
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Gantt for .NET V4.0

Programming with

IBM ILOG Gantt for .NET Windows

Forms and Web Forms Controls

June 2009

C O N T E N T S
Contents

Programming with IBM ILOG Gantt for .NET Windows Forms and Web Forms Controls

Preface Programming with IBM ILOG Gantt for .NET Windows Forms and Web Forms
Controls 7

Creating and Using Gantt Data Models . 9

Introducing Gantt Data Model Interfaces. .10

Introducing the Gantt Data Model In-Memory Implementation .11

Populating Gantt Data Models .12

Managing Activities .13

Managing Resources .15

Managing Constraints .17

Managing Reservations .19

Optimizing Gantt Data Model Modifications. .20

Displaying Scheduling Data .21

Creating Custom Gantt Data Models .21

Extending the In-Memory Implementation .22

Extending the Model without Coding .22

Creating a Subclass of SimpleGanttModel. .24

Creating a Subclass of SimpleActivity .24

Implementing the Gantt Data Model Interfaces .27

Implementing the IGanttModel Interface .27
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 1

Implementing the Collection Interfaces of the Gantt Data Model .30

Implementing the Scheduling Entities .32

Listening to Gantt Data Model Events . 33

Catching Activity Events .34

Catching Resource Events .36

Catching Constraint Events .37

Catching Reservation Events .39

Displaying Scheduling Data Using Gantt Charts . 41

Introducing the Gantt Chart, Schedule Chart, and Reservation Chart Controls42

Displaying Scheduling Data .45

Accessing the Lower-Level Controls .46

Modifying the Appearance of Gantt Chart Controls .47

Using the Predefined Behavior of the Gantt Chart Controls .50

Expanding or Collapsing Rows .51

Grouping, Filtering and Sorting Rows .54

Controlling the Displayed Time Interval .55

Displaying Scheduling Data Using Tables . 57

Introducing the Activity, Resource, and Reservation Tables .59

Connecting a Gantt Table to a Gantt Data Model .61

Modifying the Appearance of a Gantt Table .61

Managing Columns of a Gantt Table .64

Modifying the Appearance of Table Columns. .65

Editing Values in the Table .66

Default Columns for Activity, Resource, and Reservation Tables 69

Dialog Box for Editing the Columns of a Gantt Table .70

Using Predefined Behavior to Manipulate Rows and Columns. .71

Expanding or Collapsing Rows .73

Scrolling the Gantt Table. .74

Getting and Setting the Current Cell .75

Controlling Selection in the Table .75
2 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Hit Testing in the Gantt Table .76

Grouping, Filtering and Sorting Rows .77

Displaying the Load of a Resource . 81

Introducing the LoadChart Class .82

Connecting the Load Chart to a Resource .82

Modifying the Appearance of a Load Chart. .82

Controlling the Displayed Time Interval .84

Displaying Activities Using a Calendar View . 85

Introducing the CalendarView class .86

Displaying Activities in the Calendar View .87

Modifying the Appearance of the Calendar View .87

Representing Activity bars in the Calendar View .89

Controlling the Layout of Activities in the Calendar View .90

Using the Predefined Behavior of the Calendar View .91

Hit Testing in the Calendar View .93

Customizing the Drawing of Gantt Components . 95

Using Time Grids and Date Indicators .95

Representing Activity Bars in Gantt Sheets .98

Styling Activity Bars in Gantt Sheets .100

Modifying the Appearance of Activity Bars. .101

Defining When a Bar Style Applies .106

Interacting and Styling .107

Example of Styling .108

Dialog Box Control for Styling Activity Bars .109

Modifying Styles .110

Programming the Activity Bar Style Dialog Box .112

Creating Owner-Drawn Gantt Components. .113

Providing User Code to Draw Gantt Table Cells .113

Providing User Code to Draw Gantt Sheet Rows .114

Providing User Code to Draw Activity Bar Styles. .115
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 3

Providing User Code to Draw Time Scale Rows .116

Providing User Code to Draw Constraint Links .117

Creating Custom Gantt Representations. 119

Displaying Scheduling Data using Gantt Sheets .120

Introducing the Activity Sheet, Schedule Sheet, and ReservationSheet120

Displaying Scheduling Data in Gantt Sheet Controls. .123

Modifying the Appearance of Gantt Sheet Controls. .124

Using the Predefined Behavior of Gantt Sheet Controls .127

Controlling the Displayed Time Interval .132

Hit Testing in the Gantt Sheet Controls .133

Using Time Scales .134

Introducing the Time Scale Class .134

Modifying the Appearance of the Time Scale .135

Using the Predefined Behavior of Time Scales .136

Controlling the Displayed Time Interval .137

Customizing Time Scale Rows .137

Synchronizing a Time Scale and a Time Grid .138

Displaying Time-based Information .138

Synchronizing the Time of Several Controls. .140

Using Time Lines .141

Using Time Scrollbars .143

Reading and Writing Scheduling Data Using XML . 145

Overview of the SDXL Language .146

Serializing Scheduling Data to SDXL. .147

Deserializing Scheduling Data from SDXL .149

Customizing XML Serialization or Deserialization .151

Working with ADO.NET . 155

Overview of the Architecture .156

Using Gantt Model Adapters. .157

Updating a Gantt Data Model from a DataSet .157
4 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Filling a DataSet from a Gantt Data Model .158

Using the Generic Gantt Model Adapter .160

Developing a Custom Gantt Model Adapter .162

Using the Clipboard to Store Scheduling Data . 167

Storing Scheduling Data in the Clipboard. .168

Retrieving Scheduling Data from the Clipboard .169

Managing Undo/Redo in a Gantt Data Model . 171

Enabling Undo/Redo .172

Disabling Undo/Redo. .172

Undoing Modifications .172

Redoing Modifications. .172

Grouping Modifications. .173

Using Predefined Dialog Boxes for Editing Scheduling Data . 175

Editing an Activity Using the Predefined Dialog Box .176

Editing a Resource Using the Predefined Dialog Box .177

Editing a Constraint Using the Dialog Box .178

Printing Gantt Charts. 181

Introducing the GanttPrintDocument Class .181

Customizing Printing. .185

Storing and Displaying Working and Nonworking Times . 187

Using a WorkCalendar to Store Working and Nonworking Periods188

Navigating in a WorkCalendar .189

Editing the Content of a WorkCalendar .190

Displaying Working and Nonworking Times in Gantt Controls. .191

Creating Project Scheduling Applications with IBM ILOG Gantt for .NET 193

Programming with the ProjectSchedulingModel .194

The ProjectSchedulingModel Class .195

Activities in the ProjectSchedulingModel .196

Controlling When the Project Schedule is Recomputed .198
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 5

Displaying and Editing Content of a ProjectSchedulingModel in a Gantt Control 199

How the Project Scheduling Model Computes the Schedule of a Project200

How Project Start Date Affects the Schedule. .201

How Constraint Links Affect the Schedule .201

How Constraints on Activities Affect the Schedule .203

Calendars in the Project Scheduling Model .205

Resource Leveling in ProjectSchedulingModel .206

Displaying the Critical Path of a Project Scheduling Model .207

Saving and Reading a ProjectSchedulingModel to an XML File .208

Localizing a Gantt Application . 211

Creating a Localization Project. .212

Translating the Resource Files. .212

Creating the Satellite Assemblies .213

Displaying a GanttChart in an AJAX Web Application . 215

Overview of the IBM ILOG Gantt for .NET AJAX Framework. .216

Adding AJAX Capabilities to IBM ILOG Gantt for .NET Web Controls216

Customizing the AJAX Extenders .221

Interacting with the Client Control .222

Providing Contextual Information to the Client Control. .223
6 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Programming with
IBM ILOG Gantt for .NET Windows Forms

and Web Forms Controls

This section provides the essential programming information you need to build applications
with IBM® ILOG® Gantt for .NET. This section provides information about key
programming concepts, as well as code samples and detailed explanations.

In This Section

Creating and Using Gantt Data Models

Introduces the Gantt data model, that is, the classes that contain the scheduling data
you want to display.

Listening to Gantt Data Model Events

Explains how to listen to Gantt data model events.

Displaying Scheduling Data Using Gantt Charts

Describes how to display scheduling data using the main controls of
IBM ILOG Gantt for .NET.

Displaying Scheduling Data Using Tables

Describes how to display scheduling data in tables using the
IBM ILOG Gantt for .NET controls.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 7

Displaying the Load of a Resource

Describes how to use the Load Chart control for displaying the load of a resource.

Displaying Activities Using a Calendar View

Describes how to use the Calendar View control for displaying activities in a calendar.

Customizing the Drawing of Gantt Components

Describes how to customize the drawing of the main IBM ILOG Gantt for .NET
controls.

Creating Custom Gantt Representations

Describes how to develop custom components by assembling and connecting Gantt
controls together.

Reading and Writing Scheduling Data Using XML

Describes how to read and write scheduling data using XML.

Working with ADO.NET

Describes how to use Gantt data models with ADO.NET.

Using the Clipboard to Store Scheduling Data

Explains how to store scheduling data into the clipboard.

Managing Undo/Redo in a Gantt Data Model

Describes the class responsible for managing undo/redo in a Gantt data model.

Using Predefined Dialog Boxes for Editing Scheduling Data

Describes how to use predefined dialog boxes for editing scheduling information.

Printing Gantt Charts

Describes how to add printing capabilities to your Gantt application.

Storing and Displaying Working and Nonworking Times

Describes how to use the classes that allow you to store, edit, and display the working
and nonworking times.

Creating Project Scheduling Applications with IBM ILOG Gantt for .NET

Explains how to create applications that require project scheduling capabilities
through a specific Gantt Data Model class: the ProjectSchedulingModel.

Localizing a Gantt Application

Describes how to create a localized version of IBM ILOG Gantt for .NET.

Displaying a GanttChart in an AJAX Web Application

Describes how to build AJAX-enabled Web applications with
IBM ILOG Gantt for .NET.
8 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating and Using Gantt Data Models

IBM® ILOG® Gantt for .NET provides an abstract data model that allows you to specify
the complete mapping of user scheduling data to scheduling data understandable by the
Gantt library.

An in-memory implementation of the Gantt data model is also provided. This ready-to-use
implementation can be easily extended.

In This Section

Introducing Gantt Data Model Interfaces

Describes the data model interfaces of IBM ILOG Gantt for .NET.

Introducing the Gantt Data Model In-Memory Implementation

Describes the concrete data model in-memory implementation classes.

Populating Gantt Data Models

Explains how to populate a Gantt data model using the Gantt Data Model API.

Displaying Scheduling Data

Describes how to connect a Gantt data model to a Gantt control.

Creating Custom Gantt Data Models

Explains how to create a customized Gantt data model.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 9

Creating and Using Gantt Data Models
Related Sections

The Data Model

Presents the scheduling information model whose content is displayed as Gantt charts.

Working with ADO.NET

Describes how to use Gantt data models with ADO.NET.

Reading and Writing Scheduling Data Using XML

Describes how to read and write scheduling data using XML.

Creating Project Scheduling Applications with IBM ILOG Gantt for .NET

Explains how to create applications that require project scheduling capabilities.

Introducing Gantt Data Model Interfaces

The data model is completely abstract and is defined by the following interfaces:

Interface Description

IGanttModel The main interface of the model. It acts as an intelligent
container for the other abstract interfaces that represent the
scheduling data. The interface contains factory methods to
create the scheduling entities: activities, resources,
constraints, and reservations. It is responsible for triggering
events when parts of the model are modified. Finally, it
maintains the unique identifiers of activities and resources.

IActivity Represents an activity or task that must be completed in the
schedule. Activities are hierarchical and therefore an activity
can contain child activities. An activity with at least one child is
called a parent activity. Conversely, an activity with no child
activities is called a leaf activity. Each activity has an identifier
that is unique in the model.

IActivityCollection An indexed collection of activities.

IResource Represents a resource that can be allocated to an activity to
make its completion possible. Resources are hierarchical and
therefore a resource can contain child resources. A resource
with at least one child is called a parent resource. Conversely,
a resource with no child resources is called a leaf resource.
Each resource has an identifier that is unique in the model.

IResourceCollection An indexed collection of resources.
10 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Introducing the Gantt Data Model In-Memory Implementation
All these classes are located in the ILOG.Views.Gantt.Data namespace.

The following illustration shows the relationships between the interfaces that compose the
Gantt data model:

See Also Populating Gantt Data Models | Working with ADO.NET | Reading and Writing Scheduling
Data Using XML | Introducing the Gantt Data Model In-Memory Implementation

Introducing the Gantt Data Model In-Memory Implementation

IBM® ILOG® Gantt for .NET provides a ready-to-use implementation of the Gantt data
model. The classes listed here are basic implementations of the Gantt data model interfaces.
They can be used to manipulate standard scheduling data directly or they can be extended to
meet specific requirements.

IConstraint Represents an activity-to-activity scheduling constraint.

IConstraintCollection A set of constraints.

IReservation Represents the allocation of a resource to an activity.

IReservationCollection A set of reservations.

Interface Description
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 11

Creating and Using Gantt Data Models
The in-memory data model implementation is defined by the following classes:

All these classes are located in the ILOG.Views.Gantt.Data namespace.

See Also Populating Gantt Data Models | Working with ADO.NET | Reading and Writing Scheduling
Data Using XML | Creating Project Scheduling Applications with
IBM ILOG Gantt for .NET

Populating Gantt Data Models

The API of the Gantt data model allows to modify the scheduling data represented by the
model.

The Gantt data model can be populated before or after a chart has been bound to it. Initial
data is immediately displayed by the chart when it binds to the data model. Data populated
after the chart has been bound causes the chart to be updated dynamically to reflect the new
data in the data model.

Although a Gantt data model can be populated through the abstract API, the
SimpleGanttModel class is used for convenience to demonstrate code fragments in the
following sections.

In This Section

Managing Activities

Describes how to manage activities inside the Gantt data model.

Managing Resources

Describes how to manage resources inside the Gantt data model.

Managing Constraints

Describes how to manage constraints inside the Gantt data model.

Managing Reservations

Interface Description

SimpleGanttModel A basic implementation of the IGanttModel interface. It uses
the classes listed below.

SimpleActivity A basic implementation of the IActivity interface.

SimpleResource A basic implementation of the IResource interface.

SimpleConstraint A basic implementation of the IConstraint interface.

SimpleReservation A basic implementation of the IReservation interface.
12 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Populating Gantt Data Models
Describes how to manage reservations inside the Gantt data model.

Optimizing Gantt Data Model Modifications

Describes how to optimize Gantt data model modifications.

Related Sections

The Data Model

Describes the scheduling data contained in the data model.

Working with ADO.NET

Describes how to use Gantt data models with ADO.NET.

Reading and Writing Scheduling Data Using XML

Explains how to serialize and deserialize scheduling data to and from an SDXL
stream.

Managing Activities

The Gantt data model manages root activities in a collection. As activities are hierarchical in
nature, each activity also manages a collection of its subactivities. The IActivityCollection
interface contains methods for accessing, adding, removing, or moving activities.

Accessing Activities

The IGanttModel.Activities property returns the collection of the root activities of the
model.

To get a collection containing the subactivities of a specified activity, use the
IActivity.ChildActivities property. If the activity is a leaf activity, then the returned
collection should be empty.

The IGanttModel.FindActivity method can be used to find an activity using its unique
identifier.

Adding Activities

A collection of activities can be obtained from the Gantt data model with the
IGanttModel.Activities property of the model. The collection that is returned allows you to
modify the root activities of the model:

IGanttModel model = new SimpleGanttModel();
IActivity activity = model.NewActivity();
model.Activities.Add(activity);
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 13

Creating and Using Gantt Data Models
To add child activities to an existing activity, retrieve the collection of activities of the parent
activity with the IActivity.ChildActivities property of the activity. The collection that is
returned allows you to modify the child activities of the parent activity:

IGanttModel model = new simpleGanttModel();
IActivity activity = model.NewActivity();
IActivity childActivity = model.NewActivity();
activity.ChildActivities.Add(childActivity);
model.Activities.Add(activity);

The AddRange method is for adding several activities at a time. This is a more efficient way
of adding several activities than calling Add several times.

Removing Activities

Removing an activity from the model means removing this activity from its collection. This
can be done by using the IActivityCollection.Remove method. The following C# code
sample shows how to remove an activity whose unique identifier is “A1”:

IGanttModel model = ...;
IActivity activity = model.FindActivity(“A1”);
if (activity != null)
{
 IActivityCollection activities = (activity.Parent == null)
 ? model.Activities
 : activity.Parent.ChildActivities;
 activities.Remove(activity);
}

The RemoveRange method is for removing several activities at a time. This is a more
efficient way of removing several activities than calling Remove several times.

Note: The child activity is added to its parent before the parent is added to the model. This
gives better performance than if the parent activity is added to the model first. As a general
rule, if you need to add a complete hierarchy of activities, you should connect the root of
the new activities after setting up the whole hierarchy of activities.

Note: If the removed activity contains child activities, then the child activities are also
considered as being removed from the model. When activities are removed from the model,
their associated constraints and reservations are automatically removed first.
14 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Populating Gantt Data Models
Ordering Activities

The order of the activities in an IActivityCollection may be important: It can be used by
controls to display the list of activities, or by the XML serializer to know in which order
activities will be serialized.

To move an activity inside its collection, use the IGanttModel.MoveActivity method.

The GanttModelUtil.SortActivities methods are used for sorting an IActivityCollection.
Although you can provide your own comparison mechanism to compare activities, it is
easier to use a method that uses a property name to do the sort. For example, if you want to
sort all the activities of a Gantt data model based on the StartTime property of the activities,
use the following C# code:

IGanttModel model = new SimpleGanttModel();
// Populate the model here ...
GanttModelUtil.SortActivities(model.Activities, "StartTime", true, -1);

The parameter true indicates that the sort order is ascending. The parameter -1 specifies that
all the activities of the model, including child activities, are to be sorted.

Moving Activities

Moving an activity implies changing its parent activity, its index in its parent-child
collection, or both. To do this, use the IGanttModel.MoveActivity method.

See Also Managing Resources | Managing Constraints | Managing Reservations

Managing Resources

The Gantt data model manages root resources in a collection. As resources are hierarchical
in nature, each resource also manages a collection of its subresources. The
IResourceCollection interface contains methods for accessing, adding, removing, or moving
resources.

Accessing Resources

The IGanttModel.Resources property returns the collection of the root resources of the
model.

To get a collection containing the subresources of a specified resource, use the
IResource.ChildResources property. If the resource is a leaf resource, then the returned
collection should be empty.

Note: Sorting can also be done at the view level, leaving the model unchanged. See Sorting
Rows for details.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 15

Creating and Using Gantt Data Models
The IGanttModel.FindResource method can be used to find a resource using its unique
identifier.

Adding Resources

A collection of resources can be obtained from the Gantt data model with the
IGanttModel.Resources property of the model. The collection that is returned allows you to
modify the root resources of the model:

IGanttModel model = new SimpleGanttModel();
IResource resource = model.NewResource();
model.Resources.Add(resource);

To add child resources to an existing resource, retrieve the collection of resources of the
parent resource with the IResource.ChildResources property of the resource. The collection
that is returned allows you to modify the child resources of the parent resource:

IGanttModel model = new SimpleGanttModel();
IResource resource = model.NewResource();
IResource childResource = model.NewResource();
resource.ChildResources.Add(childResource);
model.Resources.Add(resource);

The AddRange method is for adding several resources at a time. This is a more efficient way
of adding several resources than calling Add several times.

Removing Resources

Removing a resource from the model means removing this resource from its collection. This
can be done by using the IResourceCollection.Remove method. The following C# code
sample shows how to remove a resource whose unique identifier is R1:

IGanttModel model = ...;
IResource resource = model.FindResource(“R1”);
if (resource != null)
{
 IResourceCollection resources = (resource.Parent == null)
 ? model.Resources
 : resource.Parent.ChildResources;
 resources.Remove(resource);
}

Note: The child resource is added to its parent before the parent is added to the model. This
gives better performance than if the parent resource is added to the model first. As a
general rule, if you need to add a complete hierarchy of resources, you should connect the
root of the new resources after setting up the whole hierarchy of resources.
16 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Populating Gantt Data Models
The RemoveRange method is for removing several resources at a time. This is a more
efficient way of removing several resources than calling Remove several times.

Ordering Resources

The order of the resources in an IResourceCollection may be important. It can be used by
controls to display the list of resources, or by the XML serializer to know in which order
resources will be serialized.

To move a resource inside its collection, use the IGanttModel.MoveResource method.

The GanttModelUtil.SortResources methods are used for sorting an IResourceCollection.
Although you can provide your own comparison mechanism to compare resources, it is
easier to use a method that uses a property name to do the sort. For example, if you want to
sort all the resources of a Gantt data model based on the MaxUnits property of the
resources, use the following C# code:

IGanttModel model = new SimpleGanttModel();
// Populate the model here ...
GanttModelUtil.SortResources(model.Resources, "MaxUnits", true, -1);

The parameter true indicates that the sort order is ascending. The parameter -1 specifies that
all the activities of the model, including child activities, are to be sorted.

Moving Resources

Moving a resource implies changing its parent resource, its index in its parent-child
collection, or both. To do this, use IGanttModel.MoveResource method.

See Also Managing Activities | Managing Constraints | Managing Reservations

Managing Constraints

The Gantt data model manages constraints in a collection. The IConstraintCollection
interface contains methods for adding or removing constraints. The order of the constraints
in an IConstraintCollection is not important and therefore the API does not allow you to
manage the order of constraints in the model.

Note: If the removed resource contains child resources, then the child resources are also
considered as being removed from the model. When resources are removed from the model,
their associated reservations are automatically removed first.

Note: Sorting can also be done at the view level, leaving the model unchanged. See Sorting
Rows for details.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 17

Creating and Using Gantt Data Models
Accessing Constraints

A set of constraints can be obtained from the Gantt data model with the
IGanttModel.Constraints property of the model.

To retrieve the constraints associated with a specified activity, use the appropriate property
of the IActivity interface. The IActivity.FromConstraints property returns the collection of
the source constraints of the activity. The IActivity.ToConstraints property returns the
collection of the destination constraints of the activity.

The IGanttModel.FindConstraint method can be used to find a constraint between two
activities.

Adding Constraints

A set of constraints can be obtained from the Gantt data model with the
IGanttModel.Constraints property of the model. The set that is returned allows you to add
new constraints on the model using the Add method:

IGanttModel model = new SimpleGanttModel();
IActivity from = model.NewActivity();
IActivity to = model.NewActivity();
model.Activities.AddRange(new IActivity[] { from, to });
IConstraint constraint = model.NewConstraint(from, to,
ConstraintType.EndToStart);
model.Constraints.Add(constraint);

The AddRange method is for adding several constraints at a time. This is a more efficient
way of adding several constraints than calling Add several times.

Removing Constraints

A set of constraints can be obtained from the Gantt data model with the
IGanttModel.Constraints property of the model. The set that is returned allows you to
remove existing constraints from the model using the Remove method. The following C#
code sample shows how to remove all the constraints whose source activity unique identifier
is A1:

IGanttModel model = ...;
IActivity activity = model.FindActivity(“A1”);
IConstraint[] constraints = new IConstraint[activity.FromConstraints.Count];
activity.FromConstraints.CopyTo(constraints, 0);
mode.Constraints.RemoveRange(constraints);

Note: The from and to activities must be added to the model before the constraint.
18 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Populating Gantt Data Models
The RemoveRange methods is for removing several constraints at a time. This is a more
efficient way of removing several constraints than calling Remove several times.

See Also Managing Activities | Managing Resources | Managing Reservations

Managing Reservations

The Gantt data model manages reservations in a collection. The IReservationCollection
interface contains methods for adding or removing reservations. The order of the
reservations in an IReservationCollection is not important and therefore the API does not
allow for managing the order of reservations in the model.

Accessing Reservations

A set of reservations can be obtained from the Gantt data model with the
IGanttModel.Reservations property of the model.

To retrieve the reservations associated with a specified activity, use the
IActivity.Reservations property of the IActivity interface.

To retrieve the reservations associated with a specified resource, use the
IResource.Reservations property of the IResource interface.

The IGanttModel.FindReservation method can be used to find a reservation between an
activity and a resource.

Adding Reservations

A set of reservations can be obtained from the Gantt data model with the
IGanttModel.Reservations property of the model. The set returned allows you to add new
reservations to the model using the Add method:

IGanttModel model = new SimpleGanttModel();
IActivity activity = model.NewActivity();
model.Activities.Add(activity);
IResource resource = model.NewResource();
model.Resources.Add(resource);
IReservation reservation = model.NewReservation(activity, resource);
model.Reservations.Add(reservation);

The AddRange method is for adding several reservations at a time. This is a more efficient
way of adding several reservations than calling Add several times.

Note: The activity and the resource must be added to the model before the reservation is
added.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 19

Creating and Using Gantt Data Models
Removing Reservations

A set of reservations can be obtained from the Gantt data model with the
IGanttModel.Reservations property of the model. The set that is returned allows you to
remove existing reservations from the model using the Remove method. The following C#
code sample shows how to remove all the reservations whose activity unique identifier is
A1:

IGanttModel model = ...;
IActivity activity = model.FindActivity(“A1”);
IReservation[] reservations = new IReservation[activity.Reservations.Count];
activity.Reservations.CopyTo(reservations, 0);
model.Reservations.RemoveRange(reservations);

The RemoveRange methods is for removing several constraints at a time. This is a more
efficient way of removing several constraints than calling Remove several times.

See Also Managing Activities | Managing Resources | Managing Constraints

Optimizing Gantt Data Model Modifications

Each time a Gantt data model is modified, the controls bound to it are notified of the changes
so they can reflect these changes. This notification can be time consuming if many controls
are connected to the Gantt data model, or if the modification of the model affects many
scheduling entities.

Binding Controls

If you have a large dataset, you are recommended to populate your data model before the
chart is bound. This will reduce the time spent in notifications.

When several controls are bound to the same data model, but only a few of them are visible
at the same time, you can disconnect controls that are not visible to decrease the time spent
in notifications. Later, when these controls will become visible, you will have to connect
them to the Gantt data model.

Using the BeginUpdate / EndUpdate mechanism

You can also use the update mechanism provided by the Gantt data model to disable events
fired by the model while it is being populated. See the IGanttModel.BeginUpdate and
IGanttModel.EndUpdate methods for details.
20 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data
Displaying Scheduling Data

IBM® ILOG® Gantt for .NET provides several controls to display a Gantt data model. The
table below lists the controls that can be bound to a Gantt data model, as well as the property
that must be used to do the binding:

The following C# code shows how to display a Gantt data model using a GanttChart
control:

IGanttModel model = new SimpleGanttModel();
GanttChart chart = new GanttChart();
chart.GanttModel = model;

See Also Displaying Scheduling Data Using Tables | Displaying Scheduling Data Using Gantt Charts
| Displaying Activities in the Calendar View | Displaying the Load of a Resource | Creating
Custom Gantt Representations

Creating Custom Gantt Data Models

IBM® ILOG® Gantt for .NET provides a ready-to-use implementation of its abstract data
model. If this implementation does not cover your needs, it can be extended or a custom
model can be created by implementing the abstract data model directly.

In This Section

Extending the In-Memory Implementation

Control Property Description

GanttChart GanttModel A Gantt chart is a chart that displays activities.

ScheduleChart GanttModel A Schedule chart is a chart that displays the
schedule of resources.

ReservationChart GanttModel A Reservation chart is a chart that displays one
reservation per row.

ActivityTable GanttModel A table that displays the hierarchy of activities.

ResourceTable GanttModel A table that displays the hierarchy of resources.

ReservationTable GanttModel A table that displays the reservations of a Gantt
model.

LoadChart GanttModel A chart that displays the load of a resource.

CalendarView GanttModel A calendar control displaying activities of a Gantt
model.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 21

Creating and Using Gantt Data Models
Explains how to extend the ready-to-use implementation of the Gantt data model
provided with the library.

Implementing the Gantt Data Model Interfaces

Describes how to implement the interfaces of the Gantt data model.

Related Sections

Introducing the Gantt Data Model In-Memory Implementation

Describes the in-memory implementation of the data model classes.

Customizing XML Serialization or Deserialization

Explains how to customize the serialization and deserialization of scheduling data.

Extending the In-Memory Implementation

The ready-to-use implementation of the Gantt data model is a straightforward
implementation of the abstract data model. This implementation can be used to represent
standard scheduling data. You may need to extend it to meet specific requirements.

In This Section

Extending the Model without Coding

Describes how to add properties to scheduling entities without coding.

Creating a Subclass of SimpleGanttModel

Describes how to create a subclass of SimpleGanttModel to manage custom activities.

Creating a Subclass of SimpleActivity

Describes how to create a subclass of SimpleActivity to add custom properties.

Related Sections

Introducing Gantt Data Model Interfaces

Describes the data model interfaces of ILOG Gantt for .NET.

Introducing the Gantt Data Model In-Memory Implementation

Describes the in-memory implementation of the data model classes.

Extending the Model without Coding

The ready-to-use implementation of the Gantt data model can be customized without coding
by dynamically adding properties to scheduling entities. Those custom properties will be
seen by the library as regular .NET properties.
22 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Custom Gantt Data Models
The custom properties can be accessed from the Gantt data model using the following
properties:

Code Sample

In the sample, a property named Priority is added to an activity. The following
enumeration defines the property type:

public enum ActivityPriority
{
 Undefined,
 Low,
 Medium,
 High
}

The C# code sample below adds the property to the model:

SimpleGanttModel model = new SimpleGanttModel();
model.CustomActivityProperties.Add("Priority",
 typeof(ActivityPriority),
 ActivityPriority.Undefined);

Accessing Custom Properties by Code

To access a custom property defined on a schedule entity, use the indexer of the entity. The
following C# code sample shows how to change the value of the Priority property
defined above:

SimpleGanttModel model = new SimpleGanttModel();
model.CustomActivityProperties.Add("Priority",
 typeof(ActivityPriority),
 ActivityPriority.Undefined);
SimpleActivity activity = (SimpleActivity)model.NewActivity();
activity["Priority"] = ActivityPriority.Low;

Property Description

CustomActivityProperties Gets the collection of custom property descriptors
for activities.

CustomResourceProperties Gets the collection of custom property descriptors
for resources.

CustomConstraintProperties Gets the collection of custom property descriptors
for constraints.

CustomReservationProperties Gets the collection of custom property descriptors
for reservations.

Note: All these properties are available in the property window of Visual Studio .NET and
it is not necessary to code to extend the data model.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 23

Creating and Using Gantt Data Models
model.Activities.Add(activity);

See Also Implementing the Gantt Data Model Interfaces | Creating a Subclass of SimpleGanttModel |
Creating a Subclass of SimpleActivity

Creating a Subclass of SimpleGanttModel

This section explains how to create a subclass of the SimpleGanttModel class that manages
custom scheduling entities. The C# code fragments are taken from the CustomGantt
sample located in the directory:

<install-dir>\Samples\QuickStart\CustomGantt

In particular, this section shows how to customize activities by adding .NET properties.

When you customize the ready-to-use implementation of the Gantt data model, you must
create a subclass of SimpleGanttModel, because this class acts as a factory for the
scheduling entities (activities, resources, constraints, and reservations).

The factory methods that create the scheduling entities are as follows:

In this sample, only activities are customized. The CustomGanttModel can be coded as
follows:

public class CustomGanttModel : SimpleGanttModel
{
 ...
 public override IActivity NewActivity() {
 return new CustomActivity(this);
 }
 ...
}

Whereas the SimpleGanttModel class is used to manage activities that use the
SimpleActivity class, the CustomGanttModel is used with a subclass of SimpleActivity
called CustomActivity. The CustomActivity class is described in Creating a Subclass
of SimpleActivity.

Creating a Subclass of SimpleActivity

In the sample, a property named Priority is added to an activity.

Method Description

NewActivity Creates and returns a new activity.

NewResource Creates and returns a new resource.

NewConstraint Creates and returns a new constraint.

NewReservation Creates and returns a new reservation.
24 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Custom Gantt Data Models
Adding a Gantt .NET Property

The priority of an activity is defined by the following enumeration:

public enum ActivityPriority
{
 Undefined,
 Low,
 Medium,
 High
}

The CustomActivity class adds a .NET property called Priority, which has as type the
enumeration defined above.

The code of the setter for this property is typical:

1. Checks the new value against the current value to avoid unnecessary notification.

2. Creates the event data, specifying the activity that is to be modified, the property name,
the new value of the property, and the old value of the property.

3. Notifies the model that the property is going to change.

4. Cancels the modification, if it is vetoed.

5. Sets the priority from the event data, so that a listener has a chance to modify the value.

6. Notifies the model that the property has changed.

Here is the C# code of the Priority property:

public class CustomActivity : SimpleActivity
{
 private ActivityPriority _priority = ActivityPriority.Undefined;
 ...
 [DefaultValue(ActivityPriority.Undefined)]
 [XmlAttribute("priority")]
 public ActivityPriority Priority
 {
 get
 {
 return _priority;
 }
 set
 {
 if (Priority == value)
 return;
 ActivitiesChangeEventArgs args =
 new ActivitiesChangeEventArgs(this, "Priority", value,
_priority);
 OnActivityChanging(args);
 if (args.Cancel)
 return;
 _priority = (ActivityPriority)args.Value;
 OnActivityChanged(args);
 }
 }
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 25

Creating and Using Gantt Data Models
 ...
}

The Priority property is now seen by the library as a standard activity property. It can be
used anywhere that a property name is required, such as during XML serialization, in an
expression, in a column-mapping name, and so on.

Adding a Standard .NET Property

You may want to add public properties to your subclass without considering them as
properties specific to Gantt entities, that is, as indicating a property that will be seen by the
library as part of a schedule entity.

The code of the setter is straightforward: no notification is needed here, since this property
does not represent a Gantt property. The sample below adds a dummy property to show the
use of the GanttProperty attribute:

public class CustomActivity : SimpleActivity
{
 private int _dummyProperty = -1;
 ...
 [GanttProperty(false)]
 public int DummyProperty
 {
 get
 {
 return _dummyProperty;
 }
 set
 {
 _dummyProperty = value;
 }
 }
 ...
}

See Also Extending the Model without Coding

Notes: The DefaultValue attribute is used by the XML serializer to avoid serializing
default values. The XmlAttribute attribute is used to control the name of the property that
will be used during serialization. Omitting this attribute will cause the serializer to use the
name of the property (Priority, first letter in uppercase) instead of the name specified by the
attribute ("priority", first letter in lowercase).

Note: The value of the GanttProperty attribute indicates to the library that this .NET
property is not a Gantt property. It will not be serialized, nor used as a mapping name for
table columns, and so on.
26 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Custom Gantt Data Models
Implementing the Gantt Data Model Interfaces

If the in-memory implementation of the Gantt data model provided through the
SimpleGanttModel class and its related classes does not fit your needs, you can create your
own Gantt data model by implementing the interfaces of the abstract model directly. This
could be the case, for example, if your scheduling data is located in a database and you do
not want to duplicate the data for the Gantt.

In This Section

Implementing the IGanttModel Interface

Explains how to implement the interface that describes the Gantt data model.

Implementing the Collection Interfaces of the Gantt Data Model

Explains how to implement the collection interfaces that describe the Gantt data
model.

Implementing the Scheduling Entities

Explains how to implement the interfaces that describe activities, resources

Related Sections

Introducing Gantt Data Model Interfaces

Describes the data model interfaces of IBM ILOG Gantt for .NET.

Introducing the Gantt Data Model In-Memory Implementation

Describes the in-memory implementation of the data model classes.

Implementing the IGanttModel Interface

The IGanttModel interface acts as a container for its scheduling entities. It is responsible for:

◆ Creating scheduling entities.

◆ Accessing scheduling entities.

◆ Finding activities and resources through their unique identifiers.

◆ Finding constraints and reservations.

◆ Maintaining unique identifiers for activities and resources.

◆ Maintaining up-to-date relations between scheduling entities.

◆ Triggering events when scheduling entities are modified.

◆ Moving activities and resources.

The scheduling entities created by this model are valid for this model only: each schedule
entity has a reference to the data model it belongs to. When a schedule entity is modified, it
must notify its model of the modification to allow the model to trigger the event.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 27

Creating and Using Gantt Data Models
Creating Scheduling Entities

Implementing the factory methods of the IGanttModel interface is straightforward. Here is
the implementation of these methods in the SimpleGanttModel class:

public class SimpleGanttModel : IGanttModel
{
 ...
 public override IActivity NewActivity()
 {
 return new SimpleActivity(this);
 }

 public override IResource NewResource()
 {
 return new SimpleResource(this);
 }

 public override IConstraint NewConstraint(
 IActivity fromActivity,
 IActivity toActivity,
 ConstraintType type)
 {
 return new SimpleConstraint(
 this,
 fromActivity as SimpleActivity,
 toActivity as SimpleActivity,
 type);
 }

 public override IReservation NewReservation(
 IActivity activity,
 IResource resource)
 {
 return new SimpleReservation(
 this,
 activity as SimpleActivity,
 resource as SimpleResource);
 }
 ...
}

Each method creates and returns a new instance of its corresponding schedule entity.

Accessing Scheduling Entities

To access scheduling entities, the IGanttModel interface defines the following properties:

interface IGanttModel
{
 ...
 IActivityCollection Activities { get; }
 IResourceCollection Resources { get; }
 IConstraintCollection Constraints { get; }
 IReservationCollection Reservations { get; }
 ...
}

28 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Custom Gantt Data Models
You need to implement the collection interfaces IActivityCollection, IResourceCollection,
IConstraintCollection, and IReservationCollection. Each collection must notify the Gantt
model when it is modified. See Implementing the Collection Interfaces of the Gantt Data
Model.

Finding Activities and Resources by Their Unique Identifiers

The model must maintain a structure that allows an activity or a resource to be found by its
identifier. The search must be fast. A hash table is the easiest way to implement it. Here is
the implementation of the FindActivity and FindResource methods in the BaseGanttModel
class:

public IActivity FindActivity(string id)
{
 return (IActivity)_activityIDs[id];
}

public IResource FindResource(string id)
{
 return (IResource)_resourceIDs[id];
}

The hash table _activityIDs has keys that are the identifiers of activities. The values in
the hash table are the activities themselves.

The hash table _resourceIDs has keys that are the identifiers of resources. The values in
the hash table are the resources themselves.

These hash tables must be updated each time activities or resources are added or removed
from the model or when they change their identifiers.

Finding Constraints and Reservations

The FindConstraint and FindReservation methods must be coded to allow a fast search of
constraints and reservations into the Gantt model.

The FindConstraint method is used to locate a constraint between two activities.

The FindReservation method is used to locate a reservation between an activity and a
resource.

Maintaining Unique Identifiers for Activities and Resources

Each time activities or resources are added to the model, their identifiers must be checked to
make sure that they are unique.

Each time activities or resources are removed from the model, their identifiers must be
removed from the structure that maintains the correspondence between an object and its
identifier.

Each time an activity or a resource changes its identifier, the structure that maintains the
correspondence between an object and its identifier must be updated.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 29

Creating and Using Gantt Data Models
Maintaining Up-to-Date Relationships Between Scheduling Entities

Each constraint references two activities. When activities are removed from the model,
constraints that reference those activities must be removed from the model to leave the
model in a consistent state.

Each reservation references an activity and a resource. When activities or resources are
removed from the model, reservations that reference those activities or resources must be
removed from the model to leave the model in a consistent state.

Triggering Events When Scheduling Entities are Modified

Each time a schedule entity is modified, its data model must be notified of the modification
to trigger an event. Notification is done in two phases. First, an event is sent to notify that a
change is going to occur. Then, another event is sent after the change has been completed.
The following methods are responsible for triggering the events related to activities in the
SimpleGanttModel class:

The scope of these methods is internal, because they are called from the SimpleActivity
class each time an activity is modified.

Moving Activities and Resources

Moving an activity or a resource means changing its parent or its index in its parent-child
collection. This operation is not equivalent to removing an activity or a resource and then
adding it at a different location. When an activity or a resource is removed from the model,
associated entities such as constraints and reservations are also removed from the model.
This is not the case when an activity or a resource is moved: one event only is triggered
when an activity or a resource is moved in the model.

Implementing the Collection Interfaces of the Gantt Data Model

The Gantt data model uses four collection interfaces that need to be implemented. Each
collection is dedicated to a specific Gantt entity:

Method Description

OnActivitiesChanging Must be called when an activity is being modified.
The method raises the
IGanttModel.ActivitiesChanging event.

OnActivitiesChanged Must be called after an activity has been
modified. The method raises the
IGanttModel.ActivitiesChanged event.

Class Description

IActivityCollection Represents a collection of activities.

IResourceCollection Represents a collection of resources.
30 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Custom Gantt Data Models
Implementing a collection interface is straightforward: you can use one of the many existing
collections of .NET Framework, such as an ArrayList. Each method of the interface that
modifies the collection must notify the Gantt data model of the change.

The following C# code sample shows a possible implementation of the Add method of the
IResourceCollection interface:

public int Add(IResource resource)
{
 ActivitiesChangeEventArgs args =
 new ResourcesChangeEventArgs(
 ResourcesAction.Add,
 Resource,
 Count,
 new IResource[] { resource });
 GanttModel.OnResourcesChanging(args);
 if (args.Cancel)
 return -1;
 _arrayList.Add(resource);
 UpdateParent(resource);
 GanttModel.OnResourcesChanged(args);
 return Count-1;
}

First, the event data representing the Add operation is created. The event data contains the
following information:

◆ Resources are added.

◆ The parent resource of the new resource is Resource, that is, the resource that owns the
collection.

◆ The new resources are added at the index Count, that is, at the end of the list.

◆ The resources that are added.

Then, the model is notified that a change occurs. If the operation is not canceled, the
resource will be added to the internal list wrapped by the collection. For example, in the C#
code sample above, the _arrayList member can be an ArrayList.

The call to UpdateParent should update the internal member of the resource that
references its parent.

Finally, the model is notified that a change has occurred.

Implementing the other methods of the interfaces is done in a similar way.

IConstraintCollection Represents a set of constraints.

IReservationCollection Represents a set of reservations.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 31

Creating and Using Gantt Data Models
Implementing the Scheduling Entities

The Gantt data model defines four scheduling entities. Each of these scheduling entities is
represented by a specific interface:

Each interface is mainly composed of properties. The implementation of the property
follows a typical schema:

◆ First, the event data that represents the property change operation is created.

◆ Then, the model is notified that a change is occurring.

◆ If the operation is not canceled, the member that represents the property has to be
updated.

◆ Finally, if the operation is not canceled, the model is notified that a change has occurred.

The C# code sample below shows a possible implementation of the Info property of the
IActivity interface:

public string Info
{
 get
 {
 return _info;
 }
 set
 {
 if (_info == value)
 return;
 ActivitiesChangeEventArgs args =
 new ActivitiesChangeEventArgs(this, "Info", value, _info);
 GanttModel.OnActivitiesChanging(args);
 if (args.Cancel)
 return;
 _info = (string)args.Value;
 GanttModel.OnActivitiesChanged(args);
 }
}

The implementation of other properties of the interfaces is performed in a similar way.

Class Description

IActivity Represents an activity.

IResource Represents a resource.

IConstraint Represents a constraint.

IReservation Represents a reservation.
32 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Listening to Gantt Data Model Events

Each time a Gantt data model is modified, events are raised to allow listeners to be notified
of the modification.

The following kinds of events, each corresponding to a schedule entity, are fired by a Gantt
data model:

◆ activity event

◆ resource event

◆ constraint event

◆ reservation event

A modification to the model is usually achieved in two phases. First, the model notifies its
listeners that something is going to change, so that one of them can set a veto on the
modification, if necessary. Then, the model notifies its listeners that the change has been
completed.

In This Section

Catching Activity Events

Explains how to listen for modifications made to the activities of a Gantt data model.

Catching Resource Events

Explains how to listen for modifications made to the resources of a Gantt data model.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 33

Listening to Gantt Data Model Events
Catching Constraint Events

Explains how to listen for modifications made to the constraints of a Gantt data
model.

Catching Reservation Events

Explains how to listen for modifications made to the reservations of a Gantt data
model.

Catching Activity Events

Each time an activity of a Gantt data model is modified, the model triggers an activity event
that contains the description of the change made to the model.

Listening for Activity Events

To listen for the modifications made to activities in a Gantt data model, use the
IGanttModel.ActivitiesChanging and IGanttModel.ActivitiesChanged events, as shown in
the following C# code sample:

IGanttModel model = new SimpleGanttModel();
model.ActivitiesChanging += new
ActivitiesChangeEventHandler(OnActivitiesChanging);
model.ActivitiesChanged += new
ActivitiesChangeEventHandler(OnActivitiesChanged);

Have OnActivitiesChanging and OnActivitiesChanged declared as follows:

public void OnActivitiesChanging(object sender, ActivitiesChangeEventArgs
arg);
public void OnActivitiesChanged(object sender, ActivitiesChangeEventArgs arg);

The OnActivitiesChanging method is called when a modification is going to occur to the
activities of the data model.

The OnActivitiesChanged method is called after a modification to the activities of the data
model has been completed.

Understanding Activity Events

The first argument received by the event handler is a reference to the Gantt data model that
is modified.

The second argument received by the event handler is an ActivitiesChangeEventArgs
instance that contains the description of the modification to the data model. The
34 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Catching Activity Events
ActivitiesChangeEventArgs.Action property contains the type of modification, as explained
in the following table:

Controlling Modifications

Before a modification occurs to the activities of a Gantt data model, the ActivitiesChanging
event is fired. At this time, the modification to the model is not yet completed.

The event can be used to control the modification in the following ways:

◆ It can be canceled with the Cancel property of the ActivitiesChangeEventArgs class. For
example, the following C# code shows how to prevent activities from being removed:

public void OnActivitiesChanging(object sender, ActivitiesChangeEventArgs
arg)
{
 if (arg.Action == ActivitiesAction.Delete)
 arg.Cancel = true;
}

◆ When the modification reflects a property change to an activity, the new value of the
property can be adjusted before it is set. The following C# code prevents the StartTime
property of an activity from being moved before a specified date:

public void OnActivitiesChanging(object sender, ActivitiesChangeEventArgs
arg)
{
 if (arg.Action == ActivitiesAction.PropertyChange && arg.Property ==
"StartTime")
 {
 DateTime startTime = (DateTime)arg.Value;
 DateTime limitTime = new DateTime(1, 1, 2000);
 if (startTime < limitTime)
 arg.Value = limitTime;
 }
}

ActivitiesAction Meaning

Add Activities have been added to the Gantt model.

Delete Activities have been deleted from the Gantt model.

PropertyChange An activity had one of its properties changed.

Move An activity has been moved.

Reset Activities have changed completely.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 35

Listening to Gantt Data Model Events
Catching Resource Events

Each time a resource of a Gantt data model is modified, the model triggers a resource event
that contains the description of the change that was made to the model.

Listening to Resource Events

To listen for the modifications made to resources in a Gantt data model, use the
IGanttModel.ResourcesChanging and IGanttModel.ResourcesChanged events, as shown in
the following C# code sample:

IGanttModel model = new SimpleGanttModel();
model.ResourcesChanging += new
ResourcesChangeEventHandler(OnResourcesChanging);
model.ResourcesChanged += new ResourcesChangeEventHandler(OnResourcesChanged);

Have OnResourcesChanging and OnResourcesChanged declared as follows:

public void OnResourcesChanging(object sender, ResourcesChangeEventArgs arg);
public void OnResourcesChanged(object sender, ResourcesChangeEventArgs arg);

The OnResourcesChanging method is called when a modification is going to occur to the
resources of the data model.

The OnResourcesChanged method is called after a modification to the resources of the data
model has been completed.

Understanding Resource Events

The first argument received by the event handler is a reference to the Gantt data model being
modified.

The second argument received by the event handler is a ResourcesChangeEventArgs
instance that contains the description of the modification to the data model. The
ResourcesChangeEventArgs.Action property contains the type of modification, as explained
in the following table:

ResourcesAction Meaning

Add Resources have been added to the Gantt model.

Delete Resources have been deleted from the Gantt model.

PropertyChange A resource had one of its properties changed.

Move A resource has been moved.

Reset Resources have changed completely.
36 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Catching Constraint Events
Controlling Modifications

Before a modification occurs to the resources of a Gantt data model, the ResourcesChanging
event is fired. At this time, the modification to the model has not yet been completed.

The event can be used to control the modification in the following ways:

◆ It can be canceled with the Cancel property of the ResourcesChangeEventArgs class. For
example, the following C# code shows how to prevent resources from being removed:

public void OnResourcesChanging(object sender, ResourcesChangeEventArgs arg)
{
 if (arg.Action == ResourcesAction.Delete)
 arg.Cancel = true;
}

◆ When the modification reflects a property change to a resource, the new value of the
property can be adjusted before it is set. The following C# code prevents the MaxUnits
property of a resource from being set to a value greater than 1:

public void OnResourcesChanging(object sender, ResourcesChangeEventArgs arg)
{
 if (arg.Action == ResourcesAction.PropertyChange && arg.Property ==
"MaxUnits")
 {
 float maxUnits = (float)arg.Value;
 if (maxUnits > 1)
 arg.Value = (float)1;
 }
}

Catching Constraint Events

Each time a constraint of a Gantt data model is modified, the model triggers a constraint
event that contains the description of the change that was made to the model.

Listening to Constraint Events

To listen to the modifications made to constraints in a Gantt data model, use the
IGanttModel.ConstraintsChanging and IGanttModel.ConstraintsChanged events, as shown
in the following C# code sample:

IGanttModel model = new SimpleGanttModel();
model.ConstraintsChanging += new
ConstraintsChangeEventHandler(OnConstraintsChanging);
model.ConstraintsChanged += new
ConstraintsChangeEventHandler(OnConstraintsChanged);

Have OnConstraintsChanging and OnConstraintsChanged declared as follows:
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 37

Listening to Gantt Data Model Events
public void OnConstraintsChanging (object sender, ConstraintsChangeEventArgs
arg);
public void OnConstraintsChanged (object sender, ConstraintsChangeEventArgs
arg);

The OnConstraintsChanging method is called when a modification is going to occur to the
constraints of the data model.

The OnConstraintsChanged method is called after a modification to the constraints of the
data model has been completed.

Understanding Constraint Events

The first argument received by the event handler is a reference to the Gantt data model being
modified.

The second argument received by the event handler is a ConstraintsChangeEventArgs
instance that contains the description of the modification to the data model. The
ConstraintsChangeEventArgs.Action property contains the type of modification, as
explained in the following table:

Controlling Modifications

Before a modification occurs to the constraints of a Gantt data model, the
ConstraintsChanging event is fired. At this time, the modification to the model has not yet
been completed.

The event can be used to control the modification in the following ways:

◆ It can be canceled with the Cancel property of the ConstraintsChangeEventArgs class.
The following C# code shows how to prevent constraints from being removed:

public void OnConstraintsChanging(object sender, ConstraintsChangeEventArgs
arg)
{
 if (arg.Action == ConstraintsAction.Delete)
 arg.Cancel = true;
}

ConstraintsAction Meaning

Add Constraints have been added to the Gantt model.

Delete Constraints have been deleted from the Gantt model.

PropertyChange A constraint had one of its properties changed.

Reset Constraints have changed completely.
38 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Catching Reservation Events
◆ When the modification reflects a property change to a constraint, the new value of the
property can be adjusted before it is set. The following C# code forces the Type property
of a constraint to a specific value:

public void OnConstraintsChanging(object sender, ConstraintsChangeEventArgs
arg)
{
 if (arg.Action == ConstraintsAction.PropertyChange && arg.Property ==
"Type")
 arg.Value = ConstraintType.EndToStart;
}

Catching Reservation Events

Each time a reservation of a Gantt data model is modified, the model triggers a reservation
event that contains the description of the change that was made to the model.

Listening to Reservation Events

To listen for the modifications made to reservations in a Gantt data model, use the
IGanttModel.ReservationsChanging and IGanttModel.ReservationsChanged events, as
shown in the following C# code sample:

IGanttModel model = new SimpleGanttModel();
model.ReservationsChanging += new
ReservationsChangeEventHandler(OnReservationsChanging);
model.ReservationsChanged += new
ReservationsChangeEventHandler(OnReservationsChanged);

Have OnReservationsChanging and OnReservationsChanged declared as follows:

public void OnReservationsChanging (object sender, ReservationsChangeEventArgs
arg);
public void OnReservationsChanged (object sender, ReservationsChangeEventArgs
arg);

The OnReservationsChanging method is called when a modification is going to occur to the
reservations of the data model.

The OnReservationsChanged method is called after a modification to the reservations of the
data model has been completed.

Understanding Reservation Event

The first argument received by the event handler is a reference to the Gantt data model being
modified.

The second argument received by the event handler is a ReservationsChangeEventArgs
instance that contains the description of the modification to the data model. The
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 39

Listening to Gantt Data Model Events
ReservationsChangeEventArgs.Action property contains the type of modification, as
explained in the following table:

Controlling Modifications

Before a modification occurs to the reservations of a Gantt data model, the
ReservationsChanging event is fired. At this time, the modification to the model has not yet
been completed.

The event can be used to control the modification in the following ways:

◆ It can be canceled with the Cancel property of the ReservationsChangeEventArgs class.
The following C# code shows how to prevent reservations from being removed:

public void OnReservationsChanging(object sender,
ReservationsChangeEventArgs arg)
{
 if (arg.Action == ReservationsAction.Delete)
 arg.Cancel = true;
}

◆ When the modification reflects a property change to a reservation, the new value of the
property can be adjusted before it is set. The following C# code prevents the Units
property of a reservation from being set to a value greater than 1:

public void OnReservationsChanging(object sender,
ReservationsChangeEventArgs arg)
{
 if (arg.Action == ReservationsAction.PropertyChange && arg.Property ==
"Units")
 {
 float units = (float)arg.Value;
 if (units > 1)
 arg.Value = (float)1;
 }
}

ReservationsAction Meaning

Add Reservations have been added to the Gantt model.

Delete Reservations have been deleted from the Gantt model.

PropertyChange A reservation had one of its properties changed.

Reset Reservations have changed completely.
40 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data Using Gantt
Charts

The library features three high-level controls: the Gantt Chart control, the Schedule Chart
control, and the Reservation Chart control. These controls are built upon lower-level
controls and provide the most commonly used types of display.

The API of these controls is based on the GanttChart, ScheduleChart, and ReservationChart
classes, which are subclasses of HierarchyChart. In this section, the term Gantt chart is used
to refer to a Gantt Chart, a Resource Chart, or a Reservation Chart.

Together with the IGanttModel interface, these controls make up the main classes of the
IBM® ILOG® Gantt for .NET API.

In This Section

Introducing the Gantt Chart, Schedule Chart, and Reservation Chart Controls

Describes the Gantt Chart, Schedule Chart, and Reservation Chart controls.

Displaying Scheduling Data

Describes how to connect the Gantt Chart controls to data.

Accessing the Lower-Level Controls

Describes how you can access the subcontrols of Gantt Chart controls and why you
might need to.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 41

Displaying Scheduling Data Using Gantt Charts
Modifying the Appearance of Gantt Chart Controls

Describes how to use properties to change the appearance of Gantt Chart controls.

Using the Predefined Behavior of the Gantt Chart Controls

Describes the predefined behavior of Gantt Chart controls.

Expanding or Collapsing Rows

Describes the methods for expanding or collapsing rows in Gantt Chart controls.

Grouping, Filtering and Sorting Rows

Describes how to sort and filter rows in the Gantt Chart controls.

Controlling the Displayed Time Interval

Describes how to modify and control the displayed time interval.

Related Sections

Displaying Scheduling Data Using Tables

Describes how to display scheduling data in tables using the
IBM ILOG Gantt for .NET controls.

Creating Custom Gantt Representations

Describes how to develop custom components by assembling and connecting Gantt
controls together.

Introducing the Gantt Chart, Schedule Chart, and Reservation Chart Controls

The Gantt Chart, Schedule Chart, and Reservation Chart controls are divided into three
areas:

◆ The left part of the chart is a table view, an instance of the GanttTable class.

◆ The right part of the chart is a Gantt Sheet, an instance of the GanttSheet class.

◆ The area just above the Gantt sheet has a zoomable time scale, an instance of the
TimeScale class.

A standard, adjustable splitter separates the left part from the right part.

The Gantt Chart Control

In the Gantt Chart control, each row represents an activity. Each column of the table displays
a property of the activity. Each row in the Gantt sheet represents the duration of the activity.
A row can also display other properties of the activity, such as start time, end time, or
resources assigned to this activity.
42 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Introducing the Gantt Chart, Schedule Chart, and Reservation Chart Controls
The following illustration shows a Gantt chart.

In the default implementation, activities that have no child activities are displayed as plain
horizontal bars. Activities that have child activities are displayed as horizontal bars of a
different color, delimited by special symbols at the end. These attributes are completely
customizable. See Representing Activity Bars in Gantt Sheets for details.

In the Gantt sheet, constraints between activities are represented by directional polyline
links. The type of the constraint determines how the link is attached to the activity bars.

In the default implementation of the Gantt chart, the resources assigned to an activity are
represented in the Gantt sheet on the right of an activity bar and also in the Resources
column of the table.

In the Gantt Chart control, the table is an instance of the ActivityTable class; the Gantt sheet
is an instance of the ActivitySheet class.

The Schedule Chart Control

In the Schedule Chart, each row represents a resource. Each column in the table displays a
property of the resource. Each row in the Gantt sheet contains 0, 1, or more bars to represent
the activities for which the matching resource is reserved.

The following illustration shows a Schedule chart.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 43

Displaying Scheduling Data Using Gantt Charts
Because the same resource can be reserved for more than one activity during the same time
span (see reservation), it could happen that several activity bars occupy the same horizontal
area in the same row. To address this problem, a specific activity layout algorithm is used to
position the bars for the best legibility. Three different layout algorithms are provided to
manage potentially overlapping reservation graphics. See Activity Layout Style in a Schedule
Sheet for more information.

In the general case, one activity may reserve several resources and appear as several activity
bars in the Schedule Chart. For this reason, constraints between activities are not displayed
in the Schedule Chart.

In the Schedule Chart control, the table is an instance of the ResourceTable class; the Gantt
sheet is an instance of the ScheduleSheet class.

The Reservation Chart Control

In the Reservation Chart, each row represents a reservation. Each column in the table
displays a property of the reservation. Each row in the Gantt sheet contains 0, 1, or more
bars to represent the corresponding reservation.

The following illustration shows a Reservation chart.
44 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data
In the Reservation Chart control, the table is an instance of the ReservationTable class; the
Gantt sheet is an instance of the ReservationSheet class.

Displaying Scheduling Data

In order to display information, the Gantt Chart, Schedule Chart and Reservation Chart
controls must be connected to a Gantt data model, an instance of the IGanttModel interface.

The Gantt data model associated with a Gantt control can be set using the GanttModel
property of the HierarchyChart class, the base class of the GanttChart, ScheduleChart and
ReservationChart classes.

Here is a small C# example:

GanttChart myGanttChart = new GanttChart();
IGanttModel model = new SimpleGanttModel();
myGanttChart.GanttModel = model;

When the control is connected to a data model, the control listens for events from the Gantt
model and is updated for each modification of the data model. For example, when an activity
is added to or removed from the data model, a corresponding row will be added or removed
in the Gantt Chart control.

For more information on the Gantt data model, see Creating and Using Gantt Data Models.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 45

Displaying Scheduling Data Using Gantt Charts
To modify the scheduling data displayed in a Gantt Chart or Schedule Chart control by code
you do not use methods from the ScheduleChart or GanttChart class. You use the classes
and methods of the data model.

See Also Creating and Using Gantt Data Models

Accessing the Lower-Level Controls

The HierarchyChart class, the base class for the GanttChart, ScheduleChart, and
ReservationChart classes, is built by assembling three subcontrols:

◆ A table (instance of GanttTable)

◆ A Gantt sheet (instance of GanttSheet)

◆ A time scale (instance of TimeScale)

The most important properties of these subcontrols are available directly at the
HierarchyChart level. For example, the collection of columns in the table can be accessed
directly through the TableColumns property of the HierarchyChart class.

In some cases, you may need to access the subcontrols. The HierarchyChart class provides
the following properties for this purpose:

◆ The GanttTable property is a read-only property that returns the table.

◆ The GanttSheet property is a read-only property that returns the Gantt sheet.

◆ The TimeScale property is a read-only property that returns the time scale.

Thus, assuming that chart is an instance of the class GanttChart, ScheduleChart or
ReservationChart, the following lines are equivalent:

chart.TableColumns
chart.GanttTable.Columns

See Also Introducing the Activity, Resource, and Reservation Tables | Introducing the Activity Sheet,
Schedule Sheet, and ReservationSheet | Using Time Scales

Note: The WebForm version of the HierarchyChart does not give access to its subcontrols.
46 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Modifying the Appearance of Gantt Chart Controls
Modifying the Appearance of Gantt Chart Controls

The Gantt Chart, Schedule Chart, and Reservation Chart controls define several properties
for changing their appearance.

Inside Visual Studio .NET you can choose between predefined styles for the appearance of
the chart with the Auto Format functionality. Once you have dragged a Gantt Chart, a
Schedule Chart, or a Reservation Chart into the Visual Designer, you can right-click it and
choose Auto Format from the menu. In the dialog box, you can choose from several
predefined color schemes.

The following illustration shows the Auto Format dialog box:

Since the controls are made of a Gantt table and a Gantt sheet, some properties apply to the
table, some properties apply to the sheet, and some properties apply to both the table and the
sheet. For example, changing the BackColor property of the Gantt Chart control will change
the back color of the table and the back color of the sheet. You can have a different back
color for the table and the sheet by changing the BackColor property of the underlying
controls individually.

The following tables show the appearance properties of the Gantt Chart, Schedule Chart and
Reservation Chart controls.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 47

Displaying Scheduling Data Using Gantt Charts
Color Properties

Font Properties

Property Description

BackColor The color used for the background of rows in the table and for
the background of rows in the sheet.

AlternatingBackColor The color used for alternating rows in the table and the Gantt
sheet. By default, this color is the same as the BackColor
property.

ForeColor The color of text in the table and in the Gantt sheet.

BackgroundColor The color used for the area of the table and Gantt sheet that is
not made up of rows.

HeaderBackColor The background color of the column and row headers of the
table and of the background color of the time scale.

HeaderForeColor The color of text in the column and row headers of the table
and of text in the time scale.

SelectionBackColor The background color of selected rows in the table and the
Gantt sheet.

SelectionForeColor The color of text for selected rows in the table and the Gantt
sheet.

ConstraintsColor The color of constraint links in the Gantt sheet.

GridLineColor The color of horizontal grid lines in the table and the Gantt
sheet.

Property Description

Font The font used for text in the Gantt table cells and in the Gantt
sheet.

HeaderFont The font used in the column headers of the table as well as in
the time scale.
48 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Modifying the Appearance of Gantt Chart Controls
Horizontal Grid

The horizontal grid lines that separate the rows of the chart and the columns of the table are
controlled by the following properties:

Vertical Time Grid

The Gantt sheet can display vertical grid lines or areas that separate time periods on the time
scale or that display nonworking time with a specific appearance.

In addition the Gantt sheet can display vertical grid lines that indicate some specific date of
your project, such as the current date. The following properties control time grids and date
indicators.

For more information see Using Time Grids and Date Indicators.

Splitter

The splitter that separates the Gantt table and the Gantt sheet can be controlled through the
following properties:

Property Description

GridLineColor The color of horizontal grid lines.

GridLineStyle The style of horizontal grid lines.

Property Description

TimeGrids A collection of time grids.

DateIndicators A collection of vertical grid lines to mark specific dates.

VerticalGridToBottom Indicates whether vertical grid lines are drawn in the area of
the sheet that does not contain rows.

Property Description

SplitterPosition The position of the splitter.

SplitterWidth The width of the splitter.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 49

Displaying Scheduling Data Using Gantt Charts
Miscellaneous Appearance Properties

Appearance of Activity Bars

The appearance of the rectangular bars that represent activities in the Gantt sheet can be
completely customized by the styling mechanism. This styling mechanism is fully described
in Representing Activity Bars in Gantt Sheets.

Appearance of Table Columns

The appearance of each column of the table can also be customized. See Modifying the
Appearance of Table Columns for a detailed description.

Right-to-left Mode

All the controls can be used in right-to-left mode for Arabic and other languages that are
written right-to-left. When the RightToLeft property of the Gantt Chart or Schedule Chart
control is set to RightToLeft.Yes, the table is displayed on the right and the Gantt sheet on
the left.

Note that bidirectional features of Windows® are only available in a bidirectional
Microsoft® Windows® environment, such as an Arabic version of Microsoft® Windows®.

Using the Predefined Behavior of the Gantt Chart Controls

The Gantt Chart, Schedule Chart and Reservation Chart controls are built from a Gantt table,
a Gantt sheet, and a time scale. The behavior of these high level controls is then defined
through the behavior of the table, the Gantt sheet, and the time scale.

Editing Table Cells

To learn about how to edit the values in the Gantt table and modify the predefined cell
editors, see Editing Values in the Table.

Property Description

BorderStyle The style of the border of the control.

BackgroundImage An image that is displayed in the background of the control.

FlatStyle The flatness style of the control.
50 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Expanding or Collapsing Rows
Manipulating Rows or Columns

To learn about how to resize rows or columns and how to change the order of columns in the
table with the mouse pointer, see Using Predefined Behavior to Manipulate Rows and
Columns.

Editing Activity Bars

To learn about editing the activity bars in the Gantt sheet, see Using the Predefined Behavior
of Gantt Sheet Controls.

Zooming and Panning Using Time Scale

To learn about how to use the time scale with the mouse pointer for zooming and panning,
see Using the Predefined Behavior of Time Scales.

Resizing Hierarchy Charts Areas

In addition, the GanttChart, ScheduleChart and ReservationChart classes contain a splitter
that allows you to allocate more or less space for viewing the table and the sheet. Double-
click the splitter to make the table fully visible.

Expanding or Collapsing Rows

The GanttChart class displays the hierarchical structure of activities, such that each row
represents one activity. Similarly, the ScheduleChart class displays the hierarchical tree of
resources, such that each row represents a resource.

In both charts, rows are numbered from index 0. Row numbering ignores vertical scrolling
and is not affected by the current vertical scrolling position of the chart.

In the rest of this section, the activities in a Gantt chart and the resources in a Schedule chart
are referred to as data node. In this way, the common behavior of both charts can be
concisely described.

The following terms refer to the visibility of data nodes and the rows they are displayed on.

◆ visible data node

A node represented by a row that is only visible to the application user if the display area
is large enough. A visible data node has all its ancestors expanded.

◆ expanded data node
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 51

Displaying Scheduling Data Using Gantt Charts
A node that shows its child nodes. A collapsed node may or may not be visible,
depending on whether its parent node is expanded or not.

◆ collapsed data node

A node that hides its child nodes. A collapsed node may or may not be visible, depending
on whether its parent node is expanded or not.

◆ displayed data node

A node that is both visible, that is, its parent node is expanded, and currently within the
display area, where it can be seen.

◆ hidden data node

A node that is the opposite of visible. It is a child of a collapsed parent and is not
represented by a row.

The following illustration shows the different types of nodes:

The classes GanttChart and ScheduleChart have in common methods and properties for
controlling the visibility of data nodes:

Note: Scrolling through a window changes the display status of a row, not its visibility
status.

Member Description

RowCount To get the number of rows.

IsRowExpanded To indicate whether the row is expanded.

ExpandRow To expand a row.

CollapseRow To collapse a row.

ExpandAll To expand a row and all its children recursively.
52 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Expanding or Collapsing Rows
The GanttChart class has methods for controlling the visibility of an activity:

The ScheduleChart class has methods for controlling the visibility of a resource:

You can use specific methods and properties to scroll the chart vertically to make sure that a
data node is in the displayed area:

CollapseAll To collapse a row and all its children recursively.

ShowOutlineLevel To make the nodes with the specified outline visible and to hide
the lower levels.

Member Description

IsExpanded To indicate whether an activity is expanded.

Expand To expand an activity.

Collapse To collapse an activity.

IsRowVisible To indicate whether an activity is visible.

ExpandAll To expand an activity and all its subactivities.

CollapseAll To collapse an activity and all its subactivities.

Member Description

IsExpanded To indicate whether a resource is expanded.

Expand To expand a resource.

Collapse To collapse a resource.

IsRowVisible To indicate whether a resource is visible.

ExpandAll To expand a resource and all its subresources.

CollapseAll To collapse a resource and all its subresources.

Member Description

FirstVisibleRow To get or set the index of the first row displayed in the chart.

EnsureRowVisible To scroll the chart, so that the specified row is in the displayed
area.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 53

Displaying Scheduling Data Using Gantt Charts
Grouping, Filtering and Sorting Rows

The GanttChart, ScheduleChart and ReservationChart controls provide capabilities for
grouping, filtering and sorting data. The grouping allows you to create a hierarchy into the
data. The filtering allows you to show only specific rows of the table. The sorting allows you
to sort the rows of the table depending on specific criteria.

Grouping Rows

Using the SetRowGroup method of the HierarchyChart, you can group rows based on their
column value. The IRowGroup interface is used to define a hierachy of nodes into a
TreeModelView.

The following C# code sample shows how to group reservations having the same resource
property in an ReservationChart:

ReservationChart chart = new ReservationChart();
chart.SetRowGroup = new DefaultRowGroup(“Resource”);

Note that once the group has been set, the table will update groups as the model gets
modified.

You can create your own group by implementing the IRowGroup interface.

The grouping is implemented by the TreeModelView class, a wrapper for a tree model (see
ITreeModel). For details about filtering, see the TreeModelView class.

Filtering Rows

Using the RowFilter property of the HierarchyChart, you can specify subsets of rows based
on their column values. The RowFilter property is an expression that is evaluated for each
row of the table to check whether the row should be displayed by the table.

The following C# code sample shows how to display only milestone activities scheduled
after the 1/1/2000 in an GanttChart:

GanttChart chart = new GanttChart();
chart.RowFilter = “Milestone && StartTime > #1/1/2000#”;

Note that once the filter has been set, the table will stop displaying rows that do not satisfy
the filter. Now if the data model is modified, only rows satisfying the filter criteria will be
displayed by the chart.

If your filter criteria cannot be expressed using an expression, you can create your own filter
by implementing the IRowFilter interface, and use the SetRowFilter method of the
GanttChart class to apply the filter:

public class MyRowFilter : IRowFilter
54 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Controlling the Displayed Time Interval
{
 public bool FilterRow(TreeModelView view, object row)
 {
 // Returns true to make the row visible; otherwise, false
 }
}

GanttChart chart = new GanttChart();
IRowFilter filter = new MyRowFilter();
chart.SetRowFilter(filter);

Filtering is implemented by the TreeModelView class, a wrapper for a tree model (see
ITreeModel). For details about filtering, see the TreeModelView class.

Sorting Rows

The SortRows methods of the HierarchyChart class provide means to sort the rows
displayed by the table without modifying the Gantt Data Model being displayed. Unlike the
filtering feature, which is set once and then applied until unset, sorting is done by calling the
SortRows methods. The following C# code shows how to sort the activities displayed by a
GanttChart according to their StartTime property:

GanttChart chart = new GanttChart();
chart.GanttModel = model; // Assume the model contains data.
chart.SortRows(“StartTime”);

Resetting Group, Filter and Sort Order

Once the table has been filtered or sorted, to remove the group and the filter and to restore
the original order of the Gantt Data Model entities, use the ResetGanttTableView method.

Controlling the Displayed Time Interval

The Gantt Chart and Schedule Chart define the following properties for controlling the
displayed time interval:

Property Description

FirstVisibleTime Gets or sets the first visible time of the Gantt Sheet.

VisibleDuration Gets or sets the visible duration of the Gantt Sheet.

LastVisibleTime Gets or sets the last visible time of the Gantt Sheet.

VisibleTimeInterval Gets or sets the time interval displayed by the Gantt sheet in
one single operation.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 55

Displaying Scheduling Data Using Gantt Charts
The GanttSheet class displays a horizontal scroll bar for scrolling in time. The minimum and
maximum time of this scroll bar is automatically defined by the content of the Gantt data
model displayed by the Gantt sheet. The minimum time is the earliest start time of the
activities in the model The maximum time is the latest end time of the activities in the
model. Thus, when the Gantt sheet displays the minimum and maximum values of the scroll
bar, all the activities are visible.

The minimum and maximum time is controlled by the TimeBounds property of GanttSheet.

A margin can be added around the minimum and maximum time. This margin is defined in
pixels by the TimeMargin property. This margin is useful for making the text around activity
bars more easily visible.

Although the time scroll bar has a minimum and maximum time, the Gantt sheet can display
dates before or after this minimum and maximum scrolling time. Clicking the scroll bar
arrows allows scrolling in time before and after the minimum and maximum values.

When the Gantt sheet is scrolled in time with the horizontal scroll bar or the Time Scale, the
new time period is instantaneously displayed in the Gantt sheet with each dragging
movement of the mouse. You can change this behavior by setting the InstantTimeScrolling
property to false. In this case, the new time period is displayed only when the mouse is
released.

To learn how several controls for displaying time can be synchronized, see Synchronizing
the Time of Several Controls.
56 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data Using Tables

IBM® ILOG® Gantt for .NET provides many controls for displaying various
representations of scheduling data. Representing data using tables is a compact way of
displaying information.

IBM ILOG Gantt for .NET provides three types of table for displaying scheduling
information:

◆ An activity table

◆ A resource table

◆ A reservation table

In this section, the term Gantt table is used to refer to an activity table a resource table, or a
reservation table.

In This Section

Introducing the Activity, Resource, and Reservation Tables

Describes the content of the Activity, Resource, and Reservation Tables.

Note: The GanttTable class inherits from a Generic Table control implemented by the class
TreeTable in the namespace ILOG.Views.Windows.Forms.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 57

Connecting a Gantt Table to a Gantt Data Model

Describes how to display information in a Gantt table.

Modifying the Appearance of a Gantt Table

Describes the properties for customizing the appearance of a Gantt table.

Managing Columns of a Gantt Table

Describes how to manage the columns of a Gantt table.

Modifying the Appearance of Table Columns

Describes the properties for customizing the appearance of the columns of a Gantt
table.

Editing Values in the Table

Describes how to make values in a cell of a table editable and how to customize
editors.

Default Columns for Activity, Resource, and Reservation Tables

Describes the columns available by default when you create a Gantt chart or a Gantt
table.

Dialog Box for Editing the Columns of a Gantt Table

Describes how to edit columns through the GanttTableColumnDialog class.

Using Predefined Behavior to Manipulate Rows and Columns

Describes the predefined behavior and keyboard mapping of the table.

Expanding or Collapsing Rows

Describes the API for expanding and collapsing rows of the table.

Scrolling the Gantt Table

Describes the API for scrolling the table.

Getting and Setting the Current Cell

Describes the concept of current cell and how to handle this object.

Controlling Selection in the Table

Describes the selection API of the table.

Hit Testing in the Gantt Table

Describes hit testing methods in the table.

Grouping, Filtering and Sorting Rows

Describes grouping, filtering and sorting methods in the table.
58 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Introducing the Activity, Resource, and Reservation Tables

The following table lists the tables available to display Gantt data:

The ActivityTable, ResourceTable, and ReservationTable classes share the same base
class, the GanttTable class. The GanttTable class implements the functionalities that are
common to the activity and resource tables, such as the connection to the Gantt data model.

The Activity Table

In an activity table each row of the table represents an activity and each column of the table
represents a property of the activity in the row. The activity table is implemented by the class
ActivityTable.

The following illustration shows an activity table.

Class Description

ActivityTable A table to display the hierarchy of actvities of a Gantt data
model.

ResourceTable A table to display the hierarchy of resources of a Gantt data
model.

ReservationTable A table to display the reservations of a Gantt data model.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 59

The Resource Table

In a resource table each row of the table represents a resource and each column of the table
represents a property of the resource in the row. The resource table is implemented by the
class ResourceTable.

The following illustration shows a resource table.

The Reservation Table

In a reservation table each row of the table represents a reservation and each column of the
table represents a property of the reservation in the row. The reservation table is
implemented by the class ReservationTable.

The following illustration shows a reservation table.
60 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Connecting a Gantt Table to a Gantt Data Model

To display information, a Gantt table control must be connected to a Gantt data model,
which is an instance of the IGanttModel interface.

The Gantt data model associated with a Gantt table control can be set using the GanttModel
property of the GanttTable class.

When the Gantt table control is connected to a data model, the Gantt table control listens to
events from the Gantt model and is updated with each modification of the data model. For
example, when an activity is added or removed from the data model, a corresponding row is
added or removed in the ActivityTable control.

When a Gantt table is embedded in a Gantt Chart, a Schedule Chart, or a Reservation Chart
control, the connection to the data model is automatically handled. You do not need to
connect the tables yourself.

See Creating and Using Gantt Data Models for more information on the Gantt data model.

Modifying the Appearance of a Gantt Table

The Gantt table defines several properties for changing its appearance.

Inside Visual Studio .NET you can choose between predefined styles for the appearance of
the Gantt table using the Auto Format functionality. Once you have dragged a Gantt table
into the Visual Designer, you can right-click the table and choose Auto Format from the
menu. In the dialog box, you can choose from several predefined color schemes.

The following illustration shows the auto format dialog box.

The following tables describe the appearance properties of a Gantt table.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 61

Color Properties

Font Properties

Property Description

BackColor The color used for the background of rows in the table.

AlternatingBackColor The color used for alternating rows in the table. By default this
color is the same as the BackColor property.

GroupBackColor The color used for the bacground of rows representing
groups. By default this color is the same as the BackColor
property.

ForeColor The color of text in the table.

BackgroundColor The color used for the area of the table that is not made up of
rows.

HeaderBackColor The background color of the column and row headers of the
table.

HeaderForeColor The color of text in the column and row headers of the table.

SelectionBackColor The background color of selected rows in the table.

SelectionForeColor The color of text for selected rows in the table.

GridLineColor The color of grid lines in the table.

Property Description

Font The font used for text in the Gantt table cells.

HeaderFont The font used in the column headers of the table.
62 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Grids

Layout Properties

Miscellaneous Appearance Properties

Appearance of Table Columns

The appearance of each column of the table can also be customized. See Modifying the
Appearance of Table Columns for more details.

Property Description

GridLineStyle The style of grid lines that separate the rows and the
columns.

GridLineColor The color of grid lines.

Property Description

ColumnHeadersVisible Indicates whether column headers are visible.

ColumnHeaderHeight The height of column headers.

RowHeadersVisible Indicates whether the row headers are visible.

AutoColumnHeaderSize Indicates whether column headers height are computed
automatically using the size of the header font.

RowHeaderWidth The height of row headers.

Property Description

BorderStyle The style of the border of the control.

BackgroundImage An image that is displayed in the background of the table.

FlatStyle The flatness style of the control.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 63

Right-to-left Mode

All the controls can be used in right-to-left mode for Arabic and other languages that are
written right-to-left. Note that bidirectional features of Windows® are only available in a
bidirectional Microsoft® Windows® environment, such as an Arabic version of Microsoft®
Windows®.

Managing Columns of a Gantt Table

The activity and resource tables are very similar, even though they do not display the same
type of information. They both display hierarchical information: the hierarchy of resources
or the hierarchy of activities. Thus, the way to customize these tables is the same for an
activity table or a resource table.

Each column of the table displays a property of the activity or resource in the row. The
columns of a GanttTable instance can be accessed through the Columns property. This
property holds the collection of columns displayed by the table. The class that describes a
column is the TableColumn class.

To add or remove a column, add or remove an instance of the TableColumn class in the
collection of columns.

To indicate which property of the activity or resource you want to display in the column,
pass the name of the property in the constructor of the column.

For example, the following C# code adds a column that displays the start time of an activity:

table.Columns.Add(new TableColumn("Start Time", "StartTime"));

The first parameter is the text that will appear in the header.

The second parameter is the name of the property to display.

To show the hierarchy of objects in a column, use the subclass of TableColumn named
TreeColumn. The TreeColumn class shows the hierarchy of objects by displaying
information like a tree control with (+) and (-) signs for expanding and collapsing the
hierarchy.

The following illustration shows a tree column.
64 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

The InfoColumn class is a special column that displays several images in each cell. The
images displayed depend on a certain state of the activity or resource in the row.

When this column is added to a resource table, the column shows the following images:

When this column is added to an activity table, the column shows the following images:

Modifying the Appearance of Table Columns

In a table column, you can specify the following appearance properties:

Image Description

Indicates that the resource has a note.

Indicates that the resource does not have reservations.

Image Description

Indicates that the activity has a note.

Indicates that a constraint is violated.

Indicates that the activity has no resource attached to it.

Property Description

HeaderText The text that appears in the column header.

HeaderImage An image that appears in the column header.

Width The width of the column.

TextAlign The horizontal alignment of the text in a cell.

VerticalTextAlignment The vertical alignment of the text in a cell.

Format The format used to format the value in a cell.

NullText The text displayed when the value of the displayed property is
null (Nothing in Visual Basic®).
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 65

In addition, the TreeColumn class provides additional appearance properties:

Editing Values in the Table

A column displays the value of a property of an activity, a resource or a reservation.
Therefore, the content of the column can be edited if the property displayed is not read only.
The ReadOnly property of the column indicates whether the column is editable or not. Even
if the property is not typically a read-only property, the column can become noneditable by
setting the ReadOnly property to true.

When the displayed property is not read only, a default editor is assigned to the column, so
that the column can be edited. The default editor depends on the type of the property that is
displayed. For example, a column displaying dates (instances of the DateTime class) is
edited with a drop-down calendar. A column that displays text is edited with a basic text
editor. A column that displays an enum is edited through a drop-down combo box that
shows enumerated values.

The editing is done using the UITypeEditor and TypeConverter associated with the
property through the same mechanism used inside Visual Studio .NET to edit the property of

Property Description

Indent The number of pixels used to indent a parent and a child.

ShowPlusMinus Indicates whether (+) and (-) signs should be displayed to
indicate whether a row is expanded or collapsed.

CollapsedImage Image used when a row is collapsed.

ExpandedImage Image used when a row is expanded.

LeafImage Image used when a row is a leaf.

LineStyle The style of lines linking parent and child nodes.
66 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

an object. Thus, an easy way to customize the editing of a column is to associate a
UITypeEditor with the property through the Editor attribute on the property.

This default behavior for editing values in the table is implemented by the class
DefaultTreeTableCellEditor.

Although the default editing behavior covers almost all common needs, you may need to
create a custom editor that does not use the concept of UITypeEditor. A UITypeEditor can
have two forms only: a drop-down editor or a dialog box. For example, if you want to edit
the values of a column by showing a slider in the cell, you cannot do this with a
UITypeEditor.

If you want to define the control to be used to edit the values of a column, you must
implement the ITreeTableCellEditor interface and associate the editor you create with the
column through the CellEditor property of the TableColumn class.

The following methods are used to control the editing in a table:

The following C# code extract shows you how to use ITreeTableCellEditor to create a
custom editor. This code is from the Table Editors sample in:

<install-dir>/Samples/QuickStart/TableEditors

where <install-dir> is the directory in which you installed IBM ILOG Gantt for .NET.

/// <summary>
/// A cell editor that allows editing of the values in the cells of a TreeTable
/// using a Windows Forms TrackBar control.
/// </summary>
public class TrackBarCellEditor : System.Windows.Forms.TrackBar,
ITreeTableCellEditor
{
 /// <summary>
 /// Event fired when the editor stops the editing without validating.
 /// </summary>
 public event EventHandler EditingStopped;

 /// <summary>
 /// Event fired when the editor validates the editing without stopping the
 /// editing.

Method Description

EditCell To start editing a table cell by code.

IsEditing To find out whether the table is currently editing a cell. The
EditingColumn and EditingRow properties give you the row
and column index of the currently edited cell.

ValidateAndStopEditing To stop the current editing and accept the current edited
values.

StopEditing To cancel the current editing.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 67

 /// </summary>
 public event EventHandler EditingValidated;

 /// <summary>
 /// Creates and initializes the editor.
 /// </summary>
 public TrackBarCellEditor()
 {
 // Hides the ticks.
 this.TickStyle = TickStyle.None;
 // Removes the autosize so that the trackbar can take the height of
 // the cell.
 this.AutoSize = false;
 }

 /// <summary>
 /// Returns the TrackBar control to edit the value.
 /// </summary>
 /// <param name="table">The <see cref="TreeTable"/> currently edited.
 /// </param>
 /// <param name="value">The current value in the edited cell.</param>
 /// <param name="isSelected">Indicates whether the edited cell is
 /// selected.</param>
 /// <param name="row">The zero-based row index of the edited cell.</param>
 /// <param name="column">The zero-based column index of the edited cell.
 /// </param>
 public Control GetEditorControl(
 TreeTable table,
 object value,
 bool isSelected,
 int row,
 int column)
 {
 Value = value;
 return this;
 }

 /// <summary>
 /// Gets or sets the value of the editor.
 /// </summary>
 public new object Value
 {
 get
 {
 return base.Value;
 }
 set
 {
 base.Value = (int)value;
 }
 }

 /// <summary>
 /// Tells the editor to stop the editing without validating.
 /// </summary>
 public void StopEditing()
 {
 if (EditingStopped != null)
68 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

 EditingStopped(this, EventArgs.Empty);
 }

 /// <summary>
 /// Tells the editor to validate the editing.
 /// </summary>
 public void ValidateEditing()
 {
 if (EditingValidated != null)
 EditingValidated(this, EventArgs.Empty);
 }
}

Default Columns for Activity, Resource, and Reservation Tables

When you create a GanttChart instance or an ActivityTable instance, the table contains the
following set of columns:

When you create a ScheduleChart instance or a ResourceTable instance, the control already
contains the following set of columns:

Column Description

Information column An instance of the InfoColumn class that displays images that
show some information on the activity.

Name column A tree column that shows the name of an activity (Name
property of IActivity).

Duration column A column that shows the duration of the activity (Duration
property of IActivity).

Start time column A column that shows the start time of the activity (StartTime
property of IActivity).

End time column A column that shows the end time of the activity (EndTime
property of IActivity).

Resources column A read-only column that shows the resources assigned to the
activity (Resources property of IActivity).

Column Description

Information column An instance of the InfoColumn class that displays images that
show some information on the resource.

Name column A tree column that shows the name of the resource (Name
property of IResource).
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 69

When you create a ReservationChart instance or a ReservationTable instance, the control
already contains the following set of columns:

Dialog Box for Editing the Columns of a Gantt Table

IBM® ILOG® Gantt for .NET provides a predefined dialog box for editing the columns of a
Gantt table. This dialog box is used to edit the properties of a column and to remove
columns. It can also be used to add new columns to a Gantt table.

The following illustration shows the table column dialog box.

This dialog box is implemented by the class GanttTableColumnDialog in the
ILOG.Views.Gantt.Windows.Forms namespace. To make use of the dialog box, you specify
the column to edit and the type of object that is displayed in a row of the table. With these
two items of information, the dialog box can show information on the specified column and
also suggest different properties for viewing in the column using introspection to list the
properties of the object displayed in a row of the table. For example, when the table is an
activity table, each row of the table displays an activity. The dialog box will list the
properties of the activity class in the Field Name combo box.

Here is a C# code fragment that shows how to edit the property of a column of an
ActivityTable:

Column Description

Activity column A table column that shows the activity of the reservation
(Activity property of IReservation).

Resource column A table column that shows the resource of the reservation
(Resource property of IReservation).

Units column A table column that shows the units of the reservation (Units
property of IReservation).
70 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

void EditActivityColumn(TableColumn column)
{
 dialog dialog = new GanttTableColumnDialog();
 dialog.TableRowType = typeof(SimpleActivity);
 dialog.TableColumn = column;
 dialog.ShowDialog();
}

Here is another C# code fragment that shows how to add a new column to a ResourceTable
through the dialog box:

void NewTableColumn(ResourceTable table)
{
 GanttTableColumnDialog dialog = new GanttTableColumnDialog();
 dialog.TableRowType = typeof(SimpleResource);
 dialog.TableColumn = new TableColumn();
 if (dialog.ShowDialog() == DialogResult.OK)
 {
 table.Columns.Add(dialog.TableColumn);
 table.EnsureColumnVisible(table.Columns.Count - 1);
 }
}

Using Predefined Behavior to Manipulate Rows and Columns

In addition to the behavior demonstrated for editing the values in a cell, the table shows the
following behavior in the following contexts:

Resizing a Row

A row can be resized by clicking between two rows in the row headers and dragging the
mouse pointer. You can disable this behavior by setting the CanResizeRows property to
false.

Resizing a Column

A column can be resized by clicking between two columns in the column headers and
dragging the mouse pointer. You can disable this behavior by setting the CanResizeColumns
property to false.

Setting the Preferred Height of a Row

The height of a row can be set to the preferred height by double-clicking between two rows
in the row headers. You can disable this behavior by setting the CanResizeRows property to
false.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 71

Setting the Preferred Width of a Column

The width of a column can be set to the preferred width by double-clicking between two
columns in the column headers. You can disable this behavior by setting the
CanResizeColumns property to false.

Changing the Order of Columns

The order of columns can be changed by clicking the column header and dragging the
column to a new location. You can disable this behavior by setting the CanMoveColumns
property to false.

Keyboard Mapping

Key Behavior

F2 Starts editing the current cell.

ESC Cancels the current edits.

ANY CHARACTER Starts editing the current cell.

RIGHT ARROW Moves the current cell to the right, unless the current cell is a
cell of a tree column that can be expanded. In this case, it
expands the row.

LEFT ARROW Moves the current cell to the left, unless the current cell is a cell
of a tree column that can be collapsed. In this case, it collapses
the row.

UP/DOWN ARROW Selects the row above/below the current row.

SHIFT+UP/DOWN ARROW Extends the selection to the row above/below the current row.

CTRL+UP/DOWN ARROW Moves the current row up/down without changing selection.

CTRL+SHIFT+UP/DOWN
ARROW

Adds the row above/below the current row to the selection.

HOME Selects the first row.

SHIFT+HOME Extends the selection from the selection anchor to the first row.

CTRL+HOME Moves the current row to the first row without changing
selection.
72 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Expanding or Collapsing Rows

The ActivityTable class displays the hierarchical structure of activities, such that each row
represents one activity. Similarly, the ResourceTable class displays the hierarchical tree of
resources, such that each row represents a resource. In both tables, rows are numbered from
index 0. Row numbering ignores vertical scrolling and is not affected by the current vertical
scrolling position of the table.

The classes ActivityTable and ResourceTable have in common methods and properties for
controlling the expanded or collapsed status of a row.

CTRL+SHIFT+HOME Adds the rows from the current row to the first row to the
selection.

END Selects the last row.

SHIFT+END Extends the selection from the selection anchor to the end.

CTRL+END Moves the current row to the last row without changing
selection.

CTRL+SHIFT+END Adds the rows from the current row to the last row to the
selection.

PAGEUP/PAGEDOWN Selects the row one page above/below the current row.

SHIFT+PAGEUP/
PAGEDOWN

Extends the selection one page up/down.

CTRL+PAGEUP/
PAGEDOWN

Moves the current row one page up/down without changing the
selection.

CTRL+SHIFT+PAGEUP/
DOWN

Adds one page up/down from the current row to the selection.

* Expands the entire subtree, starting from the current cell.

Member Description

RowCount To get the number of rows.

IsRowExpanded To indicate whether the row is expanded.

ExpandRow To expand a row.

CollapseRow To collapse a row.

Key Behavior
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 73

Scrolling the Gantt Table

The table contains a vertical and a horizontal scroll bar that allow scrolling in the table. By
default, these scroll bars are visible only when they are needed. You can use the VScrollBar
and HScrollBar properties to change this behavior.

The ScrolBarVisibility enumeration has three values that define the supported scroll bar
policies:

For example, if you want the vertical scroll bar to be always visible, you can write:

myTable.VScrollBar = ScrollBarVisibility.Visible

Here are the methods and properties you can use to scroll the table:

ExpandAll To expand a row and all its children recursively.

CollapseAll To collapse a row and all its children recursively.

ShowOutlineLevel To make the nodes with the specified outline visible and to hide
the lower levels.

IsRowVisible To indicate whether a row is visible.

Enumeration Member Description

ScrollBarVisibility.AsNeeded The scroll bar is visible only when it is needed.

ScrollBarVisibility.Visible The scroll bar is always visible.

ScrollBarVisibility.Hidden The scroll bar is hidden.

Member Description

FirstVisibleRow To get or set the index of the first visible row in the table.

HorizontalOffset To get or set the horizontal scrolling offset of the table.

EnsureColumnVisible To make sure that a column is visible.

EnsureRowVisible To make sure that a row is visible.

EnsureVisible To make sure that a cell is visible.
74 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Getting and Setting the Current Cell

The table defines a notion of current cell, the current cell is indicated on the screen with the
focus rectangle when the table has the keyboard focus. The row that contains the current cell
is marked with an arrow in the cell headers.

Here are the methods and properties that you can use to obtain and change the current cell:

Here is a small C# example that shows how to set the current cell:

private void SetCurrentCellAt(GanttTable myTable)
{
 // Set the current cell to column 0, row 0.
 myTable.SetCurrentCell(0,0);
}

Controlling Selection in the Table

The Gantt table can have multiple rows selected. The selection can be made with the mouse
or the keyboard. You can use the following methods to control selection in the Gantt table:

Member Description

CurrentRow To get or set the current row of the table.

CurrentColumn To get or set the current column of the table.

SetCurrentCell To set the current cell of the table.

Method Description

IsSelected To indicate whether a row is selected.

SetSelected To select or deselect a row.

GetSelection To return an array of the indexes of the table that are selected.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 75

You can use the GetSelectedActivities method of the ActivityTable class to return an array
of selected activities. Here is a small C# example that iterates on selected activities in an
activity table:

ActivityTable table = ...
foreach (IActivity activity in table.GetSelectedActivities())
{
 // do something on the activity
}

You can use the GetSelectedResources method of the ResourceTable class to return an array
of selected resources. Here is a small C# example that iterates on selected resources in a
resource table:

ResourceTable table = ...
foreach (IResource resource in table.GetSelectedResources())
{
 // do something on the resource
}

When the selection changes in the table, the SelectionChanged event is raised. The event
handler for this event is:

public delegate void TableSelectionChangedEventHandler(object sender,
TableSelectionChangedEventArgs args);

When a multiple selection is made by dragging the mouse pointer in the table, then several
SelectionChanged events are raised. The event argument passed to SelectionChanged tells
you whether the event is part of a series of selection events. (See
TableSelectionChangeEventArgs.IsAdjusting.)

Hit Testing in the Gantt Table

If you need to create custom behavior in a Gantt table, you will need to get information on
the Gantt table at a specific location on the screen. You can do this with the HitTest method

IsSelectionEmpty To indicate whether the selection is empty.

ClearSelection To deselect all the selected rows.

SetSelectionInterval To set the selection to a range.

AddSelectionInterval To add a range to the selection.

RemoveSelectionInterval To remove the specified interval from the selection.
76 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

of the Gantt table class. Calling this method returns an instance of the HitTestInfo structure
that gives the following information:

This table explains the different values of the HitTestType enumeration:

Here is a small C# example that shows how to use hit testing on a Gantt table:

private void OnActivityTableMouseDown(object sender, MouseEventArgs e)
{
 ActivityTable table = (ActivityTable)sender;
 if (e.Clicks == 2)
 {
 TreeTable.HitTestInfo info = table.HitTest(new Point(e.X, e.Y));
 if (info.Type == TreeTable.HitTestType.ColumnHeader)
 Console.WriteLine(“Double click on a column header”);
 else if (info.Type == TreeTable.HitTestType.RowHeader)
 Console.WriteLine(“Double click on a row header”);
 }
}

Grouping, Filtering and Sorting Rows

The Gantt table provides capabilities for grouping, filtering and sorting data. The grouping
allows you to create a hierarchy in the rows of the table. The filtering allows you to show
only specific rows of the table. The sorting allows you to sort the rows of the table
depending on a specific criteria.

Property Description

Row The Row under the specified point or -1.

Column The Column under the specified point or -1.

Type One of the HitTestType values. Each value is explained in the
next table.

HitTestType Value Location of the Point

None An area of the table that does not contain rows was clicked.

Cell A cell.

ColumnHeader A column header.

RowHeader A row header.

ColumnResize The area between two columns in the column headers.

RowResize The area between two rows in the row headers.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 77

Grouping Rows

Using the SetRowGroup method of the GanttTable, you can group rows based on their
column value. The IRowGroup, interface is used to define a hierachy of nodes into a
TreeModelView .

The following C# code sample shows how to group reservations having the same resource
property in a ReservationTable:

ReservationTable table = new ReservationTable();
table.SetRowGroup = new DefaultRowGroup(“Resource”);

You can create your own group by implementing the IRowGroup interface.

Grouping is implemented by the TreeModelView class, a wrapper for a tree model (see
ITreeModel). For details about filtering, see the TreeModelView class.

Filtering Rows

Using the RowFilter property of the GanttTable, you can specify subsets of rows based on
their column values. The RowFilter property is an expression that is evaluated for each row
of the table to check whether the row should be displayed by the table.

The following C# code sample shows how to display only milestone activities scheduled
after the 1/1/2000 in an ActivityTable:

ActivityTable table = new ActivityTable();
table.RowFilter = “Milestone && StartTime > #1/1/2000#”;

Note that once the filter has been set, the table will stop displaying rows that do not satisfy
the filter. Now if the Gantt Data Model is modified, only rows satisfying the filter criteria
will be displayed by the table.

If your filter criteria cannot be expressed using an expression, you can create your own filter
by implementing the IRowFilter interface, and use the SetRowFilter method of the
GanttTable class to apply the filter:

public class MyRowFilter : IRowFilter
{
 ...
}

ActivityTable table = new ActivityTable();
IRowFilter filter = new MyRowFilter();
table.SetRowFilter(filter);

Note: Once the group has been set, the table will update groups as the model gets modified.
78 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Filtering is implemented by the TreeModelView class, a wrapper for a tree model (see
ITreeModel). For details about filtering, see the TreeModelView class.

Sorting Rows

The SortRows methods of the GanttTable class provide means to sort the rows displayed by
the table without modifying the Gantt Data Model being displayed. Unlike the filtering
feature, which is set once and then applied until unset, sorting is done by calling the
SortRows methods. The following C# code shows how to sort the activities displayed by an
ActivityTable according to their StartTime property:

ActivityTable table = new ActivityTable();
table.GanttModel = model; // Assume the model contains data.
table.SortRows(“StartTime”);

Resetting Group, Filter and Sort Order

Once the table has been grouped, filtered or sorted, to remove the group or filter and restore
the original order of the Gantt Data Model entities, use the ResetView method.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 79

80 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying the Load of a Resource

IBM® ILOG® Gantt for .NET provides a control for displaying the load of a resource over
time. This control is called the load chart control.

In This Section

Introducing the LoadChart Class

Describes the LoadChart class.

Connecting the Load Chart to a Resource

Describes how to specify the resource to display.

Modifying the Appearance of a Load Chart

Describes the properties for customizing the appearance of a load chart.

Controlling the Displayed Time Interval

Describes how to control the way the time period is displayed.

Related Sections

Displaying Time-based Information

Describes the TimeControl class.

Using Time Grids and Date Indicators

Explains how time grids and date indicators are displayed by the Gantt controls.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 81

Displaying the Load of a Resource
Introducing the LoadChart Class

The LoadChart class is a control that displays the load of a resource over time.

The control displays an area chart where the x-axis represents time and the y-axis represents
the load of the resource.

The following illustration shows a load chart.

The load of a resource over a period of time is calculated by computing the sum of work that
the activity does during the period.

The chart collects all the reservations of the resource during the period of time. Then,
calculates the sum of the Units. property of the reservations. The Units property represents
how much of the resource the reservation is using. If the result is greater then the
IResource.MaxUnit of the resource, then the resource is over-allocated.

Connecting the Load Chart to a Resource

In order to display information on the load of a resource, the Load Chart control must be
connected to a resource (instance of IResource) through its Resource property.

Once the Load Chart control is connected to a resource, the Load Chart listens to events in
the Gantt Data model and is updated when a resource changes or when a reservation
changes, is added, or is removed from the resource.

Modifying the Appearance of a Load Chart

The LoadChart class defines several properties for changing its appearance.
82 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Modifying the Appearance of a Load Chart
Color Properties

Horizontal Grid Lines

The horizontal grid lines of the Load Chart are controlled by the following properties:

Vertical Time Grid

The Load chart can display vertical grid lines or areas that separate time periods on the time
scale or display nonworking time with a specific appearance.

The Load chart can also display vertical grid lines that indicate a particular date of your
project, for example, the current date.

For more information see Using Time Grids and Date Indicators.

Miscellaneous Appearance Properties

Property Description

BackColor The color used for the background of the chart.

ForeColor The color of text in the legend.

BackgroundColor The color used for the background of the control.

ChartColor The foreground color of the chart.

Property Description

GridLineColor The color of horizontal grid lines.

GridLineStyle The style of horizontal grid lines.

Property Description

BorderStyle The style of the border of the control.

IsMaterialResource Indicates whether the resource should be considered as
equipment. In this case, the vertical scale shows number
instead of percentage.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 83

Displaying the Load of a Resource
Right-to-left Mode

All the controls can be used in right-to-left mode for Arabic and other languages that are
written right-to-left. Note that bidirectional features of Windows® are available only in a
bidirectional Microsoft® Windows® environment, such as an Arabic version of Microsoft®
Windows®.

Controlling the Displayed Time Interval

The LoadChart class defines the following properties for controlling the displayed time
interval:

The LoadChart class inherits from the TimeControl class that is the base class for controls
that display information based on time. The TimeControl class defines the first visible time
of the control, as well as the visible duration of time in the control. For more information on
this class and to learn how to synchronize several controls that display time, see Displaying
Time-based Information.

AutoScaleUpdate Indicates whether the chart should automatically adapt its
vertical scale to the maximum load in the visible period.

MaxScaleValue The maximum value of the scale. This value is only used when
the AutoScaleUpdate property is false.

ChartPosition The position of the chart in the control.

Property Description

FirstVisibleTime Gets or sets the first visible time of the Load Chart.

VisibleDuration Gets or sets the visible duration of the Load Chart.

LastVisibleTime Gets or sets the last visible time of the Load Chart.

VisibleTimeInterval Gets or sets the time interval displayed by the Load Chart in
one single operation.
84 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Activities Using a Calendar
View

IBM® ILOG® Gantt for .NET provides a control for displaying activities in a calendar.
This control is called the Calendar View control.

In This Section

Introducing the CalendarView class

Describes the CalendarView class.

Displaying Activities in the Calendar View.

Describes how to connect a Calendar View to visualize data.

Modifying the Appearance of the Calendar View

Describes the properties that control the appearance of the Calendar View.

Representing Activity bars in the Calendar View

Describes how to control the appearance of bars in the Calendar View.

Controlling the Layout of Activities in the Calendar View

Describes how to control the automatic layout of bars in the Calendar View.

Using the Predefined Behavior of the Calendar View

Describes the predefined behavior in the Calendar View.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 85

Displaying Activities Using a Calendar View
Hit Testing in the Calendar View

Describes the Hit testing API of the Calendar View.

Related Sections

Displaying Scheduling Data Using Gantt Charts

Describes how to display scheduling data using the main controls of
IBM ILOG Gantt for .NET.

Displaying Scheduling Data Using Tables

Describes the Activity Table and Resource Table controls for displaying scheduling
information.

Displaying the Load of a Resource

Describes how to use the Load Chart control, a control for displaying the load of a
resource.

Introducing the CalendarView class

The calendar view control represents the activities of a Gantt Model in a calendar. Each row
of the calendar represents one week. Activities displayed by the Calendar View are
represented by a bar. The bars are layouted so that there is no overlap and the vertical order
represents the order of the activities in the Gantt model. The control defines many
appearance properties that will allow you to control the representation and the order of the
bars.

When some activities cannot be displayed in a cell of the calendar, then the Calendar view
will display an overflow indicator as in the picture below:
86 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Activities in the Calendar View
Displaying Activities in the Calendar View

To display activities, the calendar view must be connected to a Gantt data model. You
connect the Calendar View to the Gantt model using the GanttModel property.

When the Calendar View control is connected to a Gantt data model, the Calendar View
control listens to events from the Gantt data model and is updated for each modification of
the data model. For example, when an activity is added to or removed from the data model, a
corresponding bar is added to or removed from the calendar and activity bars will be
layouted so that there is no overlap on the calendar.

You might want to display only activities assigned to a specific resource. In this case you can
set the Resource property of the Calendar view.

Modifying the Appearance of the Calendar View

The Calendar View defines several properties for changing its appearance.

Colors

Property Description

ForeColor Foreground color used for text in cell headers.

BackColor Background color of cells.

AlternatingBackColor Second background color used for alternate month.

BackgroundColor Color of non calendar area of the control.

HeaderBackColor Background color of column headers.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 87

Displaying Activities Using a Calendar View
Grid lines

Font Properties

Miscellaneous Appearance Properties

HeaderForeColor Foreground color of column headers.

CellHeaderColor Background color of cell headers.

Property Description

DayGridLineColor Color of vertical grid lines between two days.

WeekGridLineColor Color of horizontal grid lines between two weeks.

DayGridLineStyle Style of vertical grid lines between two days.

WeekGridLineStyle Style of horizontal grid lines between two weeks.

Property Description

Font Font used for bars and cell headers.

HeaderFont Font of column headers.

Property Description

BorderStyle The style of the border of the control.

FlatStyle The flat style appearance of the control.

AutoFit When set to true, ensures that all columns are always visible.

CellHeaderDateFormat A string representing the format of the date displayed in the cell
headers.

CompactWeekEnd When set to true the Saturday and Sunday are displayed in
one column.
88 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Representing Activity bars in the Calendar View
Appearance of activity bars

The appearance of the rectangular bars that represent activities in the Calendar View can be
completely customized by a styling mechanism. This styling mechanism is fully described
in Representing Activity bars in the Calendar View.

Right-to-left Mode

All the controls can be used in right-to-left mode for Arabic and other languages that are
written right-to-left. Note that bidirectional features of Windows® are available only in a
bidirectional Microsoft® Windows® environment, such as an Arabic version of Microsoft®
Windows®.

Representing Activity bars in the Calendar View

By default the Calendar View displays all the activities in a Gantt model except summary
activities.

You can control which activities will be displayed as well as how they will be displayed
using the BarStyles property. The BarStyles property of the CalendarView class is a
collection of CalendarViewBarStyle class. Each instance of CalendarViewBarStyle
represents the style of bars for a particular type of activity. By default the collection contains
two bar styles: One for "Normal" activities (activities that are not milestone and not
summary) and one for "Milestone" activities.

Each instance of CalendarViewBarStyle defines the appearance of the bar displayed in the
calendar and defines also the type of activity for which this style should be used.

The appearance properties of a bar defined in the CalendarViewBarStyle class are the
following:

Property Description

Color The background color of the bar.

BorderColor The color of the border.

FillStyle The style for filling the bar (solid color or hatch)

HatchStyle The hatch style for the background of the bar

SecondColor Another color defining the second color when the bar is
hatched.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 89

Displaying Activities Using a Calendar View
Finally the CalendarViewBarStyle defines the StyleFor property. This property is an
expression that will be evaluated to decide if this style can be used for a particular activity.
See Expression Language Reference for details.

When the CalendarView needs to display an activity, he will look inside the bar style
collection and evaluate the StyleFor property. If one style matches the activity, this style will
be used to draw the activity, otherwise the activity is not displayed.

Controlling the Layout of Activities in the Calendar View

The calendar view layouts automatically the activity bars so that they do not overlap. By
default the activity bar appear in the same order as in the Gantt data model. Every time the
data model is modified, for example when an activity is added, removed or when the start
time or end time changes, the calendar view will redo the layout of the bars so that the
displayed order always reflect the data model content and there is no overlap of bars.

The CalendarView defines several properties for controlling the layout of activities.

Sorting Activities

The SortBy property can be used to change the sorting order of the bars. For example if you
set the SortBy property to "Name", then the bars will be sorted by the "Name" property. You
can also reverse the sorting order using the AscendingSort property.

Using Compact Layout

The CalendarView also defines the CompactLayout property. When set to true, the
CalendarView will try to place activity bar so that more activity bar become visible, but in
this case the sorting order will not be respected.

Threading

With very large data model containing ten of thousands of activities, the layout operation
can become time consuming, thus the layout is always done in a separate thread. The layout
system sends two events (LayoutStarted and LayoutDone events) to notify when the layout
starts and finishes, through these events it is possible to give a feedback to the final user that
the calendar is performing a layout operation.

DisplayedText An expression that defines the text displayed in the bar.

BarRounding Defines whether the bar start and end time should be rounded
to the beginning or end of a day.
90 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using the Predefined Behavior of the Calendar View
Rounding Bars

Finally the layout is also controlled by the styles used for displaying the bars. The
CalendarViewBarStyle defines the BarRounding property. When this property is true for a
style, the start time and end time of a bar will be rounded to the beginning and end of a day
and thus fewer bars can be displayed in a day. Note that activities with a zero duration will
be rounded whatever the value of the BarRounding property.

Using the Predefined Behavior of the Calendar View

A Calendar View has the following predefined behavior.

Resizing Rows and Columns

In the Calendar View, an application user can resize the cells of the calendar by clicking on
the vertical or horizontal grid lines and dragging the mouse pointer. Note that when the
AutoFit property is set to true, the size of columns are automatically adjusted so that all
columns are visible, in this case it is not possible to change the column width using the
mouse pointer.

Tooltips

Tooltips appear in the Calendar View when the mouse hovers an activity bar. By default, the
tooltip displays the name, start time, end time, and duration of the activity.

The text appearing in the tooltip can be modified using the ActivityToolTip property.

The value of this property is not a static string, but a string that represents an expression that
will be evaluated using the current values of the activity. See Expression Language
Reference for details.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 91

Displaying Activities Using a Calendar View
You can disable the tooltips displayed in the Calendar View by setting the ShowTooltips
property to false.

Changing the Start Time, End Time of an Activity

In a Calendar View, an application user can change the time interval of an activity using the
mouse pointer:

You can disable this default behavior by setting the CanEditActivities property to false.

When an application user performs one of these operations, a tooltip appears showing the
values that are modified:

You can disable this tooltip by setting the ShowEditingToolTip property to false.

The CalendarView class provides the BeforeEditActivity event that is raised before the
activity is modified. For example, this event allows the application user to cancel the editing
operation in some cases or to modify the chosen time interval.

Finally you can control the cursors that will be used during this operation through the
following properties:

Action User Interaction

Change only the end time Click at the end of the activity bar and drag the mouse
pointer.

Change the start time while
keeping the duration

Click in the middle of the activity bar and drag the mouse
pointer.

Property Description
92 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Hit Testing in the Calendar View
Creating an activity using the mouse pointer

In the Calendar View a final user can create an activity with the mouse pointer. To create an
activity, simply click in the calendar and drag the mouse pointer.

You can disable this default behavior by setting the CanCreateActivities property to false.

When the user creates an activity with the mouse pointer a tooltip appears showing the time
interval of the new activity. This tooltip can be disabled by setting the ShowEditingToolTips
property to false.

The CalendarView class provides the CreateActivity event that is raised before the activity is
created. You can listen to this event if you want to write the code that creates the activity and
add it in the Gantt data model.

Finally you can control the cursor that is used while creating an activity using the
CreateActivityCursorChanged property.

Hit Testing in the Calendar View

If you need to create custom behavior in a Calendar View, you will need to get information
on the Calendar View at a specific location on the screen. You can do this with the HitTest
method. Calling this method returns an instance of the HitTestInfo structure that gives the
following information:

ResizeCursor Cursor used for changing the end time

MoveCursor Cursor used to indicate that an activity bar can be moved.

Property Description

Date The date under the specified point.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 93

Displaying Activities Using a Calendar View
The following table explains the HitTestType values:

Here is a small C# example that shows an event handler that handles the Mouse-down event
of a CalendarView instance and checks whether a double-click occurs on an activity:

private void OnCalendarMouseDown(object sender, MouseEventArgs e)
{
 CalendarView calendar = (CalendarView)sender;
 if (e.Clicks == 2)
 {
 CalendarView.HitTestInfo info = calendar.HitTest(new Point(e.X, e.Y));
 if (info.Type == CalendarView.HitTestType.Activity)
 {
 // double click occurs on activity
 }
 }
}

Activity The activity under the specified point or null (Nothing in Visual
Basic).

Type One of the HitTestType values. The values are explained in the
next table.

HitTestType value Description

None The background of the calendar.

Activity An activity is located at the specified point.

Day A cell of the calendar

ColumnHeader The column header

ColumnResize Vertical grid line for resizing a column

RowResize Horizontal grid line for resizing a row

DayHeader The header of a cell
94 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Customizing the Drawing of Gantt
Components

IBM® ILOG® Gantt for .NET provides several control that display scheduling data over
time. These controls are sharing classes used to render grids, date indicators, and other
drawing components. This section describes the classes and properties available to the
programmer to control the drawing of the Gantt components.

In This Section

Using Time Grids and Date Indicators

Describes how to program the vertical grid lines that indicate time periods.

Representing Activity Bars in Gantt Sheets

Describes the styling mechanism for customizing the appearance of activity bars.

Creating Owner-Drawn Gantt Components

Describes how to create owner-drawn Gantt components.

Using Time Grids and Date Indicators

Gantt controls that display information based on time, such as the LoadChart or the
GanttSheet controls, can display vertical grid lines to separate time periods or to show
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 95

nonworking time such as weekends. They can also display a vertical line to indicate some
particular date, such as the current date.

The vertical grid lines that separate time periods and show nonworking time periods are
called a time grid. The vertical grid lines that indicate a particular date are called a date
indicator.

The following illustration shows time grids and indicators.

The controls that can display time grids define a property named TimeGrids. See, for
example, the GanttSheet.TimeGrids property or the LoadChart.TimeGrids property. The
type of this property is TimeGridCollection, a collection of objects of the class TimeGrid.

TimeGrid Class

The TimeGrid class defines the following properties applicable to all time grids:

The TimeGrid class is the base class for all the time grids. The subclasses of TimeGrid are:

◆ DefaultTimeGrid

Property Description

Visible Indicates whether the grid should be displayed.

ShowOnTop Indicates whether the grid should be drawn on top or beneath
the content of the control.

UseDataContext Gets or sets a value that indicates if the grid should be painted
using its data context. The data context of a grid depends on
the control that displays the grid. When this property is set to
true, the grid may be painted in several passes, one per data
context. For example, a ScheduleSheet displaying a grid will
draw the grid on a per row basis, using the resource of each
row as data context.

DataContext Gets the data context used to paint this grid.
96 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

◆ WorkingTimesGrid

◆ TimeRangeGrid

DefaultTimeGrid

A time grid that displays vertical grid lines spaced by a fixed time interval. The
DefaultTimeGrid class defines the following properties:

WorkingTimesGrid

The WorkingTimesGrid displays nonworking times defined by a WorkCalendar. The
following properties are available to customize the grid:

TimeRangeGrid

The TimeRangeGrid fills a time area defined by an ITimeRange object. The following
properties are available to customize the grid:

Property Description

Color The color of the lines.

DashStyle The dash style of the lines.

TimeUnit The duration that separates two lines.

Steps The number of TimeUnit properties that separate two lines.

Property Description

Calendar The calendar used by the grid.

ForeColor The color used to paint nonworking time periods.

BackColor The background color of the hatch when the UseHatch
property is true.

HatchStyle The hatch style when the UseHatch property is true.

UseHatch Indicates whether the nonworking time periods should be
hatched.

Property Description

TimeRange The time range of the grid.

ForeColor The color used to fill the time range of the grid.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 97

Date Indicators

The controls that can display date indicators define a property named DateIndicators. For
example, see the GanttSheet.DateIndicators property or the LoadChart.DateIndicators
property. The type of this property is DateIndicatorCollection, a collection of objects of the
class DateIndicator.

The DateIndicator class defines the following properties:

The CurrentDateIndicator class is a subclass of the DateIndicator class. The Time property
in this date indicator is constantly updated to the current time.

Representing Activity Bars in Gantt Sheets

The Gantt Chart, Schedule Chart and Reservation Chart controls display activity bars to
represent an activity along a time scale. Although theses controls have a predefined way of
representing activity bars, you can fully customize the appearance of the bars to fit your
needs.

The following illustrations show some representations of activity bars:

BackColor The background color of the hatch when the UseHatch
property is true.

HatchStyle The hatch style when the UseHatch property is true.

UseHatch Indicates whether the time range of the grid should be hatched.

PaintInside Indicates whether the grid should paint inside its time range.

Property Description

Color The color of the line.

DashStyle The dash style of the line.

Time The time where the indicator is to be drawn.
98 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

In This Section

Styling Activity Bars in Gantt Sheets

Explains the classes involved in styling activity bars.

Dialog Box Control for Styling Activity Bars

Introduces the dialog box for defining activity bar styles inside Visual Studio .NET or
at runtime.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 99

Styling Activity Bars in Gantt Sheets

The way activity bars are represented on the screen is controlled by a collection of styles that
can be accessed by the ActivityBarStyles property of the GanttSheet class.

The GanttChart, ScheduleChart , and ReservationChart classes also have an
ActivityBarStyles property that refers to the ActivityBarStyles property of the internal
GanttSheet class used by these controls.

When the GanttSheet class needs to render an activity, it looks inside its collection of styles
to find all the styles that are relevant to this activity. Matching styles are then used to render
the activity. Applying several styles to render a single activity can be used to give several
items of information about the activity. For example, a first style can be used to display a
rectangle that shows the duration of the activity; a second style can superimpose a rectangle
that shows the percentage completion of the activity.

The collection of styles is defined by the class ActivityBarStyleCollection that holds a
collection of instances of the class ActivityBarStyle. The class ActivityBarStyle fully
defines the way the bar will be rendered on the screen, as well as the kind of activity to
which this style applies.

In This Section

Modifying the Appearance of Activity Bars

Explains the appearance properties of an activity bar.

Defining When a Bar Style Applies

Explains how to control which style applies to which activity.

Interacting and Styling

Explains how to control interactions using styling.

Example of Styling

Provides a full example of styling.

Related Sections

Expression Language Reference

Explains how to define expressions based on the property of an object.

Dialog Box Control for Styling Activity Bars

Describes the dialog box used to style activity bars.

Important: The order of the styles in the collection is significant. Since the Gantt Sheet can
use several styles to render a single activity, the styles that appear first in the collection are
rendered before, thus underneath, the styles that appear later in the collection.
100 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Modifying the Appearance of Activity Bars

The ActivityBarStyle class defines many visual attributes used to render an activity on the
screen. An activity can be rendered by a rectangle along the time scale, two optional
symbols at the beginning and end of this rectangle, and five items of textual information to
the right, to the left, above, below and inside the rectangle.

The ActivityBarStyle and its associated classes allow you to customize all these visual
attributes.

An instance of the ActivityBarStyle class contains height other objects:

◆ One instance of the ActivityBar class that defines the appearance of the rectangular bar.

◆ Two instances of the BarSymbol class that define the symbols at the beginning and end
of the bar.

◆ Five instances of the ActivityBarText class that define the text to draw on the right, on
the left, above, below and inside the bar.

Defining the Start and End Time of the Bar

The start time and end time of the rectangular area is defined by two properties of the
ActivityBarStyle class.

The ActivityBarStyle.FromProperty property contains a string that represents the name of a
property of the activity that defines the starting date where the activity bar should be painted.
By default, the value is StartTime, meaning that the bar starts drawing at the start time of
the activity. (See IActivity.StartTime) The FromProperty property must then define a
property of type DateTime.

The ActivityBarStyle.ToProperty property contains the name of a property of an activity that
defines the end date of the activity bar on screen. By default, the value is EndTime,
meaning that the bar rectangle will end at the end time of the activity (See
IActivity.EndTime).

The property defined by ToProperty can be of type DateTime. In this case, the date defines
the end of the bar.

It can also be a duration of type TimeSpan. In this case, the end date of the bar is computed
by adding the duration to the start date of the bar.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 101

The property can also be a numeric value of type Single, Double, or Int32. In this case, the
value of the property is considered to be a percentage of the duration of the activity (See
IActivity.Duration.). The end date of the bar reflects the percentage of the start time of the
activity.

For example, to draw a rectangle that displays the percentage completion of an activity, you
create an activity bar style with the FromProperty set to StartTime and the ToProperty set
to WorkComplete:

ActivityBarStyle style = …
style.FromProperty = “StartTime”;
style.ToProperty = “WorkComplete”;

Defining the Appearance and Height of the Bar

The appearance and height of the rectangular area is defined by the class ActivityBar. An
instance of the ActivityBarStyle class contains one instance of ActivityBar that can be
modified using the Bar property of the ActivityBarStyle class.

The ActivityBar class defines the following appearance properties:

Notes:
1. When the FromProperty and the ToProperty are the same, no rectangular bar is

displayed. This does not mean that the style renders nothing, since the style may define a
start or end symbol.

2. Styles can be used to represent reservations, not activities. This is the case when using
resources-oriented or reservations-oriented controls such as ResourceChart or
ReservationChart controls. In this case, the properties defined by ToProperty and
FromProperty can be properties located on the reservations. If such properties are not
available on the reservations, they are taken from the activities.

Property Description

Color The color of the background of the bar.

BorderColor The color of the border of the bar.

HatchStyle The hatch style for the background of the bar when the
FillStyle property is set to ActivityBarFillStyle.Hatch.

FillStyle Indicates the fill style for the background of the bar.
102 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Defining Start and End Symbols

The class BarSymbol defines the appearance of the symbols that appear on the left and right
of the bar. These symbols are defined by the StartSymbol and EndSymbol properties of the
ActivityBarStyle class.

The BarSymbol class defines the following properties:

The possible values of Shape are:

SecondColor Defines the second color of the bar. If this color is different from
the Color property and FillStyle is not
ActivityBarFillStyle.Hatch, then the bar will be drawn with a
linear gradient between Color and SecondColor. When
FillStyle is ActivityBarFillStyle.Hatch, this color is used as
the background color of the hatch.

TopMargin A value between 0 and 1 that defines the top margin of the bar
with respect to a normal bar height, that is, a bar that has no
top or bottom margin.

BottomMargin A value between 0 and 1 that defines the top margin of the bar
with respect to a normal bar height, that is, a bar that has no
top or bottom margin.

Property Description

Color Defines the background color of the symbol.

BorderColor Defines the color of the outline of the symbol.

Shape One of the values of the BarSymbolShape enumeration that
defines the shape of the symbol. (See the table of possible
values of Shape.)

Shape Appearance

None

UpPentagon

DownPentagon

Circle

Diamond
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 103

UpTriangle

DownTriangle

RightTriangle

LeftTriangle

Square

SmallSquare

DownArrow

UpArrow

CircleUpArrow

FilledCircleUpArrow

CircleDownArrow

FilledCircleDownArrow

SmallUpPentagon

SmallDownPentagon

VerticalBar

Star

CircleUpTriangle

FilledCircleUpTriangle

CircleDownTriangle
104 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Defining Additional Text to Display

Five texts can be displayed: a text on the right, a text on the left, a text above, a text below
and a text inside the bar. The text to be displayed is usually the value of a property of the
rendered activity.

The ActivityBarStyle class defines five properties of type ActivityBarText for accessing the
texts:

◆ RightText

◆ LeftText

◆ InsideText

◆ TopText

◆ BottomText

The definition of what is to be displayed is contained in the Value property of the
ActivityBarText class.

For example, defining a style with the following C# code renders the start time of the
activity on the right of the bar:

ActivityBarStyle style = ...
style.RightText.Value = "StartTime";

The Value property of the ActivityBarText class can be an expression based on the
properties of the rendered activity. This expression is defined in Expression Language
Reference.

Here are some other examples:

FilledCircleDownTriangle

CircleDiamond

FilledCircleDiamond

Example of value Displayed Result

{StartTime:m} Displays the start time of the activity formatted with the 'm'
format that corresponds to the Month/Day pattern of the .NET
date formatter.

Reservations Displays the list of reservations of the rendered activity.

Name Displays the name of the activity.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 105

te

7/
Defining When a Bar Style Applies

When the Gantt sheet needs to render an activity or a reservation on the screen, first it looks
in its collection of styles (ActivityBarStyles property) to collect all the styles that are
relevant. It uses the StyleFor property of the ActivityBarStyle class to know which instances
of the ActivityBarStyle class are relevant to the activity or the reservation.

The StyleFor property contains a Boolean expression that will be evaluated to determine if
the style matches the object being rendered. The evaluation context is given by the activity
being rendered when using activity-oriented controls such as the GanttChart. For other
controls, the context will be the reservation. The evaluation context is used to resolve
property names used in the StyleFor property.

Here is a list of examples:

'Activity:' + Name Concatenates the text 'Activity:' and the name of the activity.

{Duration:g} The duration of the activity formatted with the 'g' pattern of the
Time Span formatter.

Note: When using resource-oriented controls, the evaluation context used to resolve
property names is the reservation being rendered. If a property cannot be located on the
reservation, it will be searched in the corresponding activity.

Expression Applies To

Normal The style applies to activities that are not milestones or
summaries.

IsSummary The style applies to summary activities.

Milestone The style applies to milestone activities.

Normal && WorkComplete != 0 The style applies to normal activities with the WorkComple
property not equal to zero.

StartTime > #1967/2/10# The style applies to activities with a start time later than 196
2/10.

Name == 'MyActivity' The style applies to activities named 'MyActivity'.

ID == '1' The style applies to the activity with the ID '1'.

MyBooleanProperty The style applies to the activity with your own Boolean
property set to true.
106 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

For a complete description of expressions see Expression Language Reference.

Interacting and Styling

An activity bar style displays information based on activity or reservation properties. In
particular, the ActivityBarStyle.FromProperty and ActivityBarStyle.ToProperty properties
of the bar style are used to render the bar displayed by the style. If the properties referenced
by the FromProperty and ToProperty are not read-only properties, it is possible to
interactively edit those properties by clicking and dragging on the rendered bar. The
following table shows the properties and the methods that can be used to control the
behavior of a bar style:

Note: When several activity bar styles match one activity, the bars are superimposed in the
order of the ActivityBarStyle collection.

Property or Method Description

Interactive Gets or sets a value indicating whether this style is
interactive.

CanEditFromProperty Gets or sets a value indicating whether the from
property of this style is editable.

CanEditToProperty Gets or sets a value indicating whether the to property
of this style is editable.

FromPropertyCursor Gets or sets the cursor used to modify the from
property using the mouse pointer.

ToPropertyCursor Gets or sets the cursor used to modify the to property
using the mouse pointer.

MoveCursor Gets or sets the cursor used to indicate that a bar style
can be moved.

ShowToolTip Gets or sets a value indicating whether this style should
show tooltips.

ShowEditingToolTip Gets or sets a value indicating whether this style should
show tooltips during edition.

ToolTip Gets or sets the expression for tooltips.

SnapController Gets or sets a time iterator that defines the way date-
time values are snapped.

AllowConstraintLinkConnection Gets or sets a value indicating whether this style can be
used to connect constraint links.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 107

See Also Using the Predefined Behavior of Gantt Sheet Controls

Example of Styling

Here is a full C# example of code extracted from the The Gantt Editor Sample that will lead
to the following graphical result:

You can take a look at The Gantt Editor Sample for more styling examples.

ActivityBarStyle activityBarStyle1 = new ActivityBarStyle();
ActivityBarStyle activityBarStyle2 = new ActivityBarStyle();
ActivityBarStyle activityBarStyle3 = new ActivityBarStyle();
ActivityBarStyle activityBarStyle4 = new ActivityBarStyle();

// The style for normal activities

activityBarStyle1.Bar.Color = Color.White;
activityBarStyle1.Bar.BorderColor = Color.Gray;
activityBarStyle1.EndSymbol.Color = Color.White;
activityBarStyle1.EndSymbol.BorderColor = Color.Gray;
activityBarStyle1.EndSymbol.Shape = BarSymbolShape.CircleDiamond;
activityBarStyle1.Name = "Activity";
activityBarStyle1.RightText.Value = "Reservations";
activityBarStyle1.StartSymbol.Color = Color.White;
activityBarStyle1.StartSymbol.BorderColor = Color.Gray;
activityBarStyle1.StartSymbol.Shape = BarSymbolShape.CircleDiamond;
activityBarStyle1.StyleFor = "Normal";

// Additional style for normal activities with a WorkComplete != 0

activityBarStyle2.Bar.BottomMargin = 0.25F;
activityBarStyle2.Bar.Color = Color.White;
activityBarStyle2.Bar.SecondColor = Color.Gray;
activityBarStyle2.Bar.BorderColor = Color.Gray;
activityBarStyle2.Bar.TopMargin = 0.25F;
activityBarStyle2.Bar.FillStyle = ActivityBarFillStyle.Hatch;
activityBarStyle2.Name = "Progress";
activityBarStyle2.StartSymbol.Color = Color.White;
activityBarStyle2.StartSymbol.BorderColor = Color.Gray;
activityBarStyle2.StartSymbol.Shape =
 BarSymbolShape.FilledCircleDiamond;
activityBarStyle2.StyleFor = "Normal && WorkComplete!=0";
activityBarStyle2.ToProperty = "WorkComplete";

// The style for Summary activities
108 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

activityBarStyle3.Bar.BottomMargin = 0.5F;
activityBarStyle3.Bar.Color = Color.Navy;
activityBarStyle3.EndSymbol.BorderColor = Color.Navy;
activityBarStyle3.EndSymbol.Color = Color.Navy;
activityBarStyle3.EndSymbol.Shape = BarSymbolShape.DownPentagon;
activityBarStyle3.Name = "Summary";
activityBarStyle3.StartSymbol.BorderColor = Color.Navy;
activityBarStyle3.StartSymbol.Color = Color.Navy;
activityBarStyle3.StartSymbol.Shape = BarSymbolShape.DownPentagon;
activityBarStyle3.StyleFor = "IsSummary";

// The style for Milestone activities

activityBarStyle4.Bar.TopMargin = 1F;
activityBarStyle4.Name = "Milestone";
activityBarStyle4.RightText.Value = "{StartTime:m}";
activityBarStyle4.StartSymbol.BorderColor = Color.Navy;
activityBarStyle4.StartSymbol.Color = Color.Navy;
activityBarStyle4.StartSymbol.Shape = BarSymbolShape.Diamond;
activityBarStyle4.StyleFor = "Milestone";
activityBarStyle4.ToProperty = "StartTime";

// Set the styles to the Gantt chart control

ganttChart.ActivityBarStyles.Clear();
ganttChart.ActivityBarStyles.AddRange(new ActivityBarStyle[] {
 activityBarStyle1,
 activityBarStyle2,
 activityBarStyle3,
 activityBarStyle4 });

Dialog Box Control for Styling Activity Bars

IBM® ILOG® Gantt for .NET provides a predefined dialog box for modifying the styles of
activity bars. This dialog box is used at design time to allow the designer to define the styles
of the activity bars. It can also be used in your application at run time to let the application
user change the style of activity bars.

The following illustration shows the dialog box used to edit the style of activity bars.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 109

The dialog box is implemented by the class ActivityBarStylesDialog.

In This Section

Modifying Styles

Describes how to modify the properties of the style in a table.

Programming the Activity Bar Style Dialog Box

Explains how to use the dialog box to customize the bar style.

Modifying Styles

Styles can be modified through a table of styles and a tab control that contains several pages
for modifying the properties of the style selected in the table.

The Bar Style Table

The table of styles that are currently defined is shown in the top area of the dialog box.
110 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

The table has the following columns:

Beneath the table of styles are three buttons for cutting, pasting, and inserting a new row in
the table.

The Tab Control

At the bottom is a tab control with three tab pages. The content of these tab pages depends
on the style selected in the table.

The Appearance Page

The Appearance page is divided into three sections. The first section is for setting the shape
and the colors of the start symbol of the bar style. The second section is for setting the shape
and the colors of the rectangular bar. The last section is for setting the shape and colors of
the end symbol.

The Text Page

The Text page has five combo boxes for specifying the property of the activity to be
displayed on the right, left, above, below or in the middle of the bar (See Defining
Additional Text to Display).

Column Description

Name Gives the name of the style.

Appearance Displays a preview of the bar defined by the style.

Style For... Contains the expression that defines to which activity the style
applies. (See Defining When a Bar Style Applies.)

Start Contains the name of the property that defines the start date of
the activity bar. (See Defining the Start and End Time of the
Bar.)

End Contains the name of the property that defines the end date of
the activity bar. (See Defining the Start and End Time of the
Bar.)
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 111

Advanced Page

The Advanced page is for specifying advanced appearance properties, such as for using a
pattern or a gradient in the activity bar.

Programming the Activity Bar Style Dialog Box

The dialog box is a control that can be dragged from the toolbox in Visual Studio.

Once you have dragged the dialog box, you can use it in your code to customize the bar style
of a GanttSheet instance.

Here is a small C# example of how to show the dialog box and set the result in a Gantt sheet.
In the example, sheet is an instance of GanttSheet.

ActivityBarStylesDialog editor = new ActivityBarStylesDialog();
editor.Styles = sheet.ActivityBarStyles;
if (editor.ShowDialog() == DialogResult.OK)
{
 sheet.ActivityBarStyles.Clear();
 sheet.ActivityBarStyles.AddRange(editor.Styles);
}

112 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Owner-Drawn Gantt Components

If you need to have the entire control over what’s being drawn inside a Gantt sheet, or if you
want to modify the drawing of the time scale, you can provide some drawing code that will
be used instead of the original code. This section explains how to create customized Gantt
representations by using this owner-drawn feature.

In This Section

Providing User Code to Draw Gantt Table Cells

Describes how to control the drawing of each cell of a GanttTable.

Providing User Code to Draw Gantt Sheet Rows

Describes how to control the drawing of each row of a GanttSheet.

Providing User Code to Draw Activity Bar Styles

Describes how to control the drawing of each activity or reservation in a GanttSheet.

Providing User Code to Draw Time Scale Rows

Describes how to control the drawing of each row of the time scale.

Providing User Code to Draw Constraint Links

Describes how to control the drawing of constraint links in an ActivitySheet.

Providing User Code to Draw Gantt Table Cells

A GanttTable is made of rows and columns that display scheduling data: The ActivityTable
displays one activity per row, and the ResourceTable displays one resource per row.

If you need to add custom drawings to the default drawing, or if you need to completely
change this default drawing, you can provide some user code to manage your own drawing.

Enabling Gantt Table Owner Draw

Changing the GanttTable.OwnerDraw property to true will tell the GanttTable to use some
user code to manage drawing operations. After setting this property, the
GanttTable.DrawTableCell event will be raised each time a cell of the GanttTable is drawn.

Using the GanttTable.DrawTableCell Event

The GanttTable.DrawTableCell event carries a DrawTableCellEventArgs structure that
contains information on the cell being drawn. The DrawTableCellEventArgs structure also
contains methods to paint the cell using its original drawing. The following C# code shows
how to handle the GanttTable.DrawTableCell event:

private void OnDrawTableCell(object sender, DrawTableCellEventArgs e) {
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 113

 TreeTable table = e.TreeTable;
 object value = table.GetValueAt(e.Row);
 // If the node being drawn has children and is expanded, draw it using
 // an italic font.
 if (table.TreeModel.GetChildCount(value) != 0 &&
 table.IsRowExpanded(value)) {
 Font font = new Font(e.Font, e.Font.Style | FontStyle.Italic);
 e.DrawCell(e.Bounds, e.BackBrush, e.ForeBrush, font);
 } else
 e.DrawCell();
}

This C# code fragment displays texts of expanded rows using an italic font.

Providing User Code to Draw Gantt Sheet Rows

A GanttSheet is made of rows that display scheduling data over time: The ActivitySheet
displays one activity per row, and the ScheduleSheet displays several reservations per row. If
you need to add custom drawings to the default drawing, or if you need to completely
change this default drawing, you can provide some user code to manage your own drawing.

Enabling Gantt Sheet Owner Draw

Changing the GanttSheet.OwnerDraw property to true will tell the GanttSheet to use some
user code to manage drawing operations. After setting this property, the
GanttSheet.DrawRow event will be raised each time a row of the GanttSheet is drawn.

Using the GanttSheet.DrawRow Event

The GanttSheet.DrawRow event carries a DrawGanttSheetRowEventArgs structure that
contains information on the row being drawn. The DrawGanttSheetRowEventArgs
structure also contains methods to paint the row using its original drawing. The following
C# code shows how to handle the GanttSheet.DrawRow event:

ActivitySheet sheet = new ActivitySheet();
sheet.OwnerDraw = true;
sheet.DrawRow += new DrawGanttSheetRowEventHandler(OnDrawSheetRow);

private void OnDrawSheetRow(object sender, DrawGanttSheetRowArgs e) {
 if (!e.IsRowSelected)
 e.DrawRow();
 else {
 if (e.IsPaintingBackground)
 e.Graphics.FillRectangle(e.BackBrush, e.Bounds);
 else {
 Font font = new Font(e.GanttSheet.Font, FontStyle.Italic);
 e.DrawRow(e.Bounds, e.BackBrush, e.ForeBrush, font);
 font.Dispose();
 }
 }
}

114 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

This C# code fragment displays texts of selected rows using an italic font.

Providing User Code to Draw Activity Bar Styles

The ActivityBarStyle class is used to represent an activity or reservation in a Gantt sheet.
Instead of subclassing the ActivityBarStyle class, you can use the
ActivityBarStyle.OwnerDraw property and provide some user code to handle the drawing.

Enabling Activity Bar Style Owner Draw

Changing the ActivityBarStyle.OwnerDraw property to true will tell the ActivityBarStyle
to use some user code to manage drawing operations. After setting this property, the
ActivityBarStyle.DrawBarStyle event will be raised each time the style is used to draw an
activity or reservation. In addition, the ActivityBarStyle.HitTestBarStyle event will be
raised to do hit testing on the customized bar style.

Using the ActivityBarStyle.DrawBarStyle Event

The ActivityBarStyle.DrawBarStyle event carries a DrawBarStyleEventArgs structure that
contains information on the activity or reservation being drawn. The
DrawBarStyleEventArgs structure also contains methods to paint the activity or
reservation using its original drawing. The following C# code shows how to handle the
ActivityBarStyle.DrawBarStyle event:

ActivityBarStyle style = new ActivityBarStyle();
style.OwnerDraw = true;
style.DrawBarStyle += new DrawBarStyleEventHandler(OnDrawStyle);

private void OnDrawStyle(object sender, DrawBarStyleEventArgs e) {
 if (e.IsRowSelected) {
 e.DrawBar();
 e.DrawStartSymbol();
 e.DrawEndSymbol();
 using (Font font = new Font(e.Context.Font, FontStyle.Italic)) {
 e.DrawLeftText(font, null);
 e.DrawRightText(font, null);
 e.DrawInsideText(font, null);
 e.DrawTopText(font, null);
 e.DrawBottomText(font, null);
 }
 } else
 e.DrawBarStyle();
}

Note: The event is raised twice per row being drawn: First it is raised to paint the row
background, then to paint the row content. The
DrawGanttSheetRowEventArgs.IsPaintingBackground property can be used to determine
what should be drawn.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 115

This C# code fragment displays texts of selected rows using an italic font.

Using the ActivityBarStyle.HitTestBarStyle Event

The ActivityBarStyle.HitTestBarStyle event carries a HitTestBarStyleEventArgs structure
that contains information on the activity or reservation being hit tested. The
HitTestBarStyleEventArgs structure also contains methods to do default hit testing. The
following C# code shows how to handle the ActivityBarStyle.HitTestBarStyle event:

ActivityBarStyle style = new ActivityBarStyle();
style.OwnerDraw = true;
style.HitTestBarStyle += new HitTestBarStyleEventHandler(OnHitTestStyle);

private void OnHitTestStyle(object sender, HitTestBarStyleEventArgs e) {
 e.DefaultHitTesting();
}

Providing User Code to Draw Time Scale Rows

The TimeScaleRow class is used to represent a row in a TimeScale. Instead of subclassing
the TimeScaleRow class, you can use the TimeScale.OwnerDraw property and provide
some user code to handle the drawing.

Enabling Time Scale Row Owner Draw

Changing the TimeScale.OwnerDraw property to true will tell the TimeScale to use some
user code to manage drawing operations. After setting this property, the
TimeScale.DrawRow event will be raised each time the time scale row is drawn.

Using the TimeScale.DrawRow Event

The TimeScale.DrawRow event carries a DrawTimeScaleRowEventArgs structure that
contains information on the time scale row being drawn. The
DrawTimeScaleRowEventArgs structure also contains methods to paint the time scale row
using its original drawing. The following C# code shows how to handle the
TimeScale.DrawRow event:

TimeScale tscale = new TimeScale();
tscale.DrawRow += new DrawTimeScaleRowEventHandler(OnDrawTimeScaleRow);

private void OnDrawTimeScaleRow(object sender, DrawTimeScaleRowEventArgs e) {
 if (e.Row.TimeScale.TimeLine.Adjusting)
 e.Graphics.FillRectangle(SystemBrushes.ControlLight, e.Bounds);
 Brush textBrush = new SolidBrush(e.Row.TextColor);
 Pen tickPen = new Pen(e.Row.TickColor);
 e.DrawRow(null, textBrush, e.Row.TextFont, tickPen);
 textBrush.Dispose();
 tickPen.Dispose();
}

116 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

This C# code fragment changes the background of the time scale when its time line is being
adjusted, that is, when the user is dragging the time scale using the mouse to adjust the first
visible time.

Providing User Code to Draw Constraint Links

Constraint links are used to represent constraints between activities in an ActivitySheet. To
customize the drawing of constraint links, you can use the
ActivitySheet.ConstraintsOwnerDraw property and provide some code to handle the
drawing.

Enabling Constraint Links Owner Draw

When the ActivitySheet.ConstraintsOwnerDraw property is set to true, the ActivitySheet
no longer manages drawing operations on constraint links. To handle the drawing you need
to provide some code. After setting this property, the ActivitySheet.DrawConstraintLink
event will be raised each time the activity sheet needs to draw its constraint links. In
addition, the ActivitySheet.HitTestConstraintLink event will be raised to do hit testing on
the customized constraint links.

Using the ActivitySheet.DrawConstraintLink Event

The ActivitySheet.DrawConstraintLink event carries a DrawConstraintLinkEventArgs
structure that contains information on the constraint link being drawn. The
DrawConstraintLinkEventArgs structure also contains methods to paint the constraint
link using its original drawing. The following C# code shows how to handle the
ActivitySheet.DrawConstraintLink event:

ActivitySheet sheet = new ActivitySheet();
sheet.DrawConstraintLink += new DrawConstraintLinkEventHandler(OnDrawLink);

private void OnDrawLink(object sender, DrawConstraintLinkEventArgs e) {
 if (e.Constraint.Type == ConstraintType.EndToStart) {
 PointF[] points = e.Points;
 e.Graphics.DrawLine(e.Pen, points[0], points[points.Length-1]);
 } else
 e.DrawConstraintLink();
}

This C# code fragment draws constraint links as straight lines for EndToStart constraints.
Other constraints are drawn using the default drawing.

Using the ActivitySheet.HitTestConstraintLink Event

The ActivitySheet.HitTestConstraintLink event carries a HitTestConstraintLinkEventArgs
structure that contains information on the constraint link being hit tested. The
HitTestConstraintLinkEventArgs structure also contains methods to do default hit testing.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 117

The following C# code shows how to handle the ActivitySheet.HitTestConstraintLink
event:

ActivitySheet sheet = new ActivitySheet();
sheet.HitTestConstraintLink += new
HitTestConstraintLinkEventHandler(OnHitTestLink);

private void OnHitTestLink(object sender, HitTestConstraintLinkEventArgs e) {
 if (e.Constraint.Type == ConstraintType.EndToStart) {
 PointF[] points = e.Points;
 e.HitTest = PointInLine(points[0], points[point.Length-1], e.Point);
 } else
 e.DefaultHitTesting();
}

This C# code fragment assumes that constraint links for EndToStart constraints are being
drawn as straight lines.
118 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Custom Gantt Representations

IBM® ILOG® Gantt for .NET provides ready-to-use controls to display the most common
representations of scheduling data. When you need to create your own custom
representation, you can use these controls and connect them together to create more
powerful controls. This section describes the core controls of the product, and explains how
to connect them together.

In This Section

Displaying Scheduling Data using Gantt Sheets

Describes how to develop with the Gantt sheets, controls for displaying activities and
reservations along a time scale.

Using Time Scales

Describes how to use the TimeScale class, a control that display time scales.

Displaying Time-based Information

Describes the base class for displaying time-based information.

Synchronizing the Time of Several Controls

Explains how to synchronize the time of several controls.

Using Time Lines

Describes what time lines are, and how they can be customized.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 119

Creating Custom Gantt Representations
Using Time Scrollbars

Describes how to use the TimeScrollBar class, a scroll bar that scrolls over time.

Displaying Scheduling Data using Gantt Sheets

IBM® ILOG® Gantt for .NET provides three types of control for displaying scheduling
information over time: an activity sheet, a schedule sheet, and a reservation sheet.

The activity sheet displays activities in time and the schedule and reservation sheets display
reservations of resources in time.

In this section, the term Gantt sheet is used to refer to an activity sheet, a schedule sheet, or a
reservation sheet.

In This Section

Introducing the Activity Sheet, Schedule Sheet, and ReservationSheet

Describes the different types of Gantt Sheet controls.

Displaying Scheduling Data in Gantt Sheet Controls

Describes how to connect Gantt Sheet controls to visualize data.

Modifying the Appearance of Gantt Sheet Controls

Describes the properties that control the appearance of Gantt sheet controls.

Using the Predefined Behavior of Gantt Sheet Controls

Describes the predefined behavior in Gantt sheet controls.

Controlling the Displayed Time Interval

Describes the API for controlling the displayed time interval.

Hit Testing in the Gantt Sheet Controls

Describes the Hit testing API on Gantt Sheet controls.

Related Section

Displaying Time-based Information

Describes the base class for displaying time-based information.

Introducing the Activity Sheet, Schedule Sheet, and ReservationSheet

IBM® ILOG® Gantt for .NET provides three types of control for displaying scheduling
information over time: an activity sheet, a schedule sheet, and a reservation sheet.

The activity sheet displays activities in time, the schedule and reservation sheet display the
reservations of resources in time.
120 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
Activity Sheet

In the activity sheet, each row in the sheet represents the duration of one activity.

In the default implementation, activities with no child activities are displayed as plain
horizontal bars. Activities with child activities are displayed as horizontal bars of a different
color, delimited by special symbols at the end. These attributes are completely customizable.

In an activity sheet, constraints between activities are represented by directional polyline
links. The type of the constraint determines how the link is attached to the activity bars.

The activity sheet is implemented by the ActivitySheet class.

The following illustration shows an activity sheet.

Schedule Sheet

In the schedule sheet, each row of the sheet represents the activities assigned to a resource.
Because the same resource can be reserved for more than one activity during the same time
span, it could happen that several activity bars occupy the same horizontal area in the same
row. To address this problem, a specific activity layout algorithm is used to position the bars
for the best legibility. Three different layout algorithms are provided to manage potentially
overlapping activity bars.

In the general case, one activity may reserve several resources and appear as several activity
bars in the Schedule Sheet. For this reason, constraints between activities are not displayed
in the schedule sheet.

The schedule sheet is implemented by the ScheduleSheet class.

The following illustration shows a schedule sheet.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 121

Creating Custom Gantt Representations
Reservation Sheet

In the reservation sheet, each row of the sheet represents a single reservation. In the general
case, one activity may reserve several resources and appear as several activity bars in the
reservation sheet. For this reason, constraints between activities are not displayed in the
reservation sheet.

The reservation sheet is implemented by the ReservationSheet class.

The following illustration shows a reservation sheet.
122 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
The ActivitySheet, ScheduleSheet, and ReservationSheet classes share the same base
class, the GanttSheet class. The GanttSheet class implements the functionalities that are
common to the activity, schedule and reservation sheets, such as the connection to the Gantt
data model or the appearance of activity bars.

In this section, the term Gantt sheet is used to describe an activity sheet, a schedule sheet, or
a reservation sheet.

Displaying Scheduling Data in Gantt Sheet Controls

To display scheduling information, a Gantt sheet must be connected to a Gantt table. You
connect a Gantt Sheet to a Gantt Table using the RowController property of the GanttSheet
class.

An Activity Sheet must be connected to an Activity Table, a Schedule Sheet to a Resource
Table, and a Reservation Sheet to a Reservation Table. For more information on the Gantt
tables see Introducing the Activity, Resource, and Reservation Tables.

When the Gantt Sheet control is connected to a table, the Gantt Sheet control listens to
events from the Gantt data model attached to the table and is updated for each modification
of the data model. For example, when an activity is added to or removed from the data
model, a corresponding row is added to or removed from an Activity Sheet control. When a
resource is assigned to an activity in the Gantt data model, the activity appears in the
corresponding row of the Schedule Sheet control.

When a Gantt sheet is embedded in a Gantt Chart, Schedule Chart or Reservation Chart
control, all connections are made by the GanttChart, ScheduleChart and ReservationChart
classes. You do not need to connect the tables and the sheets yourself.

In the ActivitySheet class

Method Description

GetActivityAt To get the activity displayed at a specific row.

GetRowIndex To get the row where an activity is displayed.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 123

Creating Custom Gantt Representations
In the ScheduleSheet class

In the ReservationSheet class

Modifying the Appearance of Gantt Sheet Controls

The Gantt sheet defines several properties for changing its appearance.

Color Properties

Font Property

The Font property defines the font used to draw text in the activity bars.

Method Description

GetResourceAt To get the resource displayed at a specific row.

GetRowIndex To get the row where a resource is displayed.

Method Description

GetReservationAt To get the reservation displayed at a specific row.

GetRowIndex To get the row where a reservation is displayed.

Property Description

BackColor The color used for the background of rows in the sheet.

AlternatingBackColor The color used for alternating rows in the sheet. By default, this
color is the same as the BackColor property.

ForeColor The color of text in the sheet.

BackgroundColor The color used for the area of the sheet that is not made up of
rows.

SelectionBackColor The background color of selected rows in the sheet.

SelectionForeColor The color of text for selected rows in the sheet.
124 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
Horizontal Grid

The horizontal grid lines that separate the rows of the Gantt sheet are controlled by the
following properties:

Vertical Time Grid

The Gantt sheet can display vertical grid lines or areas that separate time periods on the time
scale or display nonworking time with a specific appearance.

In addition, the Gantt sheet can display vertical grid lines that indicate a particular date in the
project, such as the current date. The following properties control time grids and date
indicators.

For more information, see Using Time Grids and Date Indicators.

Appearance of Activity Bars

The appearance of the rectangular bars that represent activities in the Gantt sheet can be
completely customized by a styling mechanism. This styling mechanism is fully described
in Representing Activity Bars in Gantt Sheets.

Property Description

GridLineColor The color of horizontal grid lines.

GridLineStyle The style of horizontal grid lines.

Property Description

TimeGrids A collection of time grids.

DateIndicators A collection of vertical grid lines to mark specific dates.

VerticalGridToBottom Indicates whether vertical grid lines are drawn in the area of
the sheet that does not contain rows.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 125

Creating Custom Gantt Representations
Miscellaneous Appearance Properties

Activity Layout Style in a Schedule Sheet

Each row in the schedule sheet represents the activities assigned to a resource. When the
resource has several activities assigned for the same time period, the activity bars may
overlap. The Schedule Sheet provides several ways of laying out the activity bars to remove
overlapping.

The layout style is controlled by the ActivityLayoutStyle property of the ScheduleSheet
class. The property can take the values of the ActivityLayoutStyle enumeration:

Property Description

BackgroundImage An Image to display as the background of the Gantt sheet.

BorderStyle The style of the border of the control.

ShowSelectedRows Indicates whether the selected rows will be displayed in
the selection colors.

Enumeration Member Description

ActivityLayoutStyle.Simple All activity bars on a given Gantt row have the same y
position. They are all aligned on the top of the Gantt row
and have the same height. The layout does not change the
stacking order of the activity bars (z axis).

ActivityLayoutStyle.Pretty The overlapping reservations are arranged with a slight
vertical offset. The reservations are stacked so that the
higher one (the one that has the greater y position) is
displayed behind the lower one and both reservations are
visible.

ActivityLayoutStyle.Cascade The Cascade layout is similar to the Pretty layout, except
that it does not change the stacking order (z axis) of the
activity bars.
126 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
Constraint Link Style

In an Activity Sheet the constraint links can be displayed in two different ways. The style of
the constraint links is controlled by the ConstraintLinkStyle property of the ActivitySheet
class.

Here are the different values of the ConstraintLinkStyle enumeration:

Right-to-left Mode

All the controls can be used in right-to-left mode for Arabic and other languages that are
written right-to-left. Note that bidirectional features of Windows® are available only in a
bidirectional Microsoft® Windows® environment, such as an Arabic version of Microsoft®
Windows®.

Using the Predefined Behavior of Gantt Sheet Controls

A Gantt sheet has the following predefined behavior.

Selection

Clicking a row of the Gantt sheet selects the row. Clicking a row while pressing the SHIFT
key selects the rows from the last selection anchor to the clicked row. Clicking a row while

Enumeration Member Description Example

None No constraint links are displayed.

Direct Constraints of type EndToStart are displayed as
links with two segments if the destination activity
starts after the end of the origin activity. The first
segment is horizontal and the second is vertical.
Otherwise, the constraint is displayed as in the
Horizontal case.

Horizontal Constraints are displayed as links with 3 or 5
segments on the type of constraint. The first and
last segments are horizontal.

Note: You can customize the constraint links by setting the
ActivitySheet.ConstraintsOwnerDraw property. See Providing User Code to Draw
Constraint Links for details.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 127

Creating Custom Gantt Representations
pressing CTRL+SHIFT keys adds to the current selection, from the last selection anchor to
the clicked row.

Tooltips

Tooltips appear in the Gantt sheet when the mouse hovers an activity bar. By default, the
tooltip displays information related to the bar style being hovered: The bar style name, the
activity name, and the from and to properties used by the bar style.

The tooltip depends on the bar style being hovered. The text appearing in the tooltip can be
modified using the ActivityBarStyle.ToolTip property.

The value of this property is not a static string, but a string that represents an expression that
will be evaluated using the current values of the activity. For more information on
expressions see Expression Language Reference.

The ActivitySheet class also displays a tooltip when the mouse hovers a constraint. The text
of this tooltip is an expression based on the property of the constraint defined by the
ConstraintToolTip property.

You can disable the tooltips displayed in the Gantt sheet by setting the ShowTooltips
property to false.

See the Interacting and Styling section for details about bar styles and interactions.

Changing the Start Time, End Time, or Duration of an Activity

In a Gantt Sheet, you can use the mouse pointer to change the property values displayed by
an activity bar. The default bar styles of the different Gantt Sheet objects are designed to
128 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
display the start time, the end time, and the duration of an activity. To modify these values,
the user can use the following interactions:

You can disable this default behavior by setting the CanEditActivities property to false.

When an application user performs one of these operations, a tooltip appears showing the
values that are modified:

You can disable this tooltip by setting the ShowEditingTooltip property to false.

Editing can be done in two modes controlled by the InstantEditing property of the
GanttSheet class:

Action User Interaction

Change only the EndTime Click at the end of the activity bar and drag the mouse
pointer.

Change the whole interval Click in the middle of the activity bar and drag the mouse
pointer.

Note: This default interaction allows you to modify the activity or reservation properties
represented by an activity bar. By default, these are the StartTime and EndTime properties,
but you can change these settings to represent any other activity or reservation property.
See Representing Activity Bars in Gantt Sheets and Interacting and Styling for details.

Instant Editing Value User Interaction

True The data model is modified at each mouse move and the
position of the activity bar automatically reflects the new
values at each mouse move.

False The data model is modified only when the mouse pointer is
released. In this case, while the mouse is being dragged, a
rectangle shows the position and size the activity will have
when the mouse pointer is released.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 129

Creating Custom Gantt Representations
The following illustration shows an activity being edited with InstantEditing set to false.

The GanttSheet class provides the BeforeEditActivity event that is raised before the activity
is modified. For example, this event allows the application user to cancel the editing
operation in some cases or to modify the chosen time interval.

Finally you can control the cursors that will be used during this operation through the
following properties:

See the Interacting and Styling section for details about bar styles and interactions.

Creating a Constraint in the Activity Sheet

In an Activity Sheet constraints can be created with the mouse pointer by selecting the origin
and destination of the constraint. You can disable this behavior by setting the
CanCreateConstraint property to false.

When the InstantEditing property is set to true, the application user creates a constraint by
clicking the origin activity with the mouse pointer with the CTRL key pressed. The sheet
then shows a line starting at the origin activity. The user must drag the mouse pointer to the
destination activity and release the mouse pointer.

Property Description

SizeEastCursor Cursor used for changing the end time (or the start time in right-to-left
mode).

SizeWestCursor Cursor used for changing the start time (or the end time in right-to-left
mode).

MoveCursor Cursor used to indicate that an activity bar can be moved.

MovingActivityCursor Cursor used for moving the activity bar.
130 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
When InstantEditing is set to false, the application user does not need to press the CTRL
key. The user can click the origin activity and drag the mouse pointer to the destination
activity. When the mouse pointer is moved to a destination activity, the Gantt sheet
automatically switches to the constraint creation mode.

Note that the constraint that is created is always an End-to-start constraint. If another type of
constraint is required, the type of constraint must be changed later.

The ActivitySheet class provides the BeforeCreateConstraint event that allows the creation
of the constraint to be canceled or its parameter to be modified before the constraint is
created.

Finally, you can change the cursor used by the sheet when a constraint is created by using
the CreateConstraintCursor property.

Changing the Resource Assigned to an Activity in the Schedule Sheet

In the Schedule Sheet the resource assigned to a reservation can be changed by clicking a
reservation with the SHIFT key pressed and dragging the reservation to a new resource
(another row of the sheet).

You can disable this behavior by setting the CanMoveReservation property to false.

You can modify the cursor used during this operation by using the MoveReservationCursor
property.

The ScheduleSheet class defines the BeforeMoveReservation event that is raised before the
operation is performed in the Gantt model and that allows you to cancel the operation or
alert the application user in certain cases.

Adding a Reservation to the Schedule Sheet

In the Schedule Sheet, the application user can copy a reservation by clicking a reservation
with the CONTROL key pressed and dragging the copy to a new resource (another row of
the sheet).

You can disable this behavior by setting the CanCopyReservation property to false.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 131

Creating Custom Gantt Representations
You can modify the cursor used during this operation by using the CopyReservationCursor
property.

The ScheduleSheet class defines the BeforeMoveReservation event that is raised before the
operation is performed in the Gantt model and that allows you to cancel the operation or
alert the application user in certain cases.

Controlling the Displayed Time Interval

The GanttSheet class defines the following properties for controlling the displayed time
period:

The GanttSheet class displays a horizontal scroll bar for scrolling in time. The minimum and
maximum time of this scroll bar is automatically defined by the content of the Gantt data
model displayed by the Gantt sheet. The minimum time is the earliest start time of the
activities in the model. The maximum time is the latest end time of the activities in the
model. Therefore, when the Gantt sheet displays the minimum and maximum values of the
scroll bar, all the activities are visible.

The minimum and maximum time scrolling is controlled by the TimeBounds property of the
GanttSheet.

A margin can be added around the minimum and maximum times. This margin is defined in
pixels by the TimeMargin property. This margin is useful for making the text around activity
bars more easily visible.

Although the time scroll bar has a minimum and maximum time, the Gantt sheet can display
dates before or after this minimum and maximum scrolling time. Clicking the scroll bar
arrows always allows scrolling in time before and after the minimum and maximum values.

When the Gantt sheet is scrolled in time with the horizontal scroll bar, the new time period is
instantaneously displayed in the Gantt sheet at every mouse drag. You can change this
behavior by setting the InstantTimeScrolling property to false. In this case, the new time
period is displayed only when the mouse is released.

The GanttSheet class inherits from the TimeControl class, which is the base class for
controls that display information based on time. The TimeControl class defines the first
visible time of the control as well as the visible duration of time in the control. For more

Property Description

FirstVisibleTime Gets or sets the first visible time of the Gantt Sheet.

VisibleDuration Gets or sets the visible duration of the Gantt Sheet.

LastVisibleTime Gets or sets the last visible time of the Gantt Sheet.

VisibleTimeInterval Gets or sets the time interval displayed by the Gantt sheet in
one single operation.
132 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Scheduling Data using Gantt Sheets
information on this class and to learn how to synchronize several controls that display time,
see Displaying Time-based Information.

Hit Testing in the Gantt Sheet Controls

If you need to create custom behavior in a Gantt sheet, you will need to get information on
the Gantt sheet at a specific location on the screen. You can do this with the HitTest method.
Calling this method returns an instance of the HitTestInfo structure that gives the following
information:

The following table explains the HitTestType values:

Here is a small C# example that shows an event handler that handles the Mouse down event
of an ActivitySheet instance and checks whether a double-click occurs on an activity:

private void OnActivitySheetMouseDown(object sender, MouseEventArgs e)
{
 ActivitySheet sheet = (ActivitySheet)sender;
 if (e.Clicks == 2)
 {
 GanttSheet.HitTestInfo info = sheet.HitTest(new Point(e.X, e.Y));
 if (info.Type == GanttSheet.HitTestType.Activity)

Property Description

Row The Row under the specified point or -1 if the point is in the
area of the sheet that does not contain rows.

Date The date under the specified point.

Constraint The constraint under the specified point or null (Nothing in
Visual Basic®).

Reservation The reservation under the specified point or null (Nothing in
Visual Basic).

Activity The activity under the specified point or null (Nothing in Visual
Basic).

Type One of the HitTestType values. The values are explained in the
next table.

HitTestType values Description

None The background of the sheet.

Activity An activity is located at the specified point.

Constraint A constraint is located at the specified point.

Reservation A reservation is located at the specified point.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 133

Creating Custom Gantt Representations
 {
 // double click occurs on activity
 }
 }
}

Using Time Scales

The TimeScale control displays a scale of time in one, two, or three rows.

In This Section

Introducing the Time Scale Class

Describes the TimeScale class.

Modifying the Appearance of the Time Scale

Describes the properties for customizing the appearance of a time scale.

Using the Predefined Behavior of Time Scales

Describes the predefined behavior of a time scale.

Controlling the Displayed Time Interval

Describes how to control the way the time interval is displayed in a time scale.

Customizing Time Scale Rows

Describes how to create a customized time scale.

Synchronizing a Time Scale and a Time Grid

Describes how to ensure that a time scale is synchronized with time grids.

Related Section

Displaying Time-based Information

Describes the base class for displaying time-based information.

Introducing the Time Scale Class

The TimeScale control displays a scale of time in one, two, or three rows. A Time Scale is
implemented by the class TimeScale in the ILOG.Views.Gantt.Windows.Forms namespace.
The following illustration shows a time scale.
134 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using Time Scales
By default, the time scale automatically adjusts the information displayed in each row when
the displayed time period changes.

The TimeScale class can also be used as a means of navigating in time. For example,
double-clicking in a time period zooms the time scale to the period. Thus, when this control
is connected to other controls that display time-based information, it can be used as a time
scroll bar for those controls.

Modifying the Appearance of the Time Scale

The TimeScale class defines several properties for changing its appearance.

Color properties

Font Property

The Font property defines the font used to draw text in the time scale.

Row Policy

By default, a time scale displays two rows and automatically updates the ticks and the labels
of the scale, depending on the time period that is displayed. You can change this behavior by
changing the row policy of the time scale with the RowPolicy property.

The RowPolicy property can take the values defined in the TimeScaleRowPolicy
enumeration. This enumeration defines the following row policies:

Property Description

BackColor The color used for the background of rows in the time scale.

ForeColor The color of text in the sheet.

Enumeration Member Description

OneRow The time scale displays one row and automatically adjusts the
ticks to the displayed time interval.

TwoRows The time scale displays two rows and automatically adjusts the
ticks to the displayed time interval.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 135

Creating Custom Gantt Representations
Miscellaneous Appearance Properties

Using the Predefined Behavior of Time Scales

Panning by Using the Mouse Pointer

The time scale can be panned using the mouse pointer by clicking the time scale and
dragging the mouse.

You can disable this behavior by setting the CanPan property to false.

When the time scale is panned with the mouse pointer, the controls that are synchronized in
time with this time scale also pan at every mouse-move event. If you want the scrolling of
controls connected to the time scale to take place only when the mouse pointer is released,
you can set the InstantTimeScrolling property of the TimeScale class to false.

Zooming Time In and Out

Double-clicking a time period in the time scale zooms the time scale to the time period.
When the SHIFT key is pressed, a double-click zooms the time scale out.

Another way of zooming to a specific period of time is to press the CONTROL key, click a
start date, and drag the mouse to an end date. When the mouse is released, the time scale
zooms to the specified period.

You can disable this behavior by setting the CanZoom property to false.

ThreeRows The time scale displays three rows and automatically adjusts
the ticks to the displayed time interval.

Manual You define the number of rows; the adjustment of ticks to the
displayed time period must be done manually. See
Customizing Time Scale Rows.

Property Description

FlatStyle The flatness style of the control.

BorderStyle The style of the border of the control.

AutoSize Indicates whether the time scale automatically computes its
height based on the font and the number of rows.
136 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using Time Scales
Controlling the Displayed Time Interval

The TimeScale class defines the following properties for controlling how the time interval is
displayed:

The TimeScale class inherits from the TimeControl class, which is the base class for controls
that display information based on time. The TimeControl class defines the first visible time
of the control, as well as the visible duration of time in the control. For more information on
this class and to learn how to synchronize several controls that display time, see Displaying
Time-based Information.

Customizing Time Scale Rows

The default behavior of the TimeScale control is to compute automatically the information
displayed in each row when the zoom level changes. You can customize or completely
change this default behavior.

What you can do is based on the value of the RowPolicy property. The RowPolicy property
can take the values defined in the TimeScaleRowPolicy enumeration. When the row policy
is not TimeScaleRowPolicy.Manual, then the TimeScale will contain one, two, or three
rows that will be automatically updated when the displayed time period changes. In this
case, after the rows have been updated by the TimeScale, the TimeScale class raises the
AdjustRows event. You can add an event handler to this event to modify some properties of
the rows. Here is a small example that sets the color of text of the first row to white:

// Add an event handler to be notified when the time scale adjusts its rows.
timeScale.AdjustRows += new EventHandler(AdjustTimeScaleRows);

// The event handler
private void AdjustTimeScaleRows(object sender, EventArgs e)
{
 TimeScale timeScale = (TimeScale)sender;
 timeScale.Rows[0].TextColor = Color.White;
}

When the row policy is not Manual, then you normally do not change the time unit
displayed in each row. This time unit is computed by the time scale to be adapted to the
displayed time period of the time scale.

Property Description

FirstVisibleTime Gets or sets the first visible time of the Time Scale.

VisibleDuration Gets or sets the visible duration of the Time Scale.

LastVisibleTime Gets or sets the last visible time of the Time Scale.

VisibleTimeInterval Gets or sets the time interval displayed by the Time Scale in
one single operation.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 137

Creating Custom Gantt Representations
If you want to compute the time unit displayed by each row, use the row policy
TimeScaleRowPolicy.Manual. When you use this policy, you must create the rows of the
time scale and add them to the row collection (TimeScale.Rows). A row of the time scale is
an instance of the TimeScaleRow class. You can then decide how many rows you want to
display. Then, you must adjust the time unit displayed in each row manually by adding an
event handler to the AdjustRows event.

Synchronizing a Time Scale and a Time Grid

When the TimeScale is used in synchronization with another control that displays time
information, such as the LoadChart, it is advantageous to synchronize the vertical grid lines
of the control, the time grid, with the ticks of the time scale.

The TimeGridCollection class contains the Synchronize method for performing this
synchronization. This method must be called when the rows of the time scale have been
changed. Assuming that timeScale is an instance of TimeScale and that loadChart is an
instance of LoadChart, use the following C# code:

// Add an event handler to be notified when the time scale adjusts its rows.
timeScale.RowsChanged += new EventHandler(TimeScaleRowsChanged);

// The event handler
private void TimeScaleRowsChanged(object sender, EventArgs args)
{
 loadChart.TimeGrids.Synchronize(timeScale.Rows);
}

Displaying Time-based Information

IBM® ILOG® Gantt for .NET provides several controls that display information over time.
These controls inherit from the class TimeControl, the base class for controls that display
information over time. This control regroups all the functionalities required to display time-
based information, such as converting dates to and from pixels on the screen.

In IBM ILOG Gantt for .NET, the following controls inherit from TimeControl to display
time-based information:

◆ The GanttSheet class and its subclasses for displaying the duration of activities along a
time scale.

◆ The LoadChart class for displaying the load of a resource along a time scale.

◆ The TimeScale class for displaying a scale of time.
138 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Time-based Information
Controlling the Displayed Time Interval

The TimeControl class defines the following properties for controlling the displayed time
interval:

In addition, there are methods for scrolling or zooming in time:

Property Description

FirstVisibleTime Gets or sets the first visible time.

VisibleDuration Gets or sets the visible duration.

LastVisibleTime Gets or sets the last visible time.

VisibleTimeInterval Gets or sets the time interval displayed by the TimeControl
class in one single operation.

Method Description

EnsureVisible To change the first visible time, so that the specified time is in
the displayed area.

ScrollLeft To scroll time to the left.

ScrollRight To scroll time to the right.

ZoomIn To zoom in on the time.

ZoomOut To zoom out.

SetTimeInterval To change the zoom level, so that the time control displays the
specified time interval. These methods can be used to zoom
the time control with an animation feedback. To get an
animation feedback when zooming, use the
ZoomAnimationSteps property. When the value of this property
is not zero, some intermediate steps between the current
displayed time interval and the desired time interval are
computed. The time control displays these intermediate steps
to give a sense of animation.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 139

Creating Custom Gantt Representations
Conversion from Time to Pixels and from Pixels to Time

The TimeControl class can convert a DateTime instance to positions on the control and back
again:

Time Rectangle

A TimeControl object defines a part of its client area where the time information is
displayed. This area is called the time rectangle. By default, this area is the client area, but it
may be necessary to draw time-based information on a part of the control only. For example,
the LoadChart class displays the load of the resources in a chart; the legend displayed by the
load chart is not part of the time rectangle.

The time rectangle can be modified in a subclass by overriding the TimeRectangle property
of the TimeControl class. You can also modify the time rectangle by setting margins around
the client area. These margins are defined by the TimeMargins property of the TimeControl
class.

Synchronizing the Time of Several Controls

The way a TimeControl instance displays time information is controlled by an object that
implements the ITimeLine interface. This object defines the first visible time of the
TimeControl instance, as well as the way to convert time information to pixels on the
screen. This object is called the time line of the TimeControl. To be able to synchronize
several controls that display time information, each control must share the same time line.

You can change the time line of a TimeControl instance using the TimeLine property.

For example, to synchronize a TimeScale and a LoadChart, both subclasses of the
TimeControl class, a single association is needed:

TimeScale timeScale = new TimeScale();
LoadChart loadChart = new LoadChart();
loadChart.TimeLine = timeScale;

Method Description

GetTime To compute the time that corresponds to the x coordinate of the
control.

GetLocation To compute the x coordinate that corresponds to the specified
time.

Important: The TimeControl class itself implements the ITimeLine interface, so an
instance of the TimeControl class can be used as a time line.
140 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using Time Lines
You can also synchronize two controls by creating a time line and assigning it to several
controls:

ITimeLine linearTimeLine = new LinearTimeLine();
TimeScale timeScale1 = new TimeScale();
TimeScale timeScale2 = new TimeScale();
timeScale1.TimeLine = linearTimeLine;
timeScale2.TimeLine = linearTimeLine;

How it Works

The load chart and the time scale share the same time line. Thus, any modification of the
first visible time or zoom level of one of the controls applies to both controls.

Note that the ScheduleChart and GanttChart classes also implement the ITimeLine
interface, although they do not inherit from the TimeControl class. Thus, these two controls
can also be used as a time line.

Using Time Lines

A time line is an object responsible for converting time information to pixels on the screen.
Each control that display time-based information uses a time line to convert DateTime
objects into control client-coordinates.

The ITimeLine interface

A time line is represented by the ITimeLine interface. It is defined as follows:

public interface ITimeLine {
 event TimeLineChangeEventHandler TimeLineChanging;
 event TimeLineChangeEventHandler TimeLineChanged;
 DateTime FirstVisibleTime { get; set; }
 bool Adjusting { get; set; }
 double GetUnits(DateTime startTime, DateTime endTime);
 DateTime GetTime(DateTime reference, double units);
 void SetTimeInterval(DateTime startTime, DateTime endTime, float width);
}

The ITimeLine defines the first visible time of a control through the FirstVisibleTime
property. When the FirstVisibleTime property is about to change, a TimeLineChanging
event is raised. When the FirstVisibleTime has changed, a TimeLineChanged event is
raised. When the FirstVisibleTime changes a lot, for example, when the application user
adjusts the first visible time with a scroll bar, the value of the Adjusting property is true.

The ITimeLine also defines the conversion between time and pixels on the screen. This
conversion defines the number of pixels that a time period occupies on the screen. Thus, it
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 141

Creating Custom Gantt Representations
defines the time zoom level. The following methods of the ITimeLine interface allow you
to control this conversion:

When the conversion method is about to change, a TimeLineChanging event is raised.
When the conversion has changed, a TimeLineChanged event is raised.

The LinearTimeLine class

In general, you do not have to implement the ITimeLine interface. A default
implementation of the ITimeLine interface is provided by the class LinearTimeLine.

The LinearTimeLine is an implementation of the ITimeLine interface that does a linear
conversion between dates and pixels. You need only to implement an ITimeLine if you need
a representation of time where some time periods do not have the same size on the screen as
others. For example, if you want to hide some days. To see how to implement the
ITimeLine interface look at the example located in:

<install-dir>/Samples/QuickStart/TimeScale

Listening to Time Line Changes

The following C# code fragment shows how to listen for the modification of the first visible
time and zoom level of a TimeScale control:

// Add an event handler to be notified when the time line has changed.
TimeScale timeScale = new TimeScale();
timeScale.TimeLineChanged += new TimeLineChangeEventHandler(TimeLineChanged);

// The event handler
private void TimeLineChanged(object sender, TimeLineChangeEventArgs args) {
 switch (args.EventType) {
 case TimeLineEventType.FirstVisibleTimeChanged:
 // the first visible time has changed
 break;
 case TimeLineEventType.ConvertionChanged:
 // the zoom level has changed, the first visible time may
 // also have changed.
 break;
 }
}

Method Description

GetUnits To get the distance in pixels between two dates.

GetTime To convert the specified distance in pixels to a date.

SetTimeInterval To change the conversion method of the ITimeLine, so that the
period displayed between two given dates will occupy the
specified width.
142 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using Time Scrollbars
Using Time Scrollbars

The TimeScrollBar class is a subclass of the HScrollBar class. It allows to scroll the time of
controls that implement the ITimeScrollable interface. Most of the controls displaying time-
based information implement the ITimeScrollable interface.

The ITimeScrollable Interface

The ITimeScrollable interface extends the ITimeLine interface by adding the concept of
visible size. Here is the definition of the interface:

public interface ITimeScrollable : ITimeLine {
 event EventHandler VisibleWidthChanged;
 int VisibleWidth { get; }
}

For details on how to use the ITimeLine interface, see Using Time Lines.

Connecting a TimeScrollBar to a Control

To connect a TimeScrollBar to a control that implements the ITimeScrollable interface,
use the TimeScrollBar.TimeScrollable property. Once connected, the scroll bar listens to
events raised by the ITimeScrollable instance and update itself accordingly. For example, to
connect a scroll bar to a LoadChart, use the following C# code:

LoadChart loadChart = new LoadChart();
TimeScrollBar scrollbar = new TimeScrollBar();
scrollbar.TimeScrollable = loadChart;

Setting the Time Bounds of a TimeScrollBar

The ITimeScrollable interface do not specify the bounds of the interval in which the user
will navigate using the scroll bar. Instead, use the MinimumTime and MaximumTime
properties of the TimeScrollBar class to set the time bounds. The following C# code shows
how to set the time bounds of the scroll bar to a one year time interval starting today:

LoadChart loadChart = new LoadChart();
TimeScrollBar scrollbar = new TimeScrollBar();
scrollbar.TimeScrollable = loadChart;
scrollbar.MinimumTime = DateTime.Today;
scrollbar.MaximumTime = DateTime.Today.AddYear(1);

Note: The LoadChart class is a subclass of the TimeControl class that implements the
ITimeScrollable interface.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 143

Creating Custom Gantt Representations
Showing Tooltips

When using the scroll bar to modify the time line, a tooltip displays the current time. To
enable or disable the tooltip, use the ShowTooltip property of the TimeScrollBar class.

To change the format of the date displayed by the tooltip, use the DateFormat property of the
TimeScrollBar class.

Setting Time Margins

A margin can be added around the minimum and maximum time. This margin is defined in
pixels by the TimeMargin property of the TimeScrollBar class.

Instant Time Scrolling

When the scroll bar is scrolled by dragging its slider, the connected control is
instantaneously updated to reflect the new visible time interval. You can change this
behavior by setting the InstantTimeScrolling property to false. In this case, the new time
period will be displayed only when the mouse is released.

Note: Setting time bounds does not prevent the user from scrolling out of these time bounds
by clicking the scroll bar arrows. If you want to stricly limit the time range in which the
user will navigate, you can use the ITimeLine.TimeLineChanging event to control the time
line.
144 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Reading and Writing Scheduling Data
Using XML

IBM® ILOG® Gantt for .NET allows you to serialize and deserialize scheduling data to and
from Scheduling Data Exchange Language (SDXL) files. This serialization and
deserialization is done through the GanttModelXmlSerializer class.

The GanttModelXmlSerializer class is located in the ILOG.Views.Gantt.Data namespace.
It contains several methods to serialize or deserialize scheduling data, depending on what
you need to do. The GanttModelXmlSerializer class is independent of the Gantt data
model implementation. Therefore, it can be used with any implementation.

In This Section

Overview of the SDXL Language

Introduces the SDXL language and its applications.

Serializing Scheduling Data to SDXL

Explains how to serialize scheduling data to an SDXL stream.

Deserializing Scheduling Data from SDXL

Explains how to deserialize an SDXL stream into scheduling data.

Customizing XML Serialization or Deserialization

Explains how to customize the serialization and deserialization of scheduling data.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 145

Reading and Writing Scheduling Data Using XML
Related Sections

Creating and Using Gantt Data Models

Introduces the Gantt data model, that is, the classes that contain the scheduling data
you want to display.

Working with ADO.NET

Describes how to use Gantt data models with ADO.NET.

Overview of the SDXL Language

SDXL is an application of World Wide Web Consortium (W3C) XML. It is designed to meet
the following needs:

◆ Serializing or deserializing the scheduling data of a Gantt data model to save scheduling
data to SDXL files or to load the saved scheduling data from SDXL files.

◆ Exchanging scheduling data with other programs developed with or without
IBM® ILOG® Gantt for .NET.

Since SDXL is an application of W3C XML, it can be read easily by other programs that
are capable of reading XML files. It can also be translated into other formats by using
technologies such as XSL.

Scenarios for Using SDXL

Since SDXL is a flexible XML application, the scope for using it is extensive. To have a
general idea, imagine the following scenarios:

1. You use an IBM ILOG Gantt for .NET program to manage your projects. The program
places a heavy demand on system resources, because it is connected to a database and
uses the database to store the scheduling data. SDXL can help distribute this scheduling
data. You can save your schedules in SDXL files and distribute them by means of a
lightweight IBM ILOG Gantt for .NET program that does not need database
connections.

2. You use an IBM ILOG Gantt for .NET program to manage your schedules. You can save
your schedules in SDXL files. An optimization program loads the SDXL files and runs
optimization algorithms to make your schedules more efficient. Then, you reload the
optimized schedules by using your IBM ILOG Gantt for .NET program to visualize
them.

SDXL Example

<?xml version="1.0" encoding="utf-8"?>
146 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Serializing Scheduling Data to SDXL
<schedule version="5.5" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="sdxl.xsd">
 <title>Scheduling Data</title>
 <desc>ILOG Views Scheduling Data Exchange Language</desc>
 <resources>
 <resource id="R0" name="Gate 1" quantity="1" />
 <resource id="R1" name="Gate 2" quantity="1" />
 <resource id="R2" name="Gate 3" quantity="1" />
 <resource id="R3" name="Gate 4" quantity="1" />
 <resource id="R4" name="Gate 5" quantity="1" />
 <resource id="R5" name="Gate 6" quantity="1" />
 <resource id="R6" name="Gate 7" quantity="1" />
 <resource id="R7" name="Gate 8" quantity="1" />
 <resource id="R8" name="Gate 9" quantity="1" />
 <resource id="R9" name="Gate 10" quantity="1" />
 </resources>
 <activities dateFormat="d-M-yyyy H:m:s">
 <activity id="A0" name="BA-501" start="13-11-2003 8:45:0" end="13-11-2003
9:50:0" />
 <activity id="A1" name="BA-332" start="13-11-2003 11:0:0" end="13-11-2003
12:0:0" />
 <activity id="A2" name="BA-228" start="13-11-2003 13:0:0" end="13-11-2003
17:0:0" />
 <activity id="A3" name="BA-22" start="13-11-2003 9:0:0" end="13-11-2003
11:0:0" />
 <activity id="A4" name="BA-222" start="13-11-2003 12:0:0" end="13-11-2003
14:0:0" />
 <activity id="A5" name="BA-405" start="13-11-2003 12:0:0" end="13-11-2003
14:0:0" />
 <activity id="A6" name="BA-408" start="13-11-2003 15:0:0" end="13-11-2003
17:0:0" />
 </activities>
 <constraints />
 <reservations>
 <reservation resource="R8" activity="A6" />
 <reservation resource="R6" activity="A4" />
 <reservation resource="R3" activity="A5" />
 <reservation resource="R4" activity="A3" />
 <reservation resource="R0" activity="A0" />
 <reservation resource="R1" activity="A1" />
 <reservation resource="R2" activity="A2" />
 </reservations>
</schedule>

See Also XML Schema for the SDXL (Scheduling Data eXchange Language)

Serializing Scheduling Data to SDXL

XML serialization of scheduling data is the process of converting this scheduling data to an
SDXL file. You can choose to serialize a whole model or part of a model only, depending on
your needs.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 147

Reading and Writing Scheduling Data Using XML
Serializing a Gantt Data Model

To serialize an entire data model, open a stream and serialize the model in it. In the
following C# code fragment, the model variable refers to a Gantt data model, that is, a class
that implements the IGanttModel interface.

StreamWriter writer = new StreamWriter("file.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
serializer.Serialize(writer, model);
writer.Close();

Serializing Activities

To serialize only some activities of a model, use the
GanttModelXmlSerializer.SerializeActivities methods. In the following C# code fragment,
assume that the activities variable refers to an array of activities, that is, objects that
implement the IActivity interface. The activities should be located in the same Gantt data
model.

StreamWriter writer = new StreamWriter("activities.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
serializer.SerializeActivities(writer, activities);
writer.Close();

Serializing Resources

To serialize only some resources of a model, use the
GanttModelXmlSerializer.SerializeResources methods.

In the following C# code fragment, assume that the resources variable refers to an array of
resources, that is, objects that implement the IResource interface. The resources should be
located in the same Gantt data model.

StreamWriter writer = new StreamWriter("resources.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
serializer.SerializeResources(writer, resources);
writer.Close();

Serializing Constraints

To serialize only some constraints of a model, use the
GanttModelXmlSerializer.SerializeConstraints methods. In the following C# code fragment,
assume that the constraints variable refers to an array of constraints, that is, objects that

Note: The constraints that have source and destination activities located in the activities
array will also be serialized.
148 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Deserializing Scheduling Data from SDXL
implement the IConstraint interface. The constraints should be located in the same Gantt
data model.

StreamWriter writer = new StreamWriter("constraints.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
serializer.SerializeConstraints(writer, constraints);
writer.Close();

Serializing Reservations

To serialize only some reservations of a model, use the
GanttModelXmlSerializer.SerializeReservations methods. In the following C# code
fragment, assume that the reservations variable refers to an array of reservations, that is,
objects that implement the IReservation interface. The reservations should be located in the
same Gantt data model.

StreamWriter writer = new StreamWriter("reservations.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
serializer.SerializeReservations(writer, reservations);
writer.Close();

See Also Deserializing Scheduling Data from SDXL

Deserializing Scheduling Data from SDXL

XML deserialization of an SDXL file is the process of converting the SDXL file to
scheduling data. You can choose to deserialize an entire SDXL file or part of an SDXL file
only, depending on your needs.

Deserializing a Gantt Data Model

To deserialize an SDXL file into a data model, create a new model, open a stream on the
SDXL file, and then deserialize the file into the model.

IGanttModel model = new SimpleGanttModel();
StreamReader reader = new StreamReader("file.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
serializer.Deserialize(reader, model);
reader.Close();

Note: If the model is not empty to start with, the scheduling data read from the SDXL file
will be appended to the existing model.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 149

Reading and Writing Scheduling Data Using XML
Deserializing Activities

To deserialize only the activities of an SDXL file, use the
GanttModelXmlSerializer.DeserializeActivities methods.

In the following C# code fragment, assume that the constraints variable refers to an
array of constraints, that is, objects that implement the IConstraint interface.

IGanttModel model = new SimpleGanttModel();
StreamReader reader = new StreamReader("file.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
IActivities[] activities = serializer.DeserializeActivities(reader,
model,constraints);
reader.Close();

Deserializing Resources

To deserialize only the resources of an SDXL file, use the
GanttModelXmlSerializer.DeserializeResources methods.

IGanttModel model = new SimpleGanttModel();
StreamReader reader = new StreamReader("file.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
IResource[] resources = serializer.DeserializeResources(reader, model);
reader.Close();

Deserializing Constraints

To deserialize only the constraints of an SDXL file, use the
GanttModelXmlSerializer.DeserializeConstraints methods.

IGanttModel model = new SimpleGanttModel();
StreamReader reader = new StreamReader("file.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
IConstraint[] constraints = serializer.DeserializeConstraints(reader, model);
reader.Close();

Note: The activities and constraints returned are not added to the model. You need to add
them yourself.

Note: The resources returned are not added to the model. You need to add them yourself.

Note: The constraints returned are not added to the model. You need to add them yourself.
150 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Customizing XML Serialization or Deserialization
Deserializing Reservations

To deserialize only the reservations of an SDXL file, use the
GanttModelXmlSerializer.DeserializeReservations methods.

IGanttModel model = new SimpleGanttModel();
StreamReader reader = new StreamReader("file.sdxl");
GanttModelXmlSerializer serializer = new GanttModelXmlSerializer();
IReservation[] reservations = serializer.DeserializeReservations(reader,
model);
reader.Close();

See Also Serializing Scheduling Data to SDXL

Customizing XML Serialization or Deserialization

The GanttModelXmlSerializer class provides the functionalities for serializing and
deserializing basic scheduling data. If you customize the Gantt data model, you might need
to customize the way scheduling data is serialized.

Adding Properties to Scheduling Entities

If your customized Gantt data model extends the default model only by adding .NET
properties to the scheduling entities (activities, resources, constraints, or reservations), the
new public properties are automatically serialized or deserialized by the library.

For example, if you added a .NET property called Priority to the activities of your custom
model, the property will be saved automatically. The C# code of the custom activity class
could look like:

public enum ActivityPriority
{
 Undefined,
 Low,
 Medium,
 High
}

public class CustomActivity : SimpleActivity
{
 ...
 [DefaultValue(ActivityPriority.Undefined)]
 public ActivityPriority Priority
 {
 get

Note: The reservations returned are not added to the model. You need to add them yourself.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 151

Reading and Writing Scheduling Data Using XML
 {
 ...
 }
 set
 {
 ...
 }
 }
 ...
}

You may want to prevent a specific property from being serialized. In this case, you must
mark the property with the GanttPropertyAttribute. The C# code could look like:

public class CustomActivity : SimpleActivity
{
 ...
 [GanttProperty(false)]
 public int DummyProperty
 {
 get
 {
 ...
 }
 set
 {
 ...
 }
 }
 ...
}

The complete C# code can be found in the sample CustomGantt located in:

<install-dir>\Samples\QuickStart\CustomGantt\cs\CustomGanttModel.cs

Customizing the SDXL Language

If the model has been customized in a way that cannot be represented by adding .NET
properties, you can subclass the GanttModelXmlSerializer to control XML serialization or
deserialization.

The GanttModelXmlSerializer class uses a DOM implementation, which makes
customization easier. Each method that serializes scheduling data has an XML element as its
first parameter. For example, the method that serializes an activity is:

protected virtual void SerializeActivity(XmlElement element, IActivity
activity, Context context);

Note: The DefaultValue attribute is used to prevent serialization if the priority is the
default priority.
152 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Customizing XML Serialization or Deserialization
When an activity is serialized, this method is called with element as the node of the DOM
where activity is serialized. The third parameter, context, provides information on the
current serialization.

If you need to customize the serialization of activities, override this method in a subclass of
GanttModelXmlSerializer, call the base implementation, and modify the DOM using the
given element. The C# code could look like:

protected override void SerializeActivity(XmlElement element, IActivity
activity, Context context)
{
 base.SerializeActivity(element, activity, context);
 // Serialize my own data into the element node
}

You must also override the method responsible for deserializing an activity or you will not
be able to get your custom information back through deserialization. The method that
deserializes an activity is:

protected virtual IActivity DeserializeActivity(XmlElement element, Context
context);

To retrieve the information stored during serialization, browse the activity node to get
your information back. The C# code could look like:

protected override IActivity DeserializeActivity(XmlElement element, Context
context)
{
 IActivity activity = DeserializeActivity(element, context);
 // Browse the element node of the DOM and modify activity accordingly.
}

The same customization can be achieved for resources, constraints, and reservations. See the
complete API of GanttModelXmlSerializer for details.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 153

Reading and Writing Scheduling Data Using XML
154 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Working with ADO.NET

ADO.NET provides a rich set of components for creating distributed, data-sharing
applications. IBM® ILOG® Gantt for .NET provides several classes that ease the
integration with ADO.NET.

In This Section

Overview of the Architecture

Gives an overview of the architecture used to combine IBM ILOG Gantt for .NET
and ADO.NET.

Using Gantt Model Adapters

Describes how to use a Gantt model adapter, a class that helps writing bridges
between a Gantt data model and an ADO.NET DataSet.

Using the Generic Gantt Model Adapter

Describes the GenericGanttModelAdapter class, a ready-to-use bridge between an
instance of DataSet and a Gantt data model.

Developing a Custom Gantt Model Adapter

Describes how to create a custom Gantt model adapter to support a user specific
DataSet schema.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 155

Overview of the Architecture

IBM® ILOG® Gantt for .NET provides a way to serialize a Gantt data model in a DataSet
or to deserialize a Gantt data model from a DataSet. The object responsible for this is called
a Gantt Model Adapter. It can be seen as a bridge between a Gantt data model and an
ADO.NET DataSet.

A typical scenario for an application using IBM ILOG Gantt for .NET and a database can
be:

● Read data from the database:

Fill a DataSet using an ADO.NET data adapter.

Use this DataSet to populate a Gantt data model using a Gantt model adapter.

● Modify the Gantt data model:

Use the Gantt data model API, or the controls available in IBM ILOG Gantt for .NET
to modify the Gantt data model.

● Write back data to the database:

Use the modified Gantt data model to fill the DataSet using the Gantt model adapter.

Update the database using the DataSet and an ADO.NET data adapter.

The following figure illustrates this architecture:

See Also The Data Model | Using Gantt Model Adapters
156 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using Gantt Model Adapters

A Gantt model adapter is a bridge between an ADO.NET DataSet and a Gantt data model.
It’s responsible for updating a Gantt data model from a DataSet, and for filling a DataSet
from a Gantt data model.

A Gantt model adapter provides this bridge by mapping the Fill method, which changes the
data in the DataSet to match the data in the Gantt data model, and Update, which changes
the data in the Gantt data model to match the data in the DataSet.

The main class for Gantt model adapters is the GenericGanttModelAdapter class. This class
does not make assumption on datasets structure, and thus can be used with almost any kind
of DataSet. The only requirement for datasets is to store data representing the different
Gantt entities (activities, resources, constraints, or reservations) into different tables.

The GenericGanttModelAdapter class can be configured to map the table and column names
of the dataset to the Gantt data model.

In This Section

Updating a Gantt Data Model from a DataSet

Explains how to update a Gantt data model from a DataSet.

Filling a DataSet from a Gantt Data Model

Explains how to fill a Gantt DataSet with a Gantt data model.

Related Sections

Using the Generic Gantt Model Adapter

Describes the GenericGanttModelAdapter class, a ready-to-use bridge between an
instance of DataSet and a Gantt data model.

Updating a Gantt Data Model from a DataSet

The Update method of the GenericGanttModelAdapter is called to resolve changes from a
DataSet back to the Gantt data model.

When you call the Update method, the Gantt model adapter fills the Gantt data model using
the rows located in the DataSet. Note that the Gantt model adapter clears the Gantt data
model contents before starting the operation.

The following example demonstrates how to perform updates to a Gantt data model:

// Create a new dataset
Dataset dataset = new DataSet();
DataTable activities = new DataTable("Activities");
dataset.Tables.Add(activities);
activities.Columns.AddRange(new DataColumn[] {
 new DataColumn("ActivityID", typeof(string)),
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 157

 new DataColumn("ActivityName", typeof(string)),
 new DataColumn("ActivityStartTime", typeof(DateTime)),
 new DataColumn("ActivityEndTime", typeof(DateTime))
});

// Fill the dataset using a data adapter...
// The code is not detailed here
// as it’s usually generated by the IDE.

// Create the Gantt data model and configure the adapter.
IGanttModel model = new SimpleGanttModel();
GenericGanttModelAdapter adapter = new GenericModelAdapter(model);
adapter.ActivitiesTableName = "Activities";
adapter.ActivityIDColumnName = "ActivityID";
adapter.ActivityProperties.AddRange(new
GenericGanttModelAdapter.ColumnMapping[] {
 new GenericGanttModelAdapter.ColumnMapping("ActivityName", "Name"),
 new GenericGanttModelAdapter.ColumnMapping("ActivityStartTime",
"StartTime"),
 new GenericGanttModelAdapter.ColumnMapping("ActivityEndTime", "EndTime")
});

// Update the Gantt data model using the Gantt model adapter.
adapter.Update(dataset);

Filling a DataSet from a Gantt Data Model

The Fill method of the GenericGanttModelAdapter class is used to populate a DataSet from
a Gantt data model. After the DataSet has been filled, it can be used like any other
ADO.NET DataSet. In particular, it can be stored in a database.

The Fill method can be called several times on the same DataSet; the DataSet is updated
according to the changes made to the Gantt data model since the last call to Fill. For
example, the following C# code creates a Gantt model with three activities. Then, the model
is used to fill a DataSet:

// Create the model and the activities
IGanttModel model = new SimpleGanttModel();
IActivity a1 = model.NewActivity();
a1.Name = "A1";
IActivity a2 = model.NewActivity();
a2.Name = "A2";
IActivity a3 = model.NewActivity();
a3.Name = "A3";

Note: When the Gantt model is updated using the adapter, errors can be reported if the type
of the objects in the dataset does not match the types of the Gantt model objects. For
example, if a dataset column type is int whereas the type of the corresponding Gantt model
property is string, there will be a mismatch. To fix this problem, you can listen to the
GenericGanttModelAdapter.RowUpdated event, and try to make the conversion yourself
in the event handler.
158 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

model.Activities.AddRange(new IActivity[] { a1, a2, a3 });

// Create a new dataset to store the Gantt model
Dataset dataset = new DataSet();
DataTable activities = new DataTable("Activities");
dataset.Tables.Add(activities);
activities.Columns.AddRange(new DataColumn[] {
 new DataColumn("ActivityID", typeof(string)),
 new DataColumn("ActivityName", typeof(string)),
 new DataColumn("ActivityStartTime", typeof(DateTime)),
 new DataColumn("ActivityEndTime", typeof(DateTime))
});
// Create and configure the adapter.
GenericGanttModelAdapter adapter = new GenericModelAdapter(model);
adapter.ActivitiesTableName = "Activities";
adapter.ActivityIDColumnName = "ActivityID";
adapter.ActivityProperties.AddRange(new
GenericGanttModelAdapter.ColumnMapping[] {
 new GenericGanttModelAdapter.ColumnMapping("ActivityName", "Name"),
 new GenericGanttModelAdapter.ColumnMapping("ActivityStartTime",
"StartTime"),
 new GenericGanttModelAdapter.ColumnMapping("ActivityEndTime", "EndTime")
});

// Populate the dataset
adapter.Fill(dataset);

The table of the DataSet that represents the activities now contains three rows. At this point,
for example, the DataSet can be used with a DataAdapter to update a database. For details
on how to achieve this, see Accessing Data with ADO.NET in the .NET Framework
documentation.

The following C# code adds a new activity to the Gantt data model, modifies an existing
activity, and deletes another activity. Then, the DataSet is filled again:

// Add a new activity
IActivity a4 = model.NewActivity();
a4.Name = "A4";
model.Activities.Add(a4);

// Modify a1
a1.Info = "Info on A1";

// And delete a3
model.Activities.Remove(a3);

// Populate the dataset
adapter.Fill(dataset);
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 159

The table of the DataSet that represents the activities now contains four rows. The following
table shows the state of each row:

adapter.Update(dataset);

Using the Generic Gantt Model Adapter

IBM® ILOG® Gantt for .NET provides a ready-to-use Gantt model adapter through the
GenericGanttModelAdapter class. The GenericGanttModelAdapter class can be
configured to be used in many scenarios by mapping table and columns of a DataSet on the
Gantt data model.

The GenericGanttModelAdapter class provides a straightforward mechanism to map a
dataset on a Gantt data model by defining several properties that let the adapter know the
dataset structure.

Activity Related Properties

The following table shows the properties related to activities:

Row Row State

A1 Modified

A2 Unchanged

A3 Deleted

A4 Added

Note: When the dataset is filled using the adapter, errors can be reported if the type of the
objects in the Gantt model does not match the types of the objects in the dataset . For
example, if a dataset column type is int whereas the type of the corresponding Gantt model
property is string, there will be a mismatch. To fix this problem, you can listen to the
GenericGanttModelAdapter.RowFilled event, and try to make the conversion yourself in
the event handler.

Method Description

ActivitiesTableName Gets or sets the name of the table for activities.

ActivityIDColumnName Gets or sets the name of the column that contains
activity identifiers in the activities table.
160 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Resource Related Properties

The following table shows the properties related to resources:

Constraint Related Properties

The following table shows the properties related to constraints:

ActivityParentIDColumnName Gets or sets the name of the column that contains
parent activity identifiers in the activities table.

ActivityIndexColumnName Gets or sets the name of the column that contains
the position of an activity relative to its siblings in
the activities table.

ActivityProperties Gets the collection of column mappings for
activities.

Method Description

ResourcesTableName Gets or sets the name of the table for resources.

ResourceIDColumnName Gets or sets the name of the column that contains
resource identifiers in the resources table.

ResourceParentIDColumnName Gets or sets the name of the column that contains
parent resource identifiers in the resources table.

ResourceIndexColumnName Gets or sets the name of the column that contains
the position of a resource relative to its siblings in
the resources table.

ResourceProperties Gets the collection of column mappings for
resources.

Method Description

ConstraintsTableName Gets or sets the name of the table for constraints.

ConstraintFromActivityIDColumnName Gets or sets the name of the column that contains
the identifier of the constraint source activity in
the constraints table.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 161

Reservations Related Properties

The following table shows the properties related to reservations:

Configuring the Adapter using the Wizard

When designing the GenericGanttModelAdapter in Visual Studio, you can use the wizard
available from the smart tags of the adapter. The wizards has four pages, one for each Gantt
model entity, that helps you configure the mapping between the DataSet and the Gantt data
model.

Developing a Custom Gantt Model Adapter

You need to develop a custom Gantt model adapter when the generic Gantt model adapter
cannot be used because the database structure cannot be mapped to the Gantt data model.
This may be the case, for example, if the type of a database column cannot be converted to
the type expected by the corresponding Gantt data property.

To develop a Gantt model adapter, you need to know the structure of the datasets that will be
used with this adapter.

ConstraintToActivityIDColumnName Gets or sets the name of the column that contains
the identifier of the constraint destination activity
in the constraints table.

ConstraintProperties Gets the collection of column mappings for
constraints.

Method Description

ReservationsTableName Gets or sets the name of the table for
reservations.

ReservationActivityIDColumnName Gets or sets the name of the column that contains
the identifier of the reservation activity in the
reservations table.

ReservationResourceIDColumnName Gets or sets the name of the column that contains
the identifier of the reservation resource in the
reservations table.

ReservationProperties Gets the collection of column mappings for
reservations.
162 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

The only requirement for the DataSet structure is to store Gantt entities into different tables.
Furthermore, it is not necessary for a Gantt model adapter to handle each kind of Gantt
entities. For example, if the data located in the database does not contain constraints
information, the Gantt model adapter can skip constraints related operations. To handle a
specific Gantt entity, the Gantt model adapter must implement a specific method that returns
the table of the dataset dedicated to this specific Gantt entity: GetTableForActivities for
activities, GetTableForResources for resources, GetTableForConstraints for constraints,
GetTableForReservations for reservations.

Supporting Activities

To support activities, a Gantt model adapter must implement the following methods:

In addition, the following methods can be overridden to provide optional features:

Method Description

GetTableForActivities Returns the table of the dataset used to store
activities.

GetActivityID Retrieves the activity identifier from the specified
row.

FillActivity Is called to fill a data row using the specified
activity.

UpdateActivity Is called to update an activity using the specified
data row.

Method Description

GetParentActivityID Retrieves the parent activity id from the specified
row. Override this method if the table for activities
handles hierarchical activities, that is, if an activity
can have sub-activities.

GetActivityIndex Retrieves the activity index from the specified
row. Override this method if the table for activities
handles indexes for activities.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 163

Supporting Resources

To support resources, a Gantt model adapter must implement the following methods:

In addition, the following methods can be overridden to provide optional features:

Supporting Constraints

To support constraints, a Gantt model adapter must implement the following methods:

Method Description

GetTableForResources Returns the table of the dataset used to store
resources.

GetResourceID Retrieves the resource identifier from the
specified row.

FillResource Is called to fill a data row using the specified
resource.

UpdateResource Is called to update an resource using the
specified data row.

Method Description

GetParentResourceID Retrieves the parent resource id from the
specified row. Override this method if the table for
resources handles hierarchical resources, that is,
if a resource can have sub-resources.

GetResourceIndex Retrieves the resource index from the specified
row. Override this method if the table for
resources handles indexes for resources.

Method Description

GetTableForConstraints Returns the table of the dataset used to store
constraints.

GetConstraintFromActivityID Retrieves the source activity identifier from the
specified row.

GetConstraintToActivityID Retrieves the destination activity identifier from
the specified row.
164 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Supporting Reservations

To support reservations, a Gantt model adapter must implement the following methods:

FillConstraint Is called to fill a data row using the specified
constraint.

UpdateConstraint Is called to update a constraint using the specified
data row.

Method Description

GetTableForReservations Returns the table of the dataset used to store
reservations.

GetReservationActivityID Retrieves the activity identifier from the specified
row.

GetReservationResourceID Retrieves the resource identifier from the
specified row.

FillReservation Is called to fill a data row using the specified
reservation.

UpdateReservation Is called to update a reservation using the
specified data row.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 165

166 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using the Clipboard to Store Scheduling
Data

IBM® ILOG® Gantt for .NET provides the GanttClipboard class for storing and retrieving
scheduling data to and from the clipboard.

The GanttClipboard class is located in the ILOG.Views.Gantt.Windows.Forms namespace.
It contains several methods to help manage basic clipboard operations, such as copy, cut,
and paste. The data format used inside the clipboard is the SDXL format. The
GanttClipboard class is independent of the Gantt data model implementation. Therefore, it
can be used with any implementation.

In This Section

Storing Scheduling Data in the Clipboard

Explains how to store scheduling data in the clipboard.

Retrieving Scheduling Data from the Clipboard

Explains how to retrieve scheduling data previously stored in the clipboard.

Related Sections

Reading and Writing Scheduling Data Using XML

Describes how to import or export scheduling data into or from a Gantt data model
using XML.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 167

Populating Gantt Data Models

Explains the basic steps for populating a Gantt data model.

Storing Scheduling Data in the Clipboard

The GanttClipboard class is for storing activities and resources in the clipboard in the SDXL
format. A description of the relevant methods available in the GanttClipboard class
follows:

Example

The following C# code sample shows how to put some activities in the clipboard using the
CopyToClipboard method:

// Create a Gantt Data Model
IGantModel model = new SimpleGanttModel();
// Populate it
IActivity a1 = model.NewActivity();
IActivity a2 = model.NewActivity();
model.Activities.AddRange(new IActivity[] { a1, a2 });
// Then copy to the clipboard
GanttClipboard.CopyToClipboard(new IActivity[] { a1, a2 });

Method Action

CopyToClipboard(IActivity[]) Copies activities to the clipboard. The specified
activities are serialized in an SDXL stream and the
stream is copied to the clipboard.

CopyToClipboard(IResource[]) Copies resources to the clipboard. The specified
resources are serialized in an SDXL stream and the
stream is copied to the clipboard.

CutToClipboard(IActivity[]) Cuts activities to the clipboard. The specified
activities are serialized in an SDXL stream and the
stream is copied to the clipboard. Then, the
activities are removed from their model.

CutToClipboard(IResource[]) Cuts resources to the clipboard. The specified
resources are serialized in an SDXL stream and the
stream is copied to the clipboard. Then, the
resources are removed from their model.
168 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Retrieving Scheduling Data from the Clipboard

The GanttClipboard class allows activities, resources, and constraints to be retrieved from
the clipboard. A description of the relevant methods available in the GanttClipboard class
follows:

Example

The following C# code sample shows how to retrieve the activities located in the clipboard
to add them into a Gantt data model:

// Create a Gantt Data Model
IGantModel model = new SimpleGanttModel();
// Populate it
IActivity a1 = model.NewActivity();
IActivity a2 = model.NewActivity();
model.Activities.AddRange(new IActivity[] { a1, a2 });
// Copy to the clipboard
GanttClipboard.CopyToClipboard(new IActivity[] { a1, a2 });
// Clear the activities of the model
model.Activities.Clear();
// Retrieve the activities from the clipboard
IConstraint[] constraints = null;
IActivity[] activities = GanttClipboard.GetActivities(model, out constraints);
// Add them to the model
model.Activities.AddRange(activities);

Method Action

GetActivities Retrieves the activities located in the clipboard. Note that the
activities and constraints returned are not added to the model.
You need to add them yourself.

GetResources Retrieves the resources located in the clipboard. Note that the
resources returned are not added to the model. You need to
add them yourself.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 169

170 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Managing Undo/Redo in a Gantt Data
Model

IBM® ILOG® Gantt for .NET provides a class that enables undo/redo operations on a Gantt
data model: the GanttModelUndoManager class.

The GanttModelUndoManager class is located in the ILOG.Views.Gantt.Data namespace.
An undo manager records events triggered by a Gantt data model when it is modified. The
recorded event sequence is used to undo or redo the actions taken on the Gantt data model.
The GanttModelUndoManager class is independent of the Gantt data model
implementation. Therefore, it can be used with any implementation.

In This section

Enabling Undo/Redo

Explains how to enable undo/redo on a data model.

Disabling Undo/Redo

Explains how to disable undo/redo on a data model.

Undoing Modifications

Explains how to undo modifications.

Redoing Modifications

Explains how to redo modifications.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 171

Grouping Modifications

Explains how to group several modifications to the model in a macro.

Enabling Undo/Redo

To enable undo/redo on a data model, create an instance of the GanttModelUndoManager
class and connect it to the data model as follows:

SimpleGanttModel model = new SimpleGanttModel();
GanttModelUndoManager undoManager = new GanttModelUndoManager();
undoManager.GanttModel = model;

The undo manager then records all the events triggered by the model.

Disabling Undo/Redo

To disable undo/redo on a data model, disconnect the undo manager from the data model as
follows:

undoManager.GanttModel = null;

The undo manager then stops recording the events triggered by the model.

Undoing Modifications

After enabling undo/redo by connecting an undo manager to a data model, use the
GanttModelUndoManager.CanUndo property to know whether undoing a modification is
possible or not. Then, call the GanttModelUndoManager.Undo method to undo the
modification:

if (undoManager.CanUndo)
 undoManager.Undo();

Redoing Modifications

Use the GanttModelUndoManager.CanRedo property to know whether redoing a
modification is possible or not. Then, call the GanttModelUndoManager.Redo method to
redo the modification:

if (undoManager.CanRedo)
 undoManager.Redo();
172 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Grouping Modifications

You can group several modifications to the model in a macro. This allows the undo manager
to consider this group of modifications as a single modification. Therefore, the undo
manager can undo this group of modifications in one atomic operation. To create a macro,
use the following C# code:

undoManager.BeginMacro();
// Modify the model
undoManager.EndMacro();
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 173

174 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Using Predefined Dialog Boxes for Editing
Scheduling Data

IBM® ILOG® Gantt for .NET provides several predefined dialog boxes for editing the
scheduling data.

The dialog boxes include:

◆ A dialog box for editing an activity.

◆ A dialog box for editing a resource.

◆ A dialog box for editing a constraint.

This section describes how to use and customize these editing functions.

In This Section

Editing an Activity Using the Predefined Dialog Box

Describes how to edit and customize through the ActivityDialog class.

Editing a Resource Using the Predefined Dialog Box

Describes how to edit a resource through the ResourceDialog class.

Editing a Constraint Using the Dialog Box

Describes how to edit and customize through the ConstraintDialog class.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 175

Editing an Activity Using the Predefined Dialog Box

IBM® ILOG® Gantt for .NET provides a dialog box for editing the properties of an activity.
This dialog box is for editing the basic information on an activity, such as the name, the start,
or the end time, and also the constraints and the resources assigned to this activity (the
reservations).

This dialog box has the following tab pages:

You can remove the Predecessors and Resources tab pages by setting the
CanEditConstraints and CanEditReservations properties to false.

Here is a C# code fragment that opens the dialog box on the current activity of an activity
table:

ActivityDialog activityDialog = new ActivityDialog();

public void ShowActivityProperties(ActivityTable table)
{
 IActivity current = table.GetCurrentActivity();

Tab Page Description

General Is for editing basic information on the activity such as the
name, start date, end date, and duration.

Predecessors Is for editing the predecessor constraints of the activity.

Resources Is for editing the resources assigned to the activity (the
reservations).

Notes Is for editing notes on the activity.
176 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

 if (current != null)
 {
 activityDialog.Activity = current;
 activityDialog.ShowDialog(this);
 }
}

You can customize this dialog box to fit your specific needs. You can add a tab page or add
controls in existing pages. For an example of customizing the dialog box, see the Custom
Gantt Sample.

See Also Editing a Constraint Using the Dialog Box

Editing a Resource Using the Predefined Dialog Box

IBM® ILOG® Gantt for .NET provides a dialog box for editing the properties of a resource.
This dialog box is used to edit the basic information on a resource, such as the name.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 177

This dialog box has the following tab pages:

Editing a Constraint Using the Dialog Box

IBM® ILOG® Gantt for .NET provides a predefined dialog box for editing a constraint.
This dialog box is implemented by the class ConstraintDialog.

The ConstraintDialog class is used to change the type of constraint and to remove a
constraint from the Gantt model. You can hide the Remove button by setting the
CanRemove property to false.

To indicate which constraint is to be edited, use the Constraint property of the class.

Here is a small C# example that shows an event handler, which handles the Mouse-down
event of an ActivitySheet instance and opens a constraint dialog when a constraint link is
double-clicked:

private void OnActivitySheetMouseDown(object sender, MouseEventArgs e)
{
 ActivitySheet sheet = (ActivitySheet)sender;
 if (e.Clicks == 2)
 {
 GanttSheet.HitTestInfo info = sheet.HitTest(new Point(e.X, e.Y));
 if (info.Type == GanttSheet.HitTestType.Constraint)
 {
 constraintDialog.Constraint = info.Constraint;
 constraintDialog.ShowDialog(this);
 }
 else

Tab Page Description

General To edit basic information on the resource, such as the name.

Working Times To edit the calendar of the resource when the model is a
Project Scheduling Model.

Notes To edit notes on the resource.
178 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

 {
 // do something else
 }
 }
}

See Also Editing an Activity Using the Predefined Dialog Box
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 179

180 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Printing Gantt Charts

The GanttChart and ScheduleChart classes are user interface controls designed to display
projects on screen. You may need to have the projects printed on paper to distribute and
exchange the projects. You may also need to print not only the visible part of the projects,
but also the part that is not visible.

The Gantt package provides APIs that allow you to have the Gantt charts printed in a
document as single or multiple pages.

In This Section

Introducing the GanttPrintDocument Class

Describes how to define a Gantt printable document and how to print it.

Customizing Printing

Describes the document page setup dialog box.

Introducing the GanttPrintDocument Class

To print the content of a Gantt Chart Control (GanttChart class), a Schedule Chart Control
(ScheduleChart class), or a Reservation Chart Control (ReservationChart class) use the
GanttPrintDocument class.

This class is defined in the ILOG.Views.Gantt.Windows.Forms.Printing namespace.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 181

Printing Gantt Charts
The GanttPrintDocument class extends the PrintDocument class of .NET Framework.
This class allows you to use all the printing support of .NET Framework to print Gantt Chart
content; for example, the Print preview control of .NET Framework.

You can create a GanttPrintDocument in the following way:

GanttChart chart = ...;
GanttPrintDocument document = new GanttPrintDocument(chart);

Here is a list of properties of GanttPrintDocument that you can customize for printing:

Property Description

Page Settings The size, orientation, and margins of a page.

Header and Footer A text to add at the top or bottom of each page.

Number of Pages per
Band

Gantt printing provides support for multipage printing through
the PagesPerBand property. This property represents the
number of pages you want printed between the start and the
end date.

Repeat Table Indicates whether the table should be printed repeatedly on
every page.
182 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Introducing the GanttPrintDocument Class
To manage the header and footer of pages, the ILOG.Views.Gantt.Windows.Forms.Printing
namespace also contains two additional classes: the Header and Footer classes. The header
and footer are common to all pages of a document and thus are set on an instance of the
GanttPrintDocument class.

The Header and Footer classes are very similar. A header and a footer are defined by three
text sections. Each section can have a specified font.

The following illustration shows an example of header.

Each of the three text sections of a header or footer can contain the text that you specify in
the constructor of the object. For the header shown in the figure above it would be:

Header header =
 new Header("Wednesday, April 23, 2003", "Printing Demo", "Page 1");

Since the header and footer are defined on the document, you should not specify the page
number as in the previous example. The Header and Footer classes provide a certain
number of patterns that will be translated to values from the document when the document is
printed.

Start Date The start date of the first printed page. This property defines
the beginning of the printed data.

End Date The end date for the last printed page in a band. This property
defines the end of the printed data.

Number of Columns of the
Table

Indicates the number of table columns to be printed.

Order of Page Numbering Indicates whether pages are numbered on the right and then
on the bottom or on the bottom and then on the right.

Note: All these properties are also accessible from the Gantt Page Setup dialog box
described in Customizing Printing.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 183

Printing Gantt Charts
Here is the list of patterns that you can use:

To create the header in the figure above:

Header header =
 new Header(HeaderFooter.DatePattern, "Printing Demo", "Page " +
HeaderFooter.PagePattern)

The following table summarizes the properties of GanttPrintDocument:

Pattern Description

PagePattern The pattern for the page number.

PagesPattern The pattern for the number of pages in the document.

DatePattern The pattern for the printing date.

TimePattern The pattern for the printing time.

FileNamePattern The pattern for the name of the file associated with the
document.

DocumentPattern The pattern for the name of the document.

AuthorPattern The pattern for the name of the author of the document.

Property Description Default Value

DocumentName (inherited
from PrintDocument)

The name of the document. ""

DefaultPageSettings
(inherited from
PrintDocument)

The paper size, margins, and orientation of
pages.

PrinterSettings (inherited
from PrintDocument)

The printer that prints the document.

Author The name of the author of the document. ""

File The name of the file that is printed. ""

Header The header of each page. null

Footer The footer of each page. null

PagesPerBand The number of pages on which the time
period is to be displayed.

2

184 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Customizing Printing
Customizing Printing

IBM® ILOG® Gantt for .NETprovides a dialog box that allows you to customize the
printing of a Gantt Chart or Schedule Chart control in a single window. This dialog box
makes it possible to choose the paper size, orientation, and margins, just like the Windows®
Forms PageSetupDialog class. In addition, you can specify the header and footer to be
added to the chart and the properties that are specific to a Gantt Chart or Schedule Chart
document, such as the start- and end-printing dates and the number of columns of the table
to print.

The following illustration shows the document page setup dialog box.

StartDate The start-printing date. The start date of
the Gantt or
schedule chart.

EndDate The end-printing date. The end date of
the Gantt or
schedule chart.

PrintAllTimeRange Indicates whether the document chooses
the printed time period automatically to
print all the content of the chart.

true

RepeatTable Indicates whether the table is printed on
every page.

false

TableColumnCount The number of columns of the table to print. 2

IsOverThenDownOrder Indicates the page-numbering order true
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 185

Printing Gantt Charts
This dialog box is implemented by the class GanttPageSetupDialog in the
ILOG.Views.Windows.Forms.Printing namespace. The properties of an instance of the
GanttPrintDocument class can be edited in the dialog box.

To open the dialog box on a document you can do:

GanttPrintDocument document = new GanttPrintDocument(chart);
GanttPageSetupDialog pageSetupDialog = new GanttPageSetupDialog();
pageSetupDialog.Document = document;
pageSetupDialog.ShowDialog();

where chart is an instance of the GanttChart, ScheduleChart or ReservationChart class.
186 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Storing and Displaying Working and
Nonworking Times

The IBM® ILOG® Gantt for .NET library defines several classes that allow you to store,
edit, and display the working and nonworking times. The following classes are involved:

◆ The WorkCalendar class allows you to store the working and nonworking times as well
as exception periods.

◆ The WorkingTimesEditor is an editor that allows you to edit the content of a
WorkCalendar.

◆ The WorkingTimesDialog is a dialog box that allows you to edit the content of a
WorkCalendar (using a WorkingTimesEditor).

◆ The WorkingTimesGrid is a grid of the Gantt Chart that displays the working and
nonworking periods in the background of a Gantt chart.

In This Section

Using a WorkCalendar to Store Working and Nonworking Periods

Note: The WorkCalendar is different from the CalendarView control that displays the
content of a Gantt data model in a calendar format. To learn more about the CalendarView
control see Displaying Activities Using a Calendar View.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 187

Storing and Displaying Working and Nonworking Times
Explains how to create a WorkCalendar object to store working and nonworking
periods.

Navigating in a WorkCalendar

Explains how to navigate in working and nonworking periods in a WorkCalendar.

Editing the Content of a WorkCalendar

Explains the panels and dialog boxes that allow you to edit the content of a
WorkCalendar.

Displaying Working and Nonworking Times in Gantt Controls

Explains how to use the WorkingTimesGrid to display the nonworking times in the
Gantt controls.

Using a WorkCalendar to Store Working and Nonworking Periods

A WorkCalendar object is used to store working and nonworking times.
IBM® ILOG® Gantt for .NET defines two types of WorkCalendar: a WorkCalendar can
be a base calendar or a subcalendar that inherits from a base calendar. A subcalendar will
inherit its specification from its base calendar and may modify the working and nonworking
times specified by the base calendar. For example, a base calendar can be used to store the
general working times on a project and a subcalendar can be used to specify the working
times and vacations of a specific resource of the project.

To create a base calendar named MyCalendar, use the following C# code:

WorkCalendar myBaseCalendar = new WorkCalendar("MyCalendar", null);

To create a subcalendar of this calendar proceed as follow:

WorkCalendar mySubCalendar = new WorkCalendar("MySubCalendar", myBaseCalendar);

By default a WorkCalendar defines Saturday and Sunday as nonworking days, for the other
days the working times are from 8 AM to 12 AM and from 1 PM to 5 PM defining 8
working hours per day.

The WorkCalendar class provides methods that allow you to modify these settings for a
day of the week.

To set all Fridays as nonworking days you would do:

mySubCalendar.SetNonWorking(DayOfWeek.Friday);

To change the working times of all Mondays to be 7 AM - 1 PM and 3 PM - 8 PM you
would do:

WorkingTime[] times = new WorkingTime[2];
times[0] = new WorkingTime(TimeSpan.FromHours(7), TimeSpan.FromHours(13));
188 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Navigating in a WorkCalendar
times[1] = new WorkingTime(TimeSpan.FromHours(15), TimeSpan.FromHours(20));
mySubCalendar.SetWorkingTimes(DayOfWeek.Monday, times);

You can also specify exceptional periods:

To specify a nonworking period from 01/01/2005 to 01/07/2005 you would do:

mySubCalendar.SetNonWorking(new DateTime(2005,1,1), new DateTime(2005, 1,7));

To specify special working hours from 7 AM to 9 AM for the period 06/01/2005 to 06/06/
2005 you would do:

WorkingTime[] times = new WorkingTime[1];
times[0] = new WorkingTime(TimeSpan.FromHours(7), TimeSpan.FromHours(9));
mySubCalendar.SetWorkingTimes(new DateTime(2005,6,1), new DateTime(2005, 6,6),
times);

Navigating in a WorkCalendar

A WorkCalendar object does not only allow you to store the working and nonworking times.
It also allows you to navigate in the working and nonworking times and perform several
computation on working periods.

For example, you can get the next or previous working time from a date. Here is an example:

the following C# code computes the next and previous working time from January 1 2005.

WorkCalendar calendar = new WorkCalendar("MyCalendar", null);
DateTime date = new DateTime(2005,1,1);

DateTime next = calendar.NextWorkingTime(date);
DateTime previous = calendar.PreviousWorkingTime(date);

Console.WriteLine("Next working time is " + next);
Console.WriteLine("Previous working time is " + previous);

This code gives you Monday January, 3, 2005 at 8 AM as the next working time and Friday
December, 31 2004 at 5 PM as the previous working time.

Similarly, the WorkCalendar defines methods to navigate to next nonworking times
(NextNonWorkingTime).

You may also compute the amount of work between two dates:

DateTime fromDate = new DateTime(2005,1,5);
DateTime toDate = new DateTime(2005,1,12);

TimeSpan work = calendar.WorkBetween(fromDate, toDate);

This fragment of C# code returns a duration of 40 hours. In the period from 05 to 12 January
2005, there are 5 working days of 8 hours, resulting in 40 hours of work.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 189

Storing and Displaying Working and Nonworking Times
Finally, the WorkCalendar object provides methods to add or remove a work duration from
a date to compute another date. The following C# code illustrates how to add or remove a
period of work to and from a date:

TimeSpan work = TimeSpan.FromDays(88);
DateTime date = new DateTime(2004,1,1,8,0,0);
Console.WriteLine(date);
date = calendar.Add(date work);
Console.WriteLine(date);
date = calendar.Remove(date, work);
Console.WriteLine(date);

This C# code fragment will print:

1/1/2004 8:00:00 AM
1/4/2005 5:00:00 PM
1/1/2004 8:00:00 AM

Editing the Content of a WorkCalendar

The content of a WorkCalendar can be modified by code. However,
IBM® ILOG® Gantt for .NET class library also provides classes that allow a final user of
your application to modify the content of a WorkCalendar: the WorkingTimesDialog and
WorkingTimesEditor classes.

The WorkingTimesEditor and WorkingTimesDialog are very similar. The
WorkingTimesEditor is a panel that you can use inside your own dialog box, and the
WorkingTimesDialog is a dialog box that simply contains a WorkingTimesEditor.

The figure below represents a WorkingTimesEditor.

Here is a C# code fragment that shows how to use a WorkingTimesDialog.

WorkCalendar calendar = new WorkCalendar();

WorkingTimesDialog dialog = new WorkingTimesDialog();
190 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying Working and Nonworking Times in Gantt Controls
dialog.Calendar = calendar;
if (dialog.ShowDialog() == DialogResult.OK) {
 // OK was chosen, validates the modifications.
 dialog.ApplyCalendarModification();
}

Displaying Working and Nonworking Times in Gantt Controls

The nonworking periods defined by an instance of the WorkCalendar class can be displayed
in the Gantt controls by means of a grid. The grid class displaying the content of a
WorkCalendar is defined by the WorkingTimesGrid class.

When creating a GanttChart, a ScheduleChart or a LoadChart control, these controls already
contain an instance of WorkingTimesGrid in their collection of grids. By default, this grid
displays the content of the standard calendar.

In the following figure, behind the Gantt bars you can see the nonworking period displayed
in gray:

The following C# code fragment shows how to change the calendar displayed by the grid of
a GanttChart control.

WorkCalendar myCalendar = new WorkCalendar();
GanttChart gantt = new GanttChart();
WorkingTimesGrid grid = (WorkingTimesGrid)gantt.TimeGrids[1];
grid.Calendar = myCalendar;

Note: The WorkingTimesGrid is always up-to-date with the calendar that it displays.
When the calendar changes, the grid is automatically refreshed.

Note: This code assumes that a GanttChart control has by default two time grids, the
second one being the WorkingTimesGrid.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 191

Storing and Displaying Working and Nonworking Times
This mechanism is the same for all the Gantt controls displaying time grids, such as the
ScheduleChart, GanttSheet, LoadChart classes and so on.

You can also display the nonworking days in a CalendarView control. For this control, you
can simply use the Calendar property. Only the days defined as nonworking will be
displayed in a different color.
192 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating Project Scheduling Applications
with IBM ILOG Gantt for .NET

IBM® ILOG® Gantt for .NET allows you to create applications that require project
scheduling capabilities through a specific Gantt Data Model class: the
ProjectSchedulingModel.

The ProjectSchedulingModel class stores information about your project and uses this
information to calculate and maintain the schedule of your project. The
ProjectSchedulingModel computes the schedule immediately. As soon as you have entered
information about your project, you can learn about the scheduled start date of activities and
the project target date.

In the <install-dir>\Samples\Applications\GanttEditor directory, you will find a fully-
featured application sample that shows how to use the ProjectSchedulingModel in a real
project scheduling application.

The new option, IBM ILOG Gantt for .NET - Project Management, provides a data model
and algorithms for scheduling projects, leveling resources, and computing the critical paths.
This option is particularly interesting for developing rapidly project management solutions
that can be deployed as desktop applications or over the Web.

Specific licenses are required for developing and deploying applications that embed
IBM ILOG Gantt for .NET - Project Management. When the ILM license key does not
allow this option, the Gantt chart displays a warning message that indicates the license
violation.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 193

In This Section

Programming with the ProjectSchedulingModel

Explains classes involved in the project scheduling Gantt model.

How the Project Scheduling Model Computes the Schedule of a Project

Explains how the schedule of a project is computed.

Resource Leveling in ProjectSchedulingModel

Explains how the project scheduling model removes resources overallocations.

Displaying the Critical Path of a Project Scheduling Model

Explains how to display the critical path of the project in a Gantt Chart.

Saving and Reading a ProjectSchedulingModel to an XML File

Explains how to read and write a project to XML.

Programming with the ProjectSchedulingModel

IBM® ILOG® Gantt for .NET provides a specific data model class that allows you to create
project scheduling applications: the ProjectSchedulingModel class.

Like the SimpleGanttModel class, the ProjectSchedulingModel class is an implementation
of the IGanttModel interface and both classes hold data that can be displayed in the Gantt
controls of IBM ILOG Gantt for .NET library. The ProjectSchedulingModel adds project
scheduling capabilities to the SimpleGanttModel and thus should be used for project
scheduling applications.

In This Section

The ProjectSchedulingModel Class

Introduces the ProjectSchedulingModel class.

Activities in the ProjectSchedulingModel

Introduces the SchedulingActivity class.

Controlling When the Project Schedule is Recomputed

Explains how to control when the schedule of the project is recomputed.

Displaying and Editing Content of a ProjectSchedulingModel in a Gantt Control

Explains how to display and edit a ProjectSchedulingModel in Gantt controls.

See Also How the Project Scheduling Model Computes the Schedule of a Project | Resource Leveling
in ProjectSchedulingModel
194 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

The ProjectSchedulingModel Class

The ProjectSchedulingModel class is an extension of the SimpleGanttModel class that adds
project scheduling capabilities. Just like the SimpleGanttModel described in the section
Introducing the Gantt Data Model In-Memory Implementation, the
ProjectSchedulingModel defines the scheduling information that can be edited and
displayed by any WinForms and WebForms controls of the IBM® ILOG® Gantt for .NET
library.

For adding, removing and accessing activities, resources, constraints and reservations, the
ProjectSchedulingModel works the same way as the SimpleGanttModel, but for each
modification of the model, the ProjectSchedulingModel re-computes a working schedule
of the project. For example, when if you change the duration of an activity in the model, the
model re-computes a schedule and this may have impact on the start time of all the
successors activities and on the project scheduled end date.

The following types are involved in the Project Scheduling Data model:

When creating a ProjectSchedulingModel, you must specify a starting date for the project;
this is done through the StartDate property of the ProjectSchedulingModel class. The
project is scheduled from the start date, so activities that do not have predecessors or other
scheduling constraints will be scheduled at the project start date. The project end date will be
automatically computed and is available through the EndDate property.

By default, the ProjectSchedulingModel schedules activities using the working times on
the project calendar (see WorkCalendar class). The project calendar can be specified using
the Calendar property. When creating a ProjectSchedulingModel, the model has a standard
calendar that defines Saturday and Sunday as nonworking days and working times from

Type Description

ProjectSchedulingModel An implementation of IGanttModel that defines
the project scheduling data model that uses the
classes listed below.

SchedulingActivity Represents an activity or a task that must be
completed in the project.

SchedulingResource Represents a resource that can be allocated to an
activity to make its completion possible.

SchedulingConstraint Represents an activity-to-activity scheduling
constraint.

SchedulingReservation Represents the allocation of a resource to an
activity.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 195

8AM to 12AM and from 1PM to 5 PM. Specific calendars can also be specified for
resources and activities, read the section Calendars in the Project Scheduling Model for
more details.

The following C# code fragment creates a ProjectSchedulingModel and adds one activity.
Finally, the scheduled start time of the activity and the project target date are displayed.

This C# code prints the following information on the console:

scheduled start time : 1/3/2005 8:00:00 AM
project's target date : 1/3/2005 5:00:00 PM

This shows that the activity has been scheduled to start on January 3, 2005 at 8 AM, even
though the project start date is January 1, this is because January 1, 2005 is a Saturday.

Activities in the ProjectSchedulingModel

Activities in the ProjectSchedulingModel are defined by the SchedulingActivity class. Since
the ProjectSchedulingModel automatically computes the schedule of the activity you
should not specify a start date for activities. For an activity, it is only mandatory to specify a
duration. The schedule of activities will be computed by the model.

The Duration property of the activity represents the amount of work needed to complete the
activity. For example, if you are using the default standard calendar, a duration of 8 hours
represents in fact one day of elapsed duration since in the default calendar each working day
has 8 hour of work (The default calendar has working times from 8 AM to 12PM and from
1PM to 5PM).

Here is a small piece of C# code that creates a ProjectSchedulingModel with a start date of
January 5, 2005 and adds an activity with duration of 8 hours.

ProjectSchedulingModel project = new ProjectSchedulingModel();
project.StartDate = new DateTime(2005, 1, 1);
SchedulingActivity activity = project.NewActivity() as SchedulingActivity;
activity.Duration = TimeSpan.FromHours(8);
project.Activities.Add(activity);

Console.WriteLine("scheduled start time : " + activity.StartTime);
Console.WriteLine("project's target date : " + project.EndDate);

ProjectSchedulingModel model = new ProjectSchedulingModel();
model.StartDate = new DateTime(2005,1,5);
SchedulingActivity activity = model.NewActivity() as SchedulingActivity;
activity.Duration = TimeSpan.FromHours(8);
model.Activities.Add(activity);
196 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Once the activity is added in the model, the following properties of the SchedulingActivity
class will be computed by the ProjectSchedulingModel:

To learn more about constraints and other properties of SchedulingActivity that allow you
to control the schedule of an activity and how the schedule of the project is computed see the
section How the Project Scheduling Model Computes the Schedule of a Project.

Property Name Property Type Description

StartTime DateTime The scheduled start time of the activity.

EndTime DateTime The scheduled end time of the activity.

EarlyStart DateTime The earliest date the activity can start based on
the predecessor and successors of the activity
and other scheduling constraints.

EarlyFinish DateTime The earliest date the activity can finish based on
the predecessors and successors of the activity
and other scheduling constraints.

LateStart DateTime The latest date the activity can start based on
the predecessors and successors of the activity
and other scheduling constraints.

LateFinish DateTime The latest date the activity can finish based on
the predecessors and successors of the activity
and other scheduling constraints.

TotalSlack TimeSpan The amount of time the activity can be delayed
without delaying the project's end date.

FreeSlack TimeSpan The amount of time the activity can be delayed
without delaying any successor activity.

Critical Boolean Indicates whether the activity is critical or not.

Note: You should not specify the StartTime or EndTime properties of a
SchedulingActivity. Those properties are automatically computed. If you set the value of
the StartTime property, a constraint of type "Start No Earlier Than" will be set on the
activity. If you specify the EndTime property, a constraint of type "Finish No Earlier Than"
will be set on the activity.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 197

When the automatic resource leveling is turned on, the following properties of the
SchedulingActivity will also be computed:

To learn more about resource leveling read the section Resource Leveling in
ProjectSchedulingModel.

You can also specify that an activity has already started by specifying and actual start time
(SchedulingActivity.ActualStartTime property) and the percentage of completion
(SchedulingActivity.WorkComplete property). That information is taken into account by
the model when scheduling the activity. Activities that have already started will always be
scheduled at their actual start time and will not be delayed by the resource leveling
algorithm.

Controlling When the Project Schedule is Recomputed

Since every modification of the model leads to a re-computation of the schedule of the
project, it is important to be able to control when the schedule is re-computed in order to
avoid unnecessary re-computations.

For example, if you want to change the duration of several activities, you do not want the
model to re-compute the schedule several times.

The ProjectSchedulingModel provides the BeginScheduleSession and EndScheduleSession
methods that allow you to group several modifications so that only one single schedule will
be computed.

Property Name Property Type Description

PreleveledStart DateTime Represents the start time of
the activity before the
resource leveling was
computed.

PreleveledEnd DateTime Represents the end time of
the activity before the
resource leveling was
computed.

LevelingDelay TimeSpan The amount of time the
activity is delayed from its
early start date (EarlyStart) in
order to remove resource
overallocations.
198 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Here is the typical C# code that you would write:

The ProjectSchedulingModel class also provides two events, the BeginSchedule and
EndSchedule events, that are fired when the scheduling starts and finishes.

Displaying and Editing Content of a ProjectSchedulingModel in a Gantt
Control

Since the ProjectSchedulingModel is an implementation of the IGanttModel interface, it can
be displayed in all the WinForms and WebForms controls provided with
IBM ILOG Gantt for .NET: GanttChart, ScheduleChart, CalendarView, and so on.

This section gives some specific information that you might need to know when using a
ProjectSchedulingModel with the Gantt controls.

Displaying the Working Times in the Grid of a Gantt Control

As described in Using Time Grids and Date Indicators, the Gantt chart controls that display
time-based information, such as the GanttChart control, can display a grid that represents
working and nonworking times. The displayed grid is an instance of the WorkingTimesGrid
class and can display the working and nonworking times defined in a particular calendar
(class WorkCalendar).

When using a ProjectSchedulingModel, several calendars may be involved: the project
calendar, a resource calendar or an activity calendar. You can decide which calendar to
display in the grid of the Gantt control.

try {
 model.BeginScheduleSession();

 … change several things in the model…
} finally {
 model.EndScheduleSession();
}

Note: In the <install-dir>\Samples\Applications\GanttEditor directory, you will find a
fully-featured application sample that shows how to use the ProjectSchedulingModel and
almost all the WinForms controls of IBM ILOG Gantt for .NET.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 199

Here is a small example that shows how to change the calendar displayed in a GanttChart
control to the calendar of a specific resource:

For more information on calendars in the ProjectSchedulingModel, see Calendars in the
Project Scheduling Model.

Specifying How Work Durations are Entered and Displayed

For the properties that represent a duration of work, such as the Duration or TotalSlack
property of the SchedulingActivity class, you can control how they are displayed and
entered in the controls.

The MinutesPerDay property of the ProjectSchedulingModel class represents the number of
minutes of work in one day. The default value is 480 minutes (8 hours). When you enter 1
day for the Duration property in the Gantt table, 8 hours will be set to the Duration
property.

Similarly, the MinutesPerWeek property represents the number of minutes of work in a
week; the default value is 2400 minutes (40 hours). If you enter 1 week for the duration of an
activity in the Gantt table, 40 hours will be set the to Duration property.

Finally, the DaysPerMonth property works the same as the two other properties, the default
value is 20. When you enter a duration of 1 month in a Gantt table, the result will be a value
of 20*MinutesPerDay minutes in the Duration property of the activity.

How the Project Scheduling Model Computes the Schedule of a Project

As you build a project plan, the ProjectSchedulingModel class calculates and creates a
working schedule based on information you provide about the activities to be done and the
people who work on them.

The ProjectSchedulingModel schedules the project from the information you specify about
the project itself: the individual activities (class SchedulingActivity) required to complete
the project and, if necessary, the resources (class SchedulingResource) needed to complete
those activities. If anything about your project changes after you create your schedule, you
can update the activities or resources and the ProjectSchedulingModel adjusts the schedule
for you.

void ChangeDisplayedCalendar(GanttChart ganttChart,SchedulingResource resource)
{

 foreach (TimeGrid grid in ganttChart.TimeGrids)
 if (grid is WorkingTimesGrid)
 ((WorkingTimesGrid)grid).Calendar = resource.Calendar;
}

200 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

For each activity, you enter duration, dependencies between activities (class
SchedulingConstraint), and activity constraints (type ActivityConstraintType), then the
ProjectSchedulingModel calculates the start and end date for each activity. You can enter
resources in your project and then assign them to activities to indicate which resource is
responsible for completing each activity (class SchedulingReservation). If you enter
resources, task schedules are further refined according to resource availability and working
times entered on calendars (class WorkCalendar). Other elements, such as lead time and lag
time on dependencies can affect the scheduling. Understanding the effects of these elements
can help you maintain and adjust the project schedule.

In This section

How Project Start Date Affects the Schedule

Explains the StartDate property of the ProjectSchedulingModel.

How Constraint Links Affect the Schedule

Explains the impact of SchedulingConstraint on the schedule.

How Constraints on Activities Affect the Schedule

Explains specific constraints for activities.

Calendars in the Project Scheduling Model

Explains how calendars affect the schedule.

See Also Programming with the ProjectSchedulingModel

How Project Start Date Affects the Schedule

The ProjectSchedulingModel schedules your project based upon the project start date. The
start date of the project can be specified by the StartDate property of the
ProjectSchedulingModel. When adding an activity in the model, the activity is initially
scheduled at the project start date. Later on, if you add predecessors to the activity or if you
set other constraints on the activity, the schedule start time of the activity will be computed
accordingly. The project end date is computed like the latest end date of all activities in the
model and can be retrieved using the EndDate property of the ProjectSchedulingModel
class.

You may change the project start date at any time and the ProjectSchedulingModel will re-
compute a new schedule based on this new start date.

How Constraint Links Affect the Schedule

When a new activity is inserted in the ProjectSchedulingModel, the activity has no
predecessor constraint and will be scheduled to start at the project start date.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 201

Later on, predecessor constraints can be added between activities using the
SchedulingConstraint class that defines precedence constraints between activities.

The different types of precedence constraints defined by the ConstraintType enumeration are
the following:

Lead and Lag Time

The SchedulingConstraint class also allows you to specify a lead or a lag time for the
constraint.

A lag time is a delay between the end of an activity and the start of its successor, a lead time
is an overlap between the two activities, so that the successor starts before the end of the
predecessor.

Predecessor
Constraint Type

Example Description

EndToStart The activity B cannot start
until the activity A is finished.

StartToStart The activity B cannot start
until the activity A is started.

StartToEnd The activity B cannot finish
until the activity A starts.

EndToEnd The activity B cannot finish
until the activity A finishes.
202 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

To specify a lag or lead time in the SchedulingConstraint use the Lag and LagFormat
property of the SchedulingConstraint class. The lead and lag time can be expressed in
various formats: it can be defined as a work duration or an elapsed duration. The duration
may be directly specified or defined as a percentage of the duration of the predecessor
activity. For example, to create an EndToStart constraint between activity A and B with a lag
expressed as 50% of the elapsed duration of A (assuming that the variable a and b are
instances of the SchedulingActivity class), you would do:

To express a lead time, you would give a negative value to the Lag property.

How Constraints on Activities Affect the Schedule

The schedule start date of an activity is mainly controlled by the dependencies between
activities, as explained in How Constraint Links Affect the Schedule.

However, the scheduled start date of an activity can also be controlled using constraints on
activity. Constraints on activities are set and retrieved through the Constraint property of the
SchedulingActivity class. The different types of constraints that can be specified on an
activity are defined by the ActivityConstraintType enumeration. By default when creating
an activity, the constraint on the activity is set to AsSoonAsPossible. This means that the
activity will be scheduled as soon as possible. For example, if the activity has several end-to-
start predecessors, the task will be scheduled as soon as the predecessors are finished.

For the AsSoonAsPossible and AsLateAsPossible constraints, it is not necessary to specify a
constraint date. For the other types of constraints, a constraint date must be specified in the
ConstraintDate property of the SchedulingActivity class.

SchedulingConstraint c = model.NewConstraint(a, b, ConstraintType.EndToStart);
c.Lag = 50;
c.LagFormat = LagFormat.EllapsedPercentage;
model.Constraints.Add(c);
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 203

Here are the different types of constraints and how they affect the schedule of an activity:

Constraint type Description

AsSoonAsPossible The ProjectSchedulingModel schedules the activity to start as
soon as it can. This is the default constraint type. No specific
date constraint is added to the activity. Activities with this
constraint that have no predecessors will be scheduled at the
project start date.

AsLateAsPossible The ProjectSchedulingModel schedules the task to start as
late as it can, based on the constraints on predecessors. No
specific date constraint is added to the activity.

FinishNoLaterThan The ProjectSchedulingModel schedules the task to finish no
later than the date specified by the ConstraintDate property of
the activity. The activity can be scheduled to finish before or at
the specified date. With such a constraint, the activity may be
scheduled to start before the date allowed by predecessor
constraints and thus violate the constraint imposed by
predecessors.

StartNoLaterThan The ProjectSchedulingModel schedules the task to start no
later than the date specified by the ConstraintDate property of
the activity. The activity can be scheduled to start before or at
the specified date. With such a constraint, the activity may be
scheduled to start before the date allowed by predecessor
constraints and thus violate the constraint imposed by
predecessors.

StartNoEarlierThan The ProjectSchedulingModel schedules the task to start no
earlier than the date specified by the ConstraintDate property
of the activity. The activity can be scheduled to start after or at
the specified date. Such a constraint will be automatically set
on the activity, when you modify the StartTime property of the
activity.

FinishNoEarlierThan The ProjectSchedulingModel schedules the task to finish no
earlier than the date specified by the ConstraintDate property
of the activity. The activity can be schedule to finish after or at
the specified date. Such a constraint will be automatically set
on the activity, when you modify the EndTime property of the
activity.
204 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Calendars in the Project Scheduling Model

The ProjectSchedulingModel uses calendars to defines the working and nonworking periods
of the project such as holidays and weekends. Calendars are defined by the WorkCalendar
class.

The ProjectSchedulingModel defines several types of calendars:

◆ The project calendar defines the default working and nonworking times for the project
and can be set using the Calendar property of the ProjectSchedulingModel. If no
calendar is defined for resources working on an activity or for the activity itself, an
activity will be scheduled within the working times defined by the project calendar.

◆ The resource calendar defines specific working and nonworking periods for a resource
and can be retrieved using the Calendar property of the SchedulingResource class. The
work assigned to the resource will be scheduled within the working time of the resource
calendar.

◆ The activity calendar defines a specific calendar for an activity. This calendar can be
retrieved using the Calendar property of the SchedulingActivity class. When a calendar
is assigned to an activity, the activity will be scheduled within the working times of this
calendar without taking into consideration the calendar of resources that may be assigned
to the activity.

When creating a ProjectSchedulingModel, the model has a standard calendar that defines
Saturday and Sunday as nonworking days and working times from 8AM to 12AM and from
1PM to 5 PM.

StartOn The ProjectSchedulingModel schedules the task to start at
the date specified by the ConstraintDate property of the
activity without taking into account other scheduling
constraints.

FinishOn The ProjectSchedulingModel schedules the task to end at
the date specified by the ConstraintDate property of the
activity without taking into account other scheduling
constraints.

Note: Resource calendar only apply to work resource not material resource (see the
SchedulingResource.Type property).

Constraint type Description
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 205

To learn more about Calendars see Storing and Displaying Working and Nonworking Times.

Resource Leveling in ProjectSchedulingModel

Resource leveling is the process of removing overallocation of resources. A resource is
overallocated when too much work is assigned to it.

The ProjectSchedulingModel can remove overallocations automatically by delaying
activities so that resources have enough time to work on the activity. When delaying, the
ProjectSchedulingModel ensures that all the scheduling constraints are still valid. The
resource leveling process may delay the project end date.

Overallocations of resource can be removed automatically by the resource leveling
algorithm of the ProjectSchedulingModel and can also be done manually by specifying
delays for each activity. To turn on or off the automatic resource leveling of the model use
the AutomaticResourceLeveling property of the ProjectSchedulingModel class.

When the resource leveling is automatic, the ProjectSchedulingModel uses a heuristic to
determine which activity should be delayed first. This heuristic examines the following
properties of the activity:

◆ late start

◆ total slack

◆ duration

◆ priority

◆ ID

The delays computed automatically are stored in the LevelingDelay property of the
SchedulingActivity class.

The automatic resource leveling can be started using no leveling delays or can use the
current values stored in the LevelingDelay property of each activity. This is controlled by
the ClearDelaysBeforeLeveling property of the ProjectSchedulingModel class. When the
ClearDelaysBeforeLeveling property is set to true, all the delays will be reset to zero
before the resource leveling starts.

Note: The ProjectSchedulingModel holds a list of base calendars in its BaseCalendars
property. This collection contains the base calendars that can be used for the project
calendar or for activity calendars. The resource calendars must be a subcalendar of one of
the calendars in the base calendars collection.
206 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

The resource leveling process may be time consuming, that is why the leveling algorithm
fires events about the progress of the algorithm so that some feedback can be given to a final
user. This is done through the LevelingProgress event of the ProjectSchedulingModel
class.

In some cases the resource leveling algorithm may not be able to find a solution that
removes all the resource overallocation. For example, if two activities that are causing an
overallocation for a resource have a "StartOn" constraint, they cannot be delayed and the
overallocation cannot be removed. In this case, the LevelingProgress event also gives
information about which resource is problematic at which date and allows continuing or
stopping the algorithm.

Displaying the Critical Path of a Project Scheduling Model

The critical path is the set of activities that are critical. In some cases this set of activities
draws a path from the beginning to the end of the project. An activity is considered to be
critical if any delay of this activity will delay the project end date.

In the project displayed above, the first 4 activities are critical. None of this activity has
slack and therefore the sequence drives the project end date, while the last 4 activities have
slack, each activity can be delayed by 2 days before the project end date is affected. These
are not critical.

The ProjectSchedulingModel computes for each activity the slack available for this activity
before the project end date is delayed. This information is stored in the TotalSlack property
of the SchedulingActivity class. When the activity has no slack, the activity is considered as
critical and the Critical property is set to true. However, you can decide when an activity
becomes critical by changing the CriticalSlackThreshold property of the
ProjectSchedulingModel class. This can be useful if you need to be alerted before a task
becomes really critical.

The TotalSlack of each activity is based on the comparison of the EarlyStart, EarlyFinish,
LateStart and LateFinish dates of the activity, each of these depending on dates of
predecessor and successor activities. The EarlyStart of an activity is the earliest date this
activity can start based on predecessor links and other scheduling constraints. The
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 207

EarlyFinish is the earliest date the activity can finish, the LateStart is the latest date the
activity can start and the LateFinish the latest date the activity can finish.

The TotalSlack is computed as the minimum value between the LateFinish minus the
EarlyFinish, and the LateStart minus the EarlyStart dates.

The ProjectSchedulingModel also computes the FreeSlack property. The FreeSlack is the
delay that can be applied to the activity before the activity delays one of its successor
activity.

In order to display the critical path in the GanttChart control you can simply use two
different bar styles: one bar style for noncritical activities and another one for critical
activities where for example bars will be displayed as red:

You can found an example of a displayed critical path in the GanttEditor sample located in
the <install-dir>\Samples\Applications\GanttEditor directory.

For more information on activity bar style see Representing Activity Bars in Gantt Sheets.

Saving and Reading a ProjectSchedulingModel to an XML File

In order to save and read the content of a ProjectSchedulingModel to and from an XML file,
you will use the ProjectSchedulingModelSerializer class. This class extends the
GanttModelXmlSerializer class in order to store information that is specific to the
ProjectSchedulingModel class such as the start date of the project or calendars.

ActivityBarStyle normalBarStyle = new ActivityBarStyle();
normalBarStyle.FromProperty ="StartTime";
normalBarStyle.ToProperty ="EndTime";
normalBarStyle.Bar.BorderColor = Color.Blue;
normalBarStyle.Bar.Color = Color.Blue;
normalBarStyle.Name = "Activity";
normalBarStyle.StyleFor = "Normal && !Critical";

ActivityBarStyle criticalBarStyle = new ActivityBarStyle();
criticalBarStyle.FromProperty ="StartTime";
criticalBarStyle.ToProperty ="EndTime";
criticalBarStyle.Bar.BorderColor = Color.Red;
criticalBarStyle.Bar.Color = Color.Red;
criticalBarStyle.Name = "Critical Activity";
criticalBarStyle.StyleFor = "Normal && Critical";
208 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Since the ProjectSchedulingModelSerializer is a subclass of the
GanttModelXmlSerializer you can follow the procedures described in Reading and
Writing Scheduling Data Using XML to read and write data or to extend it.

Note: The ProjectSchedulingModelSerializer can also read XML files generated by the
GanttModelXmlSerializer, but since the XML files generated by the
GanttModelXmlSerializer do not contain all the information required to correctly fill the
ProjectSchedulingModel, some information will be computed by the reader. In this case,
the model consider that the calendar is the standard calendar, the start date of the model is
computed as the smallest start time of all activities, the work duration of activities are
computed from the start and end time of activities using the standard calendar.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 209

210 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Localizing a Gantt Application

IBM® ILOG® Gantt for .NET is internationalized. All messages, resources and dialog
boxes of IBM ILOG Gantt for .NET are localized for English and French language. If you
need to localize for another language, IBM ILOG Gantt for .NET provides the resource files
and tools that will allow you to localize the library for a particular culture. The library uses
the culture information that you have specified in the Control Panel to display dates and
numbers. All the controls of IBM ILOG Gantt for .NET can also be used in right-to-left
mode for Arabic and other languages that are written right-to-left.

In order to create a localized version of IBM ILOG Gantt for .NET you must create
assemblies (dlls) that contain the culture-dependant resources of the library. Those
assemblies are called satellite assemblies. IBM ILOG Gantt for .NET provides the tools that
will help you create satellite assemblies for a particular culture.

In This Section

Creating a Localization Project

Explains how to use the localization tool.

Translating the Resource Files

Describes the different types of resource files and explains how to translate them.

Creating the Satellite Assemblies

Explains how to create the satellite assemblies.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 211

Localizing a Gantt Application
Creating a Localization Project

The IBM® ILOG® Gantt for .NET localization tool allows you to start localizing the library
for a particular culture. The LocalizationTool.exe file can be found in the directory
<install-dir>\bin.

Launch the LocalizationTool.exe and choose a language for the localization.

When you press the button Create and Edit Localization Solution, the tool opens a new
Visual Studio .NET solution.

The tool creats a new solution for building the satellite assemblies and creates also a new
directory with a copy of all the resource files that you may need to localize. This new
directory is called: <install-dir>\localization\resources-<culture name>.

For example, if you choose to localize for Spanish, a new directory named resources-es
will be created. This new directory contains a copy of all the resource files of
IBM ILOG Gantt for .NET and a solution named Localization-es.sln.

The solution created by the Localization tool contains a project for each of the
IBM ILOG Gantt for .NET satellite assemblies. Each project contains the resource files
(.resx files) that need to be translated for the culture you have chosen.

Translating the Resource Files

The projects contain two types of resource files:

◆ resource files that contain global resource for the library. Those files are named
Resources.resx.
212 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Creating the Satellite Assemblies
◆ resource files that correspond to a predefined dialog box of IBM ILOG Gantt for .NET.
For example, the ActivityDialog.resx file corresponds to the ActivityDialog dialog
box.

You can use Visual Studio .NET to open the resource files and do the translation, but you can
also use the .NET Framework tool Winres.exe to do the translation of the dialog box
resources. Refer to the .NET framework documentation for more information about
Winres.exe.

Creating the Satellite Assemblies

When you have modified the resource files for your culture, you can build the solution
created by the localization tool. When you build the solution, you create the satellite
assemblies in the <install-dir>\bin\<culture name> directory. It is important to note that
these assemblies are not fully operational. They will not be recognized as satellite
assemblies of IBM® ILOG® Gantt for .NET until they are signed with the
IBM ILOG Gantt for .NET private key. In order to sign those assemblies you must send
them to the technical Support where they will be signed with the IBM ILOG Gantt for .NET
private key. You can test your satellite assemblies before they are signed by registering the
assemblies for "Verification skipping" using the .NET framework tool named SN.exe.

In a Visual Studio .NET command prompt do:

sn -Vr <assembly>

for each satellite assembly.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 213

Localizing a Gantt Application
214 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

Displaying a GanttChart in an AJAX Web
Application

IBM® ILOG® Gantt for .NET comes with a set of classes that enables to build AJAX-
enabled Web applications that provide rich client-side user interaction and a better user
experience. This framework is based on the ASP.NET 2.0 AJAX 1.0 Extension. This
extension is built into .NET Framework 3.5 and is also available as a separate download for
applications targeting .NET Framework 2.0. In this case, it requires to be installed on both
the development and deployment machines.

The IBM ILOG Gantt for .NET AJAX components support the following browsers:

◆ Microsoft Internet Explorer 6

◆ Microsoft Internet Explorer 7

◆ Firefox 2.0

◆ Firefox 3.x

In This Section

Overview of the IBM ILOG Gantt for .NET AJAX Framework

Briefly introduces the IBM ILOG Gantt for .NET AJAX Framework controls.

Adding AJAX Capabilities to IBM ILOG Gantt for .NET Web Controls

Explains how to use predefined AJAX extenders.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 215

Customizing the AJAX Extenders

Explains how to customize default behaviors.

Interacting with the Client Control

Explains how to interact with the client control.

Providing Contextual Information to the Client Control

Explains how provide contextual information to the client control.

Overview of the IBM ILOG Gantt for .NET AJAX Framework

The IBM® ILOG® Gantt for .NET AJAX Framework consists of a set of server-side
ASP.NET components and JavaScript components based on the Microsoft ASP.NET AJAX
extension. This extension provides AJAX capabilities to ASP.NET applications by means of
server-side ASP.NET Web controls and JavaScript classes. It enables postback partial-
refresh thanks to the UpdatePanel control, an asynchronous communication layer, and
provides an object-oriented JavaScript library. For more information about the Microsoft
ASP.NET AJAX extension, see http://ajax.asp.net.

The IBM ILOG Gantt for .NET AJAX Framework allows you to add rich client-side user
interactions support to IBM ILOG Gantt for .NET Web controls (that is, editing capabilities
like moving activities or creating constraints, time scale panning) by means of the following
new controls:

◆ GanttChartExtender: adds AJAX functionalities to a GanttChart Web control, like
constraint creation, activities editing, time scale panning and zooming.

◆ ScheduleChartExtender: adds AJAX functionalities to a ScheduleChart Web control, like
editing activities, re-parenting activities or panning and zooming time scale.

◆ ReservationChartExtender: adds AJAX functionalities to a ReservationChart Web
control, like editing activities or panning and zooming time scale.

Adding AJAX Capabilities to IBM ILOG Gantt for .NET Web Controls

Adding AJAX capabilities to the IBM® ILOG® Gantt for .NET Web controls is the purpose
of the GanttChart, ScheduleChart and ReservationChart control extenders defined
respectively by the GantChartExtender, ScheduleChartExtender and
ReservationChartExtender classes of the ILOG.Views.Gantt.Web.UI namespace.

AJAX extenders are provided as a set of server and client classes and are defined by the
HierarchyChartExtender abstract class of the ILOG.Views.Gantt.Web.UI namespace. This
is the base class for hierarchy chart AJAX extender implementations.
216 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

The HierarchyChartExtender class extends the ASP.NET AJAX ExtenderControl class
to add client-side behaviors to an associated HierarchyChart Web control. It defines the
required JavaScript resources and services to implement hierarchy chart client interactions.

The client-side behaviors are handled by a JavaScript implementation of the extender
control that is running in the browser and initialized when the page is loaded. This
JavaScript class (ILOG.Views.Gantt.Web.UI.HierarchyChartBehavior) is the base class for
hierarchy chart AJAX extender client implementation.

In order to be used, an AJAX extender must be set on a hierarchy chart. When an AJAX
extender is set, all input events coming to the HierarchyChart client-side representation in
the browser are forwarded to the extender JavaScript control to process the events. The
AJAX HierarchyChart extender is set declaratively in the .aspx file by specifying its
TargetControlID to the hierarchy chart identifier value.

The predefined AJAX extenders available in the IBM ILOG Gantt for .NET library are:

◆ GanttChart extender

◆ ScheduleChart extender

◆ ReservationChart extender

The following example shows how to add AJAX functionalities to a GanttChart by means
of a GanttChartExtender control:

 The .aspx file:

<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <cc1:GanttChart ID="GanttChart1" runat="server"
 Width="765px" Height="378px"
 FirstVisibleTime="01/18/2008 17:04:00"
 VerticalAlignment="Center" />
 <cc1:GanttChartExtender ID="SelectExtender1" runat="server"
 TargetControlID="GanttChart1" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>

The code-behind file:

public partial class _Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (!IsPostBack) {
 GanttModelXmlSerializer ganttSerializer =
 new GanttModelXmlSerializer();
 SimpleGanttModel ganttModel = new SimpleGanttModel();
 ganttSerializer.SetFileName(ganttModel, MapPath("~/demo.sdxl"));
 GanttChart1.GanttModel = ganttModel;
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 217

 GanttChart1.ZoomToFit();
 Page.Session["GanttModel"] = ganttModel;
 }
 }

 protected override void OnInit(EventArgs e) {
 SimpleGanttModel ganttModel =
 (SimpleGanttModel)Page.Session["GanttModel"];
 if (ganttModel != null) {
 GanttChart1.GanttModel = ganttModel;
 }
 }
}

Built-in Interactions

The HierarchyChartExtender class supports the following prebuilt interactions that are
common to all chart extenders:

◆ Selecting an activity

● Single selection: click the corresponding row in the table or in the Gantt sheet.

● Interval selection: click the starting row and with the Shift key pressed click the
ending row in the table or the Gantt sheet.

● Toggle selection: to toggle the selection state of an activity, keep the CTRL key
pressed and click the corresponding row in the table or the Gantt sheet.

● Multiple Rows selection: to select multiple rows at once, click the starting row and
drag it to the ending row.

When an activity is selected, a semi-transparent filled rectangle is displayed over the
selected row. The rendering properties of this rectangle can be customized in many ways.
For more information, see Customizing the Client Selection Rendering.

When a multiple rows selection is performed, the command is executed through an
asynchronous callback by default. You can force a post back by setting the
PostBackOnRowsSelection property to true.

◆ Modifying the start time and end time of an editable activity

● Modifying the start time of an activity: either click the center of the activity bar or the
start of the activity bar and drag the ghost to the desired start time.

● Modifying the end time of an activity: click the end of the activity bar and drag the
ghost to the desired end time.

This interaction can be disabled by setting the CanEditActivities property to false.
Before an activity is modified the BeforeEditActivity event is raised that allows you to
cancel the modification or alert the user in some particular cases.
218 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

When an activity is edited, the command is executed through an asynchronous callback
by default. You can force a post back by setting the PostBackOnEditActivity property to
true.

◆ Zooming the time scale

● Zoom-in the scale unit: to zoom-in a time scale unit by 2, double-click the time scale
unit.

● Zoom-out the time scale: with the Shift key pressed double-click the time scale.

● Zoom-in a specific time interval: with the CTRL key pressed, click the time scale and
drag it to define the new time interval.

● Zoom-out a specific time interval: with the Shift and CTRL keys pressed, click the
time scale and drag it to define the new time interval.

This interaction can be disabled by setting the CanZoomTimeScale property to false.

When the time scale is zoomed, the command is executed through an asynchronous
callback by default. You can force a post back by setting the PostBackOnTimeScale
property to true.

◆ Panning the time scale

● Pan the time scale: to translate the visible time interval, click the time scale and drag it
mouse to the desired time location.

When the time scale is panned, the command is executed through an asynchronous
callback by default. You can force a post back by setting the PostBackOnTimeScale
property to true.

GanttChart Extender

The GanttChart extender is defined by the GanttChartExtender class and its client control
implementation by the ILOG.Views.Gantt.Web.UI.GanttChartBehavior JavaScript class.

It allows you to select and edit activities displayed in a GanttChart, as well as to scroll the
visible area and to pan and zoom the time scale in the same way these actions are performed
in the Windows® Forms GanttChart.

In addition to the interactions described in Built-in Interactions, the GanttChart extender
supports the following operations:

◆ Creating a constraint

To create a constraint between two activities, keep simultaneously the CTRL key and the
left mouse button pressed on an activity bar and drag it over another activity bar.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 219

The creation of constraints can be disabled by setting the CanCreateConstraint property
to false. Before a constraint is really created, the BeforeCreateConstraint event is raised.
It allows you to cancel the creation or alert the user in some particular cases.

When a constraint is created, the command is executed through an asynchronous
callback by default. You can force a post back by setting the
PostBackOnCreateConstraint property to true.

◆ Providing contextual information to the client

The GanttChartExtender class allows you to provide contextual information to the
client asynchronously when a selection occurs by means of the QuerySelectionData
event. For more information on how to handle the QuerySelectionData event, see
Providing Contextual Information to the Client Control.

ScheduleChart Extender

The ScheduleChart extender is defined by the ScheduleChartExtender class and its client
control implementation by the ILOG.Views.Gantt.Web.UI.ScheduleChartBehavior
JavaScript class.

It allows you to select and edit activities displayed in a ScheduleChart, as well as to scroll
the visible area and to pan and zoom the time scale in the same way these actions are
performed in the Windows® Forms ScheduleChart.

In addition to the interactions described in Built-in Interactions, the ScheduleChart
extender supports the following operations:

◆ Editing a reservation

● Move a reservation to a new resource: keep simultaneously the Shift key and the left
mouse button pressed over the reservation and drag it over the new resource row.
Moving a reservation can be disabled by setting the CanMoveReservation property to
false.

● Copy a reservation to a new resource: to copy a reservation to a new resource, keep
simultaneously the CTRL key and the left mouse button pressed on the reservation,
then drag it over the new resource row. Copying a reservation can be disabled by
setting the CanCopyReservation property to false.

Before a reservation is really moved or copied, the BeforeMoveReservation event is
raised. It allows you to cancel the edition or alert the user in some particular cases.

When a reservation is moved or copied, the command is executed through an
asynchronous callback by default. You can force a post back by setting the
PostBackOnEditActivity property to true.
220 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

◆ Providing contextual information to the client

The ScheduleChartExtender class allows you to provide contextual information to the
client asynchronously when a selection occurs by means of the QuerySelectionData
event. For more information on how to handle the QuerySelectionData event, see
Providing Contextual Information to the Client Control.

ReservationChart Extender

The ReservationChart extender is defined by the ReservationChartExtender class and its
client control implementation by the
ILOG.Views.Gantt.Web.UI.ReservationChartBehavior JavaScript class.

It allows you to select and edit activities displayed in a ReservationChart, as well as to
scroll the visible area and to pan and zoom the time scale in the same way these actions are
performed in the Windows® Forms ReservationChart.

In addition to the interactions described in Built-in Interactions, the ReservationChart
extender supports the following operations:

◆ Providing contextual information to the client

The ReservationChartExtender class allows you to provide contextual information to
the client asynchronously when a selection occurs by means of the QuerySelectionData
event. For more information on how to handle the QuerySelectionData event, see
Providing Contextual Information to the Client Control.

Customizing the AJAX Extenders

The HierarchyChartExtender class provides several levels of customization that allows you
to modify the default behaviors.

Customizing the Client Selection Rendering

The rendering attributes of the client-side interaction ghost can be modified by means of the
following HierarchyChartExtender properties:

◆ GhostColor: represents the color of the interaction ghost.

◆ GhostStrokeWidth: represents the stroke width of the interaction ghost.

◆ GhostFillOn: indicates whether the ghost is filled with the value of the GhostColor
property.

◆ GhostOpacity: the opacity of the ghost color.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 221

Changing the Internal View State Cache for Asynchronous Callback

By default, all interactions are processed via asynchronous ASP.NET callbacks. Callbacks
have been introduced in ASP.NET 2.0 to add support for asynchronous request to ASP pages
and controls. The benefit of these callbacks is that they are integrated to the Page lifecycle,
but in a slightly modified version: the view state is not transmitted during a callback.
Therefore, if one of the data stored in the view state is modified during an asynchronous
callback on the server, the new value does not persist in the view state and will be overridden
in the next post back. To solve this issue, the HierarchyChartExtender class uses an
internal caching policy to maintain such data that need to be kept in sync with the view state
during callback. This caching policy is defined by the
HierarchyChartExtender.IAsyncCachePolicy interface and the default implementation uses
the Page session as the data cache. Custom IAsyncCachePolicy implementation can be
specified by means of the AsyncCachePolicy property of the HierarchyChartExtender
class.

Interacting with the Client Control

As an ExtenderControl subclass, the HierarchyChartExtender class is extended on the
client by a client control JavaScript implementation. In the Microsoft® JavaScript Library
terminology, this client control is called Behavior. To access a behavior associated with an
ASP.NET control, the Microsoft® JavaScript library defines the
Sys.UI.Behavior.getBehaviorByName(element, name) and
Sys.UI.Behavior.getBehaviorsByType(element, type) methods.

The following example shows how to get the JavaScript object associated with a
GanttChartExtender:

function pageLoad() {
 var ganttChartElement = $get('GanttChart1');
 if (ganttChartElement) {
 var ganttChartBehavior =
 Sys.UI.Behavior.getBehaviorByName(ganttChartElement,
 'GanttChartBehavior');
 }
}

The ILOG.Views.Gantt.Web.UI.HierarchyChartBehavior class defines several events that
programmers can subscribe to perform specific actions. These events are:

◆ timeout: occurs on an image loading time out.

◆ callbackReceived: occurs when the response of an asynchronous callback is received.

◆ doCallback: occurs when a postback is about to be triggered by this extender.

◆ customPropertiesLoaded: occurs when the selection custom properties have been loaded.
222 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

◆ imageLoaded: occurs when the control image has been loaded.

In the Microsoft® JavaScript Library terminology, events are defined as methods of the
class prototype. The accessor methods are named with add_ and remove_ prefixes
followed by the event name.

The following example shows how to subscribe to the callbackReceived event of a
GanttChartBehavior instance:

function pageLoad() {
 var ganttChartElement = $get('GanttChart1');
 if (ganttChartElement) {
 var ganttChartBehavior =
 Sys.UI.Behavior.getBehaviorByName(ganttChartElement,
 'GanttChartBehavior');
 if (ganttChartBehavior)
 ganttChartBehavior.add_callbackReceived(OnCallbackReceived);
 }
}

function OnCallbackReceived(sender, e) {
 alert('callback response received');
}

Providing Contextual Information to the Client Control

This section illustrates how to provide custom properties to the client control when a
selection occurs. In this section the GanttChartExtender control is used as an example, but
the illustrated methodology also applies to the ScheduleChartExtender and
ReservationChartExtender classes.

When a selection occurs on the client, the QuerySelectionData server-side event is fired to
enable the user to provide custom data to the client control. Then, once the response is
received on the client, the client-side customPropertiesLoaded event is fired making the
custom properties available to the user.

To obtain this behavior, you have to implement the following instructions:

◆ Subscribe to the QuerySelectionData event of the GanttChartExtender class. This event
is raised on the server to fetch information related to the current selection in order to post
them back to the client. Data must be provided as a key-value pair where the key is the
name of the property and the value is the value of the property. On the client, the
dictionary is represented as a JavaScript object, each property in the dictionary being
represented as a field of this object and accessible via the value of the property key.

◆ Subscribe to the customPropertiesLoaded event of the JavaScript
GanttChartExtender class. This event is raised when the response to a selection is
received and the data is accessible from the event args parameter of the handler.
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 223

The following example shows how to provide custom data to the client control: the
QuerySelectionData event of the GanttChartExtender class is used to display in the
HTML page the progress value of the selected activity.

The .aspx file:

<head runat="server">
 <title>Untitled Page</title>
 <script type="text/javascript">

function pageLoad() {
 var ganttChartElement = $get('GanttChart1');
 if (ganttChartElement) {
 var ganttChartBehavior =
 Sys.UI.Behavior.getBehaviorByName(ganttChartElement,
 'GanttChartBehavior');
 if (ganttChartBehavior)
 ganttChartBehavior.add_customPropertiesLoaded(OnPropertiesLoaded);
 }
}

function OnPropertiesLoaded(sender, properties) {
 // custom properties are stored in the customProperties field
 // of the event parameter as an array of object. The array
 // is sized according to the selection count.
 if (properties && properties.length > 0) {
 // get the progress property that has been put during the
 // QuerySelectionData event processing.
 var progress = properties[0].progress;
 // display the property value in the span placeholder.
 var elt = $get('placeholder');
 elt.innerText = 'Progress: ' + (progress * 100) + '%';
 }
}
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <cc1:GanttChart ID="GanttChart1" runat="server"
 Width="765px" Height="378px"
 FirstVisibleTime="01/18/2008 17:04:00" ShowTooltips="True"
 VerticalAlignment="Center" />
 <cc1:GanttChartExtender ID="SelectExtender1" runat="server"
 TargetControlID="GanttChart1"
 OnQuerySelectionData="OnQuerySelectionData"/>
 </div>
 <div>

 </div>
 </form>
</body>
</html>

The code-behind file:

public partial class _Default : System.Web.UI.Page {
224 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

 protected void Page_Load(object sender, EventArgs e) {
 if (!IsPostBack) {
 GanttModelXmlSerializer ganttSerializer =
 new GanttModelXmlSerializer();
 SimpleGanttModel ganttModel = new SimpleGanttModel();
 ganttSerializer.SetFileName(ganttModel, MapPath("~/demo.sdxl"));
 GanttChart1.GanttModel = ganttModel;
 GanttChart1.ZoomToFit();
 Page.Session["GanttModel"] = ganttModel;
 }
 }

 protected override void OnInit(EventArgs e) {
 SimpleGanttModel ganttModel =
 (SimpleGanttModel)Page.Session["GanttModel"];
 if (ganttModel != null) {
 GanttChart1.GanttModel = ganttModel;
 }
 }

 protected void OnQuerySelectionData(object sender,
 QuerySelectionDataEventArgs<IActivity> args)
 {
 IActivity activity = args.SelectedObject;
 float progress = activity.WorkComplete;
 // add the WorkComplete property value to the custom properties
 // list under the 'progress' name
 args.Properties.Add("progress", progress);
 }
}

I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 225

226 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

I N D E X
Index

A

activity
deserializing 150
events 34
serializing 148

activity bar
defining styles 106
dialog box 109
styling 100

ADO.NET 155
appearance of

activity bars 50, 101, 125
Gantt chart 47
Gantt sheet 124
Gantt table 61
load chart 82
schedule chart 47
table columns 50, 63, 65
time scale 135

auto format 47

C

clipboard 167
constraint

deserializing 150
events 37
managing 17
serializing 148

controls
load chart 81
time scale 134

customizing
printing 185
time scale rows 137

D

data model
ADO.NET 156
catching events 34, 36, 37, 39
customizing 21
in-memory implementation 11
interfaces 10
listening to 33
populating 12
using the clipboard 167

data node
collapsed 52
displayed 52
expanded 51
hidden 52
visible 51

deserializing 149
dialog box

control for styling activity bars 109
customizing for editing a constraint 178
editing the columns of Gantt table 70
Gantt document setup 185
I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G 1

E

editing
columns of Gantt table 70
constraint 178
values in the table 66

event
activity 34
constraint 37
reservation 39
resource 36

G

Gantt
controls 57
data model 9

I

in-memory 12
extending the implementation 22

interface
implementing 27

M

modification
grouping 173
redoing 172
undoing 172

P

printing 181

R

reservation
deserializing 151
serializing 149

resource
deserializing 150
events 36
serializing 148

rows
customizing time scale 72
expanding or collapsing 51, 71
hiding or showing 51
using predefined behavior 71

S

satellite assemblies 211
schedule entity

accessing 28
creating 28
implementing 32
maintaining up-to-date relationships 30
triggering events 30

schedule information
displaying 45
displaying in a Gantt sheet 123
displaying in a Gantt table 61

SDXL
customizing 151
deserializing 149
overview 146
serializing 147

serializing 147

T

time scale
customizing 136
introducing the class 134
modifying the appearance 135
using predefined behavior 136

U

undo/redo
disabling 172
enabling 172

Using the Localization Tool 212
2 I B M I L O G G A N T T F O R . N E T 4 . 0 — P R O G R A M M I N G

	Programming with IBM ILOG Gantt for .NET Windows Forms and Web Forms Controls
	Creating and Using Gantt Data Models
	Introducing Gantt Data Model Interfaces
	Introducing the Gantt Data Model In-Memory Implementation
	Populating Gantt Data Models
	Managing Activities
	Managing Resources
	Managing Constraints
	Managing Reservations
	Optimizing Gantt Data Model Modifications

	Displaying Scheduling Data
	Creating Custom Gantt Data Models
	Extending the In-Memory Implementation
	Implementing the Gantt Data Model Interfaces

	Listening to Gantt Data Model Events
	Catching Activity Events
	Catching Resource Events
	Catching Constraint Events
	Catching Reservation Events

	Displaying Scheduling Data Using Gantt Charts
	Introducing the Gantt Chart, Schedule Chart, and Reservation Chart Controls
	Displaying Scheduling Data
	Accessing the Lower-Level Controls
	Modifying the Appearance of Gantt Chart Controls
	Using the Predefined Behavior of the Gantt Chart Controls
	Expanding or Collapsing Rows
	Grouping, Filtering and Sorting Rows
	Controlling the Displayed Time Interval

	Displaying Scheduling Data Using Tables
	Introducing the Activity, Resource, and Reservation Tables
	Connecting a Gantt Table to a Gantt Data Model
	Modifying the Appearance of a Gantt Table
	Managing Columns of a Gantt Table
	Modifying the Appearance of Table Columns
	Editing Values in the Table
	Default Columns for Activity, Resource, and Reservation Tables
	Dialog Box for Editing the Columns of a Gantt Table
	Using Predefined Behavior to Manipulate Rows and Columns
	Expanding or Collapsing Rows
	Scrolling the Gantt Table
	Getting and Setting the Current Cell
	Controlling Selection in the Table
	Hit Testing in the Gantt Table
	Grouping, Filtering and Sorting Rows

	Displaying the Load of a Resource
	Introducing the LoadChart Class
	Connecting the Load Chart to a Resource
	Modifying the Appearance of a Load Chart
	Controlling the Displayed Time Interval

	Displaying Activities Using a Calendar View
	Introducing the CalendarView class
	Displaying Activities in the Calendar View
	Modifying the Appearance of the Calendar View
	Representing Activity bars in the Calendar View
	Controlling the Layout of Activities in the Calendar View
	Using the Predefined Behavior of the Calendar View
	Hit Testing in the Calendar View

	Customizing the Drawing of Gantt Components
	Using Time Grids and Date Indicators
	Representing Activity Bars in Gantt Sheets
	Styling Activity Bars in Gantt Sheets
	Dialog Box Control for Styling Activity Bars

	Creating Owner-Drawn Gantt Components
	Providing User Code to Draw Gantt Table Cells
	Providing User Code to Draw Gantt Sheet Rows
	Providing User Code to Draw Activity Bar Styles
	Providing User Code to Draw Time Scale Rows
	Providing User Code to Draw Constraint Links

	Creating Custom Gantt Representations
	Displaying Scheduling Data using Gantt Sheets
	Introducing the Activity Sheet, Schedule Sheet, and ReservationSheet
	Displaying Scheduling Data in Gantt Sheet Controls
	Modifying the Appearance of Gantt Sheet Controls
	Using the Predefined Behavior of Gantt Sheet Controls
	Controlling the Displayed Time Interval
	Hit Testing in the Gantt Sheet Controls

	Using Time Scales
	Introducing the Time Scale Class
	Modifying the Appearance of the Time Scale
	Using the Predefined Behavior of Time Scales
	Controlling the Displayed Time Interval
	Customizing Time Scale Rows
	Synchronizing a Time Scale and a Time Grid

	Displaying Time-based Information
	Synchronizing the Time of Several Controls
	Using Time Lines
	Using Time Scrollbars

	Reading and Writing Scheduling Data Using XML
	Overview of the SDXL Language
	Serializing Scheduling Data to SDXL
	Deserializing Scheduling Data from SDXL
	Customizing XML Serialization or Deserialization

	Working with ADO.NET
	Overview of the Architecture
	Using Gantt Model Adapters
	Updating a Gantt Data Model from a DataSet
	Filling a DataSet from a Gantt Data Model

	Using the Generic Gantt Model Adapter
	Developing a Custom Gantt Model Adapter

	Using the Clipboard to Store Scheduling Data
	Storing Scheduling Data in the Clipboard
	Retrieving Scheduling Data from the Clipboard

	Managing Undo/Redo in a Gantt Data Model
	Enabling Undo/Redo
	Disabling Undo/Redo
	Undoing Modifications
	Redoing Modifications
	Grouping Modifications

	Using Predefined Dialog Boxes for Editing Scheduling Data
	Editing an Activity Using the Predefined Dialog Box
	Editing a Resource Using the Predefined Dialog Box
	Editing a Constraint Using the Dialog Box

	Printing Gantt Charts
	Introducing the GanttPrintDocument Class
	Customizing Printing

	Storing and Displaying Working and Nonworking Times
	Using a WorkCalendar to Store Working and Nonworking Periods
	Navigating in a WorkCalendar
	Editing the Content of a WorkCalendar
	Displaying Working and Nonworking Times in Gantt Controls

	Creating Project Scheduling Applications with IBM ILOG Gantt for .NET
	Programming with the ProjectSchedulingModel
	The ProjectSchedulingModel Class
	Activities in the ProjectSchedulingModel
	Controlling When the Project Schedule is Recomputed
	Displaying and Editing Content of a ProjectSchedulingModel in a Gantt Control

	How the Project Scheduling Model Computes the Schedule of a Project
	How Project Start Date Affects the Schedule
	How Constraint Links Affect the Schedule
	How Constraints on Activities Affect the Schedule
	Calendars in the Project Scheduling Model

	Resource Leveling in ProjectSchedulingModel
	Displaying the Critical Path of a Project Scheduling Model
	Saving and Reading a ProjectSchedulingModel to an XML File

	Localizing a Gantt Application
	Creating a Localization Project
	Translating the Resource Files
	Creating the Satellite Assemblies

	Displaying a GanttChart in an AJAX Web Application
	Overview of the IBM ILOG Gantt for .NET AJAX Framework
	Adding AJAX Capabilities to IBM ILOG Gantt for .NET Web Controls
	Customizing the AJAX Extenders
	Interacting with the Client Control
	Providing Contextual Information to the Client Control

	Index
	A
	C
	D
	E
	G
	I
	M
	P
	R
	S
	T
	U

