
IBM ILOG JViews Charts V8.6

Developing with the JViews
Charts SDK

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the Main Classes..9
Data Model Classes...10

Data Projection..11

Data Display Classes..12

Binding a data model and graphical representation..14

Interactor Classes...15

Creating a Chart...17
Creating a basic chart...18

Creating a basic Cartesian chart...19

Customizing a basic Cartesian chart..23

Creating a basic polar chart...25

Customizing a basic polar chart..27

Creating a basic treemap chart..28

Customizing a treemap chart...35

Customizing a Chart...36

Using the Data Model...39
Structure of the Data Model...41

About data model, data sets and data sources..43

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Predefined Data Classes..45
Data set classes...46
Data Source Classes..53

Connecting to the Data Model..67

Synchronizing the Contents of Several Data Sets...69

Extending the Data Model..70

Structure of the Extended Data Model..73

Predefined Extended Data Model Classes..77

Transforming Data Models...79
The IlvTreeTableDataSource data source..80
Model adapters...83

Configuring the Data Projection...89
Configuring the Axis...91
The chart..92
Axis properties..94
Changing the axis ranges...96
Setting the axis transformer..97
Listening to axis events..98
Handling chart resizing...99

Configuring the Projector...101
Projector Properties..102
Projecting points...104
Projecting rectangular areas..106
Projecting a set of data points..107

Handling Chart Renderers...109
Chart Renderers..110

Using Chart Renderers...113
Polyline Charts...115
Area Charts..117
Bar Charts..118
Bubble Charts...120
High/Low Charts...121
Pie Charts...123
Scatter Charts..124
Stair Charts..125
Treemap Charts..126

Customizing Chart Renderers..131
Annotations..132
The rendering style...136

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K4

Notifications from the data model...138

Legend items...139

Scales..141
What is a scale...142

General Properties..144

Computing Scale Graduation...147

Scale Labels...151

Scale Annotations...156

Decorations...159
Drawing decorations...160

Predefined decorations..161

Writing a new decoration..162

Displaying and Writing a Grid...165
What is a grid...166

General Properties..167

Writing a new grid...169

Displaying Data Indicator..171
Data Indicator..172

General Properties..174

Displaying an image...177
The IlvImageDecoration class..178

Interacting With Charts..181
Chart Interactors...183
Introduction to the chart interactors..185
Zoom interactor..187
X-scroll interactor...188
Y-scroll interactor..189
Pan interactor...190
Action interactor...191
Local pan interactor..192
Local reshape interactor...193
Local zoom interactor...194
Edit-point interactor..195
Highlight-point interactor..197
Information-view interactor...198

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 5

Pick-data-points interactor..199
Treemap focus interactor..201

Setting an Interactor on an IlvChart..202

Handling interactions..203

Writing your own interactor..205

Configuring 3-D Rendering...209
Switching to 3-D..211
3-D view methods...212
3-D view properties..213
Interactive control of the 3-D view orientation..217

Supported features...219
Available chart renderers..220
Available chart decorations..224
Available chart interactions...225
Unsupported operations...226

Using CSS Syntax in the Style Sheet...227
The origins of CSS..228

The CSS syntax...229

Applying CSS to Java objects..235
The CSS Engine...236
The Data Model..237
CSS Recursion...240
Expressions..242
Divergences from CSS2...244

Styling...247
Two kinds of rules...248

Styles..249

Styling the Chart Component...251
Parts of the chart component...253
Styling the chart..254
Styling the chart area...256
Styling the chart legend..257
Styling chart 3-D view...258
Styling the chart grids...259
Styling the chart scale..260
Styling the Chart Component...262
The chart renderers..264
Scales and grids...265

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K6

Styling the data series..267
Selector patterns..268
Properties...271
Styling the chart data..276

Styling the data objects..279
Selector Patterns..280
Properties...282

Integrating a chart customizer into your application..287
Creating a chart customizer...288

Main classes of the chart customizer..291

Undo manager into the chart customizer...295

Customizing the chart customizer...296

XML specification of the chart customizer...297

Property Editors..303

Using Load-On-Demand..305
Framework structure...306

The tile controller..307

The tile cache...309

How to listen to events...311

How to use LOD with your data...312

Using JViews Charts JavaBeans..317
The IlvChart bean..319
General properties..320
Legend properties..323
Axis properties..324
Scale properties...325
Graphical representation properties...327
Interaction Properties...329
Data properties...330

Data source beans...331
The IlvXMLDataSource bean...332
The IlvJDBCDataSource bean...333
The IlvSwingTableDataSource...335

Using the JavaBeans with an IDE..336

Using JViews products in Eclipse RCP applications..340

Printing..345

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 7

Printing a chart in a flow...347
Flow..348
The IlvChartFlowObject class...349
Printing a chart in a flow...350

Printing a chart with a custom document structure..353
The classes involved..354
How it works...358
Customizing the printing of a chart...360

Generating PDF..363

Index..365

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K8

Introducing the Main Classes

Gives a brief introduction to the main classes of JViews Charts.

In this section

Data Model Classes
Describes the data model classes.

Data Projection
Defines the data projection process.

Data Display Classes
Describes the graphical representation of a data source.

Binding a data model and graphical representation
Explains how to bind a data model to a graphical representation.

Interactor Classes
Explains the chart interactors.

© Copyright IBM Corp. 1987, 2009 9

Data Model Classes

The data model is defined by two distinct interfaces: IlvDataSet and IlvDataSource. The
IlvDataSet interface acts as a data holder. The objects that implement this interface manage
data as a set of data points, and provide the required Application Programming Interface
(API) to fetch and modify data. An abstract implementation of this interface called
IlvAbstractDataSet is provided in the library as well as several concrete implementations.

The IlvDataSource interface acts as a data set source. It handles a collection of data sets
and provides the required API to access them.The implementation of this interface allows
you to import data from an external package (for example a database, an XML file, and so
on) into the JViews Charts library. An abstract implementation called IlvAbstractDataSource
is provided in the library as a starting point for your own custom implementation. A
memory-based implementation is provided by the IlvDefaultDataSource class.

Data Model Classes

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K10

Data Projection

Data Projection is the process of mapping data points provided by the data model into display
points used by chart renderers. This mapping corresponds to a conversion between two
coordinate systems:

The data space, which defines the coordinate systemwhere data is expressed. This coordinate
system is defined by chart coordinate axes.

The display space, which defines the coordinate system where data points are projected.
This coordinate system is equivalent to the user space in Java2D terminology. In other words,
it corresponds to the coordinate system used by rendering routines.

Data Projection Classes Relationships

Chart Axis and Chart Projector
Each chart uses several coordinate axes, which are represented by the IlvAxis class.

The conversion between data space and display space is performed by a projector owned
by the chart. Depending on its type, a chart uses one of the two predefined projectors
available in the Charts package:

♦ Cartesian projector

♦ Polar projector

The projector used by a chart can be retrieved with the IlvChart.getProjector method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 11

Data Display Classes

The graphical representation of a data source is defined according to the following criteria:

♦ The global characteristics of a chart (for example, whether it uses Cartesian or polar
projection)

♦ The rendering type used to display data on the screen (as a polyline, bar, stair, and so
on).

The conversion from data space to screen coordinates is handled by a projector object, which
is an instance of IlvChartProjector. The type of a projector object is defined by the type
of the chart and is a global parameter of a chart:

♦ A Cartesian projector when using a Cartesian chart.

♦ A polar projector when using a radar, polar, or pie chart.

The way data is rendered on the screen (as a polyline, a bar, or a bubble) is handled by chart
renderer objects, which are instances of subclasses of IlvChartRenderer.

There are three types of chart renderers:

♦ Composite renderers (instances of IlvCompositeChartRenderer).

♦ Single renderers (instances of IlvSingleChartRenderer).

♦ Simple renderers (instances of IlvSimpleChartRenderer).

Data Display Classes Relationship

Composite Renderers
The composite renderers are used to render the contents of a data source using a collection
of child chart renderers so that each data set in the associated data source is rendered by
one of these child renderers.

Depending on the rendering type, the relation between a data set and a child renderer can
be one of the following:

♦ unary relation: one child renderer per data set.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K12

The unary relations are handled by instances of subclasses of
IlvSimpleCompositeChartRenderer. An example of a simple composite chart renderer
is the polyline renderer, which renders each data set of the data source by a polyline.

♦ n-ary relation: one child renderer using several data sets.

The n-ary relations are handled by direct subclasses of IlvCompositeChartRenderer. An
example of a composite chart renderer that uses several data sets for one graphical
representation is the high-low renderer (hilo), which needs two data sets (high and low
values) for one graphical representation.

Single Renderers
Single renderers are used as elementary chart renderers by composite renderers to draw
the graphical representation of data sets. While a composite renderer handles a data source,
a single renderer handles a data set. Single renderers can also be used directly when you
handle a specific data set.

Simple Renderers
Simple renderers are used to render the contents of a data source. They do not make use
of other renderers for particular data sets. Instead, they do the rendering all on their own.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 13

Binding a data model and graphical representation

A data source is rendered by a composite chart renderer.

To associate a data source with a chart renderer:

♦ Use the following method defined in the IlvChartRenderer class:

void setDataSource(IlvDataSource dataSource)

To obtain the current data source of a chart renderer:

♦ Use the following method:

IlvDataSource getDataSource()

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K14

Interactor Classes

Chart interactors let you associate one or several behaviors with a chart object. Chart
interactors define atomic interactions that can be combined together and extended to achieve
complex interactive functionalities.

Each chart interactor (subclasses of IlvChartInteractor) implements a given type of
interactive operation: scrolling, zooming, editing, or highlighting data points.

As a result of this clean separation, chart interactors are lightweight and well-defined
event-handling entities that can be easily customized.

The base class used to define the behavior of a chart in response to a given action by the
user is the IlvChartInteractor class.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 15

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K16

Creating a Chart

Explains how to create different types of chart and how to customize them.

In this section

Creating a basic chart
Describes the basic steps for creating a chart. The steps are the same whether you are
creating a Cartesian, polar, pie, or radar chart.

Creating a basic Cartesian chart
Explains how to create a basic Cartesian chart.

Customizing a basic Cartesian chart
Explains how to enhance the appearance of a basic Cartesian chart.

Creating a basic polar chart
Explains how to create a basic polar chart.

Customizing a basic polar chart
Explains how to enhance the appearance of a basic polar chart.

Creating a basic treemap chart
Explains how to create a basic treemap chart.

Customizing a treemap chart
Explains how to enhance the appearance of a treemap chart.

Customizing a Chart
Explains how to customize a chart to improve its appearance.

© Copyright IBM Corp. 1987, 2009 17

Creating a basic chart

The IlvChart class provides a set of convenience methods that may reduce the number of
steps required to create a chart.

These methods are:

♦ setRenderingType(int)

Sets the type of the chart renderers to use to represent a stand-alone data source.

♦ setDataSource(ilog.views.chart.data.IlvDataSource)

Sets the specified data source as the new data source and represents it with the default
chart renderer type.

♦ addData(ilog.views.chart.data.IlvDataSource, int)

Connects the given data source to the chart and represents it with the specified chart
renderer type.

♦ addRenderer(ilog.views.chart.IlvChartRenderer, ilog.views.chart.data.
IlvDataSet)

Adds the specified renderer to the chart and initializes its data source with the specified
data set.

1. Create the data model.

♦ Create the object representing the data source you want to display. This object is
an instance of a concrete implementation of the IlvDataSource interface.

♦ Put the data to be displayed into the created data source.

2. Create the renderer that will display the graphical representation of the data. The
renderer is an instance of one of the IlvChartRenderer subclasses.

3. Set the data source as the chart renderer data source.

4. Create the chart.

The created chart object is an instance of the IlvChart class, and its type depends on
the type of chart you want to display.

5. Add the chart renderer to the chart object.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K18

Creating a basic Cartesian chart

The data to be represented is the morning and afternoon mean temperatures (expressed in
degrees Celsius) recorded for each day of a week. The days of the week are referenced by
values ranging from 0 to 6. The data series is composed of categories. The data for the chart
is listed in Data for the Example Chart. You will see the steps required to display this data
in a Cartesian chart.

Data for the Example Chart
Afternoon Mean Temperature (C)Morning Mean Temperature (C)Day

16100

1281

20122

15193

18104

24145

26136

Example Cartesian Chart shows the Temperatures Chart that will be created to display our
data.

The morning mean temperatures will be displayed with a blue polyline (the bottom line of
the chart) and the afternoon mean temperatures with a red polyline (the top line of the
chart). The chart will also display the two sets of temperatures with high-low bars in order
to illustrate the variation between the morning and afternoon temperatures for each day of
the week.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 19

Example Cartesian Chart

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/basic-cartesian/src/Cartesian.java.

Creating the data model
You are going to display two data sets on the same chart: the morning mean temperatures
and the afternoon mean temperatures for each day of a week. The days will be plotted along
the abscissa scale and the temperatures along the ordinate scale. Since the day values match
the index of the temperature value in the data model, there is no need to define a specific
x-series in the data model but instead only the y-values.

In the JViews Charts library, the data model is defined by the IlvDataSource interface. In
this example, the data source holding both the morning and afternoon temperature values
is an instance of the IlvDefaultDataSource class. This class provides a default
memory-storage implementation of the IlvDataSource interface.

1. Create the values to be put in the data source.

// Create the initial values array.
double[][] temps = {

{10, 8, 12, 19, 10, 14, 13},
{16, 12, 20, 15, 18, 24, 26}

};

2. Create the data source.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K20

String[] names = {"Morning Temperatures",
"Afternoon Temperatures"};

String[] labels = {"Monday","Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"};

// Create one data source to store the temperatures.
// No x series since the x-values are actually the index
// of the y-value in the data set.
IlvDataSource tempDataSource =

new IlvDefaultDataSource(temps, -1, names, labels);

The data source is initialized with an array containing the temperature values for each
series. These series are internally stored in the data sets. Since you do not have any
x-series, you specify -1 as the x-series index, and you name the data sets holding the
temperature values.

By default, the labels displayed at the major tick marks of the scales are floating values
corresponding to the data values represented by the scales. In this case, the labels
displayed along the abscissa scale would be the indexes from 0 to 6 referencing the
days of the week. To make these values more understandable, display the names of
the days instead of the indexes. To do this, you will enable the category mode of the
xscale (in this mode, the scale is configured to display categories), but the first thing
to do is to specify the labels you want to use. This is done during the creation of the
data source, passing an array of strings as the last parameter of the
IlvDefaultDataSource constructor. This array of labels is referenced by each data
set held by the data source and will be used by the scale steps definition to label the
steps.

Creating a Cartesian chart

♦ To create a Cartesian chart, use the following code:

IlvChart chart = new IlvChart();

The chart type is not explicitly specified: it is Cartesian by default.

Creating and adding the renderers
You are going to display the two sets of temperatures with two polylines and with a high-low
bar representation. The first polyline represents the data set of the morning mean
temperatures, and corresponds to the first series of values in the data source. The second
polyline represents the data set of the afternoon mean temperatures, which corresponds to
the second series of values in the data source. The high-low bar representation represents
both the data sets of the morning and afternoon mean temperatures.

1. Create and add the hilo renderer.

IlvHiLoChartRenderer hiloRenderer =
new IlvHiLoChartRenderer();

hiloRenderer.setWidthPercent(40);
hiloRenderer.setDataSource(tempDataSource);
IlvStyle[] styles = {

new IlvStyle(Color.black, IlvColor.indianRed),
new IlvStyle(Color.black, IlvColor.cornflowerBlue)

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 21

};
hiloRenderer.setStyles(styles);
hiloRenderer.getChild(0).setName("Morning/Afternoon temperatures");
chart.addRenderer(hiloRenderer);

Since the data contained in the temperature data source is rendered as hilo bars, the
temperature data source is set as the data source of an IlvHiLoChartRenderer
instance, which represents the variation of two series of values.

The default graphical representation of the hilo renderer is a bar. The width of a bar
is expressed as a percentage of the space available between two categories. In this
example, the width is set to 40%.

Set the rendering styles used by the hilo renderer so that:

♦ the high-low items for which the corresponding first value (that is, the morning
mean temperature) is smaller than the second value (that is, the afternoon mean
temperature) are drawn as a red bar.

♦ the high-low items for which the corresponding first value is greater than the second
value are drawn as a blue bar.

2. Create and add the polyline renderers.

IlvChartRenderer tempRenderer = new IlvPolylineChartRenderer();
tempRenderer.setDataSource(tempDataSource);
chart.addRenderer(tempRenderer);

The temperature data source is set as the data source of an IlvPolylineChartRenderer
instance, that draws one polyline for each data set held by its data source. Note that
you did not specify any rendering style for this renderer. In this case, the renderer
uses a default rendering style with a unique color chosen in a list of predefined default
colors. This default colors list is retrieved using the getDefaultColors() method. If
this method returns null (which is the default implementation), the color is then
chosen in the list returned by IlvColor.getDefaultColors list. To change the default
colors, you can either override the IlvChartRenderer.getDefaultColors method to
return your own list for a given chart renderer class, or edit the default colors list of
the IlvColor class to change the default colors for all chart renderer classes.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K22

Customizing a basic Cartesian chart

The following steps illustrate how to customize the abscissa and ordinate scales, and how
to add a legend to a chart.

To customize the abscissa scale:

♦ Configure the scale to display the labels associated with the category of the data sets.
Enable the category display mode on the abscissa scale, so that numeric labels are
replaced by the labels of the days:

chart.getXScale.setCategory(tempDataSource.getDataSet(0),false);

The computation of the steps and substeps for a given scale is performed by a dedicated
object called steps definition, which is set on the scale.

Two types of steps definition are available:

♦ numerical steps definition, which handles numeric steps values,

♦ time steps definition, which handles time values.

The steps definition type depends on the scale type: numeric steps definition for
IlvScale.DEFAULT_SCALE and time steps definition for IlvScale.TIME_SCALE.

By default, a steps definition object is automatically set on a scale when
it is created.

Note:

In this mode, the steps are determined according to the number of categories. The
data set parameter is used to provide steps labels to the scale steps definition, and
the false parameter is used to make steps appear at each category. You could have
set the parameter to true to make steps appear between categories.

To customize the ordinate scale:

♦ Set the step and the substep units for the ordinate scale. Specify 5 as the step unit
and 1 as the substep unit to have a major tick mark appear every five degrees and a
minor tick mark every degree.

chart.getYScale(0).setStepUnit(5.,1.);

The steps will be marked with a major tick mark and the substeps with a minor tick
mark.

When a numeric scale is created, a numeric steps definition is set and the steps values
are automatically computed. You do not want the values to be automatically computed,
but rather manually set. The ordinate scale represents the temperature in degrees
Celsius.

To add a legend:

♦ Add the legend with the ABSOLUTE constraint:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 23

IlvLegend legend = new IlvLegend();
legend.setLocation(250,270);
chart.addLegend(legend, IlvChartLayout.ABSOLUTE);

to have the legend displayed within the chart area.

A legend is an instance of the IlvLegend class (a JComponent subclass) that is associated
with an IlvChart. A legend can be added to an IlvChart, but it is not mandatory. In this
case, a legend can be added at several predefined positions (see the IlvChartLayout class)
or at an absolute position, using its current location.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K24

Creating a basic polar chart

You are going to create a polar chart to represent the morning and afternoon mean
temperatures. The days of the week will be represented along the abscissa and the
temperatures along the ordinate. The abscissa values will be mapped along a circular scale
and the ordinate values will be displayed radially. You will customize the scales and finally,
you will add a legend to the chart.

Example Polar Chart

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/basic-polar/src/Polar.java.

Creating the Data Model

♦ Create the data model and put the data to be displayed into the data source. Use the
same data and procedures as for the Cartesian chart example. See Creating the data
model.

Creating a Polar Chart
1. To create a polar chart, use the following code:

IlvChart chart = new IlvChart(IlvChart.POLAR);
chart.setAngleRange(180);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 25

2. Create an instance of IlvChart, and pass the IlvChart.POLAR type constant as
parameter to the constructor.

3. Set the angle range to 180 degrees, specifying the angle range within which the data
will be projected on the screen.

Creating and Adding the Renderers

♦ Because you use the same graphical representation for your data, you will use the
same renderers as for the Cartesian chart. See Creating and adding the renderers.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K26

Customizing a basic polar chart

The following steps illustrate how to customize the abscissa and ordinate scales, and how
to add a legend to a chart.

To customize the abscissa scale:

♦ Customize the abscissa scale as you did for the Cartesian chart. See Customizing a
basic Cartesian chart.

To customize the ordinate scale:

♦ Customize the ordinate scale as you did for the Cartesian chart. See Customizing a
basic Cartesian chart.

To add a legend:

♦ Add a legend to your data. Use the same procedures as for the Cartesian chart example.
See Customizing a basic Cartesian chart.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 27

Creating a basic treemap chart

A treemap displays entities in such a way that important entities stand out visually and the
less important ones are visually insignificant. A treemap is optimal for getting an overview
of all entities and for spotting particular ones with extraordinary characteristics.

The data to be represented is the expenses of a fictive company. Data has the shape of a
tree table, where objects are organized in a tree structure with several values per object,
as illustrated in Example of Expenses Organized in a Tree Structure.

Example of Expenses Organized in a Tree Structure

A treemap chart displays objects as rectangles. The important objects are represented by
large rectangles while the less important objects are represented by smaller rectangles.

Rectangles relate each other in a containment structure, where each rectangle is part of
another rectangle.

Example of Treemap Chart shows the treemap chart that will be created to display your
data.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K28

Example of Treemap Chart

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/basic-treemap/src/Treemap.java.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 29

Creating the data model
The data model, among those offered in the packages ilog.views.chart.data and ilog.
views.chart.datax, that best matches the tree structure is the IlvTreeListModel. The
IlvTreeListModel can be found in the ilog.views.chart.datax package.

To create the data model, you first need create the objects that represent the data and then
create an instance of the IlvDefaultTreeListModel and add objects to it.

1. Create the objects.

The objects in the model have a name and two numerical attributes: the amount of
expenses in the years 2004 and 2005. You will also use a computed attribute: the
growth from 2004 to 2005.

class ExpenseItem {

private String name;
private double amount2004;
private double amount2005;
/**
* Creates an expense item without associated amounts.
*/
public ExpenseItem(String name) {

this.name = name;
}
/**
* Creates an expense item with associated amounts.
*/

public ExpenseItem(String name, double amount2004, double amount2005)
{

this.name = name;
this.amount2004 = amount2004;
this.amount2005 = amount2005;

}
/**
* Returns the amount for the year 2004, or 0 if none.
*/
public double getAmount2004() {

return this.amount2004;
}
/**
* Returns the amount for the year 2005, or 0 if none.
*/
public double getAmount2005() {

return this.amount2005;
}
/**
* Returns the growth factor from 2004 to 2005.
*/
public double getGrowth() {

if (this.amount2004 != 0)
return this.amount2005 / this.amount2004;

else if (this.amount2005 > 0)
return Double.POSITIVE_INFINITY;

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K30

else if (this.amount2005 < 0)
return Double.NEGATIVE_INFINITY;

else
return Double.NaN;

}
/**
* Returns the string representation of this object.
* For simplicity, we use the name here.
*/
public String toString() {

return this.name;
}

}

2. Enumerate the object properties.

Every attribute of the ExpenseItem class corresponds to a column in the tree-table,
illustrated in Example of Expenses Organized in a Tree Structure. Each attribute of a
particular object in the tree corresponds to a table cell in the right part of the tree
table.

IlvDataColumnInfo amount2004Column =
new IlvDefaultDataColumnInfo("Amount 2004", Double.class);

IlvDataColumnInfo amount2005Column =
new IlvDefaultDataColumnInfo("Amount 2005", Double.class);

IlvDataColumnInfo growthColumn =
new IlvDefaultDataColumnInfo("Growth", Double.class);

IlvDataColumnInfo[] columns =
new IlvDataColumnInfo[] {

amount2004Column, amount2005Column, growthColumn
};

You will also need the indices of the columns:

static final int amount2004Index = 0;
static final int amount2005Index = 1;
static final int growthIndex = 2;

3. Create the model class.

Now you are ready to create the model. It will access the methods of the ExpenseItem
class. If you instantiate IlvDefaultTreeListModelwithout any overrides, the storage
of the attribute values would be in the IlvDefaultTreeListModel. However, since
you want the attribute values is derived from the the values of the methods
getAmount2004(), getAmount2005(), and so on, you override the corresponding
methods from IlvDefaultTreeList.

class ExpensesModel extends IlvDefaultTreeListModel {

public ExpensesModel(IlvDataColumnInfo[] columns) {
super(columns);

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 31

public double getDoubleAt(Object object, int columnIndex) {
switch (columnIndex) {

case amount2004Index:
return ((ExpenseItem)object).getAmount2004();

case amount2005Index:
return ((ExpenseItem)object).getAmount2005();

case growthIndex:
return ((ExpenseItem)object).getGrowth();

default:
throw new IllegalArgumentException("invalid column");

}
}

public Object getValueAt(Object object, int columnIndex) {
switch (columnIndex) {

case amount2004Index:
case amount2005Index:
case growthIndex:
return new Double(getDoubleAt(object, columnIndex));

default:
throw new IllegalArgumentException("invalid column");

}
}

public void setDoubleAt(double value, Object object, int columnIndex)
{

throw new UnsupportedOperationException("the values are read-only")
;

}

public void setValueAt(Object value, Object object, int columnIndex)
{

throw new UnsupportedOperationException("the values are read-only")
;

}
}

4. Instantiate the model.

Instantiate the model and fill it with your data.

ExpensesModel model = new ExpensesModel(columns);
ExpenseItem root = new ExpenseItem("Expenses");
model.setRoot(root);
{

ExpenseItem kind;
kind = new ExpenseItem("Cost of revenues");
model.addChild(kind, root);
{

ExpenseItem purpose;
purpose = new ExpenseItem("Cost of manufacturing");
model.addChild(purpose, kind);
model.addChild(new ExpenseItem("Materials and Supplies", 580,

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K32

611), purpose);
model.addChild(new ExpenseItem("Production wages", 101, 104)

, purpose);
purpose = new ExpenseItem("Cost of maintenance", 271, 324);
model.addChild(purpose, kind);
purpose = new ExpenseItem("Cost of training", 110, 80);
model.addChild(purpose, kind);
purpose = new ExpenseItem("Cost of consulting", 250, 270);
model.addChild(purpose, kind);

}
kind = new ExpenseItem("Operating expenses");
model.addChild(kind, root);
{

ExpenseItem kind1;
kind1 = new ExpenseItem("Marketing and Promotion");
model.addChild(kind1, kind);
model.addChild(new ExpenseItem("Marketing employee costs",

120, 133), kind1);
model.addChild(new ExpenseItem("Marketing campaigns", 30, 30)

, kind1);
kind1 = new ExpenseItem("Sales employee costs");
model.addChild(kind1, kind);
model.addChild(new ExpenseItem("Sales employee salaries",

279, 291), kind1);
model.addChild(new ExpenseItem("Sales commissions", 184, 195)

, kind1);
kind1 = new ExpenseItem("General & Administrative");
model.addChild(kind1, kind);
model.addChild(new ExpenseItem("Finance department", 40, 43)

, kind1);
model.addChild(new ExpenseItem("Legal department", 11, 12),

kind1);
model.addChild(new ExpenseItem("Management Information

Systems", 40, 37), kind1);
{

ExpenseItem facilities = new ExpenseItem("Facilities");
model.addChild(facilities, kind1);
{
ExpenseItem office = new ExpenseItem("Office expenses")

;
model.addChild(office, facilities);
model.addChild(new ExpenseItem("Rental", 38, 40),

office);
model.addChild(new ExpenseItem("Electricity", 2, 2),

office);
model.addChild(new ExpenseItem("Other office expenses",

24, 23), office);
}
model.addChild(new ExpenseItem("Telecommunication", 13,

11), facilities);
model.addChild(new ExpenseItem("Other facilities", 9, 9)

, facilities);
}

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 33

kind = new ExpenseItem("Financial Interests", 6, 5);
model.addChild(kind, root);
kind = new ExpenseItem("Income Taxes", 0, 49);
model.addChild(kind, root);

}

5. Create the data source.

You need to create a data source view of the model, so that you can connect it to the
chart. To do this, use the following code:

IlvTreeTableDataSource dataSource = new IlvTreeTableDataSource(model);

Creating a treemap chart with renderers
To display a treemap chart, you need an instance of IlvChart and an instance of
IlvTreemapChartRenderer set on the IlvChart and connected to your data source.

To do this, you can proceed in two different ways:

1. Allocate the chart and the renderer, and connect the renderer to the data source.

IlvChart chart = new IlvChart();
IlvTreemapChartRenderer renderer = new IlvTreemapChartRenderer();
renderer.setDataSource(dataSource);
// Here you can customize the renderer.
chart.addRenderer(renderer);

2. Allocate the chart only, and connect the chart to the data source.

// Allocate a chart that will show treempas by default.
IlvChart chart = new IlvChart(IlvChart.TREEMAP);
// Connect the chart to the data source. The chart automatically
// creates the appropriate renderer.
chart.setDataSource(dataSource);
// You can fetch the implicitly created renderer and customize it.
IlvTreemapChartRenderer renderer =

(IlvTreemapChartRenderer)chart.getRenderer(0);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K34

Customizing a treemap chart

Additional customizations of a treemap chart can be found in Treemap Charts.

To set the column to use for the area of each item:

♦ Use the following code:

renderer.setAreaColumn(amount2005Column);

To differentiate the growth of each item through a color:

♦ Use the following code:

renderer.setColorColumn(growthColumn);
renderer.setColorScheme(IlvTreemapChartRenderer.
COLORSCHEME_DIVERGING_GREEN_
RED);

For example, with regard to expenses, a high growth is alarming and a decrease is
agreeable. Therefore, you can choose the color scheme that maps high values to red
and low values to green:

To add a legend:

♦ To display the legend at the bottom of the treemap chart area, use the following code:

chart.addLegend(new IlvLegend(), IlvChartLayout.SOUTH_BOTTOM);

The contents of the legend is automatically determined by the treemap chart renderer,
based on the setting of the color column.

In this example, the legend labels represent the growth. The growth values are around
1, but you want to present them as percentage values, so you need to customize the
formatting of the legend labels.

renderer.setLegendLabelFormat(
new DecimalFormat("+##0%;-##0%") {

public StringBuffer format(double number, StringBuffer result,
FieldPosition fieldPosition) {

return super.format(number-1, result, fieldPosition);
}

});

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 35

Customizing a Chart

The complete source code of the examples can be found in the CustomCartesian.java file
for the Cartesian chart and in the CustomPolar.java file for the Polar charts.

The Temperatures Cartesian Chart with Additional Customizations

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K36

3-D Pie Charts

To add a title at the end of the ordinate scale:

1. Set the scale title to "Celsius", with a rotation angle of 90.

The ordinate scale represents the temperatures expressed in degrees Celsius. To
indicate the unit of the values represented by this scale, you can add the label
"Celsius" at the end of the axis, rotated in the vertical direction.

2. Set its placement value to 80, meaning that the title location corresponds to 80% of
the visible range of the scale (approximately 23):

chart.getYScale(0).setTitle("Celsius", -90);
chart.getYScale(0).getTitle().setPlacement(80);

To add a label displaying the temperature of each data point:

♦ To add a label annotation to the polylines data points, use the following code:

tempRenderer.setDataLabelling(IlvChartRenderer.Y_VALUE_LABEL);
tempRenderer.setAnnotation(new IlvDataLabelAnnotation());

You can add label annotations to every data point of the polylines, so that the
corresponding temperature values are displayed over them. In the JViews Charts
library, a renderer is annotated by means of classes implementing the
IlvDataAnnotation interface. A data annotation is a graphical annotation that can
be either a local annotation, if associated with a data point, or a global annotation if
associated with a series or a renderer. The JViews Charts library provides a default

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 37

implementation to handle label annotations through the IlvDataLabelAnnotation
class. The text displayed by an instance of this class is computed according to the
chart renderer labelling mode. This mode specifies the contents of the label associated
with a data point: the text can be either a label, the y-value, the x-value, or both the
x- and y-values.

To decorate the chart:

♦ Highlight the week-end period by using a data indicator representing a data interval
equal to the week-end period:

IlvDataInterval inter =
new IlvDataInterval(chart.getXScale().getStepsDefinition().previousStep

(5),
chart.getXScale().getStepsDefinition().

incrementStep(6));
IlvDataIndicator weInd = new IlvDataIndicator(-1, inter,null);
weInd.setStyle(new IlvStyle(Color.black, IlvColor.wheat));
chart.addDecoration(weInd);

The JViews Charts package introduces the notion of decoration objects that can be
used to add a graphical decoration to a chart. These objects are defined by the
IlvChartDecoration abstract class and are directly handled by the chart itself. A
default concrete implementation of this class is provided in the library via the
IlvDataIndicator class to graphically represent different kinds of data values: the
x- or y-value, an interval along the x- or y-axis, or a data window.

To add a title to the chart:

♦ Use a JLabel instance as the header, initialized with the title text:

JLabel label = new JLabel("Temperatures of the week", JLabel.CENTER);
chart.setHeader(label);

The JViews Charts package provides the setHeaderText(java.lang.String) and
setFooterText(java.lang.String) methods as convenience methods to set header
(or footer) labels. These methods internally create a JLabel instance initialized with
the given text and add it to the chart at the corresponding location.

The IlvChart component can hold two optional JComponent objects at predefined
locations: one at the top of the chart area (the header) and the other at the bottom
(the footer). These components can be instances of any JComponent subclass.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K38

Using the Data Model

Explains the structure of this model as well as the data classes that offer predefined data
connectivity.

In this section

Structure of the Data Model
Describes the two core interfaces IlvDataSet and IlvDataSource that define the methods
to access data and connect them to a chart.

About data model, data sets and data sources
Describes the data model design of the JViews Charts library and its advantages.

Predefined Data Classes
Describes the various classes available in the ilog.views.chart.data package and its
subpackages, and how to use them to display your application data.

Connecting to the Data Model
Explains how charts are connected to the data model, as well as the available notification
mechanism.

Synchronizing the Contents of Several Data Sets
Describes how to simulates the monitoring of temperature measurements that are provided
every hour.

Extending the Data Model
Shows an example of a custom data model connected directly to application data.

© Copyright IBM Corp. 1987, 2009 39

Structure of the Extended Data Model
Presents a set of extended data models that are particularly useful to display charts of
structured objects.

Predefined Extended Data Model Classes
Describes the five extended data models.

Transforming Data Models
Describes how data models can be transformed into different models referring to the same
data.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K40

Structure of the Data Model

The IlvDataSet Interface
The IlvDataSet interface defines the methods to access a single set of data points. A data
point is defined by an (X, Y) coordinate pair expressed with double primitives, and an optional
label. The IlvDataSet interface allows you to retrieve information about data points in two
different ways:

♦ Indexed access: these requests are based on indexes of data points within the data set.
They allow you to retrieve the values or the labels associated with specific data points.
The following methods are available:

getXData(int), getYData(int), getDataBetween(int, int), getDataLabel(int).

♦ Spatial requests: the getDataInside(ilog.views.chart.IlvDataWindow, int, boolean)
method enables the caller to fetch the data points that are contained within a specified
window in the data space.

When you request a set of data points, an instance of IlvDataPoints is returned. This object
allows you to access both the values of the data points as well as their indices within the
data set.

The IlvDataPoints instances can directly be projected with the methods defined
in the IlvChartProjector interface. More information on data projection can be
found in Configuring the Data Projection.

Note:

In addition to the reading operations, a data set defines the following methods to edit its
contents:

♦ isEditable() predicate

Indicates whether the data set supports editing operations.

♦ setData(int, double, double) method

Allows you to change the values of an existing data point.

♦ addData(double, double) method

Allows you to append a new data point.

The IlvDataSet interface also provides the getXRange(ilog.views.chart.IlvDataInterval)
and getYRange(ilog.views.chart.IlvDataInterval)methods to retrieve the limits of the
data values it handles. These methods can return empty ranges if the data set does not
contain any data point.

Properties
Each data set handles an open-ended list of properties expressed as key/value pairs. Each
property can be added or removed with the putProperty(java.lang.Object, java.lang.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 41

Object, boolean) method (some predefined properties can be added or removed through
the IlvDataSetProperty class). Although this feature should not be seen as an alternative
to subclassing, it lets you easily add metadata information to existing data sets.

Undefined Values
In the JViews Charts library, you can specify that a data set holds data points whose values
are undefined.

A data point is considered undefined when its y-value is NaN (not-a-number) or equals the
value returned by the getUndefValue() method. This method actually returns a Double
instance, which can be null. In this case, it is assumed that all undefined data in the data
set is indicated by a NaN y-value.

Undefined data points are discarded during the rendering process, as shown in Undefined
Values:

Undefined Values

The IlvDataSource Interface
The IlvDataSource interface behaves as a data set provider, and acts as the bridge between
the chart renderers, which define the graphical representation, and the data itself.

The contents of a data source is dynamic and its type depends on the origin of the data
(extracted from a Swing TableModel or a JDBC ResultSet, read from an input source, and
so on.)

For example, the contents of a data source connected to a table model changes when the
structure of the underlying table changes. Likewise, the contents of a data source connected
to an XML file changes upon reloading.

The IlvDataSource interface defines the methods to access the ordered collection of the
provided data sets:

♦ for reading operations:

getDataSetCount(), getDataSet(int), getDataSets()

♦ for writing operations:

addDataSet(ilog.views.chart.data.IlvDataSet), setDataSet(int, ilog.views.
chart.data.IlvDataSet),

setDataSets(ilog.views.chart.data.IlvDataSet[])

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K42

About data model, data sets and data sources

The JViews Charts library follows the popular Model-View-Controller design pattern by
cleanly separating the data model from its graphical representation.

Data Model Structure

The data model distinguishes data series from sources of data. Having distinct entities to
represent an elementary set of data and the whole data provides the following benefits:

♦ Data sets exist as objects rather than internal references within the data model, which
makes it easier to reference and use them in an application. This also makes the API more
understandable and easier to use.

♦ You can create new data set types and use them with existing data sources. Likewise,
you can create new data source types that handle existing data sets.

♦ You can easily mix data sets that come from different sources (for example, data sets
extracted from a database query with data sets whose values are updated by a thread).

You can create data sets as combinations or wrappers of other data sets (for more information
on this feature, see Data set combination).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 43

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K44

Predefined Data Classes

Describes the various classes available in the ilog.views.chart.data package and its
subpackages, and how to use them to display your application data.

In this section

Data set classes
Describes the various data set classes and how to use them.

Data Source Classes
Describes the various data source classes and how to use them.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 45

Data set classes

This section describes the various data set classes and explains how to use them.

Data set classes hierarchy
Illustrates the data set class hierarchy.

Data Set Classes Hierarchy

Abstract implementation
The IlvAbstractDataSet class provides default implementations for most of the methods
in the IlvDataSet interface. For example, it provides support for listeners, properties
handling, access to data limits, and spatial requests.

To create a concrete data set as a subclass of IlvAbstractDataSet, you need to provide an
implementation for the following methods:

public abstract int getDataCount();
public abstract double getXData(int idx);
public abstract double getYData(int idx);

In other words, you have to provide the indexed access to data points. As IlvAbstractDataSet
defines no-op methods for writing operations, the setData(int, double, double) and

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K46

addData(double, double) methods need to be overridden as if you want your data set to
be editable.

The IlvAbstractDataSet class is usually the preferred choice to write a custom data set,
as it greatly simplifies the work that needs to be done. However, there may be cases with
more suitable alternatives, for example:

♦ You need to control the implementation of all methods defined in the IlvDataSet interface
so that the result matches more closely the structure of your original data.

♦ The data set that you want to implement can be expressed as a combination of values
stored in existing data sets. In that case the IlvCombinedDataSet class can be the best
choice. More information on the IlvCombinedDataSet class can be found in section Data
set combination.

♦ Your data set is just an extension of one of the provided concrete implementations (for
example IlvDefaultDataSet).

In-memory implementation
The IlvDefaultDataSet class provides a concrete data set implementation, where data
points are stored in memory with arrays of double primitives. This class supports writing
operations such as appending a new data point or changing values of an existing data point.

By using the IlvDefaultDataSet class, you can specify whether x-values should be stored
in memory or computed according to the indices of data points (such data sets are also
called category data sets, because x-values correspond to a category number). You can also
specify whether the array provided to initialize the data set contents should be copied.

Here are several examples of in-memory data sets creation.

// Create an empty data set that stores x-values.
IlvDataSet ds1 = new IlvDefaultDataset("DS1");

// Create a category data set and initialize it with a copy of
// the specified y-values.
double[] yValues = new double[] {3., 1., 4.5, 2., 7., 6.3};
IlvDataSet ds2 = new IlvDefaultDataset("DS2", yValues);

// Create a set and initialize the specified x-values and y-values
// arrays.
double[] xValues = new double[] {1., 2., 4., 6., 7., 8.};
double[] yValues = new double[] {3., 1., 4.5, 2., 7., 6.3};
IlvDataSet ds3 = new IlvDefaultDataset("DS3", xValues, yValues, false);

Alternatively, you can create data sets from an N-dimensional array of doubles with the
create(double[][], int, java.lang.String[], java.lang.String[]) method:

double[][] data = new double[][]
{
{1.8, 2., 2.7, 4.5, 4.8, 2.8, 2., 2.2, 3.3, 3.5, 2.2, 1.8},
{2.1, 1., 6.6, 6.8, 8.0, 2.4, 3., 1.5, 1.5, 0.7, 0.7, 2.2},
{0.9, 0.9, 2.3, 3., 2.1, 3.4, 3.8, 5.1, 1.5, 6., 5.5, 0.4},

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 47

{1.4, 0.4, 3.8, 2.7, 6.9, 1., 0.7, 1., 2.3, 2.2, 2.4, 2.5}
};

String[] names = { "Norm", "1998", "1999", "2000"};String[] dataLabels
= { "Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

// Create data sets from the specified data values, data labels,
// and data set names.
IlvDataSet[] dataSets = IlvDefaultDataSet.create(data, -1, names, dataLabels)
;

Fixed-size storage
The IlvCyclicDataSet class is a subclass of IlvDefaultDataSet that allows only a limited
number of data points to be stored in memory. When new data is appended beyond this
limit, the oldest values are removed so that the cardinality remains the same.

This class is particularly useful for real-time charting where new data comes in a constant
stream, and only a restricted history of past values should be kept.

The following restrictions apply when using the IlvCyclicDataSet class:

♦ The visible range of the x-axis of any chart displaying a cyclic data set must be contained
within the x-limits of this data set.

♦ Data indices are mutable in a cyclic data set. This means that objects like rendering hints
or annotations cannot refer to a data point by its index (more information on rendering
hints and annotations can be found in Handling Chart Renderers).

Example: Using Cyclic Data Sets
The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/fixed-size-storage/src/FixedSizeStorage.java.

The following code extract initializes an IlvCyclicDataSet with a buffer size equals to the
value of the VISI_COUNT constant:

// Create the data sets. The data sets containing the random values are
// instances of IlvCyclicDataSet with a buffer size equal to VISI_COUNT and
// no x values storage.
inputData = new IlvCyclicDataSet("Input", VISI_COUNT, false);
chart = createChart();
IlvSingleChartRenderer r = createRenderer(chart);
chart.addRenderer(r, inputData);

The code below shows how new data points are added to the CyclicDataSet. In order to
minimize the number of notifications, the addData() calls are wrapped between a startBatch
()/endBatch() sequence:

void addData()
{

inputData.startBatch();

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K48

for (int j=0; j<UPDATE_COUNT; ++j) {
inputData.addData(0, RandomGenerator.rand(counter));
++counter;

}
inputData.endBatch();

}

Data set combination
The IlvCombinedDataSet abstract class allows you to define a data set that can be expressed
as a combination of one or several values from one or several data sets. Here are two
examples.

Example: Creating a Data Set as the Moving Average of Another
Data Set
The moving average of a data set is implemented by the IlvMovingAvgDataSet class. The
following code shows how to create a data set as the moving average of another data set
using this predefined class:

IlvDataSet ds = ...; // original data set
IlvDataSet movingAvg = new IlvMovingAvgDataSet(ds, 10);

Example: Displaying the Average of Two Data Sets
For this example, two solutions are proposed:

♦ First solution

The complete source code of this solution can be found in <installdir>/jviews
-charts86/samples/listener/index.html.

Compute the corresponding average data points and store them in an in-memory data
set (for example IlvDefaultDataSet). Then, we need to explicitly register listeners to
the original data sets so that we can update our in-memory data set (modify data points
or append new ones).

Combine Data Set (1) illustrates this first solution:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 49

Combine Data Set (1)

♦ Second solution

The complete source code of this solution can be found in <installdir>/jviews
-charts86/samples/minmax/index.html.

Create a subclass of IlvCombinedDataSet that references the original data sets and
dynamically computes the average whenever the values of data points are queried.
Combine Data Set (2) illustrates the second solution:

Combine Data Set (2)

The following code extract shows an implementation of such a solution. The
IlvCombinedDataSet subclass overrides the getYData(int idx) method to compute the
value taking into account the points of the specified index of all datasets handled by this
combined data set.

/**
* Returns the data resulting from an operation on the specified series.
*/

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K50

abstract protected double getData(double[] values);

/**
* Returns the y value of the data point at the specified index.
*/
public double getYData(int idx)
{

int count = getDataSetCount();
double[] values = new double[count];
for (int i=0; i<count; ++i)

values[i] = getDataSet(i).getYData(idx);
return getData(values);

}

This implementation actually delegates the value calculation to the abstract getData(double
[] values) method that subclass should implement.

For example, to compute the average of the values, the implementation would be;

protected double getData(double[] values)
{

double total = 0.;
for (int i=0; i<values.length; ++i) {

total += values[i];
}
return total/values.length;

}

Compared to the first solution, the advantage of using a combined data set is twofold:

♦ The data set combinations implicitly listen to the changes on the original data sets, so
that they can send appropriate change events.

♦ The generated data is dynamically evaluated, which saves memory.

The use of IlvCombinedDataSet is only suitable when the data can be calculated from the
original data sets. For example, this is not the case if we want to represent the maximum
value taken by data points across time.

In this situation, we have to keep track of former values and cannot rely only on the values
available at a given time.

When the choice does exist between the two solutions, the following issues must be
considered:

♦ The tradeoff between saving memory and the overhead of computing the values
dynamically. Sometimes, the expense of computing the values for complex operations
outweighs the savings in memory.

♦ Is the context dynamic or static? If the contents of the original data sets changes, you
benefit from the implicit subscription made by IlvCombinedDataSet. In this case, the use
of dynamic evaluation is also justified, rather than storing pre-computed values. Likewise,
using IlvCombinedDataSet has an advantage if the behavior of the created data set should
be dynamic (for example, it is implemented as a mutable function of the values in the
original data sets).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 51

Function Implementation
The IlvFunctionDataSet abstract class is designed to represent a data set whose y-values
are computed by a function call.

To create a concrete data set as a subclass of IlvFunctionDataSet, the callFunction
(double) method must be implemented to perform the desired calculation. Function data
sets are then instantiated by providing a definition domain and a number of examples.

Example: Data Set Representing the Cosine Function With a Point
Every Degree
The complete source code of this example can be found in <installdir>/jviews-charts86/
samples/logarithm/index.html.

Data Set Representing the Cosine Function With a Point Every Degree

IlvDataSet ds =
new IlvFunctionDataSet(0, 2*Math.PI, 361){
public double callFunction(double val){
return Math.cos(val);
}

};

The IlvFunctionDataSet class is primarily intended to represent mathematical functions,
and has the advantage of not storing values into memory.

Load-On-Demand Data Set
The IlvLODDataSet class implements a data set whose contents is loaded on demand. For
more information on this feature, please refer to Using Load-On-Demand.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K52

Data Source Classes

This section describes the various data source classes and explains how to use them.

Data source classes hierarchy
Illustrates the data source class hierarchy.

Data Source Classes Hierarchy

Abstract implementation
The IlvAbstractDataSource class stores the list of accessible data sets, and provides the
reading methods to access this collection. It also manages a list of listeners that are notified
of changes in the data source contents.

No method of this class is abstract. Concrete subclasses will usually implement the
data set creation, and use the initDataSets protected method to initialize the data

Note:

source contents. Another alternative is to modify directly the list returned by the
getDataSetList() protected method. All the writing methods have an empty
implementation that needs to be overridden if the contents is editable from the outside.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 53

Editable data source
The IlvDefaultDataSource class is a direct subclass of IlvAbstractDataSource that
provides implementations for editing operations. It behaves as an editable data source where
data sets can be added or removed explicitly, and can be used to access data that comes
from different sources. This class is used by default by the chart renderers.

For more information, refer to Creating the data model.

Reading data from an input source
The JViews Charts library defines IlvInputDataSource as a general-purpose class for reading
data from an input source. An input source can be of two forms:

♦ generic java.io.InputStream object

♦ URL

A data reader (defined by the IlvDataReader interface) is used to decode the data stored
in the input source. This data reader is provided as parameter to the two load methods of
the IlvInputDataSource class:

public void load(InputStream in, IlvDataReader reader) throws Exception
public void load(String url, IlvDataReader reader) throws Exception

By calling one of these load methods, you reinitialize the contents of the data source with
the data sets extracted by the reader. The IlvDataReader interface defines the following
methods to load data from the input source:

public IlvDataSet[] read(InputStream in) throws Exception

public IlvDataSet[] read(String url) throws Exception

You use IlvDataInputSource by writing a reader for each specific data format.

The JViews Charts library provides the following examples of custom data readers:

Example: stock
This example shows how to define a reader that reads quote values in CSV (Comma Separated
Value) format.

The complete source code of this example can be found in <installdir>/jviews-charts86/
samples/stock/src/shared/CSVDataReader.java.

Example: load-on-demand
This example shows how to read data stored as 32-bit integers from a binary stream.

The complete source code of this example can be found in <installdir>/jviews-charts86/
samples/lod/src/lod/BinaryInt32Reader.java.

In this example, you create an instance of your reader and use it with either anInputStream
or a URL description. Both parameters are provided to the IlvInputDataSource constructor,
which loads the data automatically.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K54

The following code is extracted from the Load-On-Demand example and shows how to use
a custom reader with an IlvInputDataSource.

Using a Custom Reader with an IlvInputDataSource

InputStream in = null;
try {
// Create the reader.
IlvDataReader reader = new BinaryInt32Reader();
IlvInputDataSource sampleDataSource = null;
if (isApplet()) {
// Load from a URL.
String url = getDocumentBase() + "sampleData.dat";
sampleDataSource = new IlvInputDataSource(url, reader);

} else {
// Create an InputStream from a file.
in = new BufferedInputStream(

new FileInputStream(
new File(System.getProperty("user.dir"),

"sampleData.dat")));
sampleDataSource = new IlvInputDataSource(in, reader);

}
overviewChart.setDataSource(sampleDataSource);

} catch (Exception x) {
x.printStackTrace();
System.err.println(x.getMessage());

} finally {
if (in != null) try {in.close();} catch (Exception x) {}

}

The InputStream object must be explicitly closed after the loading is performed,
whereas connection and disconnection are automatically handled when using a URL.

Note:

Reading and writing data from an XML source
The JViews Charts library lets you export or import data in a predefined XML-based format.
The ilog.views.chart.data.xml package contains all the classes that are related to XML
serialization:

♦ IlvXMLDataReader, creates the data sets by interpreting the contents of an XML file.

♦ IlvXMLDataWriter, serializes the data sets in an XML file.

♦ IlvXMLDataSource, implements a data source dedicated to XML input.

In order to use the ilog.views.chart.data.xml package with Java™ SE 5, you need
Apache™ Xerces 2.4.0 or higher in your CLASSPATH. A copy of Apache Xerces can be found
in the <installdir>/jviews-framework86/lib/ directory.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 55

Reading data from an XML document
The IlvXMLDataReader class implements the IlvDataReader interface and can be used with
the general-purpose IlvInputDataSource class.

The following code shows how to read the contents of an XML file, and make it available for
charting through an IlvXMLDataSource:

// Create the data source.
IlvXMLDataSource ds = new IlvXMLDataSource();
// Create the XML reader.
IlvXMLDataReader reader = new IlvXMLDataReader();
// Optional: Specify that the parser should validate the contents of the file
reader.setValidating(true);
// Load the data.
ds.load(new org.xml.sax.InputSource("data.xml"), reader);

Writing data to an XML document
The IlvXMLDataWriter class allows you to write data sets into an XML document, as shown
in the following code:

import javax.xml.parsers.*;
import org.w3c.dom.Document;
...
IlvDataSet[] dataSets = ...;
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.newDocument();
IlvXMLDataWriter writer = new IlvXMLDataWriter();
writer.write(document, dataSets);

You can also directly serialize the data sets into an output stream, as shown in the next
example:

IlvDataSet[] dataSets = ...;
IlvXMLDataWriter writer = new IlvXMLDataWriter();
writer.write(new FileOutputStream("chartmodel.xml"), dataSets);

Example: serializing data
A complete example that shows how to import and export data using XML can be found in
<installdir>/jviews-charts86/codefragments/chart/xml-serialization/src/
XMLSerialization.java.

Description of the format
The expected format is an application of the W3C XML language. You can find the full
Document Type Definition of this format in Document Type Definition for XML data file in
Using the Designer. For more information see XML File Format.

The data is described with the following elements:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K56

The chartData element, which belongs to the ilvchart namespace:

<!ELEMENT chartData (data+)>
<!ATTLIST chartData xmlns:ilvchart CDATA #FIXED

"http://www.ilog.com/products/jviews/chart"
version CDATA #REQUIRED>

This root element contains a set of child data elements:

<!ELEMENT data (labels?,series+)>
<!ATTLIST data xSeries IDREF #IMPLIED>

Each data element can be seen as a table where rows are represented by one or more series
elements. One of these series can be identified as the one holding the x-values. In this case,
the other series are assumed to hold the y-values of the considered data.

Series data points might be associated with labels by means of the labels element. Labels
can be either defined common to all the series of a data element, or individually for each
series. In this case, the labels are specified at the series element level, and override labels
that may have been set on the data element.

The series element has the following description:

<!ELEMENT series ((valueOperator | (value | valuesList)*),labels?,property*)>
<!ATTLIST series dateFormat CDATA #IMPLIED

type (double | date) #REQUIRED
id ID #REQUIRED>

Each series is identified by a unique ID and the type of data it contains (either double values
or dates). The dateFormat attribute can be any pattern that conforms to the syntax used by
the java.text.SimpleDateFromat class. Values can be expressed with elementary value
elements, or as a list with the valuesList element:

<!ELEMENT value (#PCDATA)>
<!ATTLIST valuesList delimiter CDATA #IMPLIED>

The delimiter attribute specifies the separating character in the values list. The default
character is a comma. Here is an example of a series element:

<series id="Series_1" type="double">
<value>0.5</value>
<valuesList>2.0,8.0,6.0,13.0,22.0,21.0,19.0,28.0,27.0
</valuesList>
<value>32.5</value>

</series>

You can also express the values of a series as an operation on the values of other series.
This is performed by means of the valueOperator element:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 57

<!ELEMENT valueOperator (seriesRef|property)*>
<!ATTLIST valueOperator class NMTOKEN #REQUIRED>

For example, the following series is defined as the moving average of the "Series_1" series:

<series id="Series_1_Mov._Avg." type="double">
<valueOperator class="ilog.views.chart.data.IlvMovingAvgDataSet">
<seriesRef ref="Series_1"/>
<property name="period">5</property>

</valueOperator>
</series>

The class attribute refers to the class name of the data set that implements the operation.
The seriesRef element refers to a valid series identifier within the same data element.

A property element is defined as follows:

<!ENTITY % propertyExt "">
<!ELEMENT property (#PCDATA %propertyExt;)*>
<!ATTLIST property name CDATA #REQUIRED

javaClass CDATA #IMPLIED>

By default, a property element consists of text data. A property is defined by its name (the
name attribute) and optionally by the Java class name of the Java object it refers (the
javaClass attribute). The use of the javaClass attribute is explained in the next section.

The entity propertyExt can be defined in the internal DTD subset to add custom subelement,
or custom attributes to the property element within a given document.

For example, the following lines extend the property element with additional child elements
myelement:

<!DOCTYPE chartData SYSTEM 'chartxml.dtd'
[
<!ENTITY % propertyExt "|myproperty">
<!ELEMENT myproperty (myelement)*>
<!ELEMENT myelement myelement definition goes there ".>
]>

The properties can be used with valueOperator and series elements. A default mechanism
allows you to specify simple properties for valueOperator elements. This mechanism uses
reflection to determine which method should be called on the data set instance, as well as
the expected parameter type. The method is found according to the Java Bean naming
convention. For example, in the definition of your moving average operator, the setPeriod
(int) method is called:

<valueOperator class="ilog.views.chart.data.IlvMovingAvgDataSet">
<seriesRef ref="Series_1"/>

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K58

<property name="period">5</property>
</valueOperator>

Extending the XML Reader
In this section you will see how to extend the reader to deal with series properties, as well
as with complex or extended properties. The IlvXMLDataReader class allows you to register
readers that will be used to interpret custom properties within the XML file.

A property reader must implement the IlvXMLPropertyReader interface, which defines the
following methods:

♦ readProperty(org.w3c.dom.Element), used to read the property from the specified DOM
element.

♦ setProperty(ilog.views.chart.data.IlvDataSet, java.lang.String, java.lang.
Object), used to associate the property with the corresponding data set.

By default, a predefined reader is used to decode the property value. This predefined reader
decodes the property value according to the following rules:

♦ if the javaClass attribute is set, then the XML property value is converted into the
corresponding Java class using a java.beans.PropertyEditor.

♦ if the javaClass attribute is missing, or if the above conversation has failed, then the
Java property value is the string representation of the XML property value.

You can override this default mechanism by registering your own property reader. A reader
is registered by means of the IlvXMLDataReader.registerPropertyReader (for readers to
be shared between all instances) and IlvXMLDataReader.setPropertyReader (for readers
specific to an instance) methods.

For example:

♦ to register a specific property, use the following code:

registerPropertyReader(java.lang.String, ilog.views.chart.data.xml.
IlvXMLPropertyReader)

and

aReader.setPropertyReader(aPropertyName, aReader);

♦ to register a default reader that is used to interpret properties with no associated reader,
use the following code:

registerPropertyReader(java.lang.String, ilog.views.chart.data.xml.
IlvXMLPropertyReader)

aReader.registerPropertyReader(null, aReader);

When a property is read, the IlvXMLDataReader searches for the corresponding property
reader in the following order:

♦ in the reader repository of the reader instance, then

♦ in the reader repository of the IlvXMLDataReader class.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 59

If no reader has been registered for a property, then the IlvXMLDataReader searches for a
default property reader in the following order:

♦ the default property reader of the reader instance, then

♦ the default property reader of the IlvXMLDataReader class.

If no property reader has been found, then the predefined reader is used as a fallback.

The following are examples of properties element read by the predefined readers:

<property name="product">JViews Charts</property>
property name="color" javaClass="java.awt.Color">red</property>
<property name="dataLabels">
Main classes,renderer,data,interactor,swing,servlet,java2d,util,graphic,other

</property>

They are respectively interpreted as the “JViews Charts” string, the java.awt.Color.red,
and the last one is as the data labels of the data set.

The following example shows how to use this mechanism. The complete source code can be
found in <installdir>/jviews-charts86/codefragments/chart/xml-extension/src/
XMLExtension.java.

You want to associate a URL for each point of a data set. These URLs will be specified in
the XML file as a property of the series. To support this new custom property, you first have
to extend the JViews Charts DTD:

<!DOCTYPE chartData PUBLIC '-//ILOG//JVIEWS/Chart 1.0' 'chartxml.dtd'
[
<!ENTITY % propertyExt "| hrefs">
<!ELEMENT hrefs (#PCDATA)>
]>

This extension means that the property element now contains a hrefs element that consists
of PCDATA.

Then, you add the property to the series:

<chartData version="1.0">
<data>
<series id="Series1" type="double">
<valuesList>353.2,191.6,160.7,54.5,36.6,34.3,31.3,28.1,25.5,45.2
</valuesList>
...
<property name="hrefs">

<hrefs>
../../../../doc/refman/ilog/views/chart/package-summary.html;
../../../../doc/refman/ilog/views/chart/renderer/package-summary.html;
../../../../doc/refman/ilog/views/chart/data/package-summary.html;
../../../../doc/refman/ilog/views/chart/interactor/package-summary.html;
../../../../doc/refman/ilog/views/chart/swing/package-summary.html;
../../../../doc/refman/ilog/views/chart/servlet/package-summary.html;

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K60

../../../../doc/refman/ilog/views/chart/java2d/package-summary.html;

../../../../doc/refman/ilog/views/chart/util/package-summary.html;

../../../../doc/refman/ilog/views/chart/graphic/package-summary.html;

../../../../doc/refman/ilog/views/chart/package-summary.html
</hrefs>
</property>

</series>
</data>

</chartData>

The next step is to implement an IlvXMLPropertyReader to read your custom property:
class HREFPropertyReader implements IlvXMLPropertyReader.

{
/** The <code>hrefs</code> property element tag. */
public static final String HREFS_TAG = "hrefs";

/**
* Reads the specified property element.
* This method reads an <code>hrefs</code>
* element associated with a series and stores its contents in a
* <code>List</code>.
*/
public Object readProperty(org.w3c.dom.Element propertyElt)
{

Node child = propertyElt.getFirstChild();
while (child != null) {

if (child.getNodeType() == Node.ELEMENT_NODE &&
child.getNodeName().equals(HREFS_TAG)) {
Element hrefElt = (Element)child;
StringTokenizer tokenizer =

new StringTokenizer(hrefElt.getFirstChild().getNodeValue
(),

";\n\t ");
List hrefs = new LinkedList();
while (tokenizer.hasMoreTokens())

hrefs.add(tokenizer.nextToken());
return hrefs;

}
child = child.getNextSibling();

}
return null;

}

/**
* Sets the property on the specified data set. This method sets the
* <code>href</code>s <code>List</code> as a property
* of the specified data set.
*/
public void setProperty(IlvDataSet dataSet,

String propertyName,
Object value)

{

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 61

dataSet.putProperty(HREFPropertyReader.HREFS_TAG, value, false);
}

}

Finally, you register this property reader on your IlvXMLDataReader:

// Register our own XMLPropertyReader
reader.setPropertyReader(HREFPropertyReader.HREFS_TAG,

new HREFPropertyReader());

The XML reader can also be extended to create instances of custom data sets. This is
performed by overriding the createDataSet(java.lang.String, double[], double[])
method. By default, this method returns an instance of the IlvDefaultDataSet class.

Database access through JDBC
JDBC technology offers a platform and server independent way to retrieve data stored in a
database. The requests are expressed through the JDBC API, and are usually performed in
three steps:

♦ Establish the connection to the server.

♦ Execute a database statement (SQL query).

♦ Process the result of the request. This result is available through a java.sql.ResultSet
object, which presents a tabular structure.

Database processing is actually performed by a driver, which depends on the type of the
database server. You can find more information about JDBC on the JavaSoft site at:
http://java.sun.com/products/jdbc. This site also contains information about driver availability
for the most popular database vendors.

The JViews Charts library supports the use of the JDBC interface to retrieve data values
from database servers. This support is provided by the IlvJDBCDataSource class, which
extracts data sets from the result of a database query.

You can specify the information related to the database request as follows:

♦ Provide directly the result of the query in the form of a JDBC ResultSet, either in the
constructor of the data source, or with the setResultSet(java.sql.ResultSet)method.

♦ Provide the connection parameters as well as the SQL query statement. This can be done
either in the constructor of the data source, or with the corresponding getter and setter
methods. If you use this methodology, you must call the executeQuery() method to
produce the resulting ResultSet.

You can control how data sets are extracted from the ResultSet by means of two parameters:

♦ The index of the column that holds the x-series.

If this index is set to -1, the category data sets will be created.

♦ The index of the column that holds the data labels.

If this index is set to -1, no data label is defined.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K62

http://java.sun.com/products/jdbc

By default, the IlvJDBCDataSource class creates data sets that store the result of the query
into memory without any binding to the database. In other words, this means that the data
accessible from these data sets is not bound to the data stored in the database. For example,
modifying the value of a data point with the IlvDataSet.setData method does not send an
update statement to the database.

Since JViews 6.5, in addition to this read-only mode, the IlvJDBCDataSource also support
a read-write mode in which any changes on the data model are committed to the data base.
This read-write mode must be enabled at construction time by means of the following
constructors:

IlvJDBCDataSource(boolean readOnly)

and

IlvJDBCDataSource(String databaseURL,
String user,
String passwd,
String driverName,
String query,
int xColumnIndex,
int dataLabelsColumnIndex,
boolean readOnly)

Example: Importing the Contents of a Microsoft Excel Worksheet
through the JDBC ODBC Driver
The complete source code of the example can be found in <installdir>/jviews-charts86/
codefragments/chart/jdbc/src/JDBCConnection.java.

// Initialize the data source. The syntax of the database url
// is database specific. The user and password are left blank, the
// driver to use is the JDBC-ODBC driver

("sun.jdbc.odbc.JdbcOdbcDriver"),
// the query is to be initialized later, and there are no x series
// or data labels to read (-1 = no x series column).
String dburl = "jdbc:odbc:Driver={Microsoft Excel Driver

(*.xls)};DBQ=xlsdemo.xls";
IlvJDBCDataSource jdbcDs =

new IlvJDBCDataSource(dburl, // database url
"", // user name
"", // user password
"sun.jdbc.odbc.JdbcOdbcDriver", // driver
null, // query
-1, // x-values column index
3); // datalabels column index

// Set the query now.
String query = "select * from [Sheet1$]";
// Set the query.
jdbcDs.setQuery(query);
// Execute the query

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 63

try {
jdbcDs.executeQuery();

} catch (SQLException e) {
System.err.println("A database access error occurs");

}

// Create the area renderer.
IlvAreaChartRenderer renderer = new IlvAreaChartRenderer();
renderer.setDataSource(jdbcDs);
chart.addRenderer(renderer);

Connecting to a Swing TableModel
The Swing TableModel interface defines a tabular data model that can be represented with
a javax.swing.JTable in the GUI of your application. The IlvSwingTableDataSource class
allows you to create a data source from an existing TableModel.

Note: 1. The IlvSwingTableDataSource acts as an adapter between both data models,
which means that the original data accessible from the table model is not copied.

2. Both data models are bound, which means that modifications done through a data
set are forwarded to the table model. Likewise, modifying the table model fires a
change event for the corresponding data set.

There are several ways to indicate how data sets should be extracted from the table model:

♦ By specifying the series type (ROW_SERIES, COLUMN_SERIES), which indicates whether data
sets are extracted in rows or columns.

♦ By specifying optional rows or columns that hold the x-series and the data point labels.

♦ By providing data converters to map objects stored in the table into double values. This
feature is only used when series are extracted by column as it is based on the information
provided by the TableModel.getColumnClass method. To register a data converter for
a given Object class, use the setDefaultConverter(java.lang.Class, ilog.views.
chart.data.IlvDataConverter) static method. By default, converters exist for Date and
Double.

Example: Connecting to a TableModel
The complete source code of the example can be found in <installdir>/jviews-charts86/
codefragments/chart/swingtable/src/TableModelConnection.java.

// Create the chart.
IlvChart chart = createChart();

// Create the swing TableModel containing the data.
AbstractTableModel swingModel = null;
try {

swingModel = createSwingTableModel();

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K64

} catch (ParseException e) {
swingModel = new DefaultTableModel();

}
// Bind an IlvSwingTableDataSource to this swing table model. The series
// being arranged by column, the data source is of type COLUMN_SERIES.
// Since a specific column is used for the abscissa (the Year column) for
// all the series, the index in the table model of the year column
// is also specified (0).
IlvSwingTableDataSource tableDs =

new IlvSwingTableDataSource(swingModel,
IlvSwingTableDataSource.COLUMN_SERIES,

0,
// the column index for the x-values

-1);
// no datalabels
// At this time, the data sets corresponding to the table model series
// have been created.

// Connect the data source to a polyline chart renderer.
// The IlvPolylineChartRenderer will create a renderer for each data set
// of its data source and hold them in an internal list. These sub-
// renderers are called child renderers and can be parsed using an
// Iterator (see below).
IlvPolylineChartRenderer r = new IlvPolylineChartRenderer();

r.setDataSource(tableDs);
chart.addRenderer(r);

Converting Data
To be properly merged into a chart data model, data imported from a database or a table
model needs to be mapped into double values. This conversion is handled by means of data
converters, instances of the IlvDataConverter interface.

A data converter handles the conversion between a particular Object class and its double
representation, by means of the following methods:

public Object toObject(double value)
public double toValue(Object object)

For example, a data converter implementation that handles conversions between a String
object and a double representation would be:

public Object toObject(double value)
{

return Double.toString(value);
}
public double toValue(Object object)
{

if (!(object instanceof String))
throw new IllegalArgumentException("IlvStringConverter: object not a

java.lang.String instance.");

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 65

try {
return Double.parseDouble((String)object);

} catch (NumberFormatException e) {
throw new IllegalArgumentException("IlvStringConverter: Cannot parse

object.");
}

}

The IlvJDBCDataSource and IlvSwingTableDataSource classes handle a set of data
converters common to all instances of these classes. These common converters are called
default converters, and are registered using the setDefaultConverter(java.lang.Class,
ilog.views.chart.data.IlvDataConverter) and setDefaultConverter(java.lang.Class,
ilog.views.chart.data.IlvDataConverter) static methods.

By default, the IlvJDBCDataSource and IlvSwingTableDataSource classes register converters
for Date, String, Short, Integer, Long, Float and Double objects.

The IlvJDBCDataSource also registers default converters for Time and Timestamp
SQL data types.

Note:

The data converters are retrieved using the getDataConverter(int) and getDataConverter
(int)methods. The default implementation of these methods returns the default converter
for the object type of the specified column. If none exists, it returns the first default converter
able to convert it:

♦ For the IlvSwingTableDataSource, it returns the default converter associated with the
column class (see TableModel.getColumnClass).

♦ For the IlvJDBCDataSource, it returns the default converter associated with the
Java-equivalent type of the database column type as defined by the JDBC specification.

You can override this method to change the default implementation, for example if you need
to define a per-instance registering mechanism.

The JViews Charts package provides three default implementations of the IlvDataConverter
interface:

♦ string converter (IlvStringConverter),

♦ date converter (IlvDateConverter),

♦ number converter (IlvNumberConverter).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K66

Connecting to the Data Model

Connecting to a Chart
The connection between a chart and the data model is performed through a unary relationship
between a chart renderer and a data source. For more information on chart renderers, how
to connect them to a data source, and how to add them to a chart, refer to Handling Chart
Renderers.

Data Connection illustrates a simple example of data connection:

Data Connection

Events and Listeners
Both IlvDataSet and IlvDataSource send events when the underlying data changes. The
chart uses implicitly this notification mechanism to update itself whenever the data is
modified in a way that affects the display.

You can explicitly add or remove listeners to be notified of changes in the data model with
the following methods:

♦ For data source events:

addDataSourceListener(ilog.views.chart.event.DataSourceListener)

removeDataSourceListener(ilog.views.chart.event.DataSourceListener)

♦ For data set events:

addDataSetListener(ilog.views.chart.event.DataSetListener)

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 67

removeDataSetListener(ilog.views.chart.event.DataSetListener)

Two kinds of events are sent by data sets:

♦ DataSetContentsEvent events, describe the changes in the contents of a data set (data
added or modified).

♦ DataSetPropertyEvent events, describe the changes in a property of a data set (name,
client properties, and so on).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K68

Synchronizing the Contents of Several Data Sets

Your goal is to provide a display of the following measurements for a given day:

♦ The temperature at the beginning of the day.

♦ The temperature at the end of the day.

♦ The highest temperature during the day.

♦ The lowest temperature during the day.

1. Create a data set for each of these measures.

2. Store them in a data source. The update of these data sets occurs through a listener
on the original temperature data set. This listener either appends new points or modifies
the value of existing points in the corresponding data set.

The complete source code can be found in <installdir>/jviews-charts86/samples/
listener/index.html.

// Contains the (High, Low, Start, End) data sets.
protected IlvDataSource hiloDS;

DataSetListener tempListener = new DataSetListener() {
public void dataSetContentsChanged(DataSetContentsEvent evt)
{
if (evt.getType() == DataSetContentsEvent.DATA_ADDED) {
IlvDataSet ds = evt.getDataSet();
double x = ds.getXData(evt.getFirstIdx());
double y = ds.getYData(evt.getFirstIdx());
int count = ds.getDataCount()-1;
if (count < 0) count = 0;
if ((count%24) == 0) {

// If the point begins a new day, add it to all the hilo data
// sets (High, Low, Start, End).
for (int i=0; i<hiloDS.getDataSetCount(); ++i) {
hiloDS.getDataSet(i).addData(x,y);

}
} else {

// Else, update the high/low/end values accordingly.

...
}

}

public void dataSetPropertyChanged(DataSetPropertyEvent evt) {}
};

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 69

Extending the Data Model

You can extend the data model by creating new data sets and new data sources. You are
going to give an example of a custom model connected directly to existing application data.
The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/datamodel-extension/src/DataModelExtension.java.

Consider a very simple application context: a university that maintains information about
students. Consider the names of the students, and the grades they have acquired. Your goal
is to display the students grade for each course. Let us suppose the application provides the
following classes:

/** Represents a University */
class University
{
/** Returns the list of undergraduate students */
java.util.List getUnderGraduateList();

}

/** Represents a Student */
class Student
{
/** Returns the name of the student */
String getName() {...}

/** Returns the grade for the specified course */
int getGrade(String course){ ... }

}

1. Design a data source that extracts grade information from a student list and a set of
courses. Each provided data set represents a given course, and contains the grade for
every student. Here is the declaration of our GradeDataSource class:

class GradeDataSource extends IlvAbstractDataSource
{
private List students;
public GradeDataSource(List students, String[] courses)
{
this.students = students;
getDataSetList().setDataSets(createDataSets(courses));

}

private final Student getStudent(int idx)
{
return (Student) students.get(idx);

}
}

The data source stores the student list and initializes its contents with the data sets
created from the specified courses. The IlvAbstractDataSet class is the easiest
starting point when designing a new data set.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K70

2. Use the IlvAbstractDataSet as a base class for your custom data set, which you
define as a private inner class of GradeDataSource:

class GradeDataSource extends IlvAbstractDataSource
{
...
private class DataSet extends IlvAbstractDataSet
{
private String course;
DataSet(String course)
{
this.course = course;
IlvDataSetProperty.setCategory(this, new Double(1));

}

/** Returns the name of the course */
public String getName()
{
return course;

}

/** Returns the number of students */
public int getDataCount()
{
return GradeDataSource.this.students.size();

}

/** Simply returns the student index */
public double getXData(int idx)
{
return idx;

}

/** Returns the grade of the specified student */
public double getYData(int idx)
{
return GradeDataSource.this.getStudent(idx).getGrade(course);

}

/** Returns the name of the specified student */
public String getDataLabel(int idx)
{
return GradeDataSource.this.getStudent(idx).getName();

}
}

}

The implementation of the data set class is straightforward, as you only need to provide
indexed access to the data points:

The x-value is equal to the student’s index (we have in fact created a category data
set, which is specified by using the setCategory(ilog.views.chart.data.IlvDataSet,
java.lang.Double) method in the constructor). The y-value is equal to the grade of
the student in the course referenced by the data set. The label of a point is equal to

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 71

the name of the student. The createDataSetsmethod of the GradeDataSource simply
creates a DataSet instance for each course:

private IlvDataSet[] createDataSets(String[] courses)
{
IlvDataSet[] dataSets = new IlvDataSet[courses.length];
for (int i=0; i<courses.length; ++i) {
dataSets[i] = new DataSet(courses[i]);

}
return dataSets;

}

3. Use your new data model to display the grades of undergraduate students:

IlvChart chart = new IlvChart(IlvChart.RADAR);
University university = ...;
String[] courses = new String[] {"Math", "Physics", "Chemistry"};
IlvDataSource ds =
new GradeDataSource(university.getUnderGraduateList(), courses);

chart.setDataSource(ds);

The GradeDataSource class provides a simple yet typical example of making application
data compliant with the chart data model. In this example, you have assumed that the data
(the grades) was immutable. In the opposite case, additional work has to be done:

♦ Have the chart data model listen to data change in the application, and send the
appropriate events.

♦ Optionally, provide a way to perform modifications through the chart data model.

Extend Data Model illustrates a typical connection between application data, and the chart
data model:

Extend Data Model

This example highlights one of the main motivations behind writing a custom data model:
accessing data directly from the application instead of duplicating it.

There are other cases where you may wish to write your own data sets or data sources. For
example, the default in-memory data set implementation available in the library (
IlvDefaultDataSet) stores the values into arrays of double primitives. If your application
is dealing with other primitive types (float, int, byte), writing a new data set can save storage
space.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K72

Structure of the Extended Data Model

IBM® ILOG® JViews Charts offers a set of extended data models that are particularly useful
to display charts of structured objects.

The extended data models have the following characteristics:

♦ They are particularly appropriate to connect data to a data source when you want to
create a treemap chart.

In theory, you could connect your data directly to the IlvTreeTableDataSource, but it
is easier to connect it to one of the extended data model classes.

♦ They can hold objects of any type (string or object).

For example, the IlvDataSet interface holds mostly numeric values.

♦ They can be easily connected to Swing models.

For example, they can be wrapped into Swing TableModel, TreeModel or TreeTableModel
instances. This allows you to display the data in your application not only with a Charts
view, but also with a Swing view.

Also, existing instances of Swing TableModel, TreeModel, TreeTableModel, or ListModel
can be viewed through a facade of extended data models. This allows you to display in a
chart any data that is already displayed in a Swing view.

Connecting to Extended Data Models

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 73

Extended Data Models

The extended data models are defined in subpackages of the package ilog.views.chart.
datax.

Extended Data Models lists the available data models and illustrates their main
characteristics:

Extended Data Models
Columns or AttributesRow EntityStructureData Model

yesobject with attributestree, orderedIlvTreeListModel

yesobject with attributestree, unorderedIlvTreeSetModel

yesobject with attributesflat, orderedIlvFlatListModel

yesobject with attributesflat, unorderedIlvFlatSetModel

yesindex or list of cellsflat, orderedIlvFlatTableModel

yesobject with attributestree, orderedSwing TreeTableModel

noobjecttree, orderedSwing TreeModel

yesindex or list of cellsflat, orderedSwing TableModel

noobjectflat, orderedSwing ListModel

Tree Data Model
In a tree data model, each object has a set of children objects. If the set of children is empty,
the node is called leaf node.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K74

If the set of children is not empty and there is only one node which is not the child of another
node, the node is called root node. If the tree data model is empty there is no root node.

Ordered Data Model
In an ordered data model, the order of objects is relevant. In a tree data model, the order
of the children of each object is also important. This does not mean that they are sorted by
a particular criterion. This means that when an object X is inserted between A and B, the
iterator will return the objects in the order A - X - B.

Unordered Data Model
In an unordered data model, the iterator order is unpredictable and objects cannot be
addressed by indices.

Flat Data Model
In a flat data model, there is no parent/child relationship between objects. All objects are
at the same level.

An object with attributes is an object which holds values for some given keys. When presented
in tabular form, the attribute names become column names, and the attribute values become
table cell values.

For example, if you have two objects Greg and Fred, with attributes Date of Birth, State of
Birth, Income, defined as follows:

♦ Greg.getValue("Date of birth") = 1947

♦ Greg.getValue("State of birth") = MA

♦ Greg.getValue("Income") = 81000

♦ Fred.getValue("Date of birth") = 1953

♦ Fred.getValue("State of birth") = CA

♦ Fred.getValue("Income") = 72000

the tabular form would look like this:

IncomeState of BirthDate of BirthObject

81000MA1947Greg

72000CA1953Fred

Choosing the data model to implement
When you instantiate an IlvTreeTableDataSource, you have to choose the type of data
model through which you connect to it. The data model has to be an instance of
IlvModelWithColumns, and you can choose among the following ones:

♦ IlvTreeListModel

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 75

Data is structured in some obvious and inherent way and the order is important.

♦ IlvTreeSetModel

Data is structured in some obvious and inherent way and the order is not important.

♦ IlvFlatListModel

Data is represented in a way that a row corresponds to a single object and the order is
important.

♦ IlvFlatSetModel

Data is represented in a way that a row corresponds to a single object and the order is
not important.

♦ IlvFlatTableModel

Data is structured in a tabular form, where each cell represents a single object.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K76

Predefined Extended Data Model Classes

The five extended data models share a common structure, as illustrated in Predefined
Extended Data Models.

Predefined Extended Data Models

IlvStructureModel
IlvStructureModel is the model interface. It notifies the modifications in the form of
StructureModelEvents to all the attached StructureModelListeners.

IlvAbstractStructureModel
IlvAbstractStructureModel is an incomplete implementation of the model. It only handles
notification to the listeners, offering a fireModelEvent (or similar) method.

IlvBasicStructureModel
IlvBasicStructureModel is an incomplete implementation of the model. It handles the
notification to the listeners and the management of columns.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 77

IlvDefaultStructureModel
IlvDefaultStructureModel is an implementation of the model that stores all the data values
and columns. It can be used independently of any other model.

IlvBufferStructureModel
IlvBufferStructureModel is an implementation of the model that stores data values coming
from another IlvStructureModel instance. It can be used when the access to the underlying
IlvStructureModel is slow, and the memory usage is not a problem.

IlvPropertyBasedStructureModel
IlvPropertyBasedStructureModel is an implementation of the model that stores the object
and columns. However, the data values are not duplicated in memory; instead, the objects
are supposed to contain the data values, and a property-like API is used to access the data
values in the objects.

IlvFilterStructureModel
IlvFilterStructureModel is a base class for implementations of the model that want to
delegate most methods to an underlying model.

IlvFilteredStructureModel
IlvFilteredStructureModel is an implementation of the model that shows a subset of the
objects from another IlvStructureModel instance. The subset is determined by an IlvFilter
instance.

When implementing the IlvStructureModel interface, you can choose as superclass of your
implementation the predefined implementation that comes closest to your needs.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K78

Transforming Data Models

Describes how data models can be transformed into different models referring to the same
data.

In this section

The IlvTreeTableDataSource data source
Describes the three types of transform grouped in the IlvTreeTableDataSource data source.

Model adapters
Describes the adapters that are used to transform your model.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 79

The IlvTreeTableDataSource data source

The IlvTreeTableDataSource is the basic data source that can be displayed by a treemap
chart. It groups together three types of transforms in an easy-to-use API: filtering, sorting
and partitioning. These transforms are optional.

The IlvTreeTableDataSource can be connected to one of the instances of
IlvModelWithColumns:

♦ IlvTreeListModel

♦ IlvTreeSetModel

♦ IlvFlatListModel

♦ IlvFlatSetModel

♦ IlvFlatTableModel

The IlvTreeTableDataSource can filter, sort and partition the data. In all cases, the resulting
IlvTreeListModel, accessible through getTreeModel(), is the result of these model
operations. It is the IlvTreeListModel that is displayed by the treemap chart renderer.

Filtering
The filtering transform hides some model objects from the resulting model. You can set a
filter object by means of the method setFilterCriterion(ilog.views.util.filter.
IlvFilter). This filter object defines the objects that are available in the resulting model.
In a tree model, when a tree node is hidden, the entire tree branch below is hidden as well.

Filtering is not available when the input model is an IlvFlatTableModel.Note:

Sorting
The sorting transform sorts the objects according to a specific criterion. In the case of a
tree model, it sorts also the children set of each tree node. The sort criterion is set by means
of setSortCriterion(java.util.Comparator) and enabled through setSorting(boolean).

Sorting is not available when the input model is an IlvFlatTableModel.Note:

The package ilog.views.chart.datax.adapter.sort contains several Comparator
implementations that are useful in this context, like the following ones.

♦ IlvColumnValueComparator compares two objects by looking at the value in a specified
column.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K80

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html

♦ IlvLexicographicComparator compares two objects through multiple criteria, in a "sort
by ... then by ..." way.

♦ IlvUniversalComparator is able to compare any type of objects. This is useful if the
given objects do not implement the Comparable interface.

Partitioning
The partitioning transform turns a flat model into a tree model, according to one or several
rules that describe which objects should be grouped together and at which level. Such a
rule is known as partitioner. Partitioners can be set by means of setPartitionerFactories
(ilog.views.chart.datax.adapter.partition.IlvPartitionerFactory[]).

Partitioning is currently not available when the input model is already a tree model.
This limitation may be lifted in a future release.

Note:

The package ilog.views.chart.datax.adapter.partition contains several
IlvPartitionerFactory implementations that are useful in this context. They all partition
according to the value of the object in a given column, but act differently, depending on the
value type and meaning.

♦ IlvUniformScalePartitionerFactory partitions according to a numerical value, dividing
the range into intervals of equal size.

♦ IlvCustomScalePartitionerFactory partitions according to a numerical value, dividing
the range into intervals at given threshold points.

♦ IlvDatePartitionerFactory partitions according to a date value.

♦ IlvStringPartitionerFactory partitions according to a string value.

♦ IlvPathPartitionerFactory partitions according to a string value, interpreting the
string as a path, composed of path components separated through a given set of
separators.

♦ IlvURLPartitionerFactory partitions according to a string value, interpreting the string
as a URL.

♦ IlvFilenamePartitionerFactory partitions according to a string value, interpreting the
string as a file name.

♦ IlvHostnamePartitionerFactory partitions according to a string value, interpreting the
string as an Internet host name.

Here is an example showing the connection of an IlvFlatListModel to an
IlvTreeTableDataSource, that groups the objects by country, sorts them alphabetically,
and filters them to keep only those with positive performance.

final IlvFlatListModel model = ...;
IlvDataColumnInfo nameColumn = model.getColumn(0);
IlvDataColumnInfo countryColumn =

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 81

http://java.sun.com/javase/6/docs/api/java/lang/Comparable.html

IlvColumnUtilities.getColumnByName(model, "Country");
final int performanceColumnIndex =
IlvColumnUtilities.getColumnIndexByName(model, "Performance");

// Create the data source.
IlvTreeTableDataSource dataSource = new IlvTreeTableDataSource();
dataSource.setUnderlyingModel(model);

// Activate filtering.
dataSource.setFilterCriterion(
new IlvAbstractFilter() {
public boolean evaluate(Object object) {
return model.getDoubleAt(object, performanceColumnIndex) >= 0;
}
});

// Activate sorting.
dataSource.setSortCriterion(
new IlvColumnValueComparator(model, nameColumn, null, false));

dataSource.setSorting(true);

// Activate partitioning.
dataSource.setPartitionerFactories(
new IlvPartitionerFactory[] {
new IlvStringPartitionerFactory(countryColumn)
});

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K82

Model adapters

The IlvTreeTableDataSource uses some of the filtering, partioning, and sorting adapters
to perform the filtering, partioning and sorting, as needed. However, sometimes it can be
useful to perform these operations separately.

This can be the case when:

♦ You need two filtering passes: one before partitioning and one after partitioning.

♦ Your input model is not one of the five extended data models, but a Swing model.

To transform your model, you can use one of the following adapters:

♦ Adapters that Convert Models

♦ Adapters for Filtering

♦ Adapters for Sorting

♦ Adapters for Partitioning

All these adapters are located in the package ilog.views.chart.datax.adapter.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 83

Model Adapters Relationnships

Adapters that Convert Models
The adapter listed in the table below convert one type of model into models of another type,
as faithfully as possible.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K84

IlvTreeListToTreeSetModelAdapters from IlvTreeListModel

IlvTreeListToFlatListModel

IlvTreeListToFlatTableModel

IlvTreeListToTreeTableModelFactory

IlvTreeListToTreeModel

NoneAdapters from IlvTreeSetModel

IlvFlatListToFlatSetModelAdapters from IlvFlatListModel

IlvFlatListToFlatTableModel

IlvFlatSetToFlatTableModelAdapters from IlvFlatSetModel

IlvFlatTableToFlatListModelAdapters from IlvFlatTableModel

IlvFlatTableToTableModel

IlvFlatTableToListModel

IlvDataSourceToFlatTableModelAdapters from IlvDataSource

IlvTreeTableToTreeListModelAdapters from Swing TreeTableModel

IlvTreeToTreeListModelAdapters from Swing TreeModel

IlvTreeToFlatTableModel

IlvTableToFlatTableModelAdapters from Swing TableModel

IlvListToFlatTableModelAdapters from Swing ListModel

IlvListToFlatListModel

Adapters for Filtering
These adapters perform the filtering transform of models, as discussed in the section Filtering.

♦ IlvFilteredTreeListModel

♦ IlvFilteredTreeSetModel

♦ IlvFilteredFlatListModel

♦ IlvFilteredFlatSetModel

These adapters select a branch of a tree model.

♦ IlvSubTreeListModel

♦ IlvSubTreeSetModel

Adapters for Sorting
These adapters perform the sorting transform of models, as discussed in the section Sorting.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 85

♦ IlvSortedTreeListModel

♦ IlvSortedFlatListModel

♦ IlvTreeSetToTreeListModel

♦ IlvFlatSetToFlatListModel

Adapters for Partitioning
These adapters perform the partitioning transform of models, as discussed in the section
Partitioning.

♦ IlvFlatListToTreeListModel

♦ IlvFlatSetToTreeSetModel

The partitioning transform introduces extra nodes in the resulting tree model. These extra
nodes represent a group (cluster) of nodes and that were not present in the original model.
These nodes are of the type IlvClusterNode. By means of the method getId() you can
retrieve information about the common properties of the cluster. This information is of the
type IlvClusterId. Each partitioner has a particular flavor of IlvClusterId, as shown in
the following table:

The IlvClusterId ClassPartitioner

IlvIntervalClusterIdIlvUniformScalePartitionerFactory

IlvIntervalClusterIdIlvCustomScalePartitionerFactory

IlvDateClusterIdIlvDatePartitionerFactory

IlvStringClusterIdIlvStringPartitionerFactory

IlvPathClusterIdIlvPathPartitionerFactory

IlvPathClusterIdIlvURLPartitionerFactory

IlvPathClusterIdIlvFilenamePartitionerFactory

IlvPathClusterIdIlvHostnamePartitionerFactory

Here is an example showing how to convert a Swing TableModel to an IlvTreeListModel,
that groups the rows by country, sorts them alphabetically, and filters them to keep only
those with positive performance.

TableModel model = ...;
final int nameColumnIndex = 0;
final int countryColumnIndex = 2;
final int performanceColumnIndex = 3;

// Convert the model to a list of objects.
IlvFlatTableModel tableModel =
new IlvTableToFlatTableModel(model,
new IlvDataColumnInfo[] {

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K86

new IlvDefaultDataColumnInfo("Name", String.class),
new IlvDefaultDataColumnInfo("Founded", Date.class),
new IlvDefaultDataColumnInfo("Country", String.class),
new IlvDefaultDataColumnInfo("Performance", Double.class)

});
IlvDataColumnInfo nameColumn =
tableModel.getColumn(nameColumnIndex);

IlvDataColumnInfo countryColumn =
tableModel.getColumn(countryColumnIndex);

IlvFlatListModel listModel =
new IlvFlatTableToFlatListModel(tableModel);

// Add a filter.
IlvFlatListModel filteredModel =
new IlvFilteredFlatListModel(listModel,
new IlvAbstractFilter() {
public boolean evaluate(Object object) {
return model.getDoubleAt(object, performanceColumnIndex) >= 0;

}
});

// Add sorting.
IlvFlatListModel sortedModel =
new IlvSortedFlatListModel(filteredModel,
new IlvColumnValueComparator(sortedModel, nameColumn,

null, false));

// Add partitioning.
IlvTreeListModel partitionedModel =
new IlvFlatListToTreeListModel(sortedModel,

new IlvStringPartitionerFactory(countryColumn),
null, 1);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 87

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K88

Configuring the Data Projection

Explains how to configure the axis and the projector.

In this section

Configuring the Axis
Describes the IlvAxis class and how it is used by charts.

Configuring the Projector
Describes the projector and how it can be used with points and rectangular areas.

© Copyright IBM Corp. 1987, 2009 89

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K90

Configuring the Axis

Describes the IlvAxis class and how it is used by charts.

In this section

The chart
Describes the elements that compose a chart.

Axis properties
Describes the properties of the axis.

Changing the axis ranges
Describes the various types of range and how to change them.

Setting the axis transformer
Explains how to implement an axis transformer.

Listening to axis events
Describes the different types of ranges sent by axis objects and explains how to listen to
them.

Handling chart resizing
Describes the resizing policy.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 91

The chart

Each chart uses several coordinate axes, which are represented by the IlvAxis class.

A chart is composed of:

♦ Exactly one abscissa axis, which can be retrieved with the getXAxis() method.

♦ One or several ordinate axes, which can be retrieved with the getYAxis(int) method.

The axes are automatically created by a chart, which uses by default only one y-axis. The
first y-axis is also referred to as themain ordinate axis. Other y-axis can be added to a chart
with the addYAxis(boolean, boolean)method. You can determine the type of an axis with
the getType() method.

Within a chart, each y-axis forms a coordinate system with the x-axis. A coordinate system
is an instance of the class, and can be retrieved with the getCoordinateSystem(int)
method. Throughout the API of the library, both y-axis and coordinate systems are usually
referenced by their index in the chart (starting at 0). For example, the third parameter to
the scroll(double, double, int) method specifies which y-axis should be modified:

// Translates by 20. the visible range of the first y-axis.
chart.scroll(0., 20., 0)

Example: Synchronizing Axes
You can synchronize two chart axes with the synchronizeAxis(ilog.views.chart.IlvChart,
int, boolean) method. After this method is invoked, both charts share the same axis
instance.

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/axis-sync/src/AxisSync.java.

IlvChart topChart = new IlvChart();
// the topchart data source
IlvDefaultDataSource ds =

new IlvDefaultDataSource(new double[][]
{IlvArrays.randomValues(COUNT, 0, 50)},

-1,
new String[]{"Data Set 1"},
null);

topChart.setDataSource(ds);
// add some interactors to be able to play with the axis range
topChart.addInteractor(new IlvChartZoomInteractor());
topChart.addInteractor(new IlvChartPanInteractor());

// the bottom chart. This chart shares the same x-axis with topChart.
IlvChart bottomChart = new IlvChart();
ds = new IlvDefaultDataSource(new double[][]

{IlvArrays.randomValues(COUNT, 0, 50)},
-1,

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K92

new String[]{"Data Set 2"},
null);

bottomChart.setDataSource(ds);
// synchronixe the x-axis with the one from topchart. We also want to
// synchronize the plotarea of both charts so that grids are aligned.
bottomChart.synchronizeAxis(topChart, IlvAxis.X_AXIS, true);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 93

Axis properties

The following table lists the properties of an axis:

Default ValueMethodsProperty

falsesetReversedreversed

isReversed

falsesetAdjustingadjusting

isAdjusting

truesetAutoDataMinautoDataMin

isAutoDataMin

truesetAutoDataMaxautoDataMax

isAutoDataMax

truesetAutoVisibleRangeautoVisibleRange

isAutoVisibleRange

Reversing an Axis
The setReversed(boolean) method allows you to toggle the reversed property of an axis.
The values along a reversed axis are considered in backward order. For example, reversing
the x-axis affects the orientation of a polar projector:

♦ The projector is oriented counter-clockwise if the x-axis is not reversed.

♦ The projector is oriented clockwise if the x-axis is reversed.

Specifying the Automatic Modes of Axis Ranges
Three properties define the automatic range modes of an axis, as described in section
Changing the axis ranges:

♦ isAutoDataMin() indicates whether the minimum data value is automatically computed.
You can disable the automatic mode with the setAutoDataMin(boolean) method, or by
explicitly specifying the minimum data value.

♦ isAutoDataMax() indicates whether the minimum data value is automatically computed.
You can disable the automatic mode with the setAutoDataMax(boolean) method, or by
explicitly specifying the maximum data value.

♦ isAutoVisibleRange() indicates whether the visible range is synchronized with the data
range. You can disable the synchronization of the setAutoVisibleRange(boolean)method,
or by explicitly specifying the visible range.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K94

Setting the Axis in an Adjusting State
The setAdjusting(boolean)method lets you toggle the adjusting state of an axis. This state
is used when firing AxisEvent events, so that registered listeners know that the received
notifications are part of a set of changes.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 95

Changing the axis ranges

An IlvAxis object defines two ranges:

♦ The data range, which specifies the limits of the data values along this axis. This range
can be unbounded, which means that the minimum and maximum data values are
undefined.

♦ The visible range, which specifies the visible data interval along this axis.

The axis ensures that the visible range is always contained within the data range:

dataMin <= visibleMin <= visibleMax <= dataMax

The data range of an axis is specified according to two modes:

♦ Automatic mode

In this mode, the data range is computed by the chart. The chart delegates this calculation
to an IlvDataRangePolicy object. The default policy computes the data range so that it
fits the data actually displayed by the chart.

♦ Manual mode

The setDataMin(double), setDataMax(double), or setDataRange(ilog.views.chart.
IlvDataInterval)methods allow you to indicate the minimum andmaximum data values.

When you call a method to explicitly set a value for the minimum data and maximum data
value, you toggle off the automatic mode for the corresponding value. For example, calling
the setDataMin method disables the automatic calculation of the minimum data.

The visible range of an axis also follows two modes:

♦ The visible range can be synchronized with the data range. In that case, the visible range
is updated each time the data range is modified.

♦ The visible range can be explicitly specified with the setVisibleMin(double),
setVisibleMax(double)setVisibleMax, or setVisibleRange(double, double)methods.
By calling one of these methods, you toggle off the synchronization of the visible range
with the data range.

You can find a list of the properties related to the axis data range and the axis visible range
in section Axis properties.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K96

Setting the axis transformer

An optional transformation can be associated with an IlvAxis instance. This transformation
is applied to every data value along this axis before it is converted to display coordinates.

Axis transformers are implemented by subclasses of the IlvAxisTransformer abstract class.
Each concrete subclass must implement two abstract methods:

♦ apply(double), which performs the forward transformation.

♦ inverse(double), which performs the inverse transformation.

You can override the default implementation of the other methods of the IlvAxisTransformer
class. For example, the apply(double[], int)method uses the elementary transformation
on all the values of the specified array. A faster implementation can sometimes be found by
making intermediate calculations only once.

The following predefined transformations are available in the JViews Charts library:

♦ IlvAffineAxisTransformer applies an affine transformation.

♦ IlvLogarithmicAxisTransformer applies a logarithmic transformation.

♦ IlvLocalZoomAxisTransformer applies a scaling factor to data values within a given
range.

Local Zoom shows the effect of an IlvLocalZoomAxisTransformer set on the x-axis of a
chart:

Local Zoom

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 97

Listening to axis events

The AxisEvent class represents the base class for axis events. Listeners can be registered
to receive these events with the addAxisListener(ilog.views.chart.event.AxisListener)
and removeAxisListener(ilog.views.chart.event.AxisListener) methods.

Range Events
These events are sent when the visible range or the data range of an axis changes. When
this happens, two AxisRangeEvent events are fired:

♦ A first event is sent before the change actually occurs. This event is also called an
about-to-change event. It gives to the listeners an opportunity to constrain the proposed
new value of the range with the setNewMin(double) and setNewMax(double) methods.

♦ A second event is sent after the change. The previous values of the range can be retrieved
with the getOldMin() and getOldMax() methods.

You can check whether an event is an about-to-change event with the isAboutToChangeEvent
()method. The following code shows how a listener can be used to coerce the visible range
of an axis:

axis.addAxisListener(new AxisListener() {

/**
* Constrain visible min and visible max to integer values.
*/
public void axisRangeChanged(AxisRangeEvent ev) {
if (ev.isChangedEvent() || !ev.isVisibleRangeEvent()) return;
ev.setNewMin(Math.floor(ev.getNewMin()));
ev.setNewMax(Math.ceil(ev.getNewMax()));

}
public void axisChanged(AxisChangeEvent evt) {}

});

Change Events
The change events are implemented by the AxisChangeEvent class. These events are sent
when one of the following changes occur:

♦ The reversed property of the axis has been modified. The type of the event is
AxisChangeEvent.ORIENTATION_CHANGE.

♦ The adjusting property of the axis has been modified. The type of the event is
AxisChangeEvent.ADJUSTMENT_CHANGE.

The transformer of the axis has changed. The type of the event is AxisChangeEvent.
TRANSFORMER_CHANGE. This type of event covers all the changes that can affect the
transformer. It also includes setting the transformer or removing it from the axis.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K98

Handling chart resizing

The way a change of the chart size affects the visible range of the axis is handled through
a resizing policy. A resizing policy determines whether the visible range of the axis of a
Cartesian chart is modified when the chart is resized.

Resizing policies are implementations of the IlvChartResizingPolicy interface and are
set on a chart by means of the setResizingPolicy(ilog.views.chart.
IlvChartResizingPolicy) method.

The JViews Charts package provides a default implementation of this interface by means of
the IlvChartResizingPolicy.DEFAULT_POLICY class. This class expands the visible range
of the coordinate axis when a chart area is resized so that the scaling factor of the Cartesian
projection keeps the same value.

By default, a chart has no resizing policy, that is, the visible range of the axis is not changed
when the chart size changes.

A resizing policy applies only to Cartesian charts.Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 99

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K100

Configuring the Projector

Describes the projector and how it can be used with points and rectangular areas.

In this section

Projector Properties
Describes the different types of projector and their properties.

Projecting points
Explains how to project a data point.

Projecting rectangular areas
Describes how to project rectangular areas.

Projecting a set of data points
Explains how to project a set of data points.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 101

Projector Properties

The conversion between data space and display space is performed by a projector owned
by the chart. Depending on its type, a chart uses one of the two predefined projectors
available in the JViews Charts package:

♦ Cartesian projector

♦ Polar projector

The projector used by a chart can be retrieved with the getProjector() method.

Projector properties are accessible through the API of the IlvChart class.

The setProjectorReversed(boolean)method allows you to reverse a projector. A reversed
projector swaps the meaning of the abscissa and ordinate coordinates of a point. For example,
a reversed Cartesian projector projects x-data values along the y-axis of the screen.

Cartesian Orientation illustrates the different Cartesian orientations that can be specified
by using this property in conjunction with the reversed property of an axis:

Cartesian Orientation

The IlvChart class also provides methods to change the specific properties of a polar
projector:

♦ setStartingAngle(double) changes the starting angle of the projector.

♦ setAngleRange(double) changes the range of the projector.

Polar Properties shows how these properties modify the appearance of a pie chart:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K102

Polar Properties

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 103

Projecting points

The IlvChartProjector interface defines two methods to perform the conversion between
data points and display points:

♦ toDisplay(ilog.views.chart.IlvDoublePoints, java.awt.Rectangle, ilog.views.
chart.IlvCoordinateSystem) achieves the forward projection (from data space to display
space).

♦ toData(ilog.views.chart.IlvDoublePoints, java.awt.Rectangle, ilog.views.
chart.IlvCoordinateSystem) achieves the inverse projection (from display space to
data space).

Both methods use the following parameters:

♦ An IlvDoublePoints object that holds the points to project. The contents of the
IlvDoublePoints is directly modified by the method.

♦ An IlvCoordinateSystem object that represents the data coordinate system.

♦ A Rectangle object that represents the display coordinate system.

The projection pipeline is illustrated in Chart Projector:

Chart Projector

The projection is performed in two stages:

♦ Apply the transformations that are set on the axis of the provided coordinate system.

♦ Transform the data values into display coordinates according to the provided projecting
rectangle, and the visible range of the axis.

The following code extract shows how to project a data point:

IlvChart chart = ...;
// x and y are the x- and y-values of the data point.
IlvDoublePoints pts = new IlvDoublePoints(x, y);

// The following lines are equivalent to: chart.toDisplay(pts).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K104

IlvCoordinateSystem coordSys = chart.getCoordinateSystem(0);
Rectangle projRect = chart.getProjectorRect();
chart.getProjector().toDisplay(pts, projRect, coordSys);
System.out.println("Projected coords: " + pts);

The projecting rectangle returned by the getProjectorRect() method is expressed
in the coordinate system of the chart area component. The projected coordinates are

Note:

always relative to the upper-left corner of this component. For more information on the
components of a chart, please refer to Creating a Chart.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 105

Projecting rectangular areas

Rectangular areas are represented by:

♦ java.awt.Rectangle objects in display space.

♦ IlvDataWindow objects in data space.

The IlvChartProjector interface defines the followingmethod to convert rectangular areas:

♦ toRectangle(ilog.views.chart.IlvDataWindow, java.awt.Rectangle, ilog.views.
chart.IlvCoordinateSystem) converts a data window to a display rectangle.

♦ toDataWindow(java.awt.Rectangle, java.awt.Rectangle, ilog.views.chart.
IlvCoordinateSystem) converts a display rectangle to a data window.

The following code extract shows how you can use the toDataWindow method to retrieve all
the points of a data set that are projected within a given rectangle:

Rectangle selectRect = ...; // The selection rectangle
IlvDataSet dataSet = ...;
IlvCoordinateSystem coordSys = chart.getCoordinateSystem(0);
Rectangle projRect = chart.getProjectorRect();
IlvChartProjector prj = chart.getProjector();

// Convert the selection rectangle into a data window.
IlvDataWindow w = prj.toDataWindow(selectRect, projRect, coordSys);

// Fetch data points that lies within the computed window.
IlvDataPoints pts = dataSet.getDataInside(w, 0, false);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K106

Projecting a set of data points

Several methods in the IlvChartProjector interface let you project a set of data points into
java.awt.Shape objects:

♦ getShape(ilog.views.chart.IlvDataWindow, java.awt.Rectangle, ilog.views.
chart.IlvCoordinateSystem). The considered set of data points is formed by all the
points contained in the specified window.

♦ getShape(double, int, java.awt.Rectangle, ilog.views.chart.
IlvCoordinateSystem). The considered set of data points is formed by all the points that
have a fixed x- or y-coordinate, and that lie within the visible window.

♦ getShape(double, ilog.views.chart.IlvDataInterval, int, java.awt.Rectangle,
ilog.views.chart.IlvCoordinateSystem). The considered set of data points is formed
by all the points that have a fixed x-coordinate, and a y-coordinate that lies within a
specified interval, or vice versa.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 107

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K108

Handling Chart Renderers

Provides detailed information on data display for the charts.

In this section

Chart Renderers
Introduces the chart renderers.

Using Chart Renderers
Describes all the possible graphical representations available in the JViews Charts library
and a presentation of their implementation.

Customizing Chart Renderers
Explains how to customize the graphical representation of a data model at the data point
level to add additional information (like annotations) to a data point or to modify the rendering
style used to draw a specific data point.

Notifications from the data model
Describes the possible notifications received by a chart renderer.

Legend items
Describes the default automatic mechanism provided by the JViews Charts library to handle
chart legend items.

© Copyright IBM Corp. 1987, 2009 109

Chart Renderers

The way data is rendered on the screen (polyline, bar, area, and so on) is handled by dedicated
objects called renderers.

Renderers are divided into three categories:

♦ Single renderers, which display data from one (or several) specific data set(s).

♦ Composite renderers, which display data from a specific data source, using one or more
single renderers.

♦ Simple renderers, which display data from a specific data source.

The composite renderers are defined as a combination of other renderers, which can be
either single renderers or other composite renderers, so that each data set in the associated
data source is rendered by one of these child renderers.

The simple renderers do the rendering of an entire data source by themselves, without
dispatching the drawings of different data sets to different renderers.

Chart renderers are instances of IlvChartRenderer subclasses. The composite renderer
classes inherit from the IlvCompositeChartRenderer abstract class, and the single renderer
classes inherit from the IlvSingleChartRenderer abstract class. The simple renderer classes
inherit from the IlvSimpleChartRenderer abstract class.

In addition to these three main categories, we can distinguish a special type of composite
renderers that handles a one-to-one relation between its child renderers and its data sets
(that is, one child renderer per data set). These composite renderers are instances of the
IlvSimpleCompositeChartRenderer class, and handle IlvSingleChartRenderer instances
as child renderers.

Most of the composite chart renderer classes available in the JViews Charts library are
subclasses of IlvSimpleCompositeChartRenderer.

Chart Renderer Hierarchy shows the chart renderer hierarchy:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K110

Chart Renderer Hierarchy

A data model is drawn in a chart when it is bound to a renderer added to a chart. Depending
on the data model, this association is performed between:

♦ A data source and a composite chart renderer if the data model is a data source.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 111

Set the data source as the current renderer data source by means of the setDataSource
(ilog.views.chart.data.IlvDataSource) method.

♦ A data set and a single chart renderer if the data model is a data set.

Add the data set to the renderer data source by means of the addDataSet(ilog.views.
chart.data.IlvDataSet) method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K112

Using Chart Renderers

Describes all the possible graphical representations available in the JViews Charts library
and a presentation of their implementation.

In this section

Polyline Charts
Describes the Polyline charts.

Area Charts
Describes the Area charts.

Bar Charts
Describes the Bar charts.

Bubble Charts
Describes the Bubble charts.

High/Low Charts
Describes the High/Low charts.

Pie Charts
Describes the Pie charts.

Scatter Charts
Describes the Scatter charts.

Stair Charts
Describes the Stair charts.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 113

Treemap Charts
Describes the Treemap charts.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K114

Polyline Charts

The Polyline charts have the following characteristics:

IlvSinglePolylineRendererSingle class

IlvSingleChartRendererInherits from

IlvPolylineChartRendererComposite class

IlvSimpleCompositeChartRendererInherits from

IlvSinglePolylineRenderer Properties
A single polyline renderer can draw an additional marker for each data point. This marker
is an instance of an implementation of the IlvMarker interface, and is set by means of the
setMarker(ilog.views.chart.graphic.IlvMarker) method. You can also specify the
rendering style of the marker symbol with the setMarkerStyle(ilog.views.chart.
IlvStyle)By default, the style of the marker is computed according to the style of the
renderer.

Polyline with a Square Marker Drawn on Each Data Point

IlvPolylineChartRenderer Properties
This renderer supports three representationmodes: Superimposed, Stacked, and Stacked100.

Superimposed Mode
Polylines are drawn on top of each other.

Stacked Mode
Polylines are stacked, so that each one displays the contribution of a y-value in a set of
several y-values.

Stacked100 Mode
The contribution of a y-value is computed as a percentage of all the y-values for a given
x-value.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 115

The representation mode can be set either at construction time specifying a corresponding
IlvPolylineChartRenderer mode constant as parameter of the constructor, or by means
of the setMode(int) method.

Representation Modes: Superimposed, Stacked, and Stacked100

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K116

Area Charts

The Area charts have the following characteristics:

IlvSingleAreaRendererSingle class

IlvSinglePolylineRendererInherits from

IlvAreaChartRendererComposite class

IlvPolylineChartRendererInherits from

IlvSingleAreaRenderer Properties
This class inherits from the IlvSinglePolylineRenderer properties previously listed, except
for the graphical representation that represents a data set as an area instead of polylines.

IlvAreaChartRenderer Properties
This class inherits from the IlvPolylineChartRenderer representation modes listed in
section IlvPolylineChartRenderer Properties.

Representation Modes: Superimposed, Stacked, and Stacked100 Mode

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 117

Bar Charts

The Bar charts have the following characteristics:

IlvSingleBarRendererSingle class

IlvSingleChartRendererInherits from

IlvBarChartRendererComposite class

IlvSimpleCompositeChartRendererInherits from

IlvBarChartRenderer Properties
A bar chart renderer supports four representationmodes: Superimposed, Clustered, Stacked,
and Stacked100.

Superimposed Mode
Bars are drawn on top of each other.

Clustered Mode
Bars are laid out in clusters, each cluster representing the set of y-values corresponding to
a given x-value. The default cluster width can be modified by means of the setClusterWidth
(double) method.

Stacked Mode
Bars are stacked, so that each one displays the contribution of a y-value in a set of several
y-values.

Stacked100 Mode
The contribution of a y-value is computed as a percentage of all the y-values for a given
x-value.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K118

RepresentationModes: Superimposed, Clustered, Stacked, and Stacked100Mode

Horizontal Bar charts can be obtained by reversing the chart projector. For more
information, see setProjectorReversed(boolean) documentation, and the section
Projector Properties.

Note:

Stacked Diverging Mode
Bar are stacked, in a way that accomodate negative values. In this mode, negative values
are stacked separately from positive values: positive y values will be stacked together in a
bar towards positive values, and negative y values will be stacked together in a bar in the
opposite direction.

This rendering mode makes it easy to visually understand negative values.

Note: 1. This mode assumes that there is no particular order among the data sets; the data
points belonging to negative y values are reordered, as if they all came before the
positive y values.

2. Also, in this mode, the largest displayed y value is no longer the sum of all y values;
rather, it is the sum of all positive y values. This can be confusing for the user.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 119

Bubble Charts

The Bubble charts have the following characteristics:

IlvSingleBubbleRendererSingle class

IlvSingleScatterRendererInherits from

IlvBubbleChartRendererComposite class

IlvCompositeChartRendererInherits from

IlvSingleBubbleRenderer Properties
A bubble chart represents a two-dimensional data model as bubbles of variable size. The
data model should be described by two data sets, the first data set determining the location
of the bubbles, and the second data set determining the size of the bubbles.

IlvBubbleChartRenderer Properties
An IlvBubbleChartRenderer creates one child renderer for every pair of data sets contained
in its data source.

A Bubble Renderer

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K120

High/Low Charts

The High/Low charts have the following characteristics:

IlvSingleHiLoRendererSingle class

IlvSingleChartRendererInherits from

IlvHiLoChartRendererComposite class

IlvCompositeChartRendererInherits from

IlvSingleHiLoRenderer Properties
An IlvSingleHiLoRenderer instance renders two data sets with low and high items.

This class defines two rendering styles: a rise style and a fall style.

The rise style is used to draw the high-low items for which the corresponding low value is
less than the high value.

The fall style is used to draw the high-low items for which the corresponding low value is
greater than the high value.

The possible graphical representations supported by this class are Bar, Arrow, Marked, and
Stick, and are illustrated in Graphical Representations: Bar, Arrow, Marked, and Stick:

Graphical Representations: Bar, Arrow, Marked, and Stick

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 121

IlvHiLoChartRenderer Properties
This renderer supports three representation modes: Clustered, OpenClose, and Candle.

Clustered Mode
This class creates an instance of IlvSingleHiLoRenderer for every pair of data sets contained
in its data source, and the creation of the associated legend item is delegated to the child
renderer createLegendItems() method.

OpenClose Mode
This class handles two pairs of data sets: the first pair for the low/high values, the second
pair for the open/close values, each pair being rendered by a child renderer, respectively
of type Stick and Marked. In this mode, the legend item creation is directly handled by the
composite renderer.

Candle Mode
This class handles two pairs of data sets as for the OpenClose mode, the low/high values
being rendered with a Marked child renderer, the Open/Close values with a Bar child
renderer. In this mode, the legend item creation is directly handled by the composite
renderer.

Representation Modes: Clustered, Candle, and OpenClose Mode

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K122

Pie Charts

The Pie charts have the following characteristics:

IlvSinglePieRendererSingle class

IlvSingleChartRendererInherits from

IlvPieChartRendererComposite class

IlvSimpleCompositeChartRendererInherits from

IlvSinglePieRenderer Properties
This class renders a data set as a pie chart. Each data point of a data set is rendered as a
slice.

Specific slices of an IlvSinglePieRenderer can be exploded from the pie chart using the
setExploded(int, boolean)method. The explode ratio of a slice can be changed by means
of the setExplodeRatio(int, int) method.

This renderer defines one rendering style for each data point, so that each slice of the pie
is drawn using its own rendering style.

IlvPieChartRenderer Properties
A Pie chart can be drawn with a hole in its center. This type of chart is called a doughnut
chart. The hole size is expressed as a percentage of the available space that the hole will
occupy. Pie renderers are usually added to pie charts but can also be used with other chart
type (Cartesian for example).

Pie Chart and Doughnut Chart

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 123

Scatter Charts

The Scatter charts have the following characteristics:

IlvSingleScatterRendererSingle class

IlvSingleChartRendererInherits from

IlvScatterChartRendererComposite class

IlvSimpleCompositeChartRendererInherits from

IlvSingleScatterRenderer Properties
This class renders a data set with scattered graphical markers. Markers are simple graphical
objects implementing the IlvMarker interface, and markers of predefined type can be
retrieved through the IlvMarkerFactory class.

A scatter renderer draws square markers by default. You can change this marker by means
of the setMarker(ilog.views.chart.graphic.IlvMarker)method, passing a new IlvMarker
instance as parameter.

The marker size can be changed at any time by means of the setMarkerSize(int) method,
passing the half-size of the marker as parameter.

IlvScatterChartRenderer Properties
This renderer class displays data sets as several scatter charts. Each data set is drawn by
its own child renderer using a specified marker type. The marker used to draw the graphical
representations can either be common to all child renderers, specified at construction time,
or specific to a child renderer, by changing its own marker. By default, each data set is
drawn using square markers.

Scatter Renderer Using Two Different Markers

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K124

Stair Charts

The Stair charts have the following characteristics:

IlvSingleStairRendererSingle class

IlvSingleAreaRendererInherits from

IlvStairChartRendererComposite class

IlvPolylineChartRendererInherits from

IlvSingleStairRenderer Properties
This class inherits from the IlvSingleAreaRenderer properties, except that the graphical
representation represents a transition between two values as a stair instead of straight lines.

IlvStairChartRenderer Properties
This class inherits from the IlvPolylineChartRenderer properties.

Representation Modes: Superimposed and Stacked Stairs Mode

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 125

Treemap Charts

A treemap chart displays objects as rectangles. The important objects are represented by
large areas while the less important objects are represented by smaller areas, as illustrated
in Treemap Chart.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K126

Treemap Chart

In a treemap chart, rectangles relate each other in a containment structure, where each
rectangle is part of another rectangle. As illustrated in Treemap Chart, Cost of manufacturing
is part of the Cost of revenues, which itself is part of Expenses. Graphically, this relationship
is displayed as follows: the rectangle associated with Cost of manufacturing occupies part
of the area of the rectangle associated with Cost of revenues, and the latter is part of the
area for Expenses.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 127

Expenses is the root of the model: it is not a part of a bigger budget. This is why the Expenses
rectangle occupies the entire treemap chart area.

The treemap chart can also be used to display structured data sets with 4 to 10 dimensions
of data. (Other types of 2D charts can show data sets with usually up to 3 dimensions of
data.) In other words, if you have a table with many rows and 4 to 10 columns, the treemap
is the most appropriate chart to display your data.

The treemap chart is a generalization of the pie chart. They share the feature that important
objects are represented by large areas and less important objects by smaller areas. But
where a pie chart displays a linear list of objects, treemaps display a tree of objects.

The input data of a treemap chart is represented by an IlvTreeTableDataSource instance.
See Structure of the Extended Data Model for a description on how to connect to an
IlvTreeTableDataSource.

IlvTreemapChartRenderer Properties
The Treemap charts have the following characteristics:

IlvTreemapChartRendererRenderer class

IlvSimpleChartRendererInherits from

Setting the Area Column
The treemap chart can be applied to any entity that can be partitioned into disjointed parts.

In a treemap chart display, the most important setting is the object attribute (or model
column) which is translated into the area representing the object.

The area value must meet the following requirements:

1. Must imply the notion of importance: the larger, the more important.

2. Must be >= 0: it is not possible to display a negative area.

3. If several objects are combined into a single object, the area value of this single object
is given by the sum of the areas of each object.

Or similarly: If an object is split into two parts, the sum of the areas of the two parts
must correspond to the area of the original object.

The area, and its notion of importance, depends on the application domain. Here are a few
examples:

♦ In finance, the area is the amount of money.

♦ For physical solids or liquids, the area is the mass (or volume) of the substance.

♦ In network supervision, the area can typically be the number of packets or the amount
of transferred data.

♦ In a software profiler, the area would correspond to the CPU time spent in a particular
line of code or function or source code file.

♦ In a filesystem space analyzer, the area would correspond to the file size.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K128

When the objects are indivisible and have the same importance, you can assign the same
area to all objects.

The area values are normalized by the treemap renderer; therefore the scaling of the area
values does not matter: the rendering will not change if all area values are multiplied by a
fixed constant factor.

The area column is set by means of the methods setAreaColumn(ilog.views.chart.datax.
IlvDataColumnInfo) or setAreaColumnName(java.lang.String).

Setting the Color Scheme
Besides the area, the color is the most visible attribute of an object in a treemap chart.

The expressiveness of the treemap depends on the color column and the color scheme. The
color column depends on the type of application. The color scheme is used to distinguish
the important properties of the objects.

The color is chosen according to what the user wants to see in the view. It is determined by
a model column, called the color column, and a color scheme. The color column yields the
numerical values that are represented through the color. The color scheme converts the
numerical values into color; it has the ability to emphasize some types of value.

The color scheme is set by means of the method setColorScheme(ilog.views.chart.
renderer.IlvColorScheme). The color column is set by means of the methods
setColorColumn(ilog.views.chart.datax.IlvDataColumnInfo) or setColorColumnName
(java.lang.String).

The color scheme is selected together with the color column. The values of this column are
transformed into a color.

♦ For a real-valued color column: The color scheme SEQUENTIAL highlights high values.
The color schemes DIVERGING_RED_GREEN and similar highlight the extreme values
(both high and low). Whereas the color schemes AVERAGE_RED_GREEN and similar do
the contrary: They emphasize the average values and don't draw the user's attention to
the extreme values.

♦ For a color column whose value range wraps around (like an angle or a time-of-day), the
color scheme CYCLIC_SEQUENTIAL_HUE is most appropriate.

♦ For a discrete-valued color column, that is, when the values are taken from an
enumeration, the color scheme QUALITATIVE is most appropriate.

There are also color schemes that do not use a color column at all:

♦ CONSTANT which uses a single color,

♦ DEPTH which uses the nesting depth within the tree.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 129

SituationColor Scheme

To display only the tree structure (through the
containment of rectangles). This color scheme does
not depend on a table column.

COLORSCHEME_DEPTH

When the high values of the column are considered
more important than the low values.

COLORSCHEME_SEQUENTIAL

When all values of the column are equally important.COLORSCHEME_SEQUENTIAL_HUE

When all values of the column are equally important,
and the minimum and maximum values are

COLORSCHEME_CYCLIC_SEQUENTIAL_HUE

semantically the same. For example, if the column
represents an intraday time: 00:00 h is the same as
24:00 h.

When the values are just enumerated values and
there is no notion of low, high or approximately equal
among these values.

COLORSCHEME_QUALITATIVE

When high and low values are considered more
important than the average values.

COLORSCHEME_DIVERGING_RED_GREEN or
COLORSCHEME_DIVERGING_BLUE_YELLOW

When average values are considered more important
than the extreme values.

COLORSCHEME_AVERAGE_RED_GREEN or
COLORSCHEME_AVERAGE_BLUE_YELLOW

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K130

Customizing Chart Renderers

Explains how to customize the graphical representation of a data model at the data point
level to add additional information (like annotations) to a data point or to modify the rendering
style used to draw a specific data point.

In this section

Annotations
Describes what the annotations are and how they can be set.

The rendering style
Explains how to change temporarily and/or locally the rendering style used by a renderer
during the drawing process.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 131

Annotations

An annotation is a graphical object drawn by the renderer to add additional information
about a given data point. Annotation objects are instances of implementations of the
IlvDataAnnotation interface and are handled by a chart renderer.

An annotation can be set:

♦ On a specific data point of a data set, by means of the setAnnotation(ilog.views.chart.
data.IlvDataSet, int, ilog.views.chart.graphic.IlvDataAnnotation) method.
This type of annotation is said to be local to the data point.

♦ On all the data points of a specific data set, by means of the setAnnotation(ilog.views.
chart.data.IlvDataSet, ilog.views.chart.graphic.IlvDataAnnotation) method.
This type of annotation is said to be global to the data set.

♦ On all the data points of all the data sets represented by a renderer, by means of the
setAnnotation(ilog.views.chart.graphic.IlvDataAnnotation)method. This type of
annotation is said to be global to the renderer.

The JViews Charts library provides several default IlvDataAnnotation implementations to
support data labelling and icon annotation.

Setting label annotations

Data labelling is the ability to add a label annotation to a given data point. This type of
annotation can be useful when you need to display the data value of a data point next to its
graphical representation.

Label annotations are instances of the IlvDataLabelAnnotation class, an implementation
of the IlvDataAnnotation interface that lets you display the data value or data label
associated with a data point.

By default, label annotation objects use the IlvChartRenderer built-in data labelling
mechanism. This mechanism provides the necessary API to compute a label and its location
for a given data point according to predefined modes.

This API is based on the following IlvChartRenderer methods:

♦ setDataLabeling(int)set

Lets you specify what the label should display. The possible values are:

● X_VALUE_LABEL to display the data point x-value.

● Y_VALUE_LABEL to display the data point y-value.

● XY_VALUE_LABEL to display both the x- and y-data point values.

● DATA_LABEL to display the data label associated to a data point. For more information
about the data set data labels, see Using the Data Model.

● PERCENT_LABEL to display the contribution as a percentage of the data point. (This
mode is only meaningful with a pie chart renderer.)

♦ computeDataLabel(ilog.views.chart.data.IlvDataSetPoint)

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K132

Computes the data label for a given data point according to the current data labelling
mode.

♦ setDataLabelLayout(int)

Lets you specify the position of the data label relative to the data point. The possible
values are:

● CENTERED_LABEL_LAYOUT to draw the label centered on the graphical representation
of the data point.

● OUTSIDE_LABEL_LAYOUT to draw the label outside of the graphical representation of
the data point.

♦ computeDataLabelLocation(ilog.views.chart.IlvDisplayPoint, java.awt.Dimension)

Computes the data label location for a given data point according to the current data
label layout.

The IlvDataLabelAnnotation class provides the following services:

♦ customizable label

This label is computed in the computeText(ilog.views.chart.IlvDisplayPoint)method.
By default, the text to display is the one returned by the computeDataLabel(ilog.views.
chart.data.IlvDataSetPoint) method.

♦ customizable location

The location of the label is computed in the computeLabelLocation(java.lang.String,
ilog.views.chart.IlvDisplayPoint) method. By default, the label location is the one
computed by the computeDataLabelLocation(ilog.views.chart.IlvDisplayPoint,
java.awt.Dimension) method.

♦ customizable rendering style

The annotation label is drawn using an IlvLabelRenderer instance that defines the
rendering style used to draw the label. The label renderer can be retrieved by means of
the getLabelRenderer() method to change its default rendering attributes.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 133

DescriptionTypeProperty

The label font.Fontfont

Whether to scale the given font.BooleanscalingFont

The color of the label glyphs. It may be a normal Color
or an IlvContrastingColor.

Colorcolor

Whether to draw in outline mode. This mode is useful to
get good contrast with the background.

Booleanoutline

Whether to draw a background behind the label.Booleanopaque

The background color or, more generally, background
paint object.

Color/Paintbackground,

backgroundPaint

The kind of border rectangle to draw around the
background rectangle.

javax.swing.Borderborder

The rotation angle applied to the entire label.doublerotation

The way lines are aligned, in the case of a multiline label.intalignment

Whether the text is broken into lines automatically.BooleanautoWrapping

The maximum line width, for automatic wrapping.floatwrappingWidth

Example: Setting a Label Annotation on a Given Data Point

The renderer is configured so that the label annotation displays the y-data value of the data
point of index 5 on top of the representation using the default rendering style:

aRenderer.setDataLabeling(IlvChartRenderer.Y_VALUE_LABEL);
aRenderer.setDataLabelLayout(IlvChartRenderer.OUTSIDE_LABEL_LAYOUT);
IlvDataAnnotation annotation = new IlvDataLabelAnnotation();
aRenderer.setAnnotation(theDataSet, 5, annotation);

Label Annotation

Setting icon annotations

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K134

In addition to data labelling, the annotation mechanism provides a way to add icons to a
renderer as an annotation. This is done by means of the IlvDefaultDataAnnotation class,
a class that draws an object that implements the javax.swing.Icon interface.

The referenced object location is computed according to an anchor position and an optional
offset added to this position. The anchor position is defined relative to the display point, and
takes one of the SwingConstants direction values.

Example: Setting an Icon as a Data Point Annotation

The following example shows you how to set an icon as a data point annotation so that the
bottom of the icon is drawn 5 pixels above the data point of index 3 in the data set:

ImageIcon icon = new ImageIcon("apply.gif");
IlvDataAnnotation annotation =

new IlvDefaultDataAnnotation(icon, SwingConstants.NORTH, 5);
aRenderer.setAnnotation(theDataSet, 3, annotation);

Icon Annotation

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 135

The rendering style

The JViews Charts library provides a built-in mechanism that allows such local rendering
style modification by means of the IlvDataRenderingHint interface. The rendering hint
mechanism also allows you to dismiss the drawing of the graphical representation of a data
point by returning a null rendering style.

A rendering object defines a style that should be used when a specific point of a data set is
being drawn instead of the current renderer rendering style. Similarly to annotations, a
rendering hint can be set:

♦ On a specific data point of a data set, by means of the setRenderingHint(ilog.views.
chart.data.IlvDataSet, int, ilog.views.chart.graphic.IlvDataRenderingHint)
method.

♦ On all the data points of a data set, by means of the setRenderingHint(ilog.views.
chart.data.IlvDataSet, ilog.views.chart.graphic.IlvDataRenderingHint)method.

♦ On all the data points of all the data sets, by means of the setRenderingHint(ilog.views.
chart.graphic.IlvDataRenderingHint) method.

The JViews Charts library provides two default implementations of the IlvDataRenderingHint
interface:

♦ IlvDefaultDataRenderingHint

References a rendering style applied to all the data points associated with this rendering
hint.

♦ IlvGradientRenderingHint

Draws a data point with a color computed from its y-value among a predefined range of
colors.

Example: Using a Gradient Rendering Hint Object
The complete source code of this example can be found in <installdir>/jviews-charts86/
samples/listener/src/listener/ListenerDemo.java.

double[] values = {ValueGenerator.TMIN, 0, ValueGenerator.TMAX };
Color[] colors = {Color.blue, Color.white, Color.red};
IlvGradientRenderingHint hint =

new IlvGradientRenderingHint(values, colors);
barR.setRenderingHint(tempDs, hint);

The two arrays define a binding between a value and a color that the rendering hint uses
to compute the corresponding gradient. In this example, the color gradient is defined based
on three colors, from blue for the minimum value to red for the maximum value, with an
intermediate white color for zero value. Based on this binding, the color used to draw a data
point is determined according to the data point y-value. The data point with the lowest value
will be rendered as a blue bar (the first color in the gradient color array), while the data
point with the highest y-value will be rendered as a red bar.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K136

Example: Writing a new Rendering Hint
The code below shows how to write a new rendering hint so that data points with a y-value
greater than a threshold are drawn with a circle marker. It implements both the
IlvDataRenderingHint and IlvMarker Hint interface.

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/rendering-hint/src/CustomRenderingHint.java.

static final double THRESHOLD = 70.;

static class MyHint implements IlvDataRenderingHint, IlvMarkerHint
{

public IlvStyle getStyle(IlvDisplayPoint dp, IlvStyle defaultStyle)
{

if (dp.getYData() > THRESHOLD)
defaultStyle = defaultStyle.setFillPaint(IlvColor.coral);

return defaultStyle;
}

public IlvMarker getMarker(IlvDisplayPoint dp, IlvMarker defaultMarker)

{
if (dp.getYData() > THRESHOLD)

return IlvMarkerFactory.getCircleMarker();
return null;

}

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 137

Notifications from the data model

A chart renderer is notified of any modifications on its data model so that the renderer
always reflects the current state of the data model.

All renderers (both composite and single) receive notifications from their data source each
time a modification occurs. The following list presents the possible notifications and the
associated IlvChartRenderer methods:

♦ a data sets are added to the data source

dataSetsAdded(int, int, ilog.views.chart.data.IlvDataSet[])

♦ a data sets are removed from the data source

dataSetsRemoved(int, int, ilog.views.chart.data.IlvDataSet[])

In addition to these notifications coming from the data source, an IlvSingleChartRenderer
also receives notifications from its data set(s). These notifications are:

♦ the contents of an associated data set is modified

dataSetContentsChanged(ilog.views.chart.event.DataSetContentsEvent)

♦ a property of an associated data set has changed

dataSetPropertyChanged(ilog.views.chart.event.DataSetPropertyEvent)

By default, a chart renderer is bound to an instance of IlvDefaultDataSource.Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K138

Legend items

By default, all the visible renderers with the visibleInLegend property set to true drawn
in a chart appear in the chart legend (if a legend exists) as labelled symbols. The legend
item that represents the renderer is an instance of the IlvRendererLegendItem class, an
IlvLegendItem subclass that works with the chart renderer. The purpose of this class is to
delegate the legend item drawing operation to the associated renderer, so that the legend
item symbol is drawn according to the renderer type and its current rendering style.

This delegation affects both the item symbol and the label, and is handled at the chart
renderer level by the following methods:

♦ getLegendText(ilog.views.chart.IlvLegendItem)

Returns the text to display next to the symbol. The default implementation returns the
name of the renderer or, in the case of a single renderer, the name of the data set if the
renderer name is null.

♦ getLegendStyle()

Returns the rendering style used to draw the symbol. The default implementation returns
the first style contained in the styles property.

♦ drawLegendSymbol(ilog.views.chart.IlvLegendItem, java.awt.Graphics, int,
int, int, int)

Draws the legend item symbol. This method is automatically called by the renderer legend
item when it is drawn.

The renderer legend items are automatically created by the chart renderer when it is added
to a chart, provided that an IlvLegend object has been set. The items creation is performed
by the createLegendItems() abstract method, which returns an array of legend items
associated with a renderer. Being abstract, the implementation highly depends on the
renderer type, but the general rule is:

♦ A single renderer creates one IlvRendererLegendItem instance.

A simple composite renderer creates one IlvRendererLegendItem instance for each single
child renderer it references.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 139

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K140

Scales

Explains what a scale is and how to use it.

In this section

What is a scale
Introduces the scale and its basic properties.

General Properties
Describes the properties used to control the visual aspect of a scale.

Computing Scale Graduation
Describes how to compute the steps and substeps of a scale through a dedicated object
called scale steps definition that is set on the scale.

Scale Labels
Describes how steps labels are directly managed by the IlvScale class, which handles both
the computation and the drawing of labels.

Scale Annotations
Describes how to add annotations to a scale.

© Copyright IBM Corp. 1987, 2009 141

What is a scale

A scale is displayed within a chart by a dedicated optional scale object. The base class used
to represent a scale is the IlvScale class.

By default, scales are automatically created when a chart is constructed. You can control if
scales are automatically created by means of the following constructor:

IlvChart(int type, boolean withScales)

Scales might be defined as a graphical representation of a chart axis. As such, a scale is
always associated with an IlvAxis instance. To determine the axis that has to be associated
with a scale when the scale is added to a chart, use the following methods:

♦ setXScale(ilog.views.chart.IlvScale) associates the specified scale with the x-axis.

♦ setYScale(int, ilog.views.chart.IlvScale) associates the specified scale with the
y-axis of the given index.

You can retrieve the scale associated with an axis from the axis index using the following
methods:

♦ getXScale()

♦ getYScale(int)

Since scales are optional components, these methods may return null if no scale
has been previously set on the specified axis.

Note:

A scale is composed of the following elements:

♦ An axis representation, which depends on the chart projection (could be a line or an arc).

♦ Major ticks, the marks drawn on the axis at each step of the scale.

♦ Steps labels, drawn next to the major ticks. These labels indicate the values of the
coordinate represented by the scale.

♦ Minor ticks, the marks drawn on the axis at each substep of the scale.

♦ A title, which can be placed anywhere along the axis representation.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K142

Scales Structure

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 143

General Properties

The following properties are defined in the IlvScale class to control the global visual aspect
of a scale.

Default valueMethodsProperty

BasicStroke of 1 pixel widegetAxisStrokeAxis representation stroke

setAxisStroke

trueisAxisVisibleAxis representation visibility

setAxisVisible

IlvAxis.MIN_VALUE or IlvAxis.
MAX_VALUE.

getCrossingValue

setCrossingValue

Crossing value

setCrossing

nullgetTitleTitle

setTitle

trueisVisibleScale Visibility

setVisible

6getMajorTickSizeMajor tick size

setMajortTickSize

3getMinorTickSizeMinor tick size

setMinorTickSize

trueisMajorTickVisibleMajor tick visibility

setMajorTickVisible

trueisMinorTickVisibleMinor tick visibility

setMinorTickVisible

IlvScale.TICK_OUTSIDEgetTickLayoutPosition of the ticks

setTickLayout

Axis representation stroke
The stroke used to draw the graphical representation of the axis is defined by the axisStroke
property. The graphical representation of the axis can be either a line or an arc, depending
on the current projection and the axis attached to the scale. A scale attached to the x-axis
of a Cartesian chart is drawn as a horizontal line, while a scale attached to the x-axis of a
polar chart is drawn as an arc.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K144

Position of a scale
The position of a scale is defined with respect to the scale dual axis according to a given
data value. This data value is the value on the dual axis where the scale axis crosses it, and
is called the scale crossing value.

For example, in a default Cartesian chart, the x-scale crossing value is set to IlvAxis.
MIN_VALUE, meaning that the value where the x-scale crosses the y-axis is equal to the
minimum value of the y-axis.

Title of a scale
A scale can have an optional title. A scale title is specified as a string by means of the
setTitle(java.lang.String, double) method.

A scale title supports the following features:

♦ It can be rotated by a given angle.

This rotation angle can be specified either when the text title is initialized or later by
means of the setRotation(double) method.

♦ It is placed anywhere along the scale axis at a given position.

This position is expressed as a percentage of the axis length, and can be set using the
setTitlePlacement(int) method.

Visibility of a scale
The visibility of the scale is defined by the axisVisible property. Depending on the value
of this property, the axis representation can be visible or hidden. Showing or hiding a scale
affects the drawing area bounds, therefore a layout is automatically performed on the chart
area when the value changes.

Setting the property to false hides only the axis, it does not affect the scale ticks
visibility.

Note:

Size of the major and minor ticks
The size of the major and minor ticks is expressed in pixels and can be changed dynamically
using the setMajorTickSize(int) and setMinorTickSize(int) methods.

The major tick visibility and minor tick visibility are defined by the majorTickVisible and
minorTickVisible properties. Showing or hiding scale ticks affects the scale bounds and
the drawing area bounds, therefore a layout is automatically performed on the chart area
when these properties change.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 145

Position of the ticks relative to the axis
The position of the ticks relative to the axis is defined by the tickLayout property. The
following positions are possible:

♦ TICK_INSIDE

The ticks extend inside the data plotting area.

♦ TICK_OUTSIDE

The ticks extend outside the data plotting area.

♦ TICK_CROSS

The ticks cross the axis and extend both inside and outside the data plotting rectangle.

By default, the position of the ticks of a scale is set to TICK_OUTSIDE and can be
changed using the setTickLayout(int) method.

Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K146

Computing Scale Graduation

The IlvStepsDefinition abstract class
The base class used to represent a scale steps definition is the IlvStepsDefinition abstract
class. This class defines how scale steps are computed and how steps values are translated
into a label. For more information, see Computing scale steps.

By default, a scale automatically creates a scale definition when it is constructed. You can
also specify by hand the steps definition a scale should use, by means of the
IlvScale.setStepsDefinition method.

Standard numerical values
The IlvDefaultStepsDefinition class provides a default numbering of numeric steps. The
steps and substeps values are defined by:

♦ a step unit, which corresponds to the value between two consecutive steps,

♦ a substep unit, which corresponds to the value between two consecutive substeps.

The step and substep unit values are either automatically computed at run time or explicitly
set by means of the setStepUnit and setSubStepUnitmethods. Calling one of these methods
disables the automatic steps calculation mode for the corresponding unit.

The steps labels are computed according to a number format, instance of java.text.
NumberFormat. By default, the format to use is automatically computed by the steps definition.
You can disable the automatic format calculation by manually specify the number format to
use by means of the following method:

IlvDefaultStepsDefinition.setNumberFormat()

The IlvScale natively supports this default steps definition class. The method setStepUnit
(java.lang.Double, java.lang.Double) provides a shortcut to the methods setStepUnit
and setSubStepUnit on the IlvStepsDefinition object

Time values
The IlvTimeStepsDefinition class provides a default numbering for time values. The steps
values are defined by a step unit, expressed as a time value. This time unit is an instance of
the IlvTimeUnit class, and default implementations are provided to handle one of the
following predefined units:

IlvTimeUnit.SECOND
IlvTimeUnit.MINUTE
IlvTimeUnit.HOUR
IlvTimeUnit.DAY
IlvTimeUnit.WEEK
IlvTimeUnit.MONTH

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 147

IlvTimeUnit.QUARTER
IlvTimeUnit.YEAR
IlvTimeUnit.DECADE
IlvTimeUnit.CENTURY

Besides these predefined time units, the JViews Charts package provides a specialized
IlvTimeUnit subclass, the IlvMultipleTimeUnit class, that allows you to define new time
units as a multiple of predefined time units.

For example, the following code creates a time unit equal to 15 minutes:

IlvTimeUnit unit = new IlvMultipleTimeUnit(IlvTimeUnit.MINUTE, 15);

The IlvMultipleTimeUnit class can also be used to easily change the default implementation
of a predefined IlvTimeUnit subclass. This new implementation is not obtained by subclassing
but by defining a new IlvMultipleTimeUnit. This new multiple time unit must be based on
the predefined unit to modify, with a multiplier factor of 1, and must override the proper
methods.

For example, the following code shows how to modify the default format string of the
IlvTimeUnit.MONTH class so that it returns the full month name instead of the abbreviated
form:

IlvTimeUnit monthUnit =
new IlvMultipleTimeUnit(IlvTimeUnit.MONTH, 1) {

public String getFormatString() {
return “MMMMM”;

}
};

The step unit is either automatically computed at run time or explicitly set by means of the
setUnit(ilog.views.chart.IlvTimeUnit) method. In the latter case, the automatic time
unit calculation mode is disabled.

Time units chosen during the automatic unit calculation process must be specified to the
time steps definition by means of the IlvTimeStepsDefinition.setAutoUnitsmethod. This
method takes an IlvTimeUnit array as a parameter that contains all the units to consider.
By default, all predefined units are taken into account.

The following code shows how to replace the predefined month unit by a new month unit in
the automatic unit calculation process constraining the units from hour to month:

IlvTimeUnit[] autoUnits = {
IlvTimeUnit.HOUR,
IlvTimeUnit.DAY,
IlvTimeUnit.WEEK,
monthUnit

};
timeStepsDefinition.setAutoUnits(autoUnits);

The step labels are computed using a java.text.DateFormat instance. This format is
dependent on the current time unit and is performed in the computeLabel(double)method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K148

The IlvScale natively supports the IlvTimeStepsDefinition class. Themethod setTimeUnit
(ilog.views.chart.IlvTimeUnit) installs an IlvTimeStepsDefinition instance, if needed,
and provides a shortcut to the setUnit method on the IlvTimeStepsDefinition object.

Displaying categories
The IlvCategoryStepsDefinition class provides a default numbering for scales displaying
categories.

The steps are computed so that there is one step for each category and one substep between
two consecutive categories. The steps labels are computed to display either the categories
number or the data labels of a data set.

The IlvScale natively supports the IlvCategoryStepsDefinition class. The method
setCategory(ilog.views.chart.data.IlvDataSet, boolean) installs an
IlvCategoryStepsDefinition instance.

Displaying logarithmic scales
The IlvLogarithmicStepsDefinition class provides a default numbering for scales with
a logarithmic axis transformer.

The IlvScale natively supports the IlvLogarithmicStepsDefinition class. The method
setLogarithmic(double) installs an IlvLogarithmicStepsDefinition instance and also
sets the axis transformer that is applied to data points to a logarithmic one.

The shorthand methods
To specify which data type the scale is handling, and which steps definition class to use, the
IlvScale class provides the following methods:

♦ setStepUnit(java.lang.Double, java.lang.Double)

Handles numerical values and uses an IlvDefaultStepsDefinition instance.

♦ setTimeUnit(ilog.views.chart.IlvTimeUnit)

Handles time values and uses an IlvTimeStepsDefinition instance.

♦ setCategory(ilog.views.chart.data.IlvDataSet, boolean)

Handles categories and uses an IlvCategoryStepsDefinition instance.

♦ setLogarithmic(double)

Handles logarithmic values and uses an IlvLogarithmicStepsDefinition instance. This
method also sets the axis transformer that is applied to data points to a logarithmic one.

Computing scale steps
The scale steps are computed according to a step unit. The step unit is defined as the
increment between two consecutive steps, and its value depends on the data type the scale
is handling: numerical value or time unit (as a day, a week, and so on).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 149

The IlvStepsDefinition class provides an iterator-like API to iterate through the graduations
in a step-by-step way by means of the following methods:

♦ nextStep(double)

Returns the step value that immediately follows the specified value.

♦ previousStep(double)

Returns the previous step value immediately before the specified value.

♦ incrementStep(double)

Increments the specified step.

The two last methods are abstract and are implemented by subclasses, depending on
their data type.

Note:

Translating steps values into a label
Scale steps values are translated into string by the scale steps definition. The translation
depends on the concrete implementations of the IlvStepsDefinition class and is performed
by means of the computeLabel(double) method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K150

Scale Labels

General properties
The following table shows the properties defined by the IlvScale class related to the scale
labels.

Default ValueMethodsProperty

foregroundgetLabelColorLabel color

setLabelColor

3getLabelOffsetLabel offset

setLabelOffset

0getLabelRotationLabel rotation

setLabelRotation

trueisLabelVisibleLabel visible

setLabelVisible

falseisSkippingLabelSkip labels when overlapping

setSkippingLabel

nullgetLabelFormatLabel format

setLabelFormat

Label color
The color used to draw the scale labels is defined by the labelColor property and by default
equals the scale foreground color.

Label offset
Labels are drawn next to the tick marks spaced from a given offset expressed in pixels. This
offset is defined by the labelOffset property and is set to 3 by default.

Label rotation
Steps labels can be rotated from a given rotation angle whose value is expressed in degrees
and clockwise oriented. This angle is defined by the labelRotation property and is set to
0 by default. You can change it by means of the setLabelRotation(double) method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 151

Label visibility
The labels can be visible or hidden depending on the value of the labelVisible property.
By default, the property is set to true.

Skipping labels when overlapping
Depending on the values and on the way labels are formatted, it may occur that steps labels
overlap each other because of the text length. To prevent this, the IlvScale class provides
an automatic mechanism that computes the number of steps to skip between each label so
that they do not overlap. This mechanism is defined by the skippingLabel property and is
disabled by default.

Defining the label format
Steps values are displayed in a scale as a formatted text computed from a value format. This
format is defined by the labelFormat property. By default, the labelFormat property is set
to null and the steps labels are computed from the steps values by the scale steps definition
object invoking its computeLabel(double) method.

To set another value format, use the method:

IlvScale.setLabelFormat(IlvValueFormat)

To change the way labels are computed, override the method:

IlvScale.computeLabel(double)

Example: specifing a customized value format using the API
The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/value-format/src/ScaleLabelsExample.java.

This example illustrates how an IlvValueFormat can be used to handle discrete time series
as categories. Indeed, while an IlvTimeScaleDefinition and the IlvTimeUnit are
particularly well-suited for continuous time series, it is better to use the default steps
definition of a scale when dealing with discrete time series to have a category-like step
numbering and labeling.

For this purpose, you will write the CategoryTimeFormat class, your own IlvValueFormat
implementation. This class will convert a data point index into a corresponding date and
format it accordingly.

To do so, the class needs to know:

♦ For the date conversion:

● The time origin from which an index is converted into a date.

● The time step of the categories

● For the label formatting:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K152

♦ The format (a pattern as defined by the java.text.DateFormat class) used to convert
the date into a string.

For example, with a time origin equals to 01/01/2000 and a time step corresponding to a
year, the index 0 will be converted into 01/01/2000, the index 1 into 01/01/2001, the index
2 into 01/01/2002 and so on, that is:

new date = origin + 'index' time step.

Base on these requirements, the corresponding Java™ class is:

private static class CategoryTimeFormat implements IlvValueFormat
{

private int step;
private Calendar cal = (Calendar)Calendar.getInstance().clone();
private SimpleDateFormat fmt = new SimpleDateFormat();
private Date origin;

/**
* Initialize a new <code>CategoryTimeFormat</code>.
* @param origin The origin of the categories.
* @param step The step of the categories. Should be a valid
* Calendar field value.
* @param unit An optional time unit used to format the label. If

* null, the default format is used.
*/
public CategoryTimeFormat(Date origin, int step, IlvTimeUnit unit)
{

this.origin = origin;
this.step = step;
// set the format pattern, if specified.
if (unit != null)

fmt.applyPattern(unit.getFormatString());
}

/**
* Formats the specified value into a string.
*/
public String formatValue(double value)
{

// compute the date corresponding to the given index.
cal.setTime(origin);
cal.add(step, (int)value);
return fmt.format(cal.getTime());

}
}

A sample application using this class is shown below. The application displays a bar chart
of the average precipitation from 1980 to 1990. The data model represents a discrete time
series. In other words, data is arranged along the x-axis by time categories. That means that
the data series contains y-values only, the x-values of the data set will be computed according
to the data point indices. In order to compute the date corresponding to a category index,
we will use a CategoryTimeFormat instance to compute x-scale labels. Since the series is

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 153

distributed year by year, from 1980 to 1990, we configure the CategoryTimeFormat with a
time origin equals to 1980 and a time step of a year.

Furthermore, we also want to display the y-scale labels as "<step value> cm". To do so, we
set a an IlvValueFormat that append the " cm" string to the string representation of the
step values.

Here is the source code of the application (note that we have removed the comments from
the original source code to ease reading):

import ilog.views.chart.*;
import ilog.views.chart.data.*;
import ilog.views.chart.renderer.IlvSingleBarRenderer;
import javax.swing.JFrame;
import java.text.*;
import java.util.*;

public class ScaleLabelsExample
{
public static void main(String[] args)
{
final double[] yvalues = {30,80,55,91,125,53,61,98,74, 61};
IlvDataSet dataSet = new IlvDefaultDataSet("Series A", yvalues);
IlvChart chart = new IlvChart();
chart.setHeaderText("Average Precipitation");
chart.addRenderer(new IlvSingleBarRenderer(), dataSet);
chart.getYAxis(0).setDataMin(0);

//-- Handle scales labels.
IlvScale xscale = chart.getXScale();
// We set a CategoryTimeFormat on the x-scale to handle the data
// point indices as "time categories".
Calendar cal = Calendar.getInstance();
cal.set(1980, 0, 1);
xscale.setLabelFormat(new CategoryTimeFormat(cal.getTime(),

Calendar.YEAR,
IlvTimeUnit.YEAR));

// We also set a custom IlvValueFormat on the y-scale so that
// labels are displayed as: value + " cm".
IlvScale yscale = chart.getYScale(0);
yscale.setLabelFormat(new IlvValueFormat() {

private NumberFormat numformat = NumberFormat.getInstance();
public String formatValue(double value) {

return numformat.format(value) + " cm";
}

});
// the gui
JFrame frame = new JFrame("Scales Labelling");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(chart);
frame.setSize(400,300);
frame.setVisible(true);

}

You can see the result in the following figure:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K154

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 155

Scale Annotations

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/scale-annotation/src/ScaleAnnotation.java.

The IlvScale class supports a special kind of decoration that can be used to indicate a data
value on a scale as an annotation.

Such annotation objects are instances of the IlvScaleAnnotation class. This class allows
you to draw a string representation of a data value over the scale labels. The string may be
either a specific label explicitly set or the data value formatted into a string.

Here are some examples:

♦ To draw the value along the x-axis of a given data point as a formatted string, use the
following code:

IlvAnnotation annotation = new IlvScaleAnnotation(xValue);
chart.getXScale().addAnnotation(annotation);

♦ To display a specific text instead of the data value, the code would be:

annotation.setText("Release date");

♦ To remove the scale annotation, use the following method:

chart.getXScale().removeAnnotation(annotation);

The text annotation is drawn by a dedicated IlvScaleAnnotation attribute, which is an
instance of IlvLabelRenderer. This label renderer object handles all the properties related
to the label drawing, like border, text color, font, and so on, and can be retrieved by invoking
the getLabelRenderer() method.

For example, to draw the annotation as a white opaque bordered label, use the following
code:

annotation.getLabelRenderer().setBorder(BorderFactory.createLineBorder(Color.
bl
ack));
annotation.getLabelRenderer().setOpaque(true);
annotation.getLabelRenderer().setBackground(Color.white);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K156

Scales Annotations

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 157

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K158

Decorations

Explains how to draw and write decorations.

In this section

Drawing decorations
Explains the concept of drawing order.

Predefined decorations
Describes the predefined decoration classes.

Writing a new decoration
Explains how to create a new decoration by subclassing the abstract class IlvChartDecoration
to provide an implementation to the abstract draw method.

© Copyright IBM Corp. 1987, 2009 159

Drawing decorations

Decorations are drawn according to a drawing order. The drawing order lets you control
the position of a given decoration in the drawing queue of a chart. This drawing order is
used to define the position of the decoration relative to:

♦ Other chart decorations.

♦ Graphical representations of the chart data.

A chart handles decorations as an ordered list according to the decorations drawing order:
decorations with the lowest drawing order are drawn first, decorations with the highest
drawing order are drawn last.

The drawing order also defines whether a decoration should be drawn above or below the
graphical representations of the chart data: decorations with a negative drawing order are
drawn below the chart representations, while decorations with a zero or positive drawing
order are drawn above the chart representations.

The IlvChart class defines two drawing order values that are used as default values for the
drawOrder properties in the JViews Charts library:

♦ The IlvChart.DRAW_ABOVE value defines the first drawing order above the data graphical
representations.

♦ The IlvChart.DRAW_BELOW value defines the first drawing order below the data graphical
representations.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K160

Predefined decorations

The following types of decorations are already provided by the JViews Charts library:

♦ IlvDataIndicator: an indicator for a particular value or a range of values. It is usually
represented by a horizontal or vertical line or a rectangle, with an optional label.

IlvThresholdIndicator: an indicator for a particular value or a range of values, together
with a display of the value at the scale.

♦ IlvLabelDecoration: a simple label.

♦ IlvImageDecoration: an image or icon.

♦ IlvGraphicDecoration: a graphic object as defined in the IBM® ILOG® JViews
Framework. This class is a wrapper around a graphic object of type IlvGraphic. See the
reference manual for information about the predefined subclasses of IlvGraphic.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 161

Writing a new decoration

The complete source code can be found in <installdir>/jviews-charts86/samples/stock/
src/stock/Stripes.java.

The draw method is automatically called by an IlvChart to draw the decoration (provided
that the decoration has been added to a chart). Depending on its drawing order property,
a decoration is drawn either before or after the graphical representation of the chart.

Write a decoration that displays stripes regularly spaced, and aligned on the graduations
of an associated scale. The scale type determines the stripes direction (horizontal stripes
for an ordinate scale and vertical stripes for an abscissa scale). The stripes width should be
equal to the stripes spacing and equal to the width of one major scale graduation.
Furthermore, the stripes should be painted using a customizable fill style and the result
should be independent of the chart projector.

1. Extend the IlvChartDecoration class.

public class Stripes extends IlvChartDecoration
{
...

}

2. Define two data members: a reference on the associated scale and a rendering style.

private IlvStyle fillStyle;
IlvScale scale;

3. Initialize the scale at initialization time and pass it as a parameter to the constructor.

public Stripes(IlvScale scale, Paint fillPaint)
{

this.scale = scale;
setFillPaint(fillPaint);

}

The scale associated with the decoration should not change over the life of the instance.

4. Provide set and get accessors on the fill rendering style in addition to the constructor
initialization. You want to allow the rendering style to be changed at any time.

public void setFillPaint(Paint paint)
{

fillStyle = getFillStyle().setFillPaint(paint);
}

public final Paint getFillPaint()
{

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K162

return getFillStyle().getFillPaint();
}

Define the private getFillStyle() method:

private IlvStyle getFillStyle()
{

if (fillStyle == null)
fillStyle = new IlvStyle(Color.lightGray);

return fillStyle;
}

The IlvStyle class is an immutable class. Changing an attribute of an
IlvStyle instance actually creates a copy of this instance with the

Note:

specified attribute. This choice has been made to prevent unexpected
side-effects when changing attributes of a shared IlvStyle instance.

Now everything is ready to draw the decoration.

The stripes should be aligned on the scale graduations, have a width equal to one
major step of the scale graduation, and spaced from the same value. From these
properties, you see that the position on the scale of a stripe depends on the position
of the previous one, and that can be expressed as an interval between two values.

5. To compute the data interval covered by a stripe, use the following method to return
the interval next to the IlvDataInterval specified as a parameter:

protected IlvDataInterval nextStripe(IlvDataInterval itv)
{

IlvStepsDefinition def = scale.getStepsDefinition();
if (itv == null) {

itv = getAxis().getVisibleRange();
double v = def.previousStep(itv.getMin());
itv.setMin(def.incrementStep(v));
itv.setMax(def.incrementStep(itv.getMin()));

} else {
itv.setMax(def.incrementStep(def.incrementStep(itv.getMax())));
itv.setMin(def.incrementStep(def.incrementStep(itv.getMin())));

}
return itv;

}

Scale graduations are computed by a dedicated object, instance of the
IlvStepsDefinition class. Since we need to compute the stripe position according
to these graduations, we first get the steps definition of the scale, and then we compute
the interval corresponding to the next stripe depending on the previous interval:

♦ if it is the first stripe, the interval will cover an area equal to [visibleMin+delta,
visibleMin+2*delta], where delta is one major step.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 163

♦ if the stripe comes after a previous stripe, it should cover the area between
[previousMin+2*delta, previousMax+2*delta], where delta is one major step.

Now that we know the data interval corresponding to a given stripe, we can write the
draw method. Remember, we want to be independent of the chart projector: our
decoration should be used either with a Cartesian projector or a polar projector. Since
we do not want to write projector-dependent code, we use the getShape(ilog.views.
chart.IlvDataWindow, java.awt.Rectangle, ilog.views.chart.
IlvCoordinateSystem)method that returns a shape (in the screen coordinate system)
corresponding to a specified data window. This shape contains all the data points of
the data window projected by the current chart projector.

6. Draw the decoration.

The implementation of the draw method is as follows:

public void draw(Graphics g)
{

IlvChart chart = getChart();
if (chart == null)

return;

IlvDataInterval itv = nextStripe(null);
IlvDataWindow w = null;
if (getAxis().getType() == IlvAxis.X_AXIS) {

w = new IlvDataWindow(itv, chart.getYAxis(0).getVisibleRange());

} else {
w = new IlvDataWindow(chart.getXAxis().getVisibleRange(), itv);

}

IlvChartProjector prj = getChart().getProjector();
IlvCoordinateSystem coordSys = getChart().getCoordinateSystem(0);
Rectangle plotRect = getChart().getChartArea().getPlotRect

();

IlvStyle style = getFillStyle();
while (itv.getMin() < getAxis().getVisibleMax()) {

style.fill(g, prj.getShape(w, plotRect, coordSys));
if (getAxis().getType() == IlvAxis.X_AXIS)

w.xRange = nextStripe(itv);
else

w.yRange = nextStripe(itv);
}

}

Depending on the scale type (x- or y-scale), we initialize the data window corresponding to
a stripe with the visible range of the corresponding axis and iterate on the stripes until the
maximum visible range of the associated axis is reached.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K164

Displaying and Writing a Grid

Describes how to display and write a grid.

In this section

What is a grid
Describes the grid and the elements it is composed of.

General Properties
Describes the general properties of a grid.

Writing a new grid
Shows how to write a customized grid and how to use it in a chart.

© Copyright IBM Corp. 1987, 2009 165

What is a grid

A grid is a graphical indicator of data values. A grid is attached to an axis and is composed
of:

♦ Major gridlines, with an associated rendering style.

♦ Minor gridlines, with an associated rendering style.

A grid is displayed within a chart by a dedicated object, defined by the IlvGrid class.

The purpose of the IlvGrid class is to handle the graphical representation of a grid. The
default behavior of the IlvGrid class automatically handles the grid graphical representation
according to the type of chart. For example, a Cartesian chart has a rectangular grid for
both the x- and y-axis, while a polar chart has a circular x-grid. It also uses by default the
major and minor steps of a scale to draw the major and minor ticks of the scale. By default,
grids are automatically initialized when a chart is created.

You can retrieve a grid from its axis using the methods getXGrid() and getYGrid(int).

You can change the grid of an axis using themethods setXGrid(ilog.views.chart.IlvGrid)
and setYGrid(int, ilog.views.chart.IlvGrid).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K166

General Properties

The following table shows the properties defined for displaying a grid.

Default ValueMethodsProperty

trueisVisibleGrid visibility

setVisible

trueisMajorLineVisibleMajor lines visibility

setMajorLineVisible

falseisMinorLineVisibleMinor lines visibility

setMinorLineVisible

IlvChart.DRAW_BELOWgetDrawOrderDrawing order relative to the drawing of the
graphical representation of data

setDrawOrder

defaultGridColorgetMajorStrokeMajor lines rendering style

setMajorStroke

getMajorPaint

setMajorPaint

defaultGridColorgetMinorStrokeMinor lines rendering style

setMinorStroke

getMinorPaint

setMinorPaint

Color.lightGraysetDefaultGridColorDefault gridlines color

getDefaultGridColor

Grid visibility
The visible property defines the global grid visibility: a grid is visible when either minor
or major gridlines are visible. The visibility of the major and minor gridlines is described by
the majorLineVisible and minorLineVisible properties, respectively. By default, only
major gridlines are visible.

Drawing order
As for all the decorations, you can control the drawing order of the grids with respect to the
charts representation and to other decorations. This drawing order is defined by the
drawOrder property. For more information on ordering decorations see Decorations.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 167

Default gridline color
The gridlines are drawn by default according to the value of the defaultGridColor property.
This is a property of the IlvGrid class (static) and can be easily changed to set the default
gridlines rendering styles.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K168

Writing a new grid

The complete source code can be found in <installdir>/jviews-charts86/samples/
realtime/src/realtime/SimpleGrid.java.

You can create a new type of grid by subclassing the IlvGrid class and overriding one or
both of the draw methods.

A grid draws its gridlines according to the gridline values. These values are used to determine
the anchor point of a gridline on the associated axis and are expressed in the data coordinate
system.

By default, the draw(java.awt.Graphics) method computes the gridline values to match
the step of the scale of the associated axis and invokes the draw(java.awt.Graphics, ilog.
views.chart.util.IlvDoubleArray, boolean) method with these values as parameter to
perform the drawing operations.

Change the way the gridline values are computed by default to have gridlines equally spaced
from a specified delta, and no longer snapped on the major ticks of the scale graduation.

1. Extend the IlvGrid class.

class SimpleGrid extends IlvGrid

The spacing between the two gridlines is specified at construction time as a constructor
parameter and expressed in the data coordinate system by a double value.

The grid constructor is:

double spacing;
public SimpleGrid(Paint majPaint, double spacing)
{

super(majPaint);
this.spacing = spacing;

}

2. Override the draw(Graphics) method.

Since you want to change the way the gridline values are computed, not the way they
are drawn, you only need to override the draw method to change its default
implementation.

This method computes the gridline values according to the current visible range, and
iterates over it with a step equal to the specified spacing:

public void draw(Graphics g)
{

if (getChart() == null || spacing <= 0)
return;

IlvDataInterval itv = getAxis().getVisibleRange();
IlvDoubleArray gridlines = new IlvDoubleArray(16);
double val = Math.ceil(itv.getMin()/spacing)*spacing;
while (itv.isInside(val)) {

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 169

gridlines.add(val);
val += spacing;

}
if (gridlines.size() > 0)

draw(g, gridlines, true);
}

The implementation is quite simple: starting from the visible range minimum bound,
you iterate on the gridline values by adding the expected spacing to the previous value
until the visible range maximum bound is reached. Then, if at least one gridline value
has been computed, you call the draw(Graphics, IlvDoubleArray, boolean)method
to draw the grid with your own values.

Another example of a custom IlvGrid subclass can be found in <installdir>/
jviews-charts86/samples/monitor/src/monitor/MemoryMonitor.java. In this example,
the IlvGrid class is extended in order to display a fixed number of gridlines. You can find
the source code of this class in the FixedGrid.java file.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K170

Displaying Data Indicator

Introduces the data indicator and its general properties.

In this section

Data Indicator
Explains what a data indicator is.

General Properties
Describes the general properties of the IlvDataIndicator class.

© Copyright IBM Corp. 1987, 2009 171

Data Indicator

A data indicator is a graphical indicator of a data value. The data value to represent can be
of different types:

♦ a value along the x-axis,

♦ a value along the y-axis,

♦ a data interval along the x-axis,

♦ a data interval along the y-axis,

♦ a data window.

The graphical representation of a data indicator is composed of:

♦ A delimiter that indicates the data area (a simple line for an x- or y-value or a more
complex shape that represents a data interval or a data window that depends on the
projection).

♦ An optional label.

Data indicators are instances of the IlvDataIndicator class and are handled directly by a
chart. The IlvDataIndicator class is a subclass of IlvChartDecoration.

If you want to add a data indicator to a chart, use the method addDecoration(ilog.views.
chart.IlvChartDecoration).

If you want to remove a data indicator from a chart, use the method removeDecoration
(ilog.views.chart.IlvChartDecoration).

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/data-indicator/src/DataIndicator.java.

// A data indictor that highlights the range [5,13] along the x-axis.

IlvDataIndicator indic = new IlvDataIndicator(-1, new
IlvDataInterval(5,13), null);

// set the rendering style

indic.setStyle(INDICATOR_STYLE);

chart.addDecoration(indic);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K172

// A data indicator that indicates the value 23 as a threshold line

// along the y-axis. It displays the 'Threshold' value.

indic = new IlvDataIndicator(0, 23, "Threshold");

indic.setStyle(INDICATOR_STYLE);

// change its draw order so that it is drawn ABOVE renderers

indic.setDrawOrder(IlvChart.DRAW_ABOVE);

// customizer its label renderer

indic.getLabelRenderer().setOpaque(true);

indic.getLabelRenderer().setBorder(BorderFactory.createLineBorder(CHART_FOREGRO
UND_COLOR));

indic.getLabelRenderer().setBackground(INDIC_FILL_COLOR);

chart.addDecoration(indic);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 173

General Properties

The following table shows the properties of the IlvDataIndicator class.

Default valueMethodsProperty

getTypeIndicator type

setValueData value for which the data indicator is drawn.This property
is used when the indicator type is either X_VALUE or
Y_VALUE. getValue

setRangeData range for which the data indicator is drawn.This property
is used when the indicator type is either X_RANGE or
Y_RANGE. getRange

setDataWindowData window for which the data indicator is drawn. This
property is used when the indicator type is WINDOW.

getDataWindow

nullsetTextText displayed over the delimiter.

getText

chart area plot
style

setStyle

getStyle

Style used to draw the data indicator.

IlvChart.
DRAW_BELOW

setDrawOrder

getDrawOrder

Drawing order relative to the drawing of the graphical
representation of data and to the other decorations.

truesetVisibleVisible

isVisible

Indicator type
The indicator type property is initialized at construction time depending on the constructor
that is used. Setting the type does not reset the value: the last value used for the new type,
if any, is used.

Data represented by the indicator
The data represented by the indicator can be changed dynamically using the corresponding
setValue(double)/ setRange(ilog.views.chart.IlvDataInterval)/ setDataWindow(ilog.
views.chart.IlvDataWindow) methods. If the data type to represent is different from the
current one when invoking one of these methods, the indicator type is automatically updated
according to the type of the data value. Furthermore, when you invoke one of these methods,
you automatically update the chart drawing area.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K174

Optional label
An optional label can be associated with a data indicator and drawn over the delimiter. The
text to display can be set either at construction time or dynamically using the setText(java.
lang.String) method.

By default, the location of the label is centered vertically or/and horizontally with respect
to the data value/range/window. You can change this behavior by overriding the
computeLabelLocation(ilog.views.chart.IlvDataWindow) method.

Drawing order
As for all the decorations, you can control the drawing order of the indicator with respect
to the charts representation and to the other decorations. This drawing order is described
by the drawOrder property. See Decorations for more information on ordering decorations.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 175

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K176

Displaying an image

Describes how to display an image by using the IlvImageDecoration class.

In this section

The IlvImageDecoration class
Describes the IlvImageDecoration and its general properties.

© Copyright IBM Corp. 1987, 2009 177

The IlvImageDecoration class

The IlvImageDecoration is a predefined decoration class that displays an image within the
plotting area of a chart.

An image can be drawn according to three different modes:

♦ TILED: The image is drawn as a replicated pattern in the plot area.

♦ SCALED: The image is scaled so that it fills the plot area.

♦ ANCHORED: The image is drawn at a fixed position.

The predefined position for the ANCHORED mode is defined as one of the javax.swing.
Swing Constants compass directions.

They are the following:

♦ CENTER

♦ NORTH

♦ NORTH_EAST

♦ EAST

♦ SOUTH_EAST

♦ SOUTH

♦ SOUTH_WEST

♦ WEST

♦ NORTH_WEST

Here is an example of code that creates and adds a SCALED image decoration to a chart:

IlvChart chart = ...;
try {

java.net.URL url = new File("logo.gif").toURL();
// The last parameter is taken into account only in ANCHORED mode.
IlvImageDecoration deco = new IlvImageDecoration

(url,IlvImageDecoration.SCALED, 0);
chart.addDecoration(deco);

} catch (java.net.MalformedURLException e) {
e.printStackTrace();

}

To preserve the image during serialization, you must use the IlvImageDecoration
constructor that takes a java.net.URL as the location of the image. Other constructors
do not preserve the image.

Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K178

The following table shows the properties of the IlvImageDecoration class.

Default ValueMethodsProperty

getModeDrawing mode.

SwingConstants.CENTERgetAnchorImage location.

setAnchor

IlvChart.DRAW_BELOWgetDrawOrderDrawing order relative to the drawing of the graphical
representations of data and to other decorations.

setDrawOrder

trueisVisibleVisibility.

setVisible

Drawing mode
The drawing mode property is initialized at construction time. It must be one of the TILED,
SCALED or ANCHORED IlvImageDecoration constants. If the latter is used, a predefined
position must also be specified by means of the anchor property.

Image anchor
When using the ANCHORED drawing mode, the image location within the plot area must
be specified either at construction time or by means of the setAnchor(int) method. By
default, an anchored image is drawn at the center of the plotting area.

Drawing order
You can control the drawing order of the image decoration with respect to the charts
representation and to other decorations. This drawing order is defined by the drawOrder
property. See Decorations for more information on ordering decorations.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 179

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K180

Interacting With Charts

Provides detailed information on the chart interactors and explains how to handle them.

In this section

Chart Interactors
Describes the interactors defined in the JViews Charts library. For each chart interactor,
you will find a table that includes the registered name of the interactor, the default key or
button used for the interaction, and the action that is performed when using the interactor.

Setting an Interactor on an IlvChart
Explains how to set an intercator on an IlvChart.

Handling interactions
Explains how events are dispatched to the interactors once they are received by the chart
area, and how events are handled at the interactor level.

Writing your own interactor
Describes how to write your own interactor.

© Copyright IBM Corp. 1987, 2009 181

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K182

Chart Interactors

Describes the interactors defined in the JViews Charts library. For each chart interactor,
you will find a table that includes the registered name of the interactor, the default key or
button used for the interaction, and the action that is performed when using the interactor.

In this section

Introduction to the chart interactors
Introduces the chart interactors with a brief description of each.

Zoom interactor
Describes the zoom interactor.

X-scroll interactor
Describes the x-scroll interactor.

Y-scroll interactor
Describes the y-scroll interactor.

Pan interactor
Describes the pan interactor.

Action interactor
Describes the action interactor.

Local pan interactor
Describes the local pan interactor.

Local reshape interactor
Describes the local reshape interactor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 183

Local zoom interactor
Describes the local zoom interactor.

Edit-point interactor
Describes the edit-point interactor.

Highlight-point interactor
Describes the highlight-point interactor.

Information-view interactor
Describes the information-view interactor.

Pick-data-points interactor
Describes the pick-data-points interactor.

Treemap focus interactor
Describes the treemap focus interactor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K184

Introduction to the chart interactors

Each chart interactor (subclasses of IlvChartInteractor) implements a given type of
interactive operation: scrolling, zooming, editing, or highlighting data points.

Thanks to this clean separation, chart interactors are lightweight and well-defined
event-handling entities that can be easily customized.

The base class used to define the behavior of a chart in response to a given action by the
user is the IlvChartInteractor class.

The JViews Charts package provides a comprehensive set of predefined interactors.

Some of these interactor classes inherit directly from the IlvChartInteractor class:

♦ IlvChartZoomInteractor allows the user to zoom in and zoom out on the data display
area.

♦ IlvChartXScrollInteractor allows the user to scroll along the x-axis the displayed data
by using the arrow keys.

♦ IlvChartYScrollInteractor allows the user to scroll along the y-axis the displayed data
by using the arrow keys.

♦ IlvChartPanInteractor allows the user to scroll the displayed data by using the mouse.

♦ IlvChartActionInteractor allows the user to execute an IlvChartAction on a specified
keyboard event.

♦ IlvChartLocalPanInteractor allows the user to scroll the zoomed data window of an
IlvLocalZoomAxisTransformer.

♦ IlvChartLocalReshapeInteractor allows the user to reshape the zoomed data window
of an IlvLocalZoomAxisTransformer.

♦ IlvChartLocalZoomInteractor allows the user to increase or decrease the zoom factor
of an IlvLocalZoomAxisTransformer.

Other subclasses inherit from the IlvChartDataInteractor class, a subclass of
IlvChartInteractor that specifically deals with interactions on the data points of the chart:

♦ IlvChartEditPointInteractor allows the user to edit a data point.

♦ IlvChartHighlightInteractor triggers an interaction event whenever the mouse moves
over a data point in the data display area.

♦ IlvChartInfoViewInteractor inherits from the IlvChartHighlightInteractor class
and displays information about a data point whenever the mouse moves over the data
point in the data display area.

♦ IlvChartPickInteractor triggers an interaction event whenever a data point has been
picked in the data display area.

♦ IlvTreemapChartFocusInteractor triggers an interaction event whenever a data point
has been picked in the data display area.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 185

Predefined Interactors Hierarchy

The precision that is currently used to find the data point corresponding to a given
screen point is computed by an IlvChartDataPicker object. By default, all

Note:

IlvChartDataInteractor subclasses use an IlvDefaultChartDataPicker
instance that uses a Euclidian distance between two points. The way the distance is
computed can be changed by overriding the computeDistance(double, double,
double, double) method. To use your own IlvChartDataPicker class in your
interactors, override the createDataPicker(java.awt.event.MouseEvent)
method so that it returns an instance of your own class.

All default interactors have an associated shortcut name that allows the instantiation of the
interactor class by its name. This mechanism is used by the JavaBeans to instantiate the
interactor chosen by the user in the property editor of the interactors.

The following interactors are defined in the JViews Charts library:

♦ Zoom interactor

♦ X-scroll interactor

♦ Y-scroll interactor

♦ Pan interactor

♦ Action interactor

♦ Local pan interactor

♦ Local reshape interactor

♦ Local zoom interactor

♦ Edit-point interactor

♦ Highlight-point interactor

♦ Information-view interactor

♦ Pick-data-points interactor

♦ Treemap focus interactor

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K186

Zoom interactor

A zoom interactor has the following basic characteristics:

IlvChartZoomInteractorClass

“Zoom”Registered name

Left mouse button to zoom in, Shift + Left mouse button to zoom out.Default Key or Button

Lets the user trigger a zoom-in or a zoom-out command by dragging a box
within the data display area of a chart.This box indicates the area to be zoomed
in or zoomed out.

Action

The zoom-in interaction is started by pressing the left mouse button by default. However,
this button can be changed to any other button or key-button combination by passing the
corresponding event mask as a parameter to the constructor of the zoom interactor, or by
means of the setZoomInEventMask(int) method.

The zoom-out interaction is started by pressing the Shift Key + left mouse button by default.
However, this combination can be changed to any other button or key-button combinations
by passing the corresponding event mask as a parameter to the constructor of the zoom
interactor, or by means of the setZoomOutEventMask(int) method.

The zoom-out operation is performed by starting the interaction and by dragging a box
within a chart area. This box indicates the projection area of the current visible area, so
that what you currently see is projected within this rectangle.

You can control the zoom-out level with the size of the rectangle, as for the zoom in.
For example, drawing a very small rectangle produces a big zoom out. If you have

Note:

dragged a rectangle to zoom in, dragging the same rectangle in zoom-out mode returns
to the previous visible data window.

Each zoom-in/zoom-out operation can be broken down into several steps to render a smooth
transition between the original and the final visual state of the displayed data. When a zoom
interactor instance is created, the default number of steps is set to 10. You can specify the
number of steps by means of the setAnimationStep(int) method.

The zoom action can be performed either on a specific or both axes of a coordinate system.
When an interactor instance is created, zooming along the y-axis is disabled by default. You
change this behavior by means of the setYZoomAllowed(boolean) and setXZoomAllowed
(boolean) methods.

The cursors used during zoom-in and zoom-out operations can be changed by overriding
the getZoomInCursor() and getZoomOutCursor() methods to return other cursors.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 187

X-scroll interactor

An x-scroll interactor has the following basic characteristics:

IlvChartXScrollInteractorClass

Inherits from IlvChartScrollInteractor

“XScroll”Registered name

Left arrow key to scroll in the negative direction, right arrow key to scroll in the
positive direction.

Default Key or Button

Lets the user scroll through the displayed data along the x-axis.Action

The default keys used to scroll are the left arrow key for negative direction and right arrow
key for positive direction. However, these keys can be changed by passing other key codes
as parameters to the constructor of the x-scroll interactor, or by means of the
setPositiveDirectionKey(int) and setNegativeDirectionKey(int) methods.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K188

Y-scroll interactor

An y-scroll interactor has the following basic characteristics:

IlvChartYScrollInteractorClass

Inherits from IlvChartScrollInteractor

“YScroll”Registered name

Up arrow key to scroll in the positive direction, down arrow key to scroll in the
negative direction.

Default Key or Button

Lets the user scroll through the displayed data along the y-axis.Action

The default keys used to scroll are the up arrow key for positive direction and bottom arrow
key for negative direction. However, these keys can be changed by passing other key codes
as parameters to the constructor of the y-scroll interactor, or by means of the
IlvChartScrollInteractor.setPositiveDirectionKey and IlvChartScrollInteractor.
setNegativeDirectionKey methods.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 189

Pan interactor

A pan interactor has the following basic characteristics:

IlvChartPanInteractorClass

“Pan”Registered name

Right mouse button.Default Key or Button

Lets the user scroll through the displayed data by dragging the mouse in any
direction.

Action

The mouse button used to scroll through the displayed data is the right mouse button by
default. However, this button can be changed to any other button or key-button combination
by passing the corresponding event mask as a parameter to the constructor of the pan
interactor or by means of the setEventMask(int) method.

The pan action can be performed either on a specific or both axes of a coordinate system.
When an interactor instance is created, the panning along the y-axis is disabled by default.
You can change this behavior bymeans of the setYPanAllowed(boolean) and setXPanAllowed
(boolean) methods.

By default, the cursor used when the mouse is dragged is the predefined Cursor.
MOVE_CURSOR. However, to return another cursor you can override the getCursor()method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K190

Action interactor

An action interactor has the following basic characteristics:

IlvChartActionInteractorClass

“ChartAction”Registered name

‘Z’ key to zoom in, ‘U’ key to zoom out, ‘F’ key to fit.Default Key or Button

Lets the user execute an IlvChartAction when a specific key is pressed.Action

The action to trigger when a key has been pressed is determined by means of the getAction
(java.awt.event.KeyEvent)method. You can change the default association by overriding
this method to return your own actions.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 191

Local pan interactor

A local pan interactor has the following basic characteristics:

IlvChartLocalPanInteractorClass

Inherits from IlvChartPanInteractor

“LocalPan”Registered name

Right mouse button.Default Key or Button

Lets the user scroll the zoomed data window of an
IlvLocalZoomAxisTransformer by dragging the mouse in any direction.The
interaction starts when the user clicks within the zoomed data window.

Action

The mouse button used to scroll through the displayed data is the right mouse button by
default. However, this button can be changed to any other button or key-button combination
by passing the corresponding event mask as a parameter to the constructor of the pan
interactor, or by means of the setEventMask(int) method.

The pan action can be performed either on a specific or both axes of a coordinate system.
When an interactor instance is created, the panning along the y-axis is disabled by default.
You can change this behavior bymeans of the setYPanAllowed(boolean) and setXPanAllowed
(boolean) methods.

By default, the cursor used when the mouse is dragged is the predefined Cursor.
MOVE_CURSOR. However, to return another cursor you can override the getCursor()method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K192

Local reshape interactor

A local reshape interactor has the following characteristics:

IlvChartLocalReshapeInteractorClass

“LocalReshape”Registered name

Left mouse button.Default Key or Button

Lets the user reshape the zoomed data window of an
IlvLocalZoomAxisTransformer by dragging the zoomed area bounds
when the mouse moves over one of the zoomed data window bounds.

Action

The mouse button used to reshape the data window is the left mouse button by default.
However, this button can be changed to any other button or key-button combination, by
passing the corresponding event mask as a parameter to the constructor of the pan interactor
or by means of the setEventMask(int) method.

By default, the cursor used when the mouse moves over a zoomed data window bound is
the predefined Cursor.HAND_CURSOR. However, to return another cursor you can override
the getCursor method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 193

Local zoom interactor

A local zoom interactor has the following characteristics:

IlvChartLocalZoomInteractorClass

Inherits from IlvChartZoomInteractor

“LocalZoom”Registered name

Left mouse button.Default Key or Button

Lets the user change the zoom factor of an IlvLocalZoomAxisTransformer
by dragging a box within the zoomed data window of the transformer. This box
indicates the area to be zoomed in or zoomed out.

Action

The zoom-in interaction is started by pressing the left mouse button by default. However,
this button can be to changed to any other button or key-button combination, by passing
the corresponding event mask as a parameter to the constructor of the local zoom interactor
or by means of the setZoomInEventMask(int) method.

The zoom-out interaction is started by pressing the Shift Key + left mouse button by default.
However, this combination can be changed to any other button or key-button combinations
by passing the corresponding event mask as a parameter to the constructor of the zoom
interactor or by means of the setZoomOutEventMask(int) method.

Each zoom-in/zoom-out operation can be broken down into several steps to render a smooth
transition between the original and the final visual state of the displayed data. When a zoom
interactor instance is created, the default number of steps is set to 10. You can specify the
number of steps by means of the setAnimationStep(int) method.

The cursors used during zoom-in and zoom-out operations can be changed by overriding
the getZoomInCursor() and getZoomOutCursor() methods to return another cursor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K194

Edit-point interactor

An edit-point interactor allows the user to edit a data point. It has the following basic
characteristics:

IlvChartEditPointInteractorClass

Inherits from IlvChartDataInteractor

“EditPoint”Registered name

Left mouse button.Default Key or Button

Lets the user modify a data point by dragging its graphical representation within
the data display area.

Action

The mouse button used to perform the drag operation is the left mouse button by default.
However, this button can be changed by passing another button as a parameter to the
constructor of the edit point interactor, or by means of the setEventMask(int) method.

You can use two modes for the drag operation:

♦ With the opaque mode, the data point is modified each time the mouse is dragged.

♦ With the ghost mode, the data point is modified only when the mouse button is released.

When a drag-point interactor is created, the default mode that is used for the drag operation
is the ghost mode. You can specify that the opaque mode should be used by calling the
setOpaqueEdit(boolean) method with true as parameter.

The data point modification can be performed either on a specific or both axes of a coordinate
system.When an interactor instance is created, editing along the y-axis is disabled by default.
You can change this behavior by means of the setYEditAllowed(boolean) and
setXEditAllowed(boolean) methods with true as parameter.

During the interaction, the value of the data point that is currently edited can be constrained
within some specified rules bymeans of the validate(ilog.views.chart.IlvDoublePoints,
ilog.views.chart.IlvDisplayPoint) method. This method is called each time the mouse
is dragged to validate the new data point. For example, the following code shows you how
to constrain a data point to have rounded y-values.

protected void validate(IlvDoublePoints pt,IlvDisplayPoint dpt)
{
pt.setY(0, Math.round(pt.getY(0)));

}

An example of IlvChartEditPointInteractor.validate override can be found in
<installdir>/jviews-charts86/samples/radar/src/radar/RadarDemo.java. In this
example, the EditPointInteractor class extends IlvChartEditPointInteractor to provide
the following features:

♦ Display the value of the point being edited next to the mouse cursor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 195

♦ Ensures that the edited points take values that are a multiple of a given precision, by
overriding the validate method.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K196

Highlight-point interactor

A highlight-point interactor triggers an interaction event whenever the mouse moves over
a data point in the data display area. It has the following basic characteristics:

IlvChartHighlightInteractorClass

Inherits from IlvChartDataInteractor

“Highlight”Registered name

None.Default Key or Button

Triggers an interaction event whenever the mouse moves over a data point in
the data display area.

Action

To be notified whenever a data point has been highlighted, you have to add an interaction
listener on the highlight interactor by means of the addChartInteractionListener(ilog.
views.chart.event.ChartInteractionListener) method. Whenever the mouse moves
over a data point, the interactionPerformed(ilog.views.chart.event.
ChartInteractionEvent) method of the listener is called with a
ChartHighlightInteractionEvent as parameter.

The interactionPerformed(ilog.views.chart.event.ChartInteractionEvent) method
of the listener receives an event, whose getDisplayPoint() method returns the following:

♦ for all series-based chart types: the point with which it interacts, as an IlvDisplayPoint
instance,

♦ for a treemap: the rectangle with which it interacts, as an IlvDisplayObjectArea instance.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 197

Information-view interactor

An information-view interactor displays information about a data point whenever the user
moves the mouse over the data point. It has the following basic characteristics:

IlvChartInfoViewInteractorClass

Inherits from IlvChartHighlightInteractor

“InfoView”Registered name

None.Default Key or Button

Displays information about a data point whenever the user moves the mouse
over the data point in the data display area.

Action

The information is displayed in a JToolTip instance by default. However, you can change
the type of the tooltip by overriding the createToolTip() method to return an instance of
your own JToolTip subclass.

The text that is displayed by default is the name of the data set to which the data point
belongs and the abscissa and ordinate values of the data point. This text can be redefined
in a subclass by overriding the getInfoText(ilog.views.chart.IlvDisplayPoint)method.

By default, the text is composed of a description part and a value part. These parts can be
customized individually by overriding the getInfoTextDescriptionPart(ilog.views.chart.
IlvDisplayPoint) and getInfoTextValuePart(ilog.views.chart.IlvDisplayPoint)
methods. The argument of these methods is an IlvDisplayPoint. When used within a
treemap, the actual argument will be of type IlvDisplayObjectArea.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K198

Pick-data-points interactor

A pick-data-points interactor triggers an event when the user selects data points in the data
display area. It has the following basic characteristics:

IlvChartPickInteractorClass

Inherits from IlvChartDataInteractor

“Pick”Registered name

Left mouse button.Default Key or Button

Triggers an event when the user selects data by clicking a projected point in
the data display area.

Action

The mouse button used to perform the selection is the left mouse button by default. However,
this button can be changed to any other button or key-button combination by passing the
corresponding event mask as a parameter to the constructor of the selection interactor, or
by means of the setEventMask(int) method.

The mouse event that fires the interaction event is MOUSE_RELEASED by default. You can
change this event by overriding the isPickingEvent(java.awt.event.MouseEvent)method
to return true when the interaction event should be fired.

To be notified whenever a data point, series or object has been picked, you have to add an
interaction listener on the interactor bymeans of the addChartInteractionListenermethod.
Whenever the user clicks on or near a data point or data rectangle, the
interactionPerformed method of the listener is called with a ChartInteractionEvent as
parameter. The getDisplayPoint() method returns the following:

♦ for all series-based chart types: the point that has been clicked, as an IlvDisplayPoint
instance,

♦ for a treemap: the rectangle that has been clicked, as an IlvDisplayObjectArea instance.

Example:

// Create the interactor.
IlvChartInteractor interactor = new IlvChartPickInteractor();
// Determine what to do when the user performs an action with the
// interactor.
interactor.addChartInteractionListener(
new ChartInteractionListener() {
public void interactionPerformed(ChartInteractionEvent event) {
IlvDisplayPoint point = event.getDisplayPoint();
// In the case of a treemap:
// IlvDisplayObjectArea area = (IlvDisplayObjectArea)point;
...

}
});

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 199

// Activate the interactor.
chart.addInteractor(interactor);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K200

Treemap focus interactor

A treemap chart has the notion of focus. At any time, the treemap displays a subtree of the
entire tree of model objects. The root of that branch is called the current focus of the treemap.
The focus object is displayed as a rectangle that covers almost the entire surface of the chart
area.

The treemap focus interactor allows the user to change the focus. It provides a sort of
drill-down. It has the following basic characteristics:

IlvTreemapChartFocusInteractor inherits from
IlvChartDataInteractor

Class

“Focus”Registered name

Left mouse button double-click.Default Key or Button

Changes the treemap focus to the object selected by the user.Action

By default, to change the focus you need to double-click with the left mouse button. Different
mouse button actions can be obtained by choosing the appropriate constructor of
IlvTreemapChartFocusInteractor.

When the focused subtree is not the entire tree, the user has the possibility to come back
to the next enclosing focus, the parent object in the tree model, by clicking a border of the
chart area that indicates this parent object.

This interactor does not keep a history of the selected focus. You can implement such a
history and the appropriate Back and Forward actions by installing a TreemapFocusListener
on the chart.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 201

Setting an Interactor on an IlvChart

Several interactors can be used at the same time to interact with a given chart object. These
interactors are managed by the IlvChart object on which the interactions are performed
and cannot be shared among several charts.

All the predefined IlvChartInteractor objects are stored in an internal repository that
performs associations between a string and an interactor class. When an interactor class is
registered in the repository, it can be instantiated using its associated string (hereafter
named “shortname”). All the interactors provided in the JViews Charts package have an
associated shortname.

Two methods are available to add an interactor on an IlvChart:

♦ void addInteractor(IlvChartInteractor)

♦ void addInteractor(String)

The first method is used to add an interactor when an instance has explicitly been created
and the second method to add an interactor using its shortname.

Note that there is priority among the interactors in the event dispatching process due to
the way interactors are managed by an IlvChart (seeHandling interactions for more details):
the last added interactor is the last interactor to receive events.

For example, assume that you want to add a zoom interactor and an edit-point interactor.
Both the interactors use the left mouse button to perform their interaction. If the zoom
interactor is added before the edit-point interactor, all the left mouse button events will be
sent first to the zoom interactor. Since the zoom interactor handles this event to start its
interaction, the edit-point interactor will never receive a left button pressed event. To be
able to use both the interactors, the correct order is to add the edit-point interactor first,
and then the zoom interactor. Indeed, the edit-point interactor only handles mouse pressed
event if the user clicked on a data point. If it is not the case, the event is not handled (that
is, not consumed), and the chart submits it to the next interactor in the list, the zoom
interactor.

The basic steps to set an interactor on a given chart object are the following:

♦ Create an interactor instance.

♦ Add the interactor to be used to the chart.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K202

Handling interactions

Interactors are handled by a chart as an ordered list, the last element of the list is the last
interactor that has been added. This order allows the user to define priorities among
interactors during the event dispatching process: each time an event occurs, it is sent to all
the interactors until one consumes it, beginning with the first interactor in the list.

The event dispatching process
When an event occurs on the chart area, the event is sent to all the interactors handled by
the chart, beginning with the first interactor in the list. Depending on its type, the event is
dispatched to the interactor by calling the processMouseEvent(java.awt.event.
MouseEvent), processMouseMotionEvent(java.awt.event.MouseEvent), and
processKeyEvent(java.awt.event.KeyEvent) methods. If the first interactor does not
consume the event, then the event is sent to the second interactor in the list, and so on,
until either one of the interactors consumes the event or the end of the list is reached. To
mark an event as consumed, the interactor should call the java.awt.AWTEvent.consume
method on the input event.

Handling events at interactor level
An IlvChartInteractor object can handle two types of input events:

♦ the mouse events,

♦ the key events.

To be able to handle these events, the interactor has to notify the chart that events of a
given type should be caught and sent to it. This is done by means of the enableEvents(long)
method. This method enables the specified events on the chart area, if not already done.

Filtering events
An interactor has the possibility to filter the events it receives according to their position
(for example an interactor may be interested in events occurring only on the plot area). This
event filtering is the purpose of the isHandling(int, int)method, which returns a Boolean
value indicating whether the event should be processed by the interactor or not. When a
chart is about to send an event to an interactor, it first invokes the interactor isHandling
method, and depending on the returned value, propagates the event to the interactor.

Processing events
Once enabled, the events are handled by specialized IlvChartInteractormethods depending
on their types:

♦ processMouseMotionEvent(java.awt.event.MouseEvent) for mouse motion events.

♦ processMouseEvent(java.awt.event.MouseEvent) for mouse events.

♦ processKeyEvent(java.awt.event.KeyEvent) for key events.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 203

By default, the implementation of these methods is empty.You should override them
to add your own event handling code.

Note:

During the interaction, the IlvChartInteractor API defines the following three states:

♦ the interaction start,

♦ the interaction stop,

♦ the interaction abortion.

These three steps are defined at the programming level for each interactor class by calling
the corresponding startOperation(java.awt.event.MouseEvent), endOperation(java.
awt.event.MouseEvent), and abort() methods when appropriate.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K204

Writing your own interactor

When writing your own interactor, you can use and extend the source code of the built-in
JViews Charts interactors. You find this source code in the <installdir>/jviews-charts86/
samples/interactor/src/ directory.

This example is extracted from the stock sample. The source code of this example can be
found in <installdir>/jviews-charts86/samples/stock/src/stock/
ZoomScaleInteractor.java directory.

The ZoomScaleInteractor class defined in this example allows the user to zoom a given
portion of the display area by selecting the area to zoom in on the scale itself instead of on
the plot area.

1. Extend the IlvChartInteractor class.

public class ZoomScaleInteractor extends IlvChartInteractor
{
...
}

2. Define the attributes of the class.

private boolean swap = false;
protected IlvStyle style;
protected int axisIdx;
protected double start;
protected double end;

The axisIdx attribute specifies the axis index on which the zoom is performed (-1 =
x-axis). The bounds of the zoomed area are defined by the start and end attributes.
This data is updated each time the mouse is dragged.

3. Add the constructor.

/**
* Create new ZoomScaleInteractor associated with the specified axis
* that zoom in on a BUTTON1 event and zoom out on SHIFT+BUTTON1.
*/
public ZoomScaleInteractor(int axisIdx)
{

super(axisIdx != -1 ? axisIdx : 0, MouseEvent.BUTTON1_MASK);
this.axisIdx = axisIdx;
renderer = new IlvStyle(new BasicStroke(5), IlvColor.magenta);
...

An interactor is always attached to a unique y-axis. Indeed, since several y-axes may
coexist on the same chart, an interactor needs to know on which y-axis the interactions
are performed, so that conversions from display space to data space (and vice-versa)
are possible. This y-axis is referenced at the IlvChartInteractor level using its index
and is the first parameter of the constructor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 205

We want to handle both mouse motion events and mouse click events, as well as key
events (to handle cancellation using ‘ESC’ key):

...
enableEvents(AWTEvent.MOUSE_EVENT_MASK |

AWTEvent.MOUSE_MOTION_EVENT_MASK |
AWTEvent.KEY_EVENT_MASK);

}

4. Filter the events.

Since the interaction is performed on the scale, the interactor is only interested in the
events that occur within the scale bounds:

public boolean isHandling(int x, int y)
{

return (getScale() != null) ?
getScale().getBounds(scaleBounds).contains(x, y) : false;

}

5. Process the events.

In the processMouseEvent(java.awt.event.MouseEvent)method, we define that the
interaction starts when the left mouse button has been pressed, calling the
startOperation(java.awt.event.MouseEvent) method.

The event coordinate is converted to a data value on the scale, and the start and end
attributes are initialized to the previous and next steps of the scale, respectively.

public void processMouseEvent(MouseEvent evt)
{

double value;
switch (evt.getID()) {
case MouseEvent.MOUSE_PRESSED :

...
startOperation(evt);
value = getScale().toValue(evt.getX(), evt.getY());

start = getScale().getStepsDefinition().previousStep(value)
;

end = getScale().getStepsDefinition().incrementStep(start);

drawGhost();
evt.consume();

...
break;
...

}

The drawGhost() method is then called. This method allows you to have a visual
feedback of the interaction by temporarily drawing over the chart area.

Mouse dragged events are handled as follows:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K206

public void processMouseMotionEvent(MouseEvent evt)
{
if (evt.getID() == MouseEvent.MOUSE_DRAGGED && isInOperation()){

drawGhost();
double value = getScale().toValue(evt.getX(), evt.getY());

computeStartEnd(value);
drawGhost();
evt.consume();

}
}

First erase the previous ghost (note that it has effects only in XORmode), then compute
the new start and end values, and finally draw the new ghost.

The zoom is effectively performed when the button is released.

public void processMouseEvent(MouseEvent evt)
{

...
case MouseEvent.MOUSE_RELEASED:

if (!isInOperation())
break;

value = getScale().toValue(evt.getX(), evt.getY());
computeStartEnd(value);
drawGhost();
zoomScale();
endOperation(evt);
evt.consume();
break;

...
}

The new start and end values are computed, the scale is zoomed, and the interaction
is set as ended. Finally, we want to cancel the interaction that is performed when the
‘ESC’ key is pressed:

public void processKeyEvent(KeyEvent evt)
{

if (evt.getID() == KeyEvent.KEY_PRESSED &&
evt.getKeyCode() == KeyEvent.VK_ESCAPE) {
if (isInOperation())

drawGhost();
abort();
evt.consume();

}
}

If the interactor is in operation, the ghost is erased (it has only effects in XOR mode),
and the interaction state is set as aborted, with the abort() method implemented as
follows:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 207

protected void abort()
{

super.abort();
swap = false;
/* Disable ghost drawing operation */
setAllowDrawGhost(false);

}

6. Draw a ghost.

A ghost can be drawn either in XOR mode or in Paint mode, depending on the value
of the interactor xorGhost property. By default, most of the default interactors draw
their ghost in paint mode. In a general manner, XOR mode should be avoided due to
the poor control it gives on the drawing.

To be able to draw a ghost, an interactor must first enable the draw ghost mechanism,
calling the setAllowDrawGhost(boolean)method with true as parameter, and disable
it when the interaction ends. This is performed by the startOperation(java.awt.
event.MouseEvent) and endOperation(java.awt.event.MouseEvent) methods:

protected void endOperation(MouseEvent evt)
{

super.endOperation(evt);
swap = false;
/* Disable ghost drawing operation */
setAllowDrawGhost(false);

}

protected void startOperation(MouseEvent evt)
{

super.startOperation(evt);
/* Enable ghost drawing operation */
setAllowDrawGhost(true);

}

When overriding one of the startOperation, endOperation or abort methods,
do not forget to call the corresponding super method since it performs several required
internal initializations.

Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K208

Configuring 3-D Rendering

Describes how to switch from a two-dimensional to a three-dimensional display and how to
control the properties of 3-D rendering.

In this section

Switching to 3-D
Describes how to switch between a 2-D and a 3-D representation.

Supported features
Describes the features currently supported by a chart using 3-D rendering.

© Copyright IBM Corp. 1987, 2009 209

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K210

Switching to 3-D

Describes how to switch between a 2-D and a 3-D representation.

In this section

3-D view methods
Describes the methods involved in the 3-D representation.

3-D view properties
Describes the properties accessible through the 3-D view.

Interactive control of the 3-D view orientation
Describes how to interactively control the 3-D view orientation.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 211

3-D view methods

With the JViews Charts library, you can switch between a 2-D and a 3-D representation by
simply calling the set3D(boolean) method. This method does not alter the structure of the
chart. The chart components (header, footer, legend) and the chart elements (renderers,
scales, grids, decorations, and so on) remain unchanged.

You can dynamically call this method on an existing chart, as shown in Switching Between
2-D and 3-D.

Switching Between 2-D and 3-D

The is3D() method indicates whether the chart is displayed in 3-D.

Only Cartesian and Pie charts support 3-D rendering. Calling IlvChart.set3D on
a chart that does not support this mode (for example, a Radar chart) does not raise

Note:

an error, but the visual appearance of the chart will not change. Likewise, if you switch
between a 3-D Cartesian chart and a Polar chart with the setType(int) method,
the polar representation will be made in 2-D.You can find a list of the available 3-D
capabilities in the section Supported features.

The 3D rendering features are shown in the sample located in <installdir>/jviews
-charts86/samples/chart3d/index.html.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K212

3-D view properties

The IlvChart3DView class represents the three-dimensional view of the chart and lets you
control its visual appearance. You can retrieve the view associated with a chart by calling
the IlvChart.get3DView method.

The get3DView() method returns a valid IlvChart3DView object, even if the chart
is not currently displayed in 3-D.You can thus switch between a 3-D and a 2-D
representation, and still keep the properties of the 3-D display.

Note:

Projection properties
The following properties specify how points are projected in the chart view.

Default ValueMethodsProperty

45getElevationElevation

setElevation

35getRotationRotation

setRotation

trueisAutoScalingAutomatic Scaling

setAutoScaling

1getZoomZooming Factor

setZoom

IlvChart3DView.ORTHOGRAPHICgetProjectionTypeProjection Type

setProjectionType

View angles
The elevation and rotation angles specify the location of the eye. The elevation ranges from
–90 degrees to 90 degrees. The rotation angle ranges from –90 degrees to 90 degrees for
Cartesian charts and can take any value for Pie charts. A dedicated interactor lets you modify
these angles, as described in the section Interactive control of the 3-D view orientation.

Scaling factor
The scaling applied to the x- and y-coordinates during projection is computed as follows: if
the autoScaling property is set to true, the chart tries to determine the appropriate scaling
factor so that the drawing fits the rectangle of the chart area. The computed scaling factor
is then multiplied by the zooming factor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 213

Projection type
Two projection types are available for Cartesian charts:

♦ Orthographic projection (IlvChart3DView.ORTHOGRAPHIC).

♦ Oblique projection (IlvChart3DView.OBLIQUE). This projection preserves the orthogonality
of x- and y-axes.

Orthographic and Oblique Projections shows the difference between the two projection
types.

Orthographic and Oblique Projections

Lighting properties
The following properties specify how lighting is shown in the chart view.

Default ValueMethodsProperty

0.1getAmbientLightAmbient light intensity

setAmbientLight

0getLightLatitudeLight latitude

setLightLatitude

0getLightLongitudeLight longitude

setLightLongitude

The JViews Charts library uses a simple lighting model composed of:

♦ A direct light, which casts parallel rays. This light is located by spherical coordinates in
the projected space. The default latitude and longitude are equal to 0, which means that
the light is originally located at the eye.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K214

♦ An ambient light, which illuminates all the objects of a 3-D view, independently of the
orientation of the rendered faces. Changing the intensity of this light prevents some parts
of the chart from being too dark. The intensity ranges from 0 (no ambient light) to 1
(maximum intensity).

Controlling depth
The following properties control depth in the chapter view.

Default ValueMethodsProperty

20getDepthDepth

setDepth

0getDepthGapDepth gap

setDepthGap

The depth property ranges from 1 to 100 and specifies the percentage of the chart depth
relative to its width. The depth gap lets you control the separation between two layers, as
shown in Controlling the Depth of a Chart.

Controlling the Depth of a Chart

Decorations along the depth axis
The chart can display annotations and gridlines along the z-axis (also referred to as the
depth axis).

The annotations are returned by the getZAnnotationText() method. You can control the
visibility and the appearance of annotations and grid with the following properties:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 215

Default ValueMethodsProperty

trueisZAnnotationVisiblez-annotation visibility

setZAnnotationVisible

getZAnnotationRendererz-annotation renderer

setZAnnotationRenderer

trueisZGridVisiblez-grid visibility

setZGridVisible

Paint of x- or y-gridgetZGridPaintz-grid paint

setZGridPaint

Stroke of x- or y-gridgetZGridStrokez-grid stroke

setZGridStroke

Listening to property changes
The IlvChart3DView class enables you to add listeners that are notified whenever a property
is modified. The registration and notification use the PropertyChangeListener and
PropertyChangeEvent classes from the java.beans package. The ControlPanel3D.java
source file shows how listeners can be used to synchronize slider controls with the values
of numeric properties.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K216

Interactive control of the 3-D view orientation

The IlvChart3DViewInteractor class allows the user to interactively control the rotation
and elevation angles of the view, as well as the zooming factor. This interactor can be
connected to a chart as any regular chart interactor, using the addInteractor(ilog.views.
chart.IlvChartInteractor) method:

chart.addInteractor(new IlvChart3DViewInteractor())

The IlvChart3DViewInteractor class provides the following interactions:

♦ You can change the rotation angle (horizontal move) or the elevation angle (vertical move)
by holding the CTRL key and dragging with the left mouse button.

♦ You can change the zoom factor (zoom-out for an upward move, and zoom-in for a
downward move) by holding the SHIFT key and dragging with the left mouse button.

The event masks can be specified in the constructor of the interactor, or changed with the
setAngleEventMask(int) and setZoomEventMask(int) methods.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 217

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K218

Supported features

Describes the features currently supported by a chart using 3-D rendering.

In this section

Available chart renderers
Describes the chart renderers that can be displayed by a 3-D chart.

Available chart decorations
Describes the two predefined chart decorations.

Available chart interactions
Describes the interactions that can be used with a 3-D chart.

Unsupported operations
Lists some noteworthy operations that are not currently supported by 3-D Charts.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 219

Available chart renderers

Several objects in the JViews Charts library implement the IlvChart3DSupport interface
and provide the has3DSupport() method to query whether 3-D is handled:

♦ Drawable objects (scales, grids, and decorations)

♦ Renderers

♦ Interactors

The supported features are only a subset of what is available for 2-D charts.Note:

Once the chart is set to 3-D, all graphical elements that do not support 3-D are discarded
during the rendering process. Likewise, events are not dispatched to the interactors that
do not work with 3-D charts.

You can combine several Cartesian representations (bar, line, area and stair) within a single
chart. More information on chart renderers can be found in Handling Chart Renderers.

Bar Charts
The following 3-D bar charts representations are supported:

♦ Superimposed bars.

Each series is displayed in a separate layer along the depth axis. The getZAnnotationText
() method returns the text that must be displayed next to each layer.

♦ Clustered bars.

Bars are laid out in clusters on the same layer. No layer annotation is specified.

♦ Stacked bars.

Bars are stacked on the same layer. No layer annotation is specified.

3-D Bar Charts shows some examples of 3-D bar charts.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K220

3-D Bar Charts

Line, Area, and Stair Charts
The following continuous representations are supported:

♦ Superimposed line, area, or stair charts.

Each series is displayed in a separate layer along the depth axis. The getZAnnotationText
() method returns the text that must be displayed next to each layer.

♦ Stacked line, area, or stair charts.

The entire series is displayed on the same layer. No layer annotation is specified.

3-D Lines and Areas shows some examples of line and area charts.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 221

3-D Lines and Areas

For 3-D line charts, the set3DOutlinePaint(java.awt.Paint) method lets you specify the
color of the ‘ribbon’ outline.

Pie Charts
The JViews Charts library supports 3-D pie and doughnut charts. When several series are
provided, each one is displayed in a separate layer. As in 2-D, you can also explode slices.
3-D Pie Charts shows some 3-D pie charts.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K222

3-D Pie Charts

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 223

Available chart decorations

The JViews Charts library provides two predefined chart decorations:

♦ Data indicators, which can also be used with a 3-D Cartesian chart.

♦ Image decorations, which are not supported in 3-D.

You can find more information on data indicators in Displaying Data Indicator.

You can also design decorations that can be displayed both in 2-D and in 3-D. For example,
the stripe decoration implemented in Stripes.java uses the getShape(ilog.views.chart.
IlvDataWindow, java.awt.Rectangle, ilog.views.chart.IlvCoordinateSystem)method.
This method returns a different shape depending on whether the chart is displayed in 2-D
or 3-D.

Decorations in 3-D shows a chart using the stripe decoration and data indicators.

Decorations in 3-D

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K224

Available chart interactions

Besides the interactive control of the 3-D view, the following interactions can be used with
a 3-D chart.

♦ Picking interactions (IlvChartPickInteractor). The picking mode must be set to
IlvChartData.ITEM_PICKING..

♦ Highlighting interactions (IlvChartHighlightInteractor,
IlvChartInfoViewInteractor). The picking mode must be set to IlvChartData.
ITEM_PICKING..

♦ Scrolling interactions (IlvChartXScrollInteractor, IlvChartYScrollInteractor).

Interactors that do not work with 3-D charts are simply discarded during the event
dispatching process.

Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 225

Unsupported operations

Trying to perform display to data projection will raise an UnsupportedOperationException.
This concerns the followingmethods: toData(ilog.views.chart.IlvDoublePoints), toData
(ilog.views.chart.IlvDoublePoints, java.awt.Rectangle, ilog.views.chart.
IlvCoordinateSystem), toDataWindow(java.awt.Rectangle, java.awt.Rectangle, ilog.
views.chart.IlvCoordinateSystem).

Synchronization between the plotting areas of two charts is not supported (see the
synchronizeAxis(ilog.views.chart.IlvChart, int, boolean) method).

The resizing policy specified by the setResizingPolicy(ilog.views.chart.
IlvChartResizingPolicy) is ignored.

The Line, Area, and Stair chart renderers do not perform clipping along the y-axis. This
means that you must make sure that the visual y-range contains all the displayed points.
This is usually done by setting the autoVisibleRange property of the y-axis to true, which
is the default value.

For the Area and Stair chart renderers, the crossing value of the x-axis is constrained to the
minimum or the maximum value of the y-axis.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K226

Using CSS Syntax in the Style Sheet

Describes CSS briefly and explains in more detail the version of CSS used inIBM® ILOG®
JViews Charts and typical uses of CSS for customizing chart components, data series and
points.

In this section

The origins of CSS
Briefly explains the origins of CSS.

The CSS syntax
Gives a shortened presentation of CSS syntax.

Applying CSS to Java objects
Explains how CSS is applied to Java objects.

© Copyright IBM Corp. 1987, 2009 227

The origins of CSS

Cascading style sheets (CSS) are a powerful mechanism to customize HTML rendering inside
a Web browser. The CSS2 specification comes from the W3C, and has now reached the
status of a W3C recommendation.

The CSS syntax is a great improvement over the .Xdefault resource mechanism of the X
Window System. The basic idea remains the same: matching a pattern and setting resource
values. CSS is devoted to HTML rendering, matching HTML tags and setting style values.
XML is another CSS target, especially as used within the SVG (Scalable Vector Graphics)
recommendation from the W3C.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K228

The CSS syntax

The style sheet syntax conforms to the CSS2 (Cascading Style Sheet level 2) specification
with a few divergences.

The general template of a style rule in a style sheet is therefore:

selector {
declaration1;
declaration2;

...
}

For visualization purposes, the selector applies to objects in the data model, and is used for
pattern-matching; the declarations apply to the corresponding graphic objects, and are used
for rendering.

Declarations have the form:

propertyName : value ;

An example of a style rule is:

series[name="Sales"] {
lineWidth: 2;

}

This rule sets the line width of series of name "Sales" to 2.

Style rule
A CSS document (a style sheet) consists of a set of style rules. Each rule starts with a selector
and is followed by a declaration block enclosed by curly braces. The selector defines a
pattern, and the declarations are applied to the objects that match the pattern.

For a full description of CSS syntax, see http://www.w3.org/TR/REC-CSS2/.

The simple example below shows how to apply the color red to all emphasis elements.

em { color : red ; }

where em is the selector, and “color : red ;” is a declaration.

It is possible to group several rules with the same declarations. Use a comma “,” to separate
the selectors. For example:

em, b { color : red ; }

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 229

http://http://www.w3.org/TR/REC-CSS2/

Selector
The W3C states that “A selector represents a structure. This structure can be understood
for instance as a condition that determines which elements in the document tree are matched
by this selector, or as a flat description of the HTML or XML fragment corresponding to that
structure.”

Examples of selector:

♦ H3

♦ P.footer

♦ TABLE#bigtable > TR

♦ TABLE#bigtable TD

♦ node

♦ node[x="2"]

♦ node:selected

♦ node#subgraph1 > #id2

A selector is composed of one or more simple selectors.

Examples of simple selectors:

♦ H3

♦ P.footer

♦ TABLE#bigtable

♦ TR

♦ node

♦ node[x="2"]

♦ node:selected

♦ #id2

A simple selector is made of minimal building blocks.

Examples of minimal building blocks of selectors:

♦ H3

♦ .footer

♦ node

♦ [x="2"]

♦ :selected

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K230

♦ #id2

When two or more simple selectors are aggregated into a selector, they are separated by
combinators. A combinator is a single character which semantics is described in Table 3.1.
Extra spaces are ignored.

Combinator Symbols
MeaningTransition

Matches an F element that is descendant of an E element.E F

Matches an F element that is a child of an E element.E > F

Matches an F element immediately preceded by an E element.E + F

The minimal building blocks of a selector are listed inMinimal Building Blocks of a Selector .
For an explanation of the Specificity column, see Priority.

Minimal Building Blocks of a Selector
SpecificityMatching RuleMinimal Building Block

0-0-1Matches any element of type e.e

1-0-0Matches any element with ID equal to myid.#myid

0-1-0Matches any element with class myclass..myclass

0-1-0Matches any element with pseudo-class myclass.:myclass

0-1-0Matches any element with the myattr attribute that exists
and <> null.

[myattr]

0-1-0Matches any element whose myattr attribute value is exactly
equal to warning.

[myattr=”warning”]

0-1-0Matches any element whose myattr attribute value is a list
of space-separated values, one of which is exactly equal to
warning.

[myattr~=”warning”]

0-0-0Matches any element.*

For example, the following line:

P.pastoral.marine { color : green ; size : 10pt ; }

matches <P class="pastoral marine old">, sets the color of the paragraph to green, and
sets the font size to 10.

All rules start and end with an implicit “ * ” pattern. This means that a selector can match
anywhere inside the hierarchy.

Declaration
Declarations are key-value couples. The separator is a colon (:). Each declaration is terminated
by a semicolon (;). The key should represent a predefined graphic attribute (foreground,
size, font, and so forth) and the value is a literal whose type depends on the key (such as

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 231

red, 10pt, or serif). All key-value pairs are String. It is recommended that you quote values
with quotation marks " " or single quote marks ’ ’ when the values contain nonalphanumeric
characters.

Priority
The priority of the rules depends on their relative specificity. Specificity is computed as
three numbers, a-b-c (in a number system with a large base).

♦ a is the number of ID building blocks in the selector

♦ b is the number of classes, pseudo-classes, and attributes

♦ c is the number of element types

The examples in Priority Order Example are in priority order, with the most specific first.

Priority Order Example
SpecificitySelector

“2-1-0”#title > #author.full

“1-0-0”#title

“0-2-2”P.intro P.citation

“0-1-3”UL OL LI.red

When two rules give the same specificity number, the order of appearance gives the priority:
the last to appear has higher priority than the previous rules with the same specificity.

Priority is used is as follows: first the declarations of all rules that match the same objects
are merged, and then the priority is applied only if there is a conflict (same key value) within
the merged declaration block.

Cascading
Cascading consists of supplying several sources for the style. In HTML environments there
are three sources: the browser, the user, and the document. Cascading fixes another weight
according to the source of the style. Document style takes precedence over user style, which
takes precedence over browser style when the specificity number is the same.

There are two more tokens, !important and inherit. They are used to alter the cascading
priority inside declarations.

A style sheet can also import other sheets (internal cascading). The syntax is:

@import "[url]" ;

Import statements must precede the first rule in a style sheet. Priorities of the imported
rules are computed as if the rules replace the import statements. Here is an example of
import:

@import "common.css" ;

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K232

Inheritance
The main principle of CSS is the inheritance of declarations. Once the rules are checked
against the source document, the matched declarations are sorted according to the priority
order of the rules. The declarations are merged, with higher priority settings overriding
lower ones in case of conflict.

The resulting set of key-value pairs represents all the declarations that the style sheet applies
to a particular document.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 233

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K234

Applying CSS to Java objects

Explains how CSS is applied to Java objects.

In this section

The CSS Engine
Presents the CSS engine.

The Data Model
Describes the data model and how it interacts with the CSS engine.

CSS Recursion
Explains how to recurse in the style sheet.

Expressions
Explains how to use expressions.

Divergences from CSS2
Describes the differences with the CSS mechanism.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 235

The CSS Engine

The CSS selector mechanism was designed to match elements in HTML or XML documents.
It can also be used to match a hierarchy of Java™ objects accessible from a model interface.
In this context, the CSS level 2 recommendation is transposed for the Java language and
used to set Bean properties according to the Java object hierarchy and state.

The CSS declarations for eachmodel object are sorted and used according to the application
that controls the CSS engine. The declarations represent property settings on a target object.
The target object concerned depends on the way the CSS engine is used.

The CSS engine has different responsibilities at load time and at run time:

♦ At load time: creating and customizing series, points and elements of the chart itself.

♦ At run time: customizing the series and points according to model changes.

Usually the left side of a declaration represents a Bean property of the graphic object. The
right side is a literal and, if it needs type conversion, the method setAsText is invoked on
the Property Editor associated with the Bean property.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K236

The Data Model

The input data model represents the seed of the “CSS for Java” engine. It provides three
important kinds of information to the CSS engine, required to resolve the selectors:

♦ The tree structure of objects, which will be exploited by selector transitions.

♦ Object type, ID, and tag (or user-defined type), which match element type, ID, and CSS
classes. IDs and types are strings; CSS classes are words separated by a space character.
ID is not required to be unique, although it is wise to assume so.

♦ Attribute, which matches an attribute of the same name in an attribute condition within
the selector.

The target object is the graphic object associated with the model object. The declarations
change property values of the graphic object that corresponds to the matching model object,
thereby customizing the graphic appearance given by the rendering.

Object Types and Attribute Matching
Setting a Property Value for a Class shows a rule that matches the object of class (type)
test_Vehicle, with the attribute model equal to sport, and sets the property icon of the
graphic object associated with this object (defined elsewhere) to sport-car.gif.

Setting a Property Value for a Class

test_Vehicle[model=sport] {icon : "sport-car.gif";}

Attribute matching can be used to add dynamic behavior: a PropertyChange event occurring
on the model can activate the CSS engine to set new property values on the graphic objects.

Color Change Behavior Dependent on an Attribute Value shows a rule that changes the color
of any object of CSS class computer whenever the model attribute state is set to down.

Color Change Behavior Dependent on an Attribute Value

.computer[state = down] {color : "gray"}

Object Identifiers and CSS Classes
All model objects have an ID. This ID can be checked against the # selector of a rule.

A "user-defined type” can be set for an object in a property called CSSclass. CSS classes
are not necessarily related to data model semantics; they are devices to add to the
pattern-matching capabilities in the style sheet. An object belongs to only one type but can
belong to several (or no) CSS classes. A check on a CSS class is a check for its presence or
absence. Therefore a CSS class can be seen as an attribute without a value.

Class Name
The class property is a reserved keyword indicating the class name of the generated graphic
object. Obviously the class declaration is applied only when there is a creation request. If

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 237

the model state changes, the graphic objects are customized by applying only new
declarations coming from new matching rules of the style sheet. The class declaration is
then simply ignored.

The right side of a class declaration is the fully-resolved name of the Java class, loaded with
the system class loader. For example:

#annotation {
class : ilog.views.chart.graphic.IlvDataLabelAnnotation;
text : "Hello World !";
}

By extension, the class declaration also indicates the constructor to use to initialize the
object. In the example above, an IlvDataLabelAnnotation instance is created by invoking
the default constructor, and the text bean property is set to "Hello World !".

When no default constructor exists for a class, you can specify a particular constructor,
provided the following limitation is respected: only constructors that export the parameters
as Bean properties are supported. In other words, the class should have the following
interface:

public class foobar {
public foobar(FooType prop1, BarType prop2) {...}
public FooType getFoo() {...}
public BarType getBar() {...}
...
}

which gives the following class declaration:

#afoobar {
class : my.package.foobar(foo, bar);
foo: ...;
bar: ...;
}

When the CSS engine resolves the declaration, it first looks for the types of foo and bar
Bean properties, then tries to find a constructor with parameters of these types. If such a
constructor exists, it is invoked. Find below a more concrete example with a LineBorder:

#border {
class: javax.swing.border.LineBorder(lineColor, thickness);
lineColor: 'red';
thickness: 2;
}

will use the LineBorder(Color color, int thickness) constructor.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K238

Pseudo-classes
Pseudo-classes are the minimal building blocks of a selector that match model objects
according to an external context. The syntax is like a CSS class but with a colon instead of
a dot. For example, series:highlighted matches a series only if the series is highlighted.
The user agent can resolve this pseudo-class at run time according to the state of each
series.

A pseudo-class has the same specificity as a CSS class.

Model Indirection
The right side of a declaration resolves to a literal that is determined at run time by a Property
Editor. However, if the literal is prefixed by @, the remainder of the string is interpreted as
a model attribute name. The declaration takes the value from the model object, as shown
in Setting a Property to an Attribute Value.

Setting a Property to an Attribute Value

series { lineWidth : "@width" ;}

The lineWidth property will be set to the value of the attribute called width in the model

Resolving URLs
Sometimes declaration values are URLs relative to the style sheet location. A special
construct, standard in CSS level2, allows you to create a URL from the base URL of the
current style sheet. For example:

imageURL : url(images/icon.gif) ;

This declaration extends the path of the current style sheet URL with images/icon.gif.
This construct is very useful for creating a style sheet with images located relative to it,
because the URL remains valid even if the style sheet is cascaded or imported elsewhere.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 239

CSS Recursion

You are likely to want to specify a Java object as the value of a declaration. A simple
convention allows you to recurse in the style sheet, that is, to define a new Java object which
has the same style sheet but is unrelated to the current data model.

@# Construct
Prefix the value with ‘@#’ to create new Beans when required as shown in Creating a Bean
in a Declaration.

Creating a Bean in a Declaration

form {
date : "@#dateBean" ;
title : "CSS rules" ;

}
Subobject#dateBean {

class : ’java.util.Date’ ;
time : ’23849291’ ;

}

The ‘@#’ operator extends the current data model by adding a dummy model object as the
child of the current object. The object ID of the dummy object is the remainder of the string,
beyond the ‘@#’ operator. The type of the dummy object is 'Subobject'. The dummy object
inherits CSS classes and attributes from its parent.

The CSS engine creates and customizes a new subobject according to the declarations it
finds for the dummy object. This means, in particular, that the Java class of the subobject
is determined by value of the 'class' property. The newly created subobject becomes the
value of the @# expression. In the declarations for the subobject, attribute references
through the @ operator refer to the attributes of the parent object.

Once the subobject is completed, the previous model is restored so that normal processing
is resumed.

In the above example, a java.util.Date object is created, with the time property set to
23849291. This new object is assigned to the date property of the form object.

@= and @+ Constructs
There are two refinements of the '@#ID' operator:

♦ '@=ID'

Using '@=ID' instead of '@#ID' shares the instance. The first time the declaration is
resolved, the object is created as with the '@#' operator. But for all subsequent accesses
to the same value, '@=ID' will return the same instance, the one created the first time,
without applying the rules. Note that all instances created with '@=' are cleared when a
new style sheet is applied. '

♦ '@+ID'

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K240

Using ‘@+ID’ instead of ‘@#ID’ avoids unecessary objects creation. Basically ‘@+ID’
customizes only the object currently assigned to the property, unless it does not exist or
its class is not the same as the one defined in the #ID rule. In this case, the object is first
created, then customized, and then assigned to the property, as with an ‘@#’ construct.

The need for these refinements arises from a performance issue. The '@#' operator creates
a new object each time a declaration is resolved. Usually a declaration is applied whenever
a property changes. Under certain circumstances, the creation of objects may lead to
expensive processing, so IBM® ILOG® JViews Charts provides an optional mechanism to
minimize the creation of objects during property changes.

@| Construct
A CSS declaration value starting with "@|" is interpreted as an expression (see Expressions).

@ Construct
A CSS declaration value that is exactly "@" means cancel the property setting made in a
previous rule. This construct is useful to prevent a property from being modified, especially
when the default value is unknown. For example:

series {
lineWidth : 23 ;

}

series[name="Sales"] {
lineWidth : @ ;

}

These two rules say that the lineWidth property value should be set to 23, unless the series
has the name "Sales". Without the "@" ability, the default value of lineWidth would have
to be written down in the CSS.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 241

Expressions

The value in a CSS declaration is usually a literal. However, it is possible to write an
expression in place of a literal.

If the value begins with “@|”, then the remainder of the value is processed as an expression.

The syntax of the expressions, after the "@|" prefix, is close to the Java syntax. The expression
type can be arithmetic (type int, long, float, or double), Boolean, or String. Examples:

@|3+2*5 -> 13
@|true&&(true||!true) -> true
@|start+end -> "startend"

An expression can refer to model attributes. The syntax is the usual one:

@|@speed/100+@drift -> 1/100 of the value of "speed" plus the value of "drift." "speed" and
"drift" are attributes of the current object.

'@|"name is: " + @name'-> "name is: Bob", if the value of current object attribute "name"
is "Bob." Note the use of quotes to keep the space characters.

The standard functions abs(), acos(), asin(), atan(), ceil(), cos(), exp(), floor(), log
(), pi, rint(), round(), sin(), sqrt(), and tan() are accepted, as in, for example:

@|3+sin(pi/2) -> 4

There are some default functions: concat, int, long, float, double. The first one concatenates
its parameters as String; the others evaluate basic numerical expressions (only the four
operators +,-,*,/ are allowed).

Custom Functions
Users of CSS for Java can register their own functions, which can be part of an expression.
A custom function must implement ilog.views.util.styling.IlvCSSFunction. This is an
abstract class, but technically you should treat it just like an interface.

The signature of the main method is as follows:

♦ When a function is evaluated, the parameters are first resolved as subexpressions. Then
the final values of parameters are passed to the args array.

♦ The parameter type is the expected type of the function, when known. A null value is
possible. Implementation should take care to return an object of this type; otherwise the
conversion will only be performed if it can be (that is, if it is a simple conversion between
primitive types or to String).

♦ The other parameters are the model, node, target, and function closure at invocation
time: model is the current CSSmodel, node is the current model object being customized,
and target is the graphic object being customized, and closure is the function closure
that can be set by calling ilog.views.util.css.IlvCSSBeans.setFunctionClosure.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K242

If an error occurs during the call, the exception will be reported and the current property
setting will be canceled.

Custom Function Example: Average gives an example of a CSS function, which returns the
average value of its parameters.

Custom Function Example: Average

import ilog.views.util.styling.IlvCSSFunction;

class Average extends IlvCSSFunction {
//default constructor
public Average() { }

// Returns 'avrg'
public String getName() {

return "avrg";
}

// Returns ','
public String getDelimiters() {

return ",";
}

// Returns the average of arguments
public Object call(Object[] args, Class type, IlvCSSModel model,

Object node, Object target, Object closure) {
// Assume only double, for the sake of simplicity.
double result = 0d;
for (int i=0; i<args.length; i++) {

if (args[i] != null) {
result += Double.parseDouble(args[i].toString());

}
}
result /= args.length;
return new Double(result);

}
}

Calling the Custom Function Average shows an example of calling the avrg.

Calling the Custom Function Average

elevation : @|avrg(@param1,@param2);

Registering Custom Functions
You must register custom functions before using them in a style sheet.

To register a function, you can simply call registerFunction in ilog.views.chart.IlvChart.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 243

Divergences from CSS2

Java objects are not HTML documents. The CSS2 syntax remains, so that a CSS editor can
still be used to create the style sheet. However, the differences lead to adaptations of the
CSS mechanism so that its power can be fully exploited and directed to some specific
behavior.

Cascading
Cascading is explicit: the API offers a means of cascading style sheets. However, the
!important and inherit tags are not supported for the sake of simplicity.

Pseudo-classes and Pseudo-elements
In CSS2 there are predefined pseudo-classes and the notion of pseudo-elements. In JViews,
when applied to Java objects, there is no predefined pseudo-class for a data set, but you can
define your own and use them in style rules.

The CSS2 predefined pseudo-elements and pseudo-classes (:link, :hover, and so forth) are
not implemented because they have no meaning in Java.

Attribute Matching
The attribute pattern in CSS2makes the following checks for strings: presence [att], equality
[att=val], and inclusion [att~=val] . The |= operator is disabled.

For Java objects, there are the following numeric comparators >, >=, <>, <=, <, with the usual
semantics.

There are also equal and not-equal comparators which make the distinction between string
comparison and numerical comparison:

♦ Equal: "A==B" is true if and only if A and B are numerically equal (for example, 10 ==
10.0); use "=" to test the equality of two Strings.

♦ Not-equal: "A~B" is true if and only if A and B are two different Strings (for example,
"10" ~ "10.0"); use "<>" to test the inequality of two numbers.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K244

Operators Available in the Attribute Selectors
Applicable ToMeaningOperator

stringspresentA

stringsequalsA=val

stringsnot equalsA~val

stringscontains the wordA~=val

numbersequalsA==val

numbersnot equalsA<>val

numbersless thanA<val

numbersless than or equalsA<=val

numbersgreater thanA>val

numbersgreater than or equalsA>=val

Syntax Enhancement
CSS for Java requires the use of quotation marks when a token contains special characters,
such as dot (.), colon (:), at sign (@), pound sign (#), space (), and so on.

Quotes can be used almost everywhere, in particular to delimit a declaration value, a minimal
building block denoting a type, or a CSS class with reserved characters.

The closing “;” is optional.

Null Value
Sometimes it makes sense to specify a null value in a declaration. By convention, null is a
zero-length string '' or "". For example:

public Object call(Object[] args,Object closure, Class type, IlvCSSModel
model, Object target, Object closure);

series[name="Foo"] {

color1 : '';
}

This will reset the color of the data series to its default value. The notation '' is also used to
denote a null array for properties expecting an array of values.

Empty String
The null syntax does not allow you to specify an empty string in the style sheet. Instead, you
can create an empty string, as shown in Creating an Empty String.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 245

Creating an Empty String

chart {
headreText : @#emptyString ;

}

Subobject#emptyString {
class : 'java.lang.String';

}

Better still, you can use the sharing mechanism to avoid the creation of several strings. The
@= construct will create the empty string the first time only and will then reuse the same
instance for all other occurrences of @#emptyString, see Sharing an Empty String .

Sharing an Empty String

chart {
headerText : @=emptyString ;

}

Subobject#emptyString {
class : 'java.lang.String';

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K246

Styling

Introduces the usage of style sheets within the JViews Charts library.

In this section

Two kinds of rules
Describes two sets of style rules.

Styles
Describes how to apply and disable styles.

Styling the Chart Component
Describes how style sheets can be used to customize the appearance of the chart component
and its subelements.

Styling the data series
Explains the expected selector patterns for the style rules and the properties that can be
used in the declarations of these rules.

Styling the data objects
Describes the treemap chart renderer, which is used to show data objects (as opposed to
data points in the other renderers).

© Copyright IBM Corp. 1987, 2009 247

Two kinds of rules

You can distinguish two sets of style rules:

♦ Rules that customize the global appearance of the chart.

These rules are applied to the elements of the chart, such as chart area, legend, scales
and grids. You can find a detailed description in the section Styling the Chart Component.

♦ Rules that control how individual data series or data objects are rendered.

These rules are applied to the graphical representation of data points. You can find a detailed
description in Styling the data series.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K248

Styles

The appearance of a chart can be dynamically controlled with cascading style sheets (CSS).
Cascading style sheets are introduced in the Using CSS Syntax in the Style Sheet.

Applying styles
The IlvChart class implements the IlvStylable interface, which defines several methods
to control the styling.

Here is an example of the typical code involved when you apply style sheets to a chart:

try {
chart.setStyleSheets(new String[]{“simple.css”});

} catch (IlvStylingException x) {
System.err.println("Cannot load style sheets: " + x.getMessage());

}

The chart.setStyleSheetsmethod expects an array of String objects, which can represent
either a URL, a file name, or the style sheet string directly.

Before the style sheets are applied, the chart configuration is restored to a default state,
which basically corresponds to the state of a default IlvChart instance. This ensures that
the application of two consecutive sets of style sheets does not produce an undesired
cascading of styles. For more information on the operations performed to restore the state
of the chart, you can refer to the documentation of the resetStyles() method in the
Reference Manual. Please remember that some elements of the chart are re-created, such
as grids or scales. As a consequence, to use Java™ code to customize your chart on top of
CSS, you can:

♦ invoke the Java code after the style sheets are applied,

or

♦ override IlvChart.resetStyles, so that it restores the chart to a different state.

You can also integrate a style sheet generated with the Designer. For more information, see
Integrating your development into an application in Using the Designer.

Disabling styling
To disable the styling, the chart component provides two different solutions:

♦ Globally disable the styling by passing null to the setStyleSheets(java.lang.String
[]) method.

This tells the chart that no style is specified and removes any overhead related to the
styling. Note that this is different from setting an empty style sheet, since in this case
the chart will still try to match style rules.

♦ Disable the dynamic interpretation of style rules when the data model changes.

You can do this by means of the setDynamicStyling(boolean)method. When the dynamic
styling is turned off, the chart will not re-apply styles if the contents of a data set are

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 249

modified (for example, when new data points are added or when the values of a data point
change). For efficiency reasons, it is recommended to toggle off the dynamic styling if
your style sheet does not contain any rule based on the attributes of a data point or if
your data model is static.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K250

Styling the Chart Component

Describes how style sheets can be used to customize the appearance of the chart component
and its subelements.

In this section

Parts of the chart component
Describes the different parts of the chart component and their relevant CSS selectors.

Styling the chart
Describes the chart selector.

Styling the chart area
Describes the chartArea selector.

Styling the chart legend
Describes the chartLegend selector.

Styling chart 3-D view
Describes the chart3DView selector.

Styling the chart grids
Describes the chartGrid selector.

Styling the chart scale
Describes the chartScale selector.

Styling the Chart Component
Shows how to style the chart component.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 251

The chart renderers
Describes the chartRenderer selector.

Scales and grids
Describes how to reference a scale or a grid in a style rule.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K252

Parts of the chart component

The following table lists the CSS selectors that are defined to reference the different parts
of the chart component:

Target ClassDescriptionSelector

IlvChartThe chart componentchart

IlvChart.AreaThe chart area componentchartArea

IlvLegendThe chart legendchartLegend

IlvChart3DViewThe chart 3-D viewchart3Dview

IlvChartRendererThe chart rendererschartRenderer

IlvScaleThe chart scaleschartScale

IlvGridThe chart gridschartGrid

These selectors can be used to modify the Bean properties of the corresponding target class.
For example, the following style rules show you how to control the borders and the colors
of the chart and the chart area:

chart {
foreground : black;
background : lightyellow;
opaque : true;
border : @#chartBorder;

}

Subobject#chartBorder {
class : 'javax.swing.border.LineBorder(lineColor)';
lineColor : black;

}

chartArea {
plotBackground : oldlace;

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 253

Styling the chart

The chart selector identifies the Chart component and can be used to control its appearance.
Beans Properties for Chart lists the Bean properties of the IlvChart class that can be set
in the declarations of a CSS style rule.

Beans Properties for Chart
Allowed ValuesTypeProperty

BooleanscalingFont

BooleanantiAliasing

BooleanantiAliasingText

BooleanshiftScroll

DoublescrollRatio

CARTESIAN,POLAR,RADAR,PIEinttype

BooleanprojectorReversed

Color[]defaultColors

Function
”decorations”

decorations

BAR,STACKED_BAR,STACKED100_BAR,intrenderingType

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K254

Allowed ValuesTypeProperty

SUPERIMPOSED_BAR,AREA,STACKED_AREA,STACKED100_AREA,POLYLINE,STACKED_POLYLINE,STACKED100_POLYLINE,SCATTER,STAIR,STACKED_STAIR,STACKED100_STAIR,SUMMED_STAIR,HILO,HILO_ARROW,HILO_STICK,CANDLE,HLOC,PIE,COMBO

IlvDataSourcedataSource

BooleanoptimizedRepaint

BooleandynamicStyling

Boolean3d

IlvChartInteractor[]
Or Function
“interactors”

interactors

ColorplotAreaBackground

PaintbackgroundPaint

JComponentheader

StringheaderText

JComponentfooter

StringfooterText

BooleanlegendVisible

NORTH_BOTTOM, NORTH_WEST,WEST, SOUTH_WEST,SOUTH_TOP, SOUTH_EAST, EAST, NORTH_EAST,ABSOLUTEStringlegendPosition

Colorforeground

Borderborder

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 255

Styling the chart area

The chartArea selector identifies the Chart Area component and can be used to control the
appearance of the portion of the chart.

Chart Area Bean Properties lists the Bean properties of the IlvChart.Area class that can
be set in the declarations of a CSS style rule.

Chart Area Bean Properties
TypeProperty

Colorbackground

PaintbackgroundPaint

Borderborder

intbottomMargin

BooleanfilledPlottingArea

Colorforeground

Fontfont

intleftMargin

Booleanopaque

PaintplotBackground

IlvStyleplotStyle

intrightMargin

Insetsmargins

inttopMargin

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K256

Styling the chart legend

The chartLegend selector identifies the Chart Legend component and can be used to control
its appearance. Beans Properties for Chart Legend lists the Bean properties of the IlvLegend
class that can be set in the declarations of a CSS style rule.

Beans Properties for Chart Legend
TypeProperty

BooleanantiAliasing

BooleanantiAliasingText

Borderborder

Colorbackground

Booleanfloating

intfloatingLayoutDirection

BooleanfollowChartResize

Fontfont

Colorforeground

Booleaninteractive

Pointlocation

Booleanmovable

BooleanpaintingBackground

DimensionsymbolSize

intfsymbolTextSpacing

Stringtitle

inttransparency

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 257

Styling chart 3-D view

The chart3DView selector identifies the Chart 3-D view and can be used to control its
appearance. Beans Properties for Chart 3-D View lists the Bean properties of the
IlvChart3DView class that can be set in the declarations of a CSS style rule.

Beans Properties for Chart 3-D View
Allowed ValuesTypeProperty

IlvLabelRendererZAnnotationRenderer

BooleanZAnnotationVisible

BooleanZGridVisible

StrokeZGridStroke

PaintZGridPaint

doublelightLatitude

doublelightLongitude

floatambientLight

OBLIQUE, ORTHOGRAPHICintprojectionType

doubleelevation

doublerotation

intdepth

intdepthGap

doublezoom

BooleanautoScaling

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K258

Styling the chart grids

The chartGrid selector identifies the Chart Grid component and can be used to control its
appearance. Beans Properties for Chart Grids lists the Bean properties of the IlvGrid class
that can be set in the declarations of a CSS style rule.

Beans Properties for Chart Grids
Allowed ValuesTypeProperty

intdrawOrder

BooleanmajorLineVisible

Booleanvisible

BooleanminorLineVisible

StrokemajorStroke

PaintmajorPaint

minorPaintminorStroke

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 259

Styling the chart scale

The chartScale selector identifies the Chart Scale component and can be used to control
its appearance. Beans Properties for Chart Scale lists the Bean properties of the IlvScale
class that can be set in the declarations of a CSS style rule.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K260

Beans Properties for Chart Scale
Allowed ValuesTypeProperty

StrokeaxisStroke

FontlabelFont

ColorlabelColor

Colorforeground

intdrawOrder

intmajorTickSize

intminorTickSize

TICK_INSIDE, TICK_OUTSIDE,
TICK_CROSS

inttickLayout

intlabelOffset

inttitleOffset

BooleanautoWrapping

LEFT, CENTER, RIGHTintlabelAlignment

floattitleRotation

stringtitle

inttitlePlacement

floatlabelRotation

BooleanskippingLabel

CONSTANT_SKIP,ADAPTIVE_SKIPintskipLabelMode

Booleanvisible

BooleanaxisVisible

BooleanmajorTickVisible

BooleanminorTickVisible

BooleanlabelVisible

BooleanautoCrossing

doublecrossingValue

IlvStepsDefinitionstepsDefinition

Booleancategory

IlvScaleAnnotation[]annotations

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 261

Styling the Chart Component

You can find the files and the source code of this example in the <installdir>/
jviews-charts86/samples/style/index.html directory.

This sample displays a chart that loads data from the following an XML file:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/jviews+css" href="simple.css"?>
<!DOCTYPE chartData PUBLIC '-//ILOG//JVIEWS/Chart 1.0' 'chartxml.dtd'>
<chartData version="1.0">
<data>
<labels>Server 1, Server 2, Server 3, Server 4</labels>
<series id="CPU #1" type="double">
<valuesList>90,80,65,78</valuesList>
<property name="color" javaClass="java.awt.Paint">
#ff9d9d-#924242

</property>
</series>
<series id="CPU #2" type="double">
<valuesList>80,55,40,60</valuesList>
<property name="color" javaClass="java.awt.Paint">
#78ff78-#249224

</property>
</series>
<series id="CPU #3" type="double">
<valuesList>50,35,25,20</valuesList>
<property name="color" javaClass="java.awt.Paint">
#98bdff-#476aa9

</property>
</series>

</data>
</chartData>

This data corresponds to a simple log of CPU usage for several servers. The XML file contains
a processing instruction that references a style sheet URL. When the XML data source is
connected to the chart, the style sheet is automatically applied. Each series in the XML file
defines a color property. Next we will see how this property can be used by a CSS
declaration.

To describe the contents of a simple style sheet:

1. Specify that a bar chart is used and that the legend is visible:

chart {
legendVisible: true;
renderingType: BAR;

}

2. Tell the chart to use a category x-scale, add a title to the y-scale, and explicitly specify
the data limits for the y-axis:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K262

#xScale { category: true; }

#yScale { title: “Usage(%)”; titleRotation: 270;}

#yScale axis { dataMin: 0; dataMax: 100; }

3. Specify that the color used to render a series is equal to its color property, which has
been defined in the XML file:

series { color1: @color; }

Style Sheet: First Example shows what the chart looks like with this style sheet:

Style Sheet: First Example

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 263

The chart renderers

The chartRenderer selector can be used to control the global appearance of renderers used
by the chart. This selector supports an index attribute to select the appropriate chart
renderer. For example, the following rule hides the first renderer:

chartRenderer[index=0] { visible : false; }

The purpose of the chartRenderer rule is to specify global settings to the top-level renderers
that are accessible through the IlvChart.getRenderer method. For example, you can use
it to set the mode of a stacked chart:

chartRenderer { stacked100Percent: true; }

The chartRenderer rule cannot be used to customize the child renderers
independently. The section Styling the data series explains how renderers can be
customized for a specific series or a specific set of points.

Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K264

Scales and grids

There are two ways to reference a specific scale, or a grid, in a style rule:

♦ You can use the axisIndex attribute of the chartScale and chartGrid selectors. This
index equals –1 for the x-axis, or corresponds to the index of an y-axis.

♦ You can use the xScale, yScale, xGrid and yGrid CSS ID.

Here are a few examples of selector patterns:

// Match the x-scale.
chartScale[axisIndex=”-1”] { ... }
#xScale { ... }
// Match the main y-scale.
chartScale[axisIndex=”0”] { ... }
#yScale { ... }
// Match the x-grid.
chartGrid[axisIndex=”-1”] { ... }
#xGrid { ... }
// Match the main y-grid.
chartGrid[axisIndex=”0”] { ... }
#yGrid { ... }

Each scale object supports an axis child selector, which can be used to customize the
associated IlvAxis instance. For example, here is how you can reverse the x-axis:

#xScale axis { reversed: true; }

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 265

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K266

Styling the data series

Explains the expected selector patterns for the style rules and the properties that can be
used in the declarations of these rules.

In this section

Selector patterns
Describes the selector patterns.

Properties
Lists the properties that can be used to customize the rendering of data series and data
points.

Styling the chart data
Shows how to style the chart data.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 267

Selector patterns

Two selectors are defined to reference the chart data model:

♦ series

Used to match the whole series (represented by IlvDataSet instances in the data model).

♦ point

Used to match individual data points. The objects that match a point selector are direct
descendants of an object that matches a series selector.

CSS Classes and Pseudo Classes
CSS classes can be associated with data sets through a predefined property named CSSclass.
CSS classes can be specified in an XML file, as shown by the following XML fragment:

<series id="Series1">
<valuesList>3.0,6.5,6.8,12.0</valuesList>
<property name="CSSclass">tag</property>

</series>

You can also use the setCSSClasses(ilog.views.chart.data.IlvDataSet, java.lang.
String) method to specify the CSS classes of a data set. The CSS classes can thereby be
used in the selector of a style rule:

series.tag { ... }

Likewise, you can add or remove pseudoclasses by means of the addPseudoClass(ilog.
views.chart.data.IlvDataSet, java.lang.String) and removePseudoClass(ilog.views.
chart.data.IlvDataSet, java.lang.String)methods. There is no predefined pseudoclass
for a data set, but you can define your own and use them in style rules.

For example, you can define a highlighted state for a data set:

// Add the “highlighted” pseudoclass to a data set.
IlvDataSetProperty.addPseudoClass(dataSet, “highlighted”);

Then, you can define the following rule:

series:highlighted { ... }

For more information on how to use this technique, refer to the source code in <installdir>/
jviews-charts86/samples/css/src/css/ChartCSSDemo.java of the Highlighter interactor
defined in the CSS demonstration.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K268

Selector Attributes
The following attributes are defined for the series simple selector:

Descriptionname

The name of the data set, as returned by the getName() method.name

The index of the data set in its data source.index

On top of these two predefined attributes, the selector can reference any attribute accessible
by the getProperty(java.lang.Object) method.

The following attributes are defined for the point simple selector:

Descriptionname

The x-value of the data point, as returned by the getXData(int) method.x

The y-value of the data point, as returned by the getYData(int) method.y

The index of the data point in the data set.index

The label of the data point, as returned by the getDataLabel(int) method.label

Here are a few examples of selector patterns that use attribute matching:

// Matches the series whose name is “Sales”.
series[name=”Sales”] { ... }

// Matches all the series, except the first one.
series[index<>”0”] { ... }

// Matches all data points with a positive y-value.
point[y>=0] { ... }

// For the “Sales” series, matches the data points whose y-value
// is greater than 1000. The ‘>’ transition is used to denote that
// point is a child of series.
series[name=”Sales”] > point[y>1000] { ... }

By using model indirection, you can reference the attributes on the right side of a declaration.
Note that you can reference the attribute of a series within the declarations of a rule with
a point selector.

For example, suppose that the series define an overloadColor attribute. You can define
the following rule:

// For all data points with a y-value greater than 100, assign a color
// equal to the value of the ‘overloadColor’ attribute.
point[y>=0] {

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 269

color1: @overloadColor;
}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K270

Properties

Style sheets can be used to specify the rendering attributes of the whole data series or single
data points.

Properties for the point selector are also available for the series selector.Note:

Properties for Data Points

Default ValueTypeName

nulljava.awt.Paintcolor1

nulljava.awt.Paintcolor2

java.awt.BasicStroke.CAP_BUTTint (enumerated)endCap

java.awt.BasicStroke.JOIN_BEVELint (enumerated)lineJoin

nullfloat[]lineStyle

1floatlineWidth

10floatmiterLimit

nulljava.awt.Strokestroke

nullIlvDataAnnotationannotation

truebooleanvisible

Colors
The color1 and color2 properties correspond to the primary and the secondary color,
respectively. The meaning of these colors depends on whether the point is displayed by a
filled renderer (see isFilled()):

♦ For renderers that are filled, the primary color corresponds to the fill color, and the
secondary color corresponds to the stroke color.

♦ For renderers that are not filled, the primary color corresponds to the stroke color, and
the secondary color is not used (it is, however, set as the fill color of the IlvStyle used
by the renderer).

Stroke Style
The stroke that is used by the graphical representation of a data point can be specified
either:

♦ by setting the stroke property.

You can do this by using an @-construct to reference a java.awt.Stroke instance,

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 271

or

♦ by setting the various line attributes: endCap, lineJoin, lineStyle, lineWidth and
miterLimit.

If the stroke property is set, these properties are ignored.Note:

For example, the following rules are equivalent:

series {
lineWidth: 2;
endCap: CAP_ROUND;
lineJoin: JOIN_ROUND;

}

and:

series {
stroke: @=stroke1;

}

Subobject#stroke1 {
class : 'java.awt.BasicStroke(lineWidth, endCap, lineJoin)';
lineWidth : 2;
endCap : CAP_ROUND;
lineJoin : JOIN_ROUND;

}

Visibility
The visible property allows you to toggle the visibility of data points. For example:

// Hide the series whose name is “CPU #1”.
series[name=”CPU #1”] {

visible: false;
}

// For all series, hide the points whose y-value is negative.
point[y < 0] {

visible: false;
}

Annotation
The annotation property lets you connect an instance of IlvDataAnnotation to a data point.
For more information on data annotations, please refer to the section Annotations.

Here is an example of a rule that associates an icon with a set of data points:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K272

// For the “CPU #1” series, set an icon on the points
// whose y-value is greater than 50.
series[name=”CPU #1”] > point[y>50] {

annotation: @=upperAnnotation;
}

Subobject#upperAnnotation {
class: 'ilog.views.chart.graphic.IlvDefaultDataAnnotation(URL, position,

offset)';
URL: url('gif/ok.gif');
position: NORTH;
offset: 2;

}

Properties for Data Series
On top of the data point properties, the series selector can be used to modify the Bean
properties of the renderer that displays the corresponding data set. For example, you can
define the following rules:

// Specify that the series with a “hidden” CSS class are not
// displayed by the legend.
series.hidden {
visibleInLegend: false;

}
// Specify that a circle marker symbol must be used for all series.
// Note that this rule only affect series that are displayed by a
// renderer using marker symbols (Scatter, Bubble and Line charts).
series {
marker: Circle;

}

The available properties depend on the renderer.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 273

Properties Available for All Renderers
DescriptionDefault valueTypeName

Indicates whether the renderer is
visible.

truebooleanvisible

The name of the renderer.nullstringname

Indicates whether the renderer
creates a legend item.

truebooleanvisibleInLegend

The data labeling mode.YValuesenumerated: DataLabel,
Percent, XYValues, XValues,
YValues

labeling

The layout mode for the data labels.Centeredenumerated: Outside,
Centered

labelLayout

Properties Available for Polyline Chart Renderers
DescriptionDefault

value
TypeName

If true, the sum of all y-values for a
given x-value is scaled to 100.

falsebooleanstacked100Percent

Indicates whether the renderer should
use transparent default colors.

falsebooleanautoTransparency

Additional marker drawn at each data
point.

NONEenumerated: CIRCLE,
CROSS, DIAMOND,

marker

PLUS, TRIANGLE,
SQUARE, NONE

Size of marker.3intmarkerSize

Properties Available for Bar Chart Renderers
DescriptionDefault

value
TypeName

If true, the sum of all y-values for a given
x-value is scaled to 100.

falsebooleanstacked100Percent

The amount by which bars overlap.0double, between 0 and
100

overlap

The amount of space available for each
cluster.

80double, between 0 and
100

widthPercent

Indicates whether the renderer should
use transparent default colors.

falsebooleanautoTransparency

Properties Available for Scatter Chart Renderers
DescriptionDefault valueTypeName

Marker drawn at each dataSQUAREenumerated: CIRCLE, CROSS,marker

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K274

DescriptionDefault valueTypeName

point.DIAMOND, PLUS, TRIANGLE,
SQUARE, NONE

Size of marker.3intmarkerSize

Properties Available for Bubble Chart Renderers
DescriptionDefault valueTypeName

Marker drawn at each data point.CIRCLEenumerated: CIRCLE, CROSS,
DIAMOND, PLUS, TRIANGLE,
SQUARE, NONE

marker

Minimum size of a bubble.10intminSize

Maximum size of a bubble.30intmaxSize

Properties Available for High/Low Chart Renderers
DescriptionDefault valueTypeName

The amount by which bars overlap.0double, between 0 and 100overlap

The width of the graphical representation
of a data point along the x-axis.

80double, between 0 and 100widthPercent

Properties Available for Pie Chart Renderers
DescriptionDefault valueTypeName

Size of the hole in a doughnut chart.0int, between 0 and 100holeSize

Indicates whether the outline of the slices is
drawn.

truebooleanstrokeOn

For more information on the available properties, please refer to the documentation of the
corresponding renderer classes.

The properties that are specified in a rule using the series selector usually override
the settings that are specified by the chartRenderer rule. See the section Styling
the Chart Component for more information.

Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 275

Styling the chart data

You can find the files and the source code of the sample in <installdir>/jviews-charts86/
codefragments/chart/styling/src/ChartCSSExample.java.

This sample displays a chart that loads data from the following an XML file:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/jviews+css" href="simple.css"?>
<!DOCTYPE chartData PUBLIC '-//ILOG//JVIEWS/Chart 1.0' 'chartxml.dtd'>
<chartData version="1.0">
<data>
<labels>Server 1, Server 2, Server 3, Server 4</labels>
<series id="CPU #1" type="double">
<valuesList>90,80,65,78</valuesList>
<property name="color" javaClass="java.awt.Paint">
#ff9d9d-#924242

</property>
</series>
<series id="CPU #2" type="double">
<valuesList>80,55,40,60</valuesList>
<property name="color" javaClass="java.awt.Paint">
#78ff78-#249224

</property>
</series>
<series id="CPU #3" type="double">
<valuesList>50,35,25,20</valuesList>
<property name="color" javaClass="java.awt.Paint">
#98bdff-#476aa9

</property>
</series>

</data>
</chartData>

This data corresponds to a simple log of CPU usage for several servers. The XML file contains
a processing instruction that references a style sheet URL. When the XML data source is
connected to the chart, the style sheet is automatically applied. Each series in the XML file
defines a color property. Next we will see how this property can be used by a CSS
declaration. You are going to see how another style sheet can be applied to the same data
to produce a different display.

To display a horizontal bar chart, with the color of each bar reflecting the CPU
usage:

1. Reverse the Cartesian projector and the x-axis:

chart { projectorReversed: true; }

#xScale axis { reversed: true; }

2. Hide the ticks of the scales:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K276

chartScale {
minorTickVisible: false;
majorTickVisible: false;

}

3. Specify that the color of a data point depends on its y-value:

point[y>0] { color1: lightgreen; }

point[y>25] { color1: khaki; }

point[y>50] { color1: lightsalmon; }

point[y>75] { color1: lightcoral; }

4. For each data point, add a text annotation that is equal to the name of the
corresponding data set:

point { annotation: @#annotation; }

Subobject#annotation {
class :'ilog.views.chart.graphic.IlvDataLabelAnnotation';
text : @name;

}

Style Sheet: Second Example shows how the chart looks with this style sheet:

Style Sheet: Second Example

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 277

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K278

Styling the data objects

Describes the treemap chart renderer, which is used to show data objects (as opposed to
data points in the other renderers).

In this section

Selector Patterns
Explains the expected selector patterns for the style rules and the properties that can be
used in the declarations of these rules.

Properties
Lists the properties that can be used to customize the rendering of data models and data
objects.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 279

Selector Patterns

Style sheets can be used to specify the rendering attributes of all objects together and of
individual objects.

Two types of style rule selectors are defined to reference the chart data model:

♦ objects

Used to match the entire data source (an IlvTreeTableDataSource).

♦ object

Used to match an object in the data model (available through IlvTreeTableDataSource.
getTreeModel()).

CSS Classes and Pseudo Classes
Every object in the data model can be associated with one or more CSS classes and with
one or more pseudoclasses.

Both kinds of classes can have an effect on the rendering, through style rules. But while
CSS classes are meant to encode properties of the object that come directly from the model,
the pseudoclasses are meant to encode application dependent state, for example in
conjunction with some interactors.

The CSS classes of model objects are taken from the model. For this purpose, the renderer
has methods setCSSClassesColumn and setCSSClassesColumnName, that let you specify the
model column containing the CSS classes. The value in this column should be a string
containing the CSS class names, in any order, and separated by spaces.

CSS classes can be used in a CSS file through the syntax:

object.classname { ... }

The CSS pseudoclasses of model objects are stored in the chart instance. You can add or
remove a pseudoclass to an object (or an object to a pseudoclass) through the methods
IlvChart.addPseudoClass and IlvChart.removePseudoClass. There are no predefined
pseudoclasses for model objects so far. You can define your own and use them in style rules.

For example, in an interactor you might mark an object as "marked":

// Add the "marked" state to an object.

chart.addPseudoClass(object, "marked");

Then you can define a rule that highlights the marked objects:

object:marked { ... }

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K280

Selector Attributes
No attributes are defined for the objects selector.

The attributes defined for the object selector are exactly the column names of the object
model. For example, if the model has two columns named 'amount2004' and 'amount2005',
you can write a style rule

object[amount2005 > amount2004 * 1.05]

to highlight those object where the amount increase is greater than 5%.

Additionally, the following attributes are predefined for the object selector:

DescriptionName

The distance of the object from the model root, in the tree model. This is 0 for the root,
1 for the root children, and so on.

level

The distance of the treemap renderer focus (= the root of the subtree model being
displayed) from the model root.

focusLevel

true if the object has no children objects in the model, false otherwise.leaf

For a treemap display, the CSS expression @level-@focusLevel represents the level
difference between the current object and the outermost displayed rectangle.

The following lines of CSS can therefore be used to set labels with particular attributes on
each object of the specified level:

object [level==0] {
annotation : "@#labelAnnotation0";

}
object [level==1] {
annotation : "@#labelAnnotation1";

}
object [level>1] {
annotation : "@#labelAnnotation2";

}

Likewise for specified levels relative to the treemap focus:

object [@|@level-@focusLevel==0] {
annotation : "@#labelAnnotation0";

}
object [@|@level-@focusLevel==1] {
annotation : "@#labelAnnotation1";

}
object [@|@level-@focusLevel>1] {
annotation : "@#labelAnnotation2";

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 281

Properties

Properties for Individual Data Objects

Properties for the object selector are also available for the objects selector.Note:

In rules with an object selector, the following properties are available:

Default ValueTypeName

nulljava.awt.Paintcolor1

nulljava.awt.Paintcolor2

java.awt.BasicStroke.CAP_BUTTint (enumerated)endCap

java.awt.BasicStroke.JOIN_BEVELint (enumerated)lineJoin

nullfloat[]lineStyle

1floatlineWidth

10floatmiterLimit

nulljava.awt.Strokestroke

nullIlvDataAnnotationannotation

truebooleanvisible

For more details on these properties, see Properties for Data Points.

Properties for the Entire Data Model
In a rule with an objects selector, the following properties can be set through CSS.

♦ Object properties that apply to all objects. The list is the same as above.

♦ Renderer properties. For the treemap, the following properties are available:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K282

DescriptionDefault valueTypeName

Indicates whether the renderer
is visible.

truebooleanvisible

The name of the renderer.nullStringname

Indicates whether the renderer
creates legend items.

truebooleanvisibleInLegend

The column chosen to
determine the area of each
object.

nullStringareaColumnName

The column chosen to
determine the color of each
rectangle.

nullStringcolorColumnName

The column chosen to
determine the label of each

nullStringlabelColumnName

object, as shown by
IlvDataLabelAnnotation.

The column chosen to
determine the CSS classes of
each object.

nullStringCSSClassesColumnName

The rectangle packing.ALTERNATINGenumerated: ALTERNATING,
SQUARIFIED_CORNER,
SQUARIFIED, BAR

packing

The primary direction of
arrangement of the rectangles.

TRAILINGenumerated: RIGHT, LEFT,
TRAILING, TOP, BOTTOM

primaryDirection

The secondary direction of
arrangement of the rectangles.

BOTTOMenumerated: RIGHT, LEFT
TRAILING, TOP, BOTTOM

secondaryDirection

Leading margin proportion.0.02double, between 0 and 1leadingMarginProportion

Maximum leading margin, in
pixels.

2doublemaximumLeadingMargin

Trailing margin proportion.0.01double, between 0 and 1trailingMarginProportion

Maximum trailing margin, in
pixels.

2doublemaximumTrailingMargin

Bottom margin proportion.0.02double, between 0 and 1bottomMarginProportion

Maximum bottom margin, in
pixels.

2doublemaximumBottomMargin

Top margin proportion.0.05double, between 0 and 1topMarginProportion

Maximum top margin, in pixels.30doublemaximumTopMargin

Describes the margin
proportions of a nested

1.0double, between 0 and 1marginReductionFactor

rectangle, compared to the

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 283

DescriptionDefault valueTypeName

margin proportions of the
rectangle that contains it.

Indicates whether margins also
apply to the outermost
rectangle.

truebooleanuseMarginsOnRoot

Focus parent margin
proportion.

0.02double, between 0 and 1focusParentMarginProportion

Maximum focus parent margin,
in pixels.

5doublemaximumFocusParentMargin

The color scheme.CONSTANTenumerated: CONSTANT,
DEPTH, SEQUENTIAL,

colorScheme

SEQUENTIAL_HUE,
CYCLIC_SEQUENTIAL_HUE,
QUALITATIVE,
DIVERGING_RED_GREEN,
DIVERGING_GREEN_RED,
DIVERGING_BLUE_YELLOW,
DIVERGING_YELLOW_BLUE,
AVERAGE_RED_GREEN,
AVERAGE_GREEN_RED,
AVERAGE_BLUE_YELLOW,
AVERAGE_YELLOW_BLUE

The color used when a value in
the color column is NaN.

#AAAAAAColorcolorForNaN

The minimum size of a
rectangle, under which the

0intstrokeThreshold

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K284

DescriptionDefault valueTypeName

stroke of a rendering style is
not used.

An annotation for all the tree
nodes.

nullIlvDataAnnotationannotation

The horizontal alignment of
each label within the rectangle
to which it belongs.

LEADINGenumerated: LEFT, CENTER,
RIGHT, LEADING, TRAILING

labelAlignmentX

The vertical alignment of each
label within the rectangle to
which it belongs.

TOPenumerated: BOTTOM,
CENTER, TOP

labelAlignment Y

The format for labels
associated with rectangles.

nulljava.text.FormatlabelFormat

Indicates whether annotations
are clipped to fit in their
corresponding rectangle.

truebooleanannotationClipping

The visibility mode for
annotations.

ALLnon-negative integer or one of
ALL, SMART, NONE

annotationVisibility

The format for labels
associated with colors in the
legend.

nulljava.text.FormatlegendLabelFormat

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 285

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K286

Integrating a chart customizer into your
application

Describes how to create a chart customizer that can be integrated into your application.

In this section

Creating a chart customizer
Shows how to create a chart customizer.

Main classes of the chart customizer
Introduces the main classes available in the chart customizer, and the features they offer
for developing your application.

Undo manager into the chart customizer
Describes how to integrate the undo manager into the chart customizer.

Customizing the chart customizer
Describes the possible customizations.

XML specification of the chart customizer
Explains the XML format of the specifications that are loaded by the chart customizer.

Property Editors
Describes the special property editors used by the chart customizer.

© Copyright IBM Corp. 1987, 2009 287

Creating a chart customizer

It may happen that you need to modify the appearance of your chart at run time. To do this,
you can adopt one of the following solutions:

♦ Write Java™ code to manipulate the chart renderers directly, as described in Handling
Chart Renderers.

♦ Load different predefined style sheets.

♦ Use chart customizers, that is, interactive GUI components that allow you to handle the
parameters of the chart appearance.

chart customizer

IBM® ILOG® JViews Charts provides predefined chart customizers that can be customized
and easily integrated into a JViews Charts application. These chart customizers are based
on the CSS styling technology of the chart. Therefore, it is possible to create an application
that:

♦ loads one or multiple style sheets to customize the chart,

♦ fine-tunes the customization after styling by using the interactive chart customizers.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K288

The complete source code of this example can be found in <installdir>/jviews-charts86/
samples/customizer/src/ChartCustomizerExample.java.

To create a chart customizer:

1. Import the following packages to create a chart:

a. import ilog.views.chart.*

b. import ilog.views.chart.data.xml.*

2. Import the packages that contain the customizer framework for JViews Charts:

a. import ilog.views.chart.customizer.*

b. import ilog.views.chart.customizer.swing.*

3. Create the chart and load your style sheet:

IlvChart chart = new IlvChart();
try {
chart.setDataSource(...);
chart.setStyleSheets(...);
} catch (ilog.views.util.styling.IlvStylingException x) {
...
}

4. Create the chart customizer associated with this chart.

IlvChartCSSCustomizerPanel customizer =
new IlvChartCSSCustomizerPanel(chart);

5. Create the chart customizer panel.

The chart customizer panel is a JPanel. It can be displayed in a dialog or in a frame
or it can be added to a JComponent. In this example, you are going to display it in a
split pane.

Make the chart appear in the upper part of the split pane and the chart customizer in
the lower part:

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
frame.getContentPane().add(splitPane, BorderLayout.CENTER);
splitPane.setTopComponent(chart);
splitPane.setBottomComponent(customizer);

6. Set the style rule that will be handled by the chart customizer:

customizer.setRule("chartArea");

In this case, the chart customizer shows all the controls (buttons, fields, and boxes) that
allow you to customize the chart area interactively. The parameter passed to the method
setRule of the chart customizer is the selector of a style rule.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 289

Possible values are: chart, chartArea, chartLegend, chart3Dview, chartScale, chartGrid,
series, point.

Complex selectors such as chartScale[axisIndex="-1"] are also allowed, provided that
the chart actually has such a scale.

You can find more details about selectors in Styling the Chart Component.

These steps are sufficient if you want to reuse the predefined chart customizers. Otherwise,
you can modify the chart customizers according to your needs. For more details, see
Customizing the chart customizer.

A chart customizer for treemaps is currently not available.Note:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K290

Main classes of the chart customizer

♦ IlvChartCSSCustomizerPanel

This class is the panel that displays the chart customizer.

Occasionally, you may need to use the following classes:

♦ IlvChartCSSAdapterIlvChart

This class is used to manipulate the CSS of the chart and to retrieve information about
the CSS.

♦ IlvRuleCustomizerLogic

When you set a style rule in the panel of the chart customizer, an IlvRuleCustomizerLogic
is selected to handle this rule. The IlvRuleCustomizerLogic class contains the logic of
what happens when you click a control. It knows which parameters are customizable for
the corresponding style rule and how the CSS declaration values in this style rule need
to look like.

Chart Customizer Main Classes

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 291

The chart customizer panel
The chart customizer panel (IlvChartCSSCustomizerPanel is a Swing panel that displays
the GUI elements used to customize the chart.

The chart customizer panel is attached to a chart CSS adapter. The CSS adapter can be
obtained by using the method IlvChartCSSAdapter getAdapter().

To set the target of the chart customizer, you can use one of the following methods:

♦ void setRule(String selector)

Receives the selector of a style rule as a string. It searches for an IlvRuleCustomizerLogic
that matches the selector, sets this IlvRuleCustomizerLogic in the chart customizer
panel and removes any existing IlvRuleCustomizerLogic.

♦ void setRule(IlvCSSRule rule)

Receives the style rule directly. It searches for an IlvRuleCustomizerLogic that matches
the style rule and sets this IlvRuleCustomizerLogic in the chart customizer panel.

♦ void setRuleCustomizerLogic(IlvRuleCustomizerLogic ruleCustomizerLogic)

Receives the IlvRuleCustomizerLogic of a style rule and sets it in the chart customizer
panel.

To retrieve the current IlvRuleCustomizerLogic, use the method IlvRuleCustomizerLogic
getRuleCustomizerLogic(). The chart customizer panel updates its controls automatically
when the parameters of the chart change.

It is rarely necessary to update the panel explicitly. If you need to do so, use one of the
following methods:

♦ void update()

♦ void update(boolean updateValue, boolean updateEnabled, boolean updateVisible)

This method allows you to specify whether one of the following elements should be
updated:

● values of the parameters displayed in the chart customizer panel

● enabled state of the controls

● visibility of the controls

The Chart CSS adapter
The chart CSS adapter (IlvChartCSSAdapter allows you to retrieve information about the
CSS of the chart component. The CSS of a chart component can be very complex and can
contain many auxiliary style rules. To simplify the situation, only the main style rules should
be passed to the panel (such as chartArea, chartLegend, chart3Dview), since all tiny
auxiliary style rules are handled automatically. Basically, the chart CSS adapter provides
information about the selectors that can be passed to the method:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K292

customizerPanel.setRule(selector)

To retrieve all possible selectors, you can use the following method:

String[] getCustomizableRuleSelectors()

The resulting string array contains all selectors that are currently active in the chart.

If you have an object that is part of the chart, for example an IlvGrid object, which can be
the x-grid or the y-grid object, you can query which selector fits to this object. The method
String getSingleObjectCustomizableRuleSelector(Object object) returns the
corresponding selector.

Decoration rules specify the image decorations or the data indicators of the chart. Since an
arbitrary number of decorations can be added to the chart, it is often necessary to retrieve
in particular the selectors of the decoration rules of the chart. You can do this by using the
method:

String[] getDecorationRuleSelectors()

Furthermore, the chart CSS adapter allows you to retrieve the instances of
IlvRuleCustomizerLogic that fit a particular selector, by using the method

IlvRuleCustomizerLogic getRuleCustomizerLogic(String selector)

The returned IlvRuleCustomizerLogic is initialized with the style rule that corresponds to
the input selector.

The IlvRuleCustomizerLogic class
The instances of the class IlvRuleCustomizerLogic represent the logic of how a style rule
can be customized.

When you call the method customizerPanel.setRule(selector), the
IlvRuleCustomizerLogic appropriate to this selector is set in the chart customizer panel.

The chart CSS adapter provides only a fixed set of IlvRuleCustomizerLogic classes, and
each IlvRuleCustomizerLogic provides only a fixed set of chart parameters that can be
manipulated.

The available IlvRuleCustomizerLogic classes allow you to control a large set of parameters
suitable for common cases. All IlvRuleCustomizerLogic classes can be retrieved from the
chart component adapter by using the following code:

IlvRuleCustomizerLogic[] getRuleCustomizerLogics()

The same IlvRuleCustomizerLogic is reused for multiple style rules of the same type. For
example, the IlvRuleCustomizerLogic of an image decoration can be reused for all image
decorations. To test whether a style rule fits an IlvRuleCustomizerLogic, you can use the
following method:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 293

boolean match(IlvCSSRule rule)

If an IlvRuleCustomizerLogic is activated (which happens automatically when setting the
style rule of the customizer panel), the method IlvCSSRule getMainRule() returns the style
rule that is currently handled by an instance of the IlvRuleCustomizerLogic. Furthermore,
every IlvRuleCustomizerLogic fires property change events whenever the main style rule
has changed. If you want to listen to these events, you can set a property change listener
on the IlvRuleCustomizerLogic by using the following method:

void addPropertyChangeListener(PropertyChangeListener listener)

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K294

Undo manager into the chart customizer

The chart customizer provides no undo manager by itself. Usually, an application has already
a central undo manager. The chart customizer can be easily integrated into a standard Swing
undo manager (javax.swing.undo.UndoManager).

UndoManager undoManager = new UndoManager();

The chart customizer fires a javax.swing.event.UndoableEditEvent whenever a change
that cannot be undone occurs in the chart customizer. You can listen to these events in the
following way:

customizer.addUndoableEditListener(undoListener);

When the undo listener receives an event, it adds the corresponding undo edit to the undo
manager and updates the undoManager:

private UndoableEditListener undoListener = new UndoableEditListener() {
public void undoableEditHappened(UndoableEditEvent e) {
undoManager.addEdit(e.getEdit());
... code that updates the buttons and menu items that trigger an undo/redo,

for example, enable the undo button to indicate undo is now possible, or
update the tooltip of the undo button ...
}

};

To trigger an undo, you can use the standard Swing mechanism, that is, implement a menu
item or button that calls the method undoManager.undo() when an action is performed.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 295

Customizing the chart customizer

If you want to define your chart customizer for a particular style rule in your own application,
these are the possible customizations:

♦ It is possible to remove buttons, fields, and boxes from the chart customizer.

♦ It is possible to rearrange the existing buttons, fields, and boxes. For example, you can
change the order of the GUI elements in the tabbed panes.

♦ It is not possible to create new buttons, fields, and boxes that control a completely different
parameter. The chart customizer can control a well-defined set of JViews Charts
parameters. Rendering parameters that are not part of this set cannot be handled.

When you select a style rule for the chart customizer by using the method customizer.
setRule("chartArea"), the panel of the chart customizer displays the controls that are
needed to customize this style rule.

This is controlled by an XML file that is associated with the corresponding
IlvRuleCustomizerLogic. You can change this XML file to modify the controls that appear
in the panel.

Examples of XML files are located in the directory <installdir>/jviews-charts86/
codefragments/chart/customizer/data/examples.

It is possible to adapt the XML file according to your needs. The format is described in XML
specification of the chart customizer.

For internationalization purposes, each XML file is associated with a property file containing
the text (labels, tooltips) that should appear in the chart customizer. This property file must
be located in the same location as the XML configuration file.

For example, the IlvChartAreaCustomizerForm.xml file that describes the appearance of
the chart customizer for the chart area and the selectorIlvChartAreaCustomizerForm.
properties file that is the corresponding property file must be placed in the same directory.

To make your chart customizer use the XML and property specifications you have modified,
it is possible to use one of the following methods:

♦ customizer.setConfigFileBaseURL(myDirectoryURL);

This solution is applicable when you modify the contents of the XML or property
specifications without altering the file names.

♦ customizer.setRule("chartArea", myXMLConfigFileURL);

This solution forces you to maintain yourself the association between colors and file
names, but allows you to use different configurations for the same selector. For example,
you might use separate configuration files (and therefore also separate chart customizers)
for the colors of the chart area and for the margins of the chart area, although both would
be associated with the selector chartArea.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K296

XML specification of the chart customizer

Example of XML File

<!-- Customizer Form for IlvChart.Area -->
<form bundles="ChartAreaForm">
<group title="AppearanceGroup">
<group title="ColorsGroup">
<property name="foreground"
displayedName="foregroundDisplayedName"
tooltip="foregroundTooltip"/>
<property name="opaque"
displayedName="opaqueDisplayedName"
tooltip="opaqueTooltip"/>
<property name="backgroundPaint"
displayedName="backgroundDisplayedName"
tooltip="backgroundTooltip">
<enabled>
<when property="opaque" value="true"/>
</enabled>
</property>
<property name="border"
displayedName="borderDisplayedName"
tooltip="borderTooltip"/>
<property name="font"
displayedName="fontDisplayedName"
tooltip="fontTooltip"/>

</group>
</group>

</form>

The GUI elements are specified between <form> and </form> elements.

For internationalization purposes, you can pass a resource bundle to the <form> element.

The resource bundle is used to retrieve all texts (labels, tooltips) that should be displayed
in the chart customizer. Furthermore, the specification consists of groups (<group>) and
properties (<property>).

The <group> element specifies a section in the chart customizer. Usually, a group has a title
that indicates the purpose of the section. Groups can be nested, that is, a group can contain
other groups. Finally, a group consists of a list of properties. In the chart customizer, you
can consider a group as a panel with a titled order that groups together a collection of
controls (buttons, fields, and boxes).

The <property> element specifies a property of the corresponding chart renderer that should
be customized. For example, to customize the foreground color of the chart area, specify
<property name="foreground"/>.

There is only a limited set of properties for each IlvRuleCustomizerLogic, you cannot
specify arbitrary properties that do not exist. In the chart customizer, the <property> element
produces a control element (button, text field, checkbox, listbox, and so on) that allows you
to edit this property. For example, the specification <property name="foreground"/> in
the example above creates a color editor control that allows you to change the foreground

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 297

color of a chart area. This control appears with a label in the chart customizer. You can
specify the label and the tooltip of the control as follows:

<property name="foreground" displayedName="foregroundDisplayedName"
tooltip="foregroundTooltip"/>

The keys foregroundDisplayedName and foregroundTooltip are looked up in the resource
bundle of the chart customizer form. If the keys are not found, the string
foregroundDisplayedName is used as label, and the string foregroundTooltip is used as
tooltip.

It might happen that a control of a property should only be enabled if another property has
a certain value. This is possible with subspecifications in the properties. For example, the
following specificationmeans that the control of the backgroundPaint should only be enabled
if the opaque property has the value true.

<property name="backgroundPaint">
<enabled>
<when property="opaque" value="true"/>
</enabled>
</property>

XML Tags and Attributes Available in the Specification of a chart customizer describes all
XML tags that are available in the specification of a chart customizer.

XML Tags and Attributes Available in the Specification of a chart customizer
DescriptionAttributeElement

Root element.form

Defines the chart customizer.

Optional, but recommended.bundles

Defines a list of resource bundles that provide string resources for
the form.

The items of the list are separated by a comma and are relative
pathnames. These pathnames are resolved into full pathnames
using the URL of the form as a reference or the URL resolvers
added to the application.

Optional, but recommended.title

Defines a title for the entire chart customizer.

Parent: form or group.group

Defines a group of any combinations of property, help and group
elements.

Optional, but recommended.title

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K298

DescriptionAttributeElement

Defines the title of the group. Typically, this will be shown either
as the name of a tab in a tabbed pane or in the title border of a
BorderedPanel.

Optional.awtLayoutManager

Defines the fully-qualified class name of the layout manager to be
used for this group instead of the default one in AWT/Swing chart
customizers. It must be a public class (accessible in the classpath)
implementing java.awt.LayoutManager and providing a default
constructor or a constructor taking a java.awt.Container
argument (the target panel).

Optional.dummy

If the value is true, the GUI does not show any border around
the group nor a title.

Optional.overlaid

If the value is true, the elements contained in this group
(subgroups or properties) are displayed in overlaid mode.Typically,
this attribute is set when you want only one set of elements to be
visible, depending on certain conditions. See also the visible
element.

Parent: form or group.property

This element defines one property (usually corresponding to a
JavaBean property, but not necessarily) of the customized target.

Required.name

Defines the name of the property. Typically, this is the name of the
JavaBean property, but in complex situations it can be a different
identifier. This must not be internationalized.

Optional.targetId

Defines an identifier for the target to which the property belongs.
Typically, this is used in complex chart customizers where
subtargets have their own properties. This must not be
internationalized.

Optional, but recommended.displayedName

Defines the string that appears as a label near the GUI component
and allows you to customize the property.

Optional, but recommended.tooltip

Defines the string that appears as a tooltip over the GUI component
and allows you to customize the property.

Optional for numeric properties, ignored for non-numeric. Defines
the minimum value that the user is allowed to enter. If both

minValue

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 299

DescriptionAttributeElement

minValue and maxValue are specified, the GUI will typically
show a slider in addition to the text field and the spinner.

Optional for numeric properties, ignored for non-numeric.maxValue

Defines the maximum value that the user is allowed to enter. If
both minValue and maxValue are specified, the GUI will typically
show a slider in addition to the text field and the spinner.

Optional for numeric properties, ignored for non-numeric.incValue

Defines the increment for the spinner usually associated with the
text field.

Optional for tagged properties, ignored otherwise.choices

Defines the list of values to be presented to the user, typically in
a combo box. Its value must be a comma-separated list of strings
(for example, the names of the combo items) and values. For
example: MyResource.FirstItem.Name=3,MyResource.
SecondItem.Name=4. Note that, by default, this is retrieved from
the property descriptor.You only need the attribute if you want to
override this information.

Optional for properties of non-primitive type, ignored otherwise.
Defines the string representation of the null value of the property.

displayedNullValue

For example, it can be "null", "(null)", "(none)", "(unspecified)", or
an empty string. If the attribute is not specified, the text is retrieved
from propertyEditor.getAsText.

Optional for indexed properties, ignored otherwise.index

It is used when the chart customizer needs to allow the
customization of a given element of the array of an indexed
property.

Optional.preferredWidth

Defines a preferred width of the GUI control used for the property,
to be used instead of the default one.You can specify either the
value directly, or a resource key.

Optional.preferredHeight

Defines a preferred height of the GUI control used for the property,
to be used instead of the default one.You can specify either the
value directly, or a resource key.

Optional.propertyEditor

Defines the fully-qualified class name of the property editor to be
used for this property instead of the default one. It must be a public
class (accessible in the classpath) implementing java.beans.
PropertyEditor and providing a default constructor.

Parent: form, group, or property.help

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K300

DescriptionAttributeElement

Defines help contents for its parent element. This can be either a
text area directly embedded in the chart customizer, or a button
allowing to open a standalone help window to display an HTML
file.

Optional.text

Defines the string to be shown embedded in the chart customizer,
typically as a text area.

Optional.title

Defines the string to be shown as title of the help window instead
of the default title. Ignored if the text attribute is present (that is,
for help text in a text area embedded in the chart customizer).

Optional.page

Defines the relative URL of an HTML help page. Ignored if the
text attribute is present.

Optional.buttonIcon

Defines the relative URL of the image to be shown instead of the
default icon used to open a standalone help window. Ignored if the
text attribute is present.

Optional, but recommended.tooltip

Defines the string that is shown as tooltip over the GUI component
(text area or button for opening a standalone help window.)

Parent: group or property.enabled

Defines a condition for enabling/disabling a group or a property
depending on the value of one or several properties of the target,
or depending on some external conditions. It must have the
following subelements: when, or, and, or not.

Parent: group or property.visible

Defines a condition for controlling the visibility of a group or of a
property depending on the value of one or several properties of
the target, or depending on some external conditions. It must have
the following subelements: when, or, and, or not.

Parent: enabled, visible, or, and, or not.when

Defines the rules for enabling/disabling or changing the visibility
of a group or a property depending on the value of one or several
properties of the target, or depending on some external conditions.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 301

DescriptionAttributeElement

It must have either the attribute condition, or the attribute
property associated with value.

Required if property associated with value are not present.
Defines the identifier of a condition that is implemented in Java
code.

condition

Required if condition is not present.property

Defines the name of the property. The enabled/disabled state or
the visibility depends on the value of this property. For properties
where a targetId is not specified, use the name attribute.
Otherwise, use the targetId attribute.

Required if condition is not present.value

Defines the value of the property specified by the property
attribute.

Parent: enabled, visible, and, or, or not.and

Defines an and logical operation for its subelements. It must have
the following subelements: when, or, and, or not.

Parent: enabled, visible, and, or, or not.or

Defines an or logical operation for its subelements. It must have
the following subelements: when, or, and, or not.

Parent: enabled, visible, and, or, or notnot

Defines a not logical operation for its subelements. It must have
the following subelements: when, or, and, or not.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K302

Property Editors

The chart customizer uses special property editors for some types, such as Boolean, Integer,
Double, Date, Point, Font, Color. These may collide with the look and feel of other parts of
your application.

By default, when you use a chart customizer, IBM® ILOG® JViews Charts installs these
property editors in the global property editor registry, in the class java.beans.
PropertyEditorManager. As a consequence, other parts of your application will get the
IBM® ILOG® JViews look and feel.

If you want to prevent this, you can set the system property ilog.
propagatesPropertyEditors to false. By doing this, your application will not be affected
by the IBM® ILOG® JViews look and feel, but the chart customizer will keep using this look
and feel. To set the system property ilog.propagatesPropertyEditors to false you can
either use the command line option

-Dilog.propagatesPropertyEditors=false

or call System.setProperty("ilog.propagatesPropertyEditors", "false") before
instantiating any chart customizer.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 303

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K304

Using Load-On-Demand

Describes how the Load-On-Demand mechanism works and how you can interact with it.

In this section

Framework structure
Describes the set of interfaces and classes that define and implement the load-on-demand
mechanism.

The tile controller
Describes the tile controller mechanism.

The tile cache
Describes the strategy for caching and releasing tiles.

How to listen to events
Describes how to listen to the events generated by the load-on-demand mechanism.

How to use LOD with your data
Explains the tile loader implementation available in the DataTileLoader.java file.

© Copyright IBM Corp. 1987, 2009 305

Framework structure

The load-on-demand mechanism integrates seamlessly into the chart data model through
the IlvLODDataSet class, which can be connected to a chart as any regular data set.
IlvLODDataSet actually acts as a bridge between the data model and the load-on-demand
mechanism, which is defined and implemented by a set of interfaces and classes as described
in the following figure:

The Load-On-Demand Framework

All these interfaces and classes are located in the ilog.views.chart.data.lod package.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K306

The tile controller

A tile controller is an instance of the IlvDataTileController class, which implements the
load-on-demand strategy. To do so, the tile controller divides the x-axis into a number of
equal intervals called tiles. This operation is performed according to two parameters specified
in the controller constructor:

♦ The tile origin, which represents the minimum x-value of the first tile.

♦ The tile length, which represents the extent of a tile along the x-axis.

Each tile is represented by an instance of the IlvDataTile class. It is identified by a specific
integer that corresponds to its location relative to the tile origin.

Tiling of the Visible Range of a Chart illustrates the tiling of the visible range of a chart:

Tiling of the Visible Range of a Chart

Each time a tile becomes visible due to a change in the visible range of an x-axis, the tile
controller notifies the tile loader to fetch the data attached to this tile. Each loaded tile is
locked by the object that triggered the loading request, and unlocked by the same object
when data is no longer used. This ensures that the data actually displayed is kept in memory,
while the data that is no longer in the visible range of the chart is put in a cache for potential
reuse.

Each load-on-demand data set owns a tile controller. When these data sets are connected
to a chart, the load-on-demand mechanism is activated so that the changes in the visible
range of the x-axis of the considered chart are translated into loading requests (it is said
that load-on-demand is event-driven). This translation is performed by the axisRangeChanged
(ilog.views.chart.IlvAxis) method, whose default implementation is to request the
loading of tiles that intersect the new visible range of the corresponding axis. You can
override this method to pre-load neighboring data.

For example, a data set may expand the new visible range by a given factor before sending
the loading request, thus anticipating further scrolling or zooming.

Although tile loading is event-driven, you can also explicitly use the requestLoading(ilog.
views.chart.IlvDataInterval, java.lang.Object) method to load data for a given
x-interval. In the same way, the lock(java.lang.Object) and unlock(java.lang.Object)
methods let you manually lock or unlock tiles to prevent them from being released.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 307

The IlvDataTileController is the core class of the load-on-demand mechanism, while
IlvLODDataSet is the bridge to the chart data model. Each load-on-demand data set must
be created with its tile controller, as shown in the following code extract:

IlvDataTileLoader loader = ...;
IlvDataTileCache cache = ...;
double tileOrigin = 0;
double tileLength = 200;
int tileCapacity = 200;

IlvDataTileController ctrl
= new IlvDataTileController(loader, cache, tileOrigin,

tileLength, tileCapacity);

IlvLODDataSet dataSet = new IlvLODDataSet(ctrl);

The tileLength parameter represents the extent of a tile along the x-axis.

The tileOrigin parameter represents the minimum x-value of the first tile.

The tileCapacity parameter represents the maximum number of data points a tile can hold.
The controller uses this capacity to provide indexed access to data points through the data
set.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K308

The tile cache

The abstract class IlvDataTileCache specifies the methods that can be used to implement
a strategy for caching and releasing tiles. The API of this class is based on a callback model,
in which the controller invokes some methods when specific events occur. The following
methods are concerned:

♦ tileCached(ilog.views.chart.data.lod.IlvDataTile)

Called when the controller decides to put a tile in the cache.

♦ tileRetrieved(ilog.views.chart.data.lod.IlvDataTile)

Called when the controller wants to recover a tile.

♦ tileAboutToLoad(ilog.views.chart.data.lod.IlvDataTile)

Called when the controller has requested the loading of a tile.

The JViews Charts library provides a default cache implementation in the
IlvDefaultDataTileCache class. This class implements a memory-sensitive cache where
tiles are released whenever the application requires memory to be freed. You can control
the load of this cache by specifying minimum and maximum capacities. For more information
on the meaning of these capacities, please refer to the Reference Manual.

The IlvDefaultDataTileCache class tries to release tiles in a LRU (Least Recently
Used) order so that it first unloads the tiles that have been visited the least recently.

Note:

However, since the memory-sensitive part is based on an external mechanism, this
order may not always be verified.

Although this default cache implementation offers a good and ready-to-use solution in general
cases, you may still wish to subclass IlvDataTileCache and implement more efficient cache
strategies that take into account application-specific criteria for choosing when and which
tiles should be kept or released.

The tile loader
Just as IlvLODDataSet is the bridge between the load-on-demand mechanism and the chart
data model, the tile loader performs the connection between this mechanism and the actual
data. The IlvDataTileLoader interface specifies the methods needed for this connection.
The tile controller uses the tile loader as it uses the tile cache: methods are called when
specific events occur. The IlvDataTileLoader interface includes the following methods:

♦ load(ilog.views.chart.data.lod.IlvDataTile)

Called to load the contents of a new tile.

♦ release(ilog.views.chart.data.lod.IlvDataTile)

Called to release a tile.

♦ getXRange() and getYRange()

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 309

Returns the limits of the x- and y-values provided by the loader.

The process of loading a tile is usually divided into three main steps:

1. Fetch the data corresponding to the tile.

This operation is based on the x-range of the corresponding tile, which can be accessed
with the getRange() method.

2. Fill the tile with the data.

This operation is performed by means of the setData(ilog.views.chart.
IlvDoublePoints) method.

3. Notify the tile loader that loading is complete.

This last operation is performed by calling the loadComplete() method.

The load-on-demand framework does not contain any concrete implementation of the
IlvDataTileLoader interface, as such implementations depend on the origin of the data.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K310

How to listen to events

The load-on-demand mechanism generates events that describe changes in the status of
data tiles. Such events are sent by the tile controller and are implemented by the
DataTileEvent class. To be notified of these events, you can add a DataTileListener to
the corresponding controller by using the following code:

controller.addDataTileListener(new DataTileListener() {
public void dataTileChanged(DataTileEvent evt)
{
System.out.println(evt);

}
});

In this example, all the changes to the data tiles are printed to the standard output.

The generated events occur after the following actions:

♦ The loading of a tile starts or completes.

♦ A tile is added to or retrieved from the cache.

♦ A tile is released.

♦ An error occurred while loading a tile.

For a list of the event types related to each of these actions, please refer to the Reference
Manual.

The isAdjusting()method allows you to knowwhether an event is part of a series of several
other events (for example, changing the visible range of a chart can trigger several loading
events). This mechanism allows you to postpone event handling until the sequence ends.
When this happens, an ADJUSTMENT_END event is sent.

The file CachedTileListener.java of the load-on-demand example shows you how listeners
can be used to monitor changes in the cached status of data tiles.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 311

How to use LOD with your data

The data connection is performed by means of the IlvDataTileLoader interface.

The complete source file can be found in <installdir>/jviews-charts86/samples/lod/
src/lod/DataTileLoader.java.

The tile loader that you are going to consider must be in accordance with the following
specifications:

♦ Data is stored in a binary file. This file contains 32-bit integer records that represent the
y-values of the data points. The x-value of a data point is equal to its index in the file.

♦ The loading of the tiles must be performed in a separate thread.

♦ The loading can be interrupted.

First you need to study the data members of the loader class.

public class DataTileLoader implements IlvDataTileLoader
{

private IlvDataInterval xRange = new IlvDataInterval();
private IlvDataInterval yRange = new IlvDataInterval();
private LinkedList tileQueue = new LinkedList();
private File file;
private LoadThread loadThread;
private long lag;

♦ The xRange and yRange members are used to store the limits of the values provided by
the loader. These intervals are returned by the DataTileLoader.getXRange and
DataTileLoader.getYRange methods.

♦ The tileQueue list is used as a queue to hold tiles whose loading has been requested.

♦ The file attribute points to the file from which our loader will retrieve the data.

♦ The loadThread member references the thread that the loader will use to load the data.

♦ The lag attribute is used for demonstration purposes to simulate a lag in data loading
(the lag will correspond to a duration in milliseconds during which the loading thread
will sleep.)

The constructor of our loader has the following implementation:

public DataTileLoader(File file)
{
parseDataFile(file);
this.file = file;
loadThread = new LoadThread();
loadThread.start();

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K312

The LoadThread.parseDataFilemethod simply reads the data file contents to initialize the
xRange and yRange members. The constructor also spawns the loading thread.

private class LoadThread extends Thread {
RandomAccessFile rf = null;
IlvDataTile tile;
LoadThread()
{
super("TileLoadingThread");

}

The LoadThread class defines two data members:

♦ tile corresponds to the tile being currently processed by the thread.

♦ rf represents the RandomAccessFile instance that is used to retrieve data from the loader
data file.

The run method of this thread has the following implementation:

public void run()
{
while (true) {
try {
rf = null;

//==[1]==//
tile = popTile();
if (tile == null) continue;

//==[2]==//
rf = new RandomAccessFile(DataTileLoader.this.file, "r");

//==[3]==//
IlvDataInterval itv = tile.getRange();
long start = (long) Math.floor(itv.getMin());

if (start < 0) continue;
rf.seek(start*4);
int count = (int) itv.getLength()+1;
IlvDataPoints dataPts = new IlvDataPoints(count);

// ... Read the data from the file and fill dataPts.

//==[4]==//
tile.setData(dataPts);
dataPts.dispose();
tile.loadComplete();
tile = null;

//==[5]==//
} catch (InterruptedException e) {
// Can be because of cancelLoading.

} catch (IOException e) {

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 313

// Can be because of cancelLoading.
} finally {
// ... Close the file.

}
}

The run method of the thread consists of an infinite loop whose first instruction is to call
the popTile method of the loader ([1]):

private synchronized IlvDataTile popTile()
{
try {
while(tileQueue.size() == 0)
wait(); // Put loading thread in waiting state.

} catch (InterruptedException x) {
return null;

}
return (IlvDataTile) tileQueue.removeFirst();

}

Calling this method returns the first tile in the loading queue, or puts the thread into a
waiting state if no tile is available. Once the thread has retrieved the tile, a RandomAccessFile
object is created ([2]), and the range of the tile is used to read the corresponding data from
the file ([3]). Since the x-value of a data point corresponds to the record number, you can
easily determine the offset of the first relevant y-value within the file. Note that if x-values
were stored in the file, you should have used a more sophisticated algorithm such as a binary
search.

Finally, the read data is used to fill the tile, and the loadComplete() method is called to
notify that the loading is complete ([4]). This whole procedure can be interrupted with the
LoadingThread.cancelLoadingmethod, which interrupts the thread and closes the descriptor
on the data file. Both cases are handled in the run method so that it actually cancels the
loading of the current tile and resumes the loading process, without having to restart the
thread ([5]).

Now that you have seen how the loading thread works, you will look at the implementation
of the main methods of the IlvDataTileLoader interface, namely the load(ilog.views.
chart.data.lod.IlvDataTile) and release(ilog.views.chart.data.lod.IlvDataTile)
methods.

public synchronized void load(IlvDataTile tile) throws Exception
{
pushTile(tile);

}

private synchronized void pushTile(IlvDataTile tile)
{
tileQueue.addLast(tile);
if (tileQueue.size() == 1)
notify(); // Wake up loading thread.

}

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K314

The load(ilog.views.chart.data.lod.IlvDataTile) method simply appends the tile at
the end of the loading queue, and wakes up the loading thread if no tile was previously
available for processing (as you have seen in the description of the popTile method the
loading thread remains in a waiting state until a loading request is issued).

public synchronized void release(IlvDataTile tile)
{
if (loadThread.tile == tile) {
// The tile is currently processed
// by the loading thread: cancel.
loadThread.cancelLoading();

} else {
// Just remove the tile from the queue.
tileQueue.remove(tile);

}
tile.setData(null);

}

The release(ilog.views.chart.data.lod.IlvDataTile) method cancels the loading
request for a given tile, which can be either in the queue or currently being processed by
the thread.

In conclusion, it is possible to distinguish two main parts in our tile loader implementation:

♦ The actual data access, which in our case consists of randomly accessing the contents of
a file.

♦ The handling of loading requests and the threading technique, which provide an
asynchronous and interruptible mechanism.

The DataTileLoader class could be reused with a different data source. For example, data
could be retrieved with database queries instead of file access. Also, the implementation of
the loading queue could be improved so that it takes into account priorities, instead of
following a First-In-First-Out policy.

This implementation highlights twomain concerns that should be kept inmind while designing
a tile loader:

♦ Since load-on-demand is event-driven, the loading of tiles must be threaded so that it
does not hinder the remainder of the application.

♦ In order to be efficient, a tile loader must be able to quickly retrieve the data associated
with a given tile. This usually means it is possible either to have random access to data
or to issue requests that are processed by smart back-end programs, such as database
servers.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 315

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K316

Using JViews Charts JavaBeans

Describes the IlvChart bean, the data source beans and how to use the JavaBeans™ with
an IDE.

In this section

The IlvChart bean
Describes the properties defined by the IlvChart bean, in addition to the inherited
JComponent properties.

Data source beans
Describes the two default data source beans provided with the JViews Charts library.

Using the JavaBeans with an IDE
Shows the different steps required to create a simple application using the JavaBeans
provided in the library, without writing a line of code.

© Copyright IBM Corp. 1987, 2009 317

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K318

The IlvChart bean

Describes the properties defined by the IlvChart bean, in addition to the inherited
JComponent properties.

In this section

General properties
Describes the chart general properties.

Legend properties
Describes the legend properties.

Axis properties
Describes the axis properties.

Scale properties
Describes the scale properties.

Graphical representation properties
Describes the graphical representation properties.

Interaction Properties
Describes the interaction properties.

Data properties
Describes the data properties.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 319

General properties

Default valueDescriptionProperty

trueControls the abscissa grid visibilityxGridVisible

trueControls the ordinate grid visibilityyGridVisible

emptyThe text to display on top of the chart areaheader

emptyThe text to display at the bottom of the chart areafooter

falseControls the antialiasing mode inside the chart areaantiAliasing

falseControls the antialiasing mode of text inside the chart areaantiAliasingText

nullThe border to set on the chart area componentchartAreaBorder

whiteThe background color of the plot areaplotAreaBackground

Grid visibility
The xGridVisible and yGridVisible properties indicate whether the abscissa grid or the
ordinate grid should be drawn. A grid is drawn below the graphical representations of the
data, and match the major steps location of their associated scale. By default, both grids
are visible.

Grid Visibility shows a chart with a hidden abscissa grid, and a visible ordinate grid:

Grid Visibility

Header and footer text
The header and footer properties indicate that a text can be displayed on top of the chart
area, and at the bottom of the chart area, respectively. This string can be expressed as
simple text or as HTML text. By default, these properties are set to an empty string.

Header and Footer shows a chart with the header property set to “The main Title” and the
footer property set to “A subtitle”:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K320

Header and Footer

Antialiasing modes
The antialiasing mechanism allows you to have a nice display rendering by reducing stair
effects on the display area. The IlvChart bean supports two antialiasing modes by means
of two properties:

♦ antiAliasing

Controls the rendering quality of all the drawings performed within the chart area, except
text drawings.

♦ antiAliasingText

Controls the rendering quality of all the text drawings performed within the chart area.

Since the antialiasingmechanismmay be a time-consuming process, both modes are disabled
by default.

Antialiasing shows two charts: the first one has the antiAliasing property set to false,
the second one has the antiAliasing property set to true:

Antialiasing

Chart area border
The IlvChart bean allows you to apply a javax.swing.Border instance of the chart area
component by means of the chartAreaBorder property. By default, no border is set.

A Line Border Instance shows a chart area with a LineBorder instance:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 321

A Line Border Instance

Plotting area background
The plotting area is defined as the region where data is projected and displayed. The bounds
of this rectangle are computed according to the drawing rectangle (the chart area bounds
minus its internal insets) and the chart area internal margins.

The plotAreaBackground property describes the background color of this plotting rectangle,
and is set to white by default.

Plotting Area Background shows two charts with a plotting area background color set to
"255, 245, 235":

Plotting Area Background

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K322

Legend properties

Default valueDescriptionProperty

falseControls the legend visibilitylegendVisible

NorthControls the legend position within the chartlegendPosition

Legend visibility
The IlvChart bean may be associated with a legend to display information about the drawn
data. When this legend is enabled, all the graphical representations displayed within the
chart have a corresponding legend item.

The legend is activated by means of the legendVisibility property, and is disabled by
default.

Legend position
The chart legend is displayed at predefined positions within the chart around the chart area.
These anchor positions are defined relative to the chart area, and the possible values are:
North, North West, West, South West, South, South East, East, and North East.

The legend anchor position is defined by the legendPosition property, and is set to North
by default.

Legend shows a chart with a legendVisible property set to true and the legendPosition
property set to North:

Legend

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 323

Axis properties

Default ValueDescriptionProperty

falseControls the projector configurationprojectorReversed

falseControls the abscissa axis orientationxAxisReversed

falseControls the ordinate axis orientationyAxisReversed

Axis configuration
The IlvChart beans allow you to customize the chart axis configuration by means of three
different properties that work together to define the coordinate system configuration:

♦ projectorReversed

Allows you to change the meaning of the abscissa and ordinate coordinates of a point.
For example, a reversed Cartesian projector will project x-data values along the y-axis of
the screen.

♦ xAxisReversed

Allows you to change the orientation of the x-axis.

♦ yAxisReversed

Allows you to change the orientation of the y-axis.

The combination of these three properties determines the full configuration of the chart
coordinate system.

Axis shows the possible configurations and their results:

Axis

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K324

Scale properties

Default valueDescriptionProperty

trueControls the abscissa scale visibilityxScaleVisible

trueControls the ordinate scale visibilityyScaleVisible

noneDefines the abscissa scale titlexScaleTitle

noneDefines the ordinate scale titleyScaleTitle

0Defines the abscissa scale title rotationxScaleTitleRotation

0Defines the ordinate scale title rotationyScaleTitleRotation

Scales visibility
A scale is defined as the graphical representation of an axis. Scale objects are directly
handled by the IlvChart bean that creates one scale per axis.

The visibility of the chart scales is controlled by means of the xScaleVisible and
yScaleVisible properties. By default, both x- and y-scales are visible.

Scales Visibility shows a chart with the hidden scales:

Scales Visibility

Scales title
The IlvChart bean allows you to associate a title with each scale of the chart. A scale title
is defined by the following elements:

♦ the text

Displayed through the xScaleTitle and yScaleTitle properties that are initialized to
an empty string by default.

♦ a rotation angle

Defined through the xScaleTitleRotation and yScaleTitleRotation properties that
are initialized to 0.

Scales Title shows a chart with the xScaleTitle property set to “X Scale”, the yScaleTitle
set to “Y Scale”, and the yScaleTitleRotation property set to -90:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 325

Scales Title

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K326

Graphical representation properties

Default valueDescriptionProperty

CartesianDefines the chart typetype

PolylineDefines the type of the graphical representation of a data modelrenderingType

To determine how a data model is rendered on the screen, the IlvChart beans define the
following two properties:

♦ type

Determines how data is projected (using either a Cartesian or polar projection). The
possible values are: Cartesian, Polar, Radar, and Pie.

Chart Types shows the possible values of the type property:

Chart Types

♦ renderingType

defines the graphical representation of a data model (as polylines, bars, stairs, and so
on.). The possible values are: Bar, Stacked Bar, SuperimposedBar, Area, Stacked Area,
Polyline, Scatter, Stair, and Pie.

The Pie Renderer type is essentially used with a Pie chart.Note:

Renderers shows the Cartesian charts with the different graphical representations:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 327

Renderers

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K328

Interaction Properties

Default valueDescriptionProperty

noneDefines the possible interactions that are handled by this chart beaninteractors

noneDefines the scroll bar associated with the x-axisxScrollBar

Interactor properties
The JViews Charts library provides a built-in mechanism to handle the user’s interactions
on an IlvChart bean. User’s interactions are performed by means of objects called
interactors.

The interactors define atomic behaviors (like zooming or panning) that can be combined to
achieve complex interactions.

Interactors are handled by an IlvChart bean by means of the interactors property, defined
as an array of interactors.

The predefined interactors available to the IlvChart bean are: Zoom, Information-View,
Pan, Highlight-Point, X-Scroll, Y-Scroll, Edit-Point, Action, and 3DView.

For more information on these interactors, you can refer to Interacting With Charts.

xScrollBar property
The xScrollBar property allows you to connect a JScrollBar object to the x-axis of an
IlvChart bean. Once connected to an IlvChart bean, the scroll bar is able to scroll the
visible range of the chart, and is updated following any modifications of the visible range.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 329

Data properties

You can import data in an IlvChart by means of a data source. A data source is an object
that holds the data sets to be displayed in a chart. An IlvChart bean is connected to a data
model through its data source property.

You can find more information on the data model architecture in Using the Data Model.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K330

Data source beans

Describes the two default data source beans provided with the JViews Charts library.

In this section

The IlvXMLDataSource bean
Describes the IlvXMLDataSource bean.

The IlvJDBCDataSource bean
Describes the IlvJDBCDataSource bean.

The IlvSwingTableDataSource
Describes the IlvSwingTableDataSource class.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 331

The IlvXMLDataSource bean

The IlvXMLDataSource bean allows you to import data from an XML file, and to display it
in an IlvChart bean. The data file should be conform with the JViews Charts DTD as defined
in Using the Data Model.

Default valueDescriptionProperty

noneThe URL of the data filefilename

The location of the XML file to load is defined by the filename property. The location can
be expressed either as a file name or as a URL.

You can find more information in XML File Format in Using the Designer.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K332

The IlvJDBCDataSource bean

The IlvJDBCDataSource bean allows you to import a data model from a database using the
JDBC API.

You can find more information on the JDBC API at http://java.sun.com/jdbc.

The IlvJDBCDataSource bean is configured according to an initialization string defined by
means of a dedicated property editor. The property editor is accessible by editing the data
source connectionParams property in your IDE, and appears as in JDBC Editor:

JDBC Editor

General properties

Default valueDescriptionProperty

noneThe database URL of the form jdbc:subprotocol:subnamedatabaseURL

noneThe full class name of the JDBC DriverdriverClassname

noneThe database useruser

noneThe user’s passwordpassword

noneThe SQL query to executequery

-1The x-series column index in the queryxSeriesIndex

-1The index of the data labels column in the querydataLabelsIndex

Connection parameters
The connection to the database is performed by a JDBC driver that requires specific
information to connect to the database. This information is defined by the following
properties:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 333

http://java.sun.com/jdbc

♦ databaseURL

Identifies the data source as a JDBC URL. A JDBC URL is used to find the appropriate
driver able to establish the connection. This URL is of the form
jdbc:subprotocol:subname, where <subprotocol> is the name of a database connectivity
mechanism and <subname> a database vendor-dependent parameter used to identify the
data source. For example, a JDBC URL for an Oracle database using the Oracle JDBC
thin driver looks like:

jdbc:oracle:thin:@myserver:1521:mydatabase

Please refer to your database documentation for more information on how to open a
connection using JDBC.

♦ driverClassname

Defines the full class name of the JDBC driver to use, for example oracle.jdbc.driver.
OracleDriver.

♦ user

Defines the database user who opens the connection.

♦ password

Defines the user’s password.

Data sets parameters
Data sets are built from a ResultSet resulting from the execution of a query. Once the query
has been executed, the result set is parsed, and data is extracted to initialize the
corresponding data sets.

The following properties are involved in the data set creation:

♦ query

Defines the query to execute, expressed as an SQL statement.

♦ xSeriesIndex

Specifies the index of the column in the result set that contains x-values.

Depending on your data, you may or may not have defined specific x-series for the data
points. If you do not specify any x-series, then the index of the data points in their data
set is used. By default, no x-series column is specified, and the property is set to -1.

♦ dataLabelsIndex

Specifies the index of the column in the result set that contains data labels. By default,
no data label column is specified and the property is set to -1.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K334

The IlvSwingTableDataSource

The IlvSwingTableDataSource allows you to import data from a Swing table model (instance
of javax.swing.TableModel) and to display it in an IlvChart bean.

To be properly imported, a table model must contain data whose type is compatible
with the supported data type.

Note:

Refer to the section Data Source Classes for more information on the supported data type.

Default valueDescriptionProperty

-1The index of the data labels column in the table model.dataLabelsIndex

COLUMNThe type of the series order (by rows or by columns).seriesType

nullThe javax.swing.TableModel instance to attach.tableModel

-1The x-series column index in the table model.xSeriesIndex

TableModel parameters
To determine how a TableModel is imported as a chart data model, the
IlvSwingTableDataSource defines the following properties:

♦ tableModel: Defines the javax.swing.TableModel instance to connect.

♦ seriesType: Defines the type of the series. The IlvSwingTableDataSource supports two
types of series ordering: by columns or by rows.

Data sets parameter
Once a table model has been connected to an IlvSwingTableDataSource, the corresponding
data sets are created and initialized according to the following properties:

♦ dataLabelsIndex: Specifies the index of the column in the result set that contains data
labels. By default, no data label column is specified and the property is set to -1.

♦ xSeriesIndex: Specifies the index of the column in the result set that contains x-values.

Depending on your data, you may or may not have defined specific x-series for the data
points. If you do not specify any x-series, then the index of the data points in their data set
is used. By default, no x-series column is specified, and the property is set to -1.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 335

Using the JavaBeans with an IDE

The application loads the data from an XML data file, and displays it in a Cartesian chart
by means of an area renderer. The zooming and panning support will also be added to allow
the user’s interaction on the chart.

In this section it is assumed that:

♦ You have successfully added the JViews Charts JavaBean to your IDE.

For more information on installing new JavaBeans in the IDE, refer to the documentation
of your IDE.

♦ The IDE is configured to use the JViews Charts library. In particular, this example requires
that the JAXP library (jaxp.jar and crimson.jar) is accessible.

♦ You are familiar with the manipulation of JavaBeans.

The following example is developed using Borland® JBuilder® . For other IDEs the
procedures are the same.

For clarity, the project creation step has been ignored, which is too IDE-dependent.

Loading the data model.
1. Display the JViews Charts beans on the beans toolbar.

2. Click the IlvXMLDataSource bean icon , and add it to your project.

This component is a non-GUI JavaBean, and it should not appear in the GUI design
interface.

3. Select the data source bean, and edit the filename property to enter the data file
location.

For this example, the file can be found in <installdir>/jviews-charts86/samples/
basic/webpages/data.xml.

At this time, the data source has loaded the data from the XML data file.

Creating the chart.
1. Check that the main frame of the application has a BorderLayout instance as layout

manager.

2. Display the JViews Charts beans on the toolbar .

3. Click the IlvChart bean icon, and then click inside the main frame of your application.

At this point, an IlvChart bean instance is created and displayed inside the frame
(Note that a default data model is created at design time).

4. Check that the IlvChart bean is added to the frame with the CENTER constraint.

The main frame of our application should appear as in Beans (1) (since data is created
randomly, the data model may differ).

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K336

Beans (1)

Connecting the data source.

♦ Select the IlvChart beans in your frame, and edit the datasource property to select
the instance of the IlvXMLDataSource you have just created.

The chart displays the data model contained in the data source, and appears as in
Beans (2):

Beans (2)

Configuring the chart.
Now that the IlvChart is created, you are going to modify its appearance as follows:

♦ Represent the data model by means of an area renderer.

♦ Activate/enable the antialiasing mode.

♦ Add a legend on top of the chart area.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 337

♦ Add support for zooming and panning the user’s interactions.

♦ Add a title to our chart.

♦ Add a horizontal scroll bar to our frame to be able to scroll the visible range of the chart
in addition to the pan interactor.

1. From the property list, edit the renderingType property and choose STACKED_AREA in
the combo box.

Beans (3)

The IlvChart appears now with area renderers.

Beans (4)

2. Set the antiAliasing property to true.

3. Set the legendVisible property to true.

4. From the property list, click the Interactors editor property (usually accessible by
clicking a “...” button).

5. In the Interactors property editor, add the Zoom and Pan interactors:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K338

Beans (5)

6. Set the header property to “A simple Chart application”.

7. From the Swing component palette of your IDE, select a JScrollBar and add it to the
frame with a SOUTH layout constraint.

8. Select the scroll bar bean, and set its orientation property to HORIZONTAL.

9. Select the chart bean, and edit its XScrollBar property to select the scroll bar instance
that you have just created.

Our application is now completed and ready to be run. The frame should appear as follows:

Beans (6)

Check that all the required Java™ libraries have been added to the project class path,
compile the project, and run it.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 339

Using JViews products in Eclipse RCP applications

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic shows you how to display
charts embedded in an SWT window.

Installing the JViews runtime plugin
IBM® ILOG® JViews Charts provides jar files in the form of a pre-packaged Eclipse plugin.
The name of this package is ilog.views.eclipse.chart.runtime.

In order to install the IBM® ILOG® JViews Eclipse plugins, you need to install from the
local site as shown below.

For Eclipse 3.3:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates/Find And Install.

3. In the Install/Update dialog box, click Search for new features to install.

4. Define a New Local Site with the directory <installdir>/jviews-framework86/tools/
ilog.views.eclipse.update.site.

5. Select the features you want to install.

For Eclipse 3.4:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates and select the Available Software tab.

3. Add a new local site: ClickAdd Site, then Local and specify the directory <installdir>/
jviews-framework86/tools/ilog.views.eclipse.update.site

4. Select the features you want to install, and press the Install button.

This installation also installs some examples. See Installing and using Eclipse samples for
more information.

In your applications, you need the ilog.views.eclipse.chart.runtime plugin and its
dependencies:

♦ ilog.views.eclipse.chart.runtime

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

Providing access to class loaders
Many services in JViews need to look up a resource. Since the classical way to provide access
to resources is a classloader, JViews uses classloaders for this purpose. But in Eclipse/RCP
applications, each plugin corresponds to a classloader, and the JViews classloader sees only
its own resources, not the application resources. To fix this problem, you can register plugin

© Copyright IBM Corp. 1987, 2009340

classloaders with JViews through the IlvClassLoaderUtil.registerClassLoader function.
Each resource lookup then considers the registered classloaders and, if the plugins are
configured accordingly, also considers the dependencies of the registered classloaders.

The code for doing this is usually located in a plugin activator class. For example:

public class MyPluginActivator extends AbstractUIPlugin
{

/**
* This method is called upon plugin activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
IlvClassLoaderUtil.registerClassLoader(getClass().getClassLoader());

}

/**
* This method is called when the plugin is stopped
*/
public void stop(BundleContext context) throws Exception {
super.stop(context);
IlvClassLoaderUtil.unregisterClassLoader(getClass().getClassLoader());

}

}

The overriding of stop() is necessary so that, when the plugin gets unloaded, JViews gets
notified about the plugin that is going to stop and can drop references to its resources or
instances of its classes. The activator plugin is usually also the place where IlvProductUtil.
registerApplication is called. See section Before you start deploying an application for
an example.

The bridge between AWT/Swing and SWT
The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse development
environment and the Eclipse Rich Client Platform (RCP).

JViews provides an IlvSwingControl class that encapsulates a Swing JComponent in an
SWT widget. It allows you to use IlvChart or IlvLegend objects in an SWT window, together
with other SWT or JFace controls. In this way, it provides a bridge between the AWT/Swing
windowing system and the SWT windowing system.

The following code shows how to create a bridge object:

Composite parent = ...;
IlvChart chart = new IlvChart();
ControlSWTchart = new IlvSwingControl(parent, SWT.NONE, chart);

Using IlvSwingControl instead of the native SWT_AWT class has the following benefits:

♦ Simplicity: it is easier to use, since you do not have to worry about the details of the
Component hierarchy (see http://java.sun.com/javase/6/docs/api/java/awt/Component.html).

♦ Portability: IlvSwingControl also works on platforms that do not have SWT_AWT, like
X11/Motif® and MacOS® X 10.4.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 341

http://java.sun.com/javase/6/docs/api/java/awt/Component.html

♦ Less flickering: on Linux®/Gtk, flickering is reduced.

♦ Popup menus: popup menus can be positioned on each Component inside the AWT
component hierarchy. For details of components, see
http://java.sun.com/javase/6/docs/api/java/awt/Component.html.

♦ Better size management: the size management between SWT and AWT (LayoutManager)
is integrated.

♦ Focus: it provides a workaround for a focus problem onMicrosoft®Windows® platforms.

The IlvSwingControl bridge is not supported on all platforms. It is only supported
on Windows, UNIX® with X11 (Linux, Solaris™, AIX®, HP-UX®), and MacOS X 10.4
or later.

Note:

The IlvSwingControl bridge does not support arbitrary JComponents. Essentially,
components that provide text editing are not supported. See IlvSwingControl for
a precise description of the limitations.

Threading modes
You can handle the SWT-Swing user interface events in one or two threads.

Single-thread mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal JInternalFrames

Note:

in your application. There are also some other limitations. See the class
IlvEventThreadUtil for a precise description of the limitations.

♦ Two-thread mode

The SWT events are handled in the SWT event thread and AWT/Swing events are handled
in the AWT/Swing event thread. This is the default mode.

You can switch between the two threads by using the SWT method Display.asyncExec
() and the AWT method EventQueue.invokeLater().

If your application uses this mode, you must be careful to:

● Make API calls on SWT widgets only in the SWT event thread. Otherwise, you will get
SWTExceptions of type ERROR_THREAD_INVALID_ACCESS.

● Make API calls on JComponents, which include IlvChart and IlvLegend, only in the
AWT/Swing event thread. Otherwise, you risk deadlocks.

You can switch between the two threads by using the SWTmethod Display.asyncExec
() and the AWT method EventQueue.invokeLater().

♦ Single-thread mode

In single-thread mode, SWT and AWT/Swing events are handled in the same thread.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K342

http://java.sun.com/javase/6/docs/api/java/awt/Component.html

Single-thread mode reduces the risk of producing deadlocks.

Enable this mode by calling setAWTThreadRedirect or enableAWTThreadRedirect()
early during initialization.

The following example shows how to enable single-thread mode:

// Switch single-event-thread mode during a static initialization.
static {

IlvEventThreadUtil.enableAWTThreadRedirect();
}

This mode reduces the risk of producing deadlocks. If you are using JComponents other
than IlvChart and IlvLegend in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() or SwingUtilities.
isEventDispatchThread().

This mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal JInternalFrames

Note:

in your application. There are also some other limitations. See the class
IlvEventThreadUtil for a precise description of the limitations.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 343

http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K344

Printing

Describes how to print charts in two different modes: in a flow and with a custom document
structure.

In this section

Printing a chart in a flow
Describes how to print IlvChart objects in a printing flow that contains other printable
objects. This mode supports complex page format (paragraph alignment, local fonts, and so
on) and is particularly well suited for reporting.

Printing a chart with a custom document structure
Describes how to print an IlvChart with optional additional objects in a document (single
or multipage) but without the automatic formatting capabilities that the flow mode offers.

© Copyright IBM Corp. 1987, 2009 345

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K346

Printing a chart in a flow

Describes how to print IlvChart objects in a printing flow that contains other printable
objects. This mode supports complex page format (paragraph alignment, local fonts, and so
on) and is particularly well suited for reporting.

In this section

Flow
Introduces the concept of flow.

The IlvChartFlowObject class
Describes the features available through the IlvChartFlowObject class.

Printing a chart in a flow
Shows how to create a printing flow, mixing charts and text.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 347

Flow

A flow consists of a list of printable objects of different types (text, charts, manager, and so
on) that are printed sequentially in a document.

Flow objects are instances of the ilog.views.util.print.IlvFlow class and are directly
obtained from the printable document by means of the getFlow() method.

There is only one flow per document.Note:

A flow object is responsible for creating the document pages and defining their layout by
positioning the printable object according to the pages, paragraphs, and text formats defined
in the flow.

Creating a flow involves the following steps:

1. Ccreate a document and a printing controller.

2. Get the document flow object using the IlvPrintableDocument.getFlow method.

3. Add the printable objects to the flow using the appropriate IlvFlow.add methods.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K348

The IlvChartFlowObject class

The printing of an IlvChart in a flow is performed by a specialized printable object, which
is an instance of the IlvChartFlowObject class.

This class allows you to specify the size of a printed chart in two different ways:

♦ As a fixed size in paper coordinates.

The fixed size must be expressed in the page coordinate system. It is specified as an ilog.
views.util.print.IlvUnit.Dimension object and might be of any units supported by
the IlvUnit class.

For example, the following code prints an IlvChart, which is 7 cm wide and 5 cm high:

IlvChartFlowObject flowChart =
new IlvChartFlowObject(chart,

new IlvUnit.Dimension(7,5, IlvUnit.CM);

♦ As a percentage of the page dimensions.

In this mode, one dimension is specified as a percentage of the corresponding page
dimension, while the other one is automatically computed according to a specified aspect
ratio. You can specify the size either in the constructor or by means of the
setPercentWidth(int, float) and setPercentHeight(int, float) methods.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 349

Printing a chart in a flow

The complete source code of this example can be found in <installdir>/jviews-charts86/
codefragments/chart/printing/src/PrintFlowExample.java.

Only the code related to the printing is shown.Note:

Creating the document and the printing controller.

♦ Use the following code:

IlvChart chart = ...;
IlvPrintableDocument document =

new IlvPrintableDocument("ChartInFlow");
IlvPrintingController controller =

new IlvPrintingController(document);

Constructing the flow.

♦ Get the flow object of the document you have just created:

IlvFlow flow = document.getFlow();

Populate it.
1. Add a title, with a center alignment.

IlvFlow.TextStyle style = new IlvFlow.TextStyle();
style.setAlignment(IlvFlow.TextStyle.CENTER_ALIGNMENT);
style.setFont(new Font("Dialog", Font.PLAIN, 20));
flow.setTextStyle(style);
flow.add("A Chart in a Flow");

2. Add a chart in a new paragraph.

Its size will take 60% of the page width, with an aspect ratio between the width and
height equal to 0.75:

flow.newLine();
IlvChartFlowObject printChart =

new IlvChartFlowObject(chart, flow, 60, 0, .75f);
flow.add(printChart, IlvFlow.BOTTOM_ALIGNMENT);

3. Add text below the chart as a new paragraph, left justified.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K350

style.setAlignment(IlvFlow.TextStyle.LEFT_ALIGNMENT);
style.setFont(new Font("Dialog", Font.PLAIN, 12));
flow.setTextStyle(style);
flow.newLine();
String text = ...;
flow.add(text);

4. Add a new paragraph containing a chart and text on the same line.

The chart is 6 cm wide and 5 cm high, centered vertically on the text baseline.

style.setFont(new Font("Dialog", Font.PLAIN, 10));
flow.setTextStyle(style);
flow.newLine();
text = ...;
flow.add(text);
printChart =
new IlvChartFlowObject(chart, flow, new IlvUnit.Dimension(6,5, IlvUnit.

CM));
flow.add(printChart, IlvFlow.CENTER_BASELINE);

Here is a picture showing the final result:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 351

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K352

Printing a chart with a custom document
structure

Describes how to print an IlvChart with optional additional objects in a document (single
or multipage) but without the automatic formatting capabilities that the flow mode offers.

In this section

The classes involved
Describes the classes involved for printing a chart with a custom document structure.

How it works
Describes how the printing task is initiated and processed by an
IlvChartPrintingController instance.

Customizing the printing of a chart
Describes how to add additional printable objects to a page, and how to control the layout
of the printable objects in a page.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 353

The classes involved

As opposed to the flow printing mode, where both the document and the printing controller
were instances of generic classes of the ilog.views.util.print package, the custommode
requires specialized subclasses to handle specific chart properties. These classes are:

♦ A chart printing controller, instance of the IlvChartPrintingController class.

♦ A chart printable document, instance of the IlvChartPrintableDocument class.

♦ A chart printable object, instance of the IlvPrintableChart class.

The Classes Involved When Printing a Chart

The IlvChartPrintingController class
The printing controller controls the printing process. It initiates the printer job, handles the
setup and the preview dialog boxes, and configures the document accordingly.

The IlvChartPrintableDocument class
The printable document stores the printed document structure and defines a set of parameters
to customize the printing (the printed data window, the part of the chart to be printed, how
the chart fits on the page, and so on). It is responsible for creating and populating the pages.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K354

The following table lists the IlvChartPrintableDocument properties.

Default ValueMethodsProperty

getDataWindowPrinted data window

setDataWindow

getMultiPageCountNumber of pages (for multipage document)

setMultiPageCount

falsegetRepeatTitleRepeat x-scale title on all pages

setRepeatTitle

falsegetRepeatYScalesRepeat y-scales on all pages

setRepeatYScales

FIT_TO_DIMENSIONgetResizeModeResize mode

setResizeMode

XMID_YMIDgetScalingAlignmentScaling Alignment

setScalingAlignment

MEDIUM_RESOLUTIONgetResolutionScaleFactorResolution scale factor

setResolutionScaleFactor

isPrintingChartPrinted component

setPrintingChart

Printed Data Window
This property specifies the data window to print. By default, the printed data window
corresponds to the data range of the chart default coordinate system.

Number of Pages for Multipage Document
The JViews Charts printing framework provides support for multipage printing through the
multiPageCount property.

A multipage printing consists of dividing the x-range of the printed data window in successive
intervals with respect to the number of pages. You can change the way the data window of
a page is computed by overriding the computeDataWindow(int, int) method.

Repeat X-Scale Title on all Pages
When the x-scale title placement is other than 0 or 100 (that is, the axis extremities), this
property sets whether the title has to be printed on each page of the document.

Repeat Y-Scales on all Pages
This property sets whether y-scales with a minimum or maximum crossing value (that is,
positioned on the axis extremities) need to be printed on each page of the document.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 355

Resize Mode
To determine the printed chart size, the IlvChartPrintableDocument defines two resizing
modes:

♦ Fit to the dimension of the printable area.

The chart is expanded to fill the printable area in both dimensions. The original proportions
between the chart objects are not preserved. This mode corresponds to the
IlvChartPrintableDocument.FIT_TO_DIMENSION constant.

♦ Scale to the dimension of the printable area.

The chart is expanded in both dimensions proportionally, until the nearest page margins
are reached. The original proportions between the chart objects are preserved. This mode
corresponds to the IlvChartPrintableDocument.SCALE_TO_DIMENSION constant.

The following figure illustrates the result of these two modes:

Scaling Alignment
When the resize mode property is set to SCALE_TO_DIMENSION, the scalingAlignment
property indicates the method to use when the aspect ratio of the chart does not match the
aspect ratio of the printable area. The following figure shows the result for the different
values depending on the destination printable area. The default value is XMID_YMID, that is,
the chart is centered within the printable area.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K356

Scaling Alignment

Resolution Scale Factor
Because the printer resolution is usually higher than the screen resolution, there may be
some discrepancies between the screen appearance and the printing result. This is
particularly true for labels, whose font size may not be adapted for printing. To reduce this
effect, an additional scale transform may be applied on the printing graphics context when
drawing the chart area.

There are three predefined resolution scale factors:

♦ High (IlvChartPrintableDocument.HIGH_RESOLUTION)

♦ Medium (IlvChartPrintableDocument.MEDIUM_RESOLUTION)

♦ Low (IlvChartPrintableDocument.IDENTITY_RESOLUTION)

where the low resolution scale factor is the identity transform.

The default value is Medium.

Printed Component
This property defines which chart, or chart area, is printed. Printing a chart means that all
the components added to an IlvChart object will be printed. This includes the header, the
footer, and the legend. Conversely, printing only the chart area means that all the other
chart components, including the legend, will be ignored.

The default value is true. This means that the whole chart is printed.

All these properties are also accessible in the Chart Setup tab of the Page Setup dialog
box.

Note:

The IlvPrintableChart class
The printable object prints the IlvChartwithin a region of the printable area of an IlvPage.
The resizeMode document property determines how the chart fills the region.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 357

How it works

This can be done either:

♦ by code

using the print(boolean) method,

or

♦ from a GUI request

using the setup or preview dialog box, by means of the printPreview(java.awt.Window)
and setupDialog(java.awt.Window, boolean, boolean) methods.

When a printing task is initiated, the document associated with the printing controller is
prepared for printing: the pages are initialized with the printable objects and added to the
document.

Handling pages
The pages of a chart document are instances of the IlvPage class. They handle a collection
of printable objects, instances of IlvPrintableObject.

Populating a page
The pages are created in an IlvChartPrintableDocument by means of the createPages()
factory method. By default, a page contains one IlvPrintableChart. If you want to add
additional printable objects to the page, you may override the createPages method.

For example, assume that you want to add a border on the page. The ilog.views.util.
print package provides the IlvPrintableRectangle class to print a rectangle. What you
have to do is to add such an object to the page after the chart has been added, by subclassing
IlvChartPrintableDocument and overriding the createPages method to add an instance
of IlvPrintableRectangle.

The code is:

class MyChartDocument extends IlvChartPrintableDocument {
protected IlvPage[] createPages() {
IlvPage[] pages = super.createPages();
for (int i=0 ; i<pages.length ; ++page)
pages[i].addPrintableObject(new IlvPrintableRectangle(getImageableBounds

()));
return pages;

}
}

First invoke the method of the mother class, so that the chart is added in the first position.
Then, add a new instance of IlvPrintableRectangle to each page.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K358

Computing the data window of a page
As mentioned in Number of Pages for Multipage Document, a chart can be printed as a
multipage document. Such a document creates as many pages as specified, and divides the
data window to print into as many successive data windows. Each page prints its
corresponding data window. By default, the splitting is performed along the data window
x-range, with a y-range equal to the printed data window y-range. This computation is done
in the computeDataWindow method, which you can override to apply your own policy.

Printing the chart: the printing context
An IlvChartPrintableDocument prints, in an IlvPage, a given data window of the data
model of an IlvChart, as it would be displayed by this chart.

To avoid affecting the appearance of the printed chart by modifying its configuration, the
JViews Charts printing framework introduces the concept of printing context through the
abstract IlvChartPrintContext class. The purpose of a printing context is to define a
drawing configuration for a chart, independent of its current state. There is one printing
context per printable chart, and each context defines the printing of each page.

Mainly, a chart context defines:

♦ the print range of a given axis,

♦ the visibility of the drawable objects of the printed chart,

♦ the visibility of the title of a scale.

The print range of each axis of a chart is handled by the abstract getRange(int) method.
This method returns the range to print for a specified axis, and a default implementation is
provided by the IlvDefaultChartPrintContext class. The default policy returns the
corresponding range of the printed data window of the current page (see the section
Computing the data window of a page) for the default coordinate system axis and the data
range of the axis for other coordinate systems.

The visibility of the chart drawable objects during a printing may be defined independently
of the current chart state bymeans of the isVisible(ilog.views.chart.IlvChartDrawable)
method. The default policy takes care of only y-scales, their visibility depending on the value
of the document repeatYScales property and on the scales anchor.

Finally, the scale title visibility is checked using the isTitleVisible(ilog.views.chart.
IlvScale)method. The default implementation takes care of only the x-scale title, checking
whether the title must be repeated on each scale according to the title placement along the
axis and to the document settings.

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 359

Customizing the printing of a chart

This example is extracted from the tablemodel demo. You can find the complete source
code of this example in <installdir>/jviews-charts86/samples/tablemodel/src/
tablemodel/TableModelDemo.java.

Only the code related to the printing is shown.Note:

The requirements are:

♦ a title at the top of the page,

♦ a chart in the top-middle part of the page,

♦ the table at the bottom middle part of the page.

The title is printed using an IlvPrintableLabel object. This object is added to the top of
the page, centered horizontally.

The chart is printed using an IlvPrintableChart. It fills horizontally the printable area of
the page, and extends vertically half of the printable area height of the page.

Finally, the table is rendered in two parts: first the header, using an
IlvPrintableTableHeader and the table itself, using an IlvPrintableTable.

Creating the document class.

♦ Use the following code:

public class TablePrintableDocument extends IlvChartPrintableDocument
{

private JTable table;

public TablePrintableDocument(String name,
JTable table,
IlvChart chart)

{
super("test_chart",

chart,
false,
1,
false,

new IlvDataWindow(chart.getXAxis().getDataRange(),
chart.getYAxis(0).getDataRange()),

new PageFormat());
this.table = table;
// Initialize the page format.
getPageFormat().setPaper(new Paper());
getPageFormat().setOrientation(PageFormat.LANDSCAPE);

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K360

}
}

Populating the document pages with the label and the table.
1. Add additional objects to a page of a document by overriding the createPages()

method:

protected IlvPage[] createPages()
{
IlvPage[] allPages = super.createPages();
IlvUnit.Rectangle pageArea = getImageableBounds();
for (int i=0; i<allPages.length; ++i) {
IlvPage page = allPages[i];
...

}
return allPages;

}

2. Add a printable label, placed at the top of the chart and centered horizontally:

for (int i=0; i<allPages.length; ++i) {
IlvPage page = allPages[i];
if (title != null) {
IlvPrintableLabel prnLabel = new IlvPrintableLabel(title,

titleArea);
page.addPrintableObject(prnLabel);

}
...

}

3. Add the table header:

double chartHeight = getChartHeight(pageArea);
double headerX = pageArea.getX();
double headerY = titleArea.getY()+titleArea.getHeight()+chartHeight;

JTableHeader header = table.getTableHeader();
double headerHeight = header.getHeight();
double headerWidth = pageArea.getWidthAs(IlvUnit.POINTS);
if (headerHeight == 0)
headerHeight = header.getPreferredSize().height;

int startCol = pageIdx*table.getModel().getColumnCount() /
getMultiPageCount();

int endCol = (pageIdx+1)*table.getModel().getColumnCount() /
getMultiPageCount()-1;

IlvUnit.Rectangle headerArea = new IlvUnit.Rectangle(headerX,
headerY,
headerWidth,
headerHeight,
IlvUnit.POINTS)

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 361

;
page.addPrintableObject(new IlvPrintableTableHeader(header,

headerArea,
startCol,
endCol));

4. Add the table itself:

double tableY = headerY + headerHeight;
IlvUnit.Rectangle printArea =

new IlvUnit.Rectangle(headerX,
tableY,
headerWidth,
pageArea.getHeightAs(IlvUnit.POINTS)

-chartHeight-2*headerHeight,
IlvUnit.POINTS);

page.addPrintableObject(new IlvPrintableTable(table,
printArea,
startCol,
endCol,
0,
table.getModel().

getRowCount() -1));
...

The following picture shows the final result:

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K362

Generating PDF

The PDF generation uses the standard XSL-FO format as intermediate format:

IlvChart ---> XSL-FO ---> PDF

The XSL-FO format allows you to fine-tune the details of the page layout. The generation of
XSL-FO from an IlvChart is done through one of the following APIs:

♦ IlvChart.paintToFO

♦ IlvFOUtil.paintToFO

This step requires the availability of batik-jviews-x.y.jar in the CLASSPATH.

The second step, the conversion from FO to PDF, uses the Apache™ FOP package. It requires
the presence of the following .jars in the CLASSPATH:

♦ fop-0.20.5.jar

♦ fop-avalon-framework-0.20.5.jar

♦ fop-batik-0.20.5.jar

The XSL-FO generation is usable in both multithreading modes (see Choosing the
multithreadingmode). For the using event threadmode (that is, typically a Swing application)
you will use IlvChart.paintToFO or IlvFOUtil.paintToFO, while for the current thread
mode (that is, typically in a Web server) you will use IlvChart.paintToFOCurrentThread,
or apply IlvFOUtil.paintToFO to a chart with isUsingEventThread() = true.

You can find a sample showing the PDF generation in samples/tablemodel/.

JViews Charts does not support the generation of interactive PDF documents (PDF
with embedded JavaScript™).

Note:

© Copyright IBM Corp. 1987, 2009 363

http://www.w3.org/TR/xsl/slice6.html
http://xml.apache.org/fop

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K364

A
addAxisListener method

IlvAxis class 98
addData method

IlvAbstractDataSet class 46
IlvDataSet class 41

addDataSet method
IlvChartRenderer class 110
IlvDataSource class 42

addDataSetListener method
IlvDataSet class 67

addDataSourceListener method
IlvDataSource class 67

addDecoration method
IlvChart class 172

addInteractionListener method
IlvChartInteractor class 197

addYAxis method
IlvChart class 92

annotation
adding an icon 132
global 37
labelling data 132
local 37
setting 132

apply method
IlvAxisTransformer class 97

applying
CSS to Java objects 235

attribute matching
CSS2 syntax 244

axis
abscissa 92
events 98
ordinate 92
properties 94
ranges 96

reversing 94
transformer 97

AxisChangeEvent class 98
axisRangeChanged method

IlvLODDataSet class 307

B
Bean

creating new 240
property 236

Bean properties
for IlvChart.Area 256

border
chart area 321

C
callFunction method

IlvFunctionDataSet class 52
Cartesian chart

adding a legend 23
creating 19
creating and adding renderers 21
creating the data model 19
customizing the abscissa scale 23
customizing the ordinate scale 23

cascading
CSS syntax 232
CSS2 syntax 244

Cascading Style Sheets 249
chart CSS adapter 292
chart CSS element type 254
chart customizer

creating 288
customizing 296
integrating undo 295
panel 291
XML Specifications 297

chart renderers
bar 220

© Copyright IBM Corp. 1987, 2009 365

I N D E X

Index

line, area and stair 221
pie 222

chart3DView CSS element type 258
chartArea CSS element type 256
chartGrid CSS element type 259
chartLegend CSS element type 257
charts

area 117
bar 118
bubble 120
doughnut 123
high/low 121
pie 123
polyline 115
scatter 124
stair 125

chartScale CSS element type 260
class loader 340
class property name 237
Comparable class 80
Comparator class 80
comparing

attribute patterns 244
computeDataLabel method

IlvChartRenderer class 132
computeDataLabelLocation method

IlvChartRenderer class 132
computeLabelLocation method

IlvDataIndicator class 175
IlvDataLabelAnnotation class 132

computeText method
IlvDataLabelAnnotation class 132

configuration
axis 324

create method
IlvDefaultDataSet class 47

createDataSet method
IlvXMLDataReader class 59

createLegendItems method
IlvChartRenderer class 122, 139

createToolTip method
IlvChartInfoViewInteractor class 198

creating
new Bean 240

CSS
applying to Java objects 235
cascading syntax 232
class property name 237
classes and ID 237
declaration 230
element patterns 226
engine in SDM 236
inheritance 232
origins 228

priority 231
recursion 240
selector 229
transition symbols 226

CSS element types
chart 254
chart3DView 258
chartArea 256
chartGrid 259
chartLegend 257
chartScale 260

CSS for Java engine 237
CSS syntax

divergences from CSS2 244
CSS2 syntax 244

attribute matching 244
cascading 244
empty string 245
enhancement 245
null value 245
pseudoclasses 239, 244
pseudoelements 239, 244

custom functions
in expressions 242
registering 243

customizable
label 132
location 132
rendering style 132

customizing
adding a label 37
adding a title 38
adding a title at the end of the ordinate scale
36
decorating 37

D
data

labelling 132
data converters 65
data indicator

associating an optional label 174
data value 172
graphical representation 172
setting the data represented 174
setting the drawing order 175
setting the type 174

data model
connecting to a chart 67
extending 70
flat 75
indirection 239
ordered 74
structure 10
tree 73
unordered 75

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K366

data set
abstract implementation 46
accessing data points 41
category 47
classes 46
combination 49
fixed-size storage 48, 70
function implementation 52
in-memory implementation 47
load-on-demand 52
properties 41
undefined values 42

data source 42
abstract implementation 53
classes 53
editable 54
reading data from an input source 54
reading data from an XML source 55

DATA_LABEL value
IlvChartRenderer class 132

DataSetContentsEvent class 67
DataSetPropertyEvent class 67
DataTileEvent class 311
DataTileListener class 311
declaration

CSS syntax 230
decoration objects 38
decorations

drawing order 160
default converter 65
DRAW_ABOVE value

IlvChart class 160
DRAW_BELOW value

IlvChart class 160
drawGhost method

IlvChartInteractor class 206
drawLegendSymbol method

IlvChartRenderer class 139

E
Eclipse Rich Client Platform 340

class loader 340
runtime plugin 340

element patterns 226
empty string

CSS2 syntax 245
enableAWTThreadRedirect method

IlvEventThreadUtil class 342
enableEvents method

IlvChartInteractor class 203
EventQueue class

isDispatchThread method 342
events

about-to-change 98
change 98

filtering 203
handling at interactor level 203
processing 203
range 98

Examples
creating a chart customizer 288
creating a data set as the moving average of
another data 49
displaying the average of two data sets 49
setting a label annotation 132
setting an icon annotation 132
specifying a customized value format 152
using a gradient rendering hint object 136

executeQuery method
IlvJDBCDataSource class 62

expressions
css 242

F
files

Cartesian.java 19
ControlPanel3D.java 216
CustomCartesian.java 36
CustomPolar.java 36
Polar.java 25
Stripes.java 224

functions
custom 242
standard 242

G
getAction method

IlvChartActionInteractor class 191
getCoordinateSystem method

IlvChart class 92
getCursor method

IlvChartLocalReshapeInteractor class 193
getDataBetween method

IlvDataSet class 41
getDataInside method

IlvDataSet class 41
getDataLabel method

IlvDataSet class 41
getDataSet method

IlvDataSource class 42
getDataSetCount method

IlvDataSource class 42
getDataSets method

IlvDataSource class 42
getDefaultColors method

IlvChartRenderer class 22
getInfoText method

IlvChartInfoViewInteractor class 198
getInfoTextDescriptionPart method

IlvChartInfoViewInteractor class 198

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 367

getInfoTextValuePart method
IlvChartInfoViewInteractor class 198

getLabelRenderer method
IlvDataLabelAnnotation class 132
IlvScaleAnnotation class 156

getLegendStyle method
IlvChartRenderer class 139

getLegendText method
IlvChartRenderer class 139

getOldMax method
AxisRangeEvent class 98

getOldMin method
AxisRangeEvent class 98

getProjector method
IlvChart class 102

getRange method
IlvDataTile class 309

getShape method
IlvChartProjector class 107, 163

getType method
IlvAxis class 92

getUndefValue method
IlvDataSet class 42

getXAxis method
IlvAxis class 92

getXData method
IlvDataSet class 41

getXGrid method
IlvChart class 166

getXRange method
IlvDataSet class 41
IlvDataTileLoader class 309

getXScale method
IlvChart class 142

getYAxis method
IlvAxis class 92

getYData method
IlvDataSet class 41

getYGrid method
IlvChart class 166

getYRange method
IlvDataSet class 41
IlvDataTileLoader class 309, 321

getZoomInCursor method
IlvChartZoomInteractor class 187, 194

getZoomOutCursor method
IlvChartZoomInteractor class 187, 194

grid
defining drawing order 167
defining visibility 167
displaying 166
setting default gridline color 167

I
ID

and CSS classes 237
IlvAbstractDataSet class 10, 46
IlvAbstractDataSource class 10, 53
IlvAffineAxisTransformer class 97
IlvAreaChartRenderer class 117
IlvAxis class 92
IlvAxisTransformer class 97
IlvBarChartRenderer class 118
IlvBubbleChartRenderer class 120
IlvCategoryStepsDefinition class 149
IlvChart bean properties

axis 324
data 330
graphical representation 327
interaction 329
scale 325

IlvChart class 254
addData method 18
addDecoration method 172
addInteractor method 202, 217
addRenderer method 18
is3D method 212
removeDecoration method 172
resetStyle method 249
set3D method 212
setDataSource method 18
setDynamicStyling method 249
setRenderingType method 18
setResizingPolicy method 226
setStyleSheets method 249
synchronizeAxis(IlvChart, int, boolean)
method 226
toData method 226

IlvChart3DSupport class 220
has3DSupport method 220

IlvChart3DView class 216, 258
IlvChart3DViewInteractor class 217

setAngleEventMask method 217
setZoomEventMask method 217

IlvChart</code> class
get3DView</code> method 213

IlvChartActionInteractor class 185
IlvChartCSSAdapter class 291
IlvChartCSSCustomizerPanel class 291
IlvChartDataInteractor class 185
IlvChartDecoration class 38, 172
IlvChartEditPointInteractor class 185
IlvChartFlowObject class 349

setPercentHeight method 349
setPercentWidth method 349

IlvChartHighlightInteractor class 185, 225

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K368

IlvChartInfoViewInteractor class 185, 225
IlvChartInteractor class 15, 185, 202

abort method 203
drawGhost method 206
endOperation method 203
processKeyEvent method 203
processMouseEvent method 203, 206
processMouseMotionEvent method 203
setAllowDrawGhost method 208
startOperation method 203, 206

IlvChartLayout class 23
IlvChartLocalPanInteractor class 185
IlvChartLocalReshapeInteractor class 185
IlvChartLocalZoomInteractor class 185
IlvChartPanInteractor class 185
IlvChartPickInteractor class 185, 225
IlvChartPrintableDocument class 354

createPages method 358
IlvChartPrintContext class 359

getRange method 359
isTitleVisible method 359
isVisible method 359

IlvChartPrintingController class 354
IlvChartProjector class

getShape method 224
toData method 226
toDataWindow method 226

IlvChartRenderer class 12, 18, 132
dataSetsAdded method 138
dataSetsRemoved method 138

IlvChartResizingPolicy class 99
IlvChartXScrollInteractor class 185, 225
IlvChartYScrollInteractor class 185, 225
IlvChartZoomInteractor class 185
IlvClusterId class 86
IlvClusterNode class 86
IlvColumnValueComparator class 80
IlvCombinedDataSet class 46
IlvCompositeChartRenderer class 12, 110
IlvCoordinateSystem class 92, 104
IlvCustomScalePartitionerFactory class 81
IlvCyclicDataSet class 48
IlvDataAnnotation class 132
IlvDataAnnotation interface 37
IlvDataConverter class 65
IlvDataIndicator class 38, 172

computeLabelLocation method 175
IlvDataInterval class 162
IlvDataLabelAnnotation class 37, 132
IlvDataPoints class 41
IlvDataRangePolicy class 96
IlvDataReader class 54
IlvDataRenderingHint interface 136

IlvDataSet class 41, 73
getProperty method 269

IlvDataSet interface 41
IlvDataSetProperty class 41

addPseudoClass method 268
removePseudoClass method 268
setCSSClasses method 268

IlvDataSource class 42
IlvDataSource interface 18, 20, 41
IlvDataTile class 307
IlvDataTileCache class 309
IlvDataTileController class 307
IlvDataTileLoader class 309
IlvDatePartitionerFactory class 81
IlvDefaultChartPrintContext class 359
IlvDefaultDataAnnotation class 132
IlvDefaultDataRenderingHint class 136
IlvDefaultDataSet class 47
IlvDefaultDataSource class 10, 20, 54
IlvDefaultDataTileCache class 309
IlvDefaultStepsDefinition class 147

setStepUnit method 147
setSubStepUnit method 147

IlvDefaultTreeListModel class 30
IlvDisplayObjectArea class 197
IlvDisplayPoint class 197
IlvDoublePoints class 104
IlvEventThreadUtil class

enableAWTThreadRedirect method 342
setAWTThreadRedirect method 342

IlvFilenamePartitionerFactory class 81
IlvFilteredFlatListModel class 85
IlvFilteredFlatSetModel class 85
IlvFilteredTreeListModel class 85
IlvFilteredTreeSetModel class 85
IlvFlatListModel class 80, 81
IlvFlatListToTreeListModel class 86
IlvFlatSetModel class 80
IlvFlatSetToFlatListModel class 85
IlvFlatSetToTreeSetModel class 86
IlvFlatTableModel class 80
IlvFunctionDataSet class 52
IlvGradientRenderingHint class 136
IlvGrid class 166, 169, 259

draw method 169
IlvHiLoChartRenderer class 21, 122
IlvHostnamePartitionerFactory class 81
IlvImageDecoration class 178
IlvInputDataSource class 54
IlvJDBCDataSource bean 333
IlvJDBCDataSource class 62, 65
IlvLabelRenderer class 132, 156
IlvLegend class 23, 139, 257

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 369

IlvLegendItem class 139
IlvLexicographicComparator class 80
IlvLocalZoomAxisTransformer class 97
IlvLODDataSet class 52, 306
IlvLogarithmicAxisTransformer class 97
IlvLogarithmicStepsDefinition class 149
IlvMarker class 115
IlvMarker interface 124
IlvMarkerFactory class 124
IlvModelWithColumns class 80
IlvMovingAvgDataSet class 49
IlvPartitionerFactory class 81
IlvPathPartitionerFactory class 81
IlvPieChartRenderer class 123
IlvPolylineChartRenderer class 22, 115
IlvPrintableChart class 357
IlvPrintableDocument class

getFlow method 348
IlvPrintableRectangle class 358
IlvRendererLegendItem class 139
IlvRuleCustomizerLogic class 291, 293
IlvScale class 260

setCategory method 149
setLogarithm method 149
setStepUnit method 149
setTimeUnit method 149

IlvScaleAnnotation class 156
IlvScatterChartRenderer class 124
IlvSimpleCompositeChartRenderer class 110
IlvSingleAreaRenderer class 117, 125
IlvSingleBarRenderer class

getZAnnotationText method 220
IlvSingleBubbleRenderer class 120
IlvSingleChartRenderer class 12, 110, 138

dataSetContentsChanged method 138
dataSetPropertyChanged method 138
getZAnnotationText method 215
isFilled method 271

IlvSingleHiLoRenderer class 121, 122
IlvSinglePieRenderer class 123
IlvSinglePolylineRenderer class 115

getZAnnotationText method 221
set3DOutlinePaint method 221

IlvSingleScatterRenderer class 124
IlvSingleStairRenderer class 125
IlvSortedFlatListModel class 85
IlvSortedTreeListModel class 85
IlvStairChartRenderer class 125
IlvStepsDefinition class 147, 163

incrementStep method 149
nextStep method 149
previousStep method 149

IlvStringPartitionerFactory class 81

IlvStylable interface 249
IlvSubTreeListModel class 85
IlvSubTreeSetModel class 85
IlvSwingControl class 340
IlvSwingTableDataSource class 64, 65
IlvSwingUtil class

isDispatchThread method 342
IlvTimeStepsDefinition class 147

setUnit method 147
IlvTreeListModel class 30, 80
IlvTreemapChartFocusInteractor class 185
IlvTreemapChartRenderer class 34
IlvTreeSetModel class 80
IlvTreeSetToTreeListModel class 85
IlvTreeTableDataSource class 73, 80
IlvUniformScalePartitionerFactory class 81
IlvUnit class 349
IlvUniversalComparator class 80
IlvURLPartitionerFactory class 81
IlvXMLDataReader class 55
IlvXMLDataSource bean 332
IlvXMLDataSource class 55
IlvXMLDataWriter class 55
import statement 232
inherit token 232
inheritance

CSS syntax 232
of declarations 232

interactionPerformed method
ChartInteractionListener interface 197

interactions
dispatching process 203
handling 203

interactor 329
action 191
edit-point 195
highlight-point 197
information-view 198
local pan 192
local reshape 193
local zoom 194
pan 190
pick-data-points 199
treemap focus 201
x-scroll 188
y-scroll 189
zoom 187

inverse method
IlvAxisTransformer class 97

isAboutToChangeEvent method
AxisRangeEvent class 98

isAdjusting method
DataTileEvent class 311

isAutoDataMax method

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K370

IlvAxis class 94
isAutoDataMin method

IlvAxis class 94
isAutoVisibleRange method

IlvAxis class 94
isDispatchThread method

EventQueue class 342
IlvSwingUtil class 342

isEditable method
IlvDataSet class 41

isEventDispatchThread method
SwingUtilities class 342

isHandling
IlvChartInteractor class 203

isPickingEvent method
IlvChartPickInteractor class 199

J
JAXP library 336
JComponent 38
JDBC

brief overview 62
using with Charts library 62

JLabel 38

L
label

color 151
general properties 151
offset 151
overlapping 152
rotation 151
visibility 152

leaf node 74
literal

css declaration 236
load method

IlvDataTileLoader class 312
IlvInputDataSource class 54

load-on-demand
listening to events 311
structure of the framework 306
using with your data 324

loadComplete method
IlvDataTile class 309, 312, 323

loadTile method
IlvDataTileLoader class 309

lock method
IlvDataTile class 307

M
markers 124
mode

antialiasing 321
automatic 96
candle 122

clustered 118, 122
manual 96
OpenClose 122
Paint 208
stacked 115, 118
stacked100 115, 118
superimposed 115, 118
XOR 208

model indirection 239
model property name 239
Model-View-Controller 43

N
null value

CSS2 syntax 245

P
parameters

connection 333
data sets 334

PERCENT_LABEL value
IlvChartRenderer class 132

Polar chart
adding a legend 27
creating 25
creating and adding renderers 26
creating the data model 25
customizing the ordinate scale 27

printing context 359
priority

CSS syntax 231
processKeyEvent method

IlvChartInteractor class 203
processMouseEvent method

IlvChartInteractor class 203, 206
processMouseMotionEvent method

IlvChartInteractor class 203
projecting

points 104
rectangular areas 106
set of data points 107

projector
Cartesian 12, 102
polar 12, 102
properties 102

Property Editors 303
pseudoclasses

CSS2 syntax 239, 244
pseudoelements

CSS2 syntax 239, 244
putProperty method

IlvDataSet class 41

R
range

data 96
visible 96

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 371

RCP 340
readProperty method

IlvXMLPropertyReader class 59
recursion

CSS 240
registering

custom functions 243
registerPropertyReader method

IlvXMLDataReader class 59
relation

n-ary 12
unary 12

release method
IlvDataTileLoader class 312

releaseTile method
IlvDataTileLoader class 309

removeAxisListener method
IlvAxis class 98

removeDataSetListener method
IlvDataSet class 67

removeDataSourceListener method
IlvDataSource class 67

removeDecoration method
IlvChart class 172

renderer
annotations 132
composite 12, 110
hilo 21
polyline 21
simple 13, 110
single 13, 110
using 113

rendering
hints 136

request
indexed access 41
spatial 41

requestLoading method
IlvDataTileController class 307

resizing policy 99
resolving

URL 239
root node 74
rule

specificity 232
style 229

runtime plugin 340

S
Scalable Vector Graphics (SVG)

supported/unsupported CSS properties 342
scale elements

axis 142
major ticks 142
minor ticks 142

steps labels 142
title 142

scales
axis representation stroke 144
computing steps 149
crossing value 145
position 144
position of the ticks relative to the axis 145
size of major and minor ticks 145
step definition 147
title 145, 325
translating steps values into a label 149
using 142
visibility 145

scroll method
IlvChart class 92

selector
CSS syntax 229

setAdjusting method
IlvAxis class 95

setAllowDrawGhost method
IlvChartInteractor class 208

setAngleRange method
IlvChart class 102

setAnimationStep method
IlvChartZoomInteractor class 187, 194

setAnnotation method
IlvChartRenderer class 132

setAutoVisibleRange method
IlvAxis class 94

setAWTThreadRedirect method
IlvEventThreadUtil class 342

setCategory method
IlvDataSetProperty class 71

setData method
IlvAbstractDataSet class 46
IlvDataSet class 41
IlvDataTile class 309

setDataLabeling method
IlvChartRenderer class 132

setDataLabelLayout method
IlvChartRenderer class 132

setDataSet method
IlvDataSource class 42

setDataSets method
IlvDataSource class 42

setDataSource method
IlvChartRenderer class 110

setDataWindow method
IlvDataIndicator class 174

setDefaultConverter method
IlvSwingTableDataSource class 64

setDefaultPropertyReader method
IlvXMLDataReader class 59

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K372

setEventMaksy method
IlvChartInteractor class 192

setEventMask method
IlvChartInteractor class 190

setExploded method
IlvSinglePieRenderer class 123

setExplodeRatio method
IlvSinglePieRenderer class 123

setFooterText method
IlvChart class 38

setHeaderText method
IlvChart class 38

setLabelRotation method
IlvScale class 151

setMajorTickSize method
IlvScale class 145

setMarker method
IlvSinglePolylineRenderer class 115
IlvSingleScatterRenderer class 124

setMarkerSize method
IlvSingleScatterRenderer class 124

setMarkerStyle method
IlvSinglePolylineRenderer class 115

setMinorTickSize method
IlvScale class 145

setMode method
IlvPolylineChartRenderer class 115

setNegativeDirectionKey method
IlChartScrollInteractor class 188

setNewMax method
AxisRangeEvent class 98

setNewMin method
AxisRangeEvent class 98

setOpaqueEdit method
IlvChartEditPointInteractor class 195

setPeriod method
IlvMovingAvgDataSet class 56

setPositiveDirectionKey method
IlChartScrollInteractor class 188

setProjectorReversed method
IlvChart class 102

setProperty method
IlvXMLPropertyReader class 59

setRange method
IlvDataIndicator class 174

setRenderingHint method
IlvChartRenderer class 136

setResultSet method
IlvJDBCDataSource class 62

setReversed method
IlvAxis class 94

setRotation method
IlvLabelRenderer class 145

setStartingAngle method
IlvChart class 102

setText method
IlvDataIndicator class 175

setTitle method
IlvScale class 145

setTitlePlacement method
IlvScale class 145

setValue method
IlvDataIndicator class 174

setXEditAllowed method
IlvChartEditPointInteractor class 195

setXGrid method
IlvChart class 166

setXPanAllowed method
IlvChartPanInteractor class 190, 192

setXScale method
IlvChart class 142

setXZoomAllowed method
IlvChartZoomInteractor class 187

setYEditAllowed method
IlvChartEditPointInteractor class 195

setYGrid method
IlvChart class 166

setYPanAllowed method
IlvChartPanInteractor class 190, 192

setYScale method
IlvChart class 142

setYZoomAllowed method
IlvChartZoomInteractor class 187

setZoomInEventMask method
IlvChartZoomInteractor class 187

setZoomOutEventMask method
IlvChartZoomInteractor class 187, 194

sharing 245
source code 205
specificity 232
standard functions

in expressions 242
Standard Widget Toolkit 340
startOperation method

IlvChartInteractor class 206
steps definition type

numerical 23
time 23

style
fall 121
rise 121

style rule 229
Subobject 240
Swing TableModel 64
SwingUtilities class

isEventDispatchThread method 342
synchronizeAxis method

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K 373

IlvChart class 92
syntax enhancement

CSS2 syntax 245

T
text

header and footer 320
tile

cache 309
controller 307
length 307
loader 309
origin 307

tileAboutToLoad method
IlvDataTileCache class 309

tileCached method
IlvDataTileCache class 309, 320

tileRetrieved method
IlvDataTileCache class 309

toData method
IlvChartProjector class 104

toDataWindow method
IlvChartProjector class 106

toDisplay method
IlvChartProjector class 104

tokens
cascading priority 232

toRectangle method
IlvChartProjector class 106

transition symbols 226

U
unlock method

IlvDataTile class 307
URL

resolving 239

V
visibility

grid 320
legend 323
scales 325

X
X_VALUE_LABEL value

IlvChartRenderer class 132
XY_VALUE_LABEL value

IlvChartRenderer class 132

Y
Y_VALUE_LABEL value

IlvChartRenderer class 132

Z
ZoomScaleInteractor class 205

D E V E L O P I N G W I T H T H E J V I E W S C H A R T S S D K374

	Table of contents
	Introducing the Main Classes
	Data Model Classes
	Data Projection
	Data Display Classes
	Binding a data model and graphical representation
	Interactor Classes

	Creating a Chart
	Creating a basic chart
	Creating a basic Cartesian chart
	Customizing a basic Cartesian chart
	Creating a basic polar chart
	Customizing a basic polar chart
	Creating a basic treemap chart
	Customizing a treemap chart
	Customizing a Chart

	Using the Data Model
	Structure of the Data Model
	About data model, data sets and data sources
	Predefined Data Classes
	Data set classes
	Data Source Classes

	Connecting to the Data Model
	Synchronizing the Contents of Several Data Sets
	Extending the Data Model
	Structure of the Extended Data Model
	Predefined Extended Data Model Classes
	Transforming Data Models
	The IlvTreeTableDataSource data source
	Model adapters

	Configuring the Data Projection
	Configuring the Axis
	The chart
	Axis properties
	Changing the axis ranges
	Setting the axis transformer
	Listening to axis events
	Handling chart resizing

	Configuring the Projector
	Projector Properties
	Projecting points
	Projecting rectangular areas
	Projecting a set of data points

	Handling Chart Renderers
	Chart Renderers
	Using Chart Renderers
	Polyline Charts
	Area Charts
	Bar Charts
	Bubble Charts
	High/Low Charts
	Pie Charts
	Scatter Charts
	Stair Charts
	Treemap Charts

	Customizing Chart Renderers
	Annotations
	The rendering style

	Notifications from the data model
	Legend items

	Scales
	What is a scale
	General Properties
	Computing Scale Graduation
	Scale Labels
	Scale Annotations

	Decorations
	Drawing decorations
	Predefined decorations
	Writing a new decoration

	Displaying and Writing a Grid
	What is a grid
	General Properties
	Writing a new grid

	Displaying Data Indicator
	Data Indicator
	General Properties

	Displaying an image
	The IlvImageDecoration class

	Interacting With Charts
	Chart Interactors
	Introduction to the chart interactors
	Zoom interactor
	X-scroll interactor
	Y-scroll interactor
	Pan interactor
	Action interactor
	Local pan interactor
	Local reshape interactor
	Local zoom interactor
	Edit-point interactor
	Highlight-point interactor
	Information-view interactor
	Pick-data-points interactor
	Treemap focus interactor

	Setting an Interactor on an IlvChart
	Handling interactions
	Writing your own interactor

	Configuring 3-D Rendering
	Switching to 3-D
	3-D view methods
	3-D view properties
	Interactive control of the 3-D view orientation

	Supported features
	Available chart renderers
	Available chart decorations
	Available chart interactions
	Unsupported operations

	Using CSS Syntax in the Style Sheet
	The origins of CSS
	The CSS syntax
	Applying CSS to Java objects
	The CSS Engine
	The Data Model
	CSS Recursion
	Expressions
	Divergences from CSS2

	Styling
	Two kinds of rules
	Styles
	Styling the Chart Component
	Parts of the chart component
	Styling the chart
	Styling the chart area
	Styling the chart legend
	Styling chart 3-D view
	Styling the chart grids
	Styling the chart scale
	Styling the Chart Component
	The chart renderers
	Scales and grids

	Styling the data series
	Selector patterns
	Properties
	Styling the chart data

	Styling the data objects
	Selector Patterns
	Properties

	Integrating a chart customizer into your application
	Creating a chart customizer
	Main classes of the chart customizer
	Undo manager into the chart customizer
	Customizing the chart customizer
	XML specification of the chart customizer
	Property Editors

	Using Load-On-Demand
	Framework structure
	The tile controller
	The tile cache
	How to listen to events
	How to use LOD with your data

	Using JViews Charts JavaBeans
	The IlvChart bean
	General properties
	Legend properties
	Axis properties
	Scale properties
	Graphical representation properties
	Interaction Properties
	Data properties

	Data source beans
	The IlvXMLDataSource bean
	The IlvJDBCDataSource bean
	The IlvSwingTableDataSource

	Using the JavaBeans with an IDE

	Using JViews products in Eclipse RCP applications
	Printing
	Printing a chart in a flow
	Flow
	The IlvChartFlowObject class
	Printing a chart in a flow

	Printing a chart with a custom document structure
	The classes involved
	How it works
	Customizing the printing of a chart

	Generating PDF
	Index

