
IBM ILOG JViews Charts V8.6

Introducing JViews Charts

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing IBM® ILOG® JViews Charts...5
What is a chart...6

Static and dynamic charts..13

Main features of a chart..14

Typical uses of charts...17

Basic Concepts..19
Clear distinction between data and display..21

Types of chart..22

Supported graphical representations...25

2-D versus 3-D...31

Chart area...33

Header and Footer...34

Axis...35

Scales...36

Legend..37

Grids...38

Decorations..39

Drawing Order..41

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Interactors..42

Predefined Interactors..43

General Architecture of JViews Charts..45
Data model...46

Graphical representation..47

Binding data model and graphical representation...48

The style sheet..49

Developing with JViews Charts..51
The process flow...52

Basic steps for building a chart component...55

Creating a chart using the Designer..58

When to use the API..60

Index..61

I N T R O D U C I N G J V I E W S C H A R T S4

Introducing IBM® ILOG® JViews Charts

Introduces the main features of IBM® ILOG® JViews Charts and indicates some typical
uses.

In this section

What is a chart
Explains what chart represents and the various types of chart.

Static and dynamic charts
Explains what static and dynamic charts are.

Main features of a chart
Describes the different chart features available with JViews Charts.

Typical uses of charts
Describes the typical uses of a chart.

© Copyright IBM Corp. 1987, 2009 5

What is a chart

A chart represents data graphically in different forms (markers, lines, bars, and so on) with
scales that are added to indicate the values of the displayed data.

JViews Charts allows you to display data in charts that can be customized in various ways,
and to interact with these charts in different manners. JViews Charts has been designed for
optimum performance coupled with a clean object architecture that makes it the best solution
for handling large and/or dynamic data models such as real-time supervision system
applications.

JViews Charts provides a wide range of displays:

♦ Cartesian charts represent data in a standard way. The data is expressed using a Cartesian
system of coordinates (x, y). The x- and y-coordinates are plotted along the abscissa and
ordinate scales, respectively. The scales are rectangular and are displayed orthogonally.

♦ Polar charts represent data in a circular way. The data is expressed using a polar system
of coordinates (,). The abscissa values are plotted along a circular scale. The ordinate
scale, along which the -coordinates are plotted, is rectangular and is displayed radially.

I N T R O D U C I N G J V I E W S C H A R T S6

♦ Radar charts.

A radar chart allows us to see data series relationships and make comparisons based on
multiple categories. In a radar chart, each category of values has its own axis radiating
from a center point. Lines connect all the values in the same category series.

I N T R O D U C I N G J V I E W S C H A R T S 7

♦ Bubble charts.

I N T R O D U C I N G J V I E W S C H A R T S8

♦ High/Low Charts.

I N T R O D U C I N G J V I E W S C H A R T S 9

♦ Pie Charts.

A pie chart is used to represent percentages and proportions with which a whole is
composed from parts.

I N T R O D U C I N G J V I E W S C H A R T S10

♦ Treemap Charts.

A treemap chart is like a multiple level pie chart. It allows you to see important elements
and hides unimportant details.

I N T R O D U C I N G J V I E W S C H A R T S 11

I N T R O D U C I N G J V I E W S C H A R T S12

Static and dynamic charts

A chart can be static, in the sense that there are no changes in its appearance while it is
displayed, or it can be dynamic, reacting to user actions or external data feeds or both.

A static chart, as the name implies, will not change once it is drawn: it is a snapshot of a
given system. Report generating softwares allow you to create such static charts. A static
chart is often created for documentation purposes. Examples include electronic schematics
and org charts.

A dynamic chart, on the other hand, remains in contact with business data during the display
phase and is expected to change over time in response to business-related changes. Examples
of such changes are: values of new data points, an operator moves an object to a different
position, and so on. On a computer display, as part of a larger computer system, the chart
is connected to the underlying business objects by specialized software. As the business
objects evolve, the elements of the chart automatically evolve with them. The rendering of
the graphic objects that represent each business object is modified to show changing business
conditions. This capability makes the chart a living entity, aware of changes in the underlying
data, in fact, the term data-aware is often used to describe a display that is connected to
business data in this way.

I N T R O D U C I N G J V I E W S C H A R T S 13

Main features of a chart

JViews Charts offers you the following features:

♦ Full-featured API. Dedicated classes that allow you to display your data in charts. These
charts can be customized in various ways, and you can interact with these charts in
different manners.

♦ Optimum performance coupled with a clean object architecture that makes it the best
solution for handling large and/or dynamic data models such as real-time supervision
system applications.

♦ Wide range of chart displays: Polyline, Bar, Area, Bubble, High-Low, Scatter, Stair, Combo,
Pie, Treemap.

♦ Easy customization.

♦ A clear separation between the data and the graphical representations of the data.

♦ Charts are data-aware. Changes made to data are automatically reflected in the charts
that display this data. The possible modifications made by interacting with a chart are
also automatically reflected on the data.

♦ Dynamic control of the chart appearance by means of cascading style sheets (CSS).

Chart Component Architecture

♦ Integration in any Swing-enabled Java™ application as a classic JComponent.

I N T R O D U C I N G J V I E W S C H A R T S14

♦ Integration in Eclipse® /RCP applications as an SWT control.

♦ A set of JavaBeans™ that can be used within your favorite IDE (Integrated Development
Environment).

♦ Coordinate transformation along a given axis. The transformation can be either linear or
non-linear, which allows you to implement features such as logarithmic axis or local zoom.

♦ Load On Demand

The load-on-demand mechanism allows you to connect the charts to very large data sets
by providing a control on the memory usage by loading only the values that need to be
displayed.

♦ Thin-Client architecture

● A set of classes based on the standard Servlet Java technology

● Built-in support for image generation

● JPEG and PNG image output formats natively supported (additional formats can be
added through custom encoders)

● Automatic client-side image map generation

● JavaServer™ Faces tag library for the development of server pages

Thin-Client Chart Application Architecture

♦ Rich Web Client

● JavaServer Faces tag library for the development of server pages

● Client-side dynamic rendering in SVG

I N T R O D U C I N G J V I E W S C H A R T S 15

● Ajax architecture

● Server-side scalability

Rich Web Charts Application Architecture

♦ Customizers. These are predefined Swing components that can be used to change
particular aspects of the style sheet of a chart component.

♦ Full Printing API

● Based on the standard Java 2 Printing API

● Multiple-page printing

● Rich page format (paragraph alignment, local fonts, and so on)

● Composite document (Chart, table, text in one document)

● Extensible framework

I N T R O D U C I N G J V I E W S C H A R T S16

Typical uses of charts

You can use IBM® ILOG® JViews Charts to report data to communicate their values and
trends, for example.

♦ Applications that need to report data to communicate their values and trends. The audience
can be large (for instance Nasdaq evolution displayed in a search-engine portal), or it
can be restricted to some employees of a company (financial dashboard dedicated to the
top level management, application performance dashboards for MIS, Web dashboards
for web team). These applications use classical charts that do not require any training
(bar graphs, pie charts). These charts are read-only and often published on the web (thin
client), and these applications are used occasionally.

♦ Mission-critical applications that are used by professionals to perform their daily job.
These charts are often changed in real time, that is, they are connected to the data stream
and updated in real time. These charts are customized for the application need and require
precise strategies for scrolling, zooming-in, spotting data of interest, interacting and
editing data. Such applications exist in all industries: applications for traders, testbeds
for engines (cars, airplanes, and so on) and other machines, network or application
management, scientific research.

I N T R O D U C I N G J V I E W S C H A R T S 17

You can find more examples of charts in the samples page.

I N T R O D U C I N G J V I E W S C H A R T S18

Basic Concepts

Introduces you to the generic concepts of IBM® ILOG® JViews Charts.

In this section

Clear distinction between data and display
Explains the architecture IBM® ILOG® JViews Charts is based on.

Types of chart
Describes the different types of chart offered by IBM® ILOG® JViews Charts.

Supported graphical representations
Describes the graphical representations supported by IBM® ILOG® JViews Charts.

2-D versus 3-D
Describes the 3-D option.

Chart area
Explains what a chart area is.

Header and Footer
Explains what headers and footers are.

Axis
Explains what an axis represents on a chart.

Scales
Explains what scales are.

© Copyright IBM Corp. 1987, 2009 19

Legend
Explains what a legend is.

Grids
Explains what a grid is.

Decorations
Describes the different decorations available with JViews Charts.

Drawing Order
Explains what the drawing order consists of.

Interactors
Explains what the interactors are.

Predefined Interactors
Lists the predefined interactors available with JViews Charts.

I N T R O D U C I N G J V I E W S C H A R T S20

Clear distinction between data and display

IBM® ILOG® JViews Charts is based on the SeparableModel Architecture. This architecture
is a variant of theModel-View-Controller model that was introduced in Swing. In this design,
the model manages the data or the values represented by the component, while the view
manages the graphical representation of the model, and handles interaction on it.

The use of this design allows you to have a clear distinction between:

♦ the chart data model that handles the sets of data by means of data sources (or data sets),
and

♦ the chart renderers that draw the graphical representation of the data.

I N T R O D U C I N G J V I E W S C H A R T S 21

Types of chart

JViews Charts proposes five different types of chart:

♦ Cartesian chart

♦ Radar chart

♦ Polar chart

I N T R O D U C I N G J V I E W S C H A R T S22

♦ Pie chart

♦ Treemap chart

I N T R O D U C I N G J V I E W S C H A R T S 23

I N T R O D U C I N G J V I E W S C H A R T S24

Supported graphical representations

JViews Charts supports ten different types of graphical representation:

♦ Polyline

A single polyline renderer can draw an additional marker for each data point, for example
a square marker, as illustrated below:

By default, the style of the marker is computed according to the style of the renderer,
but you can also specify a rendering style of the marker symbol.

♦ Bar

I N T R O D U C I N G J V I E W S C H A R T S 25

♦ Area

♦ Bubble

A bubble chart represents a two-dimensional data model as bubbles of variable size. The
data model should be described by two data sets, the first data set determining the location
of the bubbles, and the second data set determining the size of the bubbles.

I N T R O D U C I N G J V I E W S C H A R T S26

♦ High-Low

The High-Low graphical representation renders two data sets with first and second items
and defines two rendering styles:

● rise style

Used to draw the high-low items for which the corresponding first value is less than
the second value.

● fall style

Used to draw the high-low items for which the corresponding first value is greater
than the second value.

♦ Scatter

The Scatter render represents a data set with scattered graphical markers.

I N T R O D U C I N G J V I E W S C H A R T S 27

♦ Stair

The Stair renderer represents a transition between two values as a stair instead of straight
lines.

♦ Combo

I N T R O D U C I N G J V I E W S C H A R T S28

♦ Pie

♦ Treemap

I N T R O D U C I N G J V I E W S C H A R T S 29

I N T R O D U C I N G J V I E W S C H A R T S30

2-D versus 3-D

JViews Charts provides the ability to display a two-dimensional data model using
three-dimensional rendering. Only Cartesian and Pie charts support 3-D rendering. If you
try to switch from a 2-D view to a 3-D view on a chart that does not support this mode (for
example, a Radar chart) you will not get any error. The visual appearance of the chart will
not change.

You can easily switch between a 2-D and a 3-D display, as illustrated below:

Two-Dimensional Display

Three-Dimensional Display

I N T R O D U C I N G J V I E W S C H A R T S 31

As you can see, the structure of the chart is not altered. The chart components like header,
footer, legend, renderers, scales, grids, decorations, and so on, remain unchanged.

I N T R O D U C I N G J V I E W S C H A R T S32

Chart area

The chart area is the place where all the drawing operations are performed (the graphical
representations of the data themselves and the decorations).

Within the chart area component, you can distinguish two areas:

♦ a drawing rectangle, where drawings are performed (both charts and scales).

All the drawings occurring in the chart area are clipped by this rectangle.

♦ a plotting rectangle, the region where data is projected and displayed.

The bounds of this rectangle are computed according to the drawing rectangle and the
internal margins of the chart area.

These areas are computed by the chart area component through a special layout manager,
either automatically or according to the user's preferences. To manually modify the plotting
rectangle bounds, you need to change one or several margins (left, right, top, or bottom)
that are expressed relative to the drawing rectangle. See Chart Components.

I N T R O D U C I N G J V I E W S C H A R T S 33

Header and Footer

These components are both optional components and are added to the chart either on top
of or at the bottom of the chart area, respectively.

For example, these components can be used to set the chart title or to contain a GUI panel.
See Chart Components.

I N T R O D U C I N G J V I E W S C H A R T S34

Axis

A chart is composed of:

♦ Exactly one abscissa axis.

♦ One or several ordinate axes.

The axes are automatically created by a chart, which uses by default only one y-axis. The
first y-axis is also referred to as themain ordinate axis. Other y-axis can be added to a chart.
See Chart Components.

I N T R O D U C I N G J V I E W S C H A R T S 35

Scales

Scales might be defined as a graphical representation of a chart axis and are automatically
configured by a chart when it is created.

A scale is composed of the following elements:

♦ An axis representation, which depends on the chart projection (could be a line or an arc).

♦ Major ticks, the marks drawn on the axis at each step of the scale.

♦ Steps labels, drawn next to the major ticks. These labels indicate the values of the
coordinate represented by the scale.

♦ Minor ticks, the marks drawn on the axis at each substep of the scale.

♦ A title, which can be placed anywhere along the axis representation.

Depending on the type of chart, scales can be:

♦ Rectangular (that is, axes that are parallel to the x- and y-axes of the screen).

♦ Circular (generally used in Polar charts).

See Chart Components.

I N T R O D U C I N G J V I E W S C H A R T S36

Legend

The legend component is an optional component that can be added either to the chart itself
or to another container.

A legend is associated with a chart and updated automatically when needed.

Chart Components

I N T R O D U C I N G J V I E W S C H A R T S 37

Grids

Grids help you locate the data points on a chart.

A grid is a graphical indicator of data values. A grid is attached to an axis and is composed
of major gridlines and minor gridlines.

♦ Horizontal grids

♦ Vertical grids

I N T R O D U C I N G J V I E W S C H A R T S38

Decorations

A chart can have the following decorations:

♦ Data indicators

Data indicators that graphically represent the values of data points or a given data interval
in the chart area. For example, you can decorate the chart by highlighting the week-end
period using a data indicator which represents a data interval equal to the week-end
period. The indicators are of the following type:

A range indicator along the x-axis.

A range indicator along the y-axis.

A value along the x-axis.

A value along the y-axis.

A data window.

♦ Annotations that display the values on a scale.

♦ Labels linked to given data points.

I N T R O D U C I N G J V I E W S C H A R T S 39

♦ An image within the plotting area of the chart.

An image can be drawn according to three different modes:

● TILED: The image is drawn as a replicated pattern in the plot area.

● SCALED: The image is scaled so that it fills the plot area.

● ANCHORED: The image is drawn at a fixed position.

Decorations are drawn according to a drawing order. The drawing order lets you control
the position of a given decoration in the drawing queue of a chart.

Decorations are handled as an ordered list according to the decorations drawing order:
decorations with the lowest drawing order are drawn first, decorations with the highest
drawing order are drawn last.

I N T R O D U C I N G J V I E W S C H A R T S40

Drawing Order

The drawing order lets you control the position of a given decoration in the drawing queue
of a chart.

The drawing order also defines whether a decoration should be drawn above or below the
graphical representations of the chart data: decorations with a negative drawing order are
drawn below the chart representations, while decorations with a zero or positive drawing
order are drawn above the chart representations.

I N T R O D U C I N G J V I E W S C H A R T S 41

Interactors

Interactors let you associate one or several behaviors to a chart object.

The following ready-to-use interactors are available:

♦ A zoom interactor to zoom in and out within the displayed data.

♦ Two scroll interactors to scroll the displayed data with the arrow keys along a given axis.

♦ A pan interactor to scroll the displayed data with the mouse.

♦ A set of interactors to modify the properties of a local zoom axis transformer.

♦ Data interactors that allow the user to do the following:

● Edit a data point

● Highlight or display information related to a data point

● Select data points

The interaction mechanism implemented in the JViews Charts library provides a notification
process that interactors might use to notify listeners when interactions have been performed.
This notification mechanism is used by most of the default interactors previously listed and
hence allows you to easily add a custom behavior to the predefined interaction without the
need to subclass.

I N T R O D U C I N G J V I E W S C H A R T S42

Predefined Interactors

DescriptionType of Interactor

Lets the user trigger a zoom-in or a zoom-out command by dragging a box
within the data display area of a chart. This box indicates the area to be
zoomed in or zoomed out.

Zoom interactor

Lets the user scroll through the displayed data along the x-axis.X-Scroll Interactor

Lets the user scroll through the displayed data along the y-axis.Y-Scroll Interactor

Lets the user scroll through the displayed data by dragging the mouse in
any direction.

Pan Interactor

Lets the user execute an action when a specific key is pressed.Action Interactor

Lets the user scroll the zoomed data window by dragging the mouse in
any direction.The interaction starts when the user clicks within the zoomed
data window.

Local Pan Interactor

Lets the user reshape the zoomed data window by dragging the zoomed
area bounds when the mouse moves over one of the zoomed data window
bounds.

Local Reshape Interactor

Lets the user change the zoom factor by dragging a box within the zoomed
data window of the transformer. This box indicates the area to be zoomed
in or zoomed out.

Local Zoom Interactor

Lets the user modify a data point by dragging its graphical representation
within the data display area.

Edit-Point Interactor

Triggers an interaction event whenever the mouse moves over a data point
in the data display area.

Highlight-Point Interactor

Displays information about a data point whenever the user moves the
mouse over the data point in the data display area.

Information-View Interactor

Triggers an event when the user selects data by clicking a projected point
in the data display area.

Pick-Data-Points Interactor

I N T R O D U C I N G J V I E W S C H A R T S 43

I N T R O D U C I N G J V I E W S C H A R T S44

General Architecture of JViews Charts

Describes the general architecture and the main components of IBM® ILOG® JViews Charts.

In this section

Data model
Describes the data model on which JViews Charts is based.

Graphical representation
Describes the various chart renderers.

Binding data model and graphical representation
Describes how the binding between the data model and the graphical representation is
performed.

The style sheet
Describes the CSS mechanism in JViews Charts.

© Copyright IBM Corp. 1987, 2009 45

Data model

IBM® ILOG® JViews Charts is based on the SeparableModel Architecture. This architecture
is a variant of theModel-View-Controller model that was introduced in Swing. In this design,
the model manages the data or the values represented by the chart component, while the
view manages the graphical representation of the model, and handles interactions on it.

The use of this design in JViews Charts allows you to have a clear distinction between data
model that handles the sets of data by means of data sources (or data sets), and data display
that draws the graphical representation of data.

The data model handles the data sets by means of data sources. The data set is a single set
of data points. A data point is defined by an (X, Y) coordinate pair expressed with double
primitives, and an optional label.

The contents of a data source is dynamic and its type depends on the origin of the data
(XML, JDBC, Flat file or In-Memory).

The data model distinguishes data series from sources of data. Having distinct entities to
represent an elementary set of data and the whole data provides the following benefits:

♦ Data sets exist as objects rather than internal references within the data model, which
makes it easier to reference and use them in an application.

♦ You can create new data set types and use them with existing data sources. Likewise,
you can create new data source types that handle existing data sets.

♦ You can easily mix data sets that come from different sources (for example, data sets
extracted from a database query with data sets whose values are updated by a thread).

♦ You can create data sets as combinations or wrappers of other data sets.

The data model can comprise Java™ classes or an implicit default model specified in an
XML file, a flat file, a database or in-memory.

If you create a new chart with the Charts Designer, you load data from an external data
source (XML file, flat file, database, or in-memory Java classes) or from a template.

If you create a new chart using the API, you will use the following interfaces:

♦ The IlvDataSet interface acts as a data holder. The objects that implement this interface
manage data as a set of data points, and provide the required API (Application
Programming Interface) to fetch and modify data. An abstract implementation of this
interface called IlvAbstractDataSet is provided in the library as well as several concrete
implementations. See Using the Data Model in Developing with the SDK.

♦ The IlvDataSource interface acts as a source of data sets. It handles a collection of data
sets and provides the required API to access them.The implementation of this interface
allows you to import data from an external package (for example a database, an XML file,
and so on) into the Charts library. An abstract implementation called
IlvAbstractDataSource is provided in the library as a starting point for your own custom
implementation. A concrete memory-based implementation is provided by the
IlvDefaultDataSource class.

I N T R O D U C I N G J V I E W S C H A R T S46

Graphical representation

The graphical representation of a data source is defined according to the following criteria:

♦ The global characteristics of a chart (for example, whether it uses a cartesian or polar
projection).

♦ The conversion from data space to screen coordinates is handled by a projector object,
which is an instance of IlvChartProjector. The type of a projector object is defined by
the type of the chart, and is a global parameter of a chart:

● A Cartesian projector when using a Cartesian chart.

● A polar projector when using a radar, polar, or pie chart.

The way data is rendered on the screen (as a polyline, a bar, or a bubble) is handled by chart
renderers, which are instances of subclasses of IlvChartRenderer.

There are three types of chart renderers:

♦ Composite renderers (instances of IlvCompositeChartRenderer).

The composite renderers are used to render the contents of a data source using a collection
of child chart renderers so that each data set in the associated data source is rendered
by one of these child renderers.

Depending on the rendering type, the relation between a data set and a child renderer
can be one of the following:

● unary relation: one child renderer per data set.

The unary relations are handled by instances of subclasses of
IlvSimpleCompositeChartRenderer. An example of a simple composite chart renderer
is the polyline renderer, which renders each data set of the data source by a polyline.

● n-ary relation: one child renderer using several data sets.

The n-ary relations are handled by direct subclasses of IlvCompositeChartRenderer.
An example of a composite chart renderer that uses several data sets for one graphical
representation is the high-low renderer (hilo), which needs two data sets (high and
low values) for one graphical representation.

♦ Single renderers (instances of IlvSingleChartRenderer).

Single renderers are used as elementary chart renderers by composite renderers to draw
the graphical representation of data sets. While a composite renderer handles a data
source, a single renderer handles a data set. Single renderers can also be used directly
when you handle specific data set.

♦ Simple renderers (instances of IlvSimpleChartRenderer)

Simple renderers are used to render the contents of a data source without making use
of other renderers for particular data sets.

I N T R O D U C I N G J V I E W S C H A R T S 47

Binding data model and graphical representation

The binding between a chart and the data model is performed through a unary relationship
from a chart renderer to a data source.

To associate a data source with a chart renderer:

♦ Use the following method defined in the IlvChartRenderer class:

void setDataSource(IlvDataSource dataSource)

To obtain the current data source of a chart renderer:

♦ Use the following method:

IlvDataSource getDataSource

I N T R O D U C I N G J V I E W S C H A R T S48

The style sheet

The appearance of a chart can be dynamically controlled with cascading style sheets (CSS).

Cascading style sheets (CSS) are a powerful mechanism to customize HTML rendering inside
a Web browser. It comes from the W3C, and has now reached the state of a standard
recommendation. Here we transpose the CSS level 2 recommendation in the Java language
and use it to set Bean properties according to the Java object hierarchy and state. The CSS
selector was designed to match HTML or XML documents. However, it can be used to match
a hierarchy of Java objects accessible from a model interface. The declarations are then
sorted for the model objects and used according to the application that controls the styling
engine.

In JViews Charts, the styling engine is responsible for creating and customizing chart
components and the data graphical representation at load time. At run time, the engine
customizes the data graphical representation according to the model changes.

For more information on Cascading style sheets, see Using CSS Syntax in the Style
Sheet in Developing with the SDK.

Note:

When you create a chart, you can define your own style rules for:

♦ Chart Component

The CSS rules are used to customize the global appearance of the chart. See Customizing
your chart in Using the Designer.

♦ Chart Data

The CSS rules are used to control how individual data points or data series are rendered.
See Managing data style rules in Using the Designer.

I N T R O D U C I N G J V I E W S C H A R T S 49

I N T R O D U C I N G J V I E W S C H A R T S50

Developing with JViews Charts

Describes the process for building a chart component with IBM® ILOG® JViews Charts.

In this section

The process flow
Describes the process through which a chart is created.

Basic steps for building a chart component
Describes the basic steps for creating a chart.

Creating a chart using the Designer
Explains how to use the Designer for JViews Charts for creating and configuring interactive
charts.

When to use the API
Lists the decision points at which you may decide to use the Java API.

© Copyright IBM Corp. 1987, 2009 51

The process flow

You can create your chart through the GUI of the Designer for JViews Charts and extend
the development of your chart by using the SDK.

There is no reason that would prevent you from carrying out most of your development in
the Designer (see Creating a chart using the Designer). However, at a certain point you
might need to use the API to extend the development of your chart (see When to use the
API).

Figure 4.1 shows the process flow for building a chart component in JViews Charts; it presents
a high-level view of the overall process. The detailed tasks belonging to each step are
described in the user documents:

♦ Using the Designer

♦ Developing the SDK

Unless otherwise specified, all the steps of the process flow can be carried out through the
Designer and are documented in Using the Designer.

I N T R O D U C I N G J V I E W S C H A R T S52

The Process Flow Diagram

I N T R O D U C I N G J V I E W S C H A R T S 53

You can develop a chart from scratch or by connecting to existing data, with the Designer.
Working with the Designer, you develop components entirely through the GUI of the Designer.
However, you might need to write code to do one of the following:

♦ add graphic refinements if you need more sophisticated features,

♦ integrate your component into an application,

♦ deploy an application as a thin client.

For more information, see When to use the API.

I N T R O D U C I N G J V I E W S C H A R T S54

Basic steps for building a chart component

Populating the chart.
♦ To populate your chart you have to load data from data sources. The following

predefined types of data sources are available:

♦ XML

♦ Flat File

♦ Database (JDBC)

♦ In-memory

♦ Data Writeback

♦ Customized Data Sources

XML
This type of data source allows you to load data from an XML file. The expected format
is an application of the W3C XML language. You can find the full Document Type
Definition of this format in Document Type Definition for XML data file in Using the
Designer.

Flat File
This type of data source is a text file containing the same number of values on each
line. The values are separated by a separator character. The supported separator
characters are comma, semicolon, space, and tab. You can request autodetection of
the separators. If a flat file contains values exported from Microsoft® Excel, it is
sometimes referred to as a CSV (comma-separated values) file. In a flat file, there is
an implicit data model in which the first line contains the names of the model properties
and each subsequent line contains the property values for an object, with the properties
in the same order as on the first line.

Database (JDBC)
This type of data source allows you to retrieve data values from database servers by
using the JDBC interface. JDBC technology offers a platform and server independent
way to retrieve data stored in a database. A database contains tables of columns and
rows. Each row in a table represents an object in the data model. Each column in a
table represents an attribute and can be mapped for use in the chart. An Excel file (.
xls) is recognized as a database; the worksheets are treated as tables.

In-memory
The supplied in-memory data model comprises Java™ classes that conform to the
JViews Charts data model, with the data belonging to the Basic template. This type of
data source supports writing operations such as appending a new data point or
changing values of an existing data point.

Data Writeback
The XML data source (IlvXMLDataSource) and the flat file data source (based on the
class IlvSwingTableDataSource) are read-write. This means that the IlvDataSet.
setData method can be used on them; the modified values are held in memory but
not automatically written to a file . If you need modified values to be written to a file,
you can implement this functionality. In the XML case, the class IlvXMLDataWriter
is useful for this purpose.

I N T R O D U C I N G J V I E W S C H A R T S 55

The JDBC data source (class IlvJDBCDataSource) operates in a similar way when
created in read-only mode. When created in read-write mode, it writes back
modifications to the database.

Customized Data Sources
If the data you want to display is not of one of these predefined types, you can extend
the data model to create a customized data source. To see how to do this, see the
section Extending the Data Model in Developing with the SDK.

Before you move on to the next step, that is, styling your chart using the Designer,
you need to create a snapshot of the data source in XML format. This JViews Charts
XML file serves as input to the Designer. To create this file, you can use the
IlvXMLDataWriter class, as explained in Reading and writing data from an XML source
in Developing with the SDK.

Styling your chart.
The representation in your chart of the objects that form the business data, including the
way your end users interact with them, can be customized by applying Cascading Style
Sheets (CSS).

1. You can change the representation of the data, by adjusting the styling properties of
the objects, affecting the following features:

♦ The color and the outline of the graphical reprensentation of the series.

♦ The shapes of the data points marker.

♦ The graduation of the scale.

♦ The appearance of the grid lines.

♦ The position of the legend.

See Customizing your chart in Using the Designer.

2. You can also apply styling conditions by creating and editing rules. This capability is
particularly useful if you need to style data dynamically as the model changes. JViews
Charts provides an easy-to-use natural language editor to help you write style rules
without having to know the detailed CSS syntax. It allows you to develop conditions
for applying specific styling features. See Managing data style rules in Using the
Designer.

3. The result of the work you have done within the Designer is a project file with the
extension .icpr (JViews Chart Project) and a style sheet with the extension .css
(Cascading Style Sheet).

If the data to be displayed comes from one of the predefined data source types, you
can integrate the styling and the data source together into the chart, by using the
method setProject(java.net.URL).

If the data to be displayed comes form a custom data source, you need to integrate
the styling into the chart by using the method setStyleSheet(java.lang.String).

Adding interaction.
JViews Charts provides interactors that allow the user to interact with a chart. Chart
interactors let you associate one or several behaviors to a chart object; they define atomic

I N T R O D U C I N G J V I E W S C H A R T S56

interactions that can be combined together and extended to achieve complex interactive
functionalities.

♦ To add interactions, see the following sections:

♦ Interacting With Charts in Developing with the S DK for a Java application or an
applet.

♦ Installing interactors in a chart in Building Web Applications for a thin-client JSF
DHTML.

♦ Set up interactions in Building Web Applications for a Rich Web Client application.

Integrating your chart into an application.
Now that you have created your JViews chart, you need to integrate it into an application.

♦ To lintegrate your chart component into an application see Integrating your
development into an application and Writing an Application in Using the Designer.

You can deploy the application in different ways:

♦ Swing GUI, applet, DHTML thin client. See Deploying an application as a
DHTML-only thin client in Building Web Applications).

♦ DHMTL-based JSF thin client. See Using DHTML-based JSF components to build
Web applications in Building Web Applications.

♦ Rich Web Client. See Creating Rich Web Charts in Building Web Applications.

Essentially, to integrate a chart component into a GUI, you load a project. The project
construct groups the data source and style sheet which are the basis for a chart.

Deployment as an applet is the same as deployment as an application; it just requires
a line of HTML code for the applet in addition to the application code.

Deployment as a thin client is facilitated by the servlet support in the Java API, and
by the JSF tag library for the thin client (see The JViews Charts Faces component set
in Building Web Applications).

Deployment as a Rich Web Client is facilitated by the JSF tag library for the Rich Web
Client (see The tag library in Building Web Applications).

I N T R O D U C I N G J V I E W S C H A R T S 57

Creating a chart using the Designer

The main advantage is its simplicity and usability: in a few mouse clicks you will create and
customize your charts through an intuitive and easy-to-use interface.

Treemap charts are currently not available.Note:

Creating a new chart.
1. Use the New Chart Wizard, which is open by default when you launch the Designer.

The New Chart Wizard allows you to create a chart based on a template, or by loading
data from a data source. (See Creating a new basic chart in Using the Designer.)

2. You can create your charts by using JViews Charts templates. JViews Charts template
determines the basic structure for a chart and contains settings such as specific data
model and style. You can also create your own templates from the current styling and
data model. (See Using templates in Using the Designer.)

3. You can also choose among a predefined set of data sources:

♦ Flat file: loads data from an existing text file (comma-separated or tab-separated
values). See Loading data from a flat file in Using the Designer.

♦ XML file: loads data from an XML file. See Loading your data inUsing the Designer.

♦ JDBC database: retrieves data values from database servers. See Loading data from
database (JDBC) in Using the Designer.

♦ In-memory: data points are stored in memory with arrays of double primitives. See
Loading data from In-Memory in Using the Designer.

Customizing a chart.

♦ You can customize your charts in different ways to improve their appearance. (See
Using More Designer Features in Using the Designer.)

Testing a chart.

♦ Switch to the Preview Mode to see the behavior of the chart as it will be in your
application. This is useful for testing the appearances and behavior implemented
through styling. (See Testing application behavior in Using the Designer.)

Saving your work as a project.

♦ Save your chart with the extension .icpr (JViews Charts Project).

A project file is an association of a data source type (flat file, XML, JDBC or in-memory)
and a style sheet (.css file) and it is created when you save your chart for the first
time.

I N T R O D U C I N G J V I E W S C H A R T S58

When you save your work within the Designer, you saves three files: a project file, a
style sheet, and a data file. The project file specifies the name of the style sheet file,
the type and URL of the data source, and the name of the data file.

I N T R O D U C I N G J V I E W S C H A R T S 59

When to use the API

The decision points at which you may decide to use the Java API are the following:

♦ Extend the Data Model.

If your data cannot be connected by JDBC or is not in XML or is not held in an in-memory
data model, you must use the Java API to integrate your data into the Designer before
starting development of your chart component. See Extending the Data Model in
Developing with the SDK.

♦ Extend the graphic refinement of your chart component.

If after you complete a development cycle in the Designer you find that you require graphic
refinement features that are not available in the GUI, you can achieve these by using the
Java API directly. See Writing a new grid in Developing with the SDK.

This is not applicable for developing Rich Web Client applications.

♦ Write your own interactor.

See Writing your own interactor in Developing with the SDK.

This is not applicable for developing thin client and Rich Web Client applications.

♦ Integrate your component into an application.

See Integrating your development into an application in Using the Designer.

♦ Print.

See Printing in Developing with the SDK.

♦ Deploy an application as a thin client.

See Deploying an application as a DHTML-only thin client in Building Web Applications.

♦ Deploy an application as a Rich Web Client.

See Creating Rich Web Charts in Building Web Applications.

I N T R O D U C I N G J V I E W S C H A R T S60

C
chart

area 33
Cartesian 6
Polar 6

CSS 56

H
header and footer 34

I
IlvChart class

setProject method 56
setStyleSheet method 56

IlvXMLDataWriter class 55
interactor

data 42
pan 42
scroll 42
zoom 42

L
legend 37
lists 17

M
Model-View-Controller 46

R
rectangle

drawing 33
plotting 33

relation
n-ary 47
unary 47

renderer
area 25
bar 25
bubble 25
combo 25

high-low 25
polyline 25
scatter 25
stair 25

renderers
single 47

© Copyright IBM Corp. 1987, 2009 61

I N D E X

Index

	Table of contents
	Introducing IBM® ILOG® JViews Charts
	What is a chart
	Static and dynamic charts
	Main features of a chart
	Typical uses of charts

	Basic Concepts
	Clear distinction between data and display
	Types of chart
	Supported graphical representations
	2-D versus 3-D
	Chart area
	Header and Footer
	Axis
	Scales
	Legend
	Grids
	Decorations
	Drawing Order
	Interactors
	Predefined Interactors

	General Architecture of JViews Charts
	Data model
	Graphical representation
	Binding data model and graphical representation
	The style sheet

	Developing with JViews Charts
	The process flow
	Basic steps for building a chart component
	Creating a chart using the Designer
	When to use the API

	Index

