
IBM ILOG JViews Framework V8.6

IBM ILOGJViews Framework
Advanced Features

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Nested managers and nested graphers...7
Submanagers...9

Using nested managers..11
Adding a nested manager..12
Optimizing the addition of nested managers..14
Traversing nested managers..15
Coordinate system in nested managers...16
Working with graphic objects in nested managers...17
Views on a nested manager...19

Adding a manager frame..21
Defining and drawing a default frame and its margins..22
Using the default frame..24
Using the constant mode frame...25

Expanding and collapsing..26

Using nested graphers..29
Nested graphers...30
Intergraph links...31
Creating and accessing an intergraph link...32
Coordinate system of Intergraph Links...36
Collapsed grapher and intergraph links..37
Creating a link using IlvMakeLinkInteractor..39

Selection in nested managers..40

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Selection interactor in nested managers..42

Content-change events in nested managers..43

Hierarchy events in nested managers...44

Interactors for nested managers and graphers..47

Class diagram for nested managers..48

Link shape policies..49
Overview of link shape policies...50

Orthogonal link shape policy...51

Crossing link shape policy...52

Parameters of the link shape policy..54

Gaps at crossings...56

Obtaining the link shape policy of IlvEnhancedPolylineLinkImage instances....................57

Defining your own link shape policy...59
Callback methods of IlvLinkShapePolicy..60
Creating a link shape policy with up to two bends..62
Class diagram for link shape policies...67

The generic printing framework..69
Overview of the support for printing...70

Java print package and printing API...71
Overview...72
The printable interface..73
Using the PrinterJob class to print a component..74

The printing framework...77
Features of the printing framework...79
The Document Model classes..80
The PrintableDocument class..81
The Page class...82
The Printable class...83
The header and footer classes...84
The IlvFlow class for creating a document with styled text...86
Printing user interface components..87
The PrintingController class...92
Creating an IlvDocument with printable objects...93
Creating an IlvDocument with a flow of text...95

Printing framework for manager content...99
Overview of the printing framework for managers...100

Printing the contents of a manager on multiple pages..101

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 64

The IlvManagerPrintableDocument class...102
The IlvManagerDocumentSetupDialog class...104
The IlvManagerPrintingController class...106
The IlvManagerPrintAreaInteractor class...107
A Swing application that prints the contents of a manager..108

Printing a manager as a flow of text..112

Printing a manager in a custom document...113

Class diagram for printing the contents of managers...114

Scalable Vector Graphics...115
Overview of SVG support...116

The contents of an SVG File...117

Loading and saving SVG files with IBM® ILOG® JViews..119

Deploying IBM® ILOG® JViews applications as SVG thin clients......................................121
Overview of the IBM® ILOG® JViews SVG thin-client feature...122
Developing the server side of an SVG thin-client application...123
Developing the client side of an SVG thin-client application...127

SVG advanced personalization..133
Overview of conversion to SVG..134
Customizing the conversion of a graphic object...135
Customizing the SVG DOM generated by the SVG thin client...138
SVG features supported when reading an SVG file...140

DHTML thin-client support in JViews Framework...143
Overview of thin-client support...145

IBM® ILOG® JViews thin-client Web architecture..146

Getting started with the IBM® ILOG® JViews thin client..147

Installing and running the XML Grapher example..149

Developing the server...150

Developing the client..155
Overview of client-side development..157
The IlvView JavaScript component...158
The IlvOverview JavaScript component...161
The IlvLegend JavaScript component..163
The IlvButton JavaScript component..165
The IlvZoomTool JavaScript component..171
The IlvZoomInteractor JavaScript component..172
IlvPanInteractor..174
The IlvPanTool JavaScript component...175
The IlvMapInteractor and IlvMapRectInteractor JavaScript components...176

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 5

The Popup menu in JavaScript...177

Adding client/server interactions...182

Generating a client-side image map..184

The IlvManagerServlet class..187
Overview of the predefined servlet...188
The servlet requests and parameters...189
Multiple sessions..194
Multithreading issues..196

The IlvManagerServletSupport class..197

Controlling tiling..199
Tiling...200
Tile size..201
Cache mechanisms..202
Developing client-side tiling..203
Developing server-side tiling..205
Client-side caching...206
Server-side caching and the tile manager..207

Index..209

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 66

Nested managers and nested graphers

Describes nested managers and graphers. Nesting allows you to add a manager to another
manager or a grapher to another grapher.

In this section

Submanagers
Explains the nesting feature for managers and graphers and further features of nested
graphs.

Using nested managers
Describes nested managers and explains how to create them and work with them.

Adding a manager frame
Explains how to add and customize a frame around the objects in a nested manager.

Expanding and collapsing
Explains how to expand and collapse a nested manager and how to manage the collapsed
representation and the expand/collapse events.

Using nested graphers
Describes nested graphers and explains how to create them and work with them.

Selection in nested managers
Explains how to select objects in a nested manager and in a hierarchy of nested managers.

Selection interactor in nested managers
Explains how to use the selection interactor.

© Copyright IBM Corp. 1987, 2009 7

Content-change events in nested managers
Explains how to be notified of content-change events.

Hierarchy events in nested managers
Describes the two types of hierarchy event and explains how to be notified of them and how
they propagate.

Interactors for nested managers and graphers
Describes the graphic object interactors that can be used with nestedmanagers and graphers.

Class diagram for nested managers
Describes the relationships between the classes for nested managers with a class diagram.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 68

Submanagers

The manager and the grapher are graphic objects that can be embedded inside another
manager or grapher. This nesting feature of IBM® ILOG® JViews allows you to create
applications that display a graph inside another graph.

The manager and the grapher are the main classes that can contain graphic objects for
displaying and manipulating in several views.

For an introduction to the manager (IlvManager) and its subclass the grapher (IlvGrapher),
see Managers and Graphers of The Essential JViews Framework.

The following figure shows an example of nested graphs.

Nested graphs

In this figure, the object entitled “Obtain Supplies” is a grapher (instance of IlvGrapher)
that itself contains two other graphers, “deliver supplies” and “pay for supplies.” The figure
shows that a manager (and a grapher) can be surrounded by a frame; in this example the
three (blue) frames each display the name of the manager as a title. This type of decoration
as well as the background of the submanager can be completely customized. Another feature
shown in this example is the fact that links between nodes can cross subgraph boundaries.
Such links are called intergraph links.

Each grapher or manager embedded inside another manager or grapher can also be displayed
in several views, just like top-level managers.

A manager or grapher embedded inside another manager has two different representations:
an expanded state where all the objects contained in the submanager are visible, and a
collapsed state where the manager is drawn with a collapsed representation that can also
be customized.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 9

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 610

Using nested managers

Describes nested managers and explains how to create them and work with them.

In this section

Adding a nested manager
Explains how to add a manager to a top-level manager with a simple example.

Optimizing the addition of nested managers
Explains how to optimize the addition of submanagers to a manager.

Traversing nested managers
Describes the methods for retrieving information on the manager hierarchy.

Coordinate system in nested managers
Explains the position and size of a submanager and how the coordinate system works when
objects are moved or resized.

Working with graphic objects in nested managers
Explains how to manipulate graphic objects in a manager with recursion into submanagers.

Views on a nested manager
Describes how to associate views with a nested manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 11

Adding a nested manager

The IlvManager class inherits from the IlvGraphic class; as a consequence, a manager and
a grapher can be added to another manager or grapher just like any other graphic object.
To add a manager to a manager, you use the addObject(ilog.views.IlvGraphic, boolean)
method of the IlvManager class.

Example: Adding a nested manager
The following code shows a simple nested manager.

import ilog.views.*;
import ilog.views.graphic.*;
import javax.swing.*;
import java.awt.*;

public class SubManagerExample
{
public static void main(String[] args) {
IlvGraphic obj;
IlvManager toplevel = new IlvManager();
IlvManager subManager = new IlvManager();

obj = new IlvRectangle(new IlvRect(10,10,50,50), false, true);
subManager.addObject(obj, false);
obj = new IlvRectangle(new IlvRect(100,100,50,50), false, true);
subManager.addObject(obj, false);

toplevel.addObject(subManager, false);

obj = new IlvRectangle(new IlvRect(10,200,50,50), false, true);
toplevel.addObject(obj, false);

final IlvManagerView view = new IlvManagerView(toplevel);
view.setBackground(Color.blue);
SwingUtilities.invokeLater(
new Runnable() {
public void run() {
JFrame frame = new JFrame("Sub manager Example");
frame.getContentPane().add(view);
frame.setSize(200,200);
frame.setVisible(true);

}
});

}

This simple example creates two IlvManager objects, the top-level manager (variable
toplevel) that will be displayed in the view and the submanager (variable subManager).
The submanager is added to the top-level manager by the line:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 612

toplevel.addObject(subManager, false);

Two rectangles are also added to the submanager. Another rectangle is added at the top
level.

The following figure shows the resulting application.

Submanager example

The white area is the submanager containing two rectangles.

Adding a manager to a manager can be done to an infinite level. The library will just
make sure that you do not create cycles in the hierarchy of nested managers.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 13

Optimizing the addition of nested managers

It is possible to add submanagers to a manager in two different ways:

This first approach requires multiple recalculations of the bounds of the parent
manager while filling the submanager. Adding an object to the submanager might
not only change the bounds of the submanager but also the bounds of all its ancestor
managers.

1. Add the submanager to its parent manager.

2. Fill the submanager

The second approach avoids changing the bounds of all its ancestor managers and
is always faster. Generally, it is faster to add a subobject to a manager after all the
customizations of the subobject are completed.

1. Fill the submanager.

2. Add it to its parent manager.

However, it is not always possible to control the order in which objects are added to
managers. In this case, insertion adjusting sessions help:

manager.setInsertionAdjusting(true);
try {

... add nested managers and nodes recursively in any order ..
} finally {

manager.setInsertionAdjusting(false);
}

This ensures that the performance is optimal even when submanagers and their contents
are added in the wrong order. It ensures that the bounding boxes of the manager and its all
submanagers are only recalculated when setting the insertion adjusting flag to false. Events
related to the change of the bounds of the managers are also delayed until this time.

The insertion adjusting flag needs only to be set at the top level manager, and it will be
automatically propagated to all existing and newly created submanagers. The insertion
adjusting flag affects only the performance when objects are added. It has no effect when
objects are removed.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 614

Traversing nested managers

Once a manager has been added in a manager, it is no different from any other graphic
object. Nevertheless, the manager contains a set of methods that allow you to have quick
access to the managers added in a manager and to the manager hierarchy in general.

You can obtain an enumeration of the managers present in a submanager using the method
getManagers() and a count of how many managers are present with the method
getManagersCount().

The same methods can be applied to a particular layer: getManagers(int) and
getManagersCount(int).

Note that these methods will return the submanagers at the first level of the hierarchy only.
Using these methods is much more efficient than traversing the list of all objects present
in a manager.

You can also traverse up the hierarchy of managers, using the method getParent().

In the simple example (see Example: Adding a nested manager) the following line would
return toplevel:

subManager.getParent()

For a manager at the top level, this method returns null.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 15

Coordinate system in nested managers

The position and size of a submanager depend on the position and size of the objects that
are contained in the submanager. As a consequence, all objects that are contained in the
submanager are always displayed, and the size and position of the submanager may change
when a graphic object contained in this manager changes position or size.

Note that in the simple example (see Example: Adding a nested manager), the position and
size of the submanager has not been specified.

As for any graphic object, you can move and resize a submanager using the moveObject
(ilog.views.IlvGraphic, float, float, boolean) or reshapeObject(ilog.views.
IlvGraphic, ilog.views.IlvRect, boolean) methods. In the example you could do
something like:

toplevel.moveObject(subManager, 100,100, true)

When a nested manager is resized or moved, the objects contained in the manager do not
change position in the submanager coordinate system. The submanager will move because
an affine transformation (an IlvTransformer) will be specified in the submanager to define
a new relative coordinate system for the submanager. In the line for moving the subManager
to (100,100), the transformation is a simple translation of (100,100).

To obtain the affine transform that defines the coordinate system of the submanager, you
can use the method getTransformer().

If the submanager has not beenmoved or reshaped, this returns the identity transformation.

To know what transformation is used to draw a submanager in a specified view, you can use
the following method of the IlvManager class: getDrawingTransformer(ilog.views.
IlvManagerView).

This method returns the affine transformation used to draw the objects in a manager. If the
specified view is a view of the manager, then it simply returns the affine transform of the
view; otherwise, themethod will compose the transformation of all the parents of themanager
and also the transformation of the view to give the result.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 616

Working with graphic objects in nested managers

The API you use to manipulate graphic objects stored in a nested manager is the same as
the one you use when working on a top-level manager. For example, you use the moveObject
(ilog.views.IlvGraphic, float, float, boolean) or reshapeObject(ilog.views.
IlvGraphic, ilog.views.IlvRect, boolean) method of the IlvManager class to move or
reshape an object in a nested manager. You also use the applyToObject(ilog.views.
IlvGraphic, ilog.views.IlvApplyObject, java.lang.Object, boolean) method of
IlvManager when modifying a property of a graphic object that changes the bounding box
of a graphic object. The only difference for a nested manager is that when a graphic object
is stored in a nested manager, changing its size or moving it can change the size of the
manager itself, proceeding recursively up the hierarchy of the manager.

The IlvManager class provides some convenient methods for working with graphic objects
in nestedmanagers; thesemethods have a traverse parameter that when set to truemeans
that the method applies also to nested managers in this manager.

You can access all the objects in the hierarchy of managers using the following methods
with the traverse parameter set to true:

♦ To return the total number of objects in the hierarchy use the method:

int getCardinal(boolean traverse)

♦ To return an enumeration of all objects use the method:

IlvGraphicEnumeration getObjects(boolean traverse)

♦ You can locate an object under a certain point using:

IlvGraphic getObject(IlvPoint p, IlvManagerView view, boolean traverse)

♦ Finally, you traverse the hierarchy of objects to apply a function:

void map(IlvApplyObject f, Object arg, boolean traverse)

This method applies the function f to all objects of the hierarchy when the traverse
parameter is set to true.

void mapIntersects(IlvApplyObject f, Object arg,IlvRect rect, IlvTransformer

t, boolean traverse)

This method applies the function to all graphic objects that intersects the specified
rectangle in the hierarchy of nested managers.

void mapInside(IlvApplyObject f, Object arg, IlvRect rect, IlvTransformer

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 17

t,
boolean traverse)

This method applies the function to all graphic objects that are inside the specified
rectangle in the hierarchy of the nested manager.

Some methods allow you to deal with selection and deselection of objects in a hierarchy of
nested managers. This is explained in Selection in nested managers.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 618

Views on a nested manager

It is possible to view the contents of a nested manager in several views (IlvManagerView)
just as you can do for a top-level manager.

Any modification of an object in a nested manager will be reflected in all the views in which
the object appears, which are:

♦ All the views of the submanager that contain the object.

♦ All the views of the parent manager, and proceeding recursively.

The association of the view with a submanager is no different from the association of the
view for the top-level manager.

Views on nested manager

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 19

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 620

Adding a manager frame

Explains how to add and customize a frame around the objects in a nested manager.

In this section

Defining and drawing a default frame and its margins
Explains how to define a frame around the objects in a nested manager and how to set the
margins.

Using the default frame
Explains how to use the default frame around the objects in a nested manager.

Using the constant mode frame
Describes the behavior of the constant mode frame, which you can use instead of the default
frame.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 21

Defining and drawing a default frame and its margins

When a manager is nested, a frame can be drawn around the objects it contains.

A default frame is provided when you create a nested manager; the default frame is defined
by the class IlvDefaultManagerFrame.

Default manager frame

Defining the frame
The frame around a nested manager is defined by the interface IlvManagerFrame. The
IlvManagerFrame interface defines the margin that will be added around the manager. It
defines how the frame is drawn and how hit testing on the frame is performed.

To specify the frame that must be drawn around the manager, you use the following methods
of the IlvManager class:

void setFrame(IlvManagerFrame frame)

IlvManagerFrame getFrame()

Note that you can remove the frame from the manager using the setFrame method with a
null parameter.

Defining the margins
The following methods of the IlvManagerFrame interface define the margins that are added
around the manager:

float getBottomMargin(IlvManager manager, IlvTransformer t)

float getLeftMargin(IlvManager manager, IlvTransformer t)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 622

float getRightMargin(IlvManager manager, IlvTransformer t)

float getTopMargin(IlvManager manager, IlvTransformer t)

Manager frame margins

Drawing the default frame
The IlvManagerFrame interface provides a method to draw the frame:

void draw(IlvManager manager, IlvRect bbox, Graphics g, IlvTransformer t)

This method provides the manager with its bounding box in the view coordinate system that
already takes the margins into account. The IlvDefaultManagerFrame fills the background
and makes a border around the manager. This class also puts a title at the top of the manager
that corresponds to the name of the manager, as you can see in Manager frame margins.

If the frame implementation fills the background of the manager, the frame is an opaque
frame and the following method must return true:

boolean isOpaque(IlvManager manager)

The IlvDefaultManagerFrame object can be opaque or transparent.

♦ If the frame is opaque, graphic objects under the nested manager are hidden. This
disallows manipulation of these graphic objects.

♦ If the frame is transparent, graphic objects under the nested manager are visible. This
allows manipulation of the graphic objects, whether covered by the frame or not.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 23

Using the default frame

Hit testing
To allow hit testing on the frame, the interface provides the contains method:

boolean contains(IlvManager manager, IlvPoint p, IlvPoint tp, IlvTransformer
t)

If the frame is transparent, this method must return true for a possible border and not for
the background.

Saving the frame to an IVL file
To be able to save the frame to an IVL file, the implementation must be a public class that
also implements the IlvPersistentObject interface.

Copying a frame
To be able to copy a manager that has a frame, the frame must implement the copy method
of the interface in such a way that it creates a clone of the frame:

IlvManagerFrame.copy()

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 624

Using the constant mode frame

Instead of the IlvDefaultManagerFrame, you can use the IlvConstantModeManagerFrame,
a manager frame supplied with IBM® ILOG® JViews that handles the resize event
automatically when a user reshapes a submanager. IlvConstantModeManagerFrame keeps
the zoom level of the submanager unchanged by adjusting the frame margins to match the
required size.

A submanager with the IlvConstantModeManagerFrame frame set has the following behavior:

♦ Margins are never negative.

♦ A minimum margin size can be set.

♦ The default margin size is 0.

♦ The submanager can only be translated.

♦ The frame reacts to the IlvManager.moveResize() method but not IlvManager.
applyTransform(). Call IlvManager.applyTransform() to apply a specific transformation
only.

♦ While reshaping the submanager by dragging a handle, the margin next to the handle is
adjusted first. If this margin is reduced to zero, the margin on the other side of the frame
is adjusted.

♦ When both left and right margins of a IlvConstantModeManagerFrame object become
zero, the submanager stops the reshape operation.

♦ IlvConstantModeManagerFrame objects listens for submanager or grapher content
changes. When the bounding box of the submanager grows, in order to keep the global
bounding box constant the frame first tries to reduce margins.

For an example of how to use a manager frame, see <installdir> /jviews-framework86/
codefragments/subgraphs/index.html.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 25

Expanding and collapsing

A nested manager can be expanded or collapsed. When collapsed, a nested manager has a
different representation, as illustrated in the following figure.

Expanded and collapsed manager

To expand/collapse a manager, the IlvManager class provides the following methods:

setCollapsed(boolean)

isCollapsed()

When a nested manager is collapsed, the contents of the manager and the frame are no
longer drawn. Only the new graphic representation is shown.

Defining the collapsed representation
The graphic representation that defines the collapsed manager is a graphic object, an
instance of IlvGraphic. This allows you to define any kind of collapsed representation for
your manager. The default graphic object used to draw a collapsed manager is an instance
of the class: IlvDefaultCollapsedGraphic, which represents a folder above the name of
the manager. To change this default representation, you use the following methods of the
class IlvManager:

void setCollapsedGraphic(IlvGraphic graphic)

IlvGraphic getCollapsedGraphic()

Note that the graphic object used for the collapsed representation cannot be shared by
several managers.

When the manager is collapsing, the collapsed graphic will be placed at the center of the
area of the manager. When the manager is expanding, it will move so that its center will be
placed at the center of the collapsed graphic.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 626

Expand/collapse events
When the manager is expanded or collapsed, it fires an event to notify you of this change.
The event is defined by the class ManagerExpansionEvent.

To listen to such events, you must create a listener that implements the
ManagerExpansionListener interface, which defines the two methods:

♦ managerCollapsed(ilog.views.event.ManagerExpansionEvent) which is called after
the manager is collapsed.

♦ managerExpanded(ilog.views.event.ManagerExpansionEvent) which is called before
the manager is expanded.

You will then register your listener using the following method of the IlvManager class:

void addManagerExpansionListener(ManagerExpansionListener listener)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 27

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 628

Using nested graphers

Describes nested graphers and explains how to create them and work with them.

In this section

Nested graphers
Describes the features of nested graphers.

Intergraph links
Explains what an intergraph link is.

Creating and accessing an intergraph link
Explains how to create and access an intergraph link.

Coordinate system of Intergraph Links
Explains how to establish the coordinate system that applies to an intergraph link and how
to compute the connection points.

Collapsed grapher and intergraph links
Explains the appearance of intergraph links to a grapher when the grapher is collapsed and
how to obtain the end nodes of such links.

Creating a link using IlvMakeLinkInteractor
Explains how to create an intergraph link interactively.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 29

Nested graphers

As a subclass of a manager, a grapher (instance of IlvGrapher) inherits all the behavior of
managers, including nesting.

A grapher can be nested in another grapher or in a manager. It can be collapsed or expanded,
and a frame can be set on it.

In addition to having the features inherited from the IlvManager class, nested graphers
allow you to create applications that define graphs containing subgraphs, with links crossing
the graph boundaries (intergraph links).

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 630

Intergraph links

An intergraph link is a link that crosses grapher boundaries. In other words, an intergraph
link is a link whose origin and destination are in different graphers.

Some examples of intergraph links are shown in the following figure.

Intergraph Links and regular links

In this picture the red (darker) links are intergraph links and the yellow (light) links are
regular links.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 31

Creating and accessing an intergraph link

To be able to create intergraph links, you must have a hierarchy of nested graphers
(IlvGrapher). The hierarchy should not contain a manager (IlvManager); otherwise the
library will not let you create an intergraph link.

Creating an intergraph link
Given that an intergraph link has an origin and a destination in different graphers, the
question that arises is in which grapher the link is stored. The intergraph link between a
node stored in grapher A and a node stored in grapher B must be stored in the first common
ancestor of A and B, as shown in the following figure.

Intergraph link in a hierarchy of graphers

In this figure, the red intergraph link that connects an object of A and an object of B must
be stored in grapher C, the first common ancestor of A and B.

The IlvGrapher class provides a static utility method that allows you to determine the first
common grapher:

static IlvGrapher getLowestCommonGrapher(IlvGraphic obja, IlvGraphic objb)

To create an intergraph link, the code will look like this (assuming that the origin and
destination variables have been created and added in different graphers):

IlvGraphic origin, destination;
IlvLinkImage link;

...

link = new IlvLinkImage(origin, destination, false);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 632

IlvGrapher common = IlvGrapher.getLowestCommonGrapher(origin, destination);

common.addLink(link, false);

The IlvGrapher.addInterGraphLink static utility method allows you to add the link directly
to the common parent grapher:

static void addInterGraphLink(IlvLinkImage link, boolean redraw)

The code shown in the previous example is equivalent to:

IlvGraphic origin, destination;
IlvLinkImage link;

...

link = new IlvLinkImage(origin, destination, false);

IlvGrapher.addInterGraphLink(link, false);

Accessing an intergraph link
The IlvGrapher class also provides methods that let you access intergraph links stored in
a grapher in an efficient way:

IlvGraphicEnumeration getInterGraphLinks()

int getInterGraphLinksCount()

Since an intergraph link is stored in the same way as other links in the grapher, it is also
part of the list of all objects contained in this grapher returned by the getObjects method
of the class IlvManager:

IlvGraphicEnumeration getObjects()

Nevertheless, calling the getInterGraphLinksmethod is muchmore efficient than traversing
all objects of the grapher.

To distinguish an intergraph link from other objects in the grapher, you can use the following
method of the IlvGrapher class:

boolean isInterGraphLink(IlvGraphic obj)

This method returns true if the specified graphic object is a link stored in the grapher
instance with the origin or the destination stored somewhere else. That is, if the graphic
object is an intergraph link.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 33

The IlvGrapher class also gives you access to intergraph links that are leaving or entering
a grapher. You can access such links using the methods:

IlvGraphicEnumeration getExternalInterGraphLinks()

int getExternalInterGraphLinksCount()

The difference between the methods getInterGraphLinks and is the following:

♦ The first method, getInterGraphLinks, returns the intergraph links stored in a grapher
with an origin or destination in another grapher

♦ The second method, getExternalInterGraphLinks, returns the intergraph links stored
in another grapher but with the origin or destination in this grapher

If the grapher has no subgraphers, the external intergraph links obtained by
getExternalInterGraphLinks() are all links that are leaving or entering the grapher.

If the grapher has subgraphers, the intergraph links that leave the grapher have one of the
following:

♦ An end node in this grapher

♦ An end node in a subgrapher of this grapher

Calling getExternalInterGraphLinks() on the grapher gives only the links with an end
node in the grapher, not the links with an end node in a subgrapher of the grapher.

In this case, links that are leaving or entering the nesting hierarchy of the grapher can be
obtained by examining all external intergraph links of the subgraphers recursively. To help
in this task the following convenience methods are supplied:
getTreeExternalInterGraphLinks and getTreeExternalInterGraphLinksCount.

When a grapher is moved, it is possible that the grapher and all its nested subgraphers
appear at a new location on the screen. The grapher displacement causes the shape of the
following links to change:

♦ All links that are directly connected to the grapher. That is, have the grapher as origin
or destination.

♦ All links that are obtained by grapher.getTreeExternalInterGraphLinks().

The following figure illustrates interlinked nested graphers:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 634

External intergraph link

Grapher A contains two graphers, B and D. Grapher B contains another grapher, C. The
intergraph link from an object of C to an object of D is then stored in A.

This link is an intergraph link of A (returned in getInterGraphLinks() called on A) and is
also an external intergraph link of C and D (returned by getExternalInterGraphLinks()
called on C or D).

Neither the origin nor destination of the intergraph link ends in grapher B, and thus this
link is not returned by calling getExternalInterGraphLinks on B. However, the link is
returned by calling getTreeExternalInterGraphLinks() on B, since its origin node is nested
inside B.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 35

Coordinate system of Intergraph Links

Since an intergraph link has its origin and destination in different graphers, it may be difficult
to determine the coordinate system in which the bend points of an intergraph link are
defined.

The coordinate system of the link and its bend points is always the coordinate system of the
grapher to which the link has been added. The only difference compared to regular links is
the way an intergraph link computes its end points: the connection points of the link to its
origin and destination. The link itself, in fact the base class of the IlvLinkImage class,
computes its connection points by calling:

void getConnectionPoints(IlvPoint src, IlvPoint dst, IlvTransformer t)

This method determines whether the link connector (IlvLinkConnector) is installed on the
destination or origin node, by calling:

boolean getLinkConnectorConnectionPoint(boolean origin, IlvPoint p,
IlvTransformer t)

The getConnectionPoints method stores the result in the src and dst parameters. If the
link is an intergraph link, this method will compute the connection points in the coordinate
system of the origin and destination nodes.

In this method the origin parameter is true for computing the connection point at the
origin of the link and false for the destination of the link, and the t parameter is the
transformer used to draw the link.

This method returns true if a link connector is installed. If no link connector is installed, a
default connection point is computed. If a link connector is installed, the link connector then
computes the connection point with the method:

IlvPoint getConnectionPoint(IlvLinkImage link, boolean origin,IlvTransformer
t)

♦ When the link is a regular link, the t parameter is the transformer used to draw the link.
This is the same as the transformer used to draw the origin and destination.

♦ When the link is an intergraph link, then thet parameter is the transformer used to draw
the origin or destination.

So when developing a new class of links or link connectors, there is no special work to be
done to take into account the specific case of intergraph links.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 636

Collapsed grapher and intergraph links

When a grapher is collapsed, the graphic objects that it contains are no longer visible on
the screen. The nodes that are the destination and origin of an intergraph link are not visible
on the screen, and thus such intergraph links cannot visually point to their end nodes. These
intergraph links will instead point to the collapsed representation of the grapher on the
screen.

The following figures show an example of intergraph links to a grapher when it is expanded
and then when it is collapsed.

Intergraph links to an expanded Grapher

Intergraph links to a collapsed grapher

Although the links point visually to the collapsed representation of the manager once the
manager is collapsed, the real origin and destination of the links do not change. The methods
getFrom() and getTo() of the link (IlvLinkImage) still return the same object. Only the
graphical representation changes. The link visually points to the first noncollapsed parent
manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 37

You could consider that the methods getFrom and getTo of the link return the real end nodes
of the link. The nodes that appear visually as end nodes on the screen can also be obtained
by using the methods getVisibleFrom() and getVisibleTo() of the link. If there are no
collapsed managers, the visible end nodes and the real end nodes are always the same

For a given node, all links that have the node as visible end node can be obtained by the
methods:

IlvGrapher.getLinksVisibleFrom(IlvGraphic node)

IlvGrapher.getLinksVisibleTo(IlvGraphic node)

The links that have it as real end node are obtained by the methods:

IlvGrapher.getLinksFrom(IlvGraphic node)

IlvGrapher.getLinksTo(IlvGraphic node)

In Intergraph links to a collapsed grapher, two links have the visible destination node pay
for supplies, but their real destination node is the inner node of pay for supplies, which
is not visible in Intergraph links to a collapsed grapher, but can be seen in Intergraph links
to an expanded Grapher.

If a manager is collapsed, the position of the connection point of the link is determined by
the link connector installed on the collapsed manager and not by the ones installed on the
real end nodes.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 638

Creating a link using IlvMakeLinkInteractor

As well as creating an intergraph link by code, it is possible to create intergraph links (and
also regular links) using the IlvMakeLinkInteractor.

When this interactor is installed, it allows you to interactively create a link from any graphic
object to any other graphic object. This allows you to create intergraph links and also links
to or from a nested grapher.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 39

Selection in nested managers

The IlvManager class provides the methods that allow you to query the selection status of
objects in a hierarchy of nested managers and also to listen for selection events in such a
hierarchy of managers.

Selection method for a nested manager
An IlvManager object allows you to select objects that it contains. See Selection in a manager
for more information about object selection. When a manager contains other managers,
objects located in a nested manager can be selected using the same method of IlvManager
: setSelected(ilog.views.IlvGraphic, boolean, boolean).

Selection methods for a hierarchy of nested managers
The following methods allow you to deal with the specific case of selections in a hierarchy
of nested managers.

void selectAll(boolean traverse, boolean redraw)

This method selects all the objects in the manager and also all the objects in nested managers
when the traverse parameter is true.

void deSelectAll(boolean traverse,boolean redraw)

This method deselects all the selected objects in the manager and also all the selected objects
in nested managers when the traverse parameter is true.

IlvGraphicEnumeration getSelectedObjects(boolean traverse)

This method returns an enumeration that contains all the selected objects in this manager
and in nested managers if the traverse parameter is set to true.

int getSelectedObjectsCount(boolean traverse)

This method returns the number of selected objects of this manager and in the nested
managers if the traverse parameter is set to true.

void deleteSelections(boolean redraw, boolean traverse, boolean redraw)

This method removes the selected objects in the manager and also removes the selected
objects in nested managers when the traverse parameter is set to true.

IlvSelection getSelection(IlvPoint p, IlvManagerView view, boolean traverse)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 640

This method returns the selection object under the specified point. The method will search
for selection objects in nested managers if the traverse parameter is set to true.

Selection Events
When a graphic object is selected or deselected, the manager fires a selection event. This
is described in Listener for the selections in a manager.

You can register a selection listener in the manager using the method:

void addManagerSelectionListener(ManagerSelectionListener listener)

The listener will only receive selection events for selections and deselections that occur in
the manager where the listener was registered.

To listen to selections that are taking place throughout a hierarchy of nested managers, the
IlvManager class provides the following methods:

void addManagerTreeSelectionListener(ManagerSelectionListener listener)

void removeManagerTreeSelectionListener(ManagerSelectionListener listener)

When you register a selection listener using these methods, whenever an object is selected
or deselected from a manager that is a submanager in the hierarchy of this manager, the
listener will receive the event.

Such a listener placed on the top-level manager of a hierarchy will receive all the selection
events of the hierarchy. To distinguish which submanager has sent an event, you can use
the method getManager on the event; the event is an instance of the class
ManagerSelectionChangedEvent and contains the method:

IlvManager getManager()

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 41

Selection interactor in nested managers

The selection interactor (the class IlvSelectInteractor) allows you to select and edit
objects interactively in a hierarchy of nested managers. Using this interactor, you can select
objects in several managers that are part of the hierarchy of nested managers.

Selecting multiple objects
You can select several objects in one of these ways:

♦ Shift-Click on each object

♦ Drag a rectangle around the objects

When you drag a rectangle, graphic objects that are inside the rectangle will be part of
the selection even if the submanager that contains these objects is not fully inside the
rectangle.

Moving a nested manager
To move a nested manager, click and drag in the background of the nested manager. You
can start a multiple selection with a selection rectangle in one of these ways:

♦ Click and drag in the background of the view

♦ Click and drag in the background of a nested manager with the Control (Ctrl) key pressed.

In this case the Control key distinguishes between the beginning of dragging a selection
rectangle and the beginning of a move operation on a manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 642

Content-change events in nested managers

When the content of the manager changes, for example, when an object is added or removed
or when the bounding box of an object changes, the manager fires a
ManagerContentChangedEvent event. Any class can listen for the modification of the content
of the manager by implementing the ManagerContentChangedListener interface. This
mechanism is described in Listener for the content of the manager.

Registering such a listener in a manager using the method
addManagerContentChangedListener(ilog.views.event.ManagerContentChangedListener)
of the manager allows the listener to receive Content Changed events only for modifications
that are taking place in the manager where the listener is registered. A listener registered
using this method will not be notified, for example, when a new graphic object is added to
a submanager.

Such a listener can nevertheless receive events indirectly due to some modifications
in submanagers. For example, when a new graphic object is added in a submanager

Note:

B of a manager A, the nested manager B may change size, so a listener registered
on A may receive an ObjectBBoxChangedEvent due to the insertion of a new graphic
object in B.

In order to receive all Content Changed events of a hierarchy of nested managers, the
IlvManager class allows you to register a global listener, with the methods:

void addManagerTreeContentChangedListener (ManagerContentChangedListener
listener)

void removeManagerTreeContentChangedListener (ManagerContentChangedListener
listener)

Such a listener registered on the top-level manager of a hierarchy will receive all the Content
Changed events of the hierarchy. To distinguish which submanager has sent an event, you
can use the method getManager on the event; the event is an instance of the class
ManagerContentChangedEvent and contains the method:

IlvManager getManager()

You can register a global Content Changed listener on the top-level manager to detect
all insertions of submanagers in the hierarchy of managers. If you do this, you must

Note:

take into account the possibility that a manager that already contains some managers
might be added to a manager. In this case the listener will not receive an event for
each of these managers.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 43

Hierarchy events in nested managers

Listeners registered with addManagerTreeContentChangedListener(ilog.views.event.
ManagerContentChangedListener) receive events from all changes to children and their
descendents in the hierarchy of nested managers.

An event is created on the manager that contains the changed object and it is propagated
upwards in the hierarchy to the ancestors. Typically, the event listener is added to the root
of the hierarchy.

Conversely, hierarchy events are propagated downwards in the hierarchy to the descendents.
They are similar to java.awt.event.HierarchyEvent and notify the descendents about a
change made to their ancestors. Typically, hierarchy event listeners are added to the leaves
of the hierarchy.

Two types of hierarchy events exist:

♦ The GraphicBagHierarchyEvent installed by addGraphicBagHierarchyListener(ilog.
views.event.GraphicBagHierarchyListener),

♦ The ManagerViewsChangedEvent installed by addManagerViewsHierarchyListener(ilog.
views.event.ManagerViewsChangedListener).

Graphic bag hierarchy events
When a submanager is added to or removed from its manager, a Graphic Bag Hierarchy
event is fired. It notifies all objects contained in the submanager recursively that the root
of the submanager nesting hierarchy has changed. The objects that can receive this event
are IlvManager, IlvGraphicSet, IlvGraphicHandleBag and their subclasses.

In order to add a listener for Graphic Bag Hierarchy events or remove one, you can call the
following methods on a submanager (or on IlvGraphicSet or IlvGraphicHandleBag):

void addGraphicBagHierarchyListener (GraphicBagHierarchyListener
listener)

void removeGraphicBagHierarchyListener (GraphicBagHierarchyListener
listener)

The GraphicBagHierarchyEvent contains the following information:

getGraphicBag() - this is the object whose graphic bag has changed,

getOldRootBag() - this is the root graphic bag of the entire hierarchy before

the change happend,

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 644

getNewRootBag() - this is the root graphic bag of the entire hierarchy after
the change happened.

The event is fired on the manager, graphic set or graphic handle bag whose graphic
bag has changed. It is propagated recursively to all children that implement the

Note:

GraphicBagHierarchyEventReceiver interface. It is not propagated to children
whose ancestors do not implement the GraphicBagHierarchyEventReceiver
interface, because the recursive propagation of the event stops on the object that does
not implement that interface. For example, if a manager contains an object of type
IlvGraphicHandle, which contains an IlvGraphicSet, then the event is not
received by the IlvGraphicSet because the IlvGraphicHandle does not
implement the interface. However, if the manager contains an object of type
IlvFullZoomingGraphic, which contains an IlvGraphicSet, then the event is
received by the IlvGraphicSet because both IlvFullZoomingGraphic and
IlvGraphicSet implement the interface.

Manager views changed events
ManagerViewsChangedEvent events are fired when a view is added to or removed from a
manager. To install listeners for these events on a manager, use the following methods:

♦ addManagerViewsListener(ilog.views.event.ManagerViewsChangedListener)

♦ removeManagerViewsListener(ilog.views.event.ManagerViewsChangedListener)

For details, see Listener for the views of a manager.

Listeners installed with this API will only receive events when a view is added directly to
the manager. In a nested hierarchy of managers, a submanager does not receive the event
if the view is added to the root manager of the hierarchy, even though the submanager will
be visible in that view.

It is possible to install listeners of the ManagerViewsChangedEvent events so that they also
receive the events from the ancestor managers. Use the following API to achieve this:

♦ addManagerViewsHierarchyListener(ilog.views.event.ManagerViewsChangedListener)

♦ removeManagerViewsHierarchyListener(ilog.views.event.
ManagerViewsChangedListener)

This API can be used on IlvManager, IlvGraphicSet, IlvGraphicHandleBag and their
subclasses. If a view is added to the root manager, the event is propagated to all the contained
objects that have a listener added with this API.

The event is fired by the manager where a view is added or removed. It is propagated
recursively to all children that implement the

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 45

ManagerViewsHierarchyEventReceiver interface. It is not propagated to children
whose ancestors do not implement the ManagerViewsHierarchyEventReceiver
interface, because the recursive propagation of the event stops at an object that does
not implement that interface. For example, if a manager contains an object of type
IlvGraphicHandle, which contains an IlvGraphicSet, then the event is not
received by the IlvGraphicSet because the IlvGraphicHandle does not
implement the interface. However, if the manager contains an object of type
IlvFullZoomingGraphic, which contains an IlvGraphicSet, then the event is
received by the IlvGraphicSet because both IlvFullZoomingGraphic and
IlvGraphicSet implement the interface.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 646

Interactors for nested managers and graphers

All interactors that are part of the IBM® ILOG® JViews library and that work with individual
graphic objects can work with objects embedded in a nested manager or grapher.

It is therefore possible to:

♦ Select and edit objects in nested managers using the IlvSelectInteractor (see Selection
interactor in nested managers).

♦ Create links and intergraph links in nested managers using the IlvMakeLinkInteractor
(see Creating a link using IlvMakeLinkInteractor).

It is also possible to have object creation interactors and specific object interactors.

Creation interactors
The same interactors that allow you to create a graphic object interactively also allow you
to create objects directly in a submanager.

Such interactors all follow the same scheme: when the interaction starts in a nested manager
(the first mouse click), the created object is placed in this manager. This is the case for all
subclasses of IlvMakeRectangleInteractor and IlvMakePolyPointsInteractor, which
are the base classes for creating an object with a rectangular shape and a set of points
respectively. It is also the case for the IlvEditLabelInteractor which allows you to create
labels.

Object interactors
Object interactors (instances of IlvObjectInteractor) are objects that provide interaction
for a specific graphic object. For details, see Object interactors of The Essential JViews
Framework.

An object interactor that is set on a graphic object contained in a hierarchy of nested
managers will still receive events coming from the view attached to a parent manager. There
is no difference in writing an object interactor that can be used on such a graphic object.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 47

Class diagram for nested managers

The following UML class diagram summarizes the class structure for nested managers.

IlvManager is a subclass of IlvGraphic; since IlvManager can contain IlvGraphic instances
as objects, it is possible to nest managers in other managers. When you display the nested
submanagers, the content is drawn and transformed using a local IlvTransformer instance
in the submanager. For the top-level manager displayed in the manager view, the local
transformer plays no role since the top-level manager is drawn and transformed by that
view’s IlvTransformer.

A manager can be collapsed or expanded. In its collapsed state, it is drawn as a representative
collapsed graphic and its contents are not drawn. In its expanded state, its contents are
drawn inside a manager frame.

The classes related to a nested IlvManager

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 648

Link shape policies

Describes each supplied link shape policy and explains the details of the link shapemechanism
and how to extend a predefined policy or implement your own.

In this section

Overview of link shape policies
Explains how link shape policies operate in general.

Orthogonal link shape policy
Describes how the orthogonal link shape policy operates and how to set it.

Crossing link shape policy
Describes how the crossing link shape policy operates and how to set it.

Parameters of the link shape policy
Describes the parameters you can set to make link shape policies more efficient or customize
them.

Gaps at crossings
Describes the management of gaps at link crossings.

Obtaining the link shape policy of IlvEnhancedPolylineLinkImage instances
Explains how to get the link shape policy shared by enhanced links in the same grapher.

Defining your own link shape policy
Describes the callback methods of the class IlvLinkShapePolicy and uses an example to
explain how you can define your own link shape policy.

© Copyright IBM Corp. 1987, 2009 49

Overview of link shape policies

Link shape policies allow you to manipulate and to constrain the shape of a polyline link.
For instance, you can use a link shape policy if you want a link always to remain orthogonal.
You can set link shape policies on links of type IlvPolicyAwareLinkImage, which is a subclass
of IlvPolylineLinkImage.

A link shape policy affects only the shape of the link on which it is set. In other
words, link shape policies are different from link layouts, which analyze and
reshape all links together globally.

Important:

The package ilog.views.graphic.linkpolicy contains two predefined link shape policies:

♦ IlvOrthogonalLinkShapePolicy to keep the shape of a link orthogonal.

♦ IlvCrossingLinkShapePolicy to display a tunnel or bridge crossing shape when links
cross.

The class IlvEnhancedPolylineLinkImage uses the predefined link shape policies internally.
The class has a simple API that offers you all the benefits of link shape policies while hiding
the details of the link shape mechanism. See Link shapes and crossing of The Essential
JViews Framework.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 650

Orthogonal link shape policy

The orthogonal link shape policy forces links to keep at right angles to one another. When
a link bend is moved, the adjacent link bends automatically to follow the move so that the
link always remains orthogonal.

Setting the Link Shape Policy
The orthogonal link shape policy can be set on links of class IlvPolicyAwareLinkImage.
The policy can be shared by several links. The following code shows how to set the orthogonal
link shape policy on two links.

IlvOrthogonalLinkShapePolicy policy =
new IlvOrthogonalLinkShapePolicy();

IlvPolicyAwareLinkImage link1 =
new IlvPolicyAwareLinkImage(node1, node2, true, null);

link1.setLinkShapePolicy(policy);
IlvPolicyAwareLinkImage link2 =

new IlvPolicyAwareLinkImage(node1, node2, true, null);
link2.setLinkShapePolicy(policy);
...
// insert the links into the grapher only AFTER installing the policy
grapher.addLink(link1, redraw);
grapher.addLink(link2, redraw);
...

After the link shape policy is set and added to the grapher, the link remains orthogonal
during all the operations that try to reshape the link. To disable the link shape policy, call:

link.setLinkShapePolicy(null);

This does not change the shape of the link immediately, but it enables subsequent operations
on the link to reshape it in a nonorthogonal way again.

Chaining of link shape policies
It is possible to apply multiple link shape policies to the same link, if these policies do not
contradict each other. In particular, it is possible to add a crossing link shape policy onto
an orthogonal link shape policy, as illustrated in the following code.

policy = new IlvOrthogonalLinkShapePolicy();
policy.setChildPolicy(new IlvCrossingLinkShapePolicy());
link.setLinkShapePolicy(policy);

In this case, the orthogonal policy first forces the link to an orthogonal shape, and then the
crossing policy calculates the display of the link crossings.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 51

Crossing link shape policy

The crossing link shape policy calculates the shape of a link that crosses other links. The
crossing mode can be a tunnel or a bridge.

Tunnel crossing and bridge crossing

Setting the link shape policy
You can set the crossing link shape policy to links of class IlvCrossingAwareLinkImage.
Use the following code:

IlvCrossingAwareLinkImage link =
new IlvCrossingAwareLinkImage(node1, node2, true, null);

link.setLinkShapePolicy(new IlvCrossingLinkShapePolicy());
grapher.addLink(link, redraw);
...

This policy can be shared among several links. The policy parameters are valid for all links
that share the same policy.

Crossing graphics
The crossing link shape policy calculates the positions of the crossings, but it is the crossing
graphics that actually draw the crossings. If no crossing graphic is associated with a link,

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 652

then the crossing is not displayed and a gap appears instead. A crossing graphic is an instance
of a subclass of IlvGraphic that implements the IlvCrossingGraphic interface.

The package ilog.views.graphic.linkpolicy contains two predefined crossing graphics:

♦ IlvTunnelCrossings for tunnel crossings

♦ IlvBridgeCrossings for bridge crossings

Unlike the shape policy itself, crossing graphics cannot be shared by several links. Once a
crossing graphic is associated with a link, it is fully maintained by the crossing link shape
policy. Therefore, it is not necessary to move or to reshape the crossing graphic, as all this
is done by the link shape policy automatically.

To set a tunnel crossing graphic, call:

link.setCrossingGraphic(new IlvTunnelCrossings(link));

To set a bridge crossing graphic, call

link.setCrossingGraphic(new IlvBridgeCrossings(link));

Example
The following code shows how to set the crossing link shape policy and the crossing graphics
for two links.

IlvCrossingLinkShapePolicy policy = new IlvCrossingLinkShapePolicy();
IlvCrossingAwareLinkImage link1 =

new IlvCrossingAwareLinkImage(node1, node2, true, null);
link1.setCrossingGraphic(new IlvTunnelCrossings(link1));
link1.setLinkShapePolicy(policy);
IlvCrossingAwareLinkImage link2 =

new IlvCrossingAwareLinkImage(node3, node4, true, null);
link2.setCrossingGraphic(new IlvTunnelCrossings(link2));
link2.setLinkShapePolicy(policy);
...
// insert the links into the grapher only AFTER installing the policy
grapher.addLink(link1, redraw);
grapher.addLink(link2, redraw);
...

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 53

Parameters of the link shape policy

Graphers may be nested. In this case, links of different subgraphers may cross each other.
Calculating the crossings therefore requires a complete traversal of the nested subgraphers.
If the grapher is not nested, or if crossings of links of different subgraphers should not be
displayed as tunnels or bridges, then it is useful to disable the nesting traversal of the link
shape policy. This also speeds up the calculation of crossings.

To disable the nesting traversal, call

crossingPolicy.setNestingTraversal(false);

The nesting traversal is enabled by default.

To enable or disable the nesting traversal of all crossing link shape policies that occur in a
nested grapher, it is more convenient to call:

IlvCrossingLinkShapePolicy.SetNestingTraversal(grapher, flag, traverse,
redraw);

If the traverse parameter is set to true, this method iterates over all links of all subgraphers
and sets the flag at all crossing shape policies of the links. If the redraw parameter is true,
a redraw is automatically performed afterwards.

Tunnel and bridge crossing shapes can be horizontally or vertically oriented. To enable a
horizontal orientation, call:

crossingPolicy.setHorizontalPreferred(true);

To enable a vertical orientation, call:

crossingPolicy.setHorizontalPreferred(false);

The horizontal orientation is the default.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 654

Crossing orientations: horizontal and vertical

Crossing links only look nice if all link crossings are the same. This can be achieved by
making all links share the same shape policy. Alternatively, you can also achieve this by
calling the following method on the grapher:

IlvCrossingLinkShapePolicy.SetHorizontalPreferred(grapher, flag, traverse,
redraw);

If the traverse parameter is true, the same preference is applied to all crossing shape
policies of all the links in all the nested subgraphers. Changing the preference changes the
shape of the links; therefore it may be necessary to redraw the links. If the redraw parameter
is true, the redraw is automatically performed.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 55

Gaps at crossings

A link of class IlvCrossingAwareLinkImage draws a gap at the link crossings. The crossing
graphic of the link fills this gap with a bridge or tunnel shape. You can modify the size of
the gap using the method:

crossingAwareLinkImage.setGap(width);

The corresponding bridge or tunnel drawing is automatically adapted when the gap changes.

The gap between links can follow the zoom level or be independent of the zoom level. If the
gap is zoomable, its size changes as you zoom in and out of the view. If the gap is
nonzoomable, it remains constant during zooming. In particular with nested graphers that
have different zoom levels, it may be visually more appealing if the gap is not zoomable.

To make gaps nonzoomable, call:

crossingAwareLinkImage.setGapZoomable(false);

Gaps are zoomable by default.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 656

Obtaining the link shape policy of IlvEnhancedPolylineLinkImage
instances

All instances of IlvEnhancedPolylineLinkImage that are in the same grapher use the same
link shape policy internally.

To obtain this link shape policy, call

IlvLinkShapePolicy policy = IlvLinkShapePolicyUtil.GetLinkShapePolicy (mode,
grapher);

The parameter mode can be:

♦ CROSSING_POLICY_MODE retrieves the link shape policy of all links that have the crossing
mode enabled and the orthogonal mode disabled.

♦ ORTHOGONAL_POLICY_MODE retrieves the link shape policy of all links that have the crossing
mode disabled, that is, the mode is NO_CROSSINGS, but the orthogonal mode enabled.

♦ A bitwise Or combination of both – the link shape policy that has the crossing mode and
the orthogonal mode enabled.

This allows you to access the link shape policies that are used internally by the class
IlvEnhancedPolylineLinkImage so as to change the parameters of these policies.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 57

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 658

Defining your own link shape policy

Describes the callback methods of the class IlvLinkShapePolicy and uses an example to
explain how you can define your own link shape policy.

In this section

Callback methods of IlvLinkShapePolicy
Describes the callback methods of the link shape policy class and explains how they are
used.

Creating a link shape policy with up to two bends
Uses an example to show how you can implement your own link shape policy.

Class diagram for link shape policies
Describes the relationships between the link shape policy classes with a class diagram.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 59

Callback methods of IlvLinkShapePolicy

In addition to the predefined link shape policies, the JViews Framework allows you to define
your own link shape policies.

In general, when a method of IlvPolicyAwareLinkImage is called that may change the
shape of the link, the following procedure is used by the policy-aware link image:

1. The link shape policy is temporary disabled to avoid endless recursion when calling
methods on the link inside the link shape policy.

2. The link shape policy is asked whether the change is allowed. For instance, when the
method link.insertPoint is called, the policy is asked by method policy.
allowInsertPoint whether inserting the point is allowed.

3. If the change is allowed, it is done (for example, the point is inserted).

4. The “after change” callback method of the link shape policy is called. For instance,
inside link.insertPoint, the method policy.afterInsertPoint is called. This allows
the policy to react to the change.

5. The link shape policy is enabled again.

6. The method afterAny is called at the end. Since, at this point, the link shape policy is
enabled, this method should not reshape the link any further. It can however perform
cleanup operations.

Callback methods of IlvLinkShapePolicy used by IlvPolicyAwareLinkImage
CommentAfter Method in

IlvLinkShapePolicy
Test Method in
IlvLinkShapePolicy

Method of
IlvPolicyAwareLinkImage

Applied to
the new
policy

onInstallsetLinkShapePolicy

Applied to
the old
policy

onUninstallsetLinkShapePolicy

afterInsertPointallowInsertPointinsertPoint

afterRemovePointallowRemovePointremovePoint

afterMovePointallowMovePointmovePoint

afterSetIntermediateLinkPointsallowSetIntermediateLinkPointssetIntermediateLinkPoints

afterApplyTransformallowApplyTransformapplyTransform

Applied
after a link

afterAdd

has been
added to a
grapher

Applied
before a

beforeRemove

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 660

CommentAfter Method in
IlvLinkShapePolicy

Test Method in
IlvLinkShapePolicy

Method of
IlvPolicyAwareLinkImage

link is
removed
from a
grapher

Applied
when the

afterFromNodeMoved

source
node of the
link has
been
moved

Applied
when the

afterToNodeMoved

destination
node of the
link has
been
moved

Applied
after any of

afterAny

the
methods
mentioned
above

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 61

Creating a link shape policy with up to two bends

The example creates a link shape policy that allows links to have 0, 1 or 2 bend points. With
1 or 2 bends, the link will have an orthogonal shape. The link shape policy prohibits the
creation of more than 2 bends.

Link shape policy for 0, 1 or 2 bends

In principle, this link shape policy is a combination of the functionality of the classes
IlvOneLinkImage and IlvDoubleLinkImage (see Links of The Essential JViews Framework).
However, using a link shape policy is more flexible, because the link shape policy can be
enabled and disabled on the link, and can change from a 1-bend image to a 2-bend image.

The class IlvAbstractLinkShapePolicy is a suitable base class for the new link shape policy
because it defines all the methods of the interface IlvLinkShapePolicy as empty methods.

public class MyLinkShapePolicy
extends IlvAbstractLinkShapePolicy

{
...

}

You can concentrate on the few methods that you need to override.

To create your link shape policy:

1. Create an auxiliary method that reshapes the link according to the policy. Depending
on the number of bends and the horizontal and vertical distance, you can decide which
shape the link should have. For instance:

private void verifyLinkPoints(IlvLinkImage link)
{

if (link == null)
return;

IlvPoint[] pts = link.getLinkPoints(null);
int n = pts.length;
if (n <= 2) return;

IlvRect fromrect = link.getFromBoundingBox(null);
IlvRect torect = link.getToBoundingBox(null);
float fx = fromrect.x + 0.5f * fromrect.width;
float fy = fromrect.y + 0.5f * fromrect.height;
float tx = torect.x + 0.5f * torect.width;
float ty = torect.y + 0.5f * torect.height;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 662

float dx = (fx < tx ? 0.5f : -0.5f);
float dy = (fy < ty ? 0.5f : -0.5f);

if (n == 3) {
link.movePoint(0, fx + dx * fromrect.width, fy, null);
link.movePoint(1, tx, fy, null);
link.movePoint(2, tx, ty - dy * torect.height, null);
return;

}

if (Math.abs(fx - tx) > Math.abs(fy - ty)) {
float middleX = 0.5f * (fx + tx +

dx * (fromrect.width - torect.width));
pts[1].move(middleX, fy);
pts[2].move(middleX, ty);
link.movePoint(0, fx + dx * fromrect.width, fy, null);
link.movePoint(n-1, tx - dx * torect.width, ty, null);

} else {
float middleY = 0.5f * (fy + ty +

dy * (fromrect.height - torect.height));
pts[1].move(fx, middleY);
pts[2].move(tx, middleY);
link.movePoint(0, fx, fy + dy * fromrect.height, null);
link.movePoint(n-1, tx, ty - dy * torect.height, null);

}

link.setIntermediateLinkPoints(pts, 1, 2);
}

2. When the link policy is set on a link, or when a link is added to the grapher, you have
to ensure that the link shape is correct. Call the method verifyLinkPoints inside the
appropriate callback methods of the link shape policy.

The callback method afterAdd is called when the link is already in the grapher. Since
the link shape policy will reshape the link and might change the bounding box of the
link, you must call the method applyToObject:

public void afterAdd(IlvLinkImage link)
{

if (link.getGraphicBag() != null) {
link.getGraphicBag().applyToObject(link,

new IlvApplyObject() {
public void apply(IlvGraphic obj, Object arg) {

verifyLinkPoints((IlvLinkImage)obj);
}

}, null, true);
}
else verifyLinkPoints(link);

super.afterAdd(link);
}

3. When you set the link shape policy, you can rely on the user to call applyToObject,
therefore you do not need to use this method again inside the link shape policy. Hence,
the code of the method onInstall is simpler.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 63

public void onInstall(IlvLinkImage link)
{

verifyLinkPoints(link);
super.onInstall(link);

}

4. The link shape policy allows the link to have 0, 1, or 2 bends. Since the two end points
of the link are counted in the link cardinality, you just have to forbid insertion of more
than four points, so that there will never be more than two bends:

public boolean allowInsertPoint(IlvLinkImage link,
int index,
float x, float y,
IlvTransformer t)

{
int n = link.getPointsCardinal();
if (n >= 4) return false;
return true;

}

5. When bends are inserted or removed, the link policy must reshape the link so that it
has the shape desired for this number of bends. Therefore, you override the methods
afterInsertPoint, afterRemovePoint, and afterSetIntermediateLinkPoints to
call verifyLinkPoints. Note that all thesemethods are always called inside themethod
applyToObject. Thus, the code can omit an additional call to applyToObject similar
to onInstall:

public void afterInsertPoint(IlvLinkImage link, int index,
IlvTransformer t)

{
verifyLinkPoints(link);
super.afterInsertPoint(link, index, t);

}

public void afterRemovePoint(IlvLinkImage link, int index,
IlvTransformer t)

{
verifyLinkPoints(link);
super.afterRemovePoint(link, index, t);

}

public void afterSetIntermediateLinkPoints(IlvLinkImage link)
{

verifyLinkPoints(link);
super.afterSetIntermediateLinkPoints(link);

}

6. Changing the transformation of a polyline link image usually also modifies the bends
of the link. Therefore the link points need to be verified here as well.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 664

public void afterApplyTransform(IlvLinkImage link, IlvTransformer t)
{

verifyLinkPoints(link);
super.afterApplyTransform(link, t);

}

7. When an end node of the link is moved, the 1 or 2 bends of the link must adjust
accordingly. Therefore it is necessary to override the corresponding callback methods
of the link shape policy.

public void afterFromNodeMoved(IlvLinkImage link)
{

verifyLinkPoints(link);
super.afterFromNodeMoved(link);

}

public void afterToNodeMoved(IlvLinkImage link)
{

verifyLinkPoints(link);
super.afterToNodeMoved(link);

}

8. The link shape policy defines the positions of the bends completely. Therefore the
policy forbids modification of the positions of the bends; that is, you are not allowed
to move a point.

public boolean allowMovePoint(IlvLinkImage link,
int index,
float x, float y,
IlvTransformer t)

{
return false;

}

The callback method afterMovePoint of the link shape policy could be used to adjust the
link shape after moving points. However, since this link shape policy does not allow point
movement, the method afterMovePoint need not be overridden because point movements
will never be executed.

The new link shape policy works for all subclasses of IlvPolicyAwareLinkImage. It can be
set on a link as follows:

link.setLinkShapePolicy(new MyLinkShapePolicy());

For simplicity, the example class MyLinkShapePolicy is designed for zoomable,
rectangular end nodes that have no link connector or a free link connector (

Note:

IlvFreeLinkConnector). If this is not the case, the method verifyLinkPoints

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 65

needs to be adjusted to analyze the current transformer, the shape of the end nodes,
and the link connector.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 666

Class diagram for link shape policies

The following UML class diagram summarizes all classes related to IlvLinkShapePolicy.

Subclasses of IlvPolicyAwareLinkImage can have link shape policies. Normally, link shape
policies can be shared by different links. Subclasses of IlvAbstractLinkShapePolicy allow
you to link the policies using the child policy handle. This allows you to install multiple
policies on a link. The IlvCrossingLinkShapePolicy calculates the crossing points of an
IlvCrossingAwareLinkImage. The crossings are drawn using a crossing graphic; that is, an
IlvGraphic that additionally implements the IlvCrossingGraphic interface.

The classes related to IlvLinkShapePolicy

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 67

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 668

The generic printing framework

Describes the generic printing framework.

In this section

Overview of the support for printing
Describes the support provided by IBM® ILOG® JViews for printing.

Java print package and printing API
Describes the interface for printing and explains how to use the main class in the printing
API to print a component.

The printing framework
Describes the printing framework supplied with the JViews Framework, specifically the
Document Model classes, and provides examples of its use.

© Copyright IBM Corp. 1987, 2009 69

Overview of the support for printing

IBM® ILOG® JViews provides the following support for printing:

♦ A generic printing framework

♦ Extensions to the generic printing framework

You can use the generic printing framework to implement printing capabilities in your Java™
applications. You can specify printing parameters, preview the document before printing it,
and print the document by sending it to the specified printer.

The printing framework is independent of any IBM® ILOG® JViews product, and
therefore can be used to print other types of documents.

Note:

The printing framework classes are defined in the package ilog.views.util.print.

IBM® ILOG® JViews includes several extensions of the printing framework to help you
print the content of various components, such as 2D graphics in the JViews Framework
(documented in Printing framework for manager content), Gantt diagrams, or Charts. See
the documentation of these products for more information.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 670

Java print package and printing API

Describes the interface for printing and explains how to use the main class in the printing
API to print a component.

In this section

Overview
Explains the features of the printing framework.

The printable interface
Describes the method in the printable interface.

Using the PrinterJob class to print a component
Explains how to create a printer job for a component and then print it.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 71

Overview

The printing framework is implemented by using the printing APIs which have been available
since JDK™ 1.3 and JDK 1.4.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 672

The printable interface

The Printable interface is the most important interface of the java.awt.print package.
To make a UI component printable, you need to implement this interface, which has a single
method:

public int print(Graphics graphics,
PageFormat pageFormat,
int pageIndex) throws PrinterException

This method is called by the Java™ printing system when it sends the printing instructions
to a printer. To print your component, you need to call the drawing methods of the Graphics
object passed as the first argument.

While printing your component, you can get more information on the type of paper being
currently used from the second and the third arguments of this method.

After implementing the Printable interface, you need to create a PrinterJob object to print
your component.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 73

Using the PrinterJob class to print a component

The PrinterJob class is the root of the java.awt.print package. To print your component,
you must create a PrinterJob object. The PrinterJob class has a static method called
getPrinterJob().

1. Call method getPrinterJob() to create a printer job.

2. Call the setPrintable(Printable painter) method to specify the Printable object
you have implemented.

3. To change the printer parameters you can open the Print dialog box by calling the
printDialog() method.

Print dialog box of Java SE

4. If you want to change the page format, open the Page Setup dialog box by calling the
pageDialog() method.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 674

Page Setup Dialog Box of Java SE

5. To send the printing job to the selected printers, call the print()method of the printer
job.

See the documentation of the PrinterJob class for more information.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 75

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 676

The printing framework

Describes the printing framework supplied with the JViews Framework, specifically the
Document Model classes, and provides examples of its use.

In this section

Features of the printing framework
Describes the features of the JViews Framework printing framework and the process for
printing multiple pages.

The Document Model classes
Describes the Document Model classes with a class diagram.

The PrintableDocument class
Describes the PrintableDocument class.

The Page class
Describes the Page class.

The Printable class
Describes the Printable class for printable objects.

The header and footer classes
Describes the header and footer classes.

The IlvFlow class for creating a document with styled text
Describes how to fill a document either with printable objects or by creating a flow object.

Printing user interface components
Describes the UI components for previewing and setting document properties.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 77

The PrintingController class
Describes how to use the PrintingController class.

Creating an IlvDocument with printable objects
Describes how to print a simple example document.

Creating an IlvDocument with a flow of text
Describes how to print an example document with text.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 678

Features of the printing framework

The generic printing framework is designed and implemented to meet the printing needs
of IBM® ILOG® JViews packages but you can also use it to make other printing applications.
Based on the Model-View-Controller (MVC) architecture, the printing framework consists
of the following features:

♦ The Document Model classes

The framework provides a set of classes that you can use to create a printable document.
You can use the built-in document class and page class to easily create the document you
want to print.

♦ Printing user interface components

The printing framework provides user interface components, such as preview frame and
toolbar, that allow you to preview the document you have created. It also provides
customizable dialog boxes for setting page properties such as paper size, orientation,
header and footers.

♦ The PrintingController class

The printing controller is a high-level class that manages the document to print and the
preview frame. You can use it to invoke the Print dialog box, or the Page Setup dialog
box, to preview the document, and to send the document to the selected printer.

The process for printing multiple pages is as follows:

1. Create and fill an IlvPrintableDocument object by using the document model classes.

2. Create an IlvPrintingController object for the IlvPrintableDocument object you
created. Then you can call its methods to preview and print the IlvPrintableDocument.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 79

The Document Model classes

The document model provides a structure for defining a multipage document to be printed.
The document model allows you to concentrate your efforts on creating your printable
document without worrying about how the document is previewed and printed. The printing
framework previews and prints the document for you.

Print document model shows the relationship between the main classes in the document
model.

Print document model

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 680

The PrintableDocument class

The IlvPrintableDocument class is the top-level class of the document model. It is designed
as a page holder to which you can add pages defined by the IlvPage class.

There are two ways to fill a document:

♦ Simply create pages (IlvPage class) and add them to the document using the addPage
(ilog.views.util.print.IlvPage) and removePage(ilog.views.util.print.IlvPage)
methods.

♦ Associate an IlvFlow object with the document.

The IlvFlow object allows you to add styled text to a document; if you decide to use an
IlvFlow object, it will create and manage the pages of the document for you depending
on the text, the alignments, and the styling properties that you specify in the IlvFlow
object.

Later in this topic you will see how to associate an IlvFlow object with a document.

Some IBM® ILOG® JViews packages provide subclasses of the
IlvPrintableDocument class that manage the pages for you. For example,

Note:

IBM® ILOG® JViews Gantt provides a subclass that can automatically create
its pages to display a chart in multiple pages. For more information see the IBM®
ILOG® JViews Gantt documentation.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 81

The Page class

An IlvPage object represents a physical page to be printed. It must be added to a printable
document so that the page can be printed by a printer, or previewed by the preview
framework. The IlvPage is implemented as a collection of printable objects. It has the
addPrintableObject(ilog.views.util.print.IlvPrintableObject) and
removePrintableObject(ilog.views.util.print.IlvPrintableObject) methods, which
you can use to manage the printable objects in a page.

Once a page is added to a printable document, you can get the index of the page in that
document by calling the getPageIndex() method. The index of the page is determined by
the order in which it is added. The getDocument() method allows you to know the owner of
the printable page.

To know the page format of the page, you can call the getPageFormat()method. By default,
this method returns the page format of the document.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 682

The Printable class

The Printable objects are the basic elements in the printable document model. They
represent concrete objects such as label, line, and rectangle printed on a page. Therefore,
printable objects must be added to pages so that they can be previewed and printed.

A printable object class must implement the java.awt.print.Printable interface. In other
words, you have to write the print() method of this interface if you want to implement a
new printable object. See Java print package and printing API and the JDK™ documentation
for more information on this interface.

The definition of the print() method is as follows:

public int print(Graphics graphics, PageFormat pageFormat, int pageIndex)
throws PrinterException

To print, you need to call the methods of the specified Graphics object. You are responsible
for setting the correct clip and transformation to position the printing results as desired.

Some commonly used printable objects are provided as built-in classes in the package.

Classes for common printable objects
PurposeClass

To print a line.IlvPrintableLine

To print a rectangle.IlvPrintableRectangle

To print a label.IlvPrintableLabel

To print a portion of the JTable.IlvPrintableTable

To print a portion of the JTableHeader.IlvPrintableTableHeader

.

Some IBM® ILOG® JViews packages provide additional subclasses of
IlvPrintableObject. For example, IBM® ILOG® JViews Gantt provides the

Note:

subclass IlvPrintableTimeScale to print its time scale. For more information, see the
IBM® ILOG® JViews Gantt documentation.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 83

The header and footer classes

To manage page headers and footers, the printing framework also contains two additional
subclasses of IlvPrintableObject: IlvHeader and IlvFooter. Although these two classes
are subclasses of the IlvPrintableObject, you do not add them to the page like other
printable objects. The header and footer are common to all pages of a document, and thus
are set on the instance of the IlvDocumentclass.

Here are the methods of the class IlvPrintableDocument to set a header or a footer:

public void setFooter(IlvFooter footer)
public IlvFooter getFooter()

public void setHeader(IlvHeader header)
public IlvHeader getHeader()

The IlvHeader and IlvFooter classes are very similar. A header or footer is defined by
three text sections. Each section can have a specified font.

Here is an example of a header:

Example of a header

Each of the three text sections of a header or footer can contain the text that you specify in
the constructor of the object. For the header shown in Example of a header it would be:

new IlvHeader("7/12/02", "Printing demo", "Page 1");

Since the header and footer are defined on the document, you should not specify the page
number as in the previous example. The IlvHeader and IlvFooter classes provide a certain
number of keys that will be translated to values from the document, when the document is
printed.

The list of keys that you can use is as follows:

♦ static String AuthorKey - The key for the author.

♦ static String DateKey - The key for the date.

♦ static String FileKey - The key for the file name.

♦ static String PageKey - The key for the page number.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 684

♦ static String PagesKey - The key for the number of pages in the document.

♦ static String TimeKey - The key for the printing time

To create the header in Example of a header, use the following new statement:

new IlvHeader(IlvHeader.DateKey, "Printing demo", "Page " + IlvHeader.PageKey)

The printing framework provides a page dialog box that also allows you to change the
header and footer of a document.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 85

The IlvFlow class for creating a document with styled text

A document can be filled in one of two ways: either you decide to create pages, fill them
with IlvPrintableObject instances, and add them to a document, or you create a document
that contains styled text. In the second case you use the IlvFlow class.

The IlvFlow class represents a flow of text with styling attributes that constitutes the content
of the document to be printed. A document can have only one IlvFlow object, which is
created using:

public IlvFlow IlvPrintableDocument.getFlow()

Once the flow is created you can specify its content using the following methods:

♦ void add(String text)

Adds the specified text to the current paragraph.

♦ void add(Image image, int alignment)

Adds the image to the current line of text using the specified alignment on the line.

♦ void add(IlvFlowObject object, int alignment)

Adds the object in the current line of text using the specified alignment on the line.

The IlvFlowObject interface allows you to add virtually any kind of drawing to a flow. Some
IBM® ILOG® JViews packages provide classes that implement this interface, so that you
can add an IBM® ILOG® JViews Charts component to a flow of text.

You can also control the paragraphs and the pages of the flow using the following methods:

♦ void newLine()

Starts a new paragraph in the flow of text.

♦ void newPage()

Starts a new page in the flow of text.

Each text added in the flow can be styled using the following method:

♦ void setTextStyle(IlvFlow.TextStyle style)

By calling this method, you change the current text style that will be used for the next text
added to the flow. The TextStyle object allows you to change the colors (background and
foreground color) of the text, the font used, and also the paragraph alignment.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 686

Printing user interface components

The print package provides user interface components for previewing a document and for
setting document properties such as the page format, the headers, or the footers.

Print Preview components
When you want to preview a document to print, the following classes are involved.

♦ IlvPrintPreviewPanel - A Swing panel that displays the document to preview.

♦ IlvPrintPreviewDialog - A Swing dialog that contains an IlvPrintPreviewPanel.

Here is an image showing an IlvPrintPreviewDialog containing an IlvPrintPreviewPanel:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 87

Print Preview in Continuous Mode

The Print Preview user interface components can work in two main modes. Print Preview
in Continuous Mode shows a Print Preview panel in continuous mode.

In this mode, the preview component displays several pages at once, and you can scroll the
pages using the scroll bar. In this mode, you can also change the zoom level using the zoom
level combo box.

The second mode is the single page mode. In this mode, you can see only one page at a time,
but you can still use the scroll bar to move from page to page.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 688

Print Preview in Single Page Mode

The single page mode also allows you to zoom the page. Using the zoom button (or clicking
the view), you can switch from a zoom mode where the page fits the component to the mode
where the page is at real size.

In most cases, you do not need to create instances andmanage these components by yourself.
The high-level class IlvPrintingController allows you to perform most of the printing
actions and settings.

Page Setup component
The class IlvDocumentSetupDialog is a dialog box that allows you to edit various parameters
of your document such as the page format, the header and the footer.

This dialog box is composed of a JTabbedPane with two tabs: one to edit the page format,
and one to edit the header and footer.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 89

Page Setup

This component can be customized for your particular needs. You may add a new tab by
using the addTab(java.lang.String, java.awt.Component) method, if you need to edit
additional parameters for a specialized class of document.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 690

In most cases, you do not need to create instances andmanage the IlvDocumentSetupDialog
by yourself. The high-level class IlvPrintingController allows you to perform most of the
printing actions and settings.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 91

The PrintingController class

After you create your IlvPrintableDocument, you will have to create an instance of
IlvPrintingController, a high-level class that manages the document to print and the
preview frame. Then you can perform various actions on the document to be printed:

♦ Call the printDialog() method to invoke a dialog box to select a printer, or to specify
other printer-related information.

♦ Call the setupDialog(java.awt.Window, boolean, boolean) method to open the Page
Setup dialog box, which allows you to change the page format, the header and footers.
You can also click the Setup button while you preview the document.

♦ Call the printPreview(java.awt.Window) method to preview your document.

♦ Call the print(boolean) method of the print controller to print your document. You can
also click the print button while you preview the document.

The printing controller also offers methods that you can overwrite, so that you can customize
the Setup dialog, or the Print Preview dialog created by the printing controller.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 692

Creating an IlvDocument with printable objects

This is a simple example to explain how to use the printing framework.

To print the simple example:

1. Create an IlvPrintableDocument object.

2. Add pages to the document.

3. Set header and footer to the document.

4. Implement an IlvPrintableObject object.

5. Create and use the printing controller.

6. Use the user interface components to preview the document you created.

The example code is as follows.

Creating a document with printable objects

IlvPrintableDocument document = new IlvPrintableDocument("A test document");

// Sets a header in the document.
document.setHeader(new IlvHeader(null, "Printing Example", IlvHeader.

PageKey));

// Creates the first page.
IlvPage page1 = new IlvPage();

// Prints an oval on the first page.
IlvPrintableObject oval = new IlvPrintableObject() {

/**
* Overrides the <code>print</code> method to print an oval.
* It shows how to implement a <code>PrintableObject</code>.
* @param dst The output <code>Graphics</code> object.
* @param format The page format, which is ignored here.
* @param pageIndex The page index, which is ignored here.
*/

public int print(Graphics dst, PageFormat format, int pageIndex)
throws PrinterException {

dst.drawOval(200, 200, 200, 100);
return Printable.PAGE_EXISTS;

}
};

// Adds this new printable to the page.
page1.addPrintableObject(oval);

// Creates the second page.
IlvPage page2 = new IlvPage();

// Prints a rectangle on the second page.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 93

IlvUnit.Rectangle area = new IlvUnit.Rectangle(5, 5, 10, 10, IlvUnit.CM);

IlvPrintableRectangle rectangle = new IlvPrintableRectangle(area);
page2.addPrintableObject(rectangle);

// Adds the pages to the document.
document.addPage(page1);
document.addPage(page2);

// Creates the print manager.
IlvPrintingController controller = new IlvPrintingController(document);

// Previews the document.
controller.setPreviewMode(IlvPrintPreviewPanel.CONTINUOUS_MODE);
controller.printPreview(JOptionPane.getRootFrame());

Here is what you get on the screen:

Document with printable objects

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 694

Creating an IlvDocument with a flow of text

This is an example to explain how to use the printing framework with a text flow.

To print the text flow example:

1. Create an IlvPrintableDocument object.

2. Create the IlvFlow object.

3. Add text and image to the IlvFlow object.

4. Set the text style and paragraph alignment.

5. Create and use the printing controller.

6. Use the user interface components to preview the document you created.

The example code is as follows.

Creating a document with a text flow

// Creates the document.
IlvPrintableDocument document
= new IlvPrintableDocument("A Test Document");

// Gets the flow to add text and images.
IlvFlow flow = document.getFlow();

// Sets the style of text and paragraph alignment
// for the title.
IlvFlow.TextStyle style = new IlvFlow.TextStyle();
style.setFont(new Font("Helvetica", Font.BOLD, 20));
style.setAlignment(IlvFlow.TextStyle.CENTER_ALIGNMENT);
flow.setTextStyle(style);

// Adds the title text.
flow.add("The Printing Framework Document Model");

flow.newLine();

// Sets the style of text for the next paragraph.
style.setAlignment(IlvFlow.TextStyle.LEFT_ALIGNMENT);
style.setFont(new Font("Helvetica", Font.PLAIN, 16));
flow.setTextStyle(style);

flow.newLine();
flow.add("The document model provides a structure to define a multiple-page
document to be printed. The document model allows you to concentrate your
efforts on creating your printable document without worrying about how the
document is previewed and printed. The printing framework previews and prints
the document for you.");

flow.newLine();
flow.newLine();

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 95

flow.add("The following figure shows the relationship between the main classes
in the document model:");
flow.newLine();

try {

// Loads an image to add.
Image image = IlvUtil.GetImageFromFile(Class.forName("demos.print.

PrintExample"), "model.gif");

// Adds the image to the flow.
flow.add(image, IlvFlow.TOP_ALIGNMENT);

} catch (Exception e) {
}

// Creates the print controller.
IlvPrintingController controller = new IlvPrintingController(document);

// Previews the document.
controller.setPreviewMode(IlvPrintPreviewPanel.CONTINUOUS_MODE);
controller.printPreview(JOptionPane.getRootFrame());

Here is what you get on the screen:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 696

Document with text flow

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 97

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 698

Printing framework for manager content

Describes the printing framework used by JViews Framework for printing the content of
managers.

In this section

Overview of the printing framework for managers
Explains how the generic printing framework is extended for the purpose of vector graphics.

Printing the contents of a manager on multiple pages
Describes the classes in the ilog.views.print package that allow you to print the contents
of an IlvManager object on multiple pages.

Printing a manager as a flow of text
Describes the use of the text flow class with printable document classes to print a manager
as a flow of text.

Printing a manager in a custom document
Describes how to create a document structure and how to print an area of a manager in
your document.

Class diagram for printing the contents of managers
Describes the printing controller classes for managers with a class diagram.

© Copyright IBM Corp. 1987, 2009 99

Overview of the printing framework for managers

For details of the generic print framework, see The generic printing framework.

The Framework printing classes are located in the ilog.views.print package.

The architecture of this package is based on four main components:

♦ A configuration document: The document containing the printing configuration.

♦ The manager: The IlvManager to print.

♦ The print UI: Some specialized dialog boxes and interactors that allow you to configure
printing properties such as the page format, the orientation, the header and footer, the
number of pages, and so on.

♦ The printing controller: A high-level class that manages the document to print. You
can use the printing controller to invoke the Print dialog box or the Page Setup dialog
box, to preview the document, and to send the document to the selected printer.

There are three ways to print the contents of an IlvManager object in a document:

♦ Printing the contents of a manager on multiple pages

You can print a manager (or an area of a manager) in multiple pages. Using the predefined
document class IlvManagerPrintableDocument, you simply have to specify the manager
object you want to print and some printing parameters such as the number of pages and
the area to print.

♦ Printing a manager as a flow of text

You can print a manager (or an area of a manager) in a flow of text.

♦ Printing a manager in a custom document

You can print a manager (or an area of a manager) in a custom document structure. In
this mode, you create your own document and insert a printable object that represents
a manager in a page.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6100

Printing the contents of a manager on
multiple pages

Describes the classes in the ilog.views.print package that allow you to print the contents
of an IlvManager object on multiple pages.

In this section

The IlvManagerPrintableDocument class
Describes the printable document class for a manager.

The IlvManagerDocumentSetupDialog class
Describes the setup dialog class for a manager.

The IlvManagerPrintingController class
Describes the printing controller class for a manager.

The IlvManagerPrintAreaInteractor class
Describes the area interactor class for a manager.

A Swing application that prints the contents of a manager
Shows an example Swing application that prints the contents of a manager on multiple
pages.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 101

The IlvManagerPrintableDocument class

JViews Framework provides a document class, IlvManagerPrintableDocument, which is a
subclass of the generic IlvPrintableDocument class. The IlvManagerPrintableDocument
class is dedicated to printing the contents of a manager on multiple pages.

When using the IlvManagerPrintableDocument class, you do not have to create pages and
add them to the document. This class will create the pages for you, depending on the
parameters you specify for the document.

In addition to the generic parameters defined in the superclass IlvPrintableDocument such
as the name and author of the document, the page format, the header and footer, and the
page order, the IlvManagerPrintableDocument class allows you to specify the following
options:

♦ The number of pages

♦ The area of the manager to be printed

♦ The zoom level used for printing

The following code creates an instance of IlvManagerPrintableDocument to print the area
(0,0,500,500) of a manager in five columns:

IlvManagerPrintableDocument document = new IlvPrintableManagerDocument
("My Document", view);

document.setColumnCount(5);
document.setPrintArea(new IlvRect(0,0,500,500));

Number of pages
The number of pages is determined by the number of rows and columns that you specify as
follows:

♦ If you specify the number of rows, the document computes the number of columns
necessary to cover the area to print.

♦ If you specify both the number of rows and the number of columns, then the document
class will choose to use the number of rows or the number of columns to produce the
minimum number of pages.

To print the manager on one page, set the number of rows and the number of columns to
1.

Area to print
The area of themanager to print is specified by the setPrintArea and getPrintAreamethods.
When no print area has been specified, then the printed area will be the full area of the
manager. To reset the area to print to the full area of the manager, call:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6102

document.setPrintArea(null);

Zoom Level for Printing
The contents of the manager may be graphically different when a different zoom level is
used, in particular when the manager contains nonzoomable objects. Thus, when printing
the manager, you may need to specify the zoom level used for printing. By default, the
contents of the manager are printed using the identity affine transform (that is, zoom level
1).

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 103

The IlvManagerDocumentSetupDialog class

All properties of the IlvManagerPrintableDocument class can be specified by a dialog box
(class IlvManagerDocumentSetupDialog). This dialog box, a subclass of the generic
IlvDocumentSetupDialog, contains an additional page in the tabbed pane that allows you
to specify the area to print, the number of columns and rows (that is, the number of pages),
the zoom level at which to print, and the page order for the numbering of pages.

Page Setup dialog box

You may not want to allow the user to change the zoom level, or you may need to specify a
range of zoom level that is allowed for this specific manager. To do this, use the following
methods in the IlvManagerPrintableDocument class:

♦ Enable or disable the modification of the zoom level from the dialog box:

is/setZoomLevelModificationEnabled()

♦ Set the minimum or maximum zoom level that can be used for printing.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6104

setMaximimumZoomLevel(double zl)

void setMinimumZoomLevel(double zl)

You do not have to create this dialog box yourself; the printing controller will manage
an instance of this class for you.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 105

The IlvManagerPrintingController class

The IlvManagerPrintingController is a subclass of the generic IlvPrintingController
that controls the printing of an IlvManagerPrintableDocument object.

After creating your IlvManagerPrintableDocument object, you must create an instance of
IlvManagerPrintingController for the document. Then you will be able to perform various
actions on the document to be printed; for example, you can:

♦ Call the printDialogmethod to invoke a dialog box to select a printer or to specify other
printer-related information.

♦ Call the setupDialog method to open the Page Setup dialog box.

♦ Call the printPreview method to preview your document.

♦ Call the print method of the print controller to print your document. You can also click
the Print button while you preview the document.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6106

The IlvManagerPrintAreaInteractor class

The ilog.views.print package also contains a specific interactor (IlvPrintAreaInteractor)
that allows you to specify the area to print on the manager by dragging a rectangle.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 107

A Swing application that prints the contents of a manager

In this example, a full application using the IlvManagerPrintingController and
IlvManagerPrintableDocument classes prints the contents of a manager on multiple pages.

This example has a Swing frame containing an instance of IlvManagerView that displays
the contents of a manager. The application has also a menu bar with standard printing menu
commands such as Print..., Print Preview, Page Setup..., and so on.

import java.awt.*;
import java.awt.print.*;
import java.awt.event.*;
import javax.swing.*;
import ilog.views.print.*;
import ilog.views.util.print.*;
import ilog.views.*;
import ilog.views.interactor.*;
import ilog.views.swing.*;

/**
* This is a very simple example to show how to use
* the IlvManagerPrintableDocument class.
*/
public class ExamplePrint extends JFrame
{
/**
* The manager to print.
*/
IlvManager manager;

/**
* An IlvManagerView to display the content of a manager.
*/
IlvManagerView mgrview;

/**
* The printing controller.
*/
IlvManagerPrintingController controller;

/**
* The interactor that allows you to specify the area to print.
*/
IlvPrintAreaInteractor printAreaInteractor;

/**
* Creates and initializes the example.
*/
public ExamplePrint() {

super("Printing Example");
getContentPane().setLayout(new BorderLayout());

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6108

// Creates the manager to print.
manager = new IlvManager();

// Fills the manager with some data.
try {

manager.read("data.ivl");
} catch (Exception e) {
}

// Creates a view of the manager.
mgrview = new IlvManagerView(manager);
mgrview.setBackground(Color.white);
mgrview.setKeepingAspectRatio(true);

// Creates the printing controller
controller = new IlvManagerPrintingController(mgrview) ;

// Initializes the document with some parameters.
IlvPrintableDocument document = controller.getDocument();

document.setName("data.ivl");
document.setAuthor("My name");

// Creates the interactor.
printAreaInteractor = new IlvPrintAreaInteractor(controller);

// Adds a toolbar to edit/zoom/pan.
IlvJManagerViewControlBar toolbar

= new IlvJManagerViewControlBar();
toolbar.setView(mgrview);

// Creates a scroll manager view.
IlvJScrollManagerView scrollview

= new IlvJScrollManagerView(mgrview);
getContentPane().add(scrollview, BorderLayout.CENTER);
getContentPane().add(toolbar, BorderLayout.NORTH);
scrollview.setPreferredSize(new Dimension(300,300));
setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

addWindowListener(new WindowAdapter () {
public void windowClosed (WindowEvent e) {
System.exit(0);

}
});

// Creates the menu bar.
setJMenuBar(createMenu());

}

private JMenuBar createMenu() {

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 109

JMenuBar bar = new JMenuBar();
JMenu file = new JMenu("File");
JMenu parea = new JMenu("Print Area");
JMenuItem preview = new JMenuItem("Print Preview...");
JMenuItem setup = new JMenuItem("Page Setup...");
JMenuItem setarea = new JMenuItem("Set Print Area");
JMenuItem cleararea = new JMenuItem("Clear Print Area");
JMenuItem print = new JMenuItem("Print...");

// Action to open the print preview dialog.
preview.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ev) {
controller.printPreview(ExamplePrint.this);

}
});

// Action to open the setup dialog box.
setup.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ev) {
controller.setupDialog(ExamplePrint.this, true, true);

}
});

// Action to print the document.
print.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ev) {
try {
controller.print(true);

} catch (Exception e) { }

}
});

// Action to install the print area interactor.
setarea.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ev) {
mgrview.setInteractor(printAreaInteractor);

}
});

// Action to reset the print area to full manager size.
cleararea.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ev) {
((IlvManagerPrintableDocument)controller.

getDocument()).setPrintArea(null);
}

});

file.add(setup);
file.add(parea);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6110

parea.add(setarea);
parea.add(cleararea);
file.add(preview);
file.add(print);

bar.add(file);

return bar;

}

public static void main(String[] args)
{
SwingUtilities.invokeLater(
new Runnable() {
public void run() {
ExamplePrint example = new ExamplePrint();
example.pack();
example.setVisible(true);

}
});

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 111

Printing a manager as a flow of text

The IlvManagerPrintableDocument class allows you to print the contents of a manager.
You may also need to add a view of a manager as a flow of text. To do this, you use an
instance of the IlvPrintableDocument class and the IlvFlow class described in The IlvFlow
class for creating a document with styled text.

The IlvFlow class not only allows you to control the flow of text in a textual document, but
also allows you to insert images in the text. The objects you can insert in the text are
implemented by the interface IlvFlowObject.

The ilog.views.print package provides an implementation of the IlvFlowObject interface
for printing the manager. The class is named IlvSimplePrintableManager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6112

Printing a manager in a custom document

IBM® ILOG® JViews printing framework allows you to create your own document structure
by creating pages (IlvPage class) and adding printable objects to those pages
(IlvPrintableObject class). For more information see The PrintableDocument class.

The ilog.views.print package also provides a printable object (subclass of
IlvPrintableObject) that you can insert in a page of your document to print an area of a
manager. This class is named IlvPrintableManagerArea.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 113

Class diagram for printing the contents of managers

The following UML class diagram summarizes all classes related to
IlvManagerPrintingController. The printing controller contains an
IlvManagerPrintableDocument that represents either the entire manager view or an area
of the manager view to be printed. If an area of a document is to be printed, an
IlvPrintableManagerArea represents the area of the manager printed on the page. If the
manager view should be printed as a flow of text, an IlvSimplePrintableManager represents
the view in the text flow.

The classes related to printing a manager

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6114

Scalable Vector Graphics

Explains how to configure IBM® ILOG® JViews to be able to read and write SVG files, how
to use the SVG thin-client features of IBM® ILOG® JViews, and how to personalize IBM®
ILOG® JViews SVG features for your context and to translate your own graphic objects.

In this section

Overview of SVG support
Describes what SVG is and how JViews Framework supports it.

The contents of an SVG File
Explains the graphics that an SVG file can contain and how to style them.

Loading and saving SVG files with IBM® ILOG® JViews
Explains how to set up a stream factory, load SVG files, and save SVG files.

Deploying IBM® ILOG® JViews applications as SVG thin clients
Explains how to use the SVG generation mechanism of IBM® ILOG® JViews to deploy your
JViews Framework applications as SVG thin clients.

SVG advanced personalization
Describes the default conversion of graphic objects to SVG and explains how to define the
way user-defined graphic objects are converted to SVG..

© Copyright IBM Corp. 1987, 2009 115

Overview of SVG support

The SVG graphics format is based on the eXtensible Markup Language (XML) which gives
it great interoperability.

SVG support in the JViews Framework class library
The JViews Framework class library provides the ability to load Scalable Vector Graphics
(SVG) files into an IlvManager object. Conversely, the contents of an IlvManager can be
translated into an SVG document and saved to a file.

These features allow you to interoperate with other SVG software such as SVG viewers or
generators. When applicable, in the thin-client context, you can also replace bitmap
generation by SVG generation to gain time and interactivity.

Uses of SVG Files
SVG can be used by IBM® ILOG® JViews applications as an exchange format for exchanging
data with third-party software that supports this format. You will be able to import data
from such software to the IBM® ILOG® JViews library. Conversely, you will be able to load
SVG files generated by IBM® ILOG® JViews into third party software such as the Batik
SVG Browser (Squiggle) from Apache™ , which you can download free at http://
xml.apache.org/batik.

You can also think of SVG as a means of replacing bitmaps when generating data from a
server and displaying the data in a Web browser. In this case, the browser must be able to
display an SVG document. For the moment, the easiest solution is to use the Adobe® SVG
Plug-in, which can be downloaded free at http://www.adobe.com/svg. You can find an
example of such an SVG thin-client application inDeploying IBM® ILOG® JViews applications
as SVG thin clients.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6116

http://xml.apache.org/batik
http://xml.apache.org/batik
http://www.adobe.com/svg

The contents of an SVG File

An SVG file describes a set of two-dimensional graphics. The following are examples of such
graphics that could be found in an SVG file:

♦ Images, through the image element.

♦ Rectangles, through the rect element.

♦ Circles and ellipses, through the circle and ellipse elements.

♦ Lines, through the line and polyline elements.

♦ Polygons, through the polygon element.

♦ Arbitrary paths (curves, arcs, lines, and so on), through the path element.

♦ Groups of other graphic elements, through the g element.

♦ Text, through the text element.

These elements can be styled by setting XML presentation attributes on them or by linking
cascading style sheets (CSS) to them.

To better understand SVG and its possibilities, see the SVG specification at the following
URL: http://www.w3.org/TR/SVG. You will see that SVG provides many more features than
those introduced here, such as transformations on graphic elements, filter effects, in-line
animation, and scripting capabilities.

SVG file example
A typical example of an SVG file would be as follows.

<svg width="640" height="480">
<defs>
<!-- the style on path elements and element with id "myid" -->
<!-- is defined through a style sheet -->
<style type="text/css">
path {stroke-width:3;stroke:blue;fill:none}
.dash {stroke-dasharray:5 2}
#myid {fill:rgb(205,5,5);fill-opacity:0.5}

</style>
<!-- style can be complex such as a gradient... -->
<linearGradient id="grad" x1="0%" y1="0%" x2="100%"

y2="100%">
<stop offset="0" stop-color="yellow"/>
<stop offset="0.2" stop-color="green"/>
<stop offset="1" stop-color="red"/>

</linearGradient>
</defs>
<!-- the style on the rectangle is defined through XML -->
<!-- attributes -->
<rect x="0" y="0" width="100%" height="100%"

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 117

http://www.w3.org/TR/SVG

fill="url(#grad)"/>
<!-- paths use a particular syntax to defined their shape -->
<path d="M0 0L640 480"/>
<path class="dash" d="M640 0L0 480"/>
<!-- the style on the ellipse is defined through an inline -->
<!-- style sheet -->
<ellipse cx="320" cy="240" rx="40" ry="30"

style="fill:rgb(180,10,10)"/>
<circle id="myid" cx="320" cy="240" r="50"/>

</svg>

This SVG file will be rendered as a 640 x 480 rectangle filled with a linear green, yellow,
and red gradient. On top on this gradient there will be two lines of thickness 3, one of which
will be a dashed line. There will also be an ellipse and a circle; the color on the circle is
semi-transparent (fill-opacity:0.5) and lets you see the color of the ellipse underneath.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6118

Loading and saving SVG files with IBM® ILOG® JViews

In order to read and write SVG files, the JViews Framework library defines a new instance
of IlvStreamFactory specialized for SVG.. You will see how to set the SVGStreamFactory
on the IlvManager and how to use it.

To configure the SVG stream factory:

1. Create the manager you will work on and the stream factory

import ilog.views.*;
import ilog.views.svg.*;

IlvManager manager = new IlvManager();
SVGStreamFactory factory = new SVGStreamFactory();
manager.setStreamFactory(factory);

2. Set the options on the stream factory appropriately to change the way IBM®
ILOG® JViews loads and saves SVG files: how the file size should be reduced, whether
the reader should ignore some data, and so on.

3. After the stream factory is configured, it must be attached to the manager by using:

manager.setStreamfactory(factory);

More options can be found in the Java API Reference Manual for the class, such as other
compaction techniques (remove invisible graphic objects, and so forth) or the ability to
choose between CSS or XML styling.

The following example shows a stream factory configuration:

// When reading SVG, the parsing of the CSS style will include
// the definitions contained in the user.css file.
factory.getReaderConfigurator().setUserStyleSheetURL(“user.css”);
// When writing SVG, the following compaction techniques will be used:
// - style on graphic element will be factored
// - an algorithm will be applied to polyline to remove some points
factory.getBuilderConfigurator().

setCompactMode(SVGStreamFactory.COMPACT_STYLE |
SVGStreamFactory.COMPACT_POLY);

// With the option set to true on the reader configurator, when reading SVG,
// non-processible elements will be memorized
// and with the option set to true on the builder configurator, this will
// allow regenerating them later.
factory.getReaderConfigurator().setFullDocumentOn(true);
factory.getBuilderConfigurator().setFullDocumentOn(true);

You can load an SVG file once a stream factory has been set up.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 119

To load an SVG File:

♦ Call the IlvManager method to load an SVG file instead of a regular IBM®
ILOG® JViews file.

The following code is an example of loading an SVG file.

try {
manager.read("mysvgfile.svg");

} catch (ilog.views.io.IlvReadFileException rfe) {
System.err.println("The SVG file is badly formatted");

} catch (java.io.IOException ioe) {
System.err.println("Cannot access the SVG file");

}

Once an IlvManager object has been filled dynamically or by reading an SVG or an IVL file,
it is possible to save the objects to an SVG file.

To save to an SVG file:

♦ Call the IlvManager method to save an SVG file instead of a regular IBM®
ILOG® JViews file.

The following code is an example of writing to an SVG file:

try {
manager.write("mysvgfilemodified.svg");

} catch (java.io.IOException ioe) {
System.err.println("Cannot access the SVG file");

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6120

Deploying IBM® ILOG® JViews applications
as SVG thin clients

Explains how to use the SVG generation mechanism of IBM® ILOG® JViews to deploy your
JViews Framework applications as SVG thin clients.

In this section

Overview of the IBM® ILOG® JViews SVG thin-client feature
Describes the support for SVG thin clients and the supplied SVG thin-client sample.

Developing the server side of an SVG thin-client application
Describes the code in the server side of an example IBM® ILOG® JViews SVG thin-client
application.

Developing the client side of an SVG thin-client application
Describes the code in the client side of an example IBM® ILOG® JViews SVG thin-client
application.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 121

Overview of the IBM® ILOG® JViews SVG thin-client feature

The IBM® ILOG® JViews SVG thin-client support, like the IBM® ILOG® JViews DHTML
thin-client support (see LINK) is based on the Java™ Servlet technology.

SVG thin-client support
The IBM® ILOG® JViews SVG Framework thin-client support contains the following:

♦ An abstract servlet class than can generate SVG documents from an IBM® ILOG® JViews
display

♦ A set of SVG scripts written in ECMAScript for use on the client side to display and interact
with the document created on the server side

An IBM® ILOG® JViews SVG thin-client application provides the following features:

♦ Main View of the server side IlvManager object displayed in SVG with some predefined
behavior: zooming, panning, single-line tooltips on top of graphics objects, fixed-size
graphics management, and the availability of visibility filters with the possibility of
load-on-demand for layers that are invisible at initialization time.

♦ Overview providing the ability to navigate on the Main View.

♦ Layer View allowing you to display the layers of the Main View and to switch their visibility
on or off.

SVG thin-client sample
The sample code gives you additional information on how to code for SVG both server side
and client side. For details, see <installdir> /jviews-framework86/samples/svg-servlet/
index.html.

See the sample documentation for information on how to run the sample. The sample can
be viewed inside a Web browser such as Internet Explorer® or Netscape Communicator
with the Adobe® SVG Plug-in that can be downloaded for free at http://www.adobe.com/
svg.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6122

http://www.adobe.com/svg
http://www.adobe.com/svg

Developing the server side of an SVG thin-client application

The server side of an IBM® ILOG® JViews SVG thin-client application is composed of two
main parts: the IBM® ILOG® JViews application itself, which can be any type of complex
two-dimensional display built on top of the JViews Framework API, and a Servlet that produces
SVG documents for the client.

In the example both server-side parts are written inside a single class defined in the file
SVGDynamicServlet.java located at samples/svg-servlet/src/svg/
SVGDynamicServlet.java in the installed product. For details, see <installdir> /
jviews-framework86/samples/svg-servlet/src/svg/SVGDynamicServlet.java.

The IBM® ILOG® JViews Application
The example IBM® ILOG® JViews application is a simplified version of a supplied sample.
It is very simple and all described in the getManager(HttpServletRequest) method.

The application consists of an IBM® ILOG® JViews IlvManager object filled with the contents
of an IBM® ILOG® JViews IVL file (data/map.ivl) as follows:

manager = new IlvManager();
try {
// Read its contents from an IVL file.
manager.read(getServletConfig().getServletContext().getResource("/data/map.

ivl"));
} catch (java.io.IOException e) {
} catch (IlvReadFileException rfe) {
}

The IBM® ILOG® JViews SVG Servlet
The SVG servlet inherits from the IlvSVGManagerServlet class which is in the ilog.views.
svg.servlet package. The code for this class is as follows.

import javax.servlet.*;
import javax.servlet.http.*;

import ilog.views.*;
import ilog.views.io.IlvReadFileException;
import ilog.views.svg.SVGDocumentBuilder;
import ilog.views.svg.SVGDocumentBuilderConfigurator;
import ilog.views.svg.servlet.IlvSVGManagerServlet;

public class SVGDynamicServlet extends IlvSVGManagerServlet
{
private IlvManager manager = null;

private static final SVGDocumentBuilderConfigurator CONFIGURATOR =
new SVGDocumentBuilderConfigurator();

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 123

static {
CONFIGURATOR.setCompactMode(SVGDocumentBuilderConfigurator.COMPACT_LOD);
CONFIGURATOR.setViewBox(new IlvRect(-2200, 4600, 3600, 3600));

}

/**
* Creates a manager servlet.
*/
public SVGDynamicServlet()
{
super(CONFIGURATOR);

}

public IlvManager getManager(HttpServletRequest r)
{
if (manager == null) {
manager = new IlvManager();
try {
// Read its contents from an IVL file.

manager.read(getServletConfig().getServletContext().getResource("/data/
map.ivl"));

} catch (java.io.IOException e) {
} catch (IlvReadFileException rfe) {
}
} catch (IlvReadFileException rfe) {
}
manager.setVisible(manager.getManagerLayer("Rivers").getIndex(),

false, false);
manager.getManagerLayer("Areas").

addVisibilityFilter(new IlvZoomFactorVisibilityFilter(5,
IlvZoomFactorVisibilityFilter.NO_LIMIT));

}
return manager;

}
}

There is a sample SVG servlet provided at samples/svg/SVGDynamicServlet.java in the
installed product. For details, see <installdir> /jviews-framework86/samples/
svg-servlet/src/svg/SVGDynamicServlet.java.

The following describes the SVG servlet code in more detail:

♦ The javax import statements are required to use the Java Servlet API:

import javax.servlet.*;
import javax.servlet.http.*;

♦ The IBM® ILOG® import statements are required to use IBM® ILOG® JViews and the
IBM® ILOG® JViews SVG thin-client support.

import ilog.views.*;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6124

import ilog.views.io.IlvReadFileException;
import ilog.views.svg.SVGDocumentBuilder;
import ilog.views.svg.SVGDocumentBuilderConfigurator;
import ilog.views.svg.servlet.IlvSVGManagerServlet;

♦ The IlvSVGManagerServlet class is an abstract Java™ subclass of the HTTPServlet class
from the Java Servlet API. The example SVGDynamicServlet class inherits from
IlvSVGManagerServlet and defines only twomethods: its constructor and the getManager
method.

♦ The constructor initializes the base class by providing an
SVGDocumentBuilderConfigurator instance to be used by IBM® ILOG® JViews classes
to configure the way the SVG document is generated.

private static final SVGDocumentBuilderConfigurator CONFIGURATOR =
new SVGDocumentBuilderConfigurator();

// ...
public SVGDynamicServlet()
{

super(CONFIGURATOR);
}

♦ In this example the SVGDocumentBuilderConfigurator is configured not to send invisible
layers of the JViews display to the client at generation time so that such layers are only
loaded on demand. This is done through the following line:

CONFIGURATOR.setCompactMode(SVGDocumentBuilderConfigurator.COMPACT_LOD);

The configurator is also configured to generate the SVG document with a particular
viewBox in order to see a specific part of the IBM® ILOG® JViews display on the client.
This is done through the following line:

CONFIGURATOR.setViewBox(new IlvRect(-2200, 4600, 3600, 3600));

♦ The getManager method is the only abstract method of the IlvSVGManagerServlet class
and should return an IlvManager that will be used by the generated SVG document.
Here we simply return the manager object we created after adding some visibility filters
on it to allow some layers to not always be generated.

The first line makes the Rivers layer invisible in the SVG generated document.

The second line makes the Areas layer invisible if the zoom factor on the display is less
than five times the initial zoom factor.

manager.setVisible(manager.getManagerLayer("Rivers").getIndex(),
false, false);

manager.getManagerLayer("Areas").
addVisibilityFilter(new IlvZoomFactorVisibilityFilter(5,

IlvZoomFactorVisibilityFilter.NO_LIMIT));

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 125

The example SVG servlet can answer HTTP requests from a client by sending SVG documents.
If you have installed the example, you can try the following HTTP request:

This produces the following image:

This image is the (-2200, 4600, 3600, 3600) area of the JViews manager mapped to a 400,
400 image.

In most cases you do not need to know the servlet parameters because the SVG scripts
provided by IBM® ILOG® JViews for the client side will set the HTTP request parameters
for you.

After creating the server side, you can create the client side.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6126

Developing the client side of an SVG thin-client application

The client-side display is an SVG file that will contain several things:

♦ SVG elements describing the structure of the client-side display

♦ JViews XML elements as metadata on the SVG elements describing how JViews client-side
scripts should customize the SVG elements

♦ A call to an initialization function

♦ References to cascading style sheets to style the client-side display

SVG file
The example SVG file is a simplified version of the index.svg file of the supplied sample.
The contents are as follows::

<?xml-stylesheet title="default JViews style sheet"
href="default.css" type="text/css"?>

<?xml-stylesheet title="style sheet" href="style.css"
type="text/css"?>

<svg width="640" height="480"
xmlns:ilv="http://xmlns.ilog.com/JViews/SVGToolkit"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:a3="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
a3:scriptImplementation="Adobe"
onload="JViewsSVG.Init(evt)">

<defs>
<!-- alternatively you could import each single file

as in the distribution example -->
<script xlink:href="SVGUtil.es" language="text/ecmascript"

a3:scriptImplementation="Adobe"/>
</defs>
<svg id="myView" x="0%" y="0%" width="100%" height="100%">
<metadata>
<ilv:view type="manager" enableTooltips="true"

xlink:href="SVGDynamicServlet"/>
</metadata>

</svg>
<svg id="overview" x="-70" y="-30" width="240" height="240">
<title>Over View</title>
<metadata>
<ilv:view type="over" disableZoom="true"

enableBackground="true" xlink:href="#myView"/>
</metadata>

</svg>
<svg id="legend" x="0" y="240" width="240" height="240"

viewBox="0 0 240 240">
<title>The View Legend</title>
<metadata>
<ilv:view type="layer" disableZoom="true" enableDrag="true"

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 127

showTitle="true" enableBackground=”true” xlink:href="#myView"/
>

</metadata>
</svg>

</svg>

SVG elements
The main svg element in the SVG file contains several SVG elements as follows:

<svg id="myView" x="0%" y="0%" width="100%" height="100%">
<metadata>
<ilv:view type="manager" enableTooltips="true"

xlink:href="SVGDynamicServlet"/>
</metadata>

</svg>
<svg id="overview" x="-70" y="-30" width="240" height="240">
<title>Over View</title>
<metadata>
<ilv:view type="over" disableZoom="true"

enableBackground="true" xlink:href="#myView"/>
</metadata>

</svg>
<svg id="legend" x="0" y="240" width="240" height="240"

viewBox="0 0 240 240">
<title>The View Legend</title>
<metadata>
<ilv:view type="layer" disableZoom="true" enableDrag="true"

showTitle="true" enableBackground=”true” xlink:href="#myView"/
>

</metadata>
</svg>

SVG element attributes
Each svg element corresponds to a view that will be displayed on the client. The x, y, width,
and height attributes on the svg elements correspond to the rectangular region of the SVG
client area in which the view will be displayed. Each view has an SVG metadata element
that describes through the ilv:view element how the JViews SVG client-side scripting will
display that view.

COMMENT: Make this a description list

The following attributes are allowed on the ilv:view element:

♦ type: the possible values are manager (the view will display the main manager view),
overview (the view will display an overview) and layer (the view will display a view of
the layers).

♦ disableZoom: if true, the view will remain fixed in size when the user performs a zoom
operation. The default value is false.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6128

♦ enableBackground: if true, a background will be displayed under the view. The default
value is false.

♦ enableDrag: if true, the user will be able to move the view by dragging it. The default
value is false.

In addition to these attributes, depending on the value of the type attribute, some additional
attributes may be recognized. These are shown in Additional SVG element attributes

Additional SVG element attributes
Default ValueMeaningRecognized

with the
Following
Types

Attribute

FalseIf true, displays as a title of the View the contents
of the ‘title’ element child of the ‘svg’ element.

Layer ViewshowTitle

FalseIf true, does not clip the contents of the manager
view to the bounds of the ‘svg’ element.

Manager ViewdisableClip

None.
Mandatory.

Provides a reference to the Manager View by using
its ID prefixed with a hash sign (#). For the

Layer and
OverView

xlink:href

OverView, the reference can point to a Manager
View that belongs to another SVG file, provided that
both SVG files are references from the same HTML
file. The reference is then of the form:

idofthemainSVGfile#idoftheManagerView

This feature works only with Adobe® Viewer on
Microsoft® Internet Explorer®.

None. Optional.
The contents

Provides a reference to the Servlet that will provide
the contents of the Manager View.

Manager Viewxlink:href

can be inlined if
needed.

The main SVG element
The svg elements and their metadata need to be interpreted by the client JViews SVG scripts.
This is done by calling the JViewsSVG.Init() method at loading time on the main svg
element. The main svg element is as follows:

<svg width="640" height="480"
xmlns:ilv="http://xmlns.ilog.com/JViews/SVGToolkit"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:a3="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
a3:scriptImplementation="Adobe"
onload="JViewsSVG.Init(evt)">

<defs>
<!-- alternatively you could import each single file... -->
<script xlink:href="SVGFramework.es" language="text/ecmascript"

a3:scriptImplementation="Adobe"/>

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 129

</defs>
</svg>

Main SVG element attributes
The main svg element contains several attributes:

♦ The width and height attributes correspond to the size the SVG document will take in
the Web browser. These can be either absolute values or percentage values. If you use
percentage values, the size of the image will be rescaled when the browser size is resized.

♦ The xmlns:ilv attribute allows you to import the IBM® ILOG® JViews namespace to
use IBM® ILOG® JViews XML elements and attributes.

♦ The xmlns:xlink attribute allows you to import the XLink namespace to use XLink.

♦ The xmlns:a3 attribute allows you to import the Adobe® SVG Viewer namespace to use
its proprietary functionality.

♦ The onload attribute references the JViewsSVG.Init(evt) method to allow the JViews
SVG scripts to run on the client.

Script files in the SVG file
The main svg element has a reference to the script code as a child of the defs element. This
reference can either be to the concatenated version (SVGFramework.es) or to the single files
needed by your application. The scripting files can be found in <installdir> /
jviews-framework86/lib/thinclient/svg/.

Script files needed for SVG thin client shows a summary of the script files you need depending
on the SVG thin-client features you are using.

Script files needed for SVG thin client
ECMAScript Files NeededFeature

SVGUtil.es, SVGAbstractView.esAny

SVGTooltipManager.es, SVGLayer.es, SVGView.esMain View

SVGOverview.esOver View

SVGTitledView.es, SVGCheckBox.es, SVGLayerView.esLayer View

SVGExternalOverview.esExternal Overview

Cascading style sheets in the SVG file
The first two lines of the SVG file are:

<?xml-stylesheet title="default JViews style sheet"
href="default.css" type="text/css"?>

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6130

<?xml-stylesheet title="style sheet" href="style.css"
type="text/css"?>

These are processing instructions that refer to cascading style sheets (CSS) to give the
client-side display its look. The first style sheet referred to is the default one; it is mandatory
to put this processing instruction in your SVG file. After this instruction, you can add your
own style sheet (style.css in this case) to customize the default styling; the second style
sheet will be cascaded with the first one according to CSS rules.

The style.css file
The contents of the style.css file are the following:

#legend > .backgroundRect {stroke:red;fill-opacity:0.6}
#overview > .backgroundRect {fill-opacity:1}
.overRect {fill:yellow;fill-opacity:0.8}
.title {fill-opacity:0.8}

This means that:

♦ The background rectangle (the SVG elements with the backgroundRect CSS class) of
elements that are children of the SVG element with the legend ID have to be stroked
with the red color and filled with an opacity of 60%.

♦ The background rectangle of elements that are children of the SVG element with the
overview id have to be filled with full opacity.

♦ The overview rectangle (the SVG elements with the overRect CSS class) have to be filled
with the yellow color and an 80% opacity.

♦ The title areas (the SVG elements with the title CSS class) have to be filled with an 80%
opacity.

The following are the CSS classes that are recognized by the JViews SVG thin client and the
display element to which they correspond:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 131

CSS classes and corresponding display elements
Corresponds toCSS Class

Background Rectangle of a View (main view, overview, layer view).backgroundRect

OverView Rectangle.overRect

Tooltip Rectangle on a JViews Graphics Object.tooltip

Tooltip Text on a JViews Graphics Object.tooltipText

Title Rectangle of a View.title

Title Text of a View.titleText

A Check Box in the enabled state.enableCheckBox

A Check Box in the disabled state.disableCheckBox

For more information about CSS in general, see the CSS specification at http://www.w3.org/
TR/REC-CSS2 and, more specifically for CSS in SVG, see the SVG 1.1 specification at http:/
/www.w3.org/TR/SVG11.

Deployment of the thin-client application
Once the SVG file (client side) is deployed on the server with the SVGDynamicServlet (server
side), a user on the client will be able to visualize the contents of the manager on the client
as an SVG document and to interact with this document. The user will be able to zoom, pan,
display the tooltips on the JViews Graphics Objects, and change layer visibilities.

By extending the servlet, the JViews SVG generator, or the client-side SVG file, you can add
your own features to the SVG thin client example.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6132

http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/SVG11
http://www.w3.org/TR/SVG11

SVG advanced personalization

Describes the default conversion of graphic objects to SVG and explains how to define the
way user-defined graphic objects are converted to SVG..

In this section

Overview of conversion to SVG
Describes the default mechanism for conversion to SVG andmentions reasons for customizing
it.

Customizing the conversion of a graphic object
Describes how to customize the conversion of a graphic object to SVG by subclassing an
existing graphic object, creating a translator, and setting up the builder configuration for
the SVG stream factory.

Customizing the SVG DOM generated by the SVG thin client
Describes how to modify the method that generates the DOM.

SVG features supported when reading an SVG file
Lists the unsupported and supported properties and elements for the SVG reader.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 133

Overview of conversion to SVG

The IBM® ILOG® JViews SVG generator uses a generic translator (
GenericGraphicTranslator) by default to convert graphic objects, including those that you
have defined, to SVG.. It is not mandatory to define the way your objects are translated to
SVG, but you may want to for reasons such as custom interactions. To do this, you will need
to write some additional code. This may also be necessary if you want to redefine the way
a standard IBM® ILOG® JViews graphic object (IlvGraphic) is translated.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6134

Customizing the conversion of a graphic object

Subclassing a graphic object
Assume your graphic object is a subclass of a rectangle that draws a blue Bezier curve into
a rectangle from the left bottom point to the right top point. The code is as follows:

package mypackage;

import java.awt.*;
import ilog.views.*;
import ilog.views.graphic.*;

public class MyGraphic extends IlvRectangle
{
private IlvPoint[] pts = new IlvPoint[4];
private float[] dash = {4, 2};

public MyGraphic(IlvRect rect)
{

super(rect);
for (int i = 0; i < 4; i++)

pts[i] = new IlvPoint();
computeBezier();

}

private computeBezier()
{
pts[0].x = drawrect.x;
pts[0].y = drawrect.y + drawrect.height;
pts[1].x = drawrect.x + drawrect.width / 4;
pts[1].y = drawrect.y + drawrect.height / 4;
pts[2].x = drawrect.x + 3*drawrect.width / 4;
pts[2].y = drawrect.y + 3*drawrect.height / 4;
pts[3].x = drawrect.x + drawrect.width;
pts[3].y = drawrect.y;

}

public void draw(Graphics g, IlvTransformer t)
{

super.draw(g, t); // will draw the rectangle
// Will draw a Bezier in blue
g.setColor(Color.blue);
IlvGraphicUtil.DrawBezier(g, pts, 4, 1,

IlvStroke.JOIN_MITER, IlvStroke.CAP_ROUND,
dash, t);

}

public void applyTransform(IlvTransform t)
{

super.applyTransform(t);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 135

computeBezier();
}

// ...
}

Creating a translator and setting the builder configurator
If you do not want your object to use the generic translation mechanism, you should
implement the SVGDocumentBuilderConfigurator.GraphicTranslator interface to be able
to translate MyGraphic instances to SVG Element instances.

The translate method of your class should build a new Element instance, and, after filling
it with the information contained in the graphic object and applying a style, should return
that instance. To fill the Element, you can use regular DOMmethods (Element.setAttribute
()) or the methods provided by the SVG DOM. Note, however, that only limited support of
SVG DOM is implemented in IBM® ILOG® JViews, and not all the methods are accessible.

The following code shows how to create the translator.

import org.w3c.dom.*;
import org.w3c.svg.dom.*;

public class MyGraphicTranslator
implements SVGDocumentBuilderConfigurator.GraphicTranslator

{
// Method that translates the graphic to SVG
public Element translate(IlvGraphic graphic, IlvTransformer t,

SVGDocumentBuilder builder)
{
SVGDocument doc = builder.getDocument();

// The SVG ’group’ element will contain
// all drawings necessary to display MyGraphic.
SVGGElement group = (SVGGElement)doc.createElementNS

("http://www.w3.org/2000/svg", "g");

// First add to the group the element corresponding
// to the parent class of MyRect (IlvRectangle).
group.appendChild(builder.getConfigurator().

getTranslator(“ilog.views.graphic.IlvRectangle”).
translate(graphic, t));

// Create the SVG element corresponding to
// the drawing added at MyGraphic level.
SVGPathElement path = (SVGPathElement)doc.createElementNS

("http://www.w3.org/2000/svg", "path")
;

IlvRect rect = graphic.boundingBox(graphic, t);
SVGList list = path.getPathSegList();
// Go to the beginning point of the Bezier.
list.appendItem(path.createPathSegMovetoAbs(rect.x,

rect.y + rect.height));

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6136

// Add the Bezier.
list.appendItem(path.
createPathSegCurvetoCubicAbs(rect.x + rect.width,

rect.y,
rect.x + rect.width / 4,
rect.y + rect.height / 4,
rect.x + 3*rect.width / 4,
rect.y + 3*rect.height / 4));

// Start to style the path.
builder.startStyleElement(path, null);
// Really apply the style (blue color...).
builder.appendStyle("stroke", "blue");
builder.appendStyle("stroke-width", "1");
builder.appendStyle("stroke-join", "miter");
builder.appendStyle("stroke-cap", "round");
builder.appendStyle("stroke-dasharray", "4 2");
// Finish to style the path.
builder.endStylingElement();
group.appendChild(path);

return group;
}

}

Customizing the SVG stream factory
You should create a well-configured builder configurator that refers to the new translator.
If you are using an SVGOutputStream you can do the following:

SVGStreamFactory factory = new SVGStreamFactory();
factory.getBuilderConfigurator().putTranslator("mypackage.MyGraphic", new
MyGraphicTranslator());

Do not forget to set this new stream factory on your manager instead of the regular one.

If you are in SVG thin-client context, you just have to call putTranslator(java.lang.String,
ilog.views.svg.SVGDocumentBuilderConfigurator.GraphicTranslator) method on the
SVGBuilderConfigurator instance you used for your Servlet.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 137

Customizing the SVG DOM generated by the SVG thin client

In the SVG thin-client context, in addition to defining your own way to export IlvGraphic
instances to SVG, you may want to modify the SVG DOM instance that will be sent to the
client beforehand. To do this, you need to redefine the generateSVGDocumentmethod of the
IlvSVGManagerServlet class.

For example, if you need to put an SVG drop-shadow effect arrow on a particular object, the
code is as follows:

protected Document generateSVGDocument(HttpServletRequest request,
int width, int height,
String[] requestedLayers)

throws ServletException
{
Document document = super.generateSVGDocument(request,

width, height,
requestedLayers);

// create the drop-shadow filter effect
Element filter = document.createElementNS(null, "filter");
filter.setAttribute("id", "drop");
filter.setAttribute("filterUnits", "objectBoundingBox");
filter.setAttribute("x", "-0.1");
filter.setAttribute("y", "-0.1");
filter.setAttribute("width", "1.2");
filter.setAttribute("height", "1.2");
Element blur = document.createElementNS(null, "feGaussianBlur");
blur.setAttribute("in", "SourceAlpha");
blur.setAttribute("stdDeviation", "2");
blur.setAttribute("result", "balpha");
Element offset = document.createElementNS(null, "feOffset");
offset.setAttribute("in", "balpha");
offset.setAttribute("dx", "4");
offset.setAttribute("dy", "4");
offset.setAttribute("result", "oba");
Element merge = document.createElementNS(null, "feMerge");
Element node = document.createElementNS(null, "feMergeNode");
node.setAttribute("in", "oba");
merge.appendChild(node);
node = document.createElementNS(null, "feMergeNode");
node.setAttribute("in", "SourceGraphic");
merge.appendChild(node);
filter.appendChild(blur);
filter.appendChild(offset);
filter.appendChild(merge);
// add the drop-shadow filter effect to the document
document.getDocumentElement().appendChild(filter);
// set the effect on the "myGraphic" element if it is in one
// of the generated layers:
Element elt = document.getElementById("myGraphic");
if (elt != null)
elt.setAttribute("filter", "url(#drop)");

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6138

// return the modified document
return document;

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 139

SVG features supported when reading an SVG file

To help you build SVG files that will be fully understood by the SVG reader of IBM®
ILOG® JViews, use the following tables to see which SVG elements and CSS properties are
supported/unsupported.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6140

Supported SVG elements
Attributes not supported on this elementElement name

xlink:role, xlink:acrole, xlink:actuatea

circle

clipPathUnitsclipPath

defs

desc

ellipse

g

image

line

linearGradient

metadata

path

patternUnits, patternTransformpattern

polygon

polyline

radialGradient

rect

stop

!important rules are not supportedstyle

zoomAndPansvg

switch

refX, refY, viewBox, preserveAspectRatiosymbol

textLength, lengthAdjusttext

textLength, lengthAdjust, startOffset, method, spacingtextPath

title

multiple values x, y, dx, dy (single values supported), rotate, textLengthtspan

use

Supported CSS properties
RemarkProperty name

URI local to the file only.clip-path

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 141

RemarkProperty name

color

Supported on linearGradient and radialGradient.color-interpolation

URI local to the file only, ICC colors are not supported.fill

fill-opacity

fill-rule

font-family

Relative identifiers are not supported.font-size

Relative identifiers are not supported.font-stretch

font-style

Relative identifiers are not supported.font-weight

Supported on basic shapes, paths, and g (group) elements.opacity

ICC colors are not supported.stop-color

stop-opacity

URI local to the file only, ICC colors are not supported.stroke

stroke-dasharray

stroke-dashoffset

stroke-linecap

stroke-linejoin

stroke-miterlimit

stroke-opacity

stroke-width

text-anchor

visibility

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6142

DHTML thin-client support in JViews
Framework

Describes the support for thin-client applications in JViews Framework.

In this section

Overview of thin-client support
Gives background information on the support for thin-client applications.

IBM® ILOG® JViews thin-client Web architecture
Describes how a thin-client application is structured.

Getting started with the IBM® ILOG® JViews thin client
Explains how to build the server and client sides of a thin-client application.

Installing and running the XML Grapher example
Explains how to install and run the XML Grapher example.

Developing the server
Describes the server side of a thin-client application and how to develop a server.

Developing the client
Describes the client side of a thin-client application and how to develop a dynamic HTML
client by adding JavaScript™ components.

Adding client/server interactions
Describes how to add interactions between the server side and the client side.

© Copyright IBM Corp. 1987, 2009 143

Generating a client-side image map
Describes how to generate an image map on the client side.

The IlvManagerServlet class
Describes the predefined servlet and how to use it.

The IlvManagerServletSupport class
Describes how to add thin-client support to a servlet.

Controlling tiling
Describes how to control tiling on the client side and the server side.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6144

Overview of thin-client support

The IBM® ILOG® JViews class library can be used on the client side where you develop
Java™ applets or applications. It can also be used on the server side. Some Web browser
applications require that the client stay very light, with most of the functionality residing in
the server. The thin-client support in IBM® ILOG® JViews Framework allows you to create
such applications easily. You can use the power of the IBM® ILOG® JViews class library to
build complex two-dimensional representations on the Web server and use the Dynamic
HTML thin-client support of your Web browser to display and interact with the images
created by the server.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 145

IBM® ILOG® JViews thin-client Web architecture

The IBM® ILOG® JViews thin-client support is based on the Java™ servlet technology.
Servlets are Java programs that run on a web server. They act as a middle layer between
HTTP requests coming from a Web browser or other HTTP clients such as applets or
applications and the application or databases on the web server. The job of the servlet is to
read and interpret HTTP requests coming from an HTTP client program and to generate a
resulting document that in most cases is an HTML page.

For more information about servlet technology, you can visit the JavaSoft™ site http://
java.sun.com/products/servlet.

You will also find their information about the web servers supporting Java servlets.

For the predefined types of IBM® ILOG® JViews clients, the content created by the servlet
is primarily a JPEG image. On the client side, user interactions with the image are managed
by code in Dynamic HTML scripts.

Creating a web application with IBM® ILOG® JViews consists of using the IBM®
ILOG® JViews library on the server side to create complex two-dimensional displays based
on application data that resides on the server. A servlet will answer HTTP requests from a
client and deliver images to this client, as illustrated in the following figure.

Client-Server Display Interaction

IBM® ILOG® JViews Framework thin-client support contains the following:

♦ An abstract servlet class that can generate JPEG images from an IBM® ILOG® JViews
display.

♦ A set of Dynamic HTML scripts written in JavaScript™ that will be used on the client
side to display and interact with the image created on the server side.

Creating an IBM® ILOG® JViews thin-client application consists of developing the server
side and developing the client side.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6146

http://java.sun.com/products/servlet
http://java.sun.com/products/servlet

Getting started with the IBM® ILOG® JViews thin client

The XML Grapher example shows how to build the server side and also how to create a
Dynamic HTML client.

The XML Grapher example is available at <installdir> /jviews-framework8.6/samples/
xmlgrapher.

This example allows you to display a network of interconnected cities on top of the map in
a thin-client context.

The XML Grapher Example

The XML Grapher example is composed of the following pieces:

♦ An IBM® ILOG® JViews component that can read an XML file describing a set of
interconnected cities and display them on top of a map as shown in the picture above.

This component is located in the following files:

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/
XmlGrapher.java

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/
GrapherNode.java

♦ Some example XML files for the component, located in <installdir> /
jviews-framework86/samples/xmlgrapher/webpages/data

♦ A servlet that can produce JPEG images from the component described above.

The servlet is located in:

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/servlet/
XmlGrapherServlet.java

♦ A Dynamic HTML client composed of:

● The HTML starting page: <installdir> /jviews-framework86/samples/xmlgrapher/
webpages/dhtml/index.html

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 147

● The set of JavaScript™ Dynamic HTML components, located in: <installdir> /
jviews-framework86/lib/thinclient/javascript

● Some images required for the example, located in: <installdir> /
jviews-framework86/samples/xmlgrapher/webpages/dhtml/images

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6148

Installing and running the XML Grapher example

This sample is compatible with the browsers and browser versions listed in the Release
notes under Requirements for running thin-client applications. The example contains aWAR
(Web ARchive) file that allows you to install the example easily on any server that supports
the Servlet API 2.1 or later.

For your convenience, theWAR file has already been installed for you on the Apache Tomcat™
Web server that is supplied with the IBM® ILOG® JViews installation. Tomcat is the official
reference implementation of the Servlet and JSP™ specifications. If you are already using
an up-to-date Web or application server, there is a good chance that it already has everything
you need. You can check the latest list of servers that support servlets at: http://java.sun.com/
products/servlet/industry.html.

To be able to run, this example requires a Web server and a Web browser that supports
Dynamic HTML (for the DHTML client).

To run the example on the TOMCAT web server supplied with the IBM® ILOG® JViews
installation:

1. Set the JAVA_HOME environment variable to point to your Java™ Platform, Standard
Edition installation.

2. Go to the TOMCAT bin directory located in

<installdir>/jviews-framework86/tools/apache-tomcat-6.0.14/bin

3. Depending on your system, run the startup.bat or startup.sh script to run the
Apache Tomcat™ server.

4. To see the example, launch a Web browser and open the page:

http://localhost:8080/xmlgrapher/index.html

You must use localhost instead of the name of your machine.
Otherwise, the sample applet may not be able to connect to the servlet.

Note:

The Web page gives you access to two different clients: a Dynamic HTML client and a thin
Java client.

The IBM® ILOG® JViews servlets can run with the headless support that is built-in since
Java SE 1.4, without an X server. For more information on this feature, refer to the Java SE
Release Notes.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 149

http://java.sun.com/products/servlet/industry.html
http://java.sun.com/products/servlet/industry.html
http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

Developing the server

The server side of an IBM® ILOG® JViews thin-client application is composed of two main
parts: the IBM® ILOG® JViews application itself, which can be any type of complex
two-dimensional display built on top of the IBM® ILOG® JViews API, and a Servlet that
produces JPEG images to the client.

The way the server side is built in the XML Grapher example helps in analyzing these parts.

The XML Grapher server
In the XML Grapher example, a graph of nodes and links is displayed on top of a map. This
IBM® ILOG® JViews application is defined in the file XmlGrapher.java, located in
<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/servlet/
XmlGrapherServlet.java

This part of the example contains only standard IBM® ILOG® JViews code and is
therefore not explained in detail.You will only see how the class is used to create the

Note:

example. The application on the server side really depends on the type of information
you want to display anyway.

The XmlGrapher class
The XmlGrapher class is a simple subclass of the IBM® ILOG® JViews IlvManagerView
class.

The main functionality of this small component is to read an XML file describing nodes and
links and to create an IBM® ILOG® JViews grapher that represents those nodes and links
on top of a map. This is done in the method:

public void setNetwork(URL url)

The XML file contains information on the map and the bitmap file of the map. It contains a
list of nodes, including the position, or location, of each node and information on links. In
the example, the position, or location, is described by using x-y coordinates. In a real mapping
application, the IBM® ILOG® JViews Maps API allows you to use geographical projections.

The setNetworkmethod parses the XML file, creates the map, and places the nodes and the
links on top of the map. It also applies an orthogonal link layout algorithm to lay out the
links automatically.

You can look at an XML example file in <install-dir> /jviews-framework86/samples/
xmlgrapher/webpages/data.

The servlet
Once the application is built, you need to create a servlet that produces images of the
application to a client. IBM® ILOG® JViews Framework provides a predefined servlet to

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6150

achieve this task. The predefined servlet class is named IlvManagerServlet. This class can
be found in the package ilog.views.servlet.

The servlet created for the XML Grapher example is very simple. To understand in depth
how the servlet works, read The IlvManagerServlet class. The servlet for the XML Grapher
example is located in the file: <installdir> /jviews-framework86/samples/xmlgrapher/
src/xmlgrapher/servlet/XmlGrapherServlet.java .

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;

import ilog.views.*;
import ilog.views.servlet.*;

import demo.xmlgrapher.*;

public class XmlGrapherServlet extends IlvManagerServlet
{
private XmlGrapher xmlGrapher;

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException
{
super.init(config);
xmlGrapher = new XmlGrapher();
String xmlfile = config.getInitParameter("xmlfile");

if (xmlfile == null) {
xmlfile = config.getServletContext().getRealPath("/data/world.xml");
xmlfile = "file:" + xmlfile;

}
try {
xmlGrapher.setNetwork(new URL(xmlfile));

} catch (MalformedURLException ex) {
}
setVerbose(true);

}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{
return xmlGrapher;

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view)

{
return 30;

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 151

}

The import statements:

import javax.servlet.*;
import javax.servlet.http.*;

are required to use the Java Servlet API.

The import statements:

import ilog.views.*;
import ilog.views.servlet.*;

are required for using IBM® ILOG® JViews and the IBM® ILOG® JViews servlet support.

The import statement:

import demo.xmlgrapher.*;

is required for the XML Grapher class.

The IlvManagerServlet. class is an abstract Java™ class subclass of the HTTPServlet class
from the Java servlet API. The XmlGrapherServlet inherits from the IlvManagerServlet
class and defines only three methods.

The init method
This method initializes the servlet by creating an XmlGrapher object:

public void init(ServletConfig config) throws ServletException
{

xmlGrapher = new XmlGrapher();
...

Then an XML file is read by the XmlGrapher object using the setNetwork method:

String xmlfile = config.getInitParameter("xmlfile");
if (xmlfile == null)
xmlfile

= config.getServletContext().
getRealPath("/data/world.xml");

try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6152

The XML file can be specified in the configuration of the servlet. By default, the file world.
xml is used.

The getManagerView method
The getManagerViewmethod is the only abstract method of the IlvManagerServlet class
and should return an IlvManagerView that will be used to generate the image. Here the
XmlGrapher object is returned.

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{
return xmlGrapher;

}

The getMaxZoomLevel Method
This method allows you to fix the user’s maximum zoom level on the client side. Here we
overwrite the method to return a larger value.

As you have seen, creating the servlet is very simple. This servlet can now answer HTTP
requests from a client by sending JPEG images. If you have installed the example, you can
try the following HTTP request:

http://localhost:8080/xmlgrapher/
demo.xmlgrapher.servlet.XmlGrapherServlet?request=image

&format=JPEG&bbox=0,0,512,512
&width=400
&height=200
&layer=Cities,Links,background%20Map

This produces the following image:

Generated Bitmap Image

This request asks the servlet named demo.xmlgrapher.servlet.XmlGrapherServlet to
produce an image of size 400 x 200 showing the area (0, 0, 512, 512) of the manager with
the layers “Cities,” “Links,” and “Background Map” visible.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 153

In most cases, you do not have to know the servlet parameters because the Dynamic HTML
objects or the Java™ classes provided by IBM® ILOG® JViews for the client side will take
care of the HTTP requests for you.

This example is a very simple servlet. This servlet uses the same IlvManagerView instance
for all clients; this means that every client will see the same data. For more complex usage
of the IlvManagerServlet classes, read The IlvManagerServlet class.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6154

Developing the client

Describes the client side of a thin-client application and how to develop a dynamic HTML
client by adding JavaScript™ components.

In this section

Overview of client-side development
Describes how Dynamic HTML influences client-side development.

The IlvView JavaScript component
Describes the IlvView component.

The IlvOverview JavaScript component
Describes the IlvOverview component.

The IlvLegend JavaScript component
Describes the IlvLegend component.

The IlvButton JavaScript component
Describes the IlvButton component.

The IlvZoomTool JavaScript component
Describes the IlvZoomTool component.

The IlvZoomInteractor JavaScript component
Describes the IlvZoomInteractor component.

IlvPanInteractor
Describes the IlvPanInteractor component.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 155

The IlvPanTool JavaScript component
Describes the IlvPanTool component.

The IlvMapInteractor and IlvMapRectInteractor JavaScript components
Describes the IlvMapInteractor and IlvMapRectInteractor components.

The Popup menu in JavaScript
Describes the JavaScript component for the popup menu.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6156

Overview of client-side development

After creating the server (see Developing the server), you can create the client side. The
IBM® ILOG® JViews thin-client support allows you to build a DHTML client easily. The
static nature of HTML limits the interactivity of web pages. Dynamic HTML allows you to
create more interactive and engaging web pages. It gives content providers new controls
and allows them to manipulate the contents of HTML pages through scripting.

IBM® ILOG® JViews provides a set of Dynamic HTML components written in JavaScript™
that allows you to build your DHTML pages very easily. The JavaScript files are located in
<installdir> /jviews-framework86/lib/thinclient/javascript.

This sample is compatible with the browsers and browser versions listed in the
Release notes under Requirements for running thin-client applications.

Important:

The Dynamic HTML client for the XML Grapher example includes most of the DHTML
components. The full HTML file for the XML Grapher example is located in <installdir>
/jviews-framework86/samples/xmlgrapher/index.html.

The full reference documentation of each component can be found in the JavaScript Reference
Manual located in <installdir> /jviews-framework86/doc/html/en-US/refjsf/html/
index.html.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 157

The IlvView JavaScript component

The IlvView component (located in the IlvView.js file) is the main component. This
component queries the servlet and displays the resulting image.

To use this component, you need to include the following JavaScript™ files: IlvUtil.js ,
IlvView.js , the files for the superclasses of IlvView: IlvAbstractView.js,
IlvResizableView.js, and IlvEmptyView.js, and IlvGlassView.js.

Instead of including the individual .js files of each component, you can add the file
framework.js which is located in <installdir> /jviews-framework86/lib/thinclient/
framework/framework.js

This file is a concatenation of all the .js files required for doing DHML thin client in the
Framework.

Here is a simple HTML page that creates an instance of IlvView:

HTML code

<html>
<head>
<META HTTP-EQUIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
</head>
<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvView.js"></script>
<script TYPE="text/javascript">

function init() {
view.init()
return false

}

function handleResize() {
if (document.layers)
window.location.reload()

}
</script>
<body onload="init()" onunload=”IlvObject.callDispose()”

onresize="handleResize()" bgcolor="#ffffff">
<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6158

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)
view.toHTML()

</script>
</body>
</hmtl>

This example starts by importing some JavaScript files:

<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvView.js"></script>

In the body of the page, the example creates an IlvView object located in (40, 40) on the
HTML page. The size is 440 x 270. This view displays images produced by the servlet
XmlGrapherServlet. Note the toHTML method that creates the HTML necessary for the
component.

This example also defines two JavaScript functions:

♦ The init function, called on the onload event of the page, initializes the IlvView by
calling its init method.

♦ The handleResize function, called on the onresize event of the page, will reload the
page if the browser is Netscape Communicator 4 or higher. This is necessary for a correct
resizing of Dynamic HTML content on Communicator.

The global IlvObject.callDispose() function must be called in the onunload
event of the HTML page.This function disposes of all resources acquired by the JViews
DHTML components.

Note:

Once the image is loaded from the server, the page now looks like this:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 159

Generated HTML Page

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6160

The IlvOverview JavaScript component

The IlvOverview component (located in the IlvOverview.js) file shows an overview of the
manager. An IlvOverview is linked to an IlvView component. By default, the IlvOverview
queries the server to obtain an image of the global area and displays it. Once the overview
is visible, a rectangle corresponding to the area visible in the main view is drawn on top of
the overview. You can move this rectangle to change the area visible in the main view.

Here is the body of the previous example with an IlvOverview component. Note that you
cannot move the rectangle of the overview now because the complete area is visible in the
main view. You will be able to do that later when the zooming functionality is added.

The lines added are in bold.Note:

<body onload="init()" onunload=”IlvObject.callDispose()”
onresize="handleResize()" bgcolor="#ffffff">

<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)

view.toHTML()
overview.toHTML()

</script>

Compared to the previous example, there is a new import statement for IlvOverview.js:

<script TYPE="text/javascript" src="script/IlvOverview.js"></script>

An IlvOverview object located in (x+w+50, y+4) with a size of 120 x 70 was created:

var overview = new IlvOverview(x+w+50, y+4, 120, 70, view)

The following line sets the color of the draggable rectangle:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 161

overview.setColor(’white’)

The page looks now like this:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6162

The IlvLegend JavaScript component

You can add an IlvLegend component to the page. The IlvLegend component shows a list
of layers that are available on the server side, and allows you to turn the visibility of a layer
on and off.

To use the IlvLegend, you must first include the IlvLegend.js file.

<script TYPE="text/javascript" src="IlvLegend.js"></script>

The body of the HTML file now looks like this:

<body onload="init()" onunload="IlvObject.callDispose()"
onresize="handleResize()" bgcolor="#ffffff">

<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)

// Legend
var legend = new IlvLegend(x+w+50, y+150 ,120, 115, view)
legend.setTitle(’Themes’)
legend.setTitleBackgroundColor(’#21bdbd’)
legend.setTextColor(’white’)
legend.setBackgroundColor(’#21d6d6’)
legend.setTitleFontSize(2);

view.toHTML()
overview.toHTML()
legend.toHTML()
</script>
</body>

You should see the following page:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 163

The visibility of layers can now be turned on and off.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6164

The IlvButton JavaScript component

The IlvButton component is a simple button that allows you to call some JavaScript™ code
by clicking it. You can add some buttons to the page to zoom in and out.

In addition to buttons, you can add some Dynamic HTML panels to create a frame around
the main view. A Dynamic HTML panel is an area of the page that can contain some HTML.
Creating a panel is done using the class IlvHTMLPanel, defined in the IlvUtil.js file.

The body of the page is now:

<body onload="init()" onunload="IlvObject.callDispose()"
onresize="handleResize()" bgcolor="#ffffff" >

<script>

//position of the main view

var y = 40
var x = 40
var h = 270
var w = 440

// Creates a frame around the main view
var frameBackground = new IlvHTMLPanel(’’)
frameBackground.setBounds(x-20, y-20, w+210, h+80)
frameBackground.setVisible(true)
frameBackground.setBackgroundColor(’#21bdbd’)

var frameTopLeft = new IlvHTMLPanel(’’)
frameTopLeft.setBounds(x-20, y-20, 40, 40)
frameTopLeft.setVisible(true)

var frameBottomLeft =new IlvHTMLPanel(’’)
frameBottomLeft.setBounds(x-20, y+h+20, 40, 40)
frameBottomLeft.setVisible(true)

var frameTopRight = new IlvHTMLPanel(’’)
frameTopRight.setBounds(x+w+150, y-20, 40, 40)
frameTopRight.setVisible(true)

var frameBottomRight = new IlvHTMLPanel(’<IMG src="images/frame_bottomright.
gif">’)
frameBottomRight.setBounds(x+w+150, y+h+20, 40, 40)
frameBottomRight.setVisible(true)

var frameTop = new IlvHTMLPanel(’’)
frameTop.setBounds(x+20, y-20, 570, 40)
frameTop.setVisible(true)

var frameBottom = new IlvHTMLPanel(’’)
frameBottom.setBounds(x+20, y+h+20, 570, 40)
frameBottom.setVisible(true)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 165

var frameLeft = new IlvHTMLPanel(’’)
frameLeft.setBounds(x-20, y+20, 5, 270)
frameLeft.setVisible(true)
var frameRight = new IlvHTMLPanel(’’)
frameRight.setBounds(x+w+185, y+20, 5, 270)
frameRight.setVisible(true)

var border = new IlvHTMLPanel(’’)
border.setBounds(x+w+45, y, 130, h)
border.setVisible(true)
border.setBackgroundColor(’#09a5a5’)

var secondBorder = new IlvHTMLPanel(’’)
secondBorder.setBounds(x+w+47, y+2, 128, h-2)
secondBorder.setVisible(true)
secondBorder.setBackgroundColor(’#21d6d6’)

// message panel
var messagePanel = new IlvHTMLPanel(’’)
messagePanel.setBounds(x, y+h+20, w, 25)
messagePanel.setVisible(true)
messagePanel.setBackgroundColor(’#21d6d6’)
IlvButton.defaultMessagePanel = messagePanel;

// IBM® ILOG® logo
var logo = new IlvHTMLPanel(’’)
logo.setBounds(x+w+95, y+h+10, 85, 40)
logo.setVisible(true)

IlvButton.defaultInfoPanel = messagePanel;

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)
view.setMessagePanel(messagePanel)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)
overview.setMessagePanel(messagePanel)

// Legend
var legend = new IlvLegend(x+w+50, y+150 ,120, 115, view)
legend.setTitle(’Themes’)
legend.setTitleBackgroundColor(’#21bdbd’)
legend.setTextColor(’white’)
legend.setBackgroundColor(’#21d6d6’)
legend.setTitleFontSize(2);
// Some buttons for navigation
var topbutton, bottombutton, rightbutton, leftbutton

topbutton = new IlvButton(x+w/2, y-15, 30, 13,’images/north.gif’,’view.panNorth
()’)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6166

topbutton.setRolloverImage(’images/northh.gif’)
topbutton.setToolTipText(’pan north’)
topbutton.setMessage(’pan the map to the north’)

bottombutton = new IlvButton(x+w/2, y+h, 33, 13,’images/south.gif’,’view.
panSouth()’)
bottombutton.setRolloverImage(’images/southh.gif’)
bottombutton.setToolTipText(’pan south’)
bottombutton.setMessage(’pan the map to the south’)

leftbutton=new IlvButton(x-13, y+h/2-10, 13, 30,’images/west.gif’,’view.panWest
()’)
leftbutton.setRolloverImage(’images/westh.gif’)
leftbutton.setToolTipText(’pan west’)
leftbutton.setMessage(’pan the map to the west’)

rightbutton=new IlvButton(x+w, y+h/2-25, 13, 28, ’images/east.gif’, ’view.
panEast()’)
rightbutton.setRolloverImage(’images/easth.gif’)
rightbutton.setToolTipText(’pan east’)
rightbutton.setMessage(’pan the map to the east’)

// Buttons to zoom in and out
var zoominbutton, zoomoutbutton

zoominbutton=new IlvButton(x+w+30, y+h-16,12, 12, ’images/zoom.gif’, ’view.
zoomIn()’)
zoominbutton.setRolloverImage(’images/zoomh.gif’)
zoominbutton.setMessage(’click to zoom by 2’)
zoominbutton.setToolTipText(’Zoom In’)

zoomoutbutton=new IlvButton(x+w+30, y, 12, 12, ’images/unzoom.gif’, ’view.
zoomOut()’)
zoomoutbutton.setRolloverImage(’images/unzoomh.gif’)
zoomoutbutton.setMessage(’click to zoom out by 2’)
zoomoutbutton.setToolTipText(’Zoom Out’)

view.toHTML()
overview.toHTML()
legend.toHTML()
topbutton.toHTML()
bottombutton.toHTML()
leftbutton.toHTML()
rightbutton.toHTML()
zoomoutbutton.toHTML()
zoominbutton.toHTML()

</script>
</body>
</hmtl>

The page now looks like this:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 167

A frame around the page was created by the following lines:

var frameBackground = new IlvHTMLPanel(’’)
frameBackground.setBounds(x-20, y-20, w+210, h+80)
frameBackground.setVisible(true)
frameBackground.setBackgroundColor(’#21bdbd’)

var frameTopLeft = new IlvHTMLPanel(’’)
frameTopLeft.setBounds(x-20, y-20, 40, 40)
frameTopLeft.setVisible(true)

var frameBottomLeft=new IlvHTMLPanel(’’)
frameBottomLeft.setBounds(x-20, y+h+20, 40, 40)
frameBottomLeft.setVisible(true)

var frameTopRight = new IlvHTMLPanel(’’)
frameTopRight.setBounds(x+w+150, y-20, 40, 40)
frameTopRight.setVisible(true)

var frameBottomRight = new IlvHTMLPanel(’<IMG src="images/frame_bottomright.
gif">’)
frameBottomRight.setBounds(x+w+150, y+h+20, 40, 40)
frameBottomRight.setVisible(true)

var frameTop = new IlvHTMLPanel(’’)
frameTop.setBounds(x+20, y-20, 570, 40)
frameTop.setVisible(true)

var frameBottom = new IlvHTMLPanel(’’)
frameBottom.setBounds(x+20, y+h+20, 570, 40)
frameBottom.setVisible(true)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6168

var frameLeft = new IlvHTMLPanel(’’)
frameLeft.setBounds(x-20, y+20, 5, 270)
frameLeft.setVisible(true)

var frameRight = new IlvHTMLPanel(’’)
frameRight.setBounds(x+w+185, y+20, 5, 270)
frameRight.setVisible(true)

This creates four DHTML panels for the corners, four additional panels for the sides, and a
panel for the background. The corners and the sides of the frame are composed of simple
GIF images.

Four buttons to pan south, north, east, and west have been added by the lines:

topbutton = new IlvButton(x+w/2, y-15, 30, 13,’images/north.gif’,’view.panNorth
()’)
topbutton.setRolloverImage(’images/northh.gif’)
topbutton.setToolTipText(’pan north’)
topbutton.setMessage(’pan the map to the north’)

bottombutton = new IlvButton(x+w/2, y+h, 33, 13,’images/south.gif’,’view.
panSouth()’)
bottombutton.setRolloverImage(’images/southh.gif’)
bottombutton.setToolTipText(’pan south’)
bottombutton.setMessage(’pan the map to the south’)

leftbutton=new IlvButton(x-13, y+h/2-10, 13, 30,’images/west.gif’,’view.panWest
()’)
leftbutton.setRolloverImage(’images/westh.gif’)
leftbutton.setToolTipText(’pan west’)
leftbutton.setMessage(’pan the map to the west’)

rightbutton=new IlvButton(x+w, y+h/2-25, 13, 28, ’images/east.gif’, ’view.
panEast()’)
rightbutton.setRolloverImage(’images/easth.gif’)
rightbutton.setToolTipText(’pan east’)
rightbutton.setMessage(’pan the map to the east’)

A button is defined by its position and size, two images, the main image and the rollover
image, and a piece of JavaScript to be executed when the button is clicked.

Note that in order to pan to the north, you use the panNorth method of IlvView.

Two additional buttons have been created to zoom in and out, by the lines:

var zoominbutton, zoomoutbutton

zoominbutton=new IlvButton(x+w+30, y+h-16,12, 12, ’images/zoom.gif’, ’view.
zoomIn()’)
zoominbutton.setRolloverImage(’images/zoomh.gif’)
zoominbutton.setMessage(’click to zoom by 2’)
zoominbutton.setToolTipText(’Zoom In’)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 169

zoomoutbutton=new IlvButton(x+w+30, y, 12, 12, ’images/unzoom.gif’, ’view.
zoomOut()’)
zoomoutbutton.setRolloverImage(’images/unzoomh.gif’)
zoomoutbutton.setMessage(’click to zoom out by 2’)
zoomoutbutton.setToolTipText(’Zoom Out’)

Each button has a message property. The message will be automatically displayed in the
status window of the browser when the mouse is over the button. The message can also be
displayed in an additional panel. This is why the line:

IlvButton.defaultInfoPanel=messagePanel

tells you that messages of buttons will also be displayed in the DHTML message panel.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6170

The IlvZoomTool JavaScript component

The IlvZoomTool component is a DHTML component that shows a set of buttons. Each
button corresponds to a zoom level; clicking the button will zoom the view to this zoom level.
The button corresponding to the current zoom level is visually different from others so that
you can tell what the current zoom level is. The component can be vertical or horizontal,
and the images of the buttons can be customized.

To add the component, add the following lines to the page:

<script TYPE="text/javascript" src="script/IlvZoomTool.js"></script>

This line imports the script.

Note that this component uses the IlvButton class, so the IlvButton.js script must be
included also.

var zoomtool = new IlvZoomTool(x+w+25, y+15, 25, h-30, 10 , view)
zoomtool.setOrientation(’Vertical’)
zoomtool.upImage = ’images/button.gif’
zoomtool.rolloverUpImage = ’images/buttonh.gif’
zoomtool.downImage = ’images/button.gif’
zoomtool.rolloverDownImage = ’images/buttonh.gif’
zoomtool.currentImage = ’images/center.gif’
zoomtool.rolloverCurrentImage = ’images/centerh.gif’

zommtool.toHTML()

The page now looks like this, with the vertical zoom tool on the right of the main view:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 171

The IlvZoomInteractor JavaScript component

The IlvZoomInteractor allows direct interaction with the image; it allows the user to select
an area on the image to zoom this area. Installing an interactor on the view is simple: you
need only create the interactor and set it to the view:

var zoomInteractor = new IlvZoomInteractor()
view.setInteractor(zoomInteractor)

In the example, you add a button that will install the interactor. To do this, add the following
lines to the page:

<script TYPE="text/javascript"
src="script/IlvInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvDragRectangleInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvZoomInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvInteractorButton.js"></script>

To use the interactor, you have to import three JavaScript™ files: IlvInteractor.js,
IlvDragRectangleInteractor.js, and IlvZoomInteractor.js. This is because the
IlvZoomInteractor component is a subclass of the IlvDragRectangleInteractor component.

Then you add the following lines to the body of the page:

var zoomInteractor = new IlvZoomInteractor()
zoomInteractor.setLineWidth(1)
zoomInteractor.setColor(’#00ffff’)

...

var zoomrectbutton

zoomrectbutton=new IlvInteractorButton(x+w+50, y+90, 112, 24,
’images/zoomrect.gif’, zoomInteractor,

view)
zoomrectbutton.setRolloverImage(’images/zoomrecth.gif’)
zoomrectbutton.setMessage(’click to set zoom mode’)
zoomrectbutton.setToolTipText(’Zoom Mode’)

...

zoomrectbutton.toHTML()

This results in the following page:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6172

You can now click the “Select Zoom Area” button to install the interactor and then select
an area to zoom in.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 173

IlvPanInteractor

The IlvPanInteractor component allows the user to click in the main view to pan the view.
Just as for the IlvZoomInteractor, use the setInteractormethod of IlvView to install the
interactor. In the example, add another button that will install this interactor (see The
IlvZoomInteractor JavaScript component). You will now be able to switch from the “Pan”
mode and the “Zoom” mode.

To be able to use the component, import the corresponding JavaScript™ file:

<script TYPE="text/javascript"
src="script/IlvPanInteractor.js"></script>

Then add the following lines to the body of the page:

var panInteractor = new IlvPanInteractor()
panbutton=new IlvInteractorButton(x+w+50, y+110, 63, 22, ’images/pan.gif’,

panInteractor, view)
panbutton.setRolloverImage(’images/panh.gif’)
panbutton.setMessage(’click to set pan mode’)
panbutton.setToolTipText(’Pan Mode’)
...

panbutton.toHTML()

The page now has one additional button labelled “Pan View”:

The example is now complete; it uses most of the DHTML components provided by IBM®
ILOG® JViews.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6174

The IlvPanTool JavaScript component

The IlvPanTool component (located in the IlvPanTool.js file) is a component that allows
panning of the view in all directions. You create the component in this way:

var pantool = new IlvPanTool(10, 10, view)
pantool.toHTML()

Note that this component uses the IlvButton class, so the IlvButton.js script must be
included also.

This component looks like this:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 175

The IlvMapInteractor and IlvMapRectInteractor JavaScript components

The IlvMapInteractor and IlvMapRectInteractor components are two additional interactors
that can be used to perform an action on the server side when a point or an area of the
image is selected by the client. These interactors and how to use them are described in
detail in Adding client/server interactions.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6176

The Popup menu in JavaScript

The popup menu component is attached to the main view. This popup menu in JavaScript™
is triggered by a right-click in the view.

To use the popup menu, you must first include the following scripts.

The popup menu component is IlvGanttPopupMenu.

<script TYPE="text/javascript" src="script/IlvAbstractPopupMenu.js"></script>
<script TYPE="text/javascript" src="script/gantt/IlvGanttPopupMenu.js">
</script>

The popup menu component is IlvPopupMenu.

<script TYPE="text/javascript" src="script/IlvAbstractPopupMenu.js"></script>
<script TYPE="text/javascript" src="script/framework/IlvPopupMenu.js"></script>

The popup menu can be contextual or static.

Static popup menu
The menu is static, that is, not conditioned by the context in which it is called, and is defined
in the HTML file by using IlvMenu and IlvMenuItem instances. The menu is a pure client-side
object and there is no roundtrip to the server to generate the menu.

Defining a static popup menu in the HTML file

//Creates the popup menu.
var popupmenu = new IlvGanttPopupmenu(true);

//Creates the menu model.
var root = new IlvMenu("root");
var item1 = new IlvMenuItem("item1", true, "alert('item1 clicked')");
var item2 = new IlvMenuItem("item2", true, "alert('item2 clicked')");
root.add(item1);
root.add(item2);

//Sets the menu model to the popup menu.
popupMenu.setMenu(root);

[...]

//Sets the popup menu to the view.
chartView.setPopupMenu(popupMenu);

Configuring servlet support for a popup menu

public class GanttChartServlet extends IlvGanttServlet
{

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 177

[...]
protected void configureServletSupport(IlvGanttServletSupport support) {
[...]

support.setPopupEnabled(true);
}

[...]
}

Defining a static popup menu in the HTML file at the JViews Framework level

//Creates the popup menu.
var popupMenu = new IlvPopupMenu();

//Creates the menu model.
var root = new IlvMenu("root");
var item1 = new IlvMenuItem("item1", true, "alert('item1 clicked')");
var item2 = new IlvMenuItem("item2", true, "alert('item2 clicked')");
root.add(item1);
root.add(item2);

//Sets the menu model to the popup menu.
popupMenu.setMenu(root);

[...]

//Sets the popup menu to the view.
view.setPopupMenu(popupMenu);

On the server side, you need to configure the servlet support to handle popup menu
server-side actions.

Configuring servlet support for a popup menu at the JViews Framework level

public class XmlGrapherServlet extends IlvManagerServlet {
public XmlGrapherServlet() {
[...]
getSupport().setPopupEnabled(true);

}
[...]
}

Contextual popup menu
The popup menu is dynamically generated by the server depending on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the user triggered the popup menu.

On the client side, you need only declare the popup menu and set it on the view.

Declaring a contextual popup menu and setting it on the view, client side

var popupMenu = new IlvGanttPopupMenu(true);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6178

//Sets the popup menu to the view
chartView.setPopupMenu(popupMenu);

On the server side, you need to configure the servlet support to handle popup menus and
to set the factory that will generate the menu.

Configuring servlet support and setting the factory, server side

public class GanttChartServlet extends IlvGanttServlet {

[...]
protected void configureServletSupport(IlvGanttServletSupport support) {
[...]

support.setPopupEnabled(true);
support.getPopupMenuSupport().setMenuFactory(new SimpleMenuFactory());

}
[...]

}

Declaring a contextual popup menu and setting it on the view, client side (JViews Framework level)

var popupMenu = new IlvPopupMenu();

//Sets the popup menu to the view
view.setPopupMenu(popupMenu);

On the server side, you need to configure the servlet support to handle popup menus and
to set the factory that will generate the menu.

Configuring servlet support and setting the factory, server side (JViews Framework level)

public class XmlGrapherServlet extends IlvManagerServlet {

public XmlGrapherServlet() {
getSupport().setPopupEnabled(true);
getSupport().getPopupMenuSupport().setMenuFactory
(new XmlGrapherMenuFactory());

}
[...]

}

The factory must implement the IlvMenuFactory interface.

Styling the popup menu
You can style the popup menu by setting a CSS class name in the following properties:

♦ itemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 179

The following example shows how to use CSS to style the popup menu.

[...]

<style>
.PopupMenuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}

.PopupMenuItemHighlighted {
background: #057879;
font-style: italic;
color: white;

}

.PopupMenuItemDisabled {
background-color: #EEEEEE;
font-style: italic;
color: black;

}
</style>

[...]

<script>

var popupMenu = new IlvGanttPopupMenu(true);
popupMenu.setItemStyleClass('PopupMenuItem');
popupMenu.setItemHighlightedStyleClass('PopupMenuItemHighlighted');
popupMenu.setItemDisabledStyleClass('PopupMenuItemDisabled');

</script>

At the JViews Framework level

[...]

<style>
.PopupMenuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}

.PopupMenuItemHighlighted {
background: #057879;
font-style: italic;
color: white;

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6180

.PopupMenuItemDisabled {
background-color: #EEEEEE;
font-style: italic;
color: black;

}
</style>

[...]

<script>

var popupMenu = new IlvPopupMenu();
popupMenu.setItemStyleClass('PopupMenuItem');
popupMenu.setItemHighlightedStyleClass('PopupMenuItemHighlighted');
popupMenu.setItemDisabledStyleClass('PopupMenuItemDisabled');

</script>

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 181

Adding client/server interactions

Overview of actions on the server and client sides
The IBM® ILOG® JViews thin-client support gives you a simplified way to define new actions
that should take place on the server side. For example, suppose you want to allow the user
to delete a graphic object that appears on the generated image. Part of this action—clicking
the image to select the object—must be done on the client side. The destruction of the object
must be done on the server side before a new image is generated. The notion of “server-side
action” exists to perform such behavior. An action is defined by a name and a set of string
parameters.

Actions on the client side
In a dynamic HTML client, you tell the server to perform an action using the performAction
method of the IlvView JavaScript™ component.

Here is an example that asks the server side to execute the action “delete” with coordinate
parameters, assuming that view is an IlvView:

var x = 100;
var y = 50;
var params = new Array();
params[0]=x;
params[1]=y;
view.performAction(“delete”, params);
In a thin-Java client the system is the same:
float x = 100f;
float y = 50f;
String[] params = new String[2];
params[0] = Float.toString(x);
params[1] = Float.toString(y);
view.performAction(“delete”, params);

The performAction method will ask the server for a new image. In the image request,
additional parameters are added so that the server side can execute the action. Thus, the
performAction call results in only one client/server round-trip.

Note that predefined interactors are provided to help you define new actions on the client
side. They are explained in Predefined interactors.

Actions on the server side
On the server side, you need to detect that an action was requested and execute the action.
This is done using the interface ServerActionListener.

To be able to listen and execute an action on the server side, you simply add an action
listener to your servlet. In the performAction method of the listener, you check the action
name and perform the action.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6182

For the “delete” action, we would add the following lines of code in the init method of the
servlet:

addServerActionListener(new ServerActionListener() {
public void actionPerformed(ServerActionEvent e) throws ServletException
{
if (e.getActionName().equals("delete")) {
IlvPoint p = e.getPointParameter(0);
// find object under this point and delete it if there is one.

}
}

});

The ServerActionEvent object can give you all necessary information about the action, the
name, and its parameters.

Predefined interactors
Two predefined interactors are provided to help you create new actions: IlvMapInteractor
and IlvMapRectInteractor.

IlvMapInteractor allows the user to click in the map; it will ask the server to execute an
action, with the coordinates of the clicked point passed as parameters. The second interactor
is almost the same except that the user selects an area of the image instead of clicking on
it.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 183

Generating a client-side image map

If you are creating a Dynamic HTML client, the IBM® ILOG® JViews thin-client support
allows you to create a client-side image map. Image maps are images with an attached map
that points out hot spots, or clickable areas. In the IBM® ILOG® JViews thin-client support,
a clickable area can be generated for each graphic object of the manager.

To create a client side image map:

♦ Define the image map on the server side

♦ Use the image map on the client side

Define the image map on the server side
The servlet provided by IBM® ILOG® JViews (IlvManagerServlet) is able to generate an
image map for your IBM® ILOG® JViews application, but it is likely that you do not want
to generate a clickable area for every graphic object. On the server side, you will then have
to tell the manager servlet which IBM® ILOG® JViews layer and which graphic object are
part of the image map generation. For both layer and graphic object, this is done by setting
a property on them.

On a layer, assuming that the variable manager is an IlvManager, you will do:

manager.getManagerLayer(index).setProperty(IlvManagerServlet.
ImageMapAreaGeneratorProperty, Boolean.TRUE);

On a graphic object you can do almost the same thing, but the value of the property must
be an instance of the class IlvImageMapAreaGenerator. This class is responsible for
generating the AREA part of the image map.

Note that the same instance of IlvImageMapAreaGenerator can be used for all graphic
objects.

By default, IlvImageMapAreaGenerator will generate a rectangular area with no HREF in
it. You will have to subclass it to generate an HREF for your graphic object.

Here is an example that creates a custom IlvImageMapAreaGenerator and sets it on some
objects:

IlvGraphic object1, object2;
....
IlvImageMapAreaGenerator generator = new IlvImageMapAreaGenerator() {

public String generateHREF(IlvManagerView v, IlvGraphic obj) {
String href;
// place here code the
// computes the URL depending on the graphic object
return href;

}

};

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6184

object1.setProperty(IlvManagerServlet.ImageMapAreaGeneratorProperty,
generator);

object2.setProperty(IlvManagerServlet.ImageMapAreaGeneratorProperty,
generator);

The HREF can be a URL to which the browser will jump when the area is clicked, but it can
also be a call to a JavaScript™ method.

For example, in the XML Grapher example, you can define the generator like this:

IlvImageMapAreaGenerator generator = new IlvImageMapAreaGenerator() {

public String generateALT(IlvManagerView v, IlvGraphic obj) {
return ((GrapherNode)obj).getLabel();

}

public String generateHREF(IlvManagerView v, IlvGraphic obj) {
return "javascript:doSomething(’"+

((GrapherNode)obj).getLabel()+"’)";
}

};

In this example, the HREF generated is a call to the JavaScript method doSomething. You
will have to define this method in the HTML page.

For more information about customizing an area, see the IlvImageMapAreaGenerator class
in the Java API Reference Manual.

Use the image map on the client side
To tell the Dynamic HTML client to generate a client-side image map, you only need to set
the imageMap property of the IlvView JavaScript™ component to true:

var view = new IlvView(40, 40, 300, 400);
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’);
view.setGenerateImageMap(true);

When this is done, the IlvView component will ask the servlet to generate the image map.

To make the image map visible, there are two possibilities. You can:

♦ Directly call the showImageMap method of IlvView:

view.showImageMap();

♦ Use the IlvImageMapInteractor class. This class is a simple interactor that will show
the image map when installed and hide it when de-installed.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 185

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6186

The IlvManagerServlet class

Describes the predefined servlet and how to use it.

In this section

Overview of the predefined servlet
Presents the predefined servlet.

The servlet requests and parameters
Presents the requests to which the servlet can respond and the parameters they take.

Multiple sessions
Describes the need for multiple sessions and gives an example.

Multithreading issues
Describes the use of single-thread and multithread versions of servlets and resulting
synchronization requirements.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 187

Overview of the predefined servlet

Developing the server side of a thin-client application consists of creating a servlet that can
produce an image to the client. IBM® ILOG® JViews Framework provides a predefined
servlet to achieve this task. The predefined servlet class is named IlvManagerServlet. This
class can be found in the package ilog.views.servlet.

The IlvManagerServlet class is an abstract Java™ subclass of the HTTPServlet class from
the Java servlet API.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6188

The servlet requests and parameters

The servlet can respond to three different types of HTTP requests, the “image” request, the
“image map” request, and the “capabilities” request. The image request will return an image
from the IBM® ILOG® JViews manager. The capabilities request will return information to
the client, such as the layers available in the manager and the global area of the manager.
This information allows the client to know the capabilities of the servlet in order to build
the image request. When developing the client side of your application, you will use the
DHTML scripts or the JavaBeans™ provided by IBM® ILOG® JViews; both will create the
HTTP request for you, so you do not really need to write the HTTP request yourself.

The image request
The image request produces a JPEG image from the manager. The request has the following
syntax, assuming that myservlet is the name of the servlet:

http://host/myservlet?request=image
&bbox=x,y,width,height (area in the manager coordinate system)
&width=width of the returned image
&height=height of the returned image
&layer=comma separated list of layers
&format=JPEG
&bgcolor=0xFFFFFF

Here is a list of parameters and their meanings.

Parameters of the IlvManagerServlet
DescriptionParameter ValueParameter Name

Asks the servlet to generate an image.imagerequest

The area of the manager that will be displayed in
the image. The first two values are the upper left

Float, Float, Float, Floatbbox

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 189

DescriptionParameter ValueParameter Name

corner of the area. The last two values are the
width and height of the area.

Width of the resulting image.Integerwidth

Height of the resulting image.Integerheight

The format of the resulting image.JPEGformat

The layers of the IlvManager that will be visible.Comma-separated list of
strings. For example: Cities,
Roads

layer

The background color of the resulting image.This
parameter is optional.

0xrrggbb

For example, 0xffffff for
white

bgcolor

Specifies an action to be executed on the server
before the image is generated.

actionName(param1, param2)action

The following request will produce a JPEG image of size (250, 250) showing the area
(0, 0, 1000, 1000) of the manager; only the layers named “Cities” and “Roads” will be visible:

http://host/myservlet?request=image
&bbox=0,0,1000,1000
&width=250
&height=250
&layer=Cities,Roads
&format=JPEG

The capabilities request
The capabilities request produces information to the client. This request returns information
on the manager.

The capabilities request has the following syntax:

http://host/myservlet?request=capabilities
&format=(html|octet-stream)

[&onload= <a string>]

The request parameter set to capabilities instead of image tells the servlet to return the
capabilities information. The format parameter tells which format should be returned.

The result can be of two different formats, HTML or Octet stream.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6190

HTML format
The HTML format is used when the client is a Dynamic HTML client. In this case, the result
is a empty HTML page that contains some JavaScript™ code. The JavaScript code is executed
on the client side, and some information variables are then available.

<html>
<head>
<script language="JavaScript">
var minx=0.0;
var miny=0.0;
var maxx=1024.0;
var maxy=512.0;
var themes=new Array();
var overviewthemes=new Array();
themes[0]="a layer name";
overviewthemes[0]=true;
themes[1]="another layer";
overviewthemes[1]=true;
themes[2]="a third layer";
overviewthemes[2]=true;
var maxZoom=6;
</script>
</head>
<body>
</body>
</html>

The variables minx, miny, maxx, maxy are defining the global area of the manager that can
be queried. The themes variable is the list of layers available on the server side. The
overviewthemes variable tells if a layer should be visible in the overview window. The
maxZoom variable is the maximum level of zoom the application should perform.

The onload parameter allows you to specify a String that is used for the onload event of the
generated HTML page. When an onload parameter is specified, the body tag of the HTML
page is the following:

<body onLoad="+onload+">

Octet-stream format
The octet-stream format is used when the client is a Java™ applet. In this case, the result
is a stream of octets. The data is produced using a java.io.DataOutput and can be read
using a java.io.DataInput. It is organized as follows:

Float: left coordinate of manager’s bounding box.
Float: top coordinate of manager’s bounding box.
Float: right coordinate of manager’s bounding box.
Float: bottom coordinate of manager’s bounding box.
Int: number of layers.

for each layer:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 191

String (UTF format): name of the layer.
Boolean: is the layer an overview layer.

Float: Maximum zoom level

You see that this format gives the same type of information as the HTML format. Once again,
you do not need to decode or read these formats. The client-side components provided by
IBM® ILOG® JViews will do that for you.

The image map request
The image map request produces an image and a client-side image map. The parameters
for this request are the same as for the image request except that the request parameter
must have the value imagemap.

For example, the following code to the servlet:

http://host/myservlet?request=imagemap
&width=400
&height=200
&bbox=0,0,500,500
&format=JPEG
&layer=Cities,Links,background%20Map

will produce something like:

<html>
<body>
<map name="imagemap">
<area shape="rect" coords="242,81,261,83" href="..." >
....
</map>
<img usemap="#imagemap" width="400" height="200"
src="myservlet?request=image&layer=Cities,Links,background%20Map&width=400
&format=JPEG&bbox=0,0,500,500&height=200" border=0>

</body>
</html>

The call generates an HTML document containing the client-side image map and an image.
The contents of the image are then generated by another call to the servlet.

The graphic objects that are taken into account when generating the map can be specified
as well as the shape of the clickable area and what appends when you click on it. All this is
explained in Generating a client-side image map.

The image map request has two additional optional parameters:

♦ The mapname parameter allows you to specify the name of the map. The default name is
imagemap.

♦ The onload parameter allows you to specify a String that is used for the onload event of
the generated HTML page. When an onload parameter is specified, the body tag of the
HTML page is the following:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6192

<body onLoad="+onload+">

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 193

Multiple sessions

The XML Grapher is a very simple example that creates a single manager view for the servlet.
This means that all calls to the servlet (that is, all clients) are looking at the same view. This
is fine when the same data is used for all clients but in some applications—for example,
when you want to allow the user to edit the graphic representation—you might want to have
a view (and thus a manager) for each client. In this case, you might use the notion of HTTP
sessions. You can then create a view and a manager and store them as parameters of the
session.

Here is a slightly modified version of the XML Grapher servlet using sessions:

package demo.xmlgrapher.servlet;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;
import ilog.views.*;
import ilog.views.servlet.*;
import demo.xmlgrapher.*;

public class XmlGrapherServlet extends IlvManagerServlet
{
String xmlfile;

public void init(ServletConfig config)
throws ServletException

{

xmlfile = config.getInitParameter("xmlfile");
if (xmlfile == null)
xmlfile = config.getServletContext().

getRealPath("/data/world.xml");
setVerbose(true);

}

protected void prepareSession(HttpServletRequest request)
{
HttpSession session = request.getSession();
if (session.isNew()) {

XmlGrapher xmlGrapher = new XmlGrapher();
try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}
session.putValue("IlvManagerView", xmlGrapher);

}
}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6194

HttpSession session = request.getSession(false);
if (session!= null)
return (IlvManagerView)session.getValue("IlvManagerView");

else
throw new ServletException("session problem");

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view)

{
return 30;

}
}

The init method does not create any XmlGrapher object any more. Instead, the
prepareSession method (which has a default empty implementation) is overwritten to get
the HTTP session. If this is a new session, an XmlGrapher object is created and stored as a
parameter of the session. The getManagerViewmethod returns the XmlGrapher object stored
in the session.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 195

Multithreading issues

The IlvManagerServlet class does not implement the SingleThreadModel interface from
the Servlet API, so you can create servlets that use the multithread or single-thread model.

If your servlet implements the SingleThreadModel interface, then you do not have to deal
with concurrent access to your servlet. The servlet will be thread safe. However, this interface
does not prevent synchronization problems that result from servlets accessing shared
resources such as static class variables or classes outside the scope of the servlet.

If your servlet does not implement the SingleThreadModel interface, then you might have
to be concerned with concurrent access to the servlet. All basic operations done by the
IlvManagerServlet on the IlvManagerView are already synchronized. This means that you
will have to take care of concurrent access only if you are doing additional actions on the
IlvManagerView. In this case you can define a locking object and use the getLock method
of the IlvManagerServlet. Each request handling is implemented in the following way:

... reads the request parameters ...

synchronized(getLock(request)) {
IlvManagerView view = getManagerView(request);

... handle the request ...
}

By default, the getLockmethod returns a new object each time. This means that the section
is not synchronized.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6196

The IlvManagerServletSupport class

The IlvManagerServlet class used in the XMLGrapher example gives an easy way to create
a servlet that supports the IBM® ILOG® JViews thin-client protocol. Using the
IlvManagerServlet class is an easy way to create a servlet but has one main drawback.
You cannot add the support for the IBM® ILOG® JViews thin-client protocol to an existing
servlet since the IlvManagerServlet class derives from the HttpServlet class. The
IlvManagerServletSupport class will allow you to do this. This class has the same API as
the IlvManagerServlet but is not a servlet (that is, it does not derive from the HttpServlet
class). You can thus create your own servlet and an instance of the IlvManagerServlet
support class in this servlet to handle the requests coming from the IBM® ILOG® JViews
client side.

Thin-client support in the XML Grapher example
In the XML Grapher example, the code of the servlet can be rewritten using the
IlvManagerServletSupport class as follows:

package demo.xmlgrapher.servlet;

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;
import java.io.*;
import ilog.views.*;
import ilog.views.servlet.*;

import demo.xmlgrapher.*;

public class XmlGrapherServlet extends HttpServlet
{
IlvManagerServletSupport servletSupport ;

class MySupport extends IlvManagerServletSupport {

private XmlGrapher xmlGrapher;

public MySupport(ServletConfig config) {
super();
xmlGrapher = new XmlGrapher();

String xmlfile = config.getInitParameter("xmlfile");

if (xmlfile == null)
xmlfile = config.getServletContext().getRealPath("/data/world.xml");

try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 197

setVerbose(true);
}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException {
return xmlGrapher;

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view) {

return 30;
}

}

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException {
servletSupport = new MySupport(config);

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
if (!servletSupport.handleRequest(request, response))
throw new ServletException("unknow request type");

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
doGet(request, response);

}

}

This code creates a new servlet class, XmlGrapherServlet, that derives directly from the
HttpServlet class. The doGet method passes the requests to an instance of the
IlvManagerServletSupport class.

Specifying fixed zoom levels on the client side
Override the following method of the IlvManagerServletSupport class to specify the zoom
levels that must be used on the client side:

public double[] getZoomLevels(HttpServletRequest request, IlvManagerView view)

In this case, the maximum zoom level is not used.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6198

Controlling tiling

Describes how to control tiling on the client side and the server side.

In this section

Tiling
Explains what tiling is and its advantages.

Tile size
Explains tile size and its implications for performance and caching.

Cache mechanisms
Explains the cache mechanisms you can apply.

Developing client-side tiling
Describes how to develop the code on the client side if you use tiling.

Developing server-side tiling
Describes how to develop the code on the server side if you use tiling.

Client-side caching
Describes how to develop code for caching on the client side by managing HTTP headers.

Server-side caching and the tile manager
Describes how to develop code for caching on the server side by using a tile manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 199

Tiling

The static layers are represented by a grid of images of a fixed size. These fixed-size images
are referred to as tiles. Dynamic layers are represented by a single image with a transparent
background overlaying the view.

A static layer is not supposed to change during the application lifecycle and so can be
generated once only. Typically, a static layer is the background of the view, such as a
background map.

A dynamic layer contains objects, such as symbols, that can move and change their graphic
representation.

Dynamic layers must be placed on top of a static layer. Otherwise, they are not
displayed.

Note:

The advantages of a tiled view are continuous panning and the capability of caching tiles.
On the client side this avoids a roundtrip to the server and gives a better response time. On
the server side it allows the server to receive the request, retrieve the image, and respond
with the image without having to generate it. Not having to generate the image for the
response is especially advantageous in complex applications.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6200

Tile size

The size of the tile determines the number of tiles needed to cover the view.

The tile size must be carefully chosen because it can have a considerable and potentially
critical impact on performance. The larger the number of tiles needed because of their size
relative to the size of the view to be covered, the more simultaneous requests to be addressed
to the image servlet. There will also be more graphic objects to manage on the client side.

If a server-side caching mechanism is implemented, such as pregenerated tiles, the size
must be consistent with the configuration of the server-side caching mechanism. See
IlvTileManager for more details about server-side caching mechanisms.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 201

Cache mechanisms

Since tiles in static layers are not subject to change, they can be cached on the client side
to be reused directly without the need for a server roundtrip.

You can consider several possible caching strategies on the server side:

♦ No caching: the server generates the images each time they are requested.

♦ Dynamic caching: the server can cache every generated tile, for example in the file system.
This strategy allows you to have a quicker response for popular tiles and to limit the size
of the cache.

♦ Pregeneration: a partial or complete set of tiles for specific zoom levels can be
pregenerated and returned directly by the server without need of dynamic generation.

To manage the cache efficiently on the client and the server, the zoom levels must be fixed.
If there is a free choice of what zoom level to apply, the probability of the client retrieving
a cached tile is severely limited.

See Specifying fixed zoom levels on the client side for how to specify the zoom levels.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6202

Developing client-side tiling

The API of the IlvTileView class is very similar to IlvView. To use the tiled view, import
IlvTiledView.js instead of IlvView.js.

To instantiate an IlvTiledView object, proceed as with IlvView, but the class takes an
additional argument that defines the tile size as shown in the following XML example.

<html>
<head>
<META HTTP-EQIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQIV="pRAGMA" CONTENT="No-cache">
</head>
<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvTiledView.js"></script>
<script TYPE="text/javascript">
function init() {
view.init()
return false

}

function handleResize() {
if (document.layers)
window.location.reload()

}
</script>
<body onload="init()" onunload="IlvObject.callDispose()"

onresize="handleResize()" bgcolor="#ffffff">
<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

//tile size
var t = 256

//Main view
var view = new IlvView(x,y,w,h,t)
view.setRequestURL('/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet')
view.toHTML()
</script>

</body>
</html>

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 203

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6204

Developing server-side tiling

The tile manager stores and retrieves static and dynamic layers. See In Server-side caching
and the tile manager for a description of the tile manager and Tiling for what is meant by
static and dynamic layers in the context of tiling.

The list of dynamic layers is computed by the following method of the
IlvManagerServletSupport class:

public IlvManagerLayer[] getDynamicLayers(HttpServletRequest request,
IlvManagerView view)

The default implementation of this method classifies the layers according to the value
returned by the getTripleBufferedLayerCount() method. If the layer index is greater or
equal to this value, the layer is dynamic. If not, it is a static layer. You can override this
method to determine which are the dynamic layers in a different way.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 205

Client-side caching

HTTP headers are sent with the tile image to control the caching of tiles on the client side.

There are two ways of specifying expiry data for tiles on the client side.

♦ Override the following method of IlvManagerServletSupport:

public long getExpirationDate(HttpServletRequest request)

This method returns the expiry date in milliseconds of tile lifespan in the client-side cache.

♦ Override the protected method:

void setImageResponseCachePolicy(HttpServletRequest request,
HttpServletResponse response);

This method sends the HTTP headers to the client, so that the server instructs the client
how to cache the tiles.

See RFC 2616 on HTTP/1.1 for a full description of HTTP headers.

You need to take the following cases into account:

1. The normal image request: you should prevent caching in this case.

2. The tile image request, which is identified by the tile request parameter: this type of
request can be cached on the client.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6206

Server-side caching and the tile manager

Use IlvTileManager to manage caching on the server side.

Static or dynamic layers can be used in conjunction with tiled views on the client side.

Static layers can be cached or pregenerated on the server. Cached tiles are part of layers
that are not expected to change within the application lifecycle, as, for example, in a
background map. Cached tiles can be retrieved through a tile manager.

Dynamic layers are likely to change between requests to the server, such as labeling or
network display.

The tile manager, an instance of IlvTileManager, stores and retrieves tiles on the server
side. IlvManagerServlet can take advantage of such a tile manager if one is installed on
the servlet.

When an image request is received by the servlet, if a tile that matches the current request
is managed by the tile manager, it will return this cached tile instead of generating a new
image from IlvManagerView. If a tile is not yet managed by the tile manager, generate the
image from IlvManagerView and ask the tile manager to manage it for future access.

When IlvManagerServletSupport responds to an image request, it uses the tile manager
as follows:

if (useTileManager(request)) {
IlvTileManager tm = getTileManager(request);
if (tm != null) {
Object key = getKey(request);
BufferedImage image = tm.getImage(key);
if (image == null) {
image = doGenerateImageImpl(...);
tm.putImage(key, image);
}
return image;
}
}
return doGenerateImageImpl(...);

The tile manager is invoked by default if the request contains a parameter of the form
tile=true. If the request contains such a parameter, useTileManager(javax.servlet.
http.HttpServletRequest)will return true. You can override the useTileManagermethod
to call the tile manager in other situations.

If a tile manager is installed, it will be retrieved and a key object will be constructed from
the request to reference the tile. Then, an attempt is made to retrieve a tile from the tile
manager. If the attempt is successful, the tile is returned as the response to the request.

If no tile is retrieved, an image will be constructed through the normal image generation
process. This image is passed to the tile manager for use in future retrievals.

The tile manager is not installed by default in an IlvManagerServletSupport object. You
need to subclass it to install a tile manager.

The method to override is getTileManager(javax.servlet.http.HttpServletRequest).
By default, this method returns null.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 207

protected IlvTileManager getTileManager(HttpServletRequest request)
throws ServletException {

return null;
}

A default implementation of the tile manager is supplied. This implementation stores tiles
on disk. You can use it to develop your own implementation of the getTileManagermethod.

protected IlvTileManager getTileManager(HttpServletRequest request)
throws ServletException {

ServletContext context = request.getSession().getServletContext();
IlvTileManager tileManager = (IlvTileManager)context.getAttribute

("tileManagerKey");
if(tileManager == null) {
tileManager = new IlvFileTileManager(getBase(), getMaxCacheSize(),
getMinCacheSize());
context.setAttribute("tileManagerKey", tileManager);

}
return tileManager;

}

In this implementation you need to provide:

♦ The base directory where the tiles are written.

♦ The maximum size allowed for the cache.

♦ The size to which the cache will be reduced by removing files when the maximum size is
reached.

When the maximum size is reached, the cache is considered to be full and files will be
removed to reduce the size of the cache to the level indicated.

The tile manager is stored and retrieved from the ServletContext, so that the same tile
manager is used for the same application. You can use a different strategy for storing and
retrieving the tile manager.

You can also customize the reading and writing of tiles and the name of the file that is
generated for each tile. This default implementation of the tile manager constructs a file
name of the form x_y_width_height.jpg, where x, y, width, and height are the manager
coordinates of the image request passed as the bbox attribute of the request.

This file is stored in and retrieved from the base directory provided when the
IlvFileTileManager is constructed. This customization can be performed through the
IlvFileTileURLFactory, which is responsible for building a URL from the key that identifies
the tile. The default key is a Rectangle2D.Double object, which is created from the bbox
parameter of the request.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6208

A
accessing

intergraph link 33
addInterGraphLink method

IlvGrapher class 32
addManagerContentChangedListener method

IlvManager class 43
addManagerExpansionListener method

IlvManager class 27
addManagerSelectionListener method

IlvManager class 41
addManagerTreeContentChangedListenermethod

IlvManager class 43
addManagerTreeSelectionListener method

IlvManager class 41
addObject method

IlvManager class 12
addPage method

IlvPrintableDocument class 81
addPrintableObject method

IlvPage class 82

B
builder configurator (SVG)

creating 136

C
collapsed state

and intergraph links 37
submanager 9

collapsing
nested manager 26

contains method
IlvManagerFrame class 24

contextual popup menu
dynamic HTML component 178
dynamic HTML component on the client side
178

dynamic HTML component on the server side
178

coordinate system
intergraph links 36
nested manager 16

copy method
IlvManagerFrame class 24

creating
intergraph link 32
links with IlvMakeLinkInteractor 39
nested manager 12

creation interactors 47
crossing link shape policy 52
CROSSING_POLICY_MODE link shape mode 57

D
deleteSelections method

IlvManager class 40
deSelectAll method

IlvManager class 40
draw method

IlvManagerFrame class 23
dynamic HTML components

contextual popup menu 178
contextual popup menu on the client side 178
contextual popup menu on the server side
178
IlvMenu 177
IlvMenuItem 177
prerequisite scripts for popupmenu
component 177
static popup menu 177

dynamic HTML popup menu
styling 179

E
events

content-changed in nested managers 43

© Copyright IBM Corp. 1987, 2009 209

I N D E X

Index

expand/collapse 26
selection 40

expanded state
submanager 9

expanding
nested manager 26

F
factory (SVG)

customizing 137
frame

drawing 23
manager 21

G
getBottomMargin method

IlvManagerFrame class 22
getCardinal method

IlvManager class 17
getCollapsedGraphic method

IlvManager class 26
getConnectionPoint method

IlvLinkConnector class 36
getConnectionPoints method

IlvLinkImage class 36, 37
getDocument method

IlvPage class 82
getExternalInterGraphLinks method

IlvGrapher class 33
getExternalInterGraphLinksCount method

IlvGrapher class 33
getFrame method

IlvManager class 22
getInterGraphLinks method

IlvGrapher class 33
getInterGraphLinksCount method

IlvGrapher class 33
getLeftMargin method

IlvManagerFrame class 22
getLinkConnectorConnectionPoint method

IlvLinkImage class 36
getLowestCommonGrapher method

IlvGrapher class 32
getManager method

ManagerContentChangedEvent class 43
ManagerSelectionChangedEvent class 41

getManagers method
IlvManager class 15

getManagersCount method
IlvManager class 15

getObject method
IlvManager class 17

getObjects method
IlvManager class 17, 33

getPageFormat method

IlvPage class 82
getPageIndex method

IlvPage class 82
getParent method

IlvManager class 15
getPreviewFrame method

PrintManager class 106
getPrinterJob method

PrinterJob class 74
getRightMargin method

IlvManagerFrame class 22
getSelectedObjects method

IlvManager class 40
getSelectedObjectsCount method

IlvManager class 40
getSelection method

IlvManager class 40
getTo method

IlvLinkImage class 37
getTopMargin method

IlvManagerFrame class 22
graph

nesting a graph 9
graphers

nested 7, 29
graphic objects

in nested managers 17
SVG customizing example 135
SVG DOM customizing example 138
SVG subclassing example 135

GraphicBagHierarchyEvent class 44

H
hit testing

on frame 24

I
IlvAbstractLinkShapePolicy class 62
IlvBridgeCrossings class 52
IlvConstantModeManagerFrame class 25
IlvCrossingAwareLinkImage class 52, 56
IlvCrossingGraphic interface 52
IlvCrossingLinkShapePolicy class 50
IlvDocumentSetupDialog class 89
IlvDoubleLinkImage class 62
IlvEnhancedPolylineLinkImage class 50, 57
IlvFlow class 81
IlvFlowObject interface 86
IlvFooter class 84
IlvGrapher class

addInterGraphLink method 32
getExternalInterGraphLinks method 33
getExternalInterGraphLinksCountmethod
33
getInterGraphLinks method 33

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6210

getInterGraphLinksCount method 33
getLowestCommonGrapher method 32
isInterGraphLink method 33

IlvGraphicHandleBag class 44
IlvGraphicSet class 44
IlvHeader class 84
IlvLinkConnector class

getConnectionPoint method 36
IlvLinkImage class

getConnectionPoints method 36, 37
getLinkConnectorConnectionPointmethod
36
getTo method 37

IlvManager class 44
addGraphicBagHierarchyListener
methodaddGraphicBagHierarchyListener
method

IlvManager class 44
addManagerContentChangedListenermethod
43
addManagerExpansionListener method 27
addManagerSelectionListener method 41
addManagerTreeContentChangedListener
method 43
addManagerTreeContentChangedListener
methodaddManagerTreeContentChangedListener
method

IlvManager class 44
addManagerTreeSelectionListenermethod
41
addManagerViewsHierarchyListener
methodaddManagerViewsHierarchyListener
method

IlvManager class 44, 45
addManagerViewsListener
methodaddManagerViewsListener method

IlvManager class 45
addObject method 12
deleteSelections method 40
deSelectAll method 40
getCardinal method 17
getCollapsedGraphic method 26
getFrame method 22
getManagers method 15
getManagersCount method 15
getObject method 17
getObjects method 17, 33
getParent method 15
getSelectedObjects method 40
getSelectedObjectsCount method 40
getSelection method 40
isCollapsed method 26
map method 17
mapInside method 17

mapIntersects method 17
moveObject method 17
removeManagerTreeSelectionListener
method 41
removeManagerViewsHierarchyListener
methodremoveManagerViewsHierarchyListener
method

IlvManager class 45
removeManagerViewsListener
methodremoveManagerViewsListener
method

IlvManager class 45
reshapeObject method 17
selectAll method 40
setCollapsed method 26
setCollapsedGraphic method 26
setFrame method 22
setSelected method 40

IlvManagerDocumentSetupDialog class 104
IlvManagerFrame class

contains method 24
copy method 24
draw method 23
getBottomMargin method 22
getLeftMargin method 22
getRightMargin method 22
getTopMargin method 22
isOpaque method 23

IlvManagerPrintableDocument class 102
IlvManagerPrintAreaInteractor 107
IlvManagerPrintingController class 106
IlvMenu dynamic HTML component 177
IlvMenuFactory interface 178
IlvMenuItem dynamic HTML component 177
IlvOneLinkImage class 62
IlvOrthogonalLinkShapePolicy class 50
IlvPage class 81, 82

addPrintableObject method 82
getDocument method 82
getPageFormat method 82
getPageIndex method 82
removePrintableObject method 82

IlvPolicyAwareLinkImage class 50, 51, 60
IlvPolyLineLinkImage class 50
IlvPrintableDocument class 79

addPage method 81
description 81
removePage method 81

IlvPrintingController class 79, 87
print method 92
printDialog method 92
setupDialog method 92

IlvPrintPreviewDialog class 87
IlvPrintPreviewPanel class 87

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 211

IlvTunnelCrossings class 52
interactors

and nested managers and graphers 47
creation 47
object 47
selection 42

intergraph links
accessing 33
and collapsed state 37
coordinate system 36
creating 32
definition 9
example 31

isCollapsed method
IlvManager class 26

isInterGraphLink method
IlvGrapher class 33

isOpaque method
IlvManagerFrame class 23

L
links

creating with IlvMakeLinkInteractor 39
crossings 52
intergraph 9, 31
orthogonal shape 51
shape policies

defining your own 59
introduction 50

visibility of managed 43

M
managerCollapsed method

ManagerExpansionListener class 27
ManagerContentChangedEvent class

getManager method 43
managerExpanded method

ManagerExpansionListener class 27
ManagerExpansionListener class

managerCollapsed method 27
managerExpanded method 27

managers
frame 21
nested 7

ManagerSelectionChangedEvent class
getManager method 41

ManagerViewsChangedEvent class 44
map method

IlvManager class 17
mapInside method

IlvManager class 17
mapIntersects method

IlvManager class 17
method

class 16

moveObject method
IlvManager class 17

moving
nested manager 42

N
nested graphers 29

and interactors 47
collapsed 37

nested managers
and graphers 7, 48
and interactors 47
collapsing 26
content-changed events 43
coordinate system 16
creating 12
drawing frame 23
expanding 26
frame 22
hit testing on frame 24
moving 42
selection 40
traversing 15
view 19

NO_CROSSINGS link shape policy 57

O
object interactors 47
orthogonal link shape policy 51
ORTHOGONAL_POLICY_MODE link shape mode 57

P
pageDialog method

PrinterJob class 74
PrintManager class 106

popup menu
prerequisite scripts for dynamic HTML
component 177

Print dialog box 74
print framework 100

introduction 70
print method

IlvPrintingController class 92
Printable interface 73
PrinterJob class 74
PrintManager class 106

Printable interface 73
print method 73

printDialog method
IlvPrintingController class 92
PrinterJob class 74
PrintManager class 106

PrinterJob class 74
getPrinterJob method 74
pageDialog method 74
print method 74

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6212

setPrintable method 74
printing

API 71
area to print 102
controller 92
document model 80
example 108
framework

generic 70
headers and footers 84
manager in a custom document 113
manager in a flow of text 112
manager in multiple pages 101
number of pages 102
UI components 87
zoom level 103

PrintManager class 92
getPreviewFrame method 106
pageDialog method 106
print method 106
printDialog method 106

printPreview method
IlvPrintingController class 92

R
removeManagerTreeContentChangedListener
method

IlvManager class 43
removeManagerTreeSelectionListener method

IlvManager class 41
removePage method

IlvPrintableDocument class 81
removePrintableObject method

IlvPage class 82
reshapeObject method

IlvManager class 17

S
Scalable Vector Graphics (SVG)

and IBM® ILOG JViews 116
client side, developing 127
customizing example 135
DOM customizing example 138
features supported 140
introduction to SVG files 117
loading files 119
personalizing in JViews 133
saving files 119, 120
server side, developing 123
subclassing example 135
supported/unsupported SVG elements 140
SVG factory 119
SVG specification 117
thin clients 121
uses in JViews 116

selectAll method

IlvManager class 40
selecting

multiple objects 42
objects in a nested manager 40

setCollapsed method
IlvManager class 26

setCollapsedGraphic method
IlvManager class 26

setFrame method
IlvManager class 22

setPrintable method
PrinterJob class 74

setSelected method
IlvManager class 40

setupDialog method
IlvPrintingController class 92

static popup menu
dynamic HTML component 177

styling
dynamic HTML popup menu 179

submanagers 9

T
thin clients

using JViews SVG 121
translator (SVG)

creating 136
traversing

nested manager 15

U
user-interface components

page setup 89
print preview 87

V
views on a nested manager 19

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 213

	Table of contents
	Nested managers and nested graphers
	Submanagers
	Using nested managers
	Adding a nested manager
	Optimizing the addition of nested managers
	Traversing nested managers
	Coordinate system in nested managers
	Working with graphic objects in nested managers
	Views on a nested manager

	Adding a manager frame
	Defining and drawing a default frame and its margins
	Using the default frame
	Using the constant mode frame

	Expanding and collapsing
	Using nested graphers
	Nested graphers
	Intergraph links
	Creating and accessing an intergraph link
	Coordinate system of Intergraph Links
	Collapsed grapher and intergraph links
	Creating a link using IlvMakeLinkInteractor

	Selection in nested managers
	Selection interactor in nested managers
	Content-change events in nested managers
	Hierarchy events in nested managers
	Interactors for nested managers and graphers
	Class diagram for nested managers

	Link shape policies
	Overview of link shape policies
	Orthogonal link shape policy
	Crossing link shape policy
	Parameters of the link shape policy
	Gaps at crossings
	Obtaining the link shape policy of IlvEnhancedPolylineLinkImage instances
	Defining your own link shape policy
	Callback methods of IlvLinkShapePolicy
	Creating a link shape policy with up to two bends
	Class diagram for link shape policies

	The generic printing framework
	Overview of the support for printing
	Java print package and printing API
	Overview
	The printable interface
	Using the PrinterJob class to print a component

	The printing framework
	Features of the printing framework
	The Document Model classes
	The PrintableDocument class
	The Page class
	The Printable class
	The header and footer classes
	The IlvFlow class for creating a document with styled text
	Printing user interface components
	The PrintingController class
	Creating an IlvDocument with printable objects
	Creating an IlvDocument with a flow of text

	Printing framework for manager content
	Overview of the printing framework for managers
	Printing the contents of a manager on multiple pages
	The IlvManagerPrintableDocument class
	The IlvManagerDocumentSetupDialog class
	The IlvManagerPrintingController class
	The IlvManagerPrintAreaInteractor class
	A Swing application that prints the contents of a manager

	Printing a manager as a flow of text
	Printing a manager in a custom document
	Class diagram for printing the contents of managers

	Scalable Vector Graphics
	Overview of SVG support
	The contents of an SVG File
	Loading and saving SVG files with IBM® ILOG® JViews
	Deploying IBM® ILOG® JViews applications as SVG thin clients
	Overview of the IBM® ILOG® JViews SVG thin-client feature
	Developing the server side of an SVG thin-client application
	Developing the client side of an SVG thin-client application

	SVG advanced personalization
	Overview of conversion to SVG
	Customizing the conversion of a graphic object
	Customizing the SVG DOM generated by the SVG thin client
	SVG features supported when reading an SVG file

	DHTML thin-client support in JViews Framework
	Overview of thin-client support
	IBM® ILOG® JViews thin-client Web architecture
	Getting started with the IBM® ILOG® JViews thin client
	Installing and running the XML Grapher example
	Developing the server
	Developing the client
	Overview of client-side development
	The IlvView JavaScript component
	The IlvOverview JavaScript component
	The IlvLegend JavaScript component
	The IlvButton JavaScript component
	The IlvZoomTool JavaScript component
	The IlvZoomInteractor JavaScript component
	IlvPanInteractor
	The IlvPanTool JavaScript component
	The IlvMapInteractor and IlvMapRectInteractor JavaScript components
	The Popup menu in JavaScript

	Adding client/server interactions
	Generating a client-side image map
	The IlvManagerServlet class
	Overview of the predefined servlet
	The servlet requests and parameters
	Multiple sessions
	Multithreading issues

	The IlvManagerServletSupport class
	Controlling tiling
	Tiling
	Tile size
	Cache mechanisms
	Developing client-side tiling
	Developing server-side tiling
	Client-side caching
	Server-side caching and the tile manager

	Index

