
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG DB Link V5.3

Tutorial

June 2009

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

C O N T E N T S
Table of Contents

IBM ILOG DB Link V5.3
Tutorial

Tutorial 1 IBM ILOG DB Link Tutorial. 5

IBM ILOG DB Link Basic Use .6

Step 1: Connecting to the Database .7

Step 2: Querying the Database .8

Step 3: Retrieving Data from the Database .10

Step 4: Disconnecting From the Database .12

IBM ILOG DB Link Optimization Techniques .12

Step 1: Executing a Query Multiple Times .12

Step 2: Optimizing Network Use .14

Step 3: Accessing Data Directly. .16

Step 4: Keeping Data in Memory .18

IBM ILOG DB Link Portability Considerations .19

Step 1: Using the Date as Object Mode. .20

Step 2: Using the Numeric as Object Mode. .21

IBM ILOG DB Link Access to Object Data Types .23

Step 1: Getting the Description of an ADT. .24

Step 2: Building an ADT. .28

Index . 33
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 3

4 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

C H A P T E R
1

IBM ILOG DB Link Tutorial

IBM® ILOG® DB Link is a comprehensive C++ library that handles the processing of
Relational Database Management Systems (RDBMS). It includes several classes of objects
that allow efficient development of applications with RDBMS connectivity. The API is
simplified to hide the complexity of the Client API of the various RDBMSs. Furthermore,
the DB Link API is the same for any RDBMS. Consequently, applications developed with
the DB Link library will work with Oracle®, Sybase, or Informix (for example) without any
change in the source code.

A schematic representation of the IBM ILOG DB Link Architecture is shown in Figure 1.1.

This tutorial presents the main features of the library through the use of samples. Each
significant point is detailed with the corresponding excerpt from the source code. The full
code is also provided, if you wish to get a complete view of the mechanism.

The tutorial is divided in 4 chapters:

◆ IBM ILOG DB Link Basic Use - Describes the basic features of DB Link—how to
connect and execute queries. It explains the fundamental classes of IBM ILOG DB Link:
IldDbms, IldRequest, and IldDiagnostic.

◆ IBM ILOG DB Link Optimization Techniques - Describes the methods used to
optimize an application when using DB Link to run queries on an RDBMS.

◆ IBM ILOG DB Link Portability Considerations - Describes the special considerations
to keep in mind when building portable applications.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 5

◆ IBM ILOG DB Link Access to Object Data Types - Presents how to access the new data
types introduced by Object Oriented RDBMS.

Figure 1.1

Figure 1.1 IBM ILOG DB Link Architecture

IBM ILOG DB Link Basic Use

This chapter details the fundamental principles of IBM® ILOG® DB Link through the use
of a sample. Working through the 4 steps found in this chapter will help you understand how
to send basic queries to the database server and then retrieve the results.

The main class is IldDbms, which handles the connection to the RDBMS. It also gives
access to the schema handling capabilities and manages various configuration settings.

Then, the IldRequest class is designed to send queries to the RDBMS and get the results
back. To send a query, you first need to be connected. Therefore, instances of IldRequest
are created or released through an IldDbms instance that handles the connection.

The IldDiagnostic class is used to manage errors that may be raised. These errors can
come from the RDBMS or from DB Link itself.
6 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Basic Use
The IldDbms and IldRequest classes get access to the error information by the same API.
This reduces the time required to learn how to handle the errors and is achieved with the
IldIldBase class.

IldIldBase is an abstract class: you do not need to create an instance of this class. Its only
purpose is to implement the error mechanism that will be used by the IldDbms and
IldRequest classes. They both inherit from IldIldBase. IldIldBase includes an
instance of the IldDiagnostic class and provides methods to access the error information.

This tutorial has 4 steps:

◆ Step 1: Connecting to the Database - Shows how to connect to the database, using the
IldDbms class.

◆ Step 2: Querying the Database - Sends a query to the database.

◆ Step 3: Retrieving Data from the Database - Retrieves the output from a select query.

◆ Step 4: Disconnecting From the Database - Disconnects from the database and releases
the objects.

Step 1: Connecting to the Database

This step shows how to connect to the RDBMS and disconnect when leaving the application.

The code is presented, beginning with the main part:

IldDbms* dbms = IldNewDbms(dbName, connStr) ;

This is the only entry point to the library. A single entry point simplifies the use of the
library. Using the IldNewDbms method is all that is required to get connected, and is the
only way to get a connection. Any object used later will be allocated from the IldDbms
instance returned by this method. Therefore, destroying the IldDbms instance will also
automatically release all objects allocated with this instance.

This method has 2 arguments. The first identifies the RDBMS to connect to. There is a
specific name for each RDBMS supported by DB Link. The second argument specifies the
user name, password, and database identification. Both these arguments are given as
parameters to the program.

The connection string format depends on the RDBMS, as described in the following table:

dbName connStr

informix userName/password/database@dbServer

mssql userName/password/database/dbServer

odbc dataSourceName/userName/password
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 7

It is possible for the connection to fail. This is the case, for instance, when the user password
is incorrect. The following code tests for such a failure:

if (dbms->isErrorRaised()) {
 IldDisplayError("Connection failed : ", dbms) ;
 delete dbms ;
 exit(1) ;
}

The IldDbms class can indicate whether an error occurred and what kind of error it was.
The IldDisplayError function queries the IldDbms instance to get this information and
then process it (display it in this case). This is done as follows:

void IldDisplayError(const char* operation, const IldIldBase* ildobj) {
 cout << operation << endl;
 cout << " Code : " << ildobj->getErrorCode() << endl;
 cout << " SqlState: " << ildobj->getErrorSqlstate() << endl;
 cout << " Message : " << ildobj->getErrorMessage() << endl;
}

Before exiting the program, the IldDbms object must be deleted. Doing so automatically
disconnects from the database and releases any objects previously allocated with this
connection. This is done very simply, as follows:

delete dbms;

Conclusion

This chapter showed how to connect to an RDBMS and process the errors that may occur.
You are now ready to send queries to the server.

See source code.

Step 2: Querying the Database

To send a query to the database, you need to get an instance of the IldRequest class. This
class is used both to send queries to the RDBMS and to retrieve results. The instance is
created using the IldDbms::getFreeRequest method.

After connecting to the RDBMS as described in Step 1, a new request is allocated from the
connection (this request will be used later to send queries to the RDBMS). This is done as
follows:

IldRequest* request = dbms->getFreeRequest() ;

OLE DB userName/password/database/dbServer

oracle userName/password@service

sybase userName/password/database/dbServer

dbName connStr
8 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Basic Use
if (dbms->isErrorRaised()) {
 IldDisplayError("Creation of request failed : ", dbms) ;
 delete dbms ;
 exit(1) ;
}

Then, the table is created by using this new IldRequest instance to send a DDL (Data
Definition Language) statement to the RDBMS. This is done using the IldRequest method
execute (const char*, IldInt* rowCount = 0), as follows:

const char* createStr = "create table ATABLE(F1 int,F2 char(20))" ;
cout << "Creating a table : " << createStr << endl ;
request->execute(createStr) ;
if (request->isErrorRaised()) {
 IldDisplayError("Table creation failed : ", request) ;
 delete dbms ;
 exit(1) ;
}

The second argument of the execute method is an optional output argument. It is used to
get the number of rows modified by the statement. It is not applicable for a DDL statement
but it can be used for a DML (Data Manipulation Language) statement, such as insert.

An insert statement now writes records to the table (this is the simplest way to insert a row in
a table).

const char* insertStr1 = "insert into ATABLE values(40,'Forty')" ;
IldInt nbRows = 0 ;
cout << "Row #1 : " << insertStr1 << endl ;
if (!request->execute(insertStr1, &nbRows))
 IldDisplayError("Insertion failed :", request) ;
else cout << "\t" << nbRows << " row inserted." << endl ;

The number of inserted rows is retrieved with the second parameter of the
IldRequest::execute method. This is useful mainly when running an update statement
together with a where clause. In such a case, you may not know how many rows are updated.
The only way to be made aware of this is to use this second parameter.

This time the error was checked using the '!' unary operator. It is redefined by the
IldIldBase class to return the error status. Therefore, it may be used with either an
IldDbms or an IldRequest instance. It is equivalent to the isErrorRaised method,
except that it is shorter to write.

Before leaving the program, the table that has just created must be cleaned out. This is done
the same way it was created— by using a drop statement.

const char* dropStr = "drop table ATABLE" ;

Note: The error handling mechanism is the same as the one used with the IldDbms
instance in Step 1.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 9

cout << "Dropping table : " << dropStr << endl ;
if (!request->execute(dropStr))
 IldDisplayError("Drop table failed : ", request) ;

Conclusion

These instructions are all that is needed to send a query to the RDBMS. They will be used
often.

See source code.

Step 3: Retrieving Data from the Database

This step shows how to retrieve the output from the database. In Step 2, a simple query to
create a new table was sent to the RDBMS, and records were inserted in this table. Now, you
can read the data from the table.

First, a select statement is executed. This is done as follows:

const char* selectStr = "select * from ATABLE";
cout << "Retrieving all rows : " << selectStr << endl;
if (!request->execute(selectStr))
 IldDisplayError("Select failed : ", request);

When execute is successful, a description of the results set can be accessed. The
description includes the number, name, data type, and size of each column. These are
accessed by using the following methods:

◆ IldUShort IldRequest::getColCount - Gets the number of columns in the results
set.

◆ const char* getColName(IldUShort index) - Gets the name of the column
defined by the index position in the results set.

◆ IldColumnType IldRequest::getColType(IldUShort index) - Gets the type
of the given column.

◆ IldUInt IldRequest::getColSize(IldUShort index) - Gets the size of the
column (number of bytes required to store a value of the column).

In the sample, you know exactly what results set to retrieve. However, these methods are
used to display the results set when the query is known only at run time. This is Dynamic
SQL; the application can process queries provided by an end user at run time.

The information is processed as follows:

Note: The value of rowCount passed to execute is 0 for “select” queries. This is
logical—counting the rows before they have all been accessed would impose an
unnecessary performance penalty on the application.
10 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Basic Use
// Print selected item names.
IldUShort i ;
IldUShort nbCols = request->getColCount() ;
const char* colName1 = request->getColName(0) ;
const char* colName2 = request->getColName(1) ;
cout << "\t ATABLE" << endl ;
cout << " " << colName1 << "\t\t" << colName(2) << endl ;

The information is available following the execution of the select query.
IldRequest::fetch is now used to get the values of these columns from the RDBMS.
This retrieves the data from the memory of DB Link.

IldRequest::fetch attempts to get the first available row of the results set. If there is a
row available, the IldRequest::hasTuple method returns IldTrue.

Since IldRequest::fetch returns a reference to an IldRequest instance, the rows are
fetched in a loop as follows:

while (request->fetch().hasTuple()) {
 cout << " " ;
 for (i = 0 ; i < nbCols ; ++i) {
 if (request->isColNull(i))
 cout << "-" ;
 else
 switch (request->getColType(i)) {
 case IldIntegerType :
 cout << request->getColIntegerValue(i) ;
 break ;
 case IldStringType :
 cout << "'" << request->getColStringValue(i) << "'" ;
 break ;
 default :
 // Other possible types are not handled here.
 break ;
 }
 cout << endl ;
 }
 cout << endl ;
}

As long as there is a tuple available, one of the
IldRequest::getCol<dataType>Value(IldUShort i) methods is used to retrieve
the values of the results set. The method depends on the column type. The
IBM ILOG DB Link Reference Manual contains a complete list of these methods.

Conclusion

This step described the simplest way to read the data recorded in the database. This includes
the Metadata of the results set, as well as the data itself. You can now run queries against the
database. Since your queries will probably be more sophisticated than these, the sample code

Note: A column of any type may be null. This is detected by the method
IldRequest::isColNull(IldUShort i).
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 11

can be changed to improve performance. Nevertheless, the basic approach will be the same
for all DB Link applications.

See source code.

Step 4: Disconnecting From the Database

This step shows how to terminate the program by disconnecting from the database and
releasing the objects previously allocated.

The simplest way to do this is to delete the IldDbms object itself. This automatically
disconnects from the database and releases any objects previously allocated with this
connection. This is done as follows:

delete dbms;

Conclusion

This step demonstrated the disconnection procedure. This procedure is simplified since an
IldDbms instance keeps track of the objects allocated with its connection.

IBM ILOG DB Link Optimization Techniques

This chapter describes 4 techniques that can be used to optimize an application when
working with an RDBMS.

◆ Step 1: Executing a Query Multiple Times, shows the proper way to execute a query
several times.

◆ Step 2: Optimizing Network Use, shows how to optimize use of the network.

◆ Step 3: Accessing Data Directly, shows how to optimize data transfer with the RDBMS.

◆ Step 4: Keeping Data in Memory, shows how to efficiently keep data read from the
RDBMS in memory.

Step 1: Executing a Query Multiple Times

This first optimization technique is for cases when a query has to be executed several times.
This technique involves the use of deferred execution. With deferred execution, the
statement is first prepared for execution and then executed. With immediate execution (as
seen in IBM ILOG DB Link Basic Use) the two steps are carried out simultaneously.
Deferred execution is used in the following cases:

◆ The Statement is to be Executed Several Times: In this case, the statement is prepared
once by the server for all the required executions. This eliminates the preparation time
for the subsequent executions.
12 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Optimization Techniques
◆ The Statement Contains Parameters: In this case, the statement is first prepared without
knowing the values of the parameters, and it is then executed once the parameters are set
to their values. A query with parameters is always executed using deferred execution,
even if it is executed only once.

The Statement is to be Executed Several Times

Deferred execution is done using the parse step and the execute step. The parse step is done
only once. It sends the query to the RDBMS, which prepares the execution plan. Then the
execute step can be done several times. The same execution plan will be reused each time by
the RDBMS.

The Statement Contains Parameters

In this case, placeholders for parameters must be considered. Most RDBMSs support the
ISO SQL standard syntax for placeholders: the ? symbol. Exceptions to this are Oracle® and
SqlBase:

◆ For Oracle, the syntax can be :<n>, where <n> is an integer starting from 1.

◆ Oracle also uses named parameters. The syntax of named parameters is :<name>.

Example of Deferred Execution

An example of deferred execution is now presented.

First, the RDBMS connection is verified in order to use the proper placeholder syntax. This
is done by checking the return value from IldDbms::getName. This method returns the
RDBMS to which the program is connected.

const char* insertStr = 0 ;
if (!strncmp(dbms->getName(), "oracle", 6))
 insertStr = "insert into OPTIMS1 values (:1, :2)" ;
else
 insertStr = "insert into OPTIMS1 values (?, ?)" ;

This statement is parsed with the IldRequest::parse method:

if (!request->parse(insertStr)) {
 IldDisplayError("Parse of query failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

Then the parameters are bound to set their types. This parameter binding may also be used to
specify other parameter information (See Step 3: Accessing Data Directly, which deals with
external binding, for further information).

if (!request->bindParam((IldUShort)0, IldIntegerType)) {
 IldDisplayError("First parameter binding failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}
if (!request->bindParam((IldUShort)0, IldStringType)) {
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 13

 IldDisplayError("Second parameter binding failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

The last step is execution. A loop is run to set the parameters to different values, and the
prepared query is executed with these parameter values:

static const IldUShort strLen = 20 ;
IldUShort i, j ;
IldInt nbRows, nVal ;
// strBuf will be used to build a different string for each execution.
char strBuf[strLen + 1] ;
strBuf[strLen] = 0 ;
for (i = 0 ; i < 5 ; i++) {
 nVal = i ;
 // Build a new string value for this execution.
 for (j = 0 ; j < strLen ; ++j)
 strBuf[j] = 'a' + i ;
 // Set parameter values.
 if (!request->setParamValue(nVal, 0) ||
 !request->setParamValue(strBuf, 1)) {
 IldDisplayError("Set parameter value failed :", request) ;
 Ending(dbms) ;
 exit(1) ;
 }
 // Execute the query.
 if (!request->execute(&nbRows, 1)) {
 IldDisplayError("Insertion failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
 }
 else cout << "\t" << nbRows << " row inserted." << endl ;
}

Conclusion

This step described how to run a query with parameters using the deferred execution
method.

The next steps describe how to make this application even more efficient.

See source code.

Step 2: Optimizing Network Use

The goal of network optimization techniques is to reduce network traffic for a given SQL
execution. Changes with respect to the standard methods (as described in
IBM ILOG DB Link Basic Use) are needed on two different occasions, when:

◆ A Query is Sent to the RDBMS

◆ A Results Set is Retrieved for the RDBMS
14 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Optimization Techniques
Deferred execution can also be used to execute the same query several times in only one
execute call. This reduces the number of queries sent to the server.

Similarly, several rows can be requested at a time when retrieving results from the RDBMS.
This also reduces network use. These techniques use the notion of an Array of parameters
and an Array of columns.

A Query is Sent to the RDBMS

First, look at the input side, that is, when queries are sent to the RDBMS.

The same insertion as in previous steps is run, but in only one execution. To do so, you need
to request an array of n parameters from DB Link. Then, values are set for each set of
parameters. Finally, an execute statement is run for the entire set of parameters.

The IldRequest::setParamArraySize method is used to specify the size of the
parameter array:

static const IldUShort nbParam = 5 ;
if (!request->setParamArraySize(nbParam)) {
 IldDisplayError("Could not set parameter array size : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

The parse and parameter binding steps are done as described in Step 1.

The parameter values are now set. This is done as in Step 1, except that the third argument of
IldRequest::setParamValue is used to specify which parameter to set:

static const IldUShort strLen = 20 ;
IldInt i, j, nbRows ;
char strBuf[strLen + 1] ;
for (i = 0 ; i < nbParam ; i++) {
 nVal = i ;
 // Build a new string value for this set of parameters.
 for (j = 0 ; j < strLen ; ++j)
 strBuf[j] = 'a' + i ;
 // Set parameter values.
 if (!request->setParamValue(nVal, 0, i) ||
 !request->setParamValue(strBuf, 1, i)) {
 IldDisplayError("Set parameter value failed :", request) ;
 Ending(dbms) ;
 exit(1) ;
 }
}

Now, the query is run and the number of times it will be run is specified.

When deferred execution is used, by default the parameter array size is used to specify the
number of times the query is to be executed. Consequently, the second argument of
IldRequest::execute(IldInt*, IldInt) is not required (the default value is used).

The first argument of the execute method is set to the number of rows updated by the query
(5 in this case).
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 15

if (!request->execute(&nbRows, nbParam)) {
IldDisplayError("Insertion failed : ", request) ;
Ending(dbms) ;
exit(1) ;
}
else cout << "\t" << nbRows << " row inserted." << endl ;

A Results Set is Retrieved for the RDBMS

Optimization by deferred execution can also be used when retrieving a results set from the
RDBMS.

The IldRequest::setColArraySize method is used to specify the number of rows to
retrieve in one fetch. After calling this method, the other steps of the application will be
exactly the same as they would be without this optimization.

The bigger the array size, the less the server has to be contacted, and the fewer network
resources are used. However, more memory is needed in this case. DB Link fetches all the
rows in memory. Then, from the application point of view, the process is the same as it
would be to get only one row.

The IldRequest::fetch method checks to see whether there is a row available in
memory. If there is, the row is made available to the application. Otherwise, the method
automatically gets the next block of rows from the RDBMS.

The runDisplay method can be seen in the complete source code for this step. This method
is the same as in Step 1 (except the call to IldRequest::setColArraySize()).

Conclusion

This step demonstrated how several operations can be executed in only one step to reduce
network use.

See source code.

Step 3: Accessing Data Directly

This step shows how to use external binding, as well as the advantage of using it. The
external binding feature (as opposed to internal binding) is first presented.

Binding is the process of sending and receiving RDBMS data directly to and from the
application memory.

In previous steps, the DB Link default mode was used. This mode is called internal binding.
With internal binding, DB Link automatically allocates the memory where data is stored.
Then, the data must be copied from the application memory to the memory allocated by
DB Link. For example, in Step 1, the IldRequest::setParamValue method is used to
copy the value needed to the buffer allocated by DB Link.
16 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Optimization Techniques
This is the easiest method since the application does not need to do an explicit binding—
DB Link does it by itself. However, this method is less efficient since the value has to be
copied from the application memory area to the area allocated by DB Link.

With external binding, the application allocates the memory and tells DB Link to use this
area directly. This is done using one of the binding methods, bindCol and bindParam. The
bindCol method is used when retrieving column data from the RDBMS. The bindParam
method is used to bind application memory to the array of value arguments for a query with
parameters.

To see how this works from the input side (writing data to the RDBMS), the memory to be
used is first allocated. An array of parameters is used, as described in the previous step, to
run only one execute call. This is done as follows:

static const IldUShort nbParam = 5 ;
// strBuf will be used to store an array of 5 string values.
char strBuf[nbParam][strLen + 1] ;
IldInt intBuf[nbParam] ;
short strNulls[nbParam], intNulls[nbParam] ;

This declares an array of five strBuf strings where string parameter values are stored.

Then, the intBuf array records the integer parameter values.

The strBuf array is used with strNulls, and the intBuf array is used with intNulls.
These arrays record the NULL indicators. They are initialized with zeros to specify that the
parameters are not NULL.

A null indicator is required to specify that the value is NULL. In the context of an RDBMS, a
null value means that there is no value at all. For instance, for an integer column, a null value
is NULL, not zero.

Then, the parameter array size is set as described in the previous step, and the query is
parsed.

The intBuf and strBuf buffers are given as arguments to the IldRequest::bindParam
method. The use of external binding requires nothing more.

if (!request->bindParam((IldUShort)0,
 IldIntegerType,
 sizeof(IldInt),
 intBuf,
 intNulls)) {
 IldDisplayError("Bind first parameter failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}
if (!request->bindParam((IldUShort)1,
 IldStringType,
 strLen + 1,

Note: The null indicators are not required when you do not have to handle a null value.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 17

 strBuf,
 strNulls)) {
 IldDisplayError("Bind second parameter failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

Now you work directly with the buffers. They are used to send data to the RDBMS.

IldUShort i, j ;
IldInt nbRows ;
for (i = 0 ; i < nbParam ; i++) {
 intBuf[i] = i ;
 // Build a new string value for this set of parameters.
 for (j = 0 ; j < strLen ; ++j)
 strBuf[i][j] = 'a' + i ;
}
if (!request->execute(&nbRows, nbParam)) {
 IldDisplayError("Insertion failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}
else cout << "\t" << nbRows << " row inserted." << endl ;

Conclusion

This step demonstrates how to bind DB Link directly to application memory. This is an
efficient way of exchanging data with the RDBMS.

See source code.

Step 4: Keeping Data in Memory

This step shows how to use multiple binding, as well as the advantage of using it. Multiple
binding is used to get better performance when the application needs to keep in memory the
objects it reads from the RDBMS.

In previous steps, data always went to the same address location when it was retrieved from
the RDBMS. Therefore, each fetch operation overwrites the data previously fetched. If the
application needs to keep this data in memory, it has to copy it to another location (this can
lead to memory exhaustion problems).

To avoid this, the IldRequest::bindCol method is called as often as necessary to specify
a new address location between each fetch. This is demonstrated by the following sample
(see method readData in the complete code sample for this step).

The select query is executed as in previous steps:

static const char* selectStr = "select I from OPTIMS4" ;
if (!request->execute(selectStr)) {
 IldDisplayError("Could not run select query : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

18 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Portability Considerations
A first bindCol call is executed to get the first column value. Then, within the fetch loop,
the column binding is changed so that each value fetched is stored in a new location:

IldUShort i = 0 ;
if (!request->bindCol((IldUShort)0, IldIntegerType, &values[i])) {
 IldDisplayError("Could not bind column : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}
while (request->fetch().hasTuple())
 if (++i == nbVal) break ;
 else
 if (!request->bindCol((IldUShort)0, IldIntegerType, &values[i])) {
 IldDisplayError("Could not bind column : ", request) ;
 Ending(dbms) ;
 exit(1) ;
 }

Conclusion

This step demonstrated how to use the multiple binding method to keep in memory data read
from the RDBMS. This is easy to use and avoids the possible memory exhaustion problems
that can arise when copying the data to another application buffer.

See source code.

IBM ILOG DB Link Portability Considerations

A major feature of DB Link is its portability across various RDBMSs and systems. An
application built for Oracle®, for instance, will also work with Informix®, on either
SolarisTM or Windows®.

This chapter describes specific considerations to keep in mind when building portable
applications:

◆ Step 1: Using the Date as Object Mode,

◆ Step 2: Using the Numeric as Object Mode,

◆ Avoiding problems that arise from various LOCALE settings. This is discussed in both
steps.

Note: In this sample, only the first values in an array are retrieved. This is why the fetch
loop is broken after a given number of rows. In a real application, memory used to store
data is allocated dynamically as required. Data is then printed at the end of the program.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 19

Step 1: Using the Date as Object Mode

In its default configuration, DB Link handles the date as a string. This is referred to as the
date as object mode. In this mode, date strings must respect the format expected by the
RDBMS. This format varies depending on the RDBMS being connecting to. Also, this
format depends on the LOCALE setting.

To avoid these dependencies, DB Link provides a class (IldDateTime) to record a date.
This object may be used to send or retrieve a date to or from the RDBMS. DB Link silently
converts this to what is expected by the RDBMS (a specific structure).

This IldDateTime class provides logical accessors to build the date value. The sample
PortStep1.cpp shows how to use this class to record date values to a table.

Since the default mode for dates is date as string, you first switch to date as object mode. To
do so, the IldIldBase::setStringDateUse(IldBoolean) method is used:

request->setStringDateUse(IldFalse) ;

IldDateTime objects can now be used.

An insert query is run to insert new date values in a table. An array of parameters is used,
with external binding, as described in IBM ILOG DB Link Optimization Techniques.

if (!request->parse(insertStr))
 IldDisplayError("Could not parse insert query", request) ;

if (!request->bindParam((IldUShort)0, IldDateTimeType, sizeof(IldDateTime),
 dates, dateNulls))
 IldDisplayError("Bind parameter failed : ", request) ;

The values for the date parameters are now set. This is done using the intuitive interface
provided by the IldDateTime class.

for (i = 0 ; i < nbParam ; ++i) {
 dates[i].setYear(1999) ;
 dates[i].setMonth(10) ;
 dates[i].setDay(i + 1) ;
 dates[i].setHour(10) ;
 dates[i].setMinute(30) ;
}

The query is now executed:

if (!request->execute(&rowCount, nbParam)) {
 IldDisplayError("Could not execute insert query : ", request) ;
 Ending(dbms) ;
 exit(1) ;

Note: Some RDBMSs can handle time with milliseconds. The “date as string” mode does
not allow you to get these milliseconds, whereas “date as object” does. Consequently, the
“date as object” mode respects the precision of the data returned by the RDBMS.
20 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Portability Considerations
}

Then the data is retrieved using the method displayData. This is done in string mode,
since the values need only to be printed. Using this sample, you can check how the date
strings will be affected by the RDBMS format and the LOCALE settings.

Conclusion

This step demonstrated the use of the IldDateTime class. This class provides an intuitive
way to handle dates and exchange date data with the RDBMS, regardless of LOCALE
settings. Without DB Link, this requires knowledge of the specific structures used by the
RDBMS API. Such code is complicated and is not portable to other RDBMSs.

See source code.

Step 2: Using the Numeric as Object Mode

In this step you will see the following items:

◆ The Numeric as Object Mode

◆ Setting the Numeric Mode

◆ Displaying the Current Numeric Mode

◆ Inserting Data Using the Numeric as Object Mode

◆ Executing the Query

The Numeric as Object Mode

The numeric as object mode is similar to the date as object mode. Instead of handling the
numeric value as a string (which depends on the LOCALE setting for the decimal separator),
or as a C float data type (which implies a loss of precision, since database numeric types can
handle a precision much greater than a float), DB Link contains a C++ class called
IlNumeric. This class provides an intuitive interface to numeric values. DB Link converts
the value in an RDBMS-specific structure without any loss of precision and independently
of LOCALE settings.

Two other possible modes are:

◆ With the default mode, numeric values are handled as basic C++ types—either integers
or float values. Since large numbers cannot be represented in this mode, precision may
be lost. You can return to this default mode by using either
IldIldBase::setNumericMode(IldFalse) or
IldIldBase::setStringNumericMode(IldFalse).

◆ With the numeric as string mode, numeric values are handled as strings. While there is
no loss of precision, the string representation will depend on the LOCALE settings. The
IldIldBase::setStringNumericUse(IldTrue) method activates this mode.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 21

The best way to handle large floating values is to use the numeric as object mode, which
does not lose precision and is independent of the LOCALE settings. This mode is activated
with method IldIldBase::setNumericUse(IldTrue).

Setting the Numeric Mode

The following code demonstrates how to set the numeric mode. It also demonstrates the
effect of this mode on the results set retrieved from the database. In method
checkNumericMode, a new request is opened and then successively set to the three
different modes. For each mode, a description of the mode is printed. Here is an excerpt
from this method:

request->setStringNumericUse(IldTrue) ;
displayNumericMode(dbms, request, "Mode \"Numeric as String\" is activated :",
 IldStringType) ;

request->setNumericUse(IldTrue) ;
displayNumericMode(dbms, request, "Mode \"Numeric as Object\" is activated :",
 IldNumericType) ;

Displaying the Current Numeric Mode

The displayNumericMode method displays the current numeric mode using the methods
IldIldBase::useNumeric and IldIldBase::useStringNumeric. Then, it runs a
select query to select a numeric value from the database. Depending on the current numeric
mode, this column will be of type IldRealType (default mode), IldStringType
(numeric as string mode), or IldNumericType (numeric as object mode).

Here is the code of the displayNumericMode method:

static const char* selectStr = "select N from PORTS2" ;
cout << message << endl ;
 << "* request->useNumeric() = "
 <<(request->useNumeric() ? "IldTrue" : "IldFalse")
 <<", request->useStringNumeric() = "
 (request->useStringNumeric() ? "IldTrue" : "IldFalse") << endl ;
if (!request->execute(selectStr)) {
 IldDisplayError("Select execution failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

Inserting Data Using the Numeric as Object Mode

Data is now inserted in the table using the numeric as object mode. This is done with method
insertData. First, numeric as object mode is activated:

request->setNumericUse(IldTrue) ;

The insert query is prepared as in previous steps. To bind the parameter, IldNumericType
is used to specify the parameter in numeric as object mode. An array of two parameters is
used:

if (!request->parse(insertStr)) {
22 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Access to Object Data Types
 IldDisplayError("Could not parse insert query : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}
if (!request->bindParam((IldUShort)0, IldNumericType, sizeof(IlNumeric), nums,
 numNulls)) {
 IldDisplayError("Bind parameter failed : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

Executing the Query

The two numeric objects are initialized with a string of characters. They can also be
initialized with a double-precision value, but this is not as precise. The query is then
executed:

// Set the values for the numbers :
nums[0].set("1234567890.456") ;
nums[1].set("-86420.13579") ;

// Initialize null buffers :
memset(numNulls, 0, sizeof(short) * nbParam) ;

if (!request->execute(&rowCount, nbParam)) {
 IldDisplayError("Could not execute insert query : ", request) ;
 Ending(dbms) ;
 exit(1) ;
}

Conclusion

This step demonstrated the use of the IlNumeric class. This class provides an intuitive way
to handle large floating values with the RDBMS, regardless of LOCALE settings and with
no loss of precision. Without DB Link, this requires knowledge of the specific structures
used by the RDBMS API. Such code is complicated and is not portable to other RDBMSs.
This step also demonstrated how the three different numeric modes are activated.

See source code.

IBM ILOG DB Link Access to Object Data Types

This chapter demonstrates how IBM® ILOG® DB Link gives access to the new data types
introduced by an object oriented RDBMS. DB Link supports Informix Universal Server and
Oracle®, which both provide object oriented features. In this document, these new data
types are called Abstract Data Types (ADT).

There are 2 basic kinds of structures introduced by these new RDBMSs—lists, and objects.

First, this chapter demonstrates how to describe such a data type. It presents all the methods
available to access the structure of the data type. To work with the objects created in the
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 23

database, you need to know how these objects are built, that is, what their attributes are. This
is referred to as describing the Abstract Data Type.

Then, the chapter presents the classes used to build an instance of an Abstract Data Type
within DB Link, and how this instance is stored in the RDBMS.

These 2 items are reflected in this document as follows:

◆ Step 1: Getting the Description of an ADT - Shows how to get the description of an
ADT.

◆ Step 2: Building an ADT - Shows how to handle an ADT value.

Step 1: Getting the Description of an ADT

This step demonstrates how to get the description of an ADT. An IldADTDescriptor
instance is retrieved. This gives us the description of the ADT, since an ADT is described
using DB Link class IldADTDescriptor.

In this step, the following items are presented:

◆ Objects and Abstract Data Types

◆ Creating an ADT Instance

◆ Displaying the Object Structure

◆ Printing the ADT Attributes

Objects and Abstract Data Types

There are various kinds of object types in an RDBMS. However, these object types can be
different with Informix and Oracle®. DB Link provides two basic object types:
IldObjectType and IldCollectionType. When an ADT column is retrieved, it will be
one of these 2 types. IldObjectType may be the object type in Oracle, and named row or
unnamed row in Informix. IldCollectionType may be varray or nested table types in
Oracle, or nested table, list, set, or multiset in Informix Universal Server.

The IldADTDescriptor class provides an additional type name to give more information
on the exact data type in the RDBMS. This is the IldADTType returned by
IldADTDescriptor::getType. Depending on this type, you may want to access a
specific ADT attribute. For instance, a varray is a specific kind of collection, since there is a
limit to the maximum number of elements that can be recorded in the collection. This
maximum number of elements can be retrieved from an IldADTDescriptor instance and
is meaningful only for a varray ADT.
24 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Access to Object Data Types
The following table summarizes the various ADT types handled by DB Link.

In DB Link, the various list types (IldADTTable, IldADTList, and IldADTArray) are
manipulated in the same way. However, specific information that depends on the
IldADTType can be retrieved.

To access an object type, you first create one within the database. This is done by the
createADT(IldDbms*) method in source file ADTCommon.cpp.

The object structure is made from one or more of the following object data types:

◆ POINT: A POINT object contains the coordinates of the point—two integer values X and
Y.

◆ LINE: A LINE object contains two POINT objects.

◆ BRIDGE: A BRIDGE object contains a name and a nested object LINE.

◆ BRIDGELST: A BRIDGELST object data type contains a list of bridges. With Informix,
a data type name cannot be given to a collection. Therefore, the BRIDGELST data type
cannot be created in this step. It will be created in Step 2, within a table.

All this makes for a complex nested object structure. This structure is described with
DB Link.

Creating an ADT Instance

The program code first creates an IldADTDescriptor instance for the data type to be
described. To do so, the name of the object data type is specified.

IldADTDescriptor* adt = 0 ;
if (!(adt = dbms->readAbstractType(checkCase(ADTName, dbms)))) {
 IldDisplayError("Could not getADT description : ", dbms) ;
 Ending(dbms) ;

DB Link Column type
'IldColumnType'

IldADTDescriptor type
'IldADTType'

Database type

IldObjectType IldADTObject Oracle® objects, and
Informix [named] rows

IldCollectionType IldADTTable Informix or Oracle nested
tables

IldCollectionType IldADTList Informix lists, sets, and
multisets

IldCollectionType IldADTArray Oracle varrays

Note: The SQL commands used to build the object data type depend on the database
used—Oracle® or Informix US.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 25

 exit(-1) ;
}

Another way to get an IldADTDescriptor instance is to use the data type ID instead of its
NAME. This is mainly useful for Informix data types that are not named: unnamed rows and
the various kinds of collections. This method is not used here.

Displaying the Object Structure

Now the structure of the object is displayed. This is done recursively, since the object
contains nested objects.

First, the type of the object is tested using method IldADTDescriptor::getType.

◆ If the IldADTDescriptor object describes an object (IldObjectType), the following
methods are used:

● IldADTDescriptor::getAttributes - Returns an array of IldDescriptor
objects. Each attribute of the ADT is described by one of these IldDescriptor
objects.

● IldADTDescriptor::getAttributesCount - Gives the number of attributes of
the ADT. This is also the number of elements in the array returned by
IldADTDescriptor::getAttributes.

◆ When the object is a collection, it is built upon only one attribute. Hence, you do not have
access to all the information (for example, the maximum number of elements in the list).
To retrieve this additional information, the following methods are used:

● IldADTDescriptor::getCollectionAttribute - This is equivalent to
IldADTDescriptor::getAttributes, but it returns only one element.

● IldADTDescriptor::getCollMaxSize - Returns the maximum number of
elements in the list when the collection type is IldADTArray.

The code to get the description of the ADT is as follows (method displayADT):

IldUShort i = 0 ;
switch (adt->getType()) {
case IldADTObject : {
 const IldDescriptor* const* elts = 0 ;
 cout << "Object (" ;
 elts = adt->getAttributes() ;
 for (i = 0 ; i < adt->getAttributesCount() ; i++) {
 displayDesc(dbms, elts[i]) ;

Note: In this call, the checkCase method is used. This ensures that the name of the data
type is spelled in the correct case, depending on the RDBMS. With Informix, it is of the
BRIDGE data type. With Oracle®, it is of the BRIDGELST data type. In this code excerpt,
'ADTName' contains this name—either BRIDGE for Informix or BRIDGELST for Oracle.
26 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Access to Object Data Types
 if (i < adt->getAttributesCount() - 1)
 cout << ", " ;
 }
 cout << ")" ;
 break ;
}
case IldADTList :
case IldADTArray : {
 const IldDescriptor* desc = adt->getCollectionAttribute() ;
 if (adt->getType() == IldADTList)
 cout << "List of {" ;
 else
 cout << "List[" << adt->getCollMaxSize() << "] of {" ;
 displayDesc(dbms, desc) ;
 cout << "}" ;
 break ;
}
default:
 cout << "Unexpected ADT Type." << endl ;
}

Here, the IldDescriptor instances that describe each attribute of the ADT are retrieved
from the IldADTDescriptor instance that describes the type. Then, the description of each
of these attribute descriptions is printed.

Printing the ADT Attributes

Printing the ADT attributes is done by the method displayDesc. If one of the attributes is
an object (nested object), the displayDesc method recursively calls displayADT to print
the ADT description.

Here is an excerpt from method displayDesc:

cout << desc->getName() ;
switch (desc->getType()) {
case IldObjectType :
case IldCollectionType :
 if (desc->getADTDescriptor()->isNamedType())
 cout << "'" << desc->getSqlTypeName() << "' : " ;
 displayADT(dbms, desc->getADTDescriptor()) ;
 break ;
case IldStringType :
 cout << desc->getSqlTypeName() << " (" << desc->getSize() << ")" ;
 break ;
case IldIntegerType :
 cout << desc->getSqlTypeName() ;
 break ;
default:
 cout << "Other type : " << desc->getType() << endl ;
}

Conclusion

This step demonstrated how to get the description of an Abstract Data Type. The two
methods displayADT and displayDesc show how to go through the
IldADTDescriptor instance to get the description of the various attributes of the data type.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 27

See ADTCommom.cpp source code (creation of the object types).

See main source code.

Step 2: Building an ADT

This step demonstrates how to build a value for an Abstract Data Type and send it to the
RDBMS. (The same database objects as in the previous step is used).

Building the ADT is done as follows:

◆ Creating the Table

◆ Getting the ADT Description

◆ Retrieving the Instances

◆ Building the Object Values

◆ Executing the Query

Creating the Table

First, the table ADTS2 is created. The table contains 3 fields:

◆ The name of a river (RIVER)

◆ The length of the river (LENGTH)

◆ A list of bridges associated with the river (B)

Then an ADT value is built and recorded in the B field.

Getting the ADT Description

The ADT value is an instance of the DB Link class IldADTValue. To build such an
instance, the description of the Abstract Data Type is needed.

Since you now have a table that uses the ADT, another way of getting this description is
presented (different from the method used in the first step). All that is required is to run a
query to select the B column from the ADTS2 table. Then, the description of the column can
be accessed, which means that the description of its data type can also be accessed.

This is done in the following code excerpt:

// Retrieve the descriptor of the parameter object type.
IldADTDescriptor* bridgeLstAdt = 0 ;
const char* query = "select B from ADTS2" ;
if (!request->execute(query)) {
 IldDisplayError("Could not select object column : ", request) ;
 localEnd(dbms) ;
 exit(1) ;
}
bridgeLstAdt = request->getColDescriptor(0)->getADTDescriptor() ;
28 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Access to Object Data Types
You now have the IldADTDescriptor instance that describes the upper level object: the
list of bridges. This instance is required to build the ADT value and also to bind the Abstract
Data Type parameter. The query parse operation and the binding of the parameter is similar
to what has been done in previous steps with basic types. The only difference is that for an
ADT parameter, the IldADTDescriptor of the data type must be provided. This is done as
follows:

// Parse the insert query :
const char* insertStr =
 (!strncmp(dbms->getName(), "oracle", 6) ?
 "insert into ADTS2 values ('River Name', 30, :1)" :
 "insert into ADTS2 values ('River Name', 30, ?)") ;

cout << "Parse request : " << insertStr << endl ;
if (!request->parse(insertStr)) {
 IldDisplayError("Could not parse insert query : ", request) ;
 localEnd(dbms) ;
 exit(1) ;
}

if (!request->bindParam((IldUShort)0, IldCollectionType, -1, 0, 0, IldFalse, 0,
 bridgeLstAdt)) {
 IldDisplayError("Could not bind object parameter : ", request) ;
 localEnd(dbms) ;
 exit(1) ;
}

Retrieving the Instances

The request is now parsed and a value given to the parameter. Since the main object (the list
of bridges) contains inner objects, you also need to get the IldADTDescriptor instances
that describe these nested objects. These instances are retrieved through the upper level
IldADTDescriptor.

This is done in the method getSubADTDescriptor, which requires the following
parameters:

◆ const IldADTDescriptor* adt - The main object.

◆ IldUShort idx - The index of the nested object to access.

The inner object IldADTDescriptor is retrieved as follows:

IldADTDescriptor* subAdt = 0 ;
// Get the descriptor at the given position :
if (adt->getType() == IldADTObject) {
 if (adt->getAttributesCount() > idx)
 desc = adt->getAttributes()[idx] ;
}
else
 desc = adt->getCollectionAttribute() ;

Note: The method has two other parameters. These are used only to process the error
cases.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 29

// Get the ADT descriptor :
subAdt = desc->getADTDescriptor() ;

Then, the getSubADTDescriptor method is used to get each ADT descriptor for each
object nested within the bridge collection:

// Get the ADT Descriptor for the bridge object :
IldADTDescriptor* bridgeAdt = getSubADTDescriptor(dbms, bridgeLstAdt, 0,
 "bridge") ;
// Get the ADT Descriptor for the line object :
IldADTDescriptor* lineAdt = getSubADTDescriptor(dbms, bridgeAdt, 0, "line") ;
// Get the ADT Descriptor for the point object :
IldADTDescriptor* pointAdt = getSubADTDescriptor(dbms, lineAdt, 0, "point") ;

Building the Object Values

You now have everything required to build the object values. This is done from the most
nested level to the upper level as follows:

IldADTValue* pointObj1 = new IldADTValue(pointAdt) ;
IldADTValue* pointObj2 = new IldADTValue(pointAdt) ;
IldADTValue* lineObj1 = new IldADTValue(lineAdt) ;
IldADTValue* bridgeObj1 = new IldADTValue(bridgeAdt) ;
IldADTValue* bridgeLst = new IldADTValue(bridgeLstAdt) ;

pointObj1->setValue((IldInt)10, 0) ; // X for point 1.
pointObj1->setValue((IldInt)20, 1) ; // Y for point 1.
pointObj2->setValue((IldInt)10, 0) ; // X for point 2.
pointObj2->setValue((IldInt)30, 1) ; // Y for point 2.

lineObj1->setValue(pointObj1, 0) ; // First point of the line.
lineObj1->setValue(pointObj2, 1) ; // Second point of the line.
bridgeObj1->setValue(lineObj1, 0) ;
bridgeObj1->setValue("Bridge Name", 1) ;

bridgeLst->setValue(bridgeObj1, 0) ;

Executing the Query

The parameter value is then set and the query executed as done with basic data types in
previous steps:

if (!request->setParamValue(bridgeLst, 0)) {
 IldDisplayError("Could not set parameter value : ", request) ;
 localEnd(dbms) ;
 exit(1) ;
}

if (!request->execute(&rowCount, 1)) {
 IldDisplayError("Could not execute the query : ", request) ;
 localEnd(dbms) ;
 exit(1) ;
}
else
 cout << rowCount << " rows inserted." << endl ;

The same method is used to add a second row with a list that contains three elements.
30 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

IBM ILOG DB Link Access to Object Data Types
You can also look at the method displayData, which retrieves from the database the
objects previously recorded.

Conclusion

This step demonstrated how to build a value for an Abstract Data Type and how to record it
in the database. It is much simpler to do so with DB Link than with the native RDBMS API.

See ADTCommom.cpp source code (creation of the object types).

See main source code.
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 31

32 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

I N D E X
Index

A

Access to Object Data Types 23
ADT

creating an instance 25
getting the description 24
printing attributes 27

ADT types
IldCollectionType 25
IldObjectType 25

B

Basic Use 6

D

database
connecting to 7
disconnecting from 12
querying 8
retrieving data from 10

I

IBM® ILOG DB Link tutorial 5
IldADTDescriptor class 24, 27

getAttributes method 26
getAttributesCount method 26
getCollectionAttribute method 26

getCollMaxSize method 26
getType method 24

IldDateTime class 20
IldDbms class 6, 12

getFreeRequest method 8
getName method 13

IldDiagnostic class 6
IldIldBase class 7, 9

useNumeric method 22
useStringNumeric method 22

IldNumeric class 21, 23
IldRequest class 6, 8

bindCol method 18
bindParam method 17
execute method 9
fetch method 11, 16
hasTuple method 11
parse method 13
setColArraySize method 16
setParamArraySize method 15
setParamValue method 15, 16

O

Optimization Techniques 12

P

Portability Considerations 19
I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L 33

R

RDBMS 5

T

tutorials
IBM® ILOG DB Link 5
34 I B M I L O G D B L I N K V 5 . 3 — T U T O R I A L

	IBM ILOG DB Link Tutorial
	IBM ILOG DB Link Basic Use
	Step 1: Connecting to the Database
	Step 2: Querying the Database
	Step 3: Retrieving Data from the Database
	Step 4: Disconnecting From the Database

	IBM ILOG DB Link Optimization Techniques
	Step 1: Executing a Query Multiple Times
	Step 2: Optimizing Network Use
	Step 3: Accessing Data Directly
	Step 4: Keeping Data in Memory

	IBM ILOG DB Link Portability Considerations
	Step 1: Using the Date as Object Mode
	Step 2: Using the Numeric as Object Mode

	IBM ILOG DB Link Access to Object Data Types
	Step 1: Getting the Description of an ADT
	Step 2: Building an ADT

	Index
	A
	B
	D
	I
	O
	P
	R
	T

