet while keeping the current demands fulfilled.

On the Stock Coverage view, the ATP layout reveals the current values for the ATP,
Cumulative ATP, and Promised amounts. The available-to-promise field shows the extra
amount that could be produced for that day; the cumulative field shows the total amount as
time progresses. The promised value shown below reflects the promised column of the
Transactional Data view, above. Without changing the planning solution, we can promise
an additional 310 units on December 7.

You can add more demands on the Demands tab, using the plus icon in the toolbar. The
Demands editing window displays, allowing you to specify the name, quantity, delivery time
window, non delivery cost and revenue per unit of satisfied demand (unit price). This data
will help you determine if it is possible to deliver more material, at what cost, and with what
income.

I B M I L O G P L A N T P O W E R O P S V 3 . 2244

Re-optimize the scenario, using only the planning module; uncheck the batching and
scheduling modules. Be careful to set the cost and revenue weights on the Planning
advanced options window to appropriate values for this problem.

Once optimization is complete, check the Transactional Data and Stock Coverage views
to see how much of the new demand was fulfilled. The KPIs Summary view shows the new
costs and revenue.

On the Planned Productions tab in the Transactional Data view, you can set a firm
minimum for the production plans of the current solution.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 245

I B M I L O G P L A N T P O W E R O P S V 3 . 2246

Advanced usage: Distribution planning

This advanced section describes how to use PPO to optimize your distribution network. Any
usage of PPO for distribution planning, supply chain planning, or multi-plant planning must
be validated with the PPO product management team.

In this section

General concepts
Introduces the terms master planning and distribution planning.

The distribution plan calculation
Describes factors that affect the creation of the distribution plan.

Modeling the distribution plan
An example of using the PPO data schema to model the plan.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 247

General concepts

Distribution planning is a process that includes deciding how and where to producematerials,
what materials to transport and how to move them, and what materials to stock in which
locations.

Master planning is the general process that features:

♦ A long time horizon (year) with large time buckets (weekly or monthly);

♦ Materials aggregated by family type;

♦ Use of macro-resources;

♦ Decisions of how much and where to produce materials;

♦ Decisions of how much and where to stock materials;

♦ Decisions of how to transport materials;

Distribution planning is the optimization of the master planning, based on costs:

♦ Production volumes;

♦ Allocated capacities for production, inventories, and transportation;

♦ Stock objectives;

♦ Transportation modes.

The distribution network is composed of four types of sites:

♦ Suppliers that ship raw materials and raw packaging;

♦ Plants that are production sites transforming raw materials into finished products;

♦ Warehouses that are intermediate sites for receiving, stocking and expediting.

♦ Customers or sales points to receive products or sell to final customers.

Customers can actually represent a global market (demand of a region or country) and may
also be attached to plants or warehouses.

The distribution network is represented in the following graphic.

I B M I L O G P L A N T P O W E R O P S V 3 . 2248

I B M I L O G P L A N T P O W E R O P S V 3 . 2 249

The distribution plan calculation

The purpose of the distribution plan is to control the flow of materials through your network;
to track this you need to implement the Stock Keeping Unit (SKU) which is a matched pair
of product and site (location).

The input data for the distribution plan includes:

♦ stock levels

♦ macro-demands by marketplace

♦ costs of production

♦ costs of transportation.

The goal of the plan is to provide an estimate on:

♦ global supplies

♦ production from each plant

♦ resource levels

♦ arcs chosen in the network

♦ transportation mode

♦ stock objectives.

Complexity considerations include:

♦ size of data

♦ SKU numbers

♦ number of sites

♦ number of flow arcs

♦ vehicle fulfillment on transportationmodes (not recommended as it's probably not relevant
at strategic level).

I B M I L O G P L A N T P O W E R O P S V 3 . 2250

Modeling the distribution plan

An example of using the PPO data schema to model the plan.

In this section

Key modeling tables
Describes the primary schema tables for modeling a distribution network.

Building a distribution plan model
Using the example file beer_distribution_planning.csv.

Viewing the results
Examines the planning results from the example.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 251

Key modeling tables

The main schema tables for distribution planning are:

♦ PPO_MATERIAL used to model the SKUs.

♦ PPO_STORAGE_UNIT used to model the sites— the plants and warehouses of the network.

♦ PPO_RESOURCE to model production and transportation resources.

♦ PPO_RECIPE to model production and transportation recipes.

♦ PPO_MATERIAL_PRODUCTION is associated with transportation recipes in the
consumption of material from a storage unit of the incoming site and production to the
storage unit of the receptive site.

♦ PPO_DEMAND used to detail demands by storage unit (equivalent to demand by site).

I B M I L O G P L A N T P O W E R O P S V 3 . 2252

Building a distribution plan model

This section describes the key modeling tables used in the example file
beer_distribution_planning.csv to model a distribution network.

Time unit
In a planning network we are typically dealing with a long horizon and large time buckets,
so we can define a 24–hour day as the time unit (86400 seconds) in the PPO_MODEL table.

Map graphic for the Planning View
In the PPO_SETTING table you define a map file used for display in the Distribution
Planning view of the PPO GUI:

PROPERTY_STRING_MAP_FILE ../plugins/locations/data/Europe2_24M.tif

This map graphic should be a georeferenced TIFF file (GeoTIFF) so that it can handle latitude
and longitude information.

Another setting called the Map Graphic Factor is needed to specify the zoom factor on the
sites and links shown on the map. This needs to be adjusted depending on the area covered
by the sites and the distances between sites. The following figure shows the same graphic
with a MapGraphicFactor of 0.01 on the left, and on the right a MapGraphicFactor of 0.02.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 253

Materials
Materials are described with their targets. In this example, the amber beer at Lille is an
SKU and the amber beer in Paris is another SKU.

Typically it's preferable to plan families of products to reduce complexity; this is a strategic
decision.

Time buckets
The horizon is quite long so the planning buckets should be large also. This example uses
a seven-day long bucket.

Resources
This example uses production and transportation resources. The production resources are
macro-resources in this case; the two plants involved. The transportation resources model
the various modes of transportation between sites along with the transport capacities. The
first table highlights the production resources, and the second highlights the transport
resources.

I B M I L O G P L A N T P O W E R O P S V 3 . 2254

I B M I L O G P L A N T P O W E R O P S V 3 . 2 255

Recipes
There are production and transportation recipes. The PRIMARY_PRODUCT_ID of the recipe
identifies the material that is produced or transported. The RECIPE_TYPE identifies the
recipe as production or transportation; this distinction is important to separate the production
produced from the production transported as reported in the GUI views. However the
optimizer does not make any distinction between these two type of recipes.

For convenience you can incorporate the name of the production site in the production
RECIPE_ID (first diagram) and the name of the two involved sites in the transportation
RECIPE_ID (second diagram).

I B M I L O G P L A N T P O W E R O P S V 3 . 2256

Modes
Modes represent the different methods or ways of producing and transporting the materials;
for the same activity, different times, costs and resources may be involved. For example,
the differing VARIABLE_PROCESSING_TIME values for the beer production activities and
the RESOURCE_IDs used are shown in the following image.

With transportation modes you can define the different ways of transporting along a delivery
arc. In this example you can transport by truck or train, corresponding to modes 0 and 1
for product delivery along any particular arc. Transporting by truck is half the variable cost
of transporting by train.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 257

Storage units
Storage units model sites within the distribution network: Plants for production sites,
warehouses for storage, and customers for the marketplace. Some sites can be merged:
Warehouses can be merged with the corresponding plant, and the customer sites can be
merged to a plant or warehouse. You can define the storage capacity of the site with the
QUANTITY_MAX field. You can check this later in the results with the Warehouse Summary
view, and you can define latitude and longitude to visualize the sites in the Distribution
Planning view.

I B M I L O G P L A N T P O W E R O P S V 3 . 2258

Storage unit material
For each storage unit (site) you can define the initial quantity of each material present at
the start of the planning horizon.

Material production
Material production on production recipes creates material on the storage unit of the
associated plant.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 259

For transportation recipes, material production:

♦ Consumes material on the storage unit of the incoming site;

♦ Produces another material on the storage unit of the outgoing site.

I B M I L O G P L A N T P O W E R O P S V 3 . 2260

Demands
It is preferable to merge the demands for a product in a marketplace and thereby have only
value for each paired Product:Site. But if you desire you canmaintain some details and allow
the merger to occur automatically in the planning calculation.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 261

Optimization profile
Only the planning module is required in this planning example.

I B M I L O G P L A N T P O W E R O P S V 3 . 2262

Viewing the results

If the PPO_SETTING map file has been defined (see Map graphic for the Planning View in
Building a distribution plan model) then two views are available in the GUI that reveal the
results of the planning: Distribution Planning andWarehouse Summary.

The Distribution Planning view displays the flow of material between locations in tabular
form on the left and graphically on the map on the right. You can navigate via families,
materials or buckets.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 263

Use filters to selectively display parts of a multi-plant solution. Activate filters on the left
tabular view by using the right-click contextual menu; the filtered column is highlighted
(underlined). You can remove and modify filters from the same menu. In the example below,
a filter is set so that only arcs coming out of Paris will be displayed.

In the Warehouse Summary view you can see the storage unit sites and their properties. A
checkbox indicates if the site is a production plant; maximum storage is displayed (Quantity
Max); and for each bucket you have details regarding initial and final stock, demands, and
produced or transported quantities (from that site).

I B M I L O G P L A N T P O W E R O P S V 3 . 2264

I B M I L O G P L A N T P O W E R O P S V 3 . 2 265

I B M I L O G P L A N T P O W E R O P S V 3 . 2266

Examples and tutorials

This section includes examples and tutorials showing how to build a data model in Plant
PowerOps. The examples range from basic to advanced, and include use of database files
as well as the C++ and Java™ APIs. The first example models a basic problem using
spreadsheet (csv) and database (mdb) files. The C++ and Java sections model a problem
using calendars. The final example uses the Java API to model yogurt production at a fresh
dairy plant, including tank modeling and activity cleanups.

In this section

Modeling a simple problem: A “bottleneck” resource
Describes the entire process of using PPO to model and solve a simple manufacturing
problem.

Using the PPO API for C++ to model and solve
The first section describes how to use C++ to solve a problemmodel built with csv database
files. The second section describes how to use the C++ API to model and solve a scheduling
problem that uses calendars. You may also wish to refer to Using PPO with Microsoft
products.

Using the PPO API for Java to model and solve
The first section describes how to use Java™ to solve a problemmodel built with csv database
files. The second section describes how to use the Java API to model and solve a scheduling
problem that uses calendars.

Modeling a dairy plant with PPO Java API
This section models the manufacturing process of a hypothetical dairy plant, using the PPO
Java™ API. First the actual manufacturing process is examined; from this the appropriate
PPO model is defined and implemented in the Java API. Only some of the more interesting
aspects of modeling this problem are described here, but the complete code example is
located at <PPOInstallDirectory>\examples\src\dairyplant.java.

© Copyright IBM Corp. 1987, 2009 267

I B M I L O G P L A N T P O W E R O P S V 3 . 2268

Modeling a simple problem: A “bottleneck”
resource

Describes the entire process of using PPO to model and solve a simple manufacturing
problem.

In this section

Overview
Introduces the problem to be solved.

Describe the problem
Details all information necessary to model the problem.

An overview of the PPO data model
Introduces the basic elements of the PPO data model necessary to model this manufacturing
problem.

A quick tutorial on csv and mdb usage in PPO
A basic introduction to using csv and mdb files to contain problem data.

Model the problem
Describes the actual process of coding the problem data into a model file that PPO can read
and optimize.

Solving
Describes how to use PPO to solve the problem data previously encoded.

View and study the plan
Shows you how to read and comprehend the results from an optimization in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 269

Review
A review of this lesson.

I B M I L O G P L A N T P O W E R O P S V 3 . 2270

Overview

In this first lesson, you will learn how to:

♦ Analyze and describe a manufacturing problem in terms of Plant PowerOps (PPO)
resources, activities, demands, and other data model objects;

♦ Create a model of the problem in a series of data tables, using spreadsheet
(comma-separated values) files and database (Microsoft® Access® database) files;

♦ Solve the problem by loading the csv or mdb file into the PPO GUI (Graphical User
Interface);

♦ View the problem data and solution in the PPO GUI.

The manufacturing problem we look at here involves a factory that makes wooden cradles.
In particular, we’re going to examine use of a crucial resource in the factory: the dryer which
dries cradles after they have been varnished.

This example is very simple in order to introduce you to many elements of PPO, including
the data model, modeling with data tables, and use of the PPO GUI. Of particular note, this
is a pure scheduling problem with all demands due for a given day, and therefore does not
involve production planning. More complex examples are available for your study in the
standard delivery, at <PPOInstallDirectory>\examples\data\course and in the subfolder
mdb.

As noted above, the first thing to do is analyze and describe the problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 271

I B M I L O G P L A N T P O W E R O P S V 3 . 2272

Describe the problem

Details all information necessary to model the problem.

In this section

Overview
Describes the particulars of the cradle manufacturing process.

Objective and costs
Describes the objective and costs of solving the problem.

Before creating the model
Discusses the implications of choosing a modeling methodology.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 273

Overview

The crucial step in this problem uses the dryer machine to dry cradles. It represents a
"bottleneck" in the manufacturing process, and that’s why it’s interesting; maximizing
efficiency with this resource could speed production and save money.

The dryer machine is a true bottleneck step because:

♦ All cradles must be dried after varnishing;

♦ This factory has only one dryer, and the dryer can accommodate only one cradle at a
time;

♦ Since varnishing takes less time than drying, many cradles may be varnished and waiting
for the dryer at the same time.

There are two types of wooden cradles, pine and teak. Pine cradles require the dryer resource
for 70 minutes, and teak cradles require 90 minutes.

There are outstanding customer orders for ten cradles, three of which are pine and seven
are teak. Since we are concerned only with the dryer in this first example, we assume that
all cradles are already built, varnished and awaiting drying at the start of the problem.

To meet customer demands, the drying activities for the three pine cradles should be
completed at time 160, time 680, and time 720. Likewise, the drying process for the seven
teak cradles should be completed at times 80, 120, 280, 280, 560, 640, and 800. (Each time
unit is a minute in this example; more information about time units follows.)

As you can quickly see, this example has potential for conflict. For example, the first teak
cradle is supposed to be ready at time 80, yet teak cradles take longer than that (90 time
units) to dry. Two teak cradles are supposed to be completed at time 280, yet only one cradle
can be dried at a time; if the dryer is already running at full capacity at around time 190,
this will also be a problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2274

Objective and costs

The objective of this process is the same as for most businesses: Meet customer demands
to obtain revenue, while simultaneously keeping internal costs to a minimum. In this example,
that means that drying activities should finish as close as possible to the ideal due dates.
This keeps customers happy, and reduces the costs associated with late or early completion.

However, resource constraints in a factory might mean that the ideal targets are not met
(and in this example it’s clear that will indeed be the case). Late completion risks customer
dissatisfaction and the possibility that they will choose another vendor in the future. Early
completion might require that you pay storage costs before shipping to the customer. Plant
PowerOps provides explicit methods to track these types of costs, regardless of whether the
cost is actual (as when the cost produces a storage bill that must be paid), or whether the
cost is potential (as in the potential loss of future business).

In this example, the cost for being late, or tardy, is greater than the earliness cost because
we do not want to risk customer dissatisfaction. Also, the teak cradle customer is more
important to the business than the pine cradle customer, because the teak customer places
many more teak cradle orders than are received for pine cradles. So, the tardiness cost is
appropriately greater for teak than it is for pine.

Additionally, costs can be either variable (that is, the cost is affected by the amount of time
early or late) or fixed. A fixed cost is incurred if the activity is early or late, but there is no
multiplication effect. For example, there might be a fixed cost to initially rent out or build
a storage unit; and then a variable cost (extra wages, transportation, actual floor space
used) that increases with the amount of time, or storage used or needed.

Taking these factors and past experience into account, this example assigns:

♦ An earliness variable cost of 1 and a tardiness variable cost of 3 to pine cradles, and

♦ An earliness variable cost of 1 and a tardiness variable cost of 7 to teak cradles.

Revenue and non-delivery costs
Each cradle that meets demand would (theoretically at least) bring in revenue. The "flip
side" of revenue is nondelivery cost; the cost of failing to meet a demand at all. The
nondelivery cost might simply represent the "absence" of revenue, or something more
intangible such as customer dissatisfaction.

You could say that revenue and nondelivery costs together create an incentive to meet a
demand. You could also say that if neither revenue nor nondelivery costs exist, then there
is little or perhaps even no incentive to meet a demand. PPO actually requires that you apply
a nondelivery cost to every demand that you have any expectation of being satisfied; revenue
provides additional incentive to satisfy this demand.

In this example, we do not represent the revenue gained from delivered cradles, but we do
model the nondelivery cost. Nondelivery of a product is far more severe a problem than
simply being late. Being late with a delivery may leave you with a disgruntled customer; not
delivering at all will likely lose you that customer completely.

So, we choose large penalties for nondelivery: 30000 for pine cradles, and 70000 for teak,
reflecting the relative importance of the two customers.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 275

Balancing nondelivery costs and tardiness costs
Nondelivery costs, earliness costs and tardiness costs must be defined consistently for PPO
to make relevant compromises. Although you probably arrive at values for each of these
costs independently, you should check and balance these values against each other before
modeling the data.

In considering this example, there actually is no chance of having a nondelivery problem,
as there is ample time and resource available. The only real issue in this example is how far
behind schedule will the cradles be manufactured.

So, we should consider this question: How long past a due date does it still make sense to
deliver a product?

A way to measure this is to divide the nondelivery variable cost by the tardiness variable
cost, and see if it matches a reasonable amount. For pine cradles, we have 30000 nondelivery
cost units divided by 3 tardiness cost units per time unit, leaving a result of 10000 time
units. Teak cradles gives the same result, and as the time unit is a minute, this result is
about a week for each type of cradle.

That seems reasonable; in this problem, it makes no sense to deliver more than a week late.
If the delay becomes too long and increases the tardiness cost to very high levels, there
comes a point (about one week) where it simply does not make sense to deliver. Our tardiness
and nondelivery values are therefore in balance.

About time
The date origin for the problem represents the time zero for the problem. This is not
necessarily the point in time at which PPO can first schedule an activity, however. That point
is called the start minimum; in this example the start min is set to the date origin, and both
are set to February 1, 2001, 00:00.

There is also a maximal end time for all scheduled activities in the problem.

The time unit for the problem is minutes (60 seconds). That is, start and end times are
expressed in minutes from the date origin. Time durations are also expressed in minutes.

So the due dates for the pine cradles correspond to February 1, 2001, 02:40 (time 160),
February 1, 2001, 11:20 (time 680), and February 1, 2001, 12:00 (time 720).

I B M I L O G P L A N T P O W E R O P S V 3 . 2276

Before creating the model

We now have a lot of data with which to start building the problem model in data tables.
We know the basic problem setup: the date origin and start min, the time unit, the activities
that must be performed and their due dates. We know the resource (the dryer) used to
perform the activities, its capacity, and the cost penalties associated with failing to meet
the due dates. There are a few more things to consider, however.

Choosing a modeling methodology
This example is a simple one, presented just to get you introduced to PPO. However, in your
real working life, you no doubt have a far more complicated data set, perhaps with thousands
of interrelated, sequential activities to perform on a hundred resources. Some of the resources
could be used in various ways, for different processes, on different materials. There might
be intermediate materials that are transformed into other materials, and these intermediates
may have shelf lives or storage restrictions.

So although you could model the problem described here in a very simple fashion, keep in
mind that ultimately you want to use a design methodology that supports much greater
complexity. So, as time passes, you can upgrade the model easily, to be more representative
of the complexity of the process. The next section, An overview of the PPO data model,
explains the modeling methodology used to enable such flexibility.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 277

I B M I L O G P L A N T P O W E R O P S V 3 . 2278

An overview of the PPO data model

Introduces the basic elements of the PPO data model necessary to model this manufacturing
problem.

In this section

Model the process
Describes the goal of modeling the process rather than the explicit manufacturing activities.

Materials
Describes what a material is in the data model and the current manufacturing problem.

Demands
Describes what a demand is in the data model and the current manufacturing problem.

Activities
Describes what activities and activity prototypes are in the data model and the current
manufacturing problem.

Resources
Describes what resources are in the data model and the current manufacturing problem.

Recipes
Describes what recipes are in the data model and the current manufacturing problem.

Modes
Describes what modes are in the data model and the current manufacturing problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 279

Material production
Describes the material production object the data model and the current manufacturing
problem.

Production orders
Describes what production orders are in the data model and the current manufacturing
problem.

Production to demand arcs
Describes what pegging arcs, in particular production to demand arcs, represent in the data
model and the current manufacturing problem.

Weighted objectives
Describes what weighted objectives are in the data model and the current manufacturing
problem.

Overview of the process
Describes how the many data model objects are used together to represent the problem
data.

Table of data model objects
A table that relates the data schema and C++ elements.

I B M I L O G P L A N T P O W E R O P S V 3 . 2280

Model the process

The purpose of this section is to introduce some of the building blocks of Plant PowerOps
that are necessary to model a problem, such as Recipes,Demands, Production orders,Modes,
and Production to demand arcs.

With these objects of PPO, you model the process rather than trying to schedule explicit,
individual activities on resources. You define the recipe of how a product or material is
made. You create the customer demands, due dates, nondelivery costs and revenue that
drive the creation of production orders that follow your recipes to produce material. The
material itself could be a finished product or an intermediate material; most factories would
use many recipes to handle the various intermediates and finished products.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 281

Materials

Materials in PPO can specify raw materials, intermediate products consumed in the
manufacturing process, and finished products.

In this example, the dried cradles, ready for delivery to a customer, are a material.

I B M I L O G P L A N T P O W E R O P S V 3 . 2282

Demands

A demand object, in PPO, represents a forecast or a customer request for a certain quantity
of finished products. A time window for completion can be specified, with an optional
preferred due date. The due date is used to compute the earliness and tardiness costs
previously discussed. If no time window or due date is specified, by default the demandmust
simply be satisfied by the time horizon of the problem.

Demands normally have an incentive associated with them, too. That is, if you fail to meet
a demand, there might be a nondelivery cost. Conversely, if you meet a demand, you might
get revenue. If one demand has a higher revenue than another, then (all else being equal)
PPO will make a greater effort to satisfy the higher-revenue demand optimally.

In this example, there are ten demands, corresponding to the three pine and seven teak
cradles. There are nondelivery, earliness, and tardiness costs associated with each cradle.
It is these demands and their costs (or revenues) that drive the process for PPO to ultimately
create the production orders that create the specific explicit activities that manufacture
products.

There is typically no need to define the specific demands for raw materials or intermediate
products that are consumed during the manufacturing process.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 283

Activities

Activities (performed on resources) are what make the materials and finished products.
Activities ultimately satisfy demand.

Although it is possible for you to model each and every activity, a better approach is to model
activity types (or prototypes), and make PPO do the work of generating and scheduling the
explicit activities. PPO generates the explicit activities through recipes and production
orders. The recipe contains the activity prototypes, and the production order uses these
prototypes as a template to generate the actual, explicit activities that are scheduled to
meet demand.

There are two activity prototypes in this example, one for pine drying and one for teak drying.
Since we have ten demands in total for dried cradles, PPO will create ten explicit drying
activities in the schedule, all based on one of the two activity prototypes. Note that there is
no due date associated with the actual activities in this example, but rather the due dates
are attached to the demands for materials; in this case, dried cradles.

Activities are always performed in modes, which links the activity to the use of a certain
resource in a certain method of operation. You can also specify an activity to have a setup
requirement.

I B M I L O G P L A N T P O W E R O P S V 3 . 2284

Resources

The resource for this problem is the dryer, but you can also model resources such as workers,
vehicles, and supplies. By default, a resource is available for use throughout the time horizon
of the problem, but that can be modified for cleaning, maintenance, or other reasons.

The capacity of the dryer resource is 1 (one), because the activity (drying) consumes 100%
of the resource during the activity duration.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 285

Recipes

Recipes are a set of activities that model a production process. They define both the materials
used or consumed by the process (raw materials or intermediates), and the materials
produced by the process (intermediates or finished products). However the essential point
is that rather than containing explicit activities, recipes model activity prototypes and
constraints. These are, in turn, used as a template or a mold to generate the explicit activities
that produce the output material.

In a larger model of the cradle factory, there would be several recipes. The first recipe might
consume rawwood to produce the cut and lathedwood pieces. Another recipe would assemble
the cradles. A varnishing recipe would consume unvarnished cradles and the varnishing
liquid to produce varnished cradles. The drying recipe would consume varnished cradles
and produce dried cradles.

In this simple example, we create only two recipes. One recipe defines an activity prototype
for drying pine cradles and one defines an activity prototype for drying teak cradles.

I B M I L O G P L A N T P O W E R O P S V 3 . 2286

Modes

Activities are always performed in modes. A mode can be thought of as the method used to
perform an activity; which resource is used, what is the resource capacity required, what
is the processing time, and so forth. For example, perhaps an activity can be processed on
three different resources; this means there are three (at least) different possible modes for
this activity. Further, perhaps one of those resources can perform the activity at two different
speeds, "normal" or "rush." In that case, there would be two modes to process the activity
on that resource, and four modes overall.

For this simple problem only two modes are really needed; the dryer is either used for 70
minutes to dry pine, or 90 minutes to dry teak.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 287

Material production

This object is very important as it represents the consumption or production of all material.
It specifies which activities and modes produce and consume materials, in what quantity,
and to/from which storage units (if any). Essentially this object links materials with the
activities that produce them. This object along with the recipe object help define recipe (as
used in the broad sense of meaning production process) in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2288

Production orders

A production order implements the recipe to ultimately meet demand.

Production orders have a batch size, which is a multiplication factor on a recipe. The batch
size is used to compute the quantities of materials produced or consumed by the production
order. The batch size is also used to adjust the processing times and costs of activities (if
variable processing times and costs have been specified on the modes of the activity
prototypes of the recipe).

A production order can be used to produce intermediate materials or finished materials
(that is, finished manufactured products). A production order that makes finished goods
may partially or wholly satisfy a single demand, or may satisfy several demands. A production
order producing only intermediates does not satisfy a PPO demand object.

In this example the batch size is 1.0 so there are ten separate production orders,
corresponding to the ten cradles (pine and teak combined) that need to be dried.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 289

Production to demand arcs

An arc (or pegging arc) is a PPO object used to ensure proper linkage between two modeling
components; an arc is used to directly ensure proper material flow. There are arcs that link
procurements to productions, productions to other productions, and productions to demands.

This example uses an arc between a production order and a demand in order to specify the
quantity of material from production to the demand.

There are ten arcs in this example, linking the ten production orders for dried cradles to
the ten dried cradle demands.

Note that in this small example, you will be creating the arcs yourself. In a larger example,
the production order and arc tables are part of the solution provided from the planning
(indirectly) and batching (directly) modules. A flow of material between a production order
and a customer demand (a production to demand arc) is modeled as a due date on the
producing activity of the corresponding production orders. In this example, you will model
the arcs manually.

I B M I L O G P L A N T P O W E R O P S V 3 . 2290

Weighted objectives

When an Plant PowerOps plan is generated, certain objectives can be calculated or measured
to judge the appropriateness or quality of the plan. Each of these predefined objectives can
be assigned a weight to indicate (multiply) its importance in this problem relative to other
criteria. Weighted objectives are a type of Key Performance Indicator (KPI); industries have
standard sets of KPIs that they use to evaluate plans. Many KPIs are available with PPO.

In this problem, we will define a total earliness cost and a total tardiness cost. Note that
these costs apply to the entire solution; that is, the earliness and tardiness for all activities
in the plan is computed. Contrast this with the fixed and variable costs assigned to individual
activities. There will also be a total nondelivery cost that sums the nondelivery costs of all
demands that are not met.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 291

Overview of the process

From reading this section, you understand that with PPO you canmodel a scheduling problem
at a high level, using recipes, demands, resources, materials, and costs. There is no need
for you to attempt to schedule the explicit activities; instead, you use a recipe to model a
process, a demand to drive it, and a production order to implement it.

With PPO, you model the demands of customers or forecasts for certain quantities of finished
materials and products. These demands or forecasts have nondelivery costs and revenues
that drive the process that ultimately creates production orders, that in turn are used to
create the explicit manufacturing activities by cloning the activity prototypes of a recipe.
The compatibility and precedence constraints between prototype activities in the recipe are
also cloned to the explicit activities. The production order uses a batch size to adjust the
resources and processing time used by activities, so that materials are consumed and/or
produced at the right level.

I B M I L O G P L A N T P O W E R O P S V 3 . 2292

Table of data model objects

The following table helps organize the modeling objects and information. Each horizontal
line refers to a PPO object or concept we have already discussed; and not by coincidence,
each line also refers to the name of a PPO data schema table and PPO C++ class.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 293

Table of PPO Data Objects
PPO C++ ClassData Schema TableMembers or

Function
Object

IloMSModelPPO_MODELdate origin,
time unit, and

Model

end max for
the model;
sets
environment,
contains
model objects

IloMSResourcePPO_RESOURCEresource
name and
capacity

Resource

IloMSMaterialPPO_MATERIALdefines raw
materials,

Material

intermediates,
finished
products

IloMSRecipePPO_RECIPEname of
recipe used
for production

Recipe

IloMSAbstractActivityPPO_ACTIVITY_PROTOname and
recipe
association

Activity

IloMSModePPO_MODE_PROTOrequired
resource

Mode

capacity and
processing
time per mode

IloMSMaterialProductionPPO_MATERIAL_PRODUCTION_PROTOlinks activities
to the

Material
Production

materials they
produce and
consume

IloMSDemandPPO_DEMANDlists all
demands for

Demand

finished
product

IloMSDueDatePPO_DUE_DATEdue dates and
associated
cost penalties

Due Date

IloMSProductionOrderPPO_PRODUCTION_ORDERrecipe used
and batch size

Production
Order

IloMSAbstractMaterialFlowArcPPO_PROD_TO_DEMAND_ARClinks a
production

Production
to Demand

I B M I L O G P L A N T P O W E R O P S V 3 . 2294

PPO C++ ClassData Schema TableMembers or
Function

Object

order to a
demand with
quantity

Arc

IloMSModel::setWeightPPO_CRITERION_WEIGHTcriteria used to
measure plan
quality

Weighted
Objectives

Each object you create with a data table is instantiated into a C++ class member by the
PPO engines. However, you do not need to know any C++ in order to get the full benefits
of PPO; you have full modeling capabilities with data tables or by using the GUI. Since csv
and mdb files are an easily understood method of modeling data, they are ideal for learning
new concepts, such as the data model. You can transfer that conceptual knowledge to C++
or Java later, if you wish. Note that the table is a summary only, useful for this cradle factory
example. The schema tables and API classes of PPO include a great deal more function than
shown here. Full descriptions are available in other publications: the Plant PowerOps Data
Schema and the Plant PowerOps C++ Reference Manual. These objects also have
counterparts in Java™ , and information can be found for those classes in the Plant PowerOps
Java Reference Manual.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 295

A quick tutorial on csv and mdb usage in PPO

If you are already comfortable with modeling data using csv or mdb files per your choice,
you can skip ahead to Model the problem.

Otherwise, you might find the following information useful.

Here’s the PPO_RESOURCE table shown in csv format:

PPO_RESOURCE|NAMES, RESOURCE_ID, NAME, CAPACITY
PPO_RESOURCE|KEYS, 1, 0, 0
PPO_RESOURCE|TYPES, id, string, int
PPO_RESOURCE, 0, DRYER, 1

And as an mdb table:

PPO_RESOURCE identifies the name of the table to PPO, and the columns RESOURCE_ID, NAME,
and CAPACITY define characteristics of the resource. There is only one resource (DRYER)
declared in this example. There are typically many data columns or fields for each table,
and you are not likely to use all of the available ones.

Common to both csv and mdb

♦ It doesn’t matter in which order you define the fields (columns) for a table; you could for
example define CAPACITY before NAME in the PPO_RESOURCE table. However the columns
must maintain integrity; that is, the column NAMEmust be defined as a string not an int,
and that column must contain the data for NAME, which in this example is DRYER.

♦ The data type id is a string, so be careful that you do not accidently add blank white
space to that field.

♦ In the context of data types used for PPO, you can interchangeably use int or integer,
and float or double. For boolean values use 1 and 0 for true and false.

♦ You can find more information about KEYS and TYPES in the data schema.

♦ You do not have to define all the available fields for a table; you must only declare the
fields that are identified as mandatory in the data schema. Be aware however that there
are default values for most fields, whether the field is declared in the table or not. Also
if you do define a column, you must provide a value for that column in all data rows in
the table.

I B M I L O G P L A N T P O W E R O P S V 3 . 2296

Keys and data types in mdb files
With mdb files, you don’t define the keys and data type in the actual data model tables; these
are defined in the Design view of each table of Microsoft® Access® . See Access help for
more information on defining data types and keys.

More about using csv files

♦ The first three lines in a csv table are used to define the data for PPO. All tables (except
for the PPO_MODEL table) must start with lines that define the NAMES, KEYS, and TYPES for
each field. The PPO_MODEL table requires only NAMES and TYPES.

♦ The NAMES line always starts with the table name (for example PPO_RESOURCE) followed
immediately by a vertical separator ("|") and the keyword NAMES. Then you list the fields
you are defining for this table, separated by commas.

♦ The KEYS line always starts with the table name followed immediately by a vertical
separator ("|") and the keyword KEYS. Then you indicate whether the field is a key for
the table ("1") or not ("0").

♦ The TYPES line always starts with the table name followed immediately by a vertical
separator ("|") and the keyword TYPES. Then indicate what data type the field is, such as
boolean or float.

♦ The line following the TYPES line is always used to start entering data.

♦ In the following examples, the extra spaces in the tables are not necessary; we used extra
spaces here just to create orderly, legible columns.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 297

Model the problem

Now you have a problem description and know something about the PPO data model. Let’s
begin to model the problem by gathering the necessary data.

Data checklist
Use this checklist to gather data for modeling most PPO problems.

♦ What is the date origin, time horizon, and time unit for this problem?

♦ What are the resources and their capacities for this problem?

♦ What are the types of activities in this problem?

♦ What are the recipes by which these activities are manufactured?

♦ What are the materials produced by these recipes?

♦ What are the production orders that drive the activities?

♦ What are the customer demands that drive the production orders?

♦ What are the due dates for these demands, and any associated cost factors?

♦ What are the weighted objectives for this problem?

We can answer these questions and, with a little help from the Data Schema, can now model
the problem. The Data Schema is used to ensure that the model has data integrity. Correct
use of the schema ensures that PPO will interpret the problem data in the manner you
intended.

The files that we build in the following steps contains all the necessary data tables to
completely model the problem. We’ll demonstrate simultaneously building the model in csv
and mdb format. You can see the complete examples in <PPOInstallDirectory>\doc\chm\
IGLesson1_Basic.csv and <PPOInstallDirectory>\examples\data\course\
CourseLesson1_Basic.mdb in your development environment. In some example files, you
might find additional data that is not discussed here; generally this is default data and you
can refer to the Data Schema for more information.

Step 1 Declare the schema
All Plant PowerOps csv files start with two lines specifying the format and schema versions.
The format is 1 and the schema is at version 2.

ILOG_CSV_FORMAT, 1
ILOG_DATA_SCHEMA, PPO, 4.0

The PPO data schema is a public schema, and every csv file you build starts with these two
lines. (There is no corresponding table in mdb format.)

I B M I L O G P L A N T P O W E R O P S V 3 . 2298

Step 2 Define the optimization profile
This step is not strictly necessary for this example. However, in more complicated problems
it's normal to use the PPO_OPTIMIZATION_PROFILE table to control or tune the optimization
engines of PPO. You can learn more at Optimization profile. For now, just know that this
example is much smaller than a typical PPO problem and is designed to be scheduled within
a two-day period. So we don’t need all of the power of PPO; we will only use the scheduling
module, not the planning and batching modules. The following csv table defines a profile
called SCHEDULING_ONLY.

PPO_OPT_PRO|NAMES, OPTIMIZATION_PROFILE_ID, NAME, PLANNING
BATCHING SCHEDULING

_REQUIRED,
_REQUIRED, _REQUIRED
PPO_OPT_PRO|KEYS, 1, 0, 0,
0, 0
PPO_OPT_PRO|TYPES, id, string, boolean,
boolean, boolean
PPO_OPT_PRO, SCHEDULING_ONLY, SCHEDULING_ONLY, 0,
0, 1

Note that for presentation purposes in this manual, we have abbreviated the table name to
PPO_OPT_PRO and stacked the NAMES row into two lines. Do not do either of these actions in
your actual csv file!

Here is the corresponding table in Microsoft® Office Access® .mdb format:

Step 3 Create the environment
With this step, we finally start to build the actual problem data model. The first thing to do
is define the problem environment with the PPO_MODEL table; fields include the problem
NAME, INT_DATE_ORIGIN, TIME_UNIT, END_MAX (time horizon), and the START_MIN. The start
minimum field defines the common earliest start time for activities requiring plant resources
that need to be scheduled (does not include activities that are known to have already started).
We set START_MIN to zero, thus setting it equal to the date origin.

PPO_MODEL|NAMES, NAME, INT_DATE_ORIGIN, TIME_UNIT, START_MIN, END_MAX,
CURRENT

_OPTIMIZATION

_PROFILE
PPO_MODEL|TYPES, string, int, int, int, int,

id

I B M I L O G P L A N T P O W E R O P S V 3 . 2 299

PPO_MODEL, CourseLesson1Basic, 2678400, 60, 0, 2880,
SCHEDULING_ONLY

The INT_DATE_ORIGIN is used to express the date origin in seconds since January 1, 2001.
The value here is 2678400 seconds (31*24*60*60) or February 1, 2001, 00:00 GMT.
Alternatively, one can use a field called DATE_ORIGIN to express the starting point in "YYYY
-MM-DD HH:MM:SS" format. Note that although the INT_DATE_ORIGIN is expressed in seconds,
the START_MIN and END_MAX fields are expressed in the declared time unit (minutes).

Also, note that a CURRENT_OPTIMIZATION_PROFILE for this model is declared:
SCHEDULING_ONLY, the profile we created in the step immediately prior.

Although not part of this example, this table is also used to define the time zone. The
INT_DATE_ORIGIN field is given in the defined time zone; whereas the DATE_ORIGIN is provided
in UTC. For more information see The model environment and Time zone settings.

Here is the corresponding table in .mdb format:

Step 4 Define the resource
The following lines create the PPO_RESOURCE table, which defines the RESOURCE_ID, NAME,
and CAPACITY of the DRYER resource. Because the problem definition involves a single
machine, only a single resource is required for this example.

PPO_RESOURCE|NAMES, RESOURCE_ID, NAME, CAPACITY
PPO_RESOURCE|KEYS, 1, 0, 0
PPO_RESOURCE|TYPES, id, string, int
PPO_RESOURCE, 0, DRYER, 1

The CAPACITY for this machine, because each activity requires 100% of the resource, is set
to 1 (an indivisible integer). The default value for the capacity field is one, so in fact this
field is not necessary for this example; we model it here just to highlight its use. Another
useful field in this table is DISPLAY_RANK which orders how resources appear as listed in
the GUI; this field is not necessary since there is only one resource in this problem.

Here is the mdb resource table:

Step 5 Define the materials
The next object to define is material. Remember that materials in Plant PowerOps can be
raw materials, intermediate products, or finished products. In this example we model only

I B M I L O G P L A N T P O W E R O P S V 3 . 2300

two finished products—PINE_CRADLES and TEAK_CRADLES. The following lines create the
PPO_MATERIAL table:

PPO_MATERIAL|NAMES, MATERIAL_ID, NAME
PPO_MATERIAL|KEYS, 1, 0
PPO_MATERIAL|TYPES, id, string
PPO_MATERIAL, 0, PINE_CRADLE
PPO_MATERIAL, 1, TEAK_CRADLE

Note that we define the materials according to ascending order of their MATERIAL_ID to
make it easier to read the data.

In the database file, we also declare an initial quantity of zero; this is not strictly necessary
since that is the default for this field.

Step 6 Define the recipe
Recipes are defined as a set of activities, the combination of processes andmaterials required
for production. In this example we consider only the production of dried cradles. The following
lines create the PPO_RECIPE table:

PPO_RECIPE|NAMES, RECIPE_ID, NAME
PPO_RECIPE|KEYS, 1, 0
PPO_RECIPE|TYPES, id, string
PPO_RECIPE, 0, PINE_RECIPE
PPO_RECIPE, 1, TEAK_RECIPE

There are many other fields available in the PPO_RECIPE table, but we either do not need to
use them or the defaults are fine.

Step 7 Define the activity prototypes
Use the PPO_ACTIVITY_PROTO table to define two types of activities, or activity prototypes,
corresponding to the two activity types in our example: PINE_DRYING and TEAK_DRYING. Note

I B M I L O G P L A N T P O W E R O P S V 3 . 2 301

that if we were defining all the actual activities of this example—drying three pine and seven
teak cradles—we would have ten activity instances to define just in this simple problem.

You also declare the RECIPE_ID to which the activity prototype belongs.

PPO_ACTIVITY_PROTO|NAMES, ACTIVITY_ID, NAME, RECIPE_ID
PPO_ACTIVITY_PROTO|KEYS, 1, 0, 0
PPO_ACTIVITY_PROTO|TYPES, id, string, id
PPO_ACTIVITY_PROTO, 0, PINE_DRYING, 0
PPO_ACTIVITY_PROTO, 1, TEAK_DRYING, 1

Step 8 Define mode prototypes for the activity prototypes
In the PPO_MODE_PROTO table we use two primary key fields: ACTIVITY_ID and MODE_NUMBER.
This table associates an ACTIVITY_ID and MODE_NUMBER pair (identified by the mode NAME)
with a resource and a processing time. In this example, there is only one mode for each
activity, so each activity needs only one MODE_NUMBER (0).

Also, remember that since we defined activity prototypes in the PPO_ACTIVITY_PROTO table
rather than individual activities, the ACTIVITY_ID in this table refers to an activity type, and
so we are now defining the mode for an activity type.

PPO_MODE_PROTO|NAMES, ACTIVITY_ID, MODE_NUMBER, NAME, RESOURCE_ID,
VARIABLE_PROCESSING_TIME
PPO_MODE_PROTO|KEYS, 1, 1, 0, 0, 0
PPO_MODE_PROTO|TYPES, id, int, string, id, float
PPO_MODE_PROTO, 0, 0, PINE_MODE00, 0, 70.
0
PPO_MODE_PROTO, 1, 0, TEAK_MODE00, 0, 90.
0

The VARIABLE_PROCESSING_TIME field is used to define the different processing times for
pine cradles (70 minutes) and teak cradles (90 minutes).

The dryer resource can be used by only one activity at a time—each activity requires 100%
of the capacity of the resource. The required capacity for both modes is one; since this is
the default for the REQUIRED_CAPACITY field, we don’t have to include it in the table.

As previously mentioned, in Microsoft Access the keys for a table are defined in the Design
view. Here is the mdb table shown in the table view.

I B M I L O G P L A N T P O W E R O P S V 3 . 2302

Step 9 Define the material production
The following lines create the PPO_MATERIAL_PRODUCTION_PROTO table, which pairs an activity
with material production or consumption. The quantity produced (or consumed, if the value
is negative) can be variable (quantity produced for the execution of one unit of recipe) or
fixed (quantity produced for the execution of one batch of recipe). In this example, we are
linking an activity prototype with material production, with a variable quantity of one.

PPO_MATERIAL_PRODUCTION_PROTO|NAMES, MATERIAL_ID, ACTIVITY_ID, VARIABLE_QUANTITY
PPO_MATERIAL_PRODUCTION_PROTO|KEYS, 1, 1, 0
PPO_MATERIAL_PRODUCTION_PROTO|TYPES, id, id, float
PPO_MATERIAL_PRODUCTION_PROTO, 0, 0, 1.0
PPO_MATERIAL_PRODUCTION_PROTO, 1, 1, 1.0

We have modes defined in this problem, yet there is no declaration regarding material
production of the modes in this table. The reason is that the default value for the MODE_NUMBER
field is a special value: -1 (minus one). This value declares that all modes of the activity
produce or consume the material in the same manner. When either activity is performed, it
always produces one unit as defined in the table.

This table is also used to identify any storage activities and units for the produced materials,
but these are not modeled in this problem. You can also specify if material is produced
continuously or in batch (default).

Step 10 Define the demand
The PPO_DEMAND table represents the request for a specified QUANTITY of finished material
(MATERIAL_ID) deliverable in a time window, with an optional preferred due date. Do not
use this table to specify demand for intermediate products that are consumed by the
manufacturing process.

In this example there are three demands for pine cradles (MATERIAL_ID 0, set in the
PPO_MATERIAL table) and seven demands for teak cradles (MATERIAL_ID 1).

PPO_DEMAND|NAMES, DEMAND_ID, NAME, MATERIAL_ID, QUANTITY,
NON_DELIVERY_VARIABLE_COST

I B M I L O G P L A N T P O W E R O P S V 3 . 2 303

PPO_DEMAND|KEYS, 1, 0, 0, 0, 0
PPO_DEMAND|TYPES, id, string, id, float, float
PPO_DEMAND, 0, DEMAND00, 0, 1.0, 30000
PPO_DEMAND, 1, DEMAND01, 0, 1.0, 30000
PPO_DEMAND, 2, DEMAND02, 0, 1.0, 30000
PPO_DEMAND, 3, DEMAND03, 1, 1.0, 70000
PPO_DEMAND, 4, DEMAND04, 1, 1.0, 70000
PPO_DEMAND, 5, DEMAND05, 1, 1.0, 70000
PPO_DEMAND, 6, DEMAND06, 1, 1.0, 70000
PPO_DEMAND, 7, DEMAND07, 1, 1.0, 70000
PPO_DEMAND, 8, DEMAND08, 1, 1.0, 70000
PPO_DEMAND, 9, DEMAND09, 1, 1.0, 70000

As described earlier, the demands have a cost for failing to deliver: the
NON_DELIVERY_VARIABLE_COST. Note that the nondelivery costs for material one (the teak
cradles) are higher than for pine. This provides a higher incentive for PPO to meet these
demands.

A delivery time window that defines the earliest and latest possible delivery times can be
specified with the fields DELIVERY_START_MIN and DELIVERY_END_MAX. These fields default
to -INF and +INF. We don’t declare the time window in this example, but we will have a due
date. The due date for each demand is defined in the next step.

Step 11 Define due dates for the demands
This example implements a “customer demand driven” model for this problem, so the
PPO_DUE_DATE table is used to associate a due date (DUE_TIME) with each of the demands
defined in the PPO_DEMAND table (through DEMAND_ID).

This table is also used to assign earliness and tardiness fixed costs, and earliness and
tardiness variable costs. In this example there are no fixed costs.

PPO_DUE_DATE|NAMES, DEMAND_ID, DUE_TIME, EARLINESS_VARIABLE_COST,
TARDINESS_VARIABLE_COST
PPO_DUE_DATE|KEYS, 1, 0, 0, 0
PPO_DUE_DATE|TYPES, id, int, float, float

I B M I L O G P L A N T P O W E R O P S V 3 . 2304

PPO_DUE_DATE, 0, 160, 1.0, 3.0
PPO_DUE_DATE, 1, 680, 1.0, 3.0
PPO_DUE_DATE, 2, 720, 1.0, 3.0
PPO_DUE_DATE, 3, 80, 1.0, 7.0
PPO_DUE_DATE, 4, 120, 1.0, 7.0
PPO_DUE_DATE, 5, 280, 1.0, 7.0
PPO_DUE_DATE, 6, 280, 1.0, 7.0
PPO_DUE_DATE, 7, 560, 1.0, 7.0
PPO_DUE_DATE, 8, 640, 1.0, 7.0
PPO_DUE_DATE, 9, 800, 1.0, 7.0

You can see that the due time is expressed in terms of the time units after the date origin
of the problem.

Attaching a due date to a demand, rather than to specific activities, is a key concept of the
modeling methodology to use activity prototypes and thereby allowing PPO to do the hard
work of creating all the specific necessary scheduled activities.

The due date table in mdb format:

Step 12 Define the production orders
The PPO_PRODUCTION_ORDER table represents a production order implementing the recipe
of a process. Notice that there are three production orders for the recipe producing pine
cradles (RECIPE_ID 0) and seven production orders for the recipe producing teak cradles
(RECIPE_ID 1). The following lines create the PPO_PRODUCTION_ORDER table.

PPO_PRODUCTION_ORDER|NAMES, PRODUCTION_ORDER_ID, NAME, RECIPE_ID,
BATCH_SIZE
PPO_PRODUCTION_ORDER|KEYS, 1, 0, 0, 0
PPO_PRODUCTION_ORDER|TYPES, id, string, id, float
PPO_PRODUCTION_ORDER, 0, ORDER00, 0, 1.0
PPO_PRODUCTION_ORDER, 1, ORDER01, 0, 1.0
PPO_PRODUCTION_ORDER, 2, ORDER02, 0, 1.0
PPO_PRODUCTION_ORDER, 3, ORDER03, 1, 1.0

I B M I L O G P L A N T P O W E R O P S V 3 . 2 305

PPO_PRODUCTION_ORDER, 4, ORDER04, 1, 1.0
PPO_PRODUCTION_ORDER, 5, ORDER05, 1, 1.0
PPO_PRODUCTION_ORDER, 6, ORDER06, 1, 1.0
PPO_PRODUCTION_ORDER, 7, ORDER07, 1, 1.0
PPO_PRODUCTION_ORDER, 8, ORDER08, 1, 1.0
PPO_PRODUCTION_ORDER, 9, ORDER09, 1, 1.0

The BATCH_SIZE column is optional in this example, as the default is 1.0.

Step 13 Link the production order to the demands
A link (or arc) for the flow of material from a production order to a demand is made with
the PPO_PROD_TO_DEMAND_ARC table, which uses both the production order and the demand
as primary keys.

A QUANTITY is defined in this table for this production order. The value of QUANTITY in this
table does not have to be the same as the value of QUANTITY in the PPO_DEMAND table; for
example, there might be multiple production orders required to satisfy a single demand.

PPO_PROD_TO_DEMAND_ARC|NAMES, FROM_PRODUCTION_ORDER_ID, TO_DEMAND_ID,
QUANTITY
PPO_PROD_TO_DEMAND_ARC|KEYS, 1, 1, 0
PPO_PROD_TO_DEMAND_ARC|TYPES, int, int, float
PPO_PROD_TO_DEMAND_ARC, 0, 0, 1.0
PPO_PROD_TO_DEMAND_ARC, 1, 1, 1.0
PPO_PROD_TO_DEMAND_ARC, 2, 2, 1.0
PPO_PROD_TO_DEMAND_ARC, 3, 3, 1.0
PPO_PROD_TO_DEMAND_ARC, 4, 4, 1.0
PPO_PROD_TO_DEMAND_ARC, 5, 5, 1.0
PPO_PROD_TO_DEMAND_ARC, 6, 6, 1.0
PPO_PROD_TO_DEMAND_ARC, 7, 7, 1.0
PPO_PROD_TO_DEMAND_ARC, 8, 8, 1.0
PPO_PROD_TO_DEMAND_ARC, 9, 9, 1.0

Since this problem is a simple scheduling problem, you create this table and the production
order table yourself. In larger problems, the production order and arc tables are typically

I B M I L O G P L A N T P O W E R O P S V 3 . 2306

generated by the planning and batching modules of PPO, and supplied to the scheduling
module.

Step 14 Define the weighted objectives
The PPO_CRITERION_WEIGHT table defines the global weights for the three optimization
criteria declared for this problem. Optimization criteria can be associated with a specific
optimization profile, and we use them in the SCHEDULING_ONLY profile here.

PPO_CRITERION_WEIGHT|NAMES, OPTIMIZATION_PROFILE_ID, CRITERION_ID,
WEIGHT
PPO_CRITERION_WEIGHT|KEYS, 1, 1, 0
PPO_CRITERION_WEIGHT|TYPES, id, id,
float
PPO_CRITERION_WEIGHT, SCHEDULING_ONLY, TotalNonDeliveryCost, 1.
0
PPO_CRITERION_WEIGHT, SCHEDULING_ONLY, TotalEarlinessCost, 1.
0
PPO_CRITERION_WEIGHT, SCHEDULING_ONLY, TotalTardinessCost, 1.
0

We define criteria that sum the total nondelivery, earliness, and tardiness costs in a generated
schedule. Optimization criteria are a specific type of Key Performance Indicator (KPIs); for
more information see Key Performance Indicators. Here is the mdb table:

This is the final step in creating the data files for this example. We now have our complete
problem data model. It’s time to solve the problem. Use the sample provided in

I B M I L O G P L A N T P O W E R O P S V 3 . 2 307

<PPOInstallDirectory>/doc/chm/IGLesson1_Basic.csv in your development environment
to solve the model to this problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2308

Solving

Describes how to use PPO to solve the problem data previously encoded.

In this section

Overview
Describes the options available for solving the problem.

Solve in the PPO GUI
A review of how to solve for experienced users of PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 309

Overview

You have a choice when it comes to solving the problem model. You can load the csv or mdb
model into the PPO GUI, and solve it there. You can use the csv tables as data and solve
using the C++ or Java™ API.

In either case, the solution includes the start and end times for the drying activities, and
any associated earliness, tardiness, and nondelivery costs. PPO generates a wealth of other
data regarding the manufacturing plan, and this is readily available in the GUI.

It’s quite easy to solve the problem model in the PPO GUI. Instructions follow in the next
section Solve in the PPO GUI.

If you prefer to solve using one of the APIs, see Using the PPO API for C++ to model and
solve or Using the PPO API for Java to model and solve.

I B M I L O G P L A N T P O W E R O P S V 3 . 2310

Solve in the PPO GUI

Start the PPO GUI, open the file IGLesson1_Basic.csv, and select the Optimize the

scenario icon on the toolbar.

On the Optimize the scenario dialog box, make sure that the SCHEDULING_ONLY profile is
selected (only the Detailed Scheduling module will be checked). Then select Optimize
the scenario. When scheduling is completed select Close on the optimization progress
dialog box to view the plan.

Continue with View and study the plan.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 311

View and study the plan

The image below shows the Gantt Diagram generated by PPO for IGLesson1_Basic.csv.

.

Screen shots shown here may not always exactly match the results you see due
to a variety of factors.

Important:

The image shows the resource DRYER on the left, and all the activities that are scheduled
on that resource are in the Gantt chart to the right, according to time slot. The pointer is
hovering over an activity, and a tooltip displays information; notably, you can see that this
activity is scheduled later than its due date (tardy).

In the menu bar select Tools > Inspector, then double-click the activity in the Gantt
Diagram. The Inspector reveals details about the activity and associated production order.
The tardiness cost for this activity is 560.

I B M I L O G P L A N T P O W E R O P S V 3 . 2312

The items in blue indicate fields that you can change. So it's possible to change the Start
time, Batch Size, and make a Comment about this activity. In fact, you can edit much of
the data that you originally input with data tables, either with the Inspector or in theMaster
Data view.

TheMaster Data view is available by clicking Gantt Diagram, which displays the view
types bar.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 313

Let’s look at another view, the KPIs Summary view.

Three "weighted criteria" were defined in this example, and here they are with the calculated
values for this plan. Total Earliness and Total Tardiness have some significant costs
associated with them, but Non Delivery Cost is zero; we can conclude that all demands
must have been met, even if early or late. The other criteria displayed here were not defined
in our data model, so are zero.

We can take a closer look at these costs by selecting the Standard Scheduling KPIs tab.
On this page, select the money bag sign, which displays the Objectives.

These values are the "raw" cost values from the plan. The tardiness is 2230.00, and of this,
the activity we examined a few steps ago with the Inspector window contributed 560.00.

Next select the even balance scale to display theWeights. These are the values set in the
PPO_CRITERION_WEIGHT data table; all are equal to 1.00.

I B M I L O G P L A N T P O W E R O P S V 3 . 2314

Finally, click theWeighted Objectives tab (the last one). You see the results of the values
on the first page (raw costs, or objectives) multiplied by the values on the second page
(weights).

All the weighted objectives that you specified are added up to get the Scheduling Total;
and a major goal of the PPO scheduling module is to minimize that number. So, the values
used in setting criteria are quite important.

You might want to change these criteria values very quickly at times. Changing the value
in the data file, then reloading the file and optimizing again is not convenient when you want
to quickly run simulations. So PPO provides a quicker way. When you are optimizing and
the Optimize the scenario dialog box is displayed, select Advanced options for the
scheduling module. The following window appears.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 315

Here the user has increased the Total Earlinessweight to 10. This will significantly increase
the impact of earliness costs in the scheduling module; this action is likely to create a different
solution in the next optimization. (When optimizing a plan more than once, note that you
have to create a new scenario in the GUI to prevent overwriting the first plan.)

There are a number of additional ways for you to modify the generated plan, or the problem
data within the GUI, and regenerate a plan. This makes PPO ideal for doing "what-if" analysis,
for example. You can find more information in the documentation set and the example files
in the standard delivery.

I B M I L O G P L A N T P O W E R O P S V 3 . 2316

Review

In this chapter you were introduced to concepts and components of the Plant PowerOps
Data Model. You learned how to use:

♦ The Plant PowerOps environment,

♦ Activities,

♦ Resources,

♦ Materials,

♦ Modes,

♦ Recipes,

♦ Production orders,

♦ Demands and due dates,

♦ Weighted objectives, and

♦ Tables used to link production to demand, and material production to activities and
recipes.

You also learned how to create and use optimization profiles.

You used these concepts to:

♦ Analyze and Describe a manufacturing problem,

♦ Create a Plant PowerOps model of the problem using csv and mdb tables.

♦ Solve the problem and view the solution using the PPO GUI.

You’ve been introduced to the basics of the PPO Data Model and have some experience
using data tables to model a problem. The next chapter builds upon this knowledge and
introduces new problem data for you to model.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 317

I B M I L O G P L A N T P O W E R O P S V 3 . 2318

Using the PPO API for C++ to model and
solve

The first section describes how to use C++ to solve a problemmodel built with csv database
files. The second section describes how to use the C++ API to model and solve a scheduling
problem that uses calendars. You may also wish to refer to Using PPO with Microsoft
products.

In this section

Solving using csv files with C++
Describes how to solve a problem model using C++.

Model and solve using the API for C++
This section describes in detail how to model and solve a manufacturing problem using the
PowerOps API for C++.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 319

Solving using csv files with C++

Plant PowerOps csv files can be called from C++ programs as an alternative to solving in
the GUI. A sample C++ program csvsch.cpp is provided (located at<PPOInstallDirectory>/
examples/src/csvsch.cpp) which you can compile, and the resulting executable used to
input csv files to Plant PowerOps.

Once you have compiled the csvsch.cpp program, the calling syntax for the resulting
executable is as follows:

csvsch CourseLesson1_Basic.csv

That is, the name of the executable (csvsch or csvsch.exe), followed by the name of the
csv file you are running, with or without its .csv extension (for example,
CourseLesson1_Basic).

The csvsch executable can be used to generate plans for the other examples simply by
changing the name of the csv file specified as an argument.

Running this program provides output similar to the following, which can be used to assess
the generated plan.

* Start solving
*
* Time limit : 10
*
* no time tot_earliness tot_tardiness total
*
* ! 1 0.0 280.00 3990.00 4270.
00
* ! 2 0.1 80.00 2230.00 2310.
00
* 3 0.1 110.00 2220.00 2330.
00
* ! 4 0.5 80.00 2230.00 2310.
00
* 5 0.5 80.00 2230.00 2310.
00
*
* Time used : 0.551
* Nb of solutions found : 5
*
Best solution:
--
DRYER start end earliness tardiness
--
TEAK03 0 90 0.00 70.00
TEAK04 90 180 0.00 420.00
TEAK05 180 270 10.00 0.00
TEAK06 270 360 0.00 560.00
PINE00 360 430 0.00 810.00
TEAK07 430 520 40.00 0.00

I B M I L O G P L A N T P O W E R O P S V 3 . 2320

TEAK08 520 610 30.00 0.00
PINE01 610 680 0.00 0.00
PINE02 680 750 0.00 90.00
TEAK09 750 840 0.00 280.00

--
tot_earliness : 80.00
tot_tardiness : 2230.00
total : 2310.00
--

The solution is displayed by resource (DRYER) with activities on each resource listed in
chronological order. The earliness and tardiness costs for each activity are listed along with
the total summation of all costs.

Above the displayed solution is a list of all solutions found, the solution number (no), the
computation time since starting to solve, and the total costs of each solution.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 321

I B M I L O G P L A N T P O W E R O P S V 3 . 2322

Model and solve using the API for C++

This section describes in detail how to model and solve a manufacturing problem using the
PowerOps API for C++.

In this section

Overview
Introduces the problem to be solved.

General approach to C++ modeling for Plant PowerOps
Compares modeling in C++ to modeling with data schema tables.

Define the necessary C++ functions
Describes the C++ functions that you need to build in order to model the problem.

Build the C++ program
Builds the entire set of functions to model the calendar problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 323

Overview

This section discusses how to create and solve a model using the Plant PowerOps API for
C++. This is built around a problem that uses calendars, and includes the modeling of setup
activities, breaks, mode costs, unperformed activities, and productivity. This problem is also
modeled and solved using the Java™ API in Using the PPO API for Java to model and solve.

Once you have modeled the problem for Plant PowerOps in a cpp file, you can solve the
problem by running the program and viewing the output. The sample C++ program discussed
here (along with several others) is provided in <PPOInstallDirectory>/examples/src/
api05calendar.cpp in your development environment.

I B M I L O G P L A N T P O W E R O P S V 3 . 2324

General approach to C++ modeling for Plant PowerOps

In general, there is a correspondence between modeling data in tables and modeling in
C++, so you can follow a similar pattern as used for modeling with tables.

♦ Define the schema tables, their required fields, and any optional fields you are using for
each table.

♦ Then define and load the data for each table.

Next you create a main program that:

♦ creates an empty IloMSModel object,

♦ loads the IloMSModel object with the problem data,

♦ calls the Plant PowerOps engine to solve the problem, and

♦ generates output and handles exceptions.

To make porting easier from platform to platform, Plant PowerOps isolates
characteristics that vary from system to system. For that reason, use the following
names for basic types in C++:

Note:

● IloInt represents signed long integers

● IloAny represents pointers (void*)

● IloNum represents double precision floating-point values

● IloBool represents Boolean values: IloTrue and IloFalse

I B M I L O G P L A N T P O W E R O P S V 3 . 2 325

Define the necessary C++ functions

Every Plant PowerOps C++ program starts by declaring the Plant PowerOps include file,
support for i/o stream operations, and ILOSTBEGIN as shown below:

#include <ilplant/schedengine.h>
#include <strstream>
ILOSTLBEGIN

After the initial declaration, this sample program has the following primary routines:

♦ a SetModel function that:

● sets the problem name, date origin, time unit and minimal start time.

♦ a SetCalendars function that:

● represents the calendar data for the problem;

● declares the calendar objects for the problem; and

● creates the calendar intervals.

♦ a SetSetupMatrices function that:

● creates the matrix you need for the resource setup; and

● fills in the matrix with the time and cost for possible combinations of FROM_STATE and
TO_STATE values.

♦ a SetResources function that:

● declares the resource objects you need for the problem;

● sets the name for these resources;

● gets the setup matrix;

● associates the setup matrix with the resource; and

● sets the initial setup state of the resource.

♦ a SetMaterials function that:

● represents the materials data for the problem;

● declares the materials objects for the problem; and

● sets the name for these materials.

♦ a SetRecipes function that:

● represents the recipe data for the problem;

● declares the recipe objects for the problem; and

I B M I L O G P L A N T P O W E R O P S V 3 . 2326

● sets the name for these recipes.

♦ a SetActivities function that:

● represents the activity data for the problem;

● gets the recipe associated with the activity prototype;

● declares the activity prototypes for the problem;

● sets the name for these activities;

● sets the setup state required by the activity;

● sets the activity performed status; and

● creates an activity identifier for easier retrieval.

♦ a SetModes function that:

● represents the mode data for the activities in this problem;

● gets the identifier of the activity prototype;

● declares the mode objects for the problem;

● gets the resource associated with the mode;

● gets the calendar associated with the mode;

● sets the variable processing time for the mode;

● sets the name for the mode;

● sets a cost for the mode;

● sets an unperformed cost for the mode;

● sets the calendar for the mode;

● sets the maximum break duration for the mode;

● sets the shift breakable value for the mode; and

● assigns a resource constraint to themode to indicate the required resource, the required
capacity, and whether it is the primary resource for this activity in this mode.

♦ a SetMaterialProductions function that:

● gets the recipes;

● gets the materials associated with each recipe;

● gets the activity associated with each recipe; and

● links these three objects, assigning a default quantity to each recipe/materials/activity
object.

♦ a SetDemands function that:

I B M I L O G P L A N T P O W E R O P S V 3 . 2 327

● represents the demand data (and nondelivery costs) for the problem;

● gets the materials associated with each demand;

● declares the demand objects for the problem; and

● sets the name and nondelivery costs for these demands.

♦ a SetDueDates function that:

● represents the due date data (and earliness/tardiness variable costs) for the problem;

● declares the due date objects for the problem;

● gets the demand associated with each due date;

● gets the due date assigned to each demand; and

● assigns an earliness variable cost and a tardiness variable cost to the activity.

♦ a SetProductionOrders function that:

● represents the production order data for the problem;

● gets the recipe associated with each production order;

● declares the production order objects and names for the problem.

♦ a SetProductionToDemandArcs function that:

● gets the production orders;

● gets the demand associated with each production order;

● gets the quantity associated with each demand; and

● links these objects so that the production order responds to the demand.

♦ a SetCriterionWeights function that:

● sets the global weight of all criteria used in the problem.

♦ a main program as described previously.

I B M I L O G P L A N T P O W E R O P S V 3 . 2328

Build the C++ program

The following numbered steps “walk you through” the process of writing the C++ functions
described previously. Refer to the Plant PowerOps C++ Reference Manual for more
information about the methods described here.

In your C++ development environment, open the example file <YourInstallDirectory>/
examples/src/api05calendar.cpp and follow along in that sample as each step is discussed.

Step 1 Create the SetModel function
The first step creates a SetModel function:

1. Use the setName method to set the model name.

2. Use the setIntDateOrigin method to set the date origin (31*24*60*60, or 2678400
seconds since January 1, 2001, 00:00) for the problem.

3. Use the setTimeUnitmethod to set a time unit of minutes (60 seconds) for the problem.

4. Use the setStartMin method to set a start time of zero for the problem.

The completed SetModel function for this problem is as follows:

void SetModel(IloMSModel model)
{

model.setName("EXAMPLE05");

model.setIntDateOrigin(31*24*60*60);

model.setTimeUnit(60);

model.setStartMin(0);
}

Step 2 Create the SetCalendars function
This step creates a SetCalendars function for the problem to define periodic breaks.

1. Start by representing the incoming calendar data as an array.

2. Use the newCalendar method to create a calendar object for the problem.

3. Use setBreak, setEndOfShift, and other functions to declare the properties of the
calendar intervals.

The completed SetCalendars function for this problem is as follows:

void SetCalendars(IloMSModel model)
{
// Represent problem data.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 329

IloInt numberOfCalendars = 2;
const char* names [2] = {"PINE_CALENDAR", "TEAK_CALENDAR"};
IloInt numberOfCalendarIntervals = 8;
IloInt calendarIndices [8] = {0, 0, 0, 1, 1, 1, 1, 1};
IloInt startTimes [8] = { 0, 480, 960,

0, 480, 720, 780, 960};
IloInt endTimes [8] = {480, 960, 1440,

480, 720, 780, 960, 1440};
IloBool breaks [8] = {IloFalse, IloFalse, IloFalse,

IloFalse, IloFalse, IloTrue, IloFalse, IloFalse};

IloBool shiftEnds [8] = {IloTrue, IloTrue, IloTrue,
IloTrue, IloFalse, IloFalse, IloTrue, IloTrue};

IloNum productivities [8] = {0.875, 1.000, 0.875,
0.750, 1.000, 1.000, 1.000, 1.000};

// Create calendars.
for (IloInt c = 0; c < numberOfCalendars; c++) {
// Create the calendar.
IloMSCalendar calendar = model.newCalendar();
// Set the calendar name.
calendar.setName(names[c]);

}
// Create calendar intervals.
for (IloInt i = 0; i < numberOfCalendarIntervals; i++) {
// Get the calendar.
IloMSCalendar calendar = model.getCalendar(calendarIndices[i]);
// Create the calendar interval.
IloMSCalendarInterval calendarInterval =
model.newCalendarInterval(calendar, startTimes[i], endTimes[i]);

// Set its break indicator.
calendarInterval.setBreak(breaks[i]);
// Set its end of shift indicator.
calendarInterval.setEndOfShift(shiftEnds[i]);
// Set its productivity.
calendarInterval.setProductivity(productivities[i]);
// Set its periodicity and limit the period during which it applies.
calendarInterval.setPeriodicity(1440);
calendarInterval.setPeriodStartTime(0);
calendarInterval.setPeriodEndTime(7200);

}
}

Step 3 Create the SetSetupMatrices function
The next step creates a SetSetupMatrices function for this problem to define the possible
relationships between the setup states. You also use this table to define a SETUP_TIME
(duration, in TIME_UNITs, the first numeric argument) for the setup state and a SETUP_COST
(the second numeric argument) factor associated with it.

The completed SetSetupMatrices function for this problem is as follows:

void SetSetupMatrices(IloMSModel model)
{

I B M I L O G P L A N T P O W E R O P S V 3 . 2330

// Create the setup matrix.
IloMSSetupMatrix matrix = model.newSetupMatrix();
// Fill the values in the matrix.
matrix.setSetup("PINE", "PINE", 0, 0);
matrix.setSetup("PINE", "TEAK", 5, 50);
matrix.setSetup("TEAK", "PINE", 5, 50);
matrix.setSetup("TEAK", "TEAK", 0, 0);

}

Step 4 Create the SetResources function
The next step creates a SetResources function for this problem:

1. Start by using the newResourcemember function to create the resource. The argument
is Capacity, which in this example is 1.

2. Next, use the setName method to set a name for this problem’s resource.

3. Use the getSetupMatrix method to get the matrix. The argument is the matrix being
retrieved.

4. Use the setSetupMatrix method to associate the matrix with the resource.

5. Use the setInitialSetupState method to set the initial resource state.

The completed SetResources function for this problem is as follows:

void SetResources(IloMSModel model)
{
// Create the resource.
IloMSResource resource = model.newResource(1);
// Set the resource name.
resource.setName("DRYER");
// Get the setup matrix (the unique setup matrix in the problem).
IloMSSetupMatrix matrix = model.getSetupMatrix(0);
// Associate the setup matrix with the resource.
resource.setSetupMatrix(matrix);
// Set the initial setup of the resource to PINE.
resource.setInitialSetupState("PINE");

}

Step 5 Create the SetMaterials function
This step creates a SetMaterials function for the problem:

1. Start by representing the incoming materials data as an array.

2. In a for loop, use the newMaterial member function to create the material objects.

3. In the same for loop, use the setName method to assign a name from the data array to
each of the materials.

The completed SetMaterials function for this problem is as follows:

I B M I L O G P L A N T P O W E R O P S V 3 . 2 331

void SetMaterials(IloMSModel model)
{

IloInt numberOfMaterials = 2;
char* names [2] = {"PINE_CRADLE", "TEAK_CRADLE"};

for (IloInt i = 0; i < numberOfMaterials; i++) {

IloMSMaterial material = model.newMaterial();

material.setName(names[i]);
}

}

Step 6 Create the SetRecipes function
This step creates a SetRecipes function for the problem:

1. Start by representing the incoming recipe data as an array.

2. In a for loop, use the newRecipe member function to create the recipe objects.

3. In the same for loop, use the setName method to assign a name from the data array to
each of the recipes.

The completed SetRecipes function for this problem is as follows:

void SetRecipes(IloMSModel model)
{

IloInt numberOfRecipes = 2;
char* names [2] = {"PINE_RECIPE", "TEAK_RECIPE"};

for (IloInt i = 0; i < numberOfRecipes; i++) {

IloMSRecipe recipe = model.newRecipe();

recipe.setName(names[i]);
}

}

Step 7 Create the SetActivities function
You use this function to define two types of activities, or activity prototypes. You also associate
a RECIPE_ID, a SETUP_STATE, and a PERFORMED_STATUS with each activity prototype. You
also use the setIdentifiermethod to assign an identifier to the activity for easier retrieval
in the SetModes function. The following lines create a SetActivities function for this
problem:

1. Start by representing the incoming activity data as an array.

I B M I L O G P L A N T P O W E R O P S V 3 . 2332

2. In a for loop, use the getRecipemethod to get the recipe for each activity. The argument
is the recipe being retrieved.

3. In the same for loop, use the newActivityPrototype member function to create the
activity objects.

4. Still in the same for loop, use the setNamemethod to assign a name from the data array
to each of the activities.

5. Use the setSetupStatemethod to assign a setup state from the data array to the activity.

6. Use the setPerformedStatus method to assign a performed status from the data array
to each of the activities.

7. Finally, use the setIdentifier method to associate an identifier with each activity for
easier retrieval.

The completed SetActivities function for this problem is as follows:

void SetActivities(IloMSModel model)
{
// Represent problem data.
IloInt numberOfActivityPrototypes = 2;
const char* names [2] = {"PINE_DRYING", "TEAK_DRYING"};
const char* states[2] = {"PINE", "TEAK"};
IloMSPerformedStatus statuses [2];
statuses[0] = IloMSPerformedOrUnperformed;
statuses[1] = IloMSPerformed;
// Create activities.
for (IloInt i = 0; i < numberOfActivityPrototypes; i++) {
// Get the ith recipe.
IloMSRecipe recipe = model.getRecipe(i);
// Create a new activity.
IloMSActivity activity = model.newActivityPrototype(recipe);
// Set the activity name.
activity.setName(names[i]);
// Set the activity setup state.
activity.setSetupState(states[i]);
// Set the activity performance status.
activity.setPerformedStatus(statuses[i]);
// Set the activity identifier (for easier retrieval).
activity.setIdentifier(names[i]);

}
}

Step 8 Create the SetModes function
You link each activity prototype with its corresponding mode, and assign a COST and an
UNPERFORMED_COST to each mode. This step creates a SetModes function for this problem:

1. Start by representing the incoming mode data as an array.

2. In a for loop, use the activityIds method to retrieve the identifiers you assigned to
each activity prototype in the previous function.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 333

3. Use the getActivityPrototypeByIdentifiermethod to get each activity by identifier.

4. Use the getResourcemethod to get the resource object being associated with this mode.
The argument is the resource being retrieved.

5. Use the getCalendar method to get the calendar being associated with this mode. The
argument is the calendar being retrieved.

6. Still in the loop, use the newMode member function to create the mode object. Its
argument is the current activity in the loop.

7. Use the setVariableProcessingTime method to set the variable processing time for
this mode. The argument is the time, from the data array.

8. Use the setName method to assign a name to the mode.

9. Use the setVariableCost method to assign a cost to the mode.

10. Use the setUnperformedCost method to assign an unperformed cost to the activity in
this mode.

11. Use the setCalendar method to associate a calendar with the activity in this mode.

12. Use the setBreakDurationMaxmethod to set themaximum break duration for the activity
in this mode.

13. Use the setShiftBreakable method to define whether the activity can be interrupted
by a break in this mode. The argument is a boolean.

14. Use the newResourceConstraint member function to indicate the resource’s capacity
and whether it is the primary resource for this activity in this mode. The first argument
is the mode to which the resource is being assigned. The third argument is the
RequiredCapacity of the resource in this mode. The fourth argument is a boolean that
indicates whether the resource is a primary resource for the activity in this mode.

The completed SetModes function for this problem is as follows:

void SetModes(IloMSModel model)
{
// Represent problem data.
IloInt numberOfModes = 3;
const char* activityIds [3] = {"PINE_DRYING", "TEAK_DRYING", "TEAK_DRYING"}

;
IloInt processingTimes [3] = {70, 90, 60};
const char* names [3] = {"PINE_MODE00", "TEAK_MODE00", "TEAK_MODE01"};
IloInt modeCosts [3] = {100, 100, 200};
IloInt unperformedCosts [3] = {100, 0, 0};
IloInt calendarIndices [3] = {0, 1, 1};
// Create modes.
for (IloInt i = 0; i < numberOfModes; i++) {
// Get the activity identifier.
const char* id = activityIds[i];
// Get the activity.
IloMSActivity activity = model.getActivityPrototypeByIdentifier(id);
// Get the resource (the unique resource in the problem).
IloMSResource resource = model.getResource(0);
// Get the calendar.

I B M I L O G P L A N T P O W E R O P S V 3 . 2334

IloMSCalendar calendar = model.getCalendar(calendarIndices[i]);
// Create a new mode for the activity.
IloMSMode mode = model.newMode(activity);
// Set the variable processing time.
mode.setVariableProcessingTime(processingTimes[i]);
// Set the mode name.
mode.setName(names[i]);
// Set the processing cost.
mode.setVariableCost(modeCosts[i]);
// Set the unperformed cost.
mode.setUnperformedCost(unperformedCosts[i]);
// Set the calendar.
mode.setCalendar(calendar);
mode.setBreakDurationMax(0);
mode.setShiftBreakable(IloFalse);
// Create a new resource constraint.
model.newResourceConstraint(mode, resource, 1, IloTrue);

}
}

Step 9 Create the SetMaterialProductions function
The following lines create the function which links the recipe and the materials that it
produces with each of the activity prototypes. You also use this table to define a default
Quantity for the materials produced from this recipe.

1. To populate a for loop, use the getNumberOfRecipes method to retrieve the recipes
created in the SetRecipes function.

2. In the for loop, use the getRecipe method to get each recipe object being associated
with its materials. The argument is the recipe being retrieved.

3. In the same for loop, use the getMaterial method to get each material object being
associated with its corresponding recipe. The argument is the material retrieved.

4. Still in the for loop, use the getActivityPrototypemethod to get each activity prototype
being associated with its corresponding recipe and materials. As a result, due dates on
demands for the material will automatically be translated into due dates on the
appropriate activity instances. The argument is the activity prototype in the loop.

5. Finally, use the newMaterialProduction member function to state the quantity of
material that the activity creates.

The completed SetRecipeProducedMaterials function for this problem is as follows:

void SetMaterialProductions(IloMSModel model)
{
IloInt numberOfRecipes = model.getNumberOfRecipes();
for (IloInt i = 0; i < numberOfRecipes; i++) {
// Get the ith recipe.
IloMSRecipe recipe = model.getRecipe(i);
// Get the ith material.
IloMSMaterial material = model.getMaterial(i);
// Get the producing activity, i.e., the unique activity associated

I B M I L O G P L A N T P O W E R O P S V 3 . 2 335

// with the recipe.
IloMSActivity activity = recipe.getActivityPrototype(0);
// State that the given activity produces the given material.
model.newMaterialProduction(activity, material, 1.0);

}
}

Step 10 Create the SetDemands function
The Demand object associates a Demandwith its Materials. You can also specify the Quantity
specified by the customer demand. The following steps create a SetDemands function for
this problem:

1. Start by representing the incoming data as an array, including the nondelivery costs
for the demands.

2. In a for loop, use the getMaterialmethod to get each material object being associated
with a demand. The argument is the material being retrieved.

3. In the same for loop, use the newDemandmember function to create the demand object.
Its arguments are the current Material in the loop and a Quantity of 1.0 to indicate
that this demand is for a single unit of the Material.

4. Use the setName method to associate a name with the demand object. Values for these
names come from the name array.

5. The final instruction in the loop associates the nondelivery cost to the demand.

The completed SetDemands function for this problem is as follows:

void SetDemands(IloMSModel model)
{
// Represent problem data.
IloInt numberOfDemands = 10;
IloInt materialIndices [10] = {0, 0, 0,

1, 1, 1, 1,
1, 1, 1};

const char* names [10] = {"DEMAND00", "DEMAND01", "DEMAND02",
"DEMAND03", "DEMAND04", "DEMAND05", "DEMAND06",
"DEMAND07", "DEMAND08", "DEMAND09"};

IloNum nonDeliveryVariableCosts [10] = {30000, 30000, 30000,
70000, 70000, 70000, 70000,
70000, 70000, 70000};

// Create demands.
for (IloInt i = 0; i < numberOfDemands; i++) {
// Get the material.
IloMSMaterial material = model.getMaterial(materialIndices[i]);
// Create a new demand for one unit of the material.
IloMSDemand demand = model.newDemand(material, 1.0);
// Set the demand name.
demand.setName(names[i]);
demand.setNonDeliveryVariableCost(nonDeliveryVariableCosts[i]);

I B M I L O G P L A N T P O W E R O P S V 3 . 2336

}
}

Step 11 Create the SetDueDates function
The following steps create a SetDueDates function for this problem.

1. Start by representing the incoming due date data as an array, with earliness and tardiness
variable costs.

2. In a for loop, use the getDemand method to get each demand object being associated
with a due date. The argument is the demand being retrieved.

3. In the same for loop, use the newDueDatemember function to create the due date object.
Its arguments are the current Demand in the loop and the DueTime for that demand, both
from the data array.

4. Finally, still in the for loop, use the setEarlinessVariableCost method to associate
an earliness variable cost with the activity and the setTardinessVariableCostmethod
to give it a tardiness variable cost. Values for these costs come from the data array.

The completed SetDueDates function for this problem is as follows:

void SetDueDates(IloMSModel model)
{
// Represent problem data.
IloInt numberOfDemands = 10;
IloInt dueTimes [10] = {160, 680, 720,

80, 120, 280, 280,
560, 640, 800};

IloNum earlinessVariableCosts [10] = {1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0};

IloNum tardinessVariableCosts [10] = {3.0, 3.0, 3.0,
7.0, 7.0, 7.0, 7.0,
7.0, 7.0, 7.0};

// Create due dates.
for (IloInt i = 0; i < numberOfDemands; i++) {
// Get the ith demand.
IloMSDemand demand = model.getDemand(i);
// Create a new due date for the demand.
IloMSDueDate dd = model.newDueDate(demand, dueTimes[i]);
// Set its earliness and tardiness variable costs.
dd.setEarlinessVariableCost(earlinessVariableCosts[i]);
dd.setTardinessVariableCost(tardinessVariableCosts[i]);

}
}

Step 12 Create the SetProductionOrders function
This step creates the SetProductionOrders function:

1. Start by representing the incoming production order data as arrays.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 337

2. Retrieve the current batching solution.

3. In a for loop, use the getRecipemethod to get each recipe object being associated with
a production order. The argument is the recipe being retrieved.

4. In the same for loop, use the newProductionOrder member function to create the
production order object. Its argument is the current Recipe in the loop, from the data
array.

5. Finally, still in the for loop, use the setName method to associate a name with the
production order. Values for these names come from the data array.

The completed SetProductionOrders function for this problem is as follows:

void SetProductionOrders(IloMSModel model)
{
// Represent problem data.
IloInt numberOfOrders = 10;
IloInt recipeIndices [10] = {0, 0, 0,

1, 1, 1, 1,
1, 1, 1};

const char* names [10] = {"ORDER00", "ORDER01", "ORDER02",
"ORDER03", "ORDER04", "ORDER05", "ORDER06",
"ORDER07", "ORDER08", "ORDER09"};

// Create production orders.
IloMSBatchingSolution bs = model.getCurrentBatchingSolution();
for (IloInt i = 0; i < numberOfOrders; i++) {
// Get the recipe.
IloMSRecipe recipe = model.getRecipe(recipeIndices[i]);
// Create a new production order with the given recipe.
IloMSProductionOrder order = bs.newProductionOrder(recipe);
// Set the production order name.
order.setName(names[i]);

}
}

Step 13 Create the SetProductionToDemandArcs function
The following lines create the SetProductionToDemandArcs function, which links the
ProductionOrder with the Demand that drives it.

1. To populate a for loop, use the getNumberOfProductionOrders method to retrieve the
production orders created in the SetProductionOrders function.

2. In the for loop, use the getProductionOrder method to get each production order
object being associated with its demand. The argument is the production order being
retrieved.

3. In the same for loop, use the getDemand method to get each demand object being
associated with its corresponding production order.

4. Still in the for loop, use the getQuantity method to get the quantity being associated
with its corresponding production order and materials.

I B M I L O G P L A N T P O W E R O P S V 3 . 2338

5. Finally, use the newProdToDemandArcmember function to create the link. Its arguments
are the current Demand, order, and Quantity in the loop.

The completed SetProductionToDemandArcs function for this problem is as follows:

void SetProductionToDemandArcs(IloMSModel model)
{
IloInt numberOfOrders = model.getNumberOfProductionOrders();
for (IloInt i = 0; i < numberOfOrders; i++) {
// Get the ith order.
IloMSProductionOrder order = model.getProductionOrder(i);
// Get the ith demand.
IloMSDemand demand = model.getDemand(i);
// Get the quantity.
IloNum quantity = demand.getQuantity();
// State that the production order responds to the demand.
model.newProdToDemandArc(demand.getMaterial(), quantity, order, demand);

}
}

Step 14 Create the SetCriterionWeights function
The next step creates a SetCriterionWeights function for this problem. The setWeight
method is used to set the cost of the criteria for the problem.

The completed SetCriterionWeights function for this problem is as follows:

void SetCriterionWeights(IloMSModel model)
{
// Set the global weight of the total nondelivery criterion.
model.setWeight("TotalNonDeliveryCost", 1.0);
// Set the global weight of the total processing cost criterion.
model.setWeight("TotalProcessingCost", 1.0);
// Set the global weight of the total setup cost criterion.
model.setWeight("TotalSetupCost", 1.0);
// Set the global weight of the total earliness criterion.
model.setWeight("TotalEarlinessCost", 1.0);
// Set the global weight of the total tardiness criterion.
model.setWeight("TotalTardinessCost", 1.0);
// Set the global weight of the total unperformed cost criterion.
model.setWeight("TotalUnperformedCost", 1.0);

}

Step 15 Create the main program
To complete the program, create an empty IloMSModel object, load it using all the functions
you have just created, create a Plant PowerOps engine, and call the solve method. In the
end, a call to the model.end()method frees all the memory allocated in the given IloMSModel.

class Arguments {

I B M I L O G P L A N T P O W E R O P S V 3 . 2 339

public:
Arguments(int argc, char** argv);
~Arguments() {}
IloInt getTraceLevel() const {return _traceLevel;}

private:
IloInt _traceLevel;

};

Arguments::Arguments(int argc, char** argv)
:_traceLevel(1)
{
for (int argIndex = 1; argIndex < argc; argIndex++) {
if (!strcmp(argv[argIndex], "-trace")) {
argIndex++;
_traceLevel = atoi(argv[argIndex]);

}
}

}

int main(int argc, char** argv)
{
try {
Arguments args(argc, argv);
// Create an empty IloMSModel object.
IloMSModel model;
model.setTraceLevel(args.getTraceLevel());
// Set the manufacturing scheduling problem data.
SetModel(model);
SetCalendars(model);
SetSetupMatrices(model);
SetResources(model);
SetMaterials(model);
SetRecipes(model);
SetActivities(model);
SetModes(model);
SetMaterialProductions(model);
SetDemands(model);
SetDueDates(model);
SetProductionOrders(model);
SetProductionToDemandArcs(model);
SetCriterionWeights(model);
// Create a scheduling engine.
IloMSSchedulingEngine engine(model);
// Solve the problem, print the results, clean up the IloMSModel
// object, and exit.
if (engine.solve()) {
cout << "Best solution:" << endl;
cout << model.getCurrentSchedulingSolution() << endl;
model.end();
return 0;

}
else {
cout << "No solution" << endl;
model.end();

I B M I L O G P L A N T P O W E R O P S V 3 . 2340

return -1;
}

}
catch (IloMSException& exception) {
cout << exception.getMessage() << endl;
return -1;

}
catch (...) {
cout << "Unknown error." << endl;
return -1;

}
}

This is the final step in creating the CPP file for this example.

Step 16 Compile and run the program
Use the sample provided in InstallDirectory/examples/src/api05calendar.cpp in your
development environment to compile and run the program. Running this program provides
output similar to the following, which can be used to assess the generated plan.

* Start solving
*
* Time limit : 10
*
* no time tot_mode_cost tot_setup_cost tot_earliness tot_tardiness
tot_unperf_cost total
*
* ! 1 0.1 1000.00 200.00 209.00 10371.00

0.00 11780.00
* ! 2 0.1 1100.00 300.00 0.00 7964.00

0.00 9364.00
* ! 3 0.1 1300.00 150.00 718.00 3961.00

200.00 6329.00
* ! 4 0.2 1300.00 100.00 728.00 2211.00

200.00 4539.00
* ! 5 0.2 1400.00 250.00 355.00 847.00

100.00 2952.00
* 6 0.2 1400.00 250.00 355.00 847.00

100.00 2952.00
* 7 0.2 1400.00 150.00 1059.00 742.00

200.00 3551.00
* 8 0.3 1400.00 150.00 1059.00 742.00

200.00 3551.00
* ! 9 0.3 1500.00 150.00 445.00 707.00

100.00 2902.00
* 10 0.3 1500.00 150.00 445.00 707.00

100.00 2902.00
* ! 11 0.5 1400.00 150.00 335.00 777.00

100.00 2762.00
* 12 1.7 1400.00 150.00 335.00 777.00

100.00 2762.00
* 13 7.0 1400.00 150.00 335.00 777.00

I B M I L O G P L A N T P O W E R O P S V 3 . 2 341

100.00 2762.00
* 14 7.0 1400.00 150.00 335.00 777.00

100.00 2762.00
* 15 7.0 1400.00 150.00 335.00 777.00

100.00 2762.00
* 16 7.0 1400.00 150.00 335.00 777.00

100.00 2762.00
* ! 17 7.0 1400.00 150.00 223.00 777.00

100.00 2650.00
* 18 7.1 1400.00 150.00 223.00 777.00

100.00 2650.00
* 19 7.3 1400.00 150.00 335.00 777.00

100.00 2762.00
* 20 7.3 1400.00 150.00 215.00 848.00

100.00 2713.00
* 21 7.3 1400.00 150.00 215.00 848.00

100.00 2713.00
*
* Time used : 7.48
* Nb of solutions found : 21
*
Best solution:

DRYER start end mode mode/setup earliness

tardiness unperformed

ORDER03_TEAK_DRYING_setup 0 7 0 50 0.
00 0.00 0
ORDER03_TEAK_DRYING 7 87 1 200 0.
00 49.00 0
ORDER00_PINE_DRYING_setup 79 79 0 0 0.
00 0.00 0
ORDER00_PINE_DRYING 79 160 0 100 0.
00 0.00 100
ORDER04_TEAK_DRYING_setup 87 87 0 0 0.
00 0.00 0
ORDER04_TEAK_DRYING 87 167 1 200 0.
00 329.00 0
ORDER05_TEAK_DRYING_setup 167 167 0 0 0.
00 0.00 0
ORDER05_TEAK_DRYING 167 247 1 200 33.
00 0.00 0
ORDER06_TEAK_DRYING_setup 247 247 0 0 0.
00 0.00 0
ORDER06_TEAK_DRYING 247 327 1 200 0.
00 329.00 0
ORDER07_TEAK_DRYING_setup 360 360 0 0 0.
00 0.00 0
ORDER07_TEAK_DRYING 360 480 0 100 80.
00 0.00 0
ORDER08_TEAK_DRYING_setup 480 480 0 0 0.
00 0.00 0

I B M I L O G P L A N T P O W E R O P S V 3 . 2342

ORDER08_TEAK_DRYING 480 570 0 100 70.
00 0.00 0
ORDER01_PINE_DRYING_setup 570 575 0 50 0.
00 0.00 0
ORDER01_PINE_DRYING 575 645 0 100 35.
00 0.00 0
ORDER02_PINE_DRYING_setup 645 645 0 0 0.
00 0.00 0
ORDER02_PINE_DRYING 645 715 0 100 5.
00 0.00 0
ORDER09_TEAK_DRYING_setup 715 720 0 50 0.
00 0.00 0
ORDER09_TEAK_DRYING 720 810 0 100 0.
00 70.00 0

tot_mode_cost : 1400.00
tot_setup_cost : 150.00
tot_earliness : 223.00
tot_tardiness : 777.00
tot_unperf_cost : 100.00
total : 2650.00
--

I B M I L O G P L A N T P O W E R O P S V 3 . 2 343

I B M I L O G P L A N T P O W E R O P S V 3 . 2344

Using the PPO API for Java to model and
solve

The first section describes how to use Java™ to solve a problemmodel built with csv database
files. The second section describes how to use the Java API to model and solve a scheduling
problem that uses calendars.

In this section

Solving using csv files with Java
Describes how to use Java to solve your manufacturing problem data model.

Model and solve using the API for Java
This section discusses how to create the model for the calendar problem using the Plant
PowerOps API for Java™ . This is built around a problem that uses calendars, and includes
the modeling of setup activities, breaks, mode costs, unperformed activities, and productivity.
This problem is also modeled and solved using the C++ API in Using the PPO API for C++
to model and solve. The sample Java program described here is provided in
<PPOInstallDirectory>/examples/src/api05calendar.java in your development
environment.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 345

Solving using csv files with Java

A model built with csv tables can be solved using a Java™ program, as an alternative to
solving in the GUI. A sample Java program csvsch.java is provided (located at
<PPOInstallDirectory>/examples/src/csvsch.java) which you can use to optimize csv
data files.

Compile csvrun.java, and use the resulting executable csvsch.exe to start optimization
of a csv data file, such as CourseLesson1_basic.csv. Details regarding syntax on different
platforms can be found in <PPOInstallDirectory>/examples/src/csvsch.java

I B M I L O G P L A N T P O W E R O P S V 3 . 2346

Model and solve using the API for Java

This section discusses how to create the model for the calendar problem using the Plant
PowerOps API for Java™ . This is built around a problem that uses calendars, and includes
the modeling of setup activities, breaks, mode costs, unperformed activities, and productivity.
This problem is also modeled and solved using the C++ API in Using the PPO API for C++
to model and solve. The sample Java program described here is provided in
<PPOInstallDirectory>/examples/src/api05calendar.java in your development
environment.

In this section

Differences between C++ and Java
Describes a few differences between modeling in the PPO C++ API versus the Java API.

Define the program Java functions
Lists all the Java functions that must be populated in order to model the calendar problem.

Build the Java program
Creates the Java functions and the complete program to solve the calendar problem.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 347

Differences between C++ and Java

The Plant PowerOps API for Java™ is similar to the C++ API, so it is beneficial to read the
previous chapter on C++. However, there are a number of significant differences.

Entry Point
The whole code is wrapped into a class, followed by the first static function, called SetModel:

public class api05calendar
{

static void SetModel(IloMSModel model)
{
...
}

...
}

In the api05calendar.java program, all the global functions of the C++ example
(api05calendar.cpp) have been converted into static member functions of the api05calendar
class.

Import Vs. include
The include of the C++ header file is replaced by an import directive:

import ilog.plant.*;

Construction and destruction of model
The Java memory allocated is freed by the call to IloMSModel.end(). Omitting this call leads
to unrecoverable memory leaks.

In Java, the instantiation of a model is done using the static factory method IloMSModel.
newModel().

Exceptions
Exceptions thrown in C++ are instances of IloMSException; in Java these become
RuntimeException.

Primitive types
The C++ primitive types IloInt, IloNum, and char* exist in Java as int, double, and java.
lang.String.

I B M I L O G P L A N T P O W E R O P S V 3 . 2348

Enumerated types
The C++ enums are defined as classes in java, with the types being int. The name of the
constant is the name of the corresponding C++ enum value without the IloMS prefix,
proceeded by the class name. For example, IloMSCleaning in C++ becomes
IloMSCleaningStatus.Cleaning in Java.

For a full list of the classes available, see the Plant PowerOps Java Reference Manual.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 349

Define the program Java functions

The development of this example follows the general procedure described in Using the PPO
API for C++ to model and solve.

Every Plant PowerOps Java™ API program starts by importing the Plant PowerOps include
file as shown below:

import ilog.plant.*;

Next this sample program has these primary routines:

♦ a SetModel function that:

● sets the problem name, date origin, time unit and minimum start time.

♦ a SetCalendars function that:

● creates the calendar and calendar intervals for the problem

● sets the start times, end times, and periodicity of the calendar intervals, and

● declares the breaks, shifts, and productivity values for the calendar intervals.

♦ a SetSetupMatrices function that:

● creates the matrix you need for the resource setup, and

● fills in the matrix with the setup times and costs to go from one state to another.

♦ a SetResources function that:

● declares the resource objects and their names that are needed for the problem

● associates the setup matrix with the resource, and

● sets the initial setup state of the resource.

♦ a SetMaterials function that:

● represents the materials data for the problem

● declares the materials objects for the problem, and

● sets the name for these materials.

♦ a SetRecipes function that:

● represents the recipe data for the problem

● declares the recipe objects for the problem, and

● sets the name for these recipes.

♦ a SetActivities function that:

I B M I L O G P L A N T P O W E R O P S V 3 . 2350

● represents the activity data for the problem

● gets the recipe associated with the activity prototype

● declares the activity prototypes for the problem

● sets the name for these activities

● sets the setup state required by the activity

● sets the activity performed status, and

● creates an activity identifier for easier retrieval.

♦ a SetModes function that:

● represents the mode data for the activities in this problem

● gets the identifier of the activity prototype and then retrieves the activity prototype

● declares the mode objects for the problem

● gets the resource and calendar associated with the mode

● sets the name and variable processing time for the mode

● sets a fixed and an unperformed cost for the mode

● sets the calendar for the mode

● sets the maximum break duration and the shift breakable values for the mode, and

● assigns a resource constraint to themode to indicate the required resource, the required
capacity, and whether it is the primary resource for this activity in this mode.

♦ a SetMaterialProductions function that:

● gets the recipes

● gets the materials associated with each recipe

● gets the producing activity associated with each recipe, and

● assigns a production quantity to each recipe/materials/activity object.

♦ a SetDemands function that:

● represents the demand data for the problem

● gets the materials associated with each demand

● declares the demand objects for the problem, and

● sets the name for these demands.

♦ a SetDueDates function that:

● represents the due date data (and earliness/tardiness variable costs) for the problem

I B M I L O G P L A N T P O W E R O P S V 3 . 2 351

● declares the due date objects for the problem

● gets the demands and due dates associated with each other, and

● assigns an earliness variable cost and a tardiness variable cost to the activity.

♦ a SetProductionOrders function that:

● represents the production order data for the problem

● gets the recipe associated with each production order

● declares the production order objects for the problem, and

● sets the name for these production orders.

♦ a SetProductionToDemandArcs function that:

● gets the production orders

● gets the demand associated with each production order

● gets the quantity associated with each demand, and

● links these objects so that the production order responds to the demand.

♦ a SetCriterionWeights function that:

● sets the global weight of all criteria used in the problem

♦ a main program as described in the previous section.

I B M I L O G P L A N T P O W E R O P S V 3 . 2352

Build the Java program

The following numbered steps “walk you through” the process of building the Java™ functions
previously described. Refer to the Plant PowerOps Java Reference Manual for more
information about the methods described here.

In your Java development environment, open the example file InstallDirectory/examples/
src/api05calendar.java and follow along in that sample as each step is discussed.

Step 1 Create the SetModel function
The first step creates the SetModel function:

1. Use the setName method to set the model name.

2. Use the setIntDateOrigin method to set the date origin (31*24*60*60, or 2678400
seconds since January 1, 2001, 00:00) for the problem.

3. Use the setTimeUnitmethod to set a time unit of minutes (60 seconds) for the problem.

4. Use the setStartMin method to set a start time of zero for the problem.

The completed SetModel function for this problem is as follows:

static void SetModel(IloMSModel model)
{
model.setName("EXAMPLE05");
model.setIntDateOrigin(31*24*60*60);
model.setTimeUnit(60);
model.setStartMin(0);

}

Step 2 Create the SetCalendars function
This step creates a SetCalendars function for the problem, used to define the intervals
specifying breaks, shifts, and productivity.

1. Start by declaring the name and number of the calendars, the intervals, and setting up
the counter calendarIndices used later to assign the data to the intervals.

2. Enter the interval data; the start and end times, breaks, shifts, and productivity.

3. Use the newCalendar method to create a calendar object for the problem.

4. Use the newCalendarInterval method to create the calendar interval objects for the
problem.

5. Use setBreak to indicate if the interval is a break or not.

6. Use setEndOfShift to indicate if the interval is an end of shift or not.

7. Use setProductivity to set the productivity for the interval.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 353

8. Use setPeriodicity, setPeriodStartTime, setPeriodEndTime to set the overall time
period in which the intervals exist; this is the same for all intervals.

The completed SetCalendars function for this problem is as follows:

static void SetCalendars(IloMSModel model)
{
int numberOfCalendars = 2;
String names [] = {"PINE_CALENDAR", "TEAK_CALENDAR"};
int numberOfCalendarIntervals = 8;
int calendarIndices [] = {0, 0, 0, 1, 1, 1, 1, 1};
int startTimes [] = { 0, 480, 960,

0, 480, 720, 780, 960};
int endTimes [] = {480, 960, 1440,

480, 720, 780, 960, 1440};
boolean breaks [] = {false, false, false,

false, false, true, false, false};
boolean shiftEnds [] = {true, true, true,

true, false, false, true, true};
double productivities [] = {0.875, 1.000, 0.875,

0.750, 1.000, 1.000, 1.000, 1.000};
for (int c = 0; c < numberOfCalendars; c++)
{
IloMSCalendar calendar = model.newCalendar();
calendar.setName(names[c]);

}
for (int i = 0; i < numberOfCalendarIntervals; i++)
{
IloMSCalendar calendar = model.getCalendar(calendarIndices[i]);
IloMSCalendarInterval calendarInterval =
model.newCalendarInterval(calendar, startTimes[i], endTimes[i]);

calendarInterval.setBreak(breaks[i]);
calendarInterval.setEndOfShift(shiftEnds[i]);
calendarInterval.setProductivity(productivities[i]);
calendarInterval.setPeriodicity(1440);
calendarInterval.setPeriodStartTime(0);
calendarInterval.setPeriodEndTime(7200);

}
}

Step 3 Create the SetSetupMatrices function
The next step creates a SetSetupMatrices function for this problem to define the possible
relationships (including setup times and costs) between the setup states.

1. Start by using the newSetupMatrix member function to create the matrix.

2. Use the setSetup method to declare the "from" state and the "to" state, then the setup
time, setup cost, and whether a cleanup is required or not.

The completed SetSetupMatrices function for this problem is as follows:

static void SetSetupMatrices(IloMSModel model)

I B M I L O G P L A N T P O W E R O P S V 3 . 2354

{
IloMSSetupMatrix matrix = model.newSetupMatrix();
matrix.setSetup("PINE", "PINE", 0, 0, false);
matrix.setSetup("PINE", "TEAK", 5, 50, false);
matrix.setSetup("TEAK", "PINE", 5, 50, false);
matrix.setSetup("TEAK", "TEAK", 0, 0, false);

}

Step 4 Create the SetResources function
The next step creates a SetResources function for this problem:

1. Start by using the newResourcemember function to create the resource. The argument
is Capacity, which in this example is 1. This means the resource cannot be shared at
any one particular time.

2. Next, use the setName method to set a name for this problem’s resource.

3. Use the getSetupMatrix method to get the matrix. The argument is the matrix being
retrieved.

4. Use the setSetupMatrix method to associate the matrix with the resource. This
associates setup times and costs with the resource states.

5. Use the setInitialSetupState method to set an initial value of PINE (in other words,
the resource DRYER starts with an initial state read for drying PINE).

The completed SetResources function for this problem is as follows:

static void SetResources(IloMSModel model)
{

IloMSResource resource = model.newResource(1);

resource.setName("DRYER");

IloMSSetupMatrix matrix = model.getSetupMatrix(0);

resource.setSetupMatrix(matrix);

resource.setInitialSetupState("PINE");
}

Step 5 Create the SetMaterials function
This step creates a SetMaterials function for the problem:

1. Start by representing the incoming materials data as an array.

2. In a for loop, use the newMaterial member function to create the material objects.

3. In the same for loop, use the setName method to assign a name from the data array to
each of the materials.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 355

The completed SetMaterials function for this problem is as follows:

static void SetMaterials(IloMSModel model)
{

int numberOfMaterials = 2;
String names [] = {"PINE_CRADLE", "TEAK_CRADLE"};

for (int i = 0; i < numberOfMaterials; i++) {

IloMSMaterial material = model.newMaterial();

material.setName(names[i]);
}

}

Step 6 Create the SetRecipes function
This step creates a SetRecipes function for the problem:

1. Start by representing the incoming recipe data as an array.

2. In a for loop, use the newRecipe member function to create the recipe objects.

3. In the same for loop, use the setName method to assign a name from the data array to
each of the recipes.

The completed SetRecipes function for this problem is as follows:

static void SetRecipes(IloMSModel model)
{

int numberOfRecipes = 2;
String names [] = {"PINE_RECIPE", "TEAK_RECIPE"};

for (int i = 0; i < numberOfRecipes; i++) {

IloMSRecipe recipe = model.newRecipe();

recipe.setName(names[i]);
}

}

Step 7 Create the SetActivities function
This step creates the SetActivities function, which is used to define two types of activities,
or activity prototypes. You associate a recipe, a setup state, and a performed status with
each activity prototype.

1. Start by representing the incoming activity data as an array.

2. In a for loop, use the getRecipemethod to get the recipe for each activity. The argument
is the recipe being retrieved.

I B M I L O G P L A N T P O W E R O P S V 3 . 2356

3. In the same for loop, use the newActivityPrototype member function to create the
activity objects.

4. Still in the same for loop, use the setNamemethod to assign a name from the data array
to each of the activities.

5. Use the setSetupStatemethod to assign a setup state from the data array to the activity.

6. Use the setPerformedStatus method to assign a performed status from the data array
to each of the activities.

7. Finally, use the setIdentifier method to associate an identifier with each activity for
easier retrieval in the SetModes function.

The completed SetActivities function for this problem is as follows:

static void SetActivities(IloMSModel model)
{
int numberOfActivityPrototypes = 2;
String names [] = {"PINE_DRYING", "TEAK_DRYING"};
String states[] = {"PINE","TEAK"};
int statuses [] = { IloMSPerformedStatus.PerformedOrUnperformed,

IloMSPerformedStatus.Performed };
for (int i = 0; i < numberOfActivityPrototypes; i++) {

IloMSRecipe recipe = model.getRecipe(i);

IloMSActivity activity = model.newActivityPrototype(recipe);

activity.setName(names[i]);

activity.setSetupState(states[i]);

activity.setPerformedStatus(statuses[i]);

activity.setIdentifier(names[i]);
}

}

Step 8 Create the SetModes function
You must link each activity prototype with its corresponding mode, and assign a fixed and
variable cost to each mode. This step creates a SetModes function for this problem:

1. Start by setting the data in an array.

2. In a for loop, use the getActivityByIdentifiermethod to get each activity by identifier
(previously set in the SetActivities function).

3. Use the getResource method to get the resource object (to be) associated with this
mode. The argument is the resource being retrieved.

4. Use the getCalendarmethod to get the calendar (to be) associated with this mode. The
argument is the calendar being retrieved.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 357

5. Still in the loop, use the newMode member function to create the mode object. Its
arguments are the current Activity in the loop.

6. Use the setVariableProcessingTime method to set the variable processing time for
this mode. The argument is the time, from the data array.

7. Use the setName method to assign a name to the mode.

8. Use the setFixedCost method to assign a cost to the mode.

9. Use the setUnperformedCost method to assign an unperformed cost to the activity in
this mode.

10. Use the setCalendar method to associate a calendar with the activity in this mode.

11. Use the setBreakDurationMaxmethod to set themaximum break duration for the activity
in this mode.

12. Use the setShiftBreakable method to define whether the activity can be interrupted
by a break in this mode.

13. Use the newResourceConstraintmethod to indicate the resource’s capacity and whether
it is the primary resource for this activity in this mode. The first argument is the Mode
to which the resource is being assigned. The second argument is the Resource. The
third argument is the RequiredCapacity of the resource in this mode. The fourth
argument is a boolean that indicates whether the resource is a primary resource for the
activity in this mode.

The completed SetModes function for this problem is as follows:

static void SetModes(IloMSModel model)
{
int numberOfModes = 3;
String activityIds [] = {"PINE_DRYING", "TEAK_DRYING", "TEAK_DRYING"};
int processingTimes [] = {70, 90, 60};
String names [] = {"PINE_MODE00", "TEAK_MODE00", "TEAK_MODE01"};
double modeCosts [] = {100, 100, 200};
double unperformedCosts [] = {100, 0, 0};
int calendarIndices [] = {0, 1, 1};

for (int i = 0; i < numberOfModes; i++) {

String id = activityIds[i];

IloMSAbstractActivity activity = model.getActivityByIdentifier(id);

IloMSResource resource = model.getResource(0);

IloMSCalendar calendar = model.getCalendar(calendarIndices[i]);

IloMSMode mode = model.newMode(activity);

mode.setVariableProcessingTime(processingTimes[i]);

mode.setName(names[i]);

I B M I L O G P L A N T P O W E R O P S V 3 . 2358

mode.setFixedCost(modeCosts[i]);

mode.setUnperformedCost(unperformedCosts[i]);

mode.setCalendar(calendar);
mode.setBreakDurationMax(0);
mode.setShiftBreakable(false);

model.newResourceConstraint(mode, resource, 1, true);
}

}

Step 9 Create the SetMaterialProductions function
The following lines create the SetMaterialProductions function, which links the Recipe
and the Materials that it produces with each of the activity prototypes. You also use this
table to define a default Quantity for the materials produced from this recipe.

1. To populate a for loop, use the getNumberOfRecipes method to retrieve the recipes
created in the SetRecipes function.

2. In the for loop, use the getRecipe method to get each recipe object being associated
with its materials. The argument is the recipe being retrieved.

3. In the same for loop, use the getMaterial method to get each material object being
associated with its corresponding recipe. The argument is the material being retrieved.

4. Still in the for loop, use the getActivityPrototypemethod to get each activity prototype
being associated with its corresponding recipe and materials. As a result, due dates on
demands for the material will automatically be translated into due dates on the
appropriate activity instances.

5. Finally, use the newMaterialProduction member function to create the link between
activity, material, and amount produced.

The completed SetMaterialProductions function for this problem is as follows:

static void SetMaterialProductions(IloMSModel model)
{
int numberOfRecipes = model.getNumberOfRecipes();
for (int i = 0; i < numberOfRecipes; i++) {

IloMSRecipe recipe = model.getRecipe(i);

IloMSMaterial material = model.getMaterial(i);

IloMSActivity activity = recipe.getActivityPrototype(0);

model.newMaterialProduction(activity, material, 1.0);
}

}

I B M I L O G P L A N T P O W E R O P S V 3 . 2 359

Step 10 Create the SetDemands function
The Demand object associates a demand with its Material. You can also specify the Quantity
specified by the customer demand. The following steps create a SetDemands function for
this problem:

1. Start by representing the incoming data, including the nondelivery costs, as an array.

2. In a for loop, use the getMaterialmethod to get each material object being associated
with a demand. The argument is the material being retrieved.

3. In the same for loop, use the newDemandmember function to create the demand object.
Its arguments are the current Material in the loop and a Quantity of 1.0 to indicate
that this demand is for a single unit of the Material.

4. Use the setName method to associate a name with the demand object. Values for these
names come from the name array.

5. Close the for loop after setting the nondelivery variable costs.

The completed SetDemands function for this problem is as follows:

static void SetDemands(IloMSModel model)
{

int numberOfDemands = 10;
int materialIndices [] = {0, 0, 0,

1, 1, 1, 1,
1, 1, 1};

String names [] = {"DEMAND00", "DEMAND01", "DEMAND02",
"DEMAND03", "DEMAND04", "DEMAND05", "DEMAND06",
"DEMAND07", "DEMAND08", "DEMAND09"};

double nonDeliveryVariableCosts [] = {30000, 30000, 30000,
70000, 70000, 70000, 70000,
70000, 70000, 70000};

for (int i = 0; i < numberOfDemands; i++) {

IloMSMaterial material = model.getMaterial(materialIndices[i]);

IloMSDemand demand = model.newDemand(material, 1.0);

demand.setName(names[i]);
demand.setNonDeliveryVariableCost(nonDeliveryVariableCosts[i]);

}
}

Step 11 Create the SetDueDates function
The following steps create a SetDueDates function for this problem.

1. Start by representing the incoming due date data as an array.

I B M I L O G P L A N T P O W E R O P S V 3 . 2360

2. In a for loop, use the getDemand method to get each demand object being associated
with a due date. The argument is the demand being retrieved.

3. In the same for loop, use the newDueDatemember function to create the due date object.
Its arguments are the current Demand in the loop and the DueTime for that demand, both
from the data array.

4. Finally, still in the for loop, use the setEarlinessVariableCost method to associate
an earliness variable cost with the activity and the setTardinessVariableCostmethod
to give it a tardiness variable cost. Values for these costs come from the data array.

The completed SetDueDates function for this problem is as follows:

static void SetDueDates(IloMSModel model)
{

int numberOfDemands = 10;
int dueTimes [] = {160, 680, 720,

80, 120, 280, 280,
560, 640, 800};

double earlinessVariableCosts [] = {1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0};

double tardinessVariableCosts [] = {3.0, 3.0, 3.0,
7.0, 7.0, 7.0, 7.0,
7.0, 7.0, 7.0};

for (int i = 0; i < numberOfDemands; i++) {

IloMSDemand demand = model.getDemand(i);

IloMSDueDate dd = model.newDueDate(demand, dueTimes[i]);

dd.setEarlinessVariableCost(earlinessVariableCosts[i]);
dd.setTardinessVariableCost(tardinessVariableCosts[i]);

}
}

Step 12 Create the SetProductionOrders function
This step creates a SetProductionOrders function for this problem:

1. Start by representing the incoming production order data as arrays.

2. Retrieve the batching solution, then in a for loop, use the getRecipe method to get
each recipe object being associated with a production order. The argument is the recipe
being retrieved.

3. In the same for loop, use the newProductionOrder member function to create the
production order object. Its argument is the current Recipe in the loop, from the data
array.

4. Finally, still in the for loop, use the setName method to associate a name with the
production order. Values for these names come from the data array.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 361

The completed SetProductionOrders function for this problem is as follows:

static void SetProductionOrders(IloMSModel model)
{

int numberOfOrders = 10;
int recipeIndices [] = {0, 0, 0,

1, 1, 1, 1,
1, 1, 1};

String names [] = {"ORDER00", "ORDER01", "ORDER02",
"ORDER03", "ORDER04", "ORDER05", "ORDER06",
"ORDER07", "ORDER08", "ORDER09"};

IloMSBatchingSolution bs = model.getCurrentBatchingSolution();

for (int i = 0; i < numberOfOrders; i++) {

IloMSRecipe recipe = model.getRecipe(recipeIndices[i]);

IloMSProductionOrder order = bs.newProductionOrder(recipe);

order.setName(names[i]);
}

}

Step 13 Create the SetProductionToDemandArcs function
The following lines create the SetProductionOrderDemands function, which links the
ProductionOrder with the Demand that drives it.

1. To populate a for loop, use the getNumberOfProductionOrders method to retrieve the
production orders created in the SetProductionOrders function.

2. In the for loop, use the getProductionOrder method to get each production order
object being associated with its demand. The argument is the production order being
retrieved.

3. In the same for loop, use the getDemand method to get each demand object being
associated with its corresponding production order. The argument is the demand being
retrieved.

4. Still in the for loop, use the getQuantity method to get the quantity being associated
with its corresponding production order and materials.

5. Finally, use the newProdToDemandArcmethod to create a new material flow arc between
the production order order and the demand. The first and second arguments specify the
material and the quantity.

The completed SetProductionToDemandArcs function for this problem is as follows:

static void SetProductionToDemandArcs(IloMSModel model)
{
int numberOfOrders = model.getNumberOfProductionOrders();
for (int i = 0; i < numberOfOrders; i++) {

I B M I L O G P L A N T P O W E R O P S V 3 . 2362

IloMSProductionOrder order = model.getProductionOrder(i);

IloMSDemand demand = model.getDemand(i);

double quantity = demand.getQuantity();

model.newProdToDemandArc(demand.getMaterial(), quantity, order, demand)
;

}
}

Step 14 Create the SetCriterionWeights function
The next step creates a SetCriterionWeights function for this problem. The setWeight
method is used to sequentially set the weight of the five criteria in this problem to 1.0.

The completed SetCriterionWeights function for this problem is as follows:

static void SetCriterionWeights(IloMSModel model)
{
model.setWeight("TotalNonDeliveryCost", 1.0);
model.setWeight("TotalProcessingCost", 1.0);
model.setWeight("TotalSetupCost", 1.0);
model.setWeight("TotalEarlinessCost", 1.0);
model.setWeight("TotalTardinessCost", 1.0);
model.setWeight("TotalUnperformedCost", 1.0);

}

Step 15 Create the main program
To complete the program, create an empty IloMSModel object, load it with the functions you
have just created, create a Plant PowerOps engine, and call the solve method. In the end,
a call to the model.end() method frees all the memory allocated in the given IloMSModel.

public static final void main(String[] args)
{

IloMSModel model = IloMSModel.newModel();

SetModel(model);
SetCalendars(model);
SetSetupMatrices(model);
SetResources(model);
SetMaterials(model);
SetRecipes(model);
SetActivities(model);
SetModes(model);
SetMaterialProductions(model);
SetDemands(model);

I B M I L O G P L A N T P O W E R O P S V 3 . 2 363

SetDueDates(model);
SetProductionOrders(model);
SetProductionToDemandArcs(model);
SetCriterionWeights(model);

IloMSSchedulingEngine engine = IloMSSchedulingEngine.newSchedulingEngine
(model);

engine.solve();

model.end();
}

}

This is the final step in creating the Java file for this example. Use the sample provided in
InstallDirectory/examples/src/api05calendar.java in your development environment to
complete the next steps and solve the problem.

Step 16 Compile and run the program
Compile and run the program to receive output similar to the following.

* Start solving
*
* Time limit : 10
*
* no time tot_mode_cost tot_setup_cost tot_earliness tot_tardiness
tot_unperf_cost total
*
* ! 1 0.1 1000.00 200.00 209.00 10371.00

0.00 11780.00
* ! 2 0.1 1100.00 300.00 0.00 7964.00

0.00 9364.00
* ! 3 0.1 1300.00 150.00 718.00 3961.00

200.00 6329.00
* ! 4 0.2 1300.00 100.00 728.00 2211.00

200.00 4539.00
* ! 5 0.2 1400.00 250.00 355.00 847.00

100.00 2952.00
* 6 0.2 1400.00 250.00 355.00 847.00

100.00 2952.00
* 7 0.2 1400.00 150.00 1059.00 742.00

200.00 3551.00
* 8 0.3 1400.00 150.00 1059.00 742.00

200.00 3551.00
* ! 9 0.3 1500.00 150.00 445.00 707.00

100.00 2902.00
* 10 0.3 1500.00 150.00 445.00 707.00

100.00 2902.00
* ! 11 0.5 1400.00 150.00 335.00 777.00

100.00 2762.00
* 12 1.7 1400.00 150.00 335.00 777.00

100.00 2762.00
* 13 7.0 1400.00 150.00 335.00 777.00

I B M I L O G P L A N T P O W E R O P S V 3 . 2364

100.00 2762.00
* 14 7.0 1400.00 150.00 335.00 777.00

100.00 2762.00
* 15 7.0 1400.00 150.00 335.00 777.00

100.00 2762.00
* 16 7.0 1400.00 150.00 335.00 777.00

100.00 2762.00
* ! 17 7.0 1400.00 150.00 223.00 777.00

100.00 2650.00
* 18 7.1 1400.00 150.00 223.00 777.00

100.00 2650.00
* 19 7.3 1400.00 150.00 335.00 777.00

100.00 2762.00
* 20 7.3 1400.00 150.00 215.00 848.00

100.00 2713.00
* 21 7.3 1400.00 150.00 215.00 848.00

100.00 2713.00
*
* Time used : 7.48
* Nb of solutions found : 21
*
Best solution:

DRYER start end mode mode/setup earliness

tardiness unperformed

ORDER03_TEAK_DRYING_setup 0 7 0 50 0.
00 0.00 0
ORDER03_TEAK_DRYING 7 87 1 200 0.
00 49.00 0
ORDER00_PINE_DRYING_setup 79 79 0 0 0.
00 0.00 0
ORDER00_PINE_DRYING 79 160 0 100 0.
00 0.00 100
ORDER04_TEAK_DRYING_setup 87 87 0 0 0.
00 0.00 0
ORDER04_TEAK_DRYING 87 167 1 200 0.
00 329.00 0
ORDER05_TEAK_DRYING_setup 167 167 0 0 0.
00 0.00 0
ORDER05_TEAK_DRYING 167 247 1 200 33.
00 0.00 0
ORDER06_TEAK_DRYING_setup 247 247 0 0 0.
00 0.00 0
ORDER06_TEAK_DRYING 247 327 1 200 0.
00 329.00 0
ORDER07_TEAK_DRYING_setup 360 360 0 0 0.
00 0.00 0
ORDER07_TEAK_DRYING 360 480 0 100 80.
00 0.00 0
ORDER08_TEAK_DRYING_setup 480 480 0 0 0.
00 0.00 0

I B M I L O G P L A N T P O W E R O P S V 3 . 2 365

ORDER08_TEAK_DRYING 480 570 0 100 70.
00 0.00 0
ORDER01_PINE_DRYING_setup 570 575 0 50 0.
00 0.00 0
ORDER01_PINE_DRYING 575 645 0 100 35.
00 0.00 0
ORDER02_PINE_DRYING_setup 645 645 0 0 0.
00 0.00 0
ORDER02_PINE_DRYING 645 715 0 100 5.
00 0.00 0
ORDER09_TEAK_DRYING_setup 715 720 0 50 0.
00 0.00 0
ORDER09_TEAK_DRYING 720 810 0 100 0.
00 70.00 0

tot_mode_cost : 1400.00
tot_setup_cost : 150.00
tot_earliness : 223.00
tot_tardiness : 777.00
tot_unperf_cost : 100.00
total : 2650.00

I B M I L O G P L A N T P O W E R O P S V 3 . 2366

Modeling a dairy plant with PPO Java API

This section models the manufacturing process of a hypothetical dairy plant, using the PPO
Java™ API. First the actual manufacturing process is examined; from this the appropriate
PPO model is defined and implemented in the Java API. Only some of the more interesting
aspects of modeling this problem are described here, but the complete code example is
located at <PPOInstallDirectory>\examples\src\dairyplant.java.

In this section

Overview
Lists some of the requirements to build a successful model of this plant.

The fresh dairy plant and its yogurt process
A description of the plant, process, and product.

Building the overall model structure
First, let's model some of the “big picture” aspects of the problem, such as the products,
demands, stock, and other general characteristics such as the units of time and measure.
The purpose of this section is to describe most of the functions necessary to create the
finished products portion of the model.

Modeling the manufacturing process
With finished products code described and the overall model defined, we next focus on
analyzing and modeling the actual process details of manufacturing the yogurt. The major
tasks include representing the process equipment and defining the recipe boundaries.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 367

Overview

The manufacture of yogurt at a fresh dairy plant is a complex process. To build a successful
model of this process means:

♦ Modeling equipment and connections,

♦ Determining the boundaries of the recipes,

♦ Deciding which materials to model (or not) and how to express the unit of measures,

♦ Expressing the constraints for each recipe,

♦ Dealing with different cleanup strategies,

♦ Define the setup matrix to obtain our preferred sequence,

♦ Deal with time zone and daylight savings time issues.

This section describes how to build such a model. The full code example itself can be found
at <PPOInstallDirectory>\examples\src\dairyplant.java.

I B M I L O G P L A N T P O W E R O P S V 3 . 2368

The fresh dairy plant and its yogurt process

First we must consider what should be the scope of the problem: The entire plant or should
we create a partition between processes? Are there shared resources between production
processes or not? A typical dairy plant might manufacture yogurts, drinks and cheeses. We
make the assumption here that these different processes are independent and so decide to
focus on the yogurt process. Otherwise, we must model the different processes together or
use block planning (reserving Monday and Tuesday for yogurts, Wednesday for cheese and
so forth, using calendars).

The following diagram displays the layout of the yogurt process.

In process industries, a typical plant has two different sections:

♦ A “process part” that creates the bulk of the semi-finished products

♦ A “filling/packaging” part that creates the finished products.

The diagram above represents the process part, from preparation tanks to filling lines 1
through 4. After a preparation of one hour involving milk, cream and powder in a tank, the
prepared batch is pasteurized in a pasteurizer (called a pasto) and flows into one fermentation
tank. After fermenting for 5 or 8 hours (depending on the bacteria) the fermented milk is
cooled; there are two coolers, and the one used depends upon which fermentation tank was
used. After cooling it is moved to a storage tank. The cold yogurt base cannot be stored for
more than 24 hours before being packaged.

The yogurt base stored in the tanks is a semi-finished intermediate product that is fed at
differing throughputs to continuous machines in the filling line. At the filling line, the flavor
is added and mixed in at the last moment before packaging. (The fruit tank and mixer are

I B M I L O G P L A N T P O W E R O P S V 3 . 2 369

not specifically represented on the diagram.) The final product is then stored on pallets in
a warehouse with limited capacity.

From one semi-finished intermediate, several different finished products can bemanufactured.
These finished products (also called SKU for Stock Keeping Units) have different flavors
and packaging. Finished products are organized into families depending on the type of
semi-finished intermediate, or white mass, that they use.

Traditional yogurts need five hours of fermentation time and use two bacteria: Lactobacillus
bulgaricus and Streptococcus thermophilus. The semi-finished intermediate product using
only these bacteria is called “Bulgaricus White Mass”. There is also a fat-free white mass
version called “Bulgaricus Light White Mass”. A third bacterium called Bifidus is used in
making probiotic yogurts, and requires eight hours of fermentation. The corresponding
intermediate is called “Bifidus White Mass.” To each of these three types of white mass, up
to four types of flavor are available to create the final SKU.

So the finished products are grouped into three families:

♦ Those requiring Bulgaricus

♦ Those requiring Bulgaricus Light

♦ Those requiring Bifidus

And each SKU has a flavor:

♦ plain or natural,

♦ lemon,

♦ strawberry,

♦ kiwi (an allergen)

The preferred sequence within the filling and packaging lines is to fully process one family
at a time, from Bulgaricus Light to Bulgaricus to Bifidus. Within each family, the preferred
flavor sequence is from natural to lemon to strawberry to kiwi. Changing flavor takes 10
minutes of setup time, and changing family takes five minutes.

There are numerous cleaning requirements, all of which are handled by a cleaning in place
(CIP) activity. A CIP is required when transitioning from an allergenic product to a
non-allergenic product (for example, from kiwi of one family to natural flavor in the next
family). There are industry safety requirements to clean the filling line at least every 24
hours. The pasto and the coolers must be cleaned every three batches. The tanks must be
cleaned at least every 48 hours.

A CIP takes three hours, which includes any associated product and machine setup or
changeover times. A cleaning station is used to clean the manufacturing equipment. Its role
is to provide water, acid and soda, but it can clean only five pieces of equipment in parallel.
Also, a “CIP line” is used to bring water, acid and soda from the station to the equipment
to be cleaned. One CIP line is assigned to one piece of equipment, while other lines are
shared. A CIP line cannot be used for cleaning two pieces of equipment in parallel.

The CIP lines are considered to be one of the major bottlenecks in the plant; also, changing
fruit flavors takes time and cannot be neglected. However, the fruit, milk, and other raw
materials and intermediates (such as pasteurized or fermented milk) are always available
in sufficient quantities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2370

The finished products are stored in a cold warehouse near the plant. The physical capacity
of this cold warehouse is 3,000 pallets.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 371

I B M I L O G P L A N T P O W E R O P S V 3 . 2372

Building the overall model structure

First, let's model some of the “big picture” aspects of the problem, such as the products,
demands, stock, and other general characteristics such as the units of time and measure.
The purpose of this section is to describe most of the functions necessary to create the
finished products portion of the model.

In this section

Overview
Defining the model and the filling and packaging.

Setting up the model
Importing the PPO objects, instantiating the model, setting the time zone and date origin.

Defining the time buckets
Time buckets are used for planning and batching.

Defining semi-finished intermediate products
You do not need to define all intermediate products.

Defining finished products
The final consumer products are grouped by family.

Days of supply
Modeling a requirement to have sufficient stock available for demand.

Resources for finished products
The filling line and the CIP resource.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 373

Defining the units of measure
Pallets, boxes, tons, and conversion.

Modeling a warehouse as a storage unit
Define all storable materials.

Defining the production recipes for the finished products
A recipe is necessary to create every product.

Defining cleanup recipes
Cleanups are created via recipes.

Defining initial stock
Stock elements have a size and an age.

Defining the demand
Demands should have either a revenue or nondelivery cost.

Dealing with setups and obtaining the preferred sequence
Each finished product has two main features: the semi-finished intermediate it requires and
the flavor it contains

Defining the costs and the weights
Costs and weights guide the creation of the solution.

I B M I L O G P L A N T P O W E R O P S V 3 . 2374

Overview

The two parts of this plant provide two different modeling challenges. In the process section,
we must decide how to model different types of processes and tanks, and figure out how to
connect equipment so that material flows correctly between tanks and within time constraints.
In the filling and packaging section, there are numerous machine setups and changeovers
to control in order to create all the possible final products; we must determine exactly how
and what to manufacture. There are also cleaning requirements to model in both sections
of the facility.

After first defining some overall characteristics of the model, we’ll then examine the filling
and packaging section, since that part drives the creation, demand, and timing of the
manufacture of the final deliverable products.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 375

Setting up the model

All PPO modeling objects can be accessed in Java™ from the ilog.plant package. So, first
we import them:

import ilog.plant.*;

The model is instantiated using the static method newModel:

IloMSModel model = IloMSModel.newModel();

The IloMSModel instance implements a factory. All the other objects are obtained from this
instance by calling newXYZ methods.

We must define the time granularity. We want to express times with a one-minute granularity
so we define a time unit as 60 seconds:

model.setTimeUnit(60);

We also define the time zone, the date origin (or date “zero” for the problem) and the earliest
start times for all activities of the model relative to this date origin:

import java.util.*;

String timeZoneID = “Europe/Paris”;
TimeZone timeZone = TimeZone.getTimeZone(timeZoneID);
Calendar calendar = new GregorianCalendar(timeZone);
Calendar.setTime(2006,9,28);// October 28 2006
java.util.Date origin = calendar.getTime();
model.setTimeZone(timeZoneID);
model.setDateOrigin(origin);
model.setStartMin(0); // 0 time units after the origin

I B M I L O G P L A N T P O W E R O P S V 3 . 2376

Defining the time buckets

In order to use the planning module of PPO, we need to define time buckets. Since the plant
operates in terms of stock at the end of day, we will use daily buckets. We want to do
integrated planning and scheduling to cover seven days.

Note that daylight savings time occurs early on the morning of Sunday October 29th. This
presents an unusual event, as 3:00 a.m. occurs twice on this particular 25-hour day. We
cannot therefore declare that each day’s duration is 24*60 = 1440 minutes, so we use the
Java™ calendar facilities.

import java.text.DateFormat;

DateFormat df = DateFormat.getDateInstance(DateFormat.MEDIUM, Locale.FRANCE);
IloMSBucketSequence dailyBucketSequence = model.newBucketSequence();
for(int d=0; d<7; ++d) {
Date startBucket = calendar.getTime();
int start = model.convertDateToTime(startBucket);
calendar.add(Calendar.DAY_OF_YEAR,1);
Date endBucket = calendar.getTime();
int end = model.convertDateToTime(endBucket);
IloMSBucket bucket = model.newBucket(start,end,dailyBucketSequence);
bucket.setName(df.format(startBucket));

}
model.setOptimizedBucketSequence(dailyBucketSequence);
model.setDisplayedBucketSequence(dailyBucketSequence);

In addition to daily time buckets, it is useful to have weekly time buckets available (for
example, for reviewing operational data and future planning). So we define a
weeklyBucketSequence having a start time equal to the start of the first day and end time
equal to end of the last day.

IloMSBucketSequence weeklyBucketSequence = model.newBucketSequence();
weeklyBucketSequence.setName("Weekly bucket sequence");
int start;
int end;
start = (dailyBucketSequence.getBucket(0)).getStartTime();
end = (dailyBucketSequence.getBucket(6)).getEndTime();
IloMSBucket weeklyBucket = model.newBucket(start, end, weeklyBucketSequence);
weeklyBucket.setName("Weekly bucket");

I B M I L O G P L A N T P O W E R O P S V 3 . 2 377

Defining semi-finished intermediate products

The finished products require (or consume) two main materials: flavor and semi-finished
intermediates. As mentioned earlier, the fruit flavor is always available in sufficient quantities
so we don't need to model it. However, the semi-finished intermediate is one of three types
of processed milk, or white mass, and this material is itself the result of a manufacturing
process which may have production limits. So we model the three white mass products in
order to track availability. The SetMaterialsSFP function assigns the three intermediates
to one material family (White Mass), defined with the newMaterialFamily method. The
individual materials are created with the newMaterial method. Shelf life and color are set.

static void SetMaterialsSFP(IloMSModel model)
{
//Dealing with semi-finished intermediate products
String namesSFP[] = { "Bifidus White Mass", "Bulgaricus White Mass",

"Bulgaricus Light White Mass" };
String identifiersSFP[] = { "bifidus", "bulgaricus", "bulgaricusLight" };

int shelfLifeSFP[] = { 30 * 24 * 60, 30 * 24 * 60, 30 * 24 * 60 }; // 30
days of shelf life

String colorsSFP[] = { "wheat", "lightgreen", "paleturquoise" };

//Families of products and colors
IloMSMaterialFamily familySFIProduct = model.newMaterialFamily();
familySFIProduct.setName("White Mass");
familySFIProduct.setType("product type");

for (int i = 0; i < identifiersSFP.length; i++)
{
IloMSMaterial mat = model.newMaterial();
mat.setIdentifier(identifiersSFP[i]);
mat.setName(namesSFP[i]);
mat.setShelfLife(shelfLifeSFP[i]);
mat.setColor(colorsSFP[i]);
familySFIProduct.add(mat);

}
}

The rationale for defining only these three semi-finished white mass products, and not all
intermediates such as prepared or fermented milk, is discussed further in Modeling the
intermediate materials and process activities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2378

Defining finished products

The final products are defined in the function SetMaterialsFPwhich is similar to the function
for the semi-finished products. However since each member of the white mass family has
four flavors, we end up with 12 final products. For easier sorting in the GUI we group the
final products into three families corresponding to white mass.

String familyNamesFP[] = { "Bifidus Finished Products", "Bulgaricus Finished
Products", ... };
String namesFP[][] = { {"Bifidus lemon", "Bifidus plain", "Bifidus strawberry",
"Bifidus kiwi" },

{"Bulgaricus lemon", ... },
{ "bulgaricusLightLemon", ... }}

This function also sets identifiersFP, used elsewhere in the code to identify the finished
product.

The finished products have a maturity period to ensure that products are not shipped early,
and like the intermediates, a shelf life period. The colors are set by flavor, not family type.
Available colors are the X11 color set, in lowercase with no white space. A complete list of
X11 colors is available from various internet sites.

int maturityFP[] = { 24 * 60, 24 * 60, 24 * 60 }; // one day of hard quarantine
int shelfLifeFP[] = { 30 * 24 * 60, 30 * 24 * 60, 30 * 24 * 60 }; // 30 days
of shelf life
String colorsFP[] = { "yellow", "antiquewhite", "purple", "green" };

These characteristics are set to eachmaterial in a loop as done for the semi-finished products,
although here two for loops are necessary to populate the material family and the four
materials within each family.

Additionally with the finished products we want to make sure we always have inventory on
hand to meed demand; so we need to define a days of supply target minimum and maximum.
This stock coverage is further discussed in the next section Days of supply. Following is the
code excerpt from the material for loop; the maturity is pulled from the array created
previously, and the days of supply for all products is between two to five and a half days.

mat.setMaturity(maturityFP[i]); // one day of hard quarantine
...
//Days of supply
mat.setDaysOfSupplyTargetMin(2.0);
mat.setDaysOfSupplyTargetMax(5.5);

The rest of the function SetMaterialsFP is similar to the function described in Defining
semi-finished intermediate products. Please see the code example for full details.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 379

Days of supply

The supply chain imposes the requirement to have two days supply of each final product.
That is, every night the stock of products must be sufficient to cover two days of demand.
We also need two different expiration dates per week; in other words, two productions per
week. There is a simple way to define the minimum and maximum stock in PPO using the
minimum and maximum days of supply for each SKU. In this case the minimum is 2 and the
maximum is 2 + 7/2 = 5.5. The ideal inventory level with two productions a week follows
this figure.

We coded these targets in the previous sectionDefining finished products. Note that these
bounds on the inventory are soft constraints. We will see later how to penalize solutions
when the inventory goes below or above these bands. PPO allows creating arbitrarily complex
piecewise-linear functions of quantity for inventory excess and deficit. Using days of supply
is a short-cut. Also, you can create a stock corridor based on industry-standard service level
types, and even consider variability in demand. This is not demonstrated here, but seeUsing
service levels, lead time, and demand variability to manage stock levels for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2380

Resources for finished products

The filling lines are from the function SetResourcesFP. This function sets names and
identifiers of course, but also sets capacity, rank (used to place the resource in the Gantt
Diagram of the GUI) and the category (used in the Plant Layout view). Also the filling lines
are grouped into one super resource to lighten the planning problem. Here's the entire
function:

static void SetResourcesFP(IloMSModel model)
{
String namesResFP[] = { "Line 1", "Line 2", "Line 3", "Line 4" };
String identifiersResFP[] = { "line1", "line2", "line3", "line4" };

IloMSResource lines = model.newResource(identifiersResFP.length);
lines.setIdentifier("lines");
lines.setName("Lines");
lines.setRank(1000);

for (int i = 0; i < identifiersResFP.length; i++)
{
IloMSResource res = model.newResource(1);
res.setRank(1000 + i + 1);
res.setIdentifier(identifiersResFP[i]);
res.setName(namesResFP[i]);
res.setSuperResource(lines);
res.setCategory("packer"); // For display in Plant layout view with

appropriate symbol
}

}

In the function SetResourcesCleaning, the CIP station is represented by a resource of
capacity five. The CIP lines are grouped into a super resource to lighten the planning problem.

IloMSResource cipStation = model.newResource(5);
...

IloMSResource cipLines = model.newResource(6);
...

for (int i = 0; i < 6; i++)
{
IloMSResource cipLine = model.newResource(1);
cipLine.setIdentifier("cipLine" + (i + 1));
cipLine.setName("CIP Line " + (i + 1));
//Grouping resources
cipLine.setSuperResource(cipLines);

}

Many more resources are required for the intermediate products; this is covered in later
sections once decisions are made regarding how much of the manufacturing process to
model.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 381

Defining the units of measure

The production of one pallet of Bulgaricus Lemon requires one-half metric ton, or 500 kg,
of Bulgaricus White Mass. Depending on the filling line, the throughput ranges from 3,000
to 6,000 kg/h.

To prevent numerical problems we avoid using very different units for production and
consumption. We will use the pallet as the primary unit for the finished products, and the
ton as primary unit for white masses. To define the units of measure we use the IloMSUnit
class. Two types of units of measure must be distinguished, and we do this in the SetUnitsSFP
function. One unit has a dimension that can be converted into the metric system:

IloMSUnit ton = model.newUnit();
ton.setName(“ton”);
ton.setDimension(IloMSDimension.DimensionMass);
ton.setStandardConversion(0.001); // conversion from standard unit (kg)

The other type converts depending upon the material:

IloMSUnit piece = model.newUnit();
piece.setName(“piece”);
IloMSUnit box = model.newUnit();
box.setName(“box”);
box.setCheckingTolerance(1.0); // the default is 0.01
IloMSUnit pallet = model.newUnit();
pallet.setName(“pallet”);

To filter out insignificant violations from appearing in the GUI violation panel, we use the
setCheckingTolerance API on the display unit. It has no influence on computation. Here it
was used to have a checker warning about a mismatch in quantity only when it is greater
than one box.

For each material we must define the primary unit (in which all computation takes place)
and any secondary units used for display in the GUI. By default, this is the primary unit but
we can instead use a secondary unit if a conversion to the primary is provided. In this example
a pallet of final product is composed of 48 boxes, there are 54 pieces per box, and so 2592
pieces per pallet.

for (int i = 0; i < identifiersFP.length; i++)
{
IloMSMaterial mat = model.getMaterialByIdentifier(identifiersFP[i]);
mat.setPrimaryUnit(pallet);
mat.addSecondaryUnit(box, 48, 1); //48 boxes/pallet
mat.addSecondaryUnit(piece, 2592, 1); //54 pieces/box=2592 pieces/pallet

mat.setDisplayUnit(pallet);
}

I B M I L O G P L A N T P O W E R O P S V 3 . 2382

Modeling a warehouse as a storage unit

The finished products are stored in a cold warehouse near the plant. The physical capacity
of this cold warehouse is 3,000 pallets.

We create a storage unit able to store all the finished products in the SetStorageUnitsFP
function.

IloMSStorageUnit warehouse = model.newStorageUnit();
...
warehouse.setQuantityMax(3000);

Within a loop the materials are added as storable materials in the warehouse.

IloMSMaterial mat = model.getMaterialByIdentifier(identifiersFP[i]);
warehouse.addStorableMaterial(mat);

I B M I L O G P L A N T P O W E R O P S V 3 . 2 383

Defining the production recipes for the finished products

A recipe is a mold or template of production orders. It defines a canonical production order
that is multiplied by the batch size when instantiating the production order. In this section
we'll deal with the finished products alone; the intermediate recipes are described in several
sections of Modeling the manufacturing process.

Production of final products is a unique activity that continuously consumes semi-finished
intermediate and continuously produces the finished product. The speed depends on the
filling line used. First, in the SetRecipesFP function we create a recipe for every final product
with minimal and maximal batch sizes.

String recipesIdentifiersFP[] = { "BifidusLRecipe", "BifidusPRecipe", ...
.. , "BulgaricusLightKRecipe"};

String recipesNamesFP[] = { "Bifidus lemon", "Bifidus plain", ,
"Bulgaricus Light kiwi" };

for (int i = 0; i < recipesIdentifiersFP.length; i++)
{
IloMSRecipe recipe = model.newRecipe();
recipe.setIdentifier(recipesIdentifiersFP[i]);
recipe.setName(recipesNamesFP[i]);
recipe.setBatchSizeMin(10); // To avoid producing fewer than 10 pallets/

production order
recipe.setBatchSizeMax(50); // Maximal production of a production order

}

This is followed later by the function SetProductionsFP where we express the fact that the
activity continuously produces pallets of product that are directly stored in the warehouse.
A production order of batch size one produces one pallet.

IloMSMaterialProduction production = model.newMaterialProduction(mode,
material, 1);

production.setName("Production of " + material.getName() + " on " + res);

production.setContinuous(true);
production.setStorageUnit(warehouse);

Note that if the recipe were producing multiple products (or ingredients) we would have to
define the primary product (or primary ingredient) for GUI purposes.

Wemust specify the setup states required by this activity. The particular setup requirements
are detailed later in Dealing with setups and obtaining the preferred sequence, but for now
assuming they are known, the function SetActivitiesFP codes the setups, colors, and
activity names. The string semiTypes identifies the white mass, and the activities are
populated within a double loop to account for both setup features. The setName method
ensures that the activity label displayed in Gantt will contain product name and quantity.

activity.setColor(mat.getColor());
activity.setSetupState("semi-type", semiTypes[i]);

I B M I L O G P L A N T P O W E R O P S V 3 . 2384

activity.setSetupState("flavor", flavors[j]);
activity.setName("^p ^q");

The function SetModesFP defines the modes for each activity; the filling line used and its
processing time and cost. The assignment preference is realized using the processing cost;
each alternative mode has a different processing cost. If we prefer to produce KPI Lemon
on line 3 we get a smaller processing cost. The index is [materialSFP][flavorFP][line].
The processing time is based on 5000 kg per hour, or 6 minutes for 500 kg, based on one-half
ton of white mass for one pallet of KPI.

static void SetModesFP(IloMSModel model)
{
String matSFP[] = { "Bifidus", "Bulgaricus", "BulgaricusLight" };
String flavorFP[] = { "L", "P", "S", "K" };
String resIdFP[] = { "line1", "line2", "line3", "line4" };
double variableProcTimeFP[] = { 6, 6, 5, 10 };//5000kg/h -> 6min for 500kg

(0.5 ton of white mass for 1 pallet of KPI)
double variableProcCostFP[][][] = {{{5,5,1,5},{5,5,5,5},{5,5,5,5},{5,5,5,5}

}, // Bifidus
{{5,5,1,5},{5,5,5,5},{5,5,5,5},{5,5,5,5}

}, // Bulgaricus
{{5,5,1,5},{5,5,5,5},{5,5,5,5},{5,5,5,5}

}}; // Bulgaricus Light

for (int m = 0; m < matSFP.length; m++)
{
for (int f = 0; f < flavorFP.length; f++)
{
for (int r = 0; r < resIdFP.length; r++)
{
IloMSMode mode = model.newMode((IloMSActivity)model.

getActivityPrototypeByIdentifier("act" + matSFP[m] + flavorFP[f]));
mode.setName(matSFP[m] + flavorFP[f] + " on " + resIdFP[r]);

model.newResourceConstraint(mode, model.getResourceByIdentifier(resIdFP
[r]), 1, true);

mode.setVariableProcessingTime(variableProcTimeFP[r]);
mode.setVariableCost(variableProcCostFP[m][f][r]);

}
}

}
}

I B M I L O G P L A N T P O W E R O P S V 3 . 2 385

Defining cleanup recipes

Cleaning in PPO is realized using production orders of a cleanup recipe. A cleanup recipe
is composed of an activity with a cleaning status IloMSCleaningStatus.Cleaning. The
cleaning time is the processing time of this activity. The cleaning cost is the processing cost
of the cleaning recipe. It must dominate any cost in the setup matrix.

First the cleanup recipe for cleaning lines is created in the function SetRecipesCleaning.

IloMSRecipe cleanupRecipeFillingLines = model.newRecipe();

Then the cleaning activity prototype is defined. Note that a cleaning activity does not require
a product or flavor, but we use dummy states for the setup features.

IloMSActivity cleaningActivity = model.newActivityPrototype
(cleanupRecipeFillingLines);
cleaningActivity.setIdentifier("cleaningActivityFillingLines");
cleaningActivity.setName("CIP");
cleaningActivity.setSetupState("semi-type", "dummySemi");
cleaningActivity.setSetupState("flavor", "dummyFlavor");
cleaningActivity.setCleaningStatus(IloMSCleaningStatus.Cleaning);
cleaningActivity.setColor("gray");

On the Gantt Diagram view in the GUI, cleaning activity objects appear overlaid with a
bubble pattern. Since in this example the cleaning processing time hides the setup time,
and the setup activities are typically represented in gray, we also define cleaning activities
as gray.

Then the function SetModesCleaning takes care of the rest: Setting the maximum time
before a cleanup, applying the cleanup recipe to the resource, linking each line to a CIP
line, adding the resource constraints, and setting the cost and time for the operation.

String identifiersLines[] = { "line1", "line2", "line3", "line4" };
int maxTimeBeforeCleanupLine = 24 * 60; // Lines must be cleaned at least

every 24 hours (24*60)
for (int r = 0; r < identifiersLines.length; r++)
{
IloMSResource res = model.getResourceByIdentifier(identifiersLines[r]);

res.setCleanupRecipe(cleanupRecipeFillingLines);
res.setMaxTimeBeforeCleanup(maxTimeBeforeCleanupLine);
//Define modes
IloMSMode mode = model.newMode(cleaningActivityFillingLines);
// filling line 1 is linked to cip line 1 etc.
int cipLineIndex = r % identifiersCipRes.length;
mode.setName("cleaning " + res.getName() + " with " + identifiersCipRes

[cipLineIndex]);
model.newResourceConstraint(mode, res, 1, true);
model.newResourceConstraint(mode, cipStation, 1, false);
model.newResourceConstraint(mode, model.getResourceByIdentifier

(identifiersCipRes[cipLineIndex]), 1, false);

I B M I L O G P L A N T P O W E R O P S V 3 . 2386

mode.setVariableCost(10000);
mode.setFixedProcessingTime(180);

}
}

We use a variable cost in this cleanup recipe since it covers the cleaning of different
equipment in the plant, and so the cleanups are penalized proportionally to the time it
requires. Note that cleaning also requires the CIP Station as a resource.

Cleanups are also required for certain product transitions, and that's covered with the setup
matrix defined in Dealing with setups and obtaining the preferred sequence.

The cleanup code for processing equipment is similar and covered later in Cleaning policy.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 387

Defining initial stock

Use the IloMSProcurement class to create stock elements with an age.

// 40 pallets of Bifidus Lemon produced October 27 12:00
// Each stock element is modeled as a procurement received in the past
IloMSProcurement stock = model.newProcurement(bifidusLemon,40);
stock.setProductionTime(-770);
stock.setReceiptTime(-770);
stock.setStorageUnit(warehouse);
model.newProcurementToStorageArc(bifidusLemon, stock.getQuantity(), stock);

I B M I L O G P L A N T P O W E R O P S V 3 . 2388

Defining the demand

Demand is expressed with instances of IloMSDemand. We can express the fact that the
forecast for Bifidus Lemon on Oct 31 is to be delivered at the earliest on Oct 31 00:00 and
at the latest on Nov 2 00:00. We penalize a late delivery on Nov 1 using a due date and a
tardiness variable cost.

// 110 pallets for Bifidus Lemon are due for Nov 1 0:00
IloMSDemand demand = model.newDemand(bifidusLemon,110);
demand.setName(“Forecast Bifidus Lemon Nov 1”);
demand.setDeliveryStartMin(model.getBucket(3).getStartTime());
demand.setDeliveryEndMax(model.getBucket(5).getStartTime());
IloMSDueDate dueDate =
model.newDueDate(demand, model.getBucket(4).getStartTime());

The due date object carries the tardiness variable cost incurred for each time unit the delivery
is late.

dueDate.setTardinessVariableCost(1.0);

We create a nondelivery variable cost, a cost for failing to deliver product. It is a function
of the unsatisfied quantity as expressed in the primary unit of the material. We must define
the storage unit for the demand as well.

demand.setNonDeliveryVariableCost(10000);
demand.setStorageUnit(warehouse);

Either revenue or nondelivery costs must be provided to create an incentive to meet a
demand; otherwise, the optimal solution may consist of delivering to stock or producing
nothing at all, rather than fulfilling demand. More details about setting cost values follows
in upcoming sections.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 389

Dealing with setups and obtaining the preferred sequence

Each finished product has two main features: the semi-finished intermediate it requires and
the flavor it contains. As mentioned earlier, there is a preferred sequence to process one
intermediate family at a time (Bulgaricus Light to Bulgaricus to Bifidus) and then one flavor
at a time (from natural to lemon to strawberry to kiwi). We will use several setup matrices
to model this preferred sequence.

We want to create long campaigns of several products requiring the same semi-finished
intermediate. Then inside a campaign, we process flavors based on increasing darkness of
color and finishing with the allergen products.

PPO allows you to define two setup features, so that you can avoid creating a big matrix
defining the Cartesian product of all possibilities. We create a matrix for the setup times
for the two setup features introduced earlier, semi-type and flavor.

BifidusBulgaricus LightBulgaricusSemi-type setup times

550Bulgaricus

505Bulgaricus Light

055Bifidus

kiwistrawberrylemonplainFlavor setup times

1010100plain

1010010lemon

1001010strawberry

0101010kiwi

For both setup features, the need for cleanup after an allergen must also be specified.

I B M I L O G P L A N T P O W E R O P S V 3 . 2390

BifidusBulgaricus LightBulgaricusSemi-type cleanup

FALSEFALSEFALSEBulgaricus

FALSEFALSEFALSEBulgaricus Light

FALSEFALSEFALSEBifidus

kiwistrawberrylemonplainFlavor cleanup

FALSEFALSEFALSEFALSEplain

FALSEFALSEFALSEFALSElemon

FALSEFALSEFALSEFALSEstrawberry

FALSETRUETRUETRUEkiwi

We define setup costs to direct optimization towards our preferred manufacturing sequence.
First let’s define the matrix for flavors. As a rule of thumb we increment by 100 on each row
and decrement by 100 on each column, except for the diagonal. The largest value is the sum
of the first row plus 100.

kiwistrawberrylemonplainFlavor setup costs

3002001000plain

2001000700lemon

1000700600strawberry

0700600500kiwi

Next we define setup costs for the semi-finished intermediate families. These costs must
dominate the flavor costs; using the worst sequence in the flavors should not override our
preferred sequence with the family products. So we apply the same rule as before, starting
with a bigger cost (2200) than the cost for the worst sequence (3*700=2100) from the flavor
matrix. Remember that the setup features are additive.

BifidusBulgaricus LightBulgaricusSemi-type setup costs

230022000Bulgaricus

220004600Bulgaricus Light

046004500Bifidus

With the resulting code from the function SetSetups:

IloMSSetupMatrix semiTypeMatrix = model.newSetupMatrix();
semiTypeMatrix.setSetup("bulgaricus", "bulgaricus", 0, 0, false);
semiTypeMatrix.setSetup("bulgaricus", "bulgaricus-light", 5, 2200,false) ;
…
IloMSSetupMatrix flavorMatrix = model.newSetupMatrix();

I B M I L O G P L A N T P O W E R O P S V 3 . 2 391

flavorMatrix.setSetup("plain", "plain", 0, 0, false);
flavorMatrix.setSetup("plain", "lemon", 10, 100, false);

Then the setup matrix and initial state used by the line resource (res) for both semi-finished
product and flavor is specified in a loop.

res.setSetupMatrix("semi-type", semiTypeMatrix);
res.setSetupMatrix("flavor", flavorMatrix);
res.setInitialSetupState("semi-type", InitialSetupStateSemiType[r]);
res.setInitialSetupState("flavor", InitialSetupStateFlavor[r]);

The scheduling engine uses these exact costs, times, and cleanup details on the sequence
it finds. The planning engine, on the other hand, uses different levels of approximations of
the setups. You can define for each resource and for a time extent a different level of
approximation among:

IloMSPlanningSetupModel.PlanningSetupModelNoSetup
IloMSPlanningSetupModel.PlanningSetupModelPerBucketPerRecipe
IloMSPlanningSetupModel.PlanningSetupModelPerBucketPerSetupFeature
IloMSPlanningSetupModel.PlanningSetupModelCrossBucketPerRecipe
IloMSPlanningSetupModel.PlanningSetupModelCrossBucketPerSetupFeature

The more precision used, the higher the cost in algorithmic complexity. In this example we
don’t need to be very precise, so we choose the “per bucket per recipe” approximation:

res.setPlanningSetupModel(
IloMSPlanningSetupModel.PlanningSetupModelPerBucketPerRecipe,
model.getBucket(0).getStartTime(),
model.getBucket(model.getNumberOfBuckets()-1).getEndTime());

Definitions of these approximations are listed with the PPO_RESOURCE_SETUP_MODEL table in
the PPO Data Schema.

I B M I L O G P L A N T P O W E R O P S V 3 . 2392

Defining the costs and the weights

We want to define costs and weights that balance these objectives:

♦ Fulfill the demand,

♦ Respect the minimum and maximum days of supply in the inventory,

♦ Minimize setup costs including cleaning,

♦ Respect the resource assignment preference.

The largest setup cost is the cleaning cost which is 10,000. Let’s examine a production order
of Bifidus Lemon at its minimum batch size (10 pallets) and one day of production (240
pallets).

If we take 1000 as a target variable cost, the inventory and inventory deficit cost for 10
pallets for one day below the minimal inventory will be 10,000. For one day’s production of
240 pallets, it will be 24,000. So the inventory and inventory deficit costs will be greater
than the setup cost.

We must then use at least 10,000 for the unsatisfied demand cost. Operating 10 days below
the minimal inventory is 240,000, which is dominated by 2,400,000 so it is more appropriate
to ship rather than to keep in stock.

Process cost is a secondary objective; it is multiplied by the processing time so let’s use
from 60 to 1440 for the smallest to largest production orders. We can take between 1 and
10 for encoding the different preferences.

The tardiness cost for one day of lateness for one pallet is 1440.

240 pallets (one day) equivalent10 pallets equivalentCost type

2,400,000100,000Nondelivery

345,60014,400Tardiness

240,00010,000Inventory deficit

240,00010,000Inventory

10,00010,000Setup

14,400600Processing

We penalize the situation where the inventory goes above or below the minimum and
maximum days of supply for one pallet of Bifidus Lemon:

bifidusLemon.setTargetMinVariableCost(100.0);
bifidusLemon.setTargetMaxVariableCost(100.0);

Each pallet left unsatisfied by the plan is then penalized by 10,000:

demand.setNonDeliveryVariableCost(10000);

Each pallet exiting the inventory late by X time units is also penalized by X:

I B M I L O G P L A N T P O W E R O P S V 3 . 2 393

dueDate.setTardinessVariableCost(1.0);

We must put a global weight for each component of the costs. From the
SetOptimizationProfile function:

IloMSOptimizationProfile profile = model.newOptimizationProfile();
profile.setName(“ALL PRODUCTS”);
model.setCurrentOptimizationProfile(profile);

profile.setWeight(model.getOptimizationCriterionByIdentifier(“TotalNonDeliveryC
ost”),1.0);
profile.setWeight(model.getOptimizationCriterionByIdentifier(“TotalTardinessCos
t”),1.0);
profile.setWeight(model.getOptimizationCriterionByIdentifier(“TotalInventoryCos
t”),1.0);
profile.setWeight(model.getOptimizationCriterionByIdentifier(“TotalInventoryDef
icitCost”),1.0);
profile.setWeight(model.getOptimizationCriterionByIdentifier(“TotalSetupCost”)
,
1.0);
profile.setWeight(model.getOptimizationCriterionByIdentifier(“TotalProcessingCo
st”),1.0);

profile.setPlanningRequired(true);
profile.setBatchingRequired(true);
profile.setSchedulingRequired(true);

We've now touched upon most of the code that would be required to launch an optimization
involving the finished products alone. Assuming a completed model you could then launch
a solve:

model.solve();

An easy way to create a .csv file containing the problem (and the solution if any) is to call:

model.write(“finishedProducts.csv”,true);

You can then open the .csv file from the GUI and solve the problem there. However, in this
example, we continue as we want to include the semi-finished products.

I B M I L O G P L A N T P O W E R O P S V 3 . 2394

Modeling the manufacturing process

With finished products code described and the overall model defined, we next focus on
analyzing and modeling the actual process details of manufacturing the yogurt. The major
tasks include representing the process equipment and defining the recipe boundaries.

In this section

Representing process equipment
There are continuous machines and tanks in the process area of the plant.

How to represent equipment connections
Essentially, how to represent the pipes and conduits in the plant.

Modeling the intermediate materials and process activities
Recipe granularity depends upon batch size and possible mergers.

Internal constraints of the recipe
Several activity constraints are described.

Tanks as storage units
Tanks are used in various ways; for preparation, fermentation, cooling, and storage.

Production, consumption and destination
Expressing consumption of an intermediate.

Cleaning policy
Code to create the cleaning activities.

Calendars and breaks
Calendars are used to model temporal changes in resource availability and productivity.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 395

Representing process equipment

In the process part, we typically find two types of equipment: continuous machines and
buffers generally called “tanks”. The process can be represented as a sequence of tanks and
continuous machines. The continuous machines can be seen as pumps forcing the speed of
emptying the tank of the previous step and forcing the speed of filling the tank of next step.

In PPO, equipment used by production orders is typically represented by an instance of the
IloMSResource class. As a resource may be able to execute one or several operations at a
time, we must define the capacity of the resource. If a resource can handle only one action
or item at a time it is called unary and its capacity is one. Note that this notion of capacity
has nothing to do with the notion of volume of tanks. The capacity concept we use here is
to be understood as “degree of possible parallelism”.

This example includes a pasteurizer (pasto), cooler, and preparation, storage, and
fermentation tanks. The fermentation tanks are of two different capacities. The function
SetResourcesSFP is used to model all of these resources. Here's the code for modeling
preparation tanks; each has a capacity of one but combined as a super resource have a
capacity of three.

IloMSResource preparationTanks = model.newResource(3);
preparationTanks.setIdentifier("preparationTanks");
preparationTanks.setName("Preparation Tanks");
preparationTanks.setRank(1);
for (int i = 0; i < 3; i++)
{
IloMSResource preparationTank = model.newResource(1);
preparationTank.setIdentifier("preparationTank" + (i + 1));
preparationTank.setName("Preparation Tank " + (i + 1));
//Grouping resources as super resources to simplify planning and master

data
preparationTank.setSuperResource(preparationTanks);
preparationTank.setCategory("tank"); // For display in Plant layout view

with appropriate symbol
}

Similar code applies to modeling the pasteurizer, fermentation tanks, coolers, and storage
tanks. Each code segment starts with the newResourcemethod on either the singular resource
or the corresponding super resource:

IloMSResource pasto = model.newResource(1);
...
IloMSResource fermentationTanks30t = model.newResource(4);
...
IloMSResource fermentationTanks35t = model.newResource(4);
...
IloMSResource cooler = model.newResource(1);
...
IloMSResource storageTanks = model.newResource(6);

I B M I L O G P L A N T P O W E R O P S V 3 . 2396

You may recall that there are two coolers in this example, but they are not combined into a
super resource because they do not share the same connectivity; so each is defined separately
with its unary capacity. The two sizes of fermentation tanks are grouped into two different
super resources, using the index of the loop:

if (i < 5)
fermentationTank.setSuperResource(fermentationTanks35t);

else
fermentationTank.setSuperResource(fermentationTanks30t);

See the example for the entire function.

Cleaning and setup activities require the same primary resource as the corresponding
production activity.

Note:

These resources must be now be connected.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 397

How to represent equipment connections

Not all paths between resources are possible in the factory. If a batch is fermented in the
larger fermentation tank, it can only be cooled in cooler number one, and the smaller
fermenter can only use cooler number two. Also, the storage tanks of the manufacturing
facility must be connected to the filling lines of the packaging area.

preparationTanks.addConnectedResource(pasto);
pasto.addConnectedResource(fermentationTanks35t);
pasto.addConnectedResource(fermentationTanks30t);
IloMSResource cooler1 = model.getResourceByIdentifier("cooler1");
IloMSResource cooler2 = model.getResourceByIdentifier("cooler2");
fermentationTanks35t.addConnectedResource(cooler1);
fermentationTanks30t.addConnectedResource(cooler2);
cooler1.addConnectedResource(storageTanks);
cooler2.addConnectedResource(storageTanks);
// To connect process part storage tank and filling/packaging line part:
String resLines[] = { "line1", "line2", "line3", "line4" };
for (int r = 0; r < resLines.length; r++)
storageTanks.addConnectedResource(model.getResourceByIdentifier(resLines

[r]));

Note that if all combinations are possible it is pointless to define connections.

I B M I L O G P L A N T P O W E R O P S V 3 . 2398

Modeling the intermediate materials and process activities

Next we model the production processes. In PPO the recipe is a template of production
orders consuming and producing the same materials. We have several choices in the level
of granularity, because it is possible to group together several steps into a single recipe to
minimize the number of production orders to manage.

To know the best level of granularity, consider the cardinality constraints between batches
at each step. A batch is prepared in a preparation tank then flows into one batch of
fermentation through the pasteurizer, and then into one batch in one of the many storage
tanks through one cooler. There is no split or merge of batches from the preparation tank
through to the storage tank. Then the white mass is split into many orders of finished
products. So, in this yogurt process, we have a 1:1 relation on the whole process part, and
then a 1:n relationship at the boundary between process and filling/packaging.

So we can create recipes of semi-finished white mass that include all the process activities
from preparation to storage. This means that we don’t have to model all the intermediate
products: the prepared milk, the fermented milk, and so forth. We model only the “final”
semi-finished materials: the Bulgaricus White Mass, the Bularicus Light White Mass and
the Bifidus White Mass. The semi-finished products were modeled with this approach in
Defining semi-finished intermediate products.

The recipe for white mass contains five steps:

1. Preparation

2. Pasteurization

3. Fermentation

4. Cooling

5. Storage

Note that at the fermentation step there are clearly two groups of tanks of different volume
capacity. This will force us to have two different recipes per semi-finished product, one using
the 30 ton fermentation tanks and one using the 35 ton fermentation tanks. The batch size
min is 20 tons (to ensure the helix soaks in the storage tank).

We will use as recipe size the same unit of measure (ton) as used for the semi-finished
product; also we consider that one liter equals 1kg.

Each step alternatively uses tanks and continuous machines. Continuous steps such as
pasteurization and cooling are unique activities with a processing time purely proportional
to the batch size.

There are three steps to using a tank: Filling it; the operation or activity itself (such as
fermentation); and the emptying of the tank. We can simplify this to two steps by using a
variable processing time to fill the tank (depending on the batch size) and a fixed processing
time for the activity (such as fermentation). Likewise we simplify the storage step with a
filling activity and a storage activity that ends when the tank is empty.

Taking the preparation tank as a specific example, we have an activity called prepFillwhich
takes one hour that includes filling. There is also prepEmpty which has a processing time
dependent upon the next operation which is pasteurization. At a minimum, we assign one
minute to this task. The maximum for one full batch is to empty at the pasto speed plus a
maximum of two hours waiting before emptying.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 399

Finally, if several alternative resources are available for an activity, we need as many modes
as there are resources for this activity. However, when resources are grouped into a super
resource, we create only one mode per super resource at the level of the recipe activities.
PPO will automatically generate modes for subresources at the production order level.

So looking at the preparation tank code from the SetModesSFP function:

static void SetModesSFP(IloMSModel model)
{
String matSFP[] = { "Bif", "Bulg", "BulgLight" };

double batchSizeMin = 20.0; // to ensure the helix soaks in the tanks
double batchSizeMax = 35.0; // maximum capacity of preparation and storage

tanks
double batchSizeMaxFermentation[] = { 30.0, 35.0 }; // When using

fermentation tank 35 or 30 tons

String actNamesPrep = "Preparation";
String resIdPrep = "preparationTanks"; // resources for preparation
String actIdPrep[] = { "prepFill", "prepEmpty" }; // activities of

preparation
int pastoTimeMax = 1 + (int)(60 * 35 / 15.);
int fixedProcTimeMinPrep[] = { 60, 1 };
int fixedProcTimeMaxPrep[] = { 60, pastoTimeMax + 120 };

for (int a = 0; a < actIdPrep.length; a++)
{ // one mode per activity
for (int m = 0; m < matSFP.length; m++)
{ // one mode per material to produce
IloMSResource res = model.getResourceByIdentifier(resIdPrep);
IloMSMode mode = model.newMode((IloMSActivity)model.

getActivityPrototypeByIdentifier(actIdPrep[a] + matSFP[m]));
model.newResourceConstraint(mode, res, 1, true);
mode.setName(actNamesPrep + " " + matSFP[m] + " on " + res.getName())

;
mode.setFixedProcessingTimeMin(fixedProcTimeMinPrep[a]);
mode.setFixedProcessingTimeMax(fixedProcTimeMaxPrep[a]);
mode.setBatchSizeMin(batchSizeMin);
mode.setBatchSizeMax(batchSizeMax); // 35t preparation tanks.

}
}

Please see the full code example for the code required to model the other process activities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2400

Internal constraints of the recipe

The process manufacturing activities have three types of internal constraints:

♦ activity compatibility constraints

♦ precedence constraints

♦ spanning constraints

We must state that certain activities must be processed on connected resources.

model.newActivityCompatibilityConstraint(prepEmpty, pasteur,
IloMSActivityCompatibilityType.ConnectedPrimaryResources);
model.newActivityCompatibilityConstraint(pasteur, fermFill,
IloMSActivityCompatibilityType.ConnectedPrimaryResources);
model.newActivityCompatibilityConstraint(fermEmpty, cooling,
IloMSActivityCompatibilityType.ConnectedPrimaryResources);
model.newActivityCompatibilityConstraint(cooling, storFill,
IloMSActivityCompatibilityType.ConnectedPrimaryResources);

We also need to define an activity chain to prevent interruption of the process. The activities
of an activity chain must be performed on the same resource in a defined order, and no
other activity not belonging to the chain can be in between.

IloMSActivityChain fermentation = model.newActivityChainPrototype(recipe);
fermentation.appendActivity(fermFill);
fermentation.appendActivity(fermOp);
fermentation.appendActivity(fermEmpty);

Also certain activities must occur one right after the previous with zero delay:

model.newPrecedence(fermFill, fermOp, IloMSPrecedenceType.EndToStart, 0, 0);
model.newPrecedence(fermOp, fermEmpty, IloMSPrecedenceType.EndToStart, 0, 0);

Wemust then synchronize the emptying (or filling) of a step with the speed of the continuous
machine used at the next (or previous) step; this is the spanning constraint.

prepEmpty.addSpannedActivity(pasteur);
fermFill.addSpannedActivity(pasteur);
fermEmpty.addSpannedActivity(cooling);
storFill.addSpannedActivity(cooling);

I B M I L O G P L A N T P O W E R O P S V 3 . 2 401

The SetActivitiesSFP function fully defines all of these constraints.

I B M I L O G P L A N T P O W E R O P S V 3 . 2402

Tanks as storage units

Until now we made no differences between tanks. In fact, the modeling of preparation tanks
and fermentation tanks as unary resources is sufficient because we don’t model the
intermediates they store. For the storage tanks however, we want to monitor the tank level
over time as they supply the filling lines. So we must use a new concept called the storage
unit. So within a loop of the function SetStorageUnitsSFP is this code:

IloMSStorageUnit suStorageTank = model.newStorageUnit();
suStoragetank.setName("Storage Tank" + (i + 1));
suStorageTank.setQuantityMax(35);

We must state which materials can be stored in the tank, which in this case are the three
white masses:

suStorageTank.addStorableMaterial(bifidus);
suStorageTank.addStorableMaterial(bulgaricus);
suStorageTank.addStorableMaterial(bulgaricusLight);

We specify the maximum capacity:

suStorageTank.setQuantityMax(35);

We must link the storage unit to the corresponding resource:

suStorageTanks.setResource(storageTanks);

I B M I L O G P L A N T P O W E R O P S V 3 . 2 403

Production, consumption and destination

We must now define the storage unit to which the semi-finished product is produced. In the
function SetProductionsSFPwe create material production on the semi-finished recipe and
note that one batch of semi-finished product may be consumed by many batches of finished
products, hence the maximum number of outgoing pegging arcs is unlimited. First this:

String storageUnit = "suStorageTanks";

Then in a loop:

IloMSMaterialProduction matProduction = model.newMaterialProduction(mode,
model.getMaterialByIdentifier(matIdSFP[m]), 1);

matProduction.setName("Production of " + matIdSFP[m] + " on " + mode.
getResourceConstraint(0).getResource().getName());

matProduction.setContinuous(true);
matProduction.setMaxNumberOfPeggingArcs(IloMSConstants.IntPlusInfinity);
matProduction.setStorageActivity(storageAct);
matProduction.setStorageUnit(model.getStorageUnitByIdentifier(storageUnit)

);

Note that we want an order of finished product to be able to consume from one tank among
several, to avoid creating as many modes as there are combinations of tank origin and
packaging lines. We enabled this process by grouping storage tanks together into a super
resource in Representing process equipment, then linking the super resource to the storage
unit. .

The recipes of finished products must also take into account the semi-finished material
required and the storage unit that supplies the material. Then we express the consumption
of semi-finished product by final product at the rate of one-half ton of white mass (such as
bifidus) to produce one pallet of finished product (such as bifidus lemon). A loop iterates
over the flavors and the finished product activity identifiers to populate the consumption
that needs to be modeled. The limit on the pegging arcs is to ensure that each finished
product consumes from only one of the available tanks in the super resource. The process
is continuous.

IloMSMaterialProduction matConsumption = model.newMaterialProduction(mode,
model.getMaterialByIdentifier(matIdSFP[m]),-0.5);
matConsumption.setName("Consumption of " + matIdSFP[m] + "to produce " +
matIdSFP[m] + " " + flavors[f]);
matConsumption.setContinuous(true);
matConsumption.setMaxNumberOfPeggingArcs(1);
matConsumption.setStorageUnit(model.getStorageUnitByIdentifier(storageUnit));

Consumption is expressed as a negative production.

I B M I L O G P L A N T P O W E R O P S V 3 . 2404

Cleaning policy

We have already created a cleaning recipe, activities, and constraints for the finished product
lines. Similar code applies to the production resources, although the cleaning rules are
different. The preparation, fermentation, and storage tanks all have the same cleanup rule,
and so are grouped together in the string identifiersTanks. This code from the
SetModesCleaning function also links each tank to a CIP line.

int maxTimeBeforeCleanupTank = 48 * 60; // Tanks must be cleaned at least every
48 hours (48*60)
for (int r = 0; r < identifiersTanks.length; r++)
{
IloMSResource res = model.getResourceByIdentifier(identifiersTanks[r]);
res.setCleanupRecipe(cleanupRecipeProcess);
res.setMaxTimeBeforeCleanup(maxTimeBeforeCleanupTank);
//Define modes
IloMSMode mode = model.newMode(cleaningActivityProcess);
mode.setName("cleaning " + res.getName());
model.newResourceConstraint(mode, res, 1, true);
model.newResourceConstraint(mode, cipStation, 1, false);
// preparation tank 1 is linked to cipl line 1 etc.
model.newResourceConstraint(mode, model.getResourceByIdentifier

(identifiersCipRes[r % identifiersCipRes.length]), 1, false);
mode.setVariableCost(10000);
mode.setFixedProcessingTime(180);

}

The recipe cleanupRecipeProcess is created earlier in the SetRecipesCleaning function.

IloMSRecipe cleanupRecipeProcess = model.newRecipe();

The pasto and the cooler have another set of cleaning rules, so we identify them together
as PastoCool and set the following guidelines:

int maxNumberOfBatchesBeforeCleanupPastoCool = 3;
int maxIdleTimeBeforeCleanupPastoCool = 8 * 60;

Then iterating over PastoCool, these resources are assigned a cleanup recipe and the new
cleanup rules.

res.setCleanupRecipe(cleanupRecipeProcess);
res.setMaxNumberOfBatchesBeforeCleanup
(maxNumberOfBatchesBeforeCleanupPastoCool);
res.setMaxIdleTimeBeforeCleanup(maxIdleTimeBeforeCleanupPastoCool);

I B M I L O G P L A N T P O W E R O P S V 3 . 2 405

Calendars and breaks

A maintenance activity is planned for the first half day on cooler 1.

IloMSCalendar calendarCooler1 = model.newCalendar();
IloMSCalendarInterval maintenance =
model.newCalendarInterval(calendarCooler1,0, 770);

maintenance.setBreak(true);
maintenance.setName(“Maintenance”);
cooler1.setCalendar(calendarCooler1);

That concludes our description of modeling a yogurt factory using the PPO Java™ API.

I B M I L O G P L A N T P O W E R O P S V 3 . 2406

Reference Documentation

Contains information regarding customization and extension of Plant PowerOps, and other
advanced information.

In this section

Customizing and Extending PPO
Describes customization of Plant PowerOps and implementation of plug-ins to extend and
configure PPO.

Using PPO with Microsoft products
This section describes how to build and run examples delivered with Plant PowerOps when
you useMicrosoft® Visual C++ .NET andMicrosoft Windows® XP. Included are instructions
on creating a project and linking the target with PPO.

Entity Relationship Diagrams
Presents the available Entity Relationship Diagrams (ERDs).

Universal Modeling Language diagrams
Presents the available UML diagrams.

Date and time display
Describes how time and dates are displayed in C++ and Java™ output and in the Plant
PowerOps GUI. Includes a list of all supported time zones.

© Copyright IBM Corp. 1987, 2009 407

I B M I L O G P L A N T P O W E R O P S V 3 . 2408

Customizing and Extending PPO

Describes customization of Plant PowerOps and implementation of plug-ins to extend and
configure PPO.

In this section

Authentication and access rights
This section describes how to setup authentication and access rights to the PPO GUI in order
to control data access.

Customizing report generation with Tableau
Describes the use of Tableau within PPO.

GUI extension mechanism
This section describes how to extend and customize aspects of the PPO GUI.

Plan view customization
It is possible to add or remove plan views, rearrange the layout of a view, and select a new
default layout for a view.

Customizing views, menus, and toolbars
You can add new or remove existing views, panels, table layouts, menu items or toolbar
icons.

Engine optimizer extensions
An optimizer class defines how the data model is solved; it is possible to change this
optimization class from the PPO default.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 409

Configuring the data views
The data views include theMaster Data and Transactional Data views which consist of
tables that contain the model data and generated plan data. You can add, remove or modify
data tables per your needs using the techniques of this section.

Database customization
This describes customizations that you can make regarding database usage in PPO. The list
of supported databases is available at Database usage and connectivity.

Options of the PlantPowerOps executable file
How to display the DOS window and decrease GUI memory usage while running PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2410

Authentication and access rights

This section describes how to setup authentication and access rights to the PPO GUI in order
to control data access.

In this section

User role determines access
In PPO access rights to GUI data are defined by one of three user roles.

Adding a login panel to PPO
You can configure PPO to open a login panel when started.

Advanced configuration of roles and access rights
Describes how to further tailor access to PPO data.

General security considerations
Protection of configuration files.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 411

User role determines access

In PPO access rights to data through the GUI are defined by the user role. PPO determines
the role of a user with a “login” step. A user can have only one role. The user login and
password information can be stored in one of the following repositories:

♦ Microsoft® Active Directory

♦ Other LDAP directories

♦ XML file

By default PPO manages three roles:

♦ Administrator: This role has full access to all PPO features.

♦ Planner: This role is allowed to modify transactional data and run the PPO engine.

♦ Viewer: This role can only view PPO data.

The following table summarizes these roles.

I B M I L O G P L A N T P O W E R O P S V 3 . 2412

Adding a login panel to PPO

You can configure PPO to open a login panel when started. To activate this login panel you
have to edit the file login.xml located in the directory <PPOInstallDirectory>/data/gui/
and uncomment one of the three xml elements to choose the login method. These login
methods are described below.

Using Microsoft Active Directory
To make PPO use Active Directory for user authentication you need to uncomment the
following XML element in login.xml:

<page classname="ilog.plant.gui.login.ActiveDirectoryLoginPage">
<host value="ldap://servername.domain.domainending"/>
<port value="389"/>
<domain value="domain.domainending"/>
<root value="cn=Users,dc=domain,dc=domainending"/>
<timeout value="2000"/>

</page>

In the host and port tags you need to set the host name (or the IP address) where Active
Directory is running and the port number (by default Active Directory uses port number
389). The domain tag should contain the domain name to which PPO users belong. The root
tag is the Active Directory path where user entries are declared. After authenticating a user,
PPO tries to retrieve its role by reading the memberOf attribute of the user.

You need to create PPO roles as groups of users in MS Active Directory. PPO expects to
have the following groups with the following names:

♦ PPO Admin for administrators

♦ PPO Planners for planners

♦ PPO Viewers for viewers

PPO users must belong to one of these groups. Note that users of these groups must have
the right to read their attributes stored in the Active Directory (at least the memberOf
attribute).

Note also that some of the default values used by PPO for LDAP and Active Directory are
located in ldap.properties file located in <PPOInstallDirectory>/data.

Using other LDAP directories
To use other LDAPs for implementation of PPO authentication, you need to uncomment the
following XML element in login.xml file:

<page classname="ilog.powerops.logon.login.ldap.LDAPLoginPage">
<host value="ldap://servername.domain.domainending"/>
<port value="10389"/>
<root value="dc=domain,dc=domainending"/>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 413

<timeout value="2000"/>
</page>

The host and port tags need to be set to the host name (or the IP address) where the LDAP
server is running. The root tag should contain the path where user entries are declared in
the directory. By default, PPO uses the attribute uid to identify a user and the attribute
roleoccupant to identify the user role. By default, the roleoccupant attribute must have
one of the following values:

♦ administrator

♦ planner

♦ viewer

Note that some of the default values used by PPO for LDAP and Active Directory are located
in ldap.properties file located in <PPOInstallDirectory>/data.

Using XML file for login and password
With this approach, user login and password information is stored in an XML file. You need
to uncomment the following XML element in login.xml file:

The path tag must contain the relative or absolute path to the XML file. This file must have
the following structure:

<Users xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="users.xsd">

<User name="admin" password="O2HAFxib2rM=" role="administrator"/>
<User name="planner" password="8VARVGJPrZ8=" role="planner"/>
<User name="viewer" password="JdYC4C6SKsM=" role="viewer"/>

</Users>

The name attribute is the login of the user, the password value is encrypted and the role
represents the user role. To encrypt user password you can user the executable
<PPOInstallDirectory>/bin/Plant_Encrypt.bat.

I B M I L O G P L A N T P O W E R O P S V 3 . 2414

Advanced configuration of roles and access rights

Users access rights are defined in the configuration file roleGuiAuthorizations.xml that
you can find in <PPOInstallDirectory>/data. You can change the actions granted to a
given role by modifying this file. The complete list of PPO GUI actions can be found in the
file guiCommands.xml located in ilog/plant/gui/resources in plantgui.jar. In the file
roleGuiAuthorizations.xml you can add also new roles. New roles are taken into account
automatically by PPO for authentication when using XML file and LDAP directory. For
Microsoft® Active Directory you need to write your own login page to take into account
new roles. By default for Active Directory PPO manages the default roles (administrator,
planner and viewer). To write a login page you have to implement a Java™ class that extends
ilog.powerops.logon.login.LoginPage and declare it in the login.xml file.

Fine grain access rights for PPO table views
You can define access rights on the columns of PPO table views based on the user role.
Columns are identified by the name of the view (MaterialView, ResourceView,…) followed
by ‘.’ and the name of the column (DaysOfSupplyTargetMax, DemandVariability,…). You
can find all views and column names in the XML configuration files in
<PPOInstallDirectory>/data/gui/table. For instance, to prevent the planner role from
changing the batch size of production order you have to add the following element in the
guiCommands.xml file:

<role name="planner">
<add>

-
</add>
<remove>

-
<command>ProductionOrderView.BatchSize</command>

</remove>
</role>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 415

General security considerations

Some configuration files like login.xml and guiCommands.xml are important for security
and the data manipulation of PPO. PPO looks for these files in its classpath. To protect them
from malicious modification you can put these files in a directory and restrict the access
rights by the operating system (only authorized users can change these files) or you can put
them in a signed jar file (using java jarsigner). If the jar file has been altered, PPO will
not run. If you want to increase the security of your PPO deployment, you can check the
signature of this jar file in a plug-in.

I B M I L O G P L A N T P O W E R O P S V 3 . 2416

Customizing report generation with Tableau

PPO uses Tableau to generate and display reports. Tableau is integrated as a plug-in; for
Tableau documentation please go to http://www.tableausoftware.com/ or type F1 when
Tableau starts. Note that Tableau is enabled for Unicode and compatible with data stored
in any language; however the user interface and supporting documentation are available in
English only.

By default, PPO is shipped with three report templates, as shown in this image:

You can add your own templates to this list. To add a template:

1. Open one of the default templates to have the structure of data exported by PPO.

2. Modify the template as you like and save it in <PPO_INSTALL_DIR>/plugins/tableau/
data.

The next time you try to generate a report, the new template appears in the Select Template
list (my_custom_reports.twb):

I B M I L O G P L A N T P O W E R O P S V 3 . 2 417

http://www.tableausoftware.com/

If you save your template to a different location than the one specified above, use the
Browse… button to locate it.

Extending report data schema
If you want to export custom data to Tableau for report generating you need to extend the
report data schema. PPO uses its standard mechanism to extend the data schema of the
report (see Customizing PPO data model tables).

To extend the data model by adding a custom table you need to modify the Microsoft®
Access® schema file in <PPOInstalldirectory>/plugins/tableau/resources/
ReportingSchema.mdb and adapt the mapping file <PPOInstallDirectory>/plugins/
tableasu/resources/ReportingTables.xml as described in Adding custom tables.

Finally, to populate the custom table when exporting the data to Tableau you need to write
a listener and declare it in <PPOInstalldirectory>/plugins/tableau/resources/
reporting.properties in the entry: Reporting.
DBWriterListenerClass=MyCustomTableListener

Your listener class must implement the interface ilog.plant.persistence.writer.
DBWriterListener. Your listener will be called when PPO exports data to Tableau.

I B M I L O G P L A N T P O W E R O P S V 3 . 2418

GUI extension mechanism

This section describes how to extend and customize aspects of the PPO GUI.

In this section

Overview
Extensions to the GUI are made through bundles of code and data called plug-ins.

Format of plug-in manifest files - plugin.xml
Describes the elements of a plug-in file.

Extensions and extension points
Extensions are code bundles that are executed when PPO is performing a specific task.

Specific customizations
Describes exceptions to the use of extension points.

Overview of extension points
Extensions can be applied to the GUI Plan views or at the application level.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 419

Overview

The PPO GUI extension mechanism is structured around the concept of plug-ins. Plug-ins
are bundles of code and/or data that contribute extensions to the PPO application. Writing
a PPO extension involves writing a new PPO plug-in or modifying an existing one.

One plug-in can contribute to several PPO extensions. For example, the same plug-in can
customize the main menu of the application and change the optimizer used for solving data.

One plug-in corresponds to one subdirectory of the ${plant-gui.home}/plugins directory.
To be identified as a plug-in, this directory must also contain a file named plugin.xml. This
file is named the manifest file of the plug-in and completely describes the plug-in.

I B M I L O G P L A N T P O W E R O P S V 3 . 2420

Format of plug-in manifest files - plugin.xml

A manifest file lists all the extensions provided with the plug-in as well as all the resources
to be used by these extensions, such as jar files or localization files.

A manifest file is an XML file with a structure defined as follows:

Manifest file structure
DescriptionAttributesElements

Manifest file root element<plugin>

Specify a name to identify the plug-in.This name can be used
by other plug-ins which define dependencies with this plug-in.

name

Provide a name for the provider of the plug-in. This name
should be a key to a string resource defined as a property file
of the plug-in.

provider-name
(optional)

Provide the class of the plug-in object to instantiate when
installing the plug-in. This class must inherit from ilog.
powerops.app.Plugin.

classname (optional)

The plug-in object is automatically invoked when the plug-in
is installed and uninstalled. See the documentation of the
Plugin class for more details.

Provide all the property files to be used by the plug-in.<bundles>
(optional)

Declare a property file to include with the plug-in.The property
file must be located at the root directory of the plug-in.

<bundle> (*)

The base name of the property file is given with the text data
of this element. For an example, see the plug-in example .
jar file.

Provide all the libraries to be used by the plug-in.<runtime>
(optional)

Include a jar file to be used by the plug-in’s classloader when
loading Java™ classes declared in this manifest file. For

<library> (*)

I B M I L O G P L A N T P O W E R O P S V 3 . 2 421

DescriptionAttributesElements

example, the plug-in classloader is used when loading the
plug-in installer class declared in the <plugin> root element.

Specify the file name of the jar file to include. For an example,
see the plug-in example .jar file.

name

Declare the list of plug-ins this plug-in depends on. This
declaration ensures that plug-ins listed here will be loaded
before this plug-in.

<requires>

Declare one plug-in this plug-in depends on.<import> (*)

The value of this attribute is the name of the plug-in this plug-in
depends on. Plug-in names are specified with the name
attribute of <plugin> elements.

id

Declares a new extension point to the application. See
Extensions and extension points.

<extension-point>
(*)(optional)

Unique identifier to identify the extension point. This identifier
is referred to when declaring extensions to this extension point
definition, as follows:

id

<extension point="\<id>"...>

This name is used to identify this plug-in when displaying
messages that involve the plug-in.

name

The class of the extension point to associate with this extension
point declaration.

classname

This class must inherit from the class ilog.powerops.app.
ExtensionPoint.

The default class for extensions that are associated with this
extension point.

extensionClassname

This class can be overridden for each extension declaration
as follows:

<extension classname="MyOwnExtensionClass">

Defines a new extension to the application. See Extensions
and extension points.

<extension> (*)

Specifies which extension-point this extension is relative to.point

The value of this attribute must correspond to the id specified
in an extension point declaration as follows: <extension
-point id="..."/>.

Specifies the class to instantiate this extension from. This
declaration overrides the extension class given when declaring
the extension point of this extension.

classname (optional)

Identifies this extension among other extensions that apply to
the same extension point.

name

I B M I L O G P L A N T P O W E R O P S V 3 . 2422

DescriptionAttributesElements

This name can be referred to in other extension declarations
to remove this extension declaration, with the remove
-extension attribute.

Removes the extension previously defined with the same
extension point as defined by the point attribute and whose
name corresponds to the value of this attribute.

remove-extension
(optional)

If this attribute is specified, attributes classname and name
are not read.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 423

Extensions and extension points

The main purpose of a manifest file is to declare extensions to the application. An extension
is a bundle of XML and Java™ code that is automatically executed or used when the
application is performing specific tasks. For example, when the application is initializing its
main menu, it will execute all menu completions declared in extensions relative to menu
customization. Such extensible tasks are named extension points.

Extension points are declared with the <extension-point> declaration in the plug-in manifest
file. For each extension point declaration, the GUI instantiates an extension point object
whose class is specified in the extension point declaration. This class must inherit from the
ilog.powerops.app.ExtensionPoint class.

Extension point instances can be retrieved from the application with the method
AbstractApplication.getExtensionPoint(String id) where the id parameter must
correspond to the id attribute value given in the <extension-point> declaration of the
plug-in.

An extension point instance is responsible for:

♦ Reading the content of the <extension-point> declaration (method ExtensionPoint.
read(Element element, FormReaderServices services)). Note that apart from the
attribute documented for this element, the format of the <extension-point> element is
specific to each extension point.

♦ Reading the declarations of the extensions that refer to this extension point (method
ExtensionPoint.readExtension(Object extension, Element element,
ResourceResolver resourceResolver, FormReaderServices services)).

♦ Providing the collection of extensions associated with the extension point (method
ExtensionPoint.getExtensions()).

As for extension points, extensions are declared in the manifest file of plug-ins, with the
<extension> element. One extension object is instantiated for each <extension> declaration.
The default class for this instance is defined in the <extension-point> declaration and can
be overridden for each <extension> declaration. Extension classes do not have to implement
or inherit from a specific class. They need only be provided with a default constructor.

I B M I L O G P L A N T P O W E R O P S V 3 . 2424

Specific customizations

There are two exceptions to the use of extension points for extending an application. In
these two exceptions, the extensions must be read when the application bootstraps and
before the extension points are initialized.

These extensions are:

♦ changing the splash window of the application - the panel that pops up during the
initialization phase of the application

♦ changing the name, the icon, and the title of the application.

These two extensions are defined in the manifest file as follows:

Specific customizations
DescriptionAttributeElements

<plugin>

Override default parameter of the application.<application>
(optional)

Changes the name of the application.This name is used to construct
the path to user home settings on the Microsoft® Windows® platform.
On this platform, the path is defined as follows:

name
(optional)

%HOMEDRIVE%%HOMEPATH%\Application Data\ILOG\
<application name>

Changes the title of the application main frame. The value of this
attribute should be a key to a string resource defined in a property
file declared for this plug-in (see <bundles> description above).

title (optional)

Changes the icon for the PPO application.<icon> (optional)

The text data of this element defines the name of the image file. The
file must be located at the root of the plug-in directory. For example,

<file>

<file>mycompany.gif</file> looks for the mycompany.gif
image file.

Changes the default splash window that pops up when the PPO
application is launching.

<splashWindow>
(optional)

The classname of the panel that pops up.classname
(optional)

If this attribute is not specified, a default panel is instantiated which
is filled with the image of the splash window.

Locates the image to display in the splash window. The text data of
this element contains the name of the file.The file must be at the root
of the plug-in directory.

<file>

For example, <file>splash.gif</file> displays the splash.
gif image in the splash window.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 425

I B M I L O G P L A N T P O W E R O P S V 3 . 2426

Overview of extension points

Extensions can be applied to the GUI Plan views or at the application level.

In this section

Customization of Plan views
Describes extensions to the Plan views.

Application level extensions
Describes extensions to menu or toolbars.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 427

Customization of Plan views

1. Plan view (extension-point=PlanViewType)

Add a new view type to display a plan. Default view types are the Data, Calendars,
KPIs Summary, Stock Summary, Stock Coverage, Stock Event, Planning Sheet,
Planning Workload,Workload Table, and Resources Gantt. See Plan view
customization.

This extension point also lets you remove or modify predefined view types.

2. Plan view layout configuration (extension-point= PlanViewContainer.Configuration)

See Plan view customization.

Lets you provide a new layout to configure plan views in the same plan tab. By default,
three configurations are provided:

♦ single. One plan view is contained in the plan tab

♦ hsplit. A plan tab is horizontally split to contain two plan views

♦ vsplit. A plan tab is vertically split to contain two plan views.

The application user can navigate between these configurations by selecting
configuration buttons in the upper right corner of the plan tab:

3. Default plan view layout (extension-point= PlanViewContainer.Defaults)

The default for PPO is one view. If there is a scheduling solution, the view is the
Resources Gantt. If there is only a planning solution, the view is the Planning Sheet.
See Plan view customization.

I B M I L O G P L A N T P O W E R O P S V 3 . 2428

Application level extensions

Menu customization (extension-point= MenuCustomization)

Used to insert, remove or modify menu items in the main menu or toolbars of the application.
This extension let you also specify Java™ code to call when the user activates this newmenu
item. See Insert a new item in the menu and a new icon button in the main toolbar and
Remove menu item and button from the main toolbar.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 429

I B M I L O G P L A N T P O W E R O P S V 3 . 2430

Plan view customization

It is possible to add or remove plan views, rearrange the layout of a view, and select a new
default layout for a view.

In this section

Overview
An overview of the extension points.

PlanViewTypes extension point
This extension point is used to add new plan view types or remove predefined types.

PlanViewContainer.Configuration extension point
Use this section to change the layout of a plan view.

PlanViewContainer.Defaults extension point
Use this section to define and declare the default view layout.

Plan view extension example
Files are included in the distribution to help you understand how to configure the data views.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 431

Overview

In this section you will learn about:

♦ PlanViewTypes extension point

♦ PlanViewContainer.Configuration extension point

♦ PlanViewContainer.Defaults extension point

♦ Plan view extension example

The PPO GUI provides three extension points to customize the visualization of plans within
plan views. It is possible to provide the GUI with new plan view types or remove predefined
ones (extension-point="PlanViewType"), provide new layouts for arranging views of a
same plan into a plan view container (extension-point="PlanViewContainer.
Configuration"), and select the layout to use as the default layout (extension
-point="PlanViewContainer.Defaults").

I B M I L O G P L A N T P O W E R O P S V 3 . 2432

PlanViewTypes extension point

This extension point is used to add new plan view types or remove predefined types.

In this section

Overview
Defines terms you need to know.

Definition of a new plan view type
Describes the XML declaration and Java class necessary to change a plan view type.

Remove a predefined plan view type
The extension declaration must be removed.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 433

Overview

The following diagram presents the terms used in this section:

The Plan view container in this example holds two plan views: Resources Gantt and Stock
Coverage. Each Plan view consists of the View type list, the toolbar, the configuration
buttons, and the view itself.

Default views for a plan are:

♦ Data

♦ Calendars

♦ KPIs Summary

♦ Stock Summary

I B M I L O G P L A N T P O W E R O P S V 3 . 2434

♦ Stock Coverage

♦ Stock Event

♦ Planning Sheet

♦ Planning Workload

♦ Workload Table

♦ Resources Gantt

These predefined view types are declared to the PPO GUI using the extension point
PlanViewType. These declarations are located in the configuration file config.xml, in the
directory <install directory>\data\gui.

It is possible to use the same extension point for defining new plan view types, or to remove
predefined ones.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 435

Definition of a new plan view type

As with many extension points, the PlanViewType extension point is a bundle of an XML
declaration and a Java™ class. The XML declaration provides the GUI with the following
information:

♦ How to display this new plan view type in the plan view type list. This is the list the pops
up when activating the combo at the top left side of a plan view. Here is a screen shot
for this combo:

♦ Provide the toolbar associated with each plan view of this type. A screen shot of the
toolbar of the Resources Gantt view is:

The Java class to implement for this extension point is the plan view, the component to
visualize and edit a plan.

Plan view classes must implement the interface ilog.powerops.workspace.PlanView. See
the Plant PowerOps Java Reference Manual for more information.

I B M I L O G P L A N T P O W E R O P S V 3 . 2436

Plan view extension format
DescriptionAttributesElements

Manifest file root element<plugin>

For defining a new plan view type<extension
point="PlanViewType">

The name of this extension.This name can be referenced by
a plug-in which wants to remove this extension.

name

The class of the plan view. This class must implement the
interface

javaClass

ilog.powerops.workspace.PlanView. See section
below for more details on the plan view to implement.

The title to display for this plan view type. This title is visible
both in the top left corner of a plan view container or in the

title

drop-down list that lists all plan view types. This title should
be a key to a string resource associated with the plug-in.

A short description of this plan view type. Is used for tooltips
associated with this plan view type. This description should
be a key to a string resource associated with the plug-in.

shortDescription

A long description of this plan view type. Is displayed in the
status bar of the application when this plan view type is

longDescription

selected in the drop-down list of plan view types. This
description should be a key to a string resource associated
with the plug-in.

The 16x16 icon image to display with the title of this plan view
type in the top left corner of the plan view container. Here is
a screen shot of this display for the Resources Gantt view:

<icon>

The text data of this element contains the filename of the
image file, as for example <icon>factory16.gif</icon>.
The image should be located at the root directory of the
plug-in that declares this extension.

The 32x32 icon image to display in the drop-down list of plan
view types. Here is a screen shot of the default PPO GUI
drop-down list:

<largeIcon>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 437

DescriptionAttributesElements

The text data of this element contains the filename of the
image file, as for example <largeIcon>factory32.gif</
largeIcon>. The image should be located at the root
directory of the plug-in that declares this extension.

Defines the toolbar associated with plan views of this type.
Buttons and separators of this toolbar are declared with child

<toolbar>

elements of this element, using the same format as for
inserting button and separator items in <insert> elements in
menu customization.

Declares a list of pop-ups to be used by the plan view. A plan
view can

<popups>

access these popups with the code:

PlanView view = ...

JPopupMenu popup = view.getViewType().
getPopupMenu(<name of the popup menu>);

Defines a popup to be used by plan views associated with
this type. Component items that compose this popup menu

<popupMenu>

– such as menu items or separators - are declared with child

I B M I L O G P L A N T P O W E R O P S V 3 . 2438

DescriptionAttributesElements

elements of this element, using the same format as for
inserting component items with the <insert> elements in menu
customizations.

The name to identify the popup. See <popups> for the use
of this name by code.

name

I B M I L O G P L A N T P O W E R O P S V 3 . 2 439

Remove a predefined plan view type

Removing a predefined plan view type is done by removing the extension that declares this
plan view type. The following XML code to remove the Resources Gantt plan view type
must be inserted in the plug-in manifest file:

<plugin>
…
<extension point="PlanViewType" remove-extension="Resources"/>
…

</plugin>

The "Resources" value corresponds to the name given to the extension declaration of the
resource type, with the id attribute. Extension IDs for the predefined views are:

Extension IDs for Predefined Views
Extension NamePlan view type

DataData

CalendarCalendars

SummaryKPIs Summary

StockSheetStock Summary

StockCoverageSheetStock Coverage

StockEventSheetStock Event

PlanningSheetPlanning Sheet

ShiftsPlanning Workload

WorkloadTableWorkload Table

ResourcesResources Gantt

I B M I L O G P L A N T P O W E R O P S V 3 . 2440

PlanViewContainer.Configuration extension
point

Use this section to change the layout of a plan view.

In this section

Overview
You can add to the three standard configurations of displaying a view.

Add a new plan view configuration
The mechanism of adding a new view configuration.

Implement a configuration factory class (optional)
Used to create a new container.

Implement a configuration
To position the plan views within a container.

Remove a plan view configuration
The code to remove a plan view.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 441

Overview

The PPO GUI allows you to configure views of the same plan within a window, called the
plan view container. These configurations are activated through the configuration buttons
highlighted in the following figure:

The PPO GUI provides three configurations:

♦ Single: One plan view is displayed in a plan view container (default).

♦ Horizontal Split: Two plan views are horizontally split in a plan view container.

♦ Vertical Split: Two plan views are vertically split in a plan view container.

I B M I L O G P L A N T P O W E R O P S V 3 . 2442

Add a new plan view configuration

Plan view configurations are provided with extensions to the extension point
PlanViewContainer.Configuration.

The XML format for this extension is:

Plan view configuration extension format
DescriptionAttributesElements

Manifest file root element<plugin>

For defining a new plan view configuration<extension
point="PlanViewContainer.Configuration">

The id of this extension. This id can be
referenced by a plug-in which wants to remove

id

this configuration or to set this configuration as the
default configuration (see extension
-point="PlanViewContainer.Defaults").

The class of the extension Java™ object. It must
inherit from ilog.powerops.workspace.

classname
(optional)

PlanViewConfigurationExtensionPoint.
ConfigurationFactory. It is responsible for
creating a configuration for each newly created
plan view container.

The class of the configurations to create for plan
view containers. It must inherit from ilog.

configurationClass

powerops.workspace.
PlanViewContainer.Configuration. This
is the class responsible for arranging plan views
within a plan view container.

The filename of the image file to provide as an
icon to the button associated with this

icon

configuration. The image file must be at the root
of the plug-in directory that declares this extension.

A title for this configuration. This title should be a
key to a string resource associated with the
plug-in.

title

A long description for this configuration. This
description should be a key to a string resource
associated with the plug-in.

description

A tooltip for buttons associated with this
configuration. This tooltip should be a key to a
string resource associated with the plug-in.

tooltip

Configures a plan view site to install a plan view
into. A site is the container that contains the plan

<site> (*)

view, its associated toolbar, and the drop-down
list that allows for changing the plan view.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 443

DescriptionAttributesElements

The number of <site> elements declared in the
<extension> elements determines exactly the
number of plan view sites the configuration can
host.

For example, the vertical split configuration defines
two sites which are vertically split. Its declaration
contains two <site> elements.

Provides the id of the plan view type to display
by default in this place holder.

defaultType
(optional)

Determines whether the drop-down list for
changing the type of plan view should be visible

typeListVisible
(optional)

or hidden. If the value of this attribute equals
"false", the drop-down list is hidden. Otherwise,
the list is shown.

I B M I L O G P L A N T P O W E R O P S V 3 . 2444

Implement a configuration factory class (optional)

A configuration factory is responsible for instantiating and initializing a new ilog.powerops.
workspace.PlanViewContainer.Configuration for each plan view container. The
configuration factory class is specified with the classname attribute of the
PlanViewContainer.Configuration extension and must inherit from the class ilog.
powerops.workspace.PlanViewConfigurationExtensionPoint.ConfigurationFactory.

This base class instantiates a default configuration factory if no classname attribute is
specified for the extension. The default behavior of this class is to read the configuration
class from the configurationClass attribute of the extension and to instantiate a
configuration from this class for each newly created plan view container.

However, it is necessary to define your own configuration factory for reading additional
parameters from the extension parameters. These parameters can then be given to the
instantiated configurations from themethod initializeConfiguration(PlanViewContainer.
Configuration configuration).

I B M I L O G P L A N T P O W E R O P S V 3 . 2 445

Implement a configuration

A configuration is responsible for arranging plan view sites (one view site contains one plan
view) within a plan view container. The configuration class is specified from the
configurationClass attribute of the extension.

Main methods to override are:

♦ getRootContainer(): The container that will contain all the plan view sites. This container
fits all the area of the plan view container when this configuration is selected. For split
configuration, this container is the JSplitPane that contains two plan view sites.

♦ insertPlanViewSite(PlanViewSite site, PlanViewSite oldSite, int index): Insert
a plan view site in the root container returned with the method getRootContainer. This
method is invoked for each plan view site to install in the configuration.

I B M I L O G P L A N T P O W E R O P S V 3 . 2446

Remove a plan view configuration

Removing a predefined plan view configuration consists of removing the extension that
declares this plan view configuration. For example, the following XML code to remove the
hsplit plan view configuration must be inserted in a plug-in manifest file:

<plugin>
…
<extension point="PlanViewContainer.Configuration"

remove-extension="hsplit"/>
…

</plugin>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 447

PlanViewContainer.Defaults extension point

The extension point "PlanViewContainer.Defaults" determines the configuration to set
by default to a plan view container that was just created.

The XML format for this extension is:

Plan view container default extension format
DescriptionAttributesElements

Manifest file root element<plugin>

For changing the default plan view
configuration

<extension
point="PlanViewContainer.Defaults">

The id of this extension. This id can be
referenced by a plug-in which wants to
remove this extension.

id

Specifies the id of the plan view
configuration to use by default.The value

defaultConfiguration

of this attribute must correspond to the
value of the id attribute specified in the
<extension
point="PlanViewContainer.
Configuration"…> declaration of the
plan view configuration.

Specifies the default plan view types to
select in the plan view sites installed in
the configuration.

defaultPlanViewTypes
(optional)

The value of this attribute is a comma
separated list of names, each name
being the name of a plan view type.

These specified plan view types do not
override default plan view types which
may be specified in the declaration of the
configuration.

For example, consider a configuration
declaring two plan view sites, as follows:

<extension

point="PlanViewContainer.
Configuration"

defaultConfiguration=
"twoSites">

<site defaultType="Resources"/
>

<site/>

I B M I L O G P L A N T P O W E R O P S V 3 . 2448

DescriptionAttributesElements

</extension>

Now consider a
"PlanViewContainer.Defaults"
extension that declares two default types
for this configuration as follows:

<extension

point="PlanViewContainer.
Defaults"

defaultConfiguration=
"twoSites"

defaultPlanViewTypes=
"Resources,Summary">

</extension>

The default plan view types for this
configuration will be Resources Gantt
and KPIs Summary.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 449

I B M I L O G P L A N T P O W E R O P S V 3 . 2450

Plan view extension example

Files are included in the distribution to help you understand how to configure the data views.

In this section

Overview
A list of useful files.

How to run the example
Compile the plug-in first.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 451

Overview

The Plant PowerOps distribution comes with a set of example files that demonstrate how to
create a new plan view. This new plan view displays information about setup activities of
the current plan.

The sample files are located in the directory <InstallDirectory>\examples\plugins\
addSetupView. The sample files include the following:

♦ a build.xml file

♦ a plugin.xml file

♦ two .xml view description files:

data\gui\table\setupdataaccess.xml and

setupdisplay.xml;

♦ three Java™ files:

src\AddSetupViewPlugInInstaller.java;

src\ilog\plant\gui\docview\IloMSSetupActivityPanel.java;

src\ilog\plant\gui\model\table\data\IloMSSetupActivityDataProviderOutside.
java;

♦ Associated image and properties files

I B M I L O G P L A N T P O W E R O P S V 3 . 2452

How to run the example

To run the example, you need to compile the plug-in first. In the current plug-in directory
(addViewSetup) just do so by launching ant (no argument needed). The desired plug-in is
automatically copied to the general plug-in directory in plant.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 453

I B M I L O G P L A N T P O W E R O P S V 3 . 2454

Customizing views, menus, and toolbars

You can add new or remove existing views, panels, table layouts, menu items or toolbar
icons.

In this section

Adding new table layouts
How to add new user-selectable column layouts for table views.

Inserting a new panel view
Describes the code to insert a new view.

Insert a new panel and toolbar in an existing view
Describes the code necessary to insert a new panel.

Insert a new item in the menu and a new icon button in the main toolbar
Describes the code needed to add a new menu command or icon.

Remove menu item and button from the main toolbar
The code necessary to remove a path to an existing menu or icon.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 455

Adding new table layouts

This section describes how to add new user-selectable table column layouts. This allows a
PPO GUI user to change the order and appearance of columns in the tables of certain views
like the Planning Sheet andWorkload views.

PPO searches for file names of the type <view_name>displayXXX.xml in the default path
plant/data/gui/table as well as in user-specified directories (described later). Any defined
table layouts from these files are then enabled to appear in the Layout combo box of the
view. Define the filename as an i18n tag in one of the message properties files.

For example, the Planning Sheet view has two xml display files:

♦ planningsheetdisplay.xml

♦ planningsheetdisplayproduction.xml

There are two associated message property file entries:

♦ planningsheetdisplay.xml=Default

♦ planningsheetdisplayproduction.xml=Production

Which then allows the user to select the prefered layout, as shown in the following GUI
image:

To specify a user specific directory for your display files you need to call the static method
IloMSPlanningSheet.setOptionalDisplayPath(String path) or IloMSWorkloadPanel.
setOptionalDisplayPath(String path).

I B M I L O G P L A N T P O W E R O P S V 3 . 2456

Inserting a new panel view

This section provides an example of how to insert a new view to list all setup activities (if
they exist) with their name, ID, start time, end time, setup cost and setup time.

1. Declare the structure of the new view in an .xml file, setupDisplay.xml:

<?xml version="1.0" encoding="UTF-8"?>
<DatabaseEditor>
<Views>
<View id="SetupActivityView" label="AddSetupView.SetupActivities">
<Columns>
<Column id="Identifier" label="AddSetupView.identifier" width="94"

readonly="true" freeze="true"/>
<Column id="Name" label="AddSetupView.name" width="100"

freeze="true"
readonly="true"/>

<Column id="StartDate" label="AddSetupView.startTime" width="120"
readonly="true"/>

<Column id="EndDate" label="AddSetupView.endtime" width="120"
readonly="true"/>

<Column id="SetupCost" label="AddSetupView.setupCost" width="120"
readonly="true"/>

<Column id="SetupTime" label="AddSetupView.setupTime" width="100"
readonly="true"/>

</Columns>
</View>

</Views>
</DatabaseEditor>

2. Define the types and accessibility of fields in an .xml file, setupDataaccess.xml:

<DatabaseEditor>
<Views>
<View id="SetupActivityView" type="java"

provider="ilog.plant.gui.model.table.data.
IloMSSetupActivityDataProviderOutside
"

rowtype="ilog.plant.IloMSScheduledActivity">
<Columns>
<Column id="Identifier" type="java.lang.String"

neededforcreation="true">
<Get call="getIdentifier"/>
<Set call="setIdentifier"/>

</Column>
<Column id="Name" type="java.lang.String" neededforcreation="true">

<Get call="getName"/>
<Set call="setName"/>

</Column>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 457

<Column id="StartDate" type="java.util.Date">
<Get call="getStartDate"/>

</Column>
<Column id="EndDate" type="java.util.Date">
<Get call="getEndDate"/>

</Column>
<Column id="SetupCost" type="int">
<Get call="getSetupCost"/>

</Column>
<Column id="SetupTime" type="int">
<Get call="getSetupTime"/>

</Column>

</Columns>
</View>

</Views>
</DatabaseEditor>

3. Define the Java class managing the accessibility of fields,
IloMSSetupActivityDataProviderOutside.java:

public class IloMSSetupActivityDataProviderOutside implements JavacallsView

{
…/…

/**
* Returns an iterator over a list of <code>IloMSScheduledActivity</code>.

*/
public Iterator iterator()
{
ArrayList rowList = new ArrayList();
IloMSSchedulingSolution solution = getSchedulingSolution();
if (solution != null) {
int nbObjects = solution.getNumberOfScheduledActivities();
// Add the objects
for (int i = 0; i < nbObjects; i++) {
IloMSScheduledActivity object = solution.getScheduledActivity(i);
if(object.isSetupActivity())
{

rowList.add(object);
}

}
}
return rowList.iterator();

}

…/…

/**
* get the id of the IloMSScheduledActivity
*

I B M I L O G P L A N T P O W E R O P S V 3 . 2458

* @param selected IloMSScheduledActivity
* @return the id as string if success
*/
public String getIdentifier(IloMSScheduledActivity activity)
{
try {
return getAbstractActivity(activity).getIdentifier();

} catch (Exception e) {
ErrorHandler.Error(data.getPlantPlan().getApplication(), e);
return null;

}
}

/**
* get the name of the IloMSScheduledActivity
*
* @param selected IloMSScheduledActivity
* @return the name as string if success
*/
public String getName(IloMSScheduledActivity activity)
{
try {
return getAbstractActivity(activity).getName();

} catch (Exception e) {
ErrorHandler.Error(data.getPlantPlan().getApplication(), e);
return null;

}
}

…/…

4. Define the Java class managing the new panel, IloMSSetupActivityPanel.java.

5. Declare this new panel in the plug-in manifest.

<plugin name="Plugin.addSetupView"
provider-name="CompanyProvider"
version="Plugin.Version"
pluginInstallerJavaClass="AddSetupViewPlugInInstaller">

<runtime>
<library name="addSetupView.jar"/>

</runtime>

<settings>
<file name="actions.xml"/>

</settings>

<extension point="PlanViewType"
id="NewSetupView"
name="SetupView"
title="AddSetupView.Title"
shortDescription="AddSetupView.Tooltip"
longDescription="AddSetupView.LongDescription"
javaClass="ilog.plant.gui.docview.IloMSSetupActivityPanel">
<icon type="relativeToClass"

I B M I L O G P L A N T P O W E R O P S V 3 . 2 459

classname="ilog.plant.gui.docview.IloMSSetupActivityPanel">

./resources/images/setupView16.gif</icon>
<largeIcon type="relativeToClass"

classname="ilog.plant.gui.docview.IloMSSetupActivityPanel">
./resources/images/setupView32.gif</largeIcon>

<toolbar>
<button actionCommand="Refresh"/>
<button actionCommand="ExportToExcel"/>
<button actionCommand="TotalSetupTime"/>

</toolbar>
</extension>

…/…

6. Declare the TotalSetupTime action. First, declare the new TotalSetupTime action in a
new file actions.xml, located in the root directory of the plug-in. The actions.xml file
declares the new action as follows:

<?xml version="1.0"?>
<appframe>
<settings>

<action actionCommand="TotalSetupTime"
name="AddSetupView.action"
tooltip="AddSetupView.action"
description="TotalSetupTime"
icon="./data/images/setupView16.gif">

</action>
</settings>

</appframe>

Resource strings referenced in this .xml file are defined in a property file named
addSetupView.properties:

AddSetupView.action=Compute Total Setup Time
AddSetupView.computed=The Total Setup Time is
AddSetupView.notComputed=The Total Setup Time is not yet computed
…

7. The final step is to reference the action handler class in the plug-in installer. This is
achieved as follows:

public class AddSetupViewPlugInInstaller
extends Plugin

{
…/…

public void install(Abstractapplication absApp)
{
super.install(absApp);
System.err.print("installing");

I B M I L O G P L A N T P O W E R O P S V 3 . 2460

try {
final IloMSPlantApplication plantApplication = (IloMSPlantApplication)

absApp;
pluginInfo = plantApplication.getServices().getString("plugin.exercise")

+

"-v"+
plantApplication.getServices().getString("plugin.

version");

System.err.println(pluginInfo + " plugin...");
absApp.getActionManager().addActionListener("TotalSetupTime", new
IlvSingleActionHandler("TotalSetupTime") {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(null,
getTotalSetupTimeInformation());

}

/**
* get the formatted string
* @return the formatted string
*/
private String getTotalSetupTimeInformation() {

String setupTimeInformation = plantApplication.
getApplicationContext().getString("AddSetupView.notComputed");

if(plantApplication!=null) {
PlantPlan plan = (PlantPlan)plantApplication.

getActivePlan();
if(plan!=null) {

IloMSSchedulingSolution solution = plan.
getSchedulingSolution();

setupTimeInformation = plantApplication.
getApplicationContext().getString("AddSetupView.computed")

+computeTotalSetupTimeInformation(solution);
}

}
return setupTimeInformation;

}

/**
* Compute the total setup time of all setup activities
* @param solution
* @return the total setup time as string
*/
private String computeTotalSetupTimeInformation

(IloMSSchedulingSolution solution) {
int totalSetupTime = 0;

if (solution != null) {
int nbObjects = solution.getNumberOfScheduledActivities();
for (int i = 0; i < nbObjects; i++) {
IloMSScheduledActivity object = solution.getScheduledActivity

(i);
if(object.isSetupActivity())

I B M I L O G P L A N T P O W E R O P S V 3 . 2 461

{
totalSetupTime+=solution.getSetupTime(object.

getGeneratedActivity());
}

}
}

return String.valueOf(totalSetupTime);
}

}
);

…/…

System.out.println("New Setup View Plugin installed");
}

…/…
}

I B M I L O G P L A N T P O W E R O P S V 3 . 2462

Insert a new panel and toolbar in an existing view

This section provides an example of how to insert a new panel to list all existing setup
activities with their name, ID, start time, end time, setup cost and setup time in the existing
data view.

1. Declare the optional files (setupDataaccess.xml and setupDisplay.xml) which modify
the content of the view as follows:

public class AddSetupViewPlugInInstaller extends Plugin
{
public static final String DATA_ACCESS_FILE_NAME = "setupdataaccess.xml";

public static final String DISPLAY_FILE_NAME = "setupdisplay.xml";
public static final String DIRECTORY = "../plugins/addSetupView/data/gui/

table/";
private String pluginInfo;
public void install(AbstractApplication absApp) {

super.install(absApp);
System.err.print("installing ");
try {

final IloMSPlantApplication plantApplication =
(IloMSPlantApplication) absApp;

pluginInfo = plantApplication.getServices().getString
("plugin.exercise")+

"-v"+
plantApplication.getServices()

.getString("plugin.version");
System.err.println(pluginInfo + " plugin...");

..
// installing the new table in the data view also
IloMSDataPanel.SetOptionalDataFileName(DIRECTORY,

DATA_ACCESS_FILE_NAME, DISPLAY_FILE_NAME);
System.err.println("Plugin installed");
}
catch (Exception e)
{
e.printStackTrace();
}

}

2. Declare the toolbar customization in the manifest file. The toolbar customization is
declared in the manifest .xml file as follows:

<plugin>
<!--Declares the file containing actions associated with menu customizations
-->
…/…

<!-- Add a new icon button in the data view toolbar -->
<extension point="MenuCustomization">
<menuCustomization>
<barComponentID name="planViewBar[Data]"/>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 463

<insert path="History" after="true">
<separator/>

<button actionCommand="TotalSetupTime"/>
</insert>

</menuCustomization>
</extension>

…/…

I B M I L O G P L A N T P O W E R O P S V 3 . 2464

Insert a new item in the menu and a new icon button in the main
toolbar

This section shows how to insert a new item SetupTime with its icon in the menu and a new
button in themain toolbar of the application. When activated, the SetupTime action associated
with these items displays a message with the sum of all setup times to the user. This button
is in the new view created in the previous section.

1. Declare the action (as before).

2. Declare the menu and toolbar customization in the manifest file. The menu and toolbar
customization is declared in the manifest XML file as follows:

<plugin>
<!--Declares the file containing actions associated with menu customizations-

->
…/…
<!-- ADD A NEW MENU IN THE MENU tools after the solve menu -->
<extension point="MenuCustomization">
<menuCustomization>
<barComponentID name="menu"/>

<insert path="toolsMenu/SolveProblem" after="true">
<menuItem actionCommand="TotalSetupTime"/>

</insert>
</menuCustomization>

</extension>

<!-- ADD A NEW ICON BUTTON IN THE MAIN TOOL BAR after the solve button -->
<extension point="MenuCustomization">
<menuCustomization>
<barComponentID name="toolbar[mainToolBar]"/>
<insert path="CloseProblem" after="false">

<button actionCommand="TotalSetupTime"/>
<separator/>

</insert>
</menuCustomization>

</extension>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 465

Remove menu item and button from the main toolbar

This section shows how to remove an existing menu and button in the PPO GUI. The menu
and toolbar customization is declared in the manifest XML file as follows:

<plugin>
…/…

<!-- REMOVE A MENU IN THE MENUS -->
<extension point="MenuCustomization">
<menuCustomization>
<barComponentID name="menu"/>

<remove path="toolsMenu/ShowKPIComparator"/>
</menuCustomization>

</extension>

<!-- REMOVE A BUTTON IN THE MAIN TOOL BAR -->
<extension point="MenuCustomization">
<menuCustomization>
<barComponentID name="toolbar[mainToolBar]"/>

<remove path="ShowKPIComparator"/>
</menuCustomization>

</extension>
…/…

I B M I L O G P L A N T P O W E R O P S V 3 . 2466

Engine optimizer extensions

An optimizer class defines how the data model is solved; it is possible to change this
optimization class from the PPO default.

In this section

Overview
Implementation is through an optimizer class inheriting from ilog.plant.
IloMSEngineOptimizer.

Write the engine optimizer factory class
Implementing the IloMSOptimizerFactory class.

Write the engine optimizer class to solve data
You can use the default engine optimizer or create your own.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 467

Overview

In this section you will learn how to:

♦ Write the engine optimizer factory class

♦ Write the engine optimizer class to solve data

This section explains how to redefine howmodel data (including from a plan) is solved. These
services must be implemented by an optimizer class inheriting from ilog.plant.
IloMSEngineOptimizer.

For each of these services, an optimizer is created and deleted after the application dies.
An optimizer factory is responsible for creating these optimizers each time it is necessary.
An optimizer factory must inherit from ilog.plant.IloMSOptimizerFactory and is declared
in the XML optimizer extension.

I B M I L O G P L A N T P O W E R O P S V 3 . 2468

Write the engine optimizer factory class

Implementing the IloMSOptimizerFactory class.

In this section

Overview
Building the optimizers.

Write your own engine optimizer factory class
Declaring the new optimizer.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 469

Overview

After declaring the optimizer extension in the .xml manifest file, you must implement an
optimizer factory using the class IloMSOptimizerFactory. An optimizer factory is responsible
for creating instances of ilog.plant.IloMSEngineOptimizer.

Use the factory method IloMSOptimizerFactory.create to build the optimizers.

public abstract IloMSOptimizerFactory create()

When no optimizer extensions are specified, the optimizer factory is automatically given the
default factory used by the PPO GUI. For example, the default optimizer factory can be used
by a custom engine optimizer for solving plans using different heuristics. The default optimizer
factory is accessible in the optimizer factory class using the methods:

public static IloMSOptimizerFactory getFactory()
public static void setFactory(IloMSOptimizerFactory defaultFactory)

I B M I L O G P L A N T P O W E R O P S V 3 . 2470

Write your own engine optimizer factory class

To replace the standard factory and optimizer, you can redefine the factory and declare your
own. You need to inherit from IloMSOptimizerFactory and write the create method in which
you create a new instance of the new optimizer. To set it inside PPO, you need to call the
methods:

public static IloMSOptimizerFactory getFactory()
public static void setFactory(IloMSOptimizerFactory defaultFactory)

I B M I L O G P L A N T P O W E R O P S V 3 . 2 471

I B M I L O G P L A N T P O W E R O P S V 3 . 2472

Write the engine optimizer class to solve
data

You can use the default engine optimizer or create your own.

In this section

Overview
The four steps that involve the new optimizer.

Launch and monitor the solve process
Using the solve method.

Use the default engine optimizer
Methods to retrieve and solve using the default optimizer.

Create your own engine optimizer
The methods to create, retrieve, and extend the optimizer.

Stopping the solve process
How to stop a solve process.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 473

Overview

Engine optimizers, implemented using the class IloMSEngineOptimizer, are responsible
for producing plans (solutions). When the PPO GUI is asked for solving data, it involves the
engine optimizer in the following steps:

1. Provides the optimizer with the engine parameters.

2. Launches the solve on the optimizer.

3. Listens to the progress of the solve and displays it in theOptimizing in Progress dialog
box.

4. Stops the optimizer during the solve process if the user presses the Stop button in the
Optimizing in Progress dialog box.

I B M I L O G P L A N T P O W E R O P S V 3 . 2474

Launch and monitor the solve process

The PPO GUI launches the solve process from the engine optimizer by invoking the method
IloMSEngineOptimizer.solve. This method takes only one parameter, which is the model
to solve. It returns a Boolean which indicates if the model is solved or not.

public abstract boolean solve(IloMSModel model)

To perform preprocessing the following method is called before the solving part:

public void beforeSolve()

To perform post processing the following method is called after the solving part:

public void afterSolve()

There are two approaches for implementing these methods:

♦ use the default engine optimizer

♦ redefine the engine optimizer.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 475

Use the default engine optimizer

You can use the PPO default engine optimizer in your implementation if so desired.

The method IloMSOptimizerFactory.setFactory sets the default optimizer factory that
the PPO GUI uses for solving model data. The parameter defaultFactory is the default
optimizer factory.

public void setFactory(IloMSOptimizerFactory defaultFactory)

The following method retrieves the default factory:

public IloMSOptimizerFactory getFactory()

The class IloMSEngineOptimizer comes with one utility method that allows you to launch
a solve on a given engine optimizer. This method can be used for launching an engine
optimizer created by the default engine optimizer factory. This method ensure that first,
intermediate, and last solutions found by the given optimizer will be monitored on the
Optimizing in Progress dialog box.

public boolean solve(ilog.plant.IloMSModel model)

I B M I L O G P L A N T P O W E R O P S V 3 . 2476

Create your own engine optimizer

It is possible to redefine an engine optimizer implementation to be used in PPO instead of
the default. To do that, you need to define a new class inheriting from IloMSEngineOptimizer.
In this new class, you need to specify and implement the solve method. The method
IloMSOptimizerFactory.setFactory sets the default optimizer factory that the PPO GUI
uses for solving model data. The parameter factory is the default optimizer factory.

public void setFactory(IloMSOptimizerFactory defaultFactory)

The following method retrieves the default factory:

public IloMSOptimizerFactory getFactory()

The class IloMSEngineOptimizer comes with one utility method that allows you to launch
a solve on a given engine optimizer. This method can be used for launching an engine
optimizer created by the default engine optimizer factory. This method ensures that first,
intermediate, and last solutions found by the given optimizer will be monitored on the
Optimizing in Progress dialog box.

public boolean solve(ilog.plant.IloMSModel model)

You can also extend the optimizer by writing preprocessing and post processing methods
called (respectively) before and after the solve method.

public void beforeSolve()
public void afterSolve()

I B M I L O G P L A N T P O W E R O P S V 3 . 2 477

Stopping the solve process

While a solve is in progress in PPO, it is possible to interrupt the process by pressing the
Stop button on theOptimizing in Progress dialog box. The engine optimizer will be notified
of this event when the method stop is called:

public void stop()

By default, this method invokes the stop() method on all engine optimizers currently
processing a solve launched with the method solve(ilog.plant.IloMSModel).

I B M I L O G P L A N T P O W E R O P S V 3 . 2478

Configuring the data views

The data views include theMaster Data and Transactional Data views which consist of
tables that contain the model data and generated plan data. You can add, remove or modify
data tables per your needs using the techniques of this section.

In this section

Overview
A look at the default version of the data tables.

Activate the customization in a plug-in
First the customization must be activated.

Add a new table
Uses an example to describe how to add a new data table to your model as displayed in PPO.

Remove a table
Some data tables may not be useful in your model.

Modify a table
You can modify various aspects of a table in a data view.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 479

Overview

In this section you will learn how to:

♦ Activate the customization in a plug-in

♦ Add a new table

♦ Remove a table

♦ Modify a table

By default the Transactional Data view has an appearance similar to the following image.
The content of this view is defined by two .xml files: data/gui/table/datamodeldisplay.
xml and data/gui/table/datamodelaccess.xml. Also note the corresponding files that
control the content of theMaster Data views: data/gui/table/masterdatadisplay.xml
and data/gui/table/masterdataaccess.xml.

For various reasons you may want to customize the content of the data views. In order to
not directly modify the PPO .xml files listed earlier, an optional “dataaccess” file and an
optional “display” file can be specified to redefine the content of this view by adding,
removing, or modifying tables. In the following sections, these optional files will be referred
to as dataaccess.xml and display.xml.

I B M I L O G P L A N T P O W E R O P S V 3 . 2480

Activate the customization in a plug-in

The class ilog.plant.gui.docview.IloMSMasterDataPanel is the implementation of the
master data view. A static method needs to be called to specify the names and location of
the optional dataaccess.xml and display.xml.

public static void SetOptionalDataFileName(String directory,
String dataAccessFileName,

String displayFileName)

If the specified files cannot be found, an error is raised in the console. The default value for
the file names is “null” which means that there is no customization of the view.

The SetOptionalDataFileName method needs to be called before any creation of a Data
view. One solution is to call it within the class Plugin:

public class PluginInstaller extends Plugin
{
String DIRECTORY = "../plugins/myplugin/data/gui/table/";
String ACCESS_FILE = "mydataaccess.xml";
String DISPLAY_FILE = "mydisplay.xml";

public void install(AbstractApplication absApp)
{
IloMSMasterDataPanel.SetOptionalDataFileName(DIRECTORY, ACCESS_FILE,

DISPLAY_FILE);
…

I B M I L O G P L A N T P O W E R O P S V 3 . 2 481

I B M I L O G P L A N T P O W E R O P S V 3 . 2482

Add a new table

Uses an example to describe how to add a new data table to your model as displayed in PPO.

In this section

Overview
An overview of the section.

Define the JavacallsView
First we need to gather the appropriate data.

Write the data access
The data is then organized.

Write the display
The data is then written to the new table.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 483

Overview

In this example a new custom Shipments table is added to the Data view; this will allow
the GUI user to see and edit the existing CustomShipment objects.

I B M I L O G P L A N T P O W E R O P S V 3 . 2484

Define the JavacallsView

First the JavacallsView needs to be extended to return an iterator over all the
CustomShipment objects. Since we are not interested in adding or removing a
CustomShipment, the methods create, add and delete are not used.

/**
* Date provider for the <code>CustomShipment</code>
*/
public class ShipmentDataProvider implements JavacallsView
{
/**
* The data object passed as parameter for the creation of the view
*/
protected CommonTableData data;

public void setDataModel(Object dataModel)
{
data = (CommonTableData) dataModel;

}

/**
* Informs if a cell is readonly or not
* @return true if is readonly
*/
public boolean isReadOnly(Object ref, String identifier)
{
return false;

}

/**
* Returns an iterator over a list of <code>CustomShipment</code>.
*/
public Iterator iterator()
{
Collection rowList = new ArrayList();
// retrieve instances
return rowList.iterator();

}

public Object create(Object[] parameters) {
return null;

}

public boolean add(Object row) {
return false;

}

public boolean delete(Object row) {
return false;

}

I B M I L O G P L A N T P O W E R O P S V 3 . 2 485

public boolean save() {
return true;

}
}

I B M I L O G P L A N T P O W E R O P S V 3 . 2486

Write the data access

The masterdataaccess.xml file defines the getter and setter for all the columns of the
Master Data view, and datamodelaccess.xml for the Transactional Data view. The column
CategoryCode is retrieved from a custom property.

<DatabaseEditor>
<Views>
<View id="ShipmentView" type="java"

provider="mypackage.ShipmentDataProvider"
rowtype="CustomShipment">

<Columns>
<Column id="Identifier" type="java.lang.String"

neededforcreation="true">
<Get call="getIdentifier"/>
<Set call="setIdentifier"/>

</Column>
<Column id="Name" type="java.lang.String" neededforcreation="true">
<Get call="getName"/>
<Set call="setName"/>

</Column>
<Column id="CategoryCode" type="java.lang.String">
<Get call="getStringProperty">
<Parameters>
<Parameter type="java.lang.String" value="CATEGORYCODE"/>

</Parameters>
</Get>

</Columns>
</View>

</Views>
</DatabaseEditor>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 487

Write the display

Write the display.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<DatabaseEditor>
<Views>
<View id="ShipmentView" label="Shipments" forcereadyonly="true">
<Columns>
<Column id="Name" label="Tables.name" width="100" freeze="true"

readonly="true"/>
<Column id="CategoryCode" label="category code" width="72"/>

</Columns>
</View>

</Views>
</DatabaseEditor>

Now the new table should appear at the end of the existing tables.

At this time it is not possible to specify the position of the optional tables; they are added
at the end of the standard PPO tables.

I B M I L O G P L A N T P O W E R O P S V 3 . 2488

Remove a table

It is possible to remove an existing table simply by redefining the table to have no columns.

To do this, the dataaccess.xml file and the display.xml file need to contain a redefinition
for the table without any columns; it is then presumed that the table is not displayable.

In the example below, no columns are defined for the Recipes table, so it will not display
in the GUI.

<View id="RecipeView" label="Tables.Recipes">
<Columns>
</Columns>

</View>

<View id="RecipeView" type="java"
provider="ilog.plant.gui.model.table.data.IloMSRecipeDataProvider"

rowtype="ilog.plant.IloMSRecipe">
<Columns>
</Columns>

</View>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 489

Modify a table

In order to redefine an existing table, the optional dataaccess.xml and display.xml files
need to contain a new definition of the table; that is, a table with the same “view ID".

This new definition will replace the PPO standard version, and will then be added at the end
of the existing PPO tables.

As an example, here is what the Transactional Data view looks like after adding the
Shipments table, removing the Scheduled Activities table, and modifying the Production
Orders table (it appears last).

I B M I L O G P L A N T P O W E R O P S V 3 . 2490

Database customization

This describes customizations that you can make regarding database usage in PPO. The list
of supported databases is available at Database usage and connectivity.

In this section

Installing JDBC jars
This sections details how to install JDBC jars for database servers.

Customizing PPO data model tables
You can customize the default PPO data model by adding or removing columns and tables.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 491

I B M I L O G P L A N T P O W E R O P S V 3 . 2492

Installing JDBC jars

This sections details how to install JDBC jars for database servers.

In this section

Oracle
Setting up the client.

Microsoft SQL Server 2000 and 2005
Setting up the client.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 493

Oracle

PPO uses the JDBC Thin driver. You should download the Oracle® client from Oracle web
site, install it on your machine and copy the file ojdbc14.jar from the Oracle client
installation directory to the PPO library directory at <PPO_INSTALL_DIR>/lib/jar. We
recommend downloading the Oracle Database 10g or 11g client. You must restart PPO in
order to load the new class path.

I B M I L O G P L A N T P O W E R O P S V 3 . 2494

Microsoft SQL Server 2000 and 2005

To use SQL Server® with PPO you have to download the latest version of Microsoft® JDBC
driver (the JDBC driver 2005) and install it on your machine. Then you should copy the
sqljdbc.jar file from the JDBC driver installation directory to the PPO library directory at
<PPO_INSTALL_DIR>/lib/jar. You must restart PPO in order to load the new class path.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 495

I B M I L O G P L A N T P O W E R O P S V 3 . 2496

Customizing PPO data model tables

You can customize the default PPO data model by adding or removing columns and tables.

In this section

PPO persistence customization files
Proceed with caution when editing files in the resources directory.

Removing tables and columns from the PPO model
Methods to remove tables and columns.

Adding property columns to the PPO model
Methods of adding columns as a property to a PPO object.

Adding custom tables
Describes how to add custom tables to the data model.

Choosing between using properties or custom tables
Factors to help you decide.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 497

PPO persistence customization files

The directory <PPO_INSTALL_DIR>/data/database/resources contains a set of files used
by PPO to read and write data to a database. Please be careful when changing the content
of these files.

♦ database.xml: This file contains the PPO database schema in Turbine XML format used
by Apache DdlUtils (see http://db.apache.org/ddlutils for a detailed description of the
syntax). This file is used when creating the database from PPO (or when exporting the .
ddl file). This file is validated by the XML reader using database.dtd file.

Do not change or remove the database.dtd
file.

Warning:

♦ repository.xml: This file contains the PPO object-relational mapping. It describes the
mapping between the object-oriented model of PPO and the relational database
persistence. PPO uses the Apache OJB as a mapping layer (see http://db.apache.org/ojb/
for more details). This file includes at runtime.

♦ repository_database.xml, repository_internal.xml and repository_PPO.xml. All these files
are validated against the repository.dtd file. The OO-relational mapping of the PPO
model is contained in repository_PPO.xml.

♦ PPOSchema.mdb: This file contains the PPO database schema in Microsoft® Office
Access® format. This file is used when saving a scenario in Access format.

♦ CustomTables.xml: This contains an example of OO-relational mapping of custom tables
added to PPO model (see below).

♦ PPOCustomSchema.mdb: This contains an example of a customized PPO schema with a
custom table added to the model.

♦ persistence.properties: This is a configuration file of PPO persistence and mapping layer
(see below).

♦ Log4j.properties: This is the configuration file of logging/tracing functionalities of the
PPO persistence and mapping layer (see http://logging.apache.org/log4j/ for more
information).

The following files should never be changed or modified:OJB.properties,
repository.dtd, database.dtd and repository_internal.xml.

Warning:

I B M I L O G P L A N T P O W E R O P S V 3 . 2498

Removing tables and columns from the PPO model

The PPO data model covers a wide range of plant modeling. For some applications, some of
the available tables or columns are not relevant. PPO allows you to simplify the model and
keep only the necessary entities used by your application.

Oracle and Microsoft SQLServer
To remove unnecessary tables or columns you need to edit database.xml and
repository_PPO.xml files.

You should remove all elements related to the tables and columns you want to remove from
these files.

Microsoft Access
Start by copying and renaming the file PPOSchema.mdb. Edit the copied file and remove the
unnecessary tables and columns. Edit persistence.properties and change the value of
the property Persistence.MSMdbSchemaFile. Set it to the name of your customized .mdb
file. You can keep your customized .mdb file in the same directory as the original one.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 499

Adding property columns to the PPO model

As with .csv files, PPO database files can be customized by adding columns as a property
to the corresponding PPO objects (instances of the IloMSObject class).

A property column must have a name of the format: PROPERTY_XXX_NAME.

XXX is the type of column and NAME is the property name used when accessing the property
value in memory (using the methods IloMSObject.getXXXProperty() and IloMSObject.
setXXXProperty()).

XXX may have one of the following values:

♦ STRING for string values

♦ NUM for float/double values

♦ INT for integer values.

Oracle and Microsoft SQL Server
To add properties to an Oracle® or Microsoft® SQL Server® database you must:

Modify the file database.xml to add the property columns (this file is used to create the
database).

Then modify the file repository_PPO.xml to add the mapping of the property columns as
follows:

<field-descriptor name="PROPERTY_INT_PROPERTYNAME"
column="PROPERTY_INT_PROPERTYNAME"
jdbc-type="INTEGER">

</field-descriptor>

The field name should be identical to the column name and start with PROPERTY_XXX. The
JDBC-typemust correspond to the type in the column name. The JDBC-type should be INTEGER
for INT properties, FLOAT for NUM properties and VARCHAR for STRING properties.

Microsoft Access
The PPO reader and writer for Microsoft Access® handles properties without any
customization. When you load an .mdb file with property columns, property values will be
assigned to the corresponding objects. Symmetrically, when you save a PPO model with
properties, the corresponding columns are created automatically in Access tables.

I B M I L O G P L A N T P O W E R O P S V 3 . 2500

Adding custom tables

PPO allows adding custom tables to the data model, and offers a simple way to load and
save custom tables.

To add custom tables:

♦ Define the structure of the tables in xml format

♦ Create a model extension point in a plug-in

♦ Run the PPO persistence generator script to generate all necessary Java™ code to handle
the persistence of the tables

♦ Compile and deploy your plug-in with the custom tables

Once the plug-in is deployed, PPO will handle the load and the save of your custom tables
inMicrosoft® Access® , database servers (Oracle® and SQL Server®) and Excel® format.
PPO will also generate ddl code for your tables.

Custom tables declaration
The structure of custom tables must be defined in an xml format as follows:

<datamodel>
<doc>
Custom data model example.

</doc>
<tables>
<table name="BUCKET_DATE" topic="custom">
<field name="BUCKET_ID" type="id" key="true">
</field>
<field name="BUCKET_SEQUENCE_ID" type="id" key="false">
</field>
<field name="START_DATE" type="date" key="false">
</field>
<field name="END_DATE" type="date" key="false">
</field>

</table>
<table name="HARVEST" topic="custom">
<field name="HARVEST_ID" type="id" key="true">
</field>
<field name="MATERIAL_ID" type="id" key="true">
</field>
<field name="DAY" type="integer" key="true">
</field>
<field name="QUANTITY" type="double" key="false">
<default>0</default>
</field>
</table>

</tables>

I B M I L O G P L A N T P O W E R O P S V 3 . 2 501

</datamodel>

A table is a set of fields and can have a topic attribute. Topics are used to categorize tables
when exporting a scenario to Excel. A field must have a type attribute. The type can have
one of the following values:

♦ id for identifiers

♦ string for strings

♦ double for floating-point values

♦ int for integers

♦ date for date values

If the field is a primary key, the attribute keymust be set to true. A field is mandatory unless
it has a default set by the <default> tag.

Creating the model extension point in the plug-in
There is an example plug-in file in the <PPOInstallDirectory>/examples/customTables
directory. In the plugin.xml you must add the xml element defining the extension point as
follows:

<extension point="ModelExtension" id="Custom" name="Custom"
generationPackage="ilog.plant.examples.customTables.tables"
classname="ilog.plant.examples.customTables.CustomModelExtension"
loadBefore="true">

</extension>

The id attribute of the element is used to prefix some of the generated files. The
generationPackage defines the name of the Java package where the code will be generated.
The classname provides the Java class name of the model extension. This class must extend
ilog.plant.persistence.table.ModelExtension. Your model extension class will be used
to access the custom tables when loading from or saving to the database.

Generating custom tables Java code
In the <PPOInstallDirectory>/examples/customTables directory there is a build.xml file
that you can use to call PPO script to generate Java code for the persistence layer of your
custom tables. Edit the customTables.properties file to set the variable ModelExtension.
ModelDefintionFile to the xml file containing the custom table definitions. Then run ant
build. The Java code is generated, compiled and deployed with your plug-in.

I B M I L O G P L A N T P O W E R O P S V 3 . 2502

Choosing between using properties or custom tables

Extending the data model with properties is equivalent to adding new attributes to PPO
objects. You should use properties when the data you want to add is directly related to PPO
objects (one-to-one mapping) and the number of added properties must be only a few (two
or three properties per table).

When the mapping between the custom data and PPO objects is not one-to-one, or when the
amount of custom data is significant, we highly recommend the use of custom tables for
readability and performance.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 503

Options of the PlantPowerOps executable file

The file PlantPowerOps.lax located in <PPOInstallDirectory>\bin is a property file
associated with PlantPowerOps.exe. By modifying this file you can direct PPO output to a
DOS window and decrease the memory allocated to Java™ processes.

Displaying the DOS console
Open the file PlantPowerOps.lax in an editor and do the following:

♦ Search for lax.stderr.redirect and change it to: lax.stderr.redirect=console.

♦ Search for lax.stdout.redirect and change it to: lax.stdout.redirect=console.

♦ Save and close the file PlantPowerOps.lax.

♦ Launch PPO as usual, and the output will be redirected to a DOS window.

Decreasing memory allocated to Java
If you encounter big memory allocation problems, you may want to decrease the amount
allocated to the GUI; this increases the memory available for optimization processes.

Open the file PlantPowerOps.lax in an editor and do the following:

♦ Search for lax.nl.java.option.additional. It may appear as follows:

lax.nl.java.option.additional=-Xmx512m -Djava.library.path=..\\lib\\x86_.
net2003_7.1\\dll_mda;..\\lib\\x86_.net2005_8.0\\dll_mda;. -Duser.language=en
-Duser.country=US

♦ To decrease the memory allocated to the GUI, in the previous line change -Xmx512m to
-Xmx256m.

I B M I L O G P L A N T P O W E R O P S V 3 . 2504

Using PPO with Microsoft products

This section describes how to build and run examples delivered with Plant PowerOps when
you useMicrosoft® Visual C++ .NET andMicrosoft Windows® XP. Included are instructions
on creating a project and linking the target with PPO.

In this section

Overview
The PPO dynamic link library.

Build and run Plant PowerOps examples
How to build and run the examples.

Creating a project workspace and link the target with PPO
This section describes how to create a project workspace and linked target.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 505

Overview

Throughout this section, <PPO> refers to the directory in which Plant PowerOps is installed.
For instance, if PPO is installed in the default directory C:\ILOG\PowerOps\Plantxx, then
<PPO>\include refers to C:\ILOG\PowerOps\Plantxx\include.

The PPO dynamic link library is delivered in multi-threaded-DLL format with a static library.
This format uses the new standard template library (STL) and is compiled using the
namespace std.

The PPO dynamic link library and the corresponding static library are in the directory:

<PPO>\lib\x86_.net2005_8.0\dll_mda\plant32.dll
<PPO>\lib\x86_.net2005_8.0\dll_mda\plant32.lib

The following information refers to the multi-threaded-DLL STL dynamic link library. Please
refer to the Code Generation section of the MSVC++ .NET online manual for more
information.

As you will be using the STL, you should define the macro IL_STD before compiling.

I B M I L O G P L A N T P O W E R O P S V 3 . 2506

Build and run Plant PowerOps examples

The Plant PowerOps examples have all been gathered into one project. As explained above,
the following information applies to the multi-threaded-DLL STL dynamic link library. The
related file is:

<PPO>\examples\x86_.net2005_8.0\dll_mda\examples.sln

Note that the order of instructions is important.

1. Start Microsoft® Visual Studio .NET.

2. From the File menu, choose Open Solution. The Open Solution dialog box appears.
The default selection in the List Files Of Type drop-down list is Solution Files (*.SLN).
Select the drive and set the directory to:<PPO>\examples\x86_.net2005_8.0\dll_mda

3. Select the examples.sln file and click Open. To list all the projects in the solution,
choose Solution Explorer from the View menu.

4. To build only one example:

a. Select the api02exercise1 project in the Solution Explorer window.

b. From theBuildmenu, chooseBuild api02exercise1. Wait for the building process
to complete.

c. Start a command prompt, and in the window set the path to the PPO dynamic link
library if it has not already set. Type:set PATH=%PATH%;<PPO>\lib\x86_.net2005_8.
0\dll_mda

d. Next, at the command prompt enter the following (where <dataExample> is the
name of a data example from <PPO>\data*.csv):

<PPO>\examples\x86_.net2005_8.0\dll_mda\api02exercise1 -instance <PPO>\
examples\data\<dataExample>

The result is then displayed.

5. To build all the examples:

a. From the Build menu, choose Build Solution.

b. Start a command prompt, and in the window set the path to the PPO dynamic link
library if it has not already set. Type:set PATH=%PATH%;<PPO>\lib\x86_.net2005_8.
0\dll_mda

c. Next, at the command prompt enter the following (where <name> is the example to
execute, and <dataExample> is the name of the data example from <PPO>\examples\
data*.csv):<PPO>\examples\x86_.net2005_8.0\dll_mda\<name> <PPO>\
examples\data\<dataExample>

d. You can also type (where 600 is the maximum time limit for execution):

<PPO>\examples\x86_.net2005_8.0\dll_mda\<name> -instance <PPO>\examples\
data\<dataExample> -runtime 600

The result is then displayed.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 507

Creating a project workspace and link the target with PPO

This procedure assumes:

♦ A source file named test.cpp that uses the API of the PPO library;

♦ A directory <MYAPPDIR> in which this file is located;

♦ A target named test.exe.

♦ A first step of building a test.sln solution.

Note that the order of instructions in this procedure is important.

1. Start Microsoft® Visual Studio .NET.

2. Start the Win32 Application Wizard:

a. From the File menu, select New-> Blank Solution. The New Project dialog box
appears.

b. In the Project Types pane, select Visual C++ Projects.

c. In the Templates pane, select theWin32 Project icon.

d. Fill in the project name (test). If necessary, correct the location of the project
(referred to hereafter as <MYAPPDIR>).

e. Click OK.

The Win32 Application Wizard appears.

3. Check application settings, display the Solution Explorer, and open test.cpp:

a. Click Application Settings, and select Console Application as the application
type.

b. Make sure that Empty project is checked in Additional Options, and then click
Finish.

c. Select Solution Explorer from the View menu (if not already displayed).

d. From the Project menu, choose Add Existing Item.

e. Select test.cpp, and click Open.

4. Next, set options so that the project finds the Plant PowerOps library and include files:

a. From the Project menu, choose Properties. The Project Properties dialog box
appears.

b. In the Configuration drop-down list, select Release.

c. In the left pane, click Configuration Properties, then C/C++.

d. In the General Category tab:

♦ In the additional include directories text field, add the directory
<ppo>\include.

I B M I L O G P L A N T P O W E R O P S V 3 . 2508

♦ For Debug Information Format, choose Line Numbers Only (/Zd).

♦ Choose No for Detect 64-bit Portability Issues.

e. In the Preprocessor pane, add IL_STD to the Preprocessor Definitions text field.

f. In theCode Generation tab, setRuntime library toMulti-threaded DLL (/MD).

5. Continuing:

a. In the Configuration Properties tree, choose Linker.

b. In the Input pane, add two files: wsock32.lib and
<ppo>\lib\x86_.net2005_8.0\dll_mda\plant32.lib.

c. In the Debug pane, set Generate Debug Info to Yes (/DEBUG).

d. In theOptimization tab, make sure thatReferences andEnable COMDAT Folding
options are set to Default. Then select OK,

6. Set test Win32 Release as the default project configuration and build the project:

a. From the Build menu, select Configuration Manager.

b. SelectRelease in the Active Solution Configuration drop-down list. Click Close.

c. From the Build menu, select Build Solution.

7. After completion of the compiling and linking process, the target is created. Next, start
a command prompt, and in the window set the path to the PPO dynamic link library if
it has not already set. Type:

set PATH=%PATH%;<PPO>\lib\x86_.net2005_8.0\dll_mda

8. Run your example. The full path of test.exe is <MYAPPDIR>\Release\test.exe.

Important note
From the point of view of using Plant PowerOps, the only differences between the Win32
Release and Win32 Debug targets are that the NDEBUG macro is defined for the Release
configuration, and that the NDEBUG macro is not defined for the Debug configuration.

This is why we have suggested usingRelease in the test.sln example, instead of the default
proposed by Visual C++ .NET. Refer to the Microsoft Visual C++ Reference Manual for
complete information on release and debug configurations.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 509

I B M I L O G P L A N T P O W E R O P S V 3 . 2510

Entity Relationship Diagrams

Presents the available Entity Relationship Diagrams (ERDs).

In this section

General tables
Shows general PPO entities like model, profiles, and criterion weights.

Activities, modes, and recipes
Shows PPO model of recipes, prototype activities, setup activities and resource modes.

Cleanup constraints
Shows entities of cleanup recipes.

Demands
Shows relations between demands, materials and storage units.

Manufacturing resources
Shows the entities that affect the availability, use, and cost of resources.

Material flow
Shows entities involved in modelingmaterial flows related to production orders and activities.

Materials and storage units
Shows relations between materials, storage units and inventory cost functions.

Procurements
Shows procurement model in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 511

Production orders
Shows entities involved in modelingmaterial flows related to production orders and activities.

Production plans
Shows relations between demand and planned production entities.

Production schedules
Shows relations between production orders and scheduled activities.

Setup times and setup costs
Shows setup matrices and setup states in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2512

General tables

Shows general PPO entities like profile, model and criterion weights.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 513

Activities, modes, and recipes

Shows PPO model of recipes, prototype activities, setup activities and resource modes.

I B M I L O G P L A N T P O W E R O P S V 3 . 2514

Cleanup constraints

Shows entities of cleanup recipes.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 515

Demands

Shows relations between demands, materials and storage units.

I B M I L O G P L A N T P O W E R O P S V 3 . 2516

Manufacturing resources

Shows the entities that affect the availability, use, and cost of resources.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 517

Material flow

Shows entities involved in modelingmaterial flows related to production orders and activities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2518

Materials and storage units

Shows relations between materials, storage units and inventory cost functions.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 519

Procurements

Shows procurement model in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2520

Production orders

Shows entities involved in modelingmaterial flows related to production orders and activities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 521

Production plans

Shows relations between demand and planned production entities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2522

Production schedules

Shows relations between production orders and scheduled activities.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 523

Setup times and setup costs

Shows setup matrices and setup states in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2524

Universal Modeling Language diagrams

The following UML diagrams are available.

♦ Overview of PPO

♦ Calendars

♦ Solutions

♦ Pegging

I B M I L O G P L A N T P O W E R O P S V 3 . 2 525

I B M I L O G P L A N T P O W E R O P S V 3 . 2526

I B M I L O G P L A N T P O W E R O P S V 3 . 2 527

I B M I L O G P L A N T P O W E R O P S V 3 . 2528

Date and time display

Describes how time and dates are displayed in C++ and Java™ output and in the Plant
PowerOps GUI. Includes a list of all supported time zones.

In this section

Overview
An overview of the section.

C++ runtime date/time output
C++ output and time-related methods.

Java runtime date/time output
Java™ output and time-related methods.

Time zone settings
A complete listing of all available time zone settings in PPO.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 529

Overview

Internally, Plant PowerOps handles all date/time values based on the Greenwich Mean Time
(GMT) time zone. But dates are displayed differently, depending on the method you are
using to view the output—or plan—that is created by the Plant PowerOps optimization engine.

♦ In the output of an Plant PowerOps API implementation, date/time values are always
displayed as the elapsed number of TIME_UNITs from the DATE_ORIGIN of the problem.
This method of display is used in the output created by running an Plant PowerOps csv
file using the csvrun.cpp program, or the output created by running a csv file using the
csvrun.java program.

♦ When displaying dates and times from an API implementation, the time zone used depends
on the method of implementation. This is discussed further in the C++ API date/time
methods and Java API date/time methods sections that follow.

♦ In the Plant PowerOps graphical user interface (GUI), date/time values are always
displayed in local time. That is, the date and time values are shifted plus or minus the
appropriate interval from their GMT value to match the local time zone in effect on the
user’s computer.

I B M I L O G P L A N T P O W E R O P S V 3 . 2530

C++ runtime date/time output

C++ output and time-related methods.

In this section

Overview
Presents the output from a C++ program and how to interpret the date and time data.

C++ API date/time methods
Methods of interest from IloMSDate and IloMSDay.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 531

Overview

The output created by using the csvrun.cpp program to run a problem data csv file might
appear like this:

* Start solving
*
* Time limit : 10
*
* no time tot_earliness tot_tardiness
total
*
* ! 1 0.0 280.00 3990.00
4270.00
* ! 2 0.1 80.00 2230.00
2310.00
* 3 0.1 110.00 2220.00
2330.00
* ! 4 0.5 80.00 2230.00
2310.00
* 5 0.5 80.00 2230.00
2310.00
*
* Time used : 0.551
* Nb of solutions found : 5
*
Best solution:
--
DRYER start end earliness tardiness
--
TEAK03 0 90 0.00 70.00
TEAK04 90 180 0.00 420.00
TEAK05 180 270 10.00 0.00
TEAK06 270 360 0.00 560.00
PINE00 360 430 0.00 810.00
TEAK07 430 520 40.00 0.00
TEAK08 520 610 30.00 0.00
PINE01 610 680 0.00 0.00
PINE02 680 750 0.00 90.00
TEAK09 750 840 0.00 280.00

--
tot_earliness : 80.00
tot_tardiness : 2230.00
total : 2310.00
--

Time and date information for the solution appears in the time column and the start and
end columns. These columns are displayed in the TIME_UNIT of the problem, which in this
example is minutes. The value in the start column, for example, is the start time of the
activity, expressed as number of TIME_UNITs since DATE_ORIGIN, which in this example is

I B M I L O G P L A N T P O W E R O P S V 3 . 2532

February 1, 2001, 00:00. Obviously, local time is not a factor when viewing Plant PowerOps
output of this type.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 533

C++ API date/time methods

There is an IloMSDate class available in the C++ API that can be used to create customized
displays. The basic constructor information for IloMSDate is as follows:

/**
* This constructor creates a date by passing the year, month, and other time
* units as integers.
*/

IloMSDate(IloInt year, IloInt month, IloInt dayInMonth, IloInt hour=0, IloInt
minute=0, IloInt seconds=0);

/**
* This constructor creates a date by passing a date string which complies to
* the ISO 8601 date format of "YYYY-MM-DD HH::MM::SS."
*/

IloMSDate(const char* dateString);

You can use the C++ << operator to display the date:

std::ostream& operator<< (std::ostream&, const IloMSDate&);I

When using this method, bear in mind that the date and time returned and displayed will
be in Greenwich Mean Time. Converting to local time is the developer’s responsibility.

Note that when programming using the Plant PowerOps C++ API you can use another
function to return the day of the week:

/**
* This member function returns the day in the week as an enumerated
* value: <code>IloMSSunday</code>, <code>IloMSMonday</code>, etc.
*/

IloMSDay getDayOfWeek() const;

One possible use of this function is when creating a break for weekends.

I B M I L O G P L A N T P O W E R O P S V 3 . 2534

Java runtime date/time output

Java™ output and time-related methods.

In this section

Overview
Presents the output from a program and how to interpret the date and time data.

Java API date/time methods
Methods in the class IloMSModel to get, set and convert times and dates.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 535

Overview

The output created by running the api05calendar.java program or using the csvrun.java
program to run the data05calendar.csv file might appear like this:

* Start solving
*
* Time limit : 10
*
* no time tot_mode_cost tot_setup_cost tot_earliness tot_tardiness
tot_unperf_cost total
*
* ! 1 0.0 1000.00 200.00 209.00 13494.00

0.00 14903.00
* ! 2 0.1 1200.00 250.00 0.00 6921.00

0.00 8371.00
* ! 3 0.1 1200.00 150.00 79.00 3766.00

100.00 5295.00
* ! 4 0.2 1300.00 150.00 79.00 2926.00

100.00 4555.00
* ! 5 0.2 1400.00 250.00 355.00 1267.00

100.00 3372.00
* ! 6 0.2 1500.00 250.00 355.00 1057.00

100.00 3262.00
* 7 0.2 1500.00 250.00 355.00 1057.00

100.00 3262.00
* ! 8 0.2 1500.00 200.00 450.00 922.00

100.00 3172.00
* 9 0.2 1500.00 200.00 450.00 922.00

100.00 3172.00
* 10 0.3 1500.00 150.00 1089.00 742.00

200.00 3681.00
* 11 0.3 1500.00 150.00 1089.00 742.00

200.00 3681.00
* 12 0.3 1500.00 150.00 1114.00 707.00

200.00 3671.00
* 13 0.3 1500.00 100.00 1109.00 707.00

200.00 3616.00
* 14 0.3 1400.00 50.00 1673.00 707.00

300.00 4130.00
* 15 0.3 1400.00 50.00 1673.00 707.00

300.00 4130.00
* 16 0.3 1400.00 100.00 1034.00 752.00

200.00 3486.00
* 17 1.3 1400.00 100.00 1034.00 752.00

200.00 3486.00
* 18 7.0 1400.00 100.00 1034.00 752.00

200.00 3486.00
* ! 19 7.0 1500.00 200.00 450.00 922.00

100.00 3172.00
* 20 7.0 1400.00 100.00 1034.00 752.00

200.00 3486.00

I B M I L O G P L A N T P O W E R O P S V 3 . 2536

* ! 21 7.0 1500.00 200.00 450.00 922.00
100.00 3172.00

* ! 22 7.0 1500.00 200.00 344.00 922.00
100.00 3066.00

* 23 7.3 1500.00 200.00 450.00 922.00
100.00 3172.00

* 24 7.3 1500.00 200.00 334.00 1036.00
100.00 3170.00

* 25 7.3 1500.00 200.00 334.00 1036.00
100.00 3170.00

* 26 7.5 1500.00 200.00 299.00 992.00
100.00 3091.00

* 27 7.5 1500.00 200.00 299.00 992.00
100.00 3091.00

*
* Time used : 7.55
* Nb of solutions found : 27
*
Best solution:

DRYER start end mode mode/setup earliness

tardiness unperformed

ORDER03_TEAK_DRYING_setup 0 7 0 50 0.
00 0.00 0
ORDER03_TEAK_DRYING 7 87 1 200 0.
00 49.00 0
ORDER00_PINE_DRYING_setup 79 79 0 0 0.
00 0.00 0
ORDER00_PINE_DRYING 79 160 0 100 0.
00 0.00 100
ORDER04_TEAK_DRYING_setup 87 87 0 0 0.
00 0.00 0
ORDER04_TEAK_DRYING 87 167 1 200 0.
00 329.00 0
ORDER05_TEAK_DRYING_setup 167 167 0 0 0.
00 0.00 0
ORDER05_TEAK_DRYING 167 247 1 200 33.
00 0.00 0
ORDER06_TEAK_DRYING_setup 247 247 0 0 0.
00 0.00 0
ORDER06_TEAK_DRYING 247 327 1 200 0.
00 329.00 0
ORDER07_TEAK_DRYING_setup 354 354 0 0 0.
00 0.00 0
ORDER07_TEAK_DRYING 354 474 0 100 86.
00 0.00 0
ORDER01_PINE_DRYING_setup 474 480 0 50 0.
00 0.00 0
ORDER01_PINE_DRYING 480 550 0 100 130.
00 0.00 0
ORDER08_TEAK_DRYING_setup 550 555 0 50 0.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 537

00 0.00 0
ORDER08_TEAK_DRYING 555 645 0 100 0.
00 35.00 0
ORDER09_TEAK_DRYING_setup 645 645 0 0 0.
00 0.00 0
ORDER09_TEAK_DRYING 645 705 1 200 95.
00 0.00 0
ORDER02_PINE_DRYING_setup 705 710 0 50 0.
00 0.00 0
ORDER02_PINE_DRYING 710 780 0 100 0.
00 180.00 0

tot_mode_cost : 1500.00
tot_setup_cost : 200.00
tot_earliness : 344.00
tot_tardiness : 922.00
tot_unperf_cost : 100.00
total : 3066.00

Time and date information for the solution appears in the time column and the start and
end columns. These columns are displayed in the TIME_UNIT of the problem, which in this
example is minutes. The value in the start column, for example, is the start time of the
activity, expressed as number of TIME_UNITs since DATE_ORIGIN, which in this example is
February 1, 2001, 00:00. Obviously, local time is not a factor when viewing Plant PowerOps
output of this type.

I B M I L O G P L A N T P O W E R O P S V 3 . 2538

Java API date/time methods

The java.util.Date class in the Java™ API, in conjunction with the java.text.Format,
java.util.Calendar, and java.util.TimeZone classes can be used to display in local time
and with user-selectable formats for the dates.

MethodReturn type

convertTimeToDate(int time)java.util.Date

convertDateToTime(java.util.Date date)int

getDateOrigin()java.util.Date

setDateOrigin(java.util.Date origin)void

The methods in the previous table are available in the class IloMSModel.

I B M I L O G P L A N T P O W E R O P S V 3 . 2 539

Time zone settings

You can select the time zone using the TIME_ZONE field of the PPO_MODEL table, or with the
method IloMSModel::setTimeZone.

The list of available time zones follows, starting at GMT-12 and moving eastward.

Etc/GMT-12,

Etc/GMT-11,

MIT,

Pacific/Apia,

Pacific/Midway,

Pacific/Niue,

Pacific/Pago_Pago,

Pacific/Samoa,

US/Samoa,

America/Adak,

America/Atka,

Etc/GMT-10,

HST,

Pacific/Fakaofo,

Pacific/Honolulu,

Pacific/Johnston,

Pacific/Rarotonga,

Pacific/Tahiti,

SystemV/HST10,

US/Aleutian,

US/Hawaii,

Pacific/Marquesas,

AST,

America/Anchorage,

America/Juneau,

America/Nome,

America/Yakutat,

Etc/GMT-9,

Pacific/Gambier,

I B M I L O G P L A N T P O W E R O P S V 3 . 2540

SystemV/YST9,

SystemV/YST9YDT,

US/Alaska,

America/Dawson,

America/Ensenada,

America/Los_Angeles,

America/Tijuana,

America/Vancouver,

America/Whitehorse,

Canada/Pacific,

Canada/Yukon,

Etc/GMT-8,

Mexico/BajaNorte,

PST,

PST8PDT,

Pacific/Pitcairn,

SystemV/PST8,

SystemV/PST8PDT,

US/Pacific,

US/Pacific-New,

America/Boise,

America/Cambridge_Bay,

America/Chihuahua,

America/Dawson_Creek,

America/Denver,

America/Edmonton,

America/Hermosillo,

America/Inuvik,

America/Mazatlan,

America/Phoenix,

America/Shiprock,

America/Yellowknife,

Canada/Mountain,

Etc/GMT-7,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 541

MST,

MST7MDT,

Mexico/BajaSur,

Navajo,

PNT,

SystemV/MST7,

SystemV/MST7MDT,

US/Arizona,

US/Mountain,

America/Belize,

America/Cancun,

America/Chicago,

America/Costa_Rica,

America/El_Salvador,

America/Guatemala,

America/Managua,

America/Menominee,

America/Merida,

America/Mexico_City,

America/Monterrey,

America/North_Dakota/Cente,

America/Rainy_River,

America/Rankin_Inlet,

America/Regina,

America/Swift_Current,

America/Tegucigalpa,

America/Winnipeg,

CST,

CST6CDT,

Canada/Central,

Canada/East-Saskatchewan,

Canada/Saskatchewan,

Chile/EasterIsland,

Etc/GMT-6,

I B M I L O G P L A N T P O W E R O P S V 3 . 2542

Mexico/General,

Pacific/Easter,

Pacific/Galapagos,

SystemV/CST6,

SystemV/CST6CDT,

US/Central,

America/Bogota,

America/Cayman,

America/Detroit,

America/Eirunepe,

America/Fort_Wayne,

America/Grand_Turk,

America/Guayaquil,

America/Havana,

America/Indiana/Indianapol,

America/Indiana/Knox,

America/Indiana/Marengo,

America/Indiana/Vevay,

America/Indianapolis,

America/Iqaluit,

America/Jamaica,

America/Kentucky/Louisvill,

America/Kentucky/Monticell,

America/Knox_IN,

America/Lima,

America/Louisville,

America/Montreal,

America/Nassau,

America/New_York,

America/Nipigon,

America/Panama,

America/Pangnirtung,

America/Port-au-Prince,

America/Porto_Acre,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 543

America/Rio_Branco,

America/Thunder_Bay,

Brazil/Acre,

Canada/Eastern,

Cuba,

EST,

EST5EDT,

Etc/GMT-5,

IET,

Jamaica,

SystemV/EST5,

SystemV/EST5EDT,

US/East-Indiana,

US/Eastern,

US/Indiana-Starke,

US/Michigan,

America/Anguilla,

America/Antigua,

America/Aruba,

America/Asuncion,

America/Barbados,

America/Boa_Vista,

America/Caracas,

America/Cuiaba,

America/Curacao,

America/Dominica,

America/Glace_Bay,

America/Goose_Bay,

America/Grenada,

America/Guadeloupe,

America/Guyana,

America/Halifax,

America/La_Paz,

America/Manaus,

I B M I L O G P L A N T P O W E R O P S V 3 . 2544

America/Martinique,

America/Montserrat,

America/Port_of_Spain,

America/Porto_Velho,

America/Puerto_Rico,

America/Santiago,

America/Santo_Domingo,

America/St_Kitts,

America/St_Lucia,

America/St_Thomas,

America/St_Vincent,

America/Thule,

America/Tortola,

America/Virgin,

Antarctica/Palmer,

Atlantic/Bermuda,

Atlantic/Stanley,

Brazil/West,

Canada/Atlantic,

Chile/Continental,

Etc/GMT-4,

PRT,

SystemV/AST4,

SystemV/AST4ADT,

America/St_Johns,

CNT,

Canada/Newfoundland,

AGT,

America/Araguaina,

America/Belem,

America/Buenos_Aires,

America/Catamarca,

America/Cayenne,

America/Cordoba,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 545

America/Fortaleza,

America/Godthab,

America/Jujuy,

America/Maceio,

America/Mendoza,

America/Miquelon,

America/Montevideo,

America/Paramaribo,

America/Recife,

America/Rosario,

America/Sao_Paulo,

Antarctica/Rothera,

BET,

Brazil/East,

Etc/GMT-3,

America/Noronha,

Atlantic/South_Georgia,

Brazil/DeNoronha,

Etc/GMT-2,

America/Scoresbysund,

Atlantic/Azores,

Atlantic/Cape_Verde,

Etc/GMT-1,

Africa/Abidjan,

Africa/Accra,

Africa/Bamako,

Africa/Banjul,

Africa/Bissau,

Africa/Casablanca,

Africa/Conakry,

Africa/Dakar,

Africa/El_Aaiun,

Africa/Freetown,

Africa/Lome,

I B M I L O G P L A N T P O W E R O P S V 3 . 2546

Africa/Monrovia,

Africa/Nouakchott,

Africa/Ouagadougou,

Africa/Sao_Tome,

Africa/Timbuktu,

America/Danmarkshavn,

Atlantic/Canary,

Atlantic/Faeroe,

Atlantic/Madeira,

Atlantic/Reykjavik,

Atlantic/St_Helena,

Eire,

Etc/GMT,

Etc/GMT-0,

Etc/GMT+0,

Etc/GMT0,

Etc/Greenwich,

Etc/UCT,

Etc/UTC,

Etc/Universal,

Etc/Zulu,

Europe/Belfast,

Europe/Dublin,

Europe/Lisbon,

Europe/London,

GB,

GB-Eire,

GMT,

GMT0,

Greenwich,

Iceland,

Portugal,

UCT,

UTC,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 547

Universal,

WET,

Zulu,

Africa/Algiers,

Africa/Bangui,

Africa/Brazzaville,

Africa/Ceuta,

Africa/Douala,

Africa/Kinshasa,

Africa/Lagos,

Africa/Libreville,

Africa/Luanda,

Africa/Malabo,

Africa/Ndjamena,

Africa/Niamey,

Africa/Porto-Novo,

Africa/Tunis,

Africa/Windhoek,

Arctic/Longyearbyen,

Atlantic/Jan_Mayen,

CET,

ECT,

Etc/GMT+1,

Europe/Amsterdam,

Europe/Andorra,

Europe/Belgrade,

Europe/Berlin,

Europe/Bratislava,

Europe/Brussels,

Europe/Budapest,

Europe/Copenhagen,

Europe/Gibraltar,

Europe/Ljubljana,

Europe/Luxembourg,

I B M I L O G P L A N T P O W E R O P S V 3 . 2548

Europe/Madrid,

Europe/Malta,

Europe/Monaco,

Europe/Oslo,

Europe/Paris,

Europe/Prague,

Europe/Rome,

Europe/San_Marino,

Europe/Sarajevo,

Europe/Skopje,

Europe/Stockholm,

Europe/Tirane,

Europe/Vaduz,

Europe/Vatican,

Europe/Vienna,

Europe/Warsaw,

Europe/Zagreb,

Europe/Zurich,

MET,

Poland,

ART,

Africa/Blantyre,

Africa/Bujumbura,

Africa/Cairo,

Africa/Gaborone,

Africa/Harare,

Africa/Johannesburg,

Africa/Kigali,

Africa/Lubumbashi,

Africa/Lusaka,

Africa/Maputo,

Africa/Maseru,

Africa/Mbabane,

Africa/Tripoli,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 549

Asia/Amman,

Asia/Beirut,

Asia/Damascus,

Asia/Gaza,

Asia/Istanbul,

Asia/Jerusalem,

Asia/Nicosia,

Asia/Tel_Aviv,

CAT,

EET,

Egypt,

Etc/GMT+2,

Europe/Athens,

Europe/Bucharest,

Europe/Chisinau,

Europe/Helsinki,

Europe/Istanbul,

Europe/Kaliningrad,

Europe/Kiev,

Europe/Minsk,

Europe/Nicosia,

Europe/Riga,

Europe/Simferopol,

Europe/Sofia,

Europe/Tallinn,

Europe/Tiraspol,

Europe/Uzhgorod,

Europe/Vilnius,

Europe/Zaporozhye,

Israel,

Libya,

Turkey,

Africa/Addis_Ababa,

Africa/Asmera,

I B M I L O G P L A N T P O W E R O P S V 3 . 2550

Africa/Dar_es_Salaam,

Africa/Djibouti,

Africa/Kampala,

Africa/Khartoum,

Africa/Mogadishu,

Africa/Nairobi,

Antarctica/Syowa,

Asia/Aden,

Asia/Baghdad,

Asia/Bahrain,

Asia/Kuwait,

Asia/Qatar,

Asia/Riyadh,

EAT,

Etc/GMT+3,

Europe/Moscow,

Indian/Antananarivo,

Indian/Comoro,

Indian/Mayotte,

W-SU,

Asia/Riyadh87,

Asia/Riyadh88,

Asia/Riyadh89,

Mideast/Riyadh87,

Mideast/Riyadh88,

Mideast/Riyadh89,

Asia/Tehran,

Iran,

Asia/Aqtau,

Asia/Baku,

Asia/Dubai,

Asia/Muscat,

Asia/Oral,

Asia/Tbilisi,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 551

Asia/Yerevan,

Etc/GMT+4,

Europe/Samara,

Indian/Mahe,

Indian/Mauritius,

Indian/Reunion,

NET,

Asia/Kabul,

Asia/Aqtobe,

Asia/Ashgabat,

Asia/Ashkhabad,

Asia/Bishkek,

Asia/Dushanbe,

Asia/Karachi,

Asia/Samarkand,

Asia/Tashkent,

Asia/Yekaterinburg,

Etc/GMT+5,

Indian/Kerguelen,

Indian/Maldives,

PLT,

Asia/Calcutta,

IST,

Asia/Katmandu,

Antarctica/Mawson,

Antarctica/Vostok,

Asia/Almaty,

Asia/Colombo,

Asia/Dacca,

Asia/Dhaka,

Asia/Novosibirsk,

Asia/Omsk,

Asia/Qyzylorda,

Asia/Thimbu,

I B M I L O G P L A N T P O W E R O P S V 3 . 2552

Asia/Thimphu,

BST,

Etc/GMT+6,

Indian/Chagos,

Asia/Rangoon,

Indian/Cocos,

Antarctica/Davis,

Asia/Bangkok,

Asia/Hovd,

Asia/Jakarta,

Asia/Krasnoyarsk,

Asia/Phnom_Penh,

Asia/Pontianak,

Asia/Saigon,

Asia/Vientiane,

Etc/GMT+7,

Indian/Christmas,

VST,

Antarctica/Casey,

Asia/Brunei,

Asia/Chongqing,

Asia/Chungking,

Asia/Harbin,

Asia/Hong_Kong,

Asia/Irkutsk,

Asia/Kashgar,

Asia/Kuala_Lumpur,

Asia/Kuching,

Asia/Macao,

Asia/Macau,

Asia/Makassar,

Asia/Manila,

Asia/Shanghai,

Asia/Singapore,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 553

Asia/Taipei,

Asia/Ujung_Pandang,

Asia/Ulaanbaatar,

Asia/Ulan_Bator,

Asia/Urumqi,

Australia/Perth,

Australia/West,

CTT,

Etc/GMT+8,

Hongkong,

PRC,

Singapore,

Asia/Choibalsan,

Asia/Dili,

Asia/Jayapura,

Asia/Pyongyang,

Asia/Seoul,

Asia/Tokyo,

Asia/Yakutsk,

Etc/GMT+9,

JST,

Japan,

Pacific/Palau,

ROK,

ACT,

Australia/Adelaide,

Australia/Broken_Hill,

Australia/Darwin,

Australia/North,

Australia/South,

Australia/Yancowinna,

AET,

Antarctica/DumontDUrville,

Asia/Sakhalin,

I B M I L O G P L A N T P O W E R O P S V 3 . 2554

Asia/Vladivostok,

Australia/ACT,

Australia/Brisbane,

Australia/Canberra,

Australia/Hobart,

Australia/Lindeman,

Australia/Melbourne,

Australia/NSW,

Australia/Queensland,

Australia/Sydney,

Australia/Tasmania,

Australia/Victoria,

Etc/GMT+10,

Pacific/Guam,

Pacific/Port_Moresby,

Pacific/Saipan,

Pacific/Truk,

Pacific/Yap,

Australia/LHI,

Australia/Lord_Howe,

Asia/Magadan,

Etc/GMT+11,

Pacific/Efate,

Pacific/Guadalcanal,

Pacific/Kosrae,

Pacific/Noumea,

Pacific/Ponape,

SST,

Pacific/Norfolk,

Antarctica/McMurdo,

Antarctica/South_Pole,

Asia/Anadyr,

Asia/Kamchatka,

Etc/GMT+12,

I B M I L O G P L A N T P O W E R O P S V 3 . 2 555

Kwajalein,

NST,

NZ,

Pacific/Auckland,

Pacific/Fiji,

Pacific/Funafuti,

Pacific/Kwajalein,

Pacific/Majuro,

Pacific/Nauru,

Pacific/Tarawa,

Pacific/Wake,

Pacific/Wallis,

NZ-CHAT,

Pacific/Chatham,

Etc/GMT+13,

Pacific/Enderbury,

Pacific/Tongatapu,

Etc/GMT+14,

Pacific/Kiritimati.

I B M I L O G P L A N T P O W E R O P S V 3 . 2556

A
access rights 412

advanced 415
activities

ERD 514
activity

definition 284
modeling prototypes in C++ 332
naming 148
prototype 284, 301, 356
valid use periods 147

activity extent 185
activity prototype

definition 284
ACTIVITY_ID 302
activityIds method 333
additive

calendar intervals 138
administrator access 412
aggregated resources 128
alpha service level 216
API

for C++, using to model and solve 324
for Java, using to model and solve 347

arc
production to demand, definition 290

authentication 412

B
bar

menu 169
batches

cleanup after 132
batching

module, introduction to 70
BATCHING_CPLEX_PARAM_ 86
beta service level 216
breaks

modeling example 406
bucket

automatic creation of 202
buckets

defining 123

C
C++

enumerated types 349
modeling and solving with 324
modeling differences with Java 348
modeling example 329
modeling with 325
solving with 320

C++ date and time display 531
calendars

modeling example 406
overlapping, additive 138
reasons to use 136
UML diagram 525

CAPACITY 300
capacity

as argument 331, 355
chm format documentation 17, 18
CIP

Java modeling example 381
cleanup 132
cleanup cost crierion 73
cleanups

defining need for 390
ERD 515
Java modeling example 386
modeling example 405

constraints
precedence 144

costs
balancing non-delivery and tardiness 276

© Copyright IBM Corp. 1987, 2009 557

I N D E X

Index

basic example with earliness and tardiness
275
basic example with non-delivery 275

courselesson1_basic.csv 312
CPLEX parameters 86
CPP file 339

use for modeling and solving 324
CPX_PARAM_ 86
cradle manufacturing example 274
csv

files, how to create 296, 297
CSV file

as input, C++ 320
as input, Java 346

csvsch.cpp 320
csvsch.java 346
customize

data view 479
Master and Transactional Data 479
plan view 431

cycle service level 215
example 224

D
dairyplant.java 367
data model

basic 93
extensions 119
table of basic objects 293

data modeling
how to 97

data table
modify 490
remove 489

database
adding property columns 500
adding tables 501
basic usage 195
connectivity 197
customization 491
loading submodel 198
Microsoft client 495
Oracle client 494
saving scenario to 205
supported 196
table and column removal 499

database server requirements 21, 25
datamodelaccess.xml 480
datamodeldisplay.xml 480
date display 529

C++ 531
Java 535

date origin 276
days of supply

modeling example 380
days of supply target 157

decomposition 233
example 235
with Java API 241

demand
as variable 337, 338, 360
definition 283
introduction 109
uncertain 212
variable 212

demand coverage
material inventory 157

DEMAND_ID 109, 304
demands

ERD 516
diagram

entity relationship 511
disclaimers 19
distribution planning 247

example 251
map 253

documentation
about 15
formats (chm, pdf, html) 17, 18
searching 17

due date 283
DueTime 337, 360
dynamic service levels 216

E
earliness cost criterion 73
Edit menu 170
end max 102
EndToEnd precedence 144
EndToStart precedence 144
Entity Relationship Diagram 511

cleanups 515
demands 516
general overview 513
material production flow 518
materials and storage units 519
procurements 520
production orders 521
production plans 522
production schedule 523
recipes, activities, modes 514
resources 517
setup times and costs 524

ERD 511
ERP 67
error

forecasting 212
event-based service level 216
example

basic modeling example 271
cradle manufacturing 274
modeling a basic problem 298

I B M I L O G P L A N T P O W E R O P S V 3 . 2558

extending PPO GUI 420
extension mechanism

engine optimizer 467
engine optimizer class to solve data 473
engine optimizer factory class 469

extension point 421, 424
application level 429
exceptions with bootstrap 425
to plan view 428

extension points 432
plan view container configuration 441
plan view container defaults 448
plan view types 433

F
File menu 169
fill rate service level 215, 216

example 228
firm information 118
forecast error 212
formats of online documentation 17, 18

G
getActivityByIdentifier 357
getActivityPrototype 335, 359
getActivityPrototypeByIdentifier 333
getCalendar 333, 357
getDemand 337, 338, 360, 362
getMaterial 335, 336, 359, 360
getNumberOfProductionOrders 338, 362
getNumberOfRecipes 335, 359
getProductionOrder 338, 362
getQuantity 338, 362
getRecipe 332, 335, 337, 356, 359, 361
getResource 333, 357
getSetupMatrix 331, 355
Graphical Planning Board 67
Greenwich Mean Time 529
GUI

add new data table 483

H
Help menu 172
horizons 102
how to model data 97
html documentation 17, 18

I
icon

creating new 465
removing 466

idle cost criterion 73
IloMSMasterDataPanel 481
IloMSModel 325, 339, 363
IloMSOptimizerFactory 469
ILOSTBEGIN 326
Infinite capacity 185

inventory 155
coverage corridor 157
days of supply target 157
dynamic coverage 229
maintaining minimal 156

inventory cost criterion 73
inventory deficit cost criterion 73

J
Java

enumerated types 349
modeling and solving with 347
modeling differences with C++ 348
modeling example 353
modeling example, dairy plant 367
modeling recipe constraints 401
modeling yogurt factory 375
solving with 346
tank modeling example 396
time buckets, defining 377
warehouse modeling 383

Java API
creating main program 363

Java date and time display 535
JDBC 493

K
keys

creating in mdb and csv files 297
KPIs 73

customized 75

L
layout 456
LDAP to control access 413
lead time

modeling uncertain 231
local time 529
login entry to PPO 413

M
magnetism 177, 185
manifest file 424
manufacturing plant modeling example 369
map

for Distribution Planning view 253
Master Data

customize view 479
master planning 248
masterdataaccess.xml 480
masterdatadisplay.xml 480
material 300

as variable 336, 360
discarding obsolete 150
introduction 103
shelf life and maturity 150

material flow extent 185

I B M I L O G P L A N T P O W E R O P S V 3 . 2 559

MATERIAL_ID 103
materials

definition 282
ERD 519
ERD of production flow 518
modeling intermediates 399
modeling intermediates Java example 378

maturity 150
mdb

file, how to create 296
menu

creating new selection on 465
Edit 170
File 169
Help 172
removing 466
Tools 171
View 171
Window 172

menu bar 169
Microsoft Active Directory 413
mode

calendar 136
definition 287

MODE_NUMBER 113, 302
model

.end 339, 363
example building a basic 298
global information 99

model data
how to 97

modeling
a basic modeling example 271

modes
ERD 514

modify
data table 490

monitor size 21, 25

N
naming activities 148
navigate 177
newActivityPrototype 332, 356
newBreakTable 329
newCalendar 353
newCalendarInterval 353
newDemand 336, 360
newDueDate 337, 360
newMaterial 331, 355
newMaterialProduction 359
newMode 333, 357
newProdToDemandArc 362
newProductionOrder 337, 361
newRecipe 332, 356
newResource 331, 355
newResourceConstraint 333, 357

newSetupMatrix 354
non-delivery cost criterion 73

O
object model

and relational model 293
objective

weighted, definition 291
objectives

defining in an example 275
one resource capacity 185
online documentation 15
optimization

criteria 73
modules 70
profiles 76
scope 240

output
for api05calendar.cpp 341

overview
ERD 513
UML diagram 525

P
pack activities 177
pan tool 177
panel

creating a new 463
parameters 86

CPLEX 86
pdf documentation 17, 18
persistence customization files 498
plan

for api05calendar.cpp 341
plan view

adding new 436
adding new configuration 443
configuration, removing 447
configurations, standard 442
container 445
example of extending 452
extending 432
extension point 448
removing a 440

planner access 412
planning

distribution model and example 251
master 248
module, introduction to 70
over a distributed network 247
simplifying problem 89
simplifying with super resources 128

planning horizon 102
Planning Sheet

layout 456
plug-in 420, 421

I B M I L O G P L A N T P O W E R O P S V 3 . 2560

post processing
introduction to 70

PPO
introduction to 65

PPO_BUCKET 123
PPO_BUCKET_TEMPLATE 202
PPO_DEMAND

introduction 109
PPO_INVENTORY_MAX_COST 155
PPO_INVENTORY_MIN_COST 156
PPO_MATERIAL

introduction 103
PPO_MODEL

introduction 99
PPO_PRODUCTION_ORDER table 305
PPO_RECIPE 124

introduction 111
PPO_RESOURCE

introduction 105
PPO_RESOURCE_HIERARCHY 128
precedence constraints 144
printing 177
problem decomposition 233
processing cost criterion 73
procurements

ERD 520
production network planning 247
production order 338, 362

definition 289
ERD 521
how generated 70, 71

production order extent 185
production plans

ERD 522
production schedule

ERD 523
production to demand arc

definition 290
profile

for optimization 76
property columns 500
publication list for PPO 15
pull by demand decomposition 234
push raw materials decomposition 234

Q
QUANTITY

in PPO_PROD_TO_DEMAND_ARC table 306
quantity

in SetDemands function 360
in setDemands function 336
in setProductionToDemandArcs function 338

quantity-based service level 216

R
recipe

as argument 337, 361
defining 399
introduction 111
valid use periods 124

RECIPE_ID 111, 301
recipes

definition 286
ERD 514

refresh 177
remove

data table 489
repair 177
repair extent 185
report generation 417
REQUIRED_CAPACITY 302
RequiredCapacity 333, 357
RESERVOIR_ALLOWED 86
RESERVOIR_ALLOWED parameter 86
resource

introduction 105
valid use periods 133

resource capacity cost criterion 73
RESOURCE_ID 105, 300
resources

aggregated or super 128
calendar 136
capacity, variable 136
cleanup 132
connection example 398
ERD 517
productivity, variable 136

revenue criterion 73

S
safety stock 219
scenario

saving to database 205
schedule

ERD 523
schedules

firm 118
scheduling

module, introduction to 70
scheduling horizon 102
schema, Tableau report 417
SCM 67
scope 240
searching documentation 17
service level

cycle or basic type 216
dynamic 216
fill rate 216

service level concepts 216
service levels 209, 215
SERVICE_LEVEL_TYPE 218
SetActivities function 326, 332, 350, 356

I B M I L O G P L A N T P O W E R O P S V 3 . 2 561

setBreak 353
setBreakTable 329
setCalendar 333, 357
SetCalendars function 326, 329, 350, 353
setCost 333
SetCriterionWeights function 326, 339, 350, 363
SetDemands function 326, 336, 350, 360
SetDueDates function 326, 337, 350, 360
setEarlinessVariableCost 337, 360
setEndOfShift 353
setFixedCost 357
setIdentifier 332, 356
setInitialSetupState 331, 355
setIntDateOrigin 329, 353
SetMaterialProductions 359
SetMaterialProductions function 350
SetMaterials function 326, 331, 350, 355
setMaxBreakDuration 333, 357
SetModel function 326, 329, 350, 353
SetModes function 326, 332, 333, 350, 357
setName 329, 331, 332, 333, 336, 337, 353, 355, 356,
357, 360, 361
setPerformedStatus 332, 356
setPeriodEndTime 353
setPeriodicity 353
setPeriodStartTime 353
SetProductionOrderDemands function 326, 338,
350, 362
SetProductionOrders function 326, 337, 350, 361
setProductivity 353
SetRecipeProducedMaterials function 326
SetRecipes function 326, 332, 350, 356
SetResources 326, 350
SetResources function 331, 355
setSetup 354
SetSetupMatrices function 326, 330, 350, 354
setSetupMatrix 331, 355
setSetupState 332, 356
setShiftBreakable 333, 357
setStartMin 329, 353
setTardinessVariableCost 337, 360
setTimeUnit 329, 353
setUnperformedCost 333, 357
setup cost criterion 73
setup times and costs

ERD 524
SETUP_COST 330
SETUP_TIME 330
setups

modeling 130
secondary resources and 130
triangular inequality 130

setVariableProcessingTime 333, 357
shelf life 150
solution

UML diagram 525
solve

monitor 475
stopping 478

solving
quick path 311

start minimum 276
StartToEnd precedence 144
StartToStart precedence 144
stock corridor 209, 220
stock coverage

dynamic corridor 229
stock coverage example 224, 228
stock levels 155
stock-out 216
storage units

ERD 519
SUB_RESOURCE_ID 128
submodel loading from database 198
super resources 128
SUPER_RESOURCE_ID 128
suppliers 248
supply network planning 247
synchronize 177
system requirements 21, 25

T
table

add a new GUI data 483
modify 490
remove 489

Tableau 417
tables

adding to database 501
tank

modeling 396
tanks

modeling 403
tardiness cost criterion 73
target stock level 215
template, report 417
time bucket

automatic creation of 202
time buckets

defining 123
time definitions 276
time display 529

C++ 531
Java 535

time uit 276
time zone 540
TIME_UNIT 330
toolbar 174

creating a new 463
creating new icon on 465
Gantt Diagram 176

I B M I L O G P L A N T P O W E R O P S V 3 . 2562

Plan View 176
removing icon from 466

Tools menu 171
Transactional Data

customize view 479
triangular inequality of setups 130
type 1 service level 216
type 2 service level 216

U
UML diagrams 525

calendars 525
overview 525
solutions 525

units of measure
modeling example 382

Universal Modeling Language diagrams 525
unperformed cost criterion 73
use period

resources 133
user roles 412

V
variable

demand 212
VARIABLE_PROCESSING_TIME 302
view

creating a new 457
creating a new panel within existing 463

View menu 171
viewer access 412
viewing access rights 415
Visualization 67

W
warehouses 248
waste cost criterion 73
waste recipes 150
weighted objectives

definition 291
Window menu 172
Workload Table

layout 456

X
XML to control access 413

Y
yogurt manufacturing model 368

I B M I L O G P L A N T P O W E R O P S V 3 . 2 563

	Table of contents
	Getting Assistance
	Contacting IBM Support
	How to use the documentation
	Publications in the documentation set
	The documentation formats
	Accessing the CHM, PDF, and HTML documentation
	Disclaimers
	Acknowledgement

	System requirements

	IBM ILOG Plant PowerOps V3.2 Release Notes
	System requirements
	User Interface improvements
	Model checker and data reader
	Data exchange with Microsoft Excel
	Improved navigation and filters
	Editing data in the GUI
	New design and function for some views and tools

	Modeling changes
	Promised demand used in interactive planning
	Modeling initial stock
	Persistence of planning decisions

	Enhancements to planning, batching, and scheduling
	Planning module enhancements
	Dynamic safety stock
	Infeasibility management

	Batching algorithms
	Scheduling

	Relational model changes
	Separation of master data and transactional data
	Migration to schema version 4.0
	Data schema modeling changes

	Reporting with Tableau
	Documentation, acknowledgement
	Publications in the documentation set
	Accessing the CHM, PDF, and HTML documentation
	Acknowledgement

	Implementation of Plant PowerOps
	Introduction to planning and scheduling with PPO
	Overview
	What Is IBM ILOG Plant PowerOps?
	How Plant PowerOps solves the problem

	Optimization and KPIs
	Optimization modules and solution
	Key Performance Indicators
	Optimization profile
	Advanced optimization
	Production planning advanced options
	Detailed scheduling advanced options
	Constraints
	Post processing
	Parameters for optimization
	Complexity considerations
	Problem decomposition

	The basic data model
	Overview of data modeling for PPO
	Introduction to a data model, master data, and transactional data
	Costs and revenue
	Methods of modeling data

	Global model information
	The model environment
	Time units and time buckets
	Planning horizon, scheduling horizon, and end max

	Materials
	Resources
	Demands and due dates
	Recipes
	Production orders and material flow arcs
	Procurements
	Firm or fixed information

	Extended use of the data model
	Production planning considerations
	Inference of the planning problem from the scheduling problem
	Defining time buckets
	Recipe validity periods
	Formula optimization and blending

	Resources: Extended usage
	Planning with super resources
	Setup times and costs
	Cleanups
	Resource validity periods

	Calendars
	Why use calendars?
	Calendar intervals
	Overlapping calendar intervals
	Calendars on modes or resources
	Breaks and shifts
	Productivity

	Activity constraints, validity periods, and names
	Precedence constraints
	Spanning constraints
	Compatibility constraints
	Activity validity periods
	Activity names

	Material lifespan and inventory
	Maturity, shelf life, waste recipes
	Managing inventory stock
	Overview of three approaches
	Material inventory costs
	Safety inventories
	Setting days of supply targets
	Service levels

	Applied use of Plant PowerOps
	Using the PPO GUI
	GUI tool and navigation tips
	Menus and toolbars
	Overview
	The menu bar
	Main toolbar
	Plan View toolbar

	Accessing the plan views
	Splitting and synchronizing plan views
	Using the Filter tool on the Master and Transactional Data tables
	Comparing multiple scenarios
	Repair extent, capacity and magnetism

	Stock Coverage view
	The Inspector
	The Parameters window
	Using the checker
	Copying an existing recipe

	Database usage and connectivity
	Supported databases
	Basic database connectivity
	Opening a database in PPO
	Automatic bucket generation
	Save scenario in a database

	Adding custom database connectivity

	Using service levels, lead time, and demand variability to manage stock levels
	Manually defining stock levels and corridors
	Service level concepts
	Uncertain demand and forecast error
	Production lead time
	Service levels
	Service level types and targets
	Model elements for service level
	Computing target stock from the service level
	Service level target stock in planning

	Examples of using service levels, demand variability, and production lead time variability
	Service level in the GUI
	Using the cycle service level
	Using the fill rate service level
	Dynamic service level example
	Uncertain production lead time example

	Decomposition framework
	Introduction to decomposition
	Building the decomposition framework
	Optimization using scopes in the GUI
	Advanced usage of the decomposition framework using Java API

	Production planning simulations
	Interactive planning

	Advanced usage: Distribution planning
	General concepts
	The distribution plan calculation
	Modeling the distribution plan
	Key modeling tables
	Building a distribution plan model
	Viewing the results

	Examples and tutorials
	Modeling a simple problem: A “bottleneck” resource
	Overview
	Describe the problem
	Overview
	Objective and costs
	Before creating the model

	An overview of the PPO data model
	Model the process
	Materials
	Demands
	Activities
	Resources
	Recipes
	Modes
	Material production
	Production orders
	Production to demand arcs
	Weighted objectives
	Overview of the process
	Table of data model objects

	A quick tutorial on csv and mdb usage in PPO
	Model the problem
	Solving
	Overview
	Solve in the PPO GUI

	View and study the plan
	Review

	Using the PPO API for C++ to model and solve
	Solving using csv files with C++
	Model and solve using the API for C++
	Overview
	General approach to C++ modeling for Plant PowerOps
	Define the necessary C++ functions
	Build the C++ program

	Using the PPO API for Java to model and solve
	Solving using csv files with Java
	Model and solve using the API for Java
	Differences between C++ and Java
	Define the program Java functions
	Build the Java program

	Modeling a dairy plant with PPO Java API
	Overview
	The fresh dairy plant and its yogurt process
	Building the overall model structure
	Overview
	Setting up the model
	Defining the time buckets
	Defining semi-finished intermediate products
	Defining finished products
	Days of supply
	Resources for finished products
	Defining the units of measure
	Modeling a warehouse as a storage unit
	Defining the production recipes for the finished products
	Defining cleanup recipes
	Defining initial stock
	Defining the demand
	Dealing with setups and obtaining the preferred sequence
	Defining the costs and the weights

	Modeling the manufacturing process
	Representing process equipment
	How to represent equipment connections
	Modeling the intermediate materials and process activities
	Internal constraints of the recipe
	Tanks as storage units
	Production, consumption and destination
	Cleaning policy
	Calendars and breaks

	Reference Documentation
	Customizing and Extending PPO
	Authentication and access rights
	User role determines access
	Adding a login panel to PPO
	Advanced configuration of roles and access rights
	General security considerations

	Customizing report generation with Tableau
	GUI extension mechanism
	Overview
	Format of plug-in manifest files - plugin.xml
	Extensions and extension points
	Specific customizations
	Overview of extension points
	Customization of Plan views
	Application level extensions

	Plan view customization
	Overview
	PlanViewTypes extension point
	Overview
	Definition of a new plan view type
	Remove a predefined plan view type

	PlanViewContainer.Configuration extension point
	Overview
	Add a new plan view configuration
	Implement a configuration factory class (optional)
	Implement a configuration
	Remove a plan view configuration

	PlanViewContainer.Defaults extension point
	Plan view extension example
	Overview
	How to run the example

	Customizing views, menus, and toolbars
	Adding new table layouts
	Inserting a new panel view
	Insert a new panel and toolbar in an existing view
	Insert a new item in the menu and a new icon button in the main toolbar
	Remove menu item and button from the main toolbar

	Engine optimizer extensions
	Overview
	Write the engine optimizer factory class
	Overview
	Write your own engine optimizer factory class

	Write the engine optimizer class to solve data
	Overview
	Launch and monitor the solve process
	Use the default engine optimizer
	Create your own engine optimizer
	Stopping the solve process

	Configuring the data views
	Overview
	Activate the customization in a plug-in
	Add a new table
	Overview
	Define the JavacallsView
	Write the data access
	Write the display

	Remove a table
	Modify a table

	Database customization
	Installing JDBC jars
	Oracle
	Microsoft SQL Server 2000 and 2005

	Customizing PPO data model tables
	PPO persistence customization files
	Removing tables and columns from the PPO model
	Adding property columns to the PPO model
	Adding custom tables
	Choosing between using properties or custom tables

	Options of the PlantPowerOps executable file

	Using PPO with Microsoft products
	Overview
	Build and run Plant PowerOps examples
	Creating a project workspace and link the target with PPO

	Entity Relationship Diagrams
	General tables
	Activities, modes, and recipes
	Cleanup constraints
	Demands
	Manufacturing resources
	Material flow
	Materials and storage units
	Procurements
	Production orders
	Production plans
	Production schedules
	Setup times and setup costs

	Universal Modeling Language diagrams
	Date and time display
	Overview
	C++ runtime date/time output
	Overview
	C++ API date/time methods

	Java runtime date/time output
	Overview
	Java API date/time methods

	Time zone settings

	Index

