
IBM ILOG JViews Diagrammer V8.6

Developing hypergraphs

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Using hypergraphs...5
Introducing hypergraphs..6

Managing nodes and hyperedges..9
Connecting nodes with hyperedges...10
Differences between IlvLinkImage and IlvHyperEdge..12
Hyperedge ends...14
Retrieving incident hyperedges at nodes...18

Contact points...21
Overview...22
Using hyperedge connectors..23
Calculating contact points..25
Visible and invisible hyperedge connectors..27
Hyperedge pin connectors...28
Other predefined hyperedge connectors..31

Segmented hyperedges..33
Overview...34
Hyperedge segments...35
The angle of a segment..37
Segment operations...41

Class summary..44

Using more advanced features...45

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Nested hypergraphs..47
Overview...48
Intergraph hyperedges...49
Adding intergraph hyperedges...51
Accessing intergraph hyperedges..53

Advanced use of hypergraphs...54

Index..55

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 64

Using hypergraphs

Introduces the concepts of hypergraphs and hyperedges and tells you how to use them.

In this section

Introducing hypergraphs
Describes the class structure of hypergraphs.

Managing nodes and hyperedges
Describes how to connect nodes using hyperedges, the differences between IlvLinkImage
and IlvHyperEdge, hyperedge ends, and how to retrieve incident hyperedges at nodes.

Contact points
Describes how to use hyperedge connectors and calculate contact points, and discusses
visible and invisible hyperedge connectors, hyperedge pin connectors, and other predefined
types of hyperedge connectors.

Segmented hyperedges
Describes hyperedge segments, their angles and operations, and provides a summary of the
classes used to work with them.

Class summary
Provides a summary of the classes needed for hypergraphs.

© Copyright IBM Corp. 1987, 2009 5

Introducing hypergraphs

Hypergraphs typically occur in applications such as electrical signal diagrams, multiflow
visualization, network management, and UML diagrams.

Hypergraphs are implemented with the class IlvHyperGrapher. Hypergraphs are based on
graphers and extend them with the concept of hyperedges. Hyperedges are links that have
multiple sources and multiple sinks.

A hypergraph is an instance of the class IlvHyperGrapher, a subclass of IlvGrapher (and
of IlvManager). While a normal graph can only contain nodes and links, a hypergraph can
contain three types of object:

♦ Nodes, as in an IlvGrapher.

♦ Links, as in an IlvGrapher, that connect a source node to a target node

♦ Hyperedges, which connect multiple nodes and cannot exist in an IlvGrapher.

The following diagram shows the associations between the classes relevant to hypergraphs.

Classes for hypergraphs

A normal link has exactly two end nodes: a source and a target. Sometimes the source node
is called the origin and the target is called the destination. If the link is directional, an

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 66

arrowhead is drawn at the target node to indicate the direction of the link. A normal graph
has nodes and normal links.

A hyperedge is similar to a link, but can have multiple source nodes and multiple target
nodes; that is, 0, 1, 2, 3, ... nodes. A hyperedge with 0 source nodes and 0 target nodes is
feasible, even though it may not make sense in many applications. There is no restriction in
JViews Diagrammer on how many source or target nodes may exist.

A hypergraph is a graph that can contain hyperedges.

Several nodes connected by one hyperedge

In JViews Diagrammer, graphs, nodes, links, hypergraphs , and hyperedges are implemented
by the classes listed in the following table.

Classes for graphs and hypergraphs
DescriptionClass Name

The base class of every drawable object, that is, for nodes, links, graphs,
hyperedges, and so on. These objects are referred to as graphic objects.

IlvGraphic

Every graphic object other than a link or a hyperedge is always treated
as a node.

A normal graph with normal nodes and links.IlvGrapher

A normal link.IlvLinkImage and its
subclasses

A hypergraph that can contain nodes, links, and hyperedges. It is a
subclass of IlvGrapher. Therefore, it can also contain normal links. An

IlvHyperGrapher

IlvHyperGrapher object is derived from IlvGrapher and from
IlvManager, so it may sometimes be referred to as a grapher or a
manager, depending on the context (functionality typical of IlvGrapher
or IlvManager).When the functionality under discussion is outside these
contexts, the object is called a hypergraph.

A hyperedge. This class is a subclass of IlvGraphic and not of
IlvLinkImage. Therefore, hyperedges are incompatible with normal

IlvHyperEdge

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 7

DescriptionClass Name

links. Even so, the end nodes of hyperedges are normal nodes (instances
of IlvGraphic).

A special subclass of IlvHyperEdge.Therefore, this is also a hyperedge.IlvSegmentedHyperEdge

The following diagram shows an example of a hypergraph with many hyperedges used in
an electrical signal diagram. The hyperedges are shown in red.

An electrical signal diagram with hyperedges

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 68

Managing nodes and hyperedges

Describes how to connect nodes using hyperedges, the differences between IlvLinkImage
and IlvHyperEdge, hyperedge ends, and how to retrieve incident hyperedges at nodes.

In this section

Connecting nodes with hyperedges
Shows how to add a node to a hypergraph, how to connect several nodes via a hyperedge,
and provides an example of creating a hypergraph with four nodes and a hyperedge.

Differences between IlvLinkImage and IlvHyperEdge
Describes the IlvLinkImage and IlvHyperEdge classes and discusses orientation and
changing the end nodes of a link.

Hyperedge ends
Describes how hyperedges can have not only multiple end nodes, but multiple ends at the
same node.

Retrieving incident hyperedges at nodes
Defines the methods for retrieving links or hyperedges incident to a node.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 9

Connecting nodes with hyperedges

To connect multiple nodes by a hyperedge, you must create the nodes and add them to the
hypergraph. This works in IlvHyperGrapher exactly in the same way as in IlvGrapher.

To add a node:

♦ Call one of the following methods:

♦ void addNode(IlvGraphic obj, boolean redraw)

♦ addNode(ilog.views.IlvGraphic, int, boolean)

To connect several nodes by a hyperedge:

1. Create the hyperedge.

The constructor of the hyperedge is:

IlvHyperEdge(ilog.views.IlvGraphicVector, ilog.views.IlvGraphicVector)

While the constructor of IlvLinkImage takes only one node as the from or the to node,
the constructor of IlvHyperEdge takes a vector of nodes as from and to nodes.

2. Add the hyperedge to the hypergraph with one of the following methods:

♦ addHyperEdge(ilog.views.hypergraph.IlvHyperEdge, boolean)

♦ addHyperEdge(ilog.views.hypergraph.IlvHyperEdge, int, boolean)

The layer parameter in the second method specifies the manager layer where the
hyperedge is placed. If the layer parameter is missing, the link insertion layer,
which is obtained by using the method getLinkInsertionLayer(), is used to place
the hyperedge.

The following code example shows how to create a hypergraph, four nodes, and a hyperedge.

Creating a hypergraph with four nodes and a hyperedge

IlvHyperGrapher grapher = new IlvHyperGrapher();
IlvGraphicVector fromNodes = new IlvGraphicVector();
IlvGraphicVector toNodes = new IlvGraphicVector();
IlvGraphic node1 = new IlvLabel(new IlvPoint(0,0), "node 1");
IlvGraphic node2 = new IlvLabel(new IlvPoint(100,0), "node 2");
IlvGraphic node3 = new IlvLabel(new IlvPoint(100,30), "node 3");
IlvGraphic node4 = new IlvLabel(new IlvPoint(100,60), "node 4");
grapher.addNode(node1, false);
grapher.addNode(node2, false);
grapher.addNode(node3, false);
grapher.addNode(node4, false);
fromNodes.addElement(node1);
toNodes.addElement(node2);
toNodes.addElement(node3);
toNodes.addElement(node4);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 610

IlvHyperEdge edge = new IlvHyperEdge(fromNodes, toNodes);
grapher.addHyperEdge(edge, false);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 11

Differences between IlvLinkImage and IlvHyperEdge

The classes IlvLinkImage and IlvHyperEdge differ in the following areas:

♦ Orientation

♦ Changing end nodes of a link

Orientation
Normal links (IlvLinkImage) have a flag that indicates whether they are oriented. If the
links are oriented, an arrowhead will be drawn. The orientation flag is necessary because,
if an arrowhead were always drawn, then there would be no way of drawing a link between
two nodes that did not represent a flow direction.

Hyperedges are always oriented. Therefore, an arrowhead is drawn at the target nodes and
this arrowhead cannot be switched off.

This feature is not a restriction. If you want to draw a hyperedge between several nodes
without an arrowhead, create a hyperedge that has all these nodes as sources, but has no
target node.

You can also create a hyperedge that has only target nodes, but no source node. In this case,
an arrowhead is drawn at all end nodes of the hyperedge.

You can see that hyperedges are much more flexible than normal links.

If a hyperedge has exactly one source node and one target node, then it will look like, and
behave approximately as, a normal oriented link.

If a hyperedge has exactly two source nodes and zero target nodes, then it will look like a
normal unoriented link.

Changing end nodes of a link
To change the end nodes of an IlvLinkImage object, you must remove the IlvLinkImage
from the graph. Then you must change the end nodes and reinsert the link into the graph.

Changing the end nodes of an IlvHyperEdge object is more convenient. The end nodes can
be changed while the hyperedge remains in the hypergraph. For example, you can add an
empty hyperedge with zero end nodes to the hypergraph. Then you can add source and
target nodes later. You must encapsulate all operations that change the end nodes of a
hyperedge into applyToObject(ilog.views.IlvGraphic, ilog.views.IlvApplyObject,
java.lang.Object, boolean) sessions. See Modifying geometric properties of objects in
The Essential Features of JViews Framework user documentation for more details.

The operations that can be carried out on IlvHyperEdge are shown in the following table.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 612

Operations on IlvHyperEdge
DescriptionOperation

Removes all old source nodes from the hyperedge and adds all nodes
contained in the input vector as new source nodes of the hyperedge.

setFrom(nodeVector)

Removes all old target nodes from the hyperedge and adds all nodes
contained in the input vector as new targets of the hyperedge.

setTo(nodeVector)

Adds the input node to the list of source nodes of the hyperedge.addFrom(node)

Adds the input node to the list of target nodes of the hyperedge.addTo(node)

Removes the input node from the list of source nodes of the hyperedge.removeFrom(node)

Removes the input node from the list of target nodes of the hyperedge.removeTo(node)

The following code example shows how to create an empty hyperedge, add it to the
hypergraph, and then add some source nodes.

Creating an empty hyperedge and adding source nodes

IlvHyperGrapher grapher = new IlvHyperGrapher();
grapher.setMinHyperEdgeEndCount(0);
...
IlvHyperEdge edge = new IlvHyperEdge();
grapher.addHyperEdge(edge, false);
...
grapher.applyToObject(edge,
new IlvApplyObject() {
public void apply(IlvGraphic obj, Object arg) {
((IlvHyperEdge)obj).addFrom(node1);
((IlvHyperEdge)obj).addFrom(node2);
((IlvHyperEdge)obj).addFrom(node3);

}
}, arg, redraw);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 13

Hyperedge ends

Normal links (IlvLinkImage) can be incident to one node at most twice: if the link is a
selfloop, that is, if the source and target of the link is the same node, then the link will occur
in the list of incident links at the node twice. Both ends of the link are easily distinguishable,
because one is the source end and the other is the target end.

Not only can a hyperedge (IlvHyperEdge) have multiple end nodes, but it can also have
multiple ends at the same node. Therefore this link is incident to the node multiple times.
For example, if you call addFrom(ilog.views.IlvGraphic)multiple times for the same node
at the same hyperedge, this hyperedge will have multiple source ends at that node. See the
following figure.

Multiple ends at the same node

How can you distinguish the different ends of the hyperedge at the node?
The interface IlvHyperEdgeEnd serves as the end indicator of a hyperedge. Instances of this
interface are called the hyperedge ends. The default implementation is
IlvDefaultHyperEdgeEnd.

The hyperedge ends technically belong to the hyperedge and not to the node. They point to
the end node.

If a source or target node is added to the hyperedge, a new hyperedge end is created
internally and connects the hyperedge to the node. If the hyperedge is removed from the
hypergraph, all ends of the hyperedge will also be removed.

If a hyperedge connects to one node multiple times, there will be multiple different instances
of IlvHyperEdgeEnd stored in the hyperedge. All these instances point to the node. The
hyperedge ends can be distinguished from each other, even though the corresponding end
node is the same.

The following table shows methods included in the API of IlvHyperEdgeEnd.

Methods of IlvHyperEdgeEnd
DescriptionMethod

Returns the hyperedge that contains the specified end.getHyperEdge()

Returns the node that is connected to the hyperedge by the end.getNode()

Returns the position of the end. The input transformer indicates
the coordinate system (untransformed manager coordinates or

getPosition(ilog.views.
IlvTransformer, boolean)

transformed view coordinates if t is the transformer for drawing

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 614

DescriptionMethod

the hyperedge). Usually, you should pass the value true for
the flag.

Sets the position of the end.setPosition(ilog.views.
IlvPoint, ilog.views.
IlvTransformer)

The following table shows the API of IlvHyperEdge in more detail. It explains how the
operations influence the hyperedge ends and which additional API exists for manipulating
the hyperedge ends directly at the hyperedge.

Methods of IlvHyperEdge
DescriptionAPI

Creates a new hyperedge end that points to the input node. The
hyperedge end is stored as source in the hyperedge. Finally, the

addFrom(ilog.views.
IlvGraphic)

hyperedge end is returned, so that you can use it to set the precise
position of the hyperedge end. Note that this modifies the geometry of
the hyperedge and therefore must be encapsulated in an
applyToObject(ilog.views.IlvGraphic, ilog.views.
IlvApplyObject, java.lang.Object, boolean) session.

Creates a new hyperedge end that points to the input node. The
hyperedge end is stored as target in the hyperedge. Finally, the

addTo(ilog.views.
IlvGraphic)

hyperedge end is returned, so that you can use it to set the precise
position of the hyperedge end. Note that this modifies the geometry of

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 15

DescriptionAPI

the hyperedge and therefore must be encapsulated in an
applyToObject session.

Collects all source hyperedge ends that point to the input node. These
ends are removed from the sources of the hyperedge.

removeFrom(ilog.views.
IlvGraphic)

Collects all target hyperedge ends that point to the input node. These
ends are removed from the targets of the hyperedge.

removeTo(ilog.views.
IlvGraphic)

Removes one source hyperedge end. Other hyperedge ends are not
affected, even if they point to the same node.

removeFrom(ilog.views.
hypergraph.
IlvHyperEdgeEnd)

Removes one target hyperedge end. Other hyperedge ends are not
affected, even if they point to the same node.

removeTo(ilog.views.
hypergraph.
IlvHyperEdgeEnd)

Returns the source nodes of the hyperedge. Each node occurs at the
most once in the enumeration, even if multiple hyperedge ends point
to this node.

getFrom()

Returns the target nodes of the hyperedge. Each node occurs at the
most once in the enumeration, even if multiple hyperedge ends point
to this node.

getTo()

Returns the number of source nodes of the hyperedge.getFromCount()

Returns the number of target nodes of the hyperedge.getToCount()

Returns the source hyperedge ends.getFromEnds()

Returns the target hyperedge ends.getToEnds()

Returns the number of source hyperedge ends.getFromEndsCount()

Returns the number of target hyperedge ends.getToEndsCount()

As a general rule, when the end nodes are retrieved or counted, a node occurs once only,
even if there are multiple ends at a node. When the ends are retrieved or counted, multiple
ends that point to the same node occur as distinguishable items. Therefore, the following
equation is true:

edge.getFromCount() <= edge.getFromEndsCount()
edge.getToCount() <= edge.getToEndsCount()

You should never remove source nodes or source ends while iterating over the
objects returned by getFrom() or getFromEnds().

Important:

You should never remove target nodes or target ends while iterating over the
objects returned by getTo() or getToEnds().

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 616

The class IlvHyperEdge has other useful API, such as API for retrieving the ends or end
nodes in an array, which is convenient if you need to remove the ends, or for checking
whether a given end is source or target. See the reference documentation of IlvHyperEdge
for details.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 17

Retrieving incident hyperedges at nodes

Nodes are any IlvGraphic object that is added to the graph by a call to addNode(ilog.
views.IlvGraphic, boolean). Instances of IlvLinkImage or IlvHyperEdge cannot be added
as nodes to the hypergraph; they must be added as links (by a call to addLink(ilog.views.
IlvLinkImage, boolean)) or as hyperedges (by a call to addHyperEdge(ilog.views.
hypergraph.IlvHyperEdge, boolean)).

The same node can serve as end node for normal links and for hyperedges. IlvHyperGrapher
provides different API for retrieving links or hyperedges that are incident to a node.

Methods for retrieving links or hyperedges incident to a node
DescriptionAPI

Returns the normal links (IlvLinkImage) that have the
node as source, but does not return any hyperedges.

getLinksFrom(ilog.views.
IlvGraphic)

Returns the normal links (IlvLinkImage) that have the
node as target, but does not return any hyperedges.

getLinksTo(ilog.views.
IlvGraphic)

Returns the hyperedges (IlvHyperEdge) that have the
node as source, but does not return any normal links.

getHyperEdgesFrom(ilog.views.
IlvGraphic)

Returns the hyperedges (IlvHyperEdge) that have the
node as target, but does not return any normal links.

getHyperEdgesTo(ilog.views.
IlvGraphic)

Returns the number of normal links that have the node as
source.

getLinksFromCount(ilog.views.
IlvGraphic)

Returns the number of normal links that have the node as
target.

getLinksToCount(ilog.views.
IlvGraphic)

Returns the number of hyperedges that have the node as
source.

getHyperEdgesFromCount(ilog.
views.IlvGraphic)

Returns the number of hyperedges that have the node as
target.

getHyperEdgesToCount(ilog.views.
IlvGraphic)

A hyperedge can have the same source node or the same target node multiple times. Say
that a hyperedge, linkA, has the node, nodeB, five times as source node. (See the following
figure.) By calling the methods shown in table Methods for retrieving links or hyperedges
incident to a node, linkA would occur once only, even if it is incident to a node multiple
times; that is, grapher.getHyperEdgesFrom(nodeB) would return linkA once only and
grapher.getHyperEdgesFromCount(nodeB) would count linkA once only.

Multiple ends at the same node

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 618

Multiple occurrences of the same source or target node are distinguished by the hyperedge
end. The hyperedge linkA has five different hyperedge ends that point to nodeB. Therefore,
IlvHyperGrapher provides methods for retrieving the hyperedge ends incident to a node.
These methods are shown in the following table.

Methods for retrieving hyperedge ends
DescriptionMethod

Returns the hyperedge ends (IlvHyperEdgeEnd) of those
hyperedges that have the node as source.

getHyperEdgeEndsFrom(ilog.views.
IlvGraphic)

Returns the hyperedge ends (IlvHyperEdgeEnd) of those
hyperedges that have the node as target.

getHyperEdgeEndsTo(ilog.views.
IlvGraphic)

Returns the number of hyperedge ends of those hyperedges
that have the node as source.

getHyperEdgeEndsFromCount(ilog.
views.IlvGraphic)

Returns the number of hyperedge ends of those hyperedges
that have the node as target.

getHyperEdgesToCount(ilog.views.
IlvGraphic)

In the example illustrated by the figure Multiple ends at the same node, grapher.
getHyperEdgeEndsFrom(nodeB) returns five different ends for the link linkA and grapher.
getHyperEdgeEndsFromCount(nodeB) counts linkA five times, because it actually counts
the ends of linkA.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 19

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 620

Contact points

Describes how to use hyperedge connectors and calculate contact points, and discusses
visible and invisible hyperedge connectors, hyperedge pin connectors, and other predefined
types of hyperedge connectors.

In this section

Overview
Provides an overview of hyperedge connectors and their contact points.

Using hyperedge connectors
Describes the class used to define hyperedge connectors.

Calculating contact points
Defines the methods used to create or manipulate hyperedges and shows how to implement
a new hyperedge connector and retrieve the end points of a hyperedge.

Visible and invisible hyperedge connectors
Discusses the distinctions between visible and invisible hyperedge connectors, and the
different methods used to work with them.

Hyperedge pin connectors
Describes the subclass and methods used to define hyperedge pin connectors.

Other predefined hyperedge connectors
Lists additional predefined hyperedge connectors available in IBM® ILOG® JViews
Diagrammer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 21

Overview

A hyperedge connects the nodes at the point retrieved by the method getPosition(ilog.
views.IlvTransformer, boolean). The default implementation IlvDefaultHyperEdgeEnd
stores the connection in the end itself, relative to the node position. If the node is moved,
the hyperedge end will follow the node. The stored connection point can be moved freely
by a call to setPosition(ilog.views.IlvPoint, ilog.views.IlvTransformer).

The effect is similar to that of IlvFreeLinkConnector on IlvLinkImage.

There is a facility for restricting the connection point to certain predefined points by using
the hyperedge connector. For example, you can restrict the connection to pin points on the
node border or to the center of the node. When a hyperedge connector is used, the connection
point is no longer freely movable. It is controlled by the hyperedge connector, which decides
whether and how the connection point can be changed.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 622

Using hyperedge connectors

The purpose of the class IlvHyperEdgeConnector is comparable to that of the class
IlvLinkConnector for links. The class IlvHyperEdgeConnector is the base class of all
hyperedge connectors. It computes the connection points of IlvHyperEdge objects at nodes.
Subclasses of the abstract base class IlvHyperEdgeConnector can be implemented to obtain
different contact points.

A hyperedge connector can be attached to a hyperedge or to a node.

If it is attached to a hyperedge, it will control all connection points of this hyperedge at the
nodes.

If it is attached to a node, it will control all connection points of hyperedges at the node,
except for those hyperedges that do not have their own connector.

To specify that a hyperedge connector is to be used:

1. Allocate the connector.

2. Attach it to the node (see the following code example).

Attaching a hyperedge connector to a node

IlvHyperEdgeConnector connector = new IlvHyperEdgeCenterConnector();
connector.attach(node, redraw);

-- or --

♦ Attach it to the hyperedge (see the following code example).

Attaching a hyperedge connector to a hyperedge

IlvHyperEdgeConnector connector = new IlvHyperEdgeCenterConnector();
connector.attach(hyperedge, redraw);

The same hyperedge connector cannot be shared between several nodes or hyperedges.
You need to allocate a new connector for each node or each hyperedge.

If you want to stop using a hyperedge connector, detach it:

connector.detach(redraw);

When you attach or detach a hyperedge connector, the end points of the hyperedges can
change. Therefore, you must specify by using the redraw flag whether the hyperedges are
to be redrawn.

To access a hyperedge connector that is responsible for a specific hyperedge end:

♦ Use the call shown in the following code example:

Accessing the hyperedge connector for a specific hyperedge end

IlvHyperEdgeEnd hyperEdgeEnd = ...

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 23

IlvHyperEdgeConnector connector = IlvHyperEdgeConnector.Get(hyperEdgeEnd)
;

The call to this method returns the connector of the hyperedge that has the specified end
or, if the edge has no connector, it will return the connector of the node connected to that
end. If it returns null, no connector at all is used.

To access the connector attached to a specific node or hyperedge:

♦ Use the call shown in the following code example:

Accessing the hyperedge connector for a specific node or hyperedge

IlvHyperEdgeConnector connector =
IlvHyperEdgeConnector.GetAttached(nodeOrHyperEdge);

The call to this method returns the hyperedge connector of the node or of the hyperedge,
even if this hyperedge connector is not currently responsible for the calculation of the end
points of any hyperedge.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 624

Calculating contact points

Interactors that allow you to create or manipulate hyperedges typically call the following
methods of IlvHyperEdgeConnector to connect a hyperedge end to or disconnect it from a
node:

♦ connect(ilog.views.hypergraph.IlvHyperEdgeEnd, ilog.views.IlvPoint, ilog.
views.IlvTransformer)

♦ disconnect(ilog.views.hypergraph.IlvHyperEdgeEnd)

To implement a new hyperedge connector:

♦ Call the methods:

getClosestConnectionPoint(ilog.views.hypergraph.IlvHyperEdgeEnd, ilog.
views.IlvPoint, ilog.views.IlvTransformer)

This method is called when a hyperedge end needs to be connected to a node at position
p. This position might be unsuitable for the connector. Therefore, the method
getClosestConnectionPoint can return the closest suitable connection point. It can
be useful to store this connection point internally in the connector, so that it can be
retrieved quickly.

-- or --

getConnectionPoint(ilog.views.hypergraph.IlvHyperEdgeEnd, ilog.views.
IlvTransformer)

This method is called when a hyperedge end is already connected. It returns the
connection point for the hyperedge end. This can be the connection point that was
previously stored. If no connection point was previously stored, the method must
calculate an appropriate connection point for the end.

When the disconnect method is called, the storage of the connection point can finally be
cleared to avoid memory leaks.

The class IlvHyperEdgeConnectorWithCache implements hyperedge connectors
with a cache storage for connection points that handles the storing and cleaning up of
the cache automatically.

Note:

To retrieve the end points of a hyperedge:

♦ Call the method:

getPosition(ilog.views.IlvTransformer, boolean)

See Hyperedge ends.

If the flag checkConnector is true, this method asks the connector for the position by calling
getConnectionPoint at IlvHyperEdgeConnector.

If the flag checkConnector is false, the method does not ask the connector for the position.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 25

Usually, when a hyperedge is drawn or manipulated, the value true is always passed for the
parameter checkConnector. Therefore, the hyperedge ends at the point returned by
getConnectionPoint from the connector.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 626

Visible and invisible hyperedge connectors

In contrast to IlvLinkConnector, the class IlvHyperEdgeConnector is a subclass of
IlvGraphic and can display the contact points in the hypergraph. For example, it is useful
to display the pins of a pin connector permanently at the nodes that represent electrical
circuits in a signal diagram.

Not all subclasses of IlvHyperEdgeConnector use this facility. Like IlvGraphic, some
connector classes need to display visible parts. Like IlvLinkConnector, other connector
classes are only a logical computation facility for the contact points. Thus, the class
IlvHyperEdgeConnector is a mix of a graphic object and a connection calculation algorithm.

Visible hyperedge connectors need to implement the method isGraphic() to return true.
They also need to implement all the usual methods of IlvGraphic, namely draw(java.awt.
Graphics, ilog.views.IlvTransformer), boundingBox(ilog.views.IlvTransformer),
and contains(ilog.views.IlvPoint, ilog.views.IlvPoint, ilog.views.
IlvTransformer).

Invisible hyperedge connectors need to implement the method isGraphic() to return false.
They do not need to implement the usual methods of IlvGraphic, because when isGraphic
() returns false these connectors will not be used as graphic objects.

Visible hyperedge connectors can only be attached to nodes, not to hyperedges. The position
of a visible hyperedge connector is always the same position as the node. When the node is
moved, the hyperedge connector is automatically moved with the node. When the node is
removed or inserted into a different hypergraph, the hyperedge connector is automatically
removed and inserted into the same hypergraph as the node; that is, you need only to attach
the connector to the node and the entire handling of the hyperedge connector as a graphic
object is done automatically.

The only predefined visible hyperedge connector is IlvHyperEdgePinConnector. All other
predefined hyperedge connectors are invisible connectors. See IlvHyperEdgeConnector for
additional information.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 27

Hyperedge pin connectors

The subclass IlvHyperEdgeConnector allows hyperedges to connect to pins at the node.
(See the following figure.) Optionally, the pins can be visible. Thus, the pin connector is a
visible connector, that is, isGraphic() returns true. The pin connector contains a set of
pins.

Pin connector

A pin is implemented by the class IlvHyperGrapherPin or its subclasses. Before a pin can
be used, it must be added to the corresponding pin connector. The API of
IlvHyperEdgePinConnector includes the methods listed in the following table.

Methods of IlvHyperEdgePinConnector
DescriptionMethod

Adds the pin to the hyperedge pin connector. If the
redraw flag is true and the pin is visible, it will be
redrawn.

addPin(ilog.views.hypergraph.
edgeconnector.IlvHyperGrapherPin,
boolean)

Removes the pin from the hyperedge pin connector. If
the redraw flag is true and the pin was visible, the area
of the pin will be redrawn.

removePin(ilog.views.hypergraph.
edgeconnector.IlvHyperGrapherPin,
boolean)

Returns all pins of the hyperedge pin connector.getPins()

Returns the number of pins in the hyperedge pin
connector.

getPinsCount()

Returns the closest pin that is suitable for the hyperedge
end at the input point p.

getClosestPin(ilog.views.
hypergraph.IlvHyperEdgeEnd, ilog.
views.IlvPoint, ilog.views.
IlvTransformer)

Connects the hyperedge end to the input pin. The pin
must belong to the hyperedge pin connector. The

connect(ilog.views.hypergraph.
IlvHyperEdgeEnd, ilog.views.

connector must be attached to a node and the hyperedge
end must point to this node.

hypergraph.edgeconnector.
IlvHyperGrapherPin)

The class IlvHyperGrapherPin is a concrete class that is ready to use. It displays a pin as
a small rectangle at the border of the node.

You can also create subclasses of IlvHyperGrapherPin. You can specify whether it is possible
to connect only one or several hyperedge ends to the same pin. You can restrict even more
tightly which hyperedge ends can connect to a pin by overriding the method allow(ilog.
views.hypergraph.IlvHyperEdgeEnd).

The API of IlvHyperGrapherPin includes the methods listed in.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 628

Methods of IlvHyperGrapherPin
DescriptionMethod

Returns the hyperedge ends that are currently connected to
the pin.

getConnectedEnds()

Tests whether the input hyperedge end is connected to this
pin.

isConnected(ilog.views.
hypergraph.IlvHyperEdgeEnd)

Returns whether the hyperedge end is allowed to be connect
to the pin.

allow(ilog.views.hypergraph.
IlvHyperEdgeEnd)

Returns the position of the pin in transformed view coordinates.getPosition(ilog.views.
IlvTransformer)

Sets the position of the pin in transformed view coordinates.setPosition(ilog.views.
IlvPoint, ilog.views.
IlvTransformer)

Sets whether the pin is currently selected. A selected pin is
drawn in a different color from unselected pins. Usually, pins
get selected during interactions that manipulate pins.

setSelected(boolean)

Sets whether the pin is movable interactively. Interactors check
whether pins are movable before calling setPosition on the
pin.

setMovable(boolean)

Sets whether multiple hyperedge ends can be connected to
the same pin. If false is passed, a different pin must be used
for each hyperedge end.

setAllowMultiConnection
(boolean)

The position of the pin is the position where the pin is drawn. It is the center point of the
pin, since pins can have a size.

To create a pin, use the constructor:

IlvHyperGrapherPin(IlvPoint proportionalLocation,
IlvPoint absoluteLocation,
float size,
int direction)

The position of the pin is specified by a proportional part and by an absolute part. The
proportional part is a position relative to the bounding box of the node. If the proportional
location is (0,0), it will be the top left corner of the node. If the proportional location is (1,1),
it will be the bottom right of the node. The real position is calculated in the following way:

pin.position = node.position + proportionalLocation * node.size +
absoluteLocation

Hyperedges can connect to the pin position (the center point of the pin). Since pins have a
size, it is sometimes useful to connect the hyperedges to a different point. If the pin is on
the left side of the node, it is better to connect the hyperedge to the left side of the pin. If
the pin is on the right side of the node, it is better to connect the hyperedge to the right
side of the pin.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 29

This behavior can be controlled by a direction parameter passed to the constructor of the
pin. If you pass the direction 0, the pin will decide heuristically which is the best point of
the pin to connect a hyperedge to.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 630

Other predefined hyperedge connectors

Other hyperedge connectors are available as shown in the following table.

More predefined hyperedge connectors
DescriptionConnector

Connects the hyperedge to the center of
the node. This connector is similar to

IlvHyperEdgeCenterConnector

IlvCenterLinkConnector for
IlvLinkImage

Clips the hyperedge at the node border.
This connector is similar to

IlvHyperEdgeClippingConnector

IlvClippingLinkConnector for
IlvLinkImage.

These hyperedge connectors are invisible connectors, that is, isGraphic() returns false.They
can be attached to nodes and hyperedges.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 31

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 632

Segmented hyperedges

Describes hyperedge segments, their angles and operations, and provides a summary of the
classes used to work with them.

In this section

Overview
Provides an overview of segmented hyperedges, and how they differ from standard
hyperedges.

Hyperedge segments
Describes segmented hyperedges, segment trees, and how to retrieve the segments of a
hyperedge.

The angle of a segment
Defines the different angles of a hyperedge segment.

Segment operations
Describes the operations of hyperedge segments, and the methods used to work with them.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 33

Overview

IlvHyperEdge is the base class for hyperedges. It is comparable to IlvLinkImage, which is
the base class for links.

IlvHyperEdge draws a star-like shape from a center point of the hyperedge to the ends of
the hyperedge.

For many applications, the star-like shape is inappropriate, because applications prefer
specific shapes, such as a shape consisting of orthogonal segments. To create such shapes,
use the class IlvSegmentedHyperEdge, which is a subclass of IlvHyperEdge. The following
figure shows examples of IlvHyperEdge (on the left) and IlvSegmentedHyperEdge (on the
right).

Hyperedge and segmented hyperedge

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 634

Hyperedge segments

An IlvSegmentedHyperEdge object has a shape that consists of line segments. The line
segments form branches that connect all hyperedge ends. Therefore, the segments can be
connected to other segments and can be connected to hyperedge ends at a node. We call a
segment incident to a node an end segment, and the other segments the inner segments.
The segments of a hyperedge form an unrooted, undirected segment tree.

A segmented hyperedge with its segment tree

In the figures above:

♦ The dashed lines indicate the segments that are incident.

♦ The red lines indicate which segments are connected to end nodes.

♦ The segments a, b, d, and g are end segments; the segments c, e, and f are inner segments.

You may be surprised that the segment tree is undirected, even though the hyperedge may
be directed. The direction of the hyperedge comes from the fact that arrow heads are drawn
at certain end points. This direction is irrelevant for the segment tree; that is, there is no
root of the segment tree, but each segment has several (or 0) incident segments. By starting
at an arbitrary segment, an algorithm can traverse all incident segments recursively without
running into a cycle. Therefore it is an unrooted, undirected segment tree.

A segment is implemented by the inner class IlvSegmentedHyperEdge.Segment. To retrieve
all segments of a hyperedge, make the call shown in the following code example.

Retrieving all segments of a hyperedge

IlvSegmentedHyperEdge seghyperedge = ...
Iterator iterator = seghyperedge.getSegments();

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 35

while (iterator.hasNext()) {
IlvSegmentedHyperEdge.Segment segment =
(IlvSegmentedHyperEdge.Segment)iterator.next();

...
}

The API of IlvSegmentedHyperEdge.Segment includes the methods listed in the following
table.

Methods of IlvSegmentedHyperEdge.Segment
DescriptionMethod

Returns the hyperedge that owns the segment.getHyperEdge()

Returns the hyperedge ends of the segment if it is an end
segment. If it returns an empty array, the segment is an inner
segment.

getEnds()

Returns the number of incident segments.getIncidentSegmentsCount()

Returns the incident segment with index i. The index of
incident segments starts at 0.

getIncidentSegment(int)

Tests whether two segments are incident.isIncident(ilog.views.
hypergraph.
IlvSegmentedHyperEdge.Segment)

If two segments A and B are connected, then A will have B as incident segment and B will
have A as incident segment. This allows traversal of the incident segments in any direction.
To avoid running into a loop, you only have to make sure that you do not visit the segment
again where you immediately came from. Themethod in the following code example illustrates
this concept.

Method for traversal of incident segments in any direction

public void visit(IlvSegmentedHyperEdge.Segment segment,
IlvSegmentedHyperEdge.Segment cameFrom)

{
...
int n = segment.getIncidentSegmentsCount();
for (int i = 0; i < n; i++) {
IlvSegmentedHyperEdge.Segment childSegment =

segment.getIncidentSegment(i);
if (childSegment != cameFrom)
visit(childSegment, segment);

}
}
...
// visit all segments reachable from startSegment
visit(startSegment, null);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 636

The angle of a segment

Many applications use orthogonal segments, that is, the angle of a segment can be 0 degrees
(horizontal) or 90 degrees (vertical).

IlvSegmentedHyperEdge supports orthogonal segments and also segments with a different
fixed angle. It also supports segments with variable angle.

Fixed angle or variable angle
A segment with fixed angle always keeps this angle. When incident segments or end nodes
are moved or dragged, a segment will become longer or shorter to stay visually connected,
but it will not change its angle. This is shown in figures Orthogonal segments with fixed
angle and Segments with fixed angle of 45 degrees.

Orthogonal segments with fixed angle

In figure Orthogonal segments with fixed angle, when end nodes are dragged, the segments
remain orthogonal. They only get longer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 37

Segments with fixed angle of 45 degrees

In figure Segments with fixed angle of 45 degrees, when end nodes are dragged, the segments
don't change their angle. They only get longer.

A segment with variable angle always adapts the angle to the situation automatically. When
incident segments or end nodes are moved or dragged, the segment will change its angle.
This is shown in figure Segments with variable angle.

Segments with variable angle

In figure Segments with variable angle, when end nodes are dragged, the segments change
the angle.

Whether a segment has a variable angle or a fixed angle depends on how the segment was
created. This is described later, in Segment operations.

To test whether a segment has a variable or a fixed angle, call the method:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 638

segment.isVariable()

The angle of a segment is always given in degrees between 0 and 180, where 0 means
horizontal and 90 means vertical.

To query the angle of the segment, call the method:

segment.getAngle()

Constraints of variable and fixed angle segments
In the segment tree, segments of fixed or variable angle can be incident, but there are some
constraints:

♦ A segment with fixed angle can be incident to any number of other segments with fixed
or variable angle.

♦ A segment with fixed angle cannot be incident to a segment with the same fixed angle.
For example, a horizontal segment cannot be incident to another horizontal segment. If
the shape of the hyperedge is orthogonal, then horizontal segments will be incident to
vertical segments and vertical segments will be incident to horizontal segments. Segments
with the same angle are called colinear. See isColinear(ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment). For mathematical reasons, it is required that the
angle differs at least by 1 degree.

♦ A segment with fixed angle can only be connected to at most one hyperedge end (getEnds
() returns an array with at most 1 end).

♦ A segment with variable angle can be incident to any number of other segments with
variable angle.

♦ A segment with variable angle usually starts or ends at a node or at a segment. In the
latter case, it is said to be terminated by a segment. The terminating segments of a
segment with variable angle can have a fixed angle or a variable angle.

♦ A segment with variable angle can only be incident to at most two segments with fixed
angle. The two segments with fixed angle must terminate the segment with variable angle.
See figure Hyperedge consisting of segments of fixed and variable angle.

♦ A segment with variable angle can be connected to 0, 1, or 2 hyperedge ends (getEnds
() returns an array with at most 2 ends).

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 39

Hyperedge consisting of segments of fixed and variable angle

In figure Hyperedge consisting of segments of fixed and variable angle:

♦ Segments with fixed angle are blue.

♦ Segments with variable angle are red.

♦ The long red segment in the middle of the figure is terminated by segments of fixed angle.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 640

Segment operations

This section describes segment operations and their effects.

Complete or incomplete segment tree
Each end of a hyperedge has a segment that is directly incident to the hyperedge end. You
can obtain this segment by calling:

seghyperedge.getEndSegment(hyperedgeEnd);

The segment tree is complete, if each end of the hyperedge is reachable from each other
end through a segment traversal. See the method visit in section Method for traversal of
incident segments in any direction.

If this is not the case, the segment tree is incomplete. For example, you have a disconnected
forest of segment trees.

To test whether a segment tree is complete, call:

seghyperedge.isSegmentSetComplete();

Hyperedges with incomplete segment trees can be displayed. Incomplete segment trees
look wrong when displayed. They do not convey information on which nodes are connected
by the hyperedge. Therefore, you are usually interested only in complete segment trees.

The API of IlvSegmentedHyperEdge is flexible enough to allow incomplete segment trees,
which simplifies the task of restructuring the segments of a hyperedge.

The segment tree can be made incomplete temporarily, but for the final drawing you are
recommended to make the segment tree complete.

Therefore, it is necessary to distinguish between primitive segment operations and safe
segment operations.

Primitive operations can make the segment tree incomplete.

Safe segment operations, when applied to a complete segment tree, result in a complete
segment tree.

Primitive segment operations
The API on IlvSegmentedHyperEdge.Segment allows you to query the information of the
segment, but not to manipulate the segments. The manipulation must be done by the API
on the hyperedge itself. Any manipulation of the segment tree may change the bounding
box of the hyperedge. Therefore, an applyToObject(ilog.views.IlvGraphic, ilog.views.
IlvApplyObject, java.lang.Object, boolean) session is usually necessary.

The following primitive segment operations allow you to change the segment tree so that it
becomes incomplete. The API of IlvSegmentedHyperEdge includes the methods listed in the
following table.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 41

Methods of IlvSegmentedHyperEdge for making the segment tree incomplete
DescriptionMethod

Creates a new segment that is incident to the
hyperedge end. The new segment has a fixed angle.

addSegment(ilog.views.hypergraph.
IlvHyperEdgeEnd, double)

Creates a new segment that is incident to the
hyperedge end.The new segment has a variable angle.

addSegment(ilog.views.hypergraph.
IlvHyperEdgeEnd, float, float, ilog.
views.IlvTransformer) As long as the segment is not terminated by any other

segment, it uses the point (x, y) as the other termination
point of the segment.

Creates a new segment that is incident to both
hyperedge ends. The new segment has a variable
angle.

addSegment(ilog.views.hypergraph.
IlvHyperEdgeEnd, ilog.views.
hypergraph.IlvHyperEdgeEnd)

Creates a new segment that is incident to the existing
segment. The new segment has a fixed angle. The
input point (x,y) determines the position of the segment.

addSegment(ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment,
double, float, float, ilog.views.
IlvTransformer)

Creates a new segment that is incident to the existing
segment. The new segment has a variable angle. The

addSegment(ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment,

input points (x1,y1) and (x2,y2) determine the start and
end coordinates of the new segment.

float, float, float, float, ilog.
views.IlvTransformer)

Removes a segment from the segment tree. This
makes the segment tree incomplete. Returns the

removeSegment(ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment)

segments that were formerly incident to the removed
segment.

Connects two segments so that they become incident.
It is not possible to connect segments in a way that

connectSegments(ilog.views.
hypergraph.IlvSegmentedHyperEdge.

would form a cycle in the segment tree.The constraintsSegment, ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment) on variable and fixed angle segments must be

observed.

Disconnects two segments so that they are no longer
incident. This makes the segment tree incomplete.

disconnectSegments(ilog.views.
hypergraph.IlvSegmentedHyperEdge.
Segment, ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment)

Tests whether two segments are connected.isConnected(ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment, ilog.
views.hypergraph.
IlvSegmentedHyperEdge.Segment)

Safe segment operations
When hyperedge ends are added to or removed from the hyperedge, the segment tree must
change to remain complete. The hyperedge has an autoconnect mode that does this
automatically.

The following code example shows how to keep the segment tree complete.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 642

Keeping the segment tree complete

IlvSegmentedHyperEdge seghyperedge = ...
seghyperedge.setAutoConnect(true);
// ... this will add segments automatically as necessary
seghyperedge.addFrom(node);
seghyperedge.addTo(node);
// ... now the segment tree is complete
// seghyperedge.isSegmentSetComplete() == true

The following code example shows how to make the segment tree incomplete.

Making the segment tree incomplete

IlvSegmentedHyperEdge seghyperedge = ...
seghyperedge.setAutoConnect(false);
// ... this will not add any segments automatically
seghyperedge.addFrom(node);
seghyperedge.addTo(node);
// ... now the segment tree is incomplete, since the new hyperedge ends
// are not connected ...
// seghyperedge.isSegmentSetComplete() == false

The autoconnect mode is enabled by default.

The API of IlvSegmentedHyperEdge contains further operations that keep the segment tree
complete.

Methods of IlvSegmentedHyperEdge for keeping the segment tree complete
DescriptionMethod

Variants of this operation exist. They split a segment into
a sequence of segments, that is, a bend will occur at the

splitSegment(ilog.views.
hypergraph.IlvSegmentedHyperEdge.

position where the segment was split. See the Java™ API
reference manual for information about the variants.

Segment, float, float, ilog.
views.IlvTransformer)

This is the inverse of the split operation. It joins two
segments, so that instead of two, only one segment is

joinSegments(ilog.views.
hypergraph.IlvSegmentedHyperEdge.

used. This operation removes a bend in the shape of the
hyperedge.

Segment, ilog.views.hypergraph.
IlvSegmentedHyperEdge.Segment)

Changes the angle of the input segment. If the input
segment is connected, this will work only if no incident
segment is colinear with the new angle.

setSegmentAngle(ilog.views.
hypergraph.IlvSegmentedHyperEdge.
Segment, double)

Changes the angle of the segment that is incident to the
input hyperedge end. It reorganizes the segment tree so

setEndSegmentAngle(ilog.views.
hypergraph.IlvHyperEdgeEnd,
double) that the desired angle is possible for the segment at the

input end.

See IlvSegmentedHyperEdge for more information on segmented hyperedges.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 43

Class summary

The following diagram summarizes the associations between the classes discussed in this
documentation. It follows normal UML conventions.

Summary of classes needed for hypergraphs

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 644

Using more advanced features

Describes nested hypergraphs and more advanced uses of hypergraphs.

In this section

Nested hypergraphs
Discusses intergraph hyperedges, how to add and access them.

Advanced use of hypergraphs
Discusses an advanced use of hypergraphs: making sure that hyperedges have a minimum
number of bends.

© Copyright IBM Corp. 1987, 2009 45

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 646

Nested hypergraphs

Discusses intergraph hyperedges, how to add and access them.

In this section

Overview
Provides an overview of nested hypergraphs.

Intergraph hyperedges
Defines intergraph hyperedges (a hyperedge with its end nodes in different hypergraphs).

Adding intergraph hyperedges
Shows how to add an intergraph hyperedge in a hierarchy of hypergraphs.

Accessing intergraph hyperedges
Describes the class and methods used to access intergraph hyperedges.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 47

Overview

Instances of IlvGrapher can be nested and can be collapsed or expanded. Nested graphers
allow you to create applications that define graphs that contain subgraphs with links crossing
the graph boundaries (intergraph links). See Nested managers and nested graphers in the
Advanced Features of JViews Framework user documentation for details.

Similarly, IlvHyperGrapher objects can be nested and can contain intergraph hyperedges..

Nested hypergraphs

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 648

Intergraph hyperedges

An intergraph hyperedge is a hyperedge with its end nodes in different hypergraphs.

The end nodes must all belong to the same nested hierarchy, that is, they must all be nested
inside the same root hypergraph. The concept of intergraph hyperedges is similar to the
concept of intergraph links. See Intergraph links in the Advanced Features of JViews
Framework user documentation.

In the following figure, the intergraph hyperedge is shown in red and normal hyperedges
are shown in black.

Intergraph hyperedges and normal hyperedges

To test whether a hyperedge in an intergraph hyperedge, call this method of IlvHyperEdge:

boolean isInterGraphHyperEdge()

This test method works only when the end nodes are already present in the hypergraphs.
Since you can add source and target nodes after a hyperedge has been added to a hypergraph,
a normal hyperedge can become an intergraph hyperedge. See the following code example.

How a normal hyperedge can become an intergraph hyperedge

IlvHyperGrapher rootGrapher = new IlvHyperGrapher();
...
rootGrapher.addNode(node1, false);
IlvGraphicVector fromNodes = new IlvGraphicVector();
IlvGraphicVector toNodes = new IlvGraphicVector();
fromNodes.addElement(node1);
toNodes.addElement(node1);
IlvHyperEdge edge = new IlvHyperEdge(fromNodes, toNodes);
rootGrapher.addHyperEdge(edge, false);
// the edge is a normal hyperedge
...

IlvHyperGrapher subGrapher = new IlvHyperGrapher();
rootGrapher.addNode(subGrapher, true);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 49

subGrapher.addNode(node2, false);
grapher.applyToObject(edge,
new IlvApplyObject() {
public void apply(IlvGraphic obj, Object arg) {
((IlvHyperEdge)obj).addFrom(node2);

}
}, arg, redraw);

// now, the edge is an intergraph hyperedge, since it ends at
// node1 and node2 but both are in different graphers
...

If the hyperedge is contained in a hypergraph, you can add source or target nodes to
the hyperedge only if these nodes belong to the same hypergraph as the hyperedge,

Note:

or to subgraphs nested inside the hypergraph to which the hyperedge belongs. In all
other cases you should remove the hyperedge from its hypergraph and then add the
new sources and new targets. Finally, add the hyperedge back to a hypergraph as
described in Adding intergraph hyperedges.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 650

Adding intergraph hyperedges

Since the intergraph hyperedge has sources and targets in different hypergraphs, the
question arises in which hypergraph the hyperedge is stored. As for intergraph links, an
intergraph hyperedge must be stored in the first common ancestor of all its end nodes.

Intergraph hyperedge in a hierarchy of hypergraphs

In the above figure, the red intergraph hyperedge that connects the objects of A and B must
be stored in hypergraph C, the first common ancestor of A and B.

The IlvHyperGrapher class provides a static utility method that allows you to determine
the first common hypergraph:

static IlvHyperGrapher getLowestCommonHyperGrapher(IlvHyperEdge edge)

The following code example shows how to create an intergraph hyperedge.

Creating an intergraph hyperedge

...
IlvHyperEdge edge = new IlvHyperEdge(fromNodes, toNodes);
IlvHyperGrapher common = IlvHyperGrapher.getLowestCommonHyperGrapher(edge);
common.addHyperEdge(edge, false);

The static utility method IlvHyperGrapher.addInterGraphHyperEdge allows you to add the
edge directly to the common parent hypergraph. Therefore, this code example can be
shortened as follows:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 51

Short code for creating an intergraph hyperedge

...
IlvHyperEdge edge = new IlvHyperEdge(fromNodes, toNodes);
IlvHyperGrapher.addInterGraphHyperEdge(edge, false);

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 652

Accessing intergraph hyperedges

The IlvHyperGrapher class provides methods that let you access in an efficient way normal
hyperedges and intergraph hyperedges stored in a hypergraph. These methods are shown
in the following table:

Methods for accessing normal and intergraph hyperedges
DescriptionMethod

Returns all normal hyperedges stored in the hypergraph.getHyperEdges()

Returns the number of normal hyperedges stored in the
hypergraph.

getHyperEdgesCount()

Returns all intergraph hyperedges stored in the hypergraph.getInterGraphHyperEdges()

Returns the number of intergraph hyperedges stored in the
hypergraph.

getInterGraphHyperEdgesCount()

Since intergraph hyperedges are stored in the same way as other graphic objects in the
hypergraph or graph, they are also included in the list of all objects contained in the
hypergraph that is returned by the getObjects() method of the class IlvManager:

IlvGraphicEnumeration getObjects()

Calling the specific methods shown in the above table is muchmore efficient than traversing
all the objects in a hypergraph.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 53

Advanced use of hypergraphs

Making sure that hyperedges have a minimum number of ends
In contrast to normal links, hyperedges can have zero source nodes and zero target nodes.
Such an empty hyperedge can be added to a hypergraph. This feature is generally useful,
since you can decide to add sources and targets later.

An empty hyperedge is invisible and cannot be moved. Its position is fixed at (0,0).

For many applications a hyperedge with 0 or 1 end only makes no sense, because these
hyperedges are usually invisible.

If hyperedges with fewer than k ends are not allowed in your application, you can call the
method:

hypergrapher.setMinHyperEdgeEndCount(k);

As a result, all hyperedges with fewer than the minimum number of hyperedge ends are
removed from the hypergraph. When a new hyperedge is added to the hypergraph, it must
already have the minimum number of ends. If not, the method addHyperEdge will fail with
an exception.

When an end is removed from a hyperedge, the hyperedge is automatically removed from
the hypergraph if the number of remaining ends is smaller than the minimum. By default,
the minimum is 2.

There is the following difference between IlvHyperEdge and IlvLinkImage:Note:

When a node is removed from a graph or hypergraph, all its incident links
(IlvLinkImage) are also always removed from the graph.

All the hyperedges (IlvHyperEdge) incident to a node removed from a hypergraph
lose only the ends that point to that node. Hyperedges remain in the hypergraph unless
the number of their remaining ends is smaller than the minimum.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 654

A
accessing

hyperedges 53
autoconnect mode

hyperedges 42

C
colinear

segments 39
complete

segment tree 42
constraints

fixed angle segments 39
variable angle segments 39

E
empty hyperedges

visibility and mobility 54
end segment 35

F
fixed angle

segments 37
fixed angle segments

constraints 39
testing 37

G
graphs

nested 48

H
hyperedges

accessing efficiently 53
autoconnect mode 42
creating intergraph 51
empty 54
intergraph 49
minimum number of ends 54
shape 34

storing intergraph 51
hypergraphs

nested 48

I
IlvDefaultHyperEdgeEnd class 22
IlvFreeLinkConnector class 22
IlvGrapher class 6, 10, 48
IlvGraphic class 18, 27
IlvHyperEdge class 10, 12, 14, 18, 23, 34, 49
IlvHyperEdgeCenterConnector class 31
IlvHyperEdgeConnector class 23, 25, 27, 28
IlvHyperEdgeEnd interface 14
IlvHyperEdgePinConnector class 27, 28
IlvHyperGrapher class 6, 10, 18, 48, 51, 53
IlvHyperGrapherPin class 28
IlvLinkConnector class 23, 27
IlvLinkImage class 10, 12, 14, 18, 22, 34
IlvManager class 6, 53
IlvSegmentedHyperEdge class 34, 35, 37, 41, 42
IlvSegmentedHyperEdge.Segment class 41
IlvSegmentedHyperEdge.Segment inner class 35
incident

segment to node 35
segments 37

incomplete
segment tree 42

incomplete segment tree
primitive segment operations 41

inner segments 35
intergraph

creating hyperedges 51
hyperedges 49
links 48
storing hyperedges 51
testing hyperedges 49

© Copyright IBM Corp. 1987, 2009 55

I N D E X

Index

L
links

intergraph 48

M
minimum

hyperedge ends 54

N
nesting

graphs 48
hypergraphs 48

O
operations

primitive segment 41
segment 41

orthogonal
segments 37

P
primitive segment

operations 41
operations for changing to incomplete
segment tree 41

Q
querying

segment angle 37

S
segment

operations 41
segment tree

complete 41, 42
incomplete 41, 42
undirected 35
unrooted 35

segmented hyperedge
shape 34, 35

segments
colinear 39
fixed angle 37
incident 37
incident to a node 35
inner 35
orthogonal 37
querying angle 37
variable angle 37

shape
of hyperedge 34
segmented hyperedge 34, 35

T
testing

fixed angle segment 37
intergraph hyperedges 49
variable angle segment 37

U
undirected

segment tree 35
unrooted

segment tree 35

V
variable angle

segments 37
variable angle segments

constraints 39
testing 37

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 656

	Table of contents
	Using hypergraphs
	Introducing hypergraphs
	Managing nodes and hyperedges
	Connecting nodes with hyperedges
	Differences between IlvLinkImage and IlvHyperEdge
	Hyperedge ends
	Retrieving incident hyperedges at nodes

	Contact points
	Overview
	Using hyperedge connectors
	Calculating contact points
	Visible and invisible hyperedge connectors
	Hyperedge pin connectors
	Other predefined hyperedge connectors

	Segmented hyperedges
	Overview
	Hyperedge segments
	The angle of a segment
	Segment operations

	Class summary

	Using more advanced features
	Nested hypergraphs
	Overview
	Intergraph hyperedges
	Adding intergraph hyperedges
	Accessing intergraph hyperedges

	Advanced use of hypergraphs

	Index

