
IBM ILOG JViews Diagrammer V8.6

Introducing JViews
Diagrammer

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

About JViews Diagrammer..5
Overview..6

Types of displays covered by JViews Diagrammer..7
Diagrams..8
Dashboards..10
Map-based displays..12

Types of deployment platforms...13

Key aspects of a JViews Diagrammer user interface..14

The JViews Diagrammer tool chain...16

Basic concepts...19
General architecture..20

Views..21

Data...23

Styling..24

Symbology...26

User interactions...27

Graph layout..28

Refreshing the display in real time..30

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Creating diagramming applications...31
Managing the views...33
The SDM engine..34
The data model interface..37
The renderers...38
The grapher..39
The interactors...40

Populating a diagram..41

Graph layout..42

Backgrounds and maps..43

Using Designer projects...44

Controlling the diagram in an application...47

Advanced configuration...48

Managing dashboards...51
Overview..52

Direct data feeding..53

Dashboard introspection..54

Integration and deployment..55

Index..59

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 64

About JViews Diagrammer

Tells you about diagrams in general, the features of the JViews Diagrammer product, and
some typical uses of displays created with JViews Diagrammer.

In this section

Overview
Provides a short description of JViews Diagrammer.

Types of displays covered by JViews Diagrammer
Describes the three types of displays JViews Diagrammer allows you to create, depending
on the type of data to represent.

Types of deployment platforms
Presents briefly the various platforms on which you can deploy IBM® ILOG® JViews
Diagrammer displays.

Key aspects of a JViews Diagrammer user interface
Provides a short description of the key components of a JViews Diagrammer user interface.

The JViews Diagrammer tool chain
Gives a short description of the design tools provided by JViews Diagrammer.

© Copyright IBM Corp. 1987, 2009 5

Overview

JViews Diagrammer provides tools, components and services to build user-friendly interfaces
made up of diagrams, dashboards, as well as map displays. The typical process for building
a display with JViews Diagrammer consists in using application design tools, then refining
and extending the result with the JViews Diagrammer SDK. The displays can then be deployed
in Swing applications, applets and on the Web.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 66

Types of displays covered by JViews
Diagrammer

Describes the three types of displays JViews Diagrammer allows you to create, depending
on the type of data to represent.

In this section

Diagrams
Presents the use cases for diagrams.

Dashboards
Presents the use cases for dashboards.

Map-based displays
Presents the use cases for map displays.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 7

Diagrams

Diagrams are used to show the relationships between entities in a system. The entities are
called nodes and the relationships are called links. This type of display helps model and
manage a business system’s entities connected either physically (like in a communications
network) or logically (like in a process flowchart) .

JViews Diagrammer can be used to build computerized displays of static as well as dynamic
diagrams. A diagram can be static in the sense that there are no changes in its appearance
while it is displayed: it is a snapshot of a given system. Typical examples include flowcharts
and organization charts.

A dynamic diagram can react to user actions or external data feeds, or both. It remains in
contact with business data during the display phase and is expected to change over time in
response to business-related changes. Typical examples include process flow diagrams and
network monitoring diagrams.

As diagrams grow larger and more complex, JViews Diagrammer allows you to make them
more readable through its built-in graph layout algorithms, organizational techniques such
as subgraphs and swimlanes, helpful zooming and scrolling behavior, and even customized
interactions such as editing, drill-down, and more.

A workflow diagram

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 68

A topology diagram

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 9

Dashboards

Dashboards are used for monitoring business or industrial systems. They help operational
people oversee the KPIs (Key Performance Indicators) of business processes. In the industrial
field, dashboards are used for schematics, process control or SCADA (Supervisory Control
And Data Acquisition) applications to show the current status of physical equipment. The
data to be monitored is graphically represented by gauges, dials, sliders, meters, and so on,
that are manually placed by the user on the dashboard. A connection between the data
repository and these graphic objects is required for the dashboard to visually and realistically
translate measurements or the status of physical equipment.

A business activity monitoring dashboard

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 610

An industrial monitoring dashboard

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 11

Map-based displays

Map-based displays are used to represent and manage georeferenced assets in applications
such as logistics, defense, traffic monitoring, or network systems. Objects are placed on top
of a map according to their latitude and longitude coordinates; in a dynamic application,
the geographic positions of the objects are updated as the values of the underlying data
change.

Map-based displays are fully supported if the extra product IBM® ILOG® JViews Maps is
purchased and installed.

A weather map in a Web application

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 612

Types of deployment platforms

It has becomemore andmore common to deliver the same application both as a rich desktop
client for power users and over the Web for remote users. JViews Diagrammer displays can
be deployed on various platforms:

♦ Rich client

♦ JSF/Ajax/Portals

♦ Eclipse™

Traditional Java™ applets and applications are best suited for highly interactive tasks like
workflow modeling. For workflow monitoring or administration, a thin client approach may
work best. JViews Diagrammer supports DHTML clients as well as the traditional Java clients.

On the Web side, there are dedicated JSP™ /JSF (JavaServer™ Faces) components that can
live on a Web server and generate the interface for the browser. By mixing images and
JavaScript™ /DHTML code, these components deliver content for either traditional Web
pages or portals that implement the JSR 168 standard. They are also able to deal with
asynchronous requests to manage the Ajax (Asynchronous JavaScript and XML) behavior
and minimize page refreshing. In addition to traditional visualization and monitoring
functions, Ajax behavior provides powerful in-place editing capabilities, such as adding
objects to a diagram, connecting entities interactively, showing contextual popup menus,
and editing an object's attributes, with immediate synchronization with the underlying data
models on the server.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 13

Key aspects of a JViews Diagrammer user interface

Developing a graphical user interface with JViews Diagrammer requires to be aware of the
following key aspects:

1. Symbols

2. Model-driven diagrams

3. Dashboards and Monitoring Panels

Symbols
Symbols are the starting point of a display (diagram or dashboard). A symbol is a
self-contained graphic object that represents a physical or conceptual element in the
underlying application. For example, symbols can represent trucks, factories, network
elements, dials or gauges. They have built in behavior which means that they react
dynamically to data changes or user interaction.

A symbol and its behavior are not defined by code but in a CSS (Cascading Style Sheet) file
that contains a description of the JavaBeans™ to use, their settings and logic. At run time,
a generic engine instantiates the right class and configures the created instances as specified
in the CSS file. For better performance, or if such symbols can be frozen for a given
application, it is also possible to generate Java™ source code corresponding to these symbols.

Model-driven diagrams
Applications that must automatically create a diagram from a data source (like workflows,
business processes, entity relationships, or network topologies) use a model-driven approach.
The design tool used to create this type of display is the Designer for JViews Diagrammer.
The Designer creates a display by binding the data source elements to symbols created with
the Symbol Editor. For example, you can specify that a given type of data instance be
represented by a given symbol, and that a particular value of a field be bound to some symbol
parameters to alter the aspect of the symbol. The specification of how the visual aspect of
the symbol is controlled by the data model is performed at a high level as the symbols already
contain their particular visual logic. Other aspects of the display, such as automatic graph
layout options, links, background images, subgraphs, zooming can also be tuned through
the Designer tool. The mapping between the data model and the visual entities (symbols) is
described in a CSS format. The output is a project file combining the CSS part and the XML
part (data source) and can be loaded into the application at run time. The project’s individual
elements can be accessed through dedicated Java classes for further customization of the
look or behavior of the display.

Dashboards and monitoring panels
To build displays for monitoring or supervision purposes (like industrial schematics, business
dashboards, and other generic human-machine interfaces), the approach is quite the opposite
from the model-driven approach, in the sense that you start by manually placing symbols
created with the Symbol Editor on top of a static background. This is done with another
design tool called the Dashboard Editor. Symbol parameters can be associated with
application data at design time, but this mapping will be resolved only at run time when
connecting the actual data source. The resulting dashboard or schematic is an XML file

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 614

associated with palettes of symbols that can be loaded into an application window and fed
with real-time data.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 15

The JViews Diagrammer tool chain

JViews Diagrammer contains several design tools to automate the production of applications
without coding. The design tools are point-and-click editors that allow user interface
developers to quickly prototype the look and feel of the display without having to spend time
with Java™ code. These tools address the different aspects involved with producing
appropriate content for graphical diagrams, dashboards and map displays. Besides the need
to reduce the coding part of an application, the design tools help address the different roles
in the development chain. For example, a graphic designer can provide attractive content
for the user interface without necessarily being involved in technical development, or an
application administrator can enrich the application without modifying the core of the system.

The design tools provided with JViews Diagrammer are the following:

♦ Symbol Editor

A point-and-click interface that allows you to create and edit symbols. It also enables you
to add dynamic behavior to these symbols with rules defining how the elements of the
symbol will react to data changes. For example, rules can define the alarm conditions
that will cause a part of a factory symbol to blink, or how far a needle on a rotary gauge
will rotate. Symbols are organized in palettes that are reusable in other design tools.

♦ Designer

A point-and-click editor for easily specifying most aspects of a diagram. It is well-suited
for defining the look and feel of applications that must automatically create a
diagram—such as a business process, a network typology, a workflow, a dataflow, or
entity-relational diagrams—from a data source.

♦ Dashboard Editor

A point-and-click interface for the easy creation of industrial panels, business dashboards
and other generic human-machine interfaces. It allows users to manually place symbols,
created with the Symbol Editor, on top of a static background. It then connects them to
the underlying data.

♦ Symbol Compiler

The Symbol Compiler is a tool that allows you to translate the symbol definition created
with the Symbol Editor into Java classes. The symbols that you create in the Symbol Editor
use a CSS file to store the information necessary to their graphical representation. A
compiled symbol provides improvements in terms of performance, as it is created in Java
code instead of CSS, and flexibility, as its features can be extended through the JViews
Framework API.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 616

The JViews Diagrammer tool chain

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 17

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 618

Basic concepts

Presents the concepts you need to know to evaluate JViews Diagrammer and start to
appreciate its features and capabilities. The JViews Diagrammer documentation makes use
of these concepts and you will need to understand them to implement your requirements.

In this section

General architecture
Provides an overview and illustration of the architecture of JViews Diagrammer.

Views
Describes the different ways of viewing a diagram.

Data
Describes the basic concept of a data model in JViews Diagrammer.

Styling
Describes the styling mechanism used in JViews Diagrammer.

Symbology
Gives a short definition of what a symbol is in JViews Diagrammer.

User interactions
Introduces the concept of interactors.to manipulate diagrams.

Graph layout
Introduces the concept of layout algorithms to optimize the layout of diagrams.

Refreshing the display in real time
Introduces the techniques used to optimize the refresh of diagrams.

© Copyright IBM Corp. 1987, 2009 19

General architecture

JViews Diagrammer consists of several layers, each providing a specific set of services for
developers during the development cycle.

Architecture of JViews Diagrammer

JViews Diagrammer implements a Swing-like model-view architecture, which provides a
clear separation between data and its presentation. The JViews Diagrammer data model is
part of the Styling and Data Mapping (SDM) engine, and it forms the connection between
your application’s data and the views on display. The two principal responsibilities of the
SDM module are notification and styling. When it receives new data from its back-end data
source, the SDMmodule automatically notifies all views registered for an update. Likewise,
when the user interacts with views, the model may change.

SDM relies on the services of two underlying layers, also included in JViews Diagrammer—the
Framework SDK and the Graph Layout SDK.

The Framework SDK sits atop Java 2D™ and Swing, and provides a comprehensive structured
2D graphics API that includes graphic objects, interactors, views, transformations, graphs
and subgraphs, editing commands, printing, and thin client support

The Graph Layout SDK provides a set of sophisticated algorithms to automatically rearrange
the graph elements for optimal readability. Graph layout brings order and clarity to complex
diagrams, moving the nodes and routing to create a more usable picture with domain-specific
aesthetic conventions.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 620

Views

Ultimately, diagrams are displayed on the user screen within views that can occupy an entire
window or part of one.

Each view has its own zoom level and displays a part of the diagram. The user can zoom
and pan within a view to focus on regions of interest. At any moment, multiple views can be
used with a single diagram as if the user had several cameras to give different points of
view, see the following figure.

A diagram component with multiple views

The overview is a special use of the multiple-view concept: it is a view that displays the
entire diagram in miniature, overlaid with a navigation rectangle that represents the visible
part of the diagram in the main view. By moving and resizing this rectangle, the user can
easily zoom and pan the main view.

The diagram’s graphical objects can be grouped in layers that control their display priority.
You may, for example, decide that the nodes and links are in a higher layer than the
background map: they are always displayed on top of the map. You may also decide that
labels are always displayed on top of everything by grouping them in the highest layer.
Layers can also be set visible or invisible—for each view—so that you can temporarily hide
an entire group of symbols or a background map.

Finally, JViews Diagrammer offers three alternative views of a diagram’s data model: a table
view, a tree view, and a property sheet.

In the table view, the properties of the nodes and links are displayed as a Swing JTable that
can be edited in an application. In the tree view, the data model is displayed as a Swing
JTree, which is useful for selecting objects—the Data Model panel in the Designer uses this
view. For both of these, see the following figure.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 21

Tree view (top left) and table view (lower left) in the Designer

In a property sheet, a simple list of properties is displayed—the optional Styling Properties
panel in the Designer displays this view.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 622

Data

JViews Diagrammer offers you the opportunity to stay away from the low-level graphics API,
and to worry only about your business data and the way you want to display it. The section
on Creating diagramming applications explains how this works in more detail; at this point
it is sufficient to explore the basic concept of a data model.

JViews Diagrammer is based on a model-view architecture that cleanly separates the data,
the display, and the interaction facets of the component, see figure The model-view
architecture of JViews Diagrammer. It follows the Swing architecture where the developer
takes care of populating the data model and the component takes care of displaying the
data and enabling interactions like selection and editing.

The model-view architecture of JViews Diagrammer

In JViews Diagrammer, the data model is an interface that manages nodes and links. Nodes
have a set of generic properties like x and y coordinates, and user-defined properties can
be added to store application-dependent information. Similarly, links have generic properties
like to and from for the source and destination nodes, and can have further, user-defined
properties. Based on this data model, JViews Diagrammer knows how to display the diagram,
and how to manage end-user interactions.

The data model needs to be populated with application data. To do this, you have the choice
between using a prebuilt implementation such as the in-memory data model, or connecting
the diagram directly to your data by implementing the data model interface. The latter
solution avoids data duplication and enables finer synchronization between the diagram and
the data.

JViews Diagrammer provides data sources to populate your diagram from XML files, JDBC
connections, or flat files in formats like CSV (comma-separated values).

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 23

Styling

Besides displaying nodes and links, your application will need to convey qualitative
information on your business data. Although diagrams such as business processes, electrical
networks, WAN networks, UML diagrams, and supply-chain maps are all based on nodes
and links, they do not look like similar: each case requires notations and symbols that are
application-specific.

To define the notation for a particular application, JViews Diagrammer makes use of a
powerful model-based styling mechanism that relies on style rules. Each rule defines
conditions on the data model that trigger graphical changes in the display. For example,
you can define a rule that draws a green rectangle when the status property of a node
equals fine; and another rule that turns the rectangle to red when the status property
equals alarm.

When you define a notation, you create the basic symbols to be used for default situations.
In an application that deals with business processes, these symbols represent activities,
participants, messages, and so on. In a telecommunications application, you need symbols
for the many types of network elements. Each basic symbol is defined by at least one style
rule.

Once the basic symbols are created, you then need to modify or annotate them to reflect
specific properties that you want to display. You may want to change the background color
to red when the status of a node equals alarm, or you may want to add a work-in-progress
icon when an activity is currently being performed. For each situation, you define a rule
that may complement or override the graphics effects defined by more generic rules.

The styling mechanism is also used to declare and customize options for the diagram as a
whole, like the use of layout algorithms and their parameters, or the use of a background
map and its source file and projection.

The set of style rules is stored in a style sheet, and you can dynamically load a new style
sheet while keeping the same data and underlying data model. This facility is useful when
you need to adapt the display to a particular situation or user profile. For example, the
technical properties of a business process can be hidden to the business analyst, and shown
only to the software engineer in charge of implementing the process.

The style sheet syntax conforms to the CSS syntax—a Web standard—but you need not
bother with the details of this syntax at this point. The separation of style sheets and the
data model from the diagram component means that you can build several components
based on the same data, with the same or different styling, see the following figure.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 624

A family of diagram components for a data model

JViews Diagrammer eases the process of defining a notation with a development tool called
the Designer. Using the Designer, you define the conditions for a rule using natural language
and you define the styling effects of the rule through an intuitive panel that lets you change
graphical properties. While you are modifying rules or adding new ones, you can select a
rule in a tree view and see how the notation is changing within a preview window.

JViews Diagrammer comes equipped with Business Process Management Notation (BPMN)
a standard notation for business processes that is specified by the BPMI organization (see
http://www.bpmi.org). This notation provides a comprehensive set of symbols and
sophisticated swimlanes.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 25

http://www.bpmi.org

Symbology

JViews Diagrammer introduces the concept of symbol used to populate the graphical
interfaces.

A symbol is an abstraction of composite graphic that can be used through style sheets or
directly through Java™ code. Symbols are organized within palettes, and they have a
dedicated tool to edit them (the Symbol Editor). By default, such symbols are based on a set
of CSS directives which can be interpreted at run time. As a consequence, palettes of symbols
can be edited and modified at any time to improve symbols or to add new symbols to the
application. The other way to use symbols is to generate the Java source code corresponding
to each symbol. In this case, symbols are tightly integrated with the application and cannot
be modified from the outside.

A composite graphic object is an instance of IlvSDMCompositeNode. This class is in the SDM
package but it is a subclass of IlvCompositeGraphic which is a JViews Framework class.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 626

User interactions

When you have populated your data model, and defined your notation, you still need to
provide your end user with a means of interacting with the diagram.

Modeling applications require interactions for creating nodes of many sorts, for creating
links with various shapes, for setting user-defined properties, for selecting nodes and links,
for moving nodes around, for editing subgraphs, and so forth.

JViews Diagrammer offers a wide range of interactors that implement the most common
editing actions. When an interactor is installed on a view, it handles the user events, transmits
the changes to the data model, and refreshes the view.

Monitoring applications often require a subset of the interactions proposed in modeling
applications. Themost common ones are zoom, pan, and selection. In monitoring applications,
the selection is often specific to the application: when the user selects a node or a link,
JViews Diagrammer performs a specific action like opening a dialog box or selecting all the
alarms generated by the selected object. To implement application-specific interactions,
you will have to derive new interactors from existing ones using the documented API provided
with the SDK.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 27

Graph layout

Graph layout features are only available if you have purchased a full
JViews Diagrammer license.

Note:

In some situations, diagrams can be drawn manually and still kept clear to read. The user
typically places the nodes and links and repositions the nodes manually if the diagram
becomes cluttered.

In many cases, the diagram is too complex to be handled manually, or there is no human
being involved: the diagram is built dynamically with application data that does not contain
any geometric information. In such cases, automatic layout algorithms are required to
position the nodes and to route the links.

The Graph Layout package is a set of layout algorithms provided with JViews Diagrammer
to position nodes and labels, and to route links, automatically. The goal of a layout algorithm
is to propose solutions in which nodes do not overlap, links do not cross nodes or links, and
labels do not overlap other objects. Ideal solutions do not always exist, but an algorithm will
tend to an optimal one, see the following figure.

Applying a graph layout: before and after

The most effective way of displaying a graph depends on its type and sometimes on industry
standards. JViews Diagrammer offers various algorithms with many parameters to adapt to
the many situations. For example, the hierarchical layout is mainly used for displaying flows
and processes; circular and bus layouts for LAN networks; radial tree layout for semantic
networks and website maps; and tree layout for organization charts, decision trees, and
directories.

In JViews Diagrammer, several graph layouts can be applied to a single diagram: a subgraph
may require a different layout to its parent; or one layout can be applied to only a subset of
the nodes. Constraints can also be set, for example, to make nodes with a certain property
stay above the others.

When it comes to routing links, JViews Diagrammer offers the following: strategies to limit
the length of links, algorithms to bundle links or connect nicely to nodes—especially when
several links arrive at a single node.

The label layout (labeling) algorithm makes sure that labels do not overlap—which would
make them hard to read—by shifting them slightly away from their base position and by

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 628

rotating them if necessary. This algorithm is used for labels on nodes and links, and for
labels in IBM® ILOG® JViews Maps.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 29

Refreshing the display in real time

If your application data changes continually with real-time updates, the diagram display
must stay synchronized and will therefore need to be refreshed often.

JViews Diagrammer uses refresh techniques that reduce the amount of graphical primitives
to draw, while eliminating the annoying flickering effect that you can observe when a screen
is erased and redrawn. It uses techniques like double buffering or triple buffering.

More generally, the 2D vectors that draw the basic shapes for nodes, links, and vector maps
to be displayed in a view are stored in a spatial data structure called the grapher. The
grapher ensures very fast redisplays and user interactions even when the diagram and its
background reach several hundreds of thousands of vectors.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 630

Creating diagramming applications

Introduces the architecture of JViews Diagrammer to give you an overview of how
diagramming is done in JViews Diagrammer and the internal and external components that
contribute.

In this section

Managing the views
Describes the components of JViews Diagrammer that play a part in the management of the
views.

Populating a diagram
Describes the elements needed to populate a diagram.

Graph layout
Explains the purpose of graph layout.

Backgrounds and maps
Describes the additional value of displaying a map as a background to a diagram.

Using Designer projects
Lists the steps to set up a diagram in the Designer.

Controlling the diagram in an application
Describes the classes that are provided to help you control diagrams in an application.

Advanced configuration
Explains how you can extend your diagram through the API.

© Copyright IBM Corp. 1987, 2009 31

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 632

Managing the views

Describes the components of JViews Diagrammer that play a part in the management of the
views.

In this section

The SDM engine
Describes the working principle of the Styling and Data Mapping (SDM) engine.

The data model interface
Gives a short explanation of what the SDM data model is.

The renderers
Gives a short explanation of what a renderer is.

The grapher
Gives a short explanation of what a grapher is.

The interactors
Gives a short explanation of what an interactor is.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 33

The SDM engine

The Styling and Data Mapping (SDM) engine is one of the most important pieces of
JViews Diagrammer as it controls the data-to-graphics mapping. There are four key elements
in the data-to-graphics mapping process:

♦ A data model that interfaces to the data to display or edit. This data model is completely
independent of the GUI, and refers only to the business objects of your application.

♦ Renderers that style the diagram as a whole and the graphic objects in it. Renderers
apply the styles specified in the style sheets.

♦ A grapher in which the graphic objects representing the data model are created as nodes
and links. It provides the infrastructure that is minimally necessary to draw a diagram.

♦ Interactors that permit user actions on graphic objects. Common requirements are for
zoom, pan, select, and object creation functions.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 634

The SDM engine and the data-to-graphics mapping

As shown in the figure above, the mapping between the data model and the graphical
representation is bidirectional:

♦ Data model to graphics: the rendering process is controlled by the style sheet, which lets
you tell the SDM engine how you want each particular kind of data object to be displayed
in the grapher. The rendering process is performed by specialized renderers.

● When the data model is loaded, the SDM engine explores it and creates graphic objects
representing the nodes and links defined by the data model in the grapher.

● When the state of an object in the data model changes, the SDM engine updates the
graphic object representing the modified data object.

♦ Graphics to data model: the editing process relies on built-in editing facilities that act
directly on the underlying data model. The actions in an editing application are
implemented by interactors. For example:

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 35

● When the user moves a graphic object (for example, in an editor), the SDM engine
updates the geometric properties of the object in the data model.

● When the user expands or collapses a node (for example, in a navigation application),
the SDM engine updates the expand/collapse status of the object in the data model.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 636

The data model interface

The SDM data model is the interface that tells the SDM engine how to get the data to be
displayed. The SDM data model is an abstract description of a set of nodes and links between
nodes. Nodes and links have a user-defined type (also called the “tag”), and a set of named
properties.

JViews Diagrammer provides prebuilt data models, and you can implement the data model
interface to connect your data.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 37

The renderers

A renderer is a Java™ class that helps to manage the graphical representation of your
business data. JViews Diagrammer supplies many predefined renderers. Several renderers
are usually active at the same time.

The StyleSheet renderer is responsible for creating and customizing graphical objects and
is always active. The GraphLayout renderer applies a layout algorithm and is often active
(only available if you have purchased a full JViews Diagrammer license).

Predefined renderers are supplied for displaying info balloons, a legend, subgraphs, and
swimlanes. There are also predefined renderers to assign a random color to nodes, to assign
a specific interactor to nodes, and many more. The SDK lets you define new renderers for
your application needs.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 638

The grapher

The grapher is a Java™ class responsible for storing and managing the graphics objects
that are displayed by JViews Diagrammer. The grapher not only manages nodes and links;
it also manages any graphics objects used to display a background and any decorations
around the diagram like a legend.

The grapher can contain hundreds of thousands of graphics, and yet refresh them instantly.
Its spatial data structure is optimized to retrieve the graphic objects located in an area
rapidly.

The grapher belongs to IBM® ILOG® JViews Framework, and a comprehensive API is
available to finely tune its behavior.

The graphical objects contained in the grapher are drawn in the views connected to the
grapher. The user of your application can zoom and pan in the views, and can interact with
the objects in the views using the mouse.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 39

The interactors

An interactor is a Java™ class that manages the behavior of an object in response to an
event, for example, a mouse click. JViews Diagrammer supplies various predefined interactors.

View interactors affect the display in general. The view interactors are typically used to
manage the zoom and pan facilities, and the selection and creation of nodes and links. It is
important to remember that when a node is added or modified with an interactor on a view,
the corresponding action is performed in the data model.

An object interactor is local to a graphic object. It handles the action to perform when an
event is received by a particular object, for example, double-click to open a list of related
alarms.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 640

Populating a diagram

Populating a diagram involves the following items:

♦ Data sources

♦ Style sheets

♦ Project

The data sources
The role of the data source is to load the data to display in the diagram, and possibly write
back the data if it has been modified.

There are the following predefined types of data source: flat files (in the Designer only),
XML, and JDBC.

When you cannot use flat files, XML, or JDBC, you can always connect the data model to
your data by implementing the data model interface in Java™ .

The style sheets
A style sheet controls the mapping of data to a graphic representation through style rules
conforming to the CSS2 syntax. It defines the way the objects of your data model will be
translated to graphic objects.

You can write these rules using the CSS2 syntax, or you can use the Designer. The Designer
helps you to define style rules in a visual environment: with the Designer, you do not need
to know CSS and you see instantly what your styling looks like.

The project
The project is an association of a style sheet and a data source. It groups the inputs for a
diagram. A project is saved as an XML file with the extension .idpr (JViews Diagrammer
Project File).

A project is typically generated by Designer, the editing tool available for loading data from
a data source and creating a style sheet.

By loading a project in an application, you make a diagram available for display.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 41

Graph layout

Graph layout features are only available if you have purchased a full
JViews Diagrammer license.

Note:

The SDM engine and renderers create the nodes and links in the grapher, but the positions
of these objects may not be ideal: some nodes may overlap and there may be too many link
crossings, so that the resulting diagram can be difficult to apprehend.

When a graph layout renderer is declared, a graph layout algorithm positions the nodes and
labels that are stored in the grapher and routes the links.

There are several algorithms: some just position nodes, others just route links, and some
do both.

You need to choose from the various algorithms available, and your choice will depend on
the topology of your diagram, and possibly on your industry. The many parameters will help
you to tune the algorithm to fit your specific needs. You can use the Designer to help find
the best solution.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 642

Backgrounds and maps

If your application requires a geographic map as a background, you can install a map renderer
that uses the IBM® ILOG® JViewsMaps facilities to readmap formats—vector or raster—and
to display nodes according to their latitude and longitude.

You can instead add a vector or a bitmap background that is not a map. You can use
Composer, a graphics editor provided with JViews Diagrammer, to draw your vector
background. Composer saves to the JViews proprietary IVL format or to SVG format. Other
authoring tools that create bitmaps or SVG images can also be used.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 43

Using Designer projects

The default style sheet provided with JViews Diagrammer displays a classical diagram with
basic nodes and links that do not embody application-specific properties.

To provide your end user with meaningful displays, you need to assign symbols using the
Symbol Editor tool accessible through the Designer.

The easiest way to define the diagram look and feel is to use the Designer. You can also
write your style sheet manually without Designer, and set up the diagram parameters with
the SDK, but you should try Designer first before deciding to take a different route.

How the Designer helps the developer
As a Java™ developer, you can decide to build diagram components with the Java API of
JViews Diagrammer and the CSS2 styling language. But starting with a point-and-click editor
like the Designer will make the early phases of development easier and faster.

The Designer is a development tool that is designed for defining the look and feel of your
diagram.

With the Designer:

♦ You do not need to know the CSS syntax (although you do need to know the principles
behind CSS)

♦ You can change the graphics properties through simple dialogs

♦ You get instant feedback on the modifications you make on style rules

♦ You can modify the data model

♦ You generate a project that can be used right away in your application

The Designer offers facilities for filling the data model, viewing the diagram, viewing and
creating style rules, configuring the layout, defining a background, and saving a project.

Filling the data model
To use the Designer, all you need is a data model.

The Designer provides a wizard that helps you to fill the data model from XML files, a JDBC
connection, CSV files, or by entering the data manually. It also provides samples of models
to help you get started.

Viewing the data model as a diagram
Once the data model is filled, you can keep the default style sheet or select another style
sheet to display the diagram. At this stage, you can preview your diagram in the Designer.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 644

Viewing style rules
Once you have chosen a style sheet, you can start to create style rules to refine the graphical
representation of your data model.

The Designer presents the style rules in a tree, from which you can manage and edit rules,
see the following figure.

Style rules in a tree view (top left) in the Designer

Each rule displays its conditions in the tree so that you clearly see which objects in the data
model are matched by the rule. If the conditions become too long for easy reading, you can
define custom rule names instead.

The graphical properties set by the rule are displayed in a panel called the Styling Customizer.

Creating style rules
When you create a new rule, a natural-language editor helps you to specify the selector part
by proposing conditions based on your data model.

Once the conditions are defined, you use the Styling Customizer panel to specify the graphic
effects to display when the conditions are satisfied for a node or a link.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 45

Configuring the layout
Within the Designer, you can access the graph layout facilities in a wizard that helps you to
choose layout algorithms, and then work in a Styling Customizer panel that lets you tune
the parameters of the selected algorithms. The result is instantly visible in the preview
window.

Graph layout features are only available if you have purchased a full
JViews Diagrammer license.

Note:

Defining a background
You can add a background to the diagram—bitmap or raster.

If you need a geographic map and you want the nodes to be positioned according to their
longitude and latitude, you will need to use IBM® ILOG® JViews Maps with
JViews Diagrammer. The Designer lets you integrate maps from IBM® ILOG® JViews Maps
into your project.

Saving the project
When you have set up the look and feel of your diagram, you can save your project to be
loaded in your application.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 646

Controlling the diagram in an application

JViews Diagrammer comes with a set of classes designed to ease the development of Swing
GUIs. These classes allow end users to control one or more diagrams in an application.

Actions
More than sixty predefined Swing actions call the main methods of JViews Diagrammer.
They include actions like select, zoom, pan, undo, redo, save, paste, print, print preview,
and many more.

Toolbars and menus
JViews Diagrammer provides Swing JToolbars and Swing JMenus that contain buttons linked
to JViews Diagrammer actions. A few predefined toolbars and menus such as the Edit toolbar
(EditBar class) and the Edit menu (EditMenu class) are provided to accelerate your
development.

Overview
The overview displays the entire diagram within a small area. It has a movable and resizable
rectangle which indicates the area of the diagram that is visible. The end user can move
and resize the rectangle to pan the main view or to change its zoom level.

Tree and table
JViews Diagrammer proposes an alternative way to view and select nodes and links through
a Swing JTree. This view complements the diagram view.

The data model and the data properties of the model objects can be viewed and modified
with a Swing JTable.

Property sheets
When double-clicked, a graphic object can display its data properties in a property sheet
provided by JViews Diagrammer. Through this property sheet, the end user can edit the
data properties of the graphic object. When a style rule is selected, it can display the styling
properties in a property sheet as well as in the tabbed panes of the Styling Customizer.

Application
If you need to prototype or to develop fast, you can use the prebuilt JViews Diagrammer
application, which already contains toolbars and menus, palettes, property sheet, overview,
and more.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 47

Advanced configuration

At some point you need to develop one of the following types of application: a Java™ Swing
application, an applet, or a servlet. In this application, you create an IlvDiagrammer object,
you load the project generated by the Designer, and you add the Swing or DHTML toolbars
and menus to control the diagram with buttons like zoom, pan, edit, and so on.

For prototyping, you can decide to start with the prebuilt JViews Diagrammer application
that only requires a loaded project to run.

Customizing the application
You may well have precise requirements for your application that cannot be satisfied just
with the style sheets and the prebuilt behavior of JViews Diagrammer. This is the case if
your application requires specialized interactions or if you had to implement the data model
interface to connect to your application data.

With the JViews Diagrammer SDK, you have a comprehensive API to use or extend the Java
classes involved in the creation of your diagram. You can basically access all the entities
that play a role in and around the diagram: the SDM engine, the data sources, the renderers,
the grapher, the views, the interactors, the composite graphics, and the graphic objects
themselves.

Some of these classes belong to IBM® ILOG® JViews Framework, which provides low-level
graphics services. With IBM® ILOG® JViews Framework, you have in-depth control of the
underlying graphical system that helps you to go beyond the limits of the JViews Diagrammer
diagram component.

The IBM® ILOG® JViews Framework path
It could happen that you are not satisfied with using a JViews Diagrammer diagram
component to build a diagram. You may prefer to manage the drawing process, the
synchronization between the graphics and your data, the refresh modes, and so on, for
yourself.

If this is your choice, if you do not like high-level components that hide the graphics
complexity or do not want the styling mechanism provided by JViews Diagrammer, the JViews
Diagrammer product remains a great choice for you: you can find everything you want in
IBM® ILOG® JViews Framework and the Graph Layout package, which are part of JViews
Diagrammer. (Graph layout features are available only if you have purchased a full
JViews Diagrammer license.)

However, you can still use the powerful symbols you may have designed using the Symbol
Editor. By default, symbols are based on CSS and are interpreted at run time. But you can
also generate the Java source code corresponding to some or all of your symbols (see Using
the Symbol Compiler). In this case, generated symbols are JavaBeans™ and subclasses of
IlvCompositeGraphic. The JViews Framework allows you to instantiate and fully manage
such objects in your applications. You will have more control over the way objects are created,
deleted, and animated.

With the JViews Framework approach, you can manage the grapher class yourself, you can
create your own graphic objects and links that you place in the grapher, and you can apply
graph layout algorithms from JViews Diagrammer to lay out the diagram.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 648

This alternative approach was taken by thousands of IBM® ILOG® JViews developers before
JViews Diagrammer was put on the market. However, it is likely that you will have to code
many services that are prebuilt for you in JViews Diagrammer. Your results can be similar,
and you will surely be able to manage the diagram very precisely, but your project will be
more costly.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 49

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 650

Managing dashboards

Describes the two types of processes provided to manage dashboards.

In this section

Overview
Gives a short introduction on dashboards.

Direct data feeding
Describes one of the two ways to manage a dashboard.

Dashboard introspection
Describes the second way to manage a dashboard.

© Copyright IBM Corp. 1987, 2009 51

Overview

A dashboard is a graphical component composed of IBM® ILOG® JViews symbols arranged
on an editable background. It is used to display business or system critical information
graphically.

Dashboards are created with the Dashboard Editor. They are made of background graphics
and active symbols stored using an XML description (usually with the .idbd extension).

JViews Diagrammer contains a set of utility components to manage dashboards at a high
level. The following typical services are provided:

♦ Loading dashboards

♦ Listing the components of a dashboard

♦ Listing the parameters for each symbol used in the dashboard

♦ Getting information about each parameter, such as type, default value, and so on

For consistency, a dashboard (IlvDashboardDiagram) is derived from the IlvDiagrammer
class. As a consequence, all the functions provided by SDM are available. When a dashboard
is loaded from a dashboard file, a model is automatically created and accessible from within
the application. Additional information specified on the dashboard’s symbols (such as
parameters and other properties) is available through the IlvDashboardSymbol class.

The typical processes for managing a dashboard are twofold:

♦ Direct data feeding

♦ Dashboard introspection

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 652

Direct data feeding

In this process, the dashboard is loaded from its description file. Utility methods allow you
to retrieve symbols of the loaded dashboard, and then to set particular values for the
properties. When properties have beenmapped to some specific parameters in the Dashboard
Editor, the model already contains the corresponding properties to be directly set on the
symbols. The following is an example of the code to write when you manage a dashboard
through direct data feeding.

Managing a dashboard through direct data feeding

IlvDashboardDiagram _dashboard;
IlvDashboardContext context = new IlvDashboardContext();
// create the dashboard
_dashboard = new IlvDashboardDiagram(context);
String path = "data/dashboard.idbd";
//
url = new URL("file:./" + path);
//
// Load the dashboard
_dashboard.readDashboard(url);
// Retrieve a given symbol
Object symbol = _dashboard.getObject("my_symbol");
// Set a symbol property
_dashboard.setObjectProperty(symbol, "my_value", new Integer(123));

The application<installdir>/jviews-diagrammer86/samples/dashboard/bam/index.html
is provided as part of the JViews Diagrammer demonstration software to illustrate how to
create dashboards that are directly managed by Java™ code.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 53

Dashboard introspection

In this process, the dashboard is also loaded from its description file, but the application is
able to dynamically discover the content of the dashboard and manage the association
between the symbols and the custom data contained in the application. In this case, you
have to take advantage of the iterators provided by the IlvDashboardDiagram class and the
metadata description available at the level of each symbol.

This process allows you to create very generic applications based on content (that is,
dashboards created with the Dashboard Editor) instead of code. The same runtime engine
is able to connect data to symbols from their description, manage navigation, animation,
and so on.

The application
<installdir>/jviews-diagrammer86/samples/dashboard/tunnel-monitoring/index.html
is provided as part of the JViews Diagrammer demonstration software to illustrate this
generic approach with a simulator that is able to compute and deliver a set of active values,
and dashboards that are dynamically connected to these active values, purely based on the
mapping information described in dashboard files.

For greater flexibility and also to allow you to create more advanced dashboards, the
Dashboard Editor is extendible. This allows you to create dashboards and symbols with the
right level of information expected by your runtime application. Please refer to the Using
the Dashboard Editor documentation for more information about how to customize the
Dashboard Editor.

For more information, see the Using the Dashboard Editor user documentation, the BAM
Dashboard and Tunnel Monitoring samples, and the ilog.views.dashboard package in the
Java API documentation.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 654

Integration and deployment

There are two interesting options for delivering rich visual applications that can be deployed
to multiple targets:

♦ The first option consists in minimizing the amount of code written. For example, because
the interface is primarily based on descriptive reusable content (such as Symbols, CSS,
XML, Dashboards), the task to finalize the application for a given platform is reduced.

♦ The second option consists in using a model-driven architecture to automate the creation
of user interfaces directly from data models. This very systematic approach is particularly
suitable for diagrams and data-centric applications.

These techniques require a set of portable visual components that can deliver graphical
content on multiple platform targets, and design tools that create reusable visual entities
and the specifications for displays driven by underlying data. The importance of design tools
goes beyond the need to reduce the coding part of an application, and offers an opportunity
to provide different tools for the different roles in the development chain, and eventually
create new ones. For example, a graphics designer can provide attractive content for a user
interface without necessarily being involved in technical development. Also, an application
administrator can enrich the application without modifying the core of the system.

JViews Diagrammer offers dedicated portable components for diagrams, dashboards, and
generic Human Machine Interfaces (HMI). The design tools (Symbol Editor, Dashboard
Editor and Designer) simplify the development process and minimize the amount of code to
write. Development time is spent primarily on creating descriptive content, and the coding
part is limited to integration and data management. At run time, different families of
components, including Swing, Eclipse™ , and Web are used for integration. For the Web
side, there are dedicated JavaServer™ Faces components that can reside on a Web server
and generate an interface for a browser. By mixing images and JavaScript™ /DHTML code,
the components deliver content for either traditional Web pages or portals that implement
the JSR 168 standard. They are also able to deal with asynchronous requests that manage
Ajax behavior and minimize page refreshes.

For more information, please refer to the Building Web applications user documentation.

© Copyright IBM Corp. 1987, 2009 55

A business process diagram deployed as a rich client

The same business process diagram deployed as a Web/Ajax interface

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 656

By generalizing the usual software component approach and systematically adding design
tools and descriptive content, JViews Diagrammer addresses a large number of visual
requirements and deployment to multiple platforms. With more precise roles in the
development chain, applications can be enriched by creating new content that is dynamically
loaded without modifying the code base. Another interesting aspect is the ability to reuse
graphical content, such as visual symbols or look and feel definitions, from one application
to another independently from code. In the end, developers have more freedom to build and
deliver interactive applications that end users will enjoy using.

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 57

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 658

A
actions 47
application 47, 48
architecture

JViews Diagrammer 20
automatic layout 28

B
background 43
bitmap background 43
BPMN 24
bundling links 28
business processes 24
buttons 48

C
changes to business data 8
components 47
Composer for backgrounds 43
conditions 24
connecting to nodes 28
creating links 27
creating nodes 27
creation of nodes and links 40
CSS 24
CSS2 41
CSV 23

D
Dashboard Editor 16
dashboards 10, 14

data introspection 54
direct data feeding 53

data introspection
dashboards 54

data model 23
data properties 47
data source 41
data sources 23

decision trees 28
default situations 24
deployment platforms 13
deriving new interactors 27
Designer 16, 24
DHTML 48
diagrams 8, 14
direct data feeding

dashboards 53
directories 28
drill-down 8
duplication 23

E
editing 8
editing process 34
editing subgraphs 27
events 40

F
flat files 23
formats for maps 43
Framework approach 48

G
generic properties 23
geographic map 43
graph layout renderer 42
grapher 30, 39
grapher class 48
GUI components 47

H
hiding symbols 21

I
IlvDiagrammer object 48
in-memory data model 23
integration and deployment 55
interacting with the diagram 27

© Copyright IBM Corp. 1987, 2009 59

I N D E X

Index

interactions 8, 48
interactors 27, 40

assigning 38
IVL format 43

J
JDBC connections 23
JMenus 47
JTable 21, 47
JToolbars 47
JTree 21, 47
JViews Diagrammer 47

general architecture 20

L
label layout 28
latitude and longitude values 12
layers 21
layout algorithm 42
layout algorithms 28
length of links 28
link routing 28
loading the project 48
low-level graphics services 48

M
map renderer 43
map-based displays 12
menus 47
model-view architecture 23
monitoring applications 27
monitoring panels 14
moving nodes 27
multiple views 21

N
natural language 24
notation 24

O
object interactor 40
optimal layout 28
options 24
organizational techniques 8
overview 21, 47

P
palettes 47
pan 21, 27
pan the main view 47
parameters for layout 28
platforms 13
preview window 24
project 41
property sheet 21
property sheets 47

R
random color 38

real-time updates 30
refresh techniques 30
refreshing the display 30, 39
renderers 34, 38
rendering process 34
routing links 28

S
scrolling 8
SDM engine 34
selecting nodes and links 27
selection 40
semantic networks 28
snapshot 8
source and destination nodes 23
static diagrams 8
style sheet 24, 41
style sheet change 24
Styling Customizer 47
styling mechanism 24
Styling Properties 21
styling properties 47
SVG format 43
swimlanes 24
Swing 48
Swing actions 47
Swing GUIs 47
Swing JTable 21
Swing JTree 21
Symbol Compiler 16
Symbol Editor 16
symbols 24
synchronization 23

T
table view 21
tag 37
telecommunications application 24
tool chain 16
toolbars 47
tree view 21

U
user profile 24
user-defined properties 23, 27
user-defined type 37

V
vector background 43
view interactors 40
views 21

W
website maps 28

X
XML files 23

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 660

Z
zoom 27
zoom level 21, 47
zooming 8

I B M ® I L O G ® J V I E W S D I A G R A M M E R 8 . 6 61

	Table of contents
	About JViews Diagrammer
	Overview
	Types of displays covered by JViews Diagrammer
	Diagrams
	Dashboards
	Map-based displays

	Types of deployment platforms
	Key aspects of a JViews Diagrammer user interface
	The JViews Diagrammer tool chain

	Basic concepts
	General architecture
	Views
	Data
	Styling
	Symbology
	User interactions
	Graph layout
	Refreshing the display in real time

	Creating diagramming applications
	Managing the views
	The SDM engine
	The data model interface
	The renderers
	The grapher
	The interactors

	Populating a diagram
	Graph layout
	Backgrounds and maps
	Using Designer projects
	Controlling the diagram in an application
	Advanced configuration

	Managing dashboards
	Overview
	Direct data feeding
	Dashboard introspection

	Integration and deployment
	Index

