
IBM ILOG JViews Framework V8.6

IBM ILOG JViews Framework
Essential Features

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing IBM® ILOG® JViews Framework..7
Overview..8

A basic graphics application model..10

Getting started with JViews Framework..13
Overview of tutorial...14

Running the example..15

Stage 1 - The manager..16

Stage 2 - View interaction...19

Stage 3 - Using events..21

Stage 4 - Manipulating graphic objects...25

Framework JavaBeans(TM)...29
Installing IBM® ILOG® JViews Beans in an IDE...30

Framework classes available as JavaBeans(TM)...31

Creating a simple applet using IBM® ILOG® JViews Beans...35

Graphic objects..45
A graphic object..47

The class IlvGraphic..48

Hierarchy of predefined graphic objects...49

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Geometric properties..50

User properties of graphic objects..55

Input/output operations..56

The graphic bag...58

Predefined graphic objects..59

The ShadowEllipse class..66

Creating a new graphic object class...67

Testing for a point inside an object...74

Saving and loading the object description...75

Named properties..77

Managers...79
A manager..81

A manager view...82

Layers...83

Handling input events: interactors and accelerators...84

Input/output...85

Class diagram for IlvManager..86

Multiple manager views..87

Binding views to a manager...89
Creating a manager and a view..90
Listener for the views of a manager...91
View transformation..92
Scrolled manager view...94
Managing double buffering...95
The manager view grid...96
Class diagram for IlvManagerView...97
Manager view repaint skipper...98

Managing layers..99
Layers in a manager...100
Setting up layers...101
Layers and their graphic objects...102
Listener for layer changes in a manager..104
Triple buffering layers..105
Caching layers..107
Manipulating the drawing order..108

Managing graphic objects..111
Adding objects to a manager and removing them..112

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 64

Modifying geometric properties of objects..114
Applying functions..116
Editing and selecting properties...117
Optimizing drawing tasks..118
Listener for the content of the manager..120

Selection in a manager...123
Selection objects..124
Managing selected objects...125
Creating your own selection object...127
Listener for the selections in a manager...129

Hover highlighting in a manager..131
Managing hover highlighting...132
Creating your own highlighting effect...133

Blinking of graphic objects..135
Introduction...136

Managing input events..141
Handling input events...143
Object interactors...144
Example: Extending the IlvObjectInteractor class..145
Customizing the interactor of selected graphic objects..150
View interactors..152
Class diagrams for interactors and selection classes...154
Interactor listeners..156
The selection interactor..159
Tooltips and popup menus on graphic objects...162

Saving and reading...164

File formats..165

Drawing Exchange Format (DXF)...166

Graphers..169
The grapher..170

Managing nodes and links..171
Nodes...172
Links...173
Predefined link classes...174
Managing link visibility..177
Showing and hiding grapher branches...178

Contact points...179
Default contact points...180
Using link connectors...181
Using pins...182

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 5

Other link connectors...185

Class diagram for graphers..186

Grapher interactor class...187

Creating a new class of link...188

Link shapes and crossing..193

Composite Graphics..197
Introducing composite graphics..198

Creating a composite graphic..200

Index..205

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 66

Introducing IBM® ILOG® JViews Framework

Presents the purpose, contents, role, and features of IBM® ILOG® JViews Framework.

In this section

Overview
Describes the contents and use of the IBM® ILOG® JViews Framework package.

A basic graphics application model
Describes the basic object model, comprising the core Java™ objects and their
interrelationships.

© Copyright IBM Corp. 1987, 2009 7

Overview

IBM® ILOG® JViews Framework is a structured 2D graphics package for creating highly
customizable, visually rich graphical user interfaces. It complements the simple components
provided by Swing or AWT, allowing Java™ GUI programmers to develop far more intuitive
displays of information. Examples of such types of displays include schematics, workflow
and process flow diagrams, command and control displays, network management displays,
and any application requiring a map. The IBM® ILOG® JViews Framework (or the
Framework, for short) is ideal for the rapid development of these custom GUIs.

The Framework package
The IBM® ILOG® JViews Framework package consists of a set of JavaBeans™ and an
Application Programming Interface (API).

JavaBeans(TM)
The JavaBean components allow you to get a fast start with the Framework. You can start
your favorite Integrated Development Environment (IDE), import the Beans, connect them
to any other Beans, compile, and run. You can have a working example of an IBM®
ILOG® JViews applet or application in just a few minutes. These Beans are an excellent
beginning when learning the features of IBM® ILOG® JViews, and can be customized for
delivery to your end users as well. See Framework JavaBeans(TM).

API
Most applications will, however, require functionality that goes far beyond what these
pre-packaged Beans offer, and this is why the Framework is delivered with an API. This API
is a fully documented class library allowing you to build the custom look-and-feel that your
application needs. Once you understand how the basic parts of the library work, you can
customize or extend it. The architecture of the library is completely open to extension.

JViews Framework as IBM® ILOG® JViews foundation
JViews Framework package provides the base functionality for graphics applications built
with IBM® ILOG® JViews products. It handles the creation andmanipulation of basic graphic
objects such as lines, rectangles, and labels, as well as any of the custom objects that you
might create. JViews Framework also provides the optimized data structures that allow the
graphic objects to be panned, zoomed, and selected with optimal performance. Finally, it
provides a set of behaviors that can be used to define the user interactions with the display
and the graphic objects. All the other IBM® ILOG® JViews packages rely on JViews
Framework for these core-level services.

The essential features of JViews Framework are:

♦ Graphic objects that are drawn on the screen.

♦ Managers that handle collections of graphic objects.

♦ Graphers that are managers for graph structures, that is, nodes and links.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 68

♦ Views that are lightweight components used to display managers and graphers.

♦ Interactors used to manipulate objects interactively.

♦ Composite graphics used to create graphic objects from other graphic objects.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 9

A basic graphics application model

To use IBM® ILOG® JViews effectively, you need to understand how to use IBM®
ILOG® JViews Framework, and to use the Framework, you need to understand the basic
object model, that is, the core Java™ objects and their relationships with each other.

The Framework object model
A basic graphics application needs just a few parts:

♦ Graphic objects (manipulated with resize, select, and draw functions)

♦ A data structure to put them into

♦ A viewport (typically a rectangular area in a window on the display) which allows zooming
in and out on the graphic objects that are drawn in it

In the IBM® ILOG® JViews world, these parts are formally referred to as IlvGraphic,
IlvManager, and IlvManagerView objects, respectively. Their organization is shown in the
following figure.

Basic IBM® ILOG® JViews Classes

The following figure shows the same classes represented as a UML class diagram.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 610

Basic Classes: UML Class Diagram

The graphic object: IlvGraphic
An IlvGraphic graphic object typically represents some custom entity in the end-user’s
application domain. For example, in a geographic display for a telecom network, there may
be lines, labels, and polygons that form the background map and some other more
sophisticated objects that represent the telecom devices in the network.

The graphics framework comes with a large set of predefined graphic objects, such as
rectangles, polylines, polygons, splines, and labels. Other domain-specific objects (such as
the network devices in the above example) can be created by subclassing one of these objects
or the base class object, IlvGraphic, or by grouping predefined objects together.

The data structure: IlvManager
The IlvManager data structure is a container for graphic objects, therefore it is the most
important object of the Framework. The manager organizes graphic objects into several
layers; graphic objects contained in a higher level layer are displayed in front of objects
located in a lower layer.

The manager also provides the means to select the graphic objects. The library comes with
several predefined ways to display a selected graphic object; you can subclass IlvManager
to create your own user-defined display methods.

The viewport: IlvManagerView
An IlvManagerView viewport is designed to visualize the graphic objects of a manager. The
class IlvManagerView is a component (subclass of the java.awt.Componentclass) that you
use in your AWT or Swing application to visualize the manager. A manager view lets you
define which layer of the manager is visible for a view. In addition, you may use several
manager views to visualize different areas of the manager. You can zoom and pan the content
of the view.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 11

http://java.sun.com/javase/6/docs/api/java/awt/Component.html

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 612

Getting started with JViews Framework

Provides a tutorial explaining how to create a simple application using IBM® ILOG® JViews
Framework and demonstrating its basic concepts.

In this section

Overview of tutorial
Lists the Java™ source files provided and the stages in the tutorial.

Running the example
Explains how to run example Java™ files.

Stage 1 - The manager
Shows how to create a manager and its view, and how to load a file containing graphic
objects into the manager.

Stage 2 - View interaction
Shows how to add interaction to a view.

Stage 3 - Using events
Shows the use of events delivered by the view.

Stage 4 - Manipulating graphic objects
Addresses the manipulation of graphic objects, demonstrating how to create graphic objects
and add them to the manager and how to change their location.

© Copyright IBM Corp. 1987, 2009 13

Overview of tutorial

The construction of an application explains briefly the main concepts of IBM® ILOG® JViews.

Example Java™ source files are provided representing the steps in the tutorial. The example
files are as follows: Sample1.java, Sample2.java, Sample3.java, and Sample4.java.

The tutorial consists of the following stages:

1. Creating and populating the manager: in Stage 1 - The manager:

♦ Creating the manager.

♦ Loading a file containing graphic objects into this manager.

♦ Creating the view to display the contents of the manager.

2. In Stage 2 - View interaction:

♦ Adding interaction to a view.

3. In Stage 3 - Using events:

♦ Listening to events sent by the manager view.

4. In Stage 4 - Manipulating graphic objects:

♦ Adding and moving graphic objects in the manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 614

Running the example

The samples are installed in subdirectories named sample1, sample2, sample3, and so on,
located in the directory /jviews-framework86/codefragments/getstart. For details, see
<installdir> /jviews-framework86/codefragments/getstart/index.html.

To run an example file such as Sample1.java (located at codefragments/getstart/
sample1/src/Sample1.java):

1. Go to the src directory in the above path.

2. Set the CLASSPATH variable to include the current directory, the IBM® ILOG® JViews
library: jviews-framework-all and the license file directory. On aWindows®machine
this will be:

set CLASSPATH=.;<installdir>/jviews-frameworknn/lib/jviews-framework-
all.jar;<installdir>/jlm

where nn is the version; for example, 86

3. Compile the Sample1.java file:

javac Sample1.java

4. Run the application:

java Sample1

Alternatively, you can compile and start the sample with the scripts available in

/jviews-frameworknn/codefragments/getstart/sample1.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 15

Stage 1 - The manager

Overview of stage 1
The manager organizes sets of graphic objects into multiple views and layers and provides
the possibility of higher-level interactions. These features are brought out as the tutorial
progresses. When running the Sample1 example, the first stage in this tutorial, you see a
scrolling window displaying a map of the United States.

Explanations of the Sample1.java file follow.

Sample1

Importing the library and packages
The Sample1.java file first imports the main IBM® ILOG® JViews package and then imports
the IBM® ILOG® JViews Swing package for the GUI components.

import ilog.views.*;
import ilog.views.swing.*;

To use AWT and Swing classes, the sample must import the swing and awt packages:

import javax.swing.*;
import java.awt.*;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 616

Creating the frame class
After importing packages, you can create the class named Sample1. This class has two fields,
manager (class IlvManager) to store the graphic objects, and mgrview, (class
IlvManagerView), to display the contents of the manager.

public class Sample1 extends JFrame
{
IlvManager manager;
IlvManagerView mgrview;
....

}

Creating the manager
Use the constructor to create the manager:

...
manager = new IlvManager();
...

}

Loading/reading a file
Once the manager is created, you can read the usa.ivl file which can be found in the
getstart directory. IBM® ILOG® JViews Framework provides facilities to save and read
graphic objects in a manager. These files are in the IVL format.

You need to catch the exception that may occur when reading the file. The method read
(java.net.URL) of the class IlvManager may throw the following exceptions:

♦ IOException for basic IO errors.

♦ IlvReadFileException, if the format of the file is not correct (the file is not an .ivl
formatted file) or if a graphic class needed to load the file cannot be found.

try {
manager.read(new URL("usa.ivl");

} catch (Exception e) {}

Creating the view
Next create a manager view to display the contents of the manager. A manager view is an
instance of the IlvManagerView class. To associate it with the manager, all you have to do
is provide the manager parameter as shown below.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 17

This example uses the class IlvJScrollManagerView. This class encapsulates
the class IlvManagerView and provides scroll bars.

Note:

mgrview = new IlvManagerView(manager);
getContentPane().setLayout(new BorderLayout(0,0));
getContentPane().add(new IlvJScrollManagerView(mgrview), BorderLayout.CENTER)
;

Testing the application
To test the application, you need the jviews-framework-all.jar file and the license file
directory in your classpath. On a Windows® machine this will be:

set CLASSPATH=.;<installdir>/jviews-framework86/lib/jviews-framework-
all.jar;<installdir>/jlm

The jlm license directory is only needed during the development phase. Once your application
is ready for production, it can be deployed without the license file being needed in the
CLASSPATH. For more information see the licensing documentation Using License Keys.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 618

Stage 2 - View interaction

Overview of stage 2
The second part of the tutorial, the Sample2.java file, see <installdir> /
jviews-framework86/codefragments/getstart/index.html, is an extension of the Sample1
file. Compile the Sample2.java file and run it as you did for Sample1. See Running the
example.

Sample2 Running

In this step, you add interaction to the view by placing a selection interactor on it. To do
this, add a Select button and associate it with the interactor. When you click the Select
button, the selection interactor is placed on the view and you can select the graphic objects
in the view (in this case the states of the United States), move them around, and modify
their shape.

A selection interactor is an instance of the class IlvSelectInteractor, a subclass of the
IlvManagerViewInteractor class. This view interactor will process all the input events,
such as mouse and keyboard events, occurring in a manager view.

Adding the selectInteractor field
To be able to use the class IlvSelectInteractor, first import the IBM® ILOG® JViews
packages that contain the interactors, servlets and events:

import ilog.views.interactor.*;
import ilog.views.util.servlet.event.*;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 19

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

Then add the selectInteractor and button instance variables into Sample2.

public class Sample2 extends JFrame
{
IlvManager manager;
IlvManagerView mgrview;
IlvSelectInteractor selectInteractor;
JButton button;
....

}

Creating the Select button
The following code creates a Select button and associates it with the selectInteractor:

void createButtons()
{
JButton button;
button = new JButton("Select");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {

if (selectInteractor == null)
selectInteractor = new IlvSelectInteractor();

if (mgrview.getInteractor() != selectInteractor)
mgrview.setInteractor(selectInteractor);

}
});
getContentPane().add(button, BorderLayout.SOUTH);
}

When you click the Select button, the actionPerformed method first creates its interactor
(if this has not already been done), then it installs the interactor on this view using the
setInteractor(ilog.views.IlvManagerViewInteractor) method. Once the interactor is
installed, you can select, move, and modify the graphics objects displayed in the view.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 620

Stage 3 - Using events

Overview of stage 3
The third stage of the tutorial, the Sample3.java file, see <installdir> /
jviews-framework86/codefragments/getstart/index.html, is an extension of the Sample2
file. Compile the Sample3.java file and run it as you did for the previous example files. See
Running the example.

Sample3 running

To make use of events, you can use the InteractorListener interface to listen for a change
of interactors. There are three buttons in the example, each with an associated interactor.
Clicking one button and then another changes the ‘engaged’ interactor accordingly.

Two new interactors are placed on the view: IlvZoomViewInteractor and the
IlvUnZoomViewInteractor. These interactors allow you to drag a rectangle on the view to
zoom in and out on this area. The third interactor is the IlvSelectInteractor (of Sample2).
Their respective buttons are created inside a Swing JPanel, which automatically aligns them
as seen in the above illustration.

Adding new interactor fields
To accomplish the task, change the class definition to implement InteractorListener, add
the zoomInteractor and unzoomInteractor fields, and add the necessary interactor button
fields to the Sample3 application.

public class Sample3 extends JFrame

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 21

implements InteractorListener
{
IlvManager manager;
IlvManagerView mgrview;
IlvSelectInteractor selectInteractor;
IlvManagerViewInteractor zoomInteractor, unZoomInteractor;
Button selectButton, zoomButton, unZoomButton;
....

}

Creating the interactor buttons
The createInteractorButtons method will create three buttons (Select, -, and +) that will
be stored in the selectButton, zoomButton, and unZoomButton fields of the object.

Creating Interactor Buttons

void createInteractorButtons() {
Panel buttons = new Panel();
selectButton = new Button("Select");
selectButton.setBackground(Color.gray);
selectButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
if (selectInteractor == null)
selectInteractor = new IlvSelectInteractor();

if (mgrview.getInteractor() != selectInteractor)
mgrview.setInteractor(selectInteractor);

}
}

});

buttons.add(selectButton);
unZoomButton = new Button("-");
unZoomButton.setBackground(Color.gray);
unZoomButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
if (unZoomInteractor == null)
unZoomInteractor = new IlvUnZoomViewInteractor();

if (mgrview.getInteractor() != unZoomInteractor)
mgrview.setInteractor(unZoomInteractor);

}
});

buttons.add(unZoomButton);
zoomButton = new Button("+");
zoomButton.setBackground(Color.gray);
zoomButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
if (zoomInteractor == null)
zoomInteractor = new IlvZoomViewInteractor();

if (mgrview.getInteractor() != zoomInteractor)
mgrview.setInteractor(zoomInteractor);

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 622

});
buttons.add(zoomButton);
getContentPane().add(buttons, BorderLayout.SOUTH);

}

There are now three possible interactors, so the action performed when clicking a button
removes the previously installed interactor and installs the new one by calling the
setInteractor(ilog.views.IlvManagerViewInteractor) method of the IlvManagerView
class.

Listening for a change of interactors
In the Sample3.java file, you can see that the class implements the interface
InteractorListener. You may also have noticed the import of a new package, package
-summary, which is the package that contains the IBM® ILOG® JViews event classes. The
InteractorListener interface includes one method:

interactorChanged(ilog.views.event.InteractorChangedEvent).

In this example, the selected button becomes red when its corresponding interactor is
attached to the view.

The interactorChanged method will be called when the interactor changes on the view (as
soon as the object, the instance of Sample3, is registered as a listener; see Registering the
listener). The parameter is an event that contains the old and the new interactor. You simply
change the background color of the button corresponding to the newly installed interactor
to red.

Changing the Color of an Interactor Button

public void interactorChanged(InteractorChangedEvent event)
{

IlvManagerViewInteractor oldI = event.getOldValue();
IlvManagerViewInteractor newI = event.getNewValue();

if (oldI == selectInteractor)
selectButton.setBackground(Color.gray);

else if (oldI == zoomInteractor)
zoomButton.setBackground(Color.gray);

else if (oldI == unZoomInteractor)
unZoomButton.setBackground(Color.gray);

// there is no new interactor
if (newI == null)
return;

if (newI == selectInteractor)
selectButton.setBackground(Color.red);

else if (newI == zoomInteractor)
zoomButton.setBackground(Color.red);

else if (newI == unZoomInteractor)
unZoomButton.setBackground(Color.red);

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 23

Registering the listener
It is not enough to implement the interface. You must not forget to register this new listener
with the view. This is done by calling the addInteractorListener method in the init
method.

...
manager = new IlvManager();
try {
manager.read("usa.ivl");

} catch (Exception e) {}
mgrview = new IlvManagerView(manager);
setLayout(new BorderLayout(0,0));
getContentPane().add(new IlvJScrollManagerView(mgrview),

BorderLayout.CENTER);
createButtons();
mgrview.addInteractorListener(this);

...

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 624

Stage 4 - Manipulating graphic objects

The fourth step, the Sample4.java file, see <installdir> /jviews-framework86/
codefragments/getstart/index.html, is an extension of the Sample3 file. Compile the
Sample4.java file and run it as you did for the previous example files. See Running the
example.

Sample4 running

Adding graphic objects
To be able to manipulate graphic objects, you must first import the IBM® ILOG® JViews
package that contains the graphic objects:

import ilog.views.graphic.*;

In this example, you implement the addObjectsmethod which adds ten objects of the IlvIcon
class to the manager:

public void addObjects()
{
manager.setSelectable(0, false);

for (int i = 0 ; i < 10 ; i++) {
IlvGraphic obj = new IlvIcon("image.gif", new IlvRect(0,0,37,38));
manager.addObject(obj, 1, false);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 25

}
}

The first line in this method calls the setSelectable method on the manager with 0 and
false as its parameters:

manager.setSelectable(0, false);

The first parameter, 0, specifies the layer in the manager to which the method applies. The
second parameter, false, specifies whether objects in the layer passed as the first parameter
can be selected (true) or not (false).

Objects in a manager can be stored in different layers, which are identified by indices. Layers
are drawn on top of each other, starting at index 0. In other words, the first layer is assigned
the index 0, the second layer, the index 1, and so on, with the objects stored in a higher
screen layer being displayed in front of objects in lower layers.

In the usa.ivl file loaded in the manager, the objects that make up the map are stored in
layer 0. Calling the setSelectable method with 0 and false as parameters specifies that
the map (layer 0) cannot be selected, and hence, cannot be modified.

The following addObject method adds the IlvIcon objects to layer 1 of the manager:

manager.addObject(obj, 1, false);

Call the addObjects() method from the application initiation method. In this case the
Sample4 method.

The false parameter of this method specifies that the redraw is not to be triggered.
Here no redraw is needed because the application is not visible when this code is
executed.

Note:

Test the interface of the application by clicking the objects with the mouse. You can see that
the new objects are selectable, whereas you can no longer select or modify the map.

Moving graphic objects
Sample4 has a new button in the appButtons() method which is used to move the IlvIcon
objects in a random way.

Button moveButton = new Button("move");
moveButton.setBackground(Color.gray);
moveButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
moveObjects();

}
});

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 626

buttons.add(moveButton);
}

The movement of the objects is implemented in the Sample4.moveObjects() method. This
method gets an enumeration of objects contained in layer 1 (the new objects), and, for each
of these objects, finds a random object in layer 0 and moves the objects of layer 1 to the
center of the objects of layer 0 by calling IlvManager.

void moveObjects() {
IlvGraphic state=null, obj=null;
// get objects in layer 1
IlvGraphicEnumeration objects, states;
for (objects = manager.getObjects(1); objects.hasMoreElements();) {
obj = objects.nextElement();
// get an random object in layer 0
states = manager.getObjects(0);
int index = (int)((double)manager.getCardinal(0)*Math.random());
state = states.nextElement();
for (int i = 1 ; i < index; i++)
state = states.nextElement();

if (state != null) {
// move the object.
IlvRect bbox = state.boundingBox(null);
manager.moveObject(obj, bbox.x+bbox.width/2,

bbox.y+bbox.height/2, true);
}

}
}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 27

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 628

Framework JavaBeans(TM)

Describes the Beans provided as JViews Framework classes, explains how to install them in
an IDE, and uses an example to explain how to create an applet with IBM® ILOG® JViews
Beans within an IDE. The example shows the main functionality of the Beans.

In this section

Installing IBM® ILOG® JViews Beans in an IDE
Describes the considerations you need to keep in mind when installing IBM® ILOG® JViews
Beans in an IDE.

Framework classes available as JavaBeans(TM)
Describes the groups of Beans provided as JViews Framework classes.

Creating a simple applet using IBM® ILOG® JViews Beans
Explains how to create a simple applet using the supplied Beans.

© Copyright IBM Corp. 1987, 2009 29

Installing IBM® ILOG® JViews Beans in an IDE

The main classes of the JViews Framework fully comply with the JavaBeans™ standard.
This allows you to create an IBM® ILOG® JViews application from the visual programming
environment of your favorite Integrated Development Environment (IDE).

To be able to use the JViews Framework Beans, you must first install the Beans into your
IDE. The Beans are located in <installdir> /jviews-framework86/lib/
jviews-framework-all.jar.

To install JViews Framework JavaBeans refer to your IDE documentation. In most cases, the
IDE simply allows you to import a .jar file and finds the JavaBeans located in this .jar file
automatically.

Other Beans are available for the IBM® ILOG® JViews Diagrammer, IBM® ILOG® JViews
Maps, IBM® ILOG® JViews Gantt and IBM® ILOG® JViews Charts products. These Beans
are not covered in this document. To learnmore about them, read the section about JavaBeans
in the documentation of your IBM® ILOG® JViews product.

In most IDEs, when you import JAR files, you must make sure that all classes referred to by
those beans are also imported. For example, this may mean referring to JViews Framework
JARs when you import IBM® ILOG® JViews Maps Beans.

Some IDEs may refuse to import IBM® ILOG® JViews Beans because they are running
earlier JDK versions than the one JViews requires. In this case, you may need a newer
version of your IDE.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 630

Framework classes available as JavaBeans(TM)

The JViews Framework provides the following groups of Beans:

♦ IBM® ILOG® JViews main data structure Beans

♦ IBM® ILOG® JViews main GUI components

♦ Predefined interactors

♦ GUI convenience components

These Beans are classes of the IBM® ILOG® JViews library. The details of these classes
are explained throughout this manual as well as in the IBM® ILOG® JViews Framework
Reference Manual. These Beans are listed below along with their icons that are displayed
on the toolbar.

 Either the small icon or the large icon is displayed depending on the IDE you use.Note:

IBM® ILOG® JViews main data structure Beans

The IlvManager Bean, the data structure that stores the graphic objects. In this Bean, you
can specify the initial .ivl file to be loaded.

The IlvGrapher Bean, which organizes the graphic objects into nodes and links of a network.

IBM® ILOG® JViews main GUI components
All the IBM® ILOG® JViews GUI components needed to create an AWT or Swing applet or
application are available as JavaBeans™ :

The IlvManager Bean, the visual Bean that displays the content of a manager Bean.

The IlvJScrollManagerView Bean, a Swing-based Bean that adds the scrolling functionality
to IlvManagerView objects.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 31

The IlvScrollManagerView Bean, the AWT version of the IlvJScrollManagerView.

The IlvManagerViewPanel Bean, an AWT component designed to contain an IlvManagerView
Bean and to manage the double-buffering mechanism of the manager view. This Bean is
necessary only to create AWT applets or applications using double-buffering.

The IlvGrid Bean, the magnetic grid that can be installed on any IlvManagerView Bean.

Predefined interactors
The predefined interactors provided as JavaBeans™ are given below:

The IlvManagerViewInteractor Bean, an interactor Bean that has no predefined interaction.
You can create your own interaction by binding the different input events (mouse, keyboard)
sent by this Bean.

The IlvZoomViewInteractor Bean, an interactor that allows the user to select a rectangle
of a manager view to be zoomed in.

The IlvSelectInteractor Bean, an interactor that allows the user to select and edit the
graphic objects of a manager.

The IlvPanInteractor Bean, an interactor that allows the user to pan the view of a manager.

The IlvRotateInteractor Bean, an interactor that allows the user to rotate objects in a
manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 632

The IlvManagerMagViewInteractor Bean, an interactor that controls the panning and
zooming of a target view by manipulating a control rectangle on the view.

The IlvDragRectangleInteractor Bean, an interactor that allows the user to drag a
rectangle on a view. You can perform any type of action when the rectangle is dragged by
binding the RectangleDragged event.

The IlvMakeRectangleInteractor Bean, an interactor that allows the user to create any
type of rectangular object in a manager.

The IlvMakePolyPointsInteractor Bean, an interactor that allows the user to create any
type of graphic object defined by a set of points, such as a polyline or spline.

The IlvEditLabelInteractor Bean, an interactor that allows the user to create and edit a
graphic object that contains a label.

The IlvMakeLinkInteractor Bean, an interactor that allows the user to create a link in a
grapher.

The IlvMagnifyInteractor Bean, an interactor that allows the user to move a lens over
the view of a manager to magnify the objects under it.

GUI convenience components

The IlvJManagerViewControlBar Bean, a Swing toolbar that allows the user to perform
selection, zoom, and pan operations on an IlvManagerView Bean.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 33

The IlvManagerViewControlBar Bean, an AWT version of the IlvJManagerViewControlBar
Bean.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 634

Creating a simple applet using IBM® ILOG® JViews Beans

To create a simple IBM® ILOG® JViews applet using IBM® ILOG® JViews Framework
Beans, no coding is necessary. The applet you create is a simple Swing applet that displays
a butterfly with a toolbar allowing you to zoom and pan the content of the view.

For information on the concepts that underlie JavaBeans™ , refer to the Web site: http://
java.sun.com/products/javabeans. You are assumed to be familiar with the manipulation of
JavaBeans inside your IDE.

The Swing Beans that you will use have the letter “J” in the prefix of the Bean name.
You could also create the same type of application using only AWT controls. To do

Note:

so, you would simply use the IlvScrollManagerView Bean that is an AWT control
instead of the IlvJScrollManagerView Bean.

The following example is carried out using a typical IDE procedure. It comprises the following
stages:

1. Create the manager view

2. Set the properties of the manager view

3. Create a manager and display its content in a view

4. Load an .ivl file into the manager

5. Add a control toolbar Bean

6. Configure the toolbar

7. Test the result

Create the manager view
To create the manager view:

1. Create a new project as a Swing applet or application.

2. Display the IBM® ILOG® JViews Beans on the toolbar by selecting that package.

3. From the toolbar, click the IlvJScrollManagerView Bean icon and drag it inside
the form designer of your IDE.

There are two of these icons on the toolbar. Make sure you are using
IlvJScrollManagerView and not IlvScrollManagerView.

Warning:

4. Drag the handles of your IlvJScrollManagerView Bean until it appears as in the
following figure.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 35

http://java.sun.com/products/javabeans
http://java.sun.com/products/javabeans

IlvJScrollManagerView Object Selected in the Form Designer

5. Click the IlvManagerView Bean icon on the toolbar and drag it inside the
IlvJScrollManagerView Bean.

The result is fairly similar to what you obtained previously, except that you can now
select the manager view. See IlvJScrollManagerView Object with a Selected
IlvManagerView Object Inside.

 If you were to compile and run the project at this point, you would see that
the IlvJScrollManagerView allows you to scroll through the content
of the IlvManagerView Bean.

Note:

IlvJScrollManagerView Object with a Selected IlvManagerView Object
Inside

The next step is to change amanager view property of the Bean, which is done in the following
property sheet. This property sheet is active because the IlvManagerView object is presently
selected in the form designer. The property to change is the background property.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 636

Property Sheet for IlvManagerView Object

Set the properties of the manager view
To set the properties of the manager view:

1. Click the value field of the Background property and change the background of the
view to white:

Setting the Background property of a View

2. Change the KeepingAspectRatio property to true.

This will make sure that the zoom level remains the same along the x and y axis.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 37

You can now create an IlvManager Bean. The IlvManager Bean provides the data structure
that contains the graphic objects you want to display.

Create a manager and display its content in a view
To create the IlvManager Bean and display its content in a view:

1. Click the IlvManager Bean icon on the toolbar.

2. Drag it into the form designer.

The class IlvManager is not a graphical Bean, so it is not managed the same way by
the different IDEs. The image below shows the manager as a small object inside the
form designer.

The IlvManager Bean in the Form Designer

You must now associate the view with the manager. This is done by setting the manager
property of the IlvManagerView Bean to the new manager Bean.

3. Select the IlvManagerView object so that its property sheet is active.

4. Set the value of its Manager property to ilvManager1 as shown in the following figure.

Setting the Manager property of a View

The IlvManagerView will now display the content of the IlvManager Bean. You can create
several IlvManagerView objects and associate them with the same IlvManager Bean. This
allows you to have several views of the same data.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 638

Load an .ivl file into the manager
To load an .ivl file into the IlvManager Bean:

1. Select IlvManager1 so that its property sheet is active.

2. Click in the value field of the FileName property and then click the ellipsis button that
appears.

3. Click the ellipsis button in the FileName Editor window that appears.

4. Browse to the buttrfly.ivl file located in the data directory of JViews Framework
and open it.

5. Click OK in the FileName Editor dialog box.

The file is automatically displayed in the IlvManagerView Bean.

Loading a file into the Manager

The next step is to add a toolbar that allows the user to control the zoom level of the view
and to pan the view.

Add a control toolbar Bean
To add a control toolbar Bean:

1. Click the IlvJManagerViewControlBar icon on the IBM® ILOG® JViews Beans
toolbar.

2. Drag it into the form designer.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 39

The Control toolbar in the form designer

You must now associate the toolbar with the view by setting the View property of the
toolbar.

3. Verify that the IlvJManagerViewControlBar object is selected so that its property
sheet is active.

4. Select ilvManagerView1 in the value field of the View property as seen in the following
figure.

Associating the toolbar with the View

You may configure the toolbar in different ways. You can:

♦ Hide some of the predefined button icons of the toolbar by setting the corresponding
properties: PanButtonAvailable, SelectButtonAvailable, and so on

♦ Add your own button icons to the toolbar, as you can with any Swing toolbar

♦ Modify the default interactors that are used in the toolbar

For example, the toolbar has a selectInteractor property that allows you to change the
selection interactor used when the user clicks on the Select button icon. You can modify the

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 640

properties of the selection interactor Bean to define the type of selection you need. For
example, you may want to disable the editing capability.

Configure the toolbar
To configure the toolbar:

1. Click an IlvSelectInteractor Bean on the toolbar and drag it into the form
designer.

Selecting the Selection Interactor

2. Set its EditionAllowed property to false as seen below.

Customizing the Selection Interactor

You are now going to replace the default selection interactor used in the toolbar by
setting the SelectInteractor property of ilvJManagerViewControlBar1.

3. Select the ilvJManagerViewControlBar1 object so that its property sheet is active.

4. Change the value of the SelectInteractor property to ilvSelectInteractor1.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 41

Replacing the default selection interactor

5. Compile the project.

You have created a Java™ application without writing a single line of code.

 In this example, you have added interaction to the view by means of the control toolbar.
You could also directly set an interactor Bean such as the IlvSelectInteractor
on the manager view by using the interactor property of the IlvManagerView.

Note:

Test the result
To test the result:

1. Execute the applet. The resulting application should be as follows:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 642

Final application

2. Use the scroll bars and the following toolbar icons to manipulate the image displayed
in the manager view:

♦ The Pan icon to pan the content of a view

♦ The Select arrow icon to select objects in the view

♦ The Interactive zoom icon to drag a rectangle over an area that you want to
zoom

♦ The Zoom-in icon and the zoom-out icon

♦ The Fit to view icon to make sure that the content of the manager is fully
displayed

This concludes the example. For information on how to save your project and to know what
type of files are generated when saving, refer to the documentation of your IDE.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 43

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 644

Graphic objects

Describes the Framework hierarchy of classes for creating various high-level graphic objects.

In this section

A graphic object
Describes what a graphic object is.

The class IlvGraphic
Describes the starting point for graphic objects, the class IlvGraphic.

Hierarchy of predefined graphic objects
Describes the way predefined graphic objects are organized in a hierarchy.

Geometric properties
Explains how to set the geometric properties that define graphic objects.

User properties of graphic objects
Explains how to set user properties to add application information to graphic objects.

Input/output operations
Describes the classes for saving graphic objects to a stream and reloading them from a
stream.

The graphic bag
Describes what a graphic bag is.

Predefined graphic objects
Describes basic classes that provide you with ready-to-use drawing objects.

© Copyright IBM Corp. 1987, 2009 45

The ShadowEllipse class
Describes the class, ShadowEllipse, which inherits from IlvGraphic.. This class is used as
an example of creating a new graphic object.

Creating a new graphic object class
Explains how to create a new graphic object class, ShadowEllipse, which inherits from
IlvGraphic..

Testing for a point inside an object
Describes how to test for a point inside an object.

Saving and loading the object description
Explains the input/output methods for saving and loading an object.

Named properties
Describes the use of user properties called named properties.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 646

A graphic object

A graphic object is an object that users can view on their screen.

When you display a graphic object, you associate its coordinates with the coordinate system
of a particular graphic bag.

A graphic bag is an interface that describes the methods to be implemented by a class that
contains several graphic objects. An example of a graphic bag is the class IlvManager, which
can manage a large number of graphic objects. For more information see Managers.

Every graphic object has an x value, a y value, and dimensions (that is, width and height).
The x and y values define the upper-left corner of the graphic object’s bounding box, which
is the smallest rectangle containing the entire area of the object. You define the exact shapes
of graphic objects in your IBM® ILOG® JViews-based programs and then build them using
various drawing methods. Other methods provide you with information about your graphic
objects and let you carry out geometric tests concerning the shapes that you are using. For
example, you can check whether or not a point with given coordinates lies inside a certain
object form.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 47

The class IlvGraphic

IBM® ILOG® JViews graphic objects inherit attributes from the IlvGraphic abstract base
class. This class allows an IBM® ILOG® JViews graphic object to draw itself at a given
destination port.If required, the coordinates of the graphic object may also be transformed
by an object associated with the IlvTransformer class.

The class IlvGraphic has methods that allow you to set and change geometric dimensions
but does not actually implement these methods. They are declared as nonfinal methods and
are defined to perform various operations in the classes that inherit IlvGraphic attributes.
Although the methods to manipulate geometric shapes and graphic attributes exist, their
implementations are empty. Several methods are given to set and get user properties that
can be associated with an object for application-specific purposes.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 648

Hierarchy of predefined graphic objects

IBM® ILOG® JViews Framework provides a wide range of predefined graphic objects to
create a sophisticated application with minimum coding. These objects/classes are illustrated
in the following figure.

Partial class hierarchy of the IBM® ILOG® JViews graphic objects

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 49

Geometric properties

A graphic object is defined by a set of geometric properties, such as its location, size, shape,
the way in which it is drawn, and so on. These properties are set by a special group of
methods. Of these methods, draw(java.awt.Graphics, ilog.views.
IlvTransformer)IlvGraphic. and boundingBox()IlvGraphic. are fundamental and should
be defined jointly.

The boundingBox method
The bounding box defines the smallest rectangle encompassing the graphic object. It is
returned by the following method:

public IlvRect boundingBox(IlvTransformer t)

The IlvTransformer parameter is the 2D transformation matrix used to draw the object in
a particular drawing port (see transformer). This transformation may correspond to a zoom,
a rotation, or a translation of the graphic object in the destination drawing port. The method
must then return the rectangle that contains the graphic object when it is drawn using the
specified transformation.

The Bounding Box of a Graphic Object

The following example defines the shape of a graphic object with the drawrect field. In order
to return the bounding box of the object, the boundingBox method simply applies the
transformer to the rectangle:

class MyRectangle extends IlvGraphic
{

// The geometric rectangle that defines the object.
final IlvRect drawrect = new IlvRect();

//constructor
public MyRectangle(float x, float y, float width, float height)
{
drawrect.reshape(x, y, width, height);
}
// The bounding box method.
public IlvRect boundingBox(IlvTransformer t)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 650

{
//Copies the original rectangle to avoid its modification
IlvRect rect = new IlvRect(drawrect);
if (t != null)
t.apply(rect);

return rect;
}

}

The method boundingBox is a very important method. Since it is called very frequently, it
must be written in a highly optimized way.

For the MyRectangle class to compile correctly you need to overload the draw, copy
and applyTransform methods. For an example of how this is done, see The
ShadowEllipse class.

Note:

The draw method
The draw method is used to draw the graphic object. The signature of the method is as
follows:

public void draw(Graphics dst, IlvTransformer t)

The dst parameter is the destination Graphics where the object is drawn. As in the
boundingBoxmethod, the IlvTransformer parameter is the 2D transformation matrix used
to draw the object in the drawing port.

 Everything that is drawn with this method must be drawn inside the bounding rectangle
of the object (the bounding rectangle of the object being the result of the call to the

Note:

method boundingBox with the same transformation parameter). This is why these
two methods should be defined jointly.

In order to draw the object, you will use the drawing methods of the AWT Graphics class.
If you use Java™ 2 and need to perform Java2D™ drawings, you can cast the dst parameter
in a Graphics2D object and then use the drawing methods of this class.

Zoomable and nonzoomable objects
A graphic object is said to be zoomable if its bounding box follows the zoom level. In other
words, the result of calling the method boundingBoxwith a transformer is the same as when
calling boundingBox with a null transformer and then applying the transformer to the
resulting rectangle. That is:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 51

obj.boundingBox(t) = t.apply(obj.boundingBox(null))

A zoomable object follows the zoom factor. When a view is magnified by 2, a zoomable object
is drawn twice as big. When a view is reduced by 1/2, a zoomable object is drawn half as
big. A nonzoomable object does not follow the zoom factor, that is, it may be drawn at its
original size in a reduced view.

More precisely, a graphic object is zoomable if and only if for every transformer t, the
rectangle obtained by calling obj.boundingBox(t) is contained in the rectangle obtained
by applying the transformer to obj.boundingBox(null). Equality of both rectangles is not
necessary.

If you define your own graphic objects, you must define zoomable() correctly.
If zoomable() returns true, but the object does not follow the zoom factor, the
object may be drawn incorrectly.

Important:

Zoomable and nonzoomable objects are managed in very different ways in IBM®
ILOG® JViews: zoomable objects are managed in a more optimized way. To know whether
an object is zoomable, call the zoomable method:

public boolean zoomable()

The returned value for the class IlvGraphic is true.

Testing whether a point is part of an object shape
The method contains is called by interactors to check whether a point is part of an object
shape.

public boolean contains(IlvPoint p, IlvPoint tp, IlvTransformer t)

The default implementation of this method checks whether the specified point lies inside
the bounding rectangle of the object. You may override this method so that it returns false
for the transparent area of your object.

Moving and resizing a graphic object
The class IlvGraphic provides many methods for moving and resizing a graphic object:

♦ move(float, float)

Moves the upper-left corner of the bounding rectangle of the object to (x,y).

♦ move(ilog.views.IlvPoint)

Moves the upper-left corner of the bounding rectangle of the object to the point p.

♦ moveResize(ilog.views.IlvRect)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 652

Sets the bounding rectangle of the object to the IlvRect parameter.

♦ translate(float, float)

Translates the bounding rectangle of the object by the vector (dx, dy).

♦ rotate(ilog.views.IlvPoint, double)

Rotates the object around the point center by an angle of angle degrees.

♦ scale(double, double)

Resizes the bounding rectangle of the object by a factor (scalex, scalex).

♦ resize(float, float)

Modifies the bounding rectangle of the object with the new size (neww, newh).

All of these methods call applyTransform to modify the bounding rectangle of the graphic
object.

public void applyTransform(IlvTransformer t)

This is the only method that needs to be overridden in order to handle the transformation
of an object correctly. The following code example shows how the applyTransform method
may be used in the example class, MyRectangle:

class MyRectangle extends IlvGraphic
{

// The rectangle that defines the object.
final IlvRect drawrect = new IlvRect();

...

public void applyTransform(IlvTransformer t)
{

t.apply(drawrect);
}

}

The method simply applies the transformation to the rectangle.

 Graphic objects stored in a manager (class IlvManager and its subclasses) are
located in a quadtree.This means that you cannot simply call move on a graphic object

Note:

because the quadtree must be notified of the modification of the graphic object. Every
method that modifies the bounding rectangle of the object must call applyToObject
(ilog.views.IlvGraphic, ilog.views.IlvApplyObject, java.lang.
Object, boolean). This method applies a function to an object and notifies the
quadtree of the modification to the bounding rectangle. The class IlvManager also
includes several convenient methods to move and reshape a graphic object managed
by this manager. These are as follows:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 53

moveObject(ilog.views.IlvGraphic, float, float, boolean)public void
moveObject(IlvGraphic, float, float, boolean)

reshapeObject(ilog.views.IlvGraphic, ilog.views.IlvRect,
boolean)public void reshapeObject(IlvGraphic, IlvRect, boolean)

For more information, see Modifying geometric properties of objects.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 654

User properties of graphic objects

A set of user properties can be associated with graphic objects. User properties are a set
of key-value pairs, where the key is a String object and the value may be any kind of
information value. These user property methods of the class IlvGraphic let you easily
connect information that comes from your application to your graphic objects. You can keep
track of the graphic part of your application by storing the references to objects you create
and connecting this graphic part to the application by means of user properties, as in the
following example:

Integer index = new Integer(10);
String key = "objectIndex";
myobject.setProperty(key, index);

The following IlvGraphic methods help you manage the properties of an object:

public boolean hasProperty(String key, Object value)

public boolean removeProperty(String key)

public Object getProperty(String key)

public boolean replaceProperty(String key, Object value)

public void setProperty(String key, Object value)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 55

Input/output operations

The IBM® ILOG® JViews library provides the following two classes for saving graphic
objects to, and loading graphic objects from, a stream:

♦ IlvOutputStream, used by the class IlvManager to save all the graphic objects that it
contains

♦ IlvInputStream, allowing a file generated by IlvOutputStream to be read into an
IlvManager

Graphic objects can always be written to an IlvOutputStream because they inherit the write
method of the IlvGraphic class:

public void write(IlvOutputStream stream) throws IOException

To save the information contained in your class, you can override this method and use the
methods of the class IlvOutputStream. When overriding this method, you must not forget
to call the writemethod of the superclass to save the information related to the superclass.
You will obtain something that resembles the following example.

public void write(IlvOutputStream stream) throws IOException
{
// write fields of super class
super.write(stream);
// write fields of my class
stream.write("color", getColor());
stream.write("thickness", getThickness());
....

}

To read your graphic object from an IlvInputStream, you must create a constructor with
an IlvInputStream. This constructor is mandatory even if you have not overridden the write
method. The corresponding constructor in the class IlvGraphic is:

public IlvGraphic(IlvInputStream stream) throws IlvReadFileException

Assuming that MyClass is the name of your class, your new constructor will look like this:

public MyClass(IlvInputStream stream) throws IlvReadFileException

In the body of this constructor, you first call the corresponding constructor in the superclass,
then you read the information you have saved in the write method. In the above example,
the corresponding constructor is:

public MyClass(IlvInputStream stream) throws IlvReadFileException
{
super(stream);
setColor(stream.readColor("color"));

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 656

setThickness(stream.readInt("thickness"));
...

}

The recommended way to serialize any IlvManager object is through IVL
serialization and not Java™ serialization. Serialization cannot work for managers

Important:

that contain graphic objects such as IlvIcon or some other classes, since these
classes internally manage Java SE objects that are not serializable.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 57

The graphic bag

Graphic objects are placed in a graphic bag.

A graphic bag (interface IlvGraphicBag) is an object that contains several graphic objects,
which can be added or removed. The interface IlvGraphicBag is implemented by the class
IlvManager. This class allows you to manage a large set of graphic objects. The following
method returns the graphic bag, if there is one, where the object is located:

public IlvGraphicBag getGraphicBag()

Read Managers for more information on this topic.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 658

Predefined graphic objects

There are various predefined graphic objects.

Arcs
There is one arc object, IlvArc.

An IlvArc object appears as an outlined, a filled, or a filled and outlined arc of an ellipse.
Since JViews 8.0, the IlvArc object has an annulus thickness. When the annulus thickness
is 0.0, the arc has the same behavior as before. When the annulus thickness is grater than
0.0, the arc object becomes an annulus. The arc object has also an IlvTransformer that
allows you to apply transformations to the arc object when its transformerMode is set to
true.

Ellipses
There is one ellipse object, IlvEllipse.

An IlvEllipse object appears as an outlined, a filled, or filled and outlined ellipse.

Lines
The line objects are IlvLine and IlvArrowLine.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 59

An IlvLine object appears as a straight line between two given points.

An IlvArrowLine object appears as a straight line between two given points, with a small
arrowhead drawn at the end of the trajectory.

Rectangles
The rectangle objects are IlvRectangle, IlvReliefRectangle, and IlvShadowRectangle.

An IlvRectangle object appears as a closed rectangle. It can be outlined, filled, or filled
and outlined. You can also set rounded corners on the IlvRectangle object.

IlvReliefRectangle

An IlvReliefRectangle object appears as a filled rectangle in relief.

An IlvShadowRectangle object appears as a rectangle with a shadow underneath.

Polygons and polylines
The class IlvPolyPoints is an abstract class from which every class having shapes made
up of several point coordinates is derived.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 660

An IlvPolygon object appears as a filled, outlined, or filled and outlined polygon.

An IlvPolyline object appears as connected segments.

An IlvArrowPolyline object appears as a polyline and adds one or more arrows to the
various lines.

An IlvSpline object appears as a Bézier spline. It can be either opened or closed, and may
also be filled.

Labels and text
The label objects are IlvLabel, IlvReliefLabel, and IlvShadowLabel. The text object is IlvText.

An IlvLabel object appears as a single line of text. It cannot be zoomed in or reshaped.
IlvLabel supports WYSIWYG text editing.

An IlvReliefLabel object appears as a relief rectangle holding a single line of text.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 61

An IlvShadowLabel object appears as an IlvShadowRectangle with a label.

An IlvText object appears as a single line of text or several lines of text that can be zoomed
and rotated. In multiline mode, the text can be either wrapped or truncated and can be
aligned on the leading, center, or trailing position. IlvText supports WYSIWYG text editing.

In-place text editing
IBM® ILOG® JViews supports WYSIWYG editing for IlvLabel and IlvText objects.

A WYSIWYG editable object

This editing behavior is implemented by the IlvTextSelection and IlvTextEditor classes.
While editing selected text, the user can perform the following actions with the mouse and
keyboard:

♦ Click in the text to indicate an insertion point.

♦ Select a zone of text by dragging the mouse over it.

♦ Use the arrow keys to navigate in the selected text.

♦ Combine the Shift and arrow keys to extend the selection zone.

♦ Copy and paste using the Ctrl+C and Ctrl+V keys.

During an edit session you can perform the following move and reshape actions.

♦ Drag the handles to resize a selected IlvTextobject.

♦ Drag the borders to move a selected IlvText object.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 662

You cannot do the following:Note:

♦ Edit an IlvText object in WRAP_TRUNCATE mode. This is because you cannot
see all the text on the screen. Change the object to WRAP_WORD mode before editing.

♦ Edit an IlvLabel or an IlvTextobject that is not editable. Change the attributes
of one object to editable using IlvManager.setEditable(...) before editing.

♦ Resize an IlvLabel object. IlvLabelobjects are never resizable.

For more information, see <installdir> /jviews-framework86/codefragments/
interactors/texteditor/index.html.

Markers
The marker object is IlvMarker.

An IlvMarker object is a nonzoomable object that displays a graphic symbol.

Groups
The group objects are IlvGraphicSet and IlvCompositeGraphic.

An IlvGraphicSet object is an object that groups graphic objects together.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 63

The class IlvCompositeGraphic.enables you to associate graphic objects in a single object
that features both dynamic and layout functionality. See Composite Graphics for more
information.

Scales

An IlvRectangularScale object displays a vertical or horizontal scale.

An IlvCircularScale object displays a circular scale defined by a portion of an ellipse, a
starting angle, and an angle range.

Icons
An IlvIcon object appears as an image.

Paths

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 664

IlvGeneralPath objects can display any Java 2D™ Shape objects. This means that they can
represent curves, rectangles, ellipses, general paths, and so on., and any combination of
them. You can define Java 2D properties for these objects, such as Paint or Stroke. The
last two objects with the fade-out effect use “gradient paint” objects.

IlvGraphicPath

An IlvGraphicPath object is a set of polypoints that can be drawn as polylines or as polygons.
Depending on the position of its points, a polypoint may either appear as an ordinary polygon
or as a hole in another polygon.

Component graphics
An IlvComponentGraphic object is a wrapper class that lets you embed a Swing JComponent
in a manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 65

The ShadowEllipse class

The ShadowEllipse object is an ellipse object with a drop shadow, as seen below:

A ShadowEllipse

You can design such an object from scratch by implementing a subclass of the IlvGraphic
class. IlvGraphic is an abstract class. Therefore, some of its methods must be redefined in
derived classes. This is the case for the following:

public abstract void draw(Graphics dst, IlvTransformer t)

public abstract IlvRect boundingBox(IlvTransformer t)

public abstract void applyTransform(IlvTransformer t)

public abstract IlvGraphic copy()

Other methods, such as move, resize, rotate, and contains, have a default implementation
in the IlvGraphic implementation. These methods, as well as any other method that modifies
the bounding box, are implemented by means of a call to the applyTransform function. If
the new class has a parent that defines some of these methods, you simply inherit the
functions from this parent class.

The ShadowEllipse class defines the draw, contains, and boundingBoxmethods. In addition,
it defines a writemethod that is necessary to write the object to a stream and a constructor
that takes an IlvInputStream as a parameter to read the object from a stream. For details,
see The write method and The read constructor. These methods have no default
implementation. You must provide a version of them for each subclass of the IlvGraphic
class. If you do not intend to write additional information to the stream, you do not need to
implement the write method, but you always need to define a constructor with an
IlvInputStream parameter. Otherwise, you will not be able to read the object from a stream.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 666

Creating a new graphic object class

The procedure for creating a new graphic object class comprises stages for defining methods
to deal with geometric properties and drawing and stages for making the object persistent.

The stages are as follows:

1. Stage 1 - Creating the class

2. Stage 2 - Defining the Constructors

3. Stage 3 - Overriding the draw Method

4. Stage 4 - Overriding the boundingBox method

5. Stage 5 - Overriding the applyTransform method

6. Stage 6 - Overriding the copy method

7. Stage 7 - Defining accessors

This example creates the class ShadowEllipse. The complete source code of the
ShadowEllipse example is available at <installdir> /jviews-framework86/codefragments/
shadow-ellipse/src/ShadowEllipse.java.

Stage 1 - Creating the class
To create the class:

1. Create a file named ShadowEllipse.java that defines the new class and the necessary
overloaded methods. Not every method needs to be overloaded.

2. Add the following statements at the beginning of your file:

import ilog.views.*;
import ilog.views.io.*;
import ilog.views.graphic.*;
import java.awt.*;
import java.io.*;

These statements allow you to use the basic, the input/output, and the graphic packages
of the IBM® ILOG® JViews library.

3. Define a class that inherits from the IlvGraphic class.

This class has two colors: one for the ellipse and one for the shadow. It also defines
the thickness of the shadow.

4. Define the bounding rectangle of the object.

For this, you add a member variable named drawrect of type IlvRect.

import ilog.views.*;
import ilog.views.io.*;
import ilog.views.graphic.*;
import java.awt.*;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 67

import java.io.*;

/**
* A shadow ellipse object. A graphic object defined by two
* ellipses: The main ellipse and a second ellipse of the same
* size underneath the first one that represents a shadow.
*/
public class ShadowEllipse
extends IlvGraphic
{
/**
* The definition rectangle of the ellipse.
* This rectangle is the bounding rectangle of the
* graphic object.
*/
protected final IlvRect drawrect = new IlvRect();
/**
* The color of the ellipse.
*/
private Color color = Color.blue;
/**
* The color of the shadow.
*/
private Color shadowColor = Color.black;
/**
* The thickness of the shadow.
*/
private int thickness = 5;

Stage 2 - Defining the Constructors

♦ Define a constructor to create a new shadow ellipse. These constructors simply set
the value of the definition rectangle or create a new ShadowEllipse from an existing
ShadowEllipse instance:

/**
* Creates a new shadow ellipse.
* @param rect the bounding rectangle of the shadow ellipse.
*/
public ShadowEllipse(IlvRect rect)
{
super();
// Stores the bounding rectangle of the object.
drawrect.reshape(rect.x, rect.y, rect.width, rect.height);

}

/**
* Creates an ellipse by copying another one.
* @param source the object to copy.
*/
public ShadowEllipse(ShadowEllipse source)
{
// First call the superclass constructor

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 668

// that will copy the information of the superclass.
super(source);

// Copies the bounding rectangle.
drawrect.reshape(source.drawrect.x, source.drawrect.y,

source.drawrect.width, source.drawrect.height);
// Copies the color and the color of the shadow.
setColor(source.getColor());
setShadowColor(source.getShadowColor());
// Copies the thickness
setThickness(source.getThickness());

}

Stage 3 - Overriding the draw Method

♦ Draw the object by calling some of the primitive methods contained in the AWT
Graphics class.

/**
* Draws the object.
* Override the draw method to define the way the object will appear.
* @param dst The AWT object that will perform the
* drawing operations.
* @param t This parameter is the transformer used to draw the object.
* This parameter may be a translation, a zoom or a rotation.
* When the graphic object is drawn in a view (IlvManagerView),
* this transformer is the transformer of the view.
*/
public void draw(Graphics dst, IlvTransformer t)
{
// First copy the rectangle that defines the bounding
// rectangle of the object so that it is not modified.

IlvRect r = new IlvRect(drawrect);

// To compute the bounding rectangle of the object in
// the view coordinate system, apply the transformer ’t’
// to the definition rectangle.
// The transformer may define a zoom, a translation or a rotation.

// applyFlooris used so the resulting rectangle
// is correctly projected for drawing in the view.
// The object’s coordinate system is defined by ’float’ values
// Need ’int’ values to be able to draw. applyFloor will
// apply the transformation to ’r’ and then call Math.floor to
// translate ’float’ values to ’int’ values.
if (t != null)
t.applyFloor(r);

else
r.floor();

// The variable ’r’ now contains the bounding rectangle

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 69

// of the object in the view’s coordinate system ready to
// draw in this rectangle. In this rectangle, two ellipses
// are drawn: first the shadow ellipse on the bottom
// right corner of the definition rectangle, then the main
// ellipse on the top-left corner. Each ellipse will be of size
// (r.width-thickness, r.height-thickness).

int thick = thickness;

// Computes a correct value for thickness.
// Since the size of the ellipses should
// be (r.width-thickness, r.height-thickness), need to
// check that the thickness is not too big.

if ((r.width <= thick) || (r.height <= thick))
thick = (int)Math.min(r.width, r.height);

// Sets the size of the ellipses.
r.width -= thick;
r.height -= thick;

// ’r’ now contains the bounding area of the main ellipse.

// Computes a rectangle to draw the shadow.
// Copy the variable ’r’, needed for the
// second ellipse.
IlvRect shadowRect = new IlvRect(r);
shadowRect.translate(thick, thick);

// Draws the shadow ellipse
dst.setColor(getShadowColor());
dst.fillArc((int)shadowRect.x,

(int)shadowRect.y,
(int)shadowRect.width,
(int)shadowRect.height,
0, 360);

// Draws the main ellipse.
dst.setColor(getColor());
dst.fillArc((int)r.x,

(int)r.y,
(int)r.width,
(int)r.height,
0, 360);

}

The method draw fills the two ellipses. The bounding rectangle, drawrect, actually covers
both ellipses.

The AWT methods, such as fillArc, require all coordinates to be integers. In IBM®
ILOG® JViews, however, the bounding box of a graphic object is defined by float

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 670

values. To convert coordinates from float to int, use the applyFloor and floor
methods of the IlvTransformer class.You must use the same technique to ensure
that the other objects comply with the library.

Stage 4 - Overriding the boundingBox method

♦ Define the method boundingBox to transform the bounding box. It creates a copy of
the rectangle drawrect even if the transformer is null. This is so the returned rectangle
can be modified by IBM® ILOG® JViews.

/**
* Computes the bounding rectangle of the graphic
* object when drawn with the specified transformer.
*/
public IlvRect boundingBox(IlvTransformer t)
{
// First copy the definition rectangle
// so that it is not modified.
IlvRect rect = new IlvRect(drawrect);
// Apply the transformer on the rectangle to
// translate to the correct coordinate system.
if (t != null) t.apply(rect);
return rect;

}

Stage 5 - Overriding the applyTransform method

♦ Override the applyTransform method to apply a transformation to the shape of the
ShadowEllipse rectangle.

public void applyTransform(IlvTransformer t)
{
// This method is called by method such as IlvGraphic.move
// IlvGraphic.rotate or IlvGraphic.scale to modify the
// shape of the object. For example, when this method
// is called from IlvGraphic.move, the parameter 't' is the
// corresponding translation.
// Simply need to apply the transformer to
// the definition rectangle of the object.
t.apply(drawrect);

}

Stage 6 - Overriding the copy method

♦ Override the copy method to call the ShadowEllipse copy constructor to make a new
instance.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 71

/**
* Copies the object.
*/
public IlvGraphic copy()
{
// Simply call the copy constructor that is defined above.
return new ShadowEllipse(this);

}

Stage 7 - Defining accessors

♦ Add public accessors to the graphic object. These accessors deal with thickness and
color. They appear in bold type in the following code example.

/**
* Changes the thickness of the shadow ellipse
* @param thickness the new thickness
*/
public void setThickness(int thickness)
{
this.thickness = thickness;

}

/**
* Returns the thickness of the shadow ellipse
* @return the thickness of the object.
*/
public int getThickness()
{
return thickness;

}

/**
* Changes the color of the ellipse.
* @param color the new color.
*/
public void setColor(Color color)
{
this.color = color;

}

/**
* Returns the color of the shadow ellipse
* @return the color of the object.
*/
public Color getColor()
{
return color;

}

/**
* Changes the color of the shadow

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 672

* @param color the new color
*/
public void setShadowColor(Color color)
{
this.shadowColor = color;

}

/**
* Returns the color of the shadow
* @return the color of the shadow
*/
public Color getShadowColor()
{
return shadowColor;

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 73

Testing for a point inside an object

When drawing IBM® ILOG® JViews graphic objects you often need to validate the presence
of a point inside the object. The ShadowEllipse example implements the containsmethod.
It returns true if the specified point is located within the main ellipse. All the coordinates
are specified relative to the coordinate system of the view.

/**
* Tests whether a point lies within the shape of the object.
* This method will be called when you click on the object.
* @param p The point where user clicks in the object’s coordinate system.
* @param tp Same point as ’p’ but transformed by transformer ’t’
* @param t The transformer used to draw the object.
*/
public boolean contains(IlvPoint p, IlvPoint tp,

IlvTransformer t)
{
// Allow the user to click on the main ellipse
// but not on the shadow ellipse.
// This method will return true when the clicked point is
// on the main ellipse.
// First compute the bounding rectangle of the main
// ellipse in the view coordinate system, just like in the
// method draw.
IlvRect r = new IlvRect(drawrect);

if (t != null)
t.apply(r);

int thick = thickness;

if ((r.width <= thick) || (r.height <= thick))
thick = (int)Math.min(r.width, r.height);

r.width -= thick;
r.height -= thick;

// Then call PointInFilledArc that will return true
// if the point is in the ellipse. ’r’ and ’tp’ are both
// in the view coordinate system.
return IlvArcUtil.PointInFilledArc(tp, r, (float)0, (float)360);

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 674

Saving and loading the object description

To save and read an object in an IBM® ILOG® JViews formatted file, you need to implement
the write method and a constructor that takes an IlvInputStream parameter.

The recommended way to serialize any IlvManager object is through IVL
serialization and not Java™ serialization. Serialization cannot work for managers

Important:

that contain graphic objects such as IlvIcon or some other classes, since these
classes manage internally Java SE objects that are not serializable.

The write method
The method write writes the colors of the object, the dimensions of the rectangle, and the
thickness of the shadow to the provided output stream:

/**
* Writes the object to an output stream.
*/
public void write(IlvOutputStream stream)
throws IOException

{
// Calls the super class method that will write
// the fields specific to the super class.
super.write(stream);
// Writes the colors.
stream.write("color", getColor());
stream.write("shadowColor", getShadowColor());
// Writes the thickness.
stream.write("thickness", getThickness());
// Writes the definition rectangle.
stream.write("rectangle", drawrect);

}

In the write method, the write method of the superclass is called to save the information
specific to the superclass. Then the write methods of the class IlvOutputStream are used
to save the information specific to the class.

The read constructor
To read a graphic object from a file, you must provide a specific constructor with an
IlvInputStream parameter. This constructor must be public to allow the file reader to call
it. Also, the constructor must read the same information, and in the same order, as that
written by the write method.

/**
* Reads the object from an IlvInputStream

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 75

* @param stream the input stream.
* @exception IlvReadFileException an error occurs when reading.
*/
public ShadowEllipse(IlvInputStream stream) throws

IlvReadFileException
{
// Calls the super class constructor that reads
// the information for the super class in the file.
super(stream);
// Reads the color.
setColor(stream.readColor("color"));
// Reads the shadow color.
setShadowColor(stream.readColor("shadowColor"));
// Reads the thickness
setThickness(stream.readInt("thickness"));
// reads the definition rectangle.
IlvRect rect = stream.readRect("rectangle");
drawrect.reshape(rect.x, rect.y, rect.width, rect.height);

}

The above constructor calls the read constructor of the superclass which reads the
information specific to the superclass from the stream object. The subclass can then read
its own information. The constructor uses the read methods defined in the class
IlvInputStream

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 676

Named properties

Another kind of user property, called named property, can also be set on a graphic object.
A named property is an instance of the class IlvNamedProperty. This class is an abstract
class; it must be subclassed for your own needs. The difference between a named property
and a user property is mainly that this type of property is named and can be saved with the
graphic object in an .ivl file when the graphic object is saved. Note that a named property
can also be stored in the manager or in a layer object, which is described in Layers.

To store a named property in a graphic object, use:

void setNamedProperty(IlvNamedProperty)

To get a named property, use:

void getNamedProperty(String name)

The following example shows a named property.

import ilog.views.*;
import ilog.views.io.*;

public class MyNamedProperty extends IlvNamedProperty
{
String value;

public MyNamedProperty(IlvInputStream stream) throws IlvReadFileException
{
super(stream);
this.value = stream.readString("value");

}

public MyNamedProperty(String name, String value)
{
super(name);
this.value = value;

}

public MyNamedProperty(MyNamedProperty source)
{
super(source);
this.value = source.value;

}

public IlvNamedProperty copy()
{
return new MyNamedProperty(this);

}

public boolean isPersistent()

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 77

{
return true;

}

public void write(IlvOutputStream stream) throws IOException
{
super.write(stream);
stream.write("value", value);

}

}

This named property defines a member variable value of type String to store the value of
the property.

Several methods have been created to allow the storage of the property in an .ivl file:

♦ The method isPersistent of the named property returns true.

♦ The method write is used to store the object in an .ivl file.

This method is overridden to store the string in the member variable value.Note that the
super.write call is mandatory for a correct storage of the property.

♦ The class defines a public constructor with an IlvInputStream parameter.

This constructor is used to reload the property from the .ivl file.

The complete name of the class (including the name of the package) will be
stored in the .ivl file. Therefore, if you change the name of the class, the

Note:

property can no longer be loaded. Also, the class must be a public class to be
saved in an .ivl file. Otherwise, it is impossible for the .ivl file reader to
instantiate the class.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 678

Managers

Describes how to coordinate a large quantity of graphic objects through the use of a manager,
that is, through the IlvManager class and its associated classes.

In this section

A manager
Describes what a manager is with a diagram.

A manager view
Explains the purpose of a manager view and how it operates.

Layers
Explains the purpose of layers and how they operate.

Handling input events: interactors and accelerators
Describes how all input events are handled by means of an interactor or an accelerator.

Input/output
Describes the set of methods for writing graphic object descriptions to a file and reading
them to a file.

Class diagram for IlvManager
Describes the relationships between the main manager classes with a class diagram.

Multiple manager views
Explains the purpose of multiple manager views and how to create them.

© Copyright IBM Corp. 1987, 2009 79

Binding views to a manager
Describes how to use manager views.

Managing layers
Explains how to use layers.

Managing graphic objects
Describes how to assign graphic objects to a manager.

Selection in a manager
Describes how to select objects through the manager and display them as selected.

Hover highlighting in a manager
Describes how to use hover highlighting in a top-level manager.

Blinking of graphic objects
Describes the three types of blinking mode supported by IBM® ILOG® JViews.

Managing input events
Describes how to handle input events using an interactor on the view or on a graphic object.

Saving and reading
Describes the facilities for saving and loading the contents of a manager.

File formats
Describes the file formats supported by JViews Framework.

Drawing Exchange Format (DXF)
Describes how to use and customize DXF.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 680

A manager

A manager is the data structure that contains the graphic objects.

A manager organizes graphic objects in multiple storage places and coordinates the
interactions between the display of graphic objects in multiple views, as illustrated in the
following figure.

Manager concept

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 81

A manager view

Amanager view is the AWT component where the graphic objects of a manager are displayed.

To display graphic objects contained in a manager, you create at least one view, and often
multiple views. Themanager lets you connect as many views as you require to display graphic
objects. The creation of a view is shown in Creating a manager and a view.

A geometric transformation can be associated with each view so that you can display any
portion of the global space where your graphic objects are located with appropriate scales
(zooming) and rotations for each view. See View transformation.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 682

Layers

To organize graphic objects in a manager you place them in multiple storage areas called
layers.

Each graphic object stored in a layer is unique to that layer and can be stored only in that
layer.

Instances of the IlvManager class handle a set of graphic objects derived from the IBM®
ILOG® JViews class called IlvGraphic.. The different graphic objects stored throughout
the manager all share the same coordinate system. For this reason, a manager is a tool
designed to handle objects placed on different priority levels. “Priority level” here means
that objects stored in a higher screen layer are displayed in front of objects in lower layers.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 83

Handling input events: interactors and accelerators

Interactors
An IlvManager instance responds to user actions according to the state of the manager
when a certain input event occurs, and also according to the position and shape of the object
that receives the event.

IlvManager actions can be either global (that is, applied to a whole view through instances
of classes derived from IlvManagerViewInteractor) or local (applied to an object or a set
of objects in a view through instances of classes derived from IlvObjectInteractor).

The manager associates an interactor object, that is, an instance of the
IlvManagerViewInteractor class, with each view. This interactor object processes events
that are intended for that particular view. If the manager has not associated an interactor
object with a view, then each event is handled by the interactor object associated with the
graphic object that received the event. In this case, the interactor object belongs to the
IlvObjectInteractor class, which manages the events for a particular object.

Accelerators
If no object is indicated when the event is received, or, if it has no associated
IlvObjectInteractor, the manager tries to apply an accelerator, which is a direct call of
a user-defined action, such as the pressing of a certain key sequence. In fact, in certain
situations, the best solution is to establish a generic action for all the objects associated
with a single event sequence so that, for example, pressing Ctrl+Z causes the view to zoom.
To do this, IBM® ILOG® JViews allows you to associate direct actions with events. These
actions, which are bound neither to the view nor to the object that was clicked, are called
accelerators.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 684

Input/output

The IlvManager class has a set of methods to read and write graphic object descriptions to
a file. Manager properties, such as the layer or name of an object, can also be read and
written.

The recommended way to serialize any IlvManager object is through IVL
serialization and not Java™ serialization. Serialization cannot work for managers

Important:

that contain graphic objects such as IlvIcon or some other classes, since these
classes manage internally Java SE objects that are not serializable.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 85

Class diagram for IlvManager

The following UML class diagram summarizes the relationships between IlvManager,
IlvGraphic, IlvManagerLayer, and IlvManagerView.

The manager contains a number of manager views that in turn contain graphic objects as
elements. The layer of a graphic object can be queried and manipulated by the API on the
IlvManager. The contents of the manager are displayed by amanager view. Multiple manager
views can be attached to the same manager.

The classes related to IlvManager

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 686

Multiple manager views

Attaching multiple views to a manager allows your program to display graphic objects
simultaneously in various configurations.

Multiple views bound to a manager

To bind a view to a manager, you simply need to create a manager view, an instance of the
class IlvManagerView. The constructors of IlvManagerView take an IlvManager parameter.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 87

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 688

Binding views to a manager

Describes how to use manager views.

In this section

Creating a manager and a view
Describes how to create a manager and one view.

Listener for the views of a manager
Presents the listeners to events constituting changes to a manager view.

View transformation
Describes the role of the transformer in displaying an area of the manager in a view.

Scrolled manager view
Describes the way to have a manager view with scroll bars.

Managing double buffering
Describes how to implement double buffering.

The manager view grid
Describes how to implement a grid with snap-to functionality.

Class diagram for IlvManagerView
Describes the relationships between the main manager view classes with a class diagram.

Manager view repaint skipper
Describes how to skip some repaint requests for performance reasons.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 89

Creating a manager and a view

The following code creates a manager and a view:

Frame frame= new Frame("JViews");
IlvManager mgr = new IlvManager();
IlvManagerView view = new IlvManagerView(mgr);
frame.add("Center", view);
frame.setSize(200,200);
frame.setVisible(true);

The class IlvManagerView. is a subclass of the AWT class java.awt.Container. A manager
view is visible when added to a parent container, that is an AWT Frame or a Swing JFrame.
It becomes invisible when removed from a visible parent container.

To obtain a list of all the views attached to a manager, use the following IlvManagermethod:

Enumeration getViews()

You may also retrieve and change the manager displayed by a particular view using the
following methods of the class IlvManagerView:

IlvManager getManager()

void setManager(IlvManager manager)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 690

Listener for the views of a manager

ManagerViewsChangedEvent
When a view is attached or detached from a manager, a ManagerViewsChangedEvent event
is fired by themanager. A class must implement the ManagerViewsChangedListener interface
to be notified that an IlvManagerView has been attached or detached from the manager.
This interface contains only the viewChangedmethod, which is called for each modification:

void viewChanged(ManagerViewsChangedEvent event)

To be notified, a class implementing this interface must register itself using the following
method of the class IlvManager:

void addManagerViewsListener(ManagerViewsChangedListener l)

ManagerChangedEvent
When the manager displayed by a view changes, as a result to a call to setManager on the
view, the view fires a ManagerChangedEvent. A class must implement the
ManagerChangedListener interface in order to be notified that the manager of the view has
changed and must register itself on the view using the addManagerChangedListener(ilog.
views.event.ManagerChangedListener) method of the IlvManagerView. You can also
specify that the listener no longer be notified of such events using the
removeManagerChangedListener(ilog.views.event.ManagerChangedListener) method.

When the manager of a view changes, the view calls the managerChanged method of the
listeners.

void managerChanged(ManagerChangedEvent event)

This method is called with an instance of the class ManagerChangedEvent as a parameter
containing information on the new and the old manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 91

View transformation

Each manager view (class IlvManagerView) has its own transformer to define the area of
the manager that the view is displaying and also to define the zoom level and rotation applied
to objects.

You may retrieve the current transformer of a view using the following method:

IlvTransformer getTransformer()

To modify the transformer associated with a view, use the following methods:

void setTransformer(IlvTransformer t)

void addTransformer(IlvTransformer t)

void translate(float deltax, float delaty, boolean redraw)

void zoom(IlvPoint, double, double, boolean)

void fitTransformerToContent()

void ensureVisible(IlvPoint p)

void ensureVisible(IlvRect rect)

To avoid distorting the image when it is zoomed in or out, you can specify that the vertical
and horizontal aspect ratio remain the same by using the following methods:

boolean isKeepingAspectRatio()

void setKeepingAspectRatio(boolean set)

When the KeepingAspectRatio property is on, the view ensures that the horizontal and
vertical scaling are always the same, whatever transformer you set in the view.

Example: Zooming a view
The following code zooms a view in by a scale factor of 2:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 692

managerView.zoom(point, 2.0, 2.0, true);

The point given as an argument keeps its position after the zoom. The last parameter forces
the redrawing of the view.

Transformer listeners
When the transformer of a view changes, the view fires a TransformerChangedEvent event.
A class must implement the TransformerListener interface to be notified that the
transformer of the view has changed, and must register itself using the
addTransformerListener(ilog.views.event.TransformerListener) method of
IlvManagerView. You can also specify that the listener no longer be notified of such events
using the removeTransformerListener(ilog.views.event.TransformerListener)method.

When the transformer of a view changes, the view calls the transformerChanged method
of all listeners.

void transformerChanged(TransformerChangedEvent event)

This method is called with an instance of the class TransformerChangedEvent as a parameter.
The event parameter can be used to retrieve the old and the new value of the transformer.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 93

Scrolled manager view

The library provides a convenience class that handles a manager view with two scroll bars
in an AWT application: IlvScrollManagerView. This class automatically adjusts the scroll
bars according to the area defined by the graphic objects contained in the manager. An
equivalent object exists to be integrated into a Swing application: IlvJScrollManagerView

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 694

Managing double buffering

Double buffering is a technique that is used to prevent the screen from flickering in an
unpleasant manner when many objects are being manipulated. Since the manager view is
implemented as a lightweight component, that is, as a direct subclass of java.awt.Container,
it cannot handle double buffering by itself. To use double buffering in an AWT environment,
the manager view must be the child of a heavyweight component, specially designed to
handle double-buffering for instances of IlvManagerView. These components can be of the
IlvManagerViewPanel or of the IlvScrollManagerView class.

Themethods of the IlvManagerViewPanel and the IlvScrollManagerView class that handle
double-buffering are:

boolean isDoubleBuffering()

void setDoubleBuffering(boolean set)

In a Swing application, the manager view is embedded in a JComponent. JComponent objects
have their own double-buffering mechanism:

jcomponent.setDoubleBuffered(true);

When you add an IlvManagerView into an IlvJManagerViewPanel or an
IlvJScrollManagerView, local double buffering in the IlvManagerView instance is disabled
and Swing double buffering is used instead. In specific situations, when Swing double
buffering is disabled, enable IlvManagerView local double buffering by calling
setDoubleBuffering(boolean) after the view has been added to the Swing component.

Example: Using double buffering
This example creates a standard IlvManagerView, associates it with an IlvManagerViewPanel,
and sets the double-buffering mode:

IlvManager mgr = new IlvManager();
IlvManagerView v = new IlvManagerView(mgr);
IlvManagerViewPanel panel = new IlvManagerViewPanel(v);
panel.setDoubleBuffering(true);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 95

The manager view grid

Most editors provide a snapping grid that forces the objects to be located at specified
locations. The coordinates where the end user can move the objects are called grid points.
The class IlvGrid provides this functionality.

An instance of the class IlvGrid can be installed on each manager view. The view provides
methods to set or retrieve the grid:

public void setGrid(IlvGrid grid)

public IlvGrid getGrid()

The following code installs a grid on a view with a vertical and horizontal grid point spacing
of 10. The last two parameters are set to true to specify that the grid is visible and active:

mgrview.setGrid(new IlvGrid(Color.black, new IlvPoint(), 10f, 10f, true, true)
);

When a grid is installed on a view, the standard IBM® ILOG® JViews editing interactors,
such as those for creating, moving, or editing an object, snap objects to the grid automatically.

These operations are not performed by the manager, but by the interactor itself. If you want
to implement this mechanism in a new interactor you create, use the following method of
the IlvManagerView class in the code of your new interactor:

public final void snapToGrid(IlvPoint point)

This methodmoves the IlvPoint argument to the closest point on the grid if a grid is installed
and active. Otherwise, it does nothing.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 696

Class diagram for IlvManagerView

The following UML class diagram summarizes the relationships between IlvManagerView,
IlvTransformer, IlvGrid, and IlvManagerViewInteractor. The manager view can be
contained in an IlvManagerViewPanel or in an IlvScrollManagerView object; for Swing
applications use IlvJManagerViewPanel and IlvJScrollManagerView. The manager view
contains a local IlvTransformer that allows the user to zoom into the view. Optionally, the
manager view can contain an IlvGrid. The IlvManagerViewInteractor class handles all
interactions that are specific to the view.

The Classes Related to IlvManagerView

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 97

Manager view repaint skipper

To improve repaint performance, the manager view allows you to skip some of the repaint
requests.

When you manipulate a graphic object in a manager view, the repaint requests are sent to
all views that are attached to the same manager. The view in which you are manipulating
the graphic object should be refreshed as often as possible, so that you receive feedback on
your manipulation in real time. This view is called the main view.

During the manipulation, it is unlikely that you would pay attention to the other views
attached to the samemanager. Therefore, it is not essential to keep refreshing these auxiliary
view as often as the main view. It is the main view that holds the focus of the manipulation.

In a typical configuration you have the main view showing a region of a large map and an
auxiliary overview showingwhere the region occurs in themap.When you zoom ormanipulate
objects in the main view, you do not need the overview to be refreshed as often as the main
view.

To save CPU processing time and to gain fluidity in the main view, the refresh rate of the
auxiliary views can be reduced.

When the refresh delay is set, the manager view will skip some repeated repaint requests
if the delay has not elapsed since the last time the view was refreshed. You can adjust the
setting of this parameter between 300ms and 800ms according to your needs. For example,
to set the delay to 300ms, use the manager view method:

setRepaintSkipThreshold(long)(300);

The default value is 0, which disables this feature.

You should use this feature with caution. In certain circumstances it might skip
some desired repaint requests and pollute the view until the delay elapses.

Important:

To avoid skipping desired repaints, you can temporarily turn the view repaint mode to
DIRECT_REDRAW. Repaints are skipped only under THREADED_REDRAW mode.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 698

Managing layers

Explains how to use layers.

In this section

Layers in a manager
Explains how to organize objects into various layers in a manager.

Setting up layers
Explains how to create, access, and modify layers.

Layers and their graphic objects
Explains how to place objects in specific layers and make them visible and selectable.

Listener for layer changes in a manager
Describes how to implement a listener for a layer.

Triple buffering layers
Describes how to implement triple buffering for applications with a static background.

Caching layers
Describes how to cache any layers without the constraints of triple buffering and how to
combine this feature with triple buffering.

Manipulating the drawing order
Describes how to change the drawing order to get certain objects in front of others.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 99

Layers in a manager

Layers are storage places for graphic objects in a manager. Each layer, with its graphic
objects, is unique to a single manager and can only be controlled by this manager.

When you store graphic objects in layers, you indicate their placement throughout multiple
layers. When you display graphic objects stored in multiple layers, you present layer contents
in a series of one or several views, with each view controlled by and specific to the same
manager.

Various methods let you manipulate layers or the objects that they own. When redrawing
takes place, a layer with the number N is placed in front of layers with numbers from N-1
to zero.

Inherent to the notion of layers is the concept of visual hierarchy among graphic objects
stored in layers and displayed in views. In general, graphic objects of a more static nature,
such as objects that might serve as shading or background for your IBM® ILOG® JViews
programs, should be put in a lower layer of the manager. Those graphic objects of a dynamic
nature, such as objects with which users interact, should typically be put in a higher layer
so that they are not hidden.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6100

Setting up layers

Layers are handled internally by the class IlvManagerLayer. Layers can be accessed by
their index or by their instance (a pointer to an IlvManagerLayer). By default, a manager
is created with one layer. However, you can specify how many layers you want to create for
a manager in the second parameter of the IlvManager constructor.

Once the manager has been created, you can modify the number of layers using the following
methods:

void addLayer(int index)

void removeLayer(int index, boolean redraw)

and retrieve the number of layers with:

int getLayersCount()

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 101

Layers and their graphic objects

When an object is added to a manager, you can specify the index of the layer where it should
be inserted.

The following method adds the specified graphic object to the specified layer:

void addObject(IlvGraphic obj, int layer, boolean redraw)

To retrieve the index of the layer that contains a certain graphic object, use the following
method:

int getLayer(IlvGraphic obj)

To change the layer, use the following method:

void setLayer(IlvGraphic obj, int newLayer, boolean redraw)

There are two essential properties that you can specify for the objects within a layer: visibility
and scalability.

Visibility
With the following methods, you can indicate whether the objects within a certain layer
should be visible to the user:

void setVisible(int layer, boolean value, boolean redraw)

boolean isVisible(int layer)

You can also decide whether a layer is visible or not within a particular view. Refer to the
following methods:

void setVisible(IlvManagerView view, int layer, boolean set, boolean redraw)

boolean isVisible(IlvManagerView view, int layer)

Finally, you can have a visible layer in a view temporarily hide itself depending on certain
conditions, generally depending on the zoom factor. This can be achieved through an
IlvLayerVisibilityFilter that is called each time the IlvManager needs to redraw a layer.
You should implement this interface and return whether or not the layer is visible with the
isVisible method. To be active, this filter must be registered on the corresponding
IlvManagerLayer using the addVisibilityFilter(ilog.views.IlvLayerVisibilityFilter)
method.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6102

Selectability
You can specify whether objects within a layer can be selected or not using the following
methods. Objects that cannot be selected cannot be modified:

boolean isSelectable(int layer)

void setSelectable(int layer, boolean v)

For more methods dealing with layers, see the class IlvManager in the reference
documentation.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 103

Listener for layer changes in a manager

A class must implement the ManagerLayerListener interface to be notified that layers have
been inserted, removed, or moved in a manager. This interface contains four methods:

♦ layerInserted(ilog.views.event.ManagerLayerInsertedEvent)

which is called when a layer is added to a manager.

♦ layerMoved(ilog.views.event.ManagerLayerMovedEvent)

which is called when a layer is moved in a manager.

♦ layerRemoved(ilog.views.event.ManagerLayerRemovedEvent)

which is called when a layer is removed from a manager.

♦ layerChanged(ilog.views.event.ManagerLayerEvent)

which is called for other changes in a layer.

To be notified of layer modifications, a class implementing this interface must register itself
using the following method of the class IlvManager:

void addManagerLayerListener(ManagerLayerListener l)

Convenience class for listener
The class IlvManagerLayerAdapter is a convenience class. It implements the
ManagerLayerListener interface with empty methods. This is useful if you want to implement
a manager layer listener that needs only to listen to some, but not all, of the events.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6104

Triple buffering layers

Certain applications can use layers to display a static background on top of which “live”
graphic objects will be drawn and manipulated by the user.

In this type of application, the graphic objects taking part in the background are static and
are not modified by the user or the application. Thus, it is possible to draw just once for all
of the layers constituting the graphic background. This increases the drawing speed of the
application.

The process is called triple buffering. This term is used because the layers will be drawn in
an additional off screen image. Thereafter, when the view needs to be redrawn, this image
is used instead of redrawing the graphic objects.

 Unlike double buffering, triple buffering is not engaged to remove flickering but to
increase the drawing speed. Double and triple buffering can be used together.

Note:

For an instance of IlvManagerView, it is possible to indicate that a certain number of layers
will be part of the triple buffering.

This is done using the following method of IlvManagerView:

void setTripleBufferedLayerCount(int n)

When this method is called, layers with indices between 0 and n-1 (the nth background
layers) will be triple buffered.

Once the method is called and the view has been painted once, further modifications to
graphic objects will not be rendered on the screen, since only the triple buffer image will
be displayed.

Note that the triple buffer will be updated only when:

♦ The transformer of the view changes (you are zooming or panning the view).

♦ You add or remove layers.

♦ You change the number of triple-buffered layers.

♦ The triple-buffered layer visibility changes.

♦ You add graphic objects to or remove them from the triple-buffered layers.

♦ You call applyToObject(ilog.views.IlvGraphic, ilog.views.IlvApplyObject, java.
lang.Object, boolean) to make changes to the triple-buffered graphic objects on the
triple-buffered layers.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 105

Some interactors, such as the reshape interactor, call this function. Therefore,
when you reshape a graphic object on a triple-buffered layer with the mouse, the
triple buffer is invalidated.

Note:

♦ You change the visibility of the graphic objects on the triple-buffered layers.

♦ You change the triple-buffered layer on which the graphic objects are positioned.

If for any reason you need to update the triple buffer, you can use these methods:

void invalidateTripleBuffer(boolean repaint)
void invalidateTripleBuffer(IlvRect rect, boolean repaint)

To summarize, an application will use triple buffering when the contents of background
layers are static, and when the application does not require the user to zoom and pan
frequently.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6106

Caching layers

Triple buffering is used to cache a set of layers for one view. The constraint is that these
layers must be contiguous from layer 0 to layer n. If you want cache layers that are not
contiguous or a layer whose index is not 0, since JViews 8.1, IlvManagerView allows you to
cache any layer for the view concerned.

To enable or disable a layer cache for the view, you can call the following method:

void setLayerCached(int layer, boolean enabled)

To know if a given layer is cached or not, call the following method:

boolean isLayerCached(int layer)

When a layer for a view is cached, it will first draw into a buffered image of the same size
as the view. When the view needs to be repainted, the buffered image is displayed on the
screen. The buffered image must be transparent so that layers behind it are not hidden.

You can enable the cache on any layer. Usually, caches are enabled on layers having many
static graphic objects, that is, objects whose drawing does not change frequently, such as
layers containing map (cartographic) information. However, this does not mean that the
content of the cached layers cannot be changed. It just means that the speed benefit of the
cache is higher when the content of the layer changes rarely. When you make a change to
a graphic object such as inserting, removing, or applying an operation (see applyToObject
(ilog.views.IlvGraphic, ilog.views.IlvApplyObject, java.lang.Object, boolean)),
the cache is automatically invalidated.

If you hesitate between enabling the layer cache and using triple buffering, the following
facts can help you make the choice:

♦ If the layers you want to cache or to buffer are contiguous and their indexes are from 0
to n, you should use triple buffering. In this case, triple buffering gives better performance
than layer caches because the latter have to handle transparency.

♦ If the layers you want to cache or to buffer are not contiguous, you have to use layer
caches.

You can also use both features for the same view. You can triple buffer contiguous layers
from 0 to n, and in addition you can cache any layer above layer n. In this way, you will get
the best performance.

With some very rare configurations (Java ™ SE and OS), the transparent buffered
image might not give good performance. In this case, you can perform a test to see if
layer caches can improve performance.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 107

Manipulating the drawing order

When several objects overlap partially, some objects appear in front of other objects. This
effect is called drawing order or Z-order. Objects of layer N are placed in front of objects
of layers N-1 to zero. Moving objects from one layer to another is one way of influencing
the drawing order.

If there are several objects within the same layer, then these objects again have a drawing
order. Each layer has a spatial data structure called quadtree which allows you to determine
very quickly which objects are at which position. By default, the quadtree is enabled and
determines the drawing order automatically in order to achieve optimal performance. In
this case, the drawing order cannot be influenced.

If you want to specify the drawing order of objects within the same layer, you must first
enable the Z-ordering option of the layer, by using the following method:

setZOrdering(boolean enable)

When Z-ordering is enabled for the layer, you can specify the drawing order of the objects
within the layer:

setIndex(IlvGraphic object, int index)

Note that the index is always a continuous range from 0 to N. This means that if you set the
index of an object, the index of other objects will shift by +1 or -1 to adjust the index range.
The current index can be retrieved by

getIndex(IlvGraphic object)

When Z-ordering is enabled, objects with a higher index appear in front of objects of the
same layer with a lower index.

The drawing order between different layers takes precedence over the drawing order
within each layer: An object that is in a higher-numbered layer is drawn in front of

Note:

another object in a lower-numbered layer even if the Z-order index of the first object
is smaller than Z-order index of the second object. Therefore, the Z-order index
determines only the drawing order of objects within the same layer.

Scenarios for experts
There are basically three scenarios:

♦ The quadtree is enabled and Z-ordering is disabled. This results in the highest
performance. In particular the hit-test (determining which objects are at a given position)
is optimally fast. However, it is not possible to influence the drawing order within each
layer.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6108

♦ The quadtree is enabled and Z-ordering is enabled. This is slightly slower, depending on
how many objects overlap in average. The hit-test uses the quadtree and is still fast. It
is possible to specify the drawing order completely.

♦ The quadtree is disabled. No matter whether Z-ordering is enabled or disabled, it results
in the same speed, which is a large magnitude slower than when the quadtree is enabled.
When the quadtree is disabled, it is also possible to specify the drawing order.

A test with 10000 objects showed that enabling Z-ordering slows down the hit-test in average
by a factor of 1.2-5, but disabling the quadtree slows down the hit-test by a factor of 20-70.
These factors depend on the number of objects, and the factors are negligible if you have
only a very few objects. Furthermore, if Z-ordering is enabled, the slowdown is mainly
influenced by the overlapping depth (the number of objects that are overlapping cover
exactly the same location): the higher the overlapping depth, the larger the slowdown of
enabled Z-ordering.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 109

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6110

Managing graphic objects

Describes how to assign graphic objects to a manager.

In this section

Adding objects to a manager and removing them
Describes how to add a graphic object to a manager and remove it, and how to find out how
many objects are managed by the manager.

Modifying geometric properties of objects
Describes how to modify the geometric properties of objects using a manager method.

Applying functions
Describes how to apply a user-defined function to objects.

Editing and selecting properties
Describes how to specify the editing properties of an object.

Optimizing drawing tasks
Describes how drawing tasks can be minimized.

Listener for the content of the manager
Describes how to listen for changes to the content of a manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 111

Adding objects to a manager and removing them

The purpose of the manager is to manage a large set of graphic objects. Each graphic object
can be managed by only one manager at a time, which means that you cannot add the same
graphic object to two different managers.

The following methods allow you to add a graphic object to a manager.

void addObject(IlvGraphic obj, int layer, boolean redraw)

void addObject(IlvGraphic obj, boolean redraw)

The following is an example that creates a rectangle object and adds it to a manager:

IlvManager mgr = new IlvManager();
IlvGraphic obj = new IlvRectangle(new IlvRect(10,10,100,100));
mgr.addObject(obj, false);

The second addObjectmethod does not specify the layer where the object must be inserted.
The reason for this is that there is a default insertion layer which allows you to add objects
without specifying the layer at every call. The initial value for the default insertion layer is
0 but it can be modified using the following methods:

int getInsertionLayer()

void setInsertionLayer(int layer)

Once an object has been added to a manager, you can remove it with:

void removeObject(IlvGraphic obj, boolean redraw)

You can also remove the objects from the manager or from a specific layer using one of the
following methods:

void deleteAll(boolean redraw)

void deleteAll(int layer, boolean redraw)

The following method can be used to know whether a graphic object is managed by the
current manager:

boolean isManaged(IlvGraphic obj)

You can access all the objects of the manager or of a specified layer using one of the following
methods:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6112

IlvGraphicEnumeration getObjects()

IlvGraphicEnumeration getObjects(int layer)

These methods return an IlvGraphicEnumeration object facilitating the enumeration of the
contents of the manager (or layer). You may use it in the following manner:

IlvGraphicEnumeration objects = manager.getObjects();
IlvGraphic obj;
while(objects.hasMoreElements()) {

obj = objects.nextElement();
//perform some action

}

When stepping through the contents of the manager (or layer) by means of an
enumeration, you must not modify the contents of the manager by adding or removing
objects or layers. Doing so may lead to unpredictable results.

Note:

Other useful methods will give you the number of objects in the manager or in a layer:

int getCardinal()

int getCardinal(int layer)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 113

Modifying geometric properties of objects

For every operation that leads to a modification of the bounding box of a graphic object,
you must use the applyToObject(ilog.views.IlvGraphic, ilog.views.IlvApplyObject,
java.lang.Object, boolean) method of the IlvManager class. As this method notifies the
manager of the modification of the bounding box, you never directly call the moveObject
and reshapeObject methods of IlvGraphic:

void moveObject(IlvGraphic obj, float x, float y, boolean redraw)

void reshapeObject(IlvGraphic obj, IlvRect newrect, boolean redraw)

For these basic operations, the manager has methods that call applyToObject for you:

Example: Moving an object
The following code gets a reference to an object named test from the manager. If the object
exists, it is moved to the point (10, 20) and redrawn (fourth parameter set to true).

IlvGraphic object = manager.getObject("test");
if (object != null)
manager.moveObject(object, 10, 20, true);

The moveObject method is equivalent to the following code:

manager.applyToObject(object,
new IlvApplyObject()
{
public void apply(IlvGraphic obj, Object arg){
IlvPoint p = (IlvPoint) arg;
obj.move(p.x, p.y);

}
},
new IlvPoint(10,20), true);

This code calls the applyToObject method with object as a parameter and an anonymous
class that implements the IlvApplyObject interface. The arg parameter is an IlvPoint
object that gives the new location of the object.

The method applyToObject is defined in the IlvGraphicBag interface, so you may call
applyToObject directly from a graphic object using:

obj.getGraphicBag().applyToObject(obj, ...);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6114

Modifying multiple graphic objects
To apply an operation to many graphic objects repeatedly, call:

void applyToObjects(IlvGraphicVector vector,
IlvApplyObject f,
Object arg,
boolean redraw)

This applies the operation specified by the IlvApplyObject f to each graphic object
contained in the input vector.

To apply complex operations that affect the bounding box of many graphic objects to many
objects once only, call:

void applyToObjects(IlvGraphicVector vector,
IlvApplyObjects f,
Object arg,
boolean redraw)

This applies the operation specified by the IlvApplyObjects f once only. This is useful for
complex operations that affect the bounding box of many objects.

The applyToObjects method is overloaded. In the first example it takes an
IlvApplyObject object as a parameter. In the second example it takes an
IlvApplyObjects (plural) object as a parameter.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 115

Applying functions

To apply a user-defined function to objects that are located either partly or wholly within a
specific region, use the following IlvManager methods:

♦ mapInside(ilog.views.IlvApplyObject, java.lang.Object, ilog.views.IlvRect,
ilog.views.IlvTransformer)

to apply a function to all graphic objects inside a specified rectangle.

♦ mapIntersects(ilog.views.IlvApplyObject, java.lang.Object, ilog.views.IlvRect,
ilog.views.IlvTransformer)

to apply a function to all graphic objects that intersect a specified rectangle.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6116

Editing and selecting properties

The IlvManager class contains the following methods, which allow you to control the editing
and selecting properties of an object added to a manager:

♦ To specify whether an object can be moved:

setMovable(ilog.views.IlvGraphic, boolean)

isMovable(ilog.views.IlvGraphic)

♦ To specify whether an object can be edited:

setEditable(ilog.views.IlvGraphic, boolean)

isEditable(ilog.views.IlvGraphic)

♦ To specify whether an object can be selected:

setSelectable(ilog.views.IlvGraphic, boolean)

boolean isSelectable(IlvGraphic obj)

These properties can be specified for graphic objects that are handled by an
IlvSelectInteractor object. An IlvSelectInteractor object allows objects to be
interactively selected in the manager, to be moved around, and to have their graphic
properties edited.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 117

Optimizing drawing tasks

A special manager feature minimizes the cost of drawing tasks to be done after geometric
operations have been performed. This is useful in situations where you want to see the
results of your work. This feature uses a region of invalidated parts of the display called the
update region. The update region stores the appropriate regions before any modifications
are carried out on objects, as well as those regions that are relevant after these modifications
have been carried out for each view.

To successfully apply an applicable function, you must mark the regions where the objects
are located as invalid, apply the function, and then invalidate the regions where the objects
involved are now located (applying the function may change the location of the objects).
This mechanism is greatly simplified by a set of methods of the IlvManager class. Regions
to be updated are only refreshed when the method reDrawViews is called. This means that
refreshing the views of a manager is done by marking regions to be redrawn in a cycle of
initReDraws and reDrawViews.

These cycles can be nested so that only the last call to the method reDrawViews actually
updates the display. The IlvManager methods that help you optimize drawing tasks are:

♦ initReDraws()

Marks the beginning of the drawing optimization operation by emptying the region to
update for each view being managed. Once this step is taken, direct or indirect calls to
a draw instruction are deferred. For every initReDraws, there should be one call to
reDrawViews, otherwise, a warning is issued. Calls to initReDraws can be embedded so
that the actual refresh only takes place when the last call to reDrawViews is reached.

♦ invalidateRegion(ilog.views.IlvGraphic)

Defines a new region as invalid, that is, this region will be redrawn later. Each call to
invalidateRegion adds the region to the update region in every view.

♦ reDrawViews()

Sends the drawing commands for the whole update region. All the objects involved in
previous calls to invalidateRegion are then updated.

♦ abortReDraws()

Aborts the mechanism of deferred redraws (for example, if you need to refresh the whole
screen). This function resets the update region to empty. If needed, you should start again
with an initReDraws call.

♦ isInvalidating()

Returns true when the manager is in an initReDraws/reDrawViews state.

This mechanism is used in the applyToObject method.

In fact the call:

manager.applyToObject(obj, func, userArg, true);

is equivalent to:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6118

manager.initReDraws();
manager.invalidateRegion(obj);
manager.applyToObject(obj, func, userArg, false);
manager.invalidateRegion(obj);
manager.reDrawViews();

The invalidateRegion method works with the bounding box of the object given as a
parameter. When an operation applied to the object modifies its bounding box,
invalidateRegion must be called twice: once before and once after the operation. For
example, for a move operation, you must invalidate the initial region where the object was
before being moved and invalidate the final region so that the object can be redrawn. In
other situations, such as changing the background, only the call after the operation is
necessary.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 119

Listener for the content of the manager

When the content of the manager changes, the manager will fire a
ManagerContentChangedEvent event. Any class can listen for the modification of the content
of the manager by implementing the ManagerContentChangedListener interface.

This interface contains only the contentsChanged method.

void contentsChanged(ManagerContentChangedEvent evt)

This method is called when an object is added to or removed from the manager, or when
the visibility, the bounding box, or the layer of a graphic object changes. A class that
implements this interface will register itself by calling the
addManagerContentChangedListener(ilog.views.event.ManagerContentChangedListener)
method of the manager.

A ManagerContentChangedEvent can be of several types depending on the type of modification
in the manager. For each type, there is a corresponding subclass of the class
ManagerContentChangedEvent. The type of the event can be retrieved with the getType
method of the class. The list of these subclasses is indicated below along with the type of
change in the manager that is responsible for it:

♦ ObjectInsertedEvent (type OBJECT_ADDED)

A graphic object has been inserted. You can retrieve the graphic object that was inserted
with the getGraphicObject method.

♦ ObjectRemovedEvent (type OBJECT_REMOVED)

A graphic object has been removed. You can retrieve the graphic object that was removed
with the getGraphicObject method.

♦ ObjectBBoxChangedEvent (type OBJECT_BBOX_CHANGED)

The bounding box of a graphic object has changed. You can retrieve the graphic object
concerned using the getGraphicObject method and the old and new bounding box with
the getOldBoundingBox and getNewBoundingBox methods.

♦ ObjectLayerChangedEvent (type OBJECT_LAYER_CHANGED)

A graphic object has changed layers. You can retrieve the graphic object concerned using
getGraphicObject and the old and new layer using the getOldLayer and getNewLayer
methods.

♦ ObjectVisibilityChangedEvent (type OBJECT_VISIBILITY_CHANGED)

The visibility of a graphic object has changed. You can retrieve the graphic object
concerned using getGraphicObject. The method isObjectVisible will tell you the new
state of the object.

A listener will cast the event depending on the type:

public void contentsChanged(ManagerContentChangedEvent event)
{

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6120

if (event.getType() == ManagerContentChangedEvent.OBJECT_ADDED) {
ObjectInsertedEvent e = (ObjectInsertedEvent)event;
IlvGraphic object = e.getGraphicObject();
....

}
}

As ManagerContentChangedEvent events can be sent very often (especially when numerous
objects are being added as in the case of reading a file), the manager provides a way to
notify the listeners that it is currently doing a series of modifications. In this case, the event
will contain a flag telling the listener that the manager is currently performing several
modifications. This flag can be tested using the isAdjusting method of the
ManagerContentChangedEvent class. The manager will notify the listeners of the end of a
series by sending a final ManagerContentsChangedEvent of type ADJUSTMENT_END.

Thus, a listener can decide to react to global modifications, but not to all individual
modifications using the following code:

public class MyListener implements ManagerContentsChangedListener
{
public void contentsChanged(ManagerContentChangedEvent event)
{

if (!event.isAdjusting()) {
// do something

}
}

}

When making numerous modifications in a manager, you may want to be able to notify the
listeners in the same way. To do so, you can use the setContentsAdjusting method of the
manager in the following way:

manager.setContentsAdjusting(true);
try {
//add a lot of objects
} finally {
manager.setContentsAdjusting(false);

}

All operations done between the two calls to setContentsAdjusting will fire a
ManagerContentChangedEvent event with the isAdjusting flag set to true. A call to the
setContentsAdjusting method with the parameter set to false can send the file
ADJUSTMENT_END event.

This mechanism can also help the internal listeners of IBM® ILOG® JViews to work in a
more efficient way, so you are recommended to use it.

Events related to imminent content changes
Since JViews 8.1, IlvManager fires events when a graphic object is about to change or about
to be deleted. These events are fired before the graphic objects are changed or deleted. To
listen for these events, you need to implement the following interface.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 121

public interface ManagerContentMonitor
extends ManagerContentChangedListener

{
public void contentAboutToChange(ManagerContentAboutToChangeEvent event);

}

As this interface extends ManagerContentChangedListener, you can install a
ManagerContentMonitor by calling addManagerContentChangedListener(ilog.views.
event.ManagerContentChangedListener). IlvManager will call the method
contentAboutToChange() that you have implemented when a graphic object is about to
change or about to be deleted.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6122

Selection in a manager

Describes how to select objects through the manager and display them as selected.

In this section

Selection objects
Explains how selection objects are used for displaying selected objects in a manager.

Managing selected objects
Describes how to select and deselect objects in a manager and perform related operations.

Creating your own selection object
Explains how a selection object is assigned and how to override the default behavior.

Listener for the selections in a manager
Describes how to be notified of changes to selections in a manager.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 123

Selection objects

The manager allows you to select objects. To display selected objects within a manager,
IBM® ILOG® JViews creates selection objects which are drawn on top of the selected
objects. An example of a selection object is a set of handles drawn around the selected object.

Selection objects are stored in themanager. Unlike regular graphic objects, they are internally
managed and cannot be manipulated.

When a graphic object is selected, a selection object is created and is drawn on top of the
graphic object. Selection objects are subclass instances of the class IlvSelection. As such,
they are also graphic objects. The class IlvSelection is an abstract class that has been
subclassed to create several classes of selection objects specialized in the selection of specific
graphic objects. For example, the class IlvSplineSelection is a selection object for the
selection of an IlvSpline object.

The default selection object for graphic objects is an instance of the class IlvDrawSelection.
This class draws eight handles around the object, one on each of the four sides and one on
each corner.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6124

Managing selected objects

To select or deselect a graphic object in a manager, use the setSelected method:

void setSelected(IlvGraphic obj, boolean select, boolean redraw)

Once an object has been selected, you can retrieve its selection object using:

IlvSelection getSelection(IlvGraphic obj)

This method returns null if the object does not have an associated selection object; in other
words, if the graphic object is not selected. You can also use the following method to
determine whether the object is selected or not:

boolean isSelected(IlvGraphic obj)

To obtain the selected object from the selection object, use the getObject() method of
IlvSelection.

You can obtain an enumeration of all the selected objects in the manager with:

IlvGraphicEnumeration getSelectedObjects()

You can use this method as follows.

IlvGraphicEnumeration selectedobjs = manager.getSelectedObjects();
IlvGraphic obj;

while(selectedobjs.hasMoreElements()) {
obj = selectedobjs.nextElement();
//perform some action

}

To avoid unpredictable results, you must not select or deselect graphic objects when
stepping through the enumeration as in the example above.

Note:

Other methods of IlvManager allow you to select and deselect all objects in the manager or
in a particular layer:

void selectAll(IlvManagerView view, boolean redraw)

void selectAll(boolean redraw)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 125

void deSelectAll(boolean redraw)

void deSelectAll(int layer, boolean redraw)

Selection interactor
The library provides the IlvSelectInteractor class which allows you to select and deselect
objects in an interactive way (using the mouse). It also allows you to edit graphic objects.
For more information, see The selection interactor.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6126

Creating your own selection object

The selection object depends on the graphic object. In fact, the manager creates the selection
object using the following method of the graphic object:

IlvSelection makeSelection()

You can override this method to return your own instance of the selection object. Another
possibility is to set an IlvSelectionFactory on the manager and let this factory decide
which subclass of IlvSelection should be instantiated depending on the graphic object.
The following is an example which creates a new selection object (a white border) around
the selected object.

class mySelection extends IlvSelection
{
static final int thickness = 3;
mySelection(IlvGraphic obj)
{
super(obj);

}

public void draw(Graphics g, IlvTransformer t)
{
g.setColor(Color.white);
IlvRect rect = boundingBox(t);
for (int i = 0; i < thickness; i++) {
if ((int)Math.floor(rect.width) >

2*i && (int)Math.floor(rect.height) > 2*i)
g.drawRect((int)Math.floor(rect.x)+i,

(int)Math.floor(rect.y)+i,
(int)Math.floor(rect.width)-2*i-1,
(int)Math.floor(rect.height)-2*i-1);

}
}

public IlvRect boundingBox(IlvTransformer t)
{
// get the bounding rectangle of the selected object
IlvRect bbox = getObject().boundingBox(t);
bbox.x-= thickness;
bbox.y-= thickness;
bbox.width+= 2*thickness;
bbox.height+= 2*thickness;
return bbox;

}

public boolean contains(IlvPoint p, IlvPoint tp, IlvTransformer t)
{
return false;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 127

}
}

You can see that the selection object is defined in the same way as a graphic object. The
constructor of a selection object always takes the selected object as a parameter. Note that
the boundingBoxmethod of the selection object uses the boundingBoxmethod of the selected
object so that the selection object (in this case, the white border) is always around the
selected object, whatever the transformer is.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6128

Listener for the selections in a manager

A class must implement the ManagerSelectionListener interface to be notified that
selections in a manager have been modified. This interface contains only the
selectionChanged method, which is called each time an object is selected or deselected.

void selectionChanged(ManagerSelectionChangedEvent event)

To be notified of selections and deselections, a class must register itself using the following
method of the class IlvManager:

void addManagerSelectionListener(ManagerSelectionListener l)

Note that the selectionChanged method is called just after the object is selected or
deselected, so you can easily determine whether it is a selection or a deselection. You do
this in the following way:

class MyListener implements ManagerSelectionListener
{
public void selectionChanged(ManagerSelectionChangedEvent event)
{
// retrieve the graphic object
IlvGraphic obj = event.getGraphic();
IlvManager manager = event.getManager();
if (manager.isSelected(obj)) {
// object was selected

} else {
// object was deselected

}
}

}

When numerous objects are being selected, for example, as a result of a call to the selectAll
method of the manager, many selection events will be sent to the selection listeners. This
can be inefficient for some listeners that need to perform an action when the selection is
stable. For example, a property inspector showing the properties of selected objects does
not need to be updated for each individual selection when a number of objects are selected
at the same time. To solve this kind of problem, the ManagerSelectionChangedEvent class
has the following methods:

♦ isAdjusting to tell you if the event is part of a series of selection events.

♦ isAdjustmentEnd to indicate that the event is the last one of a series.

In the case of a “property inspector,” the listener would be as follows:

class MyListener implements ManagerSelectionListener
{
public void selectionChanged(ManagerSelectionChangedEvent event)
{

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 129

if (!event.isAdjusting() || event.isAdjustmentEnd())
{

// update the properties only if this is a single
// selection or the end of a series.

}
}

}

You may want to use the same “adjustment” notification when selecting numerous objects
in a manager. The IlvManager class allows you to do this using the setSelectionAdjusting
method:

boolean isAdjusting = manager.isSelectionAdjusting();
manager.setSelectionAdjusting(true);
try {
// select or deselect a lot of objects.

} finally {
manager.setSelectionAdjusting(isAdjusting);

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6130

Hover highlighting in a manager

Describes how to use hover highlighting in a top-level manager.

In this section

Managing hover highlighting
Describes how to set up and enable hover highlighting.

Creating your own highlighting effect
Describes how to create a Java 2D™ image to use as a highlighting effect and how to
customize the effect.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 131

Managing hover highlighting

The manager allows you to highlight objects when the pointer hovers on top of them.

To display highlighted objects within a manager, the manager creates specific images that
are drawn on top of the selected objects as a highlighting effect. By default, hover highlighting
is not enabled. If you want to activate it, you need first to decide what highlighting effect
you want to use.

The images used as highlighting effects are transient Java 2D™ artifacts, they are internally
managed and cannot be manipulated.

Each effect is applied through a Java 2D image operation on the regular object representation,
and then displayed on top of all the objects with a set opacity.

The manager provides 5 predefined effects:

♦ Invert colors: This changes the intensity of each color component (red, green, blue). For
example, a red object will be highlighted with a yellow color.

♦ Blur: The highlighted object becomes blurred.

♦ Brighten: Every color used when drawing the object becomes brighter. This may have
no effect on objects that are already very bright.

♦ Gray scale: The colors of the object are converted into tones of grays.

♦ Sharpen: the borders of the object are accentuated.

♦ None: to remove the hover highlight effect.

A sixth effect (Custom) is detailed in Creating your own highlighting effect.

To select your hover highlight effect, call setHoverHighlightingMode.

Note: 1. The hover highlighting effect will only be used when set on a top-level manager
(See Nested managers and nested graphers for more information on nested
managers).

2. The hover highlighting mode and the operation - see Creating your own highlighting
effect are not persistent. This means that the information is not stored in .ivl files.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6132

Creating your own highlighting effect

If you do not want or cannot use (because of your color scheme, for example) a predefined
effect, you can also build your own instance of IlvHoverHighlightingImageOperation.

This class allows you to define which Java 2D™ image operation you want to use to highlight
your objects. It also contains methods to provide a filter, to indicate which objects will be
highlighted, and an opacity (or alpha) if you want to see the regular object representation
through the highlighting effect.

For example, here is an operation that will have a more blurred effect, be half transparent
and only for nongraphic bag objects.

float[] blur5Kernel = new float[5 * 5];
for (int i = 0; i < blur5Kernel.length; i++) {
blur5Kernel[i] = 1f / blur5Kernel.length;

}
IlvHoverHighlightingImageOperation myOperation=new

IlvHoverHighlightingImageOperation(
new ConvolveOp(new Kernel(5, 5, blur5Kernel)), 1));

myOperation.setAlpha(0.5f);
myOperation.setHighlightFilter(new

IlvHoverHighlightingImageOperation.NonGraphicBagFilter());

You can set your operation instance on the manager by means of
setHoverHighlightingImageOperation. The mode will then be known to the manager as
"Custom".

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 133

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6134

Blinking of graphic objects

Describes the three types of blinking mode supported by IBM® ILOG® JViews.

In this section

Introduction
Briefly introduces the blinking mode.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 135

Introduction

Blinking is the periodical change of the drawing of a graphic object. A blinking object drags
attention and can be used to indicate a specific alarm state of an object. IBM® ILOG®
JViews supports three kinds of blinking:

♦ visibility blinking: the object becomes periodically visible and invisible;

♦ color and paint blinking: the color or paint of an object changes periodically;

♦ blinking actions: an arbitrary property change is performed periodically on the object.

The blinking mode of a view determines whether a view displays the blinking effects. Usually
it is not needed to display any blinking effect on the overview, and therefore the blinking
can be switched off for this view by using the following code:

managerView.setBlinkingMode(IlvManagerView.BLINKING_DISABLED);

Visibility blinking
All graphic objects support visibility blinking. In this case, they are periodically shown and
hidden. You simply have to set the blinking timing, as in the following example:

graphic.setBlinkingOnPeriod(1000);
graphic.setBlinkingOffPeriod(2000);

The object is now shown every 3 seconds: it is visible for 1 second and hidden for 2 seconds.
All objects with the same blinking timing will blink synchronously. Since the blinking mode
requires a periodical redraw, it is recommended to use the same timing for many objects
when possible, otherwise the performance of the system will degrade by too many
non-synchronized draw operations.

The blinking of the object starts when both the "on-period" and the "off-period" are not 0.
The visibility blinking is a drawing mechanism and does not change the visible flag of the
graphic object, that is, the method isVisible()called on the graphic object remains
unchanged whether the blinking mode currently hides or shows the object.

Blinking colors and paints
The class IlvBlinkingColor represents a blinking color. It can be used as color of those
properties of IlvGraphic objects that expect a java.awt.Color as parameter and are
documented to support blinking colors. A blinking color changes the visible color periodically.

java.awt.Color color = new IlvBlinkingColor(Color.green, Color.blue, 1000,
1000);
IlvLine line = new IlvLine();
line.setForeground(color);

This line object switches periodically from green to blue every second. It is also possible to
create colors or paints that switch between multiple states:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6136

Color color = new IlvBlinkingMultiColor(1000, Color.blue, Color.red, Color.
green, Color.yellow);
Paint redGreen = new GradientPaint(0, 0, Color.red, 0, 100, Color.green);
Paint blueYellow = new GradientPaint(0, 0, Color.blue, 100, 0, Color.yellow);
Paint blackWhite = new GradientPaint(0, 0, Color.black, 0, 100, Color.white);
Paint paint1 = new IlvBlinkingPaint(redGreen, blueYellow, 1000, 2000);
Paint paint2 = new IlvBlinkingMultiPaint(1000, redGreen, blueYellow, blackWhite)
;

The first color switches from blue to red to green to yellow back to blue. paint1 switches
between 2 gradient paints, it stays 1 second red-green, then 2 seconds blue-yellow. paint2
switches every second between 3 gradient paints.

The classes IlvBlinkingColor, IlvBlinkingMultiColor, IlvBlinkingPaint,
IlvBlinkingMultiPaint can only be used in combination with Java API objects. They work
if the set method of a property expects java.awt.Color or java.awt.Paint and is
documented to support blinking colors or paints. They have no blinking effect when used
as colors for other objects such as JComponent or JPanel.

Since blinking requires a periodical redraw, it is recommended to use the same timing
for many blinking colors and paints when possible, otherwise the performance of the
system will degrade by too many non-synchronized draw operations.

Note:

Adding blinking facilities into your own IlvGraphic subclass
If you implement your own subclass of Java API, this subclass might have various colors or
paints that are used to draw specific parts of the graphic objects. To enable these colors
and paints to support blinking, you need to register them as blinking resources by calling
the method

void registerBlinkingResource(Object oldResource, Object newResource);

You must register the colors and paints whenever they change, that is, in setter methods,
copy constructors, stream-constructors and so on. Here is an example class that supports
blinking color and paint properly:

import ilog.views.internal.impl.IlvUtility2D;

/**
* A new class.
*/
public class MyClass extends IlvGraphic
{

// the default color is not a blinking color
private static Color _defaultColor = Color.black;

private Color _color = _defaultColor;
private Paint _paint = _defaultColor;

/**
* The default constructor.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 137

*/
public MyClass()
{

super();
// the default color black does not blink, hence
// no blinking resource must be registered.

}

/**
* The copy constructor.
*/
public MyClass(MyClass source)
{

super(source);
Color oldColor = _color;
Paint oldPaint = _paint;
_color = source._color;
_paint = source._paint;
registerBlinkingResource(oldColor, _color);
registerBlinkingResource(oldPaint, _paint);

// or alternatively
// setColor(source.getColor());
// setPaint(source.getPaint());
// then omit the additional calls of registerBlinkingResource

}

/**
* The input stream constructor.
*/
public MyClass(IlvInputStream stream) throws IlvReadFileException
{

super(stream);
Color oldColor = _color;
Paint oldPaint = _paint;
_color = stream.readColor("color");
_paint = stream.readPaint("paint");

registerBlinkingResource(oldColor, _color);
registerBlinkingResource(oldPaint, _paint);

// or alternatively
// setColor(stream.readColor("color"));
// setPaint(IlvUtility2D.readPaint(stream, "paint", "p"));
// then omit the additional calls of registerBlinkingResource

}

/**
* Writes the object to an IVL file.
*/
public void write(IlvOutputStream stream)

throws IOException
{

super.write(stream);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6138

stream.write("color", _color);
stream.writePaint(_paint, "paint", _defaultColor);

}

/**
* Sets the color.
* As Bean Property, you can use the property editor
* ilog.views.util.beans.editor.IlvBlinkingColorPropertyEditor
* which supports blinking.
*/
public void setColor(Color c)
{

if (c == null)
c = _defaultColor;

Color oldColor = _color;
_color = c;
registerBlinkingResource(oldColor, c);

}

/**
* Returns the color.
*/
public Color getColor()
{

return _color;
}

/**
* Sets the color.
* As Bean Property, you can use the property editor
* ilog.views.util.beans.editor.IlvBlinkingPaintPropertyEditor
* which supports blinking.
*/
public void setPaint(Paint p)
{

if (p == null)
p = _defaultColor;

Paint oldPaint = _paint;
_paint = p;
registerBlinkingResource(oldPaint, c);

}

/**
* Returns the paint.
*/
public Paint getPaint()
{

return _paint;
}

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 139

Blinking actions
Visibility blinking and color blinking are optimized cases of blinking. In general, you can
define an arbitrary action that is periodically performed on the object.

IlvMarker marker = new IlvMarker();
IlvBlinkingAction action = new IlvBlinkingAction(1000,1000) {

protected void changeState(IlvGraphic obj, boolean isOn) {
// no applyToObject necessary because the caller does it already for

us
IlvMarker marker = (IlvMarker)obj;
if (isOn) {

marker.setType(IlvMarker.IlvMarkerCircle);
} else {

marker.setType(IlvMarker.IlvMarkerSquare);
}

}
};
marker.setBlinkingAction(action);

In this example, the marker type is periodically changed every second from circle to square.
By using the class IlvBlinkingMultiAction, it is even possible to perform an arbitrary
number of steps periodically on the graphic object.

Blinking actions that change the bounding box of the graphic object work correctly but
they are very inefficient. Since blinking requires a periodical redraw, it is recommended

Note:

to use the same timings for many blinking actions when possible, otherwise the
performance of the system will degrade by too many non-synchronized draw operations.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6140

Managing input events

Describes how to handle input events using an interactor on the view or on a graphic object.

In this section

Handling input events
Describes various ways of handling input events.

Object interactors
Describes how to use object interactors for associating specific behavior with an object or
set of objects.

Example: Extending the IlvObjectInteractor class
Describes how to extend the IlvObjectInteractor class with an example for dragging an
object to a new position.

Customizing the interactor of selected graphic objects
Describes how to create a new graphic object with customized interactions.

View interactors
Describes how to use view interactors to handle view behavior.

Class diagrams for interactors and selection classes
Describes the relationships between classes used for interactors and selection.

Interactor listeners
Describes how to be notified when the active interactor of a view changes with an example
of implementing a drag rectangle.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 141

The selection interactor
Describes the predefined view interactor functionality and how to customize it.

Tooltips and popup menus on graphic objects
Describes how to implement tooltips and popup menus on graphic objects in Swing
applications.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6142

Handling input events

There are two ways of handling the input events in a manager view:

♦ An interactor can be set to the view using the class IlvManagerViewInteractor, which
will handle all the events that occur on a view.

♦ An object interactor can be used on a graphic object. This interactor, an instance of the
class IlvObjectInteractor, handles the events occurring on a particular object if no
view interactor has been installed on the view.

Tooltips and popupmenus are handled by the IlvToolTipManager and IlvPopupMenuManager
central managers. They are neither manager view interactors nor object interactors.
IlvToolTipManager and IlvPopupMenuManager listen for the specific events that trigger
tooltip or a popup menu display in the registered view.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 143

Object interactors

When you want to associate a specific behavior with an object, you can use an object
interactor (class IlvObjectInteractor and its subclasses). Whenever an event is received
by a manager view that has no associated view interactor, the manager attempts to send it
to an object by a call to an attached object interactor. If there is an object at the event
location, and if this object is connected to an object interactor, the manager sends the event
to that interactor. If the interactor does not manage this event, or if the situation is not
applicable, the manager tries to handle the event by means of accelerators.

You can create an IlvObjectInteractor instance and bind it to an object or a set of objects
using the IlvGraphic method setObjectInteractor. As soon as this binding occurs, the
object receives user events and deals with them, therefore it is the interactor and not the
object itself that manages these events.

Querying, setting, or removing an object interactor can be done by means of calls to the
following methods on the IlvGraphic instance:

IlvObjectInteractor getObjectInteractor()

void setObjectInteractor(IlvObjectInteractor interactor)

An instance of IlvObjectInteractor can be shared by several graphic objects. This allows
you to reduce the amount of memory needed to handle the same interaction on a large
number of graphic objects. To share the same object interactor instance, do not use new to
create your interactor; use the Get(java.lang.String) method of the class
IlvObjectInteractor.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6144

Example: Extending the IlvObjectInteractor class

The MoveObjectInteractor class defined in this example allows you to move an object using
the mouse, moving it to where you release the mouse button. You can see the complete code
of the example in MoveObjectInteractor.java located at codefragments/interactors/
moveobjinter/src/MoveObjectInteractor.java in the installed product. For details, see
<installdir> /jviews-framework86/codefragments/interactors/moveobjinter/
index.html.

public class MoveObjectInteractor extends IlvObjectInteractor
{
private IlvRect mrect;
private float dx, dy;
private boolean dragging = false;

/** Creates an moveObjectInteractor. */
public MoveObjectInteractor()
{
super();

}
...

}

The MoveObjectInteractor extends the IlvObjectInteractor class and defines the following
attributes:

♦ The attribute mrect specifies the future bounding rectangle of the graphic object. This
data is updated each time the object is dragged.

♦ The dx and dy attributes represent the translation from the original clicked point and the
current top-left corner of the graphic object.

♦ The Boolean value dragging is set to true when the user starts dragging the object.

Events are processed by the processEvent method as follows.

protected boolean processEvent(IlvGraphic obj, AWTEvent event,
IlvObjectInteractorContext context)

{
switch (event.getID())
{
case MouseEvent.MOUSE_PRESSED:
return processButtonDown(obj, (MouseEvent)event, context);

case MouseEvent.MOUSE_DRAGGED:
return processButtonDragged(obj, (MouseEvent)event, context);

case MouseEvent.MOUSE_RELEASED:
return processButtonUp(obj, (MouseEvent)event, context);

default:
return false;

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 145

}
}

The processEventmethod dispatches events to three different methods depending on their
type. The processEvent method takes a graphic object, an event, and a context as its
parameters. The context IlvObjectInteractorContext is an interface that must be
implemented by classes allowing the use of an object interactor. The class IlvManager takes
care of that and passes a context object to the object interactor. From a context, you can
get a transformer, change the mouse cursor, and so on.

In the processButtonDown method, the distance between the clicked point and the current
top-left corner of the graphic object is stored in the attributes dx and dy. Note that the
positions are stored in the view coordinate system. The top-left corner of the graphic object
is extracted from the bounding rectangle of the object, which is computed using the
boundingBox method. The invalidateGhost method is then called. This method requests
the interactor context to redraw the region corresponding to the current bounding rectangle
(stored in mrect).

public boolean
processButtonDown(IlvGraphic obj,

MouseEvent event,
IlvObjectInteractorContext context)

{
if ((event.getModifiers() & InputEvent.BUTTON2_MASK) != 0 ||

(event.getModifiers() & InputEvent.BUTTON3_MASK) != 0)
return true ;

if (dragging)
return true ;

dragging = true;
IlvPoint p = new IlvPoint(event.getX(), event.getY());
mrect = obj.boundingBox(context.getTransformer());
dx = p.x - mrect.x;
dy = p.y - mrect.y;

invalidateGhost(obj, context);
return true;

}

The invalidateGhost method is implemented as follows..

private void
invalidateGhost(IlvGraphic obj,

IlvObjectInteractorContext context)
{
if (obj == null || context == null)
return;

if (mrect == null || mrect.width == 0 || mrect.height == 0)
return;

IlvRect invalidRegion = new IlvRect(mrect);
context.repaint(invalidRegion);

}

The principle for drawing and erasing the ghost is the following: the interactor invalidates
regions of the context (the bounds of the ghost before and after any position change), while

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6146

the drawing of the ghost is only performed when requested by the drawing system. Indeed,
the method handleExpose, defined on the base class IlvObjectInteractor, is called only
when the view is redrawn. This method, whose implementation in the base class does nothing,
is overridden as follows.

public void handleExpose(IlvGraphic obj,
Graphics g,

IlvObjectInteractorContext context)
{
drawGhost(obj, g, context);

}

The actual drawing of the ghost is done by the following drawGhost method..

protected void drawGhost(IlvGraphic obj,
Graphics g,
IlvObjectInteractorContext context)

{
if (mrect != null) {
g.setColor(context.getDefaultGhostColor());
g.setXORMode(context.getDefaultXORColor());
IlvTransformer t = context.getTransformer();
IlvRect r = obj.boundingBox(t);
IlvTransformer t1 = new IlvTransformer(new IlvPoint(mrect.x - r.x,

mrect.y -r.y));
t.compose(t1);
obj.draw(g, t);

}
}

The Graphics object that is passed as an argument is set to XOR mode using the default
XOR color and ghost color defined in the context. Next, a transformer is computed that will
draw the object in the desired location given by mrect. Note that the object is not translated,
only drawn at another location. The method does nothing if mrect is null. This prevents the
ghost from being drawn if the drawGhost method happens to be called after the end of the
interaction.

Mouse dragged events are handled as follows.

protected boolean
processButtonDragged(IlvGraphic obj, MouseEvent event,

IlvObjectInteractorContext context)
{
if (!dragging || mrect == null)
return false;

IlvPoint p = new IlvPoint(event.getX(), event.getY());
invalidateGhost(obj, context);
mrect.move(p.x - dx, p.y - dy);
IlvTransformer t = context.getTransformer();
if (t != null)
t.inverse(mrect);

context.ensureVisible(p);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 147

t = context.getTransformer();
if (t != null)
t.apply(mrect);

invalidateGhost(obj, context);
return true;

}

First the current ghost is invalidated by a call to invalidateGhost. The new required location
is changed to the position of the mouse, translated with the original translation.

mrect.move(p.x - dx, p.y - dy);

Then ensureVisible is called on the context. If the current dragged point is outside the
visible area of the view, this will scroll the view of the manager so that the dragged point
becomes visible. This operation may change the transformer of the view, as the value of
mrect is stored in the coordinate system of the view. Before ensureVisible is called, the
value of mrect is transformed to the manager coordinate system as follows.

IlvTransformer t = context.getTransformer();
if (t != null) t.inverse(mrect);

After the call to ensureVisible, the value of mrect is transformed back to the view coordinate
system as follows.

t = context.getTransformer();
if (t != null) t.apply(mrect);

The actual moving of the graphic object is done when the mouse button is released. The
mouse released event is handled like this:

protected boolean
processButtonUp(IlvGraphic obj,

MouseEvent event,
IlvObjectInteractorContext context)

{
if (!dragging || mrect == null)
return true;

dragging = false;
invalidateGhost(obj, context);
doMove(obj, context);
mrect = null;
return true;

}

First the ghost is invalidated by calling the invalidateGhost method. Then the doMove
method is called. This method updates the position of the graphic object according to the
final coordinates of mrect. After moving the object, mrect is set to null to prevent further
drawing of the ghost.

The implementation of the method doMove is as follows

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6148

void doMove(IlvGraphic graphic,
IlvObjectInteractorContext context)

{
if (mrect == null)
return;

IlvTransformer t = context.getTransformer();
if (t != null)
t.inverse(mrect);

graphic.getGraphicBag().moveObject(graphic, mrect.x,
mrect.y, true);

}

The value of mrect is translated to the coordinate system of the manager as follows.

IlvTransformer t = context.getTransformer();
if (t != null)
t.inverse(mrect);

You should never try to change the position or the shape of a managed graphic object directly
(or, more precisely, to modify its bounding box), for example by calling methods of the
graphic object directly. Such changes must be done through a function, in this case
moveObject, which is applicable to managers and takes all the necessary precautions. For
further information, see Modifying geometric properties of objects.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 149

Customizing the interactor of selected graphic objects

The selection interactor (IlvSelectInteractor) is also a view interactor. It allows you to
select, move and reshape objects. The way an object is reshaped depends on the type of the
object. For example, you can only change the size of an IlvRectangle while you can add
points to an IlvPolygon. The dependency of possible interaction on the type of the object
comes through the object interactor associated with the selection of the object.

If an object is selected, the method makeSelection is called to create a suitable selection
object (subclass of IlvSelection. This selection object is drawn on top of the selected object.

Since IlvSelection is a subclass of IlvGraphic, it can have object interactors. When the
select interactor moves the mouse over a selection object, it queries for the object interactor
of the selection object.

If no object interactor is explicitly set on the selection object, it calls getDefaultInteractor
to retrieve the class name of the default interactor and then sets the object interactor of the
selection object to an instance of the default interactor.

Then, the select interactor forwards all events to the object interactor of the selection. This
object interactor receives the mouse events as long as the mouse is over the selection object.

The object interactor of the selection object can react on the received events by reshaping
the original selected object. In most cases, the object interactor of the selection object does
not modify the selection object itself but rather the original selected object.

To create a new graphic object class with a customized selection and customized
reshape interaction on the selected object:

1. Create your new derived class of IlvGraphic as described in Creating a new graphic
object class.

2. Create a new derived class of IlvSelection as described inCreating your own selection
object.

3. Create a new object interactor that works on the selected object instead of the selection.

4. In the derived graphic class, override makeSelection to return an instance of the new
selection class.

5. In the new selection class, override getDefaultInteractor to return the class name
of the new object interactor. Alternatively, you could call setObjectInteractor on
the selection object when it is allocated. The former is more convenient if you want
to have the same interactor for all instances of the new subclass of IlvSelection,
while the latter can be used if you want to assign specific object interactors to specific
instances of the selection.

The following code example creates a new graphic subclass MyMarker that has a special
selection object MyMarkerSelection. If the marker is selected, the object interactor
MyMarkerEdition becomes active. Each click in the marker selection changes the type (and
therefore also the shape) of the marker.

public class MyMarker extends IlvMarker
{

...

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6150

public IlvSelection makeSelection()
{
return new MyMarkerSelection(this);

}
}

public class MyMarkerSelection extends IlvUnresizeableDrawSelection
{
...

public String getDefaultInteractor()
{
return MyMarkerEdition.class.getName();

}
}

public class MyMarkerEdition extends IlvReshapeSelection
{
public MyMarkerEdition()
{
super();

}

protected boolean handleButtonDown(IlvDrawSelection sel, MouseEvent event,
IlvObjectInteractorContext context)

{
// each click with the left mouse button into the selection object
// changes the type of the selected object

if ((event.getModifiers() & InputEvent.BUTTON2_MASK) != 0 ||
(event.getModifiers() & InputEvent.BUTTON3_MASK) != 0)

return true;

MyMarkerSelection msel = (MyMarkerSelection)sel;
MyMarker marker = (MyMarker)msel.getObject();

// even though the object interactor is on the selection, it
// modifies the selected object, not the selection
final int tp = (marker.getType() >= 512 ? 1 : marker.getType() * 2);
IlvGraphicBag bag = marker.getGraphicBag();
if (bag == null)
marker.setType(tp);

else
bag.applyToObject(marker, new IlvApplyObject() {

public void apply(IlvGraphic g, Object arg) {
((MyMarker)g).setType(tp);

}
}, null, true);

return true;
}

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 151

View interactors

The IlvManagerViewInteractor class handles view behavior. The role of this class is to
handle complex sequences of user input events that are to be processed by a particular view
object.

View interactor methods
You can add or remove a view interactor with the following methods:

IlvManagerViewInteractor getInteractor()

void setInteractor(IlvManagerViewInteractor inter)

void pushInteractor(IlvManagerViewInteractor inter)

IlvManagerViewInteractor popInteractor()

Predefined view interactors
IBM® ILOG® JViews provides predefined view interactors. Following is a list of these
interactors:

♦ IlvDragRectangleInteractor - Draws a rectangle that can be used for several purposes.
See Example: Implementing the DragRectangleInteractor class.

♦ IlvMakeRectangleInteractor - Allows creation of IlvRectangle objects.

♦ IlvMakeArcInteractor - Allows creation of IlvArc objects.

♦ IlvMakeEllipseInteractor - Allows creation of IlvEllipse objects.

♦ IlvMakeReliefRectangleInteractor - Allows creation of objects of the
IlvReliefRectangle class.

♦ IlvMakeRoundRectangleInteractor - Allows creation of objects of the IlvRoundRectangle
class with round corners.

♦ IlvUnZoomViewInteractor - Allows the unzooming command. You have to draw a
rectangular region into which the area you are watching is unzoomed.

♦ IlvZoomViewInteractor - Allows the zooming command. You draw a rectangular region
where you want to zoom.

♦ IlvMakePolyPointsInteractor - Allows creation of polypoints objects.

♦ IlvMakeLineInteractor - Allows creation of objects of the IlvLine class.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6152

♦ IlvMakeArrowLineInteractor - Allows creation of objects of the IlvArrowLine class.

♦ IlvMakeLinkInteractor - Allows creation of objects of the IlvLinkImage class.

♦ IlvMakePolyLinkInteractor - Allows creation of objects of the IlvPolylineLinkImage
class.

♦ IlvMakePolygonInteractor - Allows creation of objects of the IlvPolygon class.

♦ IlvMakePolylineInteractor - Allows creation of objects of the IlvPolyline class.

♦ IlvMakeArrowPolylineInteractor - Allows creation of objects of the IlvArrowPolyline
class.

♦ IlvMakeSplineInteractor - Allows creation of objects of the IlvSpline class.

♦ IlvEditLabelInteractor - Allows creation and editing of objects that implement the
IlvLabelInterface such as IlvLabel or IlvZoomableLabel.

♦ IlvMoveRectangleInteractor - Drags a rectangle and performs an action when releasing
the mouse button.

♦ IlvSelectInteractor - Allows selection and editing of graphic objects.

♦ IlvRotateInteractor - Allows rotation of a selected graphic object.

♦ IlvPanInteractor - Allows translation of a view without using scroll bars.

♦ IlvMagnifyInteractor - Allowsmagnification of part of the view under the mouse pointer.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 153

Class diagrams for interactors and selection classes

The most important selection objects and corresponding object interactors summarizes the
relationships between IlvObjectInteractor and IlvSelection. Each graphic object can
have an object interactor that handles the interactions. When an object is selected by
IlvSelectInteractor, an IlvSelection object is created for the selected object through
the method makeSelection. With the help of the selection object, the selected object can
be manipulated, for example, it can be reshaped. Thus, the selection object is associated
with a default object interactor. Different subclasses of IlvSelection have different default
object interactors.

The most important selection objects and corresponding object interactors

The view interactor classes shows the different subclasses of IlvManagerViewInteractor.
Most interactors are used to create certain kinds of object, such as IlvMake. Other interactors
allow the view to be zoomed in or out. The class IlvSelectInteractor allows graphic
objects to be selected. It delegates some functionality to IlvSelectInteractorMoveSelection
and IlvSelectInteractorMultipleSelection.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6154

The view interactor classes

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 155

Interactor listeners

When the active interactor of a view changes, the view fires an InteractorChangedEvent
event. A class must implement the InteractorListener interface in order to be notified
that a view interactor has been modified and must register itself using the
addInteractorListener(ilog.views.event.InteractorListener) method of
IlvManagerView. You can also specify that the listener no longer be notified of such events
by using the removeInteractorListener(ilog.views.event.InteractorListener)method.

When the interactor of a view changes, the view calls the interactorChanged method of
the listeners.

void interactorChanged(InteractorChangedEvent event)

This method is called with an instance of the class InteractorChangedEvent as a parameter
containing information on the new and the old interactor.

Example: Implementing the DragRectangleInteractor class
This example shows how the methods of the predefined view interactor
IlvDragRectangleInteractor are implemented. You can use this example as a starting
point for creating your own interactor functionality. The class IlvDragRectangleInteractor
is used to specify a rectangular region in a view. When this rectangle is selected, the
fireRectangleDraggedEvent(ilog.views.IlvRect, java.awt.event.MouseEvent)method
is called. The rectangle can then be used for various purposes in derived interactors. For
example, you can create a subclass of this interactor to zoom in on the selected area. You
can see the complete code example file DragRectangleInteractor.java located at
codefragments/interactors/dragrectinter/src/DragRectangleInteractor.java in the
installed product. For details, see <installdir> /jviews-framework86/codefragments/
interactors/dragrectinter/srchtml/DragRectangleInteractor.java.html.

The DragRectangleInteractor class defines the following attributes: start, rectangle,
and dragging.

public class DragRectangleInteractor extends
IlvManagerViewInteractor {

/** The anchor point of the rectangle. */
private final IlvPoint start = new IlvPoint();
/** The rectangle when dragging. */
private final IlvRect rectangle = new IlvRect();
/** True if dragging. */
private boolean dragging = false;

...
}

The attribute start is the point at the start of the drag action; rectangle is the rectangle
that is drawn when dragging; dragging is a Boolean variable whose value is true when the
user drags.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6156

The enableEvents method called in the constructor takes the MOUSE_EVENT_MASK and
MOUSE_MOTION_EVENT_MASK as parameters. Events must be enabled to be taken into account
by the interactor:

public DragRectangleInteractor()
{
enableEvents(AWTEvent.MOUSE_EVENT_MASK |

AWTEvent.MOUSE_MOTION_EVENT_MASK);
}

The processMouseEvent method handles the MOUSE_PRESSED and MOUSE_RELEASED events:

protected void processMouseEvent(MouseEvent event)
{
switch (event.getID()) {
case MouseEvent.MOUSE_PRESSED:
{
if (dragging) break;
if ((event.getModifiers() & InputEvent.BUTTON2_MASK) == 0 &&

(event.getModifiers() & InputEvent.BUTTON3_MASK) == 0)
{
dragging = true;
IlvTransformer t = getTransformer();
start.move(event.getX(), event.getY());
t.inverse(start);
rectangle.width = 0;
rectangle.height = 0;

}
break;

}
case MouseEvent.MOUSE_RELEASED:
if (dragging) {
dragging = false;
drawGhost();
rectangle.width = 0;
rectangle.height = 0;
fireRectangleDraggedEvent(new IlvRect(rectangle), event);

}
}

}

When the mouse button is pressed, the mouse pointer coordinates are stored in the start
variable and are converted for storage in the coordinate system of the manager. When the
mouse is released, the drawGhost method of IlvManagerViewInteractor is called to erase
the ghost image. The width and height of the rectangle are set to 0 to prevent further
drawings of the ghost, and the fireRectangleDraggedEvent method is called to notify the
end of the drag operation. The following code demonstrates the dragged rectangle.

The drawGhost() method can be used to perform a temporary drawing that gives
the user feedback on the action of his present operation.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 157

The processMouseMotionEvents handles the MOUSE_DRAGGED events:

protected void processMouseMotionEvent(MouseEvent event)
{
if (event.getID() == MouseEvent.MOUSE_DRAGGED && dragging) {
drawGhost();
IlvTransformer t = getTransformer();
IlvPoint p = new IlvPoint(event.getX(), event.getY());
ensureVisible(p);
rectangle.reshape(start.x, start.y, 0,0);
t.inverse(p);
rectangle.add(p.x, p.y);
drawGhost();

}
}

First the rectangle is erased by a call to drawGhost. The call to ensureVisible ensures that
the dragged point remains visible on the screen. The new rectangle is then computed in the
coordinate system of the manager and drawGhost is called to draw the new rectangle.

The drawGhost method simply draws the dragged rectangle. Since the rectangle is in the
manager coordinate system, the method needs to apply the view transformer before drawing.

protected void drawGhost(Graphics g)
{
IlvRect rect = new IlvRect(rectangle);
IlvTransformer t = getTransformer();
if (t != null)
t.apply(rect);

if (rect.width > 0 && rect.height >0) {
g.drawRect((int)Math.floor(rect.x), (int)Math.floor(rect.y),

(int)Math.floor(rect.width),
(int)Math.floor(rect.height));

}
}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6158

The selection interactor

The IBM® ILOG® JViews library provides a predefined view interactor,
IlvSelectInteractor, for selecting and editing graphic objects in a manager. This class
allows you to:

♦ Select an object by clicking on it.

♦ Select or deselect several objects using Shift-Click.

♦ Select several objects by dragging a rectangle around them.

♦ Move one or several objects by selecting them and dragging the mouse.

♦ Edit objects by manipulating their selection object.

The interactor can be customized to your needs, as follows:

♦ You can enable or disable multiselection using:

public void setMultipleSelectionMode(boolean v)

isMultipleSelectionMode()

♦ You can select the mode for selecting objects by dragging a rectangle around them:
opaque or ghost:

public void setOpaqueDragSelection(boolean o)

public boolean isOpaqueDragSelection()

♦ You can select the mode for moving graphic objects: opaque or ghost:

public void setOpaqueMove(boolean o)

public boolean isOpaqueMove()

♦ You can select the mode for resizing graphic objects: opaque or ghost:

public void setOpaqueResize(boolean o)

public boolean isOpaqueDragSelection()

♦ You can select the mode for editing polypoint objects: opaque or ghost:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 159

public void setOpaquePolyPointsEdition(boolean o)

public boolean isOpaqueDragSelection()

♦ You can specify the modifier that allows multiple selection:

public void setMultipleSelectionModifier(int m)

public boolean getMultipleSelectionModifier()

♦ You can specify the modifier that allows selection by dragging a rectangle starting from
a point on top of a graphic object:

public void setSelectionModifier(int m)

public boolean getSelectionModifier()

♦ You can allow selection of several objects using a dragged rectangle:

public void setDragAllowed(boolean v)

public boolean isDragAllowed()

♦ You can change the ability to move objects by:

public void setMoveAllowed(boolean v)

public boolean isMoveAllowed()

♦ You can change the ability to edit objects by:

public void setEditionAllowed(boolean v)

public boolean isEditionAllowed()

The ability to move, edit, or select an object can be controlled object by object using
the properties of the object.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6160

Many other customizations can be done by subclassing the interactor and overriding the
appropriate method.

The editing of a graphic object is controlled by an object interactor. When a graphic object
is selected, the manager can dispatch events occurring on the selection object to the object
interactor attached to the selection object. This object interactor is created by the selection
object with a call to the getDefaultInteractor()method of the class IlvSelection. When
creating your own selection object, you can also create an object interactor to edit the
selected object. The default object interactor is the class IlvReshapeSelection, which allows
the user to reshape graphic objects by pulling the handles of the objects.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 161

Tooltips and popup menus on graphic objects

IBM® ILOG® JViews provides facilities to specify tooltips and popup menus for graphic
objects in Swing applications. Tooltips and popup menus are handled by the
IlvToolTipManager and the IlvPopupMenuManager central managers. These managers
control events that trigger tooltip or popup menu display; they are not implemented as object
interactors or manager view interactors. Tooltips and popup menus can be used in
combination with any interactor.

Tooltips
In order to specify a tooltip for a graphic object, set the tooltip text as follows:

graphic.setToolTipText("Some Tooltip");

Tooltips only work when the view is registered with the tooltip manager. In order to enable
tooltips in a manager view, register the view as follows:

IlvToolTipManager.registerView(managerView);

After a graphic object is registered, whenever a user holds the mouse over the object, the
tooltip appears. When the mouse is moved away from the graphic, the tooltip disappears.

The IlvToolTipManager relies on the Swing tooltip manager. Parameters such as the initial
delay or the dismiss delay can be set on the Swing tooltip manager. For example:

IlvToolTipManager.getToolTipManager().setInitialDelay(3000);

For more information, see IlvToolTipManager.

Popup menus
In order to associate a specific popup menu with a graphic object, create a JPopupMenu
object and link it to a graphic as follows:

graphic.setPopupMenu(popupMenu);

Popup menus only work when the view is registered with the popup menu manager. In order
to enable popup menus in a manager view, register the view as follows:

IlvPopupMenuManager.registerView(managerView);

After the popup menu is registered, whenever a user right-clicks the grapic, its popup menu
appears.

Popup menus use a lot of memory. To avoid wasting memory, share popup menus between
multiple graphic objects. To do this, instead of registering a popup menu with an individual

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6162

graphic using graphic.setPopupMenu(...), register the popup menu directly with the
popup menu manager by calling:

IlvPopupMenuManager.registerMenu("name", popupMenu);

You then assign this popup menu to graphics in the following way:

graphic1.setPopupMenuName("name");
graphic2.setPopupMenuName("name");

Popup menus registered with a single graphic object are active for that object only. Popup
menus registered with the popup menu manager can be:

♦ Saved in .ivl files.

♦ Used for cut and paste operations.

When a popup menu is shared, you need to know which graphic object triggered the event.
The action listeners associated with popup menu items can retrieve the context of the popup
menu using an IlvPopupMenuContext object. This is done in the following way:

public void actionPerformed(ActionEvent e) {
JMenuItem m = (JMenuItem)e.getSource();
IlvPopupMenuContext context=IlvPopupMenuManager.getPopupMenuContext(m);
if (context == null) return;
IlvGraphic graphic = context.getGraphic();
IlvManagerView view = context.getManagerView();
//Do the action on this graphic for this view.

}

For more information, see IlvPopupMenuContext and IlvPopupMenuManager in the Java API
Reference Manual.

IlvSimplePopupMenu is a subclass of JPopupMenu that allows you to configure popup menus
easily. For more information, see IlvSimplePopupMenu.

An example that illustrates the different ways of using popup menus is available as part of
the demonstration software. For details, see <installdir> //jviews-framework86/
codefragments/popupmenu/index.html.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 163

Saving and reading

The manager provides facilities to save its contents to a file. The resulting file is an ASCII
or binary file in the .ivl format that contains information about the layers and the graphic
objects.

The saving methods are as follows:

void write(OutputStream stream, boolean binary) throws IOException

void write(String filename) throws IOException

void write(String filename, boolean binary) throws IOException

You can save data in either an ASCII or a binary file, the binary format being more compact
and faster to read than the ASCII format.

The loading methods are as follows:

void read(InputStream stream) throws IOException, IlvReadFileException

void read(String filename) throws IOException, IlvReadFileException

void read(URL url) throws IOException, IlvReadFileException

The read methods may throw an exception in the following situations:

♦ The file is not an .ivl file.

♦ The .ivl format is not correct.

♦ A graphic class cannot be found.

The read methods detect automatically whether the .ivl file is an ASCII or a binary file.

You can save/read the information about your own graphic objects by providing the
appropriate methods when creating your own graphic object class. For more information,
see Input/output operations and also Saving and loading the object description.

The recommended way to serialize any IlvManager object is through IVL
serialization and not Java™ serialization. Serialization cannot work for managers

Important:

that contain graphic objects such as IlvIcon or some other classes, since these
classes manage internally Java SE objects that are not serializable.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6164

File formats

JViews Framework provides support for various file formats as well as the .ivl format.
Some file formats are specific to certain application domains and are explained in the
corresponding user’s documentation of specific IBM® ILOG® JViews products; for example:

♦ GIS formats in maps are explained in Programming with JViews Maps.

♦ BPMN file formats are explained in Integrating BPMN Facilities of IBM®
ILOG® JViews Diagrammer.

The following general purpose file formats are also supported:

♦ SVG (reading and writing): see Deploying IBM® ILOG® JViews applications as SVG thin
clients in the Advanced Features of JViews Framework.

♦ DXF (reading only): documented in Drawing Exchange Format (DXF).

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 165

Drawing Exchange Format (DXF)

The Drawing Exchange Format (DXF) is the exchange format of AutoCAD. This format
supports vector graphics (such as polygons, arcs, lines, and points) and layers. The different
editions of the specifications of the DXF format corresponding to the various AutoCAD
releases can be accessed from the following URL: http://usa.autodesk.com/adsk/servlet/
item?siteID=123112&id=5129239.

Using the DXF reader
Reading a DXF File into IlvManager shows how to read the content of a DXF file into an
IlvManager object.

Reading a DXF File into IlvManager

IlvManager manager = new IlvManager(0); //with no layer
IlvDXFReader reader = new IlvDXFReader();
try {
reader.read("myDXFFile.dxf", manager);

} catch (IOException e) {
e.printStackTrace();

}

You can also read a DXF file directly with the read method of the manager. First, you must
create the manager and the stream factory as shown in Preparing to Read a DXF File with
the Manager.

Preparing to Read a DXF File with the Manager

IlvManager manager = new IlvManager(0); // with no layer
IlvDXFStreamFactory factory = new IlvDXFStreamFactory();
manager.setStreamFactory(factory);

When the stream factory is set, calling read(java.lang.String) loads a DXF file instead
of an IBM® ILOG® JViews IVL file. See Loading a DXF File.

Loading a DXF File

try {
manager.read("myDXFFile.dxf");

} catch (IOException ex) {
ex.printStackTrace();

}

The content of the DXF file can be read into an IlvManager object or into any implementation
of the IlvGraphicBag interface, such as IlvGraphicSet. The layer information of the DXF
file is ignored when the file is read into anything other than an IlvManager object.

The IlvDXFReader reads the DXF file and adds the graphic objects defined in the DXF file
to the manager. If an error occurs during this process, an exception of the type IOException
can occur and must be caught.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6166

http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=5129239
http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=5129239

An example of the use of the reader is available as part of the demonstration software. For
details, see <installdir> /jviews-framework86/samples/dxfreader/index.html.

Customizing the DXF reader
Configuration options can be set on IlvDXFReaderConfigurator. A default configurator is
created when the default constructor of IlvDXFReader is used. You can also pass your own
instance of a configurator to the constructor IlvDXFReader(IlvDXFReaderConfigurator).
You can retrieve the current instance of the configurator by using IlvDXFReader.
getConfigurator().

The reader delegates the conversion of DXF entities into IBM® ILOG® JViews graphic
objects to a factory, IlvDXFGraphicFactory.

A default implementation is provided:

ilog.views.dxf.IlvDefaultDXFGraphicFactory

You can provide your own implementation or specialize the default implementation.

To set a new factory, use the method:

IlvDXFReaderConfigurator.setGraphicFactory(IlvDXFGraphicFactory)

The following DXF entities are read:

♦ 3DFACE

♦ ARC

♦ CIRCLE

♦ DIMENSION

♦ LINE

♦ POLYLINE

♦ LWPOLYLINE

♦ TEXT

♦ MTEXT

♦ POINT

♦ SOLID

♦ TRACE

Limitations
Only the 2D information of the DXF file is read; 3D information is ignored.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 167

The reader recognizes the most popular attributes, but does not process all the attributes
of the entities. Some attributes are not rendered in the same way as Autodesk® AutoCAD.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6168

Graphers

Describes how to use graphers, which are higher-level classes, to create graphic programs
that include and present large numbers of dynamic graphic objects.

In this section

The grapher
Describes the grapher, a high-level IBM® ILOG® JViews functionality.

Managing nodes and links
Introduces nodes and links and explains how to manage the nodes and links in a grapher.

Contact points
Describes the default contact points on a node for attaching links and how to define link
connectors and pins to specify different contact points.

Class diagram for graphers
Describes the relationships between grapher-related classes with a class diagram.

Grapher interactor class
Describes how to use the grapher interactor class.

Creating a new class of link
Explains how to create a new class of link with an example.

Link shapes and crossing
Explains the support provided for link shape policies and link crossings.

© Copyright IBM Corp. 1987, 2009 169

The grapher

Based on the manager, the grapher is a natural extension of the manager concepts. A grapher
is composed of nodes and links.

A grapher is an instance of the IlvGrapher class, a subclass of the IlvManager class. The
grapher library offers enhanced performance to create programs, including a large quantity
of dynamic interconnected information, such as network management and file management
programs.

You have an extensive set of objects in the grapher library for creating the following:

♦ Nodes: The visual reference points in a hierarchy of information. A node is a graphic
object, an instance of a subclass of the IlvGraphic class.

♦ Links: The visual representation of connections between nodes. Links are also graphic
objects, instances of the IlvLinkImage class or its subclasses.

Graphic objects in a manager can be visible or invisible. For details, see Visibility.

The following example shows a grapher that connects IlvZoomableLabel graphic objects
(nodes). The lines in blue are node connections (links).

Grapher connecting graphic objects of IlvReliefLabel

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6170

Managing nodes and links

Introduces nodes and links and explains how to manage the nodes and links in a grapher.

In this section

Nodes
Describes what nodes are.

Links
Describes what links are.

Predefined link classes
Describes the predefined link classes.

Managing link visibility
Describes how to manage the visibility of links.

Showing and hiding grapher branches
Describes how to manage the visibility of grapher branches.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 171

Nodes

Nodes are simply graphic objects, presented in a grapher. Any graphic object can be used
as a node in a grapher.

To add a node to a grapher, use one of the following methods:

void addNode(IlvGraphic obj, boolean redraw)

void addNode(IlvGraphic obj, int layer, boolean redraw)

These methods add the object to the specified layer of a grapher and add additional
information to the object so that it becomes a node. Graphic objects that have already been
added to the grapher using the addObject method can be made into nodes of the grapher
using the method:

void makeNode(IlvGraphic obj)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6172

Links

Links are graphic objects used to interconnect nodes in a grapher.

All links are instances of the class IlvLinkImage (or subclasses). The constructor of the
class IlvLinkImage has two graphic objects as parameters, so, when creating a link, you
always have to give the origin and destination of the link. Here is the constructor of
IlvLinkImage:

IlvLinkImage(IlvGraphic from, IlvGraphic to, boolean oriented)

The oriented parameter specifies whether or not an arrowhead is to be drawn at one end
of the link. Once a link is created, you can add it to the grapher using one of the following
methods:

void addLink(IlvLinkImage obj, boolean redraw)

void addLink(IlvLinkImage obj, int layer, boolean redraw)

The following code creates a grapher with two nodes and a link.

IlvGrapher grapher = new IlvGrapher();
IlvGraphic node1 = new IlvLabel(new IlvPoint(0,0), "node 1");
grapher.addNode(node1, false);
IlvGraphic node2 = new IlvLabel(new IlvPoint(100, 0), "node 2");
grapher.addNode(node2, false);
IlvLinkImage link = new IlvLinkImage(node1, node2, true);
grapher.addLink(link, false);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 173

Predefined link classes

The library provides a set of predefined links:

♦ IlvLinkImage - a direct link between two nodes.

♦ IlvPolylineLinkImage - a link defined by a polyline.

♦ IlvOneLinkImage - a link defined by two lines forming a right angle.

♦ IlvOneSplineLinkImage - a link that shows a spline.

♦ IlvDoubleLinkImage - a link defined by three lines forming two right angles.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6174

♦ IlvDoubleSplineLinkImage - a link defined by two spline angles.

♦ IlvSplineLinkImage - a free-form spline capable of creating mono- or multicurve links.

♦ IlvEnhancedPolylineLinkImage - a link defined by a polyline that supports link shape
policies to keep the link in orthogonal shape or to display link crossings or to organize
the multi links and self links in bundles. See Shape policies for details.

♦ IlvLinkBundle - a link that displays a set of individual links between two nodes in a fixed
order and with a specified distance between them.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 175

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6176

Managing link visibility

The visibility of links can be controlled independently of the visibility of nodes. This allows
you to set a link visible even though its origin and destination nodes are invisible.

It is possible to couple the visibility of a link to the visibility of its end nodes. In this case,
the visibility of the link can no longer be controlled independently. A link becomes
automatically invisible if its origin node or its destination node becomes invisible. To enable
this behavior, you must install the IlvLinkVisibilityHandler as manager listener on the
grapher.

IlvGrapher grapher = new IlvGrapher();
grapher.addManagerContentChangedListener(new IlvLinkVisibilityHandler());

When the link visibility handler is installed, it is possible to select which links are managed
by the handler and which links are not managed.

The visibility of a managed link is derived from the visibility of its end nodes. The visibility
of an unmanaged link is independent of the visibility of its end nodes and can be controlled
by setVisible. By default, all links are managed. Setting a Link as Unmanaged to Control
Its Visibility shows how to set a link as unmanaged to control its visibility.

Setting a Link as Unmanaged to Control Its Visibility

// install a link visibility handler. All links are managed.
grapher.addManagerContentChangedListener(new IlvLinkVisibilityHandler());
// mark one link as unmanaged
IlvLinkImage link = ...
IlvLinkVisibilityHandler.setManaged(link, false);
// the visibility of the unmanaged link can be controlled independently
grapher.setVisible(link, false, redraw);

In nested graphers, it is sufficient to install the link visibility handler on the top-level
grapher only as tree content-changed listener to manage the visibility of all links in all
subgraphers. See Content-change events in nested managers.

Note:

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 177

Showing and hiding grapher branches

You can switch on or off the visibility of the nodes and links that compose a branch of a
grapher. Use the method:

IlvGrapher.setVisibleBranch(IlvGraphic node, boolean visible,
boolean origin)

If the argument origin is true, the method will show or hide the branch that has the node
as its origin; that is, all nodes and links reachable by a traversal from the origins to the
destinations. The visibility of the node from which the traversal starts is never changed.

If the argument origin is false, the method will show or hide the branch that has the node
as its destination; that is, all nodes and links reachable by a traversal from the destinations
to the origins. The visibility of the node from which the traversal starts is never changed.

In addition, the following method allows you to specify how many levels away from the start
node that nodes and links should start to be shown or hidden:

IlvGrapher.setVisibleBranch(IlvGraphic node, int level,
boolean visible, boolean origin)

If the level is 0, this method is equivalent to the first method without the level argument.

If the level is 1, the visibility is kept unchanged for the links incident to the starting node
and for the nodes adjacent to these links.

If the level is 2, the visibility is kept unchanged for the links incident to the starting node,
the nodes adjacent to these links, the links incident to these later nodes, the nodes adjacent
to these later links, and so on.

The change of visibility is performed using the method setVisible(boolean).

For an example, see <installdir> /jviews-framework86/codefragments/
show-hide-branch/index.html.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6178

Contact points

Describes the default contact points on a node for attaching links and how to define link
connectors and pins to specify different contact points.

In this section

Default contact points
Describes the default contact points on a node for attaching links.

Using link connectors
Describes how to define link connectors.

Using pins
Explains the role of pins and how to use them, with an example.

Other link connectors
Describes other link connectors that do not use pins.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 179

Default contact points

When a link is created between two nodes, it is attached to the default contact point of each
node. Each node has five default contact points, one at the center of each side of its bounding
rectangle and one at the center of the bounding rectangle. The contact point actually used
depends on the location and size of the origin and destination node. The following are
examples of connections:

Examples of node connections

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6180

Using link connectors

The grapher provides a way to specify the contact points you need on a graphic object. This
is done by using link connectors, which are subclasses of the class IlvLinkConnector,

The class IlvLinkConnectoris dedicated to the computation of the connection points of
links. Subclasses of this abstract class can be used to obtain contact points other than the
default ones. An IlvLinkConnector is associated with a node. The implementation of the
method getConnectionPoint(ilog.views.IlvLinkImage, boolean, ilog.views.
IlvTransformer) decides where the connection point of a link (provided as an argument)
should be located.

An instance of IlvLinkConnector can be specified for each node of a grapher. To do this,
simply create it using the constructor IlvLinkConnector(ilog.views.IlvGraphic) or use
the method attach(ilog.views.IlvGraphic, boolean). Notice that the same instance of
link connector cannot be shared by several nodes.

A link connector specified for a node controls the connection points of all the links incident
to this node. If you need the connection points of the incident links not to all be computed
in the same way (that is, by the same link connector), you can specify a link connector
individually for each extremity of each link. To do this, simply create it using the constructor

IlvLinkConnector(ilog.views.IlvLinkImage, boolean)

or use the method

attach(IlvLinkImage, boolean, boolean) .

Notice that the same link connector can be shared by several links incident to the same
node.

To get the instance of link connector actually used to compute the contact point of a given
link, use the static method Get(ilog.views.IlvLinkImage, boolean).

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 181

Using pins

Each link is attached to what is called a pin. Each pin describes the position of a contact
point on a node.

The class IlvPinLinkConnector , which is a subclass of the class IlvLinkConnector,,
manages the link connections to a node. An instance of the class IlvPinLinkConnectormay
be installed on a graphic object. This instance holds a set of pins.

When you create an IlvPinLinkConnector instance, it is empty and does not contain any
pins. You must provide a set of pins describing the position of the contact points that you
need. The pins are defined by the class IlvGrapherPin. This class is an abstract class because
its getPosition method is an abstract method. For this reason, you must first create a
subclass of the IlvGrapherPin class. Specifying an implementation to the getPosition
(ilog.views.IlvTransformer) method enables you to indicate the position of the grapher
pin. The signature of this method follows:

IlvPoint getPosition(IlvTransformer t)

The position of the pin depends on the transformer used to draw the node. This transformer
is passed to the getPosition method. To compute the position of the pin, you may need to
know the position of the node. For its position, use:

IlvGraphic getNode()

You may also decide to allow or inhibit the connection of a certain type of link to this pin.
To do so, you overwrite the allow method of your pin, which is called when you create a
link with an interactor:

boolean allow(Object oClass, Object dClass, Object linkOrClass, boolean origin)

The interactor is authorized to highlight only the specified pin based on the result of this
method.

Once the pin classes are created, you nned to add the pins to the previously created instance
of IlvPinLinkConnector using the following method:

void addPin(IlvGrapherPin pin)

Example: Defining your connection points
This example defines two classes of pins:

♦ The class InPin that allows links to go to the node.

♦ The class OutPin that allows links to come from the node.

The pins of class InPin are placed on the left border of the object and the pins of type
OutPin on the right border.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6182

The classes are:

final class InPin extends IlvGrapherPin
{
static final int numberOfPins = 5;
int index;

public InPin(IlvPinLinkConnector connector, int index)
{
super(connector);
this.index = index;

}

protected boolean allow(Object orig, Object dest,
Object linkOrClass,
boolean origin)

{
return !origin;

}

public IlvPoint getPosition(IlvTransformer t)
{
IlvRect bbox = getNode().boundingBox(null);
IlvPoint p = new IlvPoint(bbox.x,

bbox.y+(bbox.height/(numberOfPins+1)*
(index+1));

if (t != null) t.apply(p);
return p;

}
}

In this example, five instances of InPin will be created. Each pin has an index giving its
position on the node. The getPosition method returns the position of the pin on the left
side of the node according to its index. The allow method returns true only for links going
to this pin (parameter origin is false). The OutPin class is very similar:

final class OutPin extends IlvGrapherPin
{
static final int numberOfPins = 5;
int index;

public OutPin(IlvPinLinkConnector connector, int index)
{
super(connector);
this.index = index;

}

protected boolean allow(Object orig, Object dest,
Object linkOrClass, boolean origin)

{
return origin;

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 183

public IlvPoint getPosition(IlvTransformer t)
{
IlvRect bbox = getNode().boundingBox(null);
IlvPoint p = new IlvPoint(bbox.x+ bbox.width,

bbox.y+(bbox.height/
(numberOfPins+1))*(index+1));

if (t != null) t.apply(p);
return p;
}

}

The pins are located on the right side and only allow links leaving the node.

If node is a graphic object, the method that adds the pins to the node is:

grapher.addNode(node, 1, false);
IlvPinLinkConnector lc = new IlvPinLinkConnector(node);
for (int i = 0; i < 5; i++) {
new InPin(lc, i);
new OutPin(lc, i);

}

If you want to connect a link to a particular pin, use the method connectLink of the class
IlvPinLinkConnector:

public void connectLink(IlvLinkImage link, IlvGrapherPin pin, boolean origin)

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6184

Other link connectors

Other link connectors are available as follows:

♦ IlvCenterLinkConnector to connect the link to the center of the node.

A CenterLinkConnector

♦ IlvFreeLinkConnector to position the link relatively to the node. Any point can be used
as the connection point. The connection points are preserved with respect to the bounding
box when the node is translated, or when it grows or shrinks.

A FreeLinkConnector

♦ IlvClippingLinkConnector to clip the link at the node border. Like the free link connector,
this connector attaches the link to any point inside the node and preserves this attachment
point relative to the bounding box of the node. If the node moves, grows, or shrinks, the
attachment point moves proportionally. However, unlike the free link connector, the link
segment towards the attachment point is clipped at the border of the node by using the
method getIntersectionWithOutline. This is useful for arrowheads when the shape of
the node is nonrectangular.

A ClippingLinkConnector

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 185

Class diagram for graphers

The following UML class diagram summarizes the relationships between IlvGrapher,
IlvGraphic, IlvLinkImage, and IlvLinkConnector.

The grapher contains nodes made from IlvGraphic objects and links made from
IlvLinkImage objects. Each link has a "from" node and a “to” node. The link uses the
IlvLinkConnector class to calculate the contact points. Various link connectors with different
behavior are predefined. For example, IlvPinLinkConnector is a link connector that specifies
a number of IlvGrapherPin objects called pins, that can be at the node as contact points.

The Classes Related to IlvGrapher

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6186

Grapher interactor class

The library provides several view interactors to create links with the mouse.

The IlvMakeLinkInteractor class is an interactor that allows a link of type IlvLinkImage
to be created by selecting the origin and destination node.

This interactor can be customized so that it creates your own type of link. The link is created
by the method makePolyPoint(ilog.views.IlvPoint[]). This method uses the getFrom()
and getTo() methods to determine the selected graphic objects:

protected IlvGraphic makePolyPoint(IlvPoint[] points)
{
return new IlvLinkImage(getFrom(), getTo(), isOriented());

}

If you override this method, you must also override the method getLinkClass() that returns
the class of objects created by this interactor.

The class IlvMakePolyLinkInteractor is a subclass of the IlvMakeLinkInteractor class
that allows you to create a link of class IlvPolylineLinkImage.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 187

Creating a new class of link

The IlvPolylineLinkImage class
The following example shows the beginning of the class for the new link.

public class IlvPolylineLinkImage extends IlvLinkImage
{
private IlvPoint points[] = null;

public IlvPolylineLinkImage(IlvGraphic from, IlvGraphic to,
boolean oriented, IlvPoint[] points)

{
super(from, to, oriented);
init(points);

...
}
}

The new link is defined by a polyline, whose starting and ending positions are fixed and are
based on the starting and ending positions of the nodes. This link is a subclass of the
IlvLinkImage class.

The private field points will contain all the intermediate points of the link. The origin and
destination points are not contained in this array.

The constructor calls the corresponding constructor of IlvLinkImage and initializes the
object. The init method then fills the points field as follows.

private void init(IlvPoint[] pts)
{
if (pts == null)
return;

int i;
points = new IlvPoint[pts.length];
for (i = 0; i < pts.length ; i++)
points[i] = new IlvPoint(pts[i].x, pts[i].y);

}

There is also a copy constructor and a copy method that allow you to copy the object.

public IlvPolylineLinkImage(IlvPolylineLinkImage source)
{
super(source);
init(source.points);

}

public IlvGraphic copy()
{

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6188

return new IlvPolylineLinkImage(this);
}

getLinkPoints
The getLinkPoints method returns the points defining the shape of the link. This method
is used by IlvLinkImage to draw the object and to define the bounding rectangle of the
object. In the class IlvLinkImage, this method only returns the origin and destination points
of the link. For the new polyline object, the getLinkPoints method adds the intermediate
points of the link as follows.

public IlvPoint[] getLinkPoints(IlvTransformer t)
{
int nbpoints = getPointsCardinal();
IlvPoint[] pts = new IlvPoint[nbpoints];
if (nbpoints > 2)
for (int i = 1 ; i < nbpoints-1; i++) {
pts[i] = new IlvPoint(points[i-1]);
if (t != null) t.apply(pts[i]);

}
pts[0] = new IlvPoint();
pts[nbpoints-1] = new IlvPoint();
getConnectionPoints(pts[0], pts[nbpoints-1], t);
return pts;

}

The getConnectionPoints method is used to get the intermediate points. The
getConnectionPoints method computes the origin and destination point of the link. These
points may depend on the connection pins on the origin or destination object.

getPointCardinal, getPointAt
These methods, originating from the interface IlvPolyPointsInterface, are defined like
this:

public int getPointsCardinal()
{
if (points == null)
return 2;

else
return points.length +2;

}

public IlvPoint getPointAt(int index, IlvTransformer t)
{
if (index == 0 || index == getPointsCardinal()-1)
{
IlvPoint[] pts = new IlvPoint[2];
pts[0] = new IlvPoint();
pts[1] = new IlvPoint();

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 189

getConnectionPoints(pts[0], pts[1], t);
return pts[(index == 0) ? 0 : 1];
}
else
{
IlvPoint p = new IlvPoint(points[index-1]);
if (t != null)
t.apply(p);

return p;
}

}

allowsPointInsertion, allowsPointRemoval
The allowPointAddition and allowPointRemoval methods are overridden to return true
to allow the editing interactor associated with links (that is, IlvLinkImageEditInteractor),
to add and remove points.:

public boolean allowsPointInsertion()
{
return true;

}

public boolean allowsPointRemoval()
{ return points != null && points.length >= 1;
}

Since these methods return true, the insertPoint and removePointmethods will be called
from the interactor. They are defined as follows.

public void insertPoint(int index, float x, float y,
IlvTransformer t)

{
if (points == null && index == 1) {
points = new IlvPoint[1];
points[0] = new IlvPoint(x,y);

}
else if (index == 0)
throw new IllegalArgumentException("bad index");

else if (index >= getPointsCardinal())
throw new IllegalArgumentException("bad index");

else index --;
if (index >= 0 && index <= points.length){
IlvPoint[] oldp = points;
points = new IlvPoint[oldp.length+1];
System.arraycopy(oldp, index, points, index + 1,

oldp.length - index);
points[index] = new IlvPoint(x,y);
if (index > 0)
System.arraycopy(oldp, 0, points, 0, index);

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6190

else throw new IllegalArgumentException("bad index");
}

public void removePoint(int index, IlvTransformer t)
{
if (index ==0) return;
if (index == getPointsCardinal()-1)
return;

index --;
if (points != null && index >= 0 && index < points.length)
{
IlvPoint[] oldp = points;
points = new IlvPoint[oldp.length-1];
if (index > 0)
System.arraycopy(oldp, 0, points, 0, index);
int j = oldp.length - index - 1;
if (j > 0)
System.arraycopy(oldp, index + 1, points, index, j);

}
else throw new IllegalArgumentException("bad index");

}

applyTransform
The method applyTransform is called when the bounding box is to be modified (when the
object is moved or enlarged, for example). The transformation is applied to the intermediate
points:

public void applyTransform(IlvTransformer t)
{
if (getPointsCardinal() > 2 && points != null)
for (int i = 0 ; i < points.length; i++) {
if (t != null) t.apply(points[i]);
}

}

Input/Output
Input/output methods are needed to allow users to save and read the intermediate points.

The method write is defined as follows:

public void write(IlvOutputStream stream) throws IOException
{
super.write(stream);
stream.write("points", points);

}

The corresponding IlvInputStream constructor is as follows.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 191

public IlvPolylineLinkImage(IlvInputStream stream) throws
IlvReadFileException

{
super(stream);
IlvPoint[] points = stream.readPointArray("points");
init(points);

}

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6192

Link shapes and crossing

Shape policies
Link shape policies control the shape of an individual link. They are a way to ensure that a
link keeps a specific shape. See the class IlvLinkShapePolicy for details.

Links may stay orthogonal or they may cross and you can set the aspect of link crossings.

IBM® ILOG® JViews Framework proposes the following predefined link shape policies:

♦ The class IlvOrthogonalLinkShapePolicy keeps links orthogonal.

♦ The class IlvCrossingLinkShapePolicy calculates how crossings are displayed.

♦ The class IlvBundleLinkShapePolicy organizes multilinks and self links in bundles.

These link shape policies are for internal use by the class IlvEnhancedPolylineLinkImage,.
This class is a subclass of IlvPolylineLinkImage designed to provide support for link shape
policies. By hiding the implementation and computation details, this class makes link shape
policies easier for you to use.

The orthogonal mode and the crossing mode of the class IlvEnhancedPolylineLinkImage
are implemented by link shape policies.

By default, orthogonal mode and crossing mode are switched off. In this case, the class
IlvEnhancedPolylineLinkImage behaves exactly like IlvPolylineLinkImage.

Orthogonal links
If you set the method setOrthogonal(boolean)setOrthogonal. of the class
IlvEnhancedPolylineLinkImage to true, the link stays orthogonal, even if you try to reshape
it interactively. You can add or remove bends, or move bends interactively, the link always
reorganizes the adjacent bends so that the link keeps an orthogonal shape, as illustrated in
Orthogonal link between two nodes.

Orthogonal link between two nodes

The accessor isOrthogonal returns whether the link is in orthogonal mode.

When the orthogonal mode is switched on, the class IlvOrthogonalLinkShapePolicy
automatically controls the shape policy.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 193

Crossing modes
The method setCrossingMode(int) of the class IlvEnhancedPolylineLinkImage enables
you to select the aspect of the image of the link at the place where two links cross. To do
so, set the mode parameter to one of the following options:

♦ NO_CROSSINGS: crossings are not displayed in any particular way (default).

♦ TUNNEL_CROSSINGS: crossings are displayed with a tunnel shape, as illustrated in
Tunnel-shaped Crossing Mode.

Tunnel-shaped Crossing Mode

♦ BRIDGE_CROSSINGS: crossings are displayed with a bridge shape, as illustrated in
Bridge-shaped Crossing Mode.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6194

Bridge-shaped Crossing Mode

The accessor getCrossingMode returns the current crossing mode.

When a crossing mode other than NO_CROSSINGS is set, the class
IlvCrossingLinkShapePolicy automatically controls the shape policy.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 195

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6196

Composite Graphics

Introduces the Composite Graphics feature and explains how to create a composite graphic.

In this section

Introducing composite graphics
Describes what composite graphics are and the support provided for them.

Creating a composite graphic
Provides a tutorial which explains how to create a simple composite graphic.

© Copyright IBM Corp. 1987, 2009 197

Introducing composite graphics

With composite graphics, JViews Framework enables you to associate graphic objects in a
single object.

Composite graphics are a set of classes that help you combine IlvGraphic objects to build
up more complex objects based on simple graphics. Unlike graphic sets (see Groups,
composite graphics have layout and attachment capabilities.

A composite graphic object is made of child graphics and a layout manager object. There
are three possible classes of layout manager: IlvAttachmentLayout, IlvCenteredLayout,
and IlvStackerLayout. Each child graphic is a graphic object that can be either a basic
IlvGraphic or an IlvCompositeGraphic.

The API for composite graphics is thus based on the following classes:

♦ IlvCompositeGraphic: this class holds a set of IlvGraphic subclasses. This class
composes IlvGraphic objects.

♦ IlvLayoutManager subclasses: IlvAttachmentLayout, IlvCenteredLayout and
IlvStackerLayout. These classes are responsible for positioning the graphics (seeCreating
a composite graphic for details).

Class Hierarchy for Composite Graphics shows the relationships between these classes.

Class Hierarchy for Composite Graphics

If you follow the steps given in Creating a composite graphic, you will obtain the composite
graphic illustrated in Creating a Composite Graphic: Final Result.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6198

Creating a Composite Graphic: Final Result

To compose this graphic, you just need to reuse existing graphics provided by the
JViews Framework. Furthermore, composite graphics can be recursive, that is, a composite
graphic may be made up of other composite graphics. In Creating a Composite Graphic:
Final Result, for example, the balloon object and the three rectangles are themselves
composite graphics.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 199

Creating a composite graphic

The corresponding code is supplied in the codefragments/composite/src/Composite.java
source file of the installed product. For details, see <installdir> /jviews-framework86/
codefragments/composite/index.html.

This tutorial contains the following stages:

♦ Stage 1 - Starting the composite graphic

♦ Stage 2 - Creating an attachment layout

♦ Stage 3 - Creating the first child graphic

♦ Stage 4 - Attaching a child graphic

♦ Stage 5 - Using a stacker layout

♦ Stage 6 - Using a centered layout

Stage 1 - Starting the composite graphic
To create a composite graphic object:

1. Import the composite graphics package:

import ilog.views.graphic.composite.* ;

2. Create a composite graphic object.

IlvCompositeGraphic composite = new IlvCompositeGraphic();

Stage 2 - Creating an attachment layout
The attachment layout enables you to attach the child graphics to the first one by choosing
symbolic points of their bounding boxes.

To create the attachment layout:

1. Import the layout package:

import ilog.views.graphic.composite.layout.*;

2. Create the attachment layout.

IlvAttachmentLayout layout = new IlvAttachmentLayout();
composite.setLayout(layout);

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6200

Stage 3 - Creating the first child graphic
The first child graphic of the IlvCompositeGraphic object will be the reference for positioning
other child graphics. In this example, the first child graphic is an IlvRectangle object.

To create the first child object:

♦ Create a rectangle object:

IlvRectangle rectangle = new IlvRectangle(new IlvRect(0,0,40,40),true,true);
composite.setChildren(0,rectangle)

The first child is at position 0. The attachment layout uses this first child to attach the other
children (sibling graphics) of the composite graphic.

Stage 4 - Attaching a child graphic
A label can be attached as a child graphic.

There are nine different attachment locations available, as illustrated in the following figure.

Attachment Locations

To label your composite graphic:

1. Attach an additional child graphic to the first one.

IlvText text = new IlvText();
text.setLabel("Composite Graphic");
composite.setChildren(1,text);

2. Place the label below the rectangle:

composite.setConstraints(1,

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 201

new IlvAttachmentConstraint(IlvAttachmentLocation.TopCenter,
IlvAttachmentLocation.BottomCenter));

Here, the top center of the text (an IlvText) is anchored to the bottom center of the first
child graphic which is, in this example, an IlvRectangle object.

If you run your example now, you can see the following composite, in which the “Composite
Graphic” label is attached to the blue rectangle with horizontal symmetry:

Composite graphics with attachments

Stage 5 - Using a stacker layout
As well as using the Attachment Layout to position two objects with respect to each other
within the composite graphic object, you can use the Stacker Layout to align objects.

To use the Stacker Layout to align three icons:

1. Create one more composite graphic named rectangles to hold the three small
rectangles. Its role will be to align these rectangles horizontally.

IlvCompositeGraphic rectangles = new IlvCompositeGraphic();

2. Create a stacker layout and pass it to the Composite Graphic object.

IlvStackerLayout stacker = new IlvStackerLayout(SwingConstants.
RIGHT,SwingConstants.BOTTOM,3);
rectangles.setLayout(stacker);

3. Create the three rectangles and set them as child graphics of the rectangles composite
graphic.

IlvRectangle r1 = new IlvRectangle(new IlvRect(0,0,5,5),true,true);
r1.setBackground(Color.red);
rectangles.setChildren(0,r1);

IlvRectangle r2 = new IlvRectangle(new IlvRect(0,0,5,5),true,true);
r2.setBackground(Color.yellow);
rectangles.setChildren(1,r2);

IlvRectangle r3 = new IlvRectangle(new IlvRect(0,0,5,5),true,true);
r3.setBackground(Color.green);
rectangles.setChildren(2,r3);

4. Make the rectangles composite graphic as a child graphic of the main composite
graphic built in the previous stages.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6202

composite.setChildren(2,rectangles);
composite.setConstraints(2,new IlvAttachmentConstraint
(IlvAttachmentLocation.BottomLeft,IlvAttachmentLocation.TopRight));

At the end of this stage, you should obtain the following result:

Stacker Layout

Stage 6 - Using a centered layout
Unlike center attachment (see Attachment Locations), Centered Layout has the specific
feature of handling two graphics, the outer graphic and the inner graphic. More precisely,
in Centered Layout, the composite is a container that lays out two children: the first, at
index position 0, is the outer graphic, the second one, at index position 1, is the inner graphic.
The outer graphic will be resized by the composite in such way that the inner graphic remains
at the center of the outer graphic.

This example creates a Balloon made of a yellow ellipse containing the text “Balloon” and
adds it as a new child of the composite graphic built in the previous stages. Balloon is a new
composite graphic that uses Centered Layout to position the text and the ellipse with respect
to each other. In the following steps, you create the composite graphic as a new object (the
Balloon), the outer graphic (the ellipse), the inner graphic (the text), then you attach the
Balloon to the main composite graphic.

To create the balloon and center the text:

1. Create the Balloon composite graphic with Centered Layout:

IlvCompositeGraphic balloon = new IlvCompositeGraphic();
IlvCenteredLayout centered = new IlvCenteredLayout(new Insets(5,5,5,5));
balloon.setLayout(centered);

2. Create the outer graphic as an instance of IlvEllipse:

The outer graphic is always the first child, at position 0, of the composite graphic with
Centered Layout. This child is resized by the composite to the size of the inner graphic
extended by the inset given to the Centered Layout ((5,5,5,5)) at step 1.

IlvEllipse ellipse = new IlvEllipse();
ellipse.setFillOn(true);
ellipse.setBackground(Color.yellow);
balloon.setChildren(0,ellipse);

3. Create the inner graphic as an instance of IlvText:

The inner graphic is always the second child, at position 1, of the composite graphic
with Centered Layout.

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 203

IlvText balloonText = new IlvText(new IlvPoint(0,0),"Balloon");
balloon.setChildren(1,balloonText);

4. Attach the Balloon to the main composite graphic using IlvAttachmentConstraint:

composite.setChildren(3,balloon);
composite.setConstraints(3,new IlvAttachmentConstraint
(IlvAttachmentLocation.BottomCenter,IlvAttachmentLocation.TopLeft));

At the end of this stage, you should obtain the composite graphic illustrated in Centered
Layout:

Centered Layout

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6204

A
abortReDraws method

IlvManager class 118
accelerators

handling events 84
addInteractorListener method

IlvManagerView class 156
addLayer method

IlvManagerLayer class 101
addLink method

IlvGrapher class 173
addManagerChangedListener method

IlvManager class 104
IlvManagerView class 91, 121

addManagerContentChangedListener method
IlvManager class 120

addManagerSelectionListener method
IlvManager class 129

addManagerViewsListener method
IlvManager class 91

addNode method
IlvGrapher class 172

addObject method
IlvManager class 102, 112

addPin method
IlvPinLinkConnector class 182

addTransformer method
IlvManagerView class 92

addTransformerListener method
IlvManagerView class 93

addVisibilityFilter method
IlvManagerLayer class 102

ADJUSTMENT_END event 120
allow method

IlvGrapherPin class 182
allowsPointInsertion method

IlvLinkImage class 189
applet

initialization 17
applyToObject method

IlvManager class 114
applyTransform method

IlvGraphic class 66
IlvLinkImage class 191

arcs 59
arrows 59
attachment layout 200
auxiliary view

repaint request 98

B
Background manager view property 37
Beans

editing properties 36
for GUI components 31, 32
for main data structure 31
for predefined interactors 31
installing in an IDE 30

bounding box 50
boundingBox method

IlvGraphic class 50, 66, 69
IlvRect class 145

branch of grapher
visibility of nodes and links 178

BRIDGE_CROSSINGS link crossing mode 194
buffers

double buffering 95
triple buffering 105

C
centered layout 202
child, in composite graphics

attaching 201
creating 200

© Copyright IBM Corp. 1987, 2009 205

I N D E X

Index

classes, hierarchy 49
composite graphics 63, 198

attachment layout 200
centered layout 202
creating, step-by-step procedure 200
introducing 198
stacker layout 201

connectLink method
IlvPinLinkConnector class 182

contains method
IlvGraphic class 74

controlling visibility of nodes and links
independently 177
together 177

coupling visibility of nodes and links 177

D
data structure

Beans 31
creating 37
IlvManager basic class 11

deleteAll method
IlvManager class 112

deSelectAll method
IlvManager class 125

DIRECT_DRAW
view repaint mode 98

double buffering 95
draw method

AWT Graphics class 68
IlvGraphic class 50, 66

drawGhost method
IlvManagerViewInteractor class 145, 156

drawing order 108
drawing, optimizing 118

E
editing 61
editing object properties 117
ellipses 59
events

handling 84
managing 141

examples
creating the ShadowEllipse class 67
defining connection points between nodes
182
extending the IlvObjectInteractor class
145
implementing the DragRectangleInteractor
class 156
importing the JViews library 16
using double-buffering 95
zooming a view 92

F
filled arcs 59
filled ellipses 59
fitTransformer method

IlvManagerView class 92
functions

user-defined 116

G
Get method

IlvObjectInteractor class 144
getCardinal method

IlvManager class 112
getConnectionPoints method

IlvLinkImage class 189
getCrossingMode method

IlvEnhancedPolylineLinkImage class 194
getDefaultInteractor method

IlvSelection class 159
getGrid method

IlvGrid class 96
getInsertionLayer method

IlvManager class 112, 127
getInteractor method

IlvManagerViewInteractor class 152
getLayer method

IlvManager class 102
getLayerCount method

IlvManagerLayer class 101
getLinkClass method

IlvMakeLinkConnector class 187
getLinkPoints method

IlvLinkImage class 189
getNode method

IlvGrapherPin class 182
getObject method

IlvSelection class 125
getObjectInteractor method

IlvManager class 144
getObjects method

IlvManager class 112
getPointAt method

IlvPolyPointsInterface 189
getPointCardinalmethod

IlvPolyPointsInterface 189
getPosition method

IlvGrapherPin class 182
getProperty method

IlvGraphic class 55
getSelectedObjects method

IlvManager class 125
getSelection method

IlvManager class 125
graphers

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6206

visibility of nodes and links in a branch 178
graphic bags 58
graphic objects

groups 63
IlvGraphic basic class 10
introduction 47
predefined, hierarchy 49
user properties 55

graphic paths 65
grid

manager view 96

H
handles 124
handling events 84
hasProperty method

IlvGraphic class 55
hierarchy of graphic object classes 49
holes 65

I
icons 64
IlvArc class 152
IlvArrowLine class 152
IlvArrowPolyline class 152
IlvAttachmentConstraint class 203
IlvAttachmentLayout class 198
IlvBundleLinkShapePolicy class 193
IlvCenteredLayout class 198
IlvCenterLinkInteractor class 185
IlvCircularScale class 64
IlvClippingLinkInteractor class 185
IlvCompositeGraphic class 63, 198
IlvCrossinglLinkShapePolicy class 193
IlvDoubleLinkImage class 174
IlvDragRectangleInteractor class 32, 152, 156
IlvDrawSelection class 124
IlvEditLabelInteractor class 32, 152
IlvEllipse class 59, 152, 203
IlvEnhancedPolylineLinkImage class 193

getCrossingMode method 194
isOrthogonal method 193
setCrossingMode method 194
setOrthogonal method 193

IlvFreeLinkInteractor class 185
IlvGeneralPath class 64
IlvGrapher class 31, 170, 178

addLink method 173
addNode method 172
makeNode method 172

IlvGrapherPin class 182
allow method 182
getNode method 182
getPosition method 182

IlvGraphic class 10, 48, 52, 178, 198

applyTransform method 66
boundingBox method 50, 66, 69
draw method 66
getProperty method 55
hasProperty method 55
makeSelection method 127
move method 52
moveResize method 52
removeProperty method 55
replaceProperty method 55
resize method 52
rotate method 52
scale method 52
setObjectInteractor method 144
setProperty method 55
translate method 52
write method 75

IlvGraphicBag class 58
IlvGraphicBag interface 166
IlvGraphicEnumeration class 112
IlvGraphicPath class 65
IlvGraphicSet class 63, 166
IlvGrid class 31

getGrid method 96
setGrid method 96
snapToGrid method 96

IlvHoverHighligtingImageOperation class 133
IlvIcon class 25, 64
IlvInputStream class 56
IlvJComponentGraphic class 65
IlvJManagerViewControlBar class 33
IlvJScrollManagerView class 31, 35, 94
IlvLabelInterface class 152
IlvLayerVisibilityFilter class 102
IlvLine class 152
IlvLinkImage class 152, 170, 173, 187

allowsPointInsertion method 189
allowsPointRemoval method 189
applyTransform method 191
getConnectionPoints method 189
getLinkPoints method 189
write method 191

IlvLinkShapePolicy class 193
IlvLinkVisibilityHandler class 177
IlvMagnifyInteractor class 32, 152
IlvMakeArrowLineInteractor class 152
IlvMakeArrowPolylineInteractor class 152
IlvMakeLineInteractor class 152
IlvMakeLinkInteractor class 32, 187

getLinkClass method 187
makePolyPoint method 187

IlvMakePolygonInteractor class 152
IlvMakePolylineInteractor class 152

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 207

IlvMakePolyLinkInteractor class 152, 187
IlvMakePolyPointsInteractor class 32, 152
IlvMakeRectangleInteractor class 32, 152
IlvMakeSplineInteractor class 152
IlvManager class 11, 17, 31, 37, 166, 170

abortReDraws method 118
addManagerContentChangedListenermethod
120
addManagerLayerListener method 104
addManagerSelectionListener method 129
addManagerViewsListener method 91
addObject method 102, 112
applyToObject method 52, 114
deleteAll method 112
deSelectAll method 125
DXF file

reading into IlvManager 166
getCardinal method 112
getInsertionLayer method 112, 127
getLayer method 102
getObjectInteractor method 144
getObjects method 112
getSelectedObjects method 125
getSelection method 125
initReDraws method 118
invalidateRegion method 118
isEditable method 117
isInvalidating method 118
isManaged method 112
isMovable method 117
isSelectable method 103, 117
isSelected method 125
isVisible method 102
mapInside method 116
mapIntersects method 116
moveObject method 114
read method 164
reDrawViews method 118
removeObject method 112
reshapeObject method 114
selectAll method 125
setEditable method 117
setHoverHighlightingImageOperation
method 133
setHoverHighlightingMode method 132
setInsertionLayer method 112
setLayer method 102
setMovable method 117
setSelectable method 103, 117
setSelected method 125
setVisible method 102
write method 164

IlvManagerLayer class 101, 102
addLayer method 101

addVisibilityFilter method 102
getLayerCount method 101
removeLayer method 101

IlvManagerLayerAdapter class 104
IlvManagerMagViewInteractor class 32
IlvManagerView class 11, 31, 35, 36, 87, 92, 98

addInteractorListener method 156
addManagerChangedListenermethod 91, 121
addTransformer method 92
addTransformerListener method 93
fitTransformer method 92
invalidateTripleBuffer method 105
isKeepingAspectRatio method 92
removeInteractorListener method 156
removeManagerChangedListener method 91
removeTransformerListener method 93
setInteractor method 20, 22
setKeepingAspectRatio method 92
setTransformer method 92
setTripleBufferedLayerCount method 105
Translate method 92
zoom method 92

IlvManagerViewControlBar class 33
IlvManagerViewInteractor class 19, 32, 143, 152

drawGhost method 145, 156
getInteractor method 152
popInteractor method 152
pushInteractor method 152
setInteractor method 152

IlvManagerViewPanel class 31, 95
isDoubleBuffering method 95
setDoubleBuffering method 95

IlvMarker class 63
IlvMoveRectangleInteractor class 152
IlvObjectInteractor class 143

extending 145
Get method 144
processEvent method 145

IlvObjectInteractorContext class 145
IlvOneLinkImage class 174
IlvOneSplineLinkImage class 174
IlvOrthogonalLinkShapePolicy class 193
IlvOutputStream class 56
IlvPanInteractor class 32, 152
IlvPinLinkConnector class

addPin method 182
connectLink method 182

IlvPolygon class 152
IlvPolyline class 152
IlvPolylineLinkImage class 152, 174, 187, 188
IlvPolyPoints class 60
IlvPolyPointsInterface

getPointAt method 189
getPointCardinal method 189

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6208

IlvPopupMenuManager class 162
registerView method 162

IlvReadFileException class 164
IlvRect class

boundingBox method 145
IlvRectangle class 152
IlvRectangularScale class 64
IlvReliefRectangle class 60, 152
IlvReshapeSelection class 159
IlvRotateInteractor class 32, 152
IlvScrollManagerView class 31, 94
IlvSelectInteractor class 19, 21, 32, 117, 126, 152,
159

isDragAllowed method 159
isEditionAllowed method 159
isMoveAllowed method 93, 159
isMultipleSelectionMode method 159
setDragAllowed method 159
setEditionAllowed method 159
setMoveAllowed method 159
setMultipleSelectionMode method 159

IlvSelection class 124
getDefaultInteractor method 159
getObject method 125

IlvSelectionFactory class 127
IlvSpline class 124, 152
IlvSplineSelection class 124
IlvStackerLayout class 198
IlvText class 203
IlvToolTipManager class 162

registerView method
IlvToolTipManager class 162

IlvTransformer class 50
IlvUnZoomViewInteractor class 21, 152
IlvZoomViewInteractor class 21, 32, 152
importing

library and packages 16
indexing layers 101
initReDraws method

IlvManager class 118
inner graphic, in composite graphics/centered
layout 203
input/output operations 56, 75, 85
interactorChanged method

InteractorListener interface 23, 156
InteractorChangedEvent class 156
InteractorListener interface 21

interactorChanged method 23, 156
interactors

Beans 31
grapher 187
handling events 84
listener 156
predefined 152

selection 126
view 152

invalidateRegion method
IlvManager class 118

invalidateTripleBuffer method
IlvManagerView class 105

isDoubleBuffering method
IlvManagerViewPanel class 95

isDragAllowed method
IlvSelectInteractor class 159

isEditable method
IlvManager class 117

isEditionAllowed method
IlvSelectInteractor class 159

isInvalidating method
IlvManager class 118

isKeepingAspectRatio method
IlvManagerView class 92

isManaged method
IlvManager class 112

isMovable method
IlvManager class 117

isMoveAllowed method
IlvSelectInteractor class 93, 159

isMultipleSelectionMode method
IlvSelectInteractor class 159

isOrthogonal method
IlvEnhancedPolylineLinkImage class 193

isSelectable method
IlvManager class 103, 117

isSelected method
IlvManager class 125

isVisible method
IlvManager class 102

J
jviews-framework-all.jar file 30

K
KeepAspectRatio manager view property 37

L
labels 61
layerInserted method

ManagerLayerListener interface 104
layerMoved method

ManagerLayerListener interface 104
layerRemoved method

ManagerLayerListener interface 104
layers

adding objects to 102
indexing 101
managing 99
selectability of objects 103
setting up 101

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 209

triple buffering 105
visibility of objects 102

layout
aligning 201
attachment 200
centering 202
manager object 198

library, importing 16
lines 59
links

creating 188
crossing modes 193
definition 170
managed 177
managing 170
orthogonal 193
predefined 174
shape policies 193
unmanaged 177
visibility in branch of a grapher 178
visibility of managed 177
visibility of unmanaged 177

listener
some manager layer events 104

listeners, for changes to
a transformer 93
an interactor 156
the content of the manager 120
the selections in a manager 129

listening to some, but not all events
manager layer listener 104

M
main view

repaint request 98
makeNode method

IlvGrapher class 172
makePolyPoint method

IlvMakeLinkConnector class 187
makeSelection method

IlvGraphic class 127
manager view

auxiliary view 98
editing properties 36
main view 98
repaint delay 98

managerChanged method
ManagerChangedListener interface 91

ManagerChangedEvent class 91
ManagerChangedListener interface 91

managerChanged method 91
ManagerLayerListener interface 104

layerInserted method 104
layerMoved method 104
layerRemoved method 104

managers
binding views 89
introducing 81
layers 83
view grid 96

ManagerSelectionListener interface 129
ManagerViewsChangedListener interface 91

viewchanged method 91
managing

events 141
graphic objects 111
layers 99
links 170
nodes 170
selected objects 125

mapInside method
IlvManager class 116

mapIntersects method
IlvManager class 116

markers 63
moveObject method

IlvManager class 114
MoveObjectInteractor class 144, 145

N
NO_CROSSINGS link crossing mode 194
nodes

contact points 180
definition 170
managing 170
visibility in branch of a grapher 178

O
object model for a graphics application 10
OBJECT_ADDED type of change 120
OBJECT_BBOX_CHANGED type of change 120
OBJECT_LAYER_CHANGED type of change 120
OBJECT_REMOVED type of change 120
OBJECT_VISIBILITY_CHANGED type of change 120
objects

adding to and removing from manager 112
adding to layers 102
bounding box 50
creating 66, 67, 127
drawing 50
editing properties 117
layers 102
managing 111
modifying the geometric properties 114
moving 52, 114
nonzoomable 51
reading 56, 75
resizing 52
rotating 52
saving 56, 75
scaling 52

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6210

selectability 103
selection objects 123
translating 52
visibility 102
zoomable 51

orthogonal links 193
outer graphic, in composite graphics/centered
layout 203

P
packages, importing 16
paths 64, 65
polygons 60, 65
polylines 60, 65
pop-up menu manager

IlvPopupMenuManager class 162
popInteractor method

IlvManagerViewInteractor class 152
popup menu manager

IlvPopupMenuManager class 162
popup menus 162
predefined graphic objects 59

hierarchy 49
predefined interactors 31
predefined links 174
predefined view interactors 152
processEvent method

IlvObjectInteractor class 145
properties

editing 117
geometric 50, 114
named 77
selecting 117
user 55

pushInteractor method
IlvManagerViewInteractor class 152

Q
quadtree 108

R
read method

IlvManager class 164
read superclass constructor 75
reading

a file 17
an object in a JViews formatted file 75
manager contents 164

rectangles 60
reDrawViews method

IlvManager class 118
refresh delay 98
registerMenu method

IlvPopupMenuManager class 162
removeInteractorListener method

IlvManagerView class 156

removeLayer method
IlvManagerLayer class 101

removeManagerChangedListener method
IlvManagerView class 91

removeObject method
IlvManager class 112

removeProperty method
IlvGraphic class 55

removeTransformerListener method
IlvManagerView class 93

repaint delay
manager view 98

repaint requests
delay 98
skipping 98

replaceProperty method
IlvGraphic class 55

reshapeObject method
IlvManager class 114

resizing method
IlvGraphic class 52

S
saving

an object in a JViews formatted file 75
manager contents to file 164

scales 64
scrolled manager view 94
selectability of objects 103
selectAll method

IlvManager class 125
selecting object properties 117
selection objects 123
selections

interactor 126
setCrossingMode method

IlvEnhancedPolylineLinkImage class 194
setDoubleBuffering method

IlvManagerViewPanel class 95
setDragAllowed method

IlvSelectInteractor class 159
setEditable method

IlvManager class 117
setEditionAllowed method

IlvSelectInteractor class 159
setGrid method

IlvGrid class 96
setHoverHighlightingImageOperation method

IlvManager class 133
setHoverHighlightingMode method

IlvManager class 132
setInsertionLayer method

IlvManager class 112
setInteractor method

IlvManagerView class 20, 22

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6 211

IlvManagerViewInteractor class 152
setKeepingAspectRatio method

IlvManagerView class 92
setLayer method

IlvManager class 102
setMovable method

IlvManager class 117
setMoveAllowed method

IlvSelectInteractor class 159
setMultipleSelectionMode method

IlvSelectInteractor class 159
setObjectInteractor method

IlvGraphic class 144
setOrthogonal method

IlvEnhancedPolylineLinkImage class 193
setProperty method

IlvGraphic class 55
setSelectable method

IlvManager class 103, 117
setSelected method

IlvManager class 125
setTransformer method

IlvManagerView class 92
setTripleBufferedLayerCount method

IlvManagerView class 105
setVisible method

IlvManager class 102
shadows 61
shape policies for links 193
shapes 60
skipping repaint requests

IlvManagerView 98
snapToGrid method

IlvGrid class 96
stacker layout 201
Swing

tooltip manager 162

T
text editing 61
texts 61
THREADED_REDRAW

view repaint mode 98
tooltip manager

IlvToolTipManager class 162
Swing 162

tooltips 162
transformations

to define the displayed area of the manager
92

transformers
listener 93

Translate method
IlvManagerView class 92

triple buffering 105

TUNNEL_CROSSINGS link crossing mode 194

U
user-defined functions 116

V
view grid 96
view interactors

predefined 152
view repaint mode

DIRECT_DRAW 98
THREADED_REDRAW 98

viewchanged method
ManagerViewsChangedListener interface 91

viewport
IlvManagerView basic class 11

views
binding to a manager 89
creating 17
of a manager 82
predefined view interactors 152
scrolled manager view 94
transformations 92
zooming 92

visibility
of nodes and links in branch of a grapher 178

visibility of objects 102

W
write method

IlvGraphic class 56, 75
IlvLinkImage class 191
IlvManager class 164

wysiwyg editing 62

Z
Z-order 108
zoom method

IlvManagerView class 92
zoomable objects 51
zooming a view 92

I B M ® I L O G ® J V I E W S F R A M E W O R K 8 . 6212

	Table of contents
	Introducing IBM® ILOG® JViews Framework
	Overview
	A basic graphics application model

	Getting started with JViews Framework
	Overview of tutorial
	Running the example
	Stage 1 - The manager
	Stage 2 - View interaction
	Stage 3 - Using events
	Stage 4 - Manipulating graphic objects

	Framework JavaBeans(TM)
	Installing IBM® ILOG® JViews Beans in an IDE
	Framework classes available as JavaBeans(TM)
	Creating a simple applet using IBM® ILOG® JViews Beans

	Graphic objects
	A graphic object
	The class IlvGraphic
	Hierarchy of predefined graphic objects
	Geometric properties
	User properties of graphic objects
	Input/output operations
	The graphic bag
	Predefined graphic objects
	The ShadowEllipse class
	Creating a new graphic object class
	Testing for a point inside an object
	Saving and loading the object description
	Named properties

	Managers
	A manager
	A manager view
	Layers
	Handling input events: interactors and accelerators
	Input/output
	Class diagram for IlvManager
	Multiple manager views
	Binding views to a manager
	Creating a manager and a view
	Listener for the views of a manager
	View transformation
	Scrolled manager view
	Managing double buffering
	The manager view grid
	Class diagram for IlvManagerView
	Manager view repaint skipper

	Managing layers
	Layers in a manager
	Setting up layers
	Layers and their graphic objects
	Listener for layer changes in a manager
	Triple buffering layers
	Caching layers
	Manipulating the drawing order

	Managing graphic objects
	Adding objects to a manager and removing them
	Modifying geometric properties of objects
	Applying functions
	Editing and selecting properties
	Optimizing drawing tasks
	Listener for the content of the manager

	Selection in a manager
	Selection objects
	Managing selected objects
	Creating your own selection object
	Listener for the selections in a manager

	Hover highlighting in a manager
	Managing hover highlighting
	Creating your own highlighting effect

	Blinking of graphic objects
	Introduction

	Managing input events
	Handling input events
	Object interactors
	Example: Extending the IlvObjectInteractor class
	Customizing the interactor of selected graphic objects
	View interactors
	Class diagrams for interactors and selection classes
	Interactor listeners
	The selection interactor
	Tooltips and popup menus on graphic objects

	Saving and reading
	File formats
	Drawing Exchange Format (DXF)

	Graphers
	The grapher
	Managing nodes and links
	Nodes
	Links
	Predefined link classes
	Managing link visibility
	Showing and hiding grapher branches

	Contact points
	Default contact points
	Using link connectors
	Using pins
	Other link connectors

	Class diagram for graphers
	Grapher interactor class
	Creating a new class of link
	Link shapes and crossing

	Composite Graphics
	Introducing composite graphics
	Creating a composite graphic

	Index

