
IBM ILOG JViews Diagrammer V8.6

Using graph layout algorithms

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Conventions and Bibliography..10

Introducing graph layout...13
What is IBM® ILOG® JViews graph layout?...14

The concept of graph layout..15

The graph layout algorithms..17

Structure of the graph layout API..21

Common features of graph layout algorithms..23

Getting started with graph layout...25
Using layout algorithms..27
Different ways to use layout algorithms..28
Running a graph layout application with a diagram component...29
Running the sample IBM® ILOG® JViews Diagrammer application..32
Running a graph layout application with link layout..35
Running a graph layout application with dynamic layout parameters...38
Running the sample application that uses mutable style sheets..40
Running the sample application that uses the graph layout API..44

Using layout algorithms through the graph layout API...47
Using layout algorithms on graphers..48
Running the sample application that uses the graph layout API..49

Basic concepts...53

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Graph layout in IBM® ILOG® JViews Diagrammer..54

Using graph layout in a diagram component...56

Using the graph layout API...63

Layout algorithms..69
Overview of graph layout information...71

Determining the appropriate layout algorithm..72

Overview: layout algorithms in CSS..75

Typical ways to choose a layout..79
Choosing a layout algorithm...80
Choosing the layout algorithm dynamically..81
Hard-coding a layout at programming time...82
Hard-coding a layout at run time..83

Generic parameters and features..85
Support by algorithms of generic features and parameters...86
Base class parameters and features..89

Layout characteristics..110

Topological Mesh Layout (TML)...113
General information on the TML...114
Features and limitations of the TML...116
The TML algorithm...117
Generic features and parameters of the TML...120
Specific parameters of the TML..123
Refining a graph layout (TML)..129
Using a link clipping interface with the TML..132

Force-directed or Uniform Length Edges Layout (ULEL)..135
General information on the ULEL...136
Features and limitations of the ULEL...141
The ULEL algorithm...142
Generic features and parameters of the ULEL...144
Specific parameters of the ULEL..146
For experts: additional features of the ULEL..151
Using a link clipping interface with the ULEL..156

Tree Layout (TL)...159
General information on the TL..160
Features and limitations of the TL..163
The TL algorithm..165
Generic features and parameters of the TL algorithm..168
Specific parameters (for all tree layout modes)..171
Layout modes of the TL algorithm..175

U S I N G G R A P H L A Y O U T A L G O R I T H M S4

Free layout mode..177
Level layout mode...199
Radial layout mode..205
Tip-over layout modes...217
Recursive mode..221

For experts: additional tips for the TL...223

Hierarchical Layout (HL)...229
General information on the HL...232
Features and limitations of the HL..236
The HL algorithm..238
Generic features and parameters of the HL...242
Specific parameters of the HL..245
Incremental mode with HL..269
Layout constraints for HL..278
Specifying constraints in CSS for HL..279
Adding and removing constraints in Java for HL..280
Level range constraints (HL)...282
Level index parameter (HL)..284
Same level constraints (HL)..285
Group spread constraints (HL)...286
Relative level constraints (HL)..287
Position index parameter (HL)..288
Relative position constraints (HL)...289
Side-by-side constraints (HL)...290
Extremity constraints (HL)..292
Swim lane constraints (HL)...294
Summary of constraints file as opposed to constraints in Java (HL)..297
Constraint priorities (HL)..298
For experts: constraint validation (HL)..300
For experts: specifying constraints in CSS directly (HL)...301
For experts: more indices (HL)...303
Recursive layout...305

Link layout (LL)..309
General information on the LL..311
Features and limitations of the LL..314
The LL algorithms...316
Generic features and parameters of the LL..319
Specific parameters for both LL modes..321
Spacing parameters in short link mode..332
Spacing parameters in long link mode...336
For experts: additional features of LL...340
For experts: special options of the Short LL...343
For experts: special options of the Long LL..353

U S I N G G R A P H L A Y O U T A L G O R I T H M S 5

Random layout (RL)..359
RL sample..360
Features and limitations of the RL..361
The RL algorithm..362
Generic features and parameters of the RL...364
Specific parameters of the RL..366

Bus layout (BL)..367
BL - sample..368
Features of the BL..369
The BL algorithm..370
Generic features and parameters of the BL...372
Specific parameters of the BL..374

Circular layout (CL)...391
General information on the CL...392
Features and limitations of the CL..394
The CL algorithm..395
Generic features and parameters of the CL...399
Specific parameters of the CL..401

Grid layout (GL)...413
General information on the GL...414
Features of the GL..416
The GL algorithm..417
Generic features and parameters of the GL...419
Specific parameters of the GL..421

Layout exceptions...430

Nested layouts..435
Concepts for nested layouts..436

Layout of nested graphs in IBM® ILOG® JViews Diagrammer...437
Nested SDM models and nested graphers...438
Specification in CSS for nested graphs..439
Accessing sublayouts of subgraphs...442

Layout of nested graphs in code...443
The classes that support nested graphs..444
Order of layouts in recursive layouts...445
Simple recursion: applying the same layout to all subgraphers..446
Advanced recursion: mixing different layouts in a nested graph...450

Recursive layout..453
Overview of recursive layout...454
Features...460
Generic features and parameters...461

U S I N G G R A P H L A Y O U T A L G O R I T H M S6

Recursive layout modes...463
Overview of recursive layout modes...464
Reference layout mode...465
Internal provider mode...466
Specified provider mode...468
Accessing all sublayouts...469
Specific parameters..471
For experts: mechanisms for advanced users..473
For experts: more on layout providers..476

Multiple layout...479
General information..480
Features...484
Generic features and parameters...485
Specific parameters..487
Accessing sublayouts...488
For experts: attaching graph and labeling models..489
Combining multiple and recursive layout..490
For experts: the reference labeling model..491

Automatic label placement..493
Getting started with labeling..495
Introduction to automatic label placement..496
Getting started with Label Layout in a diagram component...498
Getting started with Label Layout in Java...499

Specifying labels and obstacles..505
Labels and obstacles in a diagram component..506
Labels and obstacles in Java...512

Using the label layout API..515
Overview...516
The label layout base class and its subclasses..517
Instantiating and attaching a subclass of IlvLabelLayout...518
Performing a layout...519
Performing a recursive layout on nested subgraphs...520
The label layout report..522
Layout events and listeners..524
Layout parameters and features in IlvLabelLayout...526

Annealing label layout..527
General information..529
Features...531
Limitations..532
The algorithm...533
Generic features and parameters...535

U S I N G G R A P H L A Y O U T A L G O R I T H M S 7

Label descriptors..537
Point label descriptor..539
Polyline label descriptor..545
Rotated labels..552
Specific global parameters...554
For experts: implementing your own label descriptors...560

Random Label Layout...563
Sample...564
Features...565
The algorithm...566
Code sample..567
Generic features and parameters...568
Specific parameters..570

Using advanced features..571
General information..572
Filtering manager layers...573
Transformers for label layout..574
Nonzoomable graphic objects as labels and obstacles..575
Reference transformer for labeling...576
Specifying the mode for labeling coordinates...577
Using named properties to save layout parameters...578

Defining your own labeling model...579
The need for a custom label layout algorithm...580
The IlvLabelingModel Class...581
The IlvLabelingModelWithRotation Interface..586
Subclassing the default labeling model..588
Creating a new labeling model...590

Using advanced features...591
Overview of advanced features..593

Using a graph layout report..595
Layout report classes...596
Creating a layout report..597
Accessing a layout report...598
Information stored in a layout report...599

Using event listeners..601

Redrawing the grapher after layout...603

Using the Graph Model...605
Overview of the graph model..606
Graph model and SDM model..607
The graph model concept...608

U S I N G G R A P H L A Y O U T A L G O R I T H M S8

The IlvGraphModel class..609
Using the class IlvGrapherAdapter...614

Laying out a non-JViews grapher..615

Laying out connected components of a disconnected graph..616

Saving layout parameters and preferred layouts...619
Overview of saving...620
Saving layout parameters to .ivl files..621
Saving preferred layouts to .ivl files..623
Loading layout parameters from .ivl files..625
Loading preferred layouts from .ivl files..627
Additional information for expert users...628

Using filtering to lay out a part of an IlvGrapher..630

Choosing the layout coordinate space..633
General considerations about layout and coordinates..634
Transformers for graphers..635
Nonzoomable graphic objects as nodes...636
Reference transformer for grapher...637
Specifying a reference transformer..638
Specifying the mode for layout coordinates..639

Defining your own type of layout...641
A sample custom layout algorithm..642
Implementing the layout method..644

FAQs about using the layout algorithms...646

Releasing resources used during the layout of a grapher..649

Using graph layout Beans...651
Overview..652

Graph layout classes available as Beans..653

Creating a simple applet using Beans..655

Index..673

U S I N G G R A P H L A Y O U T A L G O R I T H M S 9

Conventions and Bibliography

Conventions
In CSS means that you create or modify a Cascading Style Sheet file that is used in your
diagram component or SDM component as a style sheet. A CSS file does not contain Java™
code, it contains style rules.

Layout parameter names in the GraphLayout, LinkLayout, and LabelLayout sections always
start with a lowercase letter. Layout parameter names in the node or link rules always start
with an uppercase letter.

In Java means that you write Java™ code.

Accessors and Modifiers
Very often, you can set and retrieve a property of a class by using a pair of modifier/accessor
methods, such as:

setFlowDirection(int direction);
int getFlowDirection();
setIncrementalMode(boolean mode);
boolean isIncrementalMode();

This document uses the standard Java naming scheme for the modifiers and accessors, that
is, the set and get/is methods. However, when explaining the Java API, it often mentions
only the set method. Please refer to the For a detailed list of all the get/is methods, see the
Java API Reference Documentation at index.

Books
Several books dedicated to graph layout have been published:

Di Battista, Giuseppe, Peter Eades, Roberto Tammassia, and Ioannis G. Tollis.Graph Drawing:
Algorithms for the Visualization of Graphs, Prentice Hall, 1999. See:

http://www.cs.brown.edu/people/rt/gdbook.html

or

http://www.mypearsonstore.com/bookstore/product.asp?isbn=0133016153.

Kaufmann, Wagner (Eds.): Drawing Graphs, Lecture Notes in Computer Science Vol. 2025,
Springer 2001. See:

http://link.springer.de/link/service/series/0558/tocs/t2025.htm.

Graph layout is closely related to graph theory, for which extensive literature exists. See:

Clark, John and Derek Allan Holton. A First Look at Graph Theory. World Scientific Publishing
Company, 1991.

For a mathematics-oriented introduction to graph theory, see:

Diestel, Reinhard, Graph Theory, 2nd ed., Springer-Verlag, 2000.

© Copyright IBM Corp. 1987, 200910

http://www.cs.brown.edu/people/rt/gdbook.html
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0133016153
http://link.springer.de/link/service/series/0558/tocs/t2025.htm

A more algorithmic approach may be found in:

Gibbons, Alan. Algorithmic Graph Theory. Cambridge University Press, 1985.

Gondran, Michel and Michel Minoux. Graphes et algorithmes, 3rd ed., Eyrolles, Paris, 1995
(in French).

Bibliography
A comprehensive bibliographic database of papers in computational geometry (including
graph layout) can be found at:

The Geometry Literature Database

http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html.

The recommended bibliographic survey paper is the following:

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. “Algorithms
for Drawing Graphs: an Annotated Bibliography.” Computational Geometry: Theory and
Applications 4 (1994): 235-282 (also available at

http://www.cs.brown.edu/people/rt/gd-biblio.html.

Journals
The following are electronic journals:

Journal of Graph Algorithms and Applications

http://jgaa.info/

Algorithmica

http://link.springer-ny.com/link/service/journals/00453/

Computational Geometry: Theory and Applications

http://www.elsevier.com/locate/comgeo

Journal of Visual Languages and Computing

http://www.elsevier.com/locate/jvlc

The following journals occasionally publish papers on graph layout:

Information Processing Letters

http://www.elsevier.com/locate/ipl

Computer-aided Design

http://www.elsevier.com/locate/cad

IEEE Transactions on Software Engineering

http://www.computer.org/tse/

Many papers are presented at conferences in Combinatorics and Computer Science.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 11

http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html
http://www.cs.brown.edu/people/rt/gd-biblio.html
http://jgaa.info/
http://link.springer-ny.com/link/service/journals/00453/
http://www.elsevier.com/locate/comgeo
http://www.elsevier.com/locate/jvlc
http://www.elsevier.com/locate/ipl
http://www.elsevier.com/locate/cad
http://www.computer.org/tse/

Conferences
An annual Symposium on Graph Drawing has been held since 1992. The proceedings are
published by Springer-Verlag in the Lecture Notes in Computer Science series.

The 2008 Symposium on Graph Drawing was held in Heraklion, Crete, Greece:

http://gd2008.org/

The 2009 Symposium will be held in Chicago, USA.

U S I N G G R A P H L A Y O U T A L G O R I T H M S12

http://gd2008.org/

Introducing graph layout

Describes the IBM® ILOG® JViews graph layout package and its features.

In this section

What is IBM® ILOG® JViews graph layout?
Explains the purpose of IBM® ILOG® JViews graph layout.

The concept of graph layout
Provides some background information about graph layout in general, not specifically related
to IBM® ILOG® graph layout algorithms.

The graph layout algorithms
Lists the graph layout algorithms available with an example diagram of each.

Structure of the graph layout API
Describes the packages in the graph layout API.

Common features of graph layout algorithms
Lists the common features of the graph layout algorithms.

© Copyright IBM Corp. 1987, 2009 13

What is IBM® ILOG® JViews graph layout?

Graph layout is a set of algorithms that optimize the display of nodes and links with respect
to each other in graphs such as network topologies for telecommunications networks and
systems management applications.

Many types of complex business data can best be visualized as a set of nodes and
interconnecting links, more commonly called a graph or a network. Examples of graphs
include business organization charts, workflow diagrams, telecom network displays, and
genealogical trees. Whenever these graphs become large or heavily interconnected, it
becomes difficult to see the relationships between the various nodes and links (the “edges”).
This is where IBM® ILOG® JViews graph layout algorithms help.

Graph layout provides high-level, ready-to-use relationship visualization services. It allows
you to take any “messy” graph and apply a sophisticated graph layout algorithm to rearrange
the positions of the nodes and links. The result is a more readable and understandable
picture.

Take a look at two sample drawings of the same graph.

Using one of the layout algorithms provided with
the product, the following drawing was obtained.

Here, no formal layout algorithm was used. The
nodes were placed randomly when the graph was
drawn.

In the second drawing, the layout algorithm has distributed the nodes quite uniformly,
avoiding overlapping nodes and showing the symmetries of the graph. This drawing presents
a much more readable layout than the first drawing.

U S I N G G R A P H L A Y O U T A L G O R I T H M S14

The concept of graph layout

Simply speaking, a graph is a data structure that represents a set of entities, called nodes,
connected by a set of links. A node can also be referred to as a vertex. A link can also be
referred to as an edge or a connection. In practical applications, graphs are frequently used
to model a very wide range of things: computer networks, software program structures,
project management diagrams, and so on. Graphs are powerful models because they permit
applications to benefit from the results of graph theory research. For instance, efficient
methods are available for finding the shortest path between two nodes, the minimum cost
path, and so on.

Layout of a graph
Graph layout is used in graphical user interfaces of applications that need to display graph
models. To lay out a graph means to draw the graph so that an appropriate, readable
representation is produced. Essentially, this involves determining the location of the nodes
and the shape of the links. For some applications, the location of the nodes may already be
known (for example, based on the geographical positions of the nodes). However, for other
applications, the location is not known (a pure “logical” graph) or the known location, if
used, would produce an unreadable drawing of the graph. In these cases, the location of
the nodes must be computed.

What is meant by an “appropriate” drawing of a graph? In practical applications, it is often
necessary for the graph drawing to observe certain quality criteria. These criteria may vary
depending on the application field or on a given standard of representation. It is often difficult
to tell what a good layout consists of. Each end user may have different, subjective criteria
for qualifying a layout as “good”. However, one common goal exists behind all the criteria
and standards: the drawing must be easy to understand and provide easy navigation through
the complex structure of the graph.

What is a good layout?
To deal with the various needs of different applications, many classes of graph layout
algorithms have been developed. A layout algorithm addresses one or more quality criteria,
depending on the type of graph and the features of the algorithm, when laying out a graph.

The most common criteria are:

♦ Minimizing the number of link crossings

♦ Minimizing the total area of the drawing

♦ Minimizing the number of bends (in orthogonal drawings)

♦ Maximizing the smallest angle formed by consecutive incident links

♦ Maximizing the display of symmetries

How can a layout algorithm meet each of these quality criteria and standards of
representation? If you look at each individual criteria, some can be met quite easily, at least
for some classes of graphs. For other classes, it may be quite difficult to produce a drawing
that meets the criteria. For example, minimizing the number of link crossings is relatively
simple for trees (that is, graphs without cycles). However, for general graphs, minimizing
the number of link crossings is a mathematical NP-complete problem (that is, with all known

U S I N G G R A P H L A Y O U T A L G O R I T H M S 15

algorithms, the time required to perform the layout grows very fast with the size of the
graph).

Moreover, if you want to meet several criteria at the same time, an optimal solution may
not exist with respect to each individual criteria because many of the criteria are mutually
contradictory. Time-consuming trade-offs may be necessary. In addition, it is not a trivial
task to assign weights to each criteria. Multicriteria optimization is, in most cases, too
complex to implement and much too time-consuming. For these reasons, layout algorithms
are often based on heuristics and may provide less than optimal solutions with respect to
one or more of the criteria. Fortunately, in practical terms, the layout algorithms will still
often provide reasonably readable drawings.

Methods for using layout algorithms
Layout algorithms can be employed in a variety of ways in the various applications in which
they are used. The most common ways of using an algorithm are the following:

♦ Automatic layout

The layout algorithm does everything without any user intervention, except for perhaps
the choice of the layout algorithm to be used. Sometimes, a set or rules can be coded to
choose automatically (and dynamically) the most appropriate layout algorithm for the
particular type of graph being laid out.

♦ Semiautomatic layout

The end user is free to improve the result of the automatic layout procedure by hand. In
some cases, the end user can move and “pin” nodes at desired locations and perform the
layout again. In other cases, a part of the graph is automatically set as “read-only” and
the end user can modify the rest of the layout.

♦ Static layout

The layout algorithm is completely redone (“from scratch”) each time the graph is changed.

♦ Incremental layout

When the layout algorithm is performed a second time on a modified graph, it tries to
preserve the stability of the layout as much as possible. The layout is not performed again
from scratch. The layout algorithm also tries to save CPU time by using the previous
layout as an initial solution. Some layout algorithms and layout styles are incremental by
nature. For others, incremental layout may be impossible.

U S I N G G R A P H L A Y O U T A L G O R I T H M S16

The graph layout algorithms

The graph layout package provides numerous ready-to-use layout algorithms. They are
shown below with sample illustrations. In addition, you can develop new layout algorithms
using the generic layout framework.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 17

Topological
Mesh Layout
(TML)

Force-directed
or Uniform
Length Edges
Layout (ULEL)

Circular layout
(CL)
(Ring/Star)

Hierarchical
Layout (HL)

U S I N G G R A P H L A Y O U T A L G O R I T H M S18

Link layout
(LL)

Tree Layout
(TL)

Random layout
(RL)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 19

Bus layout
(BL)

Grid layout
(GL)

U S I N G G R A P H L A Y O U T A L G O R I T H M S20

Structure of the graph layout API

The IBM® ILOG® JViews graph layout API is composed of:

♦ The generic graph layout package

♦ The layout algorithm packages

♦ The label layout package

♦ The Swing components

The generic graph layout package
ilog.views.graphlayout: A high-level, generic framework for the graph layout services
provided by IBM® ILOG® JViews.

The layout algorithm packages

♦ ilog.views.graphlayout.bus: A layout algorithm designed to display bus network
topologies (that is, a set of nodes connected to a bus node).

♦ ilog.views.graphlayout.circular: A layout algorithm that displays graphs representing
interconnected ring and/or star network topologies.

♦ ilog.views.graphlayout.grid: A layout algorithm that arranges the disconnected nodes
of a graph in rows, in columns, or in the cells of a grid.

♦ ilog.views.graphlayout.hierarchical: A layout algorithm that arranges nodes in
horizontal or vertical levels such that the links flow in a uniform direction.

♦ ilog.views.graphlayout.link: A layout algorithm that reshapes the links of a graph
without moving the nodes.

● ilog.views.graphlayout.link.longlink: For long orthogonal links.

● ilog.views.graphlayout.link.shortlink: For short links.

♦ ilog.views.graphlayout.multiple: A facility that combines multiple layout algorithms
and treat them as one algorithm object.

♦ ilog.views.graphlayout.random: A layout algorithm that moves the nodes of the graph
at randomly computed positions inside an user-defined region.

♦ ilog.views.graphlayout.recursive: A layout algorithm that can be used to control the
layout of nested graphs (containing subgraphs and intergraph links).

♦ ilog.views.graphlayout.topologicalmesh: A layout algorithm that can be used to lay
out cyclic graphs.

♦ ilog.views.graphlayout.tree: A layout algorithm that arranges the nodes of a tree
horizontally or vertically, starting from the root of the tree. A radial layout mode allows
you to arrange the nodes of a tree on concentric circles around the root of the tree.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 21

♦ ilog.views.graphlayout.uniformlengthedges: A layout algorithm that can be used to
lay out any type of graph and allows you to specify the length of the links.

The label layout package
ilog.views.graphlayout.labellayout: A layout algorithm for automatic placement of
labels.

♦ ilog.views.graphlayout.labellayout.annealing: For close label positioning.

♦ ilog.views.graphlayout.labellayout.random: For random placement.

The Swing components
ilog.views.graphlayout.swing: Swing components useful for creating applications mixing
IBM® ILOG® JViews Diagrammer graph layout and Swing.

U S I N G G R A P H L A Y O U T A L G O R I T H M S22

Common features of graph layout algorithms

The graph layout algorithms share the following features:

♦ Programmable: All graph layout algorithms can be tailored through code. You do not
need a diagram component to be able to use the graph layout algorithms. The algorithms
can be attached to a grapher (class IlvGrapher) directly.

♦ Adaptable to any graph data structure: Not even an IBM® ILOG® JViews grapher is
required. You can program your own graph data structures and apply an IBM® ILOG®
JViews Diagrammer graph layout algorithm to them.

♦ Extensible: you can easily use the generic framework to implement your own graph
layout algorithm, or to combine smaller layout algorithms into a larger one.

♦ Suitable for nested graphs: The graph layout framework provides capabilities to lay
out graphs that contain other graphs as nodes. It can even route intergraph links that
run between different subgraphs of a nested graph.

♦ Economic and automatic: The graph layout framework has capabilities to perform a
layout only when needed, i.e. when a parameter or a detail of the graph has changed.
Furthermore, the framework has the capability to react automatically to such a change.

♦ Selective: You can apply different layout algorithms to different parts of a graph. For
instance, you can apply a layout only to the nodes and links that are on user-defined layers
of the graph, or only to parts that meet user-defined conditions.

♦ Time controlled: All layout algorithms can be set to stop automatically when a time has
elapsed. Some layout algorithms can even be interrupted during runtime.

♦ Stylable: All graph layout algorithms can be used in a diagram component and all
important graph layout settings can be controlled by Cascading Style Sheets (CSS).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 23

U S I N G G R A P H L A Y O U T A L G O R I T H M S24

Getting started with graph layout

Provides information to help you start using the IBM® ILOG® JViews Graph Layout
functionality.

In this section

Using layout algorithms
Explains how to use layout algorithms.

Using layout algorithms through the graph layout API
Explains how to use layout algorithms through the graph layout API.

© Copyright IBM Corp. 1987, 2009 25

U S I N G G R A P H L A Y O U T A L G O R I T H M S26

Using layout algorithms

Explains how to use layout algorithms.

In this section

Different ways to use layout algorithms
Describes the different ways to use layout algorithms.

Running a graph layout application with a diagram component
Explains how to run an application that makes use of a graph layout algorithm and gives an
example of the CSS style sheet.

Running the sample IBM® ILOG® JViews Diagrammer application
Explains how to compile and run an application that reads the sample CSS style sheet. into
a diagram component.

Running a graph layout application with link layout
Explains the relevance of link layout and how to set it up to work automatically and gives
an example of a CSS style sheet for link layout.

Running a graph layout application with dynamic layout parameters
Explains how to specify multiple style sheets and use them to change parameters dynamically:

Running the sample application that uses mutable style sheets
Illustrates an application that uses a mutable style sheet in a diagram component.

Running the sample application that uses the graph layout API
Illustrates the alternative approach to mutable style sheets, which is to access the graph
layout instance directly and change the parameters using the graph layout API.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 27

Different ways to use layout algorithms

You can use graph layout algorithms with or without a diagram component. There are several
ways to use the graph layout algorithms:

♦ By specifying a style sheet for graph layout in a diagram component

♦ By using the graph layout API in a diagram component

♦ By using the graph layout API in a graphics framework application

The diagram component (class IlvDiagrammer) allows you to configure the graph layout
entirely through style sheets. Internally, it uses the graph layout API and the Graphics
Framework, but it simplifies their usage by a high-level API and by the expressiveness of
the CSS language.

It is not mandatory to use a diagram component (class IlvDiagrammer) to perform graph
layout. The graph layout algorithms work also on graphers (class IlvGrapher).

The diagram component uses the grapher infrastructure internally, adds style sheets and
simplifies the usage. But if style sheets are not required by the application, you can just use
graph layout algorithms without any diagram component.

U S I N G G R A P H L A Y O U T A L G O R I T H M S28

Running a graph layout application with a diagram component

To use the layout algorithms provided by the graph layout package inside a diagram
component, you usually perform the following steps:

1. Create a style sheet (CSS file) that specifies the graph layout. You can use the
JViews Diagrammer Designer to create the style sheet interactively, or a text editor to
create the style sheet by editing the CSS text.

2. Create an IlvDiagrammer diagram component and fill it with data from the data model.

3. Load the style sheet into the diagram component. Graph layout is automatically
performed when the style sheet is loaded or changed.

Sample CSS file for graph layout
You can use the sample style sheet provided to get started with the layout algorithms of the
graph layout package in an IBM® ILOG® JViews Diagrammer application. It illustrates
how to specify a layout algorithm and the layout parameters in a CSS file. The example uses
the Tree Layout, but most of the principles apply to any of the other layouts.

The complete style sheet is named Sample.css and is located in
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample1/data/Sample.css

Since the Tree Layout applies link reshaping as well as laying out the nodes, an additional
link layout is not necessary. Therefore, the link layout is set to false. Besides the layout
style, the GraphLayout section of the style sheet specifies the global layout parameters of
the layout style. Parameters that are not specified take the default value.

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

node {
class : "ilog.views.sdm.graphic.IlvGeneralNode";
...

}

link {
class : "ilog.views.sdm.graphic.IlvGeneralLink";
...

}

GraphLayout {
graphLayout : "Tree";
flowDirection : "Bottom";
layoutMode : "FREE";
globalLinkStyle : "ORTHOGONAL_STYLE";
globalAlignment : "CENTER";
connectorStyle : "EVENLY_SPACED_PINS";
siblingOffset : "15";
branchOffset : "30";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 29

parentChildOffset : "20";
position : "200,20";

}

Specifying graph layout in detail
The graph layout algorithm in the sample CSS file is configured according to the CSS
specification for graph layout.

The SDM style rule specifies that a graph layout renderer is created. An SDM renderer is a
pluggable object that controls the rendering of the graph. The graph layout renderer calls
a layout algorithm. By default, a layout is in enabled mode and, therefore, is applied whenever
the diagram changes.

SDM {
GraphLayout : "true";

}

The renderer corresponds to the following Java™ class:

IlvGraphLayoutRenderer

The parameters of the graph layout renderer and of the graph layout algorithm are specified
in the GraphLayout rule.

GraphLayout {
graphLayout : "Tree";
flowDirection : "Bottom";
...

}

The GraphLayout rule contains the following declarations:

♦ The first declaration tells the graph layout renderer to use a tree layout algorithm, which
corresponds to the Java class IlvTreeLayout. This declaration calls the method
setGraphLayout(ilog.views.graphlayout.IlvGraphLayout). You can pass the name
of any subclass of IlvGraphLayout. The class name can be abbreviated, for example,
Tree, or you can pass the full class name.

♦ The second declaration tells the tree layout algorithm to lay nodes out from top to bottom.
This declaration calls the method setFlowDirection(int).

Other graph layout or renderer parameters can be specified in a similar way. If a parameter
is not specified then its default value is used. When the graph layout renderer is enabled
(the default), it reapplies the layout whenever an object is changed or moved.

When the graph layout renderer is enabled and a hierarchical layout or tree layout is
in use, it is not necessary to use the link layout renderer, because the graph layout

Note:

renderer has full control over the layout of nodes and links. Other graph layouts may

U S I N G G R A P H L A Y O U T A L G O R I T H M S30

control only the node layout, in which case the link layout renderer can be used to
position the links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 31

Running the sample IBM® ILOG® JViews Diagrammer application

When reading a style sheet, the application automatically performs the graph layout as
specified in the style sheet.

The source code of the application is named Sample1.java and is located in
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample1/src/Sample1.java.

To compile and run sample 1:

1. Go to the sample1 directory. On Microsoft® Windows® systems, you must open a
Command Prompt window.

2. Set the CLASSPATH variable to the IBM® ILOG® JViews Diagrammer library and the
current directory.

.;<installdir>\jviews-diagrammer86\lib\
jviews-diagrammer-all.jar;<installdir>\

On Microsoft Windows
systems

jviews-framework86\lib\
jviews-framework-all.jar;<installdir>\jlm

.:<installdir>/jviews-diagrammer86/lib/
jviews-diagrammer-all.jar:<installdir>/

On UNIX® systems

jviews-framework86/lib/
jviews-framework-all.jar:<installdir>/jlm

The jlm directory, which contains the license keys (the file keys.jlm), must be in the
class path.

3. Compile the application as follows:

javac -d . src/Sample1.java

4. Run the application as follows:

java Sample1

The Sample1.java file contains the following code:

// the Diagrammer Framework
import ilog.views.diagrammer.*;
// the Java AWT package
import java.awt.*;
// The Java Net package
import java.net.*;
// the Java Swing package
import javax.swing.*;

public class Sample1
{
public static void main(String[] arg)

U S I N G G R A P H L A Y O U T A L G O R I T H M S32

{
SwingUtilities.invokeLater(new Runnable() {
public void run() {
// Create the diagrammer component
IlvDiagrammer diagrammer = new IlvDiagrammer();

// Change diagrammer parameters.
diagrammer.setSelectMode(false);
diagrammer.setScrollable(false);
diagrammer.setEditingAllowed(true);
diagrammer.getView().setBackground(Color.white);
diagrammer.getView().setForeground(SystemColor.windowText);

// The name of the XML file containing the model data
String xmlFileName = "data/Sample.xml";

// The name of the CSS file containing the style sheet
String cssFileName = "data/Sample.css";

// Load the sample data file
try {
diagrammer.setDataFile(new URL("file:" + xmlFileName));

} catch (Exception e) {
System.out.println("could not read " + xmlFileName);
return;

}

// Load the style sheet.
// Since layout is fully specified in the style sheet, loading the
// style sheet performs the layout.
try {
diagrammer.setStyleSheet(new URL("file:" + cssFileName));

} catch (Exception e) {
System.out.println("could not read " + cssFileName);
return;

}

// A Swing Frame to display
JFrame frame = new JFrame("Layout Sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Put the manager view inside the Swing Frame
frame.getContentPane().add(diagrammer);

frame.setSize(600, 600);
frame.setVisible(true);

}
});

}
}

The sample style sheet and sample application produce the graph shown in Output from
Sample Java™ Application:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 33

Output from Sample Java™ Application

U S I N G G R A P H L A Y O U T A L G O R I T H M S34

Running a graph layout application with link layout

The diagram component (class IlvDiagrammer) distinguishes between node layout and link
layout. The node layout is specified as a normal graph layout. The link layout executes after
the node layout. It keeps the calculated node positions and only reshapes the links.

A typical use of the link layout is when the node layout should only be applied on demand
(for example, by clicking on a “perform layout” button), but the link layout should be applied
automatically. When the user moves the nodes interactively, only the link layout should be
applied.

To set up link layout to work automatically:

1. Create a style sheet (CSS file) that specifies the node layout and link layout. In this style
sheet, disable the graph layout and enable the link layout. You can use the
JViews Diagrammer Designer to create the style sheet interactively, or a text editor to
create it by editing the CSS text.

2. Create an IlvDiagrammer component and fill it with data from the data model.

3. Load the style sheet into the diagram.

4. Create a button that allows the user to perform the graph layout on demand.

Sample CSS file for link layout
The complete style sheet is named Sample.css and is located in
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample1a/data/Sample.css.

In this example, a hierarchical node layout is used, and a link layout is specified in addition.
The graph layout renderer is not permanently enabled, which means that the node layout
is not automatically applied. Only the link layout is applied automatically whenever the
diagram changes.

SDM {
GraphLayout : "true";
LinkLayout : "true";

}

node {
class : "ilog.views.sdm.graphic.IlvGeneralNode";
...

}

link {
class : "ilog.views.sdm.graphic.IlvGeneralLink";
...

}

GraphLayout {
graphLayout : "Hierarchical";
flowDirection : "Bottom";
enabled : "false";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 35

}

LinkLayout {
hierarchical: "true";

}

Specifying link layout in detail
The link layout algorithm in the sample CSS file is configured according to the CSS
specification for graph layout.

The SDM style rule specifies that both a link layout renderer and a graph layout renderer
are created.

SDM {
GraphLayout : "true";
LinkLayout : "true";

}

The link layout renderer routes links in a logical way. It corresponds to the following Java™
class:

IlvLinkLayoutRenderer

The graph layout renderer, on the other hand, is disabled, since graph layout should not be
applied automatically but only on demand.

GraphLayout {
...
enabled : "false";

}

The link layout renderer is enabled by default. The LinkLayout style rule allows you to specify
parameters of the link layout renderer and of the link layout.

LinkLayout {
hierarchical : "true";

}

The parameter hierarchical tells the link layout renderer to use a hierarchical layout
algorithm to route links. This declaration calls the method setHierarchical(boolean).

Applying graph layout on demand
The application that reads the style sheet into a diagram component is very similar to the
previous example. The source code of the application is named Sample1a.java and is located
in
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample1a/src/Sample1a.java.

The link layout is applied automatically, but the node layout is applied only on demand. To
perform a node layout, call the method

U S I N G G R A P H L A Y O U T A L G O R I T H M S36

diagrammer.layoutAllNodes()

To implement a button that allows the user to request a node layout, you need to define a
Swing action that calls the method layoutAllNodes.

You can derive your application from IlvDiagrammerApplication. This is an application
that encapsulates an IlvDiagrammer component. It contains already a toolbar with several
standard buttons. There is already a built-in action in IBM® ILOG® JViews Diagrammer
that calls layoutAllNodes, so all you need to do is add this action to the toolbar, using:

toolbar.addAction(IlvDiagrammerAction.layoutAllNodes)

When you move the nodes of a graph without the graph layout renderer being enabled, the
link layout renderer rearranges the links accordingly.

When you click the graph layout button, the graph layout renderer redraws the graph
according to the requested graph layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 37

Running a graph layout application with dynamic layout parameters

The sample application allows you to load a style sheet and to apply graph layout, but not
to change the layout parameters dynamically in the program. All layout parameters are
defined statically in the style sheet.

The diagram component allows you to specify multiple style sheets to apply to the data. You
can use this mechanism to change parameters dynamically.

Another way to implement dynamically changing parameters is to call the API of the graph
layout class directly.

To specify multiple style sheets:

1. Create a main style sheet (CSS file) that specifies all the static layout parameters that
will not be changed by the application.

2. Create an IlvDiagrammer component and fill it with data from the data model.

3. Load the main style sheet into the diagram component.

4. Add as second style sheet, that is, a mutable style sheet (class IlvMutableStyleSheet).

A mutable style sheet is a memory representation of a style sheet that is suitable to
hold dynamic non-persistent layout parameters.

After specifying multiple style sheets, you can use the API of the mutable style sheet to
change the dynamic parameters.

For example, to change the flow direction of a Tree layout from bottom to right, call the API
of the mutable style sheet to replace the CSS rule that defines the flow direction Bottom by
a rule that specifies the flow direction Right. Graph layout is automatically performed when
the style sheet changes.

All CSS specifications of graph layout parameters have a corresponding API in the graph
layout class.

For example, the CSS specification:

GraphLayout {
flowDirection : "Bottom";

}

corresponds to the following API call in a tree layout:

IlvTreeLayout treeLayout =
(IlvTreeLayout) diagrammer.getEngine().

getNodeLayoutRenderer().getGraphLayout();
treelayout.setFlowDirection(IlvDirection.Bottom);

To use direct API calls to change parameters dynamically:

1. Create a style sheet (CSS file) that specifies all the static layout parameters that will
not be changed by the application.

2. Create an IlvDiagrammer component and fill it with data from the data model.

U S I N G G R A P H L A Y O U T A L G O R I T H M S38

3. Load the main style sheet into the diagram component.

4. Access the layout instance of the graph layout renderer to change the layout parameters
dynamically.

When changing graph layout parameters in this way, the graph layout is not automatically
performed. You must explicitly perform the layout by calling the corresponding API on the
diagram component (diagrammer.layoutAllNodes()).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 39

Running the sample application that uses mutable style sheets

When the mutable style sheet changes, the application automatically performs the graph
layout. The source code of the application is named Sample2.java and is located at
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample2/src/Sample2.java.

To compile and run sample 2:

1. Go to the sample2 directory. On Microsoft® Windows® systems, you must open a
Command Prompt window.

2. Set the CLASSPATH variable to the IBM® ILOG® JViews Diagrammer library and the
current directory.

.;<installdir>\jviews-diagrammer86\lib\
jviews-diagrammer-all.jar;<installdir>\

On Microsoft Windows
systems

jviews-framework86\lib\
jviews-framework-all.jar;<installdir>\jlm

.:<installdir>/jviews-diagrammer86/lib/
jviews-diagrammer-all.jar:<installdir>/

On UNIX® systems

jviews-framework86/lib/
jviews-framework-all.jar:<installdir>/jlm

The jlm directory, which contains the license keys (the file keys.jlm), must be in the
class path.

3. Compile the application:

javac -d . src/Sample2.java

4. Run the application:

java Sample2

The Sample2.java file contains the following code:

// the JViews SDM Utilities
import ilog.views.sdm.util.*;
// the Diagrammer Framework
import ilog.views.diagrammer.*;
// the Java AWT package
import java.awt.*;
// The Java Net package
import java.net.*;
// the Java Swing package
import javax.swing.*;

public class Sample2
{
public static void main(String[] arg)

U S I N G G R A P H L A Y O U T A L G O R I T H M S40

{
SwingUtilities.invokeLater(new Runnable() {
public void run() {
// Create the diagram component
IlvDiagrammer diagrammer = new IlvDiagrammer();

// Create the mutable style sheet for temporary layout
// parameter settings
IlvSDMMutableStyleSheet styleSheet =
new IlvSDMMutableStyleSheet(
diagrammer.getEngine(), true, false);

// Change diagram parameters.
diagrammer.setSelectMode(false);
diagrammer.setScrollable(false);
diagrammer.setEditingAllowed(true);
diagrammer.getView().setBackground(Color.white);
diagrammer.getView().setForeground(SystemColor.windowText);

// The name of the XML file containing the model data
String xmlFileName = "data/Sample.xml";

// The name of the CSS file containing the main style sheet
String cssFileName = "data/Sample.css";

// Load the main style sheet
try {
diagrammer.setStyleSheet(new URL("file:" + cssFileName));

} catch (Exception e) {
System.out.println("could not read " + cssFileName);
return;

}

// Cascade the main style sheet with the mutable style sheet.
// The mutable style sheet holds the temporary style changes
// that are not statically stored in the main style sheet.
try {
diagrammer.getEngine().setStyleSheets(1,

styleSheet.toString());
} catch (Exception e) {
System.out.println("could not load the style sheet");

}

// Load the sample data file
try {
diagrammer.setDataFile(new URL("file:" + xmlFileName));

} catch (Exception e) {
System.out.println("could not read " + xmlFileName);
return;

}

// Change some layout parameters in the mutable style sheet
styleSheet.setAdjusting(true);
try {

U S I N G G R A P H L A Y O U T A L G O R I T H M S 41

// enable graph layout
styleSheet.setDeclaration("GraphLayout", "enabled", "true");
// use Tree Layout
styleSheet.setDeclaration("GraphLayout", "graphLayout", "Tree");
// use flow direction towards bottom
styleSheet.setDeclaration("GraphLayout", "flowDirection", "Bottom")

;
// use orthogonal link style
styleSheet.setDeclaration("GraphLayout", "globalLinkStyle",
"ORTHOGONAL_STYLE");

} finally {
// This completes the adjusting session: it validates the new
// declarations and performs layout as neceesary
styleSheet.setAdjusting(false);

}

// A Swing Frame to display
JFrame frame = new JFrame("Layout Sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Put the manager view inside the Swing Frame and show it.
frame.getContentPane().add(diagrammer);

frame.setSize(600, 600);
frame.setVisible(true);

}
});

}
}

The bold font indicates the differences between Sample2 and Sample1.Note:

If you need to change layout parameters inside the program, call themethod setDeclaration.
For example, to set the flow direction to Bottom, call:

styleSheet.setDeclaration("GraphLayout", "flowDirection", "Bottom");

This is equivalent to changing the style sheet declaration to:

GraphLayout {
flowDirection : "Bottom";

}

Whenever the declaration of the style sheet changes outside an adjustment session, or when
an adjustment session ends, the layout is automatically applied.

An adjustment session encapsulates a sequence of declaration changes as follows:

styleSheet.setAdjusting(true);

U S I N G G R A P H L A Y O U T A L G O R I T H M S42

try {
... declaration changes ...

} finally {
styleSheet.setAdjusting(false);

}

These changes are delayed until the method styleSheet.setAdjusting(false) is called.
Only then will the layout be applied. Adjustment sessions are an efficient way to apply a
large number of declaration changes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 43

Running the sample application that uses the graph layout API

Using the graph layout API directly may be necessary in advanced applications for temporary
parameter settings.

In this case, unlike the case with mutable style sheets, the diagram component forgets all
direct parameter settings when it triggers a reload of the style sheet. Also, when the layout
parameters are changed through the layout API, the layout is not performed automatically
and must be triggered explicitly.

An application that accesses the graph layout instance directly is illustrated below. It loads
a style sheet that specifies a tree layout (see Sample CSS file for graph layout) and accesses
the tree layout instance to change layout parameters. The source code of the application is
named Sample3.java and it is located at
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample3/src/Sample3.java.

To compile and run sample 3:

1. Go to the sample3 directory. On Microsoft® Windows® systems, you must open a
Command Prompt window.

2. Set the CLASSPATH variable to the IBM® ILOG® JViews Diagrammer library and the
current directory.

.;<installdir>\jviews-diagrammer86\lib\
jviews-diagrammer-all.jar;<installdir>\

On Microsoft Windows
systems

jviews-framework86\lib\
jviews-framework-all.jar;<installdir>\jlm

.:<installdir>/jviews-diagrammer86/lib/
jviews-diagrammer-all.jar:<installdir>/

On UNIX® systems

jviews-framework86/lib/
jviews-framework-all.jar:<installdir>/jlm

Note that the jlm directory, which contains the license keys (the file keys.jlm), must
be in the class path.

3. Compile the application:

javac -d . src/Sample3.java

4. Run the application:

java Sample3

The Sample3.java file contains the following code:

// the JViews Graphic Framework
import ilog.views.*;
// The JViews Tree Layout
import ilog.views.graphlayout.tree.*;

U S I N G G R A P H L A Y O U T A L G O R I T H M S44

// the Diagrammer Framework
import ilog.views.diagrammer.*;
// the Java AWT package
import java.awt.*;
// The Java Net package
import java.net.*;
// the Java Swing package
import javax.swing.*;

public class Sample3
{
public static final void main(String[] arg)
{
SwingUtilities.invokeLater(new Runnable() {
public void run() {
// Create the diagram component
IlvDiagrammer diagrammer = new IlvDiagrammer();

// Change diagram parameters.
diagrammer.setSelectMode(false);
diagrammer.setScrollable(false);
diagrammer.setEditingAllowed(true);
diagrammer.getView().setBackground(Color.white);
diagrammer.getView().setForeground(SystemColor.windowText);

// The name of the XML file containing the model data
String xmlFileName = "data/Sample.xml";

// The name of the CSS file containing the main style file
String cssFileName = "data/Sample.css";

// Load the style sheet
try {
diagrammer.setStyleSheet(new URL("file:" + cssFileName));

} catch (Exception e) {
System.out.println("could not read " + cssFileName);
return;

}

// Load the sample data file
try {
diagrammer.setDataFile(new URL("file:" + xmlFileName));

} catch (Exception e) {
System.out.println("could not read " + xmlFileName);
return;

}

// A Swing Frame to display
JFrame frame = new JFrame("Layout Sample");

// Put the manager view inside the Swing Frame and show it.
frame.getContentPane().add(diagrammer);

frame.setSize(600, 600);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 45

frame.setVisible(true);

// The style sheet specifies Tree layout, therefore the current
// layout instance has type IlvTreeLayout
IlvTreeLayout layout = (IlvTreeLayout) diagrammer.getEngine().
getNodeLayoutRenderer().getGraphLayout();

// Change some layout parameters on the layout instance directly.
layout.setFlowDirection(IlvDirection.Bottom);
layout.setGlobalLinkStyle(IlvTreeLayout.ORTHOGONAL_STYLE);

// Changing the layout parameters in this way does not perform
// a layout automatically. Therefore layout is called
// explicitely.
IlvDiagrammer fdiagrammer = diagrammer;
if (fdiagrammer.isNodeLayoutAvailable()) {
// Perform the layout of all nodes
fdiagrammer.layoutAllNodes();
// Fit the view to show the entire graph
fdiagrammer.fitToContents();

}
}

});
}

}

The bold font indicates the differences between Sample3 and Sample1.Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S46

Using layout algorithms through the graph
layout API

Explains how to use layout algorithms through the graph layout API.

In this section

Using layout algorithms on graphers
Explains how to use a layout algorithm on a grapher.

Running the sample application that uses the graph layout API
Illustrates an application that uses a graph layout on a grapher.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 47

Using layout algorithms on graphers

Graphers (class IlvGrapher).store nodes and links and provide the minimal infrastructure
that is necessary to perform a graph layout.

To use the layout algorithms provided by the graph layout package:

1. Create a grapher object (IlvGrapher) and fill it with nodes and links.

2. Create an instance of the layout algorithm (any subclass of IlvGraphLayout).

3. Declare a handle for the corresponding layout report. The layout report is an object
in which the layout algorithm stores information about its behavior. For details, see
Performing a layout.

4. Attach the grapher to the layout instance.

5. Modify the default settings for the layout parameters, if necessary.

6. Call the performLayout method inside a try block.

7. Read and display information from the layout report.

8. Catch the exceptions.

9. When the layout instance is no longer needed, detach the grapher from it.

U S I N G G R A P H L A Y O U T A L G O R I T H M S48

Running the sample application that uses the graph layout API

You can use this application as an example to get started with the layout algorithms of the
graph layout package.

The example uses the Tree layout, but most of the principles apply to any of the other layouts.
The source code of the application is named Sample4.java and it is located at
<installdir>/jviews–diagrammer86/codefragments/graphlayout/sample4/src/Sample4.java.

To compile and run sample 4:

1. Go to the sample4 directory. On Microsoft® Windows® systems, you must open a
Command Prompt window.

2. Set the CLASSPATH variable to the IBM® ILOG® JViews Diagrammer library and the
current directory.

.;<installdir>\jviews-diagrammer86\lib\
jviews-diagrammer-all.jar;<installdir>\

On Microsoft Windows
systems

jviews-framework86\lib\
jviews-framework-all.jar;<installdir>\jlm

.:<installdir>/jviews-diagrammer86/lib/
jviews-diagrammer-all.jar:<installdir>/

On UNIX® systems

jviews-framework86/lib/
jviews-framework-all.jar:<installdir>/jlm

The jlm directory, which contains the license keys (the file keys.jlm), must be in the
class path.

3. Compile the application:

javac -d . src/Sample4.java

4. Run the application:

java Sample4

The Sample4.java file contains the following code:

// the JViews Graphic Framework
import ilog.views.*;
// the JViews Graph Layout Framework
import ilog.views.graphlayout.*;
// the JViews Tree Layout
import ilog.views.graphlayout.tree.*;
// the Java AWT package
import java.awt.*;
// the Java Swing package
import javax.swing.*;

U S I N G G R A P H L A Y O U T A L G O R I T H M S 49

public class Sample4
{
public static void main(String[] arg)
{
SwingUtilities.invokeLater(new Runnable() {
public void run() {
// Declare a handle for the layout instance
IlvTreeLayout layout = new IlvTreeLayout();

// Create the grapher instance
IlvGrapher grapher = new IlvGrapher();

// Create the manager view instance
IlvManagerView view = new IlvManagerView(grapher);

// Change view parameters.
view.setBackground(Color.white);
view.setKeepingAspectRatio(true);

// The name of the IVL file containing the graph data
String fileName = "data/Sample.ivl";

// Fill the grapher with nodes and links from a JViews IVL file.
// Alternatively, the nodes and links could be created
// programmatically.
try {
grapher.read(fileName);

} catch (Exception e) {
System.out.println("could not read " + fileName);
return;

}

// A Swing Frame to display
JFrame frame = new JFrame("Layout Sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Put the manager view inside the Swing Frame and show it.
frame.getContentPane().add(view);

frame.setSize(600, 600);
frame.setVisible(true);

// perform the layout in the AWT thread
performLayout(grapher, view, layout);

}
});

}

/**
* Perform the layout.
*/

private static void performLayout(IlvGrapher grapher, IlvManagerView view,
IlvTreeLayout layout)
{

U S I N G G R A P H L A Y O U T A L G O R I T H M S50

// Attach the grapher to the layout instance
layout.attach(grapher);

// Change some layout parameters
layout.setFlowDirection(IlvDirection.Bottom);
layout.setGlobalLinkStyle(IlvTreeLayout.ORTHOGONAL_STYLE);

try {
// Perform the layout and get the layout report
IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

// Print information from the layout report (optional)
System.out.println("Done in " +

layoutReport.getLayoutTime() +
" millisec., return code = " +
code + " (" +
layoutReport.codeToString(code) + ")");

}

// Catch the exceptions
catch (IlvGraphLayoutException e) {
System.out.println(e.getMessage());

}

finally {
// Fit the view to show the entire graph
view.fitTransformerToContent();
// Redraw the grapher
grapher.reDraw();

}

// Detach the grapher from the layout instance
layout.detach();

}
}

The sample Java™ application sample 4 produces the following graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 51

Output from sample 4

U S I N G G R A P H L A Y O U T A L G O R I T H M S52

Basic concepts

Explains some basic concepts and background information to help in using the Graph Layout
algorithms.

In this section

Graph layout in IBM® ILOG® JViews Diagrammer
Provides some background information about graph layout in IBM® ILOG® JViews,
specifically related to IBM® ILOG® JViews Graph Layout algorithms.

Using graph layout in a diagram component
Explains how to use graph layout features in a diagram component.

Using the graph layout API
Describes how to apply a graph layout class to a grapher.

© Copyright IBM Corp. 1987, 2009 53

Graph layout in IBM® ILOG® JViews Diagrammer

In IBM® ILOG® JViews, graphs are instances of the class IlvGrapher These instances are
called graphers. Nodes, which are instances of IlvGraphic, and links, which are instances
of IlvLinkImage, “know” how to draw themselves. Nodes can be “placed” interactively or
by code. To lay out a grapher to obtain a readable drawing, just compute and assign
appropriate coordinates to the nodes. In some cases, you may also need to modify the shape
of the links. The main task of the Graph Layout algorithms is to provide support for computing
node and link coordinates—that is, laying out the graph—fully automatically.

IBM® ILOG® JViews Diagrammer provides a Swing component that encapsulates a grapher
and the view that displays the grapher. JViews Diagrammer uses a model-view architecture,
that is, the application objects must be provided as an SDM model, and the grapher is filled
with corresponding nodes and links that are displayed in the view. The nodes and links are
styled according to a style file. A style file is a CSS file, where CSS stands for Cascading
Style Sheets. It has the file name extension .css. A style file specifies which instances of
IlvGraphic and IlvLinkImagemust be created for the diagram, and which layout algorithms
and layout parameters must be used to calculate the coordinates of the nodes and links.

There are various ways to use the Graph Layout algorithms:

♦ In a diagram component: You specify the graph layout in CSS format. The diagram
component loads this specification and automatically applies the graph layout when
necessary.

♦ In an application that uses IBM® ILOG® JViews graphers: Instead of using style
files, you access the API of the graph layout classes directly. This is suitable for applications
that do not need the model-view architecture or styling. Using the graph layout classes
directly is more powerful because you have access to internal details of the graph layout
classes that are not available in style files. However, using the graph layout API directly
is slightly more complex. For example, the layout algorithm is generally not applied
automatically, you have to call it explicitly.

♦ With your own graph data structures: It is not required to use a diagram component
to display a diagram, or to use an IBM® ILOG® JViews grapher to represent a graph. If
you have implemented your own data structures or if you use some other third-party data
structures that represent a graph, it is still possible to use graph layout algorithms by
providing an adapter between your data structures and the graph model. This more
complex application of the graph layout package is explained in Laying out a non-JViews
grapher.

This documentation shows you how to style graph layouts in a diagram component by using
style sheets (CSS) and how to program graph layout classes in Java™ , which is necessary
when you cannot use a diagram component with styling capabilities. In most cases, both
ways are illustrated in parallel even though, practically, the most common situation is to
use either one or the other.

Here are two examples in ascending order of difficulty.

Setting the offset between nodes
In CSS
Specify:

U S I N G G R A P H L A Y O U T A L G O R I T H M S54

GraphLayout {
horizontalNodeOffset: "20";

}

In Java
Call:

layout.setHorizontalNodeOffset(20);

Setting the position of a node
Example of setting the position of a node
In CSS
Specify:

GraphLayout {
position : "10,10";
rootPosition : "false";

}

In Java
Call the setPosition method as follows:

layout.setPosition(new IlvPoint(10, 10), false);

These examples mean two things:

♦ If you implement an application that uses IBM® ILOG® JViews Diagrammer or the SDM
engine and therefore is based on styling, you should specify the graph layout parameters
in a style sheet (CSS file), and you can set the position of the top left corner by adding
the above lines to your CSS file.

♦ If you implement an application that does not use JViews Diagrammer or the SDM engine,
for example an application that works directly on instances of IlvGrapher, or on your
own graph data structures, then you cannot use style sheets and you must access the
graph layout instances directly as illustrated in the Java code above.

In the first case, you specify a CSS file, in the second, you write Java code.

However, it may be necessary to mix style sheets and Java code in some cases, for example
when you implement your own graph layout renderer. But this case should be left to expert
users who are familiar with the entire SDM and JViews Framework architectures. See Using
and adding renderers in JViews Diagrammer SDK andWriting a new layout renderer to clip
links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 55

Using graph layout in a diagram component

In a diagram component, operations such as attaching or detaching a graph layout instance
take place automatically.

Controlling layout renderers by style sheets
A diagram component (an instance of IlvDiagrammer) contains various renderers that control
the graphic display of SDM model objects. The following three renderers are relevant for
graph layout:

♦ The Graph Layout Renderer is also called the Node Layout Renderer because in some
configurations, it only places the nodes without routing the links.

♦ The Link Layout Renderer routes the links, unless the Graph Layout Renderer does
this already.

♦ The Label Layout Renderer places labels at nodes and links.

The renderers and the general CSS format are documented in Using CSS syntax in the style
sheet

The style sheet controls all the renderers. For each renderer, there is a section in the style
sheet.

The following is a summary:

GraphLayout {
...//settings relevant for the Graph Layout Renderer...
}
LinkLayout {
...//settings relevant for the Link Layout Renderer...
}
LabelLayout {
...//settings relevant for the Label Layout Renderer...
}

You can also specify layout parameters for individual nodes and links by specifying a rule
that selects the node or link. Here are a few examples:

#obj13 {
... //settings relevant for the application object with ID "obj13" ...
}
node.participant {
... //settings relevant for the node of type participant ...
}
node.selected {
... //settings relevant for all selected nodes ...
}
node.participant[abc="true"] {
... //settings relevant for the node of type participant whose property "abc"

U S I N G G R A P H L A Y O U T A L G O R I T H M S56

is true ...
}

Layout parameter names in the GraphLayout, LinkLayout, and LabelLayout sections
always start with a lowercase letter. Layout parameter names in the node or link rules
always start with an uppercase letter.

Note:

Loading a style file
A CSS specification file becomes active when it is loaded into the SDM engine. At this point,
the graph layout is performed.

Example of loading a style file
For example, if you have a diagram component of type IlvDiagrammer use the following:

In Java™

try {
diagrammer.setStyleSheet(new URL("file:styleSheet.css"));

} catch (Exception e) {
...

}

When the style sheet is loaded and the layout renderers are enabled, any change to the data
model automatically updates the layout to reflect the changes.

Accessing the layout renderers
The layout renderers can be accessed from the diagram component either in Java or in CSS.

Example of accessing the layout renderers
In CSS
Use the following syntax:

GraphLayout {
enabled:true;
...

In Java
The call

diagrammer.getEngine().getNodeLayoutRenderer()

returns the renderer controlled by the GraphLayout section of the style sheet.

The call

U S I N G G R A P H L A Y O U T A L G O R I T H M S 57

diagrammer.getEngine().getLinkLayoutRenderer()

returns the renderer controlled by the LinkLayout section of the style sheet.

diagrammer.getEngine().getLabelLayoutRenderer()

returns the renderer controlled by the LabelLayout section of the style sheet.

You can enable or disable each individual renderer. If the renderer is disabled, changes to
the data model will have no effect on the renderer. For example, after the call

diagrammer.getEngine.getNodeLayoutRenderer().setEnabled(false);

a change to the data model will not trigger any new layout.

Performing layout explicitly
When a style sheet is loaded, you can also trigger a layout explicitly.

Node layout
The call

diagrammer.performNodeLayout();

performs a graph layout through the node layout renderer.

Some layout algorithms place only nodes, while others place nodes and links at
the same time. If the style sheet specifies a layout that places nodes and links
at the same time, this call routes the links as well.

Important:

Link layout
The call

diagrammer.performLinkLayout();

performs a link layout through the link layout renderer. The link layout does not move any
node, it only reshapes the links. Separating between node layout and link layout is useful
for those layout algorithms that cannot do both tasks.

Label layout
The call

U S I N G G R A P H L A Y O U T A L G O R I T H M S58

diagrammer.performLabelLayout();

performs a label layout through the label layout renderer. It positions the labels of graphic
nodes and graphic links that are subclasses of IlvGeneralNode, IlvGeneralLink
IlvSDMCompositeNode, and IlvSDMCompositeLink.

Accessing graph layout instances
Graph layout instances can be accessed from the layout renderers by the followingmethods:

nodeLayoutRenderer.getGraphLayout();

linkLayoutRenderer.getGraphLayout();

labelLayoutRenderer.getLabelLayout();

Writing a new layout renderer to clip links
This example shows how to implement and install a new layout renderer in order to perform
link clipping. This involves combining Java code and style rules that fit together, as follows:

♦ Create a new graph layout renderer in Java code.

♦ Install the new graph layout renderer by adding style rules in the style sheet.

See
<installdir>/jviews-diagrammer86/codefragments/graphlayout-diagrammer/graphlayout4.

In Java code
To implement the link clipping example, you need to write a subclass of
IlvGraphLayoutRenderer called LinkClippingRenderer. The class declaration for the new
renderer is as follows:

public class LinkClippingRenderer extends IlvGraphLayoutRenderer

The new renderer has a property called clipping which enables or disables link clipping.

The clipping property and its methods shows the property declaration and the methods to
test it and set it.

The clipping property and its methods

private boolean clipping = false;

public boolean isClipping()
{

U S I N G G R A P H L A Y O U T A L G O R I T H M S 59

return clipping;
}

public void setClipping(boolean clipping)
{
this.clipping = clipping;

}

To enable the link-clipping feature, call the method setLinkClipInterface(ilog.views.
graphlayout.IlvLinkClipInterface). In the new renderer, this method is called in an
overridden version of the method prepareRendering(ilog.views.sdm.IlvSDMEngine) ,
which is called before the graph is rendered.

The new code for the prepareRendering method shows the code for the prepareRendering
method in the LinkClippingRenderer class.

The new code for the prepareRendering method

public void prepareRendering(IlvSDMEngine engine)
{
super.prepareRendering(engine);
if(clipping && getGraphLayout().supportsLinkClipping()){
getGraphLayout().setLinkClipInterface(new ShapeLinkClipInterface(engine)

);
}

}

The link clip interface is set to an instance of a class called ShapeLinkClipInterface. This
class computes the intersection point of the link on the node shape. Look at the source code
of the example to see how the computation works.

The method removeAll(ilog.views.sdm.IlvSDMEngine) is also overridden. This method
is called after the graph is rendered (and after the graph layout is performed), to clean up
the link clip interface.

The new code for the removeAll method shows the code for the removeAll method in the
LinkClippingRenderer class.

The new code for the removeAll method

public void removeAll(IlvSDMEngine engine)
{
super.removeAll(engine);
if(getGraphLayout().supportsLinkClipping()){
getGraphLayout().setLinkClipInterface(null);

}
}

This method calls the superclass method and then clears the link clip interface.

The Enable/Disable Link Clipping button in the toolbar is bound to an action that calls the
LinkClippingRenderer.setClipping() method to enable or disable link clipping.

You must re-create the graph after processing the action for the Enable/Disable Link Clipping
button. Re-creating a graph shows the code line to add.

U S I N G G R A P H L A Y O U T A L G O R I T H M S60

Re-creating a graph

diagrammer.getEngine().loadData();

Note that you could also use the IlvSDMMutableStyleSheet class to set the layout parameters
dynamically.

In CSS
When you have written a new renderer, you need to configure your diagram to use this
renderer instead of the supplied graph layout renderer.

Setting a new class to use instead of a supplied renderer shows the extra declaration in the
SDM rule in the link-clipping style sheet.

Setting a new class to use instead of a supplied renderer

SDM {
Renderers : "GraphLayout=LinkClippingRenderer";
GraphLayout : true;

}

This declaration tells the SDM engine to use the new class instead of the
IlvGraphLayoutRenderer class as the GraphLayout renderer.

Style rule that customizes graph layout with link clipping shows the GraphLayout rule with
the extra declarations that are necessary for link clipping to work correctly.

Style rule that customizes graph layout with link clipping

GraphLayout {
graphLayout : "Hierarchical";
flowDirection : "Right";
globalLinkStyle : "STRAIGHT_LINE_STYLE";
connectingLinksToShape : "false";
connectorStyle : "CLIPPED_PINS";

}

The GraphLayout rule contains the parameters for the graph layout renderer and for the
graph layout algorithm. It contains three additional declarations for link clipping:

♦ The first extra declaration tells the Hierarchical layout not to reshape links orthogonally,
so that the effect of link clipping is more visible.

♦ The second extra declaration tells the graph layout renderer to connect links to the center
of the nodes, instead of connecting them to the border of the nodes. The link clipping
algorithm then clips each link at the crossing point on the border.

♦ The third extra declaration tells the Hierarchical layout to connect the links using clipped
pins. This declaration overrides the connectorStyle declaration in the graph-layout style
sheet.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 61

Further information
You can find information on how to use the Graph Layout with IBM® ILOG® JViews
Diagrammer in Getting started with graph layout.

Further information is in in The GraphLayout renderer in JViews Diagrammer SDK.

You can also find examples of specification in CSS for graph layout in:
<installdir>/jviews-diagrammer86/codefragments/graphlayout/sample1/data/Sample.css;

More graph layout examples are supplied in:
<installdir>/jviews-diagrammer86/codefragments/graphlayout-diagrammer.

A detailed description of the renderer API is available in the online Java API Reference
Documentation:

♦ IlvDiagrammer

♦ IlvGraphLayoutRenderer

♦ IlvLinkLayoutRenderer

♦ IlvLabelLayoutRenderer

U S I N G G R A P H L A Y O U T A L G O R I T H M S62

Using the graph layout API

In an application that works directly on an IlvGrapher object, operations such as attaching
or detaching a graph layout instance must be performed explicitly.

Nodes are instances of the class IlvGraphic and links are instances of the class
IlvLinkImage.

The base class: IlvGraphLayout
The IlvGraphLayout class is the base class for all layout algorithms. This class is an abstract
class and cannot be used directly. You must use one of its subclasses:
IlvHierarchicalLayout, IlvTreeLayout, IlvUniformLengthEdgesLayout,
IlvTopologicalMeshLayout, IlvLinkLayout, IlvRandomLayout, IlvBusLayout,
IlvCircularLayout, IlvGridLayout. You can also create your own subclasses to implement
other layout algorithms. See Defining your own type of layout.

Despite the fact that only subclasses of IlvGraphLayout are directly used to obtain the
layouts, it is still necessary to learn about this class because it contains methods that are
inherited (or overridden) by the subclasses. And, of course, you will need to understand it
if you subclass it yourself.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 63

The Class IlvGraphLayout and its subclasses and relationships to layout reports

Instantiating a subclass of IlvGraphLayout
The class IlvGraphLayout is an abstract class. It has no constructors. You will instantiate
a subclass as shown in the following example:

IlvLinkLayout layout = new IlvLinkLayout();

Attaching/detaching a grapher
You must attach the grapher before performing the layout. The following method, defined
on the class IlvGraphLayout, allows you to specify the grapher you want to lay out:

void attach(IlvGrapher grapher)

For example:

U S I N G G R A P H L A Y O U T A L G O R I T H M S64

...
IlvGrapher grapher = new IlvGrapher();
/* Add nodes and links to the grapher here */
layout.attach(grapher);

The attach method does nothing if the specified grapher is already attached. If a different
grapher is attached, this method first detaches this old grapher, then attaches the new one.
You can obtain the attached grapher using the method getGrapher(). If the grapher is
attached in this way, a default graph model is created internally. For details on the graph
model, see Using the Graph Model. The attached graph model can be obtained by:

IlvGraphModel graphModel = layout.getGraphModel();

You are not allowed to attach a default model created internally to any other layout
instance, nor to use it in any way once it has been detached from the layout
instance. For details, see Using the class IlvGrapherAdapter.

Warning:

After layout, when you no longer need the layout instance, you should call the method

void detach()

If the detachmethod is not called, some objects may not be garbage-collected. This method
also performs clean-up operations on the grapher, such as removing properties that may
have been added to the grapher objects by the layout algorithm. It also removes layout
parameters of nodes and links.

A layout instance should stay attached as long as its layout parameters are relevant
for the grapher. Only when the layout parameters, and therefore the entire layout
instance, become irrelevant for this grapher should it be detached.

Note:

Performing a layout
The performLayoutmethod starts the layout algorithm using the currently attached grapher
and the current settings for the layout parameters. The method returns a report object that
contains information about the behavior of the layout algorithm.

IlvGraphLayoutReport performLayout()

IlvGraphLayoutReport performLayout(boolean force, boolean redraw)

The first version of the method simply calls the second one with a false value for the first
argument and a true value for the second argument. If the argument force is false, the

U S I N G G R A P H L A Y O U T A L G O R I T H M S 65

layout algorithm first verifies whether it is necessary to perform the layout. It checks internal
flags to see whether the grapher or any of the parameters have been changed since the last
time the layout was successfully performed. A “change” can be any of the following:

♦ Nodes or links have been added or removed.

♦ Nodes or links have been moved or reshaped.

♦ The value of a layout parameter has been modified.

♦ The transformer of a manager view (IlvManagerView) of the grapher has changed.

Users often do not want the layout to be computed again if no changes occurred. If there
were no changes, the method performLayout returns without performing the layout. Note
that if the argument force is passed as true, the verification is no longer performed.

The argument redraw determines whether a redraw of the graph is requested. For details,
see Redrawing the grapher after layout.

The protected abstract method layout(boolean redraw) is then called. This means that
the control is passed to the subclasses that are implementing this method. The implementation
computes the layout and moves the nodes to new positions and/or reshapes the links.

The performLayoutmethod returns an instance of IlvGraphLayoutReport (or of a subclass)
that contains information about the behavior of the layout algorithm. It tells you whether
the algorithm performed normally, or whether a particular, predefined case occurred. (For
a more detailed description of the layout report, see Using a graph layout report.)

Note that the layout report that is returned can be an instance of a subclass of
IlvGraphLayoutReport depending on the particular subclass of IlvGraphLayout you are
using. For example, it will be an instance of IlvTopologicalMeshLayoutReport if you are
using the class IlvTopologicalMeshLayout. Subclasses of IlvGraphLayoutReport are used
to store layout algorithm-dependent information.

You must call the method performLayout inside a try block because it can throw an
exception. The exception can be of the type IlvGraphLayoutException or one of its
subclasses, IlvInappropriateGraphException and IlvInappropriateLinkException. The
first indicates internal problems in the layout algorithm or an unexpected situation. The
second exception indicates that a particular grapher cannot be laid out with the layout
algorithm. For example, the Topological Mesh Layout cannot be used on a tree). The third
exception indicates that a particular type of link (or link connector) cannot be used for this
layout. The recommended type of link is IlvPolylineLinkImage or IlvSplineLinkImage
(or subclasses). For layouts that do not reshape the links by adding intermediate points, the
class IlvLinkImage can also be used. See Layout exceptions for details and solutions.

Further information
You can find more information about the class IlvGraphLayout in the following sections:

♦ Base class parameters and features contains the methods that are related to the
customization of the layout algorithms.

♦ Using event listeners tells you about the layout event listener mechanism.

♦ Defining your own type of layout tells you how to implement new subclasses.

U S I N G G R A P H L A Y O U T A L G O R I T H M S66

For details on IlvGraphLayout and other graph layout classes, see the Java™ API Reference
Documentation.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 67

U S I N G G R A P H L A Y O U T A L G O R I T H M S68

Layout algorithms

Describes the IBM® ILOG® JViews Graph Layout algorithms.

In this section

Overview of graph layout information
Describes the information given for each graph layout algorithm.

Determining the appropriate layout algorithm
Explains how to determine which graph layout is appropriate.

Overview: layout algorithms in CSS
Lists the layout algorithms available in CSS.

Typical ways to choose a layout
Explains possible ways to choose a graph layout algorithm.

Generic parameters and features
Describes the support for generic features and parameters provided by each layout algorithm.

Layout characteristics
Describes the effect of settings on each layout algorithm.

Topological Mesh Layout (TML)
Gives information on the Topological Mesh Layout (TML) algorithm (class
IlvTopologicalMeshLayout from the package ilog.views.graphlayout.topologicalmesh).

© Copyright IBM Corp. 1987, 2009 69

Force-directed or Uniform Length Edges Layout (ULEL)
Describes the Force-directed layout or Uniform Length Edges Layout algorithm (class
IlvUniformLengthEdgesLayout from the package ilog.views.graphlayout.
uniformlengthedges).

Tree Layout (TL)
Describes the Tree Layout algorithm (class IlvTreeLayout from the package ilog.views.
graphlayout.tree).

Hierarchical Layout (HL)
Describes theHierarchical Layout algorithm (class IlvHierarchicalLayout from the package
ilog.views.graphlayout.hierarchical).

Link layout (LL)
Describes the Link Layout algorithm (class IlvLinkLayout from the package ilog.views.
graphlayout.link).

Random layout (RL)
Describes the Random Layout algorithm (class IlvRandomLayout from the package ilog.
views.graphlayout.random).

Bus layout (BL)
Describes the Bus Layout algorithm (class IlvBusLayout from the package ilog.views.
graphlayout.bus).

Circular layout (CL)
Describes the Circular Layout algorithm (class IlvCircularLayout from the package ilog.
views.graphlayout.circular).

Grid layout (GL)
Describes the Grid Layout algorithm (class IlvGridLayout from the package ilog.views.
graphlayout.grid).

Layout exceptions
Describes the exceptions that may be thrown when a layout is applied to the wrong type of
graph or the wrong type of link and explains how to catch them.

U S I N G G R A P H L A Y O U T A L G O R I T H M S70

Overview of graph layout information

For each layout, the information given includes:

♦ Code samples

♦ Which types of graphs the layout may be used for

♦ The application domains, features, and limitations

♦ A brief description of the algorithm

♦ The specification in CSS

♦ The specification in Java™ code

♦ The generic features and parameters, as well as the specific parameters of the algorithm

U S I N G G R A P H L A Y O U T A L G O R I T H M S 71

Determining the appropriate layout algorithm

When using the graph layout package, you need to determine which of the ready-to-use
layout algorithms is appropriate for your particular needs. Some layout algorithms can
handle a wide range of graphs. Others are designed for particular classes of graphs and will
give poor results or will reject graphs that do not belong to these classes. For example, a
Tree Layout algorithm is designed for tree graphs, but not cyclic graphs. Therefore, it is
important to lay out a graph using the appropriate layout algorithm.

The following tables can help you determine which of the layout algorithms is best suited
for a particular type of graph.

♦ Across the top of the table are various classifications of different types of graphs.

♦ The layout algorithms appear on the left side of the tables.

♦ Table cells containing illustrations indicate when a layout algorithm is applicable for a
particular type of graph.

By identifying the general characteristics of the graph you want to lay out, you can see from
the tables whether a layout algorithm is suited for that particular type of graph.

For example, if you know that the structure of the graph is a tree, you can look at the
Domain-Independent Graphs/Trees column to see which layout algorithms are appropriate.
The Uniform Length Edges Layout, Tree Layout, and Hierarchical Layout could all be used.
Use the illustrations in the table cells to help you further narrow your choice.

You can use the Recursive layout to control the layout of nested graphs (containing subgraphs
and intergraph links). This is in particular useful if different layout styles should be applied
to different subgraphs. The other layout algorithms such as, Tree Layout, and Hierarchical
Layout treat only flat graphs (unless otherwise noted), that is, a specific layout instance is
only able to lay out the nodes and links of the attached graph, but not the nodes and links
of its subgraphs. The Recursive Layout allows you to specify which flat layout is used for
which subgraph, and it traverses the entire nested graph recursively when applying the
layout. As a result, the entire nested graph is laid out.

You can use the Multiple layout to combine several different layouts into one instance. In
this case, they become sublayouts of the Multiple Layout instance.

This is useful in particular for nested graphs when used in combination with the Recursive
Layout. The Multiple Layout ensures that the normal layout, the routing of the intergraph
links, and the layout of labels are applied in the correct order to a nested graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S72

Layout algorithms and common types of graphs
Domain-Independent GraphsLayout

Any GraphCyclic GraphsTrees

Requires (semi)manual refinements

Topological
Mesh Layout

Preferable to avoid
heavily

Uniform
Length Edges
Layout

interconnected
graphs (large
number of links)

Tree Layout

Hierarchical
Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S 73

Domain-Independent GraphsLayout

Any GraphCyclic GraphsTrees

Link Layout

Note that the algorithm does not take into
account the links between the nodes.

Grid Layout

Nested graphs.Recursive
Layout

Combination of multiple different layout
algorithms on the same graph (in particular
for nested graphs).

Multiple
Layout

Telecom-Oriented Representations
Telecom-Oriented RepresentationsLayout

For bus topologies

Bus Layout

For interconnected ring/star topologies

Circular Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S74

Overview: layout algorithms in CSS

In a diagram component, the graph layout algorithm is usually specified by CSS.

The layout algorithms fall into two categories: node layout and link layout. There is also a
label layout facility, which technically is not a graph layout algorithm. Label layout is
described in section Automatic label placement.

Node layout algorithms
The node layout algorithms are presented in the following table.

Node layout algorithms
Class name: ilog.views.graphlayout.bus.IlvBusLayoutBus layout

Example: BL - CSS Sample

Short description: A layout algorithm designed to display
bus network topologies (that is, a set of nodes connected
to a bus node)

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘Bus’;
}

Class name:
ilog.views.graphlayout.circular.IlvCircularLayout

Circular layout

Example: CL samples

Short description: A layout algorithm that displays
graphs representing interconnected ring and/or star
network topologies

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘Circular’;
}

Class name: ilog.views.graphlayout.grid.IlvGridLayoutGrid layout

Example GL Sample In CSS

U S I N G G R A P H L A Y O U T A L G O R I T H M S 75

Short description: A layout algorithm that arranges the
disconnected nodes of a graph in rows, in columns, or in
the cells of a grid

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘Grid’;
}

Class name:
ilog.views.graphlayout.hierarchical.IlvHierarchicalLayout

Hierarchical layout

Example: HL samples

Short description: A layout algorithm that arranges
nodes in horizontal or vertical levels such that the links
flow in a uniform direction

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘Hierarchical’;
}

Class name:
ilog.views.graphlayout.topologicalmesh.IlvTopologicalMeshLayout

Topological Mesh layout

Example: TML samples

Short description: A layout algorithm that arranges cyclic
(2-connected) undirected graphs in a regular fashion

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘TopologicalMesh’;
}

Class name: ilog.views.graphlayout.tree.IlvTreeLayoutTree layout

Example: TL samples

Short description: A layout algorithm that arranges the
nodes of a tree horizontally or vertically, starting from the
root of the tree. The radial layout mode allows you to

U S I N G G R A P H L A Y O U T A L G O R I T H M S76

arrange the nodes of a tree in concentric circles around
the root of the tree.

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘Tree’;
}

Class name:
ilog.views.graphlayout.uniformlenghtedges.IlvUniformLengthEdgesLayout

Uniform Length Edges layout

Example: ULEL samples

Short description: A layout algorithm that can be used
to lay out any type of graph and allows you to specify the
length of the links. It applies a force-directed physical
simulation that moves the nodes until all links have
approximately the same length.

CSS specification:

SDM {
GraphLayout: “true”;

}
GraphLayout {

graphLayout: ‘UniformLengthEdges’;
}

Besides these layout algorithms, there are many other layout facilities such as Random
Layout, Multiple Layout, and Recursive Layout. The Random Layout is only a testing facility
and plays no role in real applications. The Multiple Layout and the Recursive Layout cannot
be specified in CSS, but they are used internally in the implementation of the graph layout
Renderer.

Link layout algorithm
The link layout algorithm is presented in the following table.

Link Layout Algorithm
Class name: ilog.views.graphlayout.link.IlvLinkLayoutLink layout

Example:LL samples

Short description: A layout algorithm that reshapes the links of a graph without moving
the nodes. Several link modes are available, most importantly the orthogonal link mode.
The Link Layout is not controlled by the graph layout renderer, but by the specialized
link layout renderer.

CSS specification:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 77

SDM {

LinkLayout: “true”;

}

LinkLayout {

... further options...

}

U S I N G G R A P H L A Y O U T A L G O R I T H M S78

Typical ways to choose a layout

Explains possible ways to choose a graph layout algorithm.

In this section

Choosing a layout algorithm
Explains the difference between automatic and semiautomatic layout selection.

Choosing the layout algorithm dynamically
Explains how to choose a layout algorithm automatically at run time.

Hard-coding a layout at programming time
Explains how to choose a layout at programming time.

Hard-coding a layout at run time
Explains how to choose a layout at run time.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 79

Choosing a layout algorithm

The choice of the appropriate algorithm for a graph can be done either by the end user at
run time or by the programmer when he develops the application. This process can be
semiautomatic, when the user is involved, or automatic, when the application does everything
with no user intervention.

As a programmer of applications, you can choose Semiautomatic layout to involve the end
user in the choice of the layout, or Automatic layout, in which case the application does
everything with no end user action.

Semiautomatic layout
For applications using a semiautomatic layout, the choice of the layout algorithm is done
by the end user. The application can provide a menu or some other way to select the layout
algorithm.

In some cases, this may be an iterative process. The user may try different layout algorithms
with different values for the parameters and/or may apply manual refinements to find the
best layout. The application may possibly provide some help using textual explanations or
by automatically checking the graph to find out to which class it belongs. For example, to
detect whether the graph that has been attached to a layout instance is a tree, the
IlvGraphLayoutUtil class provides the method:

static boolean IsTree(IlvGraphLayout layout, Object startNode)

For details on this method, see IsTree(ilog.views.graphlayout.IlvGraphLayout, java.
lang.Object). See also Attaching/detaching a grapher.

Automatic layout
If an automatic layout is needed, the choice of the layout algorithm can be:

♦ Chosen dynamically at run time by means of heuristics or rules to determine the
appropriate layout algorithm depending on the structure and/or size of the graph

♦ Hard-coded if the developer knows what types of graphs will be used and can determine
the appropriate layout algorithm.

U S I N G G R A P H L A Y O U T A L G O R I T H M S80

Choosing the layout algorithm dynamically

If nothing is known about the graphs that the application will need to lay out, the developer
can write a routine that automatically chooses the layout algorithm at run time. The following
simple rules could be applied:

1. If the nodes of the graph cannot be moved (they are geo-positioned), use the Link
Layout.

2. If the graph is a tree, use the Tree Layout.

3. Otherwise, use one of the layout algorithms that are the less restricted to a given
graph category, especially the Uniform Length Edges Layout. (The preferred length
of the links could also be computed with respect to the size of the nodes.)

4. If the graph is too large, apply a “divide-and-conquer” strategy. Cut the graph into
several subgraphs and apply the layout separately to each subgraph. If the graph is
disconnected, you can use the built-in support provided by the layout library to perform
this task automatically. (See Layout of connected components.)

5. If the graph is nested, use the Recursive Layout algorithm that controls which subgraph
is laid out by which (flat) sublayout. Use steps 1 to 4 to determine the sublayouts for
the subgraphs. The Hierarchical Layout and the Tree Layout also have special modes
for nested graphs, see Recursive mode and Recursive layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 81

Hard-coding a layout at programming time

A special case occurs when the application will deal with only a small set of graphs that are
known at the time the application is built. In this case, the layout can be performed at
programming time. A possible step-by-step procedure may be the following:

1. Create each graph manually with a graph editor or in Java™ .

2. Try different layout algorithms and choose the best for each graph.

3. Apply manual refinements to the layout if needed.

4. Store the result of the layout by saving the coordinates of the nodes in the XML file
of the diagram component, or by saving the graphers in .ivl files.

5. Provide these files with the application.

When the application is used, the ivl files will simply be loaded. There will be no need to
perform the layout again since it is already done.

See also

Determining the appropriate layout algorithm

U S I N G G R A P H L A Y O U T A L G O R I T H M S82

Hard-coding a layout at run time

If the choice of the layout algorithm is hard-coded, but the layout must be performed at run
time because the graphs are not known at programming time, one possible step-by-step
procedure for the choice of the appropriate layout algorithm may be the following:

1. Look at sample graphs for your domain.

2. Try to determine some generalities about the properties of the structure and the size
of the graph (Is the graph cyclic? Is the graph a tree? Is the graph a combination of
the two? What is the number of nodes and links in the graph?)

3. Pick an appropriate layout algorithm.

4. Try out the algorithm on one or more samples.

See also

Determining the appropriate layout algorithm

U S I N G G R A P H L A Y O U T A L G O R I T H M S 83

U S I N G G R A P H L A Y O U T A L G O R I T H M S84

Generic parameters and features

Describes the support for generic features and parameters provided by each layout algorithm.

In this section

Support by algorithms of generic features and parameters
Describes the support for generic features and parameters provided by each layout algorithm.

Base class parameters and features
Describes the generic features and parameters for customizing graph layout algorithms.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 85

Support by algorithms of generic features and parameters

The graph layout generic features and parameters described in Base class parameters and
features allow you to customize the behavior of the layout algorithms to meet specific needs
and to perform useful operations such as saving the layout parameters in a file.

The following table indicates the generic features and parameters that are supported by
each layout algorithm. These parameters are defined in the base class for all layout
algorithms, IlvGraphLayout

U S I N G G R A P H L A Y O U T A L G O R I T H M S86

Generic parameters supported by layout algorithms
Multiple
Layout

Recursive
Layout

GLCLBLRLLLHLTLULELTMLLayout
Algorithm
Parameters

YesYesYesYesYesYesYesYesYesYesAllowed
Time

YesYesYesAnimation

YesYesYesFixed Links

YesYesYesYesYesYesYesYesFixed
Nodes

YesYesYesYesYesYesYesLayout of
Connected
Components

YesYesYesYesYesYesLayout
Region

YesYesYesYesYesYesLink
Clipping

YesYesYesYesYesYesYesLink
Connection

Box

YesYesYesYesSpline
Routing

Memory
Savings

YesYesYesYesYesYesPercentage
Complete

YesRandom
Generator
Seed Value

YesYesYesYesYesYesYesYesYesYesYesSave
Parameters

to File

YesYesYesYesYesYesYesYesYesYesStop
Immediately

Key

Topological Mesh LayoutTML

Uniform Length Edges LayoutULEL

U S I N G G R A P H L A Y O U T A L G O R I T H M S 87

TL Tree Layout

Hierarchical LayoutHL

Link LayoutLL

Random LayoutRL

Bus LayoutBL

Circular LayoutCL

Grid LayoutGL

U S I N G G R A P H L A Y O U T A L G O R I T H M S88

Base class parameters and features

The IlvGraphLayout class defines a number of generic features and parameters. These
features and parameters can be used to customize the layout algorithms.

Although the IlvGraphLayout class defines the generic parameters, it does not control how
they are used by its subclasses. Each layout algorithm (that is, each subclass of
IlvGraphLayout) supports a subset of the generic features and determines the way in which
it uses the generic parameters. When you create your own layout algorithm by subclassing
IlvGraphLayout, you decide whether you want to use the features and the way in which
you are going to use them.

The IlvGraphLayout class defines the following generic features:

♦ Allowed time

♦ Animation (ULEL)

♦ Automatic layout

♦ Coordinates mode

♦ Layout of connected components

♦ Layout region

♦ Link clipping

♦ Link connection box

♦ Spline routing

♦ Memory savings

♦ Percentage of completion calculation

♦ Preserve fixed links

♦ Preserve fixed nodes

♦ Random generator seed value

♦ Save parameters to named properties

♦ Stop immediately

♦ Use default parameters

Support by algorithms of generic features and parameters provides a summary of the generic
parameters supported by each layout algorithm. If you are using one of the subclasses
provided with IBM® ILOG® JViews, check the documentation for that subclass to know
whether it supports a given parameter and whether it interprets the parameter in a particular
way.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 89

Allowed time
Several layout algorithms can be designed to stop computation when a user-defined time
specification is exceeded. This may be done for different reasons: as a security measure to
avoid a long computation time on very large graphs or as an upper limit for algorithms that
iteratively improve a current solution and have no other criteria to stop the computation.

Example of specifying allowed time
To specify that the layout is allowed to run for 60 seconds:

In CSS
Add to the GraphLayout section:

allowedTime: "60000";

In Java™
Call:

layout.setAllowedTime(60000)

The time is in milliseconds. The default value is 32000 (32 seconds).

If you subclass IlvGraphLayout, use the following method to know whether the specified
time was exceeded:

boolean isLayoutTimeElapsed()

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsAllowedTime()

The default implementation returns false. A subclass can override this method to return
true to indicate that this mechanism is supported.

Animation
Some iterative layout algorithms can optionally redraw the graph after each iteration or
step. This may create a pleasant animation effect and may be used to keep the user aware
of the evolution of the layout computation by showing intermediate results (as a kind of
progress bar). However, this increases the duration of the layout because additional
redrawing operations need to be performed.

Example of specifying animation
To specify that the layout animation is enabled:

In CSS
Add to the GraphLayout section:

animate: "true";

U S I N G G R A P H L A Y O U T A L G O R I T H M S90

In Java
Call:

layout.setAnimate(true)

Layout animation is disabled by default.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsAnimation()

The default implementation returns false. A subclass can override this method to return
true to indicate that this mechanism is supported.

Layout animation shows the intermediate steps of the layout algorithm. If you need
such animation only to show how the graph before layout transforms into the graph

Note:

after layout, use the animation renderer of SDM instead. In this case, the intermediate
steps of the layout algorithm are not shown, but after the layout is completed, the nodes
and links are moved smoothly from the old positions to the new positions.

Automatic layout
For some layout algorithms, it may be suitable to have the layout automatically performed
again after each change of the graph, that is, when a node or link moves, is added, or is
removed. Automatic layout is most useful for link layouts, in a situation where the shape of
the links must remain optimal after each editing action of the end-user. It also works well
with other layout algorithms that offer an incremental behavior, that is, for which a small
change of the graph usually produces only a small change of the layout. Automatic layout
is generally not suitable for non-incremental layout algorithms.

Example of automatic layout
To enable automatic layout:

In CSS
Add to the GraphLayout section:

autoLayout: "true";

In Java
Call:

layout.setAutoLayout(true);

The following hints are important when programming in Java on an IlvGrapher instance:

♦ Automatic layout works well if the IlvGrapher instance is not attached to other layouts.
If multiple layouts are used for the same IlvGrapher instance, they may mutually affect
each other. In this case, it is recommended to switch off automatic layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 91

♦ The following example shows how to perform multiple changes all at the same time in
the IlvGrapher instance when automatic layout is switched on. Automatic layout is
performed only once at the end of all the changes:

layout.attach(grapher);
layout.setAutoLayout(true);

...
// switch the notification of changes off
grapher.setContentsAdjusting(true);
try {

// ... perform multiple changes without any automatic layout
...

} finally {
// now the grapher notifies layout about the changes:
// therefore, only one automatic layout is performed
grapher.setContentsAdjusting(false);

}

For more information about automatic layout, see the method performAutoLayout() in the
Java API Reference Documentation.

Coordinates mode
The geometry, that is, the position and size, of the graphic objects that are used to represent
nodes and links in an IlvGrapher instance is subject to a transformer (IlvTransformer).
By default, the layout algorithms consider the geometry of the nodes and links of an
IlvGrapher in a coordinate space that is appropriate for most cases. In some situations, it
can be useful to specify a different coordinate space. For details, see Choosing the layout
coordinate space.

Example of specifying coordinate space
To specify, for instance, the view coordinate space:

In CSS
Add to the GraphLayout section:

coordinatesMode: "VIEW_COORDINATES";

In Java
Use the method:

void setCoordinatesMode(int mode)

The valid values for the coordinates mode are:

♦ IlvGraphLayout.MANAGER_COORDINATES

The geometry of the graph is computed using the coordinate space of the manager (that
is, the attached IlvGrapher) without applying any transformation.

Use this mode:

● if you visualize the graph at zoom level 1, or

U S I N G G R A P H L A Y O U T A L G O R I T H M S92

● if you do not visualize it at all, or

● if the grapher contains only fully zoomable objects.

In all these cases, there is no need to take the transformer zoom level into account during
the layout.

Note that in this mode the dimensional parameters of the layout algorithms are considered
specified in manager coordinates.

♦ IlvGraphLayout.VIEW_COORDINATES

The geometry of the graph is computed in the coordinate space of the manager view.
More exactly, all the coordinates are transformed using the current reference transformer.

This mode should be used if you want the dimensional parameters of the layout algorithms
to be considered as being specified in manager view coordinates.

♦ IlvGraphLayout.INVERSE_VIEW_COORDINATES

The geometry of the graph is computed using the coordinate space of the manager view
and then applying the inverse transformation. This mode is equivalent to the “manager
coordinates” mode if the geometry of the graphic objects strictly obeys the transformer,
that is, the objects are fully zoomable. (A small difference may exist because of the limited
precision of the computations.)

On the contrary, if some graphic objects are either nonzoomable or semizoomable (for
example, links with a maximum line width), this mode gives different results from the
manager coordinates mode. These results are optimal if the grapher is visualized using
the same transformer as the one taken into account during the layout.

Note that in this mode the dimensional parameters of the layout algorithms are considered
specified in manager coordinates.

In CSS, you omit the prefix IlvGraphLayout when specifying the value of the coordinates
mode (see Example of specifying coordinate space).

The default mode is INVERSE_VIEW_COORDINATES.

See also Specifying the mode for layout coordinates.

Layout of connected components
The base class IlvGraphLayout provides generic support for the layout of a disconnected
graph (composed of connected components). For details, see Laying out connected
components of a disconnected graph.

Example of layout
To enable the placement of disconnected graphs:

In CSS
Add to the GraphLayout section:

layoutOfConnectedComponentsEnabled: "true";

In Java
Call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 93

setLayoutOfConnectedComponentsEnabled(true);

Some of the layout classes (IlvHierarchicalLayout, IlvCircularLayout)
have a built-in algorithm for placing connected components. This algorithm is enabled

Note:

by default and fits the most common situations. For these layout classes, the generic
mechanism provided by the base class IlvGraphLayout is disabled by default.

When enabled, a default instance of the class IlvGridLayout is used internally to place the
disconnected graphs. If necessary, you can customize this layout.

Example of customizing layout
To customize this layout:

In CSS
Add to the GraphLayout section:

layoutOfConnectedComponents: "@#GridLayout";

and add a new section for the definition of the layout used to place the disconnected graphs,
including statements for the parameters you want, for instance:

Subobject#GridLayout {
class: "ilog.views.graphlayout.grid.IlvGridLayout";
layoutMode: "TILE_TO_ROWS";
topMargin: "20";

}

In Java
Call:

IlvGridLayout gridLayout = new IlvGridLayout();
gridLayout.setLayoutMode(IlvGridLayout.TILE_TO_ROWS);
gridLayout.setTopMargin(20);

layout.setLayoutOfConnectedComponents(gridLayout);

Example for experts
The various capabilities of the class IlvGridLayout cover most of the likely needs for the
placement of disconnected graphs. However, if necessary, you can write your own subclass
of IlvGraphLayout to place disconnected graphs and specify it instead of IlvGridLayout:

In CSS
Add to the GraphLayout section:

layoutOfConnectedComponents: "@#MyGridLayout";

U S I N G G R A P H L A Y O U T A L G O R I T H M S94

and add a new section to define the layout used to place disconnected graphs, including
statements for the parameters you want, for instance:

Subobject#MyGridLayout {
class: "mypackage.MyGridLayout";
// settings for MyGridLayout, if necessary

}

In Java
Call:

MyGridLayout myGridLayout = new MyGridLayout();

// settings for myGridLayout, if necessary

layout.setLayoutOfConnectedComponents(myGridLayout);

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsLayoutOfConnectedComponents()

The default implementation returns false. You can write a subclass to override this behavior.

Layout region
Some layout algorithms can control the size of the graph drawing and can take into account
a user-defined layout region.

Example of specifying layout region
To specify that the layout is allowed to run for 60 seconds:

In CSS
If you work with style sheets, you can specify the layout region as a rectangle, for instance:

layoutRegion: "0,0,100,100";

The above CSS statement sets the layout region to the rectangle with the top-left corner at
coordinates 0,0 and width and height at 100.

In Java

layout.setLayoutRegion(new IlvRect(0,0,100,100));

Besides, the method

void setLayoutRegion(IlvRect rect)

which defines the layout region in manager coordinates, there are two more ways to set the
layout region. These ways are only available in Java, not in CSS:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 95

♦ setLayoutRegion(ilog.views.IlvManagerView, ilog.views.IlvRect)

The rectangle (the argument rect) specifies the layout region. The dimensions of the
rectangle are given in view coordinates relative to the input view argument. This view is
usually the view for displaying the grapher.

♦ setLayoutRegion(ilog.views.IlvManagerView)

The entire visible area of the input view specifies the layout region.

To access the layout region, use the method:

IlvRect getSpecLayoutRegion()

This method returns a copy of the rectangle that defines the specified layout region. The
dimensions of the rectangle are in the manager (grapher) coordinates. Depending on the
last method you called, one of the following cases may occur:

♦ If setLayoutRegion(IlvRect)was the last method called, it returns a copy of the rectangle
with no transformations.

♦ If setLayoutRegion(IlvManagerView, IlvRect) was the last method called, it returns
a copy of the rectangle transformed to the manager coordinates using the transformer
of the view. (The transformation to manager coordinates is not done if the coordinates
mode is specified as view coordinates.)

♦ If setLayoutRegion(IlvManagerView) was the last method called, it returns a rectangle
with the attributes x=0, y=0 and with the attributes width and height equal to the current
width and height of the view, transformed to manager coordinates using the current
transformer of the view. (The transformation to manager coordinates is not done if the
coordinates mode is specified as view coordinates.)

♦ None of the methods was called. (This is the default behavior.) If at least one manager
view is attached to the grapher, it returns a rectangle with the attributes x=0, y=0 and
with the attributes width and height equal to the current width and height of the first
attached view, transformed to manager coordinates using the transformer of the view.
(The transformation tomanager coordinates is not done if the coordinatesmode is specified
as view coordinates.) If no view is attached, the method returns null.

The layout algorithms call a different method:

IlvRect getCalcLayoutRegion()

This method first tries to use the layout region specification by calling the method
getSpecLayoutRegion(). If this method returns a non-null rectangle, this rectangle is
returned. Otherwise, the method tries to estimate an appropriate layout region according
to the number and size of the nodes in the attached graph. If no graph is attached, or the
attached graph is empty, it returns a default rectangle (0, 0, 1000, 1000).

To indicate whether a subclass of IlvGraphLayout supports the layout region mechanism,
use the method:

boolean supportsLayoutRegion()

U S I N G G R A P H L A Y O U T A L G O R I T H M S96

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this mechanism is supported.

The implementation of the method layout(boolean) is solely responsible for whether
the layout region is taken into account when calculating the layout, and in which manner.
For details, refer to the documentation of the layout algorithms.

Note:

Link clipping
Some layout algorithms try to calculate the specific connection points of links at the border
of nodes and require instances of IlvFreeLinkConnector attached to the nodes, while other
layout algorithms do not calculate any connection points but simply let the link connectors
(any subclass of IlvLinkConnector) determine how the links connect to the nodes.

If a layout algorithm calculates specific connection points, then it places the connection
points of links by default at the border of the bounding box of the nodes. If the node has a
nonrectangular shape such as a triangle, rhombus, or circle, you may want to place the
connection points exactly on the border of the shape. This can be achieved by code by
specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. Some examples are shown in the
following figure.

Effect of link clipping interface

Example of link clipping
To specify the link clip interface:

In CSS
It is not possible to specify the link clip interface in CSS, however the sample in Writing a
new layout renderer to clip links shows how to integrate a link clip interface into the graph
layout renderer.

In Java
Use the method:

setLinkClipInterface(ilog.views.graphlayout.IlvLinkClipInterface)

You modify the position of the connection points of the links by implementing a class that
implements the IlvLinkClipInterface. This interface defines the following method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 97

public IlvPoint getConnectionPoint
(IlvGraphModel graphModel,
Object node,
IlvRect currentNodeBox,
Object link,
IlvPoint proposedConnectionPoint,
IlvPoint auxControlPoint,
boolean origin)

This method getConnectionPoint(ilog.views.graphlayout.IlvGraphModel, java.lang.
Object, ilog.views.IlvRect, java.lang.Object, ilog.views.IlvPoint, ilog.views.
IlvPoint, boolean) allows you to return the corrected connection point when the layout
algorithm tries to connect to the proposed connection point. The auxControlPoint parameter
is the auxiliary control point of the link segment that ends at the proposed connection point.
The flag origin indicates whether the connection point is the start point or the end point
of the link.

One strategy is to calculate the intersection between the ray starting at auxControlPoint
and going through proposedConnectionPoint and the shape of the node. If there is any
intersection, we return the one closer to auxControlPoint. If there is no intersection, clipping
is not possible and we return the proposed connection point.

The following sample shows how to set a link clip interface that clips the connection points
at the border of an ellipse or circle node:

layout.setLinkClipInterface(new IlvLinkClipInterface() {
public IlvPoint getConnectionPoint

(IlvGraphModel graphModel,
Object node,
IlvRect nodeBox,
Object link,

IlvPoint proposedConnectionPoint,
IlvPoint auxControlPoint,
boolean origin)

{
// get the intersections between the line through connect and control
// point and the ellipse at currentNodeBox.
IlvPoint[] intersectionPoints = new IlvPoint[2];
int numIntersections = IlvGraphLayoutUtil.LineIntersectsEllipse(

proposedConnectionPoint, auxControlPoint,
nodeBox, intersectionPoints);

// choose the result from the intersections
return IlvGraphLayoutUtil.BestClipPointOnRay(proposedConnectionPoint,

auxControlPoint,
intersectionPoints,
numIntersections);

}

});

The sample inWriting a new layout renderer to clip links shows how to integrate a link clip
interface into the graph layout renderer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S98

In addition to the link-clip interface, you can use the class
IlvClippingLinkConnector. This special link connector clips the links at

Note:

nonrectangular node shapes and updates the connection points automatically during
interactive node movements.

To indicate whether a subclass of IlvGraphLayout supports the link clip interface, use the
method:

boolean supportsLinkClipping()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Link connection box
If a layout algorithm calculates specific connection points, it places the connection points
of links by default at the border of the bounding box of the nodes, symmetrically with respect
to the middle of each side. Sometimes it may be necessary to place the connection points
on a rectangle smaller or larger than the bounding box, eventually in a nonsymmetric way.
For instance, this can happen when labels are displayed below or above nodes (see Effect
of Link Connection Box Interface). This can be achieved by specifying a link connection box
interface. The link connection box interface allows you to specify, for each node, a node box
different from the bounding box that is used to connect the links to the node.

Example of link connection box interface
In CSS
It is not possible to specify the link connection box interface in CSS. The diagram component
uses some predefined link-connection-box interfaces in combination with nodes of type
IlvGeneralNode. If you need to use a different link-connection-box interface, you must
integrate it in the graph layout renderer in the same way as the link clipping interface (see
Writing a new layout renderer to clip links for a sample that integrates the link clipping
interface).

In Java
To set a link connection box interface in Java, call:

void setLinkConnectionBoxInterface(IlvLinkConnectionBoxInterface interface)

You implement the link connection box interface by defining a class that implements the
IlvLinkConnectionBoxInterface. This interface defines the following method:

public IlvRect getBox(IlvGraphModel graphModel, Object node);

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

A second method defined on the interface allows the connection points to be “shifted”
tangentially, in a different way for each side of each node:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 99

public float getTangentialOffset(IlvGraphModel graphModel,
Object node, int nodeSide);

Effect of Link Connection Box Interface

For instance, to set a link connection box interface that returns a link connection rectangle
that is smaller than the bounding box for all nodes of type IlvShadowRectangle and shifts
up the connection points on the left and right side of all the nodes, call:

layout.setLinkConnectionBoxInterface(new IlvLinkConnectionBoxInterface() {
public IlvRect getBox(IlvGraphModel graphModel, Object node) {

IlvRect rect = graphModel.boundingBox(node);
if (node instanceof IlvShadowRectangle) {

// need a rect that is 4 pixels smaller
rect.resize(rect.width-4.f, rect.height-4.f);

}
return rect;

}
public float getTangentialOffset(IlvGraphModel graphModel,

Object node, int nodeSide) {
switch (nodeSide) {
IlvDirection.Left:
IlvDirection.Right:
return -10; // shift up with 10 for both left and right side

IlvDirection.Top:
IlvDirection.Bottom:
return 0; // no shift for top and bottom side

}
});

U S I N G G R A P H L A Y O U T A L G O R I T H M S100

Some layout algorithms allow you to use the link connection box interface and the link clip
interface in a combined way. It is specific to each layout algorithm how the interfaces will
be used and which connection points are the final result.

To indicate whether a subclass of IlvGraphLayout supports the link connection box interface,
use the method:

boolean supportsLinkConnectionBox()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Spline routing
Some layout algorithms always use straight links, while other layout algorithms can calculate
bend points for polyline links. If splines are used instead of polyline links, special control
points must be calculated for spline links. There is a generic spline control point optimization
available as a postprocessing step.

If a layout algorithm supports multiple link shapes, the spline optimization affects only those
links with bends. It does not affect straight links or links that are marked as fixed or
non-reshapeable. Furthermore, it affects only those links that are really spline links. If you
use customized IlvGraphic data structures instead of IlvSplineLinkImage or
IlvGeneralLink, you must set an IlvSplineLinkFilter which tells the layout which link
classes are splines. By default, only IlvSplineLinkImage or IlvGeneralLink are recognized
as splines.

Example of spline routing
In CSS
If you work with style sheets, add to the GraphLayout section, for example:

splineRoutingEnabled: "true";
minSplineCurveSize: "5";
maxSplineCurveSize: "100";
balanceSplineCurveThreshold: "3";

See below the meaning of these parameters.

In Java
To enable the spline routing, call:

layout.setSplineRoutingEnabled(true);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 101

Spline Routing

When the layout algorithm needs to create a bend, the spline routing tries to determine a
triangle at the bend so that the curve of the spline runs inside this triangle. The size of the
triangle depends on the available free space and the location of the other nodes, which are
considered obstacles for the spline. The scele size of the triangle is controlled by two
parameters:

♦ layout.setMinSplineCurveSize(min)

♦ layout.setMaxSplineCurveSize(max)

The algorithm tries to find a triangle with a scele size between min and max. If a lot of free
space is available, it chooses a triangle at max size. If no free space is available, it chooses
a triangle at min size, even if this will cause an overlap of the spline with neighbor nodes.
Therefore it is recommended to set the minimal spline curve size to a very small value.

The algorithm chooses isoscele triangles whenever possible, because the shape of a spline
link looks more balanced if the curves run inside isoscele triangles. However, if there is no
available space, then isoscele triangles are impossible and triangles with different scele
lengths are choosen. A threshold determines how small a triangle can be before non-isoscele
triangles are choosen:

layout.setBalanceSplineCurveThreshold(threshold)

A spline link filter is a subclass of IlvSplineLinkFilter that determines which links are
splines. The base class IlvSplineLinkFilter simply tests themethod IlvGraphic.isSpline.
Currently, IlvSplineLinkImage, IlvGeneralLink and IlvCompositeLink return true when
certain link parameters are set so that they behave like splines. You can set your own spline
link filter that is adapted to your IlvGraphic data structures if needed. Call:

layout.setSplineLinkFilter(filter);

Memory savings
The computation of a layout on a large graph may require a large amount of memory. Some
layout algorithms optionally use two ways to store data: one which gives the priority to speed
(this is the default case), the other which consumes less memory and is usually slower. The
amount of memory savings depends, of course, on the implementation of the subclass of

U S I N G G R A P H L A Y O U T A L G O R I T H M S102

IlvGraphLayout. No matter which option you choose for memory savings, the resulting
layout should be the same.

Example of memory savings
To enable memory savings:

In CSS
Add to the GraphLayout section:

memorySavings: "true";

In Java
Use the method:

void setMemorySavings(boolean option)

Memory savings is disabled by default.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsMemorySavings()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Percentage of completion calculation
Some layout algorithms can provide an estimation of how much of the layout has been
completed. This estimation is made available as a percentage value that is stored in the
graph layout report. When the algorithm starts, the percentage value is set to 0. The layout
algorithm calls the following method from time to time to increase the percentage value by
steps until it reaches 100:

void increasePercentageComplete(int newPercentage);

The percentage value can be accessed from the layout report using the following:

int percentage = layoutReport.getPercentageComplete();

To see an example of how to read the percentage value during the running of a layout, see
Graph layout event listeners.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsPercentageComplete()

The default implementation returns false. A subclass can override this method to return
true to indicate that this mechanism is supported.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 103

Preserve fixed links
At times, you may want some links of the graph to be “pinned” (that is, to stay in their current
shape when the layout is performed). You need a way to indicate the links that the layout
algorithm cannot reshape. This makes sense especially when using a semi-automatic layout
(the method where the end user fine-tunes the layout by hand after the layout is completed)
or when using an incremental layout (the method where the graph and/or the shape of the
links is modified after the layout has been performed, and then the layout is performed
again).

Example of fixing links
To specify that a link is fixed:

In CSS
1. Create a rule that selects the link, for instance:

#link1 {
Fixed: "true";

}

2. Add this CSS statement to the GraphLayout section:

preserveFixedLinks: "true";

In Java
Use the method:

void setFixed(Object link, boolean fixed)

If the fixed parameter is set to true, it means that the link is fixed. To obtain the current
setting for a link:

boolean isFixed(Object link)

The default value is false.

To remove the fixed attribute from all links in the grapher, use the method:

void unfixAllLinks()

The fixed attributes on links will be taken into consideration only if you additionally call the
following statement:

layout.setPreserveFixedLinks(true);

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S104

boolean supportsPreserveFixedLinks()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this mechanism is supported.

Preserve fixed nodes
At times, you may want some nodes of the graph to be “pinned” (that is, to stay in their
current position when the layout is performed). You need a way to indicate the nodes that
the layout algorithm cannot move. This makes sense especially when using a semi-automatic
layout (the method where the end user fine-tunes the layout by hand after the layout is
completed) or when using an incremental layout (the method where the graph and/or the
position of the nodes is modified after the layout has been performed, and then the layout
is performed again).

Example of fixing nodes
To specify that a node is fixed:

In CSS
1. Create a rule that selects the node, for instance:

#node1 {
Fixed: "true";

}

2. Add this CSS statement to the GraphLayout section:

preserveFixedNodes: "true";

In Java
Use the method:

void setFixed(Object node, boolean fixed)

If the fixed parameter is set to true, it means that the node is fixed. To obtain the current
setting for a node:

boolean isFixed(Object node)

The default value is false.

To remove the fixed attribute from all nodes in the grapher, use the method:

void unfixAllNodes()

The fixed attributes on nodes will be taken into consideration only if you also call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 105

layout.setPreserveFixedNodes(true);

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsPreserveFixedNodes()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this mechanism is supported.

Random generator seed value
Some layout algorithms use random numbers (or randomly chosen parameters) for which
they accept a user-defined seed value. For example, the Random Layout uses the random
generator to compute the coordinates of the nodes. The Uniform Length Edges Layout uses
the random generator to compute some internal variables.

Subclasses of IlvGraphLayout that are designed to support this mechanism allow the user
to choose one of three ways of initializing the random generator:

♦ With a default value that is always the same.

♦ With a user-defined seed value that can be changed when re-performing the layout.

♦ With an arbitrary seed value, which is different each time. In this case, the random
generator is initialized based on the system time.

The user chooses the initialization option depending on what happens when the layout
algorithm is performed again on the same graph. If the same seed value is used, the same
layout is produced, which may be the desired result. In other situations, the user may want
to produce different layouts in order to select the best one. This can be achieved by
performing the layout several times using different seed values.

Example of random generator seed value
To specify that the layout is allowed to run for 60 seconds:

In CSS
You can specify for instance the seed value 25 of the random generator by adding the
following statements to the GraphLayout section:

seedValueForRandomeGenerator: "15";
useSeedValueForRandomGenerator: "true";

The first statement defines the seed value, and the second statement specifies that the seed
value must be used.

In Java
This example shows how this parameter can be used in Java in combination with the java.
util.Random class in your implementation of the method IlvGraphLayout.layout():

Random random = (isUseSeedValueForRandomGenerator()) ?

U S I N G G R A P H L A Y O U T A L G O R I T H M S106

new Random(getSeedValueForRandomGenerator()) :
new Random();

To specify the seed value in Java, use the method:

void setSeedValueForRandomGenerator(long seed)

The default seed value is 0.

The user-defined seed value is used only if you call additionally

layout.setUseSeedValueForRandomGenerator(true);

To indicate whether a subclass of IlvGraphLayout supports this parameter, use the method:

boolean supportsRandomGenerator()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this parameter is supported.

Save parameters to named properties
There are many ways to store your graph and your parameters:

♦ The diagram component uses XML files for the data and CSS files for the rendering
parameters.

♦ The diagram component can also use a database.

♦ The IBM® ILOG® JViews grapher can be stored in .ivl files.

The base class IlvGraphLayout provides support for saving the layout parameters (such as
isAnimate or isMemorySavings) to .ivl files or to transfer the parameters to named
properties. This is an advanced mechanism that is explained in detail in Saving layout
parameters and preferred layouts. If you use XML files, CSS files, or databases, there is no
point using this advanced mechanism.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsSaveParametersToNamedProperties()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Stop immediately
Several layout algorithms can stop computation when an external event occurs, for instance
when the user hits a “Stop” button. In Java, to stop the layout, you can call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 107

boolean stopImmediately();

This method is typically called in a multithreaded application from a separate thread that
is not the layout thread. The method returns true if the stop was initiated and false if the
algorithm cannot stop. The method returns immediately, but the layout thread usually needs
some additional time after initiating the stop to clean up data structures.

The following code fragment illustrates the usage.

You start the layout in a separate thread:

Thread layoutThread = new Thread(new GraphLayoutPerformer(layout, grapher));
layoutThread.start();

The class GraphLayoutPerformer is an implementation of the interface Runnable that
performs layout. The following is a sketch of this class:

class GraphLayoutPerformer implements Runnable
{
...
public void run()
{
// from now we are busy
busy = true;
try {
// perform the layout
layout.performLayout(true, true);

}
catch (IlvGraphLayoutException e) {
... // handle the excepction

}
finally {
// we are not busy anymore
busy = false;

}
}

}

The Stop button operates outside the layout thread and simply calls the method
stopImmediately of the running layout instance:

Button stopButton = new Button("Stop Layout");
stopButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (busy) layout.stopImmediately();

}
});

U S I N G G R A P H L A Y O U T A L G O R I T H M S108

A detail has been omitted from the previous code fragment. A multitasking operation
requires that the layout thread calls the yield() or sleep(t) methods from time to

Note:

time. A good place to do this is by using a graph layout event listener. Event listeners
are explained in Using event listeners.

The consequences of stopping a layout process depend on the specific layout algorithm.
Some layout algorithms have an iterative nature. Stopping the iteration process results in
a slight loss of quality in the drawing, but the layout can still be considered valid. Other
layout algorithms have a sequential nature. Interrupting the sequence of the layout steps
may not result in a valid layout. Usually, these algorithms return to the situation before the
start of the layout process.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, use the method:

boolean supportsStopImmediately()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Use default parameters
All the generic parameters have a default value. After modifying parameters, you may want
the layout algorithm to use the default values. Then, you may want to return to your
customized values. IBM® ILOG® JViews keeps the previous settings when selecting the
default values mode. In Java, you can switch between the default values mode and the mode
for your own settings using the method:

void setUseDefaultParameters(boolean option)

To obtain the current value:

boolean isUseDefaultParameters()

The default value is false. This means that any setting you make will be taken into
consideration and the parameters that have not been specified will have their default values.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 109

Layout characteristics

It is often useful to know how certain settings will affect the resulting layout of the graph
after the layout algorithm has been applied. The following table provides additional
information about the behavior of the layout algorithms.

Layout characteristics of layout algorithms
How do I get a different layout of the same graph
when I perform the layout a second time?

Do the initial
positions of the
nodes affect the
layout?

Layout
algorithm

You can completely change the layout by using the starting
node, outer cycle, and fixed nodes parameters. To change

NoTopological Mesh
Layout (TML)

only the dimensions of the graph, use the layout region
parameter. See Outer cycle (TML), Using fixed nodes (TML),
and Layout region (TML).

In incremental mode, you can completely change the layout
by changing the initial positions of the nodes. To change

YesForce-directed or
Uniform Length

only the dimensions of the graph, use the preferred lengthEdges Layout
(ULEL) of the links or size of the layout region. See Preferred length

(ULEL).

In incremental mode, you can change the layout by changing
the initial positions of the nodes. Furthermore, you can

Yes (if incremental
mode is switched on)

Tree Layout (TL)

change the layout by selecting a different Root node (TL).
To change only the dimensions of the graph, use the various
offset parameters.

In incremental mode, you can change the layout by changing
the initial positions of the nodes. Furthermore, you can use

Yes (if incremental
mode is switched on)

Hierarchical Layout
(HL)

specified node level indices to change the level structure.
See Level index parameter (HL).

You can use specified node position indices to change the
node order within the levels. See Position index parameter
(HL).

You can change the layout by changing the link priorities.
See Link priority parameter (HL).

To change only the dimensions of the graph, use the various
offset parameters.

Link Layout routes the links depending on the node
positions. It does not move the nodes.You can change the

YesLink layout (LL)

link style option and the dimensional parameters, such as

U S I N G G R A P H L A Y O U T A L G O R I T H M S110

How do I get a different layout of the same graph
when I perform the layout a second time?

Do the initial
positions of the
nodes affect the
layout?

Layout
algorithm

the link offset and final segment length.You can also specify
the rules for computing the connection points of the links.

This is the default behavior when using the default parameter
settings (the random generator is initialized differently each
time).

NoRandom layout
(RL)

You change the dimensions of the graph by using the
various dimensional parameters.

No, except in
incremental mode

Bus layout (BL)

You can completely change the layout by using clustering
settings and the root clusters parameter.You can change

NoCircular layout (CL)

the dimensions of the graph by using the dimensional
parameters.

You can change various dimensional parameters, layout
mode, and so on.

Yes (if incremental
mode is switched on)

Grid layout (GL)

Depends on the behavior of the sublayouts applied to the
subgraphs.You can change the parameters of the
sublayouts individually.

Depends on the
behavior of the
sublayouts applied to
the subgraphs.

Recursive layout

Depends on the behavior of the sublayouts of the Multiple
Layout instance.You can change the parameters of the
sublayouts individually.

Depends on the
behavior of the
sublayout that is
applied first.

Multiple layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S 111

U S I N G G R A P H L A Y O U T A L G O R I T H M S112

Topological Mesh Layout (TML)

Gives information on the Topological Mesh Layout (TML) algorithm (class
IlvTopologicalMeshLayout from the package ilog.views.graphlayout.topologicalmesh).

In this section

General information on the TML
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the TML
Lists the features and limitations of the layout.

The TML algorithm
Gives an explanation of the concepts underlying TML, a brief description of the algorithm
and a sample.

Generic features and parameters of the TML
Describes the generic parameters supported by TML and explains the particular way in
which these parameters are used by this subclass.

Specific parameters of the TML
Describes the specific parameters supported by TML and gives samples of their use.

Refining a graph layout (TML)
Describes how to refine the layout by fixing some nodes and avoiding overlapping nodes.

Using a link clipping interface with the TML
Describes the use of a link clipping interface.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 113

General information on the TML

TML samples
The following sample drawings were produced with TML.

Small cyclic graph drawing produced with TML

U S I N G G R A P H L A Y O U T A L G O R I T H M S114

Large cyclic graph drawing produced with TML

What types of graphs suit the TML?

♦ Cyclic (2-connected graph) graphs. (Preferably without cut-nodes or cut-edges; otherwise,
manual adjustments are necessary.)

♦ Cyclic (2-connected) graphs plus only a few branches. (You may need to make manual
adjustments for the branches.)

♦ Both planar graphs and nonplanar graphs.

Application domains for the TML
Application domains of the Topological Mesh Layout include:

♦ Database and knowledge engineering (semantic networks, qualitative reasoning and
other artificial intelligence diagrams)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 115

Features and limitations of the TML

Features

♦ Most of the time, produces planar drawings of planar graphs, and drawings with a small
number of link crossings for nonplanar graphs.

♦ Produces a nice layout for most small- and medium-size graphs relatively quickly. (The
maximum cyclomatic number of the graph is about 30-50, but the number of nodes and
links can be a lot higher.)

♦ Most of the time, produces symmetrical drawings of symmetrical graphs.

♦ The computation time for one iteration depends on the cyclomatic number of the graph,
which is smaller than the number of nodes or links.

♦ The user can obtain several layouts of the same graph easily and quickly by simply
changing a parameter (especially the starting node and the outer cycle) or by applying
manual refinements to the layout. The best layout can then be selected from the resulting
layouts.

Limitations

♦ The algorithm tries to minimize the number of link crossings (which is generally an
NP-complete problem). It is mathematically impossible to quickly solve this problem for
any graph size. Therefore, the algorithm uses heuristics that cannot always obtain a layout
with the theoretical minimum number of link crossings.

♦ The computation time required to obtain an appropriate drawing grows relatively quickly
with the cyclomatic number and the layout process may become very time-consuming for
large graphs. Again, this is because the minimization of the number of link crossings is
mathematically NP-complete in the general case.

♦ The algorithm cannot automatically produce appropriate drawings of some types of
graphs:

● For graphs containing branches and graphs containing cut-nodes or cut-edges, manual
adjustments are necessary. (See Refining a graph layout (TML).)

● For disconnected graphs, the connected component layout feature should be used.
(See Layout of connected components)

♦ The layout algorithm often produces a drawing with no overlapping nodes. Nevertheless,
overlapping nodes cannot always be avoided. When overlapping occurs, you can try to
increase the size of the layout region parameter or to change the outer cycle (see the
method setExteriorCycleId(int)). You can also use manual adjustments to correct the
problem.

U S I N G G R A P H L A Y O U T A L G O R I T H M S116

The TML algorithm

TML is a heuristical approach for the layout of cyclic graph, either planar graphs or nonplanar
graphs. TML is very simple to use. However, to use all the functionality of TML, you should
understand its basic concepts.

When laying out a general graph, producing a drawing with a minimum number of link
crossings is a mathematically NP-complete problem. The search space (and time) grows
exponentially with the graph size. Traditionally, most of the existing layout algorithms use
node coordinates from the beginning, searching for a coordinate set to minimize the cost
function, which is mainly the number of link crossings. These coordinates can be constrained
on a grid, but the number of combinations to explore is still enormous.

In contrast, TML uses a two-step approach that drastically reduces the number of
combinations to explore. The first step of TML deals only with the pure topology (that is,
the connectivity) of the graph without taking into consideration the node coordinates. This
first step is called topological optimization. It chooses one of the cycles of the graph to
be used in the second step.

In the second step, called node placement, the result of the first step is used to compute
the coordinates of the nodes using a deterministic, high-speed barycenter algorithm. Of
course, the problem still remains NP-complete and large graphs cannot be processed. In
practice, however, you will often get better results for “mesh” graphs with TML than with
many other algorithms.

Step 1:Topological optimization
Input

The topology of the graph (its connectivity or the neighborhood relationships between
nodes).

Output
A set of possible outer cycles, ordered decreasingly by their lengths. The length of a
cycle is the number of nodes in the cycle.

Explanation
This step determines what cycles of the graph, if used as an outer cycle for drawing the
graph during nodes placement, will allow a drawing with a minimum number of link
crossings. An optimization algorithm tries to minimize a heuristic cost function that
estimates the number of link crossings for each solution, based on pure topology (graph
connectivity)

Step 2: Node placement
Input

The output of topological optimization and the graph.

Output
A set of coordinates for the nodes. The coordinates are assigned to the nodes to obtain
the graph drawing.

Explanation
This step is a variant of the “barycentric” layout algorithm. It takes a cycle from the
output of topological optimization and draws it as a regular polygon. Then, it iteratively
moves each node (except those on the regular polygon) at the “barycenter” of its
neighbors (the nodes to which it is connected). This procedure always converges, and
the final result is a graph drawing where the number of link crossings is dependent only
on the choice of the outer cycle.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 117

Example of TML
In CSS
Below is an example of specification in CSS using the Topological Mesh Layout algorithm.
Since the Topological Mesh Layout places nodes and reshapes the links, it is usually not
necessary to specify an additional link layout in CSS. The specification in CSS can be loaded
as a style file into an application that uses the IlvDiagrammer class (see Graph Layout in
IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
enabled : "true";
graphLayout : "TopologicalMesh";
allowedOptimizationTime : "20000";
allowedNumberOfOptimizationIterations : "5";
allowedNodesPlacementTime : "20000";
nodesPlacementAlgorithm : "SLOW_GOOD";
linkStyle : "STRAIGHT_LINE_STYLE";

}

In Java™
Below is a code sample using the IlvTopologicalMeshLayout class. This code sample shows
how to perform a Topological Mesh Layout on a grapher directly without using a diagram
component or any style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.topologicalmesh.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

IlvTopologicalMeshLayout layout = new IlvTopologicalMeshLayout();
layout.attach(grapher);
try {

IlvTopologicalMeshLayoutReport layoutReport =
(IlvTopologicalMeshLayoutReport)layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

U S I N G G R A P H L A Y O U T A L G O R I T H M S118

System.err.println(e.getMessage());
}

It is possible to enable the link layout additionally, and in this case, the link layout determines
the shape of the links.

All explanations in the subsequent sections regarding the shape of the links in
Topological Mesh Layout are valid only if the link layout is disabled.

Important:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 119

Generic features and parameters of the TML

Overview (TML)
TML supports the following generic parameters defined in the IlvGraphLayout class (see
Base class parameters and features):

♦ Allowed time (TML)

♦ Animation (TML)

♦ Layout of connected components (TML)

♦ Layout region (TML)

♦ Link clipping (TML)

♦ Link connection box (TML)

♦ Memory savings (TML)

♦ Preserve fixed links (TML)

♦ Preserve fixed nodes (TML)

♦ Save parameters to named properties (TML)

♦ Stop immediately (TML)

Note that all the methods allowing the modification of these parameters are overridden in
this subclass. This class keeps track of the changes for parameters that may affect the result
of Topological Optimization separately from the parameters that may affect only the nodes
placement step. In this way, the Topological Optimization step is not repeated. The previous
results are used if no parameters weremodified since the last time the layout was successfully
performed on the same graph using the same layout instance.

Allowed time (TML)
The Topological Optimization step of TML stops if the allowed time setting has elapsed. In
the same manner, the Nodes Placement step of TML stops if the allowed time is exceeded.
(See Allowed time.)

You can specify separate time settings for each step. Each step is stopped if its specified
time limit is exceeded. To learn how to do this, see Optimization iterations and allowed time
(TML) and Node placement iterations and allowed time (TML).

Animation (TML)
In TML, the animation parameter (see Animation) is used only in the Nodes Placement step.
If specified, a redraw will be automatically performed after each iteration of the step. This
is useful to better understand what is happening during the step and especially if you want
to be able to choose the fixed nodes in a manual refinement procedure. (See Using fixed
nodes (TML).)

U S I N G G R A P H L A Y O U T A L G O R I T H M S120

Layout of connected components (TML)
The layout algorithm can use the generic mechanism to lay out connected components. (For
more information about this mechanism, see Layout of connected components.)

If the generic connected component layout mechanism is disabled, the algorithm lays out
only the connected component that contains the starting node.

Layout region (TML)
The Nodes Placement step of TML first draws the outer cycle computed in the Topological
Optimization step as a regular polygon. It uses the layout region setting (either your own
or the default setting) to choose the size and the position of the polygon. The remaining
nodes are moved inside this polygon. All three ways to specify the layout region are available
for this subclass. (See Layout region.)

Remember that if you are using the default settings, the visible area of the manager view
(an instance of IlvManagerView) attached to the grapher is used as a layout region. If several
manager views are attached, the first attached view is used. If no manager view is attached,
the layout region is automatically estimated on the basis of the number and size of the nodes.

If TML produces a layout with overlapping nodes, one possible way to correct the problem
is to increase the size of the layout region. (For details, seeUsing the layout region parameter
(TML).)

Link clipping (TML)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the TML for details of the link clipping mechanism in TML.

Link connection box (TML)
The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link clipping interface with the TML.

Memory savings (TML)
As with all classes supporting this parameter, a certain amount of memory savings can be
obtained by selecting this option. Note that using this option does not change the resulting
layout. It just slows down the computation. (See Memory savings.)

Preserve fixed links (TML)
TML does not reshape the links that are specified as fixed. (See Preserve fixed links. See
also Link style (TML).)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 121

Preserve fixed nodes (TML)
TML does not move the nodes that are specified as fixed. Moreover, the algorithm takes
into account the fixed nodes when computing the position of the nonfixed nodes. (See
Preserve fixed nodes.)

If TML produces a layout with overlapping nodes, you can use the fixed nodes mechanism
to correct the problem. (For details, see Using fixed nodes (TML).)

Save parameters to named properties (TML)
The layout algorithm can save its layout parameters into named properties. This can be used
to save layout parameters to .ilv files. (For a detailed description of this feature, see Save
parameters to named properties and Saving layout parameters and preferred layouts).

Stop immediately (TML)
The layout algorithm stops after cleanup if the method IlvTopologicalMeshLayout is called.
(For a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is IlvGraphLayoutReport.STOPPED_AND_INVALID.

See also

Support by algorithms of generic features and parameters

U S I N G G R A P H L A Y O U T A L G O R I T H M S122

Specific parameters of the TML

The following parameters are specific to the IlvTopologicalMeshLayout class.

Link style (TML)
When the layout algorithm moves the nodes, straight-line links (such as instances of
IlvLinkImage) will automatically “follow” the new positions of their end nodes. If the grapher
contains other types of links (for example, IlvPolylineLinkImage or IlvSplineLinkImage),
the shape of the link may not be appropriate because the intermediate points of the link will
not be moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

To specify that the layout algorithm automatically remove all the intermediate points of the
links (if any):

In CSS
Add to the GraphLayout section:

linkStyle: "STRAIGHT_LINE_STYLE";

In Java™
Use the method:

void setLinkStyle(int style)

The valid values for style are:

♦ IlvTopologicalMeshLayout.NO_RESHAPE_STYLE

None of the links is reshaped in any manner.

♦ IlvTopologicalMeshLayout.STRAIGHT_LINE_STYLE

All the intermediate points of the links (except for links specified as fixed) are removed.
This is the default value.

The layout algorithm may raise an IlvInappropriateLinkException if layout is
performed on an IlvGrapher, but inappropriate link classes or link connector classes
are used. See Layout exceptions for details and solutions to this problem.

Note:

Optimization iterations and allowed time (TML)
The iterative computation performed in the Topological Optimization step is stopped if the
number of iterations exceeds the allowed number of iterations for optimization or the time
exceeds the allowed time for optimization (or, of course, if the general layout time has
elapsed; see Allowed time (TML)).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 123

To specify the parameters:

In CSS
Add to the GraphLayout section:

allowedOptimizationTime: "30000";

allowedNumberOfOptimizationIterations: "5";

In Java
Use the methods:

void setAllowedOptimizationTime(long time)
void setAllowedNumberOfOptimizationIterations(int iter)

The time is in milliseconds. The default value is 28000 (28 seconds).

Node placement iterations and allowed time (TML)
The iterative computation performed in the Nodes Placement step is stopped if the number
of iterations exceeds the allowed number of iterations or the time exceeds the allowed time
for node placement (or, of course, if the general layout time has elapsed; see Allowed time
(TML)).

To specify these parameters:

In CSS
Add to the GraphLayout section:

allowedNodesPlacementTime: "30000";
allowedNumberOfNodesPlacementIterations: "5";

In Java
Use the methods:

void setAllowedNodesPlacementTime(long time)

void setAllowedNumberOfNodesPlacementIterations(int iter)

The time is in milliseconds. The default value is 28000 (28 seconds).

Node placement algorithm (TML)
Two barycentric algorithms are implemented for the Nodes Placement step of TML.

To specify the algorithm:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S124

nodesPlacementAlgorithm: "QUICK_BAD";

In Java
Use the method:

void setNodesPlacementAlgorithm(int option)

The valid values for option are:

♦ IlvTopologicalMeshLayout.SLOW_GOOD

This option provides more uniformity of the nodes distribution inside the outer cycle, but
is slightly slower.

♦ IlvTopologicalMeshLayout.QUICK_BAD

This option provides less uniformity of the nodes distribution, but is slightly quicker.

In most cases, both algorithms are fairly quick. We recommend that you use the SLOW_GOOD
version, which is the default value. Compare the layouts of the same graph inNode placement
algorithm: SLOW_GOOD and Node placement algorithm: QUICK_BAD to get an idea of the
difference between these algorithms.

In CSS, you omit the prefix IlvTopologicalMeshLayout when specifying the value of the
nodes placement.

Node placement algorithm: SLOW_GOOD

U S I N G G R A P H L A Y O U T A L G O R I T H M S 125

Node placement algorithm: QUICK_BAD

Outer cycle (TML)
The Topological Optimization step of TML computes a set of cycles that can be used as the
outer cycle in the Nodes Placement step . By default, the longest cycle is actually used (that
is, the cycle containing the largest number of nodes). However, you may find it useful to try
a different outer cycle. To do so in Java, use the method:

void setExteriorCycleId(int cycleId)

The valid values for cycleId range from zero to the number of cycles computed by the
Topological Optimization step minus one. This number is returned by the method:

int getNumberOfPossibleExteriorCycles()

If the number is not in this range, the value zero is used.

You can use these methods only after having performed the layout successfully. Otherwise,
no outer cycle is defined.

When the layout is performed again with a new outer cycle, only the Nodes Placement step
of TML is performed, and not the time-consuming the Topological Optimization step. This
is true if the topology of the graph has not been changed (that is, no nodes or links were
added or removed), and no parameters that affect the Topological Optimization step have
been changed.

U S I N G G R A P H L A Y O U T A L G O R I T H M S126

Layout using 1st outer cycle, Layout using 2nd outer cycle, Layout using 3rd outer cycle,
and Layout using 4th outer cycle show various layouts produced for the same graph when
the cycleId parameter is changed:

Layout using 1st outer cycle

Layout using 2nd outer cycle

U S I N G G R A P H L A Y O U T A L G O R I T H M S 127

Layout using 3rd outer cycle

Layout using 4th outer cycle

U S I N G G R A P H L A Y O U T A L G O R I T H M S128

Refining a graph layout (TML)

After performing the layout on a graph, you may want to improve the quality of the layout
by making some manual refinements. The subsequent sections describe several ways to
refine your layouts. When the layout is performed again after the refinements have been
applied, only the Nodes placement step of TML is redone. The results of the Topological
Optimization are reused. This is an important benefit of TML because the algorithm can
recompute a layout using new parameters very quickly, without performing the
time-consuming Topological Optimization step again.

Using fixed nodes (TML)
One reason for applying manual refinements is to avoid overlapping nodes. To do this, you
can use the fixed nodes mechanism. (See Preserve fixed nodes.)

Take a look at the original layout shown in The original TML layout . Several overlapping
nodes exist in the original layout because the nodes are concentrated in a small region and
do not use the available space inside the outer cycle.

The original TML layout

To correct the problem, you can perform the following steps:

1. Move nodes 0, 9, and 10 to a place in the free space inside the outer cycle by hand as
shown in The TML layout with some nodes moved .

U S I N G G R A P H L A Y O U T A L G O R I T H M S 129

The TML layout with some nodes moved

2. Specify nodes 0, 9, and 10 as fixed using the setFixed(java.lang.Object, boolean)
method.

3. Use the setPreserveFixedNodes(boolean) method to specify that the fixed nodes will
not be moved when the layout is performed.

4. Perform the layout again. Only Step 2 will be performed.

The fixed nodes “attract” the other nodes, which are distributed in the larger area inside
the outer cycle as shown in The final TML layout with some fixed nodes.

The final TML layout with some fixed nodes

U S I N G G R A P H L A Y O U T A L G O R I T H M S130

Using the outer cycle parameter (TML)
By default, the Nodes Placement step of TML produces a layout using the longest outer
cycle computed in the Topological Optimization step. (The length of a cycle is the number
of nodes that compose the cycle.) Sometimes, a better layout can be obtained using a different
choice of the outer cycle. This process of changing the outer cycle parameter and performing
the layout again (see Outer cycle (TML)a) is a manual refinement procedure that can also
be used to avoid overlapping nodes.

Note that performing the layout with a new outer cycle requires very little CPU time.

Using the layout region parameter (TML)
Often, overlapping nodes can be avoided by simply increasing the size of the layout region
(see Layout region (TML)). Layout with small layout region and overlapping nodes shows a
graph drawing where several nodes overlap because the layout region is too small for the
graph. Layout with larger layout region and no overlapping nodes shows the same graph
after increasing the size of the layout region. As you can see, now there are no overlapping
nodes.

Layout with small layout region and overlapping nodes

Layout with larger layout region and no overlapping nodes

U S I N G G R A P H L A Y O U T A L G O R I T H M S 131

Using a link clipping interface with the TML

By default, TML does not place the connection points of links. It relies on the link connectors
of the nodes to determine the connection points. If no link connectors are installed at the
nodes, the default behavior is to connect to a point at the border of the bounding box of the
nodes. If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you
may want the connection points to be placed exactly on the border of the shape. This can
be achieved by specifying a link clip interface. The link clip interface allows you to correct
the calculated connection point so that it lies on the border of the shape. The following figure
shows an example.

Effect of Link Clipping Interface

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping. To set a link clip interface.

To set a link clip interface:

In CSS
It is not possible to set the link clip interface. See Link clipping.

In Java™
Use the method:

void setLinkClipInterface(IlvLinkClipInterface interface)

The link clip interface requires link connectors at the nodes of an IlvGrapher that
allow connector pins to be placed freely at the node border. It is recommended that

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S132

you use IlvFreeLinkConnector or IlvClippingLinkConnector for link
connectors to be used in combination with IlvGrapher objects.The clip link connector
updates the clipped connection points automatically during interactive node movements.

If a node has an irregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to a virtual center inside the node. You can achieve
this by additionally providing a class that implements the IlvLinkConnectionBoxInterface.
An example for the implementation of a link connection box interface is in Link connection
box. To set a link connection box interface:

To set a link connection box interface:

In CSS
It is not possible to set the link connection box interface. Link connection box

In Java
Use the method:

void setLinkConnectionBoxInterface(IlvLinkConnectionBoxInterface interface)

The link connection box interface is used only when link clipping is enabled by setting a link
clip interface. If no link clip interface is specified, the link connection box interface has no
effect.

The following figure shows an example of the combined effect.

Combined effect of link clipping interface and link connection box

If the links are clipped at the green irregular star node (see previous figure, left), they do
not point towards the center of the star, but towards the center of the bounding box of the
node. This can be corrected by specifying a link connection box interface that returns a
smaller node box than the bounding box (see previous figure, right). Alternatively, the
problem could be corrected by specifying a link connection box interface that returns the
bounding box as the node box but with additional tangential offsets that shift the virtual
center of the node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 133

U S I N G G R A P H L A Y O U T A L G O R I T H M S134

Force-directed or Uniform Length Edges
Layout (ULEL)

Describes the Force-directed layout or Uniform Length Edges Layout algorithm (class
IlvUniformLengthEdgesLayout from the package ilog.views.graphlayout.
uniformlengthedges).

In this section

General information on the ULEL
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the ULEL
Lists the features and limitations of the layout.

The ULEL algorithm
Gives an explanation of the ULEL algorithm and a sample.

Generic features and parameters of the ULEL
Lists the generic features and parameters of the Uniform Length Edges layout (ULEL).

Specific parameters of the ULEL
Describes the specific parameters supported by ULEL and gives samples of their use.

For experts: additional features of the ULEL
Describes the parameters available to expert users.

Using a link clipping interface with the ULEL
Describes the use of a link clipping interface with the Uniform Length Edges Layout (ULEL).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 135

General information on the ULEL

ULEL samples
The following sample drawings are produced with the Uniform Length Edges Layout (ULEL).

Small cyclic graph drawing produced with the Uniform Length Edges Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S136

Medium graph drawing (combination of cycles and trees) produced with the
Uniform Length Edges Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S 137

Large graph drawing (combination of cycles and trees) produced with the Uniform
Length Edges Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S138

Large graph drawing (Sierpinski Triangle) produced with the Uniform Length
Edges Layout using the fast multilevel layout mode

What types of graphs suit the ULEL?
Any type of graph:

♦ connected graphs and disconnected graphs

♦ planar graphs and nonplanar graphs

Application domains for the ULEL
Application domains for the Uniform Length Edges Layout include:

♦ Telecoms and networking (WAN diagrams)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 139

♦ Software management/software (re-)engineering (call graphs)

♦ CASE tools (dependency diagrams)

♦ Database and knowledge engineering (semantic networks, database query graphs,
qualitative reasoning and other artificial intelligence diagrams, and so on)

♦ World Wide Web (Web hyperlink neighborhood)

U S I N G G R A P H L A Y O U T A L G O R I T H M S140

Features and limitations of the ULEL

Features
Often provides a drawing without any or with only a few link crossings and with approximately
equal length links for small- and medium-size graphs having a small number of cycles. The
maximum number of nodes for which you can use the algorithm depends on the connectivity
of the graph and is difficult to predict.

On demand, the algorithm can take into account the size (width and height) of the nodes.
Otherwise, they are more efficiently considered as points.

It is possible to specify the length for each link individually.

The algorithm provides three optional layout modes: incremental, non-incremental and fast
multilevel. The non-incremental and fast multilevel modes are in general faster and are
recommended for large graphs. For details, see Layout mode .

Limitations

♦ The algorithm is not appropriate for all graphs. In particular, it will produce bad results
on some highly connected cyclic graphs for which a planar drawing with equal-length
links may simply not exist.

♦ The computation time required to obtain an appropriate drawing grows relatively quickly
with the size of the graph (that is, the number of nodes and links) and the layout process
may become time-consuming for large graphs.

♦ Overlapping nodes cannot always be avoided. Nevertheless, the layout algorithm often
produces a drawing with no overlapping nodes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 141

The ULEL algorithm

This layout algorithm iteratively searches for a configuration of the graph where the length
of the links is close to a user-defined or a default value.

Example of ULEL algorithm
In CSS
The following example of a specification in CSS uses the Uniform Length Edges Layout
algorithm. Since the Uniform Length Edges Layout places nodes and reshapes the links, it
is usually not necessary to specify an additional link layout in CSS. The specification in CSS
can be loaded as a style file into an application that uses the IlvDiagrammer class (see Graph
Layout in IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
graphLayout : "UniformLengthEdges";
linkStyle : "STRAIGHT_LINE_STYLE";
preferredLinksLength : "30";
respectNodeSizes : "true";
layoutMode : "FAST_MULTILEVEL_MODE";

}

It is possible to enable the link layout additionally, and in this case, the link layout determines
the shape of the links.

In Java™
The following code sample uses the IlvUniformLengthEdgesLayout class. This code sample
shows how to perform a Uniform Length Edges Layout on a grapher directly without using
a diagram component or any style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.uniformlengthedges.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

IlvUniformLengthEdgesLayout layout = new
IlvUniformLengthEdgesLayout();

layout.attach(grapher);
try {

IlvUniformLengthEdgesLayoutReport layoutReport =
layout.performLayout();

int code = layoutReport.getCode();

U S I N G G R A P H L A Y O U T A L G O R I T H M S142

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

All explanations in the subsequent sections regarding the shape of the links in
Uniform Length Edges Layout are valid only if the link layout is disabled.

Important:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 143

Generic features and parameters of the ULEL

Overview (ULEL)
The IlvUniformLengthEdgesLayout class supports the following generic parameters defined
in the IlvGraphLayout class (see Base class parameters and features):

♦ Allowed time (ULEL)

♦ Animation (ULEL)

♦ Layout of connected components (ULEL)

♦ Layout region (ULEL)

♦ Link clipping (ULEL)

♦ Link connection box (ULEL)

♦ Preserve fixed links (ULEL)

♦ Preserve fixed nodes (ULEL)

♦ Save parameters to named properties (ULEL)

♦ Stop immediately (ULEL)

The following subsections describe the particular way in which these parameters are used
by this subclass.

Allowed time (ULEL)
The layout algorithm stops if the allowed time setting has elapsed. (See Allowed time.)

Animation (ULEL)
If animation is specified, a redraw is automatically performed after each step of the layout
algorithm. (See Animation.)

Layout of connected components (ULEL)
The layout algorithm can utilize the generic mechanism to lay out connected components.
(For more information about this mechanism, see Layout of connected components.)

Layout region (ULEL)
The layout algorithm can use the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass. (See Layout region.)

U S I N G G R A P H L A Y O U T A L G O R I T H M S144

Note that by default the Uniform Length Edges Layout algorithm does not use the layout
region. (For details see also Force fit to layout region (ULEL).)

Remember that if you are using the default settings, the visible area of the manager view
(an instance of IlvManagerView) attached to the grapher is used as a layout region. If several
manager views are attached, the first attached view is used. If no manager view is attached,
the layout region is automatically estimated on the basis of the number and size of the nodes.

Link clipping (ULEL)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the ULEL for details of the link clipping mechanism.

Link connection box (ULEL)
The layout algorithm can use a link connection box interface (see Link connection box.) In
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link clipping interface with the ULEL.

Preserve fixed links (ULEL)
The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links and Link style (ULEL).)

Preserve fixed nodes (ULEL)
The layout algorithm does not move the nodes that are specified as fixed. Moreover, the
algorithm takes into account the fixed nodes when computing the position of the nonfixed
nodes. (See Preserve fixed nodes.)

Save parameters to named properties (ULEL)
The layout algorithm is able to save its layout parameters into named properties. This can
be used to save layout parameters to .ivl files. (For a detailed description of this feature,
see Save parameters to named properties and Saving layout parameters and preferred
layouts).

Stop immediately (ULEL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 145

Specific parameters of the ULEL

The following parameters are specific to the IlvUniformLengthEdgesLayout class.

Link style (ULEL)
When the layout algorithm moves the nodes, straight-line links (such as instances of
IlvLinkImage) will automatically “follow” the new positions of their end nodes. If the grapher
contains other types of links (for example, IlvPolylineLinkImage or IlvSplineLinkImage),
the shape of the link may not be appropriate because the intermediate points of the link will
not be moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

To specify that the ULEL algorithm automatically removes all the intermediate points of the
links (if any):

In CSS
Add to the GraphLayout section:

linkStyle: "STRAIGHT_LINE_STYLE";

In Java™
Use this method:

void setLinkStyle(int style)

The valid values for style are:

♦ IlvUniformLengthEdgesLayout.NO_RESHAPE_STYLE

None of the links is reshaped in any manner.

♦ IlvUniformLengthEdgesLayout.STRAIGHT_LINE_STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

If you use CSS in a diagram component (instance of IlvDiagrammer), you must specify
the correct link class in the style sheet.We recommend that you use IlvGeneralLink

Note:

or IlvSimpleLink as classes for links in this case. If you call layout on an IlvGrapher
directly in Java, you can use the method EnsureAppropriateLinkTypes or
EnsureAppropriateLinks defined in the class IlvGraphLayoutUtil to replace
inappropriate links automatically, either before layout or when the
IlvInappropriateLinkException is caught. For details on these methods, see
the Java API Reference Manual. For details on the graph model, see Using the Graph
Model.

U S I N G G R A P H L A Y O U T A L G O R I T H M S146

If you call layout on an IlvGrapher directly in Java, you can use the method
EnsureAppropriateLinkTypes or EnsureAppropriateLinks defined in the

Note:

class IlvGraphLayoutUtil to replace inappropriate links automatically, either before
layout or when the IlvInappropriateLinkException is caught. For details on
these methods, see the Java API Reference Manual. For details on the graph model,
see Using the Graph Model.

Number of iterations (ULEL)
The iterative computation of the layout algorithm is stopped if the time exceeds the allowed
time (see Allowed time) or if the number of iterations exceeds the allowed number of
iterations.

To specify the number of iterations:

In CSS
Add to the GraphLayout section:

allowedNumberOfIterations: "5";

In Java
Use the method:

void setAllowedNumberOfIterations(int iterations)

Preferred length (ULEL)
The main objective of this layout algorithm is to obtain a layout where all the links have a
given length. This is called the “preferred length.”

To specify the preferred length:

Globally
♦ In CSS

Add to the GraphLayout section:

preferredLinksLength: "70.0";

Individually
It is also possible to specify a length for individual links. To do so:

♦ In CSS
Specify a rule that selects the link:

#link27 {

U S I N G G R A P H L A Y O U T A L G O R I T H M S 147

PreferredLength: "80.0";
}

If a specific length is not specified for a link, the global settings are used.

Globally
♦ In Java

Use the method:

void setPreferredLinksLength(float length)

The default value is 60.0.

Individually
It is also possible to specify a length for individual links. To do so:

♦ In Java
Use the method:

void setPreferredLength(Object link, float length)

To obtain the current value, use the method:

float getPreferredLength(Object link)

If a specific length is not specified for a link, the global settings are used.

Respect node sizes (ULEL)
By default, the layout algorithm ignores the size (width and height) of the nodes. For efficiency
reasons, the nodes are approximated with points placed in the center of the bounding box
of the nodes. When dealing with large nodes, the preferred length parameter can be increased
in such a way that the nodes do not overlap.

However, to improve the support for graphs with heterogeneous node sizes, the algorithm
provides a special mode in which the particular size of each node is taken into consideration.

To set this mode:

In CSS
Add to the GraphLayout section:

respectNodeSizes: "true";

In Java
Use the method:

void setRespectNodeSizes(boolean respect)

The default value is false.

U S I N G G R A P H L A Y O U T A L G O R I T H M S148

Force fit to layout region (ULEL)
For this layout algorithm, it is more difficult than for others to choose an appropriate size
for the layout region. If the specified layout region is too small for a given graph, the resulting
layout will not be the best. For this reason, by default, the Uniform Length Edges Layout
algorithm does not use the layout region parameter. It can use as much space as it needs
to lay out the grapher.

To specify whether the layout algorithm must use the layout region:

In CSS
Add to the GraphLayout section:

forceFitToLayoutRegion: "true";

In Java
Use the method:

void setForceFitToLayoutRegion(boolean option)

The default value of the parameter is false.

Layout mode
To fit a variety of needs, the algorithm provides three optional modes:

♦ Incremental mode

The algorithm starts from the current position and iteratively tries to converge towards
the optimal layout. Thus, in some cases, this mode avoids a major reorganization of the
graph, which helps for preserving the "mental map" of the user as much as possible.
However, this is not guaranteed, and depends on how far is the initial position of the
nodes from the position that satisfies the criteria of the algorithm.

♦ Non-incremental mode

The algorithm is free to reorganize the graph without trying to stay close to the initial
positions. Often, the non-incremental mode is faster than the incremental mode, sometimes
at the price of a lower quality.

♦ Fast multilevel mode

The algorithm uses a multilevel graph decomposition strategy that leads to significant
speed gain. This mode is usually the fastest for medium and large graphs.

To set this mode:

In CSS
Add to the GraphLayout section:

layoutMode: "FAST_MULTILEVEL_MODE";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 149

In Java
Use the method:

void setLayoutMode(int mode)

The default value is IlvUniformLengthEdgesLayout.INCREMENTAL_MODE.

U S I N G G R A P H L A Y O U T A L G O R I T H M S150

For experts: additional features of the ULEL

Expert users can also try and use the following parameters.

Maximum allowed move per iteration (ULEL)
At each iteration, the layout algorithm moves the nodes a relatively small amount. This
amount should not be too large; otherwise the algorithm may not converge. But it should
not be too small either, otherwise the number of necessary iterations increases and the
running time does also.

The maximum amount of movement at each iteration is controlled by a parameter.

To set this parameter:

In CSS
Add to the GraphLayout section:

maxAllowedMovePerIteration: "10.0";

In Java™
Use the method:

void setMaxAllowedMovePerIteration(float maxMove)

Typical values for this setting are 1 to 30, but it depends on the value of the
PreferredLinksLength parameter. For example, if the setting for the PreferredLinksLength
parameter is 1000, then a value of 100 for the MaxAllowedMovePerIteration parameter is
still meaningful.

Link length weight (ULEL)
The layout algorithm is based on the computation of attraction and repulsion forces for each
of the nodes and the iterative search of an equilibrium configuration. One of these forces is
related to the objective of obtaining a link length close to the specified preferred length.
The weight of this force, representing the total amount of forces, is controlled by a parameter.

To set this parameter:

In CSS
Add to the GraphLayout section:

linkLengthWeight: "2.25" ;

In Java
Use the method:

void setLinkLengthWeight(float weight)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 151

The default value is 1. Increasing this parameter can help obtain link lengths closer to the
specified length, but increasing too much can increase the number of link crossings.

Additional node repulsion weight (ULEL)
An additional repulsion force can be computed between nodes that are not connected by a
link. The weight of this force, representing the total amount of forces, is controlled by a
parameter.

To set this parameter:

In CSS
Add to the GraphLayout section:

additionalNodeRepulsionWeight: "3.5";

In Java
Use the methods:

void setAdditionalNodeRepulsionWeight(float weight)

The default value of this parameter is 0.2f. Increasing (or decreasing) the weight increases
(or decreases) the priority that is given to maintain the nodes at a distance larger than the
node distance threshold (see setNodeDistanceThreshold(float)). On the other side,
increasing the weight decreases the ability for the algorithm to reach convergence quickly.

The following two figures enable you to compare the same graph laid out with additional
repulsion disabled (Additional repulsion disabled, produced with the Uniform Length Edges
Layout) and then enabled (Additional repulsion enabled, produced with the Uniform Length
Edges Layout). You can see that the “star” configuration, where many nodes are connected
to the same central node, is better displayed when additional repulsion is enabled.

U S I N G G R A P H L A Y O U T A L G O R I T H M S152

Additional repulsion disabled, produced with the Uniform Length Edges Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S 153

Additional repulsion enabled, produced with the Uniform Length Edges Layout

Node distance threshold (ULEL)
The additional repulsion force between two nodes not connected by a link is computed only
when their distance is smaller than a predefined distance.

To set this distance:

In CSS
Add to the GraphLayout section:

nodeDistanceThreshold: "4.0";

In Java
Use the method:

void setNodeDistanceThreshold(float threshold)

Note that this additional force is computed only if the “additional node repulsion weight” is
set to a value larger than the default value 0.

U S I N G G R A P H L A Y O U T A L G O R I T H M S154

It is recommended that this threshold be set to a value smaller than the preferred length of
the links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 155

Using a link clipping interface with the ULEL

By default, the Uniform Length Edges Layout does not place the connection points of links.
It relies on the link connectors of the nodes to determine the connection points. If no link
connectors are installed at the nodes, the default behavior is to connect to a point at the
border of the bounding box of the nodes. If the node has a nonrectangular shape such as a
triangle, rhombus, or circle, you may want the connection points to be placed exactly on the
border of the shape. This can be achieved by specifying a link clip interface. The link clip
interface allows you to correct the calculated connection point so that it lies on the border
of the shape. The following figure shows an example.

Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping.

To set a link clip interface:

In CSS
It is not possible to set the link clip interface. See Link clipping.

In Java™
Use the method

void setLinkClipInterface(IlvLinkClipInterface interface)

U S I N G G R A P H L A Y O U T A L G O R I T H M S156

The link clip interface requires link connectors at the nodes of an IlvGrapher that
allow connector pins to be placed freely at the node border. It is recommended that

Note:

you use IlvFreeLinkConnector or IlvClippingLinkConnector for link
connectors to be used in combination with IlvGrapher objects.The clip link connector
updates the clipped connection points automatically during interactive node movements.

If a node has an irregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to a virtual center inside the node. You can achieve
this by additionally providing a class that implements the IlvLinkConnectionBoxInterface.
An example for the implementation of a link connection box interface is in Link connection
box.

To set a link connection box interface:

In CSS
It is not possible to set the link connection box interface. See Link connection box.

In Java
Use the method:

void setLinkConnectionBoxInterface(IlvLinkConnectionBoxInterface interface)

The link connection box interface is used only when link clipping is enabled by setting a link
clip interface. If no link clip interface is specified, the link connection box interface has no
effect.

The following figure shows an example of the combined effect.

Combined Effect of Link Clipping Interface and Link Connection Box

If the links are clipped at the green irregular star node (previous figure, left), they do not
point towards the center of the star, but towards the center of the bounding box of the node.
This can be corrected by specifying a link connection box interface that returns a smaller
node box than the bounding box (previous figure, right). Alternatively, the problem could
be corrected by specifying a link connection box interface that returns the bounding box as
the node box but with additional tangential offsets that shift the virtual center of the node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 157

U S I N G G R A P H L A Y O U T A L G O R I T H M S158

Tree Layout (TL)

Describes the Tree Layout algorithm (class IlvTreeLayout from the package ilog.views.
graphlayout.tree).

In this section

General information on the TL
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the TL
Lists the features and limitations of the layout.

The TL algorithm
Gives an explanation of the Tree Layout (TL) algorithm and a sample.

Generic features and parameters of the TL algorithm
Describes the generic parameters supported by the Tree Layout (TL) and explains the
particular way in which these parameters are used by this subclass.

Specific parameters (for all tree layout modes)
Describes the specific parameters supported by the Tree Layout and gives samples of their
use.

Layout modes of the TL algorithm
Describes the characteristics and the layout parameters of each layout mode in the TL
algorithm.

For experts: additional tips for the TL
Describes some tips and tricks for expert users of the Tree Layout (TL).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 159

General information on the TL

TL samples
The following sample drawings are produced with the Tree Layout.

Tree layout in free layout mode with center alignment and flow direction to the
right

U S I N G G R A P H L A Y O U T A L G O R I T H M S160

Tree layout with flow direction to the bottom, orthogonal link style, and tip-over
alignment at some leaf nodes

Tree layout in radial layout mode with aspect ratio 1.5

What types of graphs suit the TL?

♦ Primarily designed for pure trees. It can also be used for non-trees, that is, for cyclic
graphs. In this case, the algorithm computes and uses a spanning tree of the graph,
ignoring all links that do not belong to the spanning tree.

♦ Directed and undirected trees. If the links are directed, the algorithm automatically
chooses the canonical root node. If the links are undirected, you can choose a root node.

♦ connected graphs and disconnected graphs. If the graph is not connected, the layout
algorithm treats each connected component separately. Each component has exactly one
root node. In this case, a forest of trees is laid out.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 161

Application domains for the TL
Application domains for the Tree Layout include:

♦ Business processing (organizational charts)

♦ Software management/software (re-)engineering (UML diagrams, call graphs)

♦ Database and knowledge engineering (decision trees)

♦ The World Wide Web (Web site maps)

U S I N G G R A P H L A Y O U T A L G O R I T H M S162

Features and limitations of the TL

Features

♦ Takes into account the size of the nodes so that no overlapping occurs.

♦ Optionally reshapes the links to give them an orthogonal form (alternating horizontal and
vertical line segments).

♦ Various layout modes: free, levels, radial, or automatic tip-over.

● In the free layout mode, arranges the children of each node, starting recursively from
the root, so that the links flow uniformly in the same direction.

● In the level layout mode, partitions the nodes into levels, and arranges the levels
horizontally or vertically.

● In radial layout mode, partitions the nodes into levels, and arranges the levels in circles
or ellipses around the root.

● In the tip-over mode, arranges the nodes in a similar way to the free layout mode, but
tries to tip children over automatically to fit the layout better to the given aspect ratio.

♦ Provides several alignment and offset options.

♦ Allows you to specify nodes that must be direct neighbors.

♦ Provides incremental and nonincremental modes. Incremental mode takes the previous
position of nodes into account and positions the nodes without changing the relative order
of the nodes in the tree so that the layout is stable on incremental changes of the graph.

♦ Very efficient, scalable algorithm. Produces a nice layout quickly even if the number of
nodes is huge.

Limitations

♦ If the orthogonal setting is not specified as the link style (see Link style), some links may
in rare cases overlap nodes depending on the size of the nodes, the alignment parameters,
and the offset parameters.

♦ The layout algorithm first determines a spanning tree of the graph. If the graph is not a
pure tree, some links will not be included as part of the spanning tree. These links are
ignored. For this reason, they may cross other links or overlap nodes in the final layout.

♦ For stability in incremental mode, the algorithm tries to preserve the relative order of
the children of each node. It uses a heuristic to calculate the relative order from the
previous positions of the nodes. The heuristic may fail if children overlap their old positions
or are not aligned horizontally or vertically.

♦ Despite preserving the relative order of the children, in rare cases the layout is not
perfectly stable in incremental radial layouts. Subsequent layouts may rotate the nodes
around the root, although the relative circular order of the nodes within their circular
levels is still preserved.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 163

♦ The tip-over layout modes will perform several trial layouts with different tip-over
alignment options according to various heuristics. From these trial layouts, the algorithm
picks the layout that best fits the given aspect ratio. This may not be the optimal layout
for the aspect ratio, but it is the best layout among the trials. Calculating the absolute
best-fitting layout is not computationally feasible (it is generally an NP-complete problem).

U S I N G G R A P H L A Y O U T A L G O R I T H M S164

The TL algorithm

The core algorithm for the free, level, and radial layout modes works in just two steps and
is very fast. The variations of the tip-over layout mode perform the second step several times
and pick the layout result that best fits the given aspect ratio (the ratio between width and
height of the drawing area). For this reason, the tip-over layout modes are slower.

Step 1: Calculating the spanning tree
If the graph is disconnected, the layout algorithm chooses a root node for each connected
component. Starting from the root node, it traverses the graph to choose the links of
the spanning tree. If the graph is a pure tree, all links are chosen. If the graph has cycles,
some links will not be included as part of the spanning tree. These links are called
non-tree links, while the links of the spanning tree are called tree links. The non-tree
links are ignored in step 2 of the algorithm.

In Tree layout in free layout mode with center alignment and flow direction to the right,
Tree layout with flow direction to the bottom, orthogonal link style, and tip-over alignment
at some leaf nodes, and Tree layout in radial layout mode with aspect ratio 1.5,the root
is the node that has no parent node. In the spanning tree, each node except the root has
a parent node. All nodes that have the same parent are called children with respect to
the parent and siblings with respect to themselves. Nodes without children are called
leaves. Each child at a node starts a subtree (also called a branch of the tree). A Spanning
tree show an example of a spanning tree.

A Spanning tree

Step 2: Calculating node positions and link shapes
The layout algorithm arranges the nodes according to the layout mode and the offset
and alignment options. In the free mode and level mode, the nodes are arranged
horizontally or vertically so that all tree links flow roughly in the same direction. In the
radial layout modes, the nodes are arranged in circles or ellipses around the root so that
all tree links flow radially away from the root. Finally, the link shapes are calculated
according to the link style and alignment options.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 165

Example of TL
In CSS
The following example is a specification in CSS using the Tree Layout algorithm. Since the
Tree Layout places nodes and links, it is usually not necessary to specify an additional link
layout in CSS. The specification in CSS can be loaded as a style file into an application that
uses the IlvDiagrammer class (see Graph Layout in IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
graphLayout : "Tree";
layoutMode : "FREE";
flowDirection : "Bottom";
globalLinkStyle : "ORTHOGONAL_STYLE";
globalAlignment : "CENTER";
connectorStyle : "EVENLY_SPACED_PINS";
siblingOffset : "15";
branchOffset : "30";
parentChildOffset : "20";
position : "200,20";

}

However, it is possible to enable the link layout additionally and in this case, the link layout
determines the shapes of the links.

In Java™
The following code sample uses the IlvTreeLayout class in Java. This code sample shows
how to perform a Tree Layout on a grapher directly without using a diagram component or
any style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.tree.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

... /* Suppose we have added rootNode as a node in the grapher */

IlvTreeLayout layout = new IlvTreeLayout();
layout.attach(grapher);

/* Specify the root node, orientation and alignment */
layout.setRoot(rootNode);
layout.setFlowDirection(IlvDirection.Right);
layout.setGlobalAlignment(IlvTreeLayout.CENTER);

U S I N G G R A P H L A Y O U T A L G O R I T H M S166

try {
IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

All explanations in the subsequent sections regarding the shape of the links in
Tree Layout are valid only if the link layout is disabled.

Important:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 167

Generic features and parameters of the TL algorithm

Overview (TL)
The IlvTreeLayout class supports the following generic features defined in the
IlvGraphLayout class (see also Base class parameters and features):

♦ Allowed time (TL)

♦ Layout of connected components (TL)

♦ Link clipping (TL)

♦ Link connection box (TL)

♦ Spline routing (TL)

♦ Percentage of completion calculation (TL)

♦ Preserve fixed links (TL)

♦ Preserve fixed nodes (TL)

♦ Save parameters to named properties (TL)

♦ Stop immediately (TL)

The following subsections describe the particular way in which these features are used by
the subclass IlvTreeLayout.

Allowed time (TL)
The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed time.) If the layout stops early
because the allowed time has elapsed, the nodes and links are not moved from their positions
before the layout call and the result code in the layout report is IlvGraphLayoutReport.
STOPPED_AND_INVALID.

Layout of connected components (TL)
The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components). It has,
however, a specialized internal mechanism to layout connected components and, therefore,
the generic mechanism is switched off by default.

The generic connected component layout mechanism has the disadvantage that it moves
connected components completely. Fixed nodes within a component do not preserve their
old position, and the resulting layout may be unstable on incremental changes, depending
on which layout instance is used for the component layout.

If the generic connected component layout mechanism is disabled, the algorithm uses its
own specialized internal mechanism instead of the generic mechanism to lay out each
component as a separate tree. This is usually faster and more stable on incremental changes

U S I N G G R A P H L A Y O U T A L G O R I T H M S168

than the generic mechanism. Furthermore, it enables the user to set the position of the
layout.

Link clipping (TL)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
for details of the link clipping mechanism.

Link connection box (TL)
The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link connection box interface.

Spline routing (TL)
The layout algorithm supports the generic spline routing mechanism (see Spline routing).
If the style of a link is orthogonal and the link is a spline, it is routed by the generic spline
routing mechanism when it is enabled.

Percentage of completion calculation (TL)
The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of layout. (For a detailed description of this
feature, see Percentage of completion calculation and Graph layout event listeners.)

Preserve fixed links (TL)
The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the IlvGraphLayout class, see Preserve fixed links and
Link style (TML).)

Preserve fixed nodes (TL)
The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the IlvGraphLayout class, see Preserve fixed nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in unwanted overlapping nodes
and link crossings. However, this feature is useful for individual, disconnected components
that can be laid out independently.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 169

Save parameters to named properties (TL)
The layout algorithm can save its layout parameters into named properties. This can be used
to save layout parameters to .ivl files. (For a detailed description of this feature, see Save
parameters to named properties and Saving layout parameters and preferred layouts.)

Stop immediately (TL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the nodes and links are not moved
from their positions before the layout call, and the result code in the layout report is
IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S170

Specific parameters (for all tree layout modes)

The following parameters are specific to the IlvTreeLayout class. They apply to all layout
modes.

Root node (TL)
The final layout is influenced mainly by the choice of the root node.

The root node is placed in a prominent position. For instance, in a top-down drawing with
free layout mode, it is placed at the top of the tree. With the radial layout mode, it is placed
at the center of the tree.

The spanning tree is calculated starting from the root node. If the graph is disconnected,
the layout algorithm needs one root node for each connected component.

The layout algorithm automatically selects a root node when needed. It uses a heuristic that
calculates preferences for all nodes to become a root. It chooses the node with the highest
preference. The heuristic gives nodes without incoming links the highest preference and
leaf nodes without outgoing links the lowest preference. Hence, in a directed tree, the
canonical root is always chosen automatically.

It is possible to influence the choice of the root node.

To set a node explicitly as the root:

In CSS
Specify a rule that selects the node, for instance:

#node1 {
Root: "true";

}

In Java™
Use the method:

void setRoot(Object node);

In this case, the node argument must be a graphic node (subclass of IlvGraphic).

This gives the node the maximal preference to become the root during layout. If only one
node is specified this way, the algorithm selects this node. If several nodes of the same
connected component are specified this way, the layout algorithm chooses one of them as
the root.

For experts: additional options for root nodes (TL)
The layout algorithmmanages a list of the root nodes that have been specified by the setRoot
method. To obtain the nodes in this list in Java, use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 171

Enumeration getSpecRoots();

After layout, you can also retrieve the list of root nodes that were actually used by the
algorithm. This list is not necessarily the same as the list of specified roots. For instance, it
contains the chosen root nodes if none were specified or if too many were specified. To
obtain the root nodes that were used by the algorithm in Java, use the method:

Enumeration getCalcRoots();

This example shows how to iterate over the calculated root nodes and print the root node
preferences:

Enumeration e = layout.getCalcRoots();
while (e.hasMoreElements()) {
node = e.nextElement();
System.out.println("Preference:" + layout.getRootPreference(node));

}

To directly manipulate the root node preference value of an individual node:

In CSS
Write a rule to select the node:

#node1 {
RootPreference: "1000";

}

In Java
Use the method:

setRootPreference(Object node, int preference);

In this case, the layout uses the specified value instead of the heuristically calculated
preference for the node. The normal preference value should be between 0 and 10000.
Specifying a root node explicitly corresponds to setting the preference value to 10000. If
you want to prohibit a node from becoming the root, specify a preference value of zero (0).

A negative preference value indicates that the layout algorithm should recalculate the root
node preference using the heuristic. If a root was specified by the setRoot method but this
node should no longer be the root in subsequent layouts, use the following call to clear the
root node setting:

layout.setRootPreference(node, -1);

This call also removes the node from the list of specified roots.

Position parameters (TL)
To set the position of the top left corner of the layout to (10, 10):

U S I N G G R A P H L A Y O U T A L G O R I T H M S172

In CSS
Specify:

GraphLayout {
position : "10,10";
rootPosition : "false";

}

In Java
In Java, use the method:

layout.setPosition(new IlvPoint(10, 10), false);

If the graph consists of only a single tree, it is often more convenient to set the position of
the root node instead. To do this:

In CSS
Specify in the GraphLayout section:

GraphLayout {
position : "10,10";
rootPosition : "true";

}

In Java
Use the same method and pass true instead of false:

layout.setPosition(point, true);

If no position is specified, the layout keeps the root node at its previous position.

Using compass directions for positional layout parameters (TL)
The compass directions north, south, east, and west are used to simplify the explanations
of the layout parameters. The center of the root node of a tree is considered the north pole.

In the nonradial layout modes, the link flow direction always corresponds to south. If the
root node is placed at the top of the drawing, north is at the top, south at the bottom, east
to the right, and west to the left. If the root node is placed at the left border of the drawing,
north is to the left, south to the right, east at the top, and west at the bottom.

In the radial layout modes, the root node is placed in the center of the drawing. The meaning
of north and south depends on the position relative to the root: the north side of the node
is the side closer to the root and the south side is the side further away from the root. The
east direction is counterclockwise around the root and the west direction is clockwise around
the root. This is similar to a cartographic map of a real globe that shows the area of the
north pole as if you were looking down at the top of the globe.

Compass directions are used to provide uniform naming conventions for certain layout
options. They occur in the alignment options, the level alignment option, and the east-west
neighboring feature, which are explained later. In Flow directions and Radial layout mode,
the compass icons show the compass directions in these drawings.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 173

Layout modes (TL)
The tree layout algorithm has several layout modes. The following example shows how to
specify the layout mode.

In CSS
Add to the GraphLayout section:

layoutMode: "FREE";

In Java
Use the method:

void setLayoutMode(int mode);

The available layout modes are the following:

♦ IlvTreeLayout.FREE (the default)

♦ IlvTreeLayout.LEVEL

♦ IlvTreeLayout.RADIAL

♦ IlvTreeLayout.ALTERNATING_RADIAL

♦ IlvTreeLayout.TIP_OVER

♦ IlvTreeLayout.TIP_ROOTS_OVER

♦ IlvTreeLayout.TIP_LEAVES_OVER

♦ IlvTreeLayout.TIP_ROOTS_AND_LEAVES_OVER

In CSS, you omit the prefix IlvTreeLayout when specifying the value of the layout mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S174

Layout modes of the TL algorithm

Describes the characteristics and the layout parameters of each layout mode in the TL
algorithm.

In this section

Free layout mode
Describes how the free layout mode organizes nodes and describes the parameters of this
mode.

Level layout mode
Describes how the level layout mode organizes nodes and describes the parameters of this
mode.

Radial layout mode
Describes how the radial layout mode organizes nodes and describes the parameters of this
mode.

Tip-over layout modes
Describes the need for tip-over layout modes and how they operate.

Recursive mode
Describes how the recursive mode organizes nodes and describes the parameters of this
mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 175

U S I N G G R A P H L A Y O U T A L G O R I T H M S176

Free layout mode

Describes how the free layout mode organizes nodes and describes the parameters of this
mode.

In this section

Overview
Describes how the free layout mode organizes nodes.

Flow direction
Describes the flow direction parameter of the free layout mode.

Alignment parameter
Describes the alignment parameter of the free layout mode.

Link style
Describes the link style parameter of the free layout mode.

Connector style
Describes the connector style parameter of the free layout mode and how to use it in
conjunction with two interfaces.

Using a link connection box interface
Describes how to use the link connection box interface in the free layout mode.

Using a link clipping interface
Describes how to use the link clipping interface in the free layout mode.

Spacing parameters
Describes how to use the spacing parameter of the free layout mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 177

Overview

The free layout mode arranges the children of each node starting recursively from the root
so that the links flow roughly in the same direction. For instance, if the link flow direction
is top-down, the root node is placed at the top of the drawing. Siblings (nodes that have the
same parent) are justified at their top borders, but nodes of different tree branches (nodes
with different parents) are not justified.

To set the free layout mode:

In CSS
Add to the GraphLayout section:

layoutMode: "FREE";

In Java™
Call:

layout.setLayoutMode(IlvTreeLayout.FREE);

U S I N G G R A P H L A Y O U T A L G O R I T H M S178

Flow direction

The flow direction parameter specifies the direction of the tree links. The compass icons
show the compass directions in these layouts.

Flow directions

If the flow direction is to the bottom, the root node is placed topmost. Each parent node is
placed above its children, which are normally arranged horizontally. (This tip-over alignment
is an exception.)

If the flow direction is to the right, the root node is placed leftmost. Each parent node is
placed to the left of its children, which are normally arranged vertically.

To specify the flow direction:

In CSS
Add to the GraphLayout section, for instance

flowDirection: "Left";

In Java
In Java™ , use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 179

void setFlowDirection(int direction);

The valid values for the flow direction are:

♦ IlvDirection.Right (the default)

♦ IlvDirection.Left

♦ IlvDirection.Bottom

♦ IlvDirection.Top

In CSS, you omit the prefix IlvDirection when specifying the value of the flow direction.

U S I N G G R A P H L A Y O U T A L G O R I T H M S180

Alignment parameter

The alignment option controls how a parent is placed relative to its children. The alignment
can be set globally, in which case all nodes are aligned in the same way, or locally on each
node, with the result that different alignments occur in the same drawing.

Alignment Options

Global alignment
To set the global alignment:

In CSS
Add to the GraphLayout section, for instance:

globalAlignment: "CENTER";

In Java
In Java™ , use the method:

void setGlobalAlignment(int alignment);

The valid values for the global alignment are:

♦ IlvTreeLayout.CENTER (the default)

The parent is centered over its children, taking the center of the children into account.

♦ IlvTreeLayout.BORDER_CENTER

The parent is centered over its children, taking the border of the children into account.
If the size of the first and the last child varies, the border center alignment places the
parent closer to the larger child than to the default center alignment.

♦ IlvTreeLayout.EAST

U S I N G G R A P H L A Y O U T A L G O R I T H M S 181

The parent is aligned with the border of its easternmost child. For instance, if the flow
direction is to the bottom, east is the direction to the right. If the flow direction is to the
top, east is the direction to the left. See Using compass directions for positional layout
parameters (TL) for details.

♦ IlvTreeLayout.WEST

The parent is aligned with the border of its westernmost child. For instance, if the flow
direction is to the bottom, west is the direction to the left. If the flow direction is to the
right, west is the direction to the bottom. See Using compass directions for positional
layout parameters (TL) for details.

♦ IlvTreeLayout.TIP_OVER

The children are arranged sequentially instead of in parallel, and the parent node is
placed with an offset to the children. For details see Tip-over alignment.

♦ IlvTreeLayout.TIP_OVER_BOTH_SIDES

The children are arranged sequentially instead of in parallel. Whereas the alignment
TIP_OVER arranges all children at the same side of the parent, this alignment arranges
the children at both sides of the parent. For details see Tip-over alignment.

♦ IlvTreeLayout.MIXED

Each parent node can have a different alignment. The alignment of each individual node
can be set with the result that different alignments can occur in the same graph.

In CSS, you omit the prefix IlvTreeLayout when specifying the value of the alignment.

Alignment of individual nodes
All nodes have the same alignment unless the global alignment is set to MIXED. Only when
the global alignment is set to MIXED can each node have an individual alignment style.

Different Alignments Mixed in the Same Drawing

To specify the alignment of an individual node:

In CSS
First set the global alignment toMIXED, then specify a rule that selects the node, for instance:

U S I N G G R A P H L A Y O U T A L G O R I T H M S182

GraphLayout {
globalAlignment: "MIXED";

}

#node1 {
Alignment: "EAST";

}

In Java
Use the methods:

void setAlignment(Object node, int alignment);

int getAlignment(Object node);

The valid values for alignment are:

♦ IlvTreeLayout.CENTER (the default)

♦ IlvTreeLayout.BORDER_CENTER

♦ IlvTreeLayout.EAST

♦ IlvTreeLayout.WEST

♦ IlvTreeLayout.TIP_OVER

♦ IlvTreeLayout.TIP_OVER_BOTH_SIDES

Tip-over alignment
Normally, the children of a node are placed in a parallel arrangement with siblings as direct
neighbors of each other. Tip-over alignment means a sequential arrangement of the children
instead.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 183

Normal alignment and tip-over alignment

Tip-over alignment is useful when the tree has many leaves. With normal alignment, a tree
with many leaves would result in the layout being very wide. If the global alignment style
is set to tip-over, the drawing is very tall rather than wide. To balance the width and height
of the drawing, you can set the global alignment to mixed, for example, in Java:

layout.setGlobalAlignment(IlvTreeLayout.MIXED);

Also, you can set the individual alignment to tip-over for some parents with a high number
of children as follows:

layout.setAlignment(parent, IlvTreeLayout.TIP_OVER);

Tip-over alignment can be specified explicitly for some or all of the nodes. Furthermore, the
Tree Layout offers layout modes that automatically determine when to tip over, yielding a
drawing that fits into a given aspect ratio. These layout modes are described in Tip-over
layout modes.

Besides the normal tip-over alignment, there is also a variant that distributes the subtrees
on both sides of the center line that starts at the parent. You can specify this variant at a
parent node with a high number of children by the following code:

layout.setAlignment(parent, IlvTreeLayout.TIP_OVER_BOTH_SIDES);

The following figure illustrates the difference between normal tip-over alignment and tip-over
at both sides. Tip-over alignment works very well with the orthogonal link style (see Link
style).

U S I N G G R A P H L A Y O U T A L G O R I T H M S184

Tip-over alignment

U S I N G G R A P H L A Y O U T A L G O R I T H M S 185

Link style

When using the Tree layout, it is preferable to use link connectors of type
IlvFreeLinkConnector and links of type IlvPolylineLinkImage or IlvSplineLinkImage.
The links can be straight or have a specific shape with intermediate points. You can specify
that the links be reshaped into an “orthogonal” form. You can set the link style globally, in
which case all links have the same kind of shape, or locally on each link, in which case
different link shapes occur in the same drawing.

Link style and link shapes
Link styles work only when you use links that can be reshaped. Subclasses of
IlvPolylineLinkImage or of IlvSplineLinkImage, (such as IlvGeneralLink) can be
reshaped. Furthermore, link styles work only if free link connectors are installed. Free link
connectors are subclasses of IlvFreeLinkConnector. If you use a diagram component, the
free link connectors are automatically installed when necessary unless specified differently.
If you call layout in Java™ on an IlvGrapher instance directly, the layout algorithm may
raise an IlvInappropriateLinkException if links are neither a subclass of
IlvPolylineLinkImage nor of IlvSplineLinkImage, or if connectors are not a subclass of
IlvFreeLinkConnector. In this case, you can use themethods EnsureAppropriateLinkTypes,
EnsureAppropriateLinkConnectors, or EnsureAppropriateLinks defined in
IlvGraphLayoutUtil to replace inappropriate links or link connectors automatically, either
before layout or when the IlvInappropriateLinkException is caught. For details on these
methods, see the Java API Reference Manual. For details on the graph model, see Using the
Graph Model.

Global link style
To specify the global link style:

In CSS
Add this statement to the GraphLayout section:

globalLinkStyle: "STRAIGHT_LINE_STYLE";

In Java
Use the method:

void setGlobalLinkStyle(int style);

The valid values for style are:

♦ IlvTreeLayout.NO_RESHAPE_STYLE

None of the links is reshaped in any manner.

♦ IlvTreeLayout.STRAIGHT_LINE_STYLE

All the intermediate points of the links (if any) are removed. This is the default value. See
Tree layout in free layout mode with center alignment and flow direction to the right and
Tree layout in radial layout mode with aspect ratio 1.5 as examples.

U S I N G G R A P H L A Y O U T A L G O R I T H M S186

♦ IlvTreeLayout.ORTHOGONAL_STYLE

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments). See Tree layout with flow direction to the bottom, orthogonal link style, and
tip-over alignment at some leaf nodes andTip-over alignment as examples.

♦ IlvTreeLayout.MIXED_STYLE

Each link can have a different link style. The style of each individual link can be set to
have different link shapes occurring on the same graph.

In CSS, you omit the prefix IlvTreeLayout when specifying the value of the link style.

Individual link style
All links have the same style of shape unless the global link style is MIXED_STYLE. Only when
the global link style is set to MIXED_STYLE can each link have an individual link style.

Different Link Styles Mixed in the Same Drawing

To specify the style of an individual link:

In CSS
First set the global link style to MIXED_STYLE, then specify a rule that selects the link, for
instance:

GraphLayout {
globalLinkStyle: "MIXED_STYLE";

}
#link1{

U S I N G G R A P H L A Y O U T A L G O R I T H M S 187

LinkStyle: "ORTHOGONAL_STYLE";
}

In Java
Use the methods:

setLinkStyle(java.lang.Object, int)

getLinkStyle

The valid values for style are:

♦ IlvTreeLayout.STRAIGHT_LINE_STYLE (the default)

♦ IlvTreeLayout.NO_RESHAPE_STYLE

♦ IlvTreeLayout.ORTHOGONAL_STYLE

The link style of a Tree Layout graph requires links in an IlvGrapher that can be
reshaped. Links of type IlvLinkImage, IlvOneLinkImage, IlvDoubleLinkImage,

Note:

IlvOneSplineLinkImage, and IlvDoubleSplineLinkImage cannot be reshaped.
You should use the class IlvPolylineLinkImage or IlvSplineLinkImage
instead.

U S I N G G R A P H L A Y O U T A L G O R I T H M S188

Connector style

The layout algorithm automatically positions the end points of links (the connector pins) at
the nodes. The connector style parameter specifies how these end points are calculated for
the outgoing links at the parent node.

By default, the connector style determines how the connection points of the links are
distributed on the border of the bounding box of the nodes, symmetrically with respect to
the middle of each side.

Connector styles

To specify the connector style:

In CSS
Add to the GraphLayout section:

connectorStyle: "CLIPPED_PINS";

In Java™
Use the method:

void setConnectorStyle(int style);

The valid values for style are:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 189

♦ IlvTreeLayout.CENTERED_PINS

The end points of the links are placed in the center of the border where the links are
attached.

♦ IlvTreeLayout.CLIPPED_PINS

Each link pointing to the center of the node is clipped at the node border. The connector
pins are placed at the points on the border where the links are clipped. This style affects
straight links. It behaves like centered connector pins for orthogonal links.

♦ IlvTreeLayout.EVENLY_SPACED_PINS

The connector pins are evenly distributed along the node border. This style works for
straight and orthogonal links.

♦ IlvTreeLayout.AUTOMATIC_PINS

The connector style is selected automatically depending on the link style and the layout
mode. In the nonradial modes, the algorithm always chooses centered pins. In the radial
layout modes, it chooses clipped pins.

In CSS, you omit the prefix IlvTreeLayoutwhen specifying the value of the connector style.

The connector style parameter requires link connectors at the nodes of an IlvGrapher
that allow connector pins to be placed freely at the node border. It is recommended

Note:

that you use IlvFreeLinkConnector for link connectors to be used in combination
with IlvGrapher objects. If you use a diagram component, the free link connectors
are automatically installed when needed, unless specified differently.

The connector style, the link connection box interface, and the link clip interface work
together in the following way: by respecting the connector style, the proposed connection
points are calculated on the rectangle obtained from the link connection box interface (or
on the bounding box of the node, if no link connection box interface was specified). Then,
the proposed connection point is passed to the link clip interface and the returned connection
points are used to connect the link to the node.

The following figure shows an example of the combined effect.

Combined effect of link clipping interface and link connection box

U S I N G G R A P H L A Y O U T A L G O R I T H M S190

If the links are clipped at the red node in the previous figure (left), they appear unsymmetrical
with respect to the node shape, because the relevant part of the node (here: the upper
rhombus) is not in the center of the bounding box of the node, but the proposed connection
points are calculated with respect to the bounding box. This can be corrected by using a
link connection box interface to explicitly specify a smaller connection box for the relevant
part of the node (previous figure, right) such that the proposed connection points are placed
symmetrically at the upper rhombus of the node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 191

Using a link connection box interface

Sometimes it may be necessary to place the connection points on a rectangle smaller or
larger than the bounding box, possibly in a nonsymmetric way. For instance, this can happen
when labels are displayed below or above nodes.

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkConnectionBoxInterface. An example for the implementation of a
link connection box interface is in Link connection box. To set a link connection box interface
in Java™ , call:

void setLinkConnectionBoxInterface(IlvLinkConnectionBoxInterface interface)

The link connection box interface provides each node with a link connection box and a
tangential shift offset that defines howmuch the connection points are “shifted” tangentially
depending on which side the links connect.

The following figure illustrates the effects of customizing the connection box when the
connector style is evenly spaced.

Effect of connection box interface

On the left is the result without any connection box interface. The middle picture shows the
effect if the connection box interface returns the dashed rectangle for the blue node but the
tangential offset at all sides of the node is 0. Notice that the outgoing links are spaced
according to the dashed rectangle, which appears too wide for the blue node in this situation.
The picture on the right shows the effect of the connection box interface if, in addition, a
positive tangential offset was specified for the bottom side and a negative offset was specified
for the left side of the blue node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S192

Using a link clipping interface

By default, the Tree Layout places the connection points of links at the border of the bounding
box of the nodes.

If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. The following figure shows an
example.

Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping. To set a link clip interface in Java™ , call:

void setLinkClipInterface(IlvLinkClipInterface interface)

In addition to the link clip interface, you can use the IlvClippingLinkConnector.
This special link connector updates the clipped connection points automatically during
interactive node movements.

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 193

Spacing parameters

The spacing of the layout is controlled mainly by three spacing parameters: the distance
between a parent and its children, the minimum distance between siblings, and the minimum
distance between nodes of different branches. For instance, if the flow direction is to the
top or bottom, the offset between parent and children is vertical, while the sibling offset
and the branch offset are horizontal.

For tip-over alignment, an additional spacing parameter is provided: the minimum distance
between branches starting at a node with tip-over alignment. This offset is always orthogonal
to the normal branch offset. If the flow direction is to the top or bottom, the tip-over branch
offset is vertical.

Spacing parameters

To specify the spacing parameters:

In CSS
Specify in the GraphLayout section:

parentChildOffset: "30.0";

U S I N G G R A P H L A Y O U T A L G O R I T H M S194

siblingOffset: "15.0";
branchOffset: "20.0";
tipOverBranchOffset: "30.0";

In Java
In Java™ , use the methods:

void setParentChildOffset(float offset);

void setSiblingOffset(float offset);

void setBranchOffset(float offset);

void setTipOverBranchOffset(float offset);

For experts: additional spacing parameters
The spacing parameters normally specify the minimal offsets between the node borders.
Hence, the layout algorithm places the nodes such that they do not overlap. You can also
specify that the layout should ignore the node sizes.

In CSS
Add to the GraphLayout section:

respectNodeSizes: "false";

In Java
In Java, call:

layout.setRespectNodeSizes (false);

In this case, the spacing parameters are interpreted as the minimum distances between the
node centers, and the node sides are not taken into account during the layout. However, if
the specified offset parameters are now smaller than the node size, the nodes and links will
overlap. This often happens with orthogonal links in particular. It makes sense to use this
option only if all nodes have approximately the same size, all links are straight, and the
spacing parameters are larger than the largest node.

If the link style is orthogonal, the shape of the links from the parent to its children looks like
a fork (seeDifferent Alignments Mixed in the Same Drawing). The position of the bend points
in this shape can be influenced by the orthogonal fork percentage, a value between 0 and
100. This is a percentage of the parent child offset. If the orthogonal fork percentage is 0,
the link shape forks directly at the parent node. If the percentage is 100, the link shape forks
at the child node. A good choice is between 25 and 75. This percentage can be set.

In CSS
Add a statement such as:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 195

orthForkPercentage: "66.6";

In Java
Use the method:

void setOrthForkPercentage(float percentage);

If the link style is not orthogonal, links may overlap neighboring nodes. This happens only
in a very few cases, for instance, when a link starts at a very small node that is neighbored
by a very large node. This deficiency can be fixed by increasing the branch offset. However,
this influences the layout globally, affecting nodes without that deficiency. To avoid a global
change, you can change the overlap percentage instead, which is a value between 0 and
100. This value is used by an internal heuristic of the layout algorithm that considers a node
to be smaller by this percentage. The default percentage is 30. This usually results in better
usage of the space. However, if very small nodes are neighbored to very large nodes, it is
recommended to decrease the overlap percentage or to set it to 0 to switch this heuristic
off to avoid links overlapping nodes.

To set the overlap percentage: :

In CSS
Add a statement such as:

overlapPercentage: "33.3";

In Java
Use the method:

void setOverlapPercentage(float percentage);

It is recommended that you always set the orthogonal fork percentage to a value larger
than the value of the overlap percentage.

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S196

Effect of using the overlap percentage

U S I N G G R A P H L A Y O U T A L G O R I T H M S 197

U S I N G G R A P H L A Y O U T A L G O R I T H M S198

Level layout mode

Describes how the level layout mode organizes nodes and describes the parameters of this
mode.

In this section

Overview
Describes how the level layout mode organizes nodes.

General parameters
Describes the layout parameters of the level layout mode.

Level alignment
Describes the level alignment parameters of the level layout mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 199

Overview

The level layout mode partitions the node into levels and arranges the levels horizontally or
vertically. The root is placed at level 0, its children at level 1, the children of those children
at level 2, and so on. In contrast to the free layout mode, in level layout mode the nodes of
the same level are justified with each other even if they are not siblings (that is, they do not
have the same parent).

To set the level layout mode:

In CSS
Add to the GraphLayout section:

layoutMode: "LEVEL";

In Java
In Java™ , call:

layout.setLayoutMode(IlvTreeLayout.LEVEL);

The following figure shows the same graph in free layout mode and in level layout mode.

Free layout mode and level layout mode

U S I N G G R A P H L A Y O U T A L G O R I T H M S200

General parameters

Most layout parameters that work for the free layout mode work as well for the level layout
mode. You can set the flow direction, the spacing offsets, the global or individual link style,
and the global or individual alignment. See Free layout mode for details.

The differences from the free layout mode are:

♦ The tip-over alignment does not work in level layout mode.

♦ The parent-child offset parameter controls the spacing between the levels. In level layout
mode, it is the minimum distance between parent and its children, while in free layout
mode, it is the exact distance between parent and its children.

♦ The overlap percentage has no effect in level layout mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 201

Level alignment

In level layout mode with flow direction to the top or bottom, the nodes are organized in
horizontal levels such that the nodes of the same level are placed approximately at the same
y-coordinate. The nodes can be justified, depending on whether the top border, the bottom
border, or the center of all nodes of the same level should have the same y-coordinate.

In flow direction to the left or right, the nodes are organized in vertical levels approximately
at the same x-coordinate. The nodes of the same level can be justified at the left border, at
the right border, or at the center.

To distinguish the level alignment independently from the flow direction, the directions
north and south are used (see Using compass directions for positional layout parameters
(TL)). The north border of a node is the border that is closer to the level where its parent is
placed, and the south border of a node is the border that is closer to the level where its
children are placed. If the flow direction is to the bottom, the level alignment north means
that the nodes are justified at the top border, and south means that the nodes are justified
at the bottom border. If the flow direction is to the top, north and south are inverted: north
means the bottom border and south means the top border. If the flow direction is to the
right, then north means the left border and south means the right border.

Level Alignment

To specify the level alignment:

In CSS
Add to the GraphLayout section:

levelAlignment: "NORTH";

In Java
In Java™ , use the method:

void setLevelAlignment(int alignment);

The valid values for alignment are:

♦ IlvTreeLayout.CENTER (the default)

♦ IlvTreeLayout.NORTH

♦ IlvTreeLayout.SOUTH

U S I N G G R A P H L A Y O U T A L G O R I T H M S202

In CSS, you omit the prefix IlvTreeLayoutwhen specifying the value of the level alignment.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 203

U S I N G G R A P H L A Y O U T A L G O R I T H M S204

Radial layout mode

Describes how the radial layout mode organizes nodes and describes the parameters of this
mode.

In this section

Overview
Describes how the radial layout mode organizes nodes.

General parameters
Describes the layout parameters of the radial layout mode.

Alternating radial mode
Describes how the alternating radial mode organizes nodes and describes the parameters
of this mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 205

Overview

The radial layout mode partitions the node into levels and arranges the levels in circles
around the root node. Radial layout mode shows an example of the radial layout mode. The
compass icons show the compass directions in this drawing.

Radial layout mode

To set the radial layout mode:

In CSS
Specify in the GraphLayout section:

layoutMode: "RADIAL";

In Java
In Java™ , call:

layout.setLayoutMode(IlvTreeLayout.RADIAL);

U S I N G G R A P H L A Y O U T A L G O R I T H M S206

General parameters

Most layout parameters that work for the free and level layout mode work as well for the
radial layout mode. You can set the spacing offsets, the level alignment, the global or
individual link style, and the global or individual alignment. See Free layout mode and Level
layout mode for details.

The radial layout mode differs from the other layout modes as follows:

♦ The tip-over alignment does not work in radial layout mode.

♦ The orthogonal link style does not work in radial layout mode.

♦ The clipped connector style is always used.

♦ The parent-child offset parameter controls the minimal distance between the circular
levels. However, it is sometimes necessary to increase the offset between circular levels
to obtain enough space on the circle to place all nodes of a level.

♦ The level alignment north indicates alignment at the inner border of the circular level
(that is, towards the root), and the level alignment south indicates alignment at the outer
border of the circular level (that is, away from the root).

♦ The level alignments north and south sometimes result in overlapping nodes.

♦ The overlap percentage has no effect in radial layout mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 207

U S I N G G R A P H L A Y O U T A L G O R I T H M S208

Alternating radial mode

Describes how the alternating radial mode organizes nodes and describes the parameters
of this mode.

In this section

Overview
Describes how the alternating radial mode organizes nodes.

Aspect ratio
Describes the aspect ratio parameter of the alternating radial mode.

Spacing parameters
Describes the spacing parameters of the radial modes.

Tips and tricks
Describes some tips and tricks for expert users.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 209

Overview

If levels of the graph contain many nodes, it is sometimes necessary to increase the radius
of the circular level to provide enough space on the circumference of the circle for all the
nodes. This may result in a considerable distance from the previous level. To avoid this,
there is an alternating radial mode. The alternating radial mode places the nodes of a level
alternating between two circles instead of one circle, resulting in better use of the space of
the layout.

The alternating radial mode uses two circles only when necessary. For many small and light
trees, there will be no difference from the normal radial mode. Only for large graphs with
a large number of children will the alternating radial mode have an effect.

To set the alternating radial layout mode:

In CSS
Specify in the GraphLayout section:

layoutMode: "ALTERNATING_RADIAL";

In Java
In Java™ , call:

layout.setLayoutMode(IlvTreeLayout.ALTERNATING_RADIAL);

Radial layout mode (right) and alternating radial layout mode (left)

U S I N G G R A P H L A Y O U T A L G O R I T H M S210

Aspect ratio

If the drawing area is not a square, arranging the levels as circles is not always the best
choice. You can specify the aspect ratio of the drawing area to better fit the layout to the
drawing area. In this case, the algorithm uses ellipses instead of circles. See Tree layout in
radial layout mode with aspect ratio 1.5 for an example.

To specify the aspect ratio:

In CSS
Add this, for instance, to the GraphLayout section:

aspectRatio: "0.7";

In Java
In Java™, there are several possibilities.

If the drawing area is a view (a subclass of IlvManagerView), you can use the method:

void setAspectRatio(IlvManagerView view);

If the drawing area is given only as a rectangle, use the following:

void setAspectRatio(IlvRect rect);

If neither a view nor a rectangle is specified, you can calculate the aspect ratio from the
width and height of the drawing area as aspectRatio = width/height and use the method:

void setAspectRatio(float aspectRatio);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 211

Spacing parameters

The spacing parameters of the radial layout modes are controlled by the same CSS statements
and methods as used for the free and level layout modes:

void setParentChildOffset(float offset);

void setSiblingOffset(float offset);

void setBranchOffset(float offset);

Note that the sibling and branch offsets are minimum distances tangential to the circles or
ellipses, while the parent-child offset is a minimum distance radial to the circles or ellipses.

The following figure shows the spacing parameters in radial layout mode.

Spacing parameters in radial layout mode

U S I N G G R A P H L A Y O U T A L G O R I T H M S212

Tips and tricks

Adding an invisible root to the layout
If the graph contains several trees that are disconnected from each other, the layout places
them individually next to each other. Each connected component has its own radial structure
with circular layers. However, sometimes it is appropriate to fit all connected components
into a single circular layer structure. Conceptually, this is done by adding an invisible root
at the center and connecting all disconnected trees to this root. Layout of connected
components without and with an invisible root shows the effect of using an invisible root.
This works only if the generic mechanism to lay out connected components is switched off.

To add an invisible root to the layout:

In CSS
Specify:

layoutOfConnectedComponentsEnabled: "false";
invisibleRootUsed: "true";

In
Call:

layout.setLayoutOfConnectedComponentsEnabled(false);
layout.setInvisibleRootUsed(true);

Layout of connected components without and with an invisible root

Even spacing for the first circle
The radial mode is designed to optimize the space such that the circles have a small radius
and the overall space for the entire layout is small. To achieve this, the layout algorithm

U S I N G G R A P H L A Y O U T A L G O R I T H M S 213

may create larger gaps on the inner circles for better space usage of the outer circles. This
may produce unevenly spaced circles, most notably for the first circle where all nodes have
the same parent node.

To avoid this effect, you can force the nodes to be evenly spaced on the entire first circle.
Depending on the structure of the graph, this may cause the overall layout to waste more
space on the other circles but may produce a more pleasing graph.

To enable even spacing:

In CSS
Specify:

firstCircleEvenlySpacing: "true";

In Java
In Java™ , call:

layout.setFirstCircleEvenlySpacing (true);

Evenly and Unevenly Spaced First Circle

For experts: forcing all levels to alternating
When the layoutmode ALTERNATING_RADIAL is used, the layout checks whether the alternating
node arrangement of a level saves space. If that does not save space, it uses the normal
radial arrangement. Hence, for many sparse graphs, radial and alternating radial mode yield
the same result because the alternating arrangement does not save space for any level. It
is possible to disable the space check, that is, to perform an alternating arrangement for all
levels even if this results in waste of space.

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S214

allLevelsAlternating: "true";

In Java
Call:

layout.setAllLevelsAlternating(true);

For experts: setting a maximum children angle
If a node has a lot of children, they may extend over a major portion of the circle and,
therefore, are placed nearly 360 degrees around the node. This can result in links overlapping
some nodes. The deficiency can be fixed by increasing the offset between parent and children.
However, this affects the layout globally which means that nodes without the deficiency are
also affected.To avoid a global change such as this, you can limit the maximum angle between
the two rays from the parent (if it is not the root) to its two outermost children. This increases
the offset between parent and children only where necessary.

In Maximum Children Angle, you can see in the layout on the left that many of the links
overlap other nodes. In the layout on the right, you can see how this problem was solved by
setting a maximum children angle between two rays from a parent to the two outermost
children.

Maximum Children Angle

To set an angle in degrees:

In CSS
Specify:

maxChildrenAngle: "90";

In Java
Use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 215

void setMaxChildrenAngle(int angle);

Recommended values are between 30 and 180. Setting the value to 0 means the angle is
unrestricted. The calculation of the angle is not very precise above 180 degrees or if the
aspect ratio is not 1.0.

U S I N G G R A P H L A Y O U T A L G O R I T H M S216

Tip-over layout modes

Drawing in radial layout mode and free layout mode can be adjusted according to the aspect
ratio of the drawing area. To balance the height and depth of the drawing, free layout mode
can also use tip-over alignment.

Tip-over alignment can be specified explicitly for individual nodes; the Tree Layout algorithm
also has layout modes that automatically use tip-over alignment when needed. These are
the tip-over layout modes.

The tip-over layout modes work as follows: Several trial layouts are performed in free layout
mode. For each trial, tip-over alignment is set for certain individual nodes, while the specified
alignment of all other nodes is preserved. The algorithm picks the trial layout that best fits
the specified aspect ratio of the drawing area.

The aspect ratio can be set in CSS and in Java, by one of the methods (see Aspect ratio in
the Radial Layout Mode):

void setAspectRatio(IlvRect rect);

void setAspectRatio(float aspectRatio);

The tip-over modes are slightly more time-consuming than the other layout modes. For very
large trees, it is recommended that you set the allowed layout time to a high value (for
instance, 60 seconds) when using the tip-over modes.

To set this mode:

In CSS
Add to the GraphLayout section:

allowedTime: "60000";

In Java
Call:

layout.setAllowedTime(60000);

By using this call, you avoid running short of time for sufficient iterations of the layout
algorithm. Because it would be too time-consuming to check all possibilities of tip-over
alignment use, there are heuristics that check only certain trials according to the following
different strategies, illustrated in the following figure.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 217

Tip-over strategies

♦ Tip leaves over

♦ Tip roots over

♦ Tip roots and leaves over

♦ Tip over fast

Tip leaves over
To use this tip-over strategy, set the layout mode as follows:

In CSS
Add in the GraphLayout section:

layoutMode: "TIP_LEAVES_OVER";

In Java

layout.setLayoutMode(IlvTreeLayout.TIP_LEAVES_OVER);

The heuristic first tries the layout without any additional tip-over options. Then it tries to
tip over the leaves, then the leaves and their parents, then additionally the parents of these
parents, and so on. As a result, the nodes closest to the root use normal alignment and the
nodes closest to the leaves use tip-over alignment.

U S I N G G R A P H L A Y O U T A L G O R I T H M S218

Tip roots over
To use this tip-over strategy, set the layout mode as follows:

In CSS
Add in the GraphLayout section:

layoutMode: "TIP_ROOTS_OVER";

In Java

layout.setLayoutMode(IlvTreeLayout.TIP_ROOTS_OVER);

The heuristic first tries the layout without any additional tip-over options. Then it tries to
tip over the root node, then the root and its children, then additionally the children of these
children, and so on. As a result, the nodes closer to the leaves use normal alignment and
the nodes closer to the root use tip-over alignment.

Tip roots and leaves over
To use this tip-over strategy, set the layout mode as follows:

In CSS
Add in the GraphLayout section:

layoutMode: "TIP_ROOTS_AND_LEAVES_OVER";

In Java

layout.setLayoutMode(IlvTreeLayout.TIP_ROOTS_AND_LEAVES_OVER);

The heuristic first tries the layout without any additional tip-over options. Then it tries to
tip over the root node and the leaves simultaneously; then the root and its children, and the
leaves and its parent; then additionally the children of these children and the parents of
these parents, and so on. As result, the nodes in the middle of the tree use normal alignment
and the nodes closest to the root or leaves use the tip-over alignment.

This is the slowest strategy because it includes all trials of the strategy “tip leaves over” as
well as all tries of the strategy “tip roots over.”

Tip over fast
The fast tip-over provides a compromise among all other strategies. The heuristic tries a
small selection of the other strategies, not all possibilities. Therefore, it is the fastest strategy
for large graphs.

To use this strategy, set the layout mode as follows:

In CSS
Add in the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 219

layoutMode: "TIP_OVER";

In Java

layout.setLayoutMode(IlvTreeLayout.TIP_OVER);

It is possible that all four strategies yield the same result because the strategies are not
disjoint; that is, certain trials are performed in all four strategies. In addition, the tip-over
modes do not necessarily produce the optimal layout that gives the best possible fit to the
aspect ratio. The reason is that some unusual configurations of tip-over alignment are never
tried because doing so would cause the running time to be too high.

U S I N G G R A P H L A Y O U T A L G O R I T H M S220

Recursive mode

JViews Diagrammer supports nested graphs, that is, it can render graphs containing nodes
that are graphs. A graph that is a node in another graph is called a subgraph. Links that
connect nodes of different subgraphs are called intergraph links. In Leaf recursive tree, all
red links are intergraph links and all black links are normal links. This is explained in detail
in Nested layouts.

The tree layout can treat a nested graph in specific situation at once and route the intergraph
links as well as the normal links that belong to the tree. It can handle a leaf-recursive tree
at once. A leaf recursive tree has the following properties:

♦ it is a tree

♦ only leaf nodes of the tree can contain nested graphs

♦ the root node of the tree nested in a leaf node is connected by a link to the parent node
of the leaf

Leaf recursive tree

Non leaf recursive tree

This graph is not a leaf recursive tree: the subgraphs are not nested in the leafs of the tree.
The graph cannot be handled by the tree layout in recursive mode, but it can be handled by

U S I N G G R A P H L A Y O U T A L G O R I T H M S 221

the hierarchical layout in recursive mode. If the graph is a leaf recursive tree and the layout
mode is not the radial layout mode, the tree layout can handle the nested graph at once.

To enable the recursive mode:

In CSS
Specify in the GraphLayout section:

recursiveLeafLayoutMode: "true";

In Java
In Java™ , use the method:

void setRecursiveLeafLayoutMode(boolean enable);

and call performLayout with the third parameter set to true as follows:

layout.performLayout(force, redraw, true);

The recursive leaf layout mode requires that all subtrees are laid out in the same style (for
instance, they must all use the same flow direction). This is automatically the case when
calling layout.performLayout(force, redraw, true), and it is also the case when using
CSS without specifying individual graph layouts per subgraph. If different layout styles are
needed per subgraph, you must specify an individual layout per subgraph as described in
Individual layout styles per subgraph and in Advanced recursion: mixing different layouts
in a nested graph and in this case the recursive leaf layout mode cannot be used.

Setting layout parameters in recursive leaf layout mode by Java
code
When you use CSS, the layout parameters are specified in CSS as usual, and the SDM engine
handles the internal details automatically. However, if you want to specify layout parameters
by code, note that in recursive leaf layout mode the tree layout is attached to the top level
graph. Global layout parameters must be set on this layout instance. Layout parameters per
node or per link must be set in the following way:

// link is directly contained in subgraph
IlvTreeLayout sublayout =

(IlvTreeLayout)topLevelLayout.getRecursiveLayout().getLayout(subgraph);

sublayout.setLinkStyle(link, IlvTreeLayout.ORTHOGONAL_STYLE);

This means that layout parameters per nodes and per links cannot be set on the top level
layout, but on a sublayout retrieved via the IlvRecursiveLayout from the top level layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S222

For experts: additional tips for the TL

The tips and trick are relevant when accessing the layout instance directly in Java.

Most of the tips cannot be used when specifying CSS alone.

Specifying east-west neighbors
You can specify that two unrelated nodes must be direct neighbors in a direction
perpendicular to the flow direction. In the level and radial layout modes, the nodes are
placed in the same level next to each other. In the free layout and tip-over modes, the nodes
are placed aligned at the north border. Such nodes are called east-west neighbors because
one node is placed as the direct neighbor on the east side of the other node. The other node
becomes the direct neighbor on the west side of the first node. (See also Using compass
directions for positional layout parameters (TL)).

Technically, the nodes are treated as parent and child, even if there may be no link between
them. Therefore, one of the two nodes can have a real parent, but the other node should not
because its virtual parent is its east-west neighbor.

The east-west neighbor feature can be used, for example, for annotating nodes in a typed
syntax tree occurring in compiler construction. Annotated Syntax Tree of Statement a[25]
= b[24] + 0.5; shows an example of such a tree.

Annotated Syntax Tree of Statement a[25] = b[24] + 0.5;

To specify that two nodes are east-west neighbors, use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 223

void setEastWestNeighboring(Object eastNode, Object westNode);

You can also use the following method, which is identical except for the reversed parameter
order:

void setWestEastNeighboring(Object westNode, Object eastNode);

If the flow direction is to the bottom, the latter method may be easier to remember because,
in this case, west is to the left of east in the layout, which is similar to the text flow of the
parameters.

To obtain the node that is the east or west neighbor of a node, use the calls:

Object getEastNeighbor(Object node);

Object getWestNeighbor(Object node);

Note that each node can have at most one east neighbor and one west neighbor because
they are direct neighbors. If more than one direct neighbor is specified, it is partially ignored.
Cyclic specifications can cause conflict as well. For instance, if node B is the east neighbor
of node A and node C is the east neighbor of B, then node A cannot be the east neighbor of
C. (Strictly speaking, such cycles could be technically possible in some situations in the
radial layout mode, but nonetheless they are not allowed in any layout mode.)

If B is the east neighbor of A, then A is automatically the west neighbor of B. On the other
hand, the east neighbor of A can itself have another east neighbor. This allows the creation
of chains of east-west neighbors, which is a common way to visualize lists of trees. Two
examples are shown in Chains of east-west neighbors to visualize lists of trees.

Chains of east-west neighbors to visualize lists of trees

Retrieving link categories
The Tree Layout algorithm works on a spanning tree, as mentioned in a The TL algorithm.
If the graph to be laid out is not a pure tree, the algorithm ignores some links. To treat such
links in a special way, you can obtain a list of nontree links.

Because there are parents and children in the spanning tree, the following link categories
must be distinguished:

♦ A forward tree link is a link from a parent to its child.

U S I N G G R A P H L A Y O U T A L G O R I T H M S224

♦ A backward tree link is a link from a child to its parent. If the link is drawn as a directed
arrow, the arrow will point in the opposite direction to the flow direction.

♦ A nontree link is a link between two unrelated nodes; neither one is a child of the other.

Link categories

The layout algorithm uses these link categories internally but does not store them
permanently to save time and ensure memory efficiency. If you want to treat some link
categories in a special way (for example, to call the Link Layout on the nontree links), you
must specify before the layout that you want to access the link categories after the layout.
To do this, use the method setCategorizingLinks(boolean) in the following way:

layout.setCategorizingLinks(true);
// now perform a layout
layout.performLayout();
// now you can access the link categories

After the layout, the link categories can be obtained by the methods:

getCalcForwardTreeLinks()

getCalcBackwardTreeLinks()

getCalcNonTreeLinks()

The link category data gets filled each time the layout is called, unless you set the method
setCategorizingLinks(boolean) back to false.

Sequences of layouts with incremental changes
You can work with trees that have become out-of-date, for example, those that need to be
extended with more children. If you perform a layout after an extension, you probably want
to identify the parts that had already been laid out in the original graph. The Tree Layout
algorithm supports these incremental changes in incremental mode because it takes the
previous positions of the nodes into account. It preserves the relative order of the children
in the subsequent layout.

In nonincremental mode, the Tree Layout algorithm calculates the order of the children
from the node order given by the attached graph model (or grapher). In this case, the layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S 225

is independent from the positions of the nodes before layout. It does not preserve the relative
order of the children in subsequent layouts.

The incremental mode is enabled by default.

To disable the incremental mode:

In CSS
Add to the GraphLayout section:

incrementalMode: "false";

In Java
Call:

layout.setIncrementalMode (false);

Interactive editing
The fact that the relative order of the layout is preserved is particularly useful during
interactive editing. It allows you to correct the layout easily. For instance, if the first layout
places a node A left to its sibling node B but you need to reverse the order, you can simply
move node A to the right of node B and start a new layout to clean up the drawing. In the
second layout, A remains to the right of B, and the subtree of A will “follow” node A.

Interactive Editing to Achieve a Specific Order of Children

Specifying the order of children
Some applications require a specific relative order of the children in the tree. This means
that, for instance, when the flow direction is to the bottom, which child must be placed to
the left of another child. Even if the graph has never been laid out, you can use the
coordinates to specify a certain order of the children at a node. You can use the following:

♦ First, make sure that the incremental mode is enabled.

♦ In free and level layout modes with flow direction to the bottom or top, determine the
maximal width W of all nodes. Simply move the child that should be in the leftmost position

U S I N G G R A P H L A Y O U T A L G O R I T H M S226

to the coordinate (0, 0), and the child that should get the ith relative position (in order
from left to right) to the coordinate ((W+1)*i, 0).

♦ If the flow direction is to the left or to the right, determine the maximal height H of all
nodes. Move the child that should be in the topmost position to the coordinate (0, 0) and
the child that should get the ith relative position (in the order from top to bottom) to
coordinate (0, (H+1)*i).

♦ In the radial layout modes, determine the maximal diagonal D = W2 + H of all nodes. If
the position of the parent is (x, y) before the layout, move the child that should be the
first in the circular order to the coordinate (x, y+D) and the child that should get the ith
relative position in the circular order to coordinate (x+D*i, y+D).

If you want to specify a relative order for all nodes in radial layout mode, you must do
this for the parents before you do it for the children. In this case, moving the children
can be performed easily during a depth-first traversal from the root to the leaves.

The layout that is performed after moving the children arranges the children with the relative
order.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 227

U S I N G G R A P H L A Y O U T A L G O R I T H M S228

Hierarchical Layout (HL)

Describes theHierarchical Layout algorithm (class IlvHierarchicalLayout from the package
ilog.views.graphlayout.hierarchical).

In this section

General information on the HL
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the HL
Lists the features and limitations of the Hierarchical Layout (HL).

The HL algorithm
Gives an explanation of the Hierarchical Layout (HL) algorithm and a sample.

Generic features and parameters of the HL
Lists the generic features and parameters of the Hierarchical Layout (HL).

Specific parameters of the HL
Describes the specific parameters supported by HL (the IlvHierarchicalLayout class)
and gives samples of their use.

Incremental mode with HL
Describes how to apply hierarchical layouts sequentially to the same graph.

Layout constraints for HL
Describes the constraints on the relative positions of nodes available with the Hierarchical
Layout (HL).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 229

Specifying constraints in CSS for HL
Describes how to specify constraints in CSS in a style sheet.

Adding and removing constraints in Java for HL
Describes how to specify constraints in Java™ .

Level range constraints (HL)
Explains how modes are partitioned into levels and how to set constraints at a specific level.

Level index parameter (HL)
Describes how to force a node to a particular level with the level index parameter constraint.

Same level constraints (HL)
Describes how to force several nodes to be at the same level.

Group spread constraints (HL)
Describes how to force a group of nodes to the same level.

Relative level constraints (HL)
Describes how to force a node into a higher level than another node.

Position index parameter (HL)
Describes how to use the position index parameter.

Relative position constraints (HL)
Describes how to use relative position constraints.

Side-by-side constraints (HL)
Describes how to use side-by-side constraints.

Extremity constraints (HL)
Describes how to use extremity constraints.

Swim lane constraints (HL)
Describes how to use swim lane constraints.

Summary of constraints file as opposed to constraints in Java (HL)
Gives a summary of how to specify constraints.

Constraint priorities (HL)
Discusses constraint priorities.

For experts: constraint validation (HL)
Discusses how validation is done during layout and how to force it if necessary.

For experts: specifying constraints in CSS directly (HL)
Describes when a CSS file can be used.

U S I N G G R A P H L A Y O U T A L G O R I T H M S230

For experts: more indices (HL)
Describes how to specify level and position indices or retrieve calculated indices.

Recursive layout
Explains the recursive mode supported by the hierarchical layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 231

General information on the HL

HL samples
Here are some sample drawings produced with the Hierarchical Layout:

Sample layout with self-loops, multiple links, and cycles

U S I N G G R A P H L A Y O U T A L G O R I T H M S232

Flowchart with orthogonal link style

U S I N G G R A P H L A Y O U T A L G O R I T H M S 233

Sample layout with ports and orthogonal link style

Sample layout of nested graph in recursive layout mode

What types of graphs suit the HL?
Any type of graph:

♦ Preferably graphs with directed links. A directed link has a direction from source node
to target node and is usually drawn with an arrow. The algorithm takes the link directions
into account..

♦ connected graphs and disconnected graphs

U S I N G G R A P H L A Y O U T A L G O R I T H M S234

♦ planar graphs and nonplanar graphs

♦ nested graphs with intergraph links

Application domains for the HL
Application domains for the Hierarchical Layout include:

♦ Electrical engineering (logic diagrams, circuit block diagrams)

♦ Industrial engineering (industrial process diagrams, schematic design diagrams)

♦ Business processing (workflow diagrams, process flow diagrams, PERT charts)

♦ Software management/software (re-)engineering (UML diagrams, flowcharts, data
inspector diagrams, call graphs)

♦ Database and knowledge engineering (database query graphs)

♦ CASE tools (designs diagrams)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 235

Features and limitations of the HL

Features

♦ Organizes nodes without overlaps in horizontal or vertical levels.

♦ Arranges the graph such that the majority of links are short and flow uniformly in the
same direction (from left to right, from top to bottom, and so on).

♦ Reduces the number of link crossings. Most of the time, produces drawings with no
crossings or only a small number of crossings.

♦ Often produces balanced drawings that emphasize the symmetries in the graph.

♦ Supports self-links (that is, links with the same origin and destination node), multiple
links between the same pair of nodes, and cycles.

♦ Efficient, scalable algorithm. Produces a nice layout for most sparse and medium-dense
graphs relatively quickly, even if the number of nodes is very large.

♦ Provides several alignment and offset options.

♦ Supports port specifications where links attach the nodes. Allows you to specify which
side of a node (top, bottom, left, right) a link can be connected to or to specify which
relative port position should be used for the connection.

♦ Supports layout constraints. Allows you to specify relative positional constraints, for
instance, that a node is above another node or left of another node.

♦ Incremental and nonincremental mode. In incremental mode, the previous position of
nodes are taken into account. Positions the nodes without changing the relative order of
the nodes so that the layout is stable on incremental changes of the graph.

♦ Can handle flat and nested graphs. In recursive layout mode, it routes the intergraph
links of nested graphs and places the labels of nodes and links in subgraphs.

♦ The computation time depends on the number of nodes, the number of levels, and the
number of links that cross several levels. Most of the time, the links are placed between
adjacent levels, which keeps the computation time small.

Limitations

♦ The algorithm tries to minimize the number of link crossings (which is generally an
NP-complete problem). It is mathematically impossible to solve this problem quickly for
any graph size. Therefore, the algorithm uses a very fast heuristic that obtains a good
layout, but not always with the theoretical minimum number of link crossings.

♦ The algorithm tries to place the nodes such that all links point uniformly in the same
direction. It is impossible to place cycles of links in this way. For this reason, it sometimes
produces a graph where a small number of links are reversed to point into the opposite
direction. The algorithm tries to minimize the number of reversed links (which, again, is
an NP-complete problem). Therefore, the algorithm uses a very fast heuristic resulting
in a good layout, but not always with the theoretical minimum number of reversed links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S236

♦ The computation time required to obtain an appropriate drawing depends most
significantly on the number of bends in the links. Since the algorithm places one bend
whenever a link crosses a level, the number of bends can grow relatively quickly if the
layout requires many long links that span several levels. Therefore, the layout process
may become very time-consuming for dense graphs (the number of links is relatively high
compared to the number of nodes) or for graphs that require a large number of node
levels.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 237

The HL algorithm

A brief description of the HL algorithm
This algorithm works in four steps:

Step 1: Leveling
The nodes are partitioned into groups. Each group of nodes forms a level. The objective
is to group the nodes in such a way that the links always point from a level with smaller
index to a level with larger index.

Step 2: Crossing reduction
The nodes are sorted within each level. The algorithm tries to keep the number of link
crossings small when, for each level, the nodes are placed in this order on a line (see
Level and position indices). This ordering results in the relative position index of each
node within its level.

Step 3: Node positioning
From the level indices and position indices, balanced coordinates for the nodes are
calculated. For instance, for a layout where the link flow is from top to bottom, the nodes
are placed along horizontal lines such that all nodes belonging to the same level have
(approximately) the same y-coordinate. The nodes of a level with a smaller index have
a smaller y-coordinate than the nodes of a level with a higher index. Within a level, the
nodes with a smaller position index have a smaller x-coordinate than the nodes with a
higher position index.

Step 4: Link routing
The shapes of the links are calculated such that the links bypass the nodes at the level
lines. In many cases, this requires that a bend point be created whenever a link needs
to cross a level line. In a top-to-bottom layout, these bend points have the same
y-coordinate as the level line they cross. (Note that these bend points also obtain a
position index).

Level and position indices shows how the Hierarchical Layout algorithm uses the level and
position indices to draw the graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S238

Level and position indices

You can set parameters for the steps of the layout algorithm in several ways. For instance,
you can specify the level index that the algorithm should choose for a node in Step 1 or the
relative node position within the level in Step 2. You can also specify the justification of the
nodes within a level and the style of the link shapes.

Example of HL
In CSS
The following example is a specification that uses the Hierarchical Layout algorithm. Since
the Hierarchical Layout places nodes and links, it is usually not necessary to specify an
additional link layout in CSS.

The specification can be loaded as a style file into an application that uses the IlvDiagrammer
class (see Graph Layout in IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 239

GraphLayout {
enabled : "true";
graphLayout : "Hierarchical";
flowDirection : "Bottom";
globalLinkStyle : "POLYLINE_STYLE";
connectorStyle : "CLIPPED_PINS";
horizontalNodeOffset: "20";
verticalNodeOffset : "20";

}

In some situations, a separate link layout renderer may be required:

♦ if the links must be rerouted during interactions, for example, when nodes are moved
manually;

♦ if the graph contains nested subgraphs, because the Hierarchical Layout does not handle
intergraph links.

In these cases, it is recommended to use the “hierarchical link layout”. The hierarchical link
layout is not a separate layout algorithm. It is merely the feature of the link layout renderer
to reuse the Hierarchical Layout as a link layout. The following CSS sample specifies the
Hierarchical Layout algorithm as node and link layout renderer:

SDM {
GraphLayout : "true";
LinkLayout : "true";

}

GraphLayout {
enabled : "true";
graphLayout : "Hierarchical";
flowDirection : "Bottom";
globalLinkStyle : "ORTHOGONAL_STYLE";
connectorStyle : "EVENLY_SPACED_PINS";

}

LinkLayout {
hierarchical: "true";

}

It is also possible to use the standard link layout (class IlvLinkLayout) in the link layout
renderer (the hierarchical parameter is set to "false"). However in this case, the link
layout determines the shapes of the links. The explanations pertaining to the shape of the
links in Hierarchical Layout are valid only if the link layout is disabled.

In Java
In Java™ , below is a code sample that uses the IlvHierarchicalLayout class. This code
sample shows how to perform a Hierarchical Layout on a grapher directly without using a
diagram component or any style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;

U S I N G G R A P H L A Y O U T A L G O R I T H M S240

import ilog.views.graphlayout.hierarchical.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.attach(grapher);
try {

IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 241

Generic features and parameters of the HL

Overview of generic features
The IlvHierarchicalLayout class supports the following generic features defined in the
IlvGraphLayout class (see Base class parameters and features):

♦ Allowed time (HL)

♦ Layout of connected components (HL)

♦ Link clipping (HL)

♦ Link connection box (HL)

♦ Spline routing (HL)

♦ Percentage of completion calculation (HL)

♦ Preserve fixed links (HL)

♦ Preserve fixed nodes (HL)

♦ Stop immediately (HL)

♦ Save parameters to named properties (HL)

The following paragraphs describe the particular way in which these parameters are used
by this subclass.

Allowed time (HL)
The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed time.) If the layout stops early
because the allowed time has elapsed, the nodes and links are not moved from their positions
before the layout call and the result code in the layout report is IlvGraphLayoutReport.
STOPPED_AND_INVALID.

Layout of connected components (HL)
The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components.) When
using this mechanism, each component is laid out in its own individual level structure. Nodes
of the first level of one component may be placed at a different position than nodes of the
first level of another component.

The generic mechanism to layout connected components is, however, switched off by default.
In this case, the layout algorithm can still handle disconnected graphs. It merges all
components into a global level structure.

U S I N G G R A P H L A Y O U T A L G O R I T H M S242

Link clipping (HL)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
(HL) for details of the link clipping mechanism.

Link connection box (HL)
The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link connection box interface (HL).

Spline routing (HL)
The layout algorithm supports the generic spline routing mechanism (see Spline routing).
If the style of a link is polyline or orthogonal and the link is a spline, it is routed by the
generic spline routing mechanism when it is enabled.

Percentage of completion calculation (HL)
The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of the layout. (For a detailed description of
this features, see Percentage of completion calculation and Graph layout event listeners.)

Preserve fixed links (HL)
The layout algorithm does not reshape the links that are specified as fixed. In fact, fixed
links are completely ignored. (For more information on link parameters in the IlvGraphLayout
class, see Preserve fixed links and Link style.)

Preserve fixed nodes (HL)
The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the IlvGraphLayout class, see Preserve fixed nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in unwanted overlapping nodes
and link crossings. However, this feature is useful for individual, disconnected components
that can be laid out independently.

Save parameters to named properties (HL)
The layout algorithm is able to save its layout parameters into named properties. This can
be used to save layout parameters to .ivl files. (For a detailed description of this feature,
see Save parameters to named properties and Saving layout parameters and preferred
layouts).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 243

Stop immediately (HL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the nodes and links are not moved
from their positions before the layout call and the result code in the layout report is
IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S244

Specific parameters of the HL

Flow direction (HL)
The flow direction parameter specifies the direction in which the majority of the links should
point. If the flow direction is to the top or to the bottom, the node levels are oriented
horizontally and the links mostly vertically. If the flow direction is to the left or to the right,
the node levels are oriented vertically and the links mostly horizontally.

If the flow direction is to the bottom, the nodes of the level with index 0 are placed at the
top border of the drawing. The nodes with level index 0 are usually the root nodes of the
drawing (that is, the nodes without incoming links). If the flow direction is to the top, the
nodes with level index 0 are placed at the bottom border of the drawing. If the flow direction
is to the right, the nodes are placed at the left border of the drawing.

Flow directions

To specify the flow direction towards the bottom:

In CSS
Add to the GraphLayout section:

flowDirection: "Bottom";

In Java
In Java, use the method:

void setFlowDirection(int direction)

The valid values for the flow direction are:

♦ IlvDirection.Right (the default)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 245

♦ IlvDirection.Left

♦ IlvDirection.Bottom

♦ IlvDirection.Top

In CSS, you omit the prefix IlvDirection when specifying the value of the flow direction.

Leveling strategy (HL)
The layout algorithm partitions the nodes into levels (see A brief description of the HL
algorithm). The leveling strategy specifies how the levels are calculated. Besides the leveling
strategy, layout constraints (see Layout constraints for HL), level indices (see For experts:
more indices (HL)) as well as the incremental mode (see Incremental mode with HL) also
affect the way the levels are calculated. If the incremental mode is disabled, the leveling
strategy determines the levels of all nodes that are not subject to layout constraints and
level index specifications.

Leveling strategies

To specify the leveling strategy:

In CSS
Add to the GraphLayout section:

levelingStrategy: "OPTIMAL";

In Java
In Java™ , use the method:

void setLevelingStrategy(int strategy)

The valid values for the leveling strategy are:

♦ IlvHierarchicalLayout.SEMI_OPTIMAL (the default)

This produces often the same result as the optimal strategy, but it is quicker. The layout
algorithm uses a heuristic to minimize the sum of level distances for all edges. It pulls

U S I N G G R A P H L A Y O U T A L G O R I T H M S246

root nodes to the highest-numbered possible level and leaf nodes to the lowest-numbered
possible level.

♦ IlvHierarchicalLayout.OPTIMAL

This uses an algorithm that minimizes the sum of level distances for all edges. The optimal
strategy is slower than the other strategies, but often produces the best result.

♦ IlvHierarchicalLayout.HIGHER_LEVELS

Nodes have a tendency to use the possible level with the highest level number. All leaf
nodes will be at the higest-numbered level. All root nodes are pulled to high-numbered
levels as much as possible.

♦ IlvHierarchicalLayout.LOWER_LEVELS

Nodes have a tendency to use the possible level with the lowest level number. All root
nodes will be at level 0. All leaf nodes are pulled to low-numbered levels as much as
possible.

♦ IlvHierarchicalLayout.SPREAD_OUT

This is a combination of the lower-level and higher-level strategies. All root nodes will be
at level 0. All leaf nodes will be at the higest-numbered level. All inner nodes are at
balanced positions.

In CSS, you omit the prefix IlvHierarchicalLayoutwhen specifying the value of the leveling
strategy.

Level justification (HL)
If the layout uses horizontal levels, the nodes of the same level are placed approximately at
the same y-coordinate. The nodes can be justified, depending on whether the top border,
or the bottom border, or the center of all nodes of the same level should have the same
y-coordinate.

If the layout uses vertical levels, the nodes of the same level are placed approximately at
the same x-coordinate. In this case, the nodes can be justified to be aligned at the left border,
at the right border, or at the center of the nodes that belong to the same level.

To specify the level justification towards the top:

In CSS
Add to the GraphLayout section:

levelJustification: "Top";

In Java
Use the method:

void setLevelJustification(int justification)

If the flow direction is to the top or to the bottom, the valid values for the level justification
are:

♦ IlvDirection.Top

U S I N G G R A P H L A Y O U T A L G O R I T H M S 247

♦ IlvDirection.Bottom

♦ IlvDirection.Center (the default)

Level justification for horizontal levels

If the flow direction is to the left or to the right, the valid values for the level justification
are:

♦ IlvDirection.Left

♦ IlvDirection.Right

♦ IlvDirection.Center (the default)

In CSS, you omit the prefix IlvDirection when specifying the value of the flow direction.

Level justification for vertical levels

Link style (HL)
The layout algorithm positions the nodes and routes the links. To avoid overlapping nodes
and links, it creates bend points for the shapes of links. The link style parameter controls
the position and number of bend points. The link style can be set globally, in which case all
links have the same kind of shape, or locally on each link such that different link shapes
occur in the same drawing.

U S I N G G R A P H L A Y O U T A L G O R I T H M S248

Link styles

Link style and link shapes
Link styles work only when you use links that can be reshaped. Subclasses of
IlvPolylineLinkImage or of IlvSplineLinkImage, (e.g., IlvGeneralLink) can be reshaped.
Furthermore, link styles work only if free link connectors are installed. Free link connectors
are subclasses of IlvFreeLinkConnector. If you use a diagram component, the free link
connectors are automatically installed when needed unless specified differently. If you call
layout on an IlvGrapher directly in Java, the layout algorithm may raise an
IlvInappropriateLinkException if links are neither a subclass of IlvPolylineLinkImage
nor of IlvSplineLinkImage, or if connectors are not a subclass of IlvFreeLinkConnector.
In this case, you can use the methods EnsureAppropriateLinkTypes,
EnsureAppropriateLinkConnectors or EnsureAppropriateLinks defined in the class
IlvGraphLayoutUtil to replace inappropriate links or link connectors automatically, either
before layout or when the IlvInappropriateLinkException is caught. For details on these
methods, see the Java API Reference Manual.For details on the graph model, see Using the
Graph Model.

Global link style
To set the global link style:

In CSS
Add to the GraphLayout section:

globalLinkStyle: "POLYLINE_STYLE";

In Java
Use the method:

void setGlobalLinkStyle(int style)

The valid values for the link style are:

♦ IlvHierarchicalLayout.POLYLINE_STYLE

All links get a polyline shape. A polyline shape consists of a sequence of line segments
that are connected at bend points. The line segments can be turned into any direction.
This is the default value.

♦ IlvHierarchicalLayout.ORTHOGONAL_STYLE

U S I N G G R A P H L A Y O U T A L G O R I T H M S 249

All links get an orthogonal shape. An orthogonal shape consists of orthogonal line segments
that are connected at bend points. An orthogonal shape is a polyline shape where the
segments can be turned only in directions of 0, 90, 180 or 270 degrees.

♦ IlvHierarchicalLayout.STRAIGHT_LINE_STYLE

All links get a straight-line shape. All intermediate bend points (if any) are removed. This
often causes overlapping nodes and links.

♦ IlvHierarchicalLayout.NO_RESHAPE_STYLE

None of the links is reshaped in any manner. Note, however, that unlike fixed links, the
links are not ignored completely. They are still used to calculate the leveling.

♦ IlvHierarchicalLayout.MIXED_STYLE

Each link can have a different link style. The style of each individual link can be set such
that different link shapes can occur in the same graph.

In CSS, you omit the prefix IlvHierarchicalLayout when specifying the value of the link
style.

Individual link style
All links have the same style of shape unless the global link style is MIXED_STYLE. Only when
the global link style is MIXED_STYLE can each link have an individual link style.

Different Link Styles Mixed in the Same Drawing

To specify the style of an individual link:

In CSS
First set the global link style to MIXED-STYLE, then specify a rule that selects the link, for
instance:

GraphLayout {
globalLinkStyle: "MIXED_STYLE";

}
#link1
{

U S I N G G R A P H L A Y O U T A L G O R I T H M S250

LinkStyle: "ORTHOGONAL_STYLE";
}

In Java
Use the methods:

void setLinkStyle(Object link, int style)

int getLinkStyle(Object link)

In this case, the link argument must be a graphic link (subclass of IlvLinkImage).

The valid values for the link style of local links are the same as for the global link style:

♦ IlvHierarchicalLayout.POLYLINE_STYLE

♦ IlvHierarchicalLayout.ORTHOGONAL_STYLE

♦ IlvHierarchicalLayout.STRAIGHT_LINE_STYLE

♦ IlvHierarchicalLayout.NO_RESHAPE_STYLE

The link style of a Hierarchical Layout graph requires links in an IlvGrapher that can
be reshaped. Links of type IlvLinkImage, IlvOneLinkImage,

Note:

IlvDoubleLinkImage, IlvOneSplineLinkImage, and
IlvDoubleSplineLinkImage cannot be reshaped.You should use the class
IlvPolylineLinkImage or IlvSplineLinkImage instead.

Connector style (HL)
The layout algorithm positions the end points of links (the connector pins) at the nodes
automatically. The connector style parameter specifies how these end points are calculated.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 251

Connector styles

To specify the connector style:

In CSS
Add to the GraphLayout section:

connectorStyle: "CLIPPED_PINS";

In Java
Use the method:

void setConnectorStyle(int style)

The valid values for style are:

♦ IlvHierarchicalLayout.CENTERED_PINS

The end points of the links are placed in the center of the border where the links are
attached. This option is well-suited for polyline links and straight-line links. It is less
well-suited for orthogonal links, because orthogonal links can look ambiguous in this
style.

♦ IlvHierarchicalLayout.CLIPPED_PINS

Each link pointing to the center of the node is clipped at the node border. The connector
pins are placed at the points on the border where the links are clipped. This option is
particularly well-suited for polyline links without port specifications. It should not be used
if a port side for any link is specified.

♦ IlvHierarchicalLayout.EVENLY_SPACED_PINS

The connector pins are evenly distributed along the node border. This style guarantees
that the end points of the links do not overlap. This is the best style for orthogonal links
and works well for other link styles.

♦ IlvHierarchicalLayout.AUTOMATIC_PINS

The connector style is selected automatically depending on the link style. If any of the
links has an orthogonal style or if any of the links has a port side specification, the

U S I N G G R A P H L A Y O U T A L G O R I T H M S252

algorithm chooses evenly spaced connectors. If all the links are straight, it chooses
centered connectors. Otherwise, it chooses clipped connectors.

In CSS, you omit the prefix IlvHierarchicalLayout when specifying the value of the
connector style.

The connector style parameter requires link connectors at the nodes of an IlvGrapher
that allow connector pins to be placed freely at the node border. It is recommended

Note:

that you use IlvFreeLinkConnector for link connectors to be used in combination
with IlvGrapher objects. If you use a diagram component, the free link connectors
are automatically installed when needed, unless specified differently.

End point mode (HL)
Normally, the layout algorithm is free to choose the termination points of each link. However,
if fixed-link connectors are used (for instance, IlvPinLinkConnector), the user can specify
that the current fixed termination pin of a link should be used.

The layout algorithm provides two end point modes. You can set the end point mode globally,
in which case all end points have the same mode, or locally on each link, in which case
different end point modes occur in the same drawing.

Global end point mode
To set the global end point mode:

In CSS
Add to the GraphLayout section:

globalOriginPointMode: "FIXED_MODE";

globalDestinationPointMode: "FIXED_MODE";

In Java
Use the methods:

void setGlobalOriginPointMode(int mode);

void setGlobalDestinationPointMode(int mode);

The valid values for mode are:

♦ IlvLinkLayout.FREE_MODE (the default)

The layout is free to choose the appropriate position of the connection point on the
origin/destination node.

♦ IlvLinkLayout.FIXED_MODE

U S I N G G R A P H L A Y O U T A L G O R I T H M S 253

The layout must keep the current position of the connection point on the origin/destination
node.

♦ IlvLinkLayout.MIXED_MODE

Each link can have a different end point mode.

In CSS, you omit the prefix IlvHierarchicalLayout when specifying the value of the end
point mode.

The connection points are automatically considered as fixed if they are connected to grapher
pins.

Individual end point mode
All links have the same end point mode unless the global end point mode is IlvLinkLayout.
MIXED_MODE. Only when the global end point mode is set to MIXED_MODE can each link have
an individual end point mode.

To set the end point mode of an individual link:

In CSS
First set the global point modes to MIXED_MODE, then specify a rule that selects the link,
for instance:

LinkLayout {
globalOriginPointMode : "MIXED_MODE";
globalDestinationPointMode : "MIXED_MODE";

}
#link1
{
OriginPointMode : "FIXED_MODE";
DestinationPointMode : "FIXED_MODE";

}

In Java
Use the methods:

void setOriginPointMode(Object link, int mode);

int getOriginPointMode(Object link);

void setDestinationPointMode(Object link, int mode);

int getDestinationPointMode(Object link);

The valid values for mode are:

♦ IlvLinkLayout.FREE_MODE (the default)

♦ IlvLinkLayout.FIXED_MODE

U S I N G G R A P H L A Y O U T A L G O R I T H M S254

The connection points are automatically considered as fixed if they are connected to grapher
pins.

Using a link connection box interface (HL)
By default, the connector style determines how the connection points of the links are
distributed on the border of the bounding box of the nodes, symmetrically with respect to
the middle of each side. Sometimes it may be necessary to place the connection points on
a rectangle smaller or larger than the bounding box. For instance, this can happen when
labels are displayed below or above nodes.

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkConnectionBoxInterface. An example for the implementation of a
link connection box interface is in Link connection box. To set a link connection box interface
in Java, use the method:

setLinkConnectionBoxInterface

The link connection box interface provides each node with a link connection box and
tangential shift offsets. The Hierarchical Layout uses the link connection box but does not
use the tangential offsets.

The following figure illustrates the effects of customizing the connection box. On the left is
the result without any connection box interface. The picture on the right shows the effect
if the connection box interface returns the dashed rectangle for the blue node.

Effect of connection box interface

Using a link clipping interface (HL)
By default, the Hierarchical Layout places the connection points of links at the border of
the bounding box of the nodes. If the node has a nonrectangular shape such as a triangle,
rhombus, or circle, you may want the connection points to be placed exactly on the border
of the shape. This can be achieved by specifying a link clip interface. The link clip interface
allows you to correct the calculated connection point so that it lies on the border of the
shape. The following figure shows an example.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 255

Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping. To set a link clip interface in Java, use the method:

void setLinkClipInterface(IlvLinkClipInterface interface)

Additionally to the link clip interface, the IlvClippingLinkConnector can be used.
This special link connector updates the clipped connection points automatically during
interactive node movements.

Note:

The connector style, the link connection box interface, and the link clip interface work
together in the following way: by respecting the connector style, the proposed connection
points are calculated on the rectangle obtained from the link connection box interface (or
on the bounding box of the node, if no link connection box interface was specified). Then,
the proposed connection point is passed to the link clip interface and the returned connection
points are used to connect the link to the node.

The following figure shows an example of the combined effect.

Combined effect of link clipping interface and link connection box

If the links are clipped at the red node in previous figure (left), they appear unsymmetrical
with respect to the node shape, because the relevant part of the node (here: the triangle)
is not in the center of the bounding box of the node, but the proposed connection points are

U S I N G G R A P H L A Y O U T A L G O R I T H M S256

calculated with respect to the bounding box. This can be corrected by using a link connection
box interface to explicitly specify a smaller connection box for the relevant part of the node
(previous figure, right) such that the proposed connection points are placed symmetrically
at the triangle of the node.

For experts: thick links (HL)
If evenly spaced pins are used as connector style, the links can be evenly spaced with respect
to the link center or with respect to the link border. The difference is only visible when links
that connect to the same node have different widths. For instance, when the link width
indicates the cost or capacity of a flow in the application, many different link width may
occur.

Using the link width shows the effect of using different link widths. In the drawing on the
left, the center of the links are evenly distributed at the left node. Each link has the same
space available at the node side. Therefore, the thick links appear closer to each other than
do the thinner links and the offsets between the link borders are different. In the drawing
on the right, the thick links have more space available than do the thinner links. The offset
between the link border (at the segments that connect to the left node) is constant because
the link width is considered in the calculation of the connection points.

Using the link width

To enable the connector calculation to respect the link width:

In CSS
Add to the GraphLayout section for instance the statement:

linkWidthUsed: "true";

In Java
Call:

layout.setLinkWidthUsed(true);

The link width setting is disabled by default. The link width has no effect if the connector
styles CENTERED_PINS or CLIPPED_PINS are used.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 257

Port sides parameter (HL)
The Hierarchical Layout algorithm produces a layout where the majority of the links flow
are in the same direction. If the flow direction is towards the bottom, usually the incoming
links are connected to the top side of the node and the outgoing links are connected to the
bottom side of the node. It is also possible to specify on which side a link connects to the
node.

To simplify the explanations of the port sides, we use the compass directions north, south,
east, and west. The specified link flow direction is always towards south and the first level
is towards north. If the flow direction is towards bottom, north is at the top, south at the
bottom, east on the right, and west on the left side of the drawing. If the flow direction is
towards right, north is on the left, south on the right, east at the top, and west at the bottom.

Link connections to port sides shows a drawing where the links connect to the larger middle
node at the specified port sides. A compass icon shows the compass directions in these
drawings.

Link connections to port sides

You can set at which side the link connects to its source node.

To set at which side the link connects to its source node:

In CSS
Specify a rule that selects the link, for instance:

U S I N G G R A P H L A Y O U T A L G O R I T H M S258

#link1 {
FromPortSide: "NORTH";

}

In Java
Use the method:

void setFromPortSide(Object link, int side);

In a similar way, you can set at which side the link connects to its destination node.

To set at which side the link connects to its destination node:

In CSS
Specify a rule that selects the link, for instance:

#link1 {
ToPortSide: "SOUTH";

}

In Java
Use the method:

void setToPortSide(Object link, int side);

The valid values for side are:

♦ IlvHierarchicalLayout.UNSPECIFIED (the default)

♦ IlvHierarchicalLayout.NORTH

♦ IlvHierarchicalLayout.SOUTH

♦ IlvHierarchicalLayout.EAST

♦ IlvHierarchicalLayout.WEST

In CSS, you omit the prefix IlvHierarchicalLayout when specifying the value of the port
side.

To retrieve the current choice for a link, use the methods:

int getFromPortSide(Object link);

int getToPortSide(Object link);

The port sides east and west work particularly well with the orthogonal link style. Polyline
links with these port sides sometimes have unnecessary bends. Furthermore, if port sides
are specified, the connector style CLIPPED_PINS should not be used.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 259

Port index parameter (HL)
Instead of asking the layout algorithm to decide at which point a link connects to the node
border, you can specify where the links connect to the node. You cannot specify the exact
location, but you can specify the relative location compared to the connection points of the
other links. This is done by using a port index. Sample layout with ports and orthogonal link
style shows a sample layout with ports at many nodes.

Links that have the same port index connect at the same point of the node. The ports are
evenly distributed at the node sides, in a similar way as with the connector style
EVENLY_SPACED_PINS.The ports are ordered according to their indices. On the north and
south side of a node, the port indices increase toward the east. On the east and west sides
of a node, the port indices increase toward the south. By using port indices in this way, it
is easier to rotate a graph by simply changing the flow direction without needing to update
all the port specifications.

Port Index Numbering Conventions in Relation to Flow Direction show how the port indices
depend on the flow direction.

Port Index Numbering Conventions in Relation to Flow Direction

Port numbers are normally used in combination with port sides. Therefore, you must specify
how many ports are available on each side of a node.

To specify the number of ports:

In CSS
Write a rule that selects the node, for instance:

node.tag1 {
EastNumberOfPorts: "4";
WestNumberOfPorts: "4";
NorthNumberOfPorts: "4";
SouthNumberOfPorts: "4";

}

Alternatively, you can write:

node.tag1 {
NumberOfPorts: "EAST,4";

U S I N G G R A P H L A Y O U T A L G O R I T H M S260

NumberOfPorts: "WEST,4";
NumberOfPorts: "NORTH,4";
NumberOfPorts: "SOUTH,4";

}

Both are equivalent.

In Java
Use the method:

void setNumberOfPorts(Object node, int side, int numberOfPorts);

For example, to use 4 ports on each side of a specific node, use the calls:

layout.setNumberOfPorts(node, IlvHierarchicalLayout.EAST, 4);
layout.setNumberOfPorts(node, IlvHierarchicalLayout.WEST, 4);
layout.setNumberOfPorts(node, IlvHierarchicalLayout.NORTH, 4);
layout.setNumberOfPorts(node, IlvHierarchicalLayout.SOUTH, 4);

The node side is specified again by EAST, WEST, NORTH, and SOUTH. To retrieve the retrieve
the number of ports available at the node, use the method:

int getNumberOfPorts(Object node, int side);

After the number of ports per side is specified, you can choose which port each link connects
to.

To choose the port side and the port index for a link:

In CSS
Specify a rule that selects the link, for instance:

link.tag1 {
FromPortSide: "NORTH";
FromPortIndex: "3";
ToPortSide: "SOUTH";
ToPortIndex: "3";

}

In Java
To specify the connection at the source node, use the methods:

void setFromPortSide(Object link, int portSide);

void setFromPortIndex(Object link, int portIndex);

To specify the connection at the destination node, use the methods:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 261

void setToPortSide(Object link, int portSide);

void setToPortIndex(Object link, int portIndex);

To obtain the current port index of a link, use the methods:

int getFromPortIndex(Object link);

int getToPortIndex(Object link);

Using the port side and port index specifications are additional constraints for the layout
algorithm. The more constraints are specified, the more difficult it is to calculate a layout.
Therefore, if too many links have a specified port index, this resulting layout may have more
link crossings and be less balanced.

Fork link shapes (HL)
If several links start at the same position and are orthogonally routed, it is sometimes
preferred that the links share the first two link segments. The shape of a link bundle of this
kind looks like a fork. To enable the fork shape mode for outgoing links, call:

layout.setFromFork(true);

To enable the fork shape mode for incoming links:

In CSS
Add to the GraphLayout section:

fromFork: "true";
toFort: "true";

In Java
Call:

layout.setToFork(true);

These statements have an effect only if the links are routed orthogonally. The fork appears
only at those links that start or end exactly at the same point. Specifying setFromFork(true)
by itself does not force the links to start at the same point. To force links to start or end at
the same point, use the center connector style (see Connector style (HL)) or specify the
same port for the links (see Port index parameter (HL)).

U S I N G G R A P H L A Y O U T A L G O R I T H M S262

Fork Link Shapes

There are two spacing parameters for the fork shape:

In CSS
Add to the GraphLayout section:

minForkSegmentLength: "30.0";
preferredForkAxisLength: "10.0";

In Java

void setMinForkSegmentLength(float length)

It sets the minimal length of the segment that is directly adjacent to the node.

void setPreferredForkAxisLength(float length)

This method sets the preferred length of the fork axis per branch (the second segment
adjacent to the node). If the fork has five branches, the entire axis has the preferred length
five times the specified parameter. The preferred fork axis length is only a hint for the layout
algorithm. If enough space is available, the algorithm will enlarge the fork axis to avoid
unnecessary link bends. If there is not enough space, the algorithm may as well calculate a
fork axis that is smaller than the preferred one.

Fork link shapes may sometimes look ambiguous, in particular when a link starts at the
same point where another link ends, because in this case it is impossible to recognize whether
the arrowhead belongs to one or the other link.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 263

Link priority parameter (HL)
The layout algorithm tries to place the nodes such that all links are short, point in the flow
direction, and do not cross each other. However, this is not always possible. Often, links
cannot have the same length. If the graph has cycles, some links must be reversed against
the flow direction. If the graph is a nonplanar graph, some links have to cross each other.

The link priority parameter controls which links should be selected if long, reversed, or
crossing links are necessary. Links with a low priority are more likely to be selected than
links with a high priority. This does not mean that low-priority links are always longer,
reversed, or crossed, because the graph may have a structure such that no long, reversed
or crossing links are necessary.

To set the link priority:

In CSS
Specify a rule that selects the link, for instance:

link.tag1 {
LinkPriority: "2.0";

}

In Java
Use the methods.

void setLinkPriority(Object link, float priority)

float getLinkPriority(Object link)

The default value of the link priority is 1.0. Negative link priorities are not allowed.

For an example of using the link priority, consider a cycle A->B->C->D->E->A. It is impossible
to lay out this graph without reversing any link. Therefore, the layout algorithm selects one
link to be reversed. To control which link is selected, you can give one link a lower priority
than the others. This link will be reversed. InWorking with link priorities, the bottom layout
shows the use of the link priority. The link C->D was given the priority 0.5, while all the
other links have the priority 1.0. Therefore C-D is reversed. The top layout inWorking with
link priorities shows what happens when all links have the same priority. Link E->A is
reversed.

U S I N G G R A P H L A Y O U T A L G O R I T H M S264

Working with link priorities

The use of link priorities is important in combination with ports. Links with “from” ports on
the south side and “to” ports on the north side are preferably laid out opposite to the flow
direction. Such a feedback link may cause parts of the drawing to tip over. Using Link
Priorities and Ports shows an example. The red link is a feedback link with port specifications.
To obtain the correct result as shown in the right side of the following figure, you would set
the priority of the feedback link to a very low value.

Using Link Priorities and Ports

Spacing parameters (HL)
The spacing of the layout is controlled by three kinds of spacing parameters: the minimal
offset between nodes, the minimal offset between parallel segments of links and the minimal
offset between a node border and a bend point of a link or a link segment that is parallel to
this border. The offset between parallel segments of links is at the same time the offset
between bend points of links. All three kind of parameters occur in both directions:
horizontally and vertically.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 265

Spacing parameters

To set the spacing parameters:

In CSS
Add to the GraphLayout section:

horizontalNodeOffset: "30.0";
horizontalLinkOffset: "15.0";
horizontalNodeLinkOffset: "20.0";
verticalNodeOffset: "30.0";
verticalLinkOffset: "15.0";
verticalNodeLinkOffset: "20.0";

In Java
♦ For the horizontal direction, use the methods:

void setHorizontalNodeOffset(float offset)

void setHorizontalLinkOffset(float offset)

void setHorizontalNodeLinkOffset(float offset)

♦ For the vertical direction, use the methods:

U S I N G G R A P H L A Y O U T A L G O R I T H M S266

void setVerticalNodeOffset(float offset)

void setVerticalLinkOffset(float offset)

void setVerticalNodeLinkOffset(float offset)

For a layout with horizontal levels (the flow direction is to the top or to the bottom), the
horizontal node offset is the minimal distance between nodes of the same level. The vertical
node offset is the minimal distance between nodes of different levels, that is, the minimal
distance between the levels. For non-orthogonal link styles, the horizontal link offset is
basically the minimal distance between bend points of links. The horizontal node-link offset
is the minimal distance between the node border and the bend point of a link. For horizontal
levels, the vertical link offset and the vertical node-link offset play a role only if the link
shapes are orthogonal.

Similarly, for a layout with vertical levels (the flow direction is to the left or to the right),
the vertical node offset controls node distances within the levels. The horizontal node offset
is the minimal distance between the levels. In this case, the vertical link offset and the
vertical node-link offset always play a role, while the horizontal link offset and the horizontal
node-link offset affect the layout only with orthogonal links.

For orthogonal links, the horizontal link offset is the minimal distance between parallel,
vertical link segments. The vertical link offset is the minimal distance between parallel,
horizontal link segments. However, the layout algorithm cannot always satisfy these offset
requirements. If a node is very small but has many incident links, it may be impossible to
place the links orthogonally with the specified minimal link distance on the node border. In
this case, the algorithm places some link segments closer than the specified link offset.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 267

Spacing parameters for orthogonal links

U S I N G G R A P H L A Y O U T A L G O R I T H M S268

Incremental mode with HL

In some circumstances you may need to use a sequence of layouts on the same graph. For
example:

♦ You work with graphs that have become out-of-date and you need to extend the graph.
If you perform a layout on the extended graph, you probably want to identify the parts
that were already laid out in the original graph. The layout should not change very much
when compared with the layout of the original graph.

♦ The first layout results in a drawing with minor deficiencies. You want to solve these
deficiencies manually and perform a second layout to clean up the drawing. The second
layout probably should not greatly change the parts of the graph that were already
acceptable after the first layout.

The Hierarchical Layout normally works nonincrementally. It performs a layout from scratch
and moves all nodes to new positions and reroutes all links. The previous positions of nodes
have no influence on the result of the layout. Hence, even a small change can cause a large
effect on the next layout.

But the Hierarchical Layout also supports incremental sequences of layout that “do not
change very much.” It can place the nodes close to their previous positions, so that you can
more easily identify the parts that had already been laid out in the original graph. Incremental
mode takes the previous positions of the nodes into account. In this mode the algorithm
preserves the relative order of the levels and the nodes within the levels in the subsequent
layout. It does not preserve the absolute positions of the nodes, but it tries to detect the
structure of the previous layout by examining the node coordinates. For instance, if two
nodes are in the same level, then they stay in the same level after an incremental layout. If
a node is in a higher level than another node, it stays in the higher level.

The following figure illustrates the difference between an incremental and nonincremental
layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 269

Incremental and Nonincremental Layouts

Incremental mode is disabled by default.

To enable incremental mode:

In CSS
Add to the GraphLayout section:

incrementalMode: "true";

In Java™

layout.setIncrementalMode(true);

U S I N G G R A P H L A Y O U T A L G O R I T H M S270

Be aware of the difference between the incremental mode of the Hierarchical
Layout and the incremental layout flag of the SDM Graph Layout Renderer.

Important:

The CSS statement incrementalMode: "true";

controls the incremental mode of Hierarchical Layout and specifies that all layouts
are performed incrementally.

This feature of the Hierarchical Layout is described in the subsequent sections.

Conversely, the CSS statement

incrementalLayout: "true";s

controls the Node Layout Renderer and means that the Node Layout Renderer
switches between incremental mode and nonincremental mode depending on
whether an object is selected or not.

This advanced feature of the Node Layout Renderer is explained in The
GraphLayout renderer in Developing with the JViews Diagrammer SDK.

Phases of the incremental mode
The layout algorithm analyzes the drawing in incremental mode in the following way:

1. First, it determines from the node coordinates which nodes must belong to the same
level. For instance, if the flow direction is towards the bottom, it tries to detect horizontal
reference lines at those vertical positions where many nodes are placed along a line.
The specified vertical node offset helps to detect these lines because the horizontal
reference lines should be approximately the vertical node offset apart. See the following
figure.

2. All nodes that touch the same reference line are assigned to the same level.

3. It determines the order of the nodes within each level by analyzing where the node
touches the reference line. For instance, if the flow direction is towards the bottom, it
determines from the x coordinate of the nodes how they are ordered within the levels.

4. If long links span several levels, the algorithm can preserve the shape of a long link. It
determines the point where a link crosses the level reference line. It creates a bend
point for the long link inside the level. It tries to preserve the order of the bend points
in each level. For instance, if in a flow direction towards the bottom, a long link bypasses
another node on the right side, then the incremental layout tries to find a similar shape
of the link that bypasses the node on the right side, as illustrated in the following figure.

5. Finally, the layout tries to calculate the absolute positions of the nodes that respect the
levels and the ordering within the levels. It tries to balance the node positions. However,
it also tries to place each node close to its previous position. Both criteria often compete
with each other, because to get a perfect balance, nodes must sometimes move far from
their original position. The Hierarchical Layout contains a parametrized heuristic to
satisfy both criteria.

The following figure shows the result of the incremental phases.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 271

Incremental layout phases

Expert parameters of the incremental mode
Each phase of the incremental mode can be parameterized. These layout parameters have
an effect only if incremental mode is switched on.

Minimizing long link crossings
The incremental layout tries to preserve the shape of long links that cross several levels.
This implies that link crossings between long links are not resolved. If crossings of long links
are not desired, it may be better to reroute long links from scratch. The following figure
shows four hierarchy trees, with the original layout at the upper left. The bottom right shows
the result if long links are rerouted, and the top right shows the result if the shape of long
links is preserved.

U S I N G G R A P H L A Y O U T A L G O R I T H M S272

Crossing Reduction During Incremental Layouts

To reroute long links from scratch, you must enable the crossing reduction mechanism for
long links:

In CSS

longLinkCrossingReductionDuringIncremental: "true";

In Java

layout.setLongLinkCrossingReductionDuringIncremental(true);

The crossing reduction of long links determines only the shape of the links. It does not
influence the order of the other nodes within the levels.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 273

Minimizing all link crossings
Optionally, you can apply a crossing reduction to all nodes within each level. In this case,
the incremental layout determines from the node coordinates which nodes belong to the
same level, but it may reorder the nodes within the levels completely to avoid link crossings.
It also reorders the long links in this case. The previous figure, bottom left shows the result.
Notice that the order of the nodes “F,” “G,” and “H” have changed to resolve the link
crossings.

To enable the crossing reduction for all nodes:

In CSS

crossingReductionDuringIncremental: "true";

In Java

layout.setCrossingReductionDuringIncremental(true);

Setting absolute level positioning
The incremental layout tries to place the nodes in absolute positions that are close to the
previous positions. It tries to avoid nodes moving a large distance, because even if the
relative order of the nodes within the levels does not change, large movement distances can
be confusing for users. It is much easier to keep a mental map of the diagram if the nodes
remain close to the previous positions.

The following figure illustrates node repositioning with and without taking the previous
positions into account. The incremental layout of the original graph at the top left results
in the graph at the top right, which is easier to recognize as the same graph than the graph
at the bottom.

The absolute level positioning feature is enabled by default, but it can be disabled.

To disable the absolute level positioning feature:

In CSS
Write the statement:

incrementalAbsoluteLevelPositioning: "false";

In Java
Call

layout.setIncrementalAbsoluteLevelPositioning(false);

With this statement, the layout does not try to place the nodes close to the previous positions.
It places the nodes such that the layout is balanced. However, to create a perfect balance,
the layout may need to move a few nodes so far apart that you can no longer recognize the
diagram after the layout from the node positions that were shown in the previous layout
(see the following figure, bottom).

U S I N G G R A P H L A Y O U T A L G O R I T H M S274

Absolute Positioning During Incremental Layouts

Setting absolute level position range and tendency
If absolute level positioning is enabled, it competes with the aesthetic criteria to create a
balanced layout. Due to the fact that nodes must stay close to their previous positions, the
diagram after incremental layout may be somewhat unbalanced and unsymmetrical. The

U S I N G G R A P H L A Y O U T A L G O R I T H M S 275

Hierarchical Layout algorithm uses a heuristic that you can influence by two parameters,
the absolute level position range and tendency.

The absolute level positioning feature is enabled by default, but it can be disabled.

To disable the absolute level positioning feature:

In CSS
Add in the GraphLayout section:

incrementalAbsoluteLevelPositioning: "100";

In Java
Call:

layout.setIncrementalAbsoluteLevelPositionRange(100);

This statement specifies that within the range of 100 coordinate units from the old position
of the node, the balance is the only criteria for the placement. This means that a node whose
optimal position is less than 100 coordinate units away from its previous position is placed
exactly at its optimal position. Nodes whose optimal position is farther away are placed at
a position that is a compromise between previous position and optimal position. This is
illustrated in figure below, right.

To set the absolute level position tendency:

In CSS
Add in the GraphLayout section:

incrementalAbsoluteLevelPositionTendency: "70";

In Java
Call:

layout.setIncrementalAbsoluteLevelPositionTendency(70);

This statement specifies that positions of nodes whose optimal positions are far away from
their previous position are 70% influenced by their previous position and 30% influenced
by their optimal positions. Imagine a rubber band that tries to pull a node to its previous
position, and another rubber band that tries to pull the same node to its optimally balanced
position. The level position tendency 70 means that one rubber band pulls with 70% of the
force towards the previous position, and the other rubber band pulls with 30% towards the
optimal position. Increasing the tendency means that the node stays closer to its old position,
decreasing it means that the node moves closer to its optimal position. If you set the tendency
to 0%, this has the same effect as disabling the incremental absolute level positioning (see
the following figure).

U S I N G G R A P H L A Y O U T A L G O R I T H M S276

Absolute Positioning During Incremental Layouts

Marking nodes for incremental layout
Incremental layout normally treats all nodes and links of the drawing in the same way.
However, you may have added nodes and links to the drawing programmatically, and the
new nodes and links do not have meaningful coordinates yet. Perhaps you have placed them
all at the origin (0,0), or at random coordinates. In this case, you need an incremental layout
that takes the coordinates of all nodes into account that were previously laid out, while it
ignores the coordinates of all new nodes. The incremental mode of the Hierarchical Layout
allows you to specify in Java which nodes cannot be laid out incrementally by calling the
method:

layout.markForIncremental(nodeOrLink);

If you call this statement, the node or link is marked such that its coordinates are ignored
during the next incremental layout. The positions of marked nodes and links are calculated
from scratch. The mark is valid only until the next layout and is automatically cleared
afterwards.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 277

Layout constraints for HL

The Hierarchical Layout algorithm supports relative position constraints on nodes. Such a
constraint is a rule on how a particular node (or a group of nodes) must be placed with
respect to the other nodes. The constraints influence the relative positions. For example,
you can force node A to be on the left side of node B, so the position of A is expressed relative
to the position of B. It is theoretically possible to specify contradicting constraints: if you
specify that node A must be on the left side of B and B must be on the left side of A, then
these constraints are not solvable at the same time. If A is on the left side of B, then B must
be on the right side of A. The Hierarchical Layout algorithm tries to detect and resolve
constraint conflicts automatically. It ignores those constraints that are infeasible. Since the
automatic constraint resolution is time consuming, it is recommended to specify nonconflicting
constraints when possible.

Constraints should be used only if the incremental mode is switched off. In fact, the
incremental mode is implemented bymeans of additional constraints that are added internally.
Hence, if you use constraints during the incremental mode, it is very likely that the system
detects so many constraint conflicts that you get unexpected results.

Constraints should be used carefully. The more constraints are specified, the more difficult
it is to calculate a layout. Therefore, this resulting layout may have more link crossings and
be less balanced than a graph with no constraints.

Each type of constraint is represented by a subclass of IlvHierarchicalConstraint. The
following constraint types are available:

Forces a node into a range of certain levelsIlvLevelRangeConstraint

Forces two nodes to the same level.IlvSameLevelConstraint

Forces a node to a lower/higher level than another node.IlvRelativeLevelConstraint

Forces a group of nodes on levels that are no more than a
specified spread value apart.

IlvGroupSpreadConstraint

Forces a node to a lower/higher position than another node
of the same level.

IlvRelativePositionConstraint

Forces two nodes of the same level to be placed side by side.IlvSideBySideConstraint

Forces a node to the first or last level, or to the first or last
position within a level.

IlvExtremityConstraint

Forces a group of nodes into the same rectangular swim lane
area.

IlvSwimLaneConstraint

U S I N G G R A P H L A Y O U T A L G O R I T H M S278

Specifying constraints in CSS for HL

There are two ways to specify constraints in a style sheet:

♦ In an external file that contains the constraints

♦ By means of style rules in the style file directly

When you do not use a diagram component with style sheet capabilities, you can still use
constraints.

Writing style rules that specify constraints is very powerful but complex. It is illustrated in
section For experts: specifying constraints in CSS directly (HL). This topic concentrates on
specifying constraints in an external file.

In the CSS file, you can write:

GraphLayout {
graphLayout : "Hierarchical";
constraintsURL : "url(Constraints.txt)";

}

This means that the layout constraints are specified in a separate file named Constraints.
txt. This file contains the constraint in a very simple format, for example:

SameLevelConstraint {
firstNode: node2
secondNode: node5

}
RelativeLevelConstraint {
lowerSubject: { node5 }
higherSubject: { node9 }
priority: 50.0

}
LevelRangeConstraint {
subject: { node11, node12 }
minLevel: 3
maxLevel: 4

}

The complete example can be found at:

<installdir>/jviews-diagrammer86/codefragments/graphlayout/hierarchicallayout/constraints/resources/Constraints.txt

The style files are in the subdirectory data. The example shows how to specify constraints
by loading an external file as well as how to specify constraints by writing style rules directly.

See also

Adding and removing constraints in Java for HL

U S I N G G R A P H L A Y O U T A L G O R I T H M S 279

Adding and removing constraints in Java for HL

You can add constraints to the Hierarchical Layout in Java™ . You allocate a new constraint
object and call this method on the IlvHierarchicalLayout instance:

void addConstraint(IlvHierarchicalConstraint constraint);

You can add as many constraints as you want. The constraints will be respected during the
subsequent layout calls until you remove them. To remove the most recent constraint, call:

void removeConstraint();

To remove a specific constraint, call:

void removeConstraint(IlvHierarchicalConstraint constraint);

To remove all existing constraints, call:

void removeAllConstraints();

You can retrieve the constraints that were added to a Hierarchical Layout with the method:

Enumeration getConstraints()

Node groups
Some constraints affect single nodes. Other constraints affect groups of nodes. The class
IlvNodeGroup is a convenient way to specify a group of nodes in Java. You can create a
group of nodes in the following way:

group = new IlvNodeGroup();
while (...) {

group.add(node);
}

A node group has a similar functionality to a vector. You can ask for the size and elements
of the group, remove elements from the group, or check whether a node already belongs to
the group. You can also convert a vector of nodes into a group:

U S I N G G R A P H L A Y O U T A L G O R I T H M S280

Adds a node to the group.group.add(node)

Removes a node from the group.group.remove(node)

Checks whether a node is in the group.group.contains(node)

Returns the number of nodes in the group.group.size()

Returns the nodes of the group as an Enumeration.group.elements()

Creates a new group that contains the nodes stored in the
input vector.

group = new IlvNodeGroup(vector)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 281

Level range constraints (HL)

In Step 1 of the layout algorithm (the leveling phase), the nodes are partitioned into levels.
These levels are indexed starting from 0. For instance, when the flow direction is to the
bottom, the nodes of the level index 0 are placed at the topmost horizontal level line and
the nodes with larger level index are placed at a position lower than the nodes with smaller
level index (see Level and position indices). The layout algorithm calculates these level
indices automatically.

You can choose how the levels are partitioned by specifying the range of the level index for
some nodes. The nodes are placed in the levels whose index is in the specified range. You
have to specify the minimum and maximum index of the level.

To specify the minimum and maximum index of the level:

In CSS
In the constraint file, specify:

LevelRangeConstraint {
subject: { node11 }
minLevel: 5
maxLevel: 7

}

This specification forces the graphic of the model node with ID “node11” to be placed
between the minimum level 5 and the maximum level 7, that is, either in level 5, level 6, or
level 7.

In Java™
Call:

layout.addConstraint(new IlvLevelRangeConstraint(node, 5, 7));

Notice that in this case, node contains the graphic node (subclass of IlvGraphic). If you
want to place the node exactly at level 5, call:

layout.addConstraint(new IlvLevelRangeConstraint(node, 5, 5));

Alternatively, you can call:

layout.setSpecNodeLevelIndex(node, 5);

which has exactly the same meaning.

If you want to force the node to level 5 and above, set UNSPECIFIED as the maximal level.

In CSS
In the constraint file, specify:

LevelRangeConstraint {
subject: { node11 }

U S I N G G R A P H L A Y O U T A L G O R I T H M S282

minLevel: 5
maxLevel: UNSPECIFIED

}

In Java
Call:

layout.addConstraint(
new IlvLevelRangeConstraint(node, 5, IlvHierarchicalLayout.UNSPECIFIED));

If you want to force the node to level 5 and below (that is, level 0, ..., 5), set UNSPECIFIED
as the minimal level; for example, in Java:

layout.addConstraint(
new IlvLevelRangeConstraint(node, IlvHierarchicalLayout.UNSPECIFIED, 5));

In this particular case, you could also use zero (0) as the minimal level because the level
indices start at 0.

You can apply the constraint to a group of several nodes at once. This has the same effect
as specifying the constraint for each single node of the group, but it is more memory efficient
and convenient. For instance, if you want to force the group of three nodes to the levels
between 5 and 7:

To specify these parameters:

In CSS
In the constraint file, specify:

LevelRangeConstraint {
subject: { node11, node12, node13 }
minLevel: 5
maxLevel: 7

}

In Java
Create a IlvNodeGroup object (see Node groups) of the three nodes and add it to the
constraint in the following way:

layout.addConstraint(new IlvLevelRangeConstraint(nodeGroup, 5, 7));

U S I N G G R A P H L A Y O U T A L G O R I T H M S 283

Level index parameter (HL)

The level index is a special case of a level range constraint (see Level range constraints
(HL)). It forces the node to one particular level. For your convenience, you can specify the
level index of a node directly by the method:

void setSpecNodeLevelIndex(Object node, int index)

You pass a single node as the first argument (not a node group). The default index value is
-1. If the default value is used, or if a node is set to a negative level index, the level index
is considered to be unspecified. In this case the layout algorithm automatically calculates
an appropriate level index during the leveling phase of the algorithm.

To obtain the specified level index for a node, use the method:

int getSpecNodeLevelIndex(Object node)

However, this method returns the value that was set by setSpecNodeLevelIndex. If the level
index was specified by allocating a corresponding level range constraint that has the same
meaning, getSpecNodeLevelIndex still returns -1.

Using arbitrarily large level indices is not recommended. For instance, if you set
the level index of a node to 100000, the layout algorithm creates 100,000 levels

Warning:

even if the graph has far fewer nodes. This causes the layout algorithm to become
unnecessarily slow.

U S I N G G R A P H L A Y O U T A L G O R I T H M S284

Same level constraints (HL)

If you want to force several nodes to the same level with fixed index, you can set the level
index parameter of these nodes accordingly (see Level index parameter (HL)) or use a level
range constraint (see Level range constraints (HL)). However, if you want to force several
nodes to the same level without forcing them to a specific level index, you cannot use these
mechanisms. You must use a same level constraint.

To set the same level constraint:

In CSS
In the constraint file, specify:

SameLevelConstraint {
firstNode: node1
secondNode: node2

}

In Java™
Call:

layout.addConstraint(new IlvSameLevelConstraint(node1, node2));

This forces node1 and node2 to be placed into the same level, but it does not constrain them
to any particular level.

The following figure illustrates the placement of nodes on the same level.

All Nodes Fixed at Same Level

U S I N G G R A P H L A Y O U T A L G O R I T H M S 285

Group spread constraints (HL)

An alternative way to force a group of nodes to the same level is by specifying a group spread
constraint with a spread size of zero (0). In general, the group spread constraint forces a
group of nodes to k+1 subsequent levels. The number k is the spread size. It does not select
the lowest or highest level index of the group, but only requires that the nodes be placed
no more than k levels apart. Hence, if k=0, all nodes of the group are placed at the same
level.

To illustrate the general group spread constraint on nodes with ID “nodeA’, “nodeB” and
“nodeC”:

In CSS
In the constraint file, specify:

GroupSpreadConstraint {
group: { nodeA, nodeB, nodeC }
spreadSize: 2

}

In Java™
To use the group spread constraint on graphic nodes (subclasses of IlvGraphic), call:

IlvNodeGroup nodeGroup = new IlvNodeGroup();
nodeGroup.add(nodeA);
nodeGroup.add(nodeB);
nodeGroup.add(nodeC);
layout.addConstraint(new IlvGroupSpreadConstraint(nodeGroup, 2));

The constraint is satisfied if the highest level index for nodeA, nodeB, and nodeC is no more
than two levels apart from the smallest level index of the nodes. For instance, the constraint
is satisfied if the level indices for nodeA, nodeB, and nodeC are 1, 2, 3; or if they are 7, 8, 9;
or if they are 16, 14, 15. The constraint is also satisfied if all three nodes are placed at level
5, or if two of the nodes are placed at level 15 and the third node at level 13. The constraint
is not satisfied if the level indices for nodeA, nodeB, and nodeC are 3, 5, 6, because in this
case the highest index (6) is more than two levels away from the lowest index (3).

U S I N G G R A P H L A Y O U T A L G O R I T H M S286

Relative level constraints (HL)

If the flow direction is towards the bottom, level 0 is topmost in the drawing. In this layout
you can specify by relative level constraints that a node be above or below another node. If
the flow direction is towards the right, level 0 is leftmost in the drawing. Here you can
specify by relative level constraints that a node be left or right of another node.

In CSS
In the constraint file, specify:

RelativeLevelConstraint {
lowerSubject: { nodeA }
higherSubject: { nodeB }
priority: 1000.0

}

In Java
In Java™ , call:

layout.addConstraint(
new IlvRelativeLevelConstraint(nodeA, nodeB, priority));

This forces nodeA to be placed at a level with a smaller index than nodeB. Since relative level
constraints compete with each other, you must specify the priority of the constraint. In fact,
links also impose constraints on the system, and the link priority has the same impact as
the constraint priority. A link with priority 10 forces its (usually) source node (unless ports
are specified) into a lower level than its target node. To force the source node into a higher
level than the target node, you need to create a constraint with a higher priority than the
link. For instance, to ensure that the constraints are satisfied even if there are many links,
you can use link priorities between 0 and 10 and constraint priorities between 1000 and
10,000.

You can also create a relative level constraint between groups of nodes.

In CSS
In the constraint file, specify a comma-separated list of nodes, such as

lowerSubject: { node1, node2, node3 }

In Java
Call:

layout.addConstraint(
new IlvRelativeLevelConstraint(nodeGroup1, nodeGroup2, priority));

U S I N G G R A P H L A Y O U T A L G O R I T H M S 287

Position index parameter (HL)

In Step 2 of the layout algorithm (the crossing reduction phase), the nodes are ordered
within the levels. All nodes that belong to the same level get a position index starting from
0. For instance, when the flow direction is to the bottom, the node with the position index
0 is placed in the leftmost position within its level. The nodes with a larger position index
are placed farther to the right than the nodes with a smaller position index in the same level.
The nodes of different levels are independent. The node of the first level with the position
index 0 is to the left of the node of the first level with the position index 1, but not necessarily
to the left of a node of another level with position index 0. Note that long links crossing a
level also obtain a position index (see Level and position indices). The layout algorithm
calculates these position indices automatically.

You can affect how the nodes are positioned within each level by specifying the position
index of some nodes. The nodes are placed at the specified position within their level.

To specify the position index of a node in Java™ , use the method:

void setSpecNodePositionIndex(Object node, int index)

The default value is -1. If the default value is used, if a node is set to a negative position
index, or if a node is set to a position index that is larger than the number of nodes of its
level, the layout automatically calculates an appropriate position index during the crossing
reduction step.

To obtain the current position index of a node, use the method:

int getSpecNodePositionIndex(Object node)

U S I N G G R A P H L A Y O U T A L G O R I T H M S288

Relative position constraints (HL)

Working with absolute node position indices is inconvenient in certain situations. For example,
if two nodes belong to the same level, you may want to force one node to a position with a
lower index than the other node without fixing the absolute positions of the nodes. You can
achieve this by using a relative position constraint.

The relative position constraint forces a specific order upon the nodes of a level, but it does
not specify which nodes are directly neighbored. For instance, a relative position constraint
may force nodeA to be placed somewhere at a lower position than nodeB, but there may be
many nodes between nodeA and nodeB.

In CSS
In the constraint file, specify:

RelativePositionConstraint {
lowerSubject: { nodeA }
higherSubject: { nodeB }
priority: 1000.0

}

In Java™
Call:

layout.addConstraint(
new IlvRelativePositionConstraint(nodeA, nodeB, priority));

This forces nodeA to a lower position than nodeB. If the flow direction is towards the bottom,
the nodes are in horizontal levels; hence the constraint means that nodeA is placed at the
left side of nodeB. If the flow direction is towards the right, the nodes are in vertical levels;
hence the constraint means that nodeA is placed below nodeB.

The relative position constraint has an effect only if both nodes actually belong to the same
level. To achieve this, you can, for instance, use a same level constraint in addition. There
is no way to influence the relative position of nodes that belong to different levels.

Similar to the relative level constraint, the relative position constraint can be applied to
node groups. These constraints also have priorities that indicate which constraints dominate
if a constraint conflict occurs. The higher the priority, the more likely the constraint is
satisfied when resolving constraint conflicts.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 289

Side-by-side constraints (HL)

To force nodes to be directly neighbored, use the side-by-side constraint.

In CSS
In the constraint file, specify:

SideBySideConstraint {
group: { nodeA, nodeB, nodeC }
priority: 100.0

}

In Java™
You can create a side-by-side constraint on a group of type IlvNodeGroup (seeNode groups):

layout.addConstraint(
new IlvSideBySideConstraint(nodeGroup, priority));

If the node group consists of just two nodes, it forces the two nodes to be placed side by
side. However, it does not specify which node is at the lower node position and which node
is at the higher node position. If the group consists of more than two nodes, it forces the
nodes to be placed at consecutive positions such that all nodes are clustered together. A
node that does not belong to the group cannot be placed between the nodes of the group.

For example, assume that the group contains the three nodes A, B, C. The constraint is
satisfied if the position indices of A, B, and C are 3, 4, 5 or 9, 7, 8. However, if node D is
placed between A and B (say, D has position 4, A has position 3, and C has position 5), then
the constraint is not satisfied because D does not belong to the same group.

The side-by-side constraint has an effect only if the nodes actually belong to the same level.
To achieve this, you can, for instance, use a same level constraint in addition.

Side-by-side constraints have priorities that decide how to resolve constraint conflicts. The
higher the priority, the more likely the constraint is satisfied.

You can use side-by-side constraints to create nested clusters. For example, in Java:

IlvNodeGroup group1 = new IlvNodeGroup();
group1.add(nodeA);
group1.add(nodeB);
group1.add(nodeC);
group1.add(nodeD);
layout.addConstraint(

new IlvSideBySideConstraint(group1, 10.0f));
IlvNodeGroup group2 = new IlvNodeGroup();
group2.add(nodeB);
group2.add(nodeC);
layout.addConstraint(

new IlvSideBySideConstraint(group2, 10.0f));

The first constraint specifies that nodeA, nodeB, nodeC, and nodeD must be clustered. The
second constraint specifies that nodeB and nodeC are clustered inside the larger cluster.

U S I N G G R A P H L A Y O U T A L G O R I T H M S290

This means that no other node can be placed between the four nodes and, furthermore,
neither nodeA nor nodeD can be placed between nodeB and nodeC. The following figure shows
four solutions that satisfy both constraints.

Sketch of Solutions for Side-By-Side Constraints

U S I N G G R A P H L A Y O U T A L G O R I T H M S 291

Extremity constraints (HL)

To force a node to the first level, you can specify:

layout.setSpecNodeLevelIndex(node, 0);

However, you cannot specify a level index for the last level because it is unknown at the
beginning of layout how many levels will be created. It is unwise to specify:

layout.setSpecNodeLevelIndex(node, java.lang.Integer.MAX_VALUE);

because this will create many empty levels between the levels actually used and the last
one. Even though these empty levels are removed in postprocessing steps, this influences
the speed and quality of the layout. (In fact, the algorithm will run out of memory if you set
the specified level index unreasonably high.)

By using constraints you can achieve the same effect more efficiently.

To force a node to the first level:

In CSS
In the constraint file, specify:

ExtremityConstraint {
node: node
side: NORTH

}

In Java
In Java™ , call:

layout.addConstraint(
new IlvExtremityConstraint(node, IlvHierarchicalLayout.NORTH));

To force a node to the last level:

In CSS
In the constraint file, specify:

ExtremityConstraint {
node: node
side: SOUTH

}

In Java
Call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S292

layout.addConstraint(
new IlvExtremityConstraint(node, IlvHierarchicalLayout.SOUTH));

With compass directions as a convenient reference (see Port sides parameter (HL)), the first
level indicates the north pole and the last level indicates the south pole. You can also specify
extremity constraints for the east and west sides:

layout.addConstraint(
new IlvExtremityConstraint(node1, IlvHierarchicalLayout.EAST));

layout.addConstraint(
new IlvExtremityConstraint(node2, IlvHierarchicalLayout.WEST));

The west extremity constraint forces the node to the lowest position index within its level,
and the east extremity constraint forces the node to the highest position index within its
level. The position indices specify the relative position within the level. For instance, a node
with west extremity constraint will be the leftmost node within its level, if the flow direction
is towards the bottom. However, this does not affect other levels; there may be a node in
another level that is still placed farther to the left.

The following figure illustrates some extremity constraints.

Sketch of Extremity Constraints

U S I N G G R A P H L A Y O U T A L G O R I T H M S 293

Swim lane constraints (HL)

Swim lanes are rectangular areas orthogonal to the levels.

♦ If the link flow direction is towards the bottom or top, the levels are horizontal rows and
the swim lanes are vertical columns.

♦ If the flow direction is towards the left or right, the levels are vertical columns and the
swim lanes are horizontal rows.

Swim lanes can be used if the nodes are partitioned into groups, to indicate which nodes
belong to a certain group. The nodes of the same swim lane are placed so that it is possible
to draw a surrounding rectangle around them. Swim lanes allow you to organize the graph
in a table-likemanner. For instance, youmay have a workflow diagramwhere nodes represent
actions; then the swim lanes could represent the departments that perform these actions.
Each node can belong to only one swim lane.

To associate a group of nodes with the same swim lane:

In CSS
In the constraint file, specify:

SwimLaneConstraint {
group: { node1, node2, node3 }
relativeSize: -1.0
positionIndex: -1
minMargin: 0.0

}

In Java
In Java™ , call:

layout.addConstraint(new IlvSwimLaneConstraint(new IlvNodeGroup(nodeVector)))
;

All nodes of the node vector will be placed in the same swim lane rectangle. If a graph has
many swim lane rectangles, the relative order of these swim lanes is determined
automatically. The size of the swim lane rectangle depends on the nodes that belong to the
swim lane. However, you can specify the relative order, relative size, and the margins of
the swim lane as well by using the constructor:

public IlvSwimLaneConstraint(IlvNodeGroup group,
float relativeSize,
int positionIndex,
float minMargin)

U S I N G G R A P H L A Y O U T A L G O R I T H M S294

Swim Lanes

The relative size indicates how large this swim lane is compared to the other swim lanes.
Assume that the flow direction is towards the bottom. In this case, the relative size indicates
the width of the swim lane. All swim lanes with the same relative size will have the same
width. A swim lane with a relative size that is twice the value of another swim lane will have
twice the width of the other swim lane. The actual number of this parameter does not matter,
only how large the value is compared to the other swim lanes. If you do not want to restrict
the size of the swim lane, set the value to 0. In this case, the width of the swim lane will be
independent of the other swim lanes.

The minimal margin is the margin of the swim lane in absolute coordinates. If the flow
direction is towards the bottom, then it is the minimal horizontal distance between the
leftmost or rightmost node of the swim lane and the swim lane border.

The position index indicates the order of the swim lanes. Just as nodes have position indices,
the swim lanes are placed sequentially at relative positions numbered from 0 to n. In a
top-down layout, the swim lane with position 0 is the leftmost swim lane, and the swim lanes
with higher position indices are placed farther to the right. If the swim lanes have the position
index -1, the layout algorithm determines the appropriate position automatically.

A swim lane constraint is always evaluated, even if the incremental mode is enabled. The
constraint has a higher priority than the relative position constraint and the side-by-side
constraint. You can specify side-by-side constraints for a group of nodes that belong to the
same swim lane, but side-by-side constraints of nodes of different swim lanes are ignored.
You can specify relative position constraints between nodes of the same swim lane. You can
also specify relative position constraints between one entire swim lane group and another
swim lane group, which effectively orders the swim lanes. But relative position constraints
are ignored if they would require breaking the swim lanes apart. The swim lane constraint
dominates the specified position indices and the extremity constraints, that is, if a swim lane
constraint is used, you cannot specify position indices or east/west extremity constraints
for any node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 295

The automatic conflict resolution can handle conflicting constraints. However, to speed
up the layout, it is recommended that you specify constraints in such a way that there
are no conflicts.

Tip:

U S I N G G R A P H L A Y O U T A L G O R I T H M S296

Summary of constraints file as opposed to constraints in Java (HL)

The following is a summary of how to specify constraints:

♦ Applications based on the class IlvDiagrammer which use style sheets (CSS files) can
specify constraints in a constraint file.

♦ Applications that do not use style sheets but work on IlvGrapher and
IlvHierarchicalLayout instances can add constraints directly to the layout instance in
Java™ .

♦ In the constraint file, nodes are specified by their model ID (see getID(java.lang.
Object)).

♦ Constraints specified in Java take the graphic nodes (subclasses of IlvGraphic) directly
as arguments.

♦ Relative level constraints, relative position constraints, level range constraints, group
spread constraints, side-by-side constraints, and swim lane constraint can work in node
groups. To specify a node group:

● In the constraint file, use a comma separated list of node IDs:

{ node1, node2, node3 }

● In Java, use the API of the class IlvNodeGroup:

IlvNodeGroup group1 = new IlvNodeGroup();
group1.add(node1);
group1.add(node2);
group1.add(node3);

Mixing style sheets and constraint specifications in Java is not recommended. In
an application that uses style sheets (CSS files), the constraints specified in the
CSS file override those created in Java, when the layout is performed.

Warning:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 297

Constraint priorities (HL)

A set of constraints may cause conflicts. This means that not all of the constraints can be
satisfied at the same time. For instance, it is impossible to force two nodes into the same
level by an IlvSameLevelConstraint while at the same time forcing one of the nodes to a
higher level than the other node by an IlvRelativeLevelConstraint. In this case, one of
the two constraints must be ignored during layout.

In general, constraint conflicts are resolved by ignoring the constraints with the lowest
priority while the constraints with the highest priority get satisfied. The following rules
explain the constraint priorities in detail.

♦ The constraints that influence into which level a node is placed are applied before the
constraints that influence the position of the node within a level.

♦ The IlvExtremityConstraint is translated into a sequence of constraints with high
priority. For instance, the extremity constraint with the south side is translated into
several same level constraints and several relative level constraints.

♦ The IlvSameLevelConstraint and the IlvGroupSpreadConstraint have the highest
priority. They are never in conflict with each other. They dominate all other constraints,
even the specified level index.

♦ The IlvLevelRangeConstraint (and the direct level index specification) has the second
highest priority. If two nodes are forced to the same level but have disjoint specified level
ranges, then the level range is ignored. In the following example:

layout.addConstraint(new IlvSameLevelConstraint(node1, node2));
layout.setSpecNodeLevelIndex(node1, 5);
layout.setSpecNodeLevelIndex(node2, 10);

both node1 and node2 will be placed at level 5. The conflicting specification:
layout.setSpecNodeLevelIndex(node2, 10) is ignored.

♦ The IlvRelativeLevelConstraint is dominated by the same level constraint, by the level
range constraint, and by the direct specification of level indices. If several relative level
constraints conflict each other, the one with the highest specified priority dominates.
However, note that all links are implicitly considered relative level constraints as well.
If links with high priority force a node to a certain level, then a relative level constraint
with lower priority will be ignored.

♦ The IlvSwimLaneConstraint is always evaluated, even if the incremental mode is enabled.
The constraint has a higher priority than the relative position constraint and the
side-by-side constraint. You can specify side-by-side constraints for a group of nodes that
belong to the same swim lane, but side-by-side constraints of nodes of different swim
lanes are ignored. You can specify relative position constraints between nodes of the
same swim lane. You can also specify relative position constraints between one entire
swim lane group and another swim lane group, which effectively orders the swim lanes.
But relative position constraints are ignored if they would require breaking the swim
lanes apart. The swim lane constraint dominates the specified position indices and the
extremity constraints, that is, if a swim lane constraint is used, you cannot specify position
indices or east/west extremity constraints for any node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S298

♦ The IlvSideBySideConstraint is evaluated only if the corresponding nodes belong to
the same level. Typically you will use a same level constraint to force the nodes to the
same level, and then a side-by-side constraint to force the nodes to a certain ordering.
The side-by-side constraints dominate the relative position constraints. If several
side-by-side constraints are conflicting, the one with the highest specified priority
dominates the other constraints.

♦ The IlvRelativePositionConstraint is also evaluated only if the corresponding nodes
belong to the same level. It is dominated by the side-by-side constraint; however, conflicts
with side-by-side constraints are rare. If several relative position constraints are conflicting,
the one with the highest specified priority dominates the other constraints.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 299

For experts: constraint validation (HL)

Constraints that you specify in Java™ may become invalid. For instance, if you add a
constraint that node A must be to the left side of node B, but you remove A from the graph,
then this constraint becomes invalid. It simply does not make sense any more, even though
it does not conflict with any other constraint. The layout instance automatically removes
invalid constraints from time to time because they are a waste of memory. The validation
check is done during layout. Forcing a validation check is normally not necessary but if you
want to do this, call:

layout.validateConstraints();

This removes all invalid constraints from the Hierarchical Layout and cleans up the memory.
The constraint validation does not check which constraints have conflicts. The main effect
of the validation is that the constraint system uses less memory afterwards.

A constraint is valid if it is meaningful.Two valid constraints are conflicting if the system
cannot satisfy them both at the same time. Invalid constraints cannot be conflicting
because they are meaningless.

Note:

Hence, constraint validation and constraint resolution are different phases. Constraint
validation performs a quick local test. It removes invalid constraints from the layout
instance completely. It does not affect conflicting constraints.

Constraint resolution checks whether a set of valid constraints are in conflict with each
other.Thus, constraint resolution is a complex process on a network of multiple related
constraints. Constraint resolution decides which constraints can be solved and which
cannot. But the constraint resolution does not remove conflicting constraints from the
layout instance, it just delivers a solution that may ignore some constraints.

U S I N G G R A P H L A Y O U T A L G O R I T H M S300

For experts: specifying constraints in CSS directly (HL)

SDM applications that use style files (CSS files) can specify an external constraint file that
refers to the constrained nodes by their node IDs. Alternatively, it is possible to specify the
constraints in the CSS file directly.

The general mechanism for specifying constraints in CSS directly is:

<node selector> {
<constraint property>: "<constraint name>,<additional parameters>";

}

The meaning is that the selected node participates in the constraint with given name. The
constraint name is an arbitrary string that identifies the constraint. The name is needed
because usually, several nodes participate at the same constraint, therefore several such
style rules are required to entirely specify the constraint.

For instance, to specify a relative level constraint between the nodes with ID activity1
and participant1, use the following style rules:

#activity1 {
LowerRelativeLevelConstraint: "ConstraintA,5000";

}

#participant1 {
HigherRelativeLevelConstraint: "ConstraintA,5000";

}

The constraint property LowerRelativeLevelConstraing indicates that this rule specifies
the lower node of a relative level constraint. The property HigherRelativeLevelConstraint
indicates that this rule specifies the higher node of a relative level constraint. The constraint
name “ConstraintA” is used to distinguish this relative level constraint from other constraints
of the same type. The parameter 5000 is the priority of this constraint.

All constraint types can be specified similarly. The constraint name is arbitrary, except for
the extremity constraint: Here, only the names “EAST”, “WEST”, “NORTH” and “SOUTH” are
allowed as constraint names, and they indicate at the same time the side of the constraint.

A sample CSS sheet with various constraint specifications can be found at:

<installdir>/jviews-diagrammer86/codefragments/graphlayout/hierarchicallayout/constraints/resources/SampleCSS.css.

For further details about specifying constraints in Java™ , see the class
IlvGraphLayoutRenderer.

The following table lists all constraint properties that are available in CSS.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 301

CSS Constraint properties
Corresponding Specification in Constraint FileConstraint Property

LevelRangeConstraint { subject: {...} }LevelRangeConstraint

SameLevelConstraint { firstNode: ... }FirstSameLevelConstraint

SameLevelConstraint { secondNode: ... }SecondSameLevelConstraint

GroupSpreadConstraint { group: {...} }GroupSpreadConstraint

RelativeLevelConstraint { lowerSubject: {...} }LowerRelativeLevelConstraint

RelativeLevelConstraint { higherSubject: {...} }HigherRelativeLevelConstraint

RelativePositionConstraint { lowerSubject: {...} }LowerRelativePositionConstraint

RelativePositionConstraint { higherSubject: {...} }HigherRelativePositionConstraint

SideBySideConstraint { group: {...} }SideBySideConstraint

ExtremityConstraint { node: ... }ExtremityConstraint

SwimLaneConstraint { group: {...} }SwimLaneConstraint

If constraints are specified in the CSS file directly, each node can participate only in
one constraint of each type at most. For instance, you can specify an extremity

Note:

constraint “EAST” for a node, but you cannot specify an extremity constraint “SOUTH”
for the same node at the same time.You can however specify another constraint type
(e.g. a level range constraint) for the same node at the same time.

This limitation is due to technical reasons pertaining to the mechanism whereby CSS
files are processed by the SDM engine. If you specify constraints by an external
constraint file, there is no such limitation: for instance., in the external constraint file,
you can specify as many extremity constraints for the same node as you want.

U S I N G G R A P H L A Y O U T A L G O R I T H M S302

For experts: more indices (HL)

The Hierarchical Layout allows you to specify the level index and the position index of a
node.

In CSS
Specify the level and position index of a node with ID “node1” in the following way:

#node1 {
SpecNodeLevelIndex: "5";
SpecNodePositionIndex: "33";

}

In Java™
You specify the level and position index of a graphic node in the following way:

layout.setSpecNodeLevelIndex(node, 5);
layout.setSpecNodePositionIndex(node, 33);

How these indices are used depends on the graph topology and the additional constraints.
For example, the specified level index can be in conflict with some IlvLevelRangeConstraint
or IlvSameLevelConstraint. In this case, the constraint priorities determine how the conflict
is resolved (see Constraint priorities (HL)). If the incremental mode is switched on, the
specified node level and position index are ignored, since the incremental mode tries to
preserve old node positions. It is also possible to obtain the indices of nodes that were
calculated during layout.

Calculated level index
The layout algorithm allows you to access the level index that was calculated for a node by
a previous layout. To do this, use the method:

int getCalcNodeLevelIndex(Object node)

If the node was never laid out, this method returns -1. Otherwise, it returns the previous
level index of the node.

In an application that specifies layout parameters entirely in Java, the method can be used
to specify the level index for the next layout in the following way:

int index = layout.getCalcNodeLevelIndex(node);
layout.setSpecNodeLevelIndex(node, index);

When this is done, it ensures that the node is placed at the same level as in the previous
layout.

If the graph is detached from the layout algorithm, the calculated level index of a node is
set back to -1.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 303

You should be aware of the difference between the methods
getCalcNodeLevelIndex(java.lang.Object) and getSpecNodeLevelIndex

Note:

(java.lang.Object).The first one returns the level index calculated by the previous
layout.The second one returns the specified level index, even if there was no previous
layout.

For instance, consider two nodes A and B. Node A has no specified level index and
node B has a specified level index 5. Before the first layout, the method
getCalcNodeLevelIndex returns -1 for both nodes because the levels have not
been calculated yet. However, getSpecNodeLevelIndex returns -1 for A and 5 for
B. After the first layout, node A may be placed at level 4. Now,
getCalcNodeLevelIndex returns 4 for node A and 5 for node B and
getSpecNodeLevelIndex still returns -1 for A and 5 for B.

Calculated position index
The layout algorithm allows you to access the position index within a level that was calculated
for a node by a previous layout. To do this, use the method:

getCalcNodePositionIndex(java.lang.Object)

If the node was never laid out, this method returns -1. Otherwise, it returns the previous
position index of the node within its level.

To ensure that the node is placed at the same level at the same relative position as in the
previous layout, use in an application that specifies layout parameters entirely in Java the
following:

layout.setSpecNodeLevelIndex(node,
layout.getCalcNodeLevelIndex(node));

This example code works only if the generic connected component layout is disabled and
the port sides EAST or WEST are not used in the layout.

If the graph is detached from the layout algorithm, the calculated position index of a node
is set back to -1.

You should be aware of the difference between the methods
getCalcNodePositionIndex and setSpecNodePositionIndex.The first one

Note:

returns the position index calculated by the previous layout and -1 if there was no
previous layout. The second one returns the specified position index even if there was
no previous layout. This behavior is similar to the behavior of the specified and
calculated level index (see Calculated level index).

U S I N G G R A P H L A Y O U T A L G O R I T H M S304

Recursive layout

JViews Diagrammer supports nested graphs, that is, it can render graphs containing nodes
that are graphs. A graph that is a node in another graph is called a subgraph. Links that
connect nodes of different subgraphs are called intergraph links. In Recursive hierarchical
layout on nested graph with polyline link style, all red links are intergraph links and all black
links are normal links. This is explained in detail in Nested layouts.

The hierarchical layout can treat a nested graph at once, placing all nested nodes and routing
all links including the intergraph links. It can even place the labels in the nested graph.

To enable the recursive mode:

In CSS
Add to the GraphLayout section:

recursiveLayoutMode: "true";

In Java™
Use this method:

void setRecursiveLayoutMode(boolean enable);

and call performLayout with the third parameter set to true in the following way:

layout.performLayout(force, redraw, true);

The recursive layout mode requires that all subgraphs are laid out in the same style (for
example, they must all use the same flow direction). This is automatically the case when
calling layout.performLayout(force, redraw, true) and it is also the case when using
CSS without specifying individual graph layouts per subgraph. If different layout styles are
needed per subgraph, you must specify an individual layout per subgraph as described in
Individual layout styles per subgraph and in Advanced recursion: mixing different layouts
in a nested graph. In this case the hierarchical layout cannot route the intergraph links and
you have to use a Link Layout algorithm to route the intergraph links.

Recursive hierarchical layout on nested graph with polyline link style

U S I N G G R A P H L A Y O U T A L G O R I T H M S 305

Recursive hierarchical layout on nested graph with orthogonal link style

Setting layout parameters in recursive mode in Java code
When you use CSS, the layout parameters are specified in CSS as usual, and the SDM engine
handles the internal details automatically. However, when you want to specify layout
parameters in Java™ code, note that in recursive layout mode, the hierarchical layout is
attached to the top-level graph. Global layout parameters must be set on this layout instance.
Layout parameters per node or per link must be set in the following way:

// node is directly contained in subgraph
IlvHierarchicalLayout sublayout = (IlvHierarchicalLayout)topLevelLayout.
getRecursiveLayout().getLayout(subgraph);
sublayout.setSpecNodeLevelIndex(node, 5);

This means that layout parameters per node or per link cannot be set on the top-level layout,
but on a sublayout retrieved by means of the IlvRecursiveLayout from the top-level layout.

Label layout
If the recursive layout mode is enabled, the hierarchical layout can also place the node and
link labels. This is useful, because placing labels after a recursive layout may change the
bounds of subgraphs again, and hence would require the hierarchical layout to rerun.
Therefore, an annealing label layout is integrated into the hierarchical layout which is
executed during the recursive layout mode. In order to set label descriptors, you can access
this label layout by using the following code:

public IlvAnnealingLabelLayout getLabelLayout()

If the labels are contained in a subgraph, use the following code:

// node and label are directly contained in subgraph
IlvHierarchicalLayout sublayout =

(IlvHierarchicalLayout)topLevelLayout.getRecursiveLayout().getLayout
(subgraph);
IlvAnnealingLabelLayout labellayout = sublayout.getLabelLayout();
lvAnnealingPointLabelDescriptor d =
new IlvAnnealingPointLabelDescriptor(label, node,

IlvAnnealingPointLabelDescriptor.RECTANGULAR,
IlvDirection.Bottom);

labellayout.setLabelDescriptor(label, d);

U S I N G G R A P H L A Y O U T A L G O R I T H M S306

When the recursive layout mode is used, the label layout is automatically used. It is
recommended to keep it enabled if nodes or links in subgraphs have labels. In can be disabled
if there are no labels.

To disable the label layout:

In CSS

labelLayoutEnabledDuringRecursiveLayoutMode: "false";

In Java

layout.setLabelLayoutEnabledDuringRecursiveLayoutMode(false);

For more details on how to use the IlvAnnealingLabelLayout see Annealing label layout.
For more details on how to use the IlvRecursiveLayout see Recursive layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 307

U S I N G G R A P H L A Y O U T A L G O R I T H M S308

Link layout (LL)

Describes the Link Layout algorithm (class IlvLinkLayout from the package ilog.views.
graphlayout.link).

In this section

General information on the LL
Provides samples of Link Layout and explains where it is likely to be used.

Features and limitations of the LL
Lists the features and limitations of the layout.

The LL algorithms
Describes how the algorithm for each mode operates.

Generic features and parameters of the LL
Describes the generic features and parameters of the layout.

Specific parameters for both LL modes
Describes the parameters that are specific to the IlvLinkLayout class.

Spacing parameters in short link mode
Describes how to use the spacing parameters in short link mode.

Spacing parameters in long link mode
Describes how to use the spacing parameters in long link mode.

For experts: additional features of LL
Describes the features available in both Link Layout modes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 309

For experts: special options of the Short LL
Describes the options of the Short Link Layout for expert use.

For experts: special options of the Long LL
Describes the options of the Long Link Layout for expert use.

U S I N G G R A P H L A Y O U T A L G O R I T H M S310

General information on the LL

LL samples
These sample drawings were produced with the Link Layout algorithm:

Link layout in short link mode with orthogonal links

U S I N G G R A P H L A Y O U T A L G O R I T H M S 311

The same graph in short link mode with direct links

Link layout in long link mode with orthogonal links

U S I N G G R A P H L A Y O U T A L G O R I T H M S312

What types of graphs suit the LL?
Any type of graph where nodes are fixed and links need to be routed:

♦ connected graphs and disconnected graphs

♦ planar graphs and nonplanar graphs.

♦ nested graphs with intergraph links

Application domains for the LL
Application domains of the Link Layout include:

♦ Electrical engineering (circuit block diagrams)

♦ Industrial engineering (schematic design diagrams, equipment/resource control charts)

♦ Business processing (entity relation diagrams)

♦ Software management/software (re-)engineering (data inspector diagrams)

♦ Database and knowledge engineering (sociology, genealogy)

♦ CASE tools (design diagrams)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 313

Features and limitations of the LL

Features of both modes (LL)

♦ Reshapes the links of a graph in either an orthogonal or a direct style, without moving
the nodes. Orthogonal and direct style links can be combined in the same layout.

♦ Allows you to specify which side of the node (top, bottom, left, or right) a link can be
connected to, or to preserve the existing connection points of the links.

♦ Supports self-links (that is, links with the same origin and destination node).

♦ Supports multiple links (that is, more than one link between the same origin and
destination nodes).

♦ Allows you to specify pinned (fixed) links that the layout algorithm cannot reshape.

♦ Supports intergraph links of nested graphs. An intergraph link is a link whose end nodes
belong to different subgraphs of a nested graph.

♦ Supports an incremental mode: If new links are added to a drawing, the next layout takes
the shapes of the old links into account.

♦ Two layout modes: short linkswith a limited number of bends or long linkswith unlimited
number of bends.

Features of short link mode (LL)

♦ Links are placed freely in the space.

♦ Link-to-link and link-to-node crossings are reduced, if this is possible with link shapes
that have a maximum of 4 bends.

♦ Links of different width are supported.

♦ Link bundles between the same pair of nodes are supported. Optionally, the algorithm
can ensure that multiple links are bundled together by giving them parallel shapes.

♦ Automatically arranges the final segments of the links (the segments near the origin or
destination node) to obtain a bundle of parallel links.

♦ Provides two optional shapes for the self-links.

♦ Very fast algorithm with low memory footprint.

Features of long link mode (LL)

♦ Links are placed on a grid.

♦ Link-to-node crossings of orthogonal links are avoided, even if this introduces many bends.

♦ Orthogonal link segments do not overlap.

U S I N G G R A P H L A Y O U T A L G O R I T H M S314

♦ Does not bundle the final segments. Instead, it distributes the links on the border of each
end node according to which border has more free space.

♦ Fast algorithm: speed and memory footprint depend on the grid spacing.

Limitations

♦ Since the Link Layout algorithm reshapes the links, it works preferably with links of type
IlvPolylineLinkImage and link connectors of type IlvFreeLinkConnector.

♦ When routing intergraph links, the incremental mode cannot be used. Due to the
complexity of intergraph link routing, more crossings and overlappings may occur than
when routing normal links.

♦ In short link mode, crossings and overlapping of links with other links and nodes cannot
always be avoided because the algorithm uses link shapes with a limited number of bends.
This happens in particular when there are many obstacles between the end points of a
link.

♦ In long link mode, link crossings cannot always be avoided. Segment overlappings of
orthogonal links are always avoided unless there is no free space remaining on the border
of the end nodes. Any overlapping of nodes and links is always avoided unless one end
nodes is inside an enclave. An enclave is an area that is surrounded by other nodes such
that the area cannot be reached from the other end node. (See A Node inside an enclave.)

♦ In long link mode, segment overlapping or overlapping between nodes and links cannot
always be avoided if the direct link style is used.

♦ The long link mode is slower and uses more memory if the grid spacing is very small.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 315

The LL algorithms

The Link Layout algorithm utilizes two sublayout classes:

♦ IlvShortLinkLayout in short link mode.

♦ IlvLongLinkLayout in long link mode.

They implement different strategies to find the link shapes.

Short Link Layout algorithm
The Short Link Layout algorithm is based on a combinatorial optimization that chooses the
“optimal” shape of the links to minimize a cost function. This cost function is proportional
to the number of link-to-link and link-to-node crossings.

For efficiency reasons, the basic shape of each link is chosen from a set of predefined shapes.
These shapes are different for each link style option. For the orthogonal link style, the links
are reshaped to a polygonal line of up to five alternating horizontal and vertical segments
(see Link layout in short link mode with orthogonal links). For the direct link style, the links
are reshaped to a polygonal line composed of three segments: a straight-line segment that
starts and ends with small horizontal or vertical segments (see The same graph in short link
mode with direct links).

The shape of a link also depends on the relative position of the origin and destination nodes.
For instance, when two nodes are very close or they overlap, the shape of the link is chosen
to provide the best visibility of the link.

The exact shape of a link is computed taking into account additional constraints. The layout
algorithm tries to do the following:

♦ Minimize the number of crossings between the links incident to a given side of a node.

♦ Space the final segments of the links incident to a given side of a node equally on the
node border.

Long Link Layout algorithm
The Long Link Layout algorithm first treats each link individually. For each link, it first
calculates the connection points at the end nodes that are on the grid and orders them
according to a penalty value. Connection points on used grid points have a very high penalty
and, therefore, are very unlikely to be used.

For the orthogonal links (see Link layout in long link mode with orthogonal links), the Long
Link Layout algorithm then uses a grid traversal to search a route over free grid points from
the start connection point to the end connection point. Therefore, in contrast to the short
link mode, orthogonal links can have any shape with a large number of bends if this is
necessary to bypass obstacle nodes to avoid overlappings. For the direct links (see The same
graph in short link mode with direct links), it shortens the search by using a direct segment
between the connection points.

After all links are placed, a crossing reduction phase examines pairs of links and eliminates
link crossings by exchanging parts of the routes between both links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S316

The Long Link Layout algorithm relies on the fact that links fit to the grid spacing and parts
of the routes between different links can be exchanged. Therefore, the Long Link Layout
algorithm does not take the link width into account because it would be too difficult to find
the parts of two links that can be exchanged. It is recommended to set the grid spacing
larger than the largest link width.

Example of Link Layout
In CSS
Since the Link Layout only reshapes the links without placing the nodes, an additional layout
algorithm can be specified in CSS for placing the nodes. The specification can be loaded as
style file into an application that uses the IlvDiagrammer class (see Graph layout in IBM®
ILOG® JViews Diagrammer).

The following example performs only the Link Layout, without using an additional layout
for placing the nodes.

SDM {
GraphLayout : "false";
LinkLayout : "true";

}

LinkLayout {
layoutMode : "SHORT_LINKS";
globalLinkStyle : "ORTHOGONAL_STYLE";
globalConnectorStyle : "CLIPPED_PINS";
linkOffset : "3";

}

In some situations, you may need a separate node layout renderer. The following example
uses the Uniform Length Edges Layout to place the nodes and the Link Layout to reshape
the links:

SDM {
GraphLayout : "true";
LinkLayout : "true";

}

GraphLayout {
graphLayout : "UniformLengthEdges";
linkStyle : "NO_RESHAPE_STYLE";
preferredLinksLength : "60";

}

LinkLayout {
layoutMode : "SHORT_LINKS";
globalLinkStyle : "ORTHOGONAL_STYLE";
globalConnectorStyle : "CLIPPED_PINS";
linkOffset : "3";

}

Notice the Link Layout renderer has a “Hierarchical Link Layout” mode. The Hierarchical
Link Layout is not a separate layout algorithm. It is merely the feature of the Diagrammer

U S I N G G R A P H L A Y O U T A L G O R I T H M S 317

Link Layout renderer to reuse the Hierarchical Layout as Link Layout, instead of the standard
Link Layout. The following example shows how to activate this mode:

LinkLayout {
hierarchical : "true";

}

In Java™
Below is a code sample using the IlvLinkLayout class. This code sample shows how to
perform a Link Layout on a grapher directly without using a diagram component or any
style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.link.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

IlvLinkLayout layout = new IlvLinkLayout();
layout.attach(grapher);

/* Specify the layout mode */
layout.setLayoutMode(IlvLinkLayout.SHORT_LINKS);

try {
IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S318

Generic features and parameters of the LL

The IlvLinkLayout class supports the following generic parameters as defined in the class
IlvGraphLayout (see Base class parameters and features):

♦ Allowed time (LL)

♦ Animation (LL)

♦ Automatic layout (LL)

♦ Preserve fixed links (LL)

♦ Spline routing (LL)

♦ Stop immediately (LL)

♦ Save parameters to named properties (LL)

The following comments describe the particular way in which these parameters are used
by this subclass.

Allowed time (LL)
The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed time.) If the layout stops early
because the allowed time has elapsed, some links may not be routed in the best possible
way. The result code in the layout report is IlvGraphLayoutReport.STOPPED_AND_INVALID.

Animation (LL)
The layout algorithm can show the temporary positions of the links during the routing in an
animated way. (For a description of this layout parameter in the IlvGraphLayout class, see
Animation.)

If this option is enabled, the layout of large graphs can be very time consuming.Note:

Automatic layout (LL)
The Link Layout routes the links so that they bypass the nodes and cross each other as few
times as possible. It does not position any nodes. However, if the user moves, adds, or resizes
nodes, or adds or removes links, the Link Layout drawing usually becomes invalid; that is,
the links no longer look orthogonal, overlap the moved nodes, or cross other links.

Using the automatic layout feature of the IlvGraphLayout class, the layout is reperformed
whenever a change of the graph occurs. (For a description of this layout parameter in the
IlvGraphLayout class, see Automatic layout.)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 319

Preserve fixed links (LL)
The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.) The fixed links are taken into account when computing the optimal layout of
the nonfixed links.

Spline routing (LL)
The layout algorithm supports the generic spline routing mechanism (see Spline routing).
If the style of a link is direct or orthogonal and the link is a spline, it is routed by the generic
spline routing mechanism when it is enabled.

Save parameters to named properties (LL)
The layout algorithm can save its layout parameters into named properties. This can be used
to save layout parameters to .ivl files. (For a detailed description of this feature, see Save
parameters to named properties and Saving layout parameters and preferred layouts.)

Stop immediately (LL)
The layout algorithm stops if the method IlvLinkLayout is called. (For a description of this
method in the IlvGraphLayout class, see Stop immediately.) If the layout stops early, some
links may not be routed in the best possible way. The result code in the layout report is
IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S320

Specific parameters for both LL modes

Layout mode (LL)
The Link Layout algorithm has two layout modes.

To select a layout mode:

In CSS
Add to the LinkLayout section:

layoutMode : "SHORT_LINKS";

In Java™
Use the method:

void setLayoutMode(int mode);

The valid values for mode are:

♦ IlvLinkLayout.SHORT_LINKS (the default)

♦ IlvLinkLayout.LONG_LINKS

Short and Long Link Modes with Orthogonal Links shows a small sample graph in short and
long link mode. The short link mode bundles the links very well. However, due to the bundling,
some red links appear to be unconnected to the green nodes. Furthermore, the algorithm
cannot find a route for the long red links without overlapping some nodes or without
overlapping the green link. The long link mode works on a grid. It is specialized for long
links and avoids overlapping any nodes or link segments. It can connect to the green nodes
by choosing connection points on different sides of the end nodes. This advantage, however,
is paid for by a less regular structure that does not bundle the links and a larger number of
link crossings.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 321

Short and Long Link Modes with Orthogonal Links

Choosing the appropriate layout mode (LL)
The short link mode should be used if any of the following conditions apply:

♦ The majority of links is short and it is not fatal if long links overlap obstacles.

♦ The link routes must be placed freely and cannot be restricted to a grid.

♦ It is important to limit the number of bends.

The long link mode should be used if any of the following conditions apply:

♦ Many links are long and it is important that long links do not overlap obstacles.

♦ There is a preferred routing because the nodes are already placed on the grid.

♦ It is important to have a guaranteed minimal distance between link segments.

♦ An increasing number of bends is acceptable if it avoids any overlappings.

Labyrinth routing with the long link mode shows how the long link mode can be used to find
an orthogonal route without overlappings in a labyrinth of node obstacles.

U S I N G G R A P H L A Y O U T A L G O R I T H M S322

Labyrinth routing with the long link mode

Link style (LL)
The layout algorithm provides two link styles. You can set the link style globally, in which
case all links have the same kind of shape, or locally on each link, in which case different
link shapes occur in the same drawing.

The layout algorithm may raise an IlvInappropriateLinkException if layout is
performed on an IlvGrapher, but inappropriate link classes or link connector classes
are used. See Layout exceptions for details and solutions to this problem.

Note:

Global link style
Example of setting global link style (Link Layout algorithm)
To set the global link style:

In CSS
Add to the LinkLayout section:

globalLinkStyle: "ORTHOGONAL_STYLE";

In Java
Use the method:

void setGlobalLinkStyle(int style);

The valid values for style are:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 323

♦ IlvLinkLayout.ORTHOGONAL_STYLE (the default)

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments). See Link layout in short link mode with orthogonal links and Link layout in
long link mode with orthogonal links as examples.

♦ IlvLinkLayout.DIRECT_STYLE

The links are reshaped to a polygonal line composed of three segments: a straight-line
segment that starts and ends with a small horizontal or vertical segment. See The same
graph in short link mode with direct links as an example.

♦ IlvLinkLayout.MIXED_STYLE

Each link can have a different link style. The style of each individual link can be set to
have different link shapes occurring on the same graph.

Individual link style
All links have the same style of shape unless the global link style is IlvLinkLayout.
MIXED_STYLE. Only when the global link style is set to MIXED_STYLE can each link have an
individual link style.

Different link styles mixed in the same drawing (short link mode)

U S I N G G R A P H L A Y O U T A L G O R I T H M S324

Different link styles mixed in the same drawing (long link mode)

Example of specifying individual link style (Link Layout algorithm)
To set and retrieve the style of an individual link:

In CSS
First set the global link style to MIXED_STYLE, then write a rule to select the link:

LinkLayout {
globalLinkStyle : "MIXED_STYLE";

}
#link1 {
LinkStyle: "DIRECT_STYLE ";

}

In Java
Use the methods:

void setLinkStyle(Object link, int style);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 325

int getLinkStyle(Object link);

The valid values for style are:

♦ IlvLinkLayout.ORTHOGONAL_STYLE (the default)

♦ IlvLinkLayout.DIRECT_STYLE

♦ IlvLinkLayout.NO_RESHAPE_STYLE (that is, the link is not reshape in any manner)

The link style of a Link Layout graph requires links in an IlvGrapher that can be
reshaped. Links of type IlvLinkImage, IlvOneLinkImage, IlvDoubleLinkImage,

Note:

IlvOneSplineLinkImage, and IlvDoubleSplineLinkImage cannot be reshaped.
You should use the class IlvPolylineLinkImage or IlvSplineLinkImage
instead

End points mode (LL)
Normally, the layout algorithm is free to choose the termination points of each link. However,
if fixed-link connectors are used (for instance, IlvPinLinkConnector), the user can specify
that the current fixed termination pin of a link should be used.

The layout algorithm provides two end point modes. You can set the end point mode globally,
in which case all end points have the same mode, or locally on each link, in which case
different end point modes occur in the same drawing.

Global end point mode
Example of specifying global end point mode (Link Layout algorithm)
To set the global end point mode:

In CSS
Add to the LinkLayout section:

globalOriginPointMode : "FIXED_MODE";
globalDestinationPointMode : "FIXED_MODE";

In Java

void setGlobalOriginPointMode(int mode);

void setGlobalDestinationPointMode(int mode);

The valid values for mode are:

♦ IlvLinkLayout.FREE_MODE (the default)

The layout is free to choose the appropriate position of the connection point on the
origin/destination node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S326

♦ IlvLinkLayout.FIXED_MODE

The layout must keep the current position of the connection point on the origin/destination
node.

♦ IlvLinkLayout.MIXED_MODE

Each link can have a different end point mode.

The connection points are automatically considered as fixed if they are connected to grapher
pins.

Individual end point mode
All links have the same end point mode unless the global end point mode is IlvLinkLayout.
MIXED_MODE. Only when the global end point mode is set to MIXED_MODE can each link have
an individual end point mode.

Example of specifying individual end point mode (Link Layout algorithm)
To set the mode of an individual link:

In CSS
First set the global origin and destination point mode to MIXED_MODE, then write a rule
that selects the link:

LinkLayout {
globalOriginPointMode : "MIXED_MODE";
globalDestinationPointMode : "MIXED_MODE";

}
#link1{
OriginPointMode : "FREE_MODE";
DestinationPointMode : "FREE_MODE";

}

In Java
Use the methods:

void setOriginPointMode(Object link, int mode);

int getOriginPointMode(Object link);

void setDestinationPointMode(Object link, int mode);

int getDestinationPointMode(Object link);

The valid values for mode are:

♦ IlvLinkLayout.FREE_MODE (the default)

♦ IlvLinkLayout.FIXED_MODE

U S I N G G R A P H L A Y O U T A L G O R I T H M S 327

The connection points are automatically considered as fixed if they are connected to grapher
pins.

The layout algorithm may raise an IlvInappropriateLinkException if layout is
performed on an IlvGrapher, but inappropriate link classes or link connector classes
are used. See Layout exceptions for details and solutions to this problem.

Note:

Incremental mode (LL)
The Link Layout algorithm normally routes all links from scratch. If the graph changes
incrementally because you add or remove links or nodes, the subsequent layout may differ
considerably from the previous layout. To avoid this effect and to help the user to retain a
mental map of the graph, the algorithm has an incremental mode.

Example of enabling incremental mode (Link Layout algorithm)
To enable the incremental mode:

In CSS
Add to the LinkLayout section:

incrementalMode : "true";

In Java
Call:

layout.setIncrementalMode(true);

In incremental mode, the layout tries to minimize the changes to the layout. A link is only
rerouted if it is new, if a link bend moved, if its layout parameters have changed, or if a node
was moved such that it overlaps the link.

In short link mode, if the next layout is incremental, the links preserve the connection side
and the general shape calculated by a previous layout, except if one of their end nodes has
been moved or resized.

In the long link mode, a new route is searched for the links that are no longer on the grid
or that overlap with nodes. The shape and the connection side of the rerouted links can
change completely. However, links that are already on the grid and do not overlap nodes
or other links are not rerouted in incremental mode. It is also possible to specify which link
must be rerouted by the next incremental layout even though the layout has not changed.

Example of specifying which link must be rerouted by the next incremental layout (Link Layout
algorithm)
To select an individual link to be used for incremental rerouting:

In CSS
Write a rule to select the link:

#link1 {

U S I N G G R A P H L A Y O U T A L G O R I T H M S328

MarkForIncremental: "true";
}

In Java
Use the method:

void markForIncremental(Object link);

Intergraph link routing (LL)
A nested graph is a graph with nodes that are subgraphs. In a nested graph, normal links
and intergraph links can occur (see Nested managers and nested graphers in Advanced
Features of JViews Framework). Normally, both end nodes of a link belong to the same
subgraph. Intergraph links are those links whose end nodes belong to different subgraphs.
Intergraph links belong to the lowest common grapher in the nesting structure that contains
both end nodes. The following figure shows a nested graph with blue normal links and red
intergraph links.

Nested Graph With Normal Links (blue) and Intergraph Links (red)

By default, the Link Layout routes both the normal links and the intergraph links.

Example of routing only normal links (Link Layout algorithm)
In order to route only normal links, disable intergraph link routing:

In CSS
Add to the LinkLayout section:

interGraphLinksMode : "false" ;

In Java™
Call:

layout.setInterGraphLinksMode(false);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 329

Example of routing intergraph and/or normal links (Link Layout algorithm)
If the intergraph links mode is enabled, you can select whether only the intergraph links
are routed, or whether the intergraph links and the normal links are routed at the same
time.

In CSS
If you set:

combinedInterGraphLinksMode : "false";

the next layout routes the intergraph links but does not reshape any normal links.

If you set:

combinedInterGraphLinksMode : "true"

the next layout routes both the normal links and the intergraph links.

In Java
If you call:

layout.setCombinedInterGraphLinksMode(false);

the next layout routes the intergraph links but does not reshape any normal links. If you
call:

layout.setCombinedInterGraphLinksMode(true);

the next layout routes both the normal links and the intergraph links.

When the intergraph links mode is enabled, the layout cannot route the links incrementally
(see Incremental mode (LL)) and the layout animation is disabled (see Animation).

Notice that the layout routes only those links that belong to the attached graph. In a nested
graph, each subgraph is attached to a different layout instance. Therefore, when starting a
normal (nonrecursive) layout for the top-level graph (see Nested Graph With Normal Links
(blue) and Intergraph Links (red)) not all links are routed that are shown in this figure, but
only those links that belong to the top-level graph.

The following figure shows two situations: the yellow subgraph indicates the subgraph where
the nonrecursive layout is currently applied, and color of the links indicate which links are
currently routed. Depending on the intergraph links mode, the red and/or blue links are
routed, but the grey links are not reshaped.

U S I N G G R A P H L A Y O U T A L G O R I T H M S330

Routed Link in a Nested Graph when Layout is Performed for the Yellow Subgraph

To route all links of a nested graph, you need to apply the Link Layout recursively. Details
of the recursive layout mechanism are explained in Recursive layout. For instance:

layout.setInterGraphLinksMode(true);
layout.performLayout(force, redraw, true);

routes the intergraph links recursively in all subgraphs. If you use a layout provider (a class
that implements the interface IlvLayoutProvider), you need to set the intergraph links
mode for all subgraphs explicitly:

IlvLayoutProvider layoutProvider = ...
// first, set the intergraph mode for all layouts
Enumeration e = graphModel.getLayouts(layoutProvider, true);
while (e.hasMoreElements()) {

IlvGraphLayout layout = (IlvGraphLayout) e.nextElement();
if (layout instanceof IlvLinkLayout)

((IlvLinkLayout) layout).setInterGraphLinksMode(true);
}
// then perform layout recursively using the provider
graphModel.performLayout(layoutProvider, force, redraw, true);

If you want to recursively perform the intergraph link routing in combination with a layout
that places the nodes or that arranges labels, we recommend that you use an instance of
the class IlvMultipleLayout to encapsulate the Link Layout and the other layouts, and
then perform the Multiple Layout recursively all at once. For details, see Recursive layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 331

Spacing parameters in short link mode

Since the short link mode places the links freely in the space, only two parameters are
necessary to control the spacing: the minimal distance between links and the minimal length
of the final segment.

Spacing Parameters for the Short Link Mode shows the spacing parameters used in the
short link mode.

Spacing Parameters for the Short Link Mode

Link offset
The layout algorithm computes the final connecting segments of the links (that is, the
segments near the origin and destination nodes) to obtain parallel lines spaced at a
user-defined distance. In short link mode, the algorithm takes into account the width of the
links when computing the offset.

U S I N G G R A P H L A Y O U T A L G O R I T H M S332

Example of specifying link offset (Link Layout algorithm)
To specify the offset:

In CSS
Add to the LinkLayout section:

layoutMode : "SHORT_LINKS";
linkOffset : "3.00";

In Java™
Use the method:

void setLinkOffset(float offset)

The offset is measured from the border of one link to the nearest border of the other link.
Therefore, if the specified offset is zero, the border of a link touches the border of its neighbor
link.

Minimum final segment length
You can specify a minimum value for the length of the final connecting segments of the links
(that is, the segments near the origin and destination nodes).

Example of specifying minimum final segment length (Link Layout algorithm)
In CSS
Add to the LinkLayout section:

layoutMode : "SHORT_LINKS";
minFinalSegmentLength : "15.0";

In Java
Use the method:

void setMinFinalSegmentLength(float length)

Connector style
The layout algorithm positions the end points of links (the connector pins) at the nodes
automatically. The connector style parameter specifies how these end points are calculated.

Connector styles

U S I N G G R A P H L A Y O U T A L G O R I T H M S 333

The layout algorithm provides two connector styles. You can set the connector style globally,
in which case all the nodes (hence, all the links) have the same kind of connector style, or
locally on each node (that is, for all the links connected to the node), in which case different
connector styles occur in the same drawing.

Global connector style
Example of specifying the global connector style (Link Layout algorithm)
To specify the global connector style:

In CSS
Add to the LinkLayout section:

globalConnectorStyle: "EVENLY_SPACED_PINS";

In Java
Use the following method:

void setGlobalConnectorStyle(int style);

The valid values for style are:

♦ IlvShortLinkLayout.FIXED_OFFSET_PINS

The connection pins are spaced along the node border at a distance equal to the link
offset parameter. See Spacing Parameters for the Short Link Mode as an example.

♦ IlvShortLinkLayout.EVENLY_SPACED_PINS

The connector pins are evenly spaced along the node border, preserving a margin which
is determined by the evenlySpacedPinsMarginRatio parameter (see the accessor
getEvenlySpacedPinsMarginRatio()). See Spacing Parameters for the Short Link Mode
as an example.

♦ IlvShortLinkLayout.AUTOMATIC_PINS (the default)

Uses the connector style FIXED_OFFSET_PINS except if this pushes a connection point
outside the border the link is attached to, in which case it uses the connector style
EVENLY_SPACED_PINS. See Spacing Parameters for the Short Link Mode as an example.

♦ IlvShortLinkLayout.MIXED_STYLE

Each node can have a different connector style. The style of each individual node can be
set to have different connector styles occurring on the same graph.

In CSS, you omit the prefix IlvShortLinkLayoutwhen specifying the value of the connector
style.

Individual connector style
All nodes have the same connector style unless the global connector style is
IlvShortLinkLayout.MIXED_STYLE. Only when the global connector style is set to
MIXED_STYLE can each node have an individual connector style.

Example of specifying individual node connector style (Link Layout algorithm)
To specify the connector style of an individual node:

U S I N G G R A P H L A Y O U T A L G O R I T H M S334

In CSS
Specify a rule that selects the node, for instance:

LinkLayout {
globalConnectorStyle : "MIXED_STYLE";

}
#node1
{
ConnectorStyle : "EVENLY_SPACED_PINS";

}

In Java
Use the following methods:

void setConnectorStyle(Object node, int style);

int getConnectorStyle(Object node);

The valid values for style are:

♦ IlvShortLinkLayout.FIXED_OFFSET_PINS

♦ IlvShortLinkLayout.EVENLY_SPACED_PINS

♦ IlvShortLinkLayout.AUTOMATIC_PINS (the default).

The default value is 10.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 335

Spacing parameters in long link mode

The long link mode places the links on a grid. Four parameters control the grid offsets and
five parameters control the spacing of links in relation to other objects. Spacing parameters
for the long link mode shows the spacing parameters used in the long link mode.

Spacing parameters for the long link mode

U S I N G G R A P H L A Y O U T A L G O R I T H M S336

Grid offset parameters
The grid offset parameters control the spacing between grid lines. Links are routed such
that the center of the orthogonal link segments are on the grid lines. The grid offsets should
be set to a value larger than the largest link width value to avoid links that visually overlap.

Example of specifying grid offset parameters (Link Layout algorithm)
To set the horizontal and vertical grid offset:

In CSS
Add these statements to the LinkLayout section:

horizontalGridOffset : "5.0";
verticalGridOffset : "5.0";

In Java
In Java™ , use the methods:

void setHorizontalGridOffset(float offset);

void setVerticalGridOffset(float offset);

The grid offset is the critical parameter for the long link mode. If the grid offset is too large,
there may be no grid lines between nodes even though some free space exists between the
nodes. In this case, the link routings cannot use the free space. However, if the grid offset
is too small, the algorithm needs a long time to traverse the grid.

Grid base parameters
Sometimes it is necessary to shift the whole grid by a small amount because the nodes are
not aligned on the grid. For instance, to have grid lines at positions 3, 13, 23, 33, and so on,
you can set the grid offset to 10 and the grid base to 3.

Example of specifying grid base parameters (Link Layout algorithm)
To adjust the grid base:

In CSS
Add these statements to the LinkLayout section:

horizontalGridBase : "3.0";
verticalGridBase : "3.0";

In Java
Use the methods:

void setHorizontalGridBase(float coordinate);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 337

void setVerticalGridBase(float coordinate);

Minimum distance parameters
The minimum distance controls how closely a link can be placed to the border of a node that
needs to be bypassed. If the node border is not aligned to the grid, the minimum distance
specifies the next grid line close to the border that can be used. For instance, if a node
covers the x-coordinates 25 to 65 on a grid with offset 10 and base 0, the next grid lines
used to bypass the node would normally be at 20 and 70. If you specify a minimum distance
of 8, these grid lines are too close to the node and then the grid lines at 10 and 80 would
be used.

Example of specifying minimum distance parameters (Link Layout algorithm)
To set the minimum distance:

In CSS
Add these statements to the LinkLayout section:

horizontalMinOffset : "10.25";
verticalMinOffset : "10.25";

In Java
Use the methods:

void setHorizontalMinOffset(float offset);

void setVerticalMinOffset(float offset);

Minimum node corner offset parameter
The minimum corner offset is the minimum distance between a node corner and a link that
connects to the node. This parameter is used to avoid having a link that connects exactly to
the corner or outside the border of the node (see Minimal corner offset).

Example of specifying minimum node corner offset parameter (Link Layout algorithm)
To set the minimum corner offset:

In CSS
Add to the LinkLayout section:

minNodeCornerOffset : "5.2";

In Java
Use the method:

void setMinNodeCornerOffset(float offset);

U S I N G G R A P H L A Y O U T A L G O R I T H M S338

Minimal corner offset

Minimum final segment length
As with the short link mode, the long link mode respects the minimum value for the length
of the final connecting segments of the links.

Example of specifying minimum final segment length (Link Layout algorithm)
To set the minimal length of the final segment:

In CSS
Add to the LinkLayout section:

minFinalSegmentLength : "15.0";

In Java
Use the method:

void setMinFinalSegmentLength(float length)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 339

For experts: additional features of LL

Using a node-side filter
Some applications require that links are not connected to specific sides of certain nodes.
The Link Layout algorithm allows you to restrict to which node side a link can connect by
using a node-side filter. A node-side filter is any class that implements the interface
IlvNodeSideFilter. This interface defines the following method:.

public boolean accept(IlvGraphModel graphModel,
Object link,
boolean origin,
Object node,
int side);

This method allows you to let the input link to connect its origin or destination to the input
side of the input node.

As an example, assume that the application requires that for end nodes of type
IlvShadowRectangle, links can connect their origin only at the top and bottom side.

For end nodes of type IlvReliefRectangle, links can connect their destination only at the
left and right side. You can obtain this result with the following node-side filter:

class MyFilter implements IlvNodeSideFilter
{

public boolean accept(IlvGraphModel graphModel,
Object link,
boolean origin,
Object node,
int side)

{
if (node instanceof IlvShadowRectangle && origin)

return(side == IlvDirection.Top || side == IlvDirection.Bottom);
if (node instanceof IlvReliefRectangle && !origin)

return(side == IlvDirection.Left || side == IlvDirection.Right);
return true;

}
}

Example of setting node-side filter (Link Layout algorithm)
To set this node-side filter:

In CSS
SDM allows you to specify the node-side constraints using the NodeSideForOrigin and
NodeSideForDestination properties. For more information, see Per-object properties of
the LinkLayout renderer in Developing with the JViews Diagrammer SDK.

In Java
In Java™ , call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S340

layout.setNodeSideFilter(new MyFilter());

To remove the node-side filter, call:

layout.setNodeSideFilter(null);

Using a node box interface
Some applications require that effective area of a node is not exactly its bounding box. For
instance, if the node has a shadow, the shadow is included in the bounding box. However,
the shadow may not be considered as an obstacle for the links. In this case, the effective
bounding box of a node is smaller than the bounding box returned by IlvGraphic.
boundingBox.

Example of using a node box interface (Link Layout algorithm)
In CSS
It is not possible to set the node box interface.

In Java™
You can modify the effective bounding box of a node by implementing a class that implements
the IlvNodeBoxInterface.

This interface defines the following method:

public IlvRect getBox(IlvGraphModel graphModel, Object node);

This method allows you to return the effective bounding box. For instance, to set a node box
interface that returns a smaller bounding box for all nodes of type IlvShadowRectangle,
call:

layout.setNodeBoxInterface(new IlvNodeBoxInterface() {
public IlvRect getBox(IlvGraphModel graphModel, Object node) {

IlvRect rect = graphModel.boundingBox(node);
if (node instanceof IlvShadowRectangle) {

// need a rect that is 4 units smaller
rect.resize(rect.width-4.f, rect.height-4.f);

}
return rect;

}
});

Using a link connection box interface
By default, the connection points of the links are distributed on the border of the bounding
box of the nodes. Sometimes, it may be necessary to place the connection points on a
rectangle that is smaller or larger than the bounding box. For instance, this can happen
when labels are displayed below or above nodes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 341

Example of using a link connection box interface to modify position of connection points (Link
Layout algorithm)
In CSS
It is not possible to set the link connection box interface.

In Java
You can modify the position of the connection points of the links by implementing a class
that implements the IlvLinkConnectionBoxInterface. This is a subinterface of
IlvNodeBoxInterface (see Using a node box interface). It defines again the method:

public IlvRect getBox(IlvGraphModel graphModel, Object node);

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

Additionally, the interface IlvLinkConnectionBoxInterface defines a second method:

public float getTangentialOffset(IlvGraphModel graphModel, Object node, int
nodeSide);

This method is used only in the short link mode. For details, see Using a link connection box
interface. When using the Link Layout in long link mode, just implement the method by
returning the value 0.

U S I N G G R A P H L A Y O U T A L G O R I T H M S342

For experts: special options of the Short LL

The Link Layout algorithm utilizes the class IlvShortLinkLayout as a subalgorithm.
IlvShortLinkLayout is a subclass of IlvGraphLayout and can be used a stand-alone as
well. To access the instance of IlvShortLinkLayout that is used by the Link Layout algorithm,
call:

IlvShortLinkLayout getShortLinkLayout();

Using this accessor, you can control many special features of the Short Link Layout that are
not made available by the IlvLinkLayout class because these features are for experts only.

Self-link style
Self-links are links whose origin and destination is the same node. The Short Link Layout
provides two optional shapes for self-links.

Self-link Style Options

Example of setting the style of the self-links (Link Layout algorithm)
To set the style of the self-links:

In CSS
Add to the LinkLayout section:

layoutMode : "SHORT_LINKS";
globalSelfLinkStyle : "TWO_BENDS_ORTHOGONAL_STYLE";

In Java™
Call layout.getShortLinkLayout(). setGlobalSelfLinkStyle(int)

The valid values for style are:

♦ IlvShortLinkLayout.TWO_BENDS_ORTHOGONAL_STYLE

♦ IlvShortLinkLayout.THREE_BENDS_ORTHOGONAL_STYLE

U S I N G G R A P H L A Y O U T A L G O R I T H M S 343

Number of optimization iterations
The link shape optimization is stopped if the time exceeds the allowed time (see Allowed
time (LL)) or if the number of iterations exceeds the allowed number of iterations.

Example of specifying the number of optimization iterations (Link Layout algorithm)
To set the allowed number of iterations to 3:

In CSS
Add to the LinkLayout section:

layoutMode : "SHORT_LINKS";
allowedNumberOfIterations : "3";

In Java
Call:

layout.getShortLinkLayout().setAllowedNumberOfIterations(3);

You may want to disable the link shape optimization by setting the number of iterations
to zero to increase the speed of the layout process.

Note:

Evenly spaced pins margin ratio
The margin ratio allows you to customize the way connection points are computed when the
connector style (seeConnector style) is EVENLY_SPACED_PINS, and when the AUTOMATIC_STYLE
places the connection points using the EVENLY_SPACED_PINS style. This option has no effect
if the connector style FIXED_OFFSET_PINS is used.

In the “evenly spaced pins” connector style, the connection points of the links are evenly
spaced along the node border, preserving a margin to each extremity of the node border.
The size of this margin is controlled by the margin ratio and is computed by multiplying the
offset between the links by the ratio.

Example of specifying margin ratio (Link Layout algorithm)
To specify this option

In CSS
Add to the LinkLayout section:

layoutMode: "SHORT_LINKS";
evenlySpacedMarginRatio: "0.2";

In Java
Call layout.getShortLinkLayout(). setEvenlySpacedPinsMarginRatio(float)

The input value must be a positive or zero value. The default value is 0.5. Evenly Spaced
Pins Margin Ratio shows examples of values with their meaning.

U S I N G G R A P H L A Y O U T A L G O R I T H M S344

Evenly Spaced Pins Margin Ratio
MeaningRatio value

No margin0

The margin is equal to half the offset between the links.0.5 (default value)

The margin is equal to the offset between the links.1

The margin is equal to twice the offset between the links.2

Link overlap nodes forbidden
This option allows you to ask the layout algorithm to avoid strictly to reshape links such that
they overlap some nodes. If overlaps are not forbidden, the algorithm tries to avoid overlaps
anyway, but may create overlaps, for instance for the link to cross other links.

Forbidding overlaps may slow down the layout and may increase the number of bends
for those links that would overlap nodes if overlaps were not strictly forbidden.

Note:

Example of specifying link overlap nodes forbidden (Link Layout algorithm)
To specify this option:

In CSS
Add to the LinkLayout section:

layoutMode: "SHORT_LINKS";
linkOverlapNodesForbidden: "true";

In Java
Call

layout.getShortLinkLayout(). setLinkOverlapNodesForbidden(boolean)

The default value of this option is false.

When overlaps are forbidden, the Short Link Layout algorithm uses the Long Link Layout
as an auxiliary algorithm for laying out only the links that would otherwise overlap nodes.

Example of specifying Long Link Layout when overlaps forbidden (Link Layout algorithm)
To retrieve the auxiliary instance of Long Link Layout:

In CSS
It is not possible to access the auxiliary Long Link Layout, nor to tailor this auxiliary Long
Link Layout.

In Java
Call this method on the IlvShortLinkLayout instance:

IlvLongLinkLayout getAuxiliaryLongLinkLayout()

U S I N G G R A P H L A Y O U T A L G O R I T H M S 345

This method allows you to get this auxiliary layout instance and to customize its parameters
if needed. Notice that you should neither modify the origin and destination point mode, nor
disable the preservation of fixed links. Notice also that an IlvGraphModel instance is attached
to the IlvLongLinkLayout instance only if needed, therefore the method
getAuxiliaryLongLinkLayout().getGraphModel() may return null.

Incremental link reshape mode
In incremental mode, it is possible to customize the rules used by the Short Link Layout to
determine which links should keep their current shape as much as possible, as computed
by the previous layout execution. The incremental link reshape mode allows you to customize
these rules separately for two categories of links. See the methods:

IlvShortLinkLayout.getLinkConnectionBoxInterface()

and

IlvShortLinkLayout.getNodeBoxInterface()

♦ The “modified links”: the links that have either a different “link connection box” or are
connected to nodes which have a different bounding box as during the previous layout
execution.

♦ The “unmodified links”: the links that have the same “link connection box” and are
connected to nodes which have the same bounding box as during the previous layout
execution.

The mode can be customized either for both or for only one of these categories of links.

The incremental link reshape mode has no effect if the incremental mode is disabled.

The layout algorithm provides two incremental link reshape modes. You can set the mode
globally, in which case all the links have the same mode, or locally on each link, in which
case different modes occur in the same drawing.

Global incremental link reshape mode
Example of specifying global incremental link reshape mode (Link Layout algorithm)
To specify the global incremental link reshape mode:

In CSS
Add, for instance, these statements to the LinkLayout section:

globalIncrementalModifiedLinkReshapeMode: "FIXED_NODE_SIDES_MODE";
globalIncrementalUnmodifiedLinkReshapeMode: "FIXED_SHAPE_TYPE_MODE";

In Java
Use the following methods:

layout.getShortLinkLayout(). setGlobalIncrementalModifiedLinkReshapeMode

layout.getShortLinkLayout(). setGlobalIncrementalUnmodifiedLinkReshapeMode

The valid values for mode are:

U S I N G G R A P H L A Y O U T A L G O R I T H M S346

♦ IlvShortLinkLayout.FIXED_SHAPE_TYPE_MODE (the default)

The incremental layout preserves the shape type of the link. This means that both the
number of bends and the node sides to which the link is connected are preserved.

♦ IlvShortLinkLayout.FIXED_NODE_SIDES_MODE

The incremental layout preserves the node sides to which the links are connected.

♦ IlvShortLinkLayout.FIXED_CONNECTION_POINTS_MODE

The incremental layout preserves the connection points of the links.

♦ IlvShortLinkLayout.FIXED_MODE

The links are not reshaped at all during incremental layout. Only newly added links are
rerouted.

♦ IlvShortLinkLayout.FREE_MODE

The incremental layout is allowed to freely reshape the links. This is equivalent to a
non-incremental behavior for all the links, hence it is recommended to disable the
incremental mode instead of using FREE_MODE as global incremental reshape mode.

Of course, the settings that may have been done by “fixing” links (see Preserve fixed links
(LL)) or by customizing the origin or destination point mode (see End points mode (LL))
are still respected.

♦ IlvShortLinkLayout.MIXED_MODE

Each link can have a different mode.

In CSS, you can omit the prefix IlvShortLinkLayoutwhen specifying the value of the mode.

Individual incremental link reshape mode
All links have the same incremental link reshape mode unless the global incremental link
reshape mode is IlvShortLinkLayout.MIXED_MODE. Only when the global mode is set to
MIXED_MODE can each link have an individual mode.

Example of specifying individual incremental link reshape mode (Link Layout algorithm)
To specify the mode of an individual link:

In CSS
Write a rule that selects the link, for instance:

LinkLayout {
layoutMode: "SHORT_LINKS";
globalIncrementalModifiedLinkReshapeMode: "MIXED_MODE";
globalIncrementalUnmodifiedLinkReshapeMode: "MIXED_MODE";

}
#link1{
IncrementalModifiedLinkReshapeMode: "FIXED_NODE_SIDES_MODE";
IncrementalUnmodifiedLinkReshapeMode: "FIXED_SHAPE_TYPE_MODE";

}

In Java
Use the following methods on the IlvShortLinkLayout instance:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 347

void setIncrementalModifiedLinkReshapeMode(Object link, int mode);

void setIncrementalUnmodifiedLinkReshapeMode(Object link, int mode);

int getIncrementalModifiedLinkReshapeMode(Object link);

int getIncrementalUnmodifiedLinkReshapeMode(Object link);

The valid values for mode are:

♦ IlvShortLinkLayout.FIXED_SHAPE_TYPE_MODE (the default)

♦ IlvShortLinkLayout.FIXED_NODE_SIDES_MODE

♦ IlvShortLinkLayout.FIXED_CONNECTION_POINTS_MODE

♦ IlvShortLinkLayout.FREE_MODE

♦ IlvShortLinkLayout.FIXED_MODE

Same shape for multiple links
You can force the layout algorithm to compute the same shape for all the links having common
origin and destination nodes. The links will have parallel shapes.

When this option is disabled, the layout is free to compute different shapes for links
connecting the same pair of nodes. Generally, different shapes are chosen to avoid some
overlaps.

Self-link style options

Example of specifying same shape for multiple links (Link Layout algorithm)
To enable same shape for multiple links:

In CSS
Add to the LinkLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S348

layoutMode: "SHORT_LINKS";
sameShapeForMultipleLinks : "true";

In Java
Use the method:

layout.getShortLinkLayout().setSameShapeForMultipleLinks(true);

The default value is false.

Link crossing penalty
The computation of the shape of the links is driven by the objective to minimize a cost
function, which is proportional to the number of link-to-link crossings and link-to-node
crossings. By default, these two types of crossings have equal weights of 1. You can increase
the weight of the link-to-node crossings.

Example of specifying link-to-node crossing penalty (Link Layout algorithm)
To increase the weight of the link-to-node crossings:

In CSS
Add to the LinkLayout section:

layoutMode: "SHORT_LINKS";
linkToNodeCrossingPenalty : "5.0";

In Java
Use the method:

layout.getShortLinkLayout().setLinkToNodeCrossingPenalty(5.f);

This increases the possibility of obtaining a layout with no link-to-node crossings (or with
only a few crossings), with the expense that there may be more link-to-link crossings.

Alternatively, you can increase the weight of the link-to-link crossings.

Example of specifying link-to-link crossing penalty (Link Layout algorithm)
To increase the weight of the link-to-link crossings,for instance, to a value of 3s:

In CSS
Add to the LinkLayout section:

layoutMode: "SHORT_LINKS";
linkToLinkCrossingPenalty : "3.0";

In Java
Use the method:

layout.getShortLinkLayout().setLinkToLinkCrossingPenalty(3.f);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 349

This increases the possibility of obtaining a layout with no link-to-link crossings (or with
only a few crossings), with the expense that there may be more link-to-node crossings.

Bypass distance
If the origin and destination nodes are too close, there may not be enough space for routing
the link directly between the end nodes. Therefore, by default, if the end nodes are closer
than a threshold distance, the layout chooses link shapes that bypass the interval between
close nodes. (See End nodes and bypass distance.)

End nodes and bypass distance

The bypass distance is the minimum distance between the origin and destination nodes for
which a link shape going directly from one node to another is allowed. The algorithm tries
to avoid link shapes that connect directly the sides of the end nodes that are closer than the
bypass value.

Example of specifying the bypass distance (Link Layout algorithm)
To set the bypass distance:

In CSS
Add to the LinkLayout section:

layoutMode: "SHORT_LINKS";
bypassDistance : "3.0";

In Java
Call

void setBypassDistance(float dist)

The default value is a strictly negative value. If the bypass distance is strictly negative, the
value of the minimum final segment length (seeMinimum final segment length) parameter
is used as the bypass distance. This allows the automatic adjustment of the bypass distance
according to the current value of the minimum final segment length. This behavior is suitable
in most cases. However, you can specify a non-negative value to override the default behavior.

Using a link connection box interface
By default, the connection points of the links are distributed on the border of the bounding
box of the nodes, symmetrically with respect to the middle of each side. Sometimes, it may

U S I N G G R A P H L A Y O U T A L G O R I T H M S350

be necessary to place the connection points on a rectangle smaller or larger than the
bounding box, eventually in a nonsymmetric way. For instance, this can happen when labels
are displayed below or above nodes.

Example of using a link connection box interface to modify the position of the connection points
(Link Layout algorithm)
You can modify the position of the connection points of the links by implementing a class
that implements the IlvLinkConnectionBoxInterface.

In CSS
It is not possible to set the link connection box interface.

In Java
This interface defines the following method:

public IlvRect getBox(IlvGraphModel graphModel, Object node);

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

A second method defined on the interface allows the connection points to be “shifted”
tangentially, in a different way for each side of each node:

public float getTangentialOffset(IlvGraphModel graphModel, Object node, int
nodeSide);

For instance, to set a link connection box interface that returns a link connection rectangle
that is smaller than the bounding box for all nodes of type MyNodeEditPart and shifts up
the connection points on the left and right side of all the nodes, call:

layout.setLinkConnectionBoxInterface(new IlvLinkConnectionBoxInterface() {
public IlvRect getBox(IlvGraphModel graphModel, Object node) {

IlvRect rect = graphModel.boundingBox(node);
if (node instanceof MyNodeEditPart) {

// for example, the size of the bounding box is reduced by 4 units

rect.resize(rect.width-4.f, rect.height-4.f);
}
return rect;

}
public float getTangentialOffset(IlvGraphModel graphModel,

Object node, int nodeSide) {
switch (nodeSide) {
case IlvDirection.Left:
case IlvDirection.Right:
return -10; // shift up with 10 for both left and right side

case IlvDirection.Top:
case IlvDirection.Bottom:
default:
return 0; // no shift for top and bottom side

}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 351

}
});

Self-link Style Options shows the effects of customizing the connection box. On the left is
the result using the default settings: the connection points are distributed on the bounding
box of the node (which includes the label) and are symmetric with the middle of each node
side (including the label). On the right, is the result after specifying a link connection box
interface. On the bottom side of the nodes, the links are now connected to the node (passing
over the label), while on the left and right side the nodes are now symmetric to the middle
of the node (without the label).

Customization of the link connection box

U S I N G G R A P H L A Y O U T A L G O R I T H M S352

For experts: special options of the Long LL

The Link Layout algorithm utilizes the class IlvLongLinkLayout as subalgorithm.
IlvLongLinkLayout is a subclass of IlvGraphLayout and can be used a stand-alone as well.
To access the instance of IlvLongLinkLayout that is used by the Link Layout algorithm, use
the method:

IlvLongLinkLayout getLongLinkLayout();

Using this accessor, you can control many special features of the Long Link Layout that are
not made available by the IlvLinkLayout class because these features are for experts only.

Specifying additional obstacles
The Long Link Layout algorithm considers nodes to be obstacles that cannot be overlapped
and links to be obstacles that can be crossed at an angle of 90 degree (approximately, if the
link style is direct), but that cannot be overlapped.

Crossings and Overlappings

Example of specifying additional obstacles (Link Layout algorithm)
If an application requires additional obstacles that are not links or nodes, these can be
specified as follows:

In CSS
It is not possible to specify additional obstacles in CSS.

In Java™
Call:

layout.getLongLinkLayout(). addRectObstacle(ilog.views.IlvRect)

layout.getLongLinkLayout(). addLineObstacle(ilog.views.IlvRect)

layout.getLongLinkLayout(). addLineObstacle

Rectangular obstacles behave like nodes: links cannot overlap the rectangles. Line obstacles
behave like link segments: other links can cross the line segments, but cannot overlap the
segments. These obstacle settings can be removed by the following:

layout.getLongLinkLayout(). removeAllRectObstacles()

layout.getLongLinkLayout().

U S I N G G R A P H L A Y O U T A L G O R I T H M S 353

removeAllLineObstacles()

Penalties for variable end points
If the termination points of the links are not fixed, the algorithm uses a heuristic to calculate
the termination points of each link. It examines all free grid points that are close to the
border of the start and end node and assigns a penalty to each grid point. If a node-side
filter is installed, the penalty depends on whether the node side is allowed or rejected.

A more precise way to affect how the termination points are chosen is the termination point
filter. This enables the user to specify the penalty for each grid point.

Example of specifying the termination point filter (Link Layout algorithm)
In CSS
It is not possible to specify the termination point filter in CSS.

In Java
A termination point filter is a class that implements the interface IlvTerminationPointFilter
that defines the following method:

public int getPenalty(IlvGraphModel graphModel, Object link,
boolean origin, Object node, IlvPoint point,
int side, int proposedPenalty);

To select the origin or destination point of the input link, the input point (a grid point on
the input side of the node) is examined. The proposedPenalty is calculated by the default
heuristic of the algorithm. You can return a changed penalty or you can return java.lang.
Integer.MAX_VALUE to reject the grid point. If the grid point is rejected, it is not chosen as
termination point of the link.

The termination point filter can be set as follows:

Call on the IlvLongLinkLayout instance: setTerminationPointFilter

Manipulating the routing phases
As mentioned in Long Link Layout algorithm, the algorithm first treats each link individually
and then applies a crossing reduction phase to all links. To find a route for an individual
link, the algorithm first checks whether a routing (such as a straight line or with only one
bend) is possible. If this kind of routing is not possible, it uses a sophisticated, but more
time consuming, grid search algorithm with backtracking to find a route with many bends.

Example of manipulating the routing phases (Link Layout algorithm)
To switch off the phase that finds a straight-line or one-bend routing:

In CSS
Add to the LinkLayout section:

layoutMode: "LONG_LINKS";
straightRouteEnabled: "false";

In Java
Call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S354

layout.getLongLinkLayout(). setStraightRouteEnabled(boolean)

The backtrack search for a route with many bends can be affected in the several ways.

A more convenient way is to specify the maximum time available to search for the route for
each link.

Example of specifying backtrack steps (Link Layout algorithm)
You can specify the maximum number of backtrack steps by using the following:

In CSS
Add to the LinkLayout section:

layoutMode: "LONG_LINKS";
maxBackTrack: "1000";

In Java
In Java, call:

layout.getLongLinkLayout(). setMaxBacktrack(int)

The default maximum backtrack number is 30000.

Example of specifying maximal time for route search (Link Layout algorithm)
To specify the maximum time available to search for the route for each link.

In CSS

layoutMode: "LONG_LINKS";
allowedTimePerLink: "4000";

In Java
Call:

setAllowedTimePerLink(long)

The default allowed time per link is 2000 milliseconds (2 seconds).

Finally, you can specify howmany steps should be done during the crossing reduction phase.

Example of specifying number of steps in crossin reduction phase (Link Layout algorithm)
To specify how many steps should be done during the crossing reduction phase:

In CSS
Add to the LinkLayout section

layoutMode: "LONG_LINKS";
numberCrossingReductionIterations: "5";

In Java
Call

setNumberCrossingReductionIterations(int)

Example of disabling crossing reduction (Link Layout algorithm)
You can disable the crossing reduction completely by using the following:

In CSS
Add to the LinkLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 355

layoutMode: "LONG_LINKS";
crossingReductionEnabled: "false";

In Java
Call

setCrossingReductionEnabled(boolean)

Fallback mechanism
The Long Link Layout algorithm may not be able to find a routing for a link, if one of the
end nodes is inside an enclave. In A Node inside an enclave, the red node is inside an enclave.
In this case, the backtrack search algorithm fails to find a routing without overlapping nodes.
The backtrack search algorithm may also fail if the situation is so complex that the search
exceeds the allowed time per link.

A Node inside an enclave

When the backtrack search algorithm fails to find a routing, a simple fallback mechanism
is applied that creates a routing with node overlappings.

Example of disabling fallback mechanism (Link Layout algorithm)
To disable the fallback mechanism:

In CSS
Add to the LinkLayout section:

layoutMode: "LONG_LINKS";
fallbackRouteEnabled: "false";

In Java

layout.getLongLinkLayout().setFallbackRouteEnabled(false);

U S I N G G R A P H L A Y O U T A L G O R I T H M S356

If the fallback mechanism is disabled, these links are not routed at all and remain in the
same shape as before the layout. In Java code, you can retrieve the links that could not be
routed in the usual way without the fallback mechanism.

Example of retrieving links without the fallback mechanism (Link Layout algorithm)
To retrieve the links that, without the fallback mechanism, could not be routed in the usual
way :

In Java

Enumeration e = layout.getLongLinkLayout().getCalcFallbackLinks();

For instance, you can iterate over these links and apply your own specific fallback mechanism
instead of the default fallback mechanism of the Long Link Layout algorithm.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 357

U S I N G G R A P H L A Y O U T A L G O R I T H M S358

Random layout (RL)

Describes the Random Layout algorithm (class IlvRandomLayout from the package ilog.
views.graphlayout.random).

In this section

RL sample
Gives some samples of the random layout and explains where it is used.

Features and limitations of the RL
Gives a list of features and limitations.

The RL algorithm
Describes the placement of the nodes and gives samples of the specifications.

Generic features and parameters of the RL
Describes the generic features and parameters of the layout.

Specific parameters of the RL
Describes the parameters that are specific to the IlvRandomLayout class:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 359

RL sample

The following figure shows a sample drawing produced with the Random Layout (RL).

Graph drawing produced with the Random Layout

What types of graphs suit the RL?
Any type of graph:

♦ connected graphs and disconnected graphs

♦ planar graphs and nonplanar graphs

U S I N G G R A P H L A Y O U T A L G O R I T H M S360

Features and limitations of the RL

Features
Random placement of the nodes of a grapher inside a given region.

Limitations

♦ The algorithm computes random coordinates for the upper-left corner of the graphic
objects representing the nodes. In some cases, this may not be appropriate.

♦ To ensure that the nodes do not overlap the margins of the layout region, the algorithm
computes the coordinates randomly inside a region whose width and height are smaller
than the width and height of the layout region. The difference is the maximum width and
the maximum height of the nodes, respectively. In some cases, this may not be appropriate.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 361

The RL algorithm

The Random Layout (RL) algorithm is not really a layout algorithm. It simply places the
nodes at randomly computed positions inside a user-defined region. Nevertheless, the
Random Layout algorithm may be useful when a random, initial placement is needed by
another layout algorithm or in cases where an aesthetic, readable drawing is not important.

Example of RL
In CSS
Below is a sample CSS specification using the Random Layout algorithm. The CSS
specification can be loaded as style file into an application that uses the IlvDiagrammer
class (see Graph layout in IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
linkStyle : "STRAIGHT_LINE_STYLE";

}

In Java™
The following code sample uses the IlvRandomLayout class. This code sample shows how
to perform a Random Layout on a grapher directly without using a diagram component or
any style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.random.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in here the grapher with nodes and links in */

IlvRandomLayout layout = new IlvRandomLayout();
layout.attach(grapher);
try {

IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

U S I N G G R A P H L A Y O U T A L G O R I T H M S362

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 363

Generic features and parameters of the RL

The IlvRandomLayout class supports the following generic parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

♦ Layout region (RL)

♦ Percentage of completion calculation (RL)

♦ Preserve fixed links (RL)

♦ Preserve fixed nodes (RL)

♦ Random generator seed value (RL)

♦ Save Parameters to Named Properties (RL)

♦ Stop immediately (RL)

The following sections describe the particular way in which these parameters are used by
this subclass.

Layout region (RL)
The layout algorithm uses the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass. (See Layout region.)

Percentage of completion calculation (RL)
The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of the layout. (For a detailed description of
this features, see Percentage of completion calculation and Graph layout event listeners.)

Preserve fixed links (RL)
The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.)

Preserve fixed nodes (RL)
The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.)

Random generator seed value (RL)
The Random Layout uses a random number generator to compute the coordinates. You can
specify a particular value to be used as a seed value. (See Random generator seed value)
For the default behavior, the random generator is initialized using the current system clock.
Therefore, different layouts are obtained if you perform the layout repeatedly on the same
graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S364

Save Parameters to Named Properties (RL)
The layout algorithm can save its layout parameters into named properties. This can be used
to save layout parameters to .ivl files. (For a detailed description of this feature, see Save
parameters to named properties and Saving layout parameters and preferred layouts.)

Stop immediately (RL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 365

Specific parameters of the RL

Link style (RL)
When the layout algorithm moves the nodes, straight-line links (such as instances of
IlvLinkImage) will automatically “follow” the new positions of their end nodes. If the grapher
contains other types of links (for example, IlvPolylineLinkImage or IlvSplineLinkImage),
the shape of the link may not be appropriate because the intermediate points of the link will
not be moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

Example of removing intermediate link points (RL algorithm)
To specify that the layout algorithm to automatically removes all the intermediate points of
the links (if any):

In CSS
Add to the GraphLayout section:

linkStyle : "STRAIGHT_LINE_STYLE ";

In Java™
Use the method:

void setLinkStyle(int style)

The valid values for style are:

♦ IlvRandomLayout.NO_RESHAPE_STYLE

None of the links is reshaped in any manner.

♦ IlvRandomLayout.STRAIGHT_LINE_STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

The layout algorithm may raise an IlvInappropriateLinkException if layout is
performed on an IlvGrapher, but inappropriate link classes or link connector classes
are used. See Layout exceptions for details and solutions to this problem.

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S366

Bus layout (BL)

Describes the Bus Layout algorithm (class IlvBusLayout from the package ilog.views.
graphlayout.bus).

In this section

BL - sample
Gives a sample of the Bus Layout (BL) and explains where it is used.

Features of the BL
Lists the features of the layout.

The BL algorithm
Describes the Bus Layout algorithm and gives samples of the specification.

Generic features and parameters of the BL
Lists the generic features and paramters of the Bus Layout (BL).

Specific parameters of the BL
Lists the specific parameters of the Bus Layout (BL).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 367

BL - sample

The following figure shows a sample drawing produced with the Bus Layout (BL).

Bus topology produced with the Bus Layout

What types of graphs suit the BL?

♦ Bus network topologies (a set of nodes connected to a bus object)

Application domains for the BL
Application domains of the Bus Layout include:

♦ Telecom and networking (LAN diagrams)

♦ Electrical engineering (circuit block diagrams)

♦ Industrial engineering (equipment/resource control charts)

U S I N G G R A P H L A Y O U T A L G O R I T H M S368

Features of the BL

♦ Displays bus topologies.

♦ Takes into account the size of the nodes so that no overlapping occurs.

♦ Provides several ordering, alignment, and flow direction options.

♦ Allows easy customization of the dimensional parameters.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 369

The BL algorithm

Bus topology is well known in network management and telecommunications fields. The
Bus Layout class can display these topologies nicely. It represents the “bus” as a “serpent”
polyline. The width of the “serpent” is user-defined (via the width of the layout region
parameter) and the height is computed so that enough space is available for all the nodes.

BL - CSS Sample
BL example
In CSS
Below is a sample CSS specification using the Bus Layout algorithm. Since the Bus Layout
places nodes and reshapes the links, it is usually not necessary to specify an additional link
layout in CSS. The CSS specification can be loaded as a style file into an application that
uses the IlvDiagrammer class (see Graph layout in IBM® ILOG® JViews Diagrammer.

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
graphLayout : "Bus";
flowDirection : "LEFT_TO_RIGHT";
nodeComparator: "DESCENDING_HEIGHT";

}

To be laid out by the Bus Layout, the graph needs to contain a bus node connected with
links to several other nodes. When you specify the Bus Layout in CSS, the data model must
respect this condition. Moreover, the CSS statements of the graphic objects used for the
nodes must specify a graphic object implementing the IlvPolyPointsInterface to allow
the Bus Layout to discover the bus node automatically when it is not explicitly specified (for
details, see Bus node (BL)). Typically, you can do this by specifying a node rule in which the
selector uses an attribute of the node in the data model that identifies the bus node.

In Java™
The following code sample uses the IlvBusLayout class. This code sample shows how to
perform a Bus Layout on a grapher directly without using a diagram component or any style
sheet:

...
import ilog.views.*;
import ilog.views.graphic.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.bus.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

U S I N G G R A P H L A Y O U T A L G O R I T H M S370

/* Create the bus node; the number of points and
the coordinates are not important */

IlvPoint[] points = {new IlvPoint(10, 10)};
IlvPolyline bus = new IlvPolyline(points);
grapher.addNode(bus, false);

... /* Fill in the grapher with links between each node
and the bus here */

IlvBusLayout layout = new IlvBusLayout();
layout.attach(grapher);

/* Specify the bus node */
layout.setBus(bus);

try {
IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 371

Generic features and parameters of the BL

The IlvBusLayout class supports the following generic parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

♦ Allowed time (BL)

♦ Layout of connected components (BL)

♦ Layout region (BL)

♦ Link clipping (BL)

♦ Preserve fixed links (BL)

♦ Preserve fixed nodes (BL)

♦ Stop immediately (BL)

Extra feature for JViews Diagrammer:

♦ Save parameters to named properties (BL)

The following sections describe the particular way in which these parameters are used by
this subclass.

Allowed time (BL)
The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed time.) The result code in the
layout report is IlvGraphLayoutReport.STOPPED_AND_INVALID.

Layout of connected components (BL)
The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components.)

Layout region (BL)
The layout algorithm uses the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass (See Layout region.)

The size of the layout is chosen with respect to the layout region (seeDimensional Parameters
for the Bus Layout Algorithm). The height of the layout region is not taken into account. The
height of the layout will be smaller or larger, depending on the number of nodes, the size
of the nodes, and the other specified parameters.

Link clipping (BL)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

U S I N G G R A P H L A Y O U T A L G O R I T H M S372

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the Bus Layout for details of the link clipping mechanism.

Preserve fixed links (BL)
The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.)

Preserve fixed nodes (BL)
The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.)

Save parameters to named properties (BL)
The layout algorithm can save its layout parameters into named properties. This can be used
to save layout parameters to .ivl files. (For a detailed description of this feature, see Save
parameters to named properties and Saving layout parameters and preferred layouts.)

Stop immediately (BL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 373

Specific parameters of the BL

The following parameters are specific to the IlvBusLayout class.

Order parameter (BL)
The order parameter specifies how to arrange the nodes.

Example of specifying node ordering option (BL algorithm)
To specify the ordering option for the nodes:

In CSS
Add to the GraphLayout section:

nodeComparator : "DESCENDING_HEIGHT";

In Java™
Use the method:

void setNodeComparator(Comparator comparator)

The valid values for comparator are:

♦ IlvBusLayout.DESCENDING_HEIGHT

The nodes are ordered in the descending order of their height.

♦ IlvBusLayout.ASCENDING_HEIGHT

The nodes are ordered in the ascending order of their height.

♦ IlvBusLayout.DESCENDING_WIDTH

The nodes are ordered in the descending order of their width.

♦ IlvBusLayout.ASCENDING_WIDTH

The nodes are ordered in the ascending order of their width.

♦ IlvBusLayout.DESCENDING_AREA

The nodes are ordered in the descending order of their area.

♦ IlvBusLayout.ASCENDING_AREA

The nodes are ordered in the ascending order of their area.

♦ IlvBusLayout.ASCENDING_INDEX

The nodes are ordered in the ascending order of their index (see setIndex(java.lang.
Object, int)).

♦ IlvBusLayout.DESCENDING_INDEX

U S I N G G R A P H L A Y O U T A L G O R I T H M S374

The nodes are ordered in the descending order of their index (see setIndex(java.lang.
Object, int)).

♦ null

The nodes are ordered in an arbitrary way.

♦ Any other implementation of the Comparator interface.

The nodes are ordered according to this custom comparator.

The default is null.

The ordering of the nodes starts at the upper-left corner of the bus.

Note that in incremental mode (see setIncrementalMode(boolean)) or when nodes are
fixed (see setFixed(java.lang.Object, boolean)), the order is not guaranteed to obey
the comparator, because it competes with the other constraints.

More about the ASCENDING_INDEX and DESCENDING_INDEX
options (BL)
These options allow you to specify the order of the nodes according to a user-defined index
value specified for each node. If this option is chosen, the algorithm sorts the nodes in
ascending order according to their index values.

Example of specifying index options (BL algorithm)
The index is an integer value associated with a node. To specify the index:

In CSS
Write a rule to select the node:

#node1 {
Index: "3";

}

In Java
Use the method:

void setIndex(Object node, int index)

The values of the indices cannot be negative. To obtain the current index of a node, use the
method:

int getIndex(Object node)

If no index is specified for the node, the value IlvBusLayout.NO_INDEX is returned.

The following table shows the ordering options for the Bus Layout algorithm.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 375

Examples of ordering options for the nodes for the Bus Layout algorithm
LayoutOrdering

No order

DESCENDING_HEIGHT

ASCENDING_INDEX

U S I N G G R A P H L A Y O U T A L G O R I T H M S376

Bus node (BL)
To represent bus topologies, the algorithm reshapes a special node, called the “bus node”,
and gives it a “serpent” form. This bus node must be an instance of the
IlvPolyPointsInterface class. Usually, you use its subclass IlvPolyline. Before performing
the layout, you must create this object and add it to the grapher as a node.

(The number of points in the object you create is not important.) Then, you must specify the
node as “bus node” using the method:

void setBus(IlvPolyPointsInterface bus)

If none is specified, the Bus layout automatically tries to find an appropriate node that can
be used as bus object.

The bus object must implement the interface IlvPolyPointsInterface and it must allow
the insertion and removal of points (see the methods allowsPointInsertion() and
allowsPointRemoval() defined by the interface). The initial number of points is not
significant.

When a bus object is specified or automatically discovered in an IlvGrapher, the appropriate
link connector is automatically installed on it. By default, the link connector is of type
IlvBusLinkConnector.

Usually, the class IlvPolyline is used for the bus object. The bus object must be added to
the IlvGrapher as a node (using the method addNode(ilog.views.IlvGraphic, boolean)).
The links between the bus and the nodes connected to the bus must be created before
performing the layout. (See the Java code provided in BL - CSS Sample.)

Link style (BL)
When the layout algorithm moves the nodes, straight-line links (such as instances of
IlvLinkImage) will automatically “follow” the new positions of their end nodes. If the grapher
contains other types of links (for example, IlvPolylineLinkImage or IlvSplineLinkImage),
the shape of the link may not be appropriate because the intermediate points of the link will
not be moved. In this case, you can specify that the layout algorithm automatically removes
all the intermediate points of the links (if any).

Example of specifying BL to automatically remove all intermediate points of the link (BL algorithm)
To specify that the layout algorithm automatically removes all the intermediate points of
the links (if any):

In CSS
Add to the GraphLayout section:

linkStyle : "STRAIGHT_LINE_STYLE";

In Java
Use the method:

void setLinkStyle(int style)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 377

The valid values for style are:

♦ IlvBusLayout.NO_RESHAPE_STYLE

None of the links are reshaped in any manner.

♦ IlvBusLayout.STRAIGHT_LINE_STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

The layout algorithm may raise an IlvInappropriateLinkException if layout is
performed on an IlvGrapher, but inappropriate link classes or link connector classes
are used. See Layout exceptions for details and solutions to this problem.

Note:

Flow direction (BL)
The flow direction options control the horizontal alignment of each row (bus level) with
respect to the left and right sides of the layout region. The rows can be either all left-aligned
on the left border of the layout region or can alternate between the left and right alignment.

Bus layout with left-to-right flow direction

Bus layout with alternate flow direction

Example of setting the flow direction (BL algorithm)
To set the flow direction:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S378

flowDirection : "ALTERNATE";

In Java
Use the method:

void setFlowDirection(int direction);

The valid values for direction are:

♦ IlvBusLayout.LEFT_TO_RIGHT (the default)

All the rows (bus levels) are left-aligned.

♦ IlvBusLayout.ALTERNATE

The even rows (bus levels) are left-aligned and the odd rows are right-aligned.

Maximum number of nodes per level (BL)
By default, the layout places as many nodes on each level as possible given the size of the
nodes and the dimensional parameters (layout region and margins). If needed, the layout
can additionally respect a specified maximum number of nodes per level (see Bus width
adjusting disabled and bounded number of nodes per level and Bus width adjusting enabled
and bounded number of nodes per level).

Example of setting the maximum number of nodes per level (BL algorithm)
To set the maximum number of nodes per level:

In CSS
Add to the GraphLayout section:

maxNumberOfNodesPerLevel : "5";

In Java
Use the method:

void setMaxNumberOfNodesPerLevel(int nNodes);

The default value is Integer.MAX_VALUE. This means that the number of nodes placed in
each level is only bounded by the size of the nodes and the dimensional parameters. The
specified value must be at least 1.

Bus width adjusting (BL)
By default, the width of the bus object, that is the difference between the maximum and
minimum x-coordinates, depends on the width of the layout region and the other dimensional
parameters (see Dimensional Parameters for the Bus Layout Algorithm). Optionally, the
width of the bus object can be automatically adjusted to the total width of the nodes, plus
the offsets and the margins. This option can be particularly useful in conjunction with the
customization of the maximum number of nodes per level (see Maximum number of nodes
per level (BL)).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 379

Bus width adjusting disabled and bounded number of nodes per level

Bus width adjusting enabled and bounded number of nodes per level

Example of enabling/disabling the bus width adjustment (BL algorithm)
To enable or disable bus width adjusting:

In CSS
Add to the graph layout section:

busWidthAdjustingEnabled: "true";

In Java
Use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S380

void setBusWidthAdjustingEnabled(boolean enable);

The bus width adjusting is disabled by default.

Bus line extremity adjusting (BL)
If necessary, the bus line can be adjusted to stop where the nodes stop (plus the margins).
This can make a difference when there is only one horizontal bus line, or when the flow
direction is ALTERNATE.

Bus Layout with bus line extremity disabled

U S I N G G R A P H L A Y O U T A L G O R I T H M S 381

Bus Layout with bus line extremity enabled

Example of enabling/disabling the bus line extremity adjustment (BL algorithm)
To enable or disable the adjustment of the bus line extremity:

In CSS
Add to the graph layout section:

busLineExtremityAdjustingEnabled: "true";

In Java
Use the method:

void setBusLineExtremityAdjustingEnabled (boolean enable);

The adjustment of the bus line extremity is disabled by default.

Alignment parameters (BL)
The alignment options control how a node is placed above its row (bus level). The alignment
can be set globally, in which case all nodes are aligned in the same way, or locally on each
node, with the result that different alignments occur in the same drawing.

Global alignment parameters
Example of setting global alignment (BL algorithm)
To set the global alignment:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S382

globalVerticalAlignment : "TOP";

In Java
Use the method:

void setGlobalVerticalAlignment(int alignment);

The valid values for alignment are:

♦ IlvBusLayout.CENTER (the default)

The node is vertically centered over its row (bus level).

♦ IlvBusLayout.TOP

The node is vertically aligned on the top of its row (bus level).

♦ IlvBusLayout.BOTTOM

The node is vertically aligned on the bottom of its row (bus level).

♦ IlvBusLayout.MIXED

Each node can have a different alignment. The alignment of each individual node can be
set with the result that different alignments can occur in the same graph.

Bus Layout with center vertical alignment

Bus Layout with top vertical alignment

U S I N G G R A P H L A Y O U T A L G O R I T H M S 383

Bus Layout with bottom vertical alignment

Alignment of individual nodes
All nodes have the same alignment unless the global alignment is set to IlvBusLayout.
MIXED. Only when the global alignment is set to MIXED can each node have an individual
alignment style.

Example of setting the alignment of an individual node (BL algorithm)
To set the alignment of an individual node:

In CSS
Write a rule to select the node:

GraphLayout {
globalVerticalAlignment : "MIXED";

}
#node1
{
VerticalAlignment : "BOTTOM ";

}

In Java
Use the methods:

void setVerticalAlignment(Object node, int alignment);

int getVerticalAlignment(Object node);

The valid values for node alignment are:

♦ IlvBusLayout.CENTER (the default)

♦ IlvBusLayout.TOP

♦ IlvBusLayout.BOTTOM

Node position (BL)
The nodes can be placed either above or below the corresponding bus line.

U S I N G G R A P H L A Y O U T A L G O R I T H M S384

Bus Layout with nodes above the bus

Bus Layout with Nodes Below the Bus

Example of setting node position (BL algorithm)
To set the node position:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 385

nodePosition : "NODES_BELOW_BUS";

In Java
Use the method:

void setNodePosition(int position);

The valid values for node positions are:

♦ IlvBusLayout.NODES_ABOVE_BUS (the default)

The nodes are placed above the corresponding bus line.

♦ IlvBusLayout.NODES_BELOW_BUS

The nodes are placed below the corresponding bus line.

Incremental mode (BL)
The Bus Layout algorithm normally places all the nodes from scratch. If the graph
incrementally changes because you add, remove, or resize nodes, the subsequent layout
may differ considerably from the previous layout. To avoid this effect and to help the user
to retain a mental map of the graph, the algorithm has an incremental mode. In incremental
mode, the layout tries to place the nodes at the same location or in the same order as in the
previous layout whenever it is possible

Example of enabling incremental mode (BL algorithm)
To enable the incremental mode:

In CSS
Add to the GraphLayout section:

incrementalMode : "true";

In Java
Call:

layout.setIncrementalMode(true);

To preserve stability, the incremental mode can keep some regions free. Therefore,
the total area of the layout can be larger than in nonincremental mode, and, in general,
the layout may not look as nice as in nonincremental mode.

Note:

Dimensional parameters (BL)
Dimensional Parameters for the Bus Layout Algorithm illustrates the dimensional parameters
used in the Bus Layout algorithm. These parameters are explained in the subsequent sections.

U S I N G G R A P H L A Y O U T A L G O R I T H M S386

Dimensional Parameters for the Bus Layout Algorithm

Horizontal offset (BL)
This parameter represents the horizontal distance between two nodes.

Example of specifying the horizontal offset (BL algorithm)
To specify the horizontal offset:

In CSS
Add to the GraphLayout section:

horizontalOffset : "30.0";

In Java
Use the method:

void setHorizontalOffset(float offset)

Vertical offset to level (BL)
This parameter represents the vertical distance between a row of nodes and the next
horizontal segment of the bus node.

Example of specifying vertical offset (BL algorithm)
To specify this parameter:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 387

verticalOffsetToLevel : "40.0";

In Java
Use the method:

void setVerticalOffsetToLevel(float offset)

Vertical offset to previous level (BL)
Example of setting vertical offset to the previous level (BL algorithm)
To set the vertical offset to the previous level:

In Java
This parameter represents the vertical distance between a row of nodes and the previous
horizontal segment of the bus node. To specify this parameter, use the method:

void setVerticalOffsetToPreviousLevel(float offset)

Margin (BL)
This parameter represents the offset distance between the layout region and the bounding
rectangle of the layout.

Example of specifying the margin (BL algorithm)
To specify the margin:

In CSS
Add to the GraphLayout section:

margin : "5.0";

In Java
Use the method:

void setMargin(float margin)

Margin on bus (BL)
On the odd horizontal levels (first, third, fifth, and so on) of the bus, starting from the top,
this parameter represents the offset distance between the left side of the first node on the
left and the left side of the bus object.

On the even horizontal levels (second, fourth, sixth, and so on) of the bus, starting from the
top, this parameter represents the offset distance between the right side of the last node
on the right and the right side of the bus object. (See Dimensional Parameters for the Bus
Layout Algorithm for an illustration of the margin-on-bus parameter.)

Example of specifying the margin on bus (BL algorithm)
To specify this parameter:

U S I N G G R A P H L A Y O U T A L G O R I T H M S388

In CSS
Add to the GraphLayout section:

marginOnBus : "5.0";

In Java
Use the method:

void setMarginOnBus(float margin)

Using a link clipping interface with the Bus Layout
By default, the Bus Layout does not place the connection points of links at the nodes. At the
bus node, it installs a bus link connector that is responsible for the connection points. At
the other nodes, it relies on their link connectors to determine the connection points. If no
link connectors are installed at these nodes, the default behavior is to connect to a point at
the border of the bounding box of the nodes.

If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. The following figure shows an
example.

Effect of Link Clipping Interface

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping.

Example of setting a link clipping interface with the Bus Layout
To set a link clip interface:

In CSS
It is not possible to set the link clip interface.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 389

In Java
Call:

void setLinkClipInterface(IlvLinkClipInterface interface)

The link clip interface requires link connectors at the nodes of an IlvGrapher that
allow connector pins to be placed freely at the node border. It is recommended that

Note:

you use IlvFreeLinkConnector or IlvClippingLinkConnector for link
connectors to be used in combination with IlvGrapher objects.The clip link connector
updates the clipped connection points automatically during interactive node movements.

The special bus node is an exception: it always uses the bus link connector.

U S I N G G R A P H L A Y O U T A L G O R I T H M S390

Circular layout (CL)

Describes the Circular Layout algorithm (class IlvCircularLayout from the package ilog.
views.graphlayout.circular).

In this section

General information on the CL
Gives samples of the Circular Layout (CL) and explains where it is used.

Features and limitations of the CL
Lists the features and limitations of the Circular Layout (CL).

The CL algorithm
Describes the Circular Layout (CL) algorithm and gives samples.

Generic features and parameters of the CL
Describes the generic features and parameters of the layout.

Specific parameters of the CL
Describes the parameters specific to the IlvCircularLayout class:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 391

General information on the CL

CL samples
The following figures show sample drawings produced with the Circular Layout.

Ring-and-star topology drawing produced with the Circular Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S392

Large ring-and-star topology drawing produced with the Circular Layout

What types of graphs suit the CL?

♦ Graphs representing interconnected ring and/or star network topologies

Application domains for the CL
Application domains for the Circular Layout include:

♦ Telecom and networking (LAN diagrams)

♦ Business processing (organization charts)

♦ Database and knowledge engineering (sociology, genealogy)

♦ The World Wide Web (Web hyperlink neighborhood)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 393

Features and limitations of the CL

Features

♦ Displays network topologies composed of interconnected rings and/or stars.

♦ Provides two clustering modes (see Clustering mode (CL)). The first mode lays out clusters
as circles and places the clusters. This mode is designed for rings/stars that are
interconnected in a tree structure, but it can produce acceptable results even if the graph
contains cycles. The second mode lays out the clusters as circles of nodes, minimizing
the link crossings while keeping the clusters at their initial position.

♦ Takes into account the size of the nodes so that no overlapping occurs. (See also The CL
algorithm).

Limitations
Link crossings cannot always be avoided.

U S I N G G R A P H L A Y O U T A L G O R I T H M S394

The CL algorithm

Ring and star topologies are similar in several ways. Take a look at Ring topology and Star
topology to get an idea of their similarities.

Ring topology

Star topology

Both topologies are composed of nodes drawn on a circle. For the Circular Layout algorithm,
the only difference between the ring and star topologies is that the star has a special node,
called the star center, that is drawn at the center of the circle. The user must specify the
node that is the star center. (See Star center (CL) for information on how to specify the
node.)

For each ring or star (generically called a cluster), the Circular Layout algorithm, in one of
its modes (see Clustering mode (CL)), allows you to specify the order of the nodes on the
circle (this is discussed in Cluster membership and order of the nodes on a cluster (CL)).
Otherwise, an arbitrary order is automatically chosen. In another mode, the order is computed
automatically such that the number of link crossings is small.

The network topology can be composed of more than one ring or star. These rings and stars
can be partially interconnected; that is, two or more clusters can have a common node as
shown in Rings interconnected by common nodes. They can also be interconnected by links
between nodes of two different clusters as shown in Rings interconnected by links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 395

Rings interconnected by common nodes

Rings interconnected by links

The Circular Layout algorithm lays out the ring/star topologies in a way that preserves the
visual identity of each cluster and avoids overlapping nodes and clusters. (See the sample
drawings in CL samples.)

To understand how the layout is performed in the clustering mode BY_CLUSTER_IDS, consider
a graph in which each node represents a ring or star cluster of a network topology. Add a
link between two nodes each time there is an interconnection between the corresponding
clusters. The Circular Layout algorithm is designed for the case where the graph obtained
in this manner is a tree (that is, a graph with no cycles). If cycles exist, the layout is performed
using a spanning tree of the graph.

Starting from a root cluster (either a ring or a star), the clusters that are connected to the
root cluster are drawn on a circle that is concentric to the root cluster. The radius of the
circle is computed to avoid overlapping clusters. Next, the algorithm lays out the clusters
connected to these last clusters on a larger circle, and so on. Each circle is called a level.

U S I N G G R A P H L A Y O U T A L G O R I T H M S396

For networks that are not connected (that is, disconnected groups of clusters exist in the
graph), more than one spanning tree exists. Each spanning tree is laid out separately and
placed near the others. You can see this in the sample drawings in CL samples.

In the clustering mode BY_SUBGRAPHS, each subgraph (cluster) keeps its initial position. The
subgraphs can be placed either by a different layout algorithm or interactively.

CL Example
In CSS
Below is a sample CSS specification using the Circular Layout algorithm. Since the Circular
Layout places nodes and reshapes the links, it is usually not necessary to specify an additional
link layout in CSS. The CSS specification can be loaded as a style file into an application
that uses the IlvDiagrammer class (see Graph layout in IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
graphLayout : "Circular";
clusteringMode : "BY_CLUSTER_IDS";
offset : "20";
levelOffset : "30";

}

For a graph to be laid out by the Circular Layout in the clustering mode BY_CLUSTER_IDS
(see Clustering mode (CL)), you need to specify the clustering information (see Cluster
membership and order of the nodes on a cluster (CL)).

In Java™
Below is a code sample using the IlvCircularLayout class. This code sample shows how
to perform a Circular Layout on a grapher directly, without using a diagram component or
any style sheet:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.circular.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);
IlvCircularLayout layout = new IlvCircularLayout();
layout.attach(grapher);

... /* Fill in the grapher with nodes and links here */

// create identifier for cluster 0
IlvClusterNumber clusterId = new IlvClusterNumber(0);

// specify the cluster identifier for cluster 0
// Assume there are three nodes: node1, node2, node3
// the ordering of the nodes: node1 -> node2 -> node3
layout.setClusterId(node1, clusterId, 0); // index 0

U S I N G G R A P H L A Y O U T A L G O R I T H M S 397

layout.setClusterId(node2, clusterId, 1); // index 1
layout.setClusterId(node3, clusterId, 2); // index 2

// create identifier for cluster 1
clusterId = new IlvClusterNumber(1);

// specify the cluster identifier for cluster 1
// Assume there are three nodes: node4, node5, node6
// the ordering of the nodes: node4 -> node5 -> node6
layout.setClusterId(node4, clusterId, 1); // index 1
layout.setClusterId(node5, clusterId, 2); // index 2
layout.setClusterId(node6, clusterId, 0); // index 0

try {
IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S398

Generic features and parameters of the CL

The IlvCircularLayout class supports the following parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

♦ Layout of connected components (CL)

♦ Layout region (CL)

♦ Link clipping (CL)

♦ Link connection box (CL)

♦ Preserve fixed links (CL)

♦ Preserve fixed nodes (CL)

♦ Stop immediately (CL)

Extra feature for JViews Diagrammer:

♦ Save parameters to named properties (CL)

The following comments describe the particular way in which these parameters are used
by this subclass.

Layout of connected components (CL)
The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components).

Layout region (CL)
This parameter has no effect if the clustering mode is BY_SUBGRAPHS.

It is not possible to allow the user to control the size of the layout by specifying a bounding
box for the drawing. The layout algorithm chooses the size to have enough space to avoid
overlapping nodes and clusters.

The layout region setting (either your own or the default setting) is used only to choose the
position of the center of the drawing. This means that only the center of the layout region
is taken into consideration. All three ways to specify the layout region are available for this
subclass. (See Layout region.)

Link clipping (CL)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the Circular Layout for details of the link clipping mechanism.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 399

Link connection box (CL)
The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link clipping interface with the Circular
Layout.

Preserve fixed links (CL)
The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.)

Preserve fixed nodes (CL)
The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.)

Save parameters to named properties (CL)
The layout algorithm is able to save its layout parameters into named properties. This can
be used to save layout parameters to .ivl files. (For a detailed description of this feature,
see Save parameters to named properties and Saving layout parameters and preferred
layouts.)

Stop immediately (CL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S400

Specific parameters of the CL

Clustering mode (CL)
The Circular Layout algorithm has two clustering modes.

Example of selecting a clustering mode (CL algorithm)
To select a clustering mode:

In CSS
Add to the GraphLayout section:

clusteringMode : "BY_SUBGRAPHS";

In Java™
Use the method:

void setClusteringMode(int mode);

The valid values for mode are:

♦ IlvCircularLayout.BY_CLUSTER_IDS (the default): Cluster identifiers need to be explicitly
provided for each node (see Cluster membership and order of the nodes on a cluster
(CL)). A tree-like algorithm places the clusters.

♦ IlvCircularLayout.BY_SUBGRAPHS: The algorithm handles a nested graph, including
intergraph links. It arranges the nodes of each subgraph on a circle, so that the number
of link crossings is small. It respects the intergraph links and rotates the cluster so that
the number of link crossings is small. It assumes that all nodes are nearly square and
that all nodes are in subgraphs, but the subgraph nesting is only 1. Nodes that are inside
subgraphs of subgraphs are not handled. Note that in this mode each subgraph keeps its
initial position. The subgraphs can be placed either by a different layout algorithm or
interactively.

Cluster membership and order of the nodes on a cluster (CL)
This section applies only if the clustering mode is set to BY_CLUSTER_IDS.

Before performing the layout, you must specify to which cluster each node of the graph
belongs.

Example of specifying node cluster (CL algorithm)
To specify to which cluster each node of the graph belongs:

In CSS
You must declare the clustering information in the node rules, like this:

node {
...
ClusterId : "@clusterIds";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 401

StarCenter : "@starCenter";
}

where clusterIds refers to a node property whose value in the data model is given in the
following syntax: "<cluster-id>,<index>;<cluster-id>,<index>;...". Each pair of
cluster-id and index represents the identifier of the cluster and the ordering index of the
node in this cluster. The index can be omitted. If only one pair is specified, this means the
node belongs to only one cluster. If several pairs are specified for a given node, this means
that this node belongs to more than one cluster.

In the node rule above, starCenter is a node property whose value in the data model must
be either “true” of “false”. The nodes for which the value is “true” are considered “star
centers” by the layout algorithm (see Star center (CL)).

In Java
To specify the cluster membership, use a cluster identifier; that is, an instance of a subclass
of the class IlvClusterId (which is abstract). Two subclasses are provided:

♦ IlvClusterNumber, which uses integer numbers as cluster identifiers.

♦ IlvClusterName, which uses string names as cluster identifiers.

You can combine these two types of identifiers as any other subclass of IlvClusterId. For
example, you can write:

// create identifier for first cluster (integer)
IlvClusterNumber clusterId1 = new IlvClusterNumber(1);
// create identifier for second cluster (string)
IlvClusterNumber clusterId2 = new IlvClusterName("R&D network");

Then, if node1 to node3 belong to the first cluster, you can write:

layout.setClusterId(node1, clusterId1);
layout.setClusterId(node2, clusterId1);
layout.setClusterId(node3, clusterId1);

Assume layout is an instance of IlvCircularLayout.

If you want the nodes to be drawn in a special order (for example, node1 -> node2 -> node3),
you should also specify an index (an integer value) for each node:

layout.setClusterId(node1, clusterId1, 0);
layout.setClusterId(node2, clusterId1, 1);
layout.setClusterId(node3, clusterId1, 2);

Two methods allow you to specify the cluster to which a node belongs:

void setClusterId(Object node, IlvClusterId clusterId)

void addClusterId(Object node, IlvClusterId clusterId)

U S I N G G R A P H L A Y O U T A L G O R I T H M S402

If you call the first method, the node belongs only to the cluster whose identifier is clusterId.
The second method allows you to specify that a node belongs to more than one cluster.

These methods have another version with an additional argument, an integer value
representing the index:

void setClusterId(Object node, IlvClusterId clusterId, int index)

void addClusterId(Object node, IlvClusterId clusterId, int index)

This value is used to order the nodes on the cluster. If you specify these indices, the algorithm
sorts the nodes in ascending order according to the index values.

Note that the values of the index cannot be negative. They do not need to be continuous;
only the order of the values is important.

To obtain the current index of a node on a given cluster, use the method:

int getIndex(Object node, IlvClusterId clusterId)

If no index is specified for the node, the method returns the value IlvCircularLayout.
NO_INDEX. It is a negative value.

To obtain an enumeration of the cluster identifiers for the clusters to which the node belongs,
use the method:

Enumeration getClusterIds(Object node)

The elements of the enumeration are instances of a subclass of IlvClusterId.

To efficiently obtain the number of clusters to which a node belongs, use the method:

int getClusterIdsCount(Object node)

To remove a node from a cluster with a given identifier, use the method:

void removeClusterId(Object node, IlvClusterId clusterId)

To remove a node from all the clusters to which it belongs, use the method:

void removeAllClusterIds(Object node)

Star center (CL)
Example of specifying star center (CL algorithm)
To specify whether a node is the center of a star:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 403

starCenter : "true";

In Java
Use the method:

void setStarCenter(Object node, boolean starCenter)

To know whether a node is the center of a star, use the method:

boolean isStarCenter(Object node)

By default, a node is not the center of a star.

This parameter has no effect if the clustering mode is BY_SUBGRAPHS.

Root clusters (CL)
The algorithm arranges the clusters of each connected component of the graph of clusters
around a “root cluster”. By default, the algorithm can choose this cluster. Optionally, you
can specify one or more root clusters (one for each connected component).

Example of specifying root clusters (CL algorithm)
To specify one or more root clusters (one for each connected component):

In CSS
It is not possible to specify root clusters via CSS.

In Java
Use the methods:

void setRootClusterId(IlvClusterId clusterId)

To obtain an enumeration of the identifiers of the clusters that have been specified as root
clusters, use the method:

Enumeration getRootClusterIds()

This parameter has no effect if the clustering mode is BY_SUBGRAPHS.

Area minimization (CL)
For very large graphs, the radius of the concentric circles on which the clusters are placed
can become very large. Therefore, the Circular Layout provides an optional mode that
reduces the total area of the layout. To reduce the total area, the clusters are distributed
more equally on the circle.

Example of specifying area minimization mode (CL algorithm)
To enable or disable the area minimization mode:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S404

areaMinimizationEnabled : "true";

In Java
Use the method:

void setAreaMinimizationEnabled(boolean option)

The default value is false (area minimization is disabled).

Deciding whether to enable the area minimization mode essentially depends on the size of
the network. We recommend the area minimization mode for very large networks.

To get an idea of the difference between these modes, compare the following layouts of the
same network:

Area minimization disabled (default)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 405

Area minimization enabled

This parameter has no effect if the clustering mode is BY_SUBGRAPHS.

Dimensional parameters (CL)
Dimensional Parameters for the Circular Layout Algorithm illustrates the dimensional
parameters used in the Circular Layout algorithm. These parameters are explained in the
sections that follow.

U S I N G G R A P H L A Y O U T A L G O R I T H M S406

Dimensional Parameters for the Circular Layout Algorithm

Offset (CL)
The layout algorithm tries to preserve a minimum distance between nodes (see Dimensional
Parameters for the Circular Layout Algorithm).

Example of specifying the offset (CL algorithm)
To specify the offset:

In CSS
Add to the GraphLayout section:

offset = "20.0s";

In Java
Use the method:

void setOffset(float offset)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 407

Level offset (CL)
If the clustering mode is BY_SUBGRAPHS, the level offset parameter controls the minimal
offset between nodes that belong to the same cluster.

The following applies if the clustering mode is BY_CLUSTER_IDS.

As explained in The CL algorithm, interconnected rings and/or clusters are drawn on
concentric circles around a root cluster. The radius of each concentric circle is computed
to avoid overlapping clusters. In some cases, you may want to increase this radius to obtain
a clearer drawing of the network. To meet this purpose, the radius is systematically increased
with a “level offset” value (see Dimensional Parameters for the Circular Layout Algorithm).

Example of specifying the level offset (CL algorithm)
To specify the level offset:

In CSS
Add to the GraphLayout section:

levelOffset : "30.0";

In Java
Use the method:

void setLevelOffset(float offset)

The default value is zero.

This parameter has no effect if the clustering mode is BY_SUBGRAPHS.

Disconnected graph offset (CL)
As explained in The CL algorithm, each connected component of the network is laid out
separately and the drawing of each component is placed near the others (see Dimensional
Parameters for the Circular Layout Algorithm).

Example of specifying the offset between each connected component (CL algorithm)
To specify the offset between each connected component:

In CSS
Add to the GraphLayout section:

disconnectedGraphOffset : "2.5";

In Java
Use the method:

void setDisconnectedGraphOffset(float offset)

This parameter has no effect if the clustering mode is BY_SUBGRAPHS.

U S I N G G R A P H L A Y O U T A L G O R I T H M S408

Get the contents, the position, and the size of the clusters (CL)
At times, you might need to know the position and the size of the circle on which the nodes
for each cluster are drawn. This may be the case if you want to perform some reshaping
operations on the links. To do this, you can obtain a vector containing all the cluster identifiers
after the layout is performed.

Example of obtain a vector containing all the cluster identifiers (CL algorithm)
To obtain a vector containing all the cluster identifiers after the layout is performed:

In CSS
It is not possible to get the contents, position, or size of the clusters via CSS.

In Java
Use the method:

Vector getClusterIds()

The vector contains instances of a subclass of IlvClusterId. By browsing the elements of
this Vector, you can get the necessary information for each cluster:

float getClusterRadius(int clusterIndex)

IlvPoint getClusterCenter(int clusterIndex)

Vector getClusterNodes(int clusterIndex)

The getClusterNodes method returns the nodes that make up the cluster. The argument
clusterIndex represents the position of the cluster in the Vector returned by the method
getClusterIds().

Do not use these methods if the clustering mode is BY_SUBGRAPHS.

Link style (CL)
When the layout algorithm moves the nodes, straight-line links, such as instances of
IlvLinkImage, will automatically “follow” the new positions of their end nodes. If the grapher
contains other types of links (for example, IlvPolylineLinkImage or IlvSplineLinkImage),
the shape of the link may not be appropriate because the intermediate points of the link will
not be moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

Example of specifying automatic removal of all intermediate points of the links (CL algorithm)
To specify that the layout algorithm automatically removes all the intermediate points of
the links (if any).:

In CSS
Add to the GraphLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 409

linkStyle : "STRAIGHT_LINE_STYLE";

In Java
Use the method:

void setLinkStyle(int style)

The valid values for style are:

♦ IlvCircularLayout.NO_RESHAPE_STYLE

None of the links is reshaped in any manner.

♦ IlvCircularLayout.STRAIGHT_LINE_STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

The layout algorithm may raise an IlvInappropriateLinkException if layout is
performed on an IlvGrapher, but inappropriate link classes or link connector classes
are used. See Layout exceptions for details and solutions to this problem.

Note:

Using a link clipping interface with the Circular Layout
By default, the Circular Layout does not place the connection points of links. It relies on the
link connectors of the nodes to determine the connection points. If no link connectors are
installed at the nodes, the default behavior is to connect to a point at the border of the
bounding box of the nodes.

If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape.

The following figure shows an example of link clipping.

U S I N G G R A P H L A Y O U T A L G O R I T H M S410

Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the IlvLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping.

Example of setting a link clip interface (CL algorithm)
To set a link clip interface:

In Java
Use the method:

void setLinkClipInterface(IlvLinkClipInterface interface)

The link clip interface requires link connectors at the nodes of an IlvGrapher that
allow connector pins to be placed freely at the node border. It is recommended that

Note:

you use IlvFreeLinkConnector or IlvClippingLinkConnector for link
connectors to be used in combination with IlvGrapher objects.The clip link connector
updates the clipped connection points automatically during interactive node movements.

Link connection box (CL)
If a node has an irregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to a virtual center inside the node. You can achieve
this by additionally providing a class that implements the IlvLinkConnectionBoxInterface.
An example for the implementation of a link connection box interface is in Link connection
box. To set a link connection box interface in Java, call:

void setLinkConnectionBoxInterface(IlvLinkConnectionBoxInterface interface)

The link connection box interface is used only when link clipping is enabled by setting a link
clip interface. If no link clip interface is specified, the link connection box interface has no
effect.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 411

The following figure shows an example of the combined effect.

Combined effect of link clipping interface and link connection box

If the links are clipped at the green irregular star node (previous figure, left), they do not
point towards the center of the star, but towards the center of the bounding box of the node.
This can be corrected by specifying a link connection box interface that returns a smaller
node box than the bounding box (previous figure, right). Alternatively, the problem could
be corrected by specifying a link connection box interface that returns the bounding box as
the node box but with additional tangential offsets that shift the virtual center of the node.

U S I N G G R A P H L A Y O U T A L G O R I T H M S412

Grid layout (GL)

Describes the Grid Layout algorithm (class IlvGridLayout from the package ilog.views.
graphlayout.grid).

In this section

General information on the GL
Gives samples of the Grid Layout (GL) and explains where it is used.

Features of the GL
Lists the features of the Grid Layout (GL).

The GL algorithm
Describes the algorithm for the Grid Layout (GL) and gives samples of the specification.

Generic features and parameters of the GL
Describes the generic features and parameters of the Grid Layout (GL).

Specific parameters of the GL
Describes the parameters specific to the IlvGridLayout class.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 413

General information on the GL

GL sample
The following sample drawings are produced with the Grid Layout (GL).

TILE_TO_GRID_FIXED_WIDTHmode with CENTER horizontal and vertical alignment

In TILE_TO_GRID_FIXED_WIDTHmode with CENTER horizontal and vertical alignment, the red
lines are drawn to help identify the grid cells; they are not drawn by the layout algorithm.

TILE_TO_ROWS mode with CENTER vertical alignment.

U S I N G G R A P H L A Y O U T A L G O R I T H M S414

What types of graphs suit the GL?
Any graph. However, the links are never taken into consideration. This algorithm is designed
for placing nodes independently of their links, if they have any.

Application domains for the GL
Any domain where a collection of isolated nodes needs to be laid out.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 415

Features of the GL

♦ Arranges a collection of isolated nodes or connected components.

♦ Takes into account the size of the nodes so that no overlapping occurs.

♦ Provides several alignment options and dimensional parameters.

♦ Provides full support for fixed nodes (overlapping of nonfixed nodes with fixed nodes is
avoided).

♦ Provides an incremental mode which helps the retention of a mental map on incremental
changes made to a collection of nodes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S416

The GL algorithm

The Grid Layout (GL) has two main modes: grid and row/column.

♦ In grid mode, the layout arranges the nodes of a graph in the cells of a grid (matrix). If
a node is too large to fit in one grid cell (with margins), it occupies multiple cells. The
size of the grid cells and the margins are parameters of the algorithm.

♦ In row/column mode, the layout arranges the nodes of a graph either by rows or by
columns (according to the specified option). The width of the rows is controlled by the
width of the layout region parameter. The height of the columns is controlled by the
height of the layout region parameter. The horizontal and vertical margins between the
nodes are parameters of the algorithm.

GL Example
In CSS
Below is a sample CSS specification using the Grid Layout algorithm. The CSS specification
can be loaded as a style file into an application that uses the IlvDiagrammer class (see Graph
layout in IBM® ILOG® JViews Diagrammer).

SDM {
GraphLayout : "true";
LinkLayout : "false";

}

GraphLayout {
graphLayout : "Grid";
layoutMode : "TILE_TO_GRID_FIXED_HEIGHT";
globalHorizontalAlignment : "LEFT";
globalVerticalAlignment : "TOP";
incrementalMode : "true";
horizontalGridOffset : "50";
verticalGridOffset : "70";

}

In Java™
The following code sample uses the IlvGridLayout class. This code sample shows how to
perform a Grid Layout on a grapher directly without using a diagram component or any
style sheet:

...
import ilog.views.*;
import ilog.views.graphic.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.grid.*;
...
IlvGrapher grapher = new IlvGrapher();
IlvManagerView view = new IlvManagerView(grapher);

... /* Fill in the grapher with nodes and links here */

IlvGridLayout layout = new IlvGridLayout();

U S I N G G R A P H L A Y O U T A L G O R I T H M S 417

layout.attach(grapher);

try {
IlvGraphLayoutReport layoutReport = layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S418

Generic features and parameters of the GL

The IlvGridLayout class supports the following generic parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

♦ Allowed time (GL)

♦ Layout region (BL)

♦ Preserve fixed nodes (BL)

♦ Stop immediately (BL)

Extra feature for JViews Diagrammer:

♦ Save parameters to named properties (BL)

The following comments describe the particular way in which these parameters are used
by this subclass.

Allowed time (GL)
The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed time.) The result code in the
layout report is IlvGraphLayoutReport.STOPPED_AND_INVALID.

Layout region (GL)
The layout algorithm uses the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass. (See Layout region.)

The layout region is considered differently depending on the layout mode. For details, see
Layout modes (GL).)

Preserve fixed nodes (GL)
The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.) Moreover, nonfixed nodes are placed in such a manner that overlaps with fixed
nodes are avoided.

Save parameters to named properties (GL)
The layout algorithm can save its layout parameters into named properties. This can be used
to save layout parameters to .ivl files. (For a detailed description of this feature, see Save
parameters to named properties and Saving layout parameters and preferred layouts.)

Stop immediately (GL)
The layout algorithm stops after cleanup if the method stopImmediately() is called. (For
a description of this method in the IlvGraphLayout class, see Stop immediately.) If the

U S I N G G R A P H L A Y O U T A L G O R I T H M S 419

layout stops early because the allowed time has elapsed, the result code in the layout report
is IlvGraphLayoutReport.STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S420

Specific parameters of the GL

Order parameter (GL)
The order parameter specifies how to arrange the nodes.

Example of specifying node placement iterations and allowed time (GL algorithm)
To specify the ordering option for the nodes:

In CSS
Add to the GraphLayout section:

nodeComparator : "DESCENDING_HEIGHT";

In Java™
Use the method:

void setNodeComparator(Comparator comparator)

The valid values for comparator are:

♦ AUTOMATIC_ORDERING

The algorithm is free to choose the order in such a way that it tries to reduce the total
area occupied by the layout.

♦ NO_ORDERING

No ordering is performed.

♦ DESCENDING_HEIGHT

The nodes are ordered in the descending order of their height.

♦ ASCENDING_HEIGHT

The nodes are ordered in the ascending order of their height.

♦ DESCENDING_WIDTH

The nodes are ordered in the descending order of their width.

♦ ASCENDING_WIDTH

The nodes are ordered in the ascending order of their width.

♦ DESCENDING_AREA

The nodes are ordered in the descending order of their area.

♦ ASCENDING_AREA

The nodes are ordered in the ascending order of their area.

♦ ASCENDING_INDEX

U S I N G G R A P H L A Y O U T A L G O R I T H M S 421

The nodes are ordered in the ascending order of their index (see setIndex(java.lang.
Object, int)).

♦ DESCENDING_INDEX

The nodes are ordered in the descending order of their index (see setIndex(java.lang.
Object, int)).

♦ null

The nodes are ordered in an arbitrary way.

♦ Any other implementation of the java.util.Comparator interface.

The nodes are ordered according to this custom comparator.

The default is AUTOMATIC_ORDERING.

Note that in incremental mode (see setIncrementalMode(boolean)) and with fixed nodes
(see setFixed(java.lang.Object, boolean)), the order of the nodes is not completely
preserved.

Note also that, if the layout mode is TILE_TO_GRID_FIXED_WIDTH or
TILE_TO_GRID_FIXED_HEIGHT, the order options are applied only for nodes whose size
(including margins) is smaller than the grid cell size (see setHorizontalGridOffset(float)
and setVerticalGridOffset(float)).

Layout modes (GL)
The Grid Layout algorithm has four layout modes.

Example of selecting a layout mode (GL algorithm)
To To select a layout mode:

In CSS
Add to the GraphLayout section:

layoutMode : "TILE_TO_GRID_FIXED_HEIGHT";

In Java
Use the method:

void setLayoutMode(int mode);

The valid values for mode are:

♦ IlvGridLayout.TILE_TO_GRID_FIXED_WIDTH (the default).

The nodes are placed in the cells of a grid (matrix) that has a fixed maximum number of
columns. This number is equal to the width of the layout region parameter divided by the
horizontal grid offset.

♦ IlvGridLayout.TILE_TO_GRID_FIXED_HEIGHT

U S I N G G R A P H L A Y O U T A L G O R I T H M S422

The nodes are placed in the cells of a grid (matrix) that has a fixed maximum number of
rows. This number is equal to the height of the layout region parameter divided by the
vertical grid offset.

♦ IlvGridLayout.TILE_TO_ROWS

The nodes are placed in rows. The maximum width of the rows is equal to the width of
the layout region parameter. The height of the row is the maximum height of the nodes
contained in the row (plus margins).

♦ IlvGridLayout.TILE_TO_COLUMNS

The nodes are placed in columns. The maximum height of the columns is equal to the
height of the layout region parameter. The width of the column is the maximum width of
the nodes contained in the column (plus margins).

Alignment parameters (GL)

Global alignment parameters
The alignment options control how a node is placed over its grid cell or over its row or
column (depending on the layout mode). The alignment can be set globally, in which case
all nodes are aligned in the same way, or locally on each node, with the result that different
alignments occur in the same drawing.

Example of setting global alignment (GL algorithm)
To set the global alignment:

In CSS
Add to the GraphLayout section:

globalHorizontalAlignment : "LEFT";
globalVerticalAlignment : "TOP";

In Java
Use the following methods:

void setGlobalHorizontalAlignment(int alignment);

void setGlobalVerticalAlignment(int alignment);

The valid values for the alignment parameter are:

♦ IlvGridLayout.CENTER (the default)

The node is horizontally and/or vertically centered over its grid cell or row or column.

♦ IlvGridLayout.TOP

The node is vertically aligned on the top of its cell(s) or row. Not used if the layout mode
is TILE_TO_COLUMNS.

♦ IlvGridLayout.BOTTOM

U S I N G G R A P H L A Y O U T A L G O R I T H M S 423

The node is vertically aligned on the bottom of its grid cell(s) or row. Not used if the
layout mode is TILE_TO_COLUMNS.

♦ IlvGridLayout.LEFT

The node is horizontally aligned on the left of its grid cell(s) or column. Not used if the
layout mode is TILE_TO_ROWS.

♦ IlvGridLayout.RIGHT

The node is horizontally aligned on the right of its grid cell(s) or column. Not used if the
layout mode is TILE_TO_ROWS.

♦ IlvGridLayout.MIXED

Each node can have a different alignment. The alignment of each individual node can be
set with the result that different alignments can occur in the same graph.

Alignment of individual nodes
All nodes have the same alignment unless the global alignment is set to IlvGridLayout.
MIXED. Only when the global alignment is set to mixed can each node have an individual
alignment style.

Example of setting alignment of individual nodes (GL algorithm)
To set and retrieve the alignment of an individual node:

In CSS
Write a rule that selects the node, for instance:

GraphLayout {
globalVerticalAlignment : "MIXED";

}
#node1{
VerticalAlignment : "BOTTOM";

}

In Java
In Java

Use the following methods:

void setHorizontalAlignment(Object node, int alignment);

void setVerticalAlignment(Object node, int alignment);

int getHorizontalAlignment(Object node);

int getVerticalAlignment(Object node);

The valid values for the alignment parameter are:

U S I N G G R A P H L A Y O U T A L G O R I T H M S424

♦ IlvGridLayout.CENTER (the default)

♦ IlvGridLayout.TOP

♦ IlvGridLayout.BOTTOM

♦ IlvGridLayout.LEFT

♦ IlvGridLayout.RIGHT

Maximum number of nodes per row or column (GL)
By default, in IlvGridLayout.TILE_TO_ROWS or IlvGridLayout.TILE_TO_COLUMNS mode,
the layout places as many nodes on each row or column as possible given the size of the
nodes and the dimensional parameters (layout region and margins). If needed, the layout
can additionally respect a specified maximum number of nodes per row or column.

Example of specifying the maximum number of nodes per row or column (GL algorithm)
To set the maximum number of nodes per row or column:

In CSS
Add to the GraphLayout section:

maxNumberOfNodesPerRowOrColumn : "8";

In Java
Use the method:

void setMaxNumberOfNodesPerRowOrColumn(int nNodes);

The default value is Integer.MAX_VALUE, that is, the number of nodes placed in each row
or column is bounded only by the size of the nodes and the dimensional parameters. The
specified value must be at least 1. The parameter has no effect if the layout mode is
IlvGridLayout.TILE_TO_GRID_FIXED_WIDTH or IlvGridLayout.TILE_TO_GRID_FIXED_HEIGHT.

Incremental mode (GL)
The Grid Layout algorithm normally places all the nodes from scratch. If the graph
incrementally changes because you add, remove, or resize nodes, the subsequent layout
may differ considerably from the previous layout. To avoid this effect and to help the user
to retain a mental map of the graph, the algorithm has an incremental mode. In incremental
mode, the layout tries to place the nodes at the same location or in the same order as in the
previous layout whenever it is possible.

Example of enabling the incremental mode (GL algorithm)
To enable the incremental mode:

In CSS
Add to the GraphLayout section:

incrementalMode : "true";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 425

In Java
Call the method setIncrementalMode(boolean) as follows:

layout.setIncrementalMode(true);

To preserve the stability, the incremental mode may keep some regions free.Therefore,
the total area of the layout may be larger than in nonincremental mode, and, in general,
the layout may not look as nice as in nonincremental mode.

Note:

Dimensional parameters (GL)
Dimensional parameters for the grid mode of the Grid Layout algorithm and Dimensional
parameters for the row/columnmode of the Grid Layout algorithm illustrate the dimensional
parameters used in the Grid Layout algorithm. These parameters are explained in the sections
that follow.

Dimensional parameters for the grid mode of the Grid Layout algorithm

U S I N G G R A P H L A Y O U T A L G O R I T H M S426

Dimensional parameters for the row/column mode of the Grid Layout algorithm

Grid offset (GL)
The grid offset parameters control the spacing between grid lines. It is taken into account
only by the grid mode (layout modes TILE_TO_GRID_FIXED_WIDTH and
TILE_TO_GRID_FIXED_HEIGHT).

Example of setting grid offset (GL algorithm)
To set the horizontal and vertical grid offset:

In CSS
Add to the GraphLayout section:

horizontalGridOffset : "50.0";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 427

verticalGridOffset : "70.0";

In Java
Use the methods:

void setHorizontalGridOffset(float offset);

void setVerticalGridOffset(float offset);

The grid offset is the critical parameter for the grid mode. If the grid offset is larger than
the size of the nodes (plus margins), an empty space is left around the node. If the grid offset
is smaller than the size of the nodes (plus margins), the node will need to be placed on more
than one grid cell. The best choice for the grid offsets depends on the application. It can be
computed according to either the maximum size of the nodes (plus margins) or the medium
size, and so on. Of course, if all the nodes have a similar size, the choice is straight-forward.

Margins (GL)
The margins control the space around each node that the layout algorithm keeps empty.

Example of specifying margins (GL algorithm)
To set the margins:

In CSS
Add to the GraphLayout section:

topMargin : "6.0";
bottomMargin : "6.0";
leftMargin : "4.0";
rightMargin : "4.0";

In Java
Use the methods:

void setTopMargin(float margin);

void setBottomMargin(float margin);

void setLeftMargin(float margin);

void setRightMargin(float margin);

The meaning of the margin parameters is not the same for the grid modes as for the
row/column modes.:

U S I N G G R A P H L A Y O U T A L G O R I T H M S428

♦ In grid modes, they represent the minimum distance between the node border and the
grid line (see Dimensional parameters for the grid mode of the Grid Layout algorithm.)

♦ In row/column modes, they are used to control the vertical distance between the rows or
the horizontal distance between the columns and the horizontal or vertical minimal
distance between the nodes in the same row or column (see Dimensional parameters for
the row/column mode of the Grid Layout algorithm).

The default value for all the margin parameters is 5.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 429

Layout exceptions

Inappropriate-graph exception
Some layout algorithms can only deal with a specific type of graph.If the layout is performed
with an inappropriate graph, an exception of type IlvInappropriateGraphException is
thrown. However, this exception type occurs rather seldom, because most layout algorithms
try to work silently in the best possible way with inappropriate graphs. For instance, the
Tree Layout will silently handle graphs that are not trees without throwing this exception.
The Tree Layout will in this case consider a spanning tree of the input graph for the layout.

The error handling differs depending on whether you use a diagram component with CSS
styling, or whether you call layout in Java™ directly.

Example of inappropriate-graph exception
In CSS
The graph layout renderer catches the exception silently and logs it to the logger ilog.
views.sdm.renderer.graphlayout. See

http://java.sun.com/javase/6/docs/technotes/guides/logging

to learn more about the Java logging facilities available since JDK 1.4. Usually, it is more
convenient not to receive this exception. However, if you want to receive it, add to the
GraphLayout and LinkLayout sections of your style sheet:

graphLayoutExceptionPassedOn: "true";

In this case, all graph layout exceptions are converted into a run-time exception and re-thrown
by the graph layout renderer.

In Java
You have to catch the exception yourself and handle the error or report the error to the user
in an suitable way. Example:

try {
layout.performLayout();
} catch (IlvInappropriateGraphException ex) {
... handle the exception here ...

}

Inappropriate-link exception
This exception indicates that a particular type of link or link connector cannot be used for
the layout algorithm. In general, the following link types can be used safely with all layout
algorithms:

♦ IlvPolylineLinkImage

♦ IlvEnhancedPolylineLinkImage

♦ IlvSplineLinkImage

U S I N G G R A P H L A Y O U T A L G O R I T H M S430

http://java.sun.com/javase/6/docs/technotes/guides/logging

♦ IlvSimpleLink

♦ IlvGeneralLink

The following link connector types can be used with all layout algorithms.

♦ IlvFreeLinkConnector

♦ IlvSDMFreeLinkConnector

♦ IlvClippingLinkConnector.

Link connectors of type IlvPinLinkConnector can be used only in the following situations:

How to use IlvPinLinkConnector
With which layout?When?

Grid LayoutAlways

Hierarchical Layout

Link Layout

Random Layout

Bus LayoutOnly if no link clip interface is provided

Circular Layout

Topological Mesh Layout

Uniform Length Edges Layout

Tree LayoutNever

See Link clipping for details.

Link connectors of other types can sometimes be used with some layouts. However, it is
recommended to use only the link connectors listed for Hierarchical Layout, Tree Layout
and Link Layout.

The error handling differs depending on whether you use a diagram component with CSS
styling, or work directly in Java.

Example of Inappropriate-link exception
In CSS
By default, the graph layout renderer installs appropriate links and link connectors
automatically when layout is performed. It internally calls the method
EnsureAppropriateLinks and replaces the inappropriate links and link connectors by
instances of IlvPolylineLinkImage and IlvSDMFreeLinkConnector. However it is
recommended to specify appropriate link classes and link connector classes in CSS right
from the beginning, because the link replacement is time-consuming and the result is
sometimes confusing.

If you need to disable the automatic handling of inappropriate links and link connectors,
add to the GraphLayout and LinkLayout sections of the style sheet:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 431

ensureAppropriateLinks: "false";

In this case, the graph layout renderer catches the exception silently and logs it to the logger
ilog.views.sdm.renderer.graphlayout, but it does not replace any links or link connectors.
See

http://java.sun.com/javase/6/docs/technotes/guides/logging

to learn more about the Java logging facilities available since JDK 1.4. Usually, it is more
convenient not to receive this exception. However, if you still want to receive it, add in the
GraphLayout and LinkLayout sections of your style sheet:

graphLayoutExceptionPassedOn: "true";

In this case, all graph layout exceptions are converted into a run-time exception and re-thrown
by the graph layout renderer.

In Java
If you are not sure whether the link types are correct for a given layout, you can call the
method

IlvGraphLayoutUtil.EnsureAppropriateLinkTypes(
IlvGrapherAdapter grapherAdapter,
IlvGraphLayout layout,
boolean toStraightLine,
boolean traverse,
boolean interGraphLinks,
boolean redraw)

This method analyzes the graph and replaces inappropriate links by new instances of
IlvPolylineLinkImage.

If you are not sure whether the link connectors are correct for a given layout, you can call
the method

IlvGraphLayoutUtil.EnsureAppropriateLinkConnectors(
IlvGrapherAdapter grapherAdapter,
IlvGraphLayout layout,
boolean moveableConnectionPoints,
boolean traverse,
boolean redraw)

This method analyzes the graph and replaces inappropriate link connectors by new instances
of IlvFreeLinkConnector.

If you want to do both at the same time, you can call the method

IlvGraphLayoutUtil.EnsureAppropriateLinks(IlvGraphLayout layout,
boolean redraw)

This method analyzes the graph and replaces inappropriate links and link connectors of the
graph that is attached to the layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S432

http://java.sun.com/javase/6/docs/technotes/guides/logging

If the layout fails with an inappropriate-link exception, you can fix the situation quite easily,
as demonstrated in the following code:

try {
layout.performLayout();

} catch (IlvInappropriateLinkException ex) {
IlvGraphLayoutUtil.EnsureAppropriateLinks(ex, redraw);
// and now, try layout a second time:
try {
layout.performLayout();

} catch (IlvGraphLayoutException ex2) {
}

}

The class IlvGraphLayoutUtil provides further variants of the “Ensure...” methods. See
the Java API Reference Manual for more information.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 433

U S I N G G R A P H L A Y O U T A L G O R I T H M S434

Nested layouts

Describes how to perform a layout on a nested graph and explains the utilities that are
available for nested graphs.

In this section

Concepts for nested layouts
Explains nested graphs and related concepts.

Layout of nested graphs in IBM® ILOG® JViews Diagrammer
Describes how to use styling and SDM renderers with nested graphs to perform graph layout.

Layout of nested graphs in code
Describes how to perform a layout on nested graphs.

Recursive layout
Describes the Recursive Layout (class IlvRecursiveLayout from the package ilog.views.
graphlayout.recursive).

Recursive layout modes
Describes the modes available in this layout.

Multiple layout
Describes the Multiple Layout class (class IlvMultipleLayout from the package ilog.
views.graphlayout.multiple).

© Copyright IBM Corp. 1987, 2009 435

Concepts for nested layouts

IBM® ILOG® JViews Diagrammer supports nested graphs, that is, it can render graphs
containing nodes that are graphs.

The following figure shows an example of a nested graph.

Example of a Nested Graph

A graph that is a node in another graph is called a subgraph. Links that connect nodes of
different subgraphs are called subgraph links. The red links in the figure are intergraph
links.

U S I N G G R A P H L A Y O U T A L G O R I T H M S436

Layout of nested graphs in IBM® ILOG®
JViews Diagrammer

Describes how to use styling and SDM renderers with nested graphs to perform graph layout.

In this section

Nested SDM models and nested graphers
Explains how nested graphs relate to SDM models.

Specification in CSS for nested graphs
Explains how to specify the layout of nested graphs in CSS.

Accessing sublayouts of subgraphs
Explains how to access sublayouts of subgraphs.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 437

Nested SDM models and nested graphers

IBM® ILOG® JViews Diagrammer uses an SDM data model that specifies the application
objects (also called model objects). The data model contains nested graphs if any model
objects have a parent-child relationship. The parent-child relationship is expressed in the
interface IlvSDMModel by the following two methods:

Enumeration getChildren(Object parent);

Object getParent(Object parent);

If for any model node, the call model.getChildren(node) returns a non-null value, then this
model node is a subgraph and all its children must return this node as their parent. In this
case, the entire SDM model is called nested.

The SubGraph renderer translates a nested SDM model into a display of nested graphers. A
nested grapher is an instance of IlvGrapher that contains other instances of IlvGrapher
as graphic nodes. A subgrapher can be expanded (its inner node and links are shown) or
collapsed (its contents is hidden and the collapsed subgrapher looks like a normal node).
The SubGraph renderer is responsible only for creating the nested graphers and managing
the collapse/expand state, but it does not perform any layout on the nested graphers. For
more details on the SubGraph renderer, see The SubGraph renderer in JViews Diagrammer
SDK.

U S I N G G R A P H L A Y O U T A L G O R I T H M S438

Specification in CSS for nested graphs

In a diagram component, a recursive layout instance is used internally and is called
automatically when needed. In IBM® ILOG® JViews Diagrammer, the handling of nested
graphs is thus completely automatic.

Layout renderers perform the layout of nested graphs. The node layout renderer performs
the arrangement of the nodes, and depending on the layout style, also the reshaping of the
normal links (for example, in Hierarchical or Tree Layout). The link layout renderer performs
the arrangement of the links, in particular of the intergraph links. The label layout renderer
places all labels in the nested graph.

If the nested graph has intergraph links, the link layout renderer must be enabled,
otherwise the intergraph links will not be routed at all.

Note:

Same layout style everywhere
By default, layout renderers apply the same layout style to all subgraphs. The following
example shows a specification in CSS that applies the Tree layout to all subgraphs.

SDM {
GraphLayout: "true";
LinkLayout: "true";

}

GraphLayout {
graphLayout: "Tree";

}

LinkLayout {
layoutMode: "LONG_LINKS";
interGraphLinksMode: "true";
combinedInterGraphLinksMode: "false";

}

This example specifies that the Tree layout algorithm is applied to all nodes and links. The
Link layout algorithm is applied only to the intergraph links, not to the normal links. The
IlvLinkLayout instance is in mode LONG_LINKS, because intergraph links are often very
long.

If you change the specification in the LinkLayout section to:

interGraphLinksMode: "true";
combinedInterGraphLinksMode: "true";

the Link layout algorithm is applied to both normal links and intergraph links.

If you change the specification in the LinkLayout section to:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 439

interGraphLinksMode: "false";

the Link layout algorithm is applied only to normal links, not to intergraph links. The
intergraph links are in this case not routed at all. Of course, this is useful only if the graph
does not contain any intergraph links.

Since the link layout renderer can reuse the Hierarchical layout as the link layout, the
specification is slightly more comfortable, as shown in the following example:

SDM {
GraphLayout: "true";
LinkLayout: "true";

}

GraphLayout {
graphLayout: "Hierarchical";

}

LinkLayout {
hierarchical: "true";
interGraphLinksMode: "true";

}

If the hierarchical flag of the link layout renderer is set to true, the normal links are routed
by the Hierarchical layout. However, the intergraph links are routed by an instance of
IlvLinkLayout, independent from the combinedInterGraphLinksMode setting.

Individual layout styles per subgraph
It is possible to specify the graph layout style for each subgraph individually. To do so, you
need to create a style rule that selects the corresponding subgraph, like this:

#subgraph15 {
GraphLayout: "@#sublayout15";

}

Subobject#sublayout15 {
class: "ilog.views.graphlayout.tree.IlvTreeLayout";
flowDirection: "Right";

... further parameters of Tree layout ...
}

In the SDMmodel, the subgraph with ID “subgraph15” is selected by the first rule. The rule
specifies that an object with ID “sublayout15” must be created. The name sublayout15 is
arbitrary and has the only purpose of distinguishing it from all other objects. The second
rule selects the object “sublayout15” that must be created, and specifies that this is a Tree
layout. As result, a Tree layout is applied to the subgraph.

If the layout of an individual subgraph uses only default parameters, it can be specified in
a shorter way, because no parameters need to be set:

U S I N G G R A P H L A Y O U T A L G O R I T H M S440

#subgraph15 {
GraphLayout: "Tree";

}

Specifying hierarchical: "true" for the link layout works only if no individual
layout styles are specified per subgraph. It works only if the entire nested graph is laid
out by Hierarchical layout.

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 441

Accessing sublayouts of subgraphs

Internally, the graph layout renderer uses a different instance of IlvGraphLayout for each
nested graph. In Accessing graph layout instances, we mentioned how to access the layout
instance of the node layout renderer:

nodeLayoutRenderer.getGraphLayout();

This returns the layout instance of the top-level grapher.

The following example shows how to access all graph layout instances of all subgraphs.

IlvSDMEngine engine = diagrammer.getEngine();
Enumeration e = engine.getNodeLayoutRenderer().getLayouts(engine, true);
while (e.hasMoreElements()) {
IlvGraphLayout layout = (IlvGraphLayout)e.nextElement();
... do something with this layout instance ...

}

You can also access the layout instance of an individual subgrapher, by using the following
method of IlvGraphLayoutRenderer:

getGraphLayout(IlvSDMEngine engine, IlvGrapher grapher);

The mechanism for accessing the different link layout instances of a link layout renderer is
exactly the same.

The API of the graph layout and link layout renderers is documented in the Java™ API
Reference Manual of the classes IlvGraphLayoutRenderer and IlvLinkLayoutRenderer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S442

Layout of nested graphs in code

Describes how to perform a layout on nested graphs.

In this section

The classes that support nested graphs
Explains how layouts are performed on nested graphs.

Order of layouts in recursive layouts
Explains the order in which recursive layouts are applied on nested graphs.

Simple recursion: applying the same layout to all subgraphers
Describes how to obtain a nested graph with the same layout throughout.

Advanced recursion: mixing different layouts in a nested graph
Describes the case where you want to mix different layouts in one nested graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 443

The classes that support nested graphs

The IlvGrapher class provided by IBM® ILOG® JViews Framework allows nested graphs
to be represented. This facility is useful for applications that are not based on IBM®
ILOG® JViews Diagrammer or on styling.

In an application that works directly on an instance of IlvGrapher, a recursive layout must
be performed explicitly. Additional steps are required to perform a layout on nested graphers.

For more information, see Nested graphers.

The mechanism uses the auxiliary classes IlvRecursiveLayout and IlvMultipleLayout
internally. They are explained in detail in Recursive layout and Multiple layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S444

Order of layouts in recursive layouts

Assume grapher 1 contains two subgraphers L1.1 and L1.2, and subgrapher 1.1 contains
two subgraphers L1.1.1 and L1.1.2, as shown in the following figure. The recursive layout
needs to be applied in reverse order, as follows:

1. Layout on L1.1.1

2. Layout on L1.1.2

3. Layout on L1.1

4. Layout on L1.2

5. Layout on L1

Nested graph with recursive layouts

This means that the layout is applied to the graph once all the layouts of its subgraphs have
been applied first. In our example, all layouts of subgrapher L1.1 are finished before the
layout of grapher L1 starts. This is the correct order for a recursive layout. This order ensures
that the layout of a subgraph does not invalidate the layout of its parent graphs.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 445

Simple recursion: applying the same layout to all subgraphers

You can apply the same layout where both the following conditions hold:

♦ The same layout algorithm needs to be applied to the topmost graph and all its subgraphs.

♦ The settings of the layout algorithm (that is, the layout parameters) need to be the same
for the topmost graph as for all the subgraphs.

The following figure shows an example where a Tree Layout is applied to the topmost graph
as well as to all its subgraphs. Moreover, the settings of the Tree Layout algorithm are the
same for all the graphs: the application does not need, for instance, one flow direction in
the topmost graph and a different one in the subgraphs.

Example of a recursive layout of a nested graph

Obtaining such recursive layouts is very easy. The class IlvGraphLayout provides a special
version of the performLayout method:

performLayout(boolean force, boolean redraw, boolean traverse)

When the last boolean argument is set to true, the layout is applied not only to the graph
attached to the layout instance, but also, in a recursive way, to its subgraphs.

Internal mechanism
The internal mechanism is based on the principle that a given layout instance is used for
only one graph and is not reused for its subgraphs. Therefore, the Tree Layout instance is
automatically “cloned” using the copy() method of the class IlvGraphLayout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S446

Furthermore, the graph layout is applied to a graph model, and the same principle holds
for the graph models (see Using the Graph Model): a given graph model instance is used
for only one graph and is not reused for subgraphs.

The graph models for the subgraphs are created by calls to the getGraphModel(java.lang.
Object) method of the class IlvGraphLayout, which in turn creates the graph model using
the method createGraphModel(java.lang.Object) of the class IlvGraphModel.

All these operations are done automatically, in a completely transparent way. All you have
to do is to call the method performLayout with the traverse argument set to true.

If needed, you can get the layout instances applied on the subgraphs by calling the following
method on IlvGraphLayout:

Enumeration getLayouts(boolean preOrder)

This method returns an enumeration of instances of IlvGraphLayout. If the preOrder flag
is true, the layout of the parent graph occurs before the layout of its children in the
enumeration. If the preorder flag is false, the layout of the parent graph occurs after the
layout of its children. For example, in the graph of Nesting structure in a graph, the call
getLayouts(true) returns the layouts for the subgraphs in this order: L1, L1.1, L1.1.1,
L1.1.2, L1.2. The call getLayouts(false) returns the layouts for the subgraphs in this order:
L1.1.1, L1.1.2, L1.1, L1.2, L1.

Java code sample
The following Java™ code sample illustrates how to apply a single layout algorithm to a
nested graph:

...
IlvGrapher grapherA = new IlvGrapher();
IlvGrapher grapherB = new IlvGrapher();

// Fill the graphers with nodes and links
...
// grapherB is added as a subgraph of grapherA
grapherA.addNode(grapherB, false);

// Create the layout instance
IlvTreeLayout layout = new IlvTreeLayout();

// Attach the topmost grapher to the layout
layout.attach(grapherA);

// Perform the recursive layout
try {

int code = layout.performLayout(true, true, true);

System.out.println("Layout completed (code " +
code + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());

U S I N G G R A P H L A Y O U T A L G O R I T H M S 447

}
...
// Detach the grapher when layout no more needed
layout.detach();
...

For experts
In this first variant, the grapher adapter (the graph model of IlvGrapher) is handled
internally. If a grapher adapter is explicitly allocated, it must be disposed of when no longer
necessary. However, all grapher adapters that are created internally are always disposed
of automatically. Here is an equivalent variant that shows how to use the grapher adapter:

...
IlvGrapher grapherA = new IlvGrapher();
IlvGrapher grapherB = new IlvGrapher();

// Fill the graphers with nodes and links
...
// grapherB is added as a subgraph of grapherA
grapherA.addNode(grapherB, false);

// Create the layout instance
IlvTreeLayout layout = new IlvTreeLayout();

// Create a grapher adapter for the topmost grapher
IlvGrapherAdapter adapter = new IlvGrapherAdapter(grapherA);

// Attach the adapter to the layout
layout.attach(adapter);

// Perform the recursive layout
try {

// perform the layout with argument traverse = true
int code = layout.performLayout(true, true, true);

System.out.println("Layout completed (code " +
code + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
...
// Detach the adapter when layout no more needed
layout.detach();
...

Layout parameters
Section Internal mechanism explains that, when applying the same layout algorithm in a
recursive way, the layout instances for the subgraphs are obtained by “cloning” the layout
instance attached to the topmost graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S448

The layout parameters of the “clone” are the same as the parameters of the topmost layout,
except for the parameters that are specific to a node or a link. Such parameters are not
copied when the layouts are cloned and need to be set separately for each layout instance.

For example, if you need to declare a node node1 contained in the subgraph grapherB of
the topmost graph grapherA as fixed (seePreserve fixed nodes), you can use the following
code:

...
IlvGrapher grapherA = new IlvGrapher();
IlvGrapher grapherB = new IlvGrapher();

// fill the graphers with nodes and links;
// grapherB is added as a subgraph of grapherA
grapherA.addNode(grapherB, false);

// Create the layout instance
IlvTreeLayout layout = new IlvTreeLayout();

// Attach the topmost grapher to the layout
layout.attach(grapherA);

// Ask the layout algorithm to not move the nodes
// specified as fixed. This settings is automatically
// copied on the sublayouts. Do not specify this global
// settings directly on the sublayout, because it gets automatically
// the same settings as the topmost layout
layout.setPreserveFixedNodes(true);

// Search the layout instance used for grapherB
IlvGraphLayout subLayout = null;
Enumeration layouts = layout.getLayouts(true);
while (layouts.hasMoreElements()) {

subLayout = (IlvGraphLayout)layouts.nextElement();
if (subLayout.getGraphModel().getGrapher() == grapherB)

break;
}

// Specify node1 (contained in grapherB) as fixed
subLayout.setFixed(node1, true);

// Now perform the recursive layout. The node node1 will be considered as fixed
// by the layout applied to grapherB
...

You should not try to change any global settings of the layouts applied to the subgraphs
(that is, settings that are not specific to a node or a link). These settings are copied

Note:

anyway from the layout instance of the topmost grapher, so your changes would be
erased just before the recursive layout runs.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 449

Advanced recursion: mixing different layouts in a nested graph

The need for mixing layouts arises when at least one of the following conditions is met:

♦ The layout algorithm to be applied on subgraphs is not the same as the algorithm needed
for the topmost graph.

♦ Different layouts need to be applied to different subgraphs.

♦ The same layout algorithm needs to be applied to different graphs but with different
settings.

In these cases of advanced recursion, where you want to apply different layouts to different
subgraphs, you need to specify which layout should be used for which subgraph. Furthermore
you need to start the layouts in the correct order. This is called recursive layout.

The class IlvRecursiveLayout is a subclass of IlvGraphLayout, but it is not a real layout
algorithm. It is rather a facility to apply other layout algorithms recursively on a nested
graph.

The class IlvRecursiveLayout can also be used to apply the same layout to all subgraphs.
In fact, when using the API explained in subsection Simple recursion: applying the same
layout to all subgraphers, an instance of IlvRecursiveLayout is used internally.

The class IlvRecursiveLayout can furthermore be used to apply multiple layouts to the
same nested graph. This is for instance necessary if for each subgraph, a node layout and
a separate link layout must be applied.

Further details and code samples of the class IlvRecursiveLayout are explained in the
following section Recursive layout.

To apply layout algorithms recursively:

1. Allocate and attach an instance of IlvRecursiveLayout. Since it is a subclass of
IlvGraphLayout, you use the same mechanism as for all other graph layout classes:

IlvRecursiveLayout recLayout = new IlvRecursiveLayout();
IlvGrapher topLevelGrapher = ...
recLayout.attach(topLevelGrapher);

2. Specify which layout style should be used for each subgraph. You must allocate an
individual instance of IlvGraphLayout for each subgraph.

recLayout.setLayout(subgraph1, new IlvTreeLayout());
recLayout.setLayout(subgraph2, new IlvBusLayout());
recLayout.setLayout(subgraph3, new IlvGridLayout());

3. Set the layout parameters of these individual layouts of the subgraphs as needed.

4. Apply the recursive layout to the top-level grapher. This automatically applies the
sublayouts to the subgraphs as well. Since IlvRecursiveLayout is a subclass of
IlvGraphLayout, you use the same method as for all other graph layout classes

U S I N G G R A P H L A Y O U T A L G O R I T H M S450

try {
recLayout.performLayout();

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

5. Detach the recursive layout from the top-level grapher when it is no longer needed.
This automatically detaches all sublayouts from all subgraphers.

recLayout.detach();

U S I N G G R A P H L A Y O U T A L G O R I T H M S 451

U S I N G G R A P H L A Y O U T A L G O R I T H M S452

Recursive layout

Describes the Recursive Layout (class IlvRecursiveLayout from the package ilog.views.
graphlayout.recursive).

In this section

Overview of recursive layout
Describes classes associated with recursive layout with a diagram.

Features
Describes the features of the layout.

Generic features and parameters
Describes the generic features and parameters of the layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 453

Overview of recursive layout

The IlvRecursiveLayout class is internally used by the graph layout renderer of a diagram
component; in IBM® ILOG® JViews Diagrammer, the rendering mechanism is transparent
so that you never need to deal with this class.

The Recursive Layout can be used only in Java™ code. No CSS syntax is
available for this layout.

Important:

The Recursive Layout class is not a layout algorithm but rather a facility to apply another
layout algorithm recursively on a nested graph. It traverses the nesting structure starting
from the graph that is attached to the Recursive Layout itself and recursively applies a layout
on all subgraphs. You can tailor which sublayout must be applied to which subgraph.

There are basically two scenarios:

♦ The same layout style must be applied to all subgraphs.

♦ An individual layout style must be applied to each subgraph.

The class IlvRecursiveLayout which manages sublayouts for nested graphs

Java code sample: same layout style everywhere
This sample assumes that you want to apply a Tree Layout to a nested graph and that each
subgraph should be laid out with the same global layout parameters.

The Tree Layout algorithm handles only flat graphs, that is, if applied to an attached graph,
it lays out only the nodes and links of the attached graph, but not the nodes and links of the
subgraphs that are nested inside the attached graph. Hence the Tree Layout must be
encapsulated into a Recursive Layout.

The Recursive Layout traverses the entire nesting hierarchy of the attached graph, while
the encapsulated Tree Layout lays out each (flat) subgraph of the nesting hierarchy during
the traversal.

U S I N G G R A P H L A Y O U T A L G O R I T H M S454

...
import ilog.views.*;
import ilog.views.graphlayout;
import ilog.views.graphlayout.recursive.*;
import ilog.views.graphlayout.tree.*;

IlvRecursiveLayout layout = new IlvRecursiveLayout(IlvTreeLayout());

IlvGrapher topLevelGrapher = ...
layout.attach(topLevelGrapher);
try {

IlvRecursiveLayoutReport layoutReport =
(IlvRecursiveLayoutReport)layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
...
// detach the Recursive Layout when it is no longer needed
layout.detach();
...

...
import ilog.views.*;
import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.*;
import ilog.views.eclipse.graphlayout.runtime.recursive.*;
import ilog.views.eclipse.graphlayout.runtime.tree.*;
...
IlvRecursiveLayout layout = new IlvRecursiveLayout(IlvTreeLayout());

GraphModel graphModel = new GraphModel(myTopLevelGrapherEditPart);
layout.attach(graphModel);
try {

IlvRecursiveLayoutReport layoutReport =
(IlvRecursiveLayoutReport)layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
...
// detach the Recursive Layout when it is no longer needed

U S I N G G R A P H L A Y O U T A L G O R I T H M S 455

layout.detach();
graphModel.dispose();
...

This mode of the Recursive Layout is called reference layout mode. In this case, a Tree
Layout is performed recursively on the top-level graph and on each subgraph. All layouts
are performed with the same global layout parameters.

The term “global layout parameter” applies to the parameters that do not depend on
a specific node or link. For example, Tree Layout has a global layout parameter set

Note:

by setGlobalLinkStyle, as well as a layout parameter set by setLinkStyle
(link, style) which is local to a link.

You can change the global layout parameters by accessing the reference layout of the
Recursive Layout:

IlvTreeLayout treeLayout = (IlvTreeLayout)layout.getReferenceLayout();
treeLayout.setFlowDirection(IlvDirection.Left);

Technically, the reference layout instance is not applied to each subgraph because each
subgraph needs an individual layout instance. The reference layout instance is only applied
to the top-level graph. Furthermore, a clone of the reference instance is created for each
subgraph. This clone remains attached to the subgraph as long as the Recursive Layout is
attached to the top-level graph. Before layout is performed, the global layout parameters
are copied from the reference layout instance to each cloned layout instance.

Sometimes, you want to specify local layout parameters for individual nodes and links. In
this case, you need to access the cloned layout instance that is attached to the subgraph
that owns the node or link. For instance, to the link style of an individual link, use:

IlvTreeLayout treeLayout =
(IlvTreeLayout)layout.getLayout(link.getGraphicBag());
treeLayout.setLinkStyle(link, IlvTreeLayout.ORTHOGONAL_STYLE);

You cannot use the reference layout mode in the following cases:

♦ The layout algorithm to be applied on subgraphs is not the same as the algorithm needed
for the topmost graph (the reference layout).

♦ The same layout algorithm, but using different global parameter settings, needs to be
applied on different subgraphs.

In these cases, you can use one of the other modes.

Java code sample: mixing different layout styles
The following example shows the second scenario: Each subgraph should be laid out by a
different layout style or with individual global layout parameters. In this case, you use the
internal provider mode of the Recursive Layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S456

We assume that you have a graph with three subgraphs. The top-level graph and the first
subgraph should be processed with Tree Layout, the second subgraph with Bus Layout, and
the third subgraph with Grid Layout. You have to specify which layout should be used for
which subgraph, and then you can perform the layout.

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.recursive.*;
import ilog.views.graphlayout.tree.*;
import ilog.views.graphlayout.bus.*;
import ilog.views.graphlayout.grid.*;

IlvRecursiveLayout layout = new IlvRecursiveLayout();
IlvGrapher topLevelGrapher = ...
layout.attach(topLevelGrapher);

// specify the layout of the top level graph
layout.setLayout(null, new IlvTreeLayout());
// specify the layout of subgraphs
layout.setLayout(subgraph1, new IlvTreeLayout());
layout.setLayout(subgraph2, new IlvBusLayout());
layout.setLayout(subgraph3, new IlvGridLayout());

// perform layout
try {

IlvRecursiveLayoutReport layoutReport =
(IlvRecursiveLayoutReport)layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
...
// detach the Recursive Layout when it is no longer needed
layout.detach();
...

In this scenario, there is no reference layout. All layout parameters of different subgraphs
are independent. You need to specify new, independent layout instances for each subgraph;
otherwise no layout will be performed for the corresponding subgraph. The layout instances
are attached to the subgraph as long as the Recursive Layout is attached to the top-level
graph. You can specify in this example different global layout parameters for the Tree Layout
of the top-level graph and the Tree Layout of subgraph1. You access the layout instance of
each individual subgraph to change global layout parameters for this subgraph as well as
parameters of nodes and links of the subgraph. For instance if node1 belongs to subgraph1
and node2 belongs to subgraph2, you can set individual global and local layout parameters
in this way:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 457

// access the layout of the top level graph
IlvTreeLayout treeLayout1 = (IlvTreeLayout)layout.getLayout(null);
treeLayout1.setFlowDirection(IlvDirection.Bottom);
// access the layouts of the subgraphs
IlvTreeLayout treeLayout2 = (IlvTreeLayout)layout.getLayout(subgraph1);
treeLayout2.setFlowDirection(IlvDirection.Left);
treeLayout2.setAlignment(node1, IlvTreeLayout.TIP_OVER);
IlvBusLayout busLayout = (IlvBusLayout)layout.getLayout(subgraph2);
busLayout.setOrdering(IlvBusLayout.ORDER_BY_HEIGHT);
busLayout.setBus(node2);
IlvGridLayout gridLayout = (IlvGridLayout)layout.getLayout(subgraph3);
gridLayout.setLayoutMode(IlvGridLayout.TILE_TO_COLUMNS);

Java code sample: using a specified layout provider
The IBM® ILOG® JViews Diagrammer Graph Layout library provides a flexible mechanism
for the choice of the layout instance to be applied to each subgraph in a nested graph: the
layout provider. In the previous example, a layout provider was used internally. For simplicity,
the details of the mechanism are hidden, and you select the choice of layout by using the
method setLayout on the Recursive Layout instance. Therefore, this layout mode is called
internal provider mode.

However, you can also design your own layout provider and use it inside the Recursive
Layout. This is the specified provider mode of the Recursive Layout.

A layout provider is a class that implements the interface IlvLayoutProvider. The interface
has a unique method:

getGraphLayout(IlvGraphModel graphModel)

This method must return the layout instance to be used for the graph model passed as the
argument, or null if no layout is required for this graph. When performing the Recursive
Layout, these methods get the layout instance to be used for each graph from the specified
layout provider.

To implement the interface IlvLayoutProvider, you must decide how the choice of the
layout instance is done. This can be based on some criteria such as the type of graph
(eventually known in advance), or a choice already made by the end user and recorded, for
example, in a property of the graph. A possible implementation of the getGraphLayout
method is the following:

public IlvGraphLayout getGraphLayout(IlvGraphModel graphModel)
{
Object prop = graphModel.getProperty("layout type");
// if none, return null (no layout needed for this graph)
if (!(prop instanceof String))
return null;

IlvGraphLayout layout = null;
String name = (String)prop;

U S I N G G R A P H L A Y O U T A L G O R I T H M S458

if (name.equals("tree"))
layout = new IlvTreeLayout();

else if (name.equals("flow"))
layout = new IlvHierarchicalLayout();

else
throw new RuntimeException("unsupported layout choice: " + name);

layout.attach(graphModel);

return layout;
}

Of course, this is only an example amongmany possible implementations. The implementation
may decide to store the newly allocated layout instance to avoid allocating a new one when
the method is again called for the same graph.

If you have implemented a layout provider, you can use it in the Recursive Layout in the
following way:

..
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.recursive.*;

IlvLayoutProvider layoutProvider = ...
IlvRecursiveLayout layout = new IlvRecursiveLayout(layoutProvider);
IlvGrapher topLevelGrapher = ...
layout.attach(topLevelGrapher);

// Perform the layout
try {

IlvRecursiveLayoutReport layoutReport =
(IlvRecursiveLayoutReport)layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
...
// detach the Recursive Layout when it is no longer needed
layout.detach();
...

U S I N G G R A P H L A Y O U T A L G O R I T H M S 459

Features

♦ This subclass of IlvGraphLayout is not a usual layout algorithm but rather a facility to
manage the layout of a nested grapher.

♦ Three layout modes: reference layout mode, internal provider mode, and specified provider
mode.

♦ Allows you to perform a layout algorithm recursively in a nested grapher.

♦ Allows you to perform a recursive layout on a nested grapher while each subgrapher uses
an individual layout style.

♦ Layout features, speed, and quality depend on the features, speed, and quality of the
sublayouts.

U S I N G G R A P H L A Y O U T A L G O R I T H M S460

Generic features and parameters

Depending on the support of its sublayouts, Recursive Layout may support the following
generic parameters defined in the IlvGraphLayout class (see Generic parameters and
features):

♦ Allowed time

♦ Percentage completion calculation

♦ Save parameters to named properties

♦ Stop immediately

The following paragraphs describe the particular way in which these parameters are used
by this subclass.

Allowed time
The Recursive Layout can stop the entire layout of a nested graph after a certain amount
of time. If the allowed time setting has elapsed, the Recursive Layout stops; that means it
stops the currently running layout of a subgraph and skips the subsequent layouts of
subgraphs that have not yet been started. If at the stop time point a sublayout is running
on a subgraph that does not support the “allowed time” feature, then this sublayout first
runs to completion before the Recursive Layout is stopped. If the Recursive Layout stops
early because the allowed time has elapsed, the result code in the layout report is
IlvGraphLayoutReport.STOPPED_AND_INVALID.

Percentage completion calculation
The Recursive Layout calculates the percentage of completion. This value can be obtained
from the layout report during the run of the layout. The value is, however, a very rough
estimation. If the layouts on the subgraphs do not support the calculation of the percentage
completion, the Recursive Layout can report the percentage based only on the information
how many layouts of subgraphs are already finished. For instance, if the entire nesting
structure contains five nested graphs, the mechanism reports 20% after the layout of the
first subgraph has finished, 40% after the layout of the second subgraph has finished, and
so on. If the layouts of the subgraphs support the calculation of the percentage completion,
the Recursive Layout calculates a more detailed percentage. In most cases, the calculated
percentage is only a very rough estimation that does not always grow linearly over time.
(For a detailed description of this feature, see Percentage of completion calculation and
Listener layout)

Save parameters to named properties
The Recursive Layout instance can save its layout parameters into named properties if all
its sublayouts support this feature. This can be used to save layout parameters to .ivl files.
(For a detailed description of this feature, see Percentage of completion calculationand
Saving layout parameters and preferred layouts.)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 461

Stop immediately
The Recursive Layout can be stopped at any time. It stops the currently running layout of
a subgraph after cleanup if themethod stopImmediately() is called and skips the subsequent
layouts of subgraphs that have not yet been started. If at the stop time point a sublayout is
running on a subgraph that does not support the “stop immediately” feature, then this
sublayout first runs to completion before the Recursive Layout is stopped. For a description
of this method in the IlvGraphLayout class, see Stop immediately. If the layout stops before
completion, the result code in the layout report is IlvGraphLayoutReport.
STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S462

Recursive layout modes

Describes the modes available in this layout.

In this section

Overview of recursive layout modes
Describes the modes available in this layout.

Reference layout mode
Describes the reference layout mode for a nested graph.

Internal provider mode
Describes the internal provider mode for a nested graph.

Specified provider mode
Describes the specified provider mode for a nested graph.

Accessing all sublayouts
Describes how to access all sublayouts through recursive layout.

Specific parameters
Describes how to access all sublayouts through recursive layout.

For experts: mechanisms for advanced users
Explains some mechanisms that are available for advanced users.

For experts: more on layout providers
Describes the way to use the default layout provider.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 463

Overview of recursive layout modes

The Recursive Layout has three different layout modes:

♦ Reference layout mode

♦ Internal provider mode

♦ Specified provider mode

The layout mode is determined by the constructor that you use. The way how to set global
layout parameters of the sublayouts that are applied to the subgraphs is slightly different
for each layout mode. You can query the current layout mode by using

int getLayoutMode()

The possible return values are:

♦ IlvRecursiveLayout.REFERENCE_LAYOUT_MODE: The same layout style with the same
global layout parameters is applied to all subgraphs of the nested graph.

♦ IlvRecursiveLayout.INTERNAL_PROVIDER_MODE: The layout is applied using an internal
recursive layout provider. The layout styles of individual subgraphs can be specified by
using the method setLayout.

♦ IlvRecursiveLayout.SPECIFIED_PROVIDER_MODE: The layout is applied using an explicitely
specified layout provider.

This section is divided as follows:

♦ Accessing all sublayouts

♦ Convenience method for setting reference layout mode

U S I N G G R A P H L A Y O U T A L G O R I T H M S464

Reference layout mode

Use this mode if you want to apply the same layout style with the same global layout
parameters to the entire nested graph. You first need to allocate the reference layout, that
is a new instance of any graph layout algorithm (except IlvRecursiveLayout) that should
be applied to all subgraphs of the nested graph. Then you allocate the Recursive Layout
using the constructor with the reference layout as argument

IlvRecursiveLayout(IlvGraphLayout referenceLayout)

The reference layout is internally only used for the top-level graph of the nested graph.
Clones of the reference layout are used for the subgraphs. Hence, all subgraphs are laid out
with the same global layout parameters. To change the global layout parameters, you can
access the reference layout by

IlvGraphLayout getReferenceLayout()

Global layout parameters are those parameters that are independent from specific nodes
or links. Other layout parameters are local to specific nodes or links. For instance, in
IlvHierarchicalLayout, the method setGlobalLinkStyle(style) is a global layout
parameter, while the method setLinkStyle(link,style) is a local layout parameter.

If you need to set layout parameters that are local to an individual node or link, you need
to access the particular clone of the reference layout that is responsible for the subgraph
that owns the node or link. After attaching the Recursive Layout to the top-level grapher or
graph model, you can retrieve the layout instance of a specific subgraph by

IlvGraphLayout getLayout(Object subgraph)

However, in reference layout mode, it makes no sense to modify any global layout parameter
on the returned instance. The global layout parameters are always taken from the reference
layout only. If you pass null as subgraph, you get the layout instance of the top-level graph.
This is actually the same layout instance as the reference layout.

The reference layout and its clones used during recursive layout remain attached to the
subgraphs (or the graph models of the subgraphs, respectively) as long as the Reference
Layout itself is attached. When detaching the Reference Layout, all layouts of subgraphs
are automatically detached as well.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 465

Internal provider mode

Use this mode if you want to perform graph layout on a nested graph, but either you need
individual global layout parameters for specific subgraphs, or you want to lay out different
subgraphs with different styles. In this case, there is no reference layout. You allocate the
Recursive Layout using the constructor with no arguments

IlvRecursiveLayout()

Before you can perform a layout, you need to specify which layout is used for which subgraph.
First, you should attach the Recursive Layout to a graph. Then, to specify the layout of the
top-level graph, call:

recursiveLayout.setLayout(null, sublayout);

To specify the layout of a specific subgraph, call

recursiveLayout.setLayout(subgraph, sublayout);

It is important that you assign a different layout instance for each subgraph. You cannot
share the same layout instance among different subgraphs. We recommend, that you allocate
a new, fresh layout instance for each subgraph. If you pass null as sublayout, then no layout
is performed for this particular subgraph.

To set the layout for a subgraph and recursively for all its subgraphs, you can use

setLayout(Object subgraph, IlvGraphLayout layout, boolean traverse)

and pass the true argument for the traverse flag. This sets the layouts to a clone of the
input layout for each subgraph starting at the input subgraph.

Internally, the Recursive Layout uses a layout provider of type IlvRecursiveLayoutProvider.
You can access the current layout provider by

IlvLayoutProvider getLayoutProvider()

However, in internal provider mode, it is mostly not necessary to manipulate the layout
provider directly.

Since there is no reference layout, global layout parameters are independent for each
subgraph. Global and local layout parameters can be set by accessing the particular layout
instance that is assigned to a specific subgraph. After attaching the Recursive Layout to the
top-level grapher or graph model, you can retrieve the layout instance of a specific subgraph
by

IlvGraphLayout getLayout(Object subgraph)

If you pass null as subgraph, you get the layout instance of the top-level graph.

U S I N G G R A P H L A Y O U T A L G O R I T H M S466

The layout instances of the subgraphs used during recursive layout remain attached to the
subgraphs (or the graph models of the subgraphs, respectively) as long as the Reference
Layout itself is attached. When you detach the Reference Layout, all layouts of subgraphs
are automatically detached as well.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 467

Specified provider mode

The specified provider mode can be used if you want to perform graph layout on a nested
graph, but either you need individual global layout parameters for specific subgraphs, or
you want to lay out different subgraphs with different styles. It is your own responsibility
to manage the specified layout provider (unlike the case with the internal provider mode),
but this is probably only necessary in very advanced applications.

In specified provider mode, there is no reference layout. You allocate the Recursive Layout
using the constructor with your layout provider as argument

IlvRecursiveLayout(IlvLayoutProvider specifiedProvider)

You can access the current layout provider by

IlvLayoutProvider getLayoutProvider()

You should implement your layout provider in a way so that it delivers a different layout
instance for each subgraph. The delivered layout instance must be attached to the graph
model of the corresponding subgraph.

Since there is no reference layout, global layout parameters are independent for each
subgraph. It is recommended that the implementation of the layout provider takes care of
the setting of global and local layout parameters. Theoretically, you can use the method

IlvGraphLayout getLayout(Object subgraph)

which will return the layout instance that the specified layout provider delivers for the graph
model of the input subgraph. If you pass null as subgraph, you get the layout instance of
the top-level graph. However, the effect of this method depends on the implementation of
the layout provider that was passed to the constructor of Recursive Layout.

The layout instances of the subgraphs used during recursive layout should be attached by
the layout provider. They are usually not automatically detached when the Recursive Layout
is detached. Unless you use one of the predefined providers of class
IlvDefaultLayoutProvider or IlvRecursiveLayoutProvider, you should traverse all layouts
and detach them explicitly.

U S I N G G R A P H L A Y O U T A L G O R I T H M S468

Accessing all sublayouts

When the Recursive Layout is attached, you can conveniently access all layouts that will be
used during layout. This works in all layout modes:

Enumeration getLayouts(boolean preOrder)

As explained in Internal mechanism, the getLayouts method returns an enumeration of
instances of IlvGraphLayout. If the preOrder flag is true, the layout of the parent graph
occurs before the layout of its children in the enumeration. If the preorder flag is false,
the layout of the parent graph occurs after the layout of its children. For example, in the
graph in the following figure, the call getLayouts(true) returns the layouts for the subgraphs
in this order: L1, L1.1, L1.1.1, L1.1.2, L1.2; the call getLayouts(false) returns the layouts
for the subgraphs in this order: L1.1.1, L1.1.2, L1.1, L1.2, L1.

Nesting structure in a graph

In specified provider mode, the enumeration returned by getLayouts contains the
instances that are delivered by the specified provider. If the specified provider returns

Note:

a different instance in each call of getGraphLayout(IlvGraphModel), then the
enumeration does not contain the instances that are later used during layout. Hence
it is recommended to use layout providers that store the layout instances internally
and return the same instance for the same graph model. The predefines
IlvDefaultLayoutProvider and IlvRecursiveLayoutProvider store the
layout instances internally.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 469

Convenience method for setting reference layout mode
The class IlvGraphLayout contains a convenience method. To perform a recursive layout
recursively, you can use:

int performLayout(boolean force, boolean redraw, boolean traverse)

If the traverse flag is true, it traverses the nested graph and performs the layout on each
subgraph. In fact, this is just a shortcut for the reference mode of Recursive Layout. The
statement

flatLayout.performLayout(force, redraw, true);

is equivalent to creating a Recursive Layout in reference mode that uses the flatLayout as
reference layout:

IlvRecursiveLayout recursiveLayout = new IlvRecursiveLayout(flatLayout);
recursiveLayout.performLayout(force, redraw);

U S I N G G R A P H L A Y O U T A L G O R I T H M S470

Specific parameters

Besides some expert parameters, Recursive Layout does not provide any specific layout
parameters. You can set specific layout parameters of the sublayouts individually by accessing
them via getLayout(Object):

IlvGraphLayout sublayout = recursiveLayout.getLayout(subgraph);
sublayout.setParameter(parameter);

However, Recursive Layout has some convenient methods that automatically traverse the
nested graph recursively and set the corresponding parameter at each sublayout of a
subgraph that supports this parameter. This works well particularly in reference layout
mode. In internal or specified provider mode, it takes only the current nesting structure into
account. If you change the specific layout of a subgraph or the nesting structure (for example,
by adding a new subgraph) after using such a convenience method, the new layout of the
new subgraph usually has a different setting, so you may need to apply the convenience
method again.

The following methods traverse the nested graph recursively and set the corresponding
parameter on all sublayouts (see Generic parameters and features and Using advanced
features for details):

♦ setCoordinatesMode(int mode)

♦ void setUseDefaultParameters(boolean option)

♦ void setMinBusyTime(long time)

♦ void setInputCheckEnabled(boolean enable)

♦ void propagateLayoutOfConnectedComponentsEnabled(boolean enable)

♦ void propagateLayoutOfConnectedComponents(IlvGraphLayout layout)

♦ void propagateLinkConnectionBoxInterface(IlvLinkConnectionBoxInterface
linkConnectionBoxInterface)

♦ propagateLinkClipInterface(IlvLinkClipInterface linkClipInterface)

♦ void checkAppropriateLinks()

♦ void setLinkCheckEnabled(boolean enable)

♦ void setConnectionPointCheckEnabled(boolean enable)

There is a generic propagation mechanism for setting any parameter which is implemented
by reflection. For example, the following call traverses the nested graph recursively, checks
for each sublayout using introspection whether a method called setFlowDirection exists,
and passes the input value direction to this method. As a result, all sublayouts that have
a flow direction parameter will use the same flow direction, while the layout parameters of
those layouts that do not have a flow direction remain unchanged:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 471

int code = recursiveLayout.propagateLayoutParameter("flowDirection",
null, direction);

The second argument of propagateLayoutParameter can be used to select only specific
layout classes. The call

int code = recursiveLayout.propagateLayoutParameter("flowDirection",
IlvHierarchicalLayout.class, direction);

propagates the flow direction only to all those sublayouts that are instances of
IlvHierarchicalLayout. For example if a subgraph uses a Tree Layout, its flow direction
remains unchanged in this case, even though IlvTreeLayout has a method
setFlowDirection.

The return code of the propagation method indicates whether setting the parameter has
been successful. It is a bitwise-Or combination of the following bit masks:

♦ IlvRecursiveLayout.PROPAGATE_PARAMETER_SET - the parameter was successfully applied
at some layout instance of a subgraph.

♦ IlvRecursiveLayout.PROPAGATE_PARAMETER_AMBIGUOUS - themethod to set the parameter
could not uniquely be determined at some layout instance, because there were many
methods with the same name, which creates an unresolvable ambiguity. In this case, an
arbitrary method is choosen among the ambiguous methods.

♦ IlvRecursiveLayout.PROPAGATE_CLASS_MISMATCH - the parameter was not applied at
some layout instance of a subgraph because the layout instance did not match the specified
layout class. This can happen only when a non-null layout class is specified as the second
parameter of the method propagateLayoutParameter.

♦ IlvRecursiveLayout.PROPAGATE_PARAMETER_MISMATCH - the parameter was not applied
at some layout instance of a subgraph because no matching method with appropriate
argument types was found via reflection, or because the security manager of the Java™
Virtual Machine did not allow reflection. In Java applets, reflection is often not permitted.

♦ IlvRecursiveLayout.PROPAGATE_EXCEPTION - the method to set the parameter was
applied but threw an exception at some layout instance of a subgraph.

For further details about the propagation mechanism, see the class
IlvRecursiveLayoutIlvRecursiveLayout in the Java API Reference Manual.

U S I N G G R A P H L A Y O U T A L G O R I T H M S472

For experts: mechanisms for advanced users

The mechanisms available for advanced users are:

♦ Subgraph correction, to correct the subgraphs during layout

♦ Listener layout, to install layout event listeners efficiently

Subgraph correction
In IBM® ILOG® JViews, the position of a subgrapher (instance of IlvGrapher) is always
calculated from the positions of the contents of the subgrapher. The position of the
subgrapher is simply the position of the bounding box around its contents. This mechanism
has side effects when performing layout: a subgraph will never appear fixed if its contents
is laid out, because when a layout is applied to the contents of the subgraph, the bounding
box, hence the position, of the subgraph changes. Depending on the applications, this may
be an unwanted effect.

Normally, after the subgraph is laid out, its parent graph gets laid out, which eventually
moves the entire subgraph to its final position. Therefore, in most cases, the unwanted
position of the subgraph is only temporary and you can ignore the entire problem. However,
in a few situations, you need to be aware of the effect, namely:

♦ if the subgraph is specified as fixed (for instance, by a call to the method setFixed) and
hence should not move;

♦ if the parent graph is never laid out;

♦ if the parent graph is laid out in a layout style with incremental mode on, which analyzes
the positions of the nodes (for instance in Tree Layout and Hierarchical Layout).

In all these situations, it is important that the subgraph remains at the old position even
after its contents has been laid out. The implementation of IlvGrapher does not behave like
this.

The solution is simply to move the subgraph back to its old position immediately after the
subgraph has been laid out, just before the layout of its parent graph is started. The Recursive
Layout allows you to install a subgraph correction interface that contains a correctmethod
which is called exactly at this point. You install a subgraph correction interface in the
following way:

layout.setSubgraphCorrectionInterface(
new IlvSubgraphCorrectionBarycenterFixed());

Effect of Subgraph Correction illustrates the effect of subgraph correction.

Two default implementations of IlvSubgraphCorrectionInterface are available:

♦ IlvSubgraphCorrectionBarycenterFixed corrects the subgraph so that after its contents
has been laid out, the center of the subgraph remains the same. However, the size of the
subgraph bounding box may change due to the contents layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 473

♦ IlvSubgraphCorrectionBoundsFixed corrects the subgraph so that after its contents
has been laid out, the bounding box of the subgraph remains the same. However, to
achieve this, the zoom level of the subgraph is changed.

These implementations of the subgraph correction interface do not correct the top-level
graph, but only the nested subgraphs The instances can be shared between different instances
of IlvRecursiveLayout.

Effect of Subgraph Correction

Listener layout
Event listener layout is an advanced feature documented in Using event listeners. You need
to understand that general description and the concept of layout listeners before you read
this section. This section describes some specific details of the Recursive Layout related to
layout listeners.

The application can listen for layout events sent by the Recursive Layout or by each sublayout
individually. For example, a progress bar that displays the progress of the entire nested
layout should listen for the layout events fired by the Recursive Layout itself, while an
application that wants to detect when a specific sublayout of a subgraph is started or stopped
should listen for the layout events sent by that particular sublayout.

To install a layout event listener at the Recursive Layout, call usually:

recursiveLayout.addGraphLayoutEventListener(listener);

To install a layout listener that receives the layout events of all sublayouts of the Recursive
Layout, you can call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S474

recursiveLayout.addSubLayoutEventListener(listener);

Note that in this case, the listener is installed at the Recursive Layout instance (not at the
sublayout instances) but receives the events from the sublayouts (not from the Recursive
Layout). An internal mechanism makes sure that the events are forwarded to the listener.

Alternatively, you could traverse the nesting structure and install the same listener at all
subgraph layouts. However, this would have two disadvantages: it requires more memory
and you need to reinstall or update the listener whenever you change the layout of a subgraph
or the nesting structure by adding or removing subgraphs. When you use
addSubLayoutEventListener, updating the listener is not necessary in this case.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 475

For experts: more on layout providers

For information on use the Recursive Layout with a specified layout provider, see Specified
provider mode.

The library provides a default implementation of the interface IlvLayoutProvider, named
IlvDefaultLayoutProvider. In many cases, it is simpler either to use this class as is, or to
subclass it, rather than directly implementing the interface.

The class IlvDefaultLayoutProvider allows you to set the layout instance to be used for
each graph (called the preferred layout) with the method:

setPreferredLayout(IlvGraphModel graphModel, IlvGraphLayout layout, boolean
detachPrevious)

The layout instance specified as the preferred layout is stored in a property of the graph.
The current preferred layout is returned by the method:

getPreferredLayout(IlvGraphModel graphModel)

The method returns null if no layout has been specified for this graph.

When the method getGraphLayout is called on the default provider, the previously specified
preferred layout is returned, if any. Otherwise, a new layout instance is allocated by a call
to the method

createGraphLayout(IlvGraphModel graphModel)

This newly created layout is recorded as the preferred layout of this graph, which is attached
to the layout instance.

When a preferred layout has been specified for a given graph, the default implementation
of the method createGraphLayout copies the layout instance that is the preferred layout of
the nearest parent graph. Therefore, if a preferred layout L is specified for a graph G and
no preferred layout is set for its subgraphs, then the graph G and all its subgraphs are laid
out using the same layout algorithm L (copies of it are used for the subgraphs).

You must call the method detachLayouts when you no longer need the layout
provider instance; otherwise, the garbage collector may fail to remove some objects.

Note:

The settings of the preferred layout made using the class IlvDefaultLayoutProvider can
be saved in .ivl files. For details, see Saving layout parameters and preferred layouts.

Java Code Sample:
The following Java™ code sample illustrates the use of the class IlvDefaultLayoutProvider.

U S I N G G R A P H L A Y O U T A L G O R I T H M S476

...
IlvGrapher grapherA = new IlvGrapher();
IlvGrapher grapherB = new IlvGrapher();

// Fill the graphers with nodes and links;
// grapherB is added as a subgraph of grapherA
grapherA.addNode(grapherB, false);

// Create a grapher adapter for the topmost graph
IlvGrapherAdapter adapterA = new IlvGrapherAdapter(grapherA);

// Get a grapher adapter for the subgraph
IlvGraphModel adapterB = adapterA.getGraphModel(grapherB);

// Create the layout provider
IlvDefaultLayoutProvider provider = new IlvDefaultLayoutProvider();

// Specify the preferred layouts for each grapher
// (this automatically attaches the layouts)
provider.setPreferredLayout(adapterA, new IlvTreeLayout());
provider.setPreferredLayout(adapterB, new IlvGridLayout());

// Create a recursive layout in specified provider mode
IlvRecursiveLayout layout = new IlvRecursiveLayout(provider);

// Perform the layout
try {

IlvRecursiveLayoutReport layoutReport =
(IlvRecursiveLayoutReport)layout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
...
// detach the layouts when the provider is no longer needed
provider.detachLayouts(adapterA, true);
// dispose the topmost adapter when no longer needed
adapterA.dispose();
...

U S I N G G R A P H L A Y O U T A L G O R I T H M S 477

U S I N G G R A P H L A Y O U T A L G O R I T H M S478

Multiple layout

Describes the Multiple Layout class (class IlvMultipleLayout from the package ilog.
views.graphlayout.multiple).

In this section

General information
Describes the multiple layout facility.

Features
Lists the features of multiple layout and shows the class diagram.

Generic features and parameters
Describes the generic features and parameters of multiple layout.

Specific parameters
Describes the specific parameters of multiple layout.

Accessing sublayouts
Describes how to access sublayouts of a multiple layout.

For experts: attaching graph and labeling models
Describes how to attach graph and labeling models.

Combining multiple and recursive layout
Describes how to combine a multiple layout with a recursive layout.

For experts: the reference labeling model
Describes the reference labeling model for a recursive multiple layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 479

General information

What is multiple layout?
The Multiple Layout class is useful mainly when applying layout in Java™ code. The class
is also internally used by the graph layout renderer of a diagram component, but in the
diagram component, the rendering mechanism is transparent so that you seldom need to
deal with the class IlvMultipleLayout.

The Multiple Layout can be used only in Java code. No CSS syntax is available
for this layout.

Important:

The Multiple Layout class is not a layout algorithm but rather a facility to compose multiple
layout algorithms and treat them as one algorithm object. This is necessary in particular
when dealing with the recursive layout of nested submanagers (see Recursive layout and
Layout of nested graphs in code) because performing the layouts recursively one after the
other has a different effect than combining the layouts into one algorithm object and applying
this object all at once. Multiple Layout should also be used to combine a normal layout with
a Link Layout that routes intergraph links. This is illustrated in the following sample.

Java code sample
You can, for instance, combine a Tree Layout, a Link Layout, and an Annealing Label Layout
into one object of type IlvGraphLayout in the following way:

...
import ilog.views.*;
import ilog.views.graphlayout.*;
import ilog.views.graphlayout.multiple.*;
import ilog.views.graphlayout.tree.*;
import ilog.views.graphlayout.link.*;
import ilog.views.graphlayout.labellayout.annealing.*;

IlvTreeLayout treeLayout = new IlvTreeLayout();
IlvLinkLayout linkLayout = new IlvLinkLayout();
IlvAnnealingLabelLayout labelLayout = new IlvAnnealingLabelLayout();
IlvMultipleLayout multipleLayout =

new IlvMultipleLayout(treeLayout, linkLayout, labelLayout);

IlvGrapher grapher = ...
layout.attach(grapher);

... /* Fill in code to set the layout parameters of treeLayout,
* linkLayout and labelLayout.
*/

U S I N G G R A P H L A Y O U T A L G O R I T H M S480

linkLayout.setInterGraphLinksMode(true);
...

By constructing a Multiple Layout instance in this way, the Tree Layout, Link Layout, and
Label Layout become sublayouts of the Multiple Layout instance. Attaching the Multiple
Layout will automatically attach its sublayouts.

The Multiple Layout has two slots for graph layouts and one slot for the label layout. Not
all slots need to be used. You can pass null as the sublayout for unused slots. If you need
more slots, you can compose a Multiple Layout that contains another Multiple Layout as a
sublayout.

To perform the composed layout you use one of the following:

♦ Simple layout

♦ Recursive layout

Simple layout
You can perform the composed layout on a flat grapher (one which contains no submanagers)
in the following way:

try {
IlvMultipleLayoutReport layoutReport =

(IlvMultipleLayoutReport)multipleLayout.performLayout();

int code = layoutReport.getCode();

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

The statement with multipleLayout.performLayout() in this case has the same effect as
the sequence of the three statements:

treeLayout.performLayout();
linkLayout.performLayout();
labelLayout.performLayout();

Recursive layout
If you perform the Multiple Layout on a grapher that contains submanagers, there is a
difference in the order of the layout (see Order of layouts in recursive layouts. You apply a
recursive layout on the grapher and its submanagers in the following way:

IlvRecursiveLayout recursiveLayout = new IlvRecursiveLayout(multipleLayout);
try {

U S I N G G R A P H L A Y O U T A L G O R I T H M S 481

IlvGraphLayoutReport layoutReport = recursiveLayout.performLayout();
...

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

or alternatively, in the following way (both ways are equivalent):

try {
int layoutCode =

(IlvMultipleLayoutReport)multipleLayout.performLayout(
true, true, true);

...
}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

Assume the attached grapher A contains a subgrapher B. The combined Multiple Layout
applies its sublayouts in reverse order, as follows:

1. Tree Layout on B

2. Link Layout on B

3. Label Layout on B

4. Tree Layout on A

5. Link Layout on A

6. Label Layout on A

This means that all layouts of subgrapher B have finished before the layout of grapher A
starts. This is the correct order for a recursive layout.

If you do not combine the three component layouts into a Multiple Layout, you can only
apply them sequentially:

treeLayout.performLayout(true, true, true);
linkLayout.performLayout(true, true, true);
labelLayout.performLayout(true, true, true);

The effect of these three statements is slightly different than the effect of the Multiple
Layout. The layouts are now applied in the following order:

1. Tree Layout on B

2. Tree Layout on A

3. Link Layout on B

4. Link Layout on A

5. Label Layout on B

U S I N G G R A P H L A Y O U T A L G O R I T H M S482

6. Label Layout on A

This order is not usually suitable for the layout of nested graphers because the Tree Layout
of grapher A is started too early. The Label Layout on grapher B in Step 5 may change the
position of grapher B within grapher A, invalidating the result of the Tree Layout in Step 2.
Hence, it is recommended that you combine multiple layout algorithms into one Multiple
Layout object and apply this object as a whole to a nested grapher.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 483

Features

♦ Allows the composing of two graph layout algorithms and one label layout algorithm into
one layout object.

♦ Should be used to achieve the correct layout order when dealing with nested graphers.

♦ Layout features, speed, and quality depend on the features, speed, and quality of the
sublayouts.

The class IlvMultipleLayout can contain two sublayouts and one label layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S484

Generic features and parameters

Depending on the support of its sublayouts, Multiple Layout may support the following
generic parameters and features defined in the IlvGraphLayout class (see Generic
parameters and features):

♦ Allowed time

♦ Layout of connected components

♦ Percentage completion calculation

♦ Stop immediately

Extra feature for JViews Diagrammer:

♦ Save parameters to named properties

The following paragraphs describe the particular way in which these parameters are used
by this subclass.

Allowed time
A Multiple Layout instance supports this feature if all of its sublayouts support the feature.
If the allowed time setting has elapsed, the Multiple Layout stops; that means it stops the
currently running sublayout and skips the subsequent sublayouts that have not yet been
started. If the layout stops early because the allowed time has elapsed, the result code in
the layout report is IlvGraphLayoutReport.STOPPED_AND_INVALID.

Layout of connected components
TheMultiple Layout instance can use the generic mechanism to lay out connected components
if the sublayouts of type IlvGraphLayout support this feature. The sublayout of type
IlvLabelLayout does not need special handling of connected components. For more
information about this mechanism, see Layout of connected components.

Percentage completion calculation
The Multiple Layout calculates the percentage of completion. This value can be obtained
from the layout report during the run of the layout. The value is, however, a very rough
estimation. If the sublayouts do not support the calculation of the percentage completion,
the Multiple Layout can report the percentage based only on the information that the
sublayout has already finished. For instance, if there are three sublayouts, the mechanism
reports 33% after the first sublayout has finished, 66%after the second sublayout has finished,
and 100% after all three sublayouts have finished. If the sublayouts support the calculation
of the percentage completion, the Multiple Layout calculates a more detailed percentage.
For a detailed description of this feature, see Percentage of completion calculation and
Graph layout event listeners.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 485

Save parameters to named properties
The Multiple Layout instance can save its layout parameters into named properties if all its
sublayouts support this feature. This can be used to save layout parameters to .ivl files.
(For a detailed description of this feature, see Save parameters to named propertiesand
Saving layout parameters and preferred layouts.)

Stop immediately
The Multiple Layout instance supports this feature if all its sublayouts support this feature.
It stops the currently running sublayout after cleanup if the method stopImmediately() is
called and skips the subsequent sublayouts that have not yet been started. For a description
of this method in the IlvGraphLayout class, see Stop immediately. If the layout stops before
completion, the result code in the layout report is IlvGraphLayoutReport.
STOPPED_AND_INVALID.

U S I N G G R A P H L A Y O U T A L G O R I T H M S486

Specific parameters

Multiple Layout does not provide any specific layout parameters. However, you can set the
generic and specific layout parameters of the sublayouts individually. For instance, you can
construct a Multiple Layout instance from two graph layouts. Even though the Multiple
Layout does not support setting fixed nodes on itself, you can fix nodes for the sublayouts
individually by applying setFixed to the sublayout instances if the sublayouts support this
feature:

IlvMultipleLayout multipleLayout =
new IlvMultipleLayout(layout1, layout2, null);

multipleLayout.attach(grapher);
if (layout1.supportsPreserveFixedNodes()) {

layout1.setFixed(node1, true);
...

}
if (layout2.supportsPreserveFixedNodes()) {

layout2.setFixed(node2, true);
...

}
try {

// perform a multiple layout: node1 is fixed while layout1 runs
// and node2 is fixed while layout2 runs
IlvMultipleLayoutReport layoutReport =

(IlvMultipleLayoutReport)multipleLayout.performLayout(
true, true, true);

...
}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 487

Accessing sublayouts

You can obtain the sublayouts of a Multiple Layout instance by the following methods:

♦ getFirstGraphLayout()

which returns the graph layout that is applied first.

♦ getSecondGraphLayout()

which returns the graph layout that is applied second.

♦ getLabelLayout()

which returns the label layout that is applied last.

You can also change the sublayouts. Of course, you should not change the sublayouts while
the Multiple Layout instance is attached to a graph. You should detach the graph first.

To set the sublayouts, the following methods are available:

void setFirstGraphLayout(IlvGraphLayout layout)

void setSecondGraphLayout(IlvGraphLayout layout)

void setLabelLayout(IlvLabelLayout layout)

U S I N G G R A P H L A Y O U T A L G O R I T H M S488

For experts: attaching graph and labeling models

If a graph model is attached to the Multiple Layout instance, the same graph model is
automatically attached to the sublayouts of type IlvGraphModel. For the sublayout of type
IlvLabelLayout, a default labelingmodel is used when possible (IlvDefaultLabelingModel,
see Labels and obstacles in Java). This works if the nodes, links, and labels are stored in an
IlvGrapher.

If you implement your own labeling model (subclass of IlvLabelingModel), you can force
the Multiple Layout to use this labeling model instead of the default labeling model. Before
you attach the graph model, you call the method setLabelingModel in the following way:

multipleLayout.setLabelingModel(myLabelingModel);
multipleLayout.attach(myGraphModel);

You must specify the labeling model in this way if your nodes, links, and labels are not stored
in an IlvGrapher but in your own data structures, because the default labeling model is
designed to handle only anIlvGrapher.

If the Multiple Layout instance is detached from the graph model, all sublayouts are
automatically detached as well.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 489

Combining multiple and recursive layout

Often, theMultiple Layout is used inside a Recursive Layout. For convenience, IBM® ILOG®
JViews provides a layout algorithm that combines both mechanisms: the Recursive Multiple
Layout. This is a Recursive Layout (see Recursive layout) that uses an instance of Multiple
Layout for each subgraph.

To apply a Tree Layout, a Link Layout, and an Annealing Label Layout recursively on a
nested graph, you can use:

IlvRecursiveMultipleLayout layout = new IlvRecursiveMultipleLayout(
new IlvTreeLayout(),
new IlvLinkLayout(),

new IlvAnnealingLabelLayout());

This is in principle the same as a Recursive Layout that has a Multiple Layout as a reference
layout:

IlvRecursiveLayout layout = new IlvRecursiveLayout(
new IlvMultipleLayout(
new IlvTreeLayout(),
new IlvLinkLayout(),

new IlvAnnealingLabelLayout()));

The Recursive Multiple Layout has a first and second graph layout instance per subgraph,
and a label layout instance per subgraph. You access these instances by the following
methods:

♦ IlvGraphLayout getFirstGraphLayout(Object subgraph)

which returns the graph layout that is applied first to the subgraph.

♦ IlvGraphLayout getSecondGraphLayout(Object subgraph)

which returns the graph layout that is applied secondly to the subgraph.

♦ IlvLabelLayout getLabelLayout(Object subgraph)

which returns the label layout that is applied last to the subgraph.

If the subgraph parameter is null in these methods, the layout instances of the top-level
graph are returned.

U S I N G G R A P H L A Y O U T A L G O R I T H M S490

For experts: the reference labeling model

The Recursive Multiple Layout must be used when the label layout should use a specified
labeling model that is not the default labeling model (IlvDefaultLabelingModel, see Labels
and obstacles in Java). The Multiple Layout allows you to specify a particular labeling model
by using the method setLabelingModel, but when you encapsulate the Multiple Layout into
a Recursive Layout, this specification would need to be repeated for each layout instance
of each subgraph. This would be inconvenient. However, the Recursive Multiple Layout
takes care of this mechanism automatically.

If you implement your own labeling model (subclass of IlvLabelingModel), you must
implement the method:

IlvLabelingModel createLabelingModel(Object subgraph)

This method should return a new instance of your own labeling model for the input subgraph.
The Recursive Multiple Layout uses this method to generate all labeling models for all
subgraph from a reference labeling model. Before attaching the Recursive Multiple Layout
instance, you can set the reference labeling model in the following way:

recursiveMultipleLayout.setReferenceLabelingModel(myLabelingModel);
recursiveMultipleLayout.attach(myGraphModel);

The reference labeling model is used for the label layout of the top-level grapher. Clones of
the reference labelingmodel obtained by createLabelingModel are used for the label layouts
of the subgraphers.

A simple way to perform a label layout recursively is the following:

IlvRecursiveMultipleLayout layout =
new IlvRecursiveMultipleLayout(labelLayout);

layout.setReferenceLabelingModel(myLabelingModel);
layout.attach(topLevelGraph);
try {

IlvGraphLayoutReport layoutReport = layout.performLayout();
...

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}
layout.detach();

If the Recursive Multiple Layout instance is detached from the top level graph model, all
sublayouts are automatically detached as well and all labeling models of subgraphs (including
the reference labeling model) are disposed of.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 491

U S I N G G R A P H L A Y O U T A L G O R I T H M S492

Automatic label placement

Describes the label placement algorithms.

In this section

Getting started with labeling
Provides information to get started using the Label Layout framework.

Specifying labels and obstacles
Explains what labels and obstacles are.

Using the label layout API
Describes how to perform a label layout.

Annealing label layout
Describes the Annealing Label Layout algorithm (class IlvAnnealingLabelLayout from the
package ilog.views.graphlayout.labellayout.annealing).

Random Label Layout
Describes the Random Label Layout algorithm (class IlvRandomLabelLayout from the
package ilog.views.graphlayout.labellayout.random).

Using advanced features
Describes advanced features for using IBM® ILOG® JViews Diagrammer Label Layout.

Defining your own labeling model
Describes how to develop a custom label layout algorithm if you need one.

© Copyright IBM Corp. 1987, 2009 493

U S I N G G R A P H L A Y O U T A L G O R I T H M S494

Getting started with labeling

Provides information to get started using the Label Layout framework.

In this section

Introduction to automatic label placement
Explains the goal and the limitations of automatic label placement.

Getting started with Label Layout in a diagram component
Explains how to style the label layout in a diagram component by using style sheets (CSS)
to support label links of type IlvGeneralLink.

Getting started with Label Layout in Java
Explains how to apply the label layout by programming label layout classes in Java™ .

U S I N G G R A P H L A Y O U T A L G O R I T H M S 495

Introduction to automatic label placement

A label placement algorithm is not a graph layout algorithm in the sense that it does not use
the class IlvGraphModel and it is not a subclass of IlvGraphLayout. However, the labeling
framework has many similarities to the graph layout framework.

Usually, a label is a text or decoration that should be placed close to some graphic object
because the label denotes the meaning of the graphic object. The label should not be
overlapped by obstacles because this would make it unreadable. If there are many potential
positions for one label, the automatic label placement algorithm should find the best position
for the label, so that it is close to its graphic object, not too close to unrelated objects, and
not overlapped by any obstacle.

Labels occur in many application areas: diagrams, geographic maps, charts, and so on. The
Labeling Layout framework can be applied to all these areas, that is, it is not restricted to
placing labels in a graph. For example, if you want to label cities in a geographic map, you
can use the Annealing Label Layout algorithm with appropriate point label descriptors. For
simplicity, this topic shows how to place labels at links in a graph.

The label layout framework distinguishes between:

♦ Graphic objects called labels that must be placed

♦ Graphic objects called obstacles that must not move but occupy space that is not available
for the labels

♦ Graphic objects that are ignored, that is, they are not moved nor considered as occupying
space; every graphic object that is neither a label nor an obstacle is ignored

A label should not overlap any obstacle or other label. In fact, this strict condition is not
feasible if there is not enough free space for the labels; in this situation the label layout
algorithm tries to reduce the amount of overlaps.

In IBM® ILOG® JViews, graphic objects (subclasses of IlvGraphic) are contained in a
manager (IlvManager), and graphs are managed by graphers (IlvGrapher, which is a
subclass of IlvManager). Because the Label Layout algorithms can be applied not only to
graphs but also to any graphic objects, the algorithms work on IlvManager. Consequently,
a label layout algorithm is not a subclass of IlvGraphLayout and does not use an
IlvGraphModel. IBM® ILOG® JViews Diagrammer provides a label layout framework that
is (despite many similarities) completely independent from the graph layout framework.

IBM® ILOG® JViews Diagrammer provides a Swing component that encapsulates a manager
and the view that displays the manager. It uses a model-view architecture, that is, application
objects must be provided as an SDM model, and a style sheet (CSS file) describes how the
corresponding graphic objects are added to the manager and are displayed in the view.

You can use the Label Layout algorithm in the following ways:

♦ In a diagram component: You specify the label layout in CSS format. The diagram
component loads this specification and automatically applies the label layout when
necessary. The diagram component recognizes only labels of nodes and links of the types
IlvGeneralNode, IlvGeneralLink, IlvSDMCompositeNode, and IlvSDMCompositeLink.

♦ In an application that uses IBM® ILOG® JViews managers: Instead of using style
files, you access the API of the label layout directly. This is suitable for applications that
do not need the model-view architecture. It is necessary for applications that requires

U S I N G G R A P H L A Y O U T A L G O R I T H M S496

the automatic placement of labels that are not part of IlvGeneralNode, IlvGeneralLink,
IlvSDMCompositeNode, and IlvSDMCompositeLink.

If you have implemented your own data structures or use third-party data structures that
represent labels, you can provide an adapter between your data structures and the labeling
model. This complex application of the label layout package is explained in Defining your
own labeling model.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 497

Getting started with Label Layout in a diagram component

For information on how to load a style file into the diagram component and how to access
the node layout, link layout, and label layout renderers, see Basic concepts.

To support labels in CSS:

1. Write a style rule specifying that links have labels.

The following CSS specification indicates that each link has one label with the text
coming from the “name” property of the model links of the SDM data model:

link {
class: "ilog.views.sdm.graphic.IlvGeneralLink";
label: "@name";

}

2. Specify, for example, that each label should be placed at the left side of the
corresponding link:

link:labelLayout {
allowedSide: "Left";
sideAssociation: "GLOBAL";

}

3. To enable label layout, specify the label layout renderer:

SMD {
LabelLayout: "true";

}

4. Set global label layout parameters in the Label Layout section. For example, the
following specification defines the minimum offsets between pairs of labels (5) and
between a label and an obstacle (10):

LabelLayout {
labelOffset: "5";
obstacleOffset: "10";

}

When a style file with these CSS specifications is loaded into the diagram component, the
Annealing Label layout is automatically performed. The label layout renderer always uses
the Annealing Label layout, therefore it is not necessary to specify which label layout must
be performed.

The complete CSS specification and a simple application that loads the specification and
performs a label layout are available as a sample at: <installdir>/jviews-diagrammer
86/codefragments/labellayout

U S I N G G R A P H L A Y O U T A L G O R I T H M S498

Getting started with Label Layout in Java

To obtain a label layout, apply the Annealing Label Layout algorithm to a manager directly.

To apply the layout to a manager:

1. Create a manager object (IlvManager) and fill it with obstacles and labels. For
instance, if you want to place labels at the links of a graph, create a grapher and fill
it with nodes and links (the obstacles) and additionally with the labels that should be
placed at the links. In this case, the labels should be added using addObject(ilog.
views.IlvGraphic, boolean) instead of addNode(ilog.views.IlvGraphic, boolean)
because the labels should not be nodes at the same time.

Unlike with diagram component and style sheets, you are not restricted to using
IlvGeneralLink, or IlvSDMCompositeLink. You can place labels at any link.

2. Create an instance of the Annealing Label Layout algorithm.

3. Declare a handle for the corresponding layout report. The layout report is an object
in which the layout algorithm stores information about its behavior. For details, see
The label layout report.

4. Attach the manager to the layout instance.

Here, it is assumed that the labels are subclasses of IlvLabel, IlvZoomableLabel or
IlvText. If they are not, the label model can be extended as illustrated in Labels and
obstacles in Java.

5. For each label, set a label descriptor.

The label descriptor describes the conditions for the placement of the label. For
instance, if a label should be placed close to the source or destination node of a link,
use an IlvAnnealingPolylineLabelDescriptor with the corresponding options. For
details, see Label descriptors.

6. Modify the default settings for the layout parameters, if needed.

7. Call the performLayout method.

8. Read and display information from the layout report.

9. When the layout instance is no longer needed, detach the manager from the layout
instance.

A complete example of these steps can be found at the location
<installdir>/jviews-diagrammer 86/codefragments/labellayout

It contains the following Java code:

// the JViews Graphic Framework
import ilog.views.*;
import ilog.views.graphic.*;

// the JViews Label Layout Framework
import ilog.views.graphlayout.labellayout.*;

U S I N G G R A P H L A Y O U T A L G O R I T H M S 499

// the JViews Annealing Label Layout
import ilog.views.graphlayout.labellayout.annealing.*;

// the Java AWT package
import java.awt.*;

// the Swing package
import javax.swing.*;

/**
* A very simple example for the use of a Layout Algorithm.
*/
public class LayoutSample2
{
public static final void main(String[] arg)
{
SwingUtilities.invokeLater(new Runnable() {
public void run() {
// Create the manager instance (subclass of IlvManager). Since we want

// to place link labels, we use a grapher in this example.
IlvGrapher grapher = new IlvGrapher();

// Create the manager view instance
IlvManagerView view = new IlvManagerView(grapher);
view.setBackground(Color.white);

// An Swing Frame to display
JFrame frame = new JFrame("Label Layout Sample");

// Put the manager view inside an AWT Frame and show it
frame.getContentPane().add(view);
frame.setSize(400, 400);
frame.setVisible(true);

// Fill the grapher with nodes and links
IlvReliefRectangle node1 = new IlvReliefRectangle(

new IlvRect(0f, 0f, 50f, 50f));
IlvReliefRectangle node2 = new IlvReliefRectangle(

new IlvRect(200f, 0f, 50f, 50f));
IlvReliefRectangle node3 = new IlvReliefRectangle(

new IlvRect(0f, 200f, 50f, 50f));
IlvReliefRectangle node4 = new IlvReliefRectangle(

new IlvRect(200f, 200f, 50f, 50f));
grapher.addNode(node1, false);
grapher.addNode(node2, false);
grapher.addNode(node3, false);
grapher.addNode(node4, false);

// set some nice colors
setNodeColors(node1, node2, node3, node4);

IlvLinkImage link1 = new IlvLinkImage(node1, node2, true);

U S I N G G R A P H L A Y O U T A L G O R I T H M S500

IlvLinkImage link2 = new IlvLinkImage(node1, node3, true);
IlvLinkImage link3 = new IlvLinkImage(node2, node4, true);
IlvLinkImage link4 = new IlvLinkImage(node4, node3, true);
IlvLinkImage link5 = new IlvLinkImage(node1, node4, true);

grapher.addLink(link1, false);
grapher.addLink(link2, false);
grapher.addLink(link3, false);
grapher.addLink(link4, false);
grapher.addLink(link5, false);

// set some nice colors
setLinkColors(link1, link2, link3, link4, link5);

// Add labels. Labels are neither "nodes" nor "links", hence add them

// as objects. Since we perform layout later, the initial position
// doesn’t play a role.

IlvPoint p = new IlvPoint(0f,0f);
IlvZoomableLabel label1 = new IlvZoomableLabel(p, "Label1");
IlvZoomableLabel label2 = new IlvZoomableLabel(p, "Label2");
IlvZoomableLabel label3 = new IlvZoomableLabel(p, "Label3");
IlvZoomableLabel label4 = new IlvZoomableLabel(p, "Label4");
IlvZoomableLabel label5 = new IlvZoomableLabel(p, "Start Label");
IlvZoomableLabel label6 = new IlvZoomableLabel(p, "End Label");

grapher.addObject(label1, false);
grapher.addObject(label2, false);
grapher.addObject(label3, false);
grapher.addObject(label4, false);
grapher.addObject(label5, false);
grapher.addObject(label6, false);

// Declare a handle for the layout instance
IlvAnnealingLabelLayout layout = new IlvAnnealingLabelLayout();

// Declare a handle for the layout report
IlvLabelLayoutReport layoutReport = null;

// Attach the manager to the layout instance
layout.attach(grapher);

// For each label, set a label descriptor that specifies: label1
// belongs to link1, label2 belongs to link2, and so on. link5 has

// 2 labels.

layout.setLabelDescriptor(
label1,
new IlvAnnealingPolylineLabelDescriptor(

label1, link1, IlvAnnealingPolylineLabelDescriptor.CENTER));
layout.setLabelDescriptor(

U S I N G G R A P H L A Y O U T A L G O R I T H M S 501

label2,
new IlvAnnealingPolylineLabelDescriptor(

label2, link2, IlvAnnealingPolylineLabelDescriptor.CENTER));
layout.setLabelDescriptor(

label3,
new IlvAnnealingPolylineLabelDescriptor(

label3, link3, IlvAnnealingPolylineLabelDescriptor.CENTER));
layout.setLabelDescriptor(

label4,
new IlvAnnealingPolylineLabelDescriptor(

label4, link4, IlvAnnealingPolylineLabelDescriptor.CENTER));
layout.setLabelDescriptor(

label5,
new IlvAnnealingPolylineLabelDescriptor(

label5, link5, IlvAnnealingPolylineLabelDescriptor.START));
layout.setLabelDescriptor(

label6,
new IlvAnnealingPolylineLabelDescriptor(

label6, link5, IlvAnnealingPolylineLabelDescriptor.END));

// Modify the layout parameters, if needed
layout.setLabelOffset(10);
layout.setObstacleOffset(5);

// Perform the layout and get the layout report
layoutReport = layout.performLayout();

// Print information from the layout report (optional)
System.out.println("layout done in " +

layoutReport.getLayoutTime() +
" millisec., code = " +
layoutReport.getCode());

// Fit the graph in the window
view.fitTransformerToContent();
// Redraw the grapher
grapher.reDraw();

// Detach the grapher from the layout instance
layout.detach();

}
});

}

The following figure shows the graph produced by the sample Java™ application.

U S I N G G R A P H L A Y O U T A L G O R I T H M S502

Output from Sample Java Application

U S I N G G R A P H L A Y O U T A L G O R I T H M S 503

U S I N G G R A P H L A Y O U T A L G O R I T H M S504

Specifying labels and obstacles

Explains what labels and obstacles are.

In this section

Labels and obstacles in a diagram component
Presents labels and obstacles and discusses how labels for different objects are positioned.

Labels and obstacles in Java
Describes how to specify labels and obstacles when working directly on an IlvManager
object in Java™ .

U S I N G G R A P H L A Y O U T A L G O R I T H M S 505

Labels and obstacles in a diagram component

IBM® ILOG® JViews Diagrammer uses an SDM data model that distinguishes between
nodes and links. Labels can belong to nodes or to links. The label layout considers the nodes
and links themselves as obstacles. However, only nodes of type IlvGeneralNode and
IlvSDMCompositeNode, and only links of type IlvGeneralLink and IlvSDMCompositeLink.
can have labels.

Labels at nodes
Each instance of IlvGeneralNode has at most one label. This label can be placed by a
hard-coded mechanism of IlvGeneralNode which does not take into account the free space,
or it can be placed by the label layout renderer. The parameter labelPosition of the class
IlvGeneralNode enables you to indicate how the label is placed. If the label position is set
to:

♦ “Center”: the label is placed by the hard-coded mechanism at the center of the node. It
is not taken into account by the label layout.

♦ “Left”, “Right”, “Top”, “Bottom”: the label is placed by the label layout renderer if the
label layout renderer is enabled, otherwise it is placed by the IlvGeneralNode hard-coded
mechanism.

The label can be implemented internally by the class IlvZoomableLabel or IlvText and can
be specified as zoomable or scaled relative to the node size. The following is a sample
specification of a node with a label:

node {
class : "ilog.views.sdm.graphic.IlvGeneralNode";
label : "@name";
labelScaleFactor: "0.5";
labelFont: "PLAIN-BOLD-12";
labelAntialiasing: "true";
labelZoomable: "true";
useIlvText: "true";

labelPosition : "Left";
labelSpacing : "2.0";

}

This node uses the class IlvGeneralNodewith a label of type IlvText. The label is zoomable,
that is, it scales according to the zoom factor. The label text is taken from the SDM model
property name. The labelPosition parameter specifies that the label must be placed to the
left of the node, and the labelSpacing parameter indicates that the maximal distance of
the label from the node is 2 units.

In order to specify further layout parameters of the label, use the pseudo class labelLayout:

node:labelLayout {

U S I N G G R A P H L A Y O U T A L G O R I T H M S506

... any option of the IlvAnnealingPointLabelDescriptor ...
}

In particular, you can specify whether the layout should treat or ignore the label:

node:labelLayout {
treatAs: "IGNORED";

}

The treatAs parameter can take the following values:

♦ LABEL - the label is positioned by the label layout.

♦ OBSTACLE - the label is not moved by the label layout, but it occupies space that cannot
be used by other labels

♦ IGNORED - the label is ignored even though the node that owns the label is not ignored.

Labels at links
Each instance of IlvGeneralLink has at most one label. This label can be placed by a
hard-coded mechanism of IlvGeneralLink which does not take into account the free space,
or it can be placed by the label layout renderer. If the label layout renderer is enabled, the
label is always placed by the label layout.

The general link can have an arbitrary set of decorations. The label is usually the first of
these decorations—that is, the decoration with index 0. Any decoration that implements the
interface IlvLabelInterface can be used as a label. If no such decoration is specified, it is
automatically generated if a label is required.

The following is a sample specification of a link with a label:

link {
class : "ilog.views.sdm.graphic.IlvGeneralLink";
label : "@name";

}

The label text is taken from the SDM model property name. Since no decoration is specified,
an instance of IlvZoomableLabel is automatically generated as the decoration with index
0. If you want to use a different class for the label, or if you want the label to have a specific
graphic property such as a background color, you must specify the decoration explicitly:

link {
class : "ilog.views.sdm.graphic.IlvGeneralLink";
decorations[0]: "@+deco";
label : "@name";
decorationPositions[0]: "0.8";

}
Subobject#deco {

class: "ilog.views.sdm.graphic.IlvGraphicFactories$ZoomableLabel";
IlvRect: "0,0,5,5";
backgroundOn: "true";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 507

background: "#BABABA";
}

The “Subobject#deco” rule specifies the graphic properties of the label. This label has a
special background color. The declaration “decorationPositions[0]” specifies where the
label attaches the link. If the label layout renderer is disabled, the label is placed in a
hard-coded way at this position. If the label layout renderer is enabled, the label is placed
approximately at this position, but also tries to avoid overlaps with other labels or obstacles.

General links may have many decorations, but the label layout recognizes only the first
decoration of type IlvLabelInterface as a label, recognizes the general link itself as an
obstacle, and ignores all other decorations of the general link.

In order to specify specific label parameters for the label layout, use the pseudo class
“labelLayout”:

link:labelLayout {
... any option of the IlvAnnealingPolylineLabelDescriptor ...

}

In particular, you can specify whether the layout should treat or ignore the label:

link:labelLayout {
treatAs: "IGNORED";

}

The treatAs parameter can take the values LABEL, OBSTACLE, or IGNORED, as explained in
Labels at nodes.

Labels at composite nodes
If you need nodes and links that can have multiple labels, you must use the classes
IlvSDMCompositeNode and IlvSDMCompositeLink. Composite nodes and links can have any
number of decorations (children). The label layout recognizes all children of type IlvLabel,
IlvZoomableLabel or IlvText as labels, and all other children as obstacles.

The following example shows how to specify labels at composite nodes:

node {
class: "ilog.views.sdm.graphic.IlvSDMCompositeNode";
children[0]: "@+base";
children[1]: "@+label1";
children[2]: "@+label2";

constraints[1]:@+attachmentLabel;
constraints[2]:@+attachmentLabel;

}

#base {
class:"ilog.views.graphic.IlvRectangle(definitionRect)";
definitionRect:"@|rect(0,0,60,60)";

U S I N G G R A P H L A Y O U T A L G O R I T H M S508

}

Subobject#label1 {
class:"ilog.views.graphic.IlvText";
label:@name;

}

Subobject#label2 {
class:"ilog.views.graphic.IlvText";
label:"hello";

}

Subobject#attachmentLabel {
class:"ilog.views.graphic.composite.layout.IlvAttachmentConstraint";
hotSpot:TopCenter;
anchor:BottomCenter;
offset: "0,3";

}

The composite node has three children: The first child (index 0, rule #base) is the basic
shape of the node. The other two children (index 1 and 2, rules Subobject#label1 and
Subobject#label2) are the labels of the node. The first node label label1 uses the SDM
model property name as text while label2 uses the constant string “Hello”. Composite nodes
and links require children to be attached by attachment constraints. See Building composite
nodes in CSS in JViews Diagrammer SDK.

The label layout treats the basic shape as an obstacle, and children with index 1 and 2 as
labels. In order to specify label parameters for the label layout, use the pseudo classes
“labelLayout” and “labelLayout_i” where i is the child index of the corresponding label.
This declaration applies to all labels of the node:

node:labelLayout {
... any option of the IlvAnnealingPointLabelDescriptor ...

}

This declaration applies to the label with child index 2 of node.

node:labelLayout_2 {
... any option of the IlvAnnealingPointLabelDescriptor ...

}

In particular, you can specify whether layout should treat or ignore the label:

node:labelLayout_2 {
treatAs: "IGNORED";

}

The treatAs parameter can take the values LABEL, OBSTACLE and, or IGNORED, as explained
in section Labels at nodes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 509

Labels at composite links
Setting labels on composite links is very similar to setting labels on composite nodes (see
Labels at composite nodes, except that the values of the hotSpot and anchor parameters
of the Subobject#attachmentLabel rule are different, as shown in the following example.

link {
class: "ilog.views.sdm.graphic.IlvSDMCompositeLink";
children[0]: "@+label1";
children[1]: "@+label2";
constraints[0]: "@+attachmentLabel";
constraints[1]: "@+attachmentLabel";

}
#base {

class:"ilog.views.graphic.IlvRectangle(definitionRect)";
definitionRect:"@|rect(0,0,60,60)";

}

Subobject#label1 {
class:"ilog.views.graphic.IlvText";
label:@name;

}

Subobject#label2 {
class:"ilog.views.graphic.IlvText";
label:"hello";

}

Subobject#attachmentLabel {
class:"ilog.views.graphic.composite.layout.IlvAttachmentConstraint";

hotSpot: "FromLink";
anchor: "Center";
offset: "0,0";

}

Ignoring nodes or links
The following CSS sample shows how to ignore a node and all its labels. This means that
the label layout algorithm does not treat the node as an obstacle and does not try to place
its labels. The label layout algorithm behaves as if the object did not exist:

#node23 {
LabelLayoutIgnored: "true";

}

Similarly, you can specify LabelLayoutIgnored for link in order to ignore the link and all
its labels.

U S I N G G R A P H L A Y O U T A L G O R I T H M S510

The CSS syntax is case-sensitive: LabelLayoutIgnored starts with an uppercase
letter, while most other label layout declarations start with a lowercase letter.

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 511

Labels and obstacles in Java

The diagram component works with a predefined, complex labeling model that recognizes
labels at instances of IlvGeneralNode, IlvSDMCompositeNode, IlvGeneralLink and
IlvSDMCompositeLink. If you use other classes or if you want to place labels at other objects,
you cannot use the diagram component and you have to code the labeling model.

The IlvLabelingModel class defines a suitable, generic API to position labels automatically
through an IBM® ILOG® JViews Diagrammer label layout algorithm. Its purpose is similar
to IlvGraphModel for the graph layout framework.

The class IlvLabelingModel is an abstract base class that allows you to implement an
adapter to your own data structures for the labeling algorithm (see Defining your own
labeling model). To get the labeling model of an attached layout, use the method:

layout.getLabelingModel();

If labels and obstacles are contained in an IlvManager instance, you do not need to implement
an adapter. You can use the default labeling model (the class IlvDefaultLabelingModel).

The default labeling model is suitable when the labels are upright rectangular objects and
the overlap calculation considers their bounding boxes.

It is also suitable for rectangular labels that have a rotation that depends on the position of
a label. For example, the label on a polyline link may be rotated to align the label with the
gradient of the line segment of a link. The overlap calculation considers the rotated rectangle
of the label in this case.

U S I N G G R A P H L A Y O U T A L G O R I T H M S512

Rotation of rectangular labels (rotation dependent on the position of the labels)

The default labeling model may not be suitable when the labels have a nonrectangular shape
that leaves large parts of the bounding box of the label empty. The overlap detection will
wrongly assume that the empty space inside the bounding box causes overlaps

The default labeling model is not suitable for IlvGeneralNode, IlvGeneralLink,
IlvSDMCompositeNode, IlvSDMCompositeLink, because these classes implement

Note:

labels that are not directly contained in a manager. Therefore the diagram component
uses a specialized labeling model.

The default labelingmodel considers subclasses of IlvLabel, IlvZoomableLabel and IlvText
as labels and all other objects as obstacles. This is the most common case. However, you
can redefine this meaning:

♦ If you want a graphic to be handled as a label even though it is not a subclass of IlvLabel
or IlvZoomableLabel, call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 513

defaultLabelingModel.setLabel(graphic, true);

♦ If you do not want to handle an instance of IlvLabel, IlvZoomableLabel or IlvTextas
a label but as an immovable obstacle, call:

defaultLabelingModel.setObstacle(graphic, true);

♦ If you want a graphic to be ignored by the labeling model, call:

defaultLabelingModel.setLabel(graphic, false);
defaultLabelingModel.setObstacle(graphic, false);

This is useful particularly if you want to create graphics that act as background images
and labels should be placed on top of the background images. If the background images
were obstacles, the label layout algorithm would try to avoid the area covered by the
background images.

The overlap calculation of the default labeling model takes the bounding box of the obstacles
into account. This is a good approximation for the most objects. For subclasses of IlvLine,
IlvPolyline, and IlvLinkImage, it takes the precise polyline shape into account. However,
the default labeling model does not work well with spline obstacles.

U S I N G G R A P H L A Y O U T A L G O R I T H M S514

Using the label layout API

Describes how to perform a label layout.

In this section

Overview
Provides useful links for label layout.

The label layout base class and its subclasses
Describes the classes associated with Label Layout.

Instantiating and attaching a subclass of IlvLabelLayout
Descibes how to subclass the Label Layout class.

Performing a layout
Descibes how to start a layout algorithm.

Performing a recursive layout on nested subgraphs
Describes how to start layout algorithms recursively on a nested grapher hierarchy.

The label layout report
Describes the report on label layout which is generated when you apply the layout.

Layout events and listeners
Describes the events provided by the label layout framework and how to listen for them.

Layout parameters and features in IlvLabelLayout
Explains which generic parameters and features are defined by the label layout class.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 515

Overview

You will see how to perform a label layout in Java™ when working directly on an IlvManager
instance. If you are using IBM® ILOG® JViews Diagrammer with style sheets, seeControlling
layout renderers by style sheets.

Before reading this information, you should be familiar with the IlvGraphLayout
class (see Using the graph layout API). Many of the concepts for the labeling layout
mechanism are similar and not all details are repeated in this topic.

Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S516

The label layout base class and its subclasses

The IlvLabelLayout class is the base class for all label layout algorithms. This class is an
abstract class and cannot be used directly.

Subclasses of IlvLabelLayout
There are currently two subclasses:

♦ IlvRandomLabelLayoutwhich randomizes the label positions for demonstration purpose.

♦ IlvAnnealingLabelLayout which carries out real label arrangement.

You can also create your own subclasses to implement other label layout algorithms.

The label layout renderer always uses the IlvAnnealingLabelLayout. You can use
IlvRandomLayout or your own label layout algorithm when you write Java™ code.

It is not possible to use IlvRandomLayout or your own label layout algorithm in a diagram
component based on CSS styling.

Despite the fact that only subclasses of IlvLabelLayout are directly used to obtain the
layouts, it is still necessary to learn about this class because it contains methods that are
inherited (or overridden) by its subclasses. And, of course, you will need to understand it if
you subclass it yourself.

The class IlvLabelLayout and its subclasses and relationship to layout reports

U S I N G G R A P H L A Y O U T A L G O R I T H M S 517

Instantiating and attaching a subclass of IlvLabelLayout

The class IlvLabelLayout is an abstract class. It has no constructors. You will instantiate
a subclass as shown in the following example:

IlvAnnealingLabelLayout layout = new IlvAnnealingLabelLayout();

In order to place labels, a manager needs to be attached to the layout instance. The following
method, defined on the class IlvLabelLayout, allows you to specify the manager you want
to lay out:

void attach(IlvManager manager)

For example:

...
IlvManager manager = new IlvManager();
/* Add obstacles and labels to the manager here */
layout.attach(manager);

The attach method does nothing if the specified manager is already attached. If a different
manager is attached, this method first detaches this old manager, then attaches the new
one. You can obtain the attached manager using the method getManager. If the manager is
attached in this way, a default labeling model is created internally. The labeling model can
be obtained by:

IlvLabelingModel labelingModel = layout.getLabelingModel();

It is not allowed to attach any such model created internally to any other layout
instance.

Warning:

After layout, when you no longer need the layout instance, you should call the method

void detach()

If the detachmethod is not called, some objects may not be garbage-collected. This method
also performs cleaning operations on the manager (properties that may have been added
by the layout algorithm on objects of the manager.

U S I N G G R A P H L A Y O U T A L G O R I T H M S518

Performing a layout

The performLayoutmethods start the layout algorithm using the currently attachedmanager
and the current settings for the layout parameters. The method returns a report object that
contains information about the behavior of the label layout algorithm.

IlvLabelLayoutReport performLayout()
IlvLabelLayoutReport performLayout(boolean force, boolean redraw)

The first method simply calls the second one with the force argument set to false and the
redraw argument set totrue.

♦ Because the force argument is set to false (by default), the layout algorithm first verifies
whether it is necessary to perform the layout. It checks internal flags to see whether the
manager or any of the parameters have changed since the last time the layout was
successfully performed. A “change” can be any of the following:

● Obstacles or labels were added or removed.

● Obstacles or labels were moved or reshaped.

● The value of a layout parameter was modified.

● The transformer changed while nonzoomable obstacles or labels were used.

Users often do not want the layout to be computed again if no changes occurred. If there
were no changes, the method performLayout returns without performing the layout. If
the argument force is passed as true, the verification is skipped, and layout is performed
even if no changes occurred.

♦ The redraw argument determines whether the manager needs to be redrawn. This
mechanism works exactly in the same way as in graph layout. For details, see Redrawing
the grapher after layout.

The protected abstract method layout(boolean redraw) is then called. This means that
control is passed to the subclasses that are implementing this method. The implementation
computes the layout and moves the labels to new positions.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 519

Performing a recursive layout on nested subgraphs

The examples and explanations above assume that you work with a flat manager. IBM®
ILOG® JViews Diagrammer allows you to nest a grapher as a node into another grapher.
You can create a hierarchy of nested graphers (see the following figure); see also Nested
graphers in Advanced Features of JViews Framework).

You can apply a recursive graph layout to the nested grapher hierarchy by calling:

graphLayout.performLayout(true, true, true);

However, it usually makes no sense to apply a label layout alone to nested graphers. When
labels are placed in a subgrapher, this will likely change the bounds of the subgrapher;
hence the node positions in its parent grapher will no longer be up-to-date and a new graph
layout will be necessary.

It makes sense to apply a label layout in combination with another graph layout to nested
graphers.

1. First, the graph layout is applied to arrange the nodes and links nicely.

2. Then the label layout is applied to position the labels according to the node and link
positions.

3. When this is finished for all subgraphers, then it can be done for the parent grapher.

To perform a graph layout and a label layout together, you can use the Multiple Layout class.
This is a subclass of IlvGraphLayout that allows combining graph layouts with a label layout.
The following sample shows how to apply a Tree Layout and an Annealing Label Layout in
combination on a subgrapher.

IlvTreeLayout treeLayout = new IlvTreeLayout();
IlvAnnealingLabelLayout labelLayout = new IlvAnnealingLabelLayout();
IlvGraphLayout multipleLayout = new IlvMultipleLayout(treeLayout,

null,
labelLayout);

// Now set the parameters for tree layout and label layout ...
// Finally, perform a recursive layout that handles tree layout and label
// layout together
try {

multipleLayout.performLayout(true, true, true);
} catch (IlvGraphLayoutException e) {

...
}

Thus, the label layout does not provide a separate mechanism for a recursive layout on
submanagers. By incorporating the label layout into a multiple graph layout, you can use
all the graph layout facilities that are available for nested graphs (see also Nested layouts).

U S I N G G R A P H L A Y O U T A L G O R I T H M S520

Nested subgraphers with labels

U S I N G G R A P H L A Y O U T A L G O R I T H M S 521

The label layout report

The label layout report contains information about the particular behavior of a label layout
algorithm. After the layout is completed, this information is available for reading from the
label layout report. The information can also be obtained during layout by using a layout
listener, as described in Layout events and listeners.

The layout report is created automatically at the start of layout via the method
createLayoutReport and is available as long as the manager is attached to the layout
instance.

To read a layout report, all you need to do is store the layout report instance returned by
the performLayout method and read the information, as shown in the following example:

...
IlvLabelLayoutReport layoutReport = labelLayout.performLayout();
if (layoutReport.getCode() == IlvLabelLayoutReport.LAYOUT_DONE)

System.out.println("Label layout done.");
else

System.out.println("Label layout not done, code = " +
layoutReport.getCode());

The class IlvLabelLayoutReport stores the following information, which is very similar to
the information stored in an IlvGraphLayoutReport (see Information stored in a layout
report for details):

Code
This field contains information about special, predefined cases that may have occurred
during the layout. The possible values are the following:

♦ IlvLabelLayoutReport.LAYOUT_DONE

♦ IlvLabelLayoutReport.STOPPED_AND_VALID

♦ IlvLabelLayoutReport.STOPPED_AND_INVALID

♦ IlvLabelLayoutReport.NOT_NEEDED

♦ IlvLabelLayoutReport.NO_LABELS

♦ IlvLabelLayoutReport.EXCEPTION_DURING_LAYOUT

To read the code, use the method:

int getCode()

Layout time
This field contains the total duration of the layout algorithm at the end of the layout. To read
the time (in milliseconds), use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S522

long getLayoutTime()

Percentage of completion
This field contains an estimate of the percentage of the layout that has been completed. To
access the percentage, use the method:

int getPercentageComplete()

U S I N G G R A P H L A Y O U T A L G O R I T H M S 523

Layout events and listeners

The label layout framework provides the same event mechanism as the graph layout
framework. Various events may occur.

Label layout events
The class GraphLayoutEvent corresponds to the class GraphLayoutEvent (see Graph layout
event listeners). You can install a listener for these events at the layout instance by using
the method:

labelLayout.addLabelLayoutEventListener(listener);

The listener must implement the LabelLayoutEventListener interface and receives events
while the layout is running. A typical example is to check howmuch of the layout has already
completed:

class MyLabelLayoutListener
implements LabelLayoutEventListener

{
public void layoutStepPerformed(LabelLayoutEvent event)
{
IlvLabelLayoutReport layoutReport = event.getLayoutReport();
System.out.println("percentage of completion: " +

layoutReport.getPercentageComplete());
}

}

Label layout parameter events
The class LabelLayoutParameterEvent corresponds to the class GraphLayoutParameterEvent
(see Parameter event listeners). You can install a listener to these events at the layout
instance by

labelLayout.addLabelLayoutParameterEventListener(listener);

The listener must implement the LabelLayoutParameterEventListener interface and
receives events when layout parameters change. It also receives a special event at the end
of a successful layout. For example:

class MyLabelLayoutParameterListener
implements LabelLayoutParameterEventListener

{
public void parametersUpToDate(LabelLayoutParameterEvent event)
{
if (!event.isParametersUpToDate())
System.out.println("Any label layout parameter has changed.”);

U S I N G G R A P H L A Y O U T A L G O R I T H M S524

}
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 525

Layout parameters and features in IlvLabelLayout

The class IlvLabelLayout defines a number of generic features and parameters. These are
a subset of themechanism, methods, and parameters that are available for the IlvGraphModel
class. Therefore, they are only listed here; for detailed explanations, refer to the appropriate
subsection in Generic parameters and features which describes the corresponding features
for the IlvGraphLayout class.

In CSS, the main difference is that you add the specification to the LabelLayout section (not
to the GraphLayout section).

Although the IlvLabelLayout class defines the generic parameters, it does not control how
they are used by its subclasses. Each label layout algorithm (that is, each subclass of
IlvLabelLayout) supports a subset of the generic features and determines the way in which
it uses the generic parameters. When you create your own label layout algorithm by
subclassing IlvLabelLayout, you decide whether to use the features and the way in which
you are going to use them.

The IlvLabelLayout class defines the following generic features:

♦ Allowed time

♦ Percentage of completion calculation

♦ Random generator seed value

♦ Stop immediately

♦ Use default parameters

To specify that the label layout is allowed to run for 60 seconds:

In CSS
Add to the LabelLayout section:

allowedTime: "60000";

In Java™
Call:

labelLayout.setAllowedTime(60000);

For more details of all generic features, see Generic parameters and features.

U S I N G G R A P H L A Y O U T A L G O R I T H M S526

Annealing label layout

Describes the Annealing Label Layout algorithm (class IlvAnnealingLabelLayout from the
package ilog.views.graphlayout.labellayout.annealing).

In this section

General information
Gives samples of the Annealing Label Layout.

Features
Lists the features of the Annealing Label Layout.

Limitations
Lists the limitations of the Annealing Label Layout.

The algorithm
Describes the simulated annealing algorithm used by the Annealing Label Layout.

Generic features and parameters
Lists the generic features and parameters supported by the Annealing Label Layout.

Label descriptors
Describes the use of label descriptors to specify placement.

Point label descriptor
Describes the point label descriptor used by the Annealing Label Layout to place labels.

Polyline label descriptor
Describes the polyline label descriptor used by the Annealing Label Layout to place labels.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 527

Rotated labels
Describes the rotated labels used by the Annealing Label Layout.

Specific global parameters
Describes the global parameters used by the Annealing Label Layout.

For experts: implementing your own label descriptors
Describes how to create a label descriptor for the Annealing Label Layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S528

General information

The Annealing Label layout is used by the label layout renderer of a diagram component or
can be used in Java™ code.

The following sample drawings are produced with the Annealing Label Layout.

Label placement at nodes with the Annealing Label Layout

Label placement at links with the Annealing Label Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S 529

Label placement at cities in a map of Germany with Annealing Label Layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S530

Features

♦ Places only labels. Does not move any obstacles around.

♦ Quality-controlled, randomized iterative heuristic.

♦ Can place labels at points, rectangles, ellipses, and polylines when used inside Java™
code.

♦ Can be used to place labels at any nodes and links when used inside Java code.

♦ Can be used to place labels at cities on a geographic map when used inside Java code.

♦ Can place multiple labels at the same object (point, node, link, city, and so on).

♦ Can handle upright rectangular labels and rectangular labels that have a rotation that
depends on their position

♦ Tries to avoid overlaps among labels, and between labels and obstacles, by using the
available free space.

♦ Provides several anchor and preference options.

♦ Easily extensible by subclassing label descriptors.

♦ Efficient, scalable algorithm. Produces nice label placements even with a large number
of labels.

Extra feature for JViews Diagrammer:

♦ Can place labels at IlvGeneralNode, IlvGeneralLink, IlvSDMCompositeNode, and
IlvSDMCompositeLink when used inside a diagram component with CSS styling.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 531

Limitations

♦ The Annealing Label Layout algorithm, as a randomized iterative heuristic, does not
guarantee that labels are placed without overlaps whenever possible. However, it produces
a high quality layout with a high probability of minimum overlap. The more iterations,
the higher the probability of high quality.

♦ The algorithm is not able to create free space for labels by moving obstacles around. It
is recommended that you perform a graph layout algorithmwith large spacing parameters
to create the necessary free space before placing the labels.

♦ While the algorithm is able to place labels at straight and polyline graphics, it is not able
to place labels precisely at smooth curves such as spline graphics (IlvSpline) or spline
links (IlvSplineLinkImage, IlvOneSplineLinkImage, IlvDoubleSplineLinkImage). It
is also not able to place the label correctly on IlvGeneralLink, if the curved option of
IlvGeneralLink is used.

U S I N G G R A P H L A Y O U T A L G O R I T H M S532

The algorithm

The algorithm uses simulated annealing. This is a general, randomized optimization technique
that simulates a thermodynamic particle system. Each label is moved to a new random
position within the limits given by its label descriptor. The quality of the new position is
calculated and compared to the quality of the old position. If the quality has not improved,
the label is moved back to the old position. The amount of movement is controlled by a
conceptual temperature: when the system is hot, the labels can move long distances,
producing potentially large global quality improvements. When the system cools down, the
move distances become smaller and hence focus on local fine-tuning of the position.

Each label has its own label descriptor. The label descriptor describes the path on which
the label can move. If a label must be placed at a city in a geographic map, then its label
descriptor makes sure that the label is always placed close to the graphics that represent
the city. If a label must be placed at a specific point, the IlvAnnealingPointLabelDescriptor
can be used and describes an approximately elliptical path around the point. If a label must
be placed at a polyline, the IlvAnnealingPolylineLabelDescriptor can be used and
describes a boundary path at both sides of the polyline.

Annealing Label Layout algorithm Example
In CSS
The sample below shows how to use CSS syntax to declare labels at nodes of type
IlvGeneralNode. The specification can be loaded as a style file into an application that uses
the IlvDiagrammer class (see Graph layout in IBM® ILOG® JViews Diagrammer).

SDM {
LabelLayout: "true";

}

LabelLayout {
enabled: "true";
labelOffset: “5”;
obstacleOffset: “10”;

}

node {
class: "ilog.views.sdm.graphic.IlvGeneralNode";
label: "@name";
labelPosition: "Left";
labelSpacing: "2.0";

}

node:labelLayout {
maxDistFromPath: "5";

}

In Java™
The following code sample uses the IlvAnnealingLabelLayout class. This code sample
shows how to perform an Annealing Label Layout on a manager directly.:

...
import ilog.views.*;

U S I N G G R A P H L A Y O U T A L G O R I T H M S 533

import ilog.views.graphlayout.labellayout.*;
import ilog.views.graphlayout.labellayout.annealing.*;
...
IlvManager manager = new IlvManager();
IlvManagerView view = new IlvManagerView(manager);

... /* Fill in here code that fills the manager with labels and obstacles */

IlvAnnealingLabelLayout layout = new IlvAnnealingLabelLayout();
layout.attach(manager);

/* Assume: label1 should be placed at the right side of rectangular node1 */
layout.setLabelDescriptor(

label1,
new IlvAnnealingPointLabelDescriptor(

label1, node1, IlvAnnealingPointLabelDescriptor.RECTANGULAR,
IlvDirection.Right));

... /* Fill in here code that sets descriptors for all other labels */

IlvLabelLayoutReport layoutReport = layout.performLayout();
if (layoutReport.getCode() == IlvLabelLayoutReport.LAYOUT_DONE)

System.out.println("Layout done.");
else

System.out.println("Layout not done, code = " +
layoutReport.getCode());

U S I N G G R A P H L A Y O U T A L G O R I T H M S534

Generic features and parameters

The IlvAnnealingLabelLayout class supports generic parameters defined in the
IlvLabelLayout class. The following sections describe the particular way in which these
parameters are used by the subclass IlvAnnealingLabelLayout.

♦ Allowed time

♦ Percentage of completion calculation

♦ Random generator seed value

♦ Save parameters to named properties

♦ Stop immediately

♦ Use default parameters

Allowed time
The label layout algorithm stops if the allowed time setting has elapsed. This feature works
similarly to the same feature in IlvGraphLayout; see Allowed time. If the layout stops early
because the allowed time has elapsed, the result code in the layout report is:

♦ IlvLabelLayoutReport.STOPPED_AND_VALID if the labels were moved to some better (but
not yet optimal) positions.

♦ IlvLabelLayoutReport.STOPPED_AND_INVALID if the time elapsed even before that.

Percentage of completion calculation
The label layout algorithm calculates the estimated percentage of completion. This value
can be obtained from the label layout report during the run of the layout. (For a detailed
description of this feature, see Percentage of completion calculation and Layout events and
listeners.)

Random generator seed value
The Annealing Label Layout is a randomized heuristic. It uses a random number generator
to control the movements. For the default behavior, the random generator is initialized using
the current system clock. Therefore, different layouts are obtained if you perform the layout
repeatedly on the same graph. You can specify the particular value to be used as a seed
value.

Example of specifying seed value
To specify the seed value 10:

In CSS
Add to the LabelLayout section:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 535

useSeedValueForRandomGenerator: "true";
seedValueForRandomGenerator: "10";

In Java™
Call:

layout.setUseSeedValueForRandomGenerator(true);
layout.setSeedValueForRandomGenerator(10);

Save parameters to named properties
The label layout algorithm can save its layout parameters into named properties. This can
be used to save layout parameters to .ivl files. (For a detailed description of this feature,
see Using named properties to save layout parameters.)

Stop immediately
The label layout algorithm stops after cleanup if the method stopImmediately is called. This
method works for the IlvLabelLayout class similarly to the corresponding method in the
IlvGraphLayout class. For a description of this method in the IlvGraphLayout class, see
Stop immediately. If the layout stops early in this way, the result code in the layout report
is:

♦ IlvLabelLayoutReport.STOPPED_AND_VALID if the labels were moved to some better (but
not yet optimal) positions.

♦ IlvLabelLayoutReport.STOPPED_AND_INVALID if the layout stopped even before that.

Use default parameters
After modifying any label layout parameter, you may want the layout algorithm to use the
default values. You select the default values for all global parameters by:

layout.setUseDefaultParameters(true);

IBM® ILOG® JViews Diagrammer keeps the previous settings when selecting the default
values mode. You can switch back to your own settings by:

layout.setUseDefaultParameters(false);

This setting affects only the global layout parameters. The label descriptors have no default
values, so parameters of the label descriptors do not change depending on this flag.

U S I N G G R A P H L A Y O U T A L G O R I T H M S536

Label descriptors

To define where a label must be placed, you must specify a label descriptor for each label.
The algorithm places only those labels that have a label descriptor.

A label descriptor describes the locations that are allowed for the label. For instance, if you
place a city name label in a geographic map, you want the label to be positioned close to
the graphic objects that represent the city. Positions far away from the city are not reasonable
for the label.

Example of label descriptors
To specify these parameters:

In CSS
Label descriptors are automatically created for all labels. You only need to specify the details
of the label descriptors by using the pseudo classes labelLayout and labelLayout_i where
i is the child index of the label in IlvSDMCompositeNode or IlvSDMCompositeNode. For
instance, the descriptor of a label at an IlvGeneralNode object is specified in the following
way:

node:labelLayout {
... any Bean property of the point label descriptor ...

}

The descriptor of a label which is the 3rd child of an IlvSDMCompositeLink is specified in
the following way:

link:labelLayout_3 {
... any Bean property of the polyline label descriptor ...

}

In Java™
You need to allocate a new label descriptor for each label. There are two ways to specify
the label descriptors:

♦ To set the descriptor for one label, call:

layout.setLabelDescriptor(label, descriptor);

You can retrieve the current label descriptor using the method:

layout.getLabelDescriptor(label);

♦ You can instead specify a label descriptor provider.
IlvAnnealingLabelDescriptorProvider is an interface that delivers label descriptors
for labels on the fly. The provider has the advantage that you don't need to run in advance
through all labels to set the label descriptor. Instead, the layout detects the labels and
asks the provider to deliver the label descriptor if none was set explicitly. The provider
can then allocate the label descriptor on the fly, or can deliver a preallocated descriptor
that was stored somewhere else outside layout. Using the label descriptor provider is in
particular useful if the number of labels and obstacles change frequently, because you
don't need to keep track of the labels that have already a label descriptor, and if you want
to have a central place that manages all label descriptors.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 537

The reference manual of the class IlvAnnealingLabelDescriptorProvider contains
further information on how to implement this interface. In order to set the provider, call
the following method:

layout.setLabelDescriptorProvider(provider);

Subclasses of label descriptors
There are two predefined subclasses of label descriptors:

♦ Point label descriptor

♦ Polyline label descriptor

In a diagram component with CSS styling, the point label descriptor is used for all labels at
nodes, and the polyline label descriptor is used for all labels at links.

If you program the label layout directly in Java code, depending on the parameters passed
during the construction, these subclasses allow you to place a label:

♦ Close to a given point.

♦ Close to a specific rectangular or elliptic obstacle (such as a node).

♦ Along an imaginary polyline.

♦ Close to a polyline obstacle (for example, IlvLine, IlvPolyline).

♦ Close to a link.

You can also implement your own label descriptors by subclassing
IlvAnnealingLabelDescriptor. This is explained in the section For experts: implementing
your own label descriptors.

U S I N G G R A P H L A Y O U T A L G O R I T H M S538

Point label descriptor

The IlvAnnealingPointLabelDescriptor can be used to place a label at a specific obstacle
or point. This is known as the point labeling problem.

Positioning at an obstacle
The following example shows how to position a label at a specific obstacle in Java™ .

layout.setLabelDescriptor(label,
new IlvAnnealingPointLabelDescriptor(label, node,

IlvAnnealingPointLabelDescriptor.ELLIPTIC, IlvDirection.Right));

This specification can be used if the label must be placed at a node that has an elliptical or
circular shape. The label is placed in the free area around the node so that the border of
the label just touches the border of the node (see the following figure). The preferred position
is the right side of the node, but this preferred position is used only if it does not create
overlaps. If the node is moved or reshaped, the next call of label layout will update the
position of the label automatically so that it follows the node.

Potential label positions around a node

The example uses the following constructor:

IlvAnnealingPointLabelDescriptor(Object label,
Object relatedObstacle,
int shape,
int preferredDirection)

This constructor takes the following parameters:

♦ The relatedObstacle parameter is the obstacle that gets the label. The label is placed
outside but close to this obstacle. The related obstacle can be a node of a graph, a city
of a geographic map, a station of a railroad, and so on, whatever needs to have a label.
The shape of the related obstacle should be either an ellipse, a circle, or a rectangle.

♦ The shape argument can take the following values:

● IlvAnnealingPointLabelDescriptor.ELLIPTIC for ellipses or circles,

U S I N G G R A P H L A Y O U T A L G O R I T H M S 539

● IlvAnnealingPointLabelDescriptor.RECTANGULAR for rectangles.

If the real shape of the related obstacle is neither of these, pass the shape that is the
best approximation. For instance, if the obstacle is an IlvRoundRectangle, it can be
considered as a rectangular shape and the RECTANGULAR option is then the best
approximation.

♦ The preferredDirection parameter is a suggestion of where the label layout algorithm
should preferably place the label. If the area at the preferred position is occupied, the
label will be placed elsewhere. Options for the preferred position are:

● IlvDirection.Left

● IlvDirection.Right

● IlvDirection.Top

● IlvDirection.Bottom

Positioning at a point
The following example shows how to position a label at a specific point in Java:

layout.setLabelDescriptor(label,
new IlvAnnealingPointLabelDescriptor(label, null, new IlvPoint(25, 75),

5f, 15f, IlvDirection.Right));

Use this specification if the label must be placed close to specific coordinates, like (in this
example 25, 75) regardless of any obstacle. The label must be at least 5 coordinate units
and at most 15 coordinate units away from the point (see the following figure). The preferred
position is at the right side of the point.

Potential label positions between 5 and 15 units away from a point

The example uses the following constructor:

IlvAnnealingPointLabelDescriptor(Object label,

U S I N G G R A P H L A Y O U T A L G O R I T H M S540

Object relatedObstacle,
IlvPoint referencePoint,
float minDist,
float maxDist,
int preferredDirection)

This IlvAnnealingPointLabelDescriptor(java.lang.Object, java.lang.Object, ilog.
views.IlvPoint, float, float, int) constructor takes the following parameters:

♦ relatedObstacle and referencePoint: The label is placed close to the reference point. It
does not take the actual position of the related obstacle into account. If the related obstacle
is moved, the label does not follow the obstacle on the next call of layout, but stays at the
reference point.

If a related obstacle is given, the label is not pushed away from the related obstacle.
Rather, it is pushed away from all other obstacles to avoid overlaps. You can set the
relatedObstacle parameter to null if the label is independent of all obstacles.

♦ The parameters minDist and maxDist are the minimal and maximal distances from the
reference point, measured from the border of the label. If you set the minimal and maximal
distance to 0, the label will just touch the reference point. To keep the circular area
around the reference point free, set the minimal distance accordingly. Most of the time
you probably want to keep the label close to the reference point; hence, set the minimal
and maximal distances to the same value.

♦ The preferredDirection parameter indicates whether the label should be placed to the
left, right, top, or bottom of the reference point. This is a suggestion for the labeling
algorithm, as described for Positioning at an obstacle.

Positioning on multiple criteria
The most powerful constructor combines all the possibilities described in Positioning at an
obstacle and Positioning at a point:

IlvAnnealingPointLabelDescriptor(Object label,
Object relatedObstacle,
IlvPoint referencePoint,
int shape,
float halfWidth,
float halfHeight,
float maxDistFromPath,
float preferredDistFromPath,
int preferredDirection)

This IlvAnnealingPointLabelDescriptor(java.lang.Object, java.lang.Object, ilog.
views.IlvPoint, int, float, float, float, float, int) constructor takes the following
parameters:

♦ relatedObstacle and referencePoint: If a related obstacle is given and the reference point
is null, the label is placed close to the related obstacle. If a reference point is not null,
the label is placed close to the reference point independently of the related obstacle
position.

♦ shape : the shape of the free area around the point can be rectangular or elliptic.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 541

♦ halfWidth and halfHeight: The parameter halfWidth is the minimal distance of the
label to the reference point in the horizontal direction. The parameter halfHeight is the
minimal distance of the label to the reference point in the vertical direction. If the
reference point is null, the parameters halfWidth and halfHeight are calculated from
the bounding box of the related obstacle.

♦ The parameter maxDistFromPath specifies the maximal additional distance allowed for
the label (shown in Potential Label Positions With Rectangular Shape at a Point).

♦ The parameter preferredDistFromPath specifies the preferred additional distance for
the label. Its value should be between 0 and maxDistFromPath.

♦ The preferredDirection parameter indicates whether the label should be placed to the
left, right, top, or bottom of the reference point or related obstacle. This is a suggestion
for the labeling algorithm, as described in Positioning at an obstacle.

Starting from an empty descriptor (point)
An alternative way to create a point label descriptor is to start from the empty descriptor:

descriptor = new IlvAnnealingPointLabelDescriptor();

Before using the empty descriptor, you must fill it with information on how the label should
be placed. As a minimum, you need to specify a related obstacle or a reference point. For
example:

descriptor.setRelatedObstacle(obstacle);
descriptor.setShape(IlvAnnealingPointLabelDescriptor.ELLIPTIC);
descriptor.setPreferredDirection(IlvDirection.Left);

At the end of all changes, the descriptor must be passed to the layout instance:

layout.setLabelDescriptor(label, descriptor);

Once the descriptor is passed to the layout instance, it should normally not be changed. If
you need to change it later, you must pass it to the layout instance again.

U S I N G G R A P H L A Y O U T A L G O R I T H M S542

Potential Label Positions With Rectangular Shape at a Point

Example of specifying point label descriptor
Example of an IlvGeneralNode specification with label:

In CSS
You can specify all multiple criteria of the point labeling descriptor except the related
obstacle. In CSS, the related obstacle is always the node that owns the label. The reference
point and the shape (ELLIPTIC or RECTANGULAR) are automatically derived from the node
that owns the label, but can be overridden in the CSS specification.

Example of an IlvGeneralNode specification with label:

node {
class: "ilog.views.sdm.graphic.IlvGeneralNode";
label: "@name";
shapeType: "Rectangle"; // shape of path for label descriptor
shapeWidth: "30"; // twice the halfWidth
shapeHeight: "30"; // twice the HalfHeight
labelPosition: "Left"; // preferredDirection
labelSpacing: "2.0"; // preferredDistFromPath

}

In this example, shapeType, shapeWidth and shapeHeight specify the basic shape of the
node and are taken into account by the label layout, the labelPosition specifies the preferred
direction of the label for the label layout, and the labelSpacing specifies the preferred
distance of the label from the path around the border of the basic shape of the node.

These parameters can be overridden by specifying the details of the point label descriptor
in the following way:

node:labelLayout {
shape: "ELLIPTIC";
halfWidth: "16";
halfHeight: "16";
maxDistFromPath: "5";
preferredDistFromPath: "3";

U S I N G G R A P H L A Y O U T A L G O R I T H M S 543

preferredDirection: "Top";
}

If the node is an instance of IlvSDMCompositeNode and its fourth child is a label, the details
of the label descriptor for that label can be specified in the following way:

node:labelLayout_4 {
shape: "ELLIPTIC";
halfWidth: "16";
halfHeight: "16";
maxDistFromPath: "5";
preferredDistFromPath: "3";
preferredDirection: "Top";

}

The meaning of these parameters is explained in Positioning on multiple criteria.

U S I N G G R A P H L A Y O U T A L G O R I T H M S544

Polyline label descriptor

If you want to place labels at straight lines, polylines, or links, you should use the class
IlvAnnealingPolylineLabelDescriptor. The allowed area for labels at a polyline is different
from the rectangular or elliptic area considered for placing labels at a reference point (see
Positioning at a point). A polyline has two sides where the label can be placed along a path.
This is known as the polyline labeling problem.

This section first explains how to code a polyline label descriptor in Java™ , then gives a
CSS sample.

The polyline label descriptor is not suitable for placing labels at splines or spline links.
Because splines have a complex geometric shape, the automatic placement of labels
at splines is currently not supported.

Note:

Simple positioning at a link
This specification can be used if the label must be placed at a straight or polyline link. Here
is an example:

layout.setLabelDescriptor(label,new IlvAnnealingPolylineLabelDescriptor(label,

link,IlvAnnealingPolylineLabelDescriptor.CENTER));

The label is placed near the center of the link such that one border of the label just touches
the link. If the link is moved or reshaped, the next label layout call will update the position
of the label automatically to follow the link.

The example uses the following IlvAnnealingPolylineLabelDescriptor(java.lang.Object,
ilog.views.IlvLinkImage, int) constructor:

IlvAnnealingPolylineLabelDescriptor (Object label,
IlvLinkImage link,
int anchor)

The options for the anchor parameter are:

♦ IlvAnnealingPolylineLabelDescriptor.CENTER: places the label near the center of the
link (that is, in the middle third of the link path).

♦ IlvAnnealingPolylineLabelDescriptor.START: places the label near the source node
of the link (that is, in the first third of the link path).

♦ IlvAnnealingPolylineLabelDescriptor.END: places the label near the target node of
the link (that is, in the last third of the link path).

♦ IlvAnnealingPolylineLabelDescriptor.FREE: places the label anywhere on the link.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 545

Anchors for Label Positions at a Link

Simple positioning at a polyline obstacle
Use this specification if the label must be placed at a polyline obstacle (an instance of IlvLine
or IlvPolyline in the default labeling model). The polyline obstacle does not need to be a
link of a grapher.

Here is an example:

layout.setLabelDescriptor(label,
new IlvAnnealingPolylineLabelDescriptor(label, polyline,

IlvAnnealingPolylineLabelDescriptor.FREE,
IlvDirection.Left, IlvDirection.TopLeft,
IlvAnnealingPolylineLabelDescriptor.GLOBAL));

The label is placed anywhere at the left or top side of the polyline obstacle, with preference
given to the left side.

The example uses the following constructor:

IlvAnnealingPolylineLabelDescriptor
(Object label,
Object relatedPolylineObstacle,
int anchor,
int preferredSide,
int allowedSide,
int sideAssociation)

Even though a polyline does not have a source node or a target node, the anchor parameter
can be used in the same way as for links (CENTER, START, END, and FREE). The first control
point of the polyline is the start point. Labels with anchor START are placed closer to the
first control point, and labels with anchor END are placed closer to the last control point of
the polyline.

The value of the preferredSide parameter is a suggestion of where the label layout algorithm
should preferably place the label. If the area at the preferred side is occupied, the label is
placed elsewhere.

In contrast, the allowedSide parameter is a strict constraint: it is always obeyed, even if
the entire area at the allowed side is occupied and the label must overlap the obstacles in
that area.

U S I N G G R A P H L A Y O U T A L G O R I T H M S546

Side association
The orientation of the preferred and allowed sides depend on the sideAssociation parameter.
This parameter can take the following values (see the following figure):

♦ IlvAnnealingPolylineLabelDescriptor.LOCAL

♦ IlvAnnealingPolylineLabelDescriptor.GLOBAL

Side Associations

Local side association
If the side association is local, each polyline has two sides: left and right. The sides can be
determined from the flow direction of the polyline from start point to end point. Consider
yourself standing on the polyline looking in the direction where the polyline continues
towards the end point, and then determine which is the left and which is the right side.
Hence, the meaning of left and right in local side association is relative to the polyline. The
options for the preferredSide and allowedSide parameters are in this case:

♦ IlvDirection.Left

♦ IlvDirection.Right

You can also specify the value 0 for the allowed side, which indicates that you do not want
to restrict the side: both sides are allowed.

Global side association
If the side association is global, the side specification is independent of the flow direction
of the polyline and more like a compass direction: north is top, south is bottom, west is left,
and east is right. Here more options are possible: in addition to the basic top, bottom, left,
right, all meaningful combinations of these are allowed. You specify the sides in the following
way:

♦ IlvDirection.Left

♦ IlvDirection.Right

♦ IlvDirection.Top

U S I N G G R A P H L A Y O U T A L G O R I T H M S 547

♦ IlvDirection.Bottom

You can also use combinations of these, such as:

♦ IlvDirection.Left | IlvDirection.Right (left or right but not top or bottom).

♦ IlvDirection.Left | IlvDirection.Top (which is the same as IlvDirection.TopLeft,
meaning the left or the top side).

You can specify the value 0 for the allowed side if all sides should be allowed.

Full positioning at a link
The most powerful constructor of a descriptor for a label that should be placed at a link is
the following IlvAnnealingPolylineLabelDescriptor :

IlvAnnealingPolylineLabelDescriptor
(Object label,
Object link,
Object source,
Object target,
int anchor,
float maxDistFromLink,
float preferredDistFromLink,
int preferredSide,
int allowedSide,
int sideAssociation,
float topOverlap,
float bottomOverlap,
float leftOverlap,
float rightOverlap)

It combines all the possibilities described in Simple positioning at a link: in addition to the
anchor, the side association, and the allowed and preferred sides, you can specify overlap
options.

You must pass the link as well as the source node and the target node of the link. The label
does not need to touch the link. If you want to allow the label to be placed at a short distance
from the link, then specify the maximal distance by maxDistFromLink and the preferred
distance by preferredDistFromLink. Conversely, you may want to allow the link to partially
overlap the label. You specify this by setting topOverlap, bottomOverlap, leftOverlap, or
rightOverlap to a value larger than 0. This is illustrated in the following figure.

U S I N G G R A P H L A Y O U T A L G O R I T H M S548

Distance and Overlap at Link

Full positioning at a polyline obstacle
If the label should be placed at a polyline that is not a link, then the most powerful
IlvAnnealingPolylineLabelDescriptor constructor is the following:

IlvAnnealingPolylineLabelDescriptor
(Object label,
Object relatedObstacle,
IlvPoint[] referencePoints,
float lineWidth,
float minPercentageFromStart,
float maxPercentageFromStart,
float prefPercentageFromStart,
float maxDistFromPath,
float preferredDistFromPath,
int preferredSide,
int allowedSide,
int sideAssociation,
float topOverlap,
float bottomOverlap,
float leftOverlap,
float rightOverlap)

It combines all previously mentioned possibilities. If the label should be placed at a polyline
obstacle, then pass this object as the related obstacle. If the label should be placed at an
imaginary polyline, then pass the polyline with the points parameter and the width of the
polyline with the lineWidth parameter. Instead of an anchor, you can pass the area where
the label is placed by the minimal, maximal, and preferred percentage values relative to the
polyline length. Theminimal andmaximal percentages are strictly obeyed, while the preferred
percentage is only a recommendation for the layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 549

♦ For instance, if you want to specify that the label can be placed anywhere but you prefer
the center of the polyline, specify 0 and 100 for the minimal and maximal percentages
and 50 for the preferred percentage. If there is not enough free space at the center, the
label will be placed elsewhere.

♦ But if you want to specify that the label must be placed close to the center even if there
is not enough space, then specify, for instance, 40 and 60 for the minimal and maximal
percentages instead.

Starting from an empty descriptor (polyline)
An alternative way to create a polyline label descriptor is to start with the empty descriptor:

descriptor = new IlvAnnealingPolylineLabelDescriptor();

Before using the empty descriptor, you must fill it with information on how the label should
be placed. As a minimum, you need to specify a related obstacle or reference points and
line width. For instance:

descriptor.setRelatedObstacle(polyline);
descriptor.setMinPercentageFromStart(10f);
descriptor.setMaxPercentageFromStart(90f);
descriptor.setPreferredPercentageFromStart(50f);

At the end of all changes, the descriptor must be passed to the layout instance:

layout.setLabelDescriptor(label, descriptor);

Once the descriptor is passed to the layout instance, it should normally not be changed. If
you need to change it later, you must pass it to the layout instance again.

Example of specifying polyline label descriptor
Example of an IlvGeneralLink instance with a label:

In CSS
You can specify all multiple criteria of the polyline labeling descriptor except the related
obstacles. In CSS, the related obstacle is always the link that owns the label. The related
source and target object of the link label descriptor are calculated from the source and
target of the link. The reference points and line width are automatically derived from the
link that owns the label, but can be overridden in the CSS specification.

link {
class : "ilog.views.sdm.graphic.IlvGeneralLink";
lineWidth : "2";
label : "@name";
decorationPositions[0]: "0.8"; // prefPercentageFromStart

}

In this example, the lineWidth value of the link automatically specifies the line width for
the label descriptor, and the decorationPositions[0] affects where the label is anchored

U S I N G G R A P H L A Y O U T A L G O R I T H M S550

at the link. These parameters can be overridden by specifying the details of the polyline
label descriptor in the following way:

link:labelLayout {
lineWidth: "3";
minPercentageFromStart: "30";
maxPercentageFromStart: "70";
preferredPercentageFromStart: "50";
maxDistFromPath: "4";
preferredDistFromPath: "2";
preferredSide: "Left";
allowedSide: "Left";
sideAssociation: "GLOBAL";
topOverlap: "1";
bottomOverlap: "1";
leftOverlap: "1";
rightOverlap: "1";

}

If the link is an instance of IlvSDMCompositeLink and its fourth child is a label, the details
of the descriptor for this label can be specified in the following way:

link:labelLayout_4 {
lineWidth: "3";
minPercentageFromStart: "30";
maxPercentageFromStart: "70";
preferredPercentageFromStart: "50";
maxDistFromPath: "4";
preferredDistFromPath: "2";
preferredSide: "Left";
allowedSide: "Left";
sideAssociation: "GLOBAL"”;
topOverlap: "1";
bottomOverlap: "1";
leftOverlap: "1";
rightOverlap: "1";

}

The meaning of these parameters is already explained in Full positioning at a link and Full
positioning at a polyline obstacle.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 551

Rotated labels

Both the point label descriptor and the polyline label descriptor can be used if the rectangular
label has a rotation that depends on its position.

These descriptors work only if the labeling model attached to the Annealing Label Layout
implements the interface IlvLabelingModelWithRotation. (The labeling model
IlvDefaultLabelingModel implements this interface.)

Rectangular label rotation dependent on position

In Java™ code, the label descriptor must describe how the rotation of a label depends on
its position. For example, a label associated with a line can always have the rotation of the
line. Youmust create a label descriptor whosemethod getRotation returns the corresponding
rotation. See Label descriptor that returns the corresponding rotation.

Label descriptor that returns the corresponding rotation

layout.setLabelDescriptor(label,
new IlvAnnealingPolylineLabelDescriptor(label, line,

U S I N G G R A P H L A Y O U T A L G O R I T H M S552

IlvAnnealingPolylineLabelDescriptor.FREE,
IlvDirection.Left, IlvDirection.TopLeft,
IlvAnnealingPolylineLabelDescriptor.GLOBAL) {

public double getRotation(IlvLabelingModel model,
IlvRect labelRect) {

IlvLine line = (IlvLine)getRelatedObstacle();
IlvPoint p1 = line.getFrom();
IlvPoint p2 = line.getTo();
double angle = Math.atan2(p2.y-p1.y, p2.x-p1.x);
return Math.toDegrees(angle);

}
});

If the method getRotation is not overridden, it will query the labeling model for the rotation.
Therefore, as an alternative to overriding the method getRotation at the label descriptor,
it is also possible to override the method getRotation(java.lang.Object, ilog.views.
IlvRect) of the default labeling model (more specifically of the
IlvLabelingModelWithRotation interface).

In CSS, it is not necessary to specify the rotation of the label. Rotated labels are only
supported for IlvGeneralLink. CSS automatically uses polyline label descriptors that return
the appropriate rotation for labels of IlvGeneralLink.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 553

Specific global parameters

The following global parameters are specific to the IlvAnnealingLabelLayout class:

♦ Label offset

♦ Obstacle offset

♦ Label movement policy

♦ Automatic update

♦ Expert parameters

Label offset
The label offset controls the desired minimal distance between two neighbored labels (see
Label and Obstacle Offsets, left). To avoid labels being placed too close to each other, you
can increase the label offset. This conceptually pushes the labels farther apart. However,
depending on the available space, the minimal distance between labels cannot always be
maintained.

Example of specifying label offset
To set the label offset:

In CSS
Add to the LabelLayout section:

labelOffset: "25";

In Java™
Call:

layout.setLabelOffset(25f);

Obstacle offset
The obstacle offset controls the desired minimal distance between a label and an unrelated
obstacle. The obstacle offset is usually more important than the label offset because, if the
obstacle offset is too small, the label may be placed so close to an unrelated obstacle that
it incorrectly appears to be assigned to that obstacle (see Label and Obstacle Offsets, right:
does, for example, the green label belong to the upper yellow node or to the green node?).
Increasing the obstacle offset conceptually pushes the label away from the obstacle. However,
depending on the available space, the minimal distance between label and obstacle cannot
always be maintained.

The obstacle offset should not be set to an unreasonably large value (such as Float.
MAX_VALUE) because this can cause computational problems inside quadtree operations.

Example of specifying node placement iterations and allowed time (GL algorithm)
To set the obstacle offset:

U S I N G G R A P H L A Y O U T A L G O R I T H M S554

In CSS
Add to the LabelLayout section:

obstacleOffset: "25";

In Java
Call:

layout.setObstacleOffset(25f);

The specified obstacle offset works globally for all labels.

In Java, it is also possible to specify a smaller obstacle offset for specific label/obstacle pairs.
You need to install an obstacle offset interface that returns the obstacle offset for a given
pair:

layout.setObstacleOffsetInterface(new IlvObstacleOffsetInterface() {
public float getOffset(IlvLabelingModel m, Object label, Object obstacle)

{
if (label instanceof IlvZoomableLabel &&

obstacle instanceof IlvIcon)
return 3f;

else
// use the global obstacle offset
return Float.MAX_VALUE;

}
});

The effective offset is the lower of the values returned by the obstacle offset interface and
the globally specified offset respectively. Hence, the obstacle offset interface in the previous
example means that IlvZoomableLabel labels can be placed up to 3 units near IlvIcon
obstacles, while they are placed away from all other obstacles by at least the amount specified
by the calllayout.setObstacleOffset.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 555

Label and Obstacle Offsets

Label movement policy
The label movement policy is an easy way to define which labels should be moved by the
label layout algorithm.

Example of specifying label movement policy
In CSS
It is not possible to specify the label movement policy in CSS, but you can integrate a label
movement policy into the label layout renderer by subclassing the renderer. An example
showing how to subclass renderers is provided inWriting a new layout renderer to clip links.

In Java
The following code installs a label movement policy such that the layout moves only labels
with a height greater than 100:

layout.setLabelMovementPolicy(new IlvLabelMovementPolicy() {
public boolean allowMove(IlvLabelingModel labelingModel, Object label)
{

return (labelingModel.boundingBox(label).height > 100);
}

});

Labels with smaller heights are not moved. However, they are also not completely ignored,
because the layout tries to position the movable labels so that they do not overlap the
immovable labels, and the label offset is respected between movable and immovable labels.

A more general useful example is a movement policy that prohibits moving labels that initially
do not overlap anything. This predefined movement policy is available through the class
IlvOverlappingLabelMovementPolicy. You can use this class in applications that have their
own label positioningmechanism and use the Annealing Label layout only as a postprocessing
step to improve the positions of overlapping labels. To install this policy, call:

U S I N G G R A P H L A Y O U T A L G O R I T H M S556

layout.setLabelMovementPolicy(new IlvOverlappingLabelMovementPolicy());

Automatic update
After layout, the labels are placed close to the related obstacle according to the label
descriptor. For instance, a link label is placed close to its link. However, if you move the
link interactively, the label normally stays at the old position, which may be far away from
the link after the movement. The label loses the connection to the link, and a new layout is
necessary.

Because it is too time-consuming to redo the layout after each single interactive move, the
Annealing Layout algorithm has a feature that automatically updates the labels on geometric
changes, that is, the label follows the link when the link moves.

Example of specifying automatic update
To enable this feature:

In CSS
Add to the LabelLayout section:

autoUpdate: "true";

In Java
Call:

layout.setAutoUpdate(true);

If automatic update is enabled, the algorithm does not perform a full layout of all labels
during each interactive change. It repositions only the label whose related obstacle has
moved in one step. Thus it may produce more overlaps than a full layout. The automatic
update mechanism is much faster, however, and hence better suitable for interactions.

The automatic update feature works only if the labeling model provides
LabelingModelEvent objects on each obstacle movement. The

Note:

IlvDefaultLabelingModel provides these events. If you implement your own
labeling model, you must provide these events in order to use the automatic update
feature.

Expert parameters
A few parameters are available for an advanced use of the Annealing Label Layout.

Quadtree
To speed up the layout, the Annealing Label Layout algorithm uses a quadtree data structure.
The quadtree enables a very efficient check for overlaps. The layout algorithm automatically
detects from the graph model whether the quadtree can be used. You can switch it off
explicitly by calling:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 557

layout.setUseQuadtree(false);

Normally, it is not useful to switch the quadtree off because it slows down label positioning.
However, if you implement your own labeling model, you may want to use this flag to verify
that the labeling model is correct.

Simulated annealing
Simulated annealing is an iterative mechanism. In each iteration step, all labels are tested
for better positions. Usually, the algorithm is capable of detecting automatically when to
stop. The algorithm stops if:

♦ The maximal number of iterations is reached.

♦ After several iterations, no better position was found for any label.

♦ After several iterations, the quality did not improve by a given percentage.

In a few cases, it may be necessary to limit the number of iterations, which can be done by
calling:

layout.setAllowedNumberOfIterations(100);

As a general hint, to obtain a reasonable layout, the allowed number of iterations should
not be considerably lower than the number of labels.

Simulated Annealing stops if, after several iterations, no better position was found for any
label. Because the search is randomized, this does not necessarily mean that the best position
was already found; however, it indicates that finding the best position would require too
much layout time. The number of ineffective iterations before stopping can be changed by
calling:

layout.setMaxNumberOfFailIterations(maxNumber);

The default value is 20. If you set it to a higher value, the layout slows down but may find
better positions for the labels. If you set it to a lower value, the layout stops sooner, but the
label positions may be far from optimal.

In some cases, the algorithm improves the quality in each step, but the amount of
improvement gets smaller in each step. In this situation, the previous fail-iteration criteria
does not work well because there is an improvement in each step, but the amount of the
improvement is so negligibly small that we want to stop. Therefore, it is also possible to
require that the quality must improve in each step by a minimum percentage.

For example, to specify that the algorithm must improve over ten rounds by at least 2%,
call:

layout.setNumberIterationsForMinImprovement(10);
layout.setMinImprovementPercentageToContinue(2);

By default, the layout stops if the quality did not improve by 0.5% over five iterations. If you
set the required improvement percentage higher or the number of iterations lower, the

U S I N G G R A P H L A Y O U T A L G O R I T H M S558

layout stops sooner, but the label positions may be far from optimal. If you set the required
percentage to 0%, this stop criterion is disabled and will no longer have any effect.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 559

For experts: implementing your own label descriptors

The Annealing Label Layout is extensible. The point label descriptor and the polyline label
descriptor are designed to cover the majority of the cases. In rare situations, you may want
to implement your own label descriptor by subclassing the base class
IlvAnnealingLabelDescriptor. This section describes the necessary steps.

A label descriptor basically specifies the path where the top-left corner of a label can be
placed. For simplification, it considers the path rolled out such that the path has only one
dimension. If the path is known, the precise label position can be specified by just one value:
the path location. The Annealing Label Layout proposes different path locations during the
layout; however, it does not know what the path looks like. The task of the label descriptor
is to translate the path location into concrete (x, y) coordinates of the label.

As an example, we want to create a label descriptor that can place labels precisely at a
triangular obstacle. We could use the point label descriptor as an approximation, but it does
not place the labels precisely at a triangular shape.

In the following figure, the upper diagram shows the path around the triangle (the dashed
red and blue line). Below, you can see the same path rolled out in one dimension. The
Annealing Label Layout may ask the label descriptor to place the label at position 1 to 8.
For the Annealing Label Layout, these positions are just numbers between 0 and
maxPathLocation. The task of the label descriptor is to translate these numbers into the
correct positions as shown in the upper part of the figure.

Path locations at a triangle label descriptor

The base class IlvAnnealingLabelDescriptor. has two protected data members:

♦ actPathLocation is the current path location of the label.

♦ maxPathLocation is the maximal value of the path location.

To create a new label descriptor, you need to implement a method that initializes the path
constructor at the beginning of layout. You should calculate the maximal path location
maxPathLocation and initialize the actPathLocation here. The method is called only once
during layout:

U S I N G G R A P H L A Y O U T A L G O R I T H M S560

void initialize(IlvLabelingModel labelingModel)

In the previous figure, the maximal path location for an equilateral triangle is:

3 * sidelength + 2 * labelwidth + 2 * labelheight

At each iteration step, the layout calls the method setPosition and provides an actual value
for the path location. The method setPosition should store the value into actPathLocation
and translate the path location into appropriate (x, y) coordinates. Then it should call the
predefined method updatePosition(x, y) with these coordinates:

public void setPosition(double pathLocation, float distFromPath)
{

float x, y;
// make sure the position is between 0 and max
while (pathLocation > maxPathLocation)

pathLocation -= maxPathLocation;
while (pathLocation < 0)

pathLocation += maxPathLocation;
// store the actual position
actPathLocation = pathLocation;
// translate the path location into (x, y)
if (pathLocation < labelwidth + sidelength) {

x = (float)pathLocation;
y = triangleBottom;

} else if (pathLocation < labelwidth + labelheight + sidelength) {
x = labelwidth + sidelength;
y = triangleBottom - (float)pathLocation + labelwidth + sidelength;

} else if ... (other cases) ...
...

// finally, update the internal data structures
updatePosition(x, y);

}

The label may have a preferred position at the triangle. The Annealing Layout checks a
location close to the preferred position from time to time. You should implement the following
method to return the preferred path location:

double getPreferredPathLocation()

Furthermore, you should implement a strategy on how to come close to the preferred location.
Towards the end of layout, the algorithm calls the method:

setTowardsPreferredPosition(pathLocation, dist, i, maxI)

to perform a sequence of steps that shift the label from the current position closer to the
preferred position.

with i from 1 to maxI. Implement the method so that at each step you calculate a path
location closer to the preferred location. When i is maxI, it should be exactly at the preferred

U S I N G G R A P H L A Y O U T A L G O R I T H M S 561

location. You can call setPosition to move the label to the preferred (x, y) position. For
instance:

public void setTowardsPreferredPosition(
double pathLocation, float dist, int i, int maxI)

{
double offset = pathLocation - getPreferredPathLocation();
double newLocation = pathLocation - i * offset / maxI;
setPosition(newLocation, dist);

}

These methods take the distance parameter in addition to the path location. This is the
distance from the path. If the label must always be on the path, you can assume this distance
is 0. Set it to a different value only if your label descriptor allows the label to have a variable
offset from the path.

U S I N G G R A P H L A Y O U T A L G O R I T H M S562

Random Label Layout

Describes the Random Label Layout algorithm (class IlvRandomLabelLayout from the
package ilog.views.graphlayout.labellayout.random).

In this section

Sample
Gives a sample of the Random Label Layout and an explanation.

Features
Lists the features of the Random Label Layout.

The algorithm
Describes how the Random Label layout algorithm operates.

Code sample
Gives a code sample showing how to use the Random Label Layout.

Generic features and parameters
Lists the generic features and parameters of the Random Label Layout.

Specific parameters
Lists the specific parameters of the Random Label Layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 563

Sample

The Random Label layout can only be used in Java™ . It is not available in the label layout
renderer of a diagram component, hence there is no way to specify this layout in CSS. It
exists only for demonstration purposes.

The following sample drawing was produced with the Random Label Layout.

Label placement produced with the Random Label Layout

Although each label belongs to a circle of the same color, the random label placement does
not show this. Instead it places the labels randomly, creating many overlaps. The Random
Label Layout can be used to shuffle the labels arbitrarily in a given area.

U S I N G G R A P H L A Y O U T A L G O R I T H M S564

Features

♦ Mainly for demonstration purposes.

♦ Random placement of the labels inside a given region.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 565

The algorithm

The Random Label Layout algorithm is not really a useful layout algorithm. It simply places
the labels at randomly-computed positions inside a user-defined region. Nevertheless, the
Random Label Layout algorithm may be useful for demonstration purposes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S566

Code sample

Below is a code sample using the IlvRandomLabelLayout class:

...
import ilog.views.*;
import ilog.views.graphlayout.labellayout.*;
import ilog.views.graphlayout.labellayout.random.*;
...
IlvManager manager = new IlvManager();
IlvManagerView view = new IlvManagerView(manager);

... /* Fill in here code that fills the manager with labels and obstacles
*/

IlvRandomLabelLayout layout = new IlvRandomLabelLayout();
layout.attach(manager);
layout.setLayoutRegion(new IlvRect(0, 0, 200, 200));
IlvLabelLayoutReport layoutReport = layout.performLayout();
if (layoutReport.getCode() == IlvLabelLayoutReport.LAYOUT_DONE)

System.out.println("Layout done.");
else

System.out.println("Layout not done, code = " +
layoutReport.getCode());

U S I N G G R A P H L A Y O U T A L G O R I T H M S 567

Generic features and parameters

The IlvRandomLabelLayout class supports the following generic parameters defined in the
IlvLabelLayout class:

♦ Allowed time

♦ Percentage of completion calculation

♦ Random generator seed value

♦ Save parameters to named properties

♦ Stop immediately

♦ Use default parameters

The following comments describe the particular way in which these parameters are used
by this subclass.

Allowed time
The label layout algorithm stops if the allowed time setting has elapsed. This feature works
similarly as in IlvGraphLayout; see Allowed time. If the layout stops early because the
allowed time has elapsed, the result code in the layout report is IlvLabelLayoutReport.
STOPPED_AND_INVALID.

Percentage of completion calculation
The label layout algorithm calculates the estimated percentage of completion. This value
can be obtained from the label layout report during the run of the layout. (For a detailed
description of this feature, see Percentage of completion calculation and Layout events and
listeners.)

Random generator seed value
The Random Label Layout uses a random number generator to compute the coordinates.
For the default behavior, the random generator is initialized using the current system clock.
Therefore, different layouts are obtained if you perform the layout repeatedly on the same
graph.

You can specify a particular value to be used as a seed value. For example, to specify the
seed value 10, call:

layout.setUseSeedValueForRandomGenerator(true);
layout.setSeedValueForRandomGenerator(10);

U S I N G G R A P H L A Y O U T A L G O R I T H M S568

Save parameters to named properties
The label layout algorithm can save its layout parameters into named properties. This can
be used to save layout parameters to .ivl files. (For a detailed description of this feature,
see Using named properties to save layout parameters.)

Stop immediately
The label layout algorithm stops after cleanup if the method stopImmediately is called.
(This method works for the IlvLabelLayout class similarly to the corresponding method in
the IlvGraphLayout class. For a description of this method in the IlvGraphLayout class, see
Stop immediately. If the layout stops early in this way, the result code in the layout report
is IlvLabelLayoutReport.STOPPED_AND_INVALID.

Use default parameters
After modifying any label layout parameter, you may want the layout algorithm to use the
default values. You select the default values for all parameters by:

layout.setUseDefaultParameters(true);

IBM® ILOG® JViews Diagrammer keeps the previous settings when selecting the default
values mode. You can switch between back to your own settings by:

layout.setUseDefaultParameters(false);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 569

Specific parameters

The following parameter is specific to the IlvRandomLabelLayout class:

Layout region
The Random Label Layout algorithm places the labels randomly in a specified region. You
can set this region by:

setLayoutRegion(IlvRect region)

You can obtain the current region by:

getLayoutRegion()

If no layout region is specified, the default region (0, 0, 100, 100) is used.

U S I N G G R A P H L A Y O U T A L G O R I T H M S570

Using advanced features

Describes advanced features for using IBM® ILOG® JViews Diagrammer Label Layout.

In this section

General information
Explains when you can use advanced features.

Filtering manager layers
Describes how to filter layers to obtain a partial layout.

Transformers for label layout
Describes what a transformer is and its relevance to label layout in a manager.

Nonzoomable graphic objects as labels and obstacles
Explains what nonzoomable objects are and their relevance to labels and obstacles.

Reference transformer for labeling
Discusses the concept and relevance of the reference transformer for labeling.

Specifying the mode for labeling coordinates
Describes how to specify the coordinate space by setting a mode value.

Using named properties to save layout parameters
Explains how to save layout parameters to files.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 571

General information

All the advanced features are available only for programming in Java™ , they cannot specified
by CSS. The label layout renderer uses these advanced features internally, thus if you are
using a diagram component with CSS styling, you do not need to learn about these advanced
features. However, if you program label layout in Java, it gives you a powerful way to adapt
or extend the label layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S572

Filtering manager layers

Graphic objects within an IlvManagerLayer instance can be managed by layers. IBM®
ILOG® JViews Diagrammer allows you to specify that only the labels and obstacles belonging
to certain layers must be taken into account when performing the layout. Use the following
methods of the IlvDefaultLabelingModel class:

void addLayer(IlvManagerLayer layer)

boolean removeLayer(IlvManagerLayer layer)

boolean removeAllLayers()

To get an enumeration of the manager layers to be taken into account during the layout,
use the method:

Enumeration getLayers()

To determine whether a manager layer belongs to the layers to be taken into account during
layout, use the method:

boolean isLayerAdded(IlvManagerLayer layer)

If no layers have been specified or all the specified layers have been removed, all layers in
the manager are used. In this case, the getLayers method returns null and isLayerAdded
returns false for any layer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 573

Transformers for label layout

The most natural transformer value that could be chosen is the “identity” transformer.

An identity transformer has no translation, zoom, or rotation factors. In terms of IBM®
ILOG® JViews, this would mean that the geometry of the IlvManager would be considered
in the manager coordinates, not in the manager view coordinates (transformed coordinates).
However, the special case of nonzoomable graphic objects must be taken into account. For
this case, the idea of simply using the geometry of the grapher in manager coordinates is
not pertinent.

Label layout algorithms have to deal with the geometry of labels and obstacles. In a manager,
labels and obstacles can be any graphic objects, that is, any subclass of IlvGraphic. Their
position and size are given by their boundingBox(IlvTransformer t) method and usually
depend on the transformer used for their display. Therefore, when you need to perform
layout on a IlvManagerLayer object, you need to consider the geometry of the manager for
a given value of the transformer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S574

Nonzoomable graphic objects as labels and obstacles

A graphic object is said to be zoomable if its bounding box follows the zoom level. Otherwise,
the object is nonzoomable. For instance, IlvLabel objects are nonzoomable while
IlvZoomableLabel objects are zoomable. To determine whether a graphic object is zoomable,
use its boolean zoomable() method or check its documentation.

If all the graphic objects of an IlvManager instance are zoomable, a layout obtained on the
basis of the graph geometry in manager coordinates will appear the same for any value of
the transformer used for the display. Simply speaking, the drawing of the manager will just
be zoomed, or translated.

When at least one nonzoomable graphic object is used as a label or obstacle, the geometry
in manager coordinates can no longer be used. When drawn with different transformer
values (for instance, at different zoom levels), the same IlvManager instance may look very
different. In this case, you cannot use multiple manager views because only one of them can
look correct. All other views will look wrong.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 575

Reference transformer for labeling

The reference transformer is the transformer that is currently being used for...........

How a reference transformer is used
The mechanism by which the reference view and reference transformer are used is similar
to that of the IlvGrapherAdapter class in graph layout. For details, seeReference transformer
for grapher and Reference views.

The reference transformer is used only if the coordinates mode is IlvLabelLayout.
VIEW_COORDINATES or IlvLabelLayout.INVERSE_VIEW_COORDINATES. If you

Note:

change the reference transformer, the layout is no longer up-to-date. A subsequent
layout is necessary. Hence, changing the zoom level of the reference view also renders
the layout out-of-date.

Reference views
To specify the reference view, use the method:

void setReferenceView(IlvManagerView view)

If no reference view is explicitly specified, the first manager view is used.

The default labeling model needs to know the transformer of the reference view or an
explicitly specified reference transformer.

Specifying a reference transformer
To specify the reference transformer explicitly use the method:

void setReferenceTransformer(IlvTransformer transformer)

U S I N G G R A P H L A Y O U T A L G O R I T H M S576

Specifying the mode for labeling coordinates

The default labelingmodel provides several coordinates mode values. The coordinates mode
can be specified on the default labeling model and on the layout instance. The coordinates
mode of the layout instance is used during layout, while the coordinates mode specified for
the default labeling model is used on operations of the labeling model when layout is not
currently performed.

To specify the coordinates mode, use the following method, available in the classes
IlvDefaultLabelingModel and IlvLabelLayout:

void setCoordinatesMode(int mode)

Valid options of the coordinates mode are:

♦ IlvLabelLayout.MANAGER_COORDINATES - The geometry of obstacles and labels is computed
using the coordinate space of the manager without applying any transformation. This
mode is suitable if the manager does not contain any nonzoomable labels.

♦ IlvLabelLayout.VIEW_COORDINATES - The geometry of obstacles and labels is computed
in the coordinate space of the reference manager view. This mode is suitable if the
manager contains nonzoomable objects. The layout will be correct with respect to the
reference view but not correct with respect to any other view. Dimensional layout
parameters (such as the label offset) are specified in the coordinate space of the reference
view.

♦ IlvLabelLayout.INVERSE_VIEW_COORDINATES - This is the default. The geometry of the
graph is computed using the coordinate space of the reference manager view and then
applying the inverse transformation. This simulates the manager coordinate space. This
mode is also suitable if the manager contains nonzoomable objects. The layout will be
correct only with respect to the reference view. Dimensional layout parameters (such as
the label offset) are specified in the coordinate space of the manager.

To make sure that manager coordinates are used during layout, call:

layout.setCoordinatesMode(IlvLabelLayout.MANAGER_COORDINATES);

This does not change the coordinates mode of the labeling model until layout is started.
Most of the time, however, it is recommended that you use the same coordinates mode for
the default labeling model and the layout instance, so you call it twice:

defaultLabelingModel.setCoordinatesMode(IlvLabelLayout.MANAGER_COORDINATES);
layout.setCoordinatesMode(IlvLabelLayout.MANAGER_COORDINATES);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 577

Using named properties to save layout parameters

IBM® ILOG® JViews Diagrammer Graph Layout offers the facility to convert graph layout
parameters into named properties of IlvGrapher. The same facility is available to convert
label layout parameters into named properties of the IlvManager. Named properties can
be stored in .ivl files.

The following method indicates whether a label layout class supports this mechanism:

supportsSaveParametersToNamedProperties()

It returns true if the layout class can transfer the parameter settings to named properties.

Saving layout parameters to .ivl files
The following example shows how to save an IlvManager instance, including all label layout
parameter settings, to an .ivl file.

IlvDefaultLabelingModel labelingModel =
(IlvDefaultLabelingModel)labelLayout.getLabelingModel();

// transfer the layout parameters to named properties
if (labelLayout.supportsSaveParametersToNamedProperties())

labelingModel.saveParametersToNamedProperties(labelLayout, false);
// save the attached manager with the named layout properties to file
labelingModel.getManager().write("abcd.ivl");
// remove the named layout properties because they are no longer needed
labelingModel.removeParametersFromNamedProperties();

The mechanism is the same as in the graph layout module. See Saving layout parameters
to .ivl files.

Loading layout parameters from .ivl files
The following example shows how to load and recover the parameters of the label layout
when the layout settings are stored in an .ivl file:

// Read the IVL file. This reads all named properties as well.
manager.read("abcd.ivl");
IlvDefaultLabelingModel labelingModel =

(IlvDefaultLabelingModel)labelLayout.getLabelingModel();
// Transfer the parameter settings from the named properties to the layout.
// At this time point, the manager must be attached to the label layout
labelingModel.loadParametersFromNamedProperties(labelLayout);
// just to be sure that no named layout properties remain in the memory
labelingModel.removeParametersFromNamedProperties();

The mechanism is the same as in the graph layout Module. See Loading layout parameters
from .ivl files.

U S I N G G R A P H L A Y O U T A L G O R I T H M S578

Defining your own labeling model

Describes how to develop a custom label layout algorithm if you need one.

In this section

The need for a custom label layout algorithm
Discusses when you may need a custom label layout algorithm.

The IlvLabelingModel Class
Describes the methods in the labeling model class and gives a class diagram.

The IlvLabelingModelWithRotation Interface
Describes the methods in the rotation interface for the labeling model.

Subclassing the default labeling model
Describes the default labeling model and how to subclass it if necessary.

Creating a new labeling model
Explains when and how to create a new labeling model.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 579

The need for a custom label layout algorithm

Before reading this section, you should be familiar with the IlvLabelingModel class (see
Labels and obstacles in Java).

Note:

It is sometimes necessary to add label layout features to an existing application.

If the application uses a diagram component with styling, using the Annealing Label Layout
is a straightforward process. You use the internal labeling model of the label layout renderer,
but you do not need to worry about the details.

If your application is not based on styling, but already uses the class IlvManagerLayer to
manipulate and display labels and obstacles, you can use and adapt the default labeling
model (IlvDefaultLabelingModel).

Even if the application uses data structures that are independent of the IBM® ILOG® JViews
data structures, it is possible to apply a supplied label layout algorithm.

If you need to define your own labeling model, create a subclass of IlvLabelingModel. If
the layout is to support rotated labels, your subclass must additionally implement the interface
IlvLabelingModelWithRotation.

See also

Labels and obstacles in Java

U S I N G G R A P H L A Y O U T A L G O R I T H M S580

The IlvLabelingModel Class

The methods defined in the IlvLabelingModel class can be divided into several categories:
those that provide information on the structure of the labels and obstacles, on their geometry,
on their overlap penalty, and notification of changes in the manager.

They are described in the following sections:

♦ Information on the structure of labels and obstacles

♦ Information on the geometry of labels and obstacles

♦ Overlap calculation

♦ Notification of changes

♦ Storing and retrieving object properties

The Class IlvLabelingModel in the JViews Graphic Framework

Information on the structure of labels and obstacles
The following methods of the IlvLabelingModel class allow the layout algorithms to retrieve
information on the labels:

U S I N G G R A P H L A Y O U T A L G O R I T H M S 581

Decides whether an object is a label.isLabel(java.lang.Object)

Enumerates all existing labels.getLabels()

Returns the number of labels that exist.getLabelsCount()

The following methods allow the layout algorithms to retrieve information on the obstacles
in a similar way:

boolean isObstacle(Object obj)

boolean isPolylineObstacle(Object obj)

Enumeration getObstacles()

int getObstaclesCount()

For optimization purposes, the labeling model distinguishes between normal obstacles and
polyline obstacles. While normal obstacles cover the major part of their bounding box,
polyline obstacles have a line width and range over intermediate points; thus they cover
only a small part of their bounding box.

Since a polyline obstacle is an obstacle, both isObstacle and isPolylineObstacle return
true for a polyline obstacle.

Information on the geometry of labels and obstacles
For labels and obstacles, the label layout can retrieve the bounding box with the method:

IlvRect boundingBox(Object labelOrObstacle)

For the special polyline obstacles, the label layout can retrieve the precise shape of the
polyline with the methods:

float getPolylineWidth(Object polylineObstacle)

IlvPoint[] getPolylinePoints(Object polylineObstacle)

The following method moves a label to the new position.

void moveLabel(Object label, float x, float y, boolean redraw)

U S I N G G R A P H L A Y O U T A L G O R I T H M S582

Overlap calculation
A good label layout avoids overlaps. Thus, the calculation of overlap values is an important
step of the algorithm. The speed of the layout algorithm depends crucially on the speed of
the overlap calculation. The labeling model provides the following methods for overlap
calculations:

Calculates the overlap between two
labels.

getLabelOverlap(java.lang.Object, ilog.views.
IlvRect, java.lang.Object, ilog.views.IlvRect,
float)

Calculates the overlap between a label
and a normal obstacle.

getObstacleOverlap(java.lang.Object, ilog.
views.IlvRect, java.lang.Object, ilog.views.
IlvRect, float)

Calculates the overlap between a label
and a polyline obstacle.

getPolylineObstacleOverlap(java.lang.Object,
ilog.views.IlvRect, java.lang.Object, ilog.
views.IlvPoint[], float, float)

These methods return a positive penalty value that indicates how much the objects overlap.

♦ The returned value is 0 if the objects do not overlap.

♦ A smaller overlap value designates less overlap than a larger overlap value. The actual
number is arbitrary and depends on the implementer of the labeling model. For example,
if all objects are rectangles, then it could be the size of the overlapping area of the
rectangles.

Typically the overlap value is calculated before the label is moved. It is calculated for a
speculative label position, not for the real label position. Hence, the speculative bounding
box of the label is passed as an argument. Similarly, the bounding box (or polyline shape)
of the obstacle is passed as an argument as well. The meaning of the returned value is the
overlap penalty if the label were placed at its passed bounding box, and the obstacle were
placed at its passed bounding box.

If the overlap methods return a positive nonzero penalty only when the speculative bounding
boxes overlap, then the following method can return true:

boolean isBoundingBoxDependent()

This method exists mainly for quadtree optimization purposes.

Notification of changes
The following methods of the IlvLabelingModel class allow a layout algorithm to be notified
of changes in the data structures:

void addLabelingModelListener(LabelingModelListener listener)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 583

void removeLabelingModelListener(LabelingModelListener listener)

void fireLabelingModelEvent(Object obstacleOrLabel, int eventType, boolean
adjusting)

void fireLabelingModelEvent(LabelingModelEvent event)

A “change” can be a structural change (that is, a label or obstacle was added or removed)
or a geometrical change (that is, a label or obstacle was moved or reshaped). The event type
is typically a bitwise-Or of the bit masks defined in the class LabelingModelEvent. For
instance, when a label was removed, an event with type (STRUCTURE_CHANGED |
LABEL_REMOVED) is fired and the removed label is stored in the event. The labeling model
event listener mechanism provides a means to keep the layout algorithms informed of these
changes. When the layout algorithm is restarted on the same graph, it is able to detect
whether the data structures have changed since the last time the layout was successfully
performed. If necessary the layout can be performed again. If there was no change, the
layout algorithm can avoid unnecessary work by not performing the layout.

The labeling model event listener is defined by the LabelingModelListener interface. To
receive the events (that is, instances of the LabelingModelEvent class), a class must
implement the LabelingModelListener interface and must register itself using the
addLabelingModelListener(ilog.views.graphlayout.labellayout.
LabelingModelListener) method of the IlvLabelingModel class.

The label layout algorithms register themselves as listeners to the labeling model (via
the functionality in IlvLabelLayout).Therefore, there is usually no need to manipulate
these listeners directly.

Note:

Storing and retrieving object properties
The following methods of the IlvLabelingModel class allow a layout algorithm to store data
objects for each label or obstacle:

void setProperty(Object labelOrObstacle, String key, Object value)

Object getProperty(Object labelOrObstacle, String key)

void setProperty(String key, Object value)

Object getProperty(String key)

U S I N G G R A P H L A Y O U T A L G O R I T H M S584

The layout algorithm may need to associate a set of properties with the labels or obstacles,
or global properties. Properties are a set of key-value pairs, where the key is a String
object and the value can be any kind of information value.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 585

The IlvLabelingModelWithRotation Interface

The methods of the IlvLabelingModel class are designed to support upright rectangular
labels. If rotated rectangular labels occur in your application, the labeling model must
additionally implement the interface IlvLabelingModelWithRotation.

In IlvLabelingModelWithRotation, all labels are considered rectangles that can be rotated
around the center of the label. Hence, the method boundingBox(java.lang.Object) of the
labeling model returns the bounding box of the unrotated label, not the bounding box of the
rotated label.

The IlvLabelingModelWithRotation interface assumes that the rotation of the label depends
on the position of the label. For example, if the label is placed close to link segments, the
label should be rotated according to the link segments.

Rotations
You can retrieve the rotation of the label with the method:

double getRotation(Object label, IlvRect positionRectangle)

You can set the rotation of the label with the method:

void setRotation(Object label, double angle)

The angles are in degrees.

The method setRotation(Object label, double angle) is called by the Annealing Label
Layout at the end of layout to inform the label about the final rotation calculated by the
layout. If the label is attached to a link and always follows the rotation of the link
automatically, it will not be necessary to inform the label about the final rotation. Therefore,
setRotation(Object label, double angle) can be empty, but getRotation(Object label,
IlvRect positionRectangle) must return the rotation of the link segment when the label is
placed at positionRectangle.

Overlap calculations
The IlvLabelingModelWithRotation interface offers methods for calculating the overlaps
of rotated labels. These methods have as additional parameter an angle for the label
parameters:

Methods for Calculating Overlaps of Rotated Labels

double getLabelOverlap(Object label1, IlvRect rect1,
double angle1, Object label2, IlvRect rect2,
double angle2, float minDist);

double getObstacleOverlap(
Object label, IlvRect labelRect, double angle,
Object obstacle, IlvRect obstacleBBox, float minDist);

U S I N G G R A P H L A Y O U T A L G O R I T H M S586

double getPolylineObstacleOverlap(
Object label, IlvRect labelRect, double angle,
Object polylineObstacle, IlvPoint[] pts,
float lineWidth, float minDist);

For each label parameter, an unrotated rectangle (labelRect) is passed, which defines the
speculative position of the label and a rotation angle.

Themeaning of the returned value is the overlap penalty if the label were placed at labelRect
and rotated by the angle and if the obstacle were placed at obstacleBBox. The penalty 0
means that the objects do not overlap.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 587

Subclassing the default labeling model

The default labeling model IlvDefaultLabelingModel is a subclass of IlvLabelingModel.
It has certain properties that may not be suitable for your application:

♦ Only objects of type IlvLabel and IlvZoomableLabel are considered labels.

♦ Only objects of type IlvLine, IlvPolyline, and IlvLinkImage are considered polyline
obstacles.

♦ All other objects are considered rectangular obstacles.

It is easy to change these properties by subclassing IlvDefaultLabelingModel. For instance,
if you use only labels of class MySpecialLabel, you can override the method
isDefaultLabelClass:

public boolean isDefaultLabelClass(Object obj)
{

return (obj instanceof MySpecialLabel);
}

If you want some objects to be completely ignored, make sure they are not considered as
labels or obstacles. To avoid considering objects of class IgnorableGraphic as obstacles,
you can override the method isObstacle:

public boolean isDefaultObstacleClass(Object obj)
{

return super.isDefaultObstacleClass(obj) &&
!(obj instanceof IgnorableGraphic);

}

Instead of overriding isDefaultLabelClass and isDefaultObstacleClass,
you can also specify which objects are labels and obstacles by using the methods
setLabel and setObstacle, as illustrated in Labels and obstacles in Java.

Note:

Some obstacles do not have a rectangular shape. For simplicity and speed, the overlap value
is based on the bounding box of normal obstacles. Hence the default labeling model may
compute overlaps in situations where in fact there are no overlaps, because the bounding
box is usually a little larger than the area that is really covered by the obstacle. You can
correct this by overriding the method getOverlapValue by implementing a more precise
(but also more complex) overlap test:

public double getObstacleOverlap(
Object label, IlvRect labelBBox,
Object obstacle, IlvRect obstacleBBox,
float minDist)

{

U S I N G G R A P H L A Y O U T A L G O R I T H M S588

... complex calulation of the overlap considering the precise shape of

... the obstacle. If the label is closer than minDist to the obstacle,

... it should be considered as overlap

...
if (hasOverlap)

return a value proportional to the overlap;
else

return 0.0;
}

Since the default labeling model IlvDefaultLabelingModel implements the
IlvLabelingModelWithRotation interface, you can similarly override all overlap methods
that have a rotation angle parameter for the labels. See The IlvLabelingModelWithRotation
Interface.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 589

Creating a new labeling model

The default labeling model is suitable only if the underlying data structure is an IlvManager.
The case may arise when an application uses its own classes and when, for some reason,
you do not want to replace these classes with IBM® ILOG® JViews classes such as
IlvManager and IlvLabel. Here, you cannot use the default labeling model. To enable the
label layout algorithms to work with these data structures, you must write a custom labeling
model (that is, a subclass of IlvLabelingModel).

The custom labelingmodel must implement all the abstractmethods of the IlvLabelingModel
class. The nonabstract methods of this class have a default implementation that is functional.
However, they may not be optimal because they do not take advantage of the characteristics
of the underlying graph implementation. In this case, they can be overridden as well. The
efficiency of the layout algorithm depends directly on the efficiency of the implementation
of the labeling model and the underlying data structure.

The following is the minimal set of methods that must be implemented:

abstract Enumeration getLabels()

abstract boolean isLabel(Object obj)

abstract void moveLabel(Object label, float x, float y, boolean redraw)

abstract double getLabelOverlap(Object label1, IlvRect bbox1, Object label2,
IlvRect bbox2, float minDist)

abstract Enumeration getObstacles()

abstract boolean isObstacle(Object obj)

abstract double getObstacleOverlap(Object label, IlvRect labelBBox, Object
obstacle, IlvRect obstacleBBox, float minDist)

abstract IlvRect boundingBox(Object labelOrObstacle)

These methods are described in The IlvLabelingModel Class.

If the label layout algorithm is to support rotated labels, the new labeling model must
additionally implement the interface IlvLabelingModelWithRotation.

U S I N G G R A P H L A Y O U T A L G O R I T H M S590

Using advanced features

Describes advanced features including how to define new types of layouts.

In this section

Overview of advanced features
Explains the purpose of the advanced features.

Using a graph layout report
Describes what graph layout reports are and how to use them.

Using event listeners
Describes the listeners for different kinds of events.

Redrawing the grapher after layout
Explains automatic redrawing and various redrawing scenarios in Java™ .

Using the Graph Model
Describes the graph model.

Laying out a non-JViews grapher
Explains how to lay out a grapher in an existing application that was not created with IBM®
ILOG® JViews.

Laying out connected components of a disconnected graph
Explains how to use graph layout when you have a disconnected graph.

Saving layout parameters and preferred layouts
Explains how to save a graph and its layout parameters and preferred layouts in a file.

© Copyright IBM Corp. 1987, 2009 591

Using filtering to lay out a part of an IlvGrapher
Explains how to lay out part of a graph using a filter.

Choosing the layout coordinate space
Describes how to choose the appropriate coordinate space for a layout and how to specify
the corresponding mode.

Defining your own type of layout
Describes how to develop a custom graph layout algoithm if you need one.

FAQs about using the layout algorithms
Lists some FAQs about the use of the layout algorithms.

Releasing resources used during the layout of a grapher
Describes how to release resources that were created during the layout process.

U S I N G G R A P H L A Y O U T A L G O R I T H M S592

Overview of advanced features

The advanced features are available only for programming in Java™ . If you program graph
layout in Java, these advanced features give you a powerful way to adapt or extend graph
layouts.

Unless otherwise specified, advanced features cannot be specified in CSS syntax. The graph
layout and link renderers use the advanced features internally. Therefore, if you are using
a diagram component with CSS styling, you can ignore this section.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 593

U S I N G G R A P H L A Y O U T A L G O R I T H M S594

Using a graph layout report

Describes what graph layout reports are and how to use them.

In this section

Layout report classes
Lists the layout classes and corresponding layout report classes.

Creating a layout report
Explains how to create a layout report.

Accessing a layout report
Explains how to access a layout report.

Information stored in a layout report
Lists the fields in a layout report.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 595

Layout report classes

Graph layout reports are objects used to store information about the particular behavior of
a layout algorithm. After the layout is completed, this information is available to be read
from the layout report.

Each layout class instantiates a particular class of ilog.views.graphlayout.
IlvGraphLayoutReport each time the layout is performed. The following table shows the
layout classes and their corresponding layout reports.

Layout report classes
Layout Report ClassLayout Class

IlvTopologicalMeshLayoutReportIlvTopologicalMeshLayout

IlvUniformLengthEdgesLayoutReportIlvUniformLengthEdgesLayout

IlvGraphLayoutReportIlvTreeLayout

IlvGraphLayoutReportIlvHierarchicalLayout

IlvGraphLayoutReportIlvLinkLayout

IlvGraphLayoutReportIlvRandomLayout

IlvGraphLayoutReportIlvBusLayout

IlvGraphLayoutReportIlvCircularLayout

IlvGraphLayoutReportIlvGridLayout

IlvMultipleLayoutReportIlvMultipleLayout

IlvRecursiveLayoutReportIlvRecursiveLayout

U S I N G G R A P H L A Y O U T A L G O R I T H M S596

Creating a layout report

All layout classes inherit the performLayout method from the IlvGraphLayout class. This
method calls createLayoutReport to obtain a new instance of the layout report. This instance
is returned when performLayout returns. The default implementation in the base layout
class creates an instance of IlvGraphLayoutReport. Some subclasses override this method
to return an appropriate subclass. Other classes, such as IlvRandomLayout, do not need
specific information to be stored in the layout report and do not override
createLayoutReport. In this case, the base class IlvGraphLayoutReport is used.

When using the layout classes with IBM® ILOG® JViews Diagrammer, you do not need to
instantiate the layout report yourself. This is done automatically.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 597

Accessing a layout report

In a diagram component (a subclass of IlvDiagrammer), you can access a layout report in
the following way:

IlvGraphLayoutReport layoutReport =
diagrammer.getEngine().getNodeLayoutRenderer().
getGraphLayout().getLayoutReport();

Notice that null is returned if the layout renderer was never executed (that is, layout was
never called).

If you do not use a diagram component, you usually call layout via the method performLayout
which returns the layout report. The following example shows how to read the information
from the layout report in this case:

:

...
try {

IlvGraphLayoutReport layoutReport = layout.performLayout();
if (layoutReport.getCode() ==

IlvGraphLayoutReport.LAYOUT_DONE)
System.out.println("Layout done.");

else
System.out.println("Layout not done, code = " +

layoutReport.getCode());
}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage());
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S598

Information stored in a layout report

The base class IlvGraphLayoutReport stores the following information:

♦ Code

♦ Layout time

♦ Percentage of completion

♦ Additional information

Code
This field contains information about special, predefined cases that may have occurred
during the layout. The possible values are the following:

♦ LAYOUT_DONE appears if the layout was performed successfully.

♦ STOPPED_AND_VALID appears if the layout was performed but was stopped before
completion, either because the layout time elapsed or because the method
stopImmediately was called. The positions of nodes and links are valid at the stopping
point because the layout algorithm uses an iterative mechanism.

♦ STOPPED_AND_INVALID appears if a (noniterative) layout was performed but was stopped
before completion, either because the layout time elapsed or because the method
stopImmediatelywas called. The positions of nodes and links are not valid at the stopping
point. Often, they have not yet been changed at all.

♦ NOT_NEEDED appears if the layout was not performed because no changes occurred in the
grapher and parameters since the last time the layout was performed successfully.

♦ EMPTY_GRAPHER appears if the grapher is empty.

To read the code, use the method:

int getCode()

Layout time
This field contains the total duration of the layout algorithm at the end of the layout. To read
the time (in milliseconds), use the method:

long getLayoutTime()

Percentage of completion
This field contains an estimation of the percentage of the layout that has been completed.
This can be used if the layout algorithm supports the generic percentage completion
calculation feature. (See Percentage of completion calculation.) It is typically used inside

U S I N G G R A P H L A Y O U T A L G O R I T H M S 599

layout event listeners that are described in the following section. To access the percentage,
use the method:

int getPercentageComplete()

Additional information
Additional information for particular layout algorithms is stored by the subclasses of
IlvGraphLayoutReport. For details, see the reference documentation of these classes:

♦ IlvTopologicalMeshLayoutReport

♦ IlvUniformLengthEdgesLayoutReport

♦ IlvMultipleLayoutReport

♦ IlvRecursiveLayoutReport

U S I N G G R A P H L A Y O U T A L G O R I T H M S600

Using event listeners

All layout classes support two kinds of events: layout events and parameter events. The
listening mechanism therefore provides:

♦ Graph layout event listeners

♦ Parameter event listeners

Graph layout event listeners
The layout event listening mechanism provides a way to inform the end user of what is
happening during the layout. At times, a layout algorithm may take a long time to execute,
especially when dealing with large graphs. In addition, an algorithm may not converge in
some cases. No matter what the situation, the end user should be informed of the events
that occur during the layout. This can be done by implementing a simple progress bar or by
displaying appropriate information, such as the percentage of completion after each iteration
or step.

The layout event listener is defined by the GraphLayoutEventListener interface. To receive
the layout events delivered during the layout, a class must implement the
GraphLayoutEventListener interface and must register itself using the
addGraphLayoutEventListener method of the IlvGraphLayout class.

When you implement the GraphLayoutEventListener interface, you must implement the
layoutStepPerformedmethod. The layout algorithmwill call this method on all the registered
layout event listeners, passing the layout report as an argument (see Using a graph layout
report). In this way, you can read information about the current state of the layout report.
(For example, you can read this information after each iteration or step of the layout
algorithm).

The following example shows how to implement a layout event listener:

class LayoutIterationListener
implements GraphLayoutEventListener

{
public void layoutStepPerformed(GraphLayoutEvent event)
{
IlvGraphLayoutReport layoutReport = event.getLayoutReport();
System.out.println("percentage of completion: " +

layoutReport.getPercentageComplete());
}

}

Then, register the listener on the layout instance as follows:

layout.addGraphLayoutEventListener(new LayoutIterationListener());

U S I N G G R A P H L A Y O U T A L G O R I T H M S 601

Parameter event listeners
The layout parameter event listeners mechanism provides a way to inform the end user that
any layout parameter has changed. This is useful when the layout parameter values are
displayed in a dialog box that needs to be updated to indicate parameter changes.

The parameter event listener is defined by the GraphLayoutParameterEventListener
interface. To receive the layout parameter events, a class must implement the
GraphLayoutParameterEventListener interface and must register itself using the
addGraphLayoutParameterEventListener method of the IlvGraphLayout class.

When you implement the GraphLayoutParameterEventListener interface, you must
implement the parametersUpToDate method. The layout class will call this method on all
the registered layout parameter event listeners. The layout parameter event contains a flag
accessible by the isParametersUpToDate method:

♦ It returns true if the event occurs at the end of a run of the layout when the layout is
considered up-to-date with respect to the layout parameters.

♦ It returns false if the event occurs when any layout parameter has changed.

The following example shows how to implement a layout parameter event listener.

class LayoutParameterListener
implements GraphLayoutParameterEventListener

{
public void parametersUpToDate(GraphLayoutParameterEvent event)
{
if (!event.isParametersUpToDate())
System.out.println("Any layout parameter has changed.”);

}
}

Then, register the listener with the layout instance as follows:

layout.addGraphLayoutParameterEventListener(new LayoutParameterListener());

U S I N G G R A P H L A Y O U T A L G O R I T H M S602

Redrawing the grapher after layout

When a layout algorithm is executed, it moves the nodes and/or reshapes the links of the
graph. If the graph is displayed on a screen, its display must be updated to reflect the changes
made by the layout.

♦ If you use a diagram component (a subclass of IlvDiagrammer)), the updating is done
automatically.

♦ If you call layout by using the method performLayout, you have more detailed control on
the redraw mechanism, as explained in the following sections:

IBM® ILOG® JViews provides complete flexibility, concerning the redraw of an
IlvGrapher instance that has undergone layout. Your choice will depend on your particular
application. The following scenarios are possible:

● Automatic and Selective Redraw

● Nonautomatic and Complete Redraw

● Delayed Redraw

● No Redraw at All

Automatic and Selective Redraw
If you just want the grapher to be automatically redrawn after the layout, simply call the
following method with the value true for the redraw argument:

IlvGraphLayoutReport performLayout(boolean force, boolean redraw)

When you do this, an initReDraws()/ reDrawViews() session is initiated automatically.
When the nodes and the links are moved or reshaped, the value true is passed for the redraw
argument of the appropriate methods of IlvGrapher. At the end of the layout, the
initReDraws/reDrawViews session is ended. This produces a selective redraw of the invalid
regions of the views where the graph is displayed.

Nonautomatic and Complete Redraw
If all the nodes are moved by the layout, it may be more efficient to redraw the entire graph
at the end of the layout instead of using the mechanism of the invalid regions provided by
IlvGrapher. In this case, you can use the following code:

try {
layout.performLayout(false, false); // argument redraw at false

} catch (IlvGraphLayoutException e) {
e.printStackTrace();

} finally {
// redraw in the final clause to ensure that the redraw
// is performed even if an exception occurs

U S I N G G R A P H L A Y O U T A L G O R I T H M S 603

grapher.reDraw();
}

This completely redraws the grapher in all its visible views. Alternatively, you can call the
method repaint on some of its views.

Delayed Redraw
After the layout, you may want to perform other changes in the grapher before redrawing.
You can start the initReDraws()/ reDrawViews() session on your own to control the point
in time when the redraw is performed. You can use the following code:

grapher.initReDraws();
try {
layout.performLayout(false, true);

} catch (IlvGraphLayoutException e) {
e.printStackTrace();

} finally {
grapher.moveObject(..., false); // some other changes in the grapher
grapher.reDrawViews();

}

No Redraw at All
Sometimes, the layout may need to be performed without any display of the grapher. For
instance, this can be done to automatically produce .ivl files containing the result of the
layout for future use. To avoid any redraw during the layout, just call the method
performLayout(boolean, boolean) with the value false for the redraw argument.

During animated layout (for layouts supporting this option), the grapher needs to be
redrawn after each step to produce the animation effect. Therefore, you need to pass

Note:

the value true for the redraw argument of the method performLayout(boolean,
boolean). In this case, the initReDraws()/ reDrawViews() session is
automatically used for each animation step. Users should not add their own
initReDraw/reDrawViews session because this would prevent the graph from
being redrawn during the animation.

U S I N G G R A P H L A Y O U T A L G O R I T H M S604

Using the Graph Model

Describes the graph model.

In this section

Overview of the graph model
Gives an idea of the graph model and how it is used.

Graph model and SDM model
Explains the difference between the graph model and the SDM model.

The graph model concept
Explains the graph model in more detail with a diagram of the classes.

The IlvGraphModel class
Describes the graph model class in more detail.

Using the class IlvGrapherAdapter
Describes the grapher adapter class in more detail.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 605

Overview of the graph model

The IlvGraphModel class defines a suitable, generic API for graphs that have to be laid out
with IBM® ILOG® JViews Diagrammer graph layout algorithms.

All the layout algorithms provided in IBM® ILOG® JViews Diagrammer are designed to
lay out a graph model. This allows applications to benefit from the graph layout algorithms
whether or not they use the IBM® ILOG® JViews grapher (IlvGrapher). However, to make
things very simple for the common case of applications that manipulate an IlvGrapher, it
is not mandatory to work directly with the graph model except for some advanced features
such as filtering (see Using filtering to lay out a part of an IlvGrapher).

U S I N G G R A P H L A Y O U T A L G O R I T H M S606

Graph model and SDM model

Defines the SDM model and the graph model.

There are two key concepts: the graph model and the SDMmodel of the diagram component
(subclass of IlvDiagrammer). It is important to avoid confusion between them.

The SDM model
The SDM model represents the application objects. Application objects typically have only
logical properties, not graphic properties (position, size, shape, and so on). The rendering
process produces graphic objects for the SDM model objects.

The Graph Model
The graph model of the layout algorithms is an abstraction of the graphic properties of these
graphic objects., not an abstraction of the application objects.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 607

The graph model concept

With a graph model, you can use already-built graphs, nodes, and links that have been
developed without IBM® ILOG® JViews and apply the layout algorithms of IBM® ILOG®
JViews Diagrammer. The graph model provides the basic, generic operations for performing
the layout.

A subclass must be written to adapt the graph model to specific graph, node, and link objects.
This subclass plays the role of an “adapter” or bridge between the application objects and
the graph model. This often makes it much easier to add graph features to existing
applications.

The following figure shows the relationship between the graph model and graph layout
algorithms, IBM® ILOG® JViews graphers, non-JViews graphers, and manager views.

Graph Model in the IBM® ILOG® JViews Diagrammer Graph Layout Framework

You can see from this diagram that instead of using a concrete graph class such as
IlvGrapher directly, the layout algorithms interact with the graph via the graph model. This
is the key for achieving a truly generic graph layout framework. Note that the use of an
IlvManagerView to display the result of the layout is not mandatory.

U S I N G G R A P H L A Y O U T A L G O R I T H M S608

The IlvGraphModel class

The IlvGraphModel class is an abstract Java™ class. Because it does not provide a concrete
implementation of a graph data structure, a complete implementation must be provided by
“adapter” classes. The adapters extend the IlvGraphModel class and must use an underlying
graph data structure. A special adapter class called IlvGrapherAdapter is provided so that
an IlvGrapher can be used as the underlying graph data structure.

If an application uses the IlvGrapher class, the grapher can be attached directly to
the layout instance without explicitly using a graph model. (See the attach(ilog.

Note:

views.IlvGrapher) method.) In this case, the appropriate adapter
(IlvGrapherAdapter) will be created internally.This adapter can be retrieved using
the getGraphModel() method, which will return an instance of IlvGrapherAdapter.

Most of the methods defined in the IlvGraphModel class have a name and definition very
similar to the corresponding methods of the IlvGrapher class. The main difference is that
the arguments of the IlvGraphModelmethods are java.lang.Object instead of IlvGraphic
or IlvLinkImage. Themethods can be divided into several categories that provide information
on the structure of the graph, the geometry of the graph, modification of the graph geometry,
and notification of changes in the graph.

This section is divided as follows:

♦ Information on the Structure of the Graph

♦ Information on the Geometry of the Graph

♦ Modification of the Geometry of the Graph

♦ Notification of Changes

♦ Storing and Retrieving Data Objects (“Properties”)

Information on the Structure of the Graph
The following methods of the IlvGraphModel class allow the layout algorithms to retrieve
information on the structure of the graph:

Enumeration getNodesAndLinks()

Enumeration getNodes()

int getNodesCount()

U S I N G G R A P H L A Y O U T A L G O R I T H M S 609

Enumeration getLinks()

int getLinksCount()

boolean isNode(Object obj)

boolean isLink(Object obj)

Enumeration getLinks(Object node)

int getLinksCount(Object node)

Enumeration getLinksFrom(Object node)

int getLinksFromCount(Object node)

Enumeration getLinksTo(Object node)

int getLinksToCount(Object node)

Enumeration getNeighbors(Object node)

int getNodeDegree(Object node)

Object getFrom(Object link)

Object getTo(Object link)

Object getOpposite(Object link, Object node)

boolean isLinkBetween(Object node1, Object node2)

The following methods are provided for use with nested graphs (see also Nested layouts):

U S I N G G R A P H L A Y O U T A L G O R I T H M S610

IlvGraphModel getParentModel()

IlvGraphModel getRootModel()

IlvGraphModel getGraphModel(Object subgraph)

IlvGraphModel createGraphModel(Object subgraph)

Enumeration getSubgraphs()

int getSubgraphsCount()

boolean isSubgraph(Object obj)

Enumeration getInterGraphLinks()

int getInterGraphLinksCount()

boolean isInterGraphLink(Object obj)

Information on the Geometry of the Graph
The following methods of the IlvGraphModel class allow the layout algorithms to retrieve
information on the geometry of the graph:

IlvRect boundingBox(Object nodeOrLink)

IlvRect boundingBox()

IlvPoint[] getLinkPoints(Object link)

IlvPoint getLinkPointAt(Object link, int index)

int getLinkPointsCount(Object link)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 611

float getLinkWidth(Object link)

The boundingBoxmethod is called by a layout algorithmwhenever it needs to get the position
and the dimensions of a node or a link. The other methods are used mainly by link layout
algorithms.

Modification of the Geometry of the Graph
The following methods of the IlvGraphModel class allow a layout algorithm to modify the
geometry of the graph:

void moveNode(Object node, float x, float y, boolean redraw)

void reshapeLink(Object link, IlvPoint fromPoint, IlvPoint[] points, int
startIndex, int length, IlvPoint toPoint, boolean redraw)

void move(float x, float y, boolean redraw)

Layout algorithms that compute new coordinates for the nodes use the moveNode method.
Link layout algorithms that compute new shapes for the links call one of the reshapeLink
methods.

Notification of Changes
The following methods of the IlvGraphModel class allow a layout algorithm to be notified
of changes in the graph:

void addGraphModelListener(GraphModelListener listener)

void removeGraphModelListener(GraphModelListener listener)

void fireGraphModelEvent(GraphModelEvent event)

void fireGraphModelEvent(Object nodeOrLink, int type, boolean adjusting)

void adjustmentEnd()

A “change” in the graph can be a structure change (that is, a node or a link was added or
removed) or a geometry change (that is, a node or a link was moved or reshaped). The graph
model event listener mechanism provides a means to keep the layout algorithms informed
of these changes. When the layout algorithm is restarted on the same graph, it is able to
detect whether the graph has changed since the last time the layout was successfully
performed. If necessary, the layout can be performed again. If there is no change in the

U S I N G G R A P H L A Y O U T A L G O R I T H M S612

graph, the layout algorithm can avoid unnecessary work by not performing the layout. To
know whether the previous layout is still valid or it must be redone, the layout algorithms
call the following method of the model:

boolean isLayoutNeeded()

The graph model event listener is defined by the GraphModelListener interface. To receive
the graph model events (that is, instances of the GraphModelEventclass), a class must
implement the GraphModelListener interface and must register itself using the
addGraphModelListener(ilog.views.graphlayout.GraphModelListener) method of the
IlvGraphModel class.

The creation of the graph model event listener is handled transparently by the
IlvGraphModel class.Therefore, there is usually no need to manipulate this listener
directly.

Note:

Storing and Retrieving Data Objects (“Properties”)
The following methods of the IlvGraphModel class allow a layout algorithm to store data
objects for each node, link, or graph:

void setProperty(Object nodeOrLink, String key, Object value)

Object getProperty(Object nodeOrLink, String key)

void setProperty(String key, Object value)

Object getProperty(String key)

The layout algorithm may need to associate a set of properties with the nodes and links of
the graph or with the graph itself. Properties are a set of key-value pairs, where the key
is a String object and the value can be any kind of information value.

Creating a property and associating it with a node, a link, or a graph is handled
transparently by the layout algorithm whenever it is necessary. Therefore, there is

Note:

usually no need to manipulate the properties directly. However, if needed, you can do
this in your own subclass of IlvGraphLayout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 613

Using the class IlvGrapherAdapter

The IlvGrapherAdapter class is a concrete subclass of IlvGraphModel that allows an
IlvGrapher to be laid out using the layout algorithms provided in IBM® ILOG® JViews
Diagrammer. It provides an implementation for all the abstract methods of IlvGraphModel.
It also provides an overridden implementation of some nonabstract methods of IlvGraphModel
to improve efficiency by taking advantage of the characteristics of the IlvGrapher.

If an application uses the IlvGrapher class, the grapher can be attached directly to the
layout instance without explicitly using the adapter. (See the method attach(ilog.views.
IlvGrapher).) In this case, an IlvGrapherAdapter is created internally by the layout class.
The adapter can be retrieved using the method getGraphModel(), which will return an
instance of IlvGrapherAdapter.

Notice that such an internally created adapter is not allowed to be attached to any other
layout instance, nor to be used in any way once the method detach()IlvGraphLayout.
detach() has been called on the layout instance.

In case you need to be able to do any of the above operations, directly create the instance
of IlvGrapherAdapter and attach it using attach(ilog.views.graphlayout.
IlvGraphModel)).

To know whether a given IlvGraphModel instance has been created using attach(ilog.
views.IlvGrapher)), you can use themethod getOriginatingLayout(). This method returns
a non-null object if the model has not been created using IlvGraphLayout.attach
(IlvGrapher).

Additionally, the IlvGrapherAdapter class provides a way to filter the IlvGrapher. By using
the filtering mechanism, you specify a particular set of nodes and links that have to be taken
into account by the layout algorithm. (See Using filtering to lay out a part of an IlvGrapher.)

The IlvGrapherAdapter class allows you to specify the order of nodes returned by the
methods getNodes()IlvGrapherAdapter.getNodes() and getNodesAndLinks(). For this
purpose you can provide your own implementation of a java.util.Comparator that defines
the order of the nodes. Then specify this comparator by using themethod setNodeComparator
(java.util.Comparator).

The IlvGrapherAdapter class also allows you to specify the IlvTransformer that has to be
used for computing the geometry of the graph. (See Choosing the layout coordinate space.)

For details on how to write your own adapter, see Laying out a non-JViews grapher.Note:

U S I N G G R A P H L A Y O U T A L G O R I T H M S614

Laying out a non-JViews grapher

To understand this section better, read section Using the Graph Model first.Important:

It is sometimes necessary to add graph layout features to an existing application. If the
application already uses the IBM® ILOG® JViews grapher (IlvGrapher) to manipulate
and display graphs, using the graph layout algorithms provided in IBM® ILOG® JViews
Diagrammer is a straightforward process. No adapter has to be written.

However, the case may arise where an application uses its own classes for nodes, links, and
graphs, and where, for some reason, you do not want to replace these classes with IBM®
ILOG® JViews Diagrammer classes. To enable the graph layout algorithms to work with
these graph objects, a custom adapter (that is, a subclass of IlvGraphModel) must be written.

The adapter must implement all the abstract methods of the IlvGraphModel class. The
nonabstract methods of this class have a default implementation that is really functional.
However, they may not be optimal because they do not take advantage of the characteristics
of the underlying graph implementation. For better performance, the following nonabstract
methods can be overridden in the adapter class:

int getNodesCount()

int getLinksCount()

int getLinksCount(Object node)

int getLinksFromCount(Object node)

int getLinksToCount(Object node)

int getLinkPointAt(Object link, int index)

int getSubgraphsCount()

int getInterGraphLinksCount()

The efficiency of the layout algorithm depends directly on the efficiency of the implementation
of the adapter class and the underlying graph data structure.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 615

Laying out connected components of a disconnected graph

IBM® ILOG® JViews Diagrammer provides special support for the layout of a disconnected
graph.

If a graph is composed of several connected components or contains isolated nodes (nodes
without any links), it can be desirable to apply the layout algorithm separately on each
connected component and then to position the connected components using a specialized
layout algorithm (usually, IlvGridLayout). The following figure shows an example of a graph
containing four connected components. Simply by enabling the layout of the connected
components on the regular layout instance (here, IlvTopologicalMeshLayout), the connected
components are automatically identified and laid out individually. Finally, the four connected
components are positioned using a highly customizable placement algorithm (
IlvGridLayout).

Automatic layout of connected components in a disconnected graph

To indicate whether a subclass of IlvGraphLayout supports this feature, use the method in
the class IlvGraphLayout:

boolean supportsLayoutOfConnectedComponents()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this feature is supported.

IBM® ILOG® JViews Diagrammer allows you to enable the layout of the connected
components using the method:

void setLayoutOfConnectedComponentsEnabled(boolean enable)

To obtain the current setting:

U S I N G G R A P H L A Y O U T A L G O R I T H M S616

boolean isLayoutOfConnectedComponentsEnabled()

The default value is the value returned by the following method:

boolean isLayoutOfConnectedComponentsEnabledByDefault()

The default implementation of this method in IlvGraphLayout returns false. For some of
the layout classes, it is appropriate that this feature is enabled by default. Therefore
IlvUniformLengthEdgesLayout overrides this method to return true.

If enabled on a layout class that supports this feature, the method performLayout of the
class IlvGraphLayout cuts the attached graph model into connected components and lays
out each connected component separately.

How does the layout of connected components feature work when this mechanism is enabled
in the layout classes that support this feature? Instead of directly calling the method layout
(boolean) to perform the layout on the entire graph, the method performLayout(boolean,
boolean) first cuts the graph into connected components. Then, each connected component
is laid out separately by a call of the method layout. To do this, the attached graph is
temporarily changed into internally generated graphs corresponding to each of the connected
components of the original graph. Finally, the layout instance returned by the method:

IlvGraphLayout getLayoutOfConnectedComponents()

is used to position the connected components. To specify the layout instance that places the
connected components, use the following method:

void setLayoutOfConnectedComponents(IlvGraphLayout layout)

If no layout instance is specified using this method, the method
getLayoutOfConnectedComponents returns an instance of IlvGridLayout. Its layout region
parameter is set by default to the rectangle (0, 0, 800, 800). Its “layout mode” parameter is
set to TILE_TO_ROWS.

The Tree, Hierarchical, and Circular layouts contain built-in support for disconnected
graphs. For the Tree and Hierarchical layouts, the result can be different from the result

Note:

of the generic mechanism (the layout of connected components feature) provided by
the base class IlvGraphLayout. Depending your particular needs, you can use
either the generic mechanism or the built-in support.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 617

U S I N G G R A P H L A Y O U T A L G O R I T H M S618

Saving layout parameters and preferred
layouts

Explains how to save a graph and its layout parameters and preferred layouts in a file.

In this section

Overview of saving
Discusses different ways of storing a graph and its layout parameters.

Saving layout parameters to .ivl files
Gives an example of saving a grapher and its layout parameters to IVL files and explains
the mechanism.

Saving preferred layouts to .ivl files
Gives an example of saving the preferred layouts of a grapher to IVL files and explains the
mechanism.

Loading layout parameters from .ivl files
Gives an example of loading layout parameters from IVL files and explains the mechanism.

Loading preferred layouts from .ivl files
Gives an example of loading preferred layouts from IVL files and explains the mechanism.

Additional information for expert users
Gives contains useful information for expert users.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 619

Overview of saving

To understand saving better, read section Using the Graph Model first.Important:

There are many ways to store your graph and your layout parameters:

♦ Diagram components use XML files for the data and CSS files for the rendering
parameters.

♦ Diagram components can use a database.

♦ Graphers can be stored in .ivl files.

This topic deals only with .ivl files. It is not relevant for applications that use XML files,
CSS files, or databases.

Layout parameters are stored in the layout classes directly, not in the IlvGrapher. The
advantage of this is that the layout parameters are independent of the graphmodel. However,
the disadvantage is that a layout parameter setting is lost whenever a graph is saved to an
.ivl file and reloaded later. To overcome this disadvantage, the IlvGrapherAdapter class
allows you to transfer the graph layout settings to instances of IlvNamedProperty that can
be stored in .ivl files and to recover the settings from these named properties at a later
time. (See Save parameters to named properties.)

The following method indicates whether a layout class supports this mechanism:

supportsSaveParametersToNamedProperties();

It returns true if the layout class can transfer the parameter settings to named properties.

U S I N G G R A P H L A Y O U T A L G O R I T H M S620

Saving layout parameters to .ivl files

The following example shows how to save the IlvGrapher including all layout parameter
settings into an .ivl file. The example assumes that an IlvGrapher is attached to three
instances layout1, layout2 and layout3.

IlvGrapherAdapter adapter1 = (IlvGrapherAdapter)layout1.getGraphModel();
IlvGrapherAdapter adapter2 = (IlvGrapherAdapter)layout2.getGraphModel();
IlvGrapherAdapter adapter3 = (IlvGrapherAdapter)layout3.getGraphModel();
// transfer the layout parameters to named properties
if (layout1.supportsSaveParametersToNamedProperties())
adapter1.saveParametersToNamedProperties(layout1, false);

if (layout2.supportsSaveParametersToNamedProperties())
adapter2.saveParametersToNamedProperties(layout2, false);

if (layout3.supportsSaveParametersToNamedProperties())
adapter3.saveParametersToNamedProperties(layout3, false);

// assume that adapter1, adapter2 and adapter3 work on the same grapher
// save the grapher with all 3 sets of named layout properties to file
grapher.write("abcd.ivl");
// remove the named layout properties because they are no longer needed
adapter1.removeParametersFromNamedProperties();
adapter2.removeParametersFromNamedProperties();
adapter3.removeParametersFromNamedProperties();

In this example, different grapher adapters of the same IlvGrapher are supposed to be
attached to layout1, layout2 and layout3. If, in fact, the same grapher adapter (more
precisely, grapher adapters that all work on the same set of nodes and links) is attached to
all three layout instances, one call of the removeParametersFromNamedProperties method
at the end is sufficient.

Take a look at the mechanism in detail:

String saveParametersToNamedProperties(IlvGraphLayout layout, boolean
withDefaults);

This method creates named properties for the input layout and transfers the complete layout
parameter settings to these properties. The property name is an automatically generated,
unique string that is returned. If the flag withDefaults is false, the created layout properties
are persistent only if they contain a setting that is not the default setting. This means that
the default values are not stored in the .ivl file and the file has a smaller size. If the flag
withDefaults is true, the created properties are always persistent, that is, the default
values are stored in the .ivl file as well.

The named properties that are created require additional memory. Therefore, it is
recommended to remove them as soon as they are no longer needed. To remove the named
layout properties, you can use one of the following methods:

♦ removeParametersFromNamedProperties()

This method removes all named layout properties from the grapher.

♦ removeParametersFromNamedProperties(java.lang.String)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 621

This method removes only the named layout properties that match the input property
name.

♦ removeParametersFromNamedProperties(java.lang.Class)

This method removes all named layout properties that fit the input layout class.

The named layout properties are subclasses of IlvGraphLayoutGrapherProperty,
IlvGraphLayoutNodeProperty, and IlvGraphLayoutLinkProperty. See the Java™ API
Reference Manual for details of these classes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S622

Saving preferred layouts to .ivl files

The class IlvDefaultLayoutProvider allows you to specify the layout instances to be used
for each graph. The layout provider can then be used for the recursive layout of a nested
graph. (For details, see Nested layouts.)

You can set your preferred layouts using one of the methods setPreferredLayout of the
class IlvDefaultLayoutProvider and save these preferred layouts to .ivl files using the
method:

boolean savePreferredLayoutsToNamedProperties(IlvDefaultLayoutProvider
provider, boolean withParameters, boolean withDefaults, boolean traverse);

The method takes the Layout Provider as an argument and several flags:

♦ withParameters: if the flag is true, the parameters of the preferred layout instances are
saved. In this case it is not necessary to use the method
saveParametersToNamedProperties. Otherwise, only the name of the class of the preferred
layout is saved, without its parameters. Therefore, after loading the .ivl file, the preferred
layout will have, in this case, the default values for all its parameters.

♦ withDefaults: the flag has the same meaning as for the method
saveParametersToNamedProperties.

♦ traverse: if the flag is true, the method applies recursively to the subgraphs. Otherwise,
the method saves only the preferred layout of the grapher adapter on which the method
is called.

The following code example shows how to save the preferred layouts to .ivl files.

IlvGrapher grapherA = new IlvGrapher();
IlvGrapher grapherB = new IlvGrapher();

// fill the graphers with nodes and links;
// grapherB is added as a subgraph of grapherA
grapherA.addNode(grapherB, false);

// Create the grapher adapter for the topmost graph
IlvGrapherAdapter adapterA = new IlvGrapherAdapter(grapherA);

// Get a grapher adapter for the subgraph
IlvGraphModel adapterB = adapterA.getGraphModel(grapherB);

// create the layout provider
IlvDefaultLayoutProvider provider = new IlvDefaultLayoutProvider();

// specify the preferred layouts for each grapher
// (this automatically attaches the layouts)
provider.setPreferredLayout(adapterA, new IlvTreeLayout());
provider.setPreferredLayout(adapterB, new IlvGridLayout());
...

U S I N G G R A P H L A Y O U T A L G O R I T H M S 623

// Save the settings to named properties
adapterA.savePreferredLayouts(provider, true, false, true);

// Save the nested grapher to an .ivl file
grapherA.write("abcd.ivl")

U S I N G G R A P H L A Y O U T A L G O R I T H M S624

Loading layout parameters from .ivl files

The following example shows how to load and recover the parameters of the three layout
instances when the layout settings are stored in an .ivl file:

// Read the IVL file. This reads all named properties as well.
grapher.read("abcd.ivl");
IlvGrapherAdapter adapter1 = (IlvGrapherAdapter)layout1.getGraphModel();
IlvGrapherAdapter adapter2 = (IlvGrapherAdapter)layout2.getGraphModel();
IlvGrapherAdapter adapter3 = (IlvGrapherAdapter)layout3.getGraphModel();
// Transfer the parameter settings from the named properties to the layouts.
adapter3.loadParametersFromNamedProperties(layout3);
adapter2.loadParametersFromNamedProperties(layout2);
adapter1.loadParametersFromNamedProperties(layout1);
// just to be sure that no named layout properties remain in the memory
adapter1.removeParametersFromNamedProperties();
adapter2.removeParametersFromNamedProperties();
adapter3.removeParametersFromNamedProperties();

When reading an.ivl file, you usually do not know how many named layout properties are
stored in the file. In the previous example, if there are less than three sets of named layout
properties stored in the .ivl file, any unsuccessful call of the method
loadParametersFromNamedProperties(ilog.views.graphlayout.IlvGraphLayout) has
simply no effect, that is, it does not change the parameters of the corresponding layout. If
there are more than three sets, the final calls of the method
removeParametersFromNamedProperties() guarantee that no memory is wasted by the
remaining unused layout properties. As mentioned in Saving layout parameters to .ivl files,
only one call to the method removeParametersFromNamedProperties is necessary if only
one grapher adapter is attached to all three layout instances.

Parameters are loaded in the reverse order with respect to the order in which they are
stored.This is not important if all three layout instances are of different classes because

Note:

a layout automatically loads only parameters that fit the layout class. However, if, for
example, all three layouts are instances of IlvTreeLayout, the last saved set of
named properties for any Tree Layout is the first set of named properties that is loaded
for a Tree Layout.

To load layout parameters, use one of the following methods:

♦ loadParametersFromNamedProperties(ilog.views.graphlayout.IlvGraphLayout)

This method transfers a set of layout parameters from the named layout properties to
the input layout. It automatically determines which layout properties fit the input layout.
If several sets fit, it transfers the set that was stored last, removes this set of named
layout properties from the grapher, and returns true. If no set fits and loading cannot
be done, it returns false.

♦ loadParametersFromNamedProperties(ilog.views.graphlayout.IlvGraphLayout,
java.lang.String)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 625

This method transfers a set of layout parameters from the layout properties having the
input property name to the input layout. It returns true if successful, and false otherwise.

♦ loadParametersFromNamedProperties(ilog.views.graphlayout.IlvGraphLayout,
java.lang.String)

This method transfers a set of layout parameters from the layout properties having the
input property name to a newly created instance of IlvGraphLayout. It returns the new
instance. It returns null if no set of layout properties with the input name is found.

U S I N G G R A P H L A Y O U T A L G O R I T H M S626

Loading preferred layouts from .ivl files

The settings of the preferred layouts can be loaded from .ivl files using the method:

boolean loadPreferredLayoutsFromNamedProperties(IlvDefaultLayoutProvider
provider, boolean withParameters, boolean traverse);

The method takes the Layout Provider as an argument and several flags:

♦ withParameters: if the flag is true, the parameters of the preferred layout instances are
loaded. In this case it is not necessary to use the method
loadParametersFromNamedProperties. Otherwise, after loading the .ivl file, the preferred
layout will have, in this case, the default values for all its parameters.

♦ traverse: if the flag is true, the method applies recursively to the subgraphs. Otherwise,
the method loads only the preferred layout of the grapher adapter on which the method
is called.

This method reads the named properties stored in the file and sets the preferred layout (if
any has been stored) on the Layout Provider, using its method setPreferredLayout.

The following example shows how to load and recover the preferred layouts (with their
parameters) when the preferred layout settings are stored in an .ivl file:

IlvGrapher grapher = new IlvGrapher();

// Create the grapher adapter for the topmost graph
IlvGrapherAdapter adapter = new IlvGrapherAdapter(grapher);

// Load the graphers from the .ivl file
grapher.read("abcd.ivl");

// Create the layout provider
IlvDefaultLayoutProvider provider = new IlvDefaultLayoutProvider();

// Load the preferred layouts into the provider
// (layout parameters are also read)
adapter.loadPreferredLayoutsFromNamedProperties(provider, true, true);

// Now the provider can be used to perform the recursive layout

adapter.performLayout(provider, true, true, true);

// Detach the layouts when the provider is no longer needed
provider.detachLayouts(adapter, true);
// Dispose the topmost adapter when no longer needed
adapter.dispose();

U S I N G G R A P H L A Y O U T A L G O R I T H M S 627

Additional information for expert users

Interface parameters
Some layout classes allow an interface as input parameter. For instance, the method
setNodeBoxInterface sets an IlvNodeBoxInterface (see IlvLinkLayout,
IlvShortLinkLayout, and so on). If an application uses a node box class that implements
the node box interface, this can only be stored to an .ivl file if the node box class also
implements the IlvPersistentObject interface. Otherwise, the node box class is not saved
to the .ivl file.

Compatibility issues
An .ivl file that contains layout properties can be loaded only when the package ilog.
views.graphlayout and its subpackages are available.

Defining your own type of layout
If you develop your own layout algorithms by subclassing IlvGraphLayout and want to save
the layout parameters of your own layout algorithm in .ivl files, you should subclass
IlvGraphLayoutGrapherProperty, IlvGraphLayoutNodeProperty, and
IlvGraphLayoutLinkProperty. (SeeDefining your own type of layout.) You can find example
code by referring to these classes in the Java™ API Reference Manual. You should also
override the following methods of IlvGraphLayout to return your subclasses:

protected IlvGraphLayoutGrapherProperty createLayoutGrapherProperty(
String name, boolean withDefaults)

{
return new MyOwnLayoutGrapherProperty(name, this, withDefaults);

}
protected IlvGraphLayoutNodeProperty createLayoutNodeProperty(

String name, IlvGraphic node, boolean withDefaults)
{

return new MyOwnLayoutNodeProperty(name, this, node, withDefaults);
}
protected IlvGraphLayoutLinkProperty createLayoutLinkProperty(

String name, IlvGraphic link, boolean withDefaults)
{

return new MyOwnLayoutLinkProperty(name, this, link, withDefaults);
}

Further applications of layout properties
The layout properties can be serialized. If you prefer to use the standard serialization
mechanism of Java instead of .ivl files, it is recommended to use the layout properties as
well because it guarantees that only the parameters are serialized and not any temporary
data that may exist in the layout instance.

U S I N G G R A P H L A Y O U T A L G O R I T H M S628

The following code shows an easy way to copy the parameter setting from layout1 to
layout2:

IlvGrapherAdapter adapter1 = (IlvGrapherAdapter)layout1.getGraphModel();
IlvGrapherAdapter adapter2 = (IlvGrapherAdapter)layout2.getGraphModel();
adapter1.saveParametersToNamedProperties(layout1, true);
adapter2.loadParametersFromNamedProperties(layout2);

The following code shows an easy way to undo temporary changes of layout parameters:

IlvGrapherAdapter adapter = (IlvGrapherAdapter)layout.getGraphModel();
adapter.saveParametersToNamedProperties(layout, true);
... change layout parameters
... work with changed parameters
// restore the layout parameters as they were before
adapter.loadParametersFromNamedProperties(layout);

U S I N G G R A P H L A Y O U T A L G O R I T H M S 629

Using filtering to lay out a part of an IlvGrapher

Filter support

To understand this topic better, read the topic Using the Graph Model first.Important:

Applications sometimes need to perform a layout algorithm on a subset of the nodes and
links of a graph. The support for such partial layouts is a filtering mechanism.

Built-in filtering
For applications that use IlvGrapher, a filtering feature is built into the IlvGrapherAdapter
class. To do a partial layout, the IlvGrapherAdapter instance needs a way to know which
nodes and links to include in the layout. This is the role of the “filter” class,
IlvLayoutGraphicFilter.

Custom filtering
If the graph is not an IlvGrapher, the custom adapter should support the filtering of a graph.
(See Laying out a non-JViews grapher.) The methods that are related to the structure of the
graph (getNodes, getLinks, getNeighbors, and so on as shown in Information on the
Structure of the Graph) must behave just as if the graph has changed in some way. They
must take into account only the nodes and links that belong to the part of the graph that
must be laid out.

The graphic filter class
The IlvLayoutGraphicFilter class implements the interface IlvGraphicFilter, that is,
its method:

boolean accept(IlvGraphic nodeOrLink)

If a filter is specified, the IlvGrapherAdapter calls the acceptmethod for each node or link
whenever necessary. If the method returns true, the IlvGrapherAdapter considers the
node or the link as part of the graph that needs to be laid out. Otherwise, it ignores the node
or the link.

To specify a filter on an IlvGrapherAdapter, use the following method of the
IlvGrapherAdapter class:

void setFilter(IlvLayoutGraphicFilter filter)

To remove the filter, call the setFilter method with a null argument.

To obtain the filter that has been specified, use the method:

U S I N G G R A P H L A Y O U T A L G O R I T H M S630

IlvLayoutGraphicFilter getFilter()

All overridden implementations of the accept method must respect the following rule:
a link cannot be accepted by the filter if any of its end nodes (origin or destination
nodes) are not accepted.

Note:

There are two ways to filter an IlvGrapher: by layers or by graphic objects. The two methods
can be combined.

Filtering by layers
Inside an IlvGrapher, nodes and links can be managed by layers. (See the
IlvManagerLayerclass). IBM® ILOG® JViews allows you specify that only nodes and links
belonging to certain layers have to be taken into account when performing the layout. Use
the following methods of the IlvGrapherAdapter class:

void addLayer(IlvManagerLayer layer)

boolean removeLayer(IlvManagerLayer layer)

boolean removeAllLayers()

boolean isLayerAdded()

To get an enumeration of the manager layers to be taken into account during the layout,
use the method:

Enumeration getLayers()

If no layers have been specified or all the specified layers have been removed, all layers in
the IlvGrapher are used. In this case, the getLayers method returns null.

When at least one layer is specified, an IlvLayoutGraphicFilter is created internally if it
has not already been specified using the setFilter method. The default implementation of
its acceptmethod will automatically check whether a node or a link received as an argument
belongs to one of the specified layers.

Filtering by graphic objects
To filter nodes and links individually, you need to write a custom subclass of
IlvLayoutGraphicFilter.. You must embed the filtering rules in the implementation when
you override the accept method. For example, an application could use user properties to

U S I N G G R A P H L A Y O U T A L G O R I T H M S 631

“mark” nodes and links to be accepted by the filter. The filter class could then be written
as follows:

public class LayoutFilter
extends IlvLayoutGraphicFilter

{
public LayoutFilter()
{
}
public boolean accept(IlvGraphic obj)
{
Object prop = obj.getProperty("markedObj");
if (prop == null)
return false;

// accept a link only if its two end-nodes are accepted
if (obj instanceof IlvLinkImage) {
IlvLinkImage link = (IlvLinkImage)obj;
return (link.getFrom().getProperty("markedObj") != null &&

link.getTo().getProperty("markedObj") != null);
}
return true;

}
}

U S I N G G R A P H L A Y O U T A L G O R I T H M S632

Choosing the layout coordinate space

Describes how to choose the appropriate coordinate space for a layout and how to specify
the corresponding mode.

In this section

General considerations about layout and coordinates
Discusses the way layout algorithms operate and the impact of transformers and nonzoomable
objects.

Transformers for graphers
Describes what a transformer is and its relevance to layout in a grapher.

Nonzoomable graphic objects as nodes
Explains what nonzoomable objects are and their relevance to layout in a grapher.

Reference transformer for grapher
Discusses the concept and relevance of the reference transformer for a grapher.

Specifying a reference transformer
Explains how a reference transformer is set automatically or explicitly.

Specifying the mode for layout coordinates
Describes how to specify the coordinate space by setting a mode value.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 633

General considerations about layout and coordinates

To understand this section better, read section Using the Graph Model first.Important:

The distinction between zoomable and nonzoomable objects, and the notion of transformer
(IlvTransformer), are outside the level of the layout framework.

Graph layout algorithms have to deal with the geometry of the graph, that is, the position
and shape of the nodes and links. They interact with the geometry of the graph using generic
methods of the graph model (IlvGraphModel), such as boundingBox(Object nodeOrLink).

The layout algorithms consider the geometry of the graph exactly as it is provided by the
graph model. From the point of view of the layout algorithms, the distinction between
zoomable and nonzoomable objects is completely transparent. Therefore, when writing a
layout algorithm, you do not need to be concerned with such issues.

However, graph layout algorithms must also deal with the layout of an IlvGrapher.

The nodes of an IlvGrapher object can be any graphic object, that is, any subclass of
IlvGraphic. The position and size of the nodes are given by their boundingBox
(IlvTransformer t) method and usually depend on the transformer used for their display.
Therefore, when an IlvGrapher has to be laid out, the geometry of the grapher must be
considered for a given value of the transformer.

Instead of dealing with zoomable/nonzoomable objects and transformers at the level of the
layout algorithms, the IBM® ILOG® JViews graph layout package delegates this task to
the IlvGrapherAdapter object.

U S I N G G R A P H L A Y O U T A L G O R I T H M S634

Transformers for graphers

Generally speaking, the layout of an IlvGrapher depends on the transformer. The most
natural transformer value that could be chosen is the “identity” transformer.

An identity transformer has no translation, zoom, or rotation factors. In terms of IBM®
ILOG® JViews, this would mean that the geometry of the IlvGrapher would be considered
in the manager coordinates, not in the manager view coordinates (transformed coordinates).
However, the special case of nonzoomable graphic objects must be taken into account. For
this case, the idea of simply using the geometry of the grapher in manager coordinates is
not pertinent.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 635

Nonzoomable graphic objects as nodes

A graphic object is said to be zoomable if its bounding box follows the zoom level. Otherwise,
the object is nonzoomable. (To know whether a graphic object is zoomable, use its boolean
zoomable() method, or check its documentation.)

If all the nodes and links of an IlvGrapher object are zoomable graphic objects, a layout
obtained on the basis of the graph geometry in manager coordinates will look the same for
any value of the transformer used for the display. Simply speaking, the drawing of the graph
will just be zoomed, or translated.

When at least one nonzoomable graphic object is used as a node in an IlvGrapher, the
geometry of the grapher in manager coordinates can no longer be used. When drawn with
different transformer values (for instance, at different zoom levels), the same IlvGrapher
can look very different.

When a grapher contains nonzoomable graphic objects, it may not be appropriate to deal
with the geometry of the IlvGrapher based on the bounding boxes of the graph objects
systematically computed for an identity transformer (manager coordinates). To ensure that
the drawing of the laid-out graph is always correct, even when nonzoomable graphic objects
are present, the transformer used for the display must be considered.

U S I N G G R A P H L A Y O U T A L G O R I T H M S636

Reference transformer for grapher

The reference transformer is the transformer that is currently being used for the display of
the IlvGrapher. The IlvGrapherAdapter may need to compute the geometry of the graph for
this transformer.

How a reference transformer is used
For a simple example of how a reference transformer is used, consider the boundingBox
(java.lang.Object) method. This abstract method of the IlvGraphModel class is
implemented in the IlvGrapherAdapter. To compute the bounding box, it calls the
IlvGrapher method of the graphic object that it receives as an argument. However, it does
not handle zoomable objects and nonzoomable objects in the same way.

If the graphic object is zoomable, the boundingBox(java.lang.Object)boundingBox(Object
nodeOrLink) method of the IlvGrapherAdapter returns the bounding box in manager
coordinates by calling IlvGraphic.boundingBox(null).

If the graphic object is nonzoomable, the boundingBox(java.lang.Object)boundingBox
(Object nodeOrLink) method computes the bounding box according to the reference
transformer and returns a rectangle obtained by applying the inverse transformation to this
rectangle. (See the inverse(ilog.views.IlvRect)IlvTransformer.inverse(IlvRect
rect) method.)

The geometry of the IlvGrapher is computed in such a manner that the resulting drawing
inside an IlvManagerView using the reference transformer will look fine.

Reference views
Optionally, an IlvManagerView can be specified as a reference view for the
IlvGrapherAdapter. If a reference view is specified, its current transformer (at the moment
when the layout is started) is automatically used as the reference transformer. Usually,
applications use the same manager view that is used for the display of the IlvGrapher as
the reference view (but this is not mandatory).

To specify the reference view, use the following method:

void setReferenceView(IlvManagerView view)

To get the current reference view, use the method:

IlvManagerView getReferenceView()

If no view has been specified as the reference view, the method returns null.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 637

Specifying a reference transformer

You can specify a reference transformer explicitly using the method:

void setReferenceTransformer(IlvTransformer transformer)

The current reference transformer is returned by the method:

IlvTransformer getReferenceTransformer()

In most cases, it is not necessary to specify a reference transformer because the last method
automatically chooses it according the following rules:

♦ If a reference transformer is specified, the specified transformer is returned.

♦ If a reference view has been specified, the transformer of the reference view is returned.

♦ If the IlvGrapher attached to the IlvGrapherAdapter has at least one manager view,
the transformer of the first manager (as returned by the method IlvManager.getViews
()) is returned.

The only cases where you may need to specify a reference transformer or a reference view
are the following:

♦ The IlvGrapher contains nonzoomable objects (that is, the layout cannot be correctly
computed independently of the transformer used for drawing the graph) and more than
one manager view is attached to the grapher.

♦ The IlvGrapher contains nonzoomable objects and you want to perform the layout without
attaching a manager view to the grapher. (Therefore, the default rule for choosing the
current transformer of the first manager view as the reference transformer cannot be
applied.)

If a grapher containing nonzoomable objects is displayed simultaneously in several views,
you can use the setReferenceView(ilog.views.IlvManagerView) method to indicate the
view for which you want the drawing of the graph to be optimal.

If you specified a reference transformer but want to reset this setting and go back to the
default behavior, call the method setReferenceTransformer(ilog.views.IlvTransformer)
with a null argument.

Note that if you override the setReferenceTransformer(ilog.views.IlvTransformer)
method, you must call super.setReferenceTransformer to notify the IlvGrapherAdapter
that the reference transformer has changed.

Note also that a call to the setReferenceView method overrides the effect of a call to the
setReferenceTransformer(ilog.views.IlvTransformer)method. In the same way, a call
to the setReferenceTransformer(ilog.views.IlvTransformer) method overrides the
effect of a call to the setReferenceView(ilog.views.IlvManagerView) method.

U S I N G G R A P H L A Y O U T A L G O R I T H M S638

Specifying the mode for layout coordinates

By default, the IlvGrapherAdapter considers the geometry of the nodes and links of an
IlvGrapher in a special coordinate space which is appropriate for most of the cases. In some
situations, it can be useful to specify a different coordinate space.

To specify the coordinate space, the class IlvGrapherAdapter provides the followingmethod:

void setCoordinatesMode(int mode)

The valid values for mode are:

♦ IlvGraphLayout.MANAGER_COORDINATES

The geometry of the graph is computed using the coordinate space of the manager (that
is, the IlvGrapher encapsulated by the adapter) without applying any transformation.

This mode should be used if you visualize the graph at zoom level 1, or you do not visualize
it at all, or the grapher contains only fully zoomable objects. In all these cases there is
no need to take the transformer into account during the layout.

Note that in this mode the dimensional parameters of the layout algorithms are considered
as being specified in manager coordinates. The reference transformer and the reference
view are not used.

♦ IlvGraphLayout.VIEW_COORDINATES

The geometry of the graph is computed in the coordinate space of the manager view.
More exactly, all the coordinates are transformed using the current reference transformer.

This mode should be used if you want the dimensional parameters of the layout algorithms
to be considered as being specified in manager view coordinates.

♦ IlvGraphLayout.INVERSE_VIEW_COORDINATES

The geometry of the graph is computed using the coordinate space of the manager view
and then applying the inverse transformation using the reference transformer. This mode
is equivalent to the "manager coordinates" mode if the geometry of the graphic objects
strictly obeys the transformer. (A small difference may exist because of the limited
precision of the computations.)

On the contrary, if some graphic objects are either nonzoomable or semizoomable (for
example, links with a maximum line width), this mode gives different results than the
manager coordinates mode. These results are optimal if the grapher is visualized using
the same transformer as the one taken into account during the layout.

Note that in this mode the dimensional parameters of the layout algorithms are considered
as being specified in manager coordinates.

The default mode is IlvGraphLayout.INVERSE_VIEW_COORDINATES.

To obtain the current choice, use the following method:

long getCoordinatesMode()

U S I N G G R A P H L A Y O U T A L G O R I T H M S 639

The mode for coordinates can also be specified directly on the layout instances. For details,
see Coordinates mode.

U S I N G G R A P H L A Y O U T A L G O R I T H M S640

Defining your own type of layout

Describes how to develop a custom graph layout algoithm if you need one.

In this section

A sample custom layout algorithm
Describes the features of a custom layout algorithm and shows an example.

Implementing the layout method
Explains how to implement a layout method.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 641

A sample custom layout algorithm

If the layout algorithms provided with IBM® ILOG® JViews Diagrammer do not meet your
needs, you can develop your own layout algorithms by subclassing IlvGraphLayout.

When a subclass of IlvGraphLayout is created, it automatically fits into the generic IBM®
ILOG® JViews Diagrammer layout framework and benefits from its infrastructure:

♦ generic parameters: see Base class parameters and features

♦ notification of progress: see Using event listeners

♦ capability to lay out any graph object using the generic graph model: seeUsing the Graph
Model

♦ capability to apply the layout separately for the connected components of a disconnected
graph: see Laying out connected components of a disconnected graph

♦ capability to lay out nested graphs (see Nested layouts), and so on.

Example
To illustrate the basic ideas for defining a new layout, the following simple example shows
a possible implementation of the simplest layout algorithm, the Random Layout. The new
layout class is called MyRandomLayout.

The following shows the skeleton of the class:

public class MyRandomLayout
extends IlvGraphLayout

{
public MyRandomLayout()
{
}

public MyRandomLayout(MyRandomLayout source)
{
super.source(source);

}

public IlvGraphLayout copy()
{
return new MyRandomLayout(this);

}

protected void layout(boolean redraw)
{
...

}
}

The constructor with no arguments is empty. The copy constructor and the copy method
are implemented; they are used when laying out a nested graph (see Nested layouts).

U S I N G G R A P H L A Y O U T A L G O R I T H M S642

Then, the abstract method layout(boolean) of the base class is implemented as follows:

protected void layout(boolean redraw)
{
// obtain the graph model
IlvGraphModel graphModel = getGraphModel();

// obtain the layout report
IlvGraphLayoutReport layoutReport = getLayoutReport();

// obtain the layout region
IlvRect rect = getCalcLayoutRegion();
float xMin = rect.x;
float yMin = rect.y;
float xMax = rect.x + rect.width;
float yMax = rect.y + rect.height;

// initialize the random generator
Random random = (isUseSeedValueForRandomGenerator()) ?

new Random(getSeedValueForRandomGenerator()) :
new Random();

// browse the objects in the grapher
Enumeration nodes = graphModel.getNodes();
while (nodes.hasMoreElements()) {

Object node = nodes.nextElement();

// skip fixed nodes
if (isPreserveFixedNodes() && isFixed(node)))

continue;

// compute coordinates
float x = xMin + (xMax - xMin) * random.nextFloat();
float y = yMin + (yMax - yMin) * random.nextFloat();

// move the node to the computed position
graphModel.moveNode(node, x, y, redraw);

// notify listeners on layout events
callLayoutStepPerformedIfNeeded();

}

// set the layout report code
layoutReport.setCode(IlvGraphLayoutReport.LAYOUT_DONE);

}
...

Note that the layout method is protected, which is the access type of the method in the
base class. This will not prevent a user outside the package containing the class from
performing the layout because it is started using the public method performLayout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 643

Implementing the layout method

Depending on the characteristics of the layout algorithm, some of the steps required may
be different or unnecessary, or other steps may be needed.

Depending on the particular implementation of your layout algorithm, other methods of the
IlvGraphLayout class may need to be overridden. For instance, if your subclass supports
some of the generic parameters of the base class, you must override the supports
[ParameterName]method (see Base class parameters and features). For further information
about the class IlvGraphLayout, refer to the API reference documentation.

If you want to save the layout parameters of your new layout algorithm in .ivl files,
you should override the methods createLayoutGrapherProperty(java.lang.

Note:

String, boolean), createLayoutNodeProperty(java.lang.String,
ilog.views.IlvGraphic, boolean), createLayoutLinkProperty(java.
lang.String, ilog.views.IlvGraphic, boolean), and subclass
IlvGraphLayoutGrapherProperty, IlvGraphLayoutNodeProperty, and
IlvGraphLayoutLinkProperty. See Saving layout parameters and preferred
layouts for more explanation.

To implement the layout method in the sample custom layout algorithm:

1. Obtain the graph model (getGraphModel() on the layout instance).

IlvGraphModel graphModel = getGraphModel();

2. Obtain the instance of the layout report that is automatically created when the
performLayout method from the superclass is called (getLayoutReport() on the
layout instance). See Using a graph layout report.

IlvGraphLayoutReport layoutReport = getLayoutReport();

3. Obtain the layout region parameter to compute the area where the nodes will be
placed.

IlvRect rect = getCalcLayoutRegion();

4. Initialize the random generator.

Random random = (isUseSeedValueForRandomGenerator()) ?
new Random(getSeedValueForRandomGenerator()) :
new Random();

(For information on the seed value parameter, see Random generator seed value.)

5. Get an enumeration of the nodes (getNodes() on the graph model instance).

U S I N G G R A P H L A Y O U T A L G O R I T H M S644

Enumeration nodes = graphModel.getNodes();

6. Browse the nodes, skipping fixed nodes (isFixed(node) on the layout instance) if
asked by the user (isPreserveFixedNodes() on the layout instance).

while (nodes.hasMoreElements()) {
Object node = nodes.nextElement();

...

(For details on fixed nodes, see Preserve fixed nodes).

7. Move each node to the newly computed coordinates inside the layout region
(graphModel.moveNode).

graphModel.moveNode(node, x, y, redraw);

8. Notify the listeners on layout events that a new node was positioned
(callLayoutStepPerformedIfNeeded() on the layout instance). This allows the user
to implement, for example, a progress bar if a layout event listener was registered on
the layout instance.

callLayoutStepPerformedIfNeeded();

(For details on event listeners, see Using event listeners.)

9. Finally, set the code in the layout report.

layoutReport.setCode(IlvGraphLayoutReport.LAYOUT_DONE);

Once you have implemented your own layout algorithm MyRandomLayout, you can use it
directly in Java™ .

Once you have implemented your own layout algorithm MyRandomLayout, you can add it to
a CSS file to use it in a diagram component. Since your new layout algorithm is not one of
the predefined graph layout algorithms, you need to specify it as fully qualified in CSS:

SMD {
GraphLayout: true;

}
GraphLayout {

graphLayout: "mypackage.MyRandomLayout";
// ... additionally, any Bean property of MyRandomLayout can
// be specified here ...

}

U S I N G G R A P H L A Y O U T A L G O R I T H M S 645

FAQs about using the layout algorithms

The following list of FAQs provides some helpful suggestions for using the layout algorithms.
You may find some answers to questions that come up when using the graph layout package.

FAQs about the layout algorithms
AnswerQuestion

One possible reason may be: the layout algorithms provided in IBM®
ILOG® JViews Diagrammer are all designed to do nothing, by default, if

I perform the layout and
nothing happens (no node is
moved). Why? no change occurred in the graph since the last time the layout was

performed successfully on the same graph. A change means that a node
was moved, or a node or link was added, removed, or reshaped.

Note that you can force the layout to be performed again, even if no
change occurred, by calling the performLayout(boolean, boolean)
method with a true value for the force argument. (In the Composer
demonstration, you can choose this option in the Options menu.)

Another possible reason may be: an error or a special case occurred
during the layout. First, you should check whether the performLayout
() method has thrown an exception. If no exception was thrown, call the
getCode() method on the instance of the layout report returned by the
performLayout method. Check this value with respect to the
documentation of the appropriate layout report class. (For details, see
Using a graph layout report.)

The reason is probably that the first time you performed the layout, the
algorithm reached the convergence. When the layout is performed again,

With the Uniform Length
Edges algorithm, after having

it detects that the convergence has been already reached and stops. Ifperformed the layout once, I
you really want to continue working, for instance in order to “declutter” adon’t see any movement even
particular part of the graph, you may need to move one or several nodesif I use the force layout option.

Why? in order to change the initial configuration. (The algorithm is dependent
on the initial configuration.)

Most of the layout algorithms use a layout region parameter to control the
size and position of the layout. (For details, see Layout region.) Depending

After performing the layout,
the graph is laid out far from
its initial position. Why? on the value of this parameter, the nodes may be moved far from their

initial positions.

To know whether a layout algorithm is designed to use a layout region
parameter, check the documentation to see if the layout class overrides
the supportsLayoutRegion() method of the base class in order to
return true.

Other algorithms have a different mechanism that allows you to specify
the desired location of the layout. It may happen that the default value of
the location parameter is such that the graph is laid out far from its initial
position.

One possible reason may be related to the different ways layout algorithms
deal with the size of the nodes:

When I use certain layout
algorithms on certain graphs,
there are overlapping nodes.
Why and what can I do? -The Topological Mesh algorithm is not able to explicitly take into account

the size of the nodes.

U S I N G G R A P H L A Y O U T A L G O R I T H M S646

AnswerQuestion

- The Tree, Hierarchical, Bus, and Grid algorithms always avoid
overlapping nodes. (The Link algorithm does not move the nodes. It only
reshapes the links such that the crossings and overlaps are reduced.The
size of the nodes is taken into account.)

- The Uniform Length Edges algorithm (with the option “Respect Node
Sizes” enabled) and the Circular algorithm, in many cases, succeed in
avoiding overlapping nodes.

In any case, if the layout algorithm supports the layout region mechanism
(see Layout region), you should try to increase the size of the layout
region. For example, if your graph contains hundreds of nodes, it is not
reasonable to use a small layout region, such as 600x600. There will be
not enough space for all the nodes.You should try a larger layout region,
for example 5000x5000.

The optimal size of the layout region depends, of course, not only on the
number of nodes, but also on their size. If the nodes are relatively large
with respect to the size of the layout region, it may be necessary to adjust
some of the parameters (for instance, the preferred link length for the
Uniform Length Edges Layout).

This depends on the layout class you use:In some networks, there are
two (or more) subnetworks

- IlvTopologicalMeshLayout: It will work on the connected component
of the graph that contains the starting node. (You can specify this node

that are not connected. How
will this affect the layout
algorithms? as a parameter.) If the “starting node” is not specified, it is automatically

chosen in an arbitrary way. The nodes of the other “connected
components” will not be moved.You may want to perform the layout
separately on each connected component using different layout regions
and starting node settings. This is what you get automatically when you
enable the “layout of connected components” parameter. (See Layout of
connected components.)

- IlvUniformLengthEdges: This algorithm supports disconnected
graphs, but usually it is better to rely on the automatic “layout of connected
components” parameter. (See Layout of connected components.)

- IlvBusLayout: It will work on the “connected component” of the graph
that contains the “bus object.” (You must specify the bus object as a
parameter.) The other nodes that are not connected to the bus will not
be moved.You may need to perform the layout separately on each
connected component.This is what you get automatically when you enable
the “layout of connected components” parameter. (See Layout of
connected components.)

- IlvCircularLayout, IlvHierarchicalLayout, IlvTreeLayout:
They have built-in support for disconnected graphs. Alternatively, you can
use the automatic support from the base class. (See Layout of connected
components.)

U S I N G G R A P H L A Y O U T A L G O R I T H M S 647

AnswerQuestion

- IlvLinkLayout, IlvGridLayout, IlvRandomLayout: These
algorithms support both connected and disconnected graphs. Their
behavior is the same for both categories of graphs.

It depends on the layout algorithm.There are some attributes of
the network that we know

- The Circular Layout is designed to allow you to specify information about
the physical topology of the network.You can specify which nodes belong

about (for instance, we know
what the core switch is and

to the same cluster (ring or star), the order of the nodes on the cluster,
and which node is the center of a star cluster.

what the center should be).
Are such attributes taken into
account by the layout
algorithm?

- In the Tree Layout, you can specify the root node.

- In the Bus Layout algorithm, you can specify the bus object.

- In the Hierarchical Layout algorithm, you can specify node position
indices and level indices, as well as relative positioning constraints.

There are two possible reasons:If I use IBM® ILOG® JViews
Diagrammer on different

1. Different computers and JVMs may be slower or faster. If the layout
algorithm you use stops the computation when the specified allowed time

computers or with different
Java™ Virtual Machines

has elapsed, a slower computer or JVM will cause the computation to(JVM™) or both, I sometimes
stop earlier. That may be the cause of different results. This may happenget different layouts for the
even with the same computer and JVM if the charge of the computer issame graph and with the

same parameters. Why? increased.You may need to increase the allowed time specification when
running on a slower computer or JVM.

2. If you use a layout algorithm that uses the random generator and if you
use the default option for the seed value (that is, the system clock is used),
you get different results for each successive run of the layout on the same
graph. This allows you to obtain alternative results and to chose the one
you prefer. If you want to prevent different results for successive runs,
you can specify a constant seed value.

Some dimensional parameters of the layout algorithms need to be chosen
with respect to the size of the nodes. This is the case of the “link offset”

I use the Link Layout
algorithm to lay out the links

and the “bypass distance” parameters for the Short Link Layout and the(representing routes) of a
grid size for the Long Link Layout. Indeed, their default values are notnetwork of graphical objects
appropriate when the nodes are very large. Often, nodes placed on a(towns) geo-positioned on a
map, for instance a world map, have a very large size. Compared to thiscartographical map. When
size, the default values of the parameters are so small that they appear
to be zero.

several links connect to the
same side of a node, they
overlap, while I expect them

The solution is to increase the values of the dimensional parameters,
taking into account the size of the nodes. If different nodes have different

to respect the “link offset” (or
the “grid size”) parameter of
the Link Layout. sizes, either the medium or the largest size of the nodes can be used to

compute the parameters as a fraction of this size.
Why?

U S I N G G R A P H L A Y O U T A L G O R I T H M S648

Releasing resources used during the layout of a grapher

Various objects need to be created during the layout process. Most commonly, these are:

♦ Layout instances (subclasses of IlvGraphLayout)

♦ Grapher adapters (subclasses of IlvGrapherAdapter)

♦ Other adapters (subclasses of IlvGraphModel)

♦ Layout providers.

For recursive layout, you may also instantiate layout providers (subclasses of
IlvDefaultLayoutProvider). See also Recursive layout.

♦ Property objects

Some of the layout parameters are internally stored as property objects attached to the
grapher object or to its nodes and links.

If you use a diagram component (a subclass of IlvDiagrammer) with styling, all created
objects are automatically released when they are no longer used so that obsolete objects
can be garbage-collected and memory leaks (in the Java™ sense) are avoided.

Rules for releasing resources
If you program graph layout directly in Java, you must respect some rules to ensure that all
these allocated objects are correctly released:

1. When a layout instance instantiated by your code is no longer useful, call the method
detach() on it to ensure that no grapher or graph model is still attached to it. Note that
you can freely reuse a layout instance once the previously attached model has been
detached.

2. Layout parameters that are specific to a node or a link are cleaned when calling
IlvGraphLayout.detach(). This cleaning is done only for nodes and links that are still
in the grapher when the detach() method is called. If per-node or per-link parameters
have been specified and the node or the link needs to be removed before the detach()
method can be called, you can call the methods cleanNode or cleanLink of the class
IlvGraphLayout to perform the cleaning for the node or the link. However, you only
need to do so if the removed node or link is reused by your code after removal. Otherwise,
if your code does not keep any reference to it, the node or link will be garbage collected
anyway, together with the property objects eventually stored by the layout.

3. When a grapher adapter (or other graph models) instantiated by your code is no longer
useful, call the method dispose() on it to ensure that the resources it has used are
released. Note that an adapter (or graph model) must not be used once it has been
disposed.

4. When a layout provider (an instance of IlvDefaultLayoutProvider) instantiated by
your code is no longer useful, call the method detachLayouts(model, true) on it,
passing as arguments the graph models that have been used for performing a recursive
layout with this provider.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 649

U S I N G G R A P H L A Y O U T A L G O R I T H M S650

Using graph layout Beans

Shows you how to use IBM® ILOG® JViews Framework Beans and graph layout Beans
when you create an applet within an Integrated Development Environment (IDE).

In this section

Overview
Tells you what you need to install to create an application within an IDE.

Graph layout classes available as Beans
Lists the classes provided as graph layout Beans.

Creating a simple applet using Beans
Gives a tutorial on how to create an applet and add graph layout features.

© Copyright IBM Corp. 1987, 2009 651

Overview

Before you can create an application or applet within an Integrated Development Environment
(IDE), you must install the IBM® ILOG® JViews Framework Beans into your IDE. Detailed
installation instructions are given in Installing IBM® ILOG® JViews Beans in an IDE in The
Essential JViews Framework.

U S I N G G R A P H L A Y O U T A L G O R I T H M S652

Graph layout classes available as Beans

The following classes are provided as graph layout Beans:

IlvBusLayout displays bus network topologies, that is, a set of nodes connected to a bus
node.

IlvCircularLayout displays graphs representing interconnected ring and/or star network
topologies.

I IlvGridLayout arranges disconnected nodes in rows or in columns or on a grid.

I IlvHierarchicalLayout arranges nodes in horizontal or vertical levels such that the links
flow in a uniform direction.

I IlvLinkLayout reshapes the links of a graph without moving the nodes.

I IlvRandomLayout moves the nodes of the graphs at randomly computed positions inside
a user-defined area.

IlvTopologicalMeshLayout can be used to lay out cyclic graphs.

IlvTreeLayout arranges the nodes of a tree horizontally or vertically, starting from the root
of the tree.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 653

IlvUniformLengthEdgesLayout can be used to lay out any type of graph and allows you to
specify a preferred length of the links.

IlvJGraphLayoutProgressBar a Swing JProgressBar toolbar that automatically displays the
progress of the layout process.

The Beans listed in this topic are classes of the graph layout API.

If you want to use graph layout integrated in a diagram component, it is better to use IBM®
ILOG® JViews Diagrammer Beans. See JViews Diagrammer classes available as beans in
Using the Designer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S654

Creating a simple applet using Beans

This topic explains how to:

♦ Create an IBM® ILOG® JViews applet using IBM® ILOG® JViews Framework Beans

♦ Add graph layout features using the graph layout Beans

The sample applet is a simple JFC/Swing applet that displays a graph and provides graph
layout capabilities. No coding is necessary.

For more information on IBM® ILOG® JViews Framework Beans, see Framework classes
available as JavaBeans(TM)

in The Essential JViews Framework

The following figure shows the application panel created in this tutorial.

Final JFC/Swing applet

This example shows how to create an IBM® ILOG® JViews applet using a typical IDE
procedure, which consists of:

1. Creating the manager view

U S I N G G R A P H L A Y O U T A L G O R I T H M S 655

2. Setting the properties of the manager view

3. Creating a grapher and associating a manager view

4. Loading an .ivl file into the grapher

5. Adding a control toolbar Bean

6. Adding a graph layout Bean

7. Adding a Swing Bean

8. Adding user interaction

9. Adding a progress bar to the Applet

10. Testing the result

For information on the concepts that underlie JavaBeans™ , refer to the Web site: http://
java.sun.com/products/javabeans

You are assumed to be familiar with the manipulation of JavaBeans within your IDE.

Creating the manager view
To create the manager view:

1. Create a new project as a JFC/Swing applet or application.

2. On the Beans toolbar, click the JViews tab to display the JViews Framework Beans.

3. On the IBM® ILOG® JViews Framework Beans toolbar, click the

IlvJScrollManagerView Bean icon and drag it to the Form Designer.

Note: 1. You will notice two scroll manager view icons on the toolbar. Place
the pointer over the icon to read the name and choose the one with
“J” in its prefix, IlvJScrollManagerView.

2. IBM® ILOG® JViews Framework Swing Beans have the letter “J” in
the prefix of the Bean name.You could also create the same type of
application using only AWT controls. To do so, you would simply use
the IlvScrollManagerView Bean that is an AWT control instead
of the IlvJScrollManagerView Bean. However, there is no AWT
equivalent of the IlvJGraphLayoutProgressBar Bean

4. Drag the handles of the IlvJScrollManagerView Bean until it looks approximately
like this:

U S I N G G R A P H L A Y O U T A L G O R I T H M S656

http://java.sun.com/products/javabeans
http://java.sun.com/products/javabeans

5. On the JViews Beans toolbar, click the IlvManagerView icon and drag it inside the
IlvJScrollManagerView Bean.

The result is fairly similar to what you obtained in the previous step, except that you
can now select the manager view.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 657

If you were to compile and run the project at this point, you would see that the
IlvJScrollManagerView allows you to scroll through the contents of the

Note:

IlvManagerView Bean. (At the moment, the manager view is empty, so there is
nothing to scroll.)

Setting the properties of the manager view
The next stage involves changing two properties of the IlvManagerView Bean to make sure
that the double-buffering mechanism will be used and that the zoom level of the manager
views will always remain the same along the x-axis and y-axis.

To change the manager view properties:

1. Make sure that the IlvManagerView Bean is selected in the Form Designer.

When the IlvManagerView Bean is selected in the Form Designer, its properties are
displayed in the Property List.

U S I N G G R A P H L A Y O U T A L G O R I T H M S658

2. Click the value field of the DoubleBuffering property. Change the value from false
to true. This will ensure that the double-buffering mechanism will be used.

3. Click the value field of the KeepingAspectRatio property. Change the value from
false to true. This will ensure that the zoom level remains the same along the x-axis
and y-axis.

Creating a grapher and associating a manager view
This stage involves creating an IlvGrapher Bean and associate a manager view with it. The
IlvGrapher Bean provides the data structure that contains the grapher to display.

To create the IlvGrapher Bean and associate a manager view with the grapher:

1. On the IBM® ILOG® JViews Framework Beans toolbar, click the IlvGrapher
icon and drag it into the Form Designer.

The IlvGrapher class is not a graphical Bean, so it is not managed in the same way
by the various IDEs. The following figure shows the grapher as a small object inside
the Form Designer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 659

2. To associate the manager view with the grapher, select the IlvManagerView Bean so
that its properties appear in the Property List.

You now need to set the Manager property of the IlvManagerView Bean to the new
IlvGrapher Bean. (Keep in mind that the IlvGrapher class is a subclass of IlvManager.)

3. In the Property List window, click the value column of the Manager property. Change
Default to ilvGrapher1.

U S I N G G R A P H L A Y O U T A L G O R I T H M S660

Once this operation is done, the IlvManagerView can display the contents of the IlvGrapher
Bean. You can create several IlvManagerView Beans and associate them with the same
IlvGrapher Bean. This allows you to have several views of the same graph.

Loading an .ivl file into the grapher
The next stage involves loading an .ivl file into the IlvGrapher Bean so that the contents
of the .ivl file are displayed in the manager view.

To load an .ivl file, do the following:

1. In the Form Designer, select the IlvGrapher Bean so that its properties appear in the
Property List.

2. Click the value field of the FileName property and then click the button.

The FileName Editor dialog box appears.

3. To specify the .ilv file, click the button in the FileName Editor.

The Choose URL dialog box appears.

4. Go to the <installdir>/jviews-diagrammer86/data/graphlayout/link directory.

5. Select the sample1.ivl file and click Open.

6. Click OK in the FileName Editor dialog box.

The file is automatically displayed in the IlvManagerView Bean. As you can see, only
a portion of the graph is visible in the manager view.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 661

Adding a control toolbar Bean
This stage involves adding a toolbar and associating the toolbar with the manager view. The
toolbar allows the user to control the zoom level of the view and to pan the view.

To add the toolbar:

1. On the IBM® ILOG® JViews Framework Beans toolbar, click the

IlvJManagerViewControlBar icon and drag it to the Form Designer.

U S I N G G R A P H L A Y O U T A L G O R I T H M S662

2. Make sure that the IlvJManagerViewControlBar Bean is selected in the FormDesigner
so that its properties appear in the Property List.

3. To associate the toolbar with the manager view, click the value field of the View
property and select ilvManagerView1.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 663

n this example, you added interaction to the view using the control toolbar.You could
also set an interactor Bean, such as the IlvSelectInteractor, directly on the
manager view by using the interactor property of the IlvManagerView Bean.

Note:

Adding a graph layout Bean
This stage involves adding the capability to apply a link layout to the graph displayed in the
applet.

To add the required graph layout Bean:

1. On the Beans toolbar, click the JViews graph layout tab to display the JViews Graph
Layout Beans.

2. On the JViews Graph Layout Beans toolbar, click the IlvLinkLayout Bean icon
and drag it to the Form Designer. Place it under the IlvGrapher Bean.

You are now going to associate the IlvLinkLayout Bean with the IlvGrapher object.

3. Make sure that the IlvLinkLayout Bean is selected in the FormDesigner. Its properties
should be displayed in the Property List.

4. In the Property List window, click the value field of the Grapher property. Change
Default to ilvGrapher1. This indicates to the layout Bean which grapher is to be laid
out.

U S I N G G R A P H L A Y O U T A L G O R I T H M S664

Adding a Swing Bean
This stage involves adding a Swing Bean to the applet. This Bean will allow you to launch
the layout process on the graph.

To add the Swing Bean:

1. On the Beans toolbar, click the Swing tab to display the Swing Beans.

2. On the Swing Beans toolbar, click the JButton Bean icon and drag it to the Form
Designer. Place this button below the IlvJScrollManagerView bean.

3. Make sure that the JButton Bean is selected in the Form Designer. Its properties
should be displayed in the Property List.

4. In the Property List window, click the value field of the Text property. Change jbutton
to Perform Layout.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 665

Adding user interaction
This stage involves defining the action that will be performed when the user clicks the
Perform Layout button.

To define the user interaction:

1. With the right mouse button, click the JButton Bean in the Form Designer.

2. From the pop-up menu that appears, select Add interaction.

The Interaction Wizard appears.

3. Click Next on the first page of the wizard.

4. In the Events area, make sure that actionPerformed is selected. Click Next.

5. On the next page of the Interaction Wizard, click “Call a method”.

6. In the Available objects area, select IlvLinkLayout1.

7. In the Methods area, select performLayout().

U S I N G G R A P H L A Y O U T A L G O R I T H M S666

8. Click Finish to apply the interaction. The Interaction Wizard closes.

Now when the user clicks the Perform Layout button, the layout is performed and the
links of the graph are reshaped to orthogonal. (The links appear as alternating
horizontal and vertical segments.)

Adding a progress bar to the Applet
This stage involves adding a progress bar to your applet. It is not mandatory. In some cases,
a layout algorithm may take a long time to perform a layout and it may be useful to keep
the user informed of the activity of the layout.

To add the progress bar:

1. On the Beans toolbar, click the JViews Graph Layout tab to display the JViews Graph
Layout Beans.

2. On the JViews Graph Layout Beans toolbar, click the IlvJGraphLayoutProgressBar

Bean icon and drag it to the Form Designer. Place in under the
IlvJScrollManagerView Bean next to the Perform Layout button.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 667

You are now going to associate the IlvLinkLayout Bean with the
IlvJGraphLayoutProgressBar object.

3. Make sure that the IlvJGraphLayoutProgressBar Bean is selected in the Form
Designer. Its properties should be displayed in the Property List.

4. In the Property List window, click the value field of the GraphLayout property. Change
Default to ilvLinkLayout1.

U S I N G G R A P H L A Y O U T A L G O R I T H M S668

Testing the result
Now that the applet has been created, you can test the result.

To test the resulting applet:

1. Select Project>Execute to execute the applet.

Initially, the resulting application should appear as shown in the following image (the
graph is not yet laid out).

U S I N G G R A P H L A Y O U T A L G O R I T H M S 669

2. You can use the icons in the toolbar to manipulate the graph displayed in the manager
view. The toolbar contains the following icons:

♦ The Pan icon to pan the content of a view.

♦ The Select arrow icon to select and edit objects in the view.

♦ The Interactive zoom icon to drag a rectangle over an area that you want to
zoom.

♦ The Zoom-in and the zoom-out icons to view the graph at different zoom
levels.

♦ The Fit-to-content icon to size the graph so that it fits entirely in the manager
view.

When you click the Fit-to-content icon, the applet window appears as shown in the
following image.

U S I N G G R A P H L A Y O U T A L G O R I T H M S670

3. To lay out the graph, click the Perform Layout button.

As the layout is being performed, you should see the progress indicated in the progress
bar at the bottom of the window. When the layout is completed, the applet window
should appear similar to the window in the following image.

U S I N G G R A P H L A Y O U T A L G O R I T H M S 671

This completes the graph layout Beans tutorial. For information on how to save your project
along with the type of files that are generated when saving, refer to the documentation of
your IDE.

U S I N G G R A P H L A Y O U T A L G O R I T H M S672

A
absolute level position range/tendency 275
accept method

IlvLayoutGraphicFilter class 630
accessing

all sublayouts 469
graph layout instances 58
layout renderers 57

addGraphLayoutEventListener method
IlvGraphLayout class 601

addGraphModelListener method
IlvGraphModel class 612

addLabelingModelListener method
IlvLabelingModel class 583

addLayer method
IlvDefaultLabelingModel class 573
IlvLayoutGraphicFilter class 631

addNode method
IlvGrapher class 499

addObject method
IlvManager class 499

adjustmentEnd method
IlvGraphModel class 612

advanced recursion 450
alignment options

Bus Layout 382
Grid Layout 423
Tree Layout (free mode) 181

allowed time parameter
Bus Layout 372
Grid Layout 419
Hierarchical Layout 242
in IlvGraphLayout 89
Link Layout 319
Multiple Layout 485
Recursive Layout 461
Topological Mesh Layout 120

Tree Layout 168
Uniform Length Edges Layout 144

angle layout criteria 15
animation parameter

Link Layout 319
Topological Mesh Layout 120
Uniform Length Edges Layout 144

Annealing Label Layout 527
allowed time parameter 535
automatic update 557
description 533
expert parameters 557
features 531
generic parameters 535
global parameters 554
label descriptors 537

implementing your own 560
subclasses 538

label movement policy 556
label offset parameter 554
limitations 532
obstacle offset parameter 554
percentage of completion calculation
parameter 535
point label descriptor 539
polyline label descriptor 545, 548
random generator seed value parameter 535
save parameters to named properties 536
stop immediately parameter 536
use default parameters 536

area layout criteria 15
area minimization parameter, Circular Layout 404
aspect ratio parameter

Tree Layout (radial mode) 211
Tree Layout (tip-over mode) 217

attach method
IlvGraphLayout class 64
IlvLabelLayout class 518

© Copyright IBM Corp. 1987, 2009 673

I N D E X

Index

attaching/detaching a grapher 64
automatic label placement 493, 496
automatic layout

description 16, 80
Link Layout 319

automatic update
labels 557

B
Beans

applet
example 655
executing 668
testing 668

associating objects 659
classes available as Beans 653
editing properties 658
graph layout Bean, creating 663
grapher, creating 659
IlvJScrollManagerView class 656
IlvManagerView class 656
loading an .ivl file 660
manager view, creating 655
setting properties of the manager view 657
toolbar, creating 661

bends layout criteria 15
boundingBox method 574

IlvGraphic class 634
IlvGraphModel class 611
IlvLabelingModel class 582, 590

Bus Layout
alignment options 382
applicable graph types 368
application domains 368
bus line extremity adjusting 381
bus node parameter 377
CSS sample 370
description 370
dimensional parameters 386
features 369
flow direction parameter 378
generic parameters 372
global alignment parameters 382
horizontal offset parameter 387
incremental mode parameter 386
individual node alignment parameter 384
link clipping parameter 372
link style parameter 377
margin on bus parameter 388
margin parameter 388
maximum nodes per level parameter 379
node position 384
order parameter 374, 421
sample drawing 368
specific parameters 374
vertical offset parameter 387

vertical offset to previous level parameter
388
width adjusting 379

bus line extremity adjusting
Bus Layout 381

bus node parameter, Bus Layout 377
bypass distance parameter, Link Layout (short link
mode) 350

C
calculated level index parameter, Hierarchical
Layout 303
calculated position index parameter, Hierarchical
Layout 304
Circular Layout

applicable graph types 393
application domains 393
area minimization parameter 404
cluster contents parameter 409
cluster membership parameters 401
cluster position parameter 409
cluster size parameter 409
clustering mode parameter 401
description 395
dimensional parameters 406
disconnected graph offset parameter 408
features 394
generic parameters 399
level offset parameter 408
limitations 394
link clipping parameter 399, 410
link connection box parameter 400, 411
link style parameter 409
offset parameter 407
order of nodes parameter 401
ring topology 395
root clusters parameter 404
sample drawings 392
specific parameters 401
star center parameter 403
star topology 395

cluster contents parameter, Circular Layout 409
cluster membership parameters, Circular Layout
401
cluster position parameter, Circular Layout 409
cluster size parameter, Circular Layout 409
clustering modes, Circular Layout 401
comparator

java.util.Comparator in
IlvGrapherAdapter 614

compass directions, Tree Layout 173
composite links, labels 510
composite nodes, labels 508
connected components parameter

Bus Layout 372
Circular Layout 399

U S I N G G R A P H L A Y O U T A L G O R I T H M S674

Hierarchical Layout 242
Multiple Layout 485
Topological Mesh Layout 121
Tree Layout 168
Uniform Length Edges Layout 144

connector style parameter
Hierarchical Layout 251
Tree Layout 189

coordinates mode parameter
Label Layout 577
specifying 639

createGraphLayout method
IlvDefaultLayoutProvider class 476

createGraphModel method
IlvGraphModel class 609

createLayoutReport method
IlvGraphLayout class 597

CSS (Cascading Style Sheet)
definition 54
nested graphs 439
none

for most advanced features 593
for Random Label Layout 564

CSS samples
Bus Layout 370
Random Layout 362

D
default labeling model

subclassing 588
detach method

IlvLabelLayout class 64, 518
detachLayouts method

IlvDefaultLayoutProvider class 469
diagram component

graph layout and style sheets 56
dimensional parameters

Bus Layout 386
Circular Layout 406
Grid Layout 426

disconnected graph
laying out connected components 616
offset parameter, Circular Layout 408

E
east-west neighbors, Tree Layout 223
Enable/Disable Link Clipping button 59
end points mode parameter

Hierarchical Layout 253
Link Layout 326

evenly spaced pins margin ratio, Link Layout 344
events, label layout 524
extremity constraints, Hierarchical Layout 292

F
fallback mechanism, Link Layout (long link mode)
356

FAQ 646
filtering features

by graphic objects 631
by layers 630
for IlvGrapher 630

fireGraphModelEvent method
IlvGraphModel class 612

fireLabelingModelEvent method
IlvLabelingModel class 583

fixed links parameter
Bus Layout 373
Circular Layout 400
Hierarchical Layout 243
Link Layout 320
Random Layout 364
Topological Mesh Layout 121
Tree Layout 169
Uniform Length Edges Layout 145

fixed nodes parameter
Bus Layout 373
Circular Layout 400
Grid Layout 419
Hierarchical Layout 243
Random Layout 364
Topological Mesh Layout 122
Tree Layout 169
Uniform Length Edges Layout 145
using to refine a TML graph layout 129

flow direction parameter
Bus Layout 378
Hierarchical Layout 245
Tree Layout (free mode) 179

force fit to layout region, Uniform Length Edges
Layout 149
fork link shapes, Hierarchical Layout 262
free layout mode (Tree Layout)

alignment parameter 181
description 177
flow direction 179
global alignment 181
global link style parameter 186
individual link style 187
individual node alignment 182
link style 186
orthogonal fork percentage 195
respect node sizes 195
spacing parameters 194
spacing parameters for experts 195
tip-over alignment 183

G
getAlignment method

IlvTreeLayout class 182
getBox method

IlvLinkConnectionBoxInterface class 350
getCalcBackwardTreeLinks method

U S I N G G R A P H L A Y O U T A L G O R I T H M S 675

IlvTreeLayout class 224
getCalcForwardTreeLinks method

IlvTreeLayout class 224
getCalcNodeLevelIndex method

IlvHierarchicalLayout class 303
getCalcNodePositionIndex method

IlvHierarchicalLayout class 304
getCalcNonTreeLinks method

IlvTreeLayout class 224
getCalcRoots method

IlvTreeLayout class 171
getCode method

IlvGraphLayoutReport class 599
IlvLabelLayoutReport class 522

getCoordinatesMode method
IlvGrapherAdapter class 639

getDestinationPointMode method
IlvHierarchicalLayout class 254
IlvLinkLayout class 327

getEastNeighbor method
IlvTreeLayout class 223

getFilter
IlvLayoutGraphicFilter class 630

getFirstGraphLayout method
IlvMultipleLayout class 488

getFrom method
IlvGraphModel class 609

getGraphLayout method
IlvGraphLayout class 458

getGraphModel method
IlvGraphModel class 609

getHorizontalAlignment method
IlvGridLayout class 424

getInterGraphLinks method
IlvGraphModel class 609

getInterGraphLinksCount method
IlvGraphModel class 609, 615

getLabelLayout method
IlvMultipleLayout class 488

getLabelOverlap method
IlvLabelingModel class 583, 590

getLabels method
IlvLabelingModel class 581, 590

getLabelsCount method
IlvLabelingModel class 581

getLayers method
IlvDefaultLabelingModel class 573
IlvLayoutGraphicFilter class 631

getLayoutOfConnectedComponents method
IlvGraphLayout class 616

getLayoutRegion method
IlvRandomLabelLayout class 570

getLayouts method

IlvGraphLayout class 446
getLayoutTime method

IlvGraphLayoutReport class 599
IlvLabelLayoutReport class 522

getLinkConnectionBoxInterface method
IlvShortLinkLayout class 346

getLinkPointAt method
IlvGraphModel class 611, 615

getLinkPoints method
IlvGraphModel class 611

getLinkPointsCount method
IlvGraphModel class 611

getLinks method
IlvGraphModel class 609

getLinksCount method
IlvGraphModel class 609, 615

getLinksFrom method
IlvGraphModel class 609

getLinksFromCount method
IlvGraphModel class 609, 615

getLinksTo method
IlvGraphModel class 609

getLinksToCount method
IlvGraphModel class 609, 615

getLinkStyle method
IlvHierarchicalLayout class 250
IlvLinkLayout class 334, 347
IlvTreeLayout class 187

getLinkWidth method
IlvGraphModel class 611

getLongLinkLayout method
IlvLinkLayout class 353

getNeighbors method
IlvGraphModel class 609

getNodeBoxInterface method
IlvShortLinkLayout class 346

getNodes method
IlvGraphModel class 609

getNodesAndLinks method
IlvGraphModel class 609

getNodesCount method
IlvGraphModel class 609, 615

getNodesDegree method
IlvGraphModel class 609

getNumberOfPossibleExteriorCycles method
IlvTopologicalMeshLayout class 126

getObstacleOverlap method
IlvLabelingModel class 583, 590

getObstacles method
IlvLabelingModel class 581, 590

getObstaclesCount method
IlvLabelingModel class 581

getOpposite method

U S I N G G R A P H L A Y O U T A L G O R I T H M S676

IlvGraphModel class 609
getOriginPointMode method

IlvHierarchicalLayout class 254
IlvLinkLayout class 327

getParentModel method
IlvGraphModel class 609

getPenalty method
IlvTerminationPointFilter class 354

getPercentageComplete method
IlvLabelLayoutReport class 523

getPolylineObstacleOverlap method
IlvLabelingModel class 583

getPolylinePoints method
IlvLabelingModel class 582

getPolylineWidth method
IlvLabelingModel class 582

getPreferredLayout method
IlvDefaultLayoutProvider class 476

getPreferredPathLocation method
IlvAnnealingLabelDescriptor class 560

getProperty method
IlvGraphModel class 613
IlvLabelingModel class 584

getReferenceTransformer method
IlvLayoutGraphicFilter class 638

getReferenceView method
IlvLayoutGraphicFilter class 637

getRootModel method
IlvGraphModel class 609

getSecondGraphLayout method
IlvMultipleLayout class 488

getShortLinkLayout method
IlvLinkLayout class 343

getSpecNodeLevelIndex method
IlvHierarchicalLayout class 284

getSpecNodePositionIndex method
IlvHierarchicalLayout class 288

getSpecRoots method
IlvTreeLayout class 171

getSubgraphs method
IlvGraphModel class 609

getSubgraphsCount method
IlvGraphModel class 609, 615

getTangentialOffset method
IlvLinkConnectionBoxInterface class 350

getTo method
IlvGraphModel class 609

getVerticalAlignment method
IlvGridLayout class 424

getWestNeighbor method
IlvTreeLayout class 223

global alignment parameters
Bus Layout 382
Grid Layout 423

Tree Layout (free mode) 181
global connector style parameter

Link Layout 334
global end point mode parameter

Hierarchical Layout 253
Link Layout 326

global incremental link reshape mode 346
global link style parameter

Hierarchical Layout 249
Link Layout 323
Tree Layout (free mode) 186

global side association for polyline label descriptors
547
graph layout

choosing coordinate space 633
class packages 21
classes available as Beans 653
coordinates mode, specifying 639
description 14
features 17
filtering features

by graphic objects 631
by layers 630
for IlvGrapher 630

in JViews Diagrammer 54
on demand 36
questions and answers 646
reference transformers 637, 638
reference views 637
report 595
specifying in a style sheet 29
using in a diagram component 28

graph layout parameters
allowed time 89
description 89
preserve fixed links 103
use default parameters 107

Graph Layout Renderer 56
graph model

concept 608
data objects, storing and retrieving 613
description 605
geometry of the graph

information on 611
modifying 612

information on the structure of the graph 609
notification of changes of the graph 612
versus SDM model 607

grapher
attaching/detaching 64
laying out a non-JViews grapher 615
laying out connected components of a
disconnected graph 616

grapher adapter 614
GraphLayoutEventListener interface 601

U S I N G G R A P H L A Y O U T A L G O R I T H M S 677

grid base parameter, Link Layout (long link mode)
337
Grid Layout

alignment options 423
applicable graph types 415
application domains 415
description 417
dimensional parameters 426
features 416
generic parameters 419
global alignment parameters 423
grid offset parameter 427
incremental mode parameter 425
individual node alignment parameter 424
layout modes 422
margin parameter 428
maximum nodes per row or column
parameter 425
sample drawing 414
specific parameters 421

grid offset parameter
Grid Layout 427
Link Layout (long link mode) 337

H
Hierarchical Layout

applicable graph types 234
application domains 235
calculated level index parameter 303
calculated position index parameter 304
connector style parameter 251
description 238
end points mode parameter 253
extremity constraints 292
features 236
flow direction parameter 245
fork link shapes 262
generic parameters 242
global end point mode parameter 253
global link style parameter 249
incremental mode 473
individual end point mode parameter 254
individual link style parameter 250
layout constraints 278
level index parameter 284
level justification parameter 247
leveling strategy parameter 246
limitations 236
link clipping parameter 243, 255
link connection box parameter 243, 255
link priority parameter 264
link style parameter 248
link width parameter 257
port index parameter 260
port sides parameter 258
position index parameter 288

relative position constraints 278, 289
sample drawings 232
side-by-side constraints 290
spacing parameters 265
specific parameters 245
swim lane constraint 294

horizontal offset parameter, Bus Layout 387

I
IlvAnnealingLabelDescriptor class

getPreferredPathLocation method 560
initialize method 560
setTowardsPreferredPosition method 560

IlvAnnealingLabelLayout class 517, 535, 554
IlvAnnealingPointLabelDescriptor class

constructor 539, 540, 541
IlvAnnealingPolylineLabelDescriptor class

constructor 545, 546, 548, 549
IlvBusLayout class

provided as a Bean 653
setBus method 377
setVerticalOffsetToPreviousLevelmethod
388

IlvCircularLayout class
provided as a Bean 653

IlvDefaultLabelingModel class 512, 552, 580, 588
addLayer method 573
getLayers method 573
removeAllLayers method 573
removeLayer method 573
setCoordinatesMode method 577
setReferenceTransformer method 576
setReferenceView method 576

IlvDefaultLayoutProvider class 476
createGraphLayout method 476
detachLayouts method 469
getPreferredLayout method 476
setPreferredLayout method 476

IlvGrapher class 615
addNode method 499
boundingBox method 634

IlvGrapherAdapter
ordering nodes 614
specifying comparator 614

IlvGrapherAdapter class 614
getCoordinatesMode method 639
isLayerAdded method 631
loadParametersFromNamedProperties
method 625
loadPreferredLayoutsToNamedProperties
method 627
removeParametersFromNamedProperties
method 621
saveParametersToNamedPropertiesmethod
621

U S I N G G R A P H L A Y O U T A L G O R I T H M S678

savePreferredLayoutsToNamedProperties
method 623
setCoordinatesMode method 639

IlvGraphLayout class
addGraphLayoutEventListener method 601
attach method 64
attaching/detaching a grapher 64
createLayoutReport method 597
getGraphLayout method 458
getLayoutOfConnectedComponents method
616
getLayouts method 446
instantiating a subclass 63
isLayoutOfConnectedComponentsEnabled
method 616
isLayoutOfConnectedComponentsEnabledByDefault
method 616
isUseDefaultParameters method 109
layout method 64, 518, 644
layout parameters and features 89
layoutStepPerformed method 601
performLayout method 65, 446, 597, 646
setLayoutOfConnectedComponents method
616
setLayoutOfConnectedComponentsEnabled
method 616
setLinkClipInterfacemethod 193, 255, 410
setLinkConnectionBoxInterface method
192, 255, 411
setUseDefaultParameters method 109
subclassing 628, 641
supportsAllowedTime method 103, 107
supportsLayoutOfConnectedComponents
method 616
supportsLayoutRegion method 646
supportsPreserveFixedNodes method 107
supportsSaveParametersToNamedProperties
method 620

IlvGraphLayoutReport class
description 596
getCode method 599
getLayoutTime method 599
stored information 599

IlvGraphLayoutUtil class
IsTree static method 80

IlvGraphModel class
addGraphModelListener method 612
adjustmentEnd method 612
boundingBox method 611
createGraphModel method 609
description of 609
fireGraphModelEvent method 612
getFrom method 609
getGraphModel method 609

getInterGraphLinks method 609
getInterGraphLinksCount method 609, 615
getLinkPointAt method 611, 615
getLinkPoints method 611
getLinkPointsCount method 611
getLinks method 609
getLinksCount method 609, 615
getLinksFrom method 609
getLinksFromCount method 609, 615
getLinksTo method 609
getLinksToCount method 609, 615
getLinkWidth method 611
getNeighbors method 609
getNodeDegree method 609
getNodes method 609
getNodesAndLinks method 609
getNodesCount method 609, 615
getOpposite method 609
getParentModel method 609
getProperty method 613
getRootModel method 609
getSubgraphs method 609
getSubgraphsCount method 609, 615
getTo method 609
isInterGraphLink method 609
isLayoutNeeded method 612
isLink method 609
isLinkBetween method 609
isNode method 609
isSubgraph method 609
move method 612
moveNode method 612
removeGraphModelListener method 612
reshapeLink method 612
setProperty method 613

IlvGridLayout class
getHorizontalAlignment method 424
getVerticalAlignment method 424
provided as a Bean 653
setHorizontalAlignment method 424
setVerticalAlignment method 424

IlvHierarchicalLayout class
getCalcNodeLevelIndex method 303
getCalcNodePositionIndex method 304
getDestinationPointMode method 254
getLinkStyle method 250
getOriginPointMode method 254
getSpecNodeLevelIndex method 284
getSpecNodePositionIndex method 288
provided as a Bean 653
setDestinationPointMode method 254
setGlobalDestinationPointMode method
253
setGlobalLinkStyle method 249

U S I N G G R A P H L A Y O U T A L G O R I T H M S 679

setGlobalOriginPointMode method 253
setLinkStyle method 250
setOriginPointMode method 254
setSpecNodeLevelIndex method 284
setSpecNodePositionIndex method 288

IlvJGraphLayoutProgressBar class 653
IlvJScrollManagerView class 656
IlvLabelingModel class 586

addLabelingModelListener method 583
boundingBox method 582, 590
fireLabelingModelEvent method 583
getLabelOverlap method 583, 590
getLabels method 581, 590
getLabelsCount method 581
getObstacleOverlap method 583, 590
getObstacles method 581, 590
getObstaclesCount method 581
getPolylineObstacleOverlap method 583
getPolylinePoints method 582
getPolylineWidth method 582
getProperty method 584
isBoundingBoxDependent method 583
isLabel method 581, 590
isObstacle method 581, 590
isPolylineObstacle method 581
method types 581
moveLabel method 582, 590
removeLabelingModelListener method 583
setProperty method 584
subclassing 590

IlvLabelingModelWithRotation interface 580
IlvLabelLayout class 517

attach method 518
detach method 64, 518
performLayout method 519

IlvLabelLayoutReport class
getCode method 522
getPercentageComplete method 523

IlvLabelLayoutWithRotation interface 552
IlvLabellingModelWithRotation interface 586,
588, 590
IlvLayoutGraphicFilter class

accept method 630
addLayer method 631
getFilter method 630
getLayers method 631
getReferenceTransformer method 638
getReferenceView method 637
removeAllLayers method 631
removeLayer method 631
setFilter method 630
setReferenceTransformer method 638
setReferenceView method 637

IlvLinkConnectionBoxInterface class

getBox method 350
getTangentialOffset method 350

IlvLinkLayout class
getDestinationPointMode method 327
getLinkStyle method 334, 347
getLongLinkLayout method 353
getOriginPointMode method 327
getShortLinkLayout method 343
provided as a Bean 653
setDestinationPointMode method 327
setGlobalDestinationPointMode method
326
setGlobalLinkStyle method 323, 334, 346
setGlobalOriginPointMode method 326
setLinkStyle method 334, 347
setOriginPointMode method 327

IlvLongLinkLayout class
setTerminationPointFilter method 354

IlvManager class
addObject method 499

IlvManagerView class 656
IlvMultipleLayout class

getFirstGraphLayout method 488
getLabelLayout method 488
getSecondGraphLayout method 488
setFirstGraphLayout method 488
setLabelLayout method 488
setSecondGraphLayout method 488

IlvMultipleLayoutReport class 600
IlvRandomLabelLayout class 517

getLayoutRegion method 570
setLayoutRegion method 570

IlvRandomLayout class
provided as a Bean 653

IlvRecursiveLayoutReport class 600
IlvShortLinkLayout class

getLinkConnectionBoxInterface method
346
getNodeBoxInterface method 346

IlvTerminationPointFilter class
getPenalty method 354

IlvTopologicalMeshLayout class
getNumberOfPossibleExteriorCycles
method 126
provided as a Bean 653
setExteriorCycleId method 126

IlvTopologicalMeshLayoutReport class 600
IlvTreeLayout class

getAlignment method 182
getCalcBackwardTreeLinks method 224
getCalcForwardTreeLinks method 224
getCalcNonTreeLinks method 224
getCalcRoots method 171
getEastNeighbor method 223

U S I N G G R A P H L A Y O U T A L G O R I T H M S680

getLinkStyle method 187
getSpecRoots method 171
getWestNeighbor method 223
provided as a Bean 653
setAlignment method 182, 183
setAspectRatio method 211
setBranchOffset method 194, 212
setConnectorStyle method 189
setEastWestNeighboring method 223
setFlowDirection method 179
setGlobalAlignment method 181, 183
setGlobalLinkStyle method 186
setInvisibleRootUsed method 213
setLayoutModemethod 174, 178, 200, 206, 210
setLayoutOfConnectedComponentsEnabled
method 213
setLevelAlignment method 202
setLinkStyle method 187
setOrthForkPercentage method 195
setOverlapPercentage method 195
setParentChildOffset method 194, 212
setPosition method 172
setRoot method 171
setRootPreference method 171
setSiblingOffset method 194, 212
setTipOverBranchOffset method 194
setWestEastNeighboring method 223

IlvUniformLengthEdgesLayout class
provided as a Bean 653

IlvUniformLengthEdgesLayoutReport class 600
incremental layout 16
incremental link reshape mode 346

global 346
individual 347

incremental mode parameter
Bus Layout 386
Grid Layout 425
Link Layout 328

individual connector style parameter
Link Layout 334, 347

individual end point mode parameter
Hierarchical Layout 254
Link Layout 327

individual incremental link reshape mode 347
individual link style parameter

Hierarchical Layout 250
Link Layout 324
Tree Layout (free mode) 187

individual node alignment parameter
Bus Layout 384
Grid Layout 424
Tree Layout (free mode) 182

initialize method
IlvAnnealingLabelDescriptor class 560

interface parameters 628
intergraph link routing 329
internal provider mode

Recursive Layout 456, 458, 466
isBoundingBoxDependent method

IlvLabelingModel class 583
isInterGraphLink method

IlvGraphModel class 609
isLabel method

IlvLabelingModel class 581, 590
isLayerAdded method

IlvGrapherAdapter class 631
isLayoutNeeded method

IlvGraphModel class 612
isLayoutOfConnectedComponentsEnabledmethod

IlvGraphLayout class 616
isLayoutOfConnectedComponentsEnabledByDefault
method

IlvGraphLayout class 616
isLink method

IlvGraphModel class 609
isLinkBetween method

IlvGraphModel class 609
isNode method

IlvGraphModel class 609
isObstacle method

IlvLabelingModel class 581, 590
isPolylineObstacle method

IlvLabelingModel class 581
isSubgraph method

IlvGraphModel class 609
IsTree static method

IlvGraphLayoutUtil class 80
isUseDefaultParameters method

IlvGraphLayout class 109

J
Java code samples

applying a single layout to a nested graph
447
defining a new type of layout 642
labels, positioning

at a point 540
at an obstacle 539
on multiple criteria 541

Multiple Layout 480
Random Label Layout 567
Recursive Layout

layout providers 476

L
label descriptor

rotation dependent on label position 552
label descriptors 537

implementing your own 560

U S I N G G R A P H L A Y O U T A L G O R I T H M S 681

Label Layout
advanced features 571
annealing 527
base class 517
coordinates mode 577
events and listeners 524
filtering manager layers 573
getting started 495

in a diagram component 498
in Java 499

IlvLabelLayout parameters 526
instantiating and attaching a subclass 518
labeling model

creating 590
defining your own 579

labels and obstacles 505
geometry, info on 582
structure, info on 581

nonzoomable graphic objects 575
nonzoomable labels and obstacles 574
notification of changes 583
overlap calculation 583
parameters

loading from IVL files 578
performing a layout 519

recursively on nested subgraphs 520
random 563
reference view and reference transformer
576
report 522
storing and retrieving object properties 584
using in Java 515

Label Layout Renderer 56
label rotation

dependent on label position 586
methods 586

labeling model
defining your own 579
reference, in Recursive Multiple Layout 491
subclassing 588

labels
at composite links 510
at composite nodes 508
at links 507
at nodes 506
automatic placement 493
definition 496
descriptors, subclasses 538
in a diagram component 506
in Java 512
movement policy 556
point label descriptor 539
polyline label descriptor 545
positioning

at a point, Java code sample 540

at an obstacle, Java code sample 539
on multiple criteria, Java code sample
541

layout algorithms
choosing 72
common features 23
questions and answers 646
setting the selection method 79
table of additional information 110
table of applicable graphs 72
table of generic parameters supported 86

layout constraints 278
in CSS 279
in Java 280

layout criteria
angle 15
area 15
bends 15
link crossings 15
symmetries 15

layout listeners
Recursive Layout 473

layout method
IlvGraphLayout class 64, 518, 644
steps for implementing 644

layout methods, types of
automatic 16, 80
incremental 16
semi-automatic 16, 80
static 16

layout modes
Grid Layout 422
Link Layout 321
Recursive Layout 463
Tree Layout 174

layout parameters
loading from IVL file 625
saving 619

to IVL file 621
layout providers

Recursive Layout 476
layout region parameter

Bus Layout 372
Circular Layout 399
Grid Layout 419
Random Layout 364
Topological Mesh Layout 121
Uniform Length Edges Layout 144
using to refine a TML graph layout 131

layout renderers
accessing 57
controlling by style sheets 56

layout styles
individual, per subgraph 440
same everywhere 439

U S I N G G R A P H L A Y O U T A L G O R I T H M S682

layouts
applying the same recursively 446
Bus Layout 367
Circular Layout 391
defining your own type 628, 641

code sample 642
Force-directed layout 135
Grid Layout 413
Hierarchical Layout 229
implementing the layout method 644
Link Layout 309
mixing different in nested graph 450
Multiple Layout 479
order of recursive layouts 445
performing 64
Random Layout 359
Recursive Layout 453
Topological Mesh Layout 113
Tree Layout 159
Uniform Length Edges Layout 135

layoutStepPerformed method
IlvGraphLayout class 601

level index parameter, Hierarchical Layout 284
level justification parameter, Hierarchical Layout
247
level layout mode (Tree Layout)

description 199
general parameters 201
level alignment parameter 202

level offset parameter, Circular Layout 408
leveling strategy parameter

Hierarchical Layout 246
limitations

Hierarchical Layout 236
Link Layout 315
Random Layout 361, 394
Topological Mesh Layout 116
Tree Layout 163
Uniform Length Edges Layout 141

link box connection interface
Link Layout (short link mode) 350

link categories, retrieving (Tree Layout) 224
link clipping 59
link clipping parameter

Bus Layout 372
Circular Layout 399, 410
Hierarchical Layout 243, 255
Topological Mesh Layout 121, 132
Tree Layout 169, 193
Uniform Length Edges Layout 145, 156

link connection box interface
Link Layout 341

link connection box parameter
Circular Layout 400, 411
Hierarchical Layout 243, 255

Topological Mesh Layout 121
Tree Layout 169, 192
Uniform Length Edges Layout 145

link crossing penalty parameter, Link Layout (short
link mode) 349
link crossings layout criteria 15
Link Layout

applicable graph types 313
application domains 313
bypass distance parameter (short link mode)
350
choosing the appropriate layout mode 322
connector style parameter 333
description 316
end points mode parameter 326
evenly spaced pins margin ratio (short link
mode) 344
fallback mechanism (long link mode) 356
features 314
generic parameters 319
global connector style parameter 334
global end point mode parameter 326
global link style parameter 323
grid base parameter (long link mode) 337
grid offset parameter (long link mode) 337
incremental link reshape mode 346
incremental mode parameter 328
individual connector style parameter 334, 347
individual end point mode parameter 327
individual link style parameter 324
intergraph link routing 329
layout mode parameter 321
limitations 315
link box connection interface (short link
mode) 350
link connection box interface 341
link crossing penalty parameter (short link
mode) 349
link offset parameter (short link mode) 332
link routing parameters (long link mode) 354
link style parameter 323
long link layout algorithm 316
minimal distance parameter (long link mode)
338
minimal node corner offset parameter (long
link mode) 338
minimum final segment length parameter
(long link mode) 339
minimum final segment parameter 333
node-side filter feature 340
number of optimization iterations (short link
mode) 344
obstacle parameters (long link mode) 353
same shape for multiple links parameter
(short link mode) 348

U S I N G G R A P H L A Y O U T A L G O R I T H M S 683

sample drawing 311
self-link style parameter (short link mode)
343
short link layout algorithm 316
spacing parameters (long link mode) 336
spacing parameters (short link mode) 332
specific parameters 321
variable end point parameters (long link
mode) 354

link layout
specifying in a style sheet 35

Link Layout (short link mode) 333
Link Layout Renderer 56
link offset parameter, Link Layout (short link mode)
332
link overlap nodes forbidden parameter

Link Layout (short link mode) 345
link priority parameter, Hierarchical Layout 264
link routing parameters, Link Layout (long link
mode) 354
link style parameter

Bus Layout 377
Circular Layout 409
Hierarchical Layout 248
Link Layout 323
Random Layout 366
Topological Mesh Layout 123
Tree Layout (free mode) 186
Uniform Length Edges Layout 146

link width parameter, Hierarchical Layout 257
links

ignoring (Label Layout) 510
labels 507

listener, layout event
code example 601
description 601
GraphLayoutEventListener interface 601

listeners, label layout 524
loading

label layout parameters from IVL file 578
style file 56

loadParametersFromNamedProperties method
IlvGrapherAdapter class 625

loadPreferredLayoutsToNamedPropertiesmethod
IlvGrapherAdapter class 627

local side association for polyline label descriptors
547
long link mode (Link Layout)

algorithm description 316
fallback mechanism 356
features 314
grid base parameter 337
grid offset parameter 337
link routing parameters 354
minimal distance parameter 338

minimal node corner offset parameter 338
minimum final segment length parameter
339
obstacle parameters 353
spacing parameters 336
variable end point parameters 354

M
margin on bus parameter, Bus Layout 388
margin parameter

Bus Layout 388
Grid Layout 428

maximum nodes per level parameter
Bus Layout 379
Grid Layout 425

memory savings parameter
Topological Mesh Layout 121

methods
label rotation 586

minimal distance parameter, Link Layout (long link
mode) 338
minimal node corner offset parameter, Link Layout
(long link mode) 338
minimum final segment length parameter, Link
Layout (long link mode) 339
minimum final segment parameter, Link Layout
(short link mode) 333
move method

IlvGraphModel class 612
moveLabel method

IlvLabelingModel class 582, 590
moveNode method

IlvGraphModel class 612
Multiple Layout

accessing sublayouts 488
allowed time parameter 485
application domain 480
attaching graph and labeling models 489
combining multiple and recursive layout 490
connected components parameter 485
features 484
for experts 489, 490, 491
generic parameters 485
Java code sample 480
percentage completion parameter 485
recursive layout 481
reference labeling model 491
save to named properties 486
simple layout 481
specific parameters 487
stop immediately parameter 486

N
nested graphers 438
nested graphs

layout in Diagrammer 437

U S I N G G R A P H L A Y O U T A L G O R I T H M S684

specification in CSS 439
nested SDM models 438
nested subgraphs 520
new renderer 61
node order

IlvGrapherAdapter class 614
node position

Bus Layout 384
node-side filter feature, Link Layout 340
nodes

ignoring (Label Layout) 510
labels 506
setting offset between 54
setting position 55

nodes placement algorithm, Topological Mesh
Layout 124
nodes placement allowed time, Topological Mesh
Layout 124
nodes placement iterations parameter, Topological
Mesh Layout 124
nonzoomable graphic objects 575
nonzoomable labels and obstacles (Label Layout)
574
number of iterations parameter, Uniform Length
Edges Layout 147
number of optimization iterations, Link Layout
(short link mode) 344

O
obstacle offset parameter 554
obstacle parameters, Link Layout (long link mode)
353
obstacles

and nonzoomable labels 574
obstacles (Label Layout)

default labeling model 512
definition 496
examples 499
ignoring 512
in a diagram component 506
in Java 512
positioning a label at 539, 540
positioning at polyline 546, 549
related obstacles 539, 540, 541

examples 539
retrieving information on 581, 582
setting immovable 512

offset parameter, Circular Layout 407
optimization allowed time parameter, Topological
Mesh Layout 123
optimization iterations parameter, Topological
Mesh Layout 123
order of nodes parameter, Circular Layout 401
order parameter, Bus Layout 374, 421
orthogonal fork percentage parameter, Tree Layout
195

outer cycle parameter, Topological Mesh Layout
description 126
using to refine a TML graph layout 131

overlap
in custom labeling mode 583
Tree Layout 195

P
parameters

generic
Annealing Label Layout 535
Bus Layout 372
Circular Layout 399
Grid Layout 419
Hierarchical Layout 242
Link Layout 319
Multiple Layout 485
Random Label Layout 568
Random Layout 364
Recursive Layout 461
Topological Mesh Layout 120
Tree Layout 168
Uniform Length Edges Layout 144

specific
Bus Layout 374
Circular Layout 401
Grid Layout 421
Hierarchical Layout 245
Link Layout 321
Multiple Layout 487
Random Layout 366
Recursive Layout 471
Topological Mesh Layout 123
Tree Layout 171
Uniform Length Edges Layout 146

supported by layout algorithms (table) 86
percentage of completion parameter

Hierarchical Layout 243
Multiple Layout 485
Random Layout 364
Recursive Layout 461
Tree Layout 169

performLayout method
IlvGraphLayout class 65, 446, 597, 646
IlvLabelLayout class 519

point label descriptor 539
positioning

at a point 540
at an obstacle 539
on multiple criteria 541

rotated labels 552
starting from an empty descriptor 542

point labeling problem 539
polyline label descriptor

full positioning
at a link 548

U S I N G G R A P H L A Y O U T A L G O R I T H M S 685

at a polyline obstacle 549
rotated labels 552
simple positioning

at a link 545
at a polyline obstacle 546

starting from an empty descriptor 550
port index parameter, Hierarchical Layout 260
port sides parameter, Hierarchical Layout 258
position index parameter, Hierarchical Layout 288
position parameter, Tree Layout 172
preferred layout

loading from .ivl file 627
saving 619

to IVL file 623
preferred length parameter, Uniform Length Edges
Layout 147
preserve fixed links parameter

Bus Layout 373
Circular Layout 400
Hierarchical Layout 243
in IlvGraphLayout 103
Link Layout 320
Random Layout 364
Topological Mesh Layout 121
Tree Layout 169
Uniform Length Edges Layout 145

preserve fixed nodes parameter
Bus Layout 373
Circular Layout 400
Grid Layout 419
Hierarchical Layout 243
Random Layout 364
Topological Mesh Layout 122
Tree Layout 169
Uniform Length Edges Layout 145

Q
quadtree 557, 583
questions and answers 646

R
radial layout mode (Tree Layout)

adding an invisible root node 213
alternating radial mode 209
aspect ratio parameter 211
description 205
evenly spaced first circle 213
setting a maximal children angle 215
spacing parameters 212

random generator seed value parameter
Random Layout 364

Random Label Layout 563
allowed time parameter 568
description 566
features 565
generic parameters 568

Java code sample 567
layout region parameter 570
percentage of completion parameter 568
random generator seed value parameter 568
sample drawing 564
save parameters to named properties 569
specific parameters 570
stop immediately parameter 569
use default parameters 569

Random Layout
applicable graph types 360
CSS sample 362
description 362
features 361
generic parameters 364
limitations 361
link style parameter 366
sample drawing 360
specific parameters 366

rectangular labels
rotation dependent on label position 512, 552

Recursive Layout
accessing all sublayouts 469
advanced recursion 450
advanced users 473
allowed time parameter 461
applying the same layout 446
combining multiple and recursive layout 490
convenience mechanism of reference layout
mode 469
definition 454
features 460
generic parameters 461
internal provider mode 456, 458, 466
Java code samples

different layout styles 456
layout providers for experts 476
same layout style 454
specified layout provider 458

layout listeners 473
layout modes 463
layout parameters 448
layout providers for experts 476
mixing different in nested graph 450
order of layouts 445
percentage of completion parameter 461
reference layout mode 454, 465
save to named properties 461
simple 446
specific parameters 471
specified provider mode 458, 468
stop immediately parameter 462
subgraph correction 473

Recursive Multiple Layout 490
redraw of a grapher after layout

U S I N G G R A P H L A Y O U T A L G O R I T H M S686

automatic and selective 603
delayed 603
introduction 603
no redraw 604
nonautomatic and complete 603

reference layout mode
convenience mechanism (Recursive Layout)
469
Recursive Layout 454, 465

reference transformers 637
reference views 637
specifying 638
using 637

reference views 637
refining a graph layout 129

using fixed nodes parameter 129
using layout region parameter 131
using outer cycle parameter 131

related obstacles (Label Layout) 539
relative position constraints, Hierarchical Layout
278, 289
removeAllLayers method

IlvDefaultLabelingModel class 573
IlvLayoutGraphicFilter class 631

removeGraphModelListener method
IlvGraphModel class 612

removeLabelingModelListener method
IlvLabelingModel class 583

removeLayer method
IlvDefaultLabelingModel class 573
IlvLayoutGraphicFilter class 631

removeParametersFromNamedProperties method
IlvGrapherAdapter class 621

renderer
new 61

renderers
accessing 57
controlling with style sheets 56
Graph Layout 56
Label Layout 56
Link Layout 56

reports
graph layout 595
Label Layout 522

reshapeLink method
IlvGraphModel class 612

respect node sizes parameter
Tree Layout 195
Uniform Length Edges Layout 148

ring topology, Circular Layout 395
root clusters parameter, Circular Layout 404
root node parameter, Tree Layout 171

additional options 171
rotated labels

dependent on label position 512, 552, 586

descriptors 552

S
same shape for multiple links parameter, Link
Layout (short link mode) 348
save to named properties parameter

Bus Layout 373
Circular Layout 400
Grid Layout 419
Hierarchical Layout 243
Link Layout 320
Multiple Layout 486
Random Layout 365
Recursive Layout 461
Topological Mesh Layout 122
Tree Layout 170
Uniform Length Edges Layout 145

saveParametersToNamedProperties method
IlvGrapherAdapter class 621

savePreferredLayoutsToNamedPropertiesmethod
IlvGrapherAdapter class 623

saving
label layout parameters

to IVL file 578
layout parameters 619

using named properties 578
preferred layout 619

SDM model
nested 438
versus graph model 607

self-link style parameter, Link Layout (short link
mode) 343
semi-automatic layout 16, 80
setAlignment method

IlvTreeLayout class 182, 183
setAspectRatio method

IlvTreeLayout class 211
setBranchOffset method

IlvTreeLayout class 194, 212
setBus method

IlvBusLayout class 377
setConnectorStyle method

IlvTreeLayout class 189
setCoordinatesMode method

IlvDefaultLabelingModel class 577
IlvGrapherAdapter class 639

setDestinationPointMode method
IlvHierarchicalLayout class 254
IlvLinkLayout class 327

setEastWestNeighboring method
IlvTreeLayout class 223

setExteriorCycleId method
IlvTopologicalMeshLayout class 126

setFilter method
IlvLayoutGraphicFilter class 630

U S I N G G R A P H L A Y O U T A L G O R I T H M S 687

setFirstGraphLayout method
IlvMultipleLayout class 488

setFlowDirection method
IlvTreeLayout class 179

setGlobalAlignment method
IlvTreeLayout class 181, 183

setGlobalDestinationPointMode method
IlvHierarchicalLayout class 253
IlvLinkLayout class 326

setGlobalLinkStyle method
IlvHierarchicalLayout class 249
IlvLinkLayout class 323, 334, 346
IlvTreeLayout class 186

setGlobalOriginPointMode method
IlvHierarchicalLayout class 253
IlvLinkLayout class 326

setHorizontalAlignment method
IlvGridLayout class 424

setInvisibleRootUsed method
IlvTreeLayout class 213

setLabelLayout method
IlvMultipleLayout class 488

setLayoutMode method
IlvTreeLayout class 174, 178, 200, 206, 210

setLayoutOfConnectedComponents method
IlvGraphLayout class 616

setLayoutOfConnectedComponentsEnabledmethod
IlvGraphLayout class 616
IlvTreeLayout class 213

setLayoutRegion method
IlvRandomLabelLayout class 570

setLevelAlignment method
IlvTreeLayout class 202

setLinkClipInterface method
IlvGraphLayout class 193, 255, 410

setLinkConnectionBoxInterface method
IlvGraphLayout class 192, 255, 411

setLinkStyle method
IlvHierarchicalLayout class 250
IlvLinkLayout class 334, 347
IlvTreeLayout class 187

setOriginPointMode method
IlvHierarchicalLayout class 254
IlvLinkLayout class 327

setOrthForkPercentage method
IlvTreeLayout class 195

setOverlapPercentage method
IlvTreeLayout class 195

setParentChildOffset method
IlvTreeLayout class 194, 212

setPosition method
IlvTreeLayout class 172

setPreferredLayout method

IlvDefaultLayoutProvider class 476
setProperty method

IlvGraphModel class 613
IlvLabelingModel class 584

setReferenceTransformer
IlvLayoutGraphicFilter class 638

setReferenceTransformer method
IlvDefaultLabelingModel class 576

setReferenceView
IlvLayoutGraphicFilter class 637

setReferenceView method
IlvDefaultLabelingModel class 576

setRoot method
IlvTreeLayout class 171

setRootPreference method
IlvTreeLayout class 171

setSecondGraphLayout method
IlvMultipleLayout class 488

setSiblingOffset method
IlvTreeLayout class 194, 212

setSpecNodeLevelIndex method
IlvHierarchicalLayout class 284

setSpecNodePositionIndex method
IlvHierarchicalLayout class 288

setTerminationPointFilter method
IlvLongLinkLayout class 354

setting a maximal children angle, Tree Layout 215
setting even spacing for the first circle, Tree Layout
213
setting invisible root node parameter, Tree Layout
213
setTipOverBranchOffset method

IlvTreeLayout class 194
setTowardsPreferredPosition method

IlvAnnealingLabelDescriptor class 560
setUseDefaultParameters method

IlvGraphLayout class 109
setVerticalAlignment method

IlvGridLayout class 424
setVerticalOffsetToPreviousLevel method

IlvBusLayout class 388
setWestEastNeighboring method

IlvTreeLayout class 223
short link mode (Link Layout)

algorithm description 316
bypass distance parameter 350
connector style parameter 333
features 314
link box connection interface 350
link crossing penalty parameter 349
link offset parameter 332
minimum final segment parameter 333
number of optimization iterations 344
same shape for multiple links parameter 348

U S I N G G R A P H L A Y O U T A L G O R I T H M S688

self-link style parameter 343
spacing parameters 332

side association for polyline label descriptors 547
side-by-side constraints, Hierarchical Layout 290
simulated annealing 533
spacing parameters

Hierarchical Layout 265
Link Layout (long link mode) 336
orthogonal fork percentage (Tree Layout) 195
overlap percentage (Tree Layout) 195
Tree Layout (free mode) 194, 195
Tree Layout (radial mode) 212

specified provider mode
Recursive Layout 458, 468

spline routing parameter
Tree Layout 169, 243, 320

star center parameter, Circular Layout 403
star topology, Circular Layout 395
static layout 16
stop immediately parameter

Bus Layout 373
Circular Layout 400
Grid Layout 419
Hierarchical Layout 244
in IlvGraphLayout 107
Link Layout 320
Multiple Layout 486
Random Layout 365
Recursive Layout 462
Topological Mesh Layout 122
Tree Layout 170
Uniform Length Edges Layout 145

style file
definition 54
loading 56

style sheets
controlling layout renderers 56
specifying graph layout 29
specifying link layout 35

subgraph correction
Recursive Layout 473

subgraphs
accessing sublayouts 442
individual layout styles 440

sublayouts
Recursive Layout 469

supportsAllowedTime method
IlvGraphLayout class 103, 107

supportsLayoutOfConnectedComponents method
IlvGraphLayout class 616

supportsLayoutRegion method
IlvGraphLayout class 646

supportsPreserveFixedNodes method
IlvGraphLayout class 107

supportsSaveParametersToNamedProperties
method

IlvGraphLayout class 620
IlvLabelLayout class 578

swim lane constraint, Hierarchical Layout 294
symmetries layout criteria 15

T
time, stop computation algorithms 89
tip-over alignment, Tree Layout (free mode) 183
tip-over layout modes (Tree Layout)

aspect ratio parameter 217
description 217
tip leaves over 218
tip over fast 219
tip roots and leaves over 219
tip roots over 219

Topological Mesh Layout
applicable graph types 115
application domains 115
description of algorithm 117
features 116
generic parameters 120
limitations 116
link clipping parameter 121, 132
link connection box parameter 121
link style parameter 123
nodes placement algorithm 124
nodes placement allowed time parameter 124
nodes placement iterations parameter 124
optimization allowed time parameter 123
optimization iterations parameter 123
outer cycle parameter 126
refining a layout 129
sample drawings 114
specific parameters 123
using fixed nodes parameter to refine 129
using layout region parameter to refine 131
using outer cycle parameter to refine 131

Tree Layout
adding an invisible root node (radial mode)
213
algorithm description 165
alternating radial mode 209
applicable graph types 161
application domains 162
aspect ratio parameter (tip-over mode) 217
aspect ration parameter 211
compass directions 173
connector style parameter 189
evenly spaced first circle (radial mode) 213
features 163
flow direction parameter 179
free layout mode 177
generic parameters 168
global link style parameter 186

U S I N G G R A P H L A Y O U T A L G O R I T H M S 689

incremental mode 473
individual link style parameter 187
interactive editing 226
layout modes 174
level alignment parameter 202
level layout mode 199
limitations 163
link clipping parameter 169, 193
link connection box parameter 169, 192
link style parameter 186
making incremental changes 225
orthogonal fork percentage 195
overlap percentage parameter 195
position parameter 172
radial layout mode 205
respect node sizes 195
retrieving link categories 224
retrieving list of root nodes used by algorithm
171
retrieving list of specified root nodes 171
root node parameter 171

additional options 171
sample drawings 160
setting a maximal children angle (radial
mode) 215
setting a root node 171
spacing parameters (free mode) 194
spacing parameters (radial mode) 212
specific parameters 171
specification in CSS

in subgraphs 439
specifying east-west neighbors 223
specifying root node preference 171
specifying the order of children 226
tip-over alignment (free mode) 183
tip-over layout modes 217

U
Uniform Length Edges Layout

additional node repulsion weight 152
applicable graph types 139
application domains 139
description 142
features 141
force fit to layout region parameter 149
generic parameters 144
limitations 141
link clipping parameter 145, 156
link connection box parameter 145
link length weight 151
link style parameter 146
maximum allowed move per iteration 151
node distance threshold 154
number of iterations parameter 147
preferred length parameter 147
respect node sizes parameter 148

sample drawings 136
specific parameters 146

use default parameters
in IlvGraphLayout 107

V
variable end point parameters, Link Layout (long
link mode) 354
vertical offset parameter, Bus Layout 387
vertical offset to previous level parameter, Bus
Layout 388

W
width adjusting

Bus Layout 379

Z
zoomable graphic objects 636

U S I N G G R A P H L A Y O U T A L G O R I T H M S690

	Table of contents
	Conventions and Bibliography
	Introducing graph layout
	What is IBM® ILOG® JViews graph layout?
	The concept of graph layout
	The graph layout algorithms
	Structure of the graph layout API
	Common features of graph layout algorithms

	Getting started with graph layout
	Using layout algorithms
	Different ways to use layout algorithms
	Running a graph layout application with a diagram component
	Running the sample IBM® ILOG® JViews Diagrammer application
	Running a graph layout application with link layout
	Running a graph layout application with dynamic layout parameters
	Running the sample application that uses mutable style sheets
	Running the sample application that uses the graph layout API

	Using layout algorithms through the graph layout API
	Using layout algorithms on graphers
	Running the sample application that uses the graph layout API

	Basic concepts
	Graph layout in IBM® ILOG® JViews Diagrammer
	Using graph layout in a diagram component
	Using the graph layout API

	Layout algorithms
	Overview of graph layout information
	Determining the appropriate layout algorithm
	Overview: layout algorithms in CSS
	Typical ways to choose a layout
	Choosing a layout algorithm
	Choosing the layout algorithm dynamically
	Hard-coding a layout at programming time
	Hard-coding a layout at run time

	Generic parameters and features
	Support by algorithms of generic features and parameters
	Base class parameters and features

	Layout characteristics
	Topological Mesh Layout (TML)
	General information on the TML
	Features and limitations of the TML
	The TML algorithm
	Generic features and parameters of the TML
	Specific parameters of the TML
	Refining a graph layout (TML)
	Using a link clipping interface with the TML

	Force-directed or Uniform Length Edges Layout (ULEL)
	General information on the ULEL
	Features and limitations of the ULEL
	The ULEL algorithm
	Generic features and parameters of the ULEL
	Specific parameters of the ULEL
	For experts: additional features of the ULEL
	Using a link clipping interface with the ULEL

	Tree Layout (TL)
	General information on the TL
	Features and limitations of the TL
	The TL algorithm
	Generic features and parameters of the TL algorithm
	Specific parameters (for all tree layout modes)
	Layout modes of the TL algorithm
	Free layout mode
	Overview
	Flow direction
	Alignment parameter
	Link style
	Connector style
	Using a link connection box interface
	Using a link clipping interface
	Spacing parameters

	Level layout mode
	Overview
	General parameters
	Level alignment

	Radial layout mode
	Overview
	General parameters
	Alternating radial mode
	Overview
	Aspect ratio
	Spacing parameters
	Tips and tricks

	Tip-over layout modes
	Recursive mode

	For experts: additional tips for the TL

	Hierarchical Layout (HL)
	General information on the HL
	Features and limitations of the HL
	The HL algorithm
	Generic features and parameters of the HL
	Specific parameters of the HL
	Incremental mode with HL
	Layout constraints for HL
	Specifying constraints in CSS for HL
	Adding and removing constraints in Java for HL
	Level range constraints (HL)
	Level index parameter (HL)
	Same level constraints (HL)
	Group spread constraints (HL)
	Relative level constraints (HL)
	Position index parameter (HL)
	Relative position constraints (HL)
	Side-by-side constraints (HL)
	Extremity constraints (HL)
	Swim lane constraints (HL)
	Summary of constraints file as opposed to constraints in Java (HL)
	Constraint priorities (HL)
	For experts: constraint validation (HL)
	For experts: specifying constraints in CSS directly (HL)
	For experts: more indices (HL)
	Recursive layout

	Link layout (LL)
	General information on the LL
	Features and limitations of the LL
	The LL algorithms
	Generic features and parameters of the LL
	Specific parameters for both LL modes
	Spacing parameters in short link mode
	Spacing parameters in long link mode
	For experts: additional features of LL
	For experts: special options of the Short LL
	For experts: special options of the Long LL

	Random layout (RL)
	RL sample
	Features and limitations of the RL
	The RL algorithm
	Generic features and parameters of the RL
	Specific parameters of the RL

	Bus layout (BL)
	BL - sample
	Features of the BL
	The BL algorithm
	Generic features and parameters of the BL
	Specific parameters of the BL

	Circular layout (CL)
	General information on the CL
	Features and limitations of the CL
	The CL algorithm
	Generic features and parameters of the CL
	Specific parameters of the CL

	Grid layout (GL)
	General information on the GL
	Features of the GL
	The GL algorithm
	Generic features and parameters of the GL
	Specific parameters of the GL

	Layout exceptions

	Nested layouts
	Concepts for nested layouts
	Layout of nested graphs in IBM® ILOG® JViews Diagrammer
	Nested SDM models and nested graphers
	Specification in CSS for nested graphs
	Accessing sublayouts of subgraphs

	Layout of nested graphs in code
	The classes that support nested graphs
	Order of layouts in recursive layouts
	Simple recursion: applying the same layout to all subgraphers
	Advanced recursion: mixing different layouts in a nested graph

	Recursive layout
	Overview of recursive layout
	Features
	Generic features and parameters

	Recursive layout modes
	Overview of recursive layout modes
	Reference layout mode
	Internal provider mode
	Specified provider mode
	Accessing all sublayouts
	Specific parameters
	For experts: mechanisms for advanced users
	For experts: more on layout providers

	Multiple layout
	General information
	Features
	Generic features and parameters
	Specific parameters
	Accessing sublayouts
	For experts: attaching graph and labeling models
	Combining multiple and recursive layout
	For experts: the reference labeling model

	Automatic label placement
	Getting started with labeling
	Introduction to automatic label placement
	Getting started with Label Layout in a diagram component
	Getting started with Label Layout in Java

	Specifying labels and obstacles
	Labels and obstacles in a diagram component
	Labels and obstacles in Java

	Using the label layout API
	Overview
	The label layout base class and its subclasses
	Instantiating and attaching a subclass of IlvLabelLayout
	Performing a layout
	Performing a recursive layout on nested subgraphs
	The label layout report
	Layout events and listeners
	Layout parameters and features in IlvLabelLayout

	Annealing label layout
	General information
	Features
	Limitations
	The algorithm
	Generic features and parameters
	Label descriptors
	Point label descriptor
	Polyline label descriptor
	Rotated labels
	Specific global parameters
	For experts: implementing your own label descriptors

	Random Label Layout
	Sample
	Features
	The algorithm
	Code sample
	Generic features and parameters
	Specific parameters

	Using advanced features
	General information
	Filtering manager layers
	Transformers for label layout
	Nonzoomable graphic objects as labels and obstacles
	Reference transformer for labeling
	Specifying the mode for labeling coordinates
	Using named properties to save layout parameters

	Defining your own labeling model
	The need for a custom label layout algorithm
	The IlvLabelingModel Class
	The IlvLabelingModelWithRotation Interface
	Subclassing the default labeling model
	Creating a new labeling model

	Using advanced features
	Overview of advanced features
	Using a graph layout report
	Layout report classes
	Creating a layout report
	Accessing a layout report
	Information stored in a layout report

	Using event listeners
	Redrawing the grapher after layout
	Using the Graph Model
	Overview of the graph model
	Graph model and SDM model
	The graph model concept
	The IlvGraphModel class
	Using the class IlvGrapherAdapter

	Laying out a non-JViews grapher
	Laying out connected components of a disconnected graph
	Saving layout parameters and preferred layouts
	Overview of saving
	Saving layout parameters to .ivl files
	Saving preferred layouts to .ivl files
	Loading layout parameters from .ivl files
	Loading preferred layouts from .ivl files
	Additional information for expert users

	Using filtering to lay out a part of an IlvGrapher
	Choosing the layout coordinate space
	General considerations about layout and coordinates
	Transformers for graphers
	Nonzoomable graphic objects as nodes
	Reference transformer for grapher
	Specifying a reference transformer
	Specifying the mode for layout coordinates

	Defining your own type of layout
	A sample custom layout algorithm
	Implementing the layout method

	FAQs about using the layout algorithms
	Releasing resources used during the layout of a grapher

	Using graph layout Beans
	Overview
	Graph layout classes available as Beans
	Creating a simple applet using Beans

	Index

