
IBM ILOG JViews Gantt V8.6

Developing with the JViews
Gantt SDK

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the main classes..9
Class overview...10

Data model classes...13
The interaction between abstract and concrete elements..14
Using the abstract implementation to create a custom data model..16
Concrete data model implementations...17

Binding the Gantt chart components to the data model...19

Time and duration...20

Connecting to data...23
Connecting to data in-memory..25
When to use data in-memory...26
Activities and resources...27
Populating the data model..28
Manipulating activities and resources..29
Activity and resource factories..30
Constraints...32
Reservations..34

Connecting to XML data...37
The SDXL format..38
The schedule data exchange language..39
How to write an IlvGanttModel to an SDXL file using serialization...43

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

How to read an IlvGanttModel from an SDXL file using serialization...46
Handling exceptions while reading SDXL files...48

Connecting to Swing TableModel instances...49
Overview...51
Data required by IlvTableGanttModel...52
Converting TableModel data to IlvTableGantt Model data..54
Configuring the IlvTableGanttModel object correctly..56
Read/write support...59
Dynamic behavior...60
Reading data from CSV files..61
Complex mappings...62

Connecting to data through JDBC...65
Overview...66
Writing queries to populate the data model..67
The harbor example...69
Passing the data to the Gantt data model..70

Implementing custom data models...72

Styling...73
Styling examples...75

Using CSS syntax in the style sheet...77
Overview...78
The origins of CSS...79
The CSS syntax...80

Applying CSS to Java objects..83
Overview...85
The CSS engine...86
The CSS data model..87
CSS recursion..91
Constructs..92
Expressions..94
Custom functions..95
Registering custom functions...97
Divergences from CSS2...98

Using style sheets...101
Applying styles...102
Disabling styling..104

The Gantt and Schedule CSS examples..105
Running the examples..106
Scheduling data..107
Customizing a Gantt chart using a simple style sheet..108

I B M ® I L O G ® J V I E W S G A N T T 8 . 64

The resource data CSS example..111
Running the Example...112
Scheduling data..113
Customizing a Resource Data style sheet...114
Two kinds of rules...117

Styling Gantt and Schedule chart components...118

Styling Gantt chart and Schedule chart data..123
Overview...124
Styling activities..125

Activity model objects..126
Activity renderer target objects..128
Activity ID selectors...131
IlvGeneralActivity properties...132
IlvGeneralActivity CSS classes...133
Activity CSS pseudoclasses..134
The formatDate and formatDuration functions..135

Styling constraints..137
Constraint model objects...139
Constraint graphic target objects..141
Constraint ID selector..142
IlvGeneralConstraint properties..143
IlvGeneralConstraint CSS classes..144
Constraint CSS pseudoclasses...145
The activityProperty function...146

Styling Resource Data chart components..147
Overview...148
Styling the Chart Area component...151
Styling the Chart Legend..152
Styling the chart renderer...154
Styling the chart scales..155
Styling the chart grids...157

Styling the Resource Data chart data..159
Overview...160
Selector patterns..161
Attributes of model objects...162
CSS classes...164
Properties...165
Properties for data series...168

Gantt charts..169
The architecture of the Gantt charts..171

The Gantt beans..173

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 5

Overview...174
Structure...175
Properties...176

Basic steps for using the Gantt chart and Schedule chart beans......................................177

Running the samples..179
Gantt chart..180
Running the sample as an application...182
Schedule chart...185
Deploying a Gantt application...186

Using Gantt and Schedule charts..187
Chart visual properties...188
Expanding or collapsing and hiding or showing rows...190
Controlling row structure and visibility..191
Scrolling in the Gantt sheet..192

Using the Gantt sheet...195
Gantt sheet architecture...196
Rendering the data in the Gantt sheet...198
Time indicators...200
Activity layouts..205

Using the time scale..207
Changing the rows of a time scale...208
Visibility policy..210
Controlling row visibility..211
Nonlinear time scale...213

Customizing Gantt charts...215
Customization examples..216
Running the Custom Gantt example..217
Customization overview..218
Customizing the Gantt data model...219

Customizing activity rendering..221
The Activity Rendering API..222
Simple activity renderers..223
Combining activity renderers..224
Rendering Activities with Multiple Dates..229
Using Composite Graphics...232
Installing Custom Activity Renderers..237

Customizing table columns..239
Running the example..240
Tree column icons..241
The PriorityColumn class...242
Adding the column to the table...247

I B M ® I L O G ® J V I E W S G A N T T 8 . 66

Dynamic columns...248

Interacting with the Gantt charts...253
Class associations for interactors...254
Selecting activities and constraints...255
Moving activity and reservation graphics..256
Duplicating reservation graphics..257
Resizing activity and reservation graphics...258

Interacting with the Gantt sheet using the mouse...259
Creating activities and reservations...260
Creating constraints...261
Popup menus...262

Resource Data charts...265
The architecture of the Resource Data chart..266

The Resource Data chart bean...267
Basic architecture...268
Basic steps in using the Resource Data chart bean - details...270

Comparing the Resource Data chart with IBM® ILOG® JViews Charts.............................271

Computing and displaying resource data...272

Synchronizing Schedule charts and Resource Data charts..273
Overview...274
Selecting resources for display...275
Computing resource data...277
Rendering resource data..278
The x-axis...279

Calendar view components...281
Calendar view beans...282

Running the Calendar View sample...284

Basic architecture...285
Overview...286
Calendar View models..288
Calendar View renderers..289
Leaf activity and holiday renderers...291
Milestone renderers..294

Deploying as an applet..296

Using JViews products in Eclipse RCP applications..297

Printing..305
Printing Gantt and Schedule charts..307

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 7

Overview...308
Introduction...309
The GanttPrintExample demo..310
Printing Framework API..312
How it works...317

Printing a Resource Data chart..319
Introduction...320
The Printing Resource Data chart Example...321
Printing framework API...322

Critical path analysis..325
Critical path analysis overview..326

Example..328

Handling errors..329

Loading data on demand...331
Vertical load-on-demand...333
Overview...334
Running the Database Gantt example...335
Understanding the Database Gantt example...336

Horizontal load-on-demand..339
Overview...340
Running the Database Schedule example...341
Understanding the Database Schedule example...342

Document type definition for SDXL..345

Index..347

I B M ® I L O G ® J V I E W S G A N T T 8 . 68

Introducing the main classes

Explains how the main classes of JViews Gantt are organized and how they relate to the
main functionality in the product.

In this section

Class overview
Describes the high-level chart and calendar components and the main classes of the Gantt
API that implement them.

Data model classes
Describes the abstract data model, and the concrete implementations that make up the
scheduling model.

Binding the Gantt chart components to the data model
Explains how to bind model view objects to a data model.

Time and duration
Describes how to instantiate and use the classes that represent date, duration and time
interval in JViews Gantt.

© Copyright IBM Corp. 1987, 2009 9

Class overview

JViews Gantt provides a library of classes for displaying an abstract data model of scheduling
information as a Gantt chart, a Schedule chart, a Resource Data chart, and monthly or daily
calendar views.

JViews Gantt features three high-level chart components, called the Gantt chart, Schedule
chart, and Resource Data chart. The Gantt and Schedule charts are implemented by the
IlvGanttChart and IlvScheduleChart classes, respectively, both subclasses of
IlvHierarchyChart. The Resource Data chart is implemented by the IlvResourceDataChart
class, which is a subclass of IlvScheduleDataChart.

IBM® ILOG® JViews Gantt also features the following high-level calendar view components:

♦ Monthly Calendar View

♦ Daily Calendar View.

These views are implemented by the IlvMonthView and IlvDayView classes, respectively.
The chart and calendar view components encapsulate the Gantt library API and provide a
high-level interface to its capabilities. Together with the IlvGanttModel interface, the three
chart and two calendar view components make up the six main classes of the Gantt API.

The following figure shows the classes of JViews Gantt.

I B M ® I L O G ® J V I E W S G A N T T 8 . 610

The scheduling data displayed by the chart and calendar view components is defined by the
abstract IlvGanttModel interface. This interface defines the overall data model and acts as
an intelligent container for the other four data model entities.

These data models are:

♦ Activities, defined by the IlvActivity interface.

♦ Resources are defined by the IlvResource interface.

♦ Activity-to-activity constraints are defined by the IlvConstraint interface.

♦ Assignment of a resource to an activity is defined by the IlvReservation interface.

All the data model interfaces and provided implementations are independent of the
exact implementation of the other portions of the data model. For example, an

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 11

IlvDefaultGanttModel object can store your own custom IlvActivity
implementation as easily as it would an instance of IlvSimpleActivity.This allows
you to customize only those portions of the data model that are necessary for your
particular application.

I B M ® I L O G ® J V I E W S G A N T T 8 . 612

Data model classes

Describes the abstract data model, and the concrete implementations that make up the
scheduling model.

In this section

The interaction between abstract and concrete elements
Explains the interaction between the main interfaces in the data model and the
implementation classes supplied for them.

Using the abstract implementation to create a custom data model
Explains where to find information about how to create a custom data model using the
abstract implementation as a starting point.

Concrete data model implementations
Describes the data model implementations provided by JViews Gantt.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 13

The interaction between abstract and concrete elements

The data model is completely abstract and is defined by the IlvGanttModel interface. This
interface acts as an intelligent container for four other abstract interfaces that represent
the scheduling data itself: IlvActivity, IlvConstraint, IlvResource, and IlvReservation.
These interfaces are included in the ilog.views.gantt.

The following table gives a brief description of each interface.

DescriptionData Model Interface

Defines the overall JViews Gantt data model and is a container for the other
four entities.

IlvGanttModel

Represents an activity or task that must be completed in the schedule.IlvActivity

Represents a resource that can be allocated to an activity to enable its
completion.

IlvResource

Represents an activity-to-activity scheduling constraint.IlvConstraint

Represents the allocation of a resource to an activity.IlvReservation

The following figure shows the associations between the five interfaces that compose the
JViews Gantt data model.

Several levels of implementation are available for each of these abstract interfaces.

♦ Using the abstract implementation to create a custom data model

♦ Concrete data model implementations

The following tables summarize implementation classes supplied for the datamodel interfaces
described in the previous table.

I B M ® I L O G ® J V I E W S G A N T T 8 . 614

Default Memory-Based
Implementation

Simple Memory-Based
Implementation

Abstract Implementation

IlvDefaultGanttModelIlvDefaultGanttModelIlvAbstractGanttModel

IlvGeneralActivityIlvSimpleActivityIlvAbstractActivity

IlvGeneralResourceIlvSimpleResourceIlvAbstractResource

IlvGeneralConstraintIlvSimpleConstraintIlvAbstractConstraint

IlvGeneralReservationIlvSimpleReservationIlvAbstractReservation

JDBC™ ImplementationSwing TableModel
Implementation

Abstract Implementation

IlvJDBCGanttModelIlvTableGanttModelIlvAbstractGanttModel

IlvTableActivityIlvTableActivityIlvAbstractActivity

IlvTableResourceIlvTableResourceIlvAbstractResource

IlvTableConstraintIlvTableConstraintIlvAbstractConstraint

IlvTableReservationIlvTableReservationIlvAbstractReservation

In general, there are no hard-coded dependencies between the data model implementation
classes. This means that you can choose to use as much of the provided data models as you
need while subclassing just the portion that you need to customize for your application.

The notable exceptions are:

♦ The class IlvTableGanttModel that you can use to connect to Swing TableModel instances.

See Connecting to Swing TableModel instances for details.

♦ The class IlvJDBCGanttModel that you can use to connect to a database.

See Connecting to data through JDBC for details.

These data model implementations require that their data entities be instances of
IlvTableActivity, IlvTableResource, IlvTableConstraint, or IlvTableReservation.
The IlvTableGanttModel and IlvJDBCGanttModel classes automatically create these data
instances for you from the contents of the Swing or database tables. Therefore, you do not
need to be concerned with explicitly populating an IlvTableGanttModel or
IlvJDBCGanttModel object.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 15

Using the abstract implementation to create a custom data model

An abstract implementation is provided as a starting point for your own custom data model
designs. These classes provide the basic event notification framework, but no property or
data storage.

You can create your own custom data model in its entirety, but you are recommended to
use the abstract classes as a starting point. How to extend the abstract classes for this
purpose is an advanced topic not covered in this documentation.

This topic is demonstrated in the database examples available in:

♦ <installdir>/jviews-gantt86/samples/databaseGantt

♦ <installdir>/jviews-gantt86/samples/databaseSchedule

The abstract implementations are included in the ilog.views.gantt.model.

I B M ® I L O G ® J V I E W S G A N T T 8 . 616

Concrete data model implementations

Describes the concrete data model implementations provided by JViews Gantt. How to extend
them is an advanced topic not covered in this section. See Customizing Gantt charts for a
customization example.

Simple data model implementation
This concrete implementation is completely memory-based and provides the most basic
implementation of the Gantt data model. Only the required properties of each data model
entity are supported. This implementation is used as the basis for the Default Memory-Based
data model described in Default data model implementation. It can also be used as a more
complete foundation for your own custom data model extensions. The simple data model
implementation is included in the ilog.views.gantt.model .

The following table shows the corresponding data model interfaces and implementation
classes.

Simple Memory-Based ImplementationData Model Interface

IlvDefaultGanttModelIlvGanttModel

IlvSimpleActivityIlvActivity

IlvSimpleResourceIlvResource

IlvSimpleConstraintIlvConstraint

IlvSimpleReservationIlvReservation

Default data model implementation
The default data-model implementation extends the Simple Data Model implementation and
is also completely memory-based. This implementation inherits the required properties of
each data model entity and adds support for user-defined properties. It is used throughout
the examples, except for the Database example.

The following table shows the corresponding data model interfaces and implementation
classes.

Default Memory-Based ImplementationData Model Interface

IlvDefaultGanttModelIlvGanttModel

IlvGeneralActivityIlvActivity

IlvGeneralResourceIlvResource

IlvGeneralConstraintIlvConstraint

IlvGeneralReservationIlvReservation

See the ilog.views.gantt.model.general.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 17

Connection to a JDBC database
The IlvJDBCGanttModel implementation of the IlvGanttModel interface connects to a
database through JDBC™ to get the definition of the activities, resources, constraints, and
reservations with simple mapping configuration. It is documented in Connecting to data
through JDBC. See also the ilog.views.gantt.model.jdbc.

Connection to a Swing TableModel
This data model implementation enables you to create your custom data model from Swing
TableModel instances. It is documented in Connecting to Swing TableModel instances. See
also the ilog.views.gantt.model.table.

The following table shows the corresponding data model interfaces and implementation
classes.

Swing TableModel ImplementationData Model Interface

IlvTableGanttModelIlvGanttModel

IlvTableActivityIlvActivity

IlvTableResourceIlvResource

IlvTableConstraintIlvConstraint

IlvTableReservationIlvReservation

I B M ® I L O G ® J V I E W S G A N T T 8 . 618

Binding the Gantt chart components to the data model

As explained in Getting to know the Designer in Using the Designer, the data model is
designed with complete model-view separation.

Use the following method to bind an IlvGanttChart, IlvScheduleChart,
IlvResourceDataChart, IlvMonthView or IlvDayView object to a data model, as illustrated
in Running the samples:

void setGanttModel(IlvGanttModel ganttModel)

You can obtain the current data model of the chart by using the method:

IlvGanttModel getGanttModel()

Both methods are members of the IlvHierarchyChart class (the common superclass of
IlvGanttChart and IlvScheduleChart), and IlvScheduleDataChart (the superclass of
IlvResourceDataChart), IlvMonthView and IlvDayView.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 19

Time and duration

Throughout the JViews Gantt product, time is represented by the standard java.util.Date
class, duration by IlvDuration, and time intervals by IlvTimeInterval.

The following figure shows the classes for Manipulating Time and Duration.

Date
The standard java.util.Date class is capable of representing an instant in time with
millisecond precision, starting from January 1, 1970. As of JDK 1.1, all methods that can
modify a Date instance have been deprecated. JViews Gantt considers dates to be immutable
and a separate java.util.Calendar object must be used to perform date arithmetic. Some
useful arithmetic methods, such as add and subtract, are bundled into the utility classes
IlvCalendarUtil and IlvTimeUtil. These methods always return a new Date instance
instead of modifying the original object.

You can create a Date instance using one of the following constructors:

♦ Date()

♦ Date(long millis)

The following methods can be used to compare or perform arithmetic on dates:

♦ Date IlvTimeUtil.add(Date date, IlvDuration delta)

♦ Date IlvTimeUtil.subtract(Date date, IlvDuration delta)

♦ IlvDuration IlvTimeUtil.subtract(Date date1, Date date2)

♦ Date IlvCalendarUtil.min(Date a, Date b)

♦ Date IlvCalendarUtil.max(Date a, Date b)

The following methods can be used to compare or perform arithmetic on dates:

The following example shows how to create a Date that represents 8:00 am on April 4, 2001:

I B M ® I L O G ® J V I E W S G A N T T 8 . 620

Calendar calendar = Calendar.getInstance();
calendar.clear();
calendar.set(2001, Calendar.APRIL, 4, 8, 0);
Date date = calendar.getTime();

An instance of the java.util.Calendar class initializes all its time fields to the
current time.You must explicitly clear those Calendar fields that you want set to zero.

Note:

In the previous example, calling the clear method ensures that the second and
millisecond fields of the Calendar object are set to zero.

IlvDuration
The IlvDuration class creates duration objects that represent a length of time with
millisecond precision. Like Date, IlvDuration is an immutable class. Therefore, to create
a different duration, you must create a new IlvDuration object. The class IlvDuration has
a single constructor that takes the length of time expressed in milliseconds:

IlvDuration(long millis)

The IlvDuration class also has several convenient static constants that represent commonly
used time spans:

♦ IlvDuration.ONE_SECOND

♦ IlvDuration.ONE_MINUTE

♦ IlvDuration.ONE_HOUR

♦ IlvDuration.ONE_DAY

♦ IlvDuration.ONE_WEEK

There are also several methods you can use to perform arithmetic on durations:

♦ Date add(Date date)

♦ IlvDuration add(IlvDuration delta)

♦ IlvDuration subtract(IlvDuration delta)

♦ IlvDuration multiply(int multiplier)

The following example shows how to create a duration of three weeks:

IlvDuration threeWeeks = IlvDuration.ONE_WEEK.multiply(3);

IlvTimeInterval
The IlvTimeInterval class creates time objects that represent an interval of time between
a start time and an end time.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 21

You can create time intervals by using the constructors:

♦ IlvTimeInterval(Date start, Date end)

♦ IlvTimeInterval(Date start, IlvDuration duration)

The following example shows how to create a time interval that starts on February 15, 2001
and lasts for one week:

Calendar calendar = Calendar.getInstance();
calendar.clear();
calendar.set(2001, Calendar.FEBRUARY, 15);
Date start = calendar.getTime();
IlvTimeInterval interval = new IlvTimeInterval(start,

IlvDuration.ONE_WEEK);

Unlike the Date and IlvDuration classes, the IlvTimeInterval class is mutable.

You can manipulate a time interval using the following methods:

♦ Date getStart()

♦ void setStart(Date t)

♦ Date getEnd()

♦ void setEnd(Date t)

♦ void setInterval(Date start, Date end)

♦ void setInterval(Date start, IlvDuration duration)

♦ IlvDuration getDuration()

♦ void setDuration(IlvDuration duration)

♦ boolean overlaps(IlvTimeInterval interval)

♦ boolean contains(Date time)

I B M ® I L O G ® J V I E W S G A N T T 8 . 622

Connecting to data

Explains how to connect to a database through JDBC and how to integrate data in XML files.
Indicates how to use an in-memory data model for test purposes and how to go about
integrating a custom data model.

In this section

Connecting to data in-memory
Explains how to connect and populate the data model using data in-memory.

Connecting to XML data
Describes SDXL and how to use this language to serialize schedule data.

Connecting to Swing TableModel instances
Provides an overview on how to display Gantt data from a Swing TableModel

Connecting to data through JDBC
Explains the information required for a JDBC™ Gantt data model object, and how to establish
the connection between data and model.

Implementing custom data models
Describes the cases where a custom data model may be used and points you to example
applications that show how to implement a custom data model.

© Copyright IBM Corp. 1987, 2009 23

I B M ® I L O G ® J V I E W S G A N T T 8 . 624

Connecting to data in-memory

Explains how to connect and populate the data model using data in-memory.

In this section

When to use data in-memory
Explains the main use for data in-memory and describes how to connect to it.

Activities and resources
Describes the stages necessary to populate your data model with activities and resources.

Populating the data model
Describes how to populate your data model with activities and resources.

Manipulating activities and resources
Describes the methods available to manipulate activities and resources within the data
model.

Activity and resource factories
Explains how create activities and resources based on the factory design pattern.

Constraints
Explains the associations between the classes needed to model constraints, and the
prerequisite to adding a constraint and the constraint factory.

Reservations
Explains the associations between the classes needed to model reservations, and the
prerequisite to adding a reservation and the reservation factory.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 25

When to use data in-memory

This access mode is often used to supply data for testing dynamic styling. You can use it to
simulate situations where you have designed a change in the representation of the business
data to flag specific cases, such as the crossing of a threshold. You can find such test data
in:

<installdir>/jviews-gantt86/samples/ganttChart/src/shared/data/
SimpleEngineeringProject.java

Connecting to data in-memory implies populating the data model. You can do so before or
after a chart has been bound to it.

♦ If you do it before binding a chart, the initial data will be immediately displayed by the
chart when it binds to the data model.

♦ If you do it after binding a chart, the chart will update dynamically to reflect the new
data in the data model.

For better performance, the recommended procedure consists in populating your data model
before the chart is bound, especially if you have a large dataset.

You populate the data model with:

♦ Activities and resources

♦ Constraints

♦ Reservations

You can clear all entities from the data model by using the clear() method defined in the
IlvAbstractGanttModel base class. This will depopulate all activities, resources, constraints,
and reservations from the data model.

I B M ® I L O G ® J V I E W S G A N T T 8 . 626

Activities and resources

An activity is a task that must be completed in the schedule. One or more resources can be
allocated to an activity to enable its completion. Activities are defined by the IlvActivity
interface and resources by the IlvResource interface. Both are stored in a hierarchical
structure within the data model and are subinterfaces of the IlvHierarchyNode interface.

Each activity can have 0, 1, or more child activities. Similarly, each resource can have 0, 1,
or more child resources. An activity or resource with at least one child is called a parent
activity or parent resource. Conversely, an activity or resource with no children is called a
leaf activity or leaf resource. The top level of hierarchical trees of activities and resources
is called the root activity and root resource. Each activity and resource in the data model is
a child of its parent, except for the roots, which have no parent.

The following figure shows the associations between the classes needed to model constraints.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 27

Populating the data model

Explains how to set IlvActivity and IlvResource instances to an IlvGanttModel object.

To populate your data model with activities and resources:

1. Populate a data model with activities by establishing the root IlvActivity object:

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvActivity rootActivity = new IlvGeneralActivity(...);
ganttModel.setRootActivity(rootActivity);

2. Add more activities to the data model using either of the following IlvGanttModel
methods:

♦ void addActivity(IlvActivity newActivity, IlvActivity parent)

♦ void addActivity(IlvActivity newActivity, IlvActivity parent, int)

For example, here you add a child activity to the root activity that was created in the
data model:

IlvActivity childActivity = new IlvGeneralActivity(...);
ganttModel.addActivity(childActivity, rootActivity);

3. Populate the data model with resources by establishing the root IlvResource object:

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvResource rootResource = new IlvGeneralResource(...);
ganttModel.setRootResource(rootResource);

4. Add more resources to the data model using either of the following IlvGanttModel
methods:

♦ void addResource(IlvResource newResource, IlvResource parent)

♦ void addResource(IlvResource newResource, IlvResource parent, int)

For example, here you add a child resource to the root resource just added to the data
model:

IlvResource childResource = new IlvGeneralResource(...);
ganttModel.addResource(childResource, rootResource);

I B M ® I L O G ® J V I E W S G A N T T 8 . 628

Manipulating activities and resources

By continuing to add activities and resources in the manner described in Populating the
data model, you populate the Gantt data model with your scheduling data. The following
table shows the IlvGanttModel methods that allow you to manipulate the activities and
resources within the data model:

ResourcesActivities

addResource (two signatures)addActivity (two signatures)

getRootResourcegetRootActivity

moveResourcemoveActivity

removeResource (two signatures)removeActivity (two signatures)

setRootResourcesetRootActivity

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 29

Activity and resource factories

The Gantt chart and Schedule chart beans provide a flexible way to create activities and
resources, based on the factory design pattern.

The IlvHierarchyChart class, which is the superclass of both IlvGanttChart and
IlvScheduleChart, contains an activity factory defined by the IlvActivityFactory interface.
This interface has only one method:

IlvActivity createActivity(IlvTimeInterval interval)

In the Gantt chart and Schedule chart examples, whenever you create a new activity using
the mouse, the interactor asks the chart factory to create the actual IlvActivity object by
calling this method. (For information on interactors, see Interacting with the Gantt charts.)
By default, the chart activity factory is an instance of IlvGeneralActivity.Factory.

You can use the following IlvHierarchyChart methods to change this:

♦ IlvActivityFactory getActivityFactory()

♦ void setActivityFactory(IlvActivityFactory factory)

In this manner, the decision as to what type of activity to create is dissociated from the
interactor, which only determines when the activity should be created based upon mouse
events.

The activity factory can also be used to remove the hard-coded dependency on a specific
IlvActivity implementation from your own code. For example, instead of writing:

IlvActivity rootActivity = new IlvGeneralActivity(...);

as in the previous section, you could write the following code:

IlvActivityFactory activityFactory = myChart.getActivityFactory();
IlvActivity rootActivity = activityFactory.createActivity(...);

The class IlvGeneralActivity.Factory creates each new activity with a default
name and identifier of “New Activity”, located in resource files for easier localization.

Note:

You will probably want to modify these default attributes before adding the new activity
to your data model.

The Gantt chart and Schedule chart examples use this technique to populate the data model.

The Resource Data chart does not support interactive creation of data model objects.
Therefore, it does not contain any API for data model factories.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 630

In addition to an activity factory, the class IlvScheduleChart also inherits a resource factory
from the class IlvHierarchyChart. This factory is defined by the IlvResourceFactory
interface. Like the activity factory, this interface has only one method:

IlvResource createResource()

By default, the chart resource factory is an instance of IlvGeneralResource.Factory.

However, you can use the following IlvHierarchyChart methods to change this:

♦ IlvResourceFactory getResourceFactory()

♦ void setResourceFactory(IlvResourceFactory factory)

You can use the resource factory to create resource objects for your data model:

IlvResourceFactory resourceFactory = myChart.getResourceFactory();
IlvResource rootResource = resourceFactory.createResource();

The IlvGeneralResource.Factory class creates each new resource with a default
name and identifier of “New Resource”, located in resource files for easier localization.

Note:

You will probably want to modify these default attributes before adding the new resource
to your data model.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 31

Constraints

You can create a constraint between two activities. (See Constraints in Introducing JViews
Gantt.) A constraint is defined by the IlvConstraint interface. It also has a type, defined
by the IlvConstraintType class whose four static constants define the supported constraint
types:

♦ IlvConstraintType.START_START

♦ IlvConstraintType.START_END

♦ IlvConstraintType.END_START

♦ IlvConstraintType.END_END

The following figure shows the associations between the classes needed to model constraints.

Prerequisites to adding a constraint
The IlvConstraintType class has a private constructor, so that no other instances can be
created. Think of this feature as the Java™ equivalent of a C++ enumerated type. Before
you can add a constraint to the Gantt data model, the two activities involved must already
be members of the data model. For example:

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvActivity rootActivity = new IlvGeneralActivity(...);
ganttModel.setRootActivity(rootActivity);

I B M ® I L O G ® J V I E W S G A N T T 8 . 632

IlvActivity child1 = new IlvGeneralActivity(...);
ganttModel.addActivity(child1, rootActivity);
IlvActivity child2 = new IlvGeneralActivity(...);
ganttModel.addActivity(child2 rootActivity);
// Create a constraint between child1 and child2
IlvConstraint constraint =

new IlvGeneralConstraint(child1, child2, IlvConstraintType.END_START);
ganttModel.addConstraint(constraint);

If either of the constrained activities is removed from the data model, the constraint will
also be removed. This avoids “loose” constraints and maintains the invariant whereby a
constraint always links two activities in the same Gantt data model.

The following IlvGanttModel methods allow you to manipulate the constraints within the
data model:

♦ void addConstraint(IlvConstraint newConstraint)

♦ void removeConstraint(IlvConstraint constraint)

♦ Iterator constraintIterator()

♦ Iterator constraintIteratorFromActivity(IlvActivity fromActivity)

♦ Iterator constraintIteratorToActivity(IlvActivity toActivity)

The constraint factory
As with activities and resources, the IlvHierarchyChart class also contains a constraint
factory, defined by the IlvConstraintFactory interface. Like activity and resource factories,
this interface has only one method:

IlvConstraint createConstraint(IlvActivity from,
IlvActivity to,
IlvConstraintType type)

By default, the chart constraint factory is an instance of the IlvGeneralConstraint.Factory
class.

However, you can use the following methods of the class IlvHierarchyChart to change
this:

♦ IlvConstraintFactory getConstraintFactory()

♦ void setConstraintFactory(IlvConstraintFactory factory)

You can use the constraint factory to create constraint objects for your data model:

IlvConstraintFactory constraintFactory = myChart.getConstraintFactory();
IlvConstraint constraint =

constraintFactory.createConstraint
(activity1, activity2, IlvConstraintType.END_START);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 33

Reservations

A reservation is created between a resource and an activity. Another way to think of this is
that the activity has “reserved” the resource for its execution. A reservation is defined by
the IlvReservation interface.

The following figure shows the associations between the classes needed tomodel reservations.

Prerequisite to adding a reservation
Before you can add a reservation to the Gantt data model, both the resource and the activity
must already be members of the data model. For example:

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvActivity rootActivity = new IlvGeneralActivity(...);
ganttModel.setRootActivity(rootActivity);
IlvActivity childActivity = new IlvGeneralActivity(...);
ganttModel.addActivity(childActivity, rootActivity);
IlvResource rootResource = new IlvGeneralResource(...);
ganttModel.setRootResource(rootResource);
IlvResource childResource = new IlvGeneralResource(...);
ganttModel.addResource(childResource, rootResource);
// Create a reservation between childActivity and childResource
IlvReservation r = new IlvGeneralReservation(childResource, childActivity);
ganttModel.addReservation(r);

I B M ® I L O G ® J V I E W S G A N T T 8 . 634

If either the activity or the resource is removed from the data model, the reservation will
also be removed. This avoids “loose” reservations and maintains the invariant whereby a
reservation always links an activity to a resource in the same Gantt data model.

The following IlvGanttModel methods allow you to manipulate the reservations within the
data model:

♦ void addReservation(IlvReservation newReservation)

♦ void removeReservation(IlvReservation reservation)

♦ Iterator reservationIterator()

♦ Iterator reservationIterator(IlvActivity activity)

♦ Iterator reservationIterator(IlvResource resource)

♦ Iterator reservationIterator(IlvResource resource, IlvTimeInterval interval)

The reservation factory
As in Activity and resource factories and The constraint factory, the IlvHierarchyChart
class also contains a reservation factory, defined by the IlvReservationFactory interface.
As with the other equivalent interfaces, this interface has only one method:

IlvReservation createReservation(IlvResource resource, IlvActivity activity)

By default, the chart reservation factory is an instance of the IlvGeneralReservation.
Factory class.

However, you can use the following methods of the IlvHierarchyChart class to change
this:

♦ IlvReservationFactory getReservationFactory()

♦ void setReservationFactory(IlvReservationFactory factory)

You can use the reservation factory to create reservation objects for your data model:

IlvReservationFactory reservationFactory = myChart.getReservationFactory();
IlvReservation reservation =

reservationFactory.createReservation(aResource, anActivity);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 35

I B M ® I L O G ® J V I E W S G A N T T 8 . 636

Connecting to XML data

Describes SDXL and how to use this language to serialize schedule data.

In this section

The SDXL format
Explains where to find more information about the SDXL format.

The schedule data exchange language
Explains the SDXL language, presents the design criteria of the language as well as some
scenarios of how it can be used.

How to write an IlvGanttModel to an SDXL file using serialization
Describes how to write IlvGanttModel objects using the ilog.views.gantt.xml package.

How to read an IlvGanttModel from an SDXL file using serialization
Describes how to read IlvGanttModel objects by using the ilog.views.gantt.xml package.

Handling exceptions while reading SDXL files
Describes how to handle exceptions during serialization.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 37

The SDXL format

JViews Gantt allows you to serialize schedule data to Schedule Data Exchange Language
(SDXL) files. Use the classes in ilog.views.gantt.xml. You can find a description of the
SDXL format in Content and structure of an XML data file in Using the Designer. You can
also find the DTD specification of the SDXL format in Document type definition for SDXL.

You can find the DTD file in:

<installdir>/jviews-gantt86/data/sdxl.dtd

I B M ® I L O G ® J V I E W S G A N T T 8 . 638

The schedule data exchange language

The Gantt chart (IlvGanttChart) and the Schedule chart (IlvScheduleChart) are designed
to visualize and to edit schedule data in a JViews Gantt model (IlvGanttModel). Users of
the Gantt chart and the Schedule chart need first to save their schedule data and then to
exchange the schedule data with other users.

SDXL is an application of W3C XML. It is designed to meet the following needs:

♦ Serialize the schedule data (IlvGanttModel) represented by an IlvGanttChart or an
IlvScheduleChart. This allows users to save their schedule data to SDXL files and to
load the saved schedule data from SDXL files.

♦ Exchange the schedule data with other programs developed with or without JViews Gantt.
Since SDXL is an application of W3C XML, it can be easily read by other programs that
are capable of reading XML files. It can also be translated to other formats by using
technologies such as XSL.

Scenarios of how SDXL can be used
Since SDXL is a flexible XML application, its usage is not limited in scope.

However, to give a general idea, imagine the following scenarios:

♦ You use a JViews Gantt program to manage your projects. The program is heavy because
it is connected to a database and uses the database to store the schedule data. SDXL can
help distribute this schedule data. You can save your schedules to SDXL files and distribute
them by means of a lightweight JViews Gantt program that does not need database
connections.

♦ You use a JViews Gantt program to manage your schedules. You can save your schedules
to SDXL files. An optimization program loads the SDXL files and runs optimization
algorithms to make your schedules more efficient. Then, you reload the optimized
schedules by using your JViews Gantt program to visualize them.

API for reading and writing SDXL
The following figure shows that the ilog.views.gantt.xml contains all the classes that
make it possible to serialize schedule data to SDXL files:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 39

The previous figure shows how the ilog.views.gantt.xml package can serialize schedule
data contained in an IlvGanttModel to SDXL files. The ilog.views.gantt.xml package is
based on java.io and JAXP (Java™ API for XML Processing) since it has to use java.io
APIs and JAXP to read and write SDXL files.

To be able to use the ilog.views.gantt.xml package, you need both:

♦ The JViews Gantt JAR files.

♦ Some JAR files of the IBM® ILOG® JViews Framework library, provided in

<installdir>/jviews-framework86/lib/external

To use these libraries, you need a thin and lightweight API that provides a standard way to
seamlessly integrate any XML-compliant parser with a Java application. JViews Gantt comes
with the Apache™ Xerces parser implementation.

The ilog.views.gantt.xml package is designed to serialize schedule data defined by the
following classes:

♦ IlvSimpleActivity and IlvGeneralActivity

♦ IlvSimpleResource and IlvGeneralResource

♦ IlvSimpleReservation and IlvGeneralReservation

♦ IlvSimpleConstraint and IlvGeneralConstraint

♦ IlvDefaultGanttModel

I B M ® I L O G ® J V I E W S G A N T T 8 . 640

If your Gantt data model is exclusively defined by these classes, the ilog.views.gantt.xml
package contains all the classes you need to serialize your schedule data. The following
table lists by level the readers and writers available in the package. An interface is given
for each reader or writer. This interface defines the functionality the reader or the writer
must implement. One of the benefits of using interfaces is that you can interchange readers
or writers that implement the same interface. This makes the package flexible and
customizable.

For each reader and writer, the package provides two default implementations. The “simple”
implementations read and write the default data model classes, while the “general”
implementations read and write the data model classes that support user-defined properties.

These can be used as-is.

Default implementations in the
ilog.views.gantt.xml package

InterfacesFunctionsLevel

IlvSimpleActivityReaderIlvActivityReaderRead/write an
activity, a resource,

Level 1:
Element

IlvSimpleActivityWriterIlvActivityWritera reservation, or a
constraint from/to
an element

readers and
writers IlvSimpleResourceReader

IlvSimpleResourceWriter

IlvResourceReader

IlvResourceWriter

IlvSimpleReservationReaderIlvReservationReader

IlvSimpleReservationWriterIlvReservationWriter

IlvSimpleConstraintReaderIlvConstraintReader

IlvSimpleConstraintWriterIlvConstraintWriter

IlvGeneralActivityReader

IlvGeneralActivityWriter

IlvGeneralResourceReader

IlvGeneralResourceWriter

IlvGeneralReservationReader

IlvGeneralReservationWriter

IlvGeneralConstraintReader

IlvGeneralConstraintWriter

IlvGanttDocumentReaderRead/write a Gantt
data model from/to
a document

Level 2:
Document
reader and
writer

IlvGanttDocumentWriter

IlvGanttStreamWriterWrite a document
to an
OutputStream

Level 3:
Stream writer

The readers and writers are arranged by levels. Level 1 is the lowest level and level 3 is the
highest. In most cases, the readers and writers of level N are based on the readers and
writers of level N-1. For example, to read a Gantt data model from a document, the

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 41

IlvGanttDocumentReader (level 2) uses element readers (level 1), that is,
IlvSimpleActivityReader, IlvSimpleResourceReader, IlvSimpleReservationReader, and
IlvSimpleConstraintReader.

♦ IlvGanttDocumentReader is at the highest level (level 2) among the readers. This reader
can read an IlvGanttModel instance from a document. The document is the only input
of the package. To read a Gantt data model, the user must provide a document object.
See How to read an IlvGanttModel from an SDXL file using serialization for information
on how to create a document from an SDXL file by using JAXP.

♦ IlvGanttStreamWriter is at the highest level (level 3) among the writers. It is capable
of writing an IlvGanttModel instance to an OutputStream object. The OutputStream is
the only output point of the package. Users who want to write an SDXL file should provide
an OutputStream. See How to write an IlvGanttModel to an SDXL file using serialization
for information on how to create an OutputStream object for an SDXL file by using the
java.io package.

Customizing readers and writers
The default readers and writers provided by JViews Gantt are sufficient to serialize default
Gantt data models. If you created a customized Gantt data model, you need to customize
the default readers and writers in order to serialize the customized schedule data. All level
readers and writers are customizable. You can customize them either by creating subclasses
of the default readers and writers implemented, or by writing you own readers or writers
that implement the reader or writer interfaces.

I B M ® I L O G ® J V I E W S G A N T T 8 . 642

How to write an IlvGanttModel to an SDXL file using serialization

This section shows how to use the main classes of the ilog.views.gantt.xml package. You
will learn how to write an IlvGanttModel to an SDXL file and then how to read back an
IlvGanttModel from an SDXL file.

Two examples show how to serialize schedule data:

♦ <installdir>/jviews-gantt86/samples/xmlGantt/src/xml/XMLGanttExample.java
presented in:

<installdir>/jviews-gantt86/samples/xmlGantt.

♦ <installdir>/jviews-gantt86/samples/xmlSchedule/src/xml/
XMLScheduleExample.java presented in:

<installdir>/jviews-gantt86/samples/xmlSchedule.

To write the contents of an IlvGanttModel to an SDXL file, follow these recommended
stages:

1. Creating an org.w3c.dom.Document: Use your XML Java™ API to create an instance
of org.w3c.dom.Document.

2. Creating an IlvGanttDocumentWriter: Use the ilog.views.gantt.xml package to create
an instance of IlvGanttDocumentWriter.

3. Writing a Gantt data model to a document: Use the IlvGanttDocumentWriter to write
your IlvGanttModel to the document you created in Step 1.

4. Creating an output stream: Use the java.io package to create a java.io.OutputStream
object for the SDXL file you want to write to.

5. Creating a streamwriter: Use the ilog.views.gantt.xml package to create an instance
of IlvGanttStreamWriter.

6. Writing a document to an output stream: Use the stream writer to write the document
to the output stream you created in Step 4.

Creating an org.w3c.dom.Document
This section shows you how to use the javax.xml.parsers package to create an org.w3c.
dom.Document instance. This is one of many ways of creating document objects. You can, of
course, use other ways.

To create a new org.w3c.dom.Document instance:

1. Import the packages:

import javax.xml.parsers.*;
import org.w3c.dom.*;

2. Get an instance of the DocumentBuilderFactory:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

3. Get an instance of DocumentBuilder from the DocumentBuilderFactory:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 43

DocumentBuilder builder = factory.newDocumentBuilder();

4. Use the DocumentBuilder to create the document object:

Document document = builder.newDocument();

See

<installdir>/jviews-gantt86/samples/xmlGantt/src/xml/XMLGanttActions.java

for a concrete implementation.

Creating an IlvGanttDocumentWriter
Use the ilog.views.gantt.xml package to create an instance of IlvGanttDocumentWriter.
Then the document writer is ready to write an IlvGanttModel to a document.

The IlvGanttDocumentWriter constructor takes a locale as argument that affects how dates
are serialized. In the example the document writer is configured to use the current locale.

To create a new IlvGanttDocumentWriter instance:

1. Import the package:

import ilog.views.gantt.xml.*;

2. Create the IlvGanttDocumentWriter:

IlvGanttDocumentWriter documentWriter =
new IlvGanttDocumentWriter(Locale.getDefault());

Writing a Gantt data model to a document
The IlvGanttDocumentWriter has a method called writeGanttModel.

To write your Gantt data model:

♦ Call writeGanttModel

documentWriter.writeGanttModel(document, yourGanttModel);

The document argument is the document object you created in Creating an
org.w3c.dom.Document. The argument yourGanttModel is the IlvGanttModel you want to
write to the document.

Creating an output stream
You can use the java.io package to create an OutputStream. This is one of many ways of
creating output streams. You can, of course, use other ways.

To create an OutputStream instance:

1. Import the java.io package:

import java.io

2. Create an OutputStream for the file you want to write to:

I B M ® I L O G ® J V I E W S G A N T T 8 . 644

String filename = "c:\mysdxl.xml";
FileOutputStream outstream = new FileOutputStream(filename);

The argument filename is the name of the SDXL file you want to write to.

Creating a stream writer
After creating the OutputStream, you need a utility class that helps you write the document
to the stream. The ilog.views.gantt.xml package provides a stream writer named
IlvGanttStreamWriter. You can directly create an instance of this class and use it to write
your document. The stream writer is ready to write a document object to an OutputStream.

To create an OutputStream instance:

1. Import the ilog.views.gantt.xml package:

import ilog.views.gantt.xml

2. Create the stream writer:

IlvGanttStreamWriter streamWriter = new IlvGanttStreamWriter();

Writing a document to an output stream
Now that you have the OutputStream instance and the document, you can write your
document to the OutputStream object.

To do this:

1. Call the writeDocument method of the stream writer created in the previous step to
write the document to the OutputStream.

streamWriter.writeDocument(outstream, document);

2. Close the output stream:

outstrem.close();

Your IlvGanttModel is written to an SDXL file.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 45

How to read an IlvGanttModel from an SDXL file using serialization

Change the itemized list back to a numbered list in XML.

To read the contents of an SDXL file to an IlvGanttModel, follow these recommended stages:

♦ Creating an input source: Use your XML Java™ API to create an InputSource for the file
you want to read.

♦ Parsing an input source: Use Java XML parser to parse the InputSource in order to get
an org.w3c.dom.Document.

♦ Creating an IlvGanttDocumentReader: Use the ilog.views.gantt.xml package to create
an instance of IlvGanttDocumentReader.

♦ Reading a Gantt data model from a document: Create a target IlvGanttModel to receive
the schedule data and use the IlvGanttDocumentReader to read the document created
in Step 2 to the IlvGanttModel created in Step 4.

♦ Handling exceptions while reading SDXL files

These stages are seen in more detail in the subsequent sections.

Creating an input source
You can use your XML Java API to create an InputSource instance for the SDXL file you
want to read. This section presents one of many ways of creating input sources. You can, of
course, use other ways.

To create an InputSource instance for the SDXL file you want to read:

1. Import the package:

import org.xml.sax.*;

Suppose you want to read an SDXL file named /nfs/works/myschedule.xml:

String url = "file:///nfs/works/myschedule.xml";

2. You can create directly an InputSource for the file to read:

InputSource source = new InputSource(url);

The input source is ready to be parsed by your XML parser.

Parsing an input source
The DocumentBuilder provided by your XML Java API can parse an input source. You can
create an instance of the builder and use it to parse the input source.

To parse an input source:

1. Import the packages:

import javax.xml.parsers.*;
import org.w3c.dom.*;

I B M ® I L O G ® J V I E W S G A N T T 8 . 646

2. Get an instance of the DocumentBuilderFactory:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

3. Get an instance of DocumentBuilder from the DocumentBuilderFactory:

DocumentBuilder builder = factory.newDocumentBuilder();

4. Use the DocumentBuilder to parse the input source:

Document document = builder.parse(source);

Now you need an IlvGanttDocumentReader instance to read the document.

Creating an IlvGanttDocumentReader
The ilog.views.gantt.xml package provides the IlvGanttDocumentReader class.

To create an instance of this class:

1. Import the package:

import ilog.views.gantt.xml.*;

2. Create the IlvGanttDocumentReader:

IlvGanttDocumentReader documentReader = new IlvGanttDocumentReader();

The document reader is ready to read a document.

Reading a Gantt data model from a document
The IlvGanttDocumentReader class has a method called readGanttModel. You can call this
method to read a JViews Gantt model from a document. Before reading the document you
must create a target IlvGanttModel to receive the schedule data.

To read a Gantt data model from a document:

1. Import the ilog.views.gantt and ilog.views.gantt.model packages:

import ilog.views.gantt.*;
import ilog.views.gantt.model.*;

2. Create a default Gantt data model:

IlvGanttModel model = new IlvDefaultGanttModel();

3. Read the Gantt data model from the document:

documentReader.readGanttModel(document, model);

The document argument is the document object you created in the previous step.

Your IlvGanttModel has now been read from an SDXL file.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 47

Handling exceptions while reading SDXL files

Exceptions might be encountered during the reading of the document. The exceptions are
reported by IlvGanttReaderException objects. The following example shows how to handle
such exceptions.

try {
docReader.readGanttModel(document, model);

} catch(IlvGanttReaderException e) {
//...

I B M ® I L O G ® J V I E W S G A N T T 8 . 648

Connecting to Swing TableModel instances

Provides an overview on how to display Gantt data from a Swing TableModel

In this section

Overview
Describes the classes used to display Gantt data or access a database through JDBC.

Data required by IlvTableGanttModel
Describes the data required for activities, resources, constraints and reservations.

Converting TableModel data to IlvTableGantt Model data
Explains the TableModel instances used to configure an IUlvTableGanttModel object.

Configuring the IlvTableGanttModel object correctly
Describes the steps necessary to configure an IUlvTableGanttModel object with two
TableModel instances.

Read/write support
Explains how once you have imported the data, modifications applied to the
IlvTableGanttModel instance are passed along to the TableModel object.

Dynamic behavior
Describes how to handle changes to the TableModel instances during the lifetime of the
application dynamically modify the IlvTableGanttModel object.

Reading data from CSV files
Explains how to use the import Gantt data from CSV files using the JViews Gantt and IBM®
ILOG® JViews Framework APIs.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 49

Complex mappings
Explains how to map columns to a time-interval property.

I B M ® I L O G ® J V I E W S G A N T T 8 . 650

Overview

The class IlvTableGanttModel is a specific implementation of the IlvGanttModel interface
that allows you to display Gantt data coming from Swing TableModel instances.

A subclass of IlvTableGanttModel, called IlvJDBCGanttModel, is also provided in the library
to enable you to load data from databases through instances of a TableModel implementation,
IlvRowSetTableModel, which can access a database through JDBC™ . If this is the
implementation you need, see Connecting to data through JDBC.

For a table Gantt data model (class IlvTableGanttModel), data pertaining to activities,
resources, constraints, and reservations must be contained in a TableModel instance. A set
of configuration parameters allow you to map this data to the information that the
IlvTableGanttModel object needs to build its contents.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 51

Data required by IlvTableGanttModel

A table Gantt data model requires the following information:

For activities (IlvTableActivity)
The following table shows the data required by IlvTableGanttModel for activities.

NameParent IDIDTime InformationProperty
description Time IntervalEnd TimeStart Time

NAME_PROPERTYPARENT_ID_PROPERTYID_PROPERTYTIME_INTERVAL_PROPERTYEND_TIME_PROPERTYSTART_TIME_PROPERTYProperty
name

StringString (can
be null)

StringIlvTimeIntervalDateDateRequired
type

The time information is required either as delimiters (start/end) or as a time intervalNote:

For resources (IlvTableResource)
The following table shows the data required by IlvTableGanttModel for resources.

NameParent IDIDQuantityProperty
description

NAME_PROPERTYPARENT_ID_PROPERTYID_PROPERTYQUANTITY_PROPERTYProperty
name

StringString (can be null)StringFloatRequired
type

For constraints (IlvTableConstraint)
The following table shows the data required by IlvTableGanttModel for constraints.

I B M ® I L O G ® J V I E W S G A N T T 8 . 652

Identifier of the To
activity

Identifier of the From
activity

Constraint TypeProperty description

TO_ACTIVITY_IDFROM_ACTIVITY_IDTYPE_PROPERTYProperty name

StringStringIlvConstraintTypeRequired type

For reservations (IlvTableReservation)
The following table shows the data required by IlvTableGanttModel for reservations.

ID of the resourceID of the activityProperty description

RESOURCE_ID_PROPERTYACTIVITY_ID_PROPERTYProperty name

StringStringRequired type

The column types in the TableModel instance must not necessarily be the same as the ones
required by the IlvTableGanttModel properties. If they are different, the
IlvTableGanttModel object must be configured such as to convert the values to the right
type, as explained in the next section Converting TableModel data to IlvTableGantt Model
data.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 53

Converting TableModel data to IlvTableGantt Model data

Suppose you have the following two TableModel instances:

Activities
The following table represents a TableModel instance for activities. The column name is
returned by the method TableModel.getColumnName(int) and the column type is returned
by the method TableModel.getColumnClass(int).

ParentID (4)EndTime (3)StartTime (2)ID (1)Category (0)Column name

StringString(formatted
M/d/yy)

String (formatted
M/d/yy)

StringStringColumn type

You can see that the TableModel instance contains:

♦ the required ID and parent ID data with the right type;

♦ start-time and end-time data, but expressed as String objects whereas IlvTableGanttModel
requires Date objects;

♦ no name information;

♦ a Category column that does not correspond to any required property.

Constraints
The following table represents a TableModel instance for constraints. The column name is
returned by the method TableModel.getColumnName(int) and the column type is returned
by the method TableModel.getColumnClass(int).

ToActivityID (2)FromActivityID (1)Type (0)Column name

StringStringIntegerColumn type

You can see that the TableModel instance contains the required FromActivity and
ToActivity IDs with the right type. It also contains the constraint type. However, the latter
is expressed as an Integer, instead of an IlvConstraintType instance. Therefore, you need
to map the corresponding values as shown in the following table:

I B M ® I L O G ® J V I E W S G A N T T 8 . 654

IntegerIlvConstraintType

1START_START

2START_END

3END_END

4END_START

For a basic use of IlvTableGanttModel, that is, when you import the data from the database
to the Gantt data model a single time and as read-only, there are no particular requirements
on how the TableModel instances are implemented. This will be different with more advanced
uses (see Read/write support and Dynamic behavior).

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 55

Configuring the IlvTableGanttModel object correctly

To configure your IlvTableGanttModel object correctly with these two TableModel
instances, do the following:

1. Create the table Gantt data model
This is done by instantiating IlvTableGanttModel:

IlvTableGanttModel tableModel = new IlvTableGanttModel();

2. Create the mapper for activities
The activities mapper is taken from the activities table model and the mapping
instructions for the required properties.

The arguments after the table model are:

♦ the ID column,

♦ the name column,

♦ the start time column,

♦ the end time column, and

♦ the parent ID column.

Indexes of columns are used in the code sample below but you could also use column
names:

IlvTableModelMapper activityMapper =
IlvTableGanttModel.createActivityMapper(activityModel, 1, 1, 2, 3,

4);

As the TableMode instance does not provide name information, the ID column is used
instead (index 1).

The tables in Constraints show that the StartTime and EndTime columns do not use
the required type; therefore, you should also, theoretically, register a converter from
the column actual type (String) to the type required by IlvTableGanttModel (Date).
Practically, this is not mandatory in this case because this particular converter is
already registered by default. However, if it was necessary, the code would be the
following:

IlvConvert.addConverter(new IlvConverter() {
private final DateFormat formatter =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
public Object convert(Object value, Class toType)

throws IlvConvertException {
try {
return formatter.parse((String)value);
} catch (ParseException e) {
throw new IlvConvertException("error");
}

}
public Class[] fromTypes() {

I B M ® I L O G ® J V I E W S G A N T T 8 . 656

return new Class[] {String.class};
}
public Class[] toTypes() {
return new Class[] {Date.class};

}
}

3. Add an instance of IlvTableModelPropertyDescriptor to the mapper
This is done in order to map the optional column (that is, the activity category) available
in the table:

activityMapper.addPropertyDescriptor("OptionalCategory",
new IlvBasicTableModelPropertyDescriptor("CATEGORY"), null);

These code lines map the contents of the Category column of the TableModel instance
to the activity property CATEGORY of the IlvTableGanttModel object without trying to
convert the values (null as requiredType parameter). The values will then be accessible
on each activity by a call to the method getProperty("CATEGORY") on the
IlvTableActivity instance.

At this stage, the mapper for activities is fully configured.

4. Pass it to the IlvTableGanttModel
tableModel.setActivityMapper(activityMapper);

5. Repeat previous steps
Repeat from Create the mapper for activities to Pass it to the IlvTableGanttModel
for the constraints.

Here, you are going to use column names instead of indexes to build the mapper. Note
that the last parameter is different from the one used for activities. Its role is to map
the different values taken by the constraint types in the TableModel (1, 2, 3, or 4 in
this case) to the values required by the IlvTableGanttModel object, namely
IlvTableConstraintType.START_START, START_END, END_START, and END_END, in this
order:

IlvTableModelMapper constraintMapper =
IlvTableGanttModel.createConstraintMapper

(constraintModel,
"FromActivityID",
"ToActivityID",

"Type",
new Object[] {new Integer(1),

new Integer(2),
new Integer(4),
new Integer(3)});

6. Carry out any other necessary conversion or add the optional properties
In this example, there are none, so you can move on to the next step.

7. Pass the result to the model
The following code example shows how to do this.

tableModel.setConstraintMapper(constraintMapper);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 57

All the tables you want to deal with are now configured.

8. Initialize the model
You now import the data from the TableModel instances:

try {
tableModel.initializeMapping();

} catch (IlvTableModelMappingException e) {
// in case something went wrong

}

If you do nothing else after this initialization step, use the TableModel instances and the
IlvTableGanttModel object as read-only. If you want to add read/write and dynamic
capabilities, see Read/write support or Dynamic behavior.

I B M ® I L O G ® J V I E W S G A N T T 8 . 658

Read/write support

Users often need to interact with the model through a Schedule or Gantt chart, and then,
they want the result of the interaction to be persistent. In such cases, the TableModel
instance connected to the IlvTableGanttModel object must additionally implement the
interface IlvTableModel which allows you to add or remove rows from the TableModel
instance.

public interface IlvTableModel extends TableModel {
public void addRow(Object[] rowData);
public void insertRow(int rowIndex, Object[] rowData);
public void removeRow(int rowIndex);

}

If you do not add this interface, exceptions may be raised when the application tries to
modify the IlvTableGanttModel object.

The Swing class DefaultTableModel already contains the required methods. You can
therefore easily use it for read/write operations with IlvTableGanttModel. All you have to
do is mark a subclass with the interface IlvTableModel:

public BasicTableModel extends DefaultTableModel
implements IlvTableModel {

public BasicTableModel() {
super();

}
}

From then on, each change to the IlvTableGanttModel object will update the TableModel
object accordingly.

If you want the predefined actions on IlvHierarchyChart instances to create the right type
of activities, resources, constraints, and reservations, you can configure these instances to
use the IlvTableGanttModel-aware factories by calling:

tableGanttModel.configureHierachyChart(hierachyChart);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 59

Dynamic behavior

When importing data from a Swing TableModel instance to a Gantt data model, you may
also need the Gantt data model to update automatically when the contents of the underlying
TableModel instances are modified after the mapper has been initialized. Such updating
does not take place by default because additional events need to be thrown which regular
implementations of TableModel do not throw. If you need this updating feature, you must
code your own TableModel implementation to fire the additional events described in the
IlvTableModelEvent class.

As described in Read/write support, it is easy to code a TableModel instance from the Swing
class DefaultTableModel so that it supports dynamic modification of the model after
initialization. It consists in firing the appropriate events before the parent class methods
are called:

class BasicTableModel extends DefaultTableModel
implements IlvTableModel {
public BasicTableModel() {
super();

}
public void setDataVector(Vector dataVector, Vector columnIdentifiers) {
IlvTableModelEvent.fireBeforeTableStructureChanged(this);
super.setDataVector(dataVector, columnIdentifiers);

}
public void removeRow(int row) {
IlvTableModelEvent.fireBeforeTableRowsDeleted(this, row, row);
super.removeRow(row);

}
public void setColumnCount(int columnCount) {
IlvTableModelEvent.fireBeforeTableStructureChanged(this);
super.setColumnCount(columnCount);

}
}

The events will allow the IlvTableGanttModel object to update correctly according to the
changes made to the BasicTableModel object.

I B M ® I L O G ® J V I E W S G A N T T 8 . 660

Reading data from CSV files

The class IlvTableGanttModel is particularly useful because it allows you to import any
kind of data to a JViews Gantt application provided you can read this data from a Swing
TableModel instance.

One way to do so is to use the subclass IlvJDBCGanttModel which allows you to load data
from a database via a JDBC™ implementation of the class TableModel. See Connecting to
data through JDBC for details.

Another way is to use the class IlvTableGanttModel to read Gantt data from CSV
(Comma-Separated Values) files. This section shows an example based on the following file,
containing activities information:

A1, Root Activity, 1/31/04, 10/17/04,
A2, First Child Activity, 1/31/04, 4/2/04, A1
A3, Second Child Activity, 4/2/04, 10/17/04, A2

As for a JDBC connection, IBM® ILOG® JViews Framework provides a utility API that allows
a Gantt data model to read the contents of a CSV file from a TableModel instance. All you
have to do is connect that CSV file to your Gantt data model like this:

TableModel activities = null;
try {
activities = IlvCSVReader.getInstance(',').

read(new FileReader("file.csv"));
} catch (IOException e) {
}
IlvTableGanttModel model = new IlvTableGanttModel();
IlvTableModelMapper activitiesMapper =

IlvTableGanttModel.createActivityMapper(activities, 0, 1, 2, 3, 4);
model.setActivityMapper(activitiesMapper);
try {
model.initializeMapping();

} catch (IlvTableModelMappingException e) {
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 61

Complex mappings

So far, you have seen only simple mappings: one column of a table corresponds to one
property in the Gantt data model with, possibly, type conversion if necessary. However, the
JViews Gantt API is generic enough to enable more complex mapping.

For example, instead of mapping the StartTime and EndTime columns to the start-time and
end-time properties of activities, you can map the two columns directly to the time-interval
property of activities. Referring again to the example used inConnecting to Swing TableModel
instances, where the start and end times were respectively available in columns (2) and (3).

To map columns to a time-interval property:

1. Write an IlvTableModelPropertyDescriptor implementation:

class TimeIntervalPropertyDescriptor
implements IlvTableModelPropertyDescriptor {

private final int[] indexes = new int[2];
private final DateFormat formatter =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
public TimeIntervalPropertyDescriptor(int start, int end) {
indexes[0] = start;
indexes[1] = end;

}
public Object getProperty(TableModel model, int rowIndex)
throws IlvTableModelMappingException, IlvConvertException {
try {
// get the start & end time on the table
Date start = formatter.parse((String)model.getValueAt(indexes[0],

rowIndex));
Date end = formatter.parse((String)model.getValueAt(indexes[1],

rowIndex));
// return the IlvTimeInterval
return new IlvTimeInterval(start, end);

} catch (ParseException e) {
throw new IlvConvertException("error");

}
}
public void setProperty(TableModel model, int rowIndex, Object

propertyValue)
throws IlvConvertException, IlvTableModelMappingException {
// extract start & end time from the time interval
Date start = ((IlvTimeInterval)propertyValue).getStart();
Date end = ((IlvTimeInterval)propertyValue).getEnd();
// set the values back in the table
model.setValueAt(formatter.format(start), indexes[0], rowIndex);
model.setValueAt(formatter.format(end), indexes[1], rowIndex);

}
public int[] getColumns(TableModel model) {
return indexes;

}
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 662

2. Build the activity mapper with it:

IlvTableModelMapper activityMapper = new IlvTableModelMapper(activityTable)
;
activityMapper.
addPropertyDescriptor(IlvTableActivity.TIME_INTERVAL_PROPERTY,

new TimeIntervalPropertyDescriptor(2, 3),

IlvTimeInterval.class);
activityMapper.
addPropertyDescriptor(IlvTableActivity.ID_PROPERTY,

new IlvBasicTableModelPropertyDescriptor(1), String.class);
// ...

3. Associate it with the IlvTableGanttModel object.

tableModel.setActivityMapper(activityMapper);

The JViews Gantt API enables you to code even more complex mappings. However, keep in
mind that the more complex the mapping, the more time-consuming it is, which may
significantly slow your application because the Gantt data model makes frequent calls to
these methods.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 63

I B M ® I L O G ® J V I E W S G A N T T 8 . 664

Connecting to data through JDBC

Explains the information required for a JDBC™ Gantt data model object, and how to establish
the connection between data and model.

In this section

Overview
Provides an overview of a class used to display Gantt data retrieved from a database through
a JDBC connection.

Writing queries to populate the data model
Explains the information required for a JDBC Gantt data model object.

The harbor example
Describes the data contained in the harbor database and the queries needed to retrieve the
activities, resources and reservations contained in it.

Passing the data to the Gantt data model
Describes that steps necessary to establish the connection between data and model.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 65

Overview

The class IlvJDBCGanttModel is a specific implementation of the IlvGanttModel interface
that allows you to display Gantt data retrieved from a database through a JDBC™ connection
and optionally to commit modifications back to the database. This class is based on the class
IlvTableGanttModel, discussed in Connection to a Swing TableModel. You may find it useful
to read that section if you intend to use advanced functionality of the class
IlvJDBCGanttModel.

I B M ® I L O G ® J V I E W S G A N T T 8 . 666

Writing queries to populate the data model

To populate your Gantt data model from the contents of the database, you need to create
appropriate queries to get the necessary data for activities, resources, constraints, and/or
reservations, and pass it to your IlvJDBCGanttModel instance. This is possible only if the
database contains sufficient information.

A JDBC™ Gantt data model object requires the following information:

For Activities (IlvTableActivity)
The following table shows the data required byIlvJDBCGanttModel for activities.

NameParent IDIDTime InformationProperty
description Time IntervalEnd TimeStart Time

NAME_PROPERTYPARENT_ID_PROPERTYID_PROPERTYTIME_INTERVAL_PROPERTYEND_TIME_PROPERTYSTART_TIME_PROPERTYProperty
name

StringString (can
be null)

StringIlvTimeIntervalDateDateRequired
type

The time information is required either as delimiters (start/end) or as a time interval.Note:

For resources (IlvTableResource)
The following table shows the data required by IlvJDBCGanttModel for resources.

NameParent IDIDQuantityProperty
description

NAME_PROPERTYPARENT_ID_PROPERTYID_PROPERTYQUANTITY_PROPERTYProperty
name

StringString (can be null)StringFloatRequired
type

For constraints (IlvTableConstraint)
The following table shows the data required by IlvJDBCGanttModel for constraints.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 67

ID of the to activityID of the from activityConstraint TypeProperty description

TO_ACTIVITY_IDFROM_ACTIVITY_IDTYPE_PROPERTYProperty name

StringStringIlvConstraintTypeRequired type

For reservations (IlvTableReservation)
The following table shows the data required by IlvJDBCGanttModel for reservations.

ID of the resourceID of the activityProperty description

RESOURCE_ID_PROPERTYACTIVITY_ID_PROPERTYProperty name

StringStringRequired type

Information about object types can be accessed either from a specific database table, or
from several tables, or from a single table. In any case, it is mandatory to build one SQL
query for each object type needed by the IlvJDBCGanttModel object. The property types
available in the database must not necessarily be the same as the ones required by
IlvJDBCGanttModel. If they are different, the IlvJDBCGanttModel object must be configured
such as to convert the values to the right type (see the class IlvTableGanttModel in
Connecting to Swing TableModel instances).

I B M ® I L O G ® J V I E W S G A N T T 8 . 668

The harbor example

This section is based on the harbor.mdb example, located in:

<installdir>/jviews-gantt86/bin/designer/data/examples/harbor.mdb

The following table provides information about a harbor that expects ships (the activities)
at a given dock (the resource) from a start date to an end date.

DockNameEndDateStartDateShipNameIDColumn name

StringDateDateStringStringColumn type

Activities
For activities (ships), the parent ID property is missing, because there is no hierarchical
information on the activities. Therefore, the SQL query will always provide Null as the
parent ID value, like this:

select ID, ShipName, StartDate, EndDate, Null as ParentID from HARBOR

Resources
For resources, both the parent ID and the ID of the resource itself are missing. For the
parent ID, you will use the same solution as for activities. However, the ID itself cannot be
null, so you will use the unique DockName column value as the ID of the resource. At this
stage, it is not necessary to do anything special, you will do so later during the mapping
phase (see Map the result in the next section Passing the data to the Gantt data model).

The Quantity property is also missing. Clearly, you can set it to ‘1’ in this context since each
Dock represents a single slot. The docks are listed several times (one by activity). Therefore,
you will group the result so as to have unique Docks. You obtain the following query to get
the required information:

select DockName, '1' as Quantity, Null as ParentID from HARBOR group by
DockName

Constraints
There are no constraints.

Reservations
For reservations, you just have to take the activity ID and the resource (Dock) ID, and merge
them into a single query:

select ID as ActivityID , DockName as DockID from HARBOR

The information is already in the required types, so there is no need for any additional
conversion.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 69

Passing the data to the Gantt data model

After you have written the appropriate queries to retrieve the data you need through JDBC™
, you establish the connection between data and model.

To do this:

1. Build the model
The following code example shows how to do this.

IlvJDBCGanttModel jdbcModel = new IlvJDBCGanttModel();

Alternatively, if you want modifications to the Gantt data model to be committed
automatically to the database, you can create the model in read-write mode by passing
false to the read-only constructor parameter:

IlvJDBCGanttModel jdbcModel = new IlvJDBCGanttModel(false);

In this case, you need to make sure that the database tables are writable.

2. Create a connection
The connection is created to the database for the three queries.

Connection databaseConnection = DriverManager.getConnection(dataBaseURL,

username, password);

The parameters required by DriverManager depend on the database you are querying.
For more information, refer to the documentation of the JDBC driver you use for your
database. The following example shows the code for an MS Access Database.

Connection databaseConnection = DriverManager.getConnection(
"jdbc:odbc:Driver={Microsoft Access Driver(*.mdb)};"+
"DBQ=data/examples/harbor.mdb", null, null);

3. Build a query for activities
The following code example shows how to do this.

String activitiesQuery = "select ID, ShipName, StartDate, EndDate, Null
as
ParentID from HARBOR";

For more information, see Writing queries to populate the data model:

4. Map the result
The result is mapped to the required properties of the IlvJDBCGanttModel object

Specify either the name of the column in the query (as in the code sample below) or
its index, using an integer:

Map activitiesMapping = new HashMap();
activitiesMapping.put(IlvTableActivity.ID_PROPERTY, "ID");
activitiesMapping.put(IlvTableActivity.NAME_PROPERTY, "ShipName");
activitiesMapping.put(IlvTableActivity.START_TIME_PROPERTY, "StartDate")

I B M ® I L O G ® J V I E W S G A N T T 8 . 670

;
activitiesMapping.put(IlvTableActivity.END_TIME_PROPERTY, "EndDate");
activitiesMapping.put(IlvTableActivity.PARENT_ID_PROPERTY, "ParentID");

5. Pass the connection, the query, and the mapping information to the model
jdbcModel.setActivitiesQuery(databaseConnection, activitiesQuery,
activitiesMapping);

6. Repeat some of the previous steps.
Repeat from Create a connection to Pass the connection, the query, and the mapping
information to the model for resources and reservations:

String resourcesQuery = "select DockName, '1' as Quantity, Null as
ParentID from HARBOR group by DockName";
Map resourcesMapping = new HashMap();
// as said above, we use the DockName as ID
resourcesMapping.put(IlvTableResource.ID_PROPERTY, "DockName");
resourcesMapping.put(IlvTableResource.NAME_PROPERTY, "DockName");
resourcesMapping.put(IlvTableResource.PARENT_ID_PROPERTY, "ParentID");
resourcesMapping.put(IlvTableResource.QUANTITY_PROPERTY, "Quantity");
jdbcModel.setResourcesQuery(databaseConnection, resourcesQuery,
resourcesMapping);

String reservationsQuery = "select ID as ActivityID , DockName as DockID
from HARBOR";
Map reservationsMapping = new HashMap();
reservationsMapping.put(IlvTableReservation.ACTIVITY_ID_PROPERTY,

"ActivityID");
reservationsMapping.put(IlvTableReservation.RESOURCE_ID_PROPERTY,

"DockID");
jdbcModel.setReservationsQuery(databaseConnection, reservationsQuery,

reservationsMapping);

7. Specify that the configuration is finished
Once all the connections, queries, and mapping information has been passed to the
model, specify that the configuration is finished and that the model can populate itself
from the database:

try {
jdbcModel.initializeMapping();

} catch (IlvTableModelMappingException e) {
// in case something went wrong

}

Depending on the option you choose when you build the model, the resulting model is a
read-only model or a read-write model that can be displayed in a Gantt or Schedule chart.
If you choose a read-write model, the model can be modified.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 71

Implementing custom data models

If you need to connect specialized business data to your Gantt, Schedule, or Resource Data
chart, it is always best to determine whether there is a way to translate or adapt the data
to one of the standard formats supported by JViews Gantt.

The arguments after the table model are:

♦ Perhaps the business data can be accessed via ODBC and you can then use an
ODBC-JDBC™ bridge to load the data using JViews Gantt JDBC connection (seeConnecting
to data through JDBC).

♦ Perhaps the data can be exported to a custom XML format that can then be translated
into SDXL format using XSLT (see Connecting to XML data).

♦ However, you may have a special case where implementing a custom data model
implementation is the best and most efficient way to connect to your business data. An
example of this might be a live connection to business data that must be selectively filtered
or modified before it is displayed in a Gantt chart.

JViews Gantt supports the ability for you to design a custom data model implementation and
display your custom data in the standard charts. This is possible because of the model-view
separation and the loose coupling between the Gantt data model interfaces and the charts.
The data model interfaces and classes provided with JViews Gantt are described in Data
model classes. Although you can implement your custom data model in its entirety, you are
recommend to use at least the abstract classes as your starting point. You can also subclass
any of the concrete data model implementation classes if this suits your purposes better.

Examples
The database examples illustrate how to implement a custom data model by subclassing the
abstract classes. These examples are available in:

♦ <installdir>/jviews-gantt86/samples/databaseGantt

♦ <installdir>/jviews-gantt86/samples/databaseSchedule

In these examples, the DBROGanttModel class implements a Gantt data model that connects
to a read-only custom database. The database implements the GanttDBRO interface instead
of the standard JDBC interface.

The Filter example illustrates how to implement a custom data model by subclassing the
IlvFilterGanttModel base class. The BasicFilterGanttModel implementation wrappers
another Gantt data model and filters activities for display. This example is available in:

<installdir>/jviews-gantt86/samples/filter.

I B M ® I L O G ® J V I E W S G A N T T 8 . 672

Styling

Describes how to use Cascading Style Sheets (CSS) for styling your data.

In this section

Styling examples
Lists the examples that show you how to customize the appearance of a chart by applying
cascading style sheets.

Using CSS syntax in the style sheet
Explains the origins and syntax of CSS and how to apply CSS to Java™ objects.

Applying CSS to Java objects
Describes how the CSS selector mechanism is used to match a hierarchy of Java objects
accessible from a CSS model interface.

Using style sheets
Explains how to use style sheets in JViews Gantt.

The Gantt and Schedule CSS examples
Describes how to run and customize the CSS examples.

The resource data CSS example
Describes how to run and customize this example application.

Styling Gantt and Schedule chart components
Describes how style sheets can be used to customize the appearance of the Gantt and
Schedule chart components and their subcomponents.

© Copyright IBM Corp. 1987, 2009 73

Styling Gantt chart and Schedule chart data
Describes the activities, classes and constraints used to style Gantt and Schedule chart data.

Styling Resource Data chart components
Describes the CSS properties and Java methods used to control Resource Data chart
rendering.

Styling the Resource Data chart data
Explains how to control Resource Data charts rendering using CSS and Java.

I B M ® I L O G ® J V I E W S G A N T T 8 . 674

Styling examples

JViews Gantt allows you to customize the appearance of a chart by applying cascading style
sheets (CSS).

The following CSS examples illustrate how styling works and contain several style sheet
examples for the Gantt and Schedule charts, respectively:

♦ <installdir>/jviews-gantt86/samples/cssGantt.

♦ <installdir>/jviews-gantt86/samples/cssSchedule.

The following CSS example illustrates how styling works and contains several style sheet
examples for the Resource Data chart:

♦ <installdir>/jviews-gantt86/samples/cssResourceData.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 75

I B M ® I L O G ® J V I E W S G A N T T 8 . 676

Using CSS syntax in the style sheet

Explains the origins and syntax of CSS and how to apply CSS to Java™ objects.

In this section

Overview
Explains the conformity and divergences between the style sheet syntax and the CSS2
specification.

The origins of CSS
Explains the history of cascading style sheets.

The CSS syntax
Explains the CSS syntax briefly.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 77

Overview

The style sheet syntax conforms to the CSS2 specification (Cascading Style Sheets level 2)
with a few divergences.

The general format of a style rule in a style sheet is therefore:

selector {
declaration1;
declaration2;

...
}

For visualization purposes, the selector applies to objects in the data model and is used for
pattern-matching; the declarations apply to the corresponding graphic objects and are used
for rendering.

Declarations have the form:

propertyName : value ;

An example of a style rule is:

activity[completion > '0.25']{
background : red;
foreground : black;

}

This rule makes all activities that are more than 25% complete red with black text.

This section introduces and describes CSS briefly and then explains in more detail the version
of CSS used in JViews Gantt. It also shows you the typical uses of CSS for customizing
activities, constraints, and resource data series.

I B M ® I L O G ® J V I E W S G A N T T 8 . 678

The origins of CSS

Cascading style sheets (CSS) are a powerful mechanism for customizing HTML rendering
inside a Web browser. The CSS2 specification comes from the World Wide Web Consortium
(W3C), and has now reached the status of a W3C recommendation.

The CSS syntax is a great improvement over the .Xdefault resource mechanism of the
XWindow System. The basic idea remains the same: matching a pattern and setting resource
values. CSS is devoted to HTML rendering, matching HTML tags, and setting style values.
XML is another CSS target, especially as used within the SVG (Scalable Vector Graphics)
recommendation from the W3C.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 79

The CSS syntax

This section gives a shortened presentation of CSS syntax. For a full description of CSS
syntax, see http://www.w3.org/TR/REC-CSS2/.

Style rule
A CSS document (a style sheet) consists of a set of style rules. Each rule starts with a selector
and is followed by a declaration block enclosed by braces ({}). The selector defines a pattern,
and the declarations are applied to the objects that match the pattern.

The basic example below shows how to apply the color red to all emphasis elements.

em { color : red ; }

where em is the selector, and color : red ; is a declaration.

It is possible to group several rules with the same declarations. Use a comma (,) to separate
the selectors. For example:

em, b { color : red ; }

Selector
The W3C states that “A selector represents a structure. This structure can be understood
for instance as a condition that determines which elements in the document tree are matched
by this selector, or as a flat description of the HTML or XML fragment corresponding to that
structure.”

A selector is composed of one or more minimal building blocks. When two or more minimal
building blocks are aggregated into a selector, they may be separated by combinators.

A combinator is a single character the semantics of which are described in the following
table. Extra spaces are ignored.

MeaningTransition

Matches an F element that is a descendant of an E element.E F

Matches an F element that is a child of an E element.E > F

Matches an F element immediately preceded by an E element.E + F

The following table shows the minimal building blocks of a selector. For an explanation of
the Specificity column, see Priority.

I B M ® I L O G ® J V I E W S G A N T T 8 . 680

http://www.w3.org/TR/REC-CSS2/

SpecificityMatching rulePattern

0-0-1Matches any element of type e.e

1-0-0Matches any element with ID equal to myid.#myid

0-1-0Matches any element with class myclass..myclass

0-1-0Matches any element with pseudo-class myclass.:myclass

0-1-0Matches any element with the myattr attribute that exists and <>
null.

[myattr]

0-1-0Matches any element whose myattr attribute value is exactly equal
to warning.

[myattr=”warning”]

0-1-0Matches any element whose myattr attribute value is a list of
space-separated values, one of which is exactly equal to warning.

[myattr~=”warning”]

0-0-0Matches any element.*

For example, the following line:

P.pastoral.marine { color : green ; size : 10pt ; }

matches <P class="pastoral marine old">, sets the color of the paragraph to green, and
sets the font size to 10.

All rules start and end with an implicit "*" pattern. This means that a selector can match
anywhere inside the hierarchy.

Declaration
Declarations are key-value couples. The separator is a colon (:). Each declaration is terminated
by a semicolon (;). The key should represent a predefined graphic attribute (foreground,
size, font, and so forth) and the value is a literal whose type depends on the key (such as
red, 10pt, or serif). All key-value pairs are String. You are recommended to quote values
with double quotes " " or single quotes ' 'when the values contain non alphanumeric
characters.

Priority
The priority of the rules depends on their relative specificity. Specificity is computed as
three numbers, a-b-c (in a number system with a large base).

These numbers represent:

♦ a is the number of ID building blocks in the selector

♦ b is the number of classes, pseudo-classes, and attributes

♦ c is the number of element types

The following table shows the information used in priority order, with the most specific first.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 81

SpecificitySelector

“2-1-0”#title > #author.full

“1-0-0”#title

“0-2-2”P.intro P.citation

“0-1-3”UL OL LI.red

When two rules give the same specificity number, the order of appearance gives the priority:
the last seen overrides previous rules.

Priority is used as follows:

1. The declarations of all rules that match the same objects are merged.

2. The priority is applied only if there is a conflict (same key value) within the merged
declaration block.

Cascading
Cascading consists of supplying several sources for the style. In HTML environments there
are three sources: the browser, the user, and the document. Cascading fixes another weight
according to the source of the style. Document style takes precedence over user style, which
takes precedence over browser style when the specificity number is the same.

There are two more tokens, !important and inherit. They are used to alter the cascading
priority inside declarations.

A style sheet can also import other sheets (internal cascading). The syntax is:

@import "[url]" ;

Import statements must precede the first rule in a style sheet. Priorities of the imported
rules are computed as if the rules replace the import statements. The following example
shows the import.

@import "common.css" ;

Inheritance
The main principle of CSS is the inheritance of declarations. Once the rules are checked
against the source document, the matched declarations are sorted according to the priority
order of the rules. The declarations are merged, with higher priority settings overriding
lower ones in case of conflict.

The resulting set of key-value pairs represents all the declarations that the style sheet applies
to a particular document.

I B M ® I L O G ® J V I E W S G A N T T 8 . 682

Applying CSS to Java objects

Describes how the CSS selector mechanism is used to match a hierarchy of Java objects
accessible from a CSS model interface.

In this section

Overview
Explains how CSS is applied to Java objects.

The CSS engine
Describes the functions of the CSS engine at load time and run time.

The CSS data model
Describes the information required for the CSS engine and explains the relationship between
CSS and Java objects.

CSS recursion
Describes how to style sheet recursion works using Java.

Constructs
Explains how to use CSS constructs.

Expressions
Explains how to use an expression in the place of a literal.

Custom functions
Describes how to use Java to register a custom function as part of an expression.

Registering custom functions
Explains how to register a custom function before it is used in a style sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 83

Divergences from CSS2
Explains changes to the CSS2 mechanism for specific behavior.

I B M ® I L O G ® J V I E W S G A N T T 8 . 684

Overview

The CSS selector mechanism was designed to match elements in HTML or XML documents.
It can also be used to match a hierarchy of Java™ objects accessible from a CSS model
interface. In this context, the CSS level 2 recommendation is transposed for the Java language
and used to set Bean properties according to the Java object hierarchy and state.

In applying CSS to Java objects, the term model object is used as the equivalent of the term
element in the W3C recommendation.

The CSS declarations for eachmodel object are sorted and used according to the application
that controls the CSS engine. The declarations represent property settings on a target object.
The target object concerned depends on the way the CSS engine is used.

JViews Gantt uses CSS declarations to create and customize graphic objects and renderers
for objects in the Gantt data model and to customize components of the chart itself.

Possible customizations are:

♦ In the Gantt and Schedule charts, activities in the Gantt data model are matched by the
CSS selector mechanism to create and customize the activity and reservation graphic
renderers. Constraints in the Gantt data model are matched to create and customize the
constraint graphics.

♦ In the Resource Data chart, resource data series are matched by the CSS selector
mechanism to customize their rendering.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 85

The CSS engine

The CSS engine has different responsibilities at load time and at run time:

♦ At load time: creating and customizing graphic objects and renderers and customizing
the chart itself.

♦ At run time: customizing the graphic objects and renderers according to changes in the
Gantt data model.

Usually the left side of a declaration represents a Bean property of the chart, the graphic
object, or the renderer. The right side is a literal and, if it needs type conversion, the method
setAsText is invoked on the Property Editor associated with the Bean property.

I B M ® I L O G ® J V I E W S G A N T T 8 . 686

The CSS data model

The input data model represents the seed of the “CSS for Java” engine.

It provides three important kinds of information to the CSS engine, required to resolve the
selectors:

♦ The tree structure of objects, which will be exploited by selector transitions.

This structure consists of the chart itself and parts of the Gantt data model, such as the
tree of activities for a Gantt chart.

♦ Object type, ID, and tag (or user-defined type), which match element type, ID, and CSS
classes.

IDs and types are strings; CSS classes are words separated by a space character. ID is
not required to be unique, although it is wise to assume so.

♦ Attribute, which matches an attribute of the same name in an attribute condition within
the selector.

The target object is the graphic object or renderer associated with the model object. In the
case of the chart itself, the CSS model object and the target graphic object are the same,
that is, the chart. For CSS model objects that are part of the Gantt data model, such as
activities, the graphic object is the associated activity renderer. The declarations change
property values of the graphic object that corresponds to the matching model object, thereby
customizing the graphic appearance given by the rendering.

In the Gantt and Schedule charts, the target object to which the CSS declarations are applied
is usually:

♦ an instance of IlvActivityRenderer when styling activities, or

♦ an instance of IlvConstraintGraphic when styling constraints.

In the Resource Data chart, the target object is usually an instance of IlvResourceDataSet
when styling the data series for a resource.

Object Types and Attribute Matching
The following code sample shows a rule that matches the object of type activity with the
attribute completion greater than or equal to 1 and sets the property background of the
graphic renderer associated with this object (defined elsewhere) to green.

Setting a property value for a class
activity[completion>='1'] {background : green;}

Attribute matching can be used to add dynamic behavior: a property_change event occurring
on the model can activate the CSS engine to set new property values on the graphic objects.

The following code example shows a rule that changes the color of objects that are of CSS
type activity and CSS class sales whenever the model attribute critical is set to true.

Color change behavior dependent on an attribute value
activity.sales[critical = true] {color : "gray"}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 87

Object identifiers and CSS classes
The CSS ID of a model object can be checked against the # selector of a rule. For activities
and resources, the CSS ID is obtained from the id property of the object by calling the getID
()method. The CSS ID of IlvGeneralConstraint is obtained from the user-defined property
with the reserved name id. Other implementations of constraints have an undefined CSS
ID.

CSS classes of a model object are matched against the CSS classes in the rule selector. The
classes of an IlvGeneralActivity or an IlvGeneralConstraint object are given by the
user-defined property with the reserved name tags. Multiple classes are specified by setting
the tags property as a space-delimited string of CSS class names.

Other activity and constraint implementations do not support CSS class membership.

CSS classes are not necessarily related to data model semantics; they are devices to add to
the pattern-matching capabilities in the style sheet. An object belongs to only one type, but
can belong to several CSS classes or none. A check on a CSS class is for its presence or
absence. Therefore a CSS class can be seen as an attribute without a value or as a Boolean
attribute flagged by its presence or absence.

For example, Matching CSS classes shows how to change the color of activities that are
both critical and related to the Beta test.

Matching CSS classes
activity.critical.betatest {

background : red ;
}

This rule matches all activities with a space-delimited tags property that contains the strings
critical and betatest.

Class name
The class property is a reserved keyword indicating the class name of the generated graphic
object or renderer. The class property must be specified somewhere in the rule hierarchy
for every activity and constraint leaf rule. However, the class declaration is applied only
when there is a creation request. If the model state is changed, the graphic objects and
renderers are customized by applying only new declarations from new matching rules of
the style sheet. Therefore, the class declaration is ignored if it is not declared in the subset
of rules matched by the change in the model.

For activities, the right side of a class declaration is a class name that will be loaded by the
system class loader. It may be:

♦ An implementation of the IlvActivityRenderer interface. For example:

activity {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
thickness : 3;
background : yellow;

}

♦ An implementation of the IlvActivityRendererFactory interface.

♦ An instance of IlvGraphic.

I B M ® I L O G ® J V I E W S G A N T T 8 . 688

For information and examples, see Styling activities.

For constraints, the right side of a class declaration may be:

♦ An instance of IlvConstraintGraphic.

♦ An implementation of the IlvConstraintGraphicFactory interface

For information and examples, see Styling constraints.

Pseudo-classes and pseudo-elements
Pseudo-classes are the minimal building blocks of a selector that match model objects
according to an external context. The syntax is like a CSS class but with a colon instead of
a dot. For example, activity:selected matches a node only if the activity is selected. The
CSS engine can resolve this pseudo-class at run time according to the state of each model
object.

Activities support the selected, leaf, milestone, and parent pseudo-classes. Constraints
support the selected pseudo-class.

A pseudo-class has the same specificity as a CSS class.

Pseudo-elements are metaclasses, like pseudo-classes, but match document structure instead
of the user agent state.

Model indirection
The right side of a declaration resolves to a literal that is determined at run time by a Property
Editor. If the literal is prefixed by @, the remainder of the string is interpreted as a model
attribute name. The declaration takes the value from the model object, as shown in Setting
a property to an attribute value.

Setting a property to an attribute value
activity {

class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background : powderblue;
label : '@id';
toolTipText : @'|"<html><center>"+@id+"
"+@name+"

</center></html>"';
}

The label property labels the activity bar with the ID of the activity. The tooltip is rendered
with HTML formatting and displays the activity name and ID on separate lines bold and
centered.

Such indirection is also used in the opposite direction, that is, to retrieve the name of the
model attribute that controls a graphic property. This allows user interactions to modify the
data model correctly. Two special names, @id and @tags, represent values of the user-defined
properties with the reserved names id and tags, returned by calls to themethod getProperty
(java.lang.String).

Resolving URLs
Sometimes declaration values are URLs relative to the style sheet location. A special
construct, standard in CSS level2, allows you to create a URL from the base URL of the
current style sheet. For example:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 89

imageURL : url(images/icon.gif) ;

This declaration extends the path of the current style sheet URL with images/icon.gif.
This construct is very useful for creating a style sheet with images located relative to it,
because the URL remains valid even if the style sheet is cascaded or imported elsewhere.

I B M ® I L O G ® J V I E W S G A N T T 8 . 690

CSS recursion

You are likely to want to specify a Java™ object as the value of a declaration. A simple
convention allows you to recur in the style sheet, that is, to define a new Java object that
has the same style sheet, but is unrelated to the current data model.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 91

Constructs

@# Construct
Prefix the value with ‘@#’ to create new Beans when required as shown in Creating a Bean
in a declaration.

Creating a Bean in a declaration
activity {

class : ilog.views.gantt.graphic.renderer.IlvActivityCompositeRenderer;
renderer[0] : @Subobject#barRenderer;
}

#barRenderer {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
thickness : 1;

}

The @# operator extends the current data model by adding a dummy model object as the
child of the current object. The object ID of the dummy object is the remainder of the string,
beyond the @# operator. The type of the dummy object is Subobject. The dummy object
inherits CSS classes and attributes from its parent.

The CSS engine creates and customizes a new subobject according to the declarations it
finds for the dummy object. In particular, this means that the Java class of the subobject is
determined by the value of the class property. The newly created subobject becomes the
value of the @# expression. In the declarations for the subobject, attribute references through
the @ operator refer to the attributes of the parent object.

Once the subobject is completed, the previous model is restored, so that normal processing
is resumed.

In Creating a Bean in a declaration, an IlvBasicActivityBar object is created, with the
thickness property set to 1. This new object is assigned to the renderer[0] property of the
activity object, which is an instance of IlvActivityCompositeRenderer.

@= and @+ Constructs
There are two refinements of the '@#ID' operator:

♦ '@=ID': Using '@=ID' instead of '@#ID' shares the instance. The first time the declaration
is resolved, the object is created as with the @# operator. But for all subsequent access
to the same value, '@=ID' will return the same instance, the one created the first time,
without applying the rules. Note that all instances created with '@=' are cleared when a
new style sheet is applied. '

♦ '@+ID': Using '@+ID' instead of '@#ID' avoids useless creation. Basically '@+ID' customizes
only the object currently assigned to the property, unless it does not exist or its class is
not the same as the one defined in the #ID rule. In this case, the object is first created,
then customized, and then assigned to the property, the same as with an @# construct.

The need for these refinements arises from a performance issue. The @# operator creates a
new object each time a declaration is resolved. Usually a declaration is applied whenever a
property changes. Under certain circumstances, the creation of objects may lead to expensive

I B M ® I L O G ® J V I E W S G A N T T 8 . 692

processing, so JViews Gantt provides an optional mechanism to minimize the creation of
objects during property changes.

@| Construct
A CSS declaration value starting with "@|" is interpreted as an expression (see Expressions).

@ Construct
A CSS declaration value that is exactly "@" means cancel the property setting made in a
previous rule. This construct is useful to prevent a property from being modified, especially
when the default value is unknown. For example:

The @ construct for preventing a property from being modified
activity {

class : "ilog.views.gantt.graphic.renderer.IlvActivityBar" ;
bottomMargin : "0.3" ;

}

activity:parent {
bottomMargin : @ ;

}

These two rules say that the bottomMargin property value should be set to 0.3, unless the
activity has the CSS pseudo-class parent. Without the "@" capability, the default value of
bottomMargin would have to be written down in the CSS.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 93

Expressions

The value in a CSS declaration is usually a literal. However, it is possible to write an
expression in place of a literal.

If the value begins with @|, then the remainder of the value is processed as an expression.

The syntax of the expressions after the "@|" prefix is close to the Java syntax. The expression
type can be arithmetic (type int, long, float, or double), Boolean, or String. Examples:

@|3+2*5 -> 13
@|true&&(true||!true) -> true
@|start+end -> "startend"

An expression can refer to model attributes. The syntax is the usual one:

@|@speed/100+@drift -> 1/100 of the value of "speed" plus the value of "drift." "speed" and
"drift" are attributes of the current object.

'@|"name is: " + @name'-> "name is: Bob", if the value of current object attribute name
is Bob. Note the use of quotes to keep the space characters.

The standard functions abs(), acos(), asin(), atan(), ceil(), cos(), exp(), floor(), log
(), pi, rint(), round(), sin(), sqrt(), and tan() are accepted, for example, as in:

@|3+sin(pi/2) -> 4

There are some default functions provided by JViews Gantt: formatDate, formatDuration,
and activityProperty.

The formatDate function formats a java.util.Date object, passed as the second argument,
into a String, with a SimpleDataFormat string as the first argument.

The formatDuration function formats an IlvDuration object, passed as the second argument,
into a String, with one of the following supported constants as the first argument:
TIME_UNIT_MEDIUM, TIME_UNIT_SHORT, or LARGEST_UNIT_MEDIUM.

The activityProperty function retrieves the value of a user-defined property from an
activity. This function is useful for styling constraint graphics based on the value of the From
activity or To activity associated with the constraint.

The following sample shows how the activityProperty function provides an additional
level of indirection, which allows you to retrieve the id property of activities that are
themselves the fromActivity and toActivity properties of the constraint.

Styling Constraint Graphics Based on From or To Activity
constraint {
class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
toolTipText : activityProperty(@fromActivity,"id")+"to"+

activityProperty(@toActivity,"id");

If the CSS engine encounters an error while it is resolving an expression, it silently ignores
the declaration.

I B M ® I L O G ® J V I E W S G A N T T 8 . 694

Custom functions

Users of CSS for Java™ can register their own functions, which can be part of an expression.
A custom function must implement IlvCSSFunction. This is an abstract class, but technically
you should consider it like an interface.

The following code example shows the signature of the main method.

public Object call(Object[] args, Class type, IlvCSSModel model,
Object node Object target, Object closure);

♦ When a function is evaluated, the parameters are first resolved as subexpressions. Then
the final values of parameters are passed to the args array.

♦ The parameter type is the expected type of the function, when known. A null value is
possible. Implementation should take care to return an object of this type; otherwise the
conversion will only be performed if it can be (that is, if it is a simple conversion between
primitive types or to String).

♦ The other parameters are the model, node, target, and closure at invocation time; model
is the current CSS object model, node is the current CSS model object being customized,
and target is the graphic object or renderer being customized. Not all functions need
these parameters. (See, for example, Calling the Custom Function Average.)

If an error occurs during the call, the exception will be reported and the current property
setting will be canceled.

The following sample shows an example of a function that computes the average value of
its parameters.

Custom function example: average of parameters
import ilog.views.util.styling.IlvCSSFunction;

class Average extends IlvCSSFunction {
//default constructor
public Average() { }

// Returns 'avrg'
public String getName() {

return "avrg";
}

// Returns ','
public String getDelimiters() {

return ",";
}

// Returns the average of arguments.
public Object call(Object[] args, Class type, IlvCSSModel model,

Object node, Object target, Object closure) {
// Assume only double, for the sake of simplicity.
double result = 0d;
for (int i=0; i<args.length; i++) {

if (args[i] != null) {

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 95

result += Double.parseDouble(args[i].toString());
}

}
result /= args.length;
return new Double(result);

}
}

The following example shows an example of how to call a custom function, where the custom
function is the Average class, which has the return value avrg. Note that this function does
not require information from the CSS model.

Calling the Custom Function Average
constraint {

lineWidth : @|avrg(@param1,@param2);
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 696

Registering custom functions

You must register custom functions before using them in a style sheet.

To do this:

♦ Call registerFunction in IlvHierarchyChart or IlvScheduleDataChart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 97

Divergences from CSS2

Java™ objects are not HTML documents. The CSS2 syntax remains, so that a CSS editor
can still be used to create the style sheet. However, the differences lead to adaptations of
the CSS mechanism, so that its power can be fully exploited, and to some specific behavior.

Cascading
Cascading is explicit: the API offers a means of cascading style sheets. However, the
!important and inherit tags are not supported for the sake of simplicity.

Pseudo-classes and pseudo-elements
The pseudo-class construct is fully implemented and used to represent renderer-specific
states or GUI items.

The list of predefined pseudo-classes is as follows:

♦ selected

♦ parent

♦ milestone

♦ leaf

The CSS2 predefined pseudo-elements and pseudo-classes (:link, :hover, and so forth) are
not implemented because they have no meaning in Java.

Attribute matching
The attribute pattern in CSS2makes the following checks for strings: presence [att], equality
[att=val], and inclusion [att~=val]. The |= operator is disabled.

For Java objects, there are the following numeric comparators >, >=, <>, <=, <, with the usual
semantics.

There are also equal and not-equal comparators that make the distinction between string
comparison and numerical comparison:

♦ Equal: "A==B" is true if and only if A and B are numerically equal (for example, 10 ==
10.0); use "=" to test the equality of two Strings.

♦ Not-equal: "A~B" is true if and only if A and B are two different Strings (for example,
"10" ~ "10.0"); use "<>" to test the inequality of two numbers.

Syntax enhancement
CSS for Java requires the use of quotation marks when a token contains special characters,
such as dot (.), colon (:), commercial at sign (@), hash sign (#), space (), and so on.

Quotes can be used almost everywhere, in particular to delimit a declaration value, an
element type, or a CSS class with reserved characters.

I B M ® I L O G ® J V I E W S G A N T T 8 . 698

The closing semicolon (;) is optional.

Null value
Sometimes it makes sense to specify a null value in a declaration. By convention, null is a
zero-length string '' or "". For example:

node.not-handled {
class : '' ;

}

When a null class name is specified, no object is created at all and no error is reported, as
it would be for a malformed class name.

The notation '' is also used to denote a null array for properties expecting an array of values.

Empty string
The null syntax does not allow you to specify an empty string in the style sheet. The following
code example shows that you can create an empty string.

Creating an empty string
activity {

toolTipText : @#emptyString ;
}
#emptyString {

class : 'java.lang.String';
}

Better still, you can use the sharing mechanism to avoid the creation of several strings. The
following code example shows that the @= construct will create the empty string the first
time only and will then reuse the same instance for all other occurrences of @#emptyString.

Sharing an empty string
activity {

toolTipText : @=emptyString ;
}
#emptyString {

class : 'java.lang.String';
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 99

I B M ® I L O G ® J V I E W S G A N T T 8 . 6100

Using style sheets

Explains how to use style sheets in JViews Gantt.

In this section

Applying styles
Explains the classes used to apply a style sheet to a chart and describes how the internal
mechanism functions.

Disabling styling
Explains the parameters to pass to specific methods to disable styling.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 101

Applying styles

The IlvHierarchyChart class, the common superclass of IlvGanttChart and
IlvScheduleChart, implements the IlvStylable interface. The IlvScheduleDataChart
class, the superclass of IlvResourceDataChart, also implements the IlvStylable interface.
This interface defines several methods that can be used to control styling. The following
example shows the typical code involved in applying a style sheet to a chart.

try {
chart.setStyleSheets(new String[]{"simple.css"});

} catch (IlvStylingException x) {
System.err.println("Cannot load style sheets: " + x.getMessage());

}

You can integrate a style sheet generated with the Designer in this way. See Integrating a
style sheet into an application in Using the Designer.

The following table shows the IlvHierarchyChart and IlvScheduleDataChart methods
that can be used to control styling.

The following table shows the methods for controlling styling.

MethodsWhere used

getStyleSheet()Style Sheets

setStyleSheet(java.lang.String)

getStyleSheets(int)

setStyleSheets(int, java.lang.String)

getStyleSheets()

setStyleSheets(java.lang.String[])

getStyleSheetDebugMask()Debugging

setStyleSheetDebugMask(int)

When style sheets are set on a chart, the initial state of the chart is saved internally. When
new style sheets are set or styling is disabled completely, the chart is first restored to its
saved state. Then, the new style sheets are interpreted in order to customize the chart. This
ensures that when you set new style sheets, they will customize the chart beginning from
a known state. This also prevents undesired compound customizations that would result
from successively applying multiple sets of style sheets.

As a consequence, you should keep two points in mind when you apply style sheets to a
Gantt, Schedule, or Resource Data chart and you use Java™ code to customize a chart by
calling its APIs:

♦ If the Java code customizes the chart before you set style sheets, the style sheets may
override or suppress the Java customization. When you set new style sheets or disable
styling completely, the customization performed by the Java code is restored, because it
was saved as part of the state of the chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6102

♦ If the Java code customizes the chart after you set style sheets, the Java code may override
or suppress customizations performed by the style sheets. When you set new style sheets
or disable styling completely, the customization performed by the Java code is lost because
it was not saved as part of the state of the chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 103

Disabling styling

When you globally disable styling, the chart is told that no styles are specified and it removes
any overhead related to styling. Note that this is different from setting an empty style sheet
on the chart, since the chart will still try to match CSS rules in this case.

To disable styling:

1. Pass null to the setStyleSheets(java.lang.String[])method of IlvHierarchyChart
and IlvScheduleDataChart.

The CSS samples are provided with JViews Gantt to show how you can use style sheets with
CSS syntax to customize the appearance of your Gantt, Schedule, or Resource Data charts.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6104

The Gantt and Schedule CSS examples

Describes how to run and customize the CSS examples.

In this section

Running the examples
Explains where to find and how to run the Activity Chart and Resource Chart CSS rendering
samples.

Scheduling data
Explains the XML data loaded by the example.

Customizing a Gantt chart using a simple style sheet
Explains how to write a CSS stylesheet to customize a Gantt chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 105

Running the examples

The Activity Chart and Resource Chart CSS rendering samples are provided with JViews
Gantt to show how you can use CSS to customize the appearance of your charts.

The files and source code of the Activity Chart and Resource Chart CSS rendering samples
can be found in:

♦ <installdir>/jviews-gantt86/samples/cssGantt.

♦ <installdir>/jviews-gantt86/samples/cssSchedule.

To run a sample:

1. Ensure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt.

2. Go to the directory where the sample is installed and type:

ant run

I B M ® I L O G ® J V I E W S G A N T T 8 . 6106

Scheduling data

The Activity Chart and Resource Chart CSS rendering samples display scheduling data that
is initially loaded from the XML file:

<installdir>/jviews-gantt86/samples/cssGantt/data/data.xml

This XML scheduling data file defines activities that contain additional user-defined
properties. These properties can be used during styling to match against CSS declarations
or for display in activity renderers.

The following example shows a part of the data file that defines two activities.

<activity id="A-1.1.1" name="Compile customer list" start="6-10-2000 4:53:58"
end="7-10-2000 4:53:58">
<property name="type">marketing</property>
<property name="completion">0.90</property>

</activity>
<activity id="A-1.1.2" name="Contact customers" start="7-10-2000 4:53:58"
end="9-10-2000 4:53:58">
<property name="completion">1.0</property>

</activity>

Both activities contain a completion property that has a numeric value from 0 to 1. In
addition, the first activity contains a property named type that has the value "marketing".
The CSS rendering samples read the XML file and populate the Gantt data model with
instances of IlvGeneralActivity, IlvGeneralResource, IlvGeneralConstraint, and
IlvGeneralReservation. Although you can apply styling to any Gantt data model
implementation, you can only reference user-defined properties in your style sheets if your
data model objects implement the IlvUserPropertyHolder interface. The general
implementations provided in the ilog.views.gantt.model.general package implement
this interface.

For information on how to read an IlvGanttModel from an XML data file, see How
to read an IlvGanttModel from an SDXL file using serialization.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 107

Customizing a Gantt chart using a simple style sheet

This section describes the contents of a simple style sheet and how it customizes a Gantt
chart.

The following steps are based on the Gantt CSS example found in:Note:

<installdir>/jviews-gantt86/samples/cssGantt

They also apply to the Schedule CSS example in:

<installdir>/jviews-gantt86/samples/cssSchedule.

To customize a Gantt chart:

1. Create an empty CSS file in the data directory of the Gantt CSS sample. The file must
have a .css extension. For example:

<installdir>/samples/cssGantt/data/my-first-stylesheet.css

2. Run the Activity chart CSS rendering sample (see Running the examples) and your
new style sheet will appear in the list of available style sheets. The Activity chart CSS
rendering sample makes all the style sheets available in the cssGantt/data directory.
Similarly, the Resource chart CSS rendering sample makes all the style sheets available
in the cssSchedule/data directory.

3. While the Activity chart CSS rendering sample is running, load the empty CSS file
into the text editor of your choice.

4. Every time you edit the CSS file in your text editor, save your changes.

You can then test the changes you have made by switching to the Activity chart CSS
rendering sample and reapplying the style sheet to the chart. Reselect your style sheet
from the list of available style sheets.

5. In the CSS file, first specify some properties of the Gantt chart:

chart {
rowHeight: 25;
ganttSheetToolTipsEnabled: true;
dividerOpaqueMove: true;

}

This increases the default row height of the chart, ensures that tooltips are enabled
in the Gantt sheet, and enables opaqueMovemode for the vertical divider that separates
the table from the sheet.

6. Add some CSS rules that give the table header and the time scale an attractive
background color and a bold font:

table {
headerFont: arial,bold,14;
headerBackground: linen;

I B M ® I L O G ® J V I E W S G A N T T 8 . 6108

}

timeScale {
font: arial,bold,14;
background: linen;

}

The following figure shows how the Gantt chart looks with this style sheet.

7. Finally, style the activity and constraint graphics by adding additional CSS rules.
Specify that all activities are to be displayed as a simple rectangle. The ID of each
activity will be displayed in the center of the rectangle in a small font. The color of
the constraint links will be changed to a shade of brown that matches well with the
rest of the theme.

activity {
class: 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background: cornsilk;
label: "@id";
font: arial,plain,10;

}

activity:milestone {
class: 'ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol';
shape: DIAMOND;
background: black;
foreground: cornsilk;
label: @
font: @

}

constraint {
class: 'ilog.views.gantt.graphic.IlvConstraintGraphic';
foreground: saddlebrown;
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 109

The following figure shows how the Gantt chart looks now with the completed style
sheet.

You can use the Designer to generate a style sheet file that you can load
into an application. See Integrating a style sheet into an application in
Using the Designer.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6110

The resource data CSS example

Describes how to run and customize this example application.

In this section

Running the Example
Explains where you find the source code for the Resource Data CSS sample and how to run
it.

Scheduling data
Describes the classes used to handle the in-memory data used for this sample.

Customizing a Resource Data style sheet
Describes the contents of a simple style sheet and explains how it customizes a Resource
Data chart.

Two kinds of rules
Explains the two kinds of rules used in the sample style sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 111

Running the Example

The Resource Data CSS sample is provided with JViews Gantt to show how you can use CSS
to customize the appearance of your chart. This sample appears as Load Chart Rendering
(CSS) in the sample summary page found in:

<installdir>/jviews-gantt86/samples

The files and source code of the Resource Data CSS sample can be found in the directory:

<installdir>/jviews-gantt86/samples/cssResourceData

To run the sample:

1. Ensure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt.

2. Go to the directory where the sample is installed and type:

ant run

I B M ® I L O G ® J V I E W S G A N T T 8 . 6112

Scheduling data

The Resource Data CSS sample uses an in-memory data model that is created by the class:

<installdir>/jviews-gantt86/samples/cssResourceData/src/shared/data/
SimpleEngineeringProject.java

The SimpleEngineeringProject class implements a Gantt data model that simulates the
scheduling of a typical engineering project. The Resource Data CSS sample instantiates the
data model with factories that it uses to populate itself with instances of IlvGeneralActivity,
IlvGeneralResource, IlvGeneralConstraint, and IlvGeneralReservation. As mentioned
in The Gantt and Schedule CSS examples, although you can apply styling to any Gantt data
model implementation, you can only reference user-defined properties in your style sheets
if your data model objects implement the IlvUserPropertyHolder interface. The general
implementations provided in the ilog.views.gantt.model.general package implement
this interface.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 113

Customizing a Resource Data style sheet

To customize a Resource Data chart:

1. Create an empty CSS file in the data directory of the Resource Data CSS sample. The
file must have a .css extension:

<installdir>/samples/cssResourceData/data/my-first-stylesheet.css

2. Run the Resource Data CSS sample (see Running the Example) and your new style
sheet will appear in the list of available style sheets. The Resource Data CSS sample
makes all the style sheets available in the cssResourceData/data directory.

3. While the Resource Data CSS sample is running, load the empty CSS file into the text
editor of your choice.

4. Every time you edit the CSS file in your text editor, save your changes.

You can then test the changes you have made by switching to the Resource Data CSS
sample and reapplying the style sheet to the chart. Reselect your style sheet from the
list of available style sheets.

5. In the CSS file, first specify some properties of the Resource Data chart:

chart {
opaque : true;
background : lemonchiffon;
headerText : "My Chart";

}

This sets the background color of the chart and adds a header centered above it. The
chart is transparent by default, so you must explicitly set its opaque property to true
in order for the background color to display.

6. Add a CSS rule so that the time scale is transparent and the chart background color
shows through:

#timeScale {
opaque : false;

}

7. Add some CSS rules to give the plot area background a gradient fill and provide some
insets surrounding the plot area:

chartArea {
plotStyle : @#plotStyle;
border : @#emptyBorder;

}
Subobject#plotStyle {
class : 'ilog.views.chart.IlvStyle(strokePaint, fillPaint)';
strokePaint : black;
fillPaint : 'khaki\\lightyellow\\linen';

}
Subobject#emptyBorder {
class : 'javax.swing.border.EmptyBorder(borderInsets)';

I B M ® I L O G ® J V I E W S G A N T T 8 . 6114

borderInsets : 6,6,6,6;
}

The following figure shows how the Resource Data chart looks with this style sheet.

8. Finally, style the charts data series by writing additional CSS rules:

series {
lineWidth : 2.0;

}
series[name="Bob Robertson"] {

color1 : "goldenrod" ;
}
series[name="Michael Smith"] {

color1 : "mediumturquoise" ;
}

The following figure shows how the Resource Data chart looks now with the completed
style sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 115

I B M ® I L O G ® J V I E W S G A N T T 8 . 6116

Two kinds of rules

From the previous style sheet sample, you can distinguish two sets of CSS rules:

♦ Rules that customize the appearance of the chart and its constituent GUI components.
These rules are applied to the properties of the chart and its child components.

● For IlvGanttChart and IlvScheduleChart objects, the child components are the table,
the time scale, and the Gantt sheet. These rules are described in Styling Gantt and
Schedule chart components.

● For the IlvResourceDataChart objects, the child components are the chart area, the
legend, the scales, and the grids. These rules are described in Styling Resource Data
chart components.

♦ Rules that control how Gantt data model entities, such as activities, constraints, and
reservations, are rendered in the Gantt sheet of the IlvGanttChart and IlvScheduleChart,
and are rendered as data series of the IlvResourceDataChart. These rules are described
in Styling Gantt chart and Schedule chart data.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 117

Styling Gantt and Schedule chart components

Describes how style sheets can be used to customize the appearance of the Gantt and
Schedule chart components and their subcomponents. These chart components are explained
in more detail in The Gantt beans.

The following table lists the CSS elements that are defined to reference the different parts
of the chart components:

The following table shows the Gantt and Schedule chart CSS elements.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6118

TypeBean propertiesTarget object classDescriptionCSS Model
Object Type
and ID

booleanconstraintLayerVisibleIlvGanttChartThe Gantt or
Schedule chart
component

chart

booleandisplayingConstraintsIlvScheduleChart

intdividerLocation

booleandividerOpaqueMove

intdividerSize

ColorganttSheetBackground

booleanganttSheetToolTipsEnabled

booleanganttSheetVisible

booleanhorizontalScrollBarVisible

BorderinsideBorder

DatemaxVisibleTime

DateminVisibleTime

booleanmouseWheelEnabled

intmouseWheelPreferredOrientation

booleanmultipleRowActivityGraphicsEnabled

booleanrootRowVisible

introwHeight

ColortableBackground

FonttableFont

ColortableForeground

ColortableGridColor

ColortableHeaderBackground

FonttableHeaderFont

ColortableHeaderForeground

booleantableVisible

IlvTimeScaletimeScale

ColortimeScaleBackground

FonttimeScaleFont

ColortimeScaleForeground

intverticalPosition

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 119

TypeBean propertiesTarget object classDescriptionCSS Model
Object Type
and ID

verticalScrollBarPolicy int

intverticalScrollMode

IlvDurationvisibleDuration

intvisibleIntervalAnimationSteps

DatevisibleTime

IlvActivityLayoutactivityLayoutIlvScheduleChart

floatreservationCacheLoadFactor

floatreservationCacheLoadThreshosld

booleanreservationCachingEnabled

booleanantialiasingIlvGanttSheetThe Gantt sheetsheet

Colorbackground

URLbackgroundPatternLocation

ColordefaultGhostColor

ColordefaultXORColor

booleandisplayingConstraints

IlvGanttGridRendererhorizontalGrid

inthoverHighlightingMode

booleanmultipleRowActivityGraphicsEnabled

booleanparentActivityEditable

booleanparentActivityMovable

booleanrefreshMilestoneRenderer

booleanrefreshParentActivityRenderer

booleantoolTipsEnabled

IlvGanttGridRendererverticalGrid

ColorevenRowsBackgroundIlvHorizontalGanttGridThe horizontal
grid of the Gantt
sheet

horizontalGrid

booleanfilled

Colorforeground

ColoroddRowsBackground

ColorforegroundIlvWeekendGridThe vertical grid
of the Gantt
sheet

verticalGrid

booleanprintWeekendsOpaqueSee the note after this

I B M ® I L O G ® J V I E W S G A N T T 8 . 6120

TypeBean propertiesTarget object classDescriptionCSS Model
Object Type
and ID

weekendColortable. Color

booleanweekendDisplayed

ColorbackgroundIlvTimeScaleThe time scaletimeScale

Fontfont

Colorforeground

booleanopaque

ColorbackgroundIlvJTableThe Gantt tabletable

intcolumnMargin

Stringcolumns

Fontfont

Colorforeground

ColorgridColor

ColorheaderBackground

FontheaderFont

ColorheaderForeground

booleanshowsRootHandles

By default, the verticalGrid CSS model object type implements the
IlvWeekendGrid subclass of IlvVerticalGanttGrid. If you replace

Note:

IlvWeekendGrid with your own subclass, the CSS will return the properties of your
own subclass.

Similarly, the horizontalGrid CSS model object type implements the class
IlvHorizontalGanttGrid. If you replace IlvHorizontalGanttGrid with your
own implementation, the CSS will return the properties of your class.

These CSS model objects can be used to modify the Bean properties of the corresponding
target object. The following example shows how you can control the row height of the chart
and the colors and fonts of the table and the time scale.

chart {
rowHeight: 25;

}

table {
headerFont: arial,bold,14;

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 121

headerBackground: linen;
}

timeScale {
font: arial,bold,14;
background: linen;

}

The CSS ID is the same as the CSS model object type for each of the chart components.
Therefore, the following CSS rules are equivalent to the ones above. Here, the ID of each
chart component, instead of its type, is specified as the selector for each rule:

#chart {
rowHeight: 25;

}

#table {
headerFont: arial,bold,14;
headerBackground: linen;

}

#timeScale {
font: arial,bold,14;
background: linen;

}

The chart components have no assigned CSS classes or pseudo-classes.Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6122

Styling Gantt chart and Schedule chart data

Describes the activities, classes and constraints used to style Gantt and Schedule chart data.

In this section

Overview
Explains how to use style sheets to specify the rendering attributes of activities and
constraints in the Gantt sheet.

Styling activities
Explains in detail the model objects used to identify activities in the Gantt data model and
how to use them.

Styling constraints
Describes the model object type identifier constraints in the Gantt data model that will be
styled by the CSS engine.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 123

Overview

Style sheets can also be used to specify the rendering attributes of activities and constraints
in the Gantt sheet. The selector for each CSS rule specifies which activities or constraints
are being rendered in the Gantt data model. The target object to which the CSS declarations
are applied is usually an instance of IlvActivityRenderer or an instance of
IlvConstraintGraphic respectively. This is explained in more detail in the following sections.

Styling Gantt data works best if you use data model implementation classes that implement
the IlvUserPropertyHolder interface such as the general data model implementation
classes, provided in the ilog.views.gantt.model.general (see Default data model
implementation). These classes support user-defined properties. This allows the CSS engine
to match properties of the data model objects against CSS attribute selectors and to perform
model indirection when evaluating the CSS declarations. For information, see Selector and
Model indirection.

If you do not use the IlvActivity and IlvConstraint data model implementations
that implement the IlvUserPropertyHolder interface, you will not be able to use
attribute selectors or perform model indirection in your style sheets.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6124

Styling activities

Explains in detail the model objects used to identify activities in the Gantt data model and
how to use them.

In this section

Activity model objects
Describes the object types used for styling.

Activity renderer target objects
Describes how to specify the required constructor arguments in the CSS declaration.

Activity ID selectors
Describes the things to look for when you use ID selectors in your style sheet.

IlvGeneralActivity properties
Describes the styling features available when you use an IlvGeneralActivity instance.

IlvGeneralActivity CSS classes
Describes how activity properties are used to list the CSS classes and object it belongs to.

Activity CSS pseudoclasses
Describes the activity pseudoclasses you can use in rule selectors.

The formatDate and formatDuration functions
Explains the predefined date and duration formatting functions you can use as part of an
expression in your style sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 125

Activity model objects

The activity model object type identifies activities in the Gantt data model that will be
styled by the CSS engine. The target object to which the CSS declarations will be applied
can be an instance of IlvActivityRenderer, IlvActivityRendererFactory, or IlvGraphic.
The class of the target object must always be specified and is declared in the style sheet
using the reserved class property name. This is explained in more detail in Class name. The
following extremely simple CSS rule will display all activities using an IlvBasicActivityBar
renderer.

activity {
class: 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';

}

As shown previously, you can then add more declarations to the CSS rule that specify Bean
properties of the IlvBasicActivityBar target object you want to customize:

activity {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
thickness : 3;
background : yellow;

}

The following table summarizes the CSS model objects, tokens, and functions that are
applicable for styling activities. Each item of the table is further discussed in the subsequent
sections.

An instance of IlvActivity.Model object

An IlvGeneralActivity provides the most flexibility.

Properties of IlvGeneralActivity, or of IlvActivity
implementations that implement the IlvUserPropertyHolder
interface.

Model indirection

Not supported for other IlvActivity implementations.

IlvActivityRenderer orTarget object class

IlvActivityRendererFactory or

IlvGraphic.

activityCSS model object type

The ID property of the activity:CSS ID

getID() or

I B M ® I L O G ® J V I E W S G A N T T 8 . 6126

getProperty(java.lang.String).

Bean properties of the target object.CSS declaration properties

The tags property of IlvGeneralActivity, or of IlvActivity
implementations that implement the IlvUserPropertyHolder
interface:

CSS classes

IlvGeneralActivity.getProperty("tags")

Not supported for other IlvActivity implementations.

parentCSS pseudoclasses

leaf

milestone

selected

Properties of IlvGeneralActivity, or of IlvActivity
implementations that implement the IlvUserPropertyHolder
interface.

CSS attribute selectors

Not supported for other IlvActivity implementations.

formatDate()CSS custom functions

formatDuration()

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 127

Activity renderer target objects

As shown in Styling activities, the target object to which the CSS declarations are applied
can be an instance of IlvActivityRenderer, IlvActivityRendererFactory, or IlvGraphic.
If you specify an IlvGraphic class, it will be instantiated and then used in an
IlvActivityGraphicRenderer wrapper by the Gantt CSS engine. Most IlvGraphic
implementations provided in the JViews Gantt distribution have constructors with no
arguments. However, for those IlvGraphic implementations that have no such zero-argument
constructors, you need to specify the required constructor arguments in the CSS declaration.
The following example shows how to specify a filled IlvRectangle graphic as an activity
renderer.

The example below is in fact purely didactic and does not really apply to the class
IlvRectangle since this class does have a constructor with no argument.

Note:

activity {
class : 'ilog.views.graphic.IlvRectangle(definitionRect)';
definitionRect : @=dummyRect;
fillOn : true;
background : lightseagreen;

}

Subobject#dummyRect {
class : ilog.views.IlvRect;

}

Notice how a dummy IlvRect object is provided as an argument to the IlvRectangle
constructor. The initial value of this rectangle is unimportant because the Gantt library will
subsequently resize the graphic to represent the time duration of the activity.

If you specify an IlvActivityRendererFactory instance as your target object, the Gantt
CSS engine will ask the factory to create the activity renderer. However, you are
recommended not to use the renderer factories that are provided in the distribution because
they are not well suited to CSS styling. This is because the provided factories create renderer
instances that are shared among activities. In an application that does not use CSS styling,
this minimizes object creation and memory usage. However, this also defeats the ability of
the Gantt CSS engine to apply individualized rendering Customization. If you have written
your own activity renderer factory that does not share renderer instances, then it should
work well with CSS styling.

In most cases, you will simply specify an IlvActivityRenderer implementation as your
target object. The following table lists the renderers provided in the distribution that provide
the most flexibility when used with CSS styling:

The following table shows the renderers for CSS styling of activities.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6128

TypeBean propertiesRenderer

ColorbackgroundIlvBasicActivityBar

floatbottomMargin

Fontfont

Colorforeground

Stringlabel

enumstyle

intthickness

StringtoolTipText

floattopMargin

ColorbackgroundIlvBasicActivityLabel

floatbottomMargin

Fontfont

Colorforeground

enumhorizontalAlignment

Stringlabel

floatoffset

StringtoolTipText

floattopMargin

enumverticalAlignment

enumalignmentIlvBasicActivitySymbol

Colorbackground

floatbottomMargin

Colorforeground

enumshape

StringtoolTipText

floattopMargin

IlvActivityRendererrendererIlvActivityCompositeRenderer

Of course, other renderers provided in the distribution can also be specified in the style
sheet, as well as any custom activity renderers that you may have written yourself.

The following code example shows how to use the class IlvActivityCompositeRenderer
to create a more complex renderer from simpler ones:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 129

Creating complex renderers
activity {
class : 'ilog.views.gantt.graphic.renderer.IlvActivityCompositeRenderer';

renderer[0] : @#bar;
renderer[1] : @#startSymbol;
renderer[2] : @#endSymbol;

}

Subobject#bar {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background : powderblue;
bottomMargin : 0.3;

}

Subobject#startSymbol {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol';
alignment : START;

}

Subobject#endSymbol {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol';
alignment : END;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6130

Activity ID selectors

As shown in Styling activities, the ID property of activities in the Gantt data model can be
used as CSS ID selectors. For example, if your data model has an activity with an ID of
“A7345”, you could specify a rule that customizes the rendering of that specific activity like
this:

#A7345 {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background : orange;
label : 'I am a special activity';

}

There are several things you should be cautious of when you use ID selectors in your style
sheet:

♦ Each activity should have an ID that is unique across all objects of the data model.

♦ Activity ID selectors can only be specified in the style sheet using alphanumeric characters.
The activities defined in section Scheduling data have IDs that contain non-alphanumeric
characters, such as the hyphen. Therefore, this data model is not suitable for use with
CSS ID selectors.

♦ For performance reasons, the Gantt CSS engine assumes that CSS model object IDs are
immutable. Therefore, if the ID of an activity in your data model changes, the Gantt CSS
engine will not automatically re-interpret the ID selector rules. Although ILOG does not
recommend that you create a data model implementation where the IDs of data objects
change dynamically, you can overcome this limitation by reapplying the style sheet and
thereby forcing its complete re-interpretation.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 131

IlvGeneralActivity properties

If your Gantt data model uses the IlvGeneralActivity implementation, or IlvActivity
implementations that implement the IlvUserPropertyHolderIlvUserProperty interface,
you will have the most flexibility when you write CSS declarations to style activities.
IlvGeneralActivity allows you to specify predefined and user-defined activity properties
as CSS attribute selectors. It also allows you to perform model indirection in the value part
of your CSS declarations. The samples provided, described in The Gantt and Schedule CSS
examples, populate their data model with IlvGeneralActivity instances. You can therefore
use these samples to test and experiment with the styling features described in this section.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6132

IlvGeneralActivity CSS classes

The Gantt CSS engine interprets the “tags” property of an IlvGeneralActivity, or another
IlvActivity implementation that implements the IlvUserPropertyHolder interface, as
the space-separated list of the CSS classes it belongs to. For example, the default data model
of the samples provided defines a tags value of “critical” for some of the activities:

<activity id="A-1.3" name="Requirements Defined" start="21-10-2000 0:0:0"
end="21-10-2000 0:0:0">
<property name="tags">critical</property>

</activity>

You can then specify the following rules that will highlight all activities that are members
of the “critical” class in a different color:

activity {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background : powderblue;
label : '@id';

}

activity.critical {
background : plum;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 133

Activity CSS pseudoclasses

As shown in Styling activities, the Gantt CSS engine defines several activity pseudoclasses
that you can use in your rule selectors.

The pseudoclasses are:

♦ parent - Indicates that the activity has at least 1 child activity.

♦ leaf - The opposite of parent, indicates that the activity has no children.

♦ milestone - Indicates that the activity has zero duration.

♦ selected - Indicates that the activity is selected.

Most of the previous CSS examples given so far use an IlvBasicActivityBar renderer for
all activities. You may have already noticed that this renderer becomes nearly invisible when
it attempts to render a milestone activity that has zero duration. The following rules illustrate
how you can provide a symbol renderer for these activities by using the milestone
pseudoclass in the selector:

activity {
class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background : powderblue;
label : '@id';

}

activity:milestone {
class : ‘ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol’;
shape : DIAMOND;
foreground : yellow;
label : @;

}

The label line uses the special @ value to ignore the label property declaration that
the milestone rule has inherited.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6134

The formatDate and formatDuration functions

As shown in Styling activities, the Gantt CSS engine provides two predefined functions you
can use as part of an expression in your style sheet: formatDate and formatDuration.

formatDate
The formatDate function lets you format a Date property value using a standard pattern
string defined by the java.text.SimpleDateFormat class. The syntax of this function is.

formatDate(<SimpleDateFormat pattern>, <Date>)

The following example shows a declaration used to set the tooltip to the formatted start time
of the activity:

toolTipText : '@|"Start: " + formatDate("MM/dd/yy",@startTime)';

formatDuration
Similarly, the formatDuration function lets you format an IlvDuration value using an
IlvDurationFormat constant. The syntax of this function is:

formatDuration(<IlvDurationFormat constant>, <IlvDuration>)

The following example shows a declaration used to set the tooltip to the formatted duration
of the activity:

toolTipText: '@|"Duration: " + formatDuration(LARGEST_UNIT_MEDIUM, @duration)
';

You can see more complex usage of these functions by examining the standard-look.css
style sheet that is provided in:

<installdir>/jviews-gantt86/samples/cssGantt/data/standard-look.css

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 135

I B M ® I L O G ® J V I E W S G A N T T 8 . 6136

Styling constraints

Describes the model object type identifier constraints in the Gantt data model that will be
styled by the CSS engine.

In this section

Constraint model objects
Explains in detail the model objects used to identify constraints in the Gantt data model and
how to use them.

Constraint graphic target objects
Describes the bean properties of IlvConstraintGraphic that can be customized with CSS
styling.

Constraint ID selector
Explains how the id property can be interpreted as the CSS ID attribute and used in ID
selectors.

IlvGeneralConstraint properties
Explains how IlvGeneralConstraint can be used to specify predefined and user-defined
constraint properties as CSS attribute selectors.

IlvGeneralConstraint CSS classes
Explains how the tags property is interpreted by the Gantt CSS engine.

Constraint CSS pseudoclasses
Explains how pseudoclass are defined so that you can use them in rule selectors.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 137

The activityProperty function
Describes the predefined functions that you can use as part of an expression in your style
sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6138

Constraint model objects

The constraint model object type identifies constraints in the Gantt data model that will
be styled by the CSS engine. The target object to which the CSS declarations will be applied
can be an instance of IlvConstraintGraphic or IlvConstraintGraphicFactory. The class
of the target object must always be specified and is declared in the style sheet using the
reserved class property name. The following example shows an extremely simple CSS rule
that will render all constraints using the standard IlvConstraintGraphic class.

constraint {
class: 'ilog.views.gantt.graphic.IlvConstraintGraphic';

}

You can then add additional declarations to the CSS rule that specify Bean properties of the
IlvConstraintGraphic target object that you want to customize:

constraint {
class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
foreground : green;
lineWidth : 2;

}

The following table summarizes the CSS model object types, tokens, and functions that are
applicable when styling constraints. Each item of the table is further discussed in the
subsequent sections.

An instance of IlvConstraint.Model object

An IlvGeneralConstraint provides the most flexibility.

Properties of IlvGeneralConstraint, or of IlvConstraint
implementations that implement the IlvUserPropertyHolder
interface.

Model indirection

Not supported for other IlvConstraint implementations.

IlvConstraintGraphic orTarget object class

IlvConstraintGraphicFactory

constraintCSS model object type

The ID property of IlvGeneralConstraint:getProperty(java.lang.
String).

CSS ID

Not supported for other IlvConstraint implementations.

Bean properties of the target object.CSS declaration properties

The tags property of IlvGeneralConstraint, or of
IlvConstraint implementations that implement the

CSS classes

IlvUserPropertyHolder interface: IlvGeneralConstraint.
getProperty("tags").

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 139

Not supported for other IlvConstraint implementations.

selectedCSS pseudo classes

Properties of IlvGeneralConstraint, or of IlvConstraint
implementations that implement the IlvUserPropertyHolder
interface.

CSS attribute selectors

Not supported for other IlvConstraint implementations.

activityProperty()CSS custom functions

formatDate()

formatDuration()

I B M ® I L O G ® J V I E W S G A N T T 8 . 6140

Constraint graphic target objects

As shown in Constraint model objects, the target object to which the CSS declarations will
be applied can be an instance of IlvConstraintGraphic or IlvConstraintGraphicFactory.
If you specify an IlvConstraintGraphicFactory as your target object, the Gantt CSS engine
will ask the factory to create the constraint graphic. In most cases, you will simply specify
an IlvConstraintGraphic as your target object. The following table lists the bean properties
of IlvConstraintGraphic that can be customized with CSS styling:

The following table shows the Bean properties for constraint graphics.

Allowed valuesTypeBean properties

floatarrowSize

TIME_INTERVAL_CONNECTIONenumconnectionType

BOUNDING_BOX_CONNECTION

ilog.views.IlvStroke.CAP_BUTTintendCap

ilog.views.IlvStroke.CAP_ROUND

ilog.views.IlvStroke.CAP_SQUARE

Colorforeground

floathorizontalExtremitySegmentLength

ilog.views.IlvStroke.JOIN_BEVELintlineJoin

ilog.views.IlvStroke.JOIN_MITER

ilog.views.IlvStroke.JOIN _ROUND

floatlineStyle

floatlineWidth

booleanoriented

StringtoolTipText

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 141

Constraint ID selector

Constraints in the Gantt data model do not define an ID property as part of the basic
IlvConstraint interface. However, if you are using the IlvGeneralConstraint
implementation, or an IlvConstraint implementation implementing the
IlvUserPropertyHolder interface, the id property will be interpreted as the CSS ID attribute
and can be used in ID selectors. For example, if your data model defines the following
constraint in its XML data file:

<constraint from="A723" to="A39" type="End-Start">
<property name="id">C86</property>

</constraint>

You could then specify a rule that customizes the rendering of that specific constraint like
this:

#C86 {
class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
foreground : magenta;
toolTipText : 'I am a special constraint';

}

The same limitations discussed in Activity ID selectors apply to constraint ID selectors.Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6142

IlvGeneralConstraint properties

If your Gantt data model uses the IlvGeneralConstraint implementation, or an
IlvConstraint implementation implementing the IlvUserPropertyHolder interface, you
will have the most flexibility when you write CSS declarations to style constraints.
IlvGeneralConstraint allows you to specify predefined and user-defined constraint
properties as CSS attribute selectors. It also allows you to perform model indirection in the
value part of your CSS declarations. The samples provided, described in The Gantt and
Schedule CSS examples, populate their data model with IlvGeneralConstraint instances.
You can therefore use these samples to test and experiment with the styling features
described in this section.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 143

IlvGeneralConstraint CSS classes

The Gantt CSS engine interprets the tags property of an IlvGeneralConstraint, or another
IlvConstraint implementation that implements the IlvUserPropertyHolder interface, as
the space-separated list of the CSS classes it belongs to. This is identical in concept to
IlvGeneralActivity CSS classes. For example, let us set the tags property of a constraint in
our data model so that the constraint belongs to the delay and critical classes:

anIlvGeneralConstraint.setProperty("tags", "delay critical");

You can then add a rule to the style sheet that highlights all constraints that are both delayed
and that are critical in a different color:

constraint.critical.delay {
foreground : red;
lineWidth : 5;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6144

Constraint CSS pseudoclasses

As shown inConstraint model objects, the Gantt CSS engine defines the selected pseudoclass
that you can use in your rule selectors. The following example shows some rules that increase
the width of the constraint graphic to indicate when it is selected.

constraint {
class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
foreground : green;
lineWidth : 1;

}

constraint:selected {
lineWidth : 3;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 145

The activityProperty function

As shown in Constraint model objects, the Gantt CSS engine provides three predefined
functions that you can use as part of an expression in your style sheet. Section The formatDate
and formatDuration functions already discusses two of the functions. The activityProperty
function lets you refer to a property of the constraint from activity or to activity. The syntax
of this function is:

activityProperty(<IlvGeneralActivity>, <property name>)

The following example shows a declaration used to set the tooltip of the constraint graphic
to contain the names of the constraint’s from and to activities.

toolTipText : '@|"<html>From: "+activityProperty(@fromActivity,"name")+"
To:

"+activityProperty(@toActivity,"name")+"</html>"';

You can see more complex usage of this function by examining the standard-look.css style
sheet that is provided in the <Installdir>samples/gantt/css/data directory.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6146

Styling Resource Data chart components

Describes the CSS properties and Java methods used to control Resource Data chart
rendering.

In this section

Overview
Describes the Resource Data chart component and its subcomponents.

Styling the Chart Area component
Explains how to use the chartArea model object to control the appearance of a portion of a
chart.

Styling the Chart Legend
Explains how the chartLegend model object type to control the appearance of the Chart
Legend.

Styling the chart renderer
Describes how to use the chartRenderer CSS model object to control the global appearance
of the renderer used by the chart.

Styling the chart scales
Explains how to reference a specific scale in a CSS rule.

Styling the chart grids
Explains how to reference a specific grid in a CSS rule.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 147

Overview

You can also use style sheets to customize the appearance of the Resource Data chart
component and its subcomponents. These chart components are explained in more detail
in The Resource Data chart bean. The following table lists the CSS model object types that
are defined to reference the different parts of the chart component.

Target Object ClassDescriptionCSS IDCSS Model Object
Type

IlvResourceDataChartThe Resource Data chart
component

Chartchart

IlvChart.AreaThe chart area componentchartAreachartArea

IlvLegendThe chart legendchartLegendchartLegend

IlvChartRendererThe chart rendererschartRendererchartRenderer

IlvTimeScaleThe chart scalestimeScale

yScale

chartScale

IlvScale

IlvGanttGridRendererThe chart gridsxGrid

yGrid

chartGrid

IlvGrid

Chart components have no assigned CSS classes or pseudoclassesNote:

The chartmodel object type identifies the Resource Data chart component and can be used
to control the global appearance of the chart. The following table lists the Bean properties
of the IlvResourceDataChart class that can be set in the declarations of a CSS style rule.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6148

TypeBean properties

booleanantiAliasing

booleanantiAliasingText

Colorbackground

Borderborder

BorderchartAreaBorder

IlvDataRangePolicydataRangePolicy

Listdecorations

Color[]defaultColors

JComponentfooter

StringfooterText

Colorforeground

JComponentheader

StringheaderText

IlvChartInteractorinteractors

IlvLegendlegend

StringlegendPosition

booleanlegendVisible

DatemaxVisibleTime

DateminVisibleTime

ColorplotAreaBackground

IlvChartRendererrenderer

intresourceDisplayMode

booleanscalingFont

IlvTimeScaletimeScale

IlvDurationvisibleDuration

DatevisibleTime

IlvGanttGridRendererxGrid

booleanyAxisReversed

IlvGridyGrid

booleanyGridVisible

IlvScaleyScale

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 149

TypeBean properties

yScaleTitle String

doubleyScaleTitleRotation

booleanyScaleVisible

For example, the following CSS rules show you how to control the header, the borders, and
the colors of the chart:

chart {
opaque : true;
foreground : black;
background : lightyellow;
plotAreaBackground : slateblue;
border : @#chartBorder;
header : @#header;

}

Subobject#chartBorder {
class : 'javax.swing.border.LineBorder(lineColor)';
lineColor : black;

}
Subobject#header {
class : 'javax.swing.JLabel';
text : "My Resource Chart";

}

The CSS ID of the Chart Component is the same as its CSS model object type. Therefore,
the following CSS rule is equivalent to the first rule above. Here, the ID of the chart
component, instead of its type, is specified as the selector for the rule:

#chart {
opaque : true;
foreground : black;
background : lightyellow;
plotAreaBackground : slateblue;
border : @#chartBorder;
header : @#header;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6150

Styling the Chart Area component

The chartArea model object type identifies the Chart Area component and can be used to
control the appearance of the portion of the chart.

The following table lists the Bean properties of the IlvChart.Area class that can be set in
the declarations of a CSS style rule.

TypeBean properties

Colorbackground

PaintbackgroundPaint

Borderborder

intbottomMargin

booleanfilledPlottingArea

Colorforeground

Fontfont

intleftMargin

booleanopaque

PaintplotBackground

IlvStyleplotStyle

intrightMargin

inttopMargin

For example, the following CSS rules show you how to control the borders of the chart area:

chartArea {
border : @#emptyBorder;

}
Subobject#emptyBorder {
class : 'javax.swing.border.EmptyBorder(borderInsets)';
borderInsets : 6,6,6,6;

}

The CSS ID of the Chart Area component is the same as its CSSmodel object type. Therefore,
the following CSS rule is equivalent to the first rule above. Here, the ID of the chart area
component, instead of its type, is specified as the selector for the rule:

#chartArea {
border : @#emptyBorder;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 151

Styling the Chart Legend

The chartLegend model object type identifies the Chart Legend and can be used to control
its appearance. The following table lists the Bean properties of the IlvLegend class that can
be set in the declarations of a CSS style rule.

TypeBean properties

booleanantiAliasing

booleanantiAliasingText

Borderborder

Colorbackground

booleanfloating

intfloatingLayoutDirection

booleanfollowChartResize

Fontfont

Colorforeground

booleaninteractive

Pointlocation

booleanmovable

booleanpaintingBackground

DimensionsymbolSize

intsymbolTextSpacing

Stringtitle

inttransparency

For example, the following CSS rules show you how to control the text and symbol rendering,
and the interactive docking capability of the chart legend:

chartLegend {
antiAliasing : true;
antiAliasingText : true;
font : 'Arial,plain,10';
symbolSize : "12,12";
movable: true;

}

The CSS ID of the Chart Legend is the same as its CSS model object type. Therefore, the
following CSS rule is equivalent to the rule above. Here, the ID of the chart legend, instead
of its type, is specified as the selector for the rule:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6152

#chartLegend {
antiAliasing : true;
antiAliasingText : true;
font : 'Arial,plain,10';
symbolSize : "12,12";
movable: true;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 153

Styling the chart renderer

The chartRenderer CSS model object type can be used to control the global appearance of
the renderer used by the chart. The Resource Data chart supports a single renderer at index
0. The chartRenderer model object type defines an index attribute with value 0 that allows
you to select the renderer for styling. The default renderer of the chart is an instance of
IlvStairChartRenderer. For example, the following rule changes the mode of the renderer:

chartRenderer[index=0] {
autoTransparency : true;
mode : SUPERIMPOSED;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6154

Styling the chart scales

There are two ways to reference a specific scale in a CSS rule. You can use:

♦ the axisIndex attribute of the chartScale CSS model object type. This index equals -1
for the x-axis, 0 for the y-axis.

♦ the timeScale CSS ID for the x-axis and the yScale CSS ID for the y-axis.

X-axis scale
The default x-axis scale is an instance of the class IlvGanttTimeScale. It can be selected
using the chartScale[axisIndex="-1"] model object type selector or the #timeScale ID
selector. The Bean properties of the class IlvTimeScale that can be set in the declarations
of a CSS style rule are discussed in Styling Gantt and Schedule chart components.

If you replace IlvGanttTimeScale with your own IlvTimeScale subclass, the
CSS will return the properties of your own subclass.

Note:

Y-axis scale
The y-axis scale is an instance of the class IlvScale. It can be selected using the chartScale
[index="0"]model object type selector or the #yScale ID selector. The following table lists
the Bean properties of the IlvScale class that can be set in the declarations of a CSS style
rule.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 155

Allowed valuesTypeProperty

IlvScaleAnnotationannotations

booleanautoCrossing

booleanautoWrapping

StrokeaxisStroke

booleanaxisVisible

booleancategory

doublecrossingValue

intdrawOrder

Colorforeground

LEFT, CENTER, RIGHTintlabelAlignment

ColorlabelColor

FontlabelFont

intlabelOffset

floatlabelRotation

booleanlabelVisible

intmajorTickSize

booleanmajorTickVisible

intminorTickSize

booleanminorTickVisible

CONSTANT_SKIP,ADAPTIVE_SKIPintskipLabelMode

booleanskippingLabel

IlvStepsDefinitionstepsDefinition

TICK_INSIDE,
TICK_OUTSIDE,TICK_CROSS

inttickLayout

Stringtitle

inttitleOffset

inttitlePlacement

floattitleRotation

booleanvisible

I B M ® I L O G ® J V I E W S G A N T T 8 . 6156

Styling the chart grids

There are two ways to reference a specific grid in a CSS rule. You can use:

♦ the axisIndex attribute of the chartGrid CSS model object type. This index equals -1
for the x-axis, 0 for the y-axis.

♦ the xGrid and yGrid CSS IDs.

X-axis grid
The default x-axis grid is an instance of IlvWeekendGrid. It can be selected using the
chartGrid[axisIndex="-1"]model object type selector or the #xGrid ID selector. The Bean
properties of the IlvWeekendGrid class that can be set in the declarations of a CSS style
rule are discussed in Styling Gantt and Schedule chart components.

If you replace IlvWeekendGrid with your own IlvGanttGridRenderer
implementation, the CSS will return the properties of your own subclass.

Note:

Y-axis grid
The y-axis grid is an instance of IlvGrid. It can be selected using the chartGrid[index="0"]
model object type selector or the #yGrid ID selector.

The following table lists the Bean properties of the IlvGrid class that can be set in the
declarations of a CSS style rule:

TypeProperty

intdrawOrder

booleanmajorLineVisible

booleanvisible

booleanminorLineVisible

StrokemajorStroke

PaintmajorPaint

minorPaintminorStroke

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 157

I B M ® I L O G ® J V I E W S G A N T T 8 . 6158

Styling the Resource Data chart data

Explains how to control Resource Data charts rendering using CSS and Java.

In this section

Overview
Describes how each resource in a Resource Data chart is represented and rendered.

Selector patterns
Describes the objects that are defined to reference the Resource Data chart data model.

Attributes of model objects
Describes attributes defined for the series and point model object types.

CSS classes
Describes how properties are used to identify the CSS class an object belongs to.

Properties
Explains the properties you can use to customize the rendering of data series and data
points.

Properties for data series
Describes how to modify the Bean properties of a renderer that displays the corresponding
data set.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 159

Overview

Each resource displayed by the Resource Data chart is represented by a data series that
consists of individual data points. Style sheets can be used to specify the rendering attributes
of the whole data series or single data points. This section explains the expected selector
patterns for the CSS rules, in Selector patterns, and the Bean properties that can be used
in the declarations of these rules, in Attributes of model objects.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6160

Selector patterns

Two CSS model object types are defined to reference the data model of Resource Data
charts:

♦ series: used to match the whole series (represented by IlvResourceDataSet instances
in the data model).

♦ point: used to match individual data points. The point model objects are direct
descendants of the series model objects.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 161

Attributes of model objects

This section presents and discusses the attributes defined for the series and point model
object types.

Series model object type
The following table lists the attributes defined for the series model object type:

DescriptionTypeBean property

The name of the data set, as returned by the getName() method. This
will be the name of the resource that the data set represents.

Stringname

The index of the data setintindex

For example, the following CSS rule sets a gradient fill on the data series for the resource
named "Linus Dane":

series[name="Linus Dane"] {
color1: paleturquoise|darkblue;

}

If the resource represented by the data series implements the IlvUserPropertyHolder
interface, such as the class IlvGeneralResource, the resource properties can be accessed
as additional properties of the data series. Assuming that the ID of the Linus Danes series
from the previous example is "LD", the following CSS rule is equivalent to the previous one:

series[id="LD"] {
color1: paleturquoise|darkblue;

}

Point model object type
The following table lists the attributes defined for the point model object type.

DescriptionTypeBean property

The x-value of the data point, as returned by the getXData(int) method.intx

The y-value of the data point, as returned by the getYData(int) method.inty

The index of the data point in the data set.intindex

The label of the data point, as returned by the getDataLabel(int)
method.

Stringlabel

Here are a few examples of selector patterns that use attribute matching:

// Matches the series representing the resource named "Gill Hopper".
series[name="Gill HopperSales"] { ... }

I B M ® I L O G ® J V I E W S G A N T T 8 . 6162

// Matches all the series, except the first one.
series[index<>"0"] { ... }

// Matches all data points with a y-value greater than 1.
point[y>1]{ ... }

// For the series representing the resource named "Bob Robertson",
// matches the data points whose y-value
// is greater than 1. The '>' transition is used to denote that
// point is a child of series.
series[name="Bob Robertson"] > point[y>1] { ... }

By using model indirection, you can reference the attributes on the right side of a declaration.
Remember that if the resource implements the IlvUserPropertyHolder interface, such as
the IlvGeneralResource class does, the properties of the resource are available as additional
properties of the data series.

For example, suppose that each resource defines an overloadColor attribute. You can then
define the following rule:

// For all data points with a y-value greater than 1, assign a color
// equal to the value of the resource ‘overloadColor’ property.
point[y>1] {
color1: @overloadColor;

}

Note that you can also reference the attributes of a series and its resource within the
declarations of a point model object.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 163

CSS classes

The CSS engine of the Resource Data chart interprets the tags property of an
IlvGeneralResource instance, or of any resource that implements the
IlvUserPropertyHolder interface, as the space-separated list of the CSS classes it belongs
to. For example, if the data model defines a tags value of "Europe" for some of the resources,
you can then specify the following rule that will color all data series that represent resources
which are members of the "Europe" class in a different color:

series.Europe {
color1 : red;

}

This is similar to the way the Gantt and Schedule charts interpret the tags property of
activities that implement the IlvUserPropertyHolder interface. This is discussed in the
IlvGeneralActivity CSS classes.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6164

Properties

Discusses the properties which you can use to customize the rendering of data series and
data points. Properties for the point model objects are also available for series model
objects.

The following table shows the properties for data points.

Default valueTypeName

nulljava.awt.Paintcolor1

nulljava.awt.Paintcolor2

java.awt.BasicStroke.CAP_BUTTint (enumerated)endCap

java.awt.BasicStroke.JOIN_BEVELint (enumerated)lineJoin

nullfloat[]lineStyle

1floatlineWidth

10floatmiterLimit

nulljava.awt.Strokestroke

nullIlvDataAnnotationannotation

truebooleanvisible

Colors
The color1 property corresponds to the primary color and color2 to the secondary color.

The meaning of these colors depends on whether the point is displayed by a filled renderer
(see isFilled()):

♦ For renderers that are filled, the primary color corresponds to the fill color and the
secondary color corresponds to the stroke color.

♦ For renderers that are not filled, the primary color corresponds to the stroke color and
the secondary color is not used. However, it is set as the fill color of the IlvStyle instance
used by the renderer.

Stroke style
The stroke that is used by the graphical representation of a data point can be specified
either:

♦ by setting the stroke property.

You can do this by using an @-construct to reference a java.awt.Stroke instance,

or

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 165

♦ by setting the various line attributes: endCap, lineJoin, lineStyle, lineWidth and
miterLimit.

If the stroke property is set, these properties are ignored.Note:

For example, the following rules are equivalent:

series {
lineWidth: 2;
endCap: CAP_ROUND;
lineJoin: JOIN_ROUND;

}

and:

series {
stroke: @=stroke1;

}

Subobject#stroke1 {
class : 'java.awt.BasicStroke(lineWidth, endCap, lineJoin)';
lineWidth : 2;
endCap : CAP_ROUND;
lineJoin : JOIN_ROUND;

}

Visibility
The visible property allows you to toggle the visibility of data points. For example:

// Hide the series whose resource is "CPU #1".
series[name="CPU #1"] {

visible: false;
}

// For all series, hide the points whose y-value is negative.
point[y < 0] {

visible: false;
}

Annotation
The annotation property lets you connect an instance of IlvDataAnnotation to a data point.
For information on data annotations, see Annotations in Developing with the SDK for JViews
Charts.

The following example shows a rule that associates an icon with a set of data points.

// For the "CPU #1" series, set an icon on the points
// whose y-value is greater than 50.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6166

series[name="CPU #1"] > point[y>50] {
annotation: @=upperAnnotation;

}

Subobject#upperAnnotation {
class: 'ilog.views.chart.graphic.IlvDefaultDataAnnotation(URL, position,

offset)';
URL: url('gif/ok.gif');
position: NORTH;
offset: 2;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 167

Properties for data series

As shown in the previous examples, the seriesmodel object selects data series based upon
attributes of the series or the resource it represents. The Bean properties that are styled
by the series rule can belong to either the data points of the series or to the
IlvChartRenderer instance that displays the series. On top of the data point properties, the
seriesmodel object can be used to modify the Bean properties of the renderer that displays
the corresponding data set. The Resource Data chart default renderer is an instance of
IlvStairChartRenderer. For example, you can define the following rule:

// Specify that the series whose resources have a "hidden" CSS class are not
// displayed by the legend.
series.hidden {
visibleInLegend: false;

}

For information on the available properties, please refer to the documentation of the
IlvChartRenderer class and its subclasses in the Java API Reference Manual.

Properties specified in a rule using the series model object usually override the
settings specified by the chartRenderer model object.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6168

Gantt charts

Explains how to handle rendering and interaction in the Gantt and Schedule charts.

In this section

The architecture of the Gantt charts
Describe the classes behind activity or resource based Gantt charts and how they are
associated.

The Gantt beans
Explains the way in which the Gantt chart bean and Schedule chart bean encapsulate the
Gantt library.

Basic steps for using the Gantt chart and Schedule chart beans
Describes the steps needed to incorporate a chart into the code of your application.

Running the samples
Describes how to run the Gantt chart samples supplied with JViews Gantt.

Using Gantt and Schedule charts
This section describes how to control the appearance of the charts, manipulate rows, and
control scrolling.

Using the Gantt sheet
This section describes how to render data in the Gantt sheet.

Using the time scale
Explains how to compose your time scale by specifying its rows.

© Copyright IBM Corp. 1987, 2009 169

Customizing Gantt charts
Describes the sample applications used in this documentation.

Customizing activity rendering
Explains how to customize the visual representation of one or more activities.

Customizing table columns
Explains how to customize an existing column in the table portion of the Gantt chart or
Schedule chart and also how to define a new type of column and add it to the table.

Interacting with the Gantt charts
Describes the association between classes and interactors, explains how predefined
interactors work and how to use them.

Interacting with the Gantt sheet using the mouse
Explains how to use the mouse to create activity and reservation graphics in a Schedule
chart or constraints in a Gantt chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6170

The architecture of the Gantt charts

Gantt charts can be activity based (IlvGanttChart) or resource based (IlvScheduleChart).
The classes for the different types of Gantt chart are encapsulated by the high level Beans
described in The Gantt beans.

The following figure shows the associations between the classes that represent the different
types of Gantt chart and the other main classes for handling Gantt charts in the JViews Gantt
API.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 171

I B M ® I L O G ® J V I E W S G A N T T 8 . 6172

The Gantt beans

Explains the way in which the Gantt chart bean and Schedule chart bean encapsulate the
Gantt library.

In this section

Overview
Explains the similarities and differences between the high-level Gantt beans.

Structure
Describes the beans used to arrange and coordinate interface components.

Properties
Describes the Gantt bean properties used to control appearance.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 173

Overview

JViews Gantt features two high-level Beans, called Gantt chart bean and Schedule chart
bean. Their API is based on the classes IlvGanttChart and IlvScheduleChart, both
subclasses of IlvHierarchyChart.

The Beans encapsulate the Gantt library. Although the library can be used without the Beans,
you will find it easier to rely on these Beans. Together with the IlvGanttModel interface,
the two Beans make up the main classes for handling Gantt and Schedule charts in the
JViews Gantt API.

Both chart Beans have a similar architecture and have many properties and attributes in
common.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6174

Structure

The full Gantt library allows you to arrange user interface components, such as tables, trees,
time scales, and Gantt sheets in almost any layout to display the Gantt data. The coordination
of the user interface components is handled by the IlvGanttConfiguration class (ilog.
views.gantt package). The Beans can be described as a predefined combination of a
configuration (IlvGanttConfiguration), a table (IlvJTable), a Gantt sheet (
IlvGanttSheet), and a time scale (IlvTimeScale) as shown in the following table.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 175

Properties

Gantt Beans have several properties that control their appearance, such as font, background
and foreground color, and hiding or showing the table. The data model is attached to the
Beans through the setGanttModel(ilog.views.gantt.IlvGanttModel) method, inherited
by IlvGanttChart and IlvScheduleChart from their base class IlvHierarchyChart (ilog.
views.gantt package).

More detailed properties, such as column width or column order, can be handled through
the API of the table itself. To do so, you can retrieve a reference to the table through the
getTable() method, inherited from the base class IlvHierarchyChart.

The object returned by this method is an instance of the class IlvJTable, which is a subclass
of the standard Swing class JTable. Therefore, any customization allowed on a JTable object
is also possible on IlvJTable objects.

Similarly, detailed properties of the Gantt sheet, such as the visual aspect of the vertical
and horizontal grids, can be manipulated through the API of the sheet itself. You can retrieve
a reference to the sheet through the getGanttSheet() method of the Bean, also inherited
from the base class IlvHierarchyChart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6176

Basic steps for using the Gantt chart and Schedule chart beans

The Gantt chart and Schedule chart beans provide two different views of a Gantt data model.

The basic steps needed to incorporate either chart into the code of your application
are very similar:

1. Stage 1 – Importing the Gantt chart packages: Import the necessary Gantt packages.

2. Stage 2 – Creating the Gantt data model: Create a Gantt data model object by
instantiating the interface IlvGanttModel and fill it with activities, constraints,
resources, and reservations.

3. Stage 3 – Creating the Gantt chart bean instance: Instantiate a Gantt chart bean from
the IlvGanttChart class or a Schedule chart bean from the IlvScheduleChart class.

4. Stage 4 – Binding the Gantt chart to the data model: Attach the data model to the
chart instance.

5. Stage 5 – Customizing the chart: Customize the default settings and appearance of
the chart, if necessary.

6. Stage 6 – Adding the Gantt chart to the user interface: Add the chart instance to the
user interface of your application or applet.

Two basic sample Java™ applications are provided to illustrate these steps. The first example
demonstrates how to use the activity-oriented Gantt chart:

<installdir>/jviews-gantt86/samples/ganttChart/src/ganttChart/GanttExample.java

The second example demonstrates how to use the resource-oriented Schedule chart:

<installdir>/jviews-gantt86/samples/scheduleChart/src/scheduleChart/
ScheduleExample.java.

Running the samples describes the common steps that are necessary to compile and run
both applications and provides the sample code. You can use either of these applications as
a starting point for your own work with JViews Gantt. In fact, these basic chart applications
are used as the basis for many of the other examples supplied with JViews Gantt.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 177

I B M ® I L O G ® J V I E W S G A N T T 8 . 6178

Running the samples

Describes how to run the Gantt chart samples supplied with JViews Gantt.

In this section

Gantt chart
Describes how to construct and display a chart and run the samples.

Running the sample as an application
Describes how to run the sample as an application.

Schedule chart
Outlines the steps necessary to run the sample application.

Deploying a Gantt application
Explains which JAR file contains the JViews Gantt classes.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 179

Gantt chart

The basic steps for using the Gantt chart bean are illustrated in the Activity Chart (SDK)
sample. You can find the corresponding source code in:

<installdir>/jviews-gantt86/samples/ganttChart/src/ganttChart/GanttExample.java

Most of the code in the Gantt chart sample is for handling the menus and status bar for the
application.

The small portion of code necessary to construct and display the chart itself is outlined here:

...
import ilog.views.gantt.*;
import ilog.views.gantt.model.*;
...
public class GanttExample extends JApplet
{
protected IlvGanttChart gantt;
...
public init(Container container)
{
super.init(container);
// Creates the Gantt chart
gantt = new IlvGanttChart();
// Creates the Gantt data model
IlvGanttModel model = createGanttModel();
// Sets the data model of the Gantt chart
gantt.setGanttModel(model);
...
// Add the Gantt chart to the panel
container.add(gantt, BorderLayout.CENTER);
...

}
...
protected IlvGanttModel createGanttModel()
{
IlvGanttModel model = new IlvDefaultGanttModel();
populateGanttModel(model);
return model;
}

protected void populateGanttModel(IlvGanttModel model)
{
... /* Add activities to the data model here */
}
...
// Initialize example when run as an applet.
public void init()
{
init(getContentPane());

}

public static void main (String[] args)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6180

{
JFrame frame = new JFrame("Gantt Chart Example");
GanttExample ganttChart = new GanttExample();
ganttChart.init(frame.getContentPane());

// Exit when the main frame is closed.
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
frame.addWindowListener(new WindowAdapter()
{
public void windowClosed(WindowEvent e)
{
System.exit(0);

}
});

// Pack the main frame and make it visible.
frame.pack();
frame.setVisible(true);

}
...

}

To run the samples:

1. Make sure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt:

2. Go to the directory where the sample is installed and type:

ant run

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 181

Running the sample as an application

To run the sample as an application, do the following:

♦ Stage 1 – Importing the Gantt chart packages

♦ Stage 2 – Creating the Gantt data model

♦ Stage 3 – Creating the Gantt chart bean instance

♦ Stage 4 – Binding the Gantt chart to the data model

♦ Stage 5 – Customizing the chart

♦ Stage 6 – Adding the Gantt chart to the user interface

Stage 1 – Importing the Gantt chart packages
To import the Gantt chart packages:

1. In <installdir>/jviews-gantt86/samples/ganttChart/src/ganttChart/
GanttExample.java, import the packages that are common to all the Gantt samples:

import shared.*;
import shared.data.*;
import shared.swing.*;

2. Import the necessary Gantt chart packages:

import ilog.views.gantt.*;
import ilog.views.gantt.action.*;
import ilog.views.gantt.model.*;
import ilog.views.gantt.property.*;
import ilog.views.gantt.swing.*;

3. Import the various Swing and AWT packages necessary to build the rest of the user
interface of the samples:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Both the Gantt chart sample and the Schedule chart sample derive from a common superclass,
AbstractGanttExample, that is itself a subclass of AbstractExample. These classes contain
the code that is shared between all the Gantt samples. Because the samples is written so
that it can be run both as an applet or as an application, AbstractExample extends the Swing
class JApplet and GanttExample provides a static mainmethod to launch the frame window:

public class GanttExample extends AbstractGanttExample
{
...
public static void main(String[] args)
{
GanttExample ganttChart = new GanttExample();

I B M ® I L O G ® J V I E W S G A N T T 8 . 6182

JFrame frame = new ExampleFrame(ganttChart);
frame.setVisible(true);

}
...

}

Stage 2 – Creating the Gantt data model
The data model should contain resources and reservations that will be displayed by the
Gantt chart. Refer to the Connecting to data for detailed information on how to instantiate
different Gantt data model implementations and connect to your business data.

To add resources and reservations to the data model:

1. Create a Gantt data model that implements the IlvGanttModel interface.

IlvGanttModel model = ...

2. The Gantt chart and Schedule chart samples use an in-memory data model that is
created by the following classes:

♦ <installdir>/jviews-gantt86/samples/ganttChart/src/shared/data/
SimpleEngineeringProject.java

♦ <installdir>/jviews-gantt86/samples/scheduleChart/src/shared/data/
SimpleEngineeringProject.java

3. The SimpleEngineeringProject class implements a Gantt data model that simulates
the scheduling of a typical engineering project. The Gantt chart sample instantiates
the data model like this:

IlvGanttModel model = createGanttModel();
...
protected IlvGanttModel createGanttModel() {
return new SimpleEngineeringProject(chart);

}

Stage 3 – Creating the Gantt chart bean instance
Create an instance of the Gantt chart bean:

♦ Implement the createChart method using the following code.

protected IlvHierarchyChart createChart()
{
return new IlvGanttChart();

}

Stage 4 – Binding the Gantt chart to the data model
Bind the Gantt chart bean to the data model to enables the chart to display the
contents of the data model:

♦ Add the following code to your application:

chart.setGanttModel(model);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 183

Stage 5 – Customizing the chart
The chart is customized in the customizeChart method.

The <installdir>/jviews-gantt86/samples/ganttChart/src/ganttChart/
GanttExample.java file shows the following basic customizations:

♦ Several activities are expanded so that all their child activities are initially visible. For
example:

chart.expandAllRows(anActivity);

♦ The width of the table columns are increased. For example:

chart.getTable().getColumn("Name").setPreferredWidth(180);

♦ The time interval initially displayed by the chart is set:

chart.setVisibleTime(aDate);
chart.setVisibleDuration(new IlvDuration(...));

♦ Animation of zoom-in and zoom-out is enabled:

chart.setVisibleIntervalAnimationSteps(4);

It is easy to perform other customizations of the chart also.

For example:

1. Change the default height of the displayed rows:

chart.setRowHeight(25);

2. Change the font used to label the horizontal time scale:

chart.setTimeScaleFont(new Font(...));

Stage 6 – Adding the Gantt chart to the user interface
The Gantt chart must now be displayed:

♦ Add it to the center of the container panel provided as the argument to the init
method, which is set to have a BorderLayout attribute:

container.add(gantt, BorderLayout.CENTER);

The container panel will be the contentPane of the JApplet object when the sample is run
as an applet or it will be the contentPane of the frame when the sample is run as an
application.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6184

Schedule chart

The basic steps for using the Schedule chart bean are shown in the Resource Chart (SDK)
sample. They are almost exactly the same as those for the Gantt chart bean, described in
Gantt chart. You can find the corresponding source code in:

<installdir>/jviews-gantt86/samples/scheduleChart/src/scheduleChart/
ScheduleExample.java

To run the sample as an application:

1. Make sure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt:

2. Go to the directory where the sample is installed and type:

ant run

The Schedule chart sample is almost identical to the Gantt chart sample. The main difference
is that an IlvScheduleChart object is created instead of an IlvGanttChart object. Here
are the key lines of code that are different in the Schedule chart sample:

...
public class ScheduleExample extends AbstractExample
{
...
protected IlvHierarchyChart createChart()
{
return new IlvScheduleChart();

}
...
public static void main(String[] args)
{
ScheduleExample scheduleChart = new ScheduleExample();
JFrame frame = new ExampleFrame(scheduleChart);
frame.setVisible(true);

}

...
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 185

Deploying a Gantt application

The classes for JViews Gantt are located in the JAR file:

<installdir>/jviews-gantt86/lib/jviews-gantt-all.jar.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6186

Using Gantt and Schedule charts

This section describes how to control the appearance of the charts, manipulate rows, and
control scrolling.

In this section

Chart visual properties
Elaborates the properties available to control the appearance of Gantt and Schedule chart
beans.

Expanding or collapsing and hiding or showing rows
Explains how activities and resources are displayed in a Gantt chart.

Controlling row structure and visibility
Annotates the methods use to control rows in a chart.

Scrolling in the Gantt sheet
Describes how to control horizontal and vertical scrolling in the Gantt sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 187

Chart visual properties

The Gantt and Schedule chart beans have many properties that control their appearance.
For example, to change the font used in the column headers of the table, you can use:

myChart.setTableHeaderFont(new Font(...));

If you want to change the foreground color of the horizontal time scale to blue you can use:

myChart.setTimeScaleForeground(Color.blue);

The following table shows the IlvHierarchyChartmethods that control the visual properties
of the charts.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6188

MethodsProperty

Color getTableBackground()Background color

void setTableBackground(Color color)

Color getTableHeaderBackground()

void setTableHeaderBackground(Color color)

Color getGanttSheetBackground()

void setGanttSheetBackground(Color color)

Color getTimeScaleBackground()

void setTimeScaleBackground(Color color)

Font getTableFont()Fonts

void setTableFont(Font font)

Font getTableHeaderFont()

void setTableHeaderFont(Font font)

Font getTimeScaleFont()

void setTimeScaleFont(Font font)

Color getTableForeground()Foreground color

void setTableForeground(Color color)

Color getTableHeaderForeground()

void setTableHeaderForeground(Color color)

Color getTimeScaleForeground()

void setTimeScaleForeground(Color color)

Color getTableGridColor()Table grid

void setTableGridColor(Color color)

int getRowHeight()Row height

void setRowHeight(int rowHeight)

int getDividerLocation()Divider

void setDividerLocation(int location)

int getDividerSize()

void setDividerSize(int size)

boolean isDividerOpaqueMove()

void setDividerOpaqueMove(boolean opaqueMove

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 189

Expanding or collapsing and hiding or showing rows

For the rest of this discussion, an activity in an IlvGanttChart or a resource in an
IlvScheduleChart is referred to as a data node. This convention allows the common behavior
of both charts to be described in a concise manner.

The following terms describe the visibility of data nodes and the rows they are displayed
on:

♦ An expanded data node is one that is visible and shows its child nodes, making them
visible also.

♦ A collapsed data node is one that hides its child nodes. A collapsed node may or may not
be visible, depending on whether its parent node itself is expanded or not. If a data node
has no child nodes, its expanded or collapsed status is undefined.

♦ A visible data node is a child of an expanded parent. It is represented by a row, but the
user will see that row only if the display area is large enough.

♦ A displayed data node is one that is both visible—that is, its parent node is expanded—and
currently within the display area, where it can be seen.

♦ A hidden data node is the opposite of visible. It is a child of a collapsed parent and is not
represented by a row.

Scrolling through a window changes the display status of a row, not its visibility
status.

Note:

The following figure shows the expanded/collapsed and visible/display statuses.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6190

Controlling row structure and visibility

You can use the IlvHierarchyChart methods listed in the following table to access and
control the expand, collapse, and visibility status of the rows in a chart.

IlvHierarchyNode is the abstract superclass of both activities and resources.Note:

The value used by the API will be an activity for an IlvGanttChart and a resource for an
IlvScheduleChart.

The following table shows the methods to control the collapse, expand, and visibility status.

MethodsProperty

IlvHierarchyNode getRootRow()

boolean isRowExpanded(IlvHierarchyNode row)Expand/Collapse

void expandRow(IlvHierarchyNode row)

void expandAllRows()

void expandAllRows(IlvHierarchyNode row)

void collapseRow(IlvHierarchyNode row)

int getVisibleRowCount()Visibility

int getVisibleRowIndex(IlvHierarchyNode row)

IlvHierarchyNode getVisibleRow(int rowIndex)

boolean isRowVisible(IlvHierarchyNode row)

Iterator visibleRowsIterator(IlvHierarchyNode rootRow)

void makeRowVisible(IlvHierarchyNode row)

Rectangle getVisibleRowBounds(int row)

Rectangle getVisibleRowBounds(IlvHierarchyNode row)

int getVisibleRowIndexAtPosition(int position)

IlvHierarchyNode getVisibleRowAtPosition(int position)

int getDisplayedRowIndexAtPosition(int position)Displayed

IlvHierarchyNode getDisplayedRowAtPosition(int position)

void makeRowDisplayed(IlvHierarchyNode row)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 191

Scrolling in the Gantt sheet

Describes how to control horizontal and vertical scrolling in the Gantt sheet.

Horizontal scrolling
The time interval displayed by the Gantt sheet and the time scale above it can be modified
by using the following methods:

♦ Date getVisibleTime()

♦ void setVisibleTime(Date time)

♦ IlvDuration getVisibleDuration()

♦ void setVisibleDuration(IlvDuration duration)

♦ IlvTimeInterval getVisibleInterval()

♦ void setVisibleInterval(Date time, IlvDuration duration)

♦ Date getMinVisibleTime()

♦ void setMinVisibleTime(Date min)

♦ Date getMaxVisibleTime()

♦ void setMaxVisibleTime(Date max)

The time interval displayed by the Gantt sheet and the time scale above it can be modified
by using the following methods:

For example, you can scroll a chart horizontally to the beginning of an activity:

IlvActivity activity = ...
Date startTime = activity.getStartTime();
myChart.setVisibleTime(startTime);

In the Gantt and Schedule charts, a horizontal scroll bar is displayed below the Gantt sheet.
By default, the scroll bar is visible.

You can change this by using the following methods of the class IlvHierarchyChart:

♦ boolean isHorizontalScrollBarVisible()

♦ void setHorizontalScrollBarVisible(boolean visible)

The horizontal scroll bar has two operating modes:

♦ In the default unbounded mode, there is no upper or lower limit to the scrolling. This is
indicated by the getMinVisibleTime() and getMaxVisibleTime() methods returning
null. The user can use the scroll bar to move forward or backwards in time without limit.
However, the scroll bar slider remains in the center of the scroll bar and retains a fixed
size.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6192

♦ The bounded mode is enabled when the methods setMinVisibleTime(java.util.Date)
and setMaxVisibleTime(java.util.Date) have been called with non-null values. In this
mode, the scroll bar is limited to the specified time interval and the slider size and position
is proportional to the displayed time span.

Vertical scrolling
Vertical scrolling of the Gantt and Schedule charts can be performed using the vertical scroll
bar on the right side of the Gantt sheet. By default, this scroll bar is visible only when it is
needed.

You can use the following methods to change this behavior:

♦ int getVerticalScrollBarPolicy()

♦ void setVerticalScrollBarPolicy(int policy)

The class IlvHierarchyChart has three static constants that define the supported scroll
bar policies:

♦ IlvHierarchyChart.VERTICAL_SCROLLBAR_AS_NEEDED

♦ IlvHierarchyChart.VERTICAL_SCROLLBAR_NEVER

♦ IlvHierarchyChart.VERTICAL_SCROLLBAR_ALWAYS

For example, if you want the vertical scroll bar to be always visible, you can write:

myChart.setVerticalScrollBarPolicy(myChart.VERTICAL_SCROLLBAR_ALWAYS);

You can use the following methods to scroll the chart vertically:

♦ int getMaxVerticalPosition()

♦ int getVerticalPosition()

♦ void setVerticalPosition(int position)

♦ int getVerticalExtent()

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 193

I B M ® I L O G ® J V I E W S G A N T T 8 . 6194

Using the Gantt sheet

This section describes how to render data in the Gantt sheet.

In this section

Gantt sheet architecture
Explains the purpose and structure of the Gantt sheet component.

Rendering the data in the Gantt sheet
Describes how to render dates in Activity and Resource Gantt sheets.

Time indicators
Describes the stages you must follow to highlight a specific time in a Gantt sheet.

Activity layouts
Describes the properties of the different layout types.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 195

Gantt sheet architecture

The right part of a Gantt chart or Schedule chart is a graphic component called the Gantt
sheet, which is an instance of the class IlvGanttSheet. It is designed both for the graphical
display of the Gantt data in a Gantt data model and as an interactive interface that allows
end users to manipulate the Gantt data by means of interactors implemented for this purpose.

The Gantt sheet is a user interface component designed for two main purposes:

♦ To display the data of a given Gantt data model graphically, namely:

● Activities and constraints in a Gantt chart

● Reservations in a Schedule chart

♦ To let end users interact with the current instance of the IlvGanttModel interface by
means of a number of interactors developed for this purpose.

The following figure shows the Gantt sheet in a Gantt chart.

Gantt rows
A Gantt sheet consists of several rows, which are instances of the IlvGanttRow class.

Rows have the following properties:

♦ They can be enumerated by a call to one of the methods getGanttRowCount() or
ganttRowIterator() of the IlvGanttSheet class.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6196

♦ They can be visible or hidden. When some rows are hidden, you can use the methods
getVisibleGanttRowCount() and getVisibleGanttRowAt(int) to enumerate the visible
ones.

♦ A Gantt row contains one or more activity graphics to represent activities.

The following figure shows the Gantt sheet in a Schedule chart.

Activity graphics
Activity graphics are instances of the class IlvActivityGraphic. They are designed to
represent the associated activity, which can be accessed by calling the method getActivity
(). An activity graphic is drawn as the result of a call to an activity renderer. (See the Activity
renderers section.) The activity renderer defined for an activity graphic can be accessed or
changed by the getActivityRenderer() and setActivityRenderer(ilog.views.gantt.
graphic.renderer.IlvActivityRenderer) methods of the IlvActivityGraphic class.

Activity renderers
Activity renderers are objects that implement the IlvActivityRenderer interface to render
activities. These objects work in association with the IlvActivityGraphic class; when an
activity graphic needs to be drawn, the draw(java.awt.Graphics, ilog.views.gantt.
graphic.IlvActivityGraphic, ilog.views.IlvTransformer) method of the
IlvActivityRenderer interface is called.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 197

Rendering the data in the Gantt sheet

The data of a given Gantt data model is rendered differently depending on whether the Gantt
sheet is in a Gantt chart or in a Schedule chart.

This section therefore distinguishes:

♦ Activity Gantt sheet

♦ Resource Gantt sheet

Activity Gantt sheet
In a Gantt chart, a Gantt row is configured to display only one activity. In other words, there
cannot be more than one activity graphic in a Gantt row and the activity graphic cannot be
moved to another row.

In a Gantt chart, the Gantt sheet is also configured to show constraints (instances of the
interface IlvConstraint) by default. See Constraints for details.

In a Gantt data model, two activities can be linked by a constraint. In the Gantt sheet,
constraints are represented by instances of the class IlvConstraintGraphic.

For a given constraint graphic, the associated IlvConstraint object can be obtained by
calling the method getConstraint(). If one or both of the two activity graphics are not
visible, the constraint graphic will not be visible either.

The following figure shows a Gantt sheet in a Gantt chart.

Resource Gantt sheet
In a Schedule chart, the Gantt sheet shows how each resource listed on the left has been
scheduled. In other words, the Gantt rows in a Schedule chart display resource reservations.
Because a resource can be reserved for more than one activity on a given time span, there
can be more than one reservation on one row.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6198

The following figure shows a Gantt Sheet in a Schedule chart.

Reservation graphics are instances of the class IlvReservationGraphic. They are designed
to render the reservation of resources, which are instances of the interface IlvReservation.
The class IlvReservationGraphic is a subclass of the class IlvActivityGraphic. For a
given reservation graphic, the associated IlvReservation object can be accessed by calling
the method getReservation().

In the general case, one activity may reserve several resources and appear as several
reservation graphics in the Schedule chart. For this reason, constraints between activities
are not displayed by default in the Schedule chart. If each activity reserves at most one
resource, constraint links can be displayed in the Schedule chart by calling the
setDisplayingConstraints(boolean) method.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 199

Time indicators

Time indicators let you highlight a specific time, such as the current time, over the grids in
your Gantt sheet. Time indicators can be rendered by any kind of graphics, but the default
graphic is a red line. Time indicators are drawn in a specific layer of the Gantt sheet.

This section refers to the followingHighlighting a specific time in the Gantt sheet code
example. You can find the source code for this example in:

<installdir>/jviews-gantt86/codefragments/application/timeIndicator/src/
TimeIndicator.java

To add a time indicator to a Gantt sheet you need to:

1. Define your own renderer, if the default renderer is not suitable.

See Defining your renderer.

2. Instantiate a subclass of IlvTimeIndicator.

See Creating a time indicator.

3. Customize the time indicator.

See Customizing a time indicator.

4. Add the time indicator to the Gantt sheet.

See Adding a time indicator to the Gantt sheet.

You can also control the visibility of time indicators through the specific layer on which they
are placed.

Defining your renderer
A time indicator is rendered by an instance of a subclass of IlvGraphic. The default renderer
is an instance of IlvLine with color red and width of 2.

To customize your renderer, do one of the following:

1. Customize the default renderer using the following code:

Customizing the default renderer
//Add the current time indicator. Customize it with some dashes , a width,
and
//a color.
IlvLine line = new IlvLine(0, 0, 0, 100);
line.setLineWidth(6);
float[] lineStyle = {10.0f, 15.0f};
line.setLineStyle(lineStyle);

2. Define new renderers, such as IlvGeneralPath, to get a more attractive appearance.

Customizing a renderer with IlvGeneralPath
//Add a fixed time indicatorat 12 weeks from today with a customized
renderer,
//using an IlvGeneralPath with some gradient paint.
IlvGeneralPath path = new IlvGeneralPath();

I B M ® I L O G ® J V I E W S G A N T T 8 . 6200

Color fillColor = new Color(20, 50, 225);
Color highlight = fillColor;
for (int i = 1; i <= 5; i++) {
highlight = highlight.brighter();

}
Color shadow = fillColor;
for (int i = 1; i <= 2; i++) {
shadow = shadow.darker();

}
Color[] colors = {fillColor, highlight, shadow};
float[] stops = {0, 0.25f, 1};
Point2D start = new Point2D.Float(0, 0);
Point2D end = new Point2D.Float(4, 1);
Paint fillPaint = new IlvLinearGradientPaint(start, end, stops, colors,
true);
path.setFillPaint(fillPaint);

The following figure shows a selection of time indicators obtained by running the example.

Creating a time indicator
A time indicator uses an instance of IlvGraphic to represent a specific time on the Gantt
sheet.

The following classes are provided as subclasses of IlvTimeIndicator:

♦ IlvFixedTimeIndicator for representing a specific time.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 201

♦ IlvCurrentTimeIndicator for representing the current time. A timer is used to update
the Gantt sheet as time passes.

To create customized time indicators do one of the following:

1. Create a default time indicator at a specific time.

Creating a Default Time Indicator at a Specific Time
//Create a default fixed time indicator at 6 weeks from today.
//It will create a red line.
//The description "A time indicator" is given (and will be shown as a
tooltip)
Date now = new Date();
Date time = IlvTimeUtil.add(now, IlvDuration.ONE_WEEK.multiply(6));
IlvFixedTimeIndicator timeIndicator =

new IlvFixedTimeIndicator(time, "A time indicator");

2. Create a time indicator at a specific time with a new renderer, such as an
IlvGeneralPath.

Creating a time indicator at a specific time with a new renderer
IlvGeneralPath path = new IlvGeneralPath();
...
IlvFixedTimeIndicator timeIndicator = new IlvFixedTimeIndicator(time,
path,

"A second time indicator");

3. Create a time indicator of the current time, for example, with a customized renderer.

Creating an indicator of the current time with a customized renderer
IlvCurrentTimeIndicator currentTimeIndicator =

new IlvCurrentTimeIndicator(line);

Current time indicators have a default description that can be overridden.

Customizing a time indicator
The following table shows the properties of the time indicator that can be customized.

DescriptionProperty

Type java.util.date for the time that this time indicator represents.time

You cannot set the time for IlvCurrentTimeIndicator, since it is calculated
automatically.

The maximum width of the renderer. The default value is 2.maxWidth

The alpha value of the layer that holds the graphic object. The default value is 0.5F.alpha

The text displayed as a tool tip. The default text is the description of the time indicator. A
null value disables the tool tip.

toolTipText

When you instantiate your own renderer, there is a lot of scope for customizing the rendering
of the time indicator. It can also be customized later. Alternatively, you can customize the
default renderer.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6202

Customization is achieved through the following properties applied to the underlying graphics:

♦ foreground

♦ fillOn

♦ background

♦ strokeOn

Setting these properties on some subclasses of IlvGraphic has no effect.Note:

You can also control the refresh frequency of IlvCurrentTimeIndicator.

To set the maxWidth, strokeOn, and foreground properties.

♦ Add the following code to your application:

Setting time indicator properties
timeIndicator = new IlvFixedTimeIndicator(time, spline, "A fourth time

indicator");
timeIndicator.setMaxWidth(15);
timeIndicator.setStrokeOn(true);
timeIndicator.setForeground(Color.cyan);

Adding a time indicator to the Gantt sheet
You can add a time indicator to the Gantt sheet in the following way:

sheet.addTimeIndicator (timeIndicator);

Other methods of IlvGanttSheet allow you to have some control of time indicators or to
manipulate them.

For example:

♦ setTimeIndicatorLayerVisible(boolean) to change the visibility of time indicators.

♦ Collection getTimeIndicators() to obtain all the time indicators.

♦ IlvTimeIndicator getTimeIndicator(java.util.Date) to obtain the time indicator of a
specific time or the current time indicator if a null date is passed.

♦ replaceTimeIndicator(ilog.views.gantt.graphic.IlvTimeIndicator, ilog.views.
gantt.graphic.IlvTimeIndicator, boolean) to change the time indicator.

The action IlvScrollToTimeIndicatorAction is provided to allow you to scroll easily to
additional time indicators.

To instantiate this action:

♦ Add the following code to your application:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 203

Instantiating IlvScrollToTimeIndicator action
scrollToTimeIndicatorAction = new IlvScrollToTimeIndicatorAction(

sheet, timeIndicator, name, icon,
accelerator, shortDescription,
longDescription);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6204

Activity layouts

A Gantt row in a Schedule chart is configured to render one or more resource reservations
corresponding to one or more activities. If the default layout is enabled and the same resource
is reserved for more than one activity, the multiple reservation graphics may overlap on the
corresponding row. To avoid this and ensure a neat arrangement of the reservation graphics,
an IlvActivityLayout object is used by an IlvGanttRow to compute the positions and
z-order of its activity graphics.

The following activity layout implementations are provided:

♦ Simple layout

♦ Pretty layout

♦ Tile layout

♦ Cascade layout

You can also create your own custom implementation of the IlvActivityLayout interface
or subclass one of the provided implementations.

Use the following methods of IlvScheduleChart to access the activity layout of the chart:

♦ IlvActivityLayout getActivityLayout()

♦ void setActivityLayout(IlvActivityLayout layout)

Simple layout
All activity graphics on a given Gantt row have the same y position. They are all aligned on
the top of the Gantt row and have the same height. The layout does not change the stacking
order of the activity graphics (z axis). See IlvActivitySimpleLayout.

Pretty layout
The following figure shows the result of the Pretty layout option (see the fourth row, for
example). The overlapping reservation graphics are arranged with a slight vertical offset.
Also, the reservation graphics are stacked so that the higher one (the one that has the greater
y position) is displayed behind the lower one and both reservation graphics are visible. See
IlvActivityLogisticLayout.

The following figure shows reservation graphics in pretty layout.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 205

Cascade layout
The Cascade layout is similar to the Pretty layout except that it does not change the stacking
order (z axis) of the activity graphics. See IlvActivityLogisticLayout.

Tile layout
The following figure shows reservation graphics in Tile layout. The height of activity or
reservation graphics does not change when they are displaced.

The Gantt row is divided into subrows, each one accommodating an activity or reservation
graphic. The Gantt row can retain a constant height and the height of the subrows is
determined by dividing this constant height by the number of subrows. Optionally, the row
height can change to accommodate the layout of the graphics and the subrows maintain a
constant height. In this case, attempting to set individual row heights on the chart does not
work, since the layout overrides this behavior. See IlvActivityTileLayout.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6206

Using the time scale

Explains how to compose your time scale by specifying its rows.

In this section

Changing the rows of a time scale
Explains how to customize time scale rows,

Visibility policy
Explains how to control row visibility for an IlvTimeScale.

Controlling row visibility
Describes the classes and interfaces provided to control row visibility and explains how to
customize row visibility.

Nonlinear time scale
Explains how to emphasize specific time periods by granting them greater screen width
than others.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 207

Changing the rows of a time scale

A time scale (class IlvTimeScale) is composed of rows (class IlvTimeScaleRow). You can
compose your time scale by specifying its rows. The Gantt or Schedule chart has a predefined
time scale (class IlvGanttTimeScale) that has two visible rows and which adjusts the row
contents according to the zoom level.

To customize time scale rows, you need to:

1. Create some new time scale rows.

2. Set these rows on the time scale.

The following sections are based on the Relative Time Scale sample found in:

<installdir>/jviews-gantt86/samples/relativeTimeScale.

This sample demonstrates the capability of the time scale component, by customizing the
time scale rows. The time scale rows are numbered relative to a reference date.

In the sample, two new rows are created, the new week and day rows. They are numbered
starting from a reference date, rather than from the absolute date (which is the default
numbering).

To create new rows:

1. Use the relative week row implementation is based on the IlvWeekTimeScaleRow class.
It can be found in

<installdir>/jviews-gantt86/samples/relativeTimeScale/src/
relativeTimeScale/IlvRelativeWeekTimeScaleRow.java

2. Use the relative day row implementation is based on the IlvDayTimeScaleRow class.
It are found in:

<installdir>/jviews-gantt86/samples/relativeTimeScale/src/
relativeTimeScale/IlvRelativeDayTimeScaleRow.java

The code for setting these rows are found in:

<installdir>/jviews-gantt86/samples/relativeTimeScale/src/relativeTimeScale/
GanttChart.java

To set these rows:

1. Create a time scale and the relative time scale rows:

IlvTimeScale timescale = new IlvTimeScale();
weekRow = new IlvRelativeWeekTimeScaleRow();
dayRow = new IlvRelativeDayTimeScaleRow();

2. Set the relative time scale reference date. In the example, it is set to be the closest
hour:

Calendar calendar = Calendar.getInstance();
IlvCalendarUtil.dayFloor(calendar);
referenceDate = calendar.getTime();

I B M ® I L O G ® J V I E W S G A N T T 8 . 6208

weekRow.setReferenceDate(referenceDate);
dayRow.setReferenceDate(referenceDate);

3. Add the rows to the time scale, and set the time scale on the Gantt chart.

timescale.addRow(weekRow);
timescale.addRow(dayRow);
chart.setTimeScale(timescale);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 209

Visibility policy

To control which rows are visible, the concept of visibility policy has been introduced on the
Gantt time scale.

The IlvTimeScaleVisibilityPolicy is an interface which lets you adjust the visible rows
for the specified time scale through the adjustRows(java.awt.Graphics, ilog.views.
gantt.scale.IlvTimeScale.PaintContext) method.

When you set a visibility policy on a time scale through the setVisibilityPolicy(ilog.
views.gantt.scale.IlvTimeScaleVisibilityPolicy) method, the time scale will ask the
visibility policy to determine which rows are visible when the time scale visible time interval
changes.

The visibility policy dictates that:

♦ If the policy is set to null, which is the default value, the visibility of the rows is based on
their visible property.

♦ If the policy is not null, the visibility of the rows is adjusted by calling the adjustRows
(java.awt.Graphics, ilog.views.gantt.scale.IlvTimeScale.PaintContext)method.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6210

Controlling row visibility

To enable control of row visibility, the following classes and interfaces are provided:

♦ The class IlvBasicTimeScaleVisibilityPolicy implements a default visibility policy
for IlvTimeScale. This policy determines which rows are visible when the time scale is
resized, based on some visibility predicates applied to the paint context object. This policy
keeps track of each visibility predicate, with its set of visible rows, in a specified order.
When asked to adjust the rows visibility, the first visibility predicate that evaluates to
true is the one used for adjusting the rows.

♦ The IlvVisibilityPredicate interface provides a way to specify a predicate, which
should be evaluated.

♦ The class IlvTimeWidthVisibilityPredicate provides a way to specify a condition based
on the size of a time unit, which can be pixel-based or character-length-based.

♦ The class IlvVisibleTimeScaleRows provides a way to specify a predicate associated to
a list of rows.

The customVisibility code fragment, found in <installdir>/jviews-gantt86/codefragments/
timescale/customVisibility shows how to use these classes for controlling visibility. This
code fragment can also be run as an application.

To customize row visibility:

1. Create the time scale.

IlvTimeScale timescale = new IlvTimeScale();

2. Create the necessary rows and customize them.

// A customized quarter row
IlvQuarterTimeScaleRow quarterRow = new IlvQuarterTimeScaleRow();
quarterRow.setTextColor(Color.white);
quarterRow.setTextFont(new Font("default", Font.PLAIN, 14));
quarterRow.setTextPosition(IlvBasicTimeScaleRow.CENTER);
...

3. Add the rows to the time scale.

timescale.addRow(quarterRow);
...

4. Create the visibility policy.

IlvBasicTimeScaleVisibilityPolicy visibilityPolicy =
new IlvBasicTimeScaleVisibilityPolicy();

5. Create the list of visibility conditions.

Each visibility condition is characterized by a predicate and the list of visible rows
when this predicate is true.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 211

// First visibility condition is to have the 4 rows visible when at
// least 4 characters can be seen for the month.
// Create the predicate
IlvTimeWidthVisibilityPredicate cond1 =

new IlvTimeWidthVisibilityPredicate(
Calendar.DAY_OF_MONTH,
IlvTimeWidthVisibilityPredicate.CHARACTER,
4);

cond1.setFont(new Font("SansSerif", Font.BOLD, 18));
// Create the first visibility condition with the predicate
IlvVisibleTimeScaleRows visCond1 = new IlvVisibleTimeScaleRows(cond1);
// Add the visible rows.
visCond1.addRow(quarterRow);
visCond1.addRow(monthRow);
visCond1.addRow(dayRow);
visCond1.addRow(halfDayRow);
...

6. Add these visibility conditions to the visibility policy.

visibilityPolicy.addVisibleTimeScaleRows(visCond1);

7. Set the visibility on the time scale.

timescale.setVisibilityPolicy(visibilityPolicy);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6212

Nonlinear time scale

In JViews Gantt, the conversion from time to horizontal screen coordinates is performed by
an implementation of the IlvTimeConverter interface. The default implementation,
IlvLinearTimeConverter, performs a linear conversion. This implies that all time units of
equal duration, such as days and hours, will occupy equal width on the screen. However, it
is also possible to define a nonlinear time converter that will emphasize specific time periods
by granting them greater screen width than others.

When a nonlinear time converter is set on a Gantt or Schedule chart, scrolling
performance is reduced compared to using a linear time converter.

Note:

The following table shows the three methods to be implemented in the IlvTimeConverter
interface.

DescriptionMethod

Converts time to IlvManager x-axis coordinatesdouble getUnits(Date time)

Converts IlvManager x-axis coordinates to timeDate getTime(double units)

Indicates whether the time converter is linearboolean isLinear()

The getUnits and getTime methods must implement a complementary and reversible
conversion. In other words, for any Date t:

t.equals(getTime(getUnits(t)))

and for any manager x-coordinate u:

u == getUnits(getTime(u))

Any nonlinear time converter must implement the isLinear method to return false. Use
the source code for the nonlinear WeekTimeConverter class as the starting point for
developing your own custom time converter implementation.

An example implementation of a nonlinear time converter is provided in the Nonlinear Time
Scale sample. This sample emphasizes days during the work week by giving them greater
screen width than days on the weekend.

To view the sample:

1. Open the file:

<installdir>/jviews-gantt86/samples/nonlinearTimeScale

2. Follow the instructions to run the Nonlinear Time Scale Example.

The source code of this example is found in:

<installdir>/jviews-gantt86/samples/nonlinearTimeScale/src/
nonlinearTimeScale/NonLinearTimeScaleExample.java

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 213

To create a nonlinear time scale:

1. Create a nonlinear time converter instance:

IlvTimeConverter converter = new WeekTimeConverter();

2. Set the nonlinear time converter on the Gantt or Schedule chart:

chart.setTimeConverter(converter);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6214

Customizing Gantt charts

Describes the sample applications used in this documentation.

In this section

Customization examples
Describes the sample applications on which this documentation is based.

Running the Custom Gantt example
Explains how to run the Custom Gantt example.

Customization overview
Describes the customizations possible using the API.

Customizing the Gantt data model
Explains how to add a user-defined priority property to each activity in the Custom Gantt
chart example and then how to create all activity instances with a default priority value by
using a factory.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 215

Customization examples

The information in this section is based on the Custom Gantt Chart example.

The Rendering a Custom Data Model example is supplied with JViews Gantt to illustrate
several advanced customization techniques that can be applied to the charts. TheRendering
a Custom Data Model example application extends the Activity Chart (SDK) example.
This application file simplifies the source code so that it only contains the customizations
that override the default behavior of the Gantt chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6216

Running the Custom Gantt example

The source code file of the Custom Gantt example application is named
CustomGanttExample.java and can be found here:

<installdir>/jviews-gantt86/samples/customData/src/customData/
CustomGanttExample.java

To run the example as an application:

1. Make sure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt:

2. Go to the directory where the example is installed and type:

ant run

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 217

Customization overview

The following figure shows what the application looks like when the Custom Gantt example
is launched.

This example illustrates several techniques that you can use to customize the Gantt and
Schedule charts for your own application needs.

The following customizations are discussed in subsequent sections:

♦ A numerical user-defined priority property has been added to each activity in the Gantt
data model. See Customizing the Gantt data model.

♦ Each leaf activity is rendered with a customized graphic, which represents the activity
priority as a horizontal yellow bar. See Customizing activity rendering.

♦ Each parent activity is displayed in the tree column with a custom icon that depends on
whether the activity is expanded or collapsed. See Customizing table columns.

♦ A column has been added to the table to display the priority level of each activity. Column
rendering has been customized so that priority levels are displayed in different colors
depending on their value. A slider has been substituted for the default text field mechanism
for editing the priority values. See Customizing table columns.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6218

Customizing the Gantt data model

In this section, you learn how to add a user-defined priority property to each activity in the
Custom Gantt chart example and then how to create all activity instances with a default
priority value by using a factory. You can apply the concepts set out through the tutorial to
add your own properties to activities, resources, constraints, or reservations.

Defining your own priority property
The SimpleEngineeringProject class implements the data model for this sample. It can be
found at:

<installdir>/jviews-gantt86/samples/customData/src/shared/data/
SimpleEngineeringProject.java

This class populates the data model with activities, resources, constraints, and reservations
that are created by the data factories of the chart. Because the default data factories of
IlvHierarchyChart IlvHierarchyChart create "general" data objects, the
SimpleEngineeringProject data model is populated with instances of IlvGeneralActivity,
IlvGeneralResource, IlvGeneralConstraint, and IlvGeneralReservation.

To define your own priority property:

1. Add a numerical priority property to any activity in the data model by simply using
code like this:

IlvGeneralActivity activity = ...
activity.setProperty("priority", new Integer(5));

2. Encapsulate this behavior in the static utility methods of the class PriorityProperty:

public static final String PRIORITY_PROPERTY = "priority";
public static final int HIGHEST_PRIORITY = 1;
public static final int LOWEST_PRIORITY = 10;

...

public static void setPriority(IlvActivity activity, int priority) {
setPriority(activity, new Integer(priority));

}

public static void setPriority(IlvActivity activity, Number priority) {
if (!(activity instanceof IlvUserPropertyHolder))
throw new IllegalArgumentException("Priority cannot be set on " +

activity);
if (priority == null)
throw new IllegalArgumentException("Priority cannot be null");

int priorityValue = priority.intValue();
if (priorityValue > LOWEST_PRIORITY)
priority = new Integer(LOWEST_PRIORITY);

if (priorityValue < HIGHEST_PRIORITY)
priority = new Integer(HIGHEST_PRIORITY);

((IlvUserPropertyHolder)activity).setProperty(PRIORITY_PROPERTY,

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 219

priority);
}

This ensure that you always use the “priority” property name, that you handle errors
in the unlikely case that the activity does not support user-defined properties, and
that the priority value is within an acceptable range, you

3. Use the following code to set the value of an activity property instead:

IlvGeneralActivity activity = ...
PriorityProperty.setPriority(activity, 5);

Creating activity instances
Now that you have a method that helps you to set a numerical priority property on an
activity instance, you need to have the example application create all activity instances with
a default priority value. You do this by creating a custom activity factory and then by telling
the chart to use this factory instead of the default.

1. Implemented a custom activity factory by creating the CustomGanttExample.
CustomActivityFactory inner class and its createActivityImpl method, which
creates activity instances of CustomActivity upon request by the application:

Creating an activity factory to instantiate activities
class CustomActivityFactory extends SimpleActivityFactory {
...
protected IlvActivity createActivityImpl(IlvTimeInterval interval,

int activityNum) {
IlvGeneralActivity activity =
new IlvGeneralActivity("CA #" + activityNum,

"Custom Activity #" + activityNum,
interval);

PriorityProperty.setPriority(activity, PriorityProperty.
DEFAULT_PRIORITY);

return activity;
}

2. Get the Custom Gantt chart sample to use the new factory by overriding its
customizeFactories method:

Overriding the customizeFactories method to use the new factory
protected void customizeFactories() {
super.customizeFactories();
// Change the default activity factory.
chart.setActivityFactory(new CustomActivityFactory(chart));
...

I B M ® I L O G ® J V I E W S G A N T T 8 . 6220

Customizing activity rendering

Explains how to customize the visual representation of one or more activities.

In this section

The Activity Rendering API
Describes what an activity renderer is and explains the associations between the classes
used for rendering.

Simple activity renderers
Describes the main activity renderers and the differences between IlvActivityGraphic
and IlvGraphic.

Combining activity renderers
Explains how to combine default and customized activity renderers using the Custom Gantt
Chart sample.

Rendering Activities with Multiple Dates
Explains how to render activities that include several intermediary dates.

Using Composite Graphics
Explains how activity rendering can be customized with the API.

Installing Custom Activity Renderers
Explains how to assign a renderer to all activities using factory classes.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 221

The Activity Rendering API

An activity renderer is an object that contributes to the visual representation of one or more
activities. In the simplest case, an activity renderer is used to draw everything related to
an activity. Renderers can also be combined. For example, one renderer is used to draw a
bar, another draws a label, and two more draw the markers at the start and end of the
activity.

You can apply activity renderers to many activities at once. An activity renderer can store
references to the colors, fonts and the dimensions that apply to all corresponding activities.
However, normally it does not store the size or label attributes that apply to a single activity.
If it does, such information is highly transient and must be recomputed each time the activity
renderer is accessed on behalf of the particular activity.

The two main activity rendering classes are:

♦ IlvActivityGraphicRenderer: draws a simple graphic,

♦ IlvActivityCompositeRenderer: combines other renderers.

The following figure shows the associations between rendering classes.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6222

Simple activity renderers

Simple activity renderers draw a single, simple graphic representation. All simple activity
renderers are subclasses of IlvActivityGraphicRenderer. An instance of
IlvActivityGraphicRenderer uses a single IlvGraphic object as a delegate for drawing.

The differences between the IlvActivityGraphic and IlvGraphic are:

♦ An IlvActivityGraphic instance delegates rendering tasks to its renderer. The simple
parts of a renderer delegate to their respective IlvGraphic instances.

♦ An IlvActivityGraphic instance is part of a Gantt sheet. Calls to IlvActivityGraphic.
getGraphicBag() return an IlvGanttRow instance. In turn, calls to IlvGanttRow.
getGraphicBag() return an IlvGanttSheet object. Calls to getGraphicBag() from the
graphic delegate of a renderer, on the other hand, return null.

♦ An IlvActivityGraphic object always represents an entire activity. The graphic delegate
of a renderer contained in an IlvActivityCompositeRenderer instance is responsible
for a part of the drawing of the activity.

The following table shows the most important classes of simple activity renderers.

DescriptionClass

Draws a bar. Optionally, a label is added to the bar. This label is always clipped
to the bounds of the bar.

IlvActivityBar

Draws a label.You use this class when you need an unclipped label.IlvActivityLabel

Draws a symbol at the start or end of an IlvActivityBar.IlvActivitySymbol

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 223

Combining activity renderers

You combine activity renderers with the IlvActivityCompositeRenderer class.

An IlvActivityCompositeRenderer instance holds a number of child renderers and delegates
rendering tasks to them. Child renderers with a higher index are drawn after renderers with
a lower index, and appear to be placed above them in the Gantt chart.

An IlvActivityCompositeRenderer instance has a fixed number of child renderers. While
the renderer is in use, every child renderer is assigned a fixed index. You can remove a child
renderer by storing null at its index. However, it is not possible to reduce the number of
available indices.

For example, suppose an IlvActivityCompositeRenderer instance has the following child
renderers:

♦ An IlvActivityBar instance that represents the main bar.

♦ An IlvActivityBar instance that represents the completion bar, This bar is drawn on
top of the main bar.

♦ An IlvActivityLabel instance that represents a label drawn to the right of the main
bar.

♦ An IlvActivitySymbol instance that represents the marker displayed at the start of the
activity.

♦ An IlvActivitySymbol instance that represents the marker displayed at the end of the
activity.

The following information is drawn from the Rendering a Custom Data Model sample located
in:

<installdir>/jviews-gantt86/samples/customData

The Custom Gantt Chart example represents an IlvGeneralActivity instance in a data
model with customized rendering:

♦ Parent activities are rendered in the default manner, that is, using a light blue bar with
dark blue end markers. The renderer is an instance of IlvActivitySummary, a subclass
of IlvActivityCompositeRenderer.

♦ Leaf activities are rendered as a composite of the default IlvActivityBar class. This
object displays the name of the activity with a thin yellow activity bar. The following figure
displays an activity bar that is proportional to the priority level of the activity.

The following figure shows the rendering of CustomActivity instances.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6224

Some activities show a black completion bar below the main bar. The completion value is
taken as a property from the activity. The <installdir>/jviews-gantt86/samples/
customData/src/customData/CompletionProperty.java class provides centralized access
to this property. The static methods getCompletion and setCompletion are used to access
an activity while providing a range check and a default value:

public static Number getCompletion(IlvActivity activity) {
if (!(activity instanceof IlvUserPropertyHolder))
return null;

Number completion =
(Number)((IlvUserPropertyHolder) activity).getProperty(COMPLETION_PROPERTY);

if (completion == null)
completion = new Integer(0);

return completion;
}

public static void setCompletion(IlvActivity activity, Number completion) {
if (!(activity instanceof IlvUserPropertyHolder))
throw new IllegalArgumentException("Completion cannot be set on " +

activity);
if (completion == null)
throw new IllegalArgumentException("Completion cannot be null");

if (completion.doubleValue() < 0)
completion = new Integer(0);

((IlvUserPropertyHolder)activity).setProperty(COMPLETION_PROPERTY, completion)
;
}

It is also useful to create a derived, String valued property class. The class <installdir>/
jviews-gantt86/samples/customData/src/customData/
FormattedCompletionProperty.java is a full implementation of the IlvStringProperty
interface. In the Rendering a Custom Data Model sample, you use a
FormattedCompletionProperty instance to display completion values as text in the table
cells or as label on the activity renderers. FormattedCompletionProperty is a subclass of
IlvFormattedNumberProperty and thus inherits its numerical formatting capabilities:

public class FormattedCompletionProperty extends IlvFormattedNumberProperty {

...

// Returns the completion proportion of the specified activity.
protected Object getValueImpl(Object activity) {
return CompletionProperty.getCompletion((IlvActivity)activity);

}

// Sets the completion proportion of the specified activity.
protected void setValueImpl(Object activity, Object completion) {
CompletionProperty.setCompletion((IlvActivity)activity, (Number)completion)

;
}

...
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 225

The black bar below themain bar is a <installdir>/jviews-gantt86/samples/customData/
src/customData/CompletionBar.java object. CompletionBar is a subclass of
IlvActivityBar. In the following code example, the displayed property is set to null so no
text is rendered.

No Text Rendered
class CompletionBar extends IlvActivityBar {
public CompletionBar() {
setDisplayedProperty(null);

}
}

The length of the CompletionBar object is rendered proportionally to the completion
percentage and the duration of the activity. This is done by overriding the getEndTime
method. The getStartTime method remains unchanged. The isRelayoutNeeded method is
overridden so that each activity is redrawn automatically whenever its completion value
changes. The following code sample shows these changes.

Rendering Length Proportionally and Redrawing Automatically
// Returns the time point that defines the end of this bar.
public Date getEndTime(IlvActivityGraphic ag) {
Date startTime = getStartTime(ag);
IlvActivity activity = ag.getActivity();
Number completion;
completion = CompletionProperty.getCompletion(activity);
if (completion != null) {
return IlvTimeUtil.subtract(super.getEndTime(ag), startTime)

.multiply(completion.doubleValue())

.add(startTime);
} else {
return startTime;

}
}

// Determines if the bounding box may have changed.
public boolean isRelayoutNeeded(ActivityEvent evt) {
return super.isRelayoutNeeded(evt) || CompletionProperty.getInstance().

isPropertyChangedEvent((EventObject)evt);
}

The CompletionBar.getToolTipText method has been overridden so that when the mouse
hovers over the completion bar, the completion value of the activity is displayed.

Displaying Tool Tips
public String getToolTipText(IlvActivityGraphic ag,

IlvPoint p,
IlvTransformer t) {

IlvActivity activity = ag.getActivity();
Number completion = CompletionProperty.getCompletion(activity);
if (completion != null)
return MessageFormat.format("{0}% completed",

Math.round(completion.doubleValue()*100));
else
return null;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6226

When any type of graphic is selected in a Gantt sheet, an IlvSelection instance is created
to visually represent the selected state. When an IlvActivityGraphicObject is selected,
it asks its renderer to create an IlvSelection instance by calling IlvActivityRenderer.
makeSelection. All the IlvActivityRenderer implementations provided by JViews Gantt
return an IlvActivityGraphicSelection instance. IlvActivityGraphicSelection is an
extension IlvSelection that visually represents the selected state of an activity by displaying
two squares at either end of the activity graphic. The squares are centered in the vertical
direction.

In the Rendering a CustomDataModel sample, the default CustomActivityRenderer instance
uses a standard IlvActivityGraphicSelection instance that displays the two squares
centered vertically in the blank space between two horizontal bars. To display the selection
squares centered vertically along the upper bar, override CustomActivityRenderer.
makeSelection:

Controlling How Selection Squares Are Displayed
public IlvSelection makeSelection(IlvActivityGraphic g) {
return new IlvActivityGraphicSelection(g) {
public IlvPoint getHandle(int i, IlvTransformer t) {
IlvActivityGraphic ag = (IlvActivityGraphic)getObject();
IlvActivityCompositeRenderer renderer =

(IlvActivityCompositeRenderer)ag.getActivityRenderer();
// The definition rectangle of the activity graphic gives us the
// x position of the start and end times.
IlvRect definitionBox = ag.getDefinitionRect(t);
// The bounding box of the upper bar gives us its y position.
IlvRect boundingBox = renderer.getRendererAt(0).getBounds(ag, t);
IlvPoint p = new IlvPoint();
float y = boundingBox.y + boundingBox.height/2;
switch(i) {
case 0:
p.move(definitionBox.x, y);
break;

case 1:
p.move(definitionBox.x + definitionBox.width, y);
break;

}
return p;

}
};

}

In the Rendering a Custom Data Model sample, the background color of a completion bar
in a composite renderer is set to black. Vertical margins are added to avoid overlapping
with the other bars. The following code sample shows the corresponding part of the
CustomActivityRenderer class.

Custom Activity Renderer Class
private void initializeCompletionBar() {
...
completionBar = new CompletionBar();
completionBar.setTopMargin(0.5f);
completionBar.setBottomMargin(0.25f);
completionBar.setBackground(Color.black);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 227

addRenderer(completionBar);
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6228

Rendering Activities with Multiple Dates

Activities which implement the IlvPropertyHolderActivity interface, including the
IlvGeneralActivity and the IlvTableActivity classes contain several intermediary dates,
rather than only the start and end dates.

This can be used for the following purposes:

♦ Represent the actual and planned extent of activities in the same Gantt chart, using a
single model object for each activity.

♦ Split activities and breaks. These activities are rendered as several bars with time intervals
between two successive bars.

♦ Display activities with embedded milestones, such as progress validations. No separate
milestone objects are needed in the model.

♦ Display lag time, that is, preparation work prior to the start, and cool down phases for
the activity or termination work after the activity is completed can be displayed in the
Gantt chart. No separate model objects are needed to display lag time.

The start and end of an activity are computed as the minimum and maximum of the date
properties returned by calling IlvPropertyHolderActivity.getTimeProperties(). Date
properties other than those returned by this method can also be used in the rendering, for
example, the starting point of the lag time in the use case above.

Activities with multiple dates are rendered using an IlvActivityCompositeRenderer, see
Combining activity renderers for more information. The child renderers of this
IlvActivityCompositeRenderer instance are simple renderers on which the start and end
time properties have been set.

To represent two bars, one going from the START1 to the END1 dates, and the other from
START2 to the END2 date, do the following:

1. Instantiate two IlvActivityBar instances.

2. Set the startTimeProperty and endTimeProperty of the first IlvActivityBar to START1
and END1

3. Set the same properties on the second IlvActivityBar to START2 and END2.

To display an IlvActivitySymbol for a particular date, set the
startTimeProperty and endTimeProperty to the same date, for example END1.

Note:

The Custom Gantt Chart example demonstrates how to split activities into bars according
to a holiday schedule. For the full code, see:

<installdir>/jviews-gantt86/samples/customData/src/customData/
ComplexEngineeringProject.java

As part of the model creation, properties indicating the start and end time of each bar are
set in the activities. For simplicity, the holiday schedule is assumed to consist only of
weekends. As there are a lot of weekends that can interrupting an activity, many properties

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 229

are needed. These properties are defined on the fly by calling
CustomActivityRendererFactory.getSplitTimeProperty:

/**
* This property indicates the number of bars in a split activity.
*/
public static final String SPLIT_COUNT_PROPERTY = "Split";

/**
* Returns the name of the property that contains the start/end time of the
* i-th part of a split activity.
* @param i A nonnegative integer.
* @param endp true for the end time, false for the start time
*/
public static String getSplitTimeProperty(int i, boolean endp) {
return ((endp ? "E" : "S") + i).intern();

}

The following code example shows how to split the activity time interval. It is taken from:

<installdir>/jviews-gantt86/samples/customData/src/customData/
ComplexEngineeringProject.java

ArrayList <String> = new ArrayList<String>();
int interval;
for (interval = 0; ; interval++) {
...
String prop1 = CustomActivityRendererFactory.getSplitTimeProperty(interval,
false);
String prop2 = CustomActivityRendererFactory.getSplitTimeProperty(interval,
true);
activity.setProperty(prop1, t1);
activity.setProperty(prop2, t2);
timeProperties.add(prop1);
timeProperties.add(prop2);
...

}
if (interval > 1) {
activity.setTimeProperties(timeProperties.toArray(new String[timeProperties.

size()]));
activity.setProperty(CustomActivityRendererFactory.SPLIT_COUNT_PROPERTY, new
Integer(interval));
}

As shown in:

<installdir>/jviews-gantt86/samples/customData/src/customData/
CustomActivityRenderer.java

the renderer takes the pairs of time property values and creates a bar renderer for each
pair:

public CustomActivityRenderer(IlvActivity activity) {
Integer splitCount =
(Integer) ((IlvGeneralActivity)activity).getProperty(

CustomActivityRendererFactory.SPLIT_COUNT_PROPERTY);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6230

int n = splitCount.intValue();
for (int i = 0; i < n; i++) {
addRenderer(CustomActivityRendererFactory.getSplitRenderer(i));

}
initializeExtraChildRenderers();

}

The CustomActivityRendererFactory.getSplitRenderer method sets the start and end
time properties of the bar renderer for a specific part of a split activity. Without these calls
to setStartTimeProperty and setEndTimeProperty, all bars would extend from the start
to the end of the entire activity and overlap.

IlvActivityGraphicRenderer barRenderer = (j == 0 ? new IlvActivityBar() : new
IlvBasicActivtyBar());
barRenderer.setStartTimeProperty(getSplitTimeProperty(j, false));
barRenderer.setEndTimeProperty(getSplitTimeProperty(j, true));

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 231

Using Composite Graphics

The preferred way of using composite graphics is through the Designer. Composite graphics
are not designed to be used programmatically, but the Rendering activities with composite
graphics example shows how activity rendering can be customized using the API. The example
code can be found at:

<installdir>/jviews-gantt86/codefragments/application/compositeGraphic/src/
CGORendererExample.java

The following figure shows that in this sample:

♦ Parent activities are rendered with composite graphics composed of bars with a color
gradient and rectangles as end markers.

♦ Leaf activities are rendered with composite graphics to display a bar with a color gradient,
the name of the activity as text, and a square as decoration positioned near the left end
of the bar.

The following figure shows the composite graphics for parent and leaf activity bars.

Composite Graphics
In the Rendering activities with composite graphics example found at <installdir>/
jviews-gantt86/codefragments/application/compositeGraphic/src/
CGORendererExample.java, the class CustomParentActivityCompositeGraphic defines a
customized graphic for parent activities.

These objects are composed of:

♦ A rectangle with a color gradient.

♦ Rectangles as end markers.

The method IlvGraphic.moveResize is overridden to change the graphic dynamically
depending on its size.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6232

The following code sample shows the definition of the parent-activity composite graphic.

Composite Graphic for a Parent Activity
class CustomParentActivityCompositeGraphic extends IlvCompositeGraphic
{
// The rectangle.
private IlvGeneralPath base;

// Decoration 1.
private IlvRectangle sRect;

// Decoration 2.
private IlvRectangle eRect;

...

// Overrides to update graphics depending on the composite's size changes.
public void moveResize(IlvRect size) {
super.moveResize(size);
final int decorationWidth = 5;
int height = (int) (size.height - 5);
rect.resize(size.width, height);
sRect.resize(decorationWidth, size.height);
eRect.resize(decorationWidth, size.height);

}
}

The class CustomLeafActivityCompositeGraphic implementation found in <installdir>/
jviews-gantt86/codefragments/application/compositeGraphic/src/
CGORendererExample.java defines a customized graphic for child activities.

These objects are composed of:

♦ A rectangle with a color gradient that represents the activity bar.

♦ An IlvText object that displays the name of the activity.

♦ A square decoration.

The method CustomLeafActivityCompositeGraphic.setLabel changes the label display,
externally through the renderer.

The method IlvGraphic.moveResize is overridden to change the graphic dynamically
depending on its size.

The following code sample shows the definition of the leaf-activity composite graphic.

Composite Graphic for a Leaf Activity
class CustomLeafActivityCompositeGraphic extends IlvCompositeGraphic {
// The text graphic used to display the label.
private IlvText text;
// A decoration.
private IlvRectangle rect;

...

// Set a label to this graphic.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 233

// @param label The label to display.
public void setLabel(String label) {
text.setLabel(label);

}

// Overrides to update graphics depending on the composite's size changes.
public void moveResize(IlvRect size) {
if (size.width > 0) {
super.moveResize(size);
...

}
}

}

Composite Graphic Renderers
The following figure shows the classes used to render composite graphics.

In the Rendering activities with composite graphics example found in <installdir>/
jviews-gantt86/codefragments/application/compositeGraphic/src/
CGORendererExample.java, the renderer classes
CustomParentActivityCompositeGraphicRenderer and
CustomLeafActivityCompositeGraphicRenderer use the definitions of the composite
graphics to render parent and leaf activity graphics. They are subclasses of
IlvActivityCompositeGraphicRenderer. These classes are used to customize the composite
graphic with which they are associated.

By default, an associated empty composite graphic is created.Note:

The following code sample shows the definition of
CustomParentActivityCompositeGraphicRenderer.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6234

Definition of CustomParentActivityCompositeGraphicRenderer
class CustomParentActivityCompositeGraphicRenderer extends
IlvActivityCompositeGraphicRenderer {

// Builds a CustomParentActivityCompositeGraphicRenderer
public CustomParentActivityCompositeGraphicRenderer() {
this.setGraphic(new CustomParentActivityCompositeGraphic());

}
...

}

The class CustomLeafActivityCompositeGraphicRenderer overrides the method
IlvActivityGraphicRenderer.prepareGraphic to update the label that is displayed and
that depends on the activity name. The class CustomLeafActivityCompositeGraphicRenderer
also overrides the method IlvActivityGraphicRenderer.isRedrawNeeded to trigger
graphical updates on changes in activity name.

The following code sample shows the definition of
CustomLeafActivityCompositeGraphicRenderer.

Definition of CustomLeafActivityCompositeGraphicRenderer
class CustomLeafActivityCompositeGraphicRenderer extends

IlvActivityCompositeGraphicRenderer {

// Builds a CustomLeafActivityCompositeGraphicRenderer
public CustomLeafActivityCompositeGraphicRenderer() {
this.setGraphic(new CustomLeafActivityCompositeGraphic());

}

// Overrides to update the label depending on the activity name.
// @param ag The activity graphic.
// @param t The current transformer.
protected IlvGraphic prepareGraphic(IlvActivityGraphic ag, IlvTransformer

t)
{
CustomLeafActivityCompositeGraphic graphic =
(CustomLeafActivityCompositeGraphic) super.prepareGraphic(ag, t);

graphic.setLabel(ag.getActivity().getName());
return graphic;

}

// Overrides to trigger a redraw when the name is updated.
public boolean isRedrawNeeded(ActivityEvent evt) {
if (super.isRedrawNeeded(evt)) {
return true;

}
if (evt instanceof ActivityNameEvent) {
return true;

}
return false;

}

...
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 235

Renderer Factory for Composite Graphics
To customize activity rendering, you must create a customized activity renderer factory that
creates the correct renderer on request. For more information, see Combining activity
renderers. The factory that creates activity renderers in the Composite Graphics code
example is the class CustomActivityCompositeGraphicRendererFactory.

The following code sample shows the skeleton of this factory.

Factory for Customizing Activity Renderers
public class CustomActivityCompositeGraphicRendererFactory extends
IlvDefaultActivityRendererFactory {

// Creates a customized activity renderer factory.
public CustomActivityCompositeGraphicRendererFactory(IlvHierarchyChart chart)
{

super(chart);
// Customizes the leaf activity rendering.
setLeafActivityRenderer(new CustomLeafActivityCompositeGraphicRenderer())

;
// Customizes the parent activity rendering.
setParentActivityRenderer(new CustomParentActivityCompositeGraphicRenderer

());
}

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6236

Installing Custom Activity Renderers

Activity renderers are installed by an instance of IlvActivityRendererFactory. An
IlvActivityRendererFactory instance assigns a renderer to every activity; the same
renderer instance is reused for many activities while treating special kinds activities
simultaneously as needed.

The IlvDefaultActivityRendererFactory distinguishes activities where the start date and
the end date coincide, that is, leaf activities, parent activities, and milestones. An
IlvDefaultActivityRendererFactory instance uses a single renderer for each of the three
categories.

The Rendering a Custom Data Model sample found in located in <installdir>/
jviews-gantt86/samples/customData uses the new activity renderer factory by calling its
setActivityRendererFactory method.

The factory that creates activity renderers for the Rendering a Custom Data Model sample
is an inner class of CustomGanttExample called CustomActivityRendererFactory. This class
is an extension of the IlvDefaultActivityRendererFactory class. As such, it inherits a
default renderer for parent activities.

The following code sample shows the skeleton of the factory.

Factory for Creating Custom Activity Renderers
public class CustomGanttExample extends GanttExample {
...
class CustomActivityRendererFactory
extends IlvDefaultActivityRendererFactory {

// Creates a customized activity renderer factory.
public CustomActivityRendererFactory(IlvHierarchyChart chart) {
super(chart);
// The leaf renderer is a composite renderer that will contain the 2
//bars.
setLeafActivityRenderer(new CustomActivityRenderer());

}

}
}

The leaf activity rendering is overridden by the call to IlvDefaultActivityRendererFactory.
setLeafActivityRenderer made in the constructor.

You need to inform the Custom Gantt Chart example to use the new factory before any
activities are initially rendered. This is done in the customizeFactories method because
the chart has been created, but the data model has not yet been populated with activities:

Use the New Factory Before Rendering Activities
protected void customizeFactories() {
super.customizeFactories();
...
// Change the default activity renderer factory.
gantt.setActivityRendererFactory(new CustomActivityRendererFactory());
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 237

I B M ® I L O G ® J V I E W S G A N T T 8 . 6238

Customizing table columns

Explains how to customize an existing column in the table portion of the Gantt chart or
Schedule chart and also how to define a new type of column and add it to the table.

In this section

Running the example
Describes how to run the customData sample.

Tree column icons
Describes how to customize the expanded and collapsed icons for parent activities in a
column.

The PriorityColumn class
Describes how the custom table-column class is implemented.

Adding the column to the table
Explains how to add a PriorityColumn object to the table.

Dynamic columns
Explains the custom code implemented in the Dynamic Columns code example.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 239

Running the example

This section refers to the Rendering a Custom Data Model sample. You can find the
corresponding source code in:

<installdir>/jviews-gantt86/samples/customData/src/customData/
CustomGanttExample.java

To run the example:

1. Make sure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt:

2. Go to the directory where the example is installed and type:

ant run

to run the example as an application.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6240

Tree column icons

The first column in the table is an instance of the IlvTreeColumn class. This type of column
uses a renderer that implements the standard Swing TreeCellRenderer interface to display
its contents. As in the Swing JTree component, the default renderer that the column uses
is a Swing DefaultTreeCellRenderer object. The following code shows how to customize
the expanded and collapsed icons for parent activities in the column:

IlvTreeColumn treeColumn = gantt.getTable().getTreeColumn("Name");
DefaultTreeCellRenderer renderer =

(DefaultTreeCellRenderer)treeColumn.getRenderer();
renderer.setOpenIcon(new ImageIcon(...));
renderer.setClosedIcon(new ImageIcon(...));

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 241

The PriorityColumn class

New custom columns can be added to the table by creating an implementation of the
IlvJTableColumn interface and adding it to the chart table. The custom table-column
implementation is located in the file:

<installdir>/jviews-gantt86/samples/customData/src/customData/
PriorityColumn.java

This class is an extension of IlvAbstractJTableColumn: and thereby implements the
IlvJTableColumn interface. Start out by duplicating each of the superclass constructors
and adding an initmethod, which is where you will customize various aspects of the column.

The basic skeleton of the class looks like this:

public class PriorityColumn extends IlvAbstractJTableColumn {

public PriorityColumn(Object headerValue) {
super(headerValue);

}

public PriorityColumn(Object headerValue, int width) {
super(headerValue, width);

}

...
}

An IlvJTableColumn object is a wrapper around a standard Swing javax.swing.table.
TableColumn object. The underlying TableColumn object is responsible for rendering and
editing each cell within the column. However, because the standard TableColumn object
considers row indices, the IlvJTableColumn wrapper maps the column to work in terms of
IlvHierarchyNode data nodes (that is, activities and resources) instead. The TableColumn
object also provides hooks so that the column can refresh automatically in response to data
model events.

The custom PriorityColumn has two purposes:

♦ Rendering the priority of each custom activity as a numeric string. The color of the text
should change depending on the value.

♦ Permitting the application user to edit the priority values using a standard JSlider
component.

When an instance of IlvAbstractJTableColumn (and hence of PriorityColumn) is initially
constructed, it creates an underlying Swing TableColumn object that has no cell renderer
or cell editor set. This means that the column cells will be rendered and edited using the
class-based default settings of the table. Typically, this means that a JLabel object will be
used for rendering text and a JTextField object will be used for editing. To obtain the
customized rendering and editing behavior you want instead, create a TableCellRenderer
and TableCellEditor object for the column explicitly.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6242

Support methods
Before the review of the column renderer and editor, implement the following
IlvJTableColumn methods in the class PriorityColumn.

The methods to be implemented are:

1. The method getValue(ilog.views.gantt.IlvHierarchyNode) returns the priority
for an activity. Because priorities are stored as primitive int values, wrap the priority
in an Integer object.

public Object getValue(IlvHierarchyNode activity) {
return PriorityProperty.getPriority((IlvActivity)activity);

}

2. The method setValue(ilog.views.gantt.IlvHierarchyNode, java.lang.Object)
sets the priority for an activity. The priority will be passed in as an Integer because
of the way getValue is coded.

public void setValue(IlvHierarchyNode activity, Object value) {
if (!(activity instanceof IlvUserPropertyHolder && value instanceof

Number))
return;

PriorityProperty.setPriority((IlvActivity)activity, (Number)value);
}

3. The method isEditable(ilog.views.gantt.IlvHierarchyNode) is overridden to
return true so that the priority values can be edited.

public boolean isEditable(IlvHierarchyNode activity) {
Number priority = PriorityProperty.getPriority((IlvActivity)activity);

return priority != null;
}

The cell renderer
The renderer of the priority column is created as an extension of the Swing
DefaultTableCellRenderer class.

To create the priority column renderer:

1. Overriding the createRenderer() method that the class PriorityColumn inherits
from IlvAbstractJTableColumn.

Only two methods are of the class DefaultTableCellRenderer are overridden:

♦ Override the setValue(ilog.views.gantt.IlvHierarchyNode, java.lang.Object)
method to use a NumberFormat to format the priority value into a text string for
display.

♦ Override the getTableCellRendererComponent method to center the text in the
column and to set the text color based upon the priority value.

The new additions to PriorityColumn look like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 243

Additions to the PriorityColumn
private NumberFormat formatter = NumberFormat.getInstance();

protected TableCellRenderer createRenderer() {
DefaultTableCellRenderer renderer = new DefaultTableCellRenderer() {

private Color darkGreen = Color.green.darker();

protected void setValue (Object value) {
if (!(value instanceof Integer))
setText("");

else
setText(formatter.format(value));

}

public Component getTableCellRendererComponent
(JTable table,
Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column) {

Component comp = super.getTableCellRendererComponent
(table,
value,
isSelected,
hasFocus,
row,
column);

if (value instanceof Integer) {
int intVal = ((Integer) value).intValue();
Color color;
if (intVal <= 2)
color = Color.red;

else if (intVal <= 4)
color = Color.orange;

else if (intVal <= 7)
color = darkGreen;

else
color = Color.blue;

comp.setForeground(color);
}

return comp;
}

};
renderer.setHorizontalAlignment(JLabel.CENTER);
return renderer;

}

2. Set the PriorityColumn to automatically refresh any activities whose value has
changed.

This change will be signaled from the Gantt data model by an instance of
ActivityUserPropertyEvent. When the column is added to the table, the method
setGanttConfiguration(ilog.views.gantt.IlvGanttConfiguration)will be called.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6244

Use this opportunity to register the column to receive the desired
ActivityUserPropertyEvent notifications. To act as an event listener, the column
must implement the GenericEventListener interface and its inform method. In the
inform(java.util.EventObject) method, the column calls the cellUpdated(ilog.
views.gantt.IlvHierarchyNode) method of its superclass to refresh the activity
whose priority has changed. The relevant code looks like this:

Set the PriorityColumn.
public class PriorityColumn extends IlvAbstractJTableColumn
implements GenericEventListener {

private IlvGanttConfiguration ganttConfig;

public void setGanttConfiguration(IlvGanttConfiguration ganttConfig) {

// When the column is removed from the table, unregister from
// all notifications.
if (this.ganttConfig != null)
this.ganttConfig.removeListener(this);

this.ganttConfig = ganttConfig;
// When the column is added to the table, register for
// user-defined property events.
if (this.ganttConfig != null)
this.ganttConfig.addListener(this, ActivityUserPropertyEvent.class)

;
}

// GenericEventListener implementation
public void inform(EventObject event) {
if (!(event instanceof ActivityUserPropertyEvent))
// This should never happen, but we will verify anyway.
return;

ActivityUserPropertyEvent pEvent = (ActivityUserPropertyEvent) event;

// Make sure that the event is not an about-to-change event. This
would do

// no harm, but it would be an unnecessary repaint.
if (PriorityProperty.PRIORITY_PROPERTY.equals(pEvent.getPropertyName

())
&& pEvent.isChangedEvent())

cellUpdated((IlvHierarchyNode) event.getSource());
}

}

The cell editor
To be able to use a Swing JSlider as the editor for the priority column, there is a subclass
of JSlider that implements the TableCellEditor interface. This class is named SliderEditor
and is a nested inner class of PriorityColumn. All methods of the class SliderEditor are
basic implementations of the TableCellEditor interface.

To create the editor:

♦ Override the createEditor() method of the class PriorityColumn that it inherits
from IlvAbstractJTableColumn :

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 245

protected TableCellEditor createEditor() {
return new SliderEditor();

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6246

Adding the column to the table

Now that you have designed the PriorityColumn class, you need to add an instance of it to
the table.

To add a PriorityColumn object to the table:

♦ Add the column to the IlvJTable instance of the chart from its getTable() method.

In the CustomGantt chart example, this is implemented in the addCustomTableColumns
method:

protected void addCustomTableColumns() {
IlvJTable table = gantt.getTable();
table.addColumn(new PriorityColumn("Pri"));

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 247

Dynamic columns

When your Gantt data model implements the in-memory default data model that defines
IlvGeneralActivity or IlvGeneralResource objects, you can add user-defined properties
for:

♦ Activities in an IlvGanttChart

♦ Resources in an IlvScheduleChart

This explanation is based on the Dynamic Columns code example found in:

<installdir>/jviews-gantt86/codefragments/table/dynamicColumns. You can find the
corresponding source code in:

<installdir>/jviews-gantt86/codefragments/table/dynamicColumns/src/
DynamicColumnSample.java

Starting the sample
Explains how to start an activity-based Gantt chart with the mandatory properties of each
activity and the resources assigned to some activities.

To start the Dynamic columns example:

♦ Do one of the following:

♦ double-clicking the executable JAR file

or

♦ Use Ant as explained in Starting the samples .

The following figure shows the running the dynamic columns example.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6248

The example shows an activity-based Gantt chart with the mandatory properties of each
activity and the resources assigned to some activities.

When you click Add the user-defined property columns, the example displays columns
with the user-defined properties of the activities as shown in the next figure. Before clicking
to display the columns for user-defined properties, you might want to adjust the width of
the sample window, so that you can see the additional columns.

The following figure shows the columns for user-defined properties.

Adding customized table columns
To add customized table columns that map user-defined properties, you need to:

1. Create the user-defined property adapter.

This adapter can be accessed by the generic IlvStringProperty interface.

To create the adapter, instantiate an IlvAbstractUserDefinedProperty subclass.
See Creating the user-defined property adapter.

2. Customize the formatting of the property adapter.

The customization is based on the property class. See Customizing format.

3. Create the configurable table column for the property adapter.

To create the configurable column, instantiate an IlvConfigurableTableColumn
object. See Creating a configurable table column.

4. Add the table column to the table. See Adding the column to the table.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 249

Creating the user-defined property adapter
The class IlvAbstractUserDefinedProperty provides a common framework for accessing
the user-defined properties of an IlvUserPropertyHolder through the generic
IlvStringProperty interface.

The following subclasses of IlvAbstractUserDefinedProperty are provided:

♦ IlvActivityUserDefinedProperty for the user-defined properties of an
IlvGeneralActivity object.

♦ IlvResourceUserDefinedProperty for the user-defined properties of an
IlvGeneralResource object.

To make to create an adapter for the user-defined property property of class
propertyClass of an IlvGeneralActivity object:

♦ Add the following code to your application:

Creating an adapter of user-defined properties
// Create the user-defined property adapter that can be accessed
// through the generic IlvStringProperty interface.
IlvActivityUserDefinedProperty userDefinedProperty =

new IlvActivityUserDefinedProperty(property, propertyClass);

If the property class is not provided, the default is String.

Customizing format
A Format object can be supplied to convert properties of types other than String to or from
a string.

The class of the user-defined property is also used to try to convert property values of types
other than String to or from a string. The conversion that uses the user-defined property
class is done by using convert(java.lang.Object, java.lang.Class). This conversion is
performed when no format is specified and the property class is not String.

To set the format for formatting a Date or an IlvDuration:

♦ Add the following code to your application:

Setting the formatting of a date or duration
// Customize formatting based on the property class.
if (propertyClass.isAssignableFrom(Date.class)) {

DateFormat dateFormat =
IlvDateFormatFactory.getDateInstance(DateFormat.DEFAULT,

getLocale());
userDefinedProperty.setFormat(dateFormat);

} else if (propertyClass.isAssignableFrom(IlvDuration.class)) {
IlvDurationFormat durationFormat =

new IlvDurationFormat(IlvDurationFormat.TIME_UNIT_MEDIUM);
durationFormat.setLenientParseMode(true);
userDefinedProperty.setFormat(durationFormat);

}

Examples of the result of applying this code can be seen in the columns latestStart and
Total Slack in Starting the sample.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6250

Creating a configurable table column
The class IlvConfigurableTableColumn defines a column that can be customized for
rendering and editing a property of an IlvHierarchyNode, that is, an activity or a resource
in an IlvJTable. This class is an extension of IlvStringColumn, through which it implements
the IlvJTableColumn interface.

The property that is rendered is defined by an IlvStringProperty. Property editing can be
enabled separately for rows of parent activities or resources or of leaf activities. or resources.

If editing is not customized, the property will be edited in an IlvTextFieldTableEditor.
Editing can be customized at instantiation time or through a call to the method
setTableCellEditor(javax.swing.table.TableCellEditor).

If the rendering is not customized, IlvDefaultTableCellRenderer will be used. Rendering
can be customized at instantiation time or through a call to the method
setTableCellRenderer(javax.swing.table.TableCellRenderer).

Instantiating a column with specific table cell editor and renderer shows how to instantiate
a column with a specific table cell editor and a specific table cell renderer. You specify the
cell editor as a slider and render the cell in different colors according to the priority of the
activity or resource.

To instantiate a column with a specific table cell editor:

♦ Add the following code to your application:

Instantiating a column with specific table cell editor and renderer
// For the "priority" property use a slider as cell editor and
// render the value with different colors.
IlvConfigurableTableColumn propertyColumn =

new IlvConfigurableTableColumn (headerValue,
userDefinedProperty,
property,
new SlideEditor(0,10,0),
new PriorityRenderer());

The effect of attributing different colors according to priority is shown in the Priority column
in Starting the sample.

Adding the column to the table
To add the configurable column propertyColumn to the table, add the column to the
IlvJTable instance of the Gantt chart.

To do this:

♦ Use the following code in your application.

table.addColumn(propertyColumn);

The column is added as the last column in the table. You can then move the position of the
column by using http://java.sun.com/javase/6/docs/api/javax/swing/
JTable.html#moveColumn(int, int).

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 251

http://java.sun.com/javase/6/docs/api/javax/swing/JTable.html#moveColumn(int, int)
http://java.sun.com/javase/6/docs/api/javax/swing/JTable.html#moveColumn(int, int)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6252

Interacting with the Gantt charts

Describes the association between classes and interactors, explains how predefined
interactors work and how to use them.

In this section

Class associations for interactors
Illustrates the associations between classes for interactors.

Selecting activities and constraints
Describes how to select activities and constraints and explains the API calls triggered by
these actions.

Moving activity and reservation graphics
Explains what happens when you move graphics and the limitations involved in applying
these actions.

Duplicating reservation graphics
Explains how to duplicate reservation graphics.

Resizing activity and reservation graphics
Explains how to resize a specific graphic using the GUI.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 253

Class associations for interactors

The following figure shows the associations between classes for interactors.

Several predefined interactors are implemented in the Gantt sheet for the following purposes:

♦ Selecting activities and constraints

♦ Moving activity and reservation graphics

♦ Duplicating reservation graphics

♦ Resizing activity and reservation graphics

♦ Interacting with the Gantt sheet using the mouse

I B M ® I L O G ® J V I E W S G A N T T 8 . 6254

Selecting activities and constraints

Before you can manipulate a graphic object, you need to select it. The following figure shows
a selected activity graphic and a selected constraint graphic.

The following figure shows the selected activity graphic and constraint graphic.

Installing the selection interactor
A predefined interactor, IlvGanttSelectInteractor, handles the graphic selection. To
install this interactor, call the pushInteractor(ilog.views.IlvManagerViewInteractor,
java.awt.AWTEvent) method of the Gantt sheet. When a new Gantt sheet is created the
selection interactor is already pre-installed, so the end user does not need to install it
explicitly.

Selecting graphics
Once the selection interactor is installed in the Gantt sheet, there are three ways to select
activity, reservation, or constraint graphics.

♦ To select a single graphic object, click it with the left mouse button. Any other previously
selected object will be deselected.

♦ To select several graphic objects, you can also drag a selection rectangle around them
using the left mouse button. Be careful not to click a graphic when you start dragging
the rectangle. All the graphic objects inside the rectangle will be selected.

♦ To extend the selection when one object is already selected (multiple selection), Shift-click
the next object you want to select. As long as you hold down the Shift key, each click a
graphic switches it between selected and deselected.

To access selected graphics, call the method getSelectedGraphics() of the class
IlvHierarchyChart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 255

Moving activity and reservation graphics

You can move selected activity graphics or reservation graphics by dragging the mouse.

Activity graphic move interactor
When you begin dragging a selected graphic, the Gantt selection interactor calls the method
getMoveSelectionInteractor() of the class IlvGanttSelectInteractor to create a move
interactor as an instance of the class IlvActivityGraphicMoveInteractor. The new move
interactor is then attached to the Gantt sheet and becomes active. Note that the shape of
the move cursor changes.

The move interactor will be detached from the Gantt sheet when you release the mouse
button.

Constraint graphics cannot be moved in any direction.Note:

Moving activity graphics
In a Gantt chart, activity graphics can only be moved horizontally. This means that you
cannot move an activity graphic from one row to another.

The following figure shows how to move a selected activity graphic.

Moving reservation graphics
In a Schedule chart, reservation graphics can be moved horizontally or vertically.

♦ Moving a reservation graphic horizontally changes the start time and end time of the
associated activity.

♦ Moving a reservation graphic vertically—that is, from one row to another—means
dissociating the selected reservation from its current resource and assigning it to a new
resource.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6256

Duplicating reservation graphics

In a Schedule chart, you can duplicate reservation graphics.

To duplicate reservation graphics:

♦ Press ALT and drag the selected reservation graphic.

The mouse cursor turns into a hand and a copy of the selected reservation graphic is
created when you release the mouse button.

The following figure shows the duplication of a reservation graphic.

To abort duplication while you are dragging the mouse, press ESCAPE.Tip:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 257

Resizing activity and reservation graphics

A selected activity or reservation graphic is marked by two handles.

To resize a graphic:

1. Selected the graphic to resize.

2. Dragging any of the handles to the left or to the right to make the bar longer or shorter.

In doing so, you change the start time and/or end time of the associated activity.

The following figure show a selected activity graphic being resized.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6258

Interacting with the Gantt sheet using the
mouse

Explains how to use the mouse to create activity and reservation graphics in a Schedule
chart or constraints in a Gantt chart.

In this section

Creating activities and reservations
Explains how to install the appropriate interactor to the Gantt sheet

Creating constraints
Explains how to install the appropriate interactor to a Gantt sheet.

Popup menus
Explains how to enable and share popup menus in a Gantt sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 259

Creating activities and reservations

To create activity and reservation graphics by using the mouse in a Schedule chart, you
must install the appropriate interactor to the Gantt sheet.

To install the appropriate interactor:

1. Create an instance of the class IlvMakeActivityInteractor.

2. Attach this interactor to the Gantt sheet by calling the pushInteractor(ilog.views.
IlvManagerViewInteractor, java.awt.AWTEvent) method of the Gantt sheet.

Once the interactor is installed, you can create an activity or a reservation by drawing a
rectangle in the Gantt sheet. The interactor first creates a new instance of IlvActivity and
then assigns the new activity to the resource where you clicked by creating a new instance
of IlvReservation.

To create the new activity or reservation, the interactor uses the activity factory or the
reservation factory registered with the Gantt sheet. See the methods getActivityFactory
() and the getReservationFactory() of the IlvGanttSheet class.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6260

Creating constraints

In a Gantt chart, you can create constraints using the mouse. To do so, you must
install the appropriate interactor to the Gantt sheet:

1. Create an instance of the class IlvMakeConstraintInteractor.

2. Attach the interactor to the Gantt sheet by calling the pushInteractor(ilog.views.
IlvManagerViewInteractor, java.awt.AWTEvent) method of the Gantt sheet.

Once the interactor is installed, you can use it to create IlvConstraint objects.

3. Click the source activity graphic (also called From activity).

Click the left end or right end depending on whether you want to constrain the start
time or the end time of the source activity. When you move the mouse, a “ghost” line
follows the pointer.

4. Click the target activity graphic (also called To activity).

Click the left end or right end depending on whether you want to link the source
activity to the start time or the end time of the target activity. As soon as you release
the mouse button, the arrowed polyline link representing the constraint appears
between the two activities.

To create constraints, the interactor uses the constraint factory registered with the Gantt
sheet. See the getConstraintFactory() method of the class Gantt sheet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 261

Popup menus

Popup menu support in a Gantt sheet is based on the popup menu support in IBM® ILOG®
JViews. For information in popup menu support, see Tooltips and popup menus on graphic
objects in The Essential IBM® ILOG® JViews Framework.

To set up popup support in your application:

1. Call the following code to enable popup menus in a Gantt sheet:

IlvGanttSheet.setPopupMenusEnabled(true) :

2. Create a JPopupMenu object and link it to the graphic in order to associate a specific
popup menu with an activity graphic or a constraint.

activityGraphic.setPopupMenu(activityMenu);
constraintGraphic.setPopupMenu(constraintMenu);

After the popup menu is registered, whenever a user right-clicks the graphic, its popup
menu appears.

3. Share popup menus among multiple graphic objects.

Popup menus use a lot of memory. To avoid wasting memory, instead of registering a
popup menu with an individual graphic using graphic.setPopupMenu(...), register
the popup menu directly with the popup menu manager by calling:

IlvPopupMenuManager.registerMenu("ActivityPopupMenu ", activityMenu);
IlvPopupMenuManager.registerMenu("ConstraintPopupMenu ", constraintMenu)
;

4. Assign this popup menu to the graphic renderer:

graphicRenderer1.setPopupMenuName("ActivityPopupMenu ");
graphicRenderer2.setPopupMenuName("ActivityPopupMenu ");
constraintGraphic.setPopupMenuName("ConstraintPopupMenu ");

5. Associate an action listener with popup menu items know which graphic object
triggered the event.

The listener retrieve the context of the popup menu using an
IlvPopupMenuActivityContext for activities or a IlvPopupMenuConstraintContext
for constraints.

public void actionPerformed(ActionEvent e) {
// retrieve the selected menu item
JMenuItem m = (JMenuItem) e.getSource();

// retrieve the graphic that has this popup menu
IlvPopupMenuContext context = IlvPopupMenuManager.getPopupMenuContext

(m);
if (context == null

|| !(context instanceof IlvPopupMenuActivityContext)) {
return;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6262

IlvPopupMenuActivityContext activityContext =
(IlvPopupMenuActivityContext) context;

// retrieve the activity of the graphic
IlvGeneralActivity activity = (IlvGeneralActivity) activityContext.

getActivity();
//Do the action on this activity for this view.

}

For information on popup menus, see IlvPopupMenuContext and IlvPopupMenuManager in
the Java API Reference Manual.

IlvSimplePopupMenu is a subclass of JPopupMenu that allows you to configure popup menus
easily. For information on configuring popup menus, see IlvSimplePopupMenu.

A sample that illustrates how to use popup menus with names defined in a CSS file can be
found at:

<installdir>/jviews-gantt86/samples/extension

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 263

I B M ® I L O G ® J V I E W S G A N T T 8 . 6264

Resource Data charts

Explains how to handle rendering and interaction in the Resource Data chart.

In this section

The architecture of the Resource Data chart
Illustrates the main classes for handling the Resource Data chart.

The Resource Data chart bean
Describes the properties of the Resource Data chart bean and shows how to incorporate a
Resource Data chart into your application. .

Comparing the Resource Data chart with IBM® ILOG® JViews Charts
Discusses the different methods used in IlvChart and IlvResourceDataChart to achieve
the same tasks.

Computing and displaying resource data
Explains how to instantiate a Gantt data model implementation and bind it to a chart.

Synchronizing Schedule charts and Resource Data charts
Describes resource selection and display modes, internal chart data rendering and the
relationship between time scales, x-grids and time scrolling.

© Copyright IBM Corp. 1987, 2009 265

The architecture of the Resource Data chart

The following figure shows the main classes for handling the Resource Data chart in the
JViews Gantt API. The type of Resource Data chart shown is a load chart. This chart combines
classes from the JViews Gantt and JViews Charts libraries. These classes are encapsulated
by the high level Bean described in The Resource Data chart bean.

The following figure shows the classes for the Resource Data chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6266

The Resource Data chart bean

Describes the properties of the Resource Data chart bean and shows how to incorporate a
Resource Data chart into your application. .

In this section

Basic architecture
Describes the properties and architecture of the IlvResourceDataChart class.

Basic steps in using the Resource Data chart bean - details
Explains how to incorporate a Resource Data chart into the code of your application.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 267

Basic architecture

JViews Gantt features a high-level Bean, called Resource Data chart bean. Its API is based
on the IlvResourceDataChart class, which is a subclass of IlvScheduleDataChart. The
Bean encapsulates the Gantt and Charts libraries. Although the libraries can be used without
the Bean, you will find it easier to rely on the Bean. Together with the IlvGanttModel
interface, the Bean is the main class for handling Resource Data charts in the JViews Gantt
API.

The Resource Data chart displays numerical information derived from the resources in a
Gantt data model. The default data displayed by the chart is the number of activities reserved
by a resource at each point in time. This data is called resource loading. The Resource Data
chart displays the numerical information as a standard Cartesian chart, where the x-axis
represents time. In this regard, the Resource Data chart provides an alternate view of the
data contained in a Gantt data model and complements the displays provided by the Gantt
chart and Schedule chart beans.

The Resource Data Chart utilizes the rendering capabilities of the IlvChart class from the
Charts library. The IlvChart class is encapsulated by IlvResourceDataChart, which exposes
a relevant subset of the complete API of IlvChart. Therefore, you may find it useful to review
IBM® ILOG® JViews Charts Developing with the JViews Charts SDK, especially Introducing
the Main Classes, for more detailed explanations of the JViews Charts architecture, the
IlvChart class itself, and its related classes. This section assumes that you are familiar
with the basic concepts and architecture of the JViews Charts library.

The basic architecture of the IlvResourceDataChart Bean is shown in the following figure
with IlvChart expanded out to show a graphical representation of the chart.

The following figure shows the architecture of the Resource Data chart bean.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6268

The following figure shows the chart in previous figure further expanded to show the
subcomponents of the IlvChart.

As just mentioned, the Resource Data Chart encapsulates an IlvChart instance that provides
the Cartesian chart rendering. The IlvChart is permanently bound to a single data source
that is also encapsulated and is not accessible via the IlvResourceDataChart public API.
The chart has a single chart renderer for its data source. The Resource Data Chart
automatically creates an IlvDataSet implementation for each resource in the Gantt data
model that is displayed. The datasets are instances of the IlvResourceDataSet class.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 269

Basic steps in using the Resource Data chart bean - details

Explains what you need to do to incorporate a Resource Data chart into the code of your
application.

To incorporate a Resource Data chart into your code:

1. To instantiate a Resource Data Chart and bind it to a Gantt data model, import the
following packages as a minimum:

import ilog.views.gantt.*;
import ilog.views.schedule.*;

2. Create a Gantt data model that implements the IlvGanttModel interface.

The data model should contain resources and reservations that will be displayed by
the Resource Data chart. Refer to Connecting to data for detailed information on how
to instantiate different Gantt data model implementations and connect to your business
data:

IlvGanttModel model = ...

3. Create the Resource Data chart bean instance with the following line of code:

IlvResourceDataChart chart = new IlvResourceDataChart();

4. Bind the Resource Data chart bean to the data model to enable the chart to display
the resource and reservation information of the data model.

chart.setGanttModel(model);

5. Customize the appearance and behavior of the chart by using the API of the
IlvResourceDataChart class and its constituent components. For example, to set the
time interval displayed by the x-axis to one week and add a header at the top of the
chart, use the following code:

chart.setVisibleDuration(IlvDuration.ONE_WEEK);
chart.setHeaderText("My Chart");

6. Add the Resource Data chart bean to the user interface of your application in the same
way as any other Swing component.

For example, if your application uses standard http://java.sun.com/javase/6/docs/api/
javax/swing/JFrame.html with a http://java.sun.com/javase/6/docs/api/java/awt/
BorderLayout.html, you would add the chart to the center of the window like this:

JFrame appWindow = ...
appWindow.getContentPane().add(chart, BorderLayout.CENTER);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6270

http://java.sun.com/javase/6/docs/api/javax/swing/JFrame.html
http://java.sun.com/javase/6/docs/api/javax/swing/JFrame.html
http://java.sun.com/javase/6/docs/api/java/awt/BorderLayout.html
http://java.sun.com/javase/6/docs/api/java/awt/BorderLayout.html

Comparing the Resource Data chart with IBM® ILOG® JViews Charts

Because the Resource Data chart encapsulates an IlvChart instance, much of the
IlvResourceDataChart API and behavior is the same as that of IlvChart. Therefore, a basic
understanding of the IBM® ILOG® JViews Charts SDK is necessary for understanding the
Resource Data chart, and is assumed for this chapter. The primary areas of difference are
in how data is bound to the charts for display and how time is displayed along the x-axis.

The following table compares the differences between the Resource Data chart and IBM®
ILOG® JViews Charts.

IlvResourceDataChartIlvChartCategory

Connect an IlvGanttModel implementation to
the chart. Optionally, you can change the

Connect an IlvDataSource to
an IlvChartRenderer

Connecting to Data

resources that are displayed by calling theImplementation. Then add the
chart renderer to the chart. setResourceDisplayMode and

displayResource methods

Cartesian onlyCartesian, polar, radar, or pieChart Types

One, connected to the single internal data source
that represents the displayed resources.

Multiple, one for each data
source.

Renderers

IlvTimeScale, default is IlvGanttTimeScale.
IlvResourceDataChart implements the
IlvTimeScrollable interface.

IlvAxis and IlvScaleX-Axis and Scale

IlvGanttGridRenderer, default is
IlvWeekendGrid.

IlvGridX Grid

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 271

Computing and displaying resource data

An IlvResourceDataChart displays numerical information derived from the resources and
reservations contained in a Gantt data model.

Instantiating a Gantt data model and connecting to your business
data
Refer to Connecting to data for detailed information on how to instantiate different Gantt
data model implementations and how to connect to your business data.

Binding implementations to the chart
Once you have instantiated an IlvGanttModel implementation, you can bind it to the chart
by using the following APIs:

The following table shows the APIs to bind an IlvGanttModel implementation to a chart.

MethodsProperty

IlvGanttModel getGanttModel()Data Model

void setGanttModel(IlvGanttModel model)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6272

Synchronizing Schedule charts and
Resource Data charts

Describes resource selection and display modes, internal chart data rendering and the
relationship between time scales, x-grids and time scrolling.

In this section

Overview
Explains where to find an example that illustrates Gantt data model synchronization.

Selecting resources for display
Explains resource selection and display modes.

Computing resource data
Explains how to compute multiple IlvDataValue instances using a IlvReservationLoadData
object which is then assigned to your Resource Data chart.

Rendering resource data
Describes how internal chart data is rendered.

The x-axis
Explains how time scales, x-grids and time scrolling are related.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 273

Overview

If your application also includes a Schedule chart, you have the option to synchronize the
Gantt data models of both charts. Once the Schedule chart and the Resource Data chart are
synchronized, changing the Gantt data model set on one chart will change the Gantt data
model set on the other chart. For an example of this, you can look at the Resource Load
chart sample, located in <installdir>/jviews-gantt86/samples/resourceLoadChart.

The following table shows the APIs to synchronize the data model of a Resource Data chart
to that of a Schedule chart.

MethodsProperty

void syncGanttModel(IlvScheduleChart scheduleChart)Synchronizing the Data
Model to a Schedule chart

void syncGanttModel(IlvScheduleChart scheduleChart, int
resourceDisplayMode)

void unsyncGanttModel()

I B M ® I L O G ® J V I E W S G A N T T 8 . 6274

Selecting resources for display

By default, when you bind a data model to IlvResourceDataChart, the data for all leaf
resources in the model are displayed. This binding is dynamic. So, if a leaf resource is added
to the data model or if a parent resource becomes a leaf because all of its children are
deleted, the resource will be added to the chart display. There are also several alternate
modes that can be used to determine which resources from the Gantt data model are
displayed in the chart.

The following table shows the APIs to control resources displayed in a chart.

MethodsProperty

int getResourceDisplayMode()Resource Display Mode

void setResourceDisplayMode(int mode)

void clearAllDisplayedResources()Manual Resource Display

void displayResource(IlvResource resource, boolean
displayed)

Iterator displayedResourcesIterator()Accessing the Displayed
Resources

boolean isDisplayed(IlvResource resource)

Resource display modes - Schedule chart not synchronized
In the default case, when the Resource Data chart is not synchronized to a Schedule chart,
you have a choice of three resource display modes:

♦ IlvResourceDataChart.AUTO_RESOURCE_DISPLAY_DISABLED: In this mode, resources in
the data model are not automatically displayed by the Resource Data chart. In this mode,
you must manually select resources to display by calling the displayResource method.

♦ IlvResourceDataChart.DISPLAY_ALL_RESOURCES: In this mode, all resources in the data
model are automatically displayed by the Resource Data chart.

♦ IlvResourceDataChart.DISPLAY_ALL_LEAVES: This is the default resource display mode.
In this mode, all leaf resources in the data model are automatically displayed by the
Resource Data chart.

Resource display modes - Schedule chart synchronized
If you have synchronized the data model of the Resource Data chart to a Schedule chart by
calling the syncGanttModel method, then you have a choice of three additional resource
display modes.

These additional modes allow you to automatically display data in the Resource Data chart
for resources that are selected in the Schedule chart:

♦ IlvResourceDataChart.DISPLAY_SELECTED_RESOURCES: In this mode, all resources that
are selected in the Schedule chart are displayed in the Resource Data chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 275

♦ IlvResourceDataChart.DISPLAY_SELECTED_SUBTREES: In this mode, the same as
DISPLAY_SELECTED_RESOURCESmode, all resources that are selected in the Schedule chart
are displayed in the Resource Data chart. In addition, when a parent resource is selected
in the Schedule chart, all of its descendant resources are also displayed in the Resource
Data chart.

♦ IlvResourceDataChart.DISPLAY_SELECTED_LEAVES: In this mode, all leaf resource that
are selected in the Schedule chart are displayed in the Resource Data chart. For parent
resources selected in the Schedule chart, their descendant leaf resources are displayed
in the Resource Data chart. The selected parent resource itself is not displayed.

For an example of automatically displaying the resources selected in a Schedule chart, you
can look at the Resource Load chart sample, located in:

<installdir>/jviews-gantt86/samples/resourceLoadChart

I B M ® I L O G ® J V I E W S G A N T T 8 . 6276

Computing resource data

Each resource that is selected for display is represented by a data series of numerical values
along the y-axis, plotted against time along the x-axis.

The data series is computed by:

1. A list of IlvDataValues, computed for each reservation assigned to the resource.

2. The lists of data values for the reservations of the resource, which are summed along
the y-axis and merged along the x-axis to form the data series.

An instance of IlvDataValue represents a single numerical value at a specific date and time.
Implementations of the IlvReservationDataPolicy interface are responsible for computing
the list of data values for a single reservation. The default data policy is an instance of the
IlvReservationLoadData class. This class performs a simple computation of the number
of activities assigned to a resource versus time for a single reservation. Because a reservation
represents the assignment of a single activity, IlvReservationLoadData computes a list of
only two data values. The first is a value of 1 at the activity's start time, and the second is
a value of 0 at the activity's end time. You can extend or create your own
IlvReservationDataPolicy implementation that computes more complex data values from
the reservations assigned to a resource.

The following table shows the APIs to set the policy on a Resource Data chart once you have
created an IlvReservationDataPolicy object.

MethodsProperty

IlvReservationDataPolicy getReservationDataPolicy()Reservation Data Policy

void setReservationDataPolicy(IlvReservationDataPolicy
dataPolicy)

The Resource Data chart internally creates instances of IlvResourceDataSet that represent
the data series of each resource. This class is responsible for summing the y-values of the
data value lists computed by the reservation data policy and for merging the time values
along the x-axis. The chart adds the resource data sets to its internal data source, thereby
displaying the resource data.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 277

Rendering resource data

The Resource Data chart uses a single IlvChartRenderer implementation to render the
internal data source of the chart. This internal data source is automatically populated with
a data set for each resource that is displayed by the chart. Therefore, the chart renderer
should be a simple composite renderer, a subclass of IlvSimpleCompositeChartRenderer.
Simple composite renderers handle a one-to-one relation between their child renderers and
their data sets (that is, one child renderer per data set). The default renderer of the Resource
Data chart is an instance of the IlvStairChartRenderer class.

The following table shows the APIs to set the renderer of an IlvResourceDataChart.

MethodsProperty

IlvChartRenderer getRenderer()Chart Renderer

void setRenderer(IlvChartRenderer renderer)

See Handling Chart Renderers in Developing with the JViews Charts SDK of JViews Charts
for details on the supplied chart renderer implementations and their graphical presentation.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6278

The x-axis

The time scale
The Resource Data chart uses an IlvTimeScale to render the x-axis. The default time scale
is an instance of IlvGanttTimeScale. You can follow the instructions inUsing the time scale
to customize or extend the time scale.

The following table shows the APIs to change the time scale of a Resource Data chart.

MethodsProperty

IlvTimeScale getTimeScale()Time Scale

void setTimeScale(IlvTimeScale timeScale)

The time scale is used as a renderer by the Resource Data chart. It is not added as a
true subcomponent of the chart, as in the Gantt and Schedule charts. Therefore, the

Note:

standard IlvDefaultScaleMouseInteractor does not work in the context of the Resource
Data chart.

The x-grid
Like the Gantt and Schedule charts, the Resource Data chart uses an IlvGanttGridRenderer
object to render the vertical grid of the x-axis. The default x-axis grid is an instance of
IlvWeekendGrid.

The following table shows the APIs to Change the X-axis Grid of a Resource Data Chart.

MethodsProperty

IlvGanttGridRenderer getXGrid()X Grid

void setXGrid(IlvGanttGridRenderer grid)

Time scrolling
Like the Gantt and Schedule charts, IlvResourceDataChart implements the
IlvTimeScrollable interface.

The following table shows the methods to modify the time interval displayed by the chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 279

MethodsProperty

Date getVisibleTime()Time Scrolling

void setVisibleTime(Date time)

IlvDuration getVisibleDuration()

void setVisibleDuration(IlvDuration duration)

IlvTimeInterval getVisibleInterval()

void setVisibleInterval(Date time, IlvDuration duration)

Date getMinVisibleTime()

void setMinVisibleTime(Date min)

Date getMaxVisibleTime()

void setMaxVisibleTime(Date max)

For example, you can scroll a chart horizontally so that it displays from one week before the
start of an activity until one week after the activity ends:

IlvActivity activity = ...
IlvTimeInterval interval = activity.getTimeInterval();
Date start = IlvTimeUtil.subtract(interval.getStart(),

IlvDuration.ONE_WEEK))
IlvDuration duration = interval.getDuration();
Duration = duration.add(IlvDuration.ONE_WEEK.multiply(2));
myChart.setVisibleInterval(start, duration);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6280

Calendar view components

Describes how to display activities from a Gantt data model on a monthly calendar or daily
planner grid.

In this section

Calendar view beans
Describes the steps necessary to create calendar view beans.

Running the Calendar View sample
Explains how to run the Calendar View sample.

Basic architecture
Describes the properties of the Monthly and Daily Calendar View JavaBeans

© Copyright IBM Corp. 1987, 2009 281

Calendar view beans

JViews Gantt features two high-level JavaBeans, the Monthly Calendar View JavaBean and
Daily Calendar View JavaBean. Their API is based on the IlvMonthView and IlvDayView
classes. These JavaBeans encapsulate the JViews Gantt library. Although the library can be
used without the JavaBeans, you will find it easier to rely on them. Together with the
IlvGanttModel interface, the two JavaBeans make up the main classes for handling calendar
views in the JViews Gantt API.

Calendar View JavaBeans display activities from a Gantt data model overlaid on a monthly
calendar or daily planner grid. Monthly and Daily Calendar Views provide an alternative
view of the data contained in a Gantt data model and complement the displays provided by
the Gantt chart bean and Schedule chart bean.

A basic sample Java™ application, is provided to illustrate the basic steps needed to
incorporate either a Monthly Calendar View or a Daily Calendar View into the code of your
application. The source code of this sample can be found in:

<installdir>/jviews-gantt86/samples/calendarView/src/calendarView/
CalendarViewExample.java

To incorporate either a Monthly Calendar View or a Daily Calendar View into the
code of your application:

1. To instantiate a Monthly or Daily Calendar View and bind it to a Gantt data model,
you need to import a minimum of the following packages:

import ilog.views.gantt.*;
import ilog.views.gantt.swing.calendarview.*;

2. Create a Gantt data model that implements the IlvGanttModel interface.

The data model should contain activities to be displayed by the Calendar View. Refer
to Connecting to data for detailed information on how to instantiate different Gantt
data model implementations and connect to your business data:

IlvGanttModel model = ...

3. Create the Monthly and Daily Calendar View JavaBean instances with the following
lines of code:

IlvMonthView monthView = new IlvMonthView();
IlvDayView dayView = new IlvDayView();

4. Bind the Calendar View JavaBeans to the data model to allow them to display the
activity information of the data model:

monthView.setGanttModel(model);
dayView.setGanttModel(model);

5. Customize the appearance and behavior of the chart using the IlvMonthView and
IlvDayView classes API. For example:

Date startTime = model.getRootActivity().getStartTime();
monthView.setDate(startTime);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6282

dayView.setDate(startTime);
final IlvMonthPanel monthPanel = monthView.getMonthPanel();
monthPanel().addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {
Point point = e.getPoint();
Calendar calendar = monthPanel.getCellDate(point);
if (calendar != null) {
ganttChart.setVisibleTime(IlvTimeUtil.subtract(calendar.getTime(),

ganttChart.getVisibleDuration().divide(2)));
}

}
}

The code example above creates an interaction; when the mouse is pressed inside a
Monthly Calendar View day cell, the Gantt chart is scrolled to center on that date.

6. Add the Calendar View beans to the user interface

The Monthly and Daily Calendar View Beans are standard Swing components that can
be added to your application user interface in the same way as any other Swing
component. For example, if your application uses a standard JFrame with a
BorderLayout, you would add the chart to the center of the window like this:

JFrame appWindow = ...
appWindow.getContentPane().add(monthView, BorderLayout.CENTER);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 283

Running the Calendar View sample

To find source code for using the capabilities of the Calendar View Beans in the
Calendar View sample:

1. Open the file:

<installdir>/jviews-gantt86/samples/calendarView

2. Follow the instructions to run the Calendar View sample.

The source code of this sample can be found in:

<installdir>/jviews-gantt86/samples/calendarView/src/calendarView/
CalendarViewExample.java

Here you can find the information you need to incorporate the Calendar View Beans into
the code of your application.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6284

Basic architecture

Describes the properties of the Monthly and Daily Calendar View JavaBeans

In this section

Overview
Describes the properties of the Monthly and Daily Calendar View JavaBeans

Calendar View models
Explains how to synchronize a date displayed in multiple views by sharing calendar models
or listening for calendar model events.

Calendar View renderers
Describes the API used to set renderers.

Leaf activity and holiday renderers
Describes the properties of the activity calendar renderer classes.

Milestone renderers
Describes the rendering of milestones in a Calendar Views component and explains how to
customize them.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 285

Overview

The Monthly and Daily Calendar View JavaBeans are Swing components used to display
activities from a Gantt data model.

Both Calendar Views have a similar architecture:

♦ They are both composed of basic Swing components.

♦ They both display activities and milestones from the Gantt data model to which they are
bound.

♦ Both views can display holidays from optional Gantt data to which they are bound.

♦ The current displayed date is controlled by a calendar data model to which the views are
bound.

♦ Easily customized renderer implementations determine the appearance of activities,
milestones, and holidays.

The basic architecture of the Monthly and Daily Calendar View JavaBean is shown in this
section, including the view subcomponents, model and renderer implementations that can
be bound to a view.

The following figure shows a Calender JavaBean displaying a month view.

The following figure shows a Calender JavaBean displaying a day view.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6286

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 287

Calendar View models

Daily and Monthly Calendar Views display the leaf activities and milestones of the Gantt
data model to which they are bound. Parent or summary activities are not displayed by the
views. Both views are automatically updated when activities in the data model are modified.
The views also accept optional Gantt data model holiday activities that are rendered in green
by default. Calendar Views are not automatically updated when holidays are modified. If a
holiday activity has been modified, you must rebind the holiday model to the view. Calendar
Views are bound to a calendar model that controls the currently displayed date. By sharing
calendar models or listening for calendar model events, it is possible to synchronize the
date displayed by multiple views.

The following table shows the APIs to set the models used by IlvMonthView or IlvDayView
objects.

MethodsModel

IlvGanttModel getGanttModel()Gantt Data

void setGanttModel(IlvGanttModel ganttModel)

IlvGanttModel getHolidayModel()Holidays

void setHolidayModel(IlvGanttModel holidayModel)

IlvCalendarModel getCalendarModel()Calendar

void setCalendarModel(IlvCalendarModel calendarModel)

Date getDate()

void setDate(Date date)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6288

Calendar View renderers

The graphical representation of leaf activities and holidays for Calendar Views components
is determined by implementations of the IlvActivityCalendarRenderer interface. The
default activity and holiday renderer is the IlvDefaultActivityCalendarRenderer class.
The graphical representation of milestones is determined by an implementation of the
IlvMilestoneCalendarRenderer interface. The default milestone renderer is the
IlvDefaultMilestoneCalendarRenderer class.

The following figure shows the appearance of the default renderers in the Calendar View
Beans.

The following table shows the APIs to set the renderers for an IlvMonthView or IlvDayView
object.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 289

MethodsRenderer

IlvActivityCalendarRenderer getActivityRenderer
()

Leaf Activities

void setActivityRenderer
(IlvActivityCalendarRenderer activityRenderer)

IlvActivityCalendarRenderer getHolidayRenderer()Holidays

void setHolidayRenderer
(IlvActivityCalendarRenderer holidayRenderer)

IlvMilestoneCalendarRenderer getMilestoneRenderer
()

Milestones

void setMilestoneRenderer
(IlvMilestoneCalendarRenderer milestoneRenderer)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6290

Leaf activity and holiday renderers

The default rendering for leaf activities and holidays in Calendar Views components is
performed by the IlvDefaultActivityCalendarRenderer class. This renderer draws a
single rectangular bar representing an activity or holiday. For a Monthly Calendar View,
when an activity spans multiple weeks, the renderer draws each weekly bar segment
separately.

When a Calendar View draws a leaf activity or a holiday, it invokes the renderer's draw
method for each rectangular region by calling draw:

void draw(Graphics g,
IlvActivity activity,
boolean isSelected,
Rectangle rect,
ComponentOrientation orientation,
int startStyle,
int endStyle)

The startStyle and endStyle parameters can be one of three possible values. Each value
indicates the way in which the vertical ends of the rectangular region will be rendered. In
a left-to-right component orientation, the startStyle represents the rectangle's left side
rendering, the endStyle represents the rectangle's right side rendering.

Possible values for the style parameters are:

♦ IlvActivityCalendarRenderer.END_STYLE_CLOSED

♦ IlvActivityCalendarRenderer.END_STYLE_OPEN

♦ IlvActivityCalendarRenderer.END_STYLE_INTRA_DAY

The following sections explain the styles and their meanings and manipulation in greater
depth.

IlvActivityCalendarRenderer.END_STYLE_CLOSED
This style indicates that when an activity terminates on a day boundary, that the side of the
rectangle will be drawn to indicate that it is “closed”. For example, in a Monthly Calendar
View, an activity rendered with both vertical sides set to END_STYLE_CLOSED will look like
the following figure.

The following figure show a closed multiple day activity in a Monthly Calendar View.

In a Daily Calendar View, an activity with a duration greater than or equal to 24 hours is
displayed at the top of the view. When the activity starts or finishes on a day boundary, the
vertical sides of the rectangle are shown to be closed.

The following figure shows a closed single day activity in a Daily Calendar View.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 291

An activity that has a lasts less than 24 hours is displayed in an hourly grid in the Daily
Calendar View. The vertical sides of such an activity are always closed.

The following figure shows a closed activity lasting less than one day.

IlvActivityCalendarRenderer.END_STYLE_OPEN
This style indicate that the activity extends beyond the point denoted by that side of the
activity rectangle. The side of the rectangle is drawn to indicate that it is “open”. For example,
in a Monthly Calendar View, an activity that starts before the current week will be rendered
with an open startStyle.

The following figure shows the open startStyle for a Monthly Calendar View.

In a Daily Calendar View, an activity that has a duration greater than or equal to 24 hours
is displayed at the top of the view. If the activity starts before the current day or terminates
after the current day, the corresponding vertical sides of the rectangle are shown to be
open.

The following figure shows the open startStyle and endStyle for a Daily Calendar View.

IlvActivityCalendarRenderer.END_STYLE_INTRA_DAY
This style indicates that the activity terminates within the bounds of a day. The side of the
rectangle is drawn using the “closed” style. This also indicates that the activity does not lie
on a day boundary. The default activity renderer uses a small clock image to indicate the
intra-day style. In a Daily Calendar View, an activity that has a duration greater than or
equal to 24 hours is displayed at the top of the view. If the activity starts within the current
day, but not on the day boundary, it is rendered using the intra-day startStyle.

The following figure shows the intra-day startStyle for a Daily Calendar View.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6292

APIs for customizing the appearance of the default activity renderer
The following table shows the APIs are used to customize the appearance of the default
activity renderer.

MethodsProperty

Stroke getStroke()Stroke

void setStroke(Stroke stroke)

Paint getStrokePaint()

void setStrokePaint(Paint paint)

Paint getFillPaint()Fill

void setFillPaint(Paint paint)

Font getLabelFont()Label

void setLabelFont(Font font)

Paint getLabelPaint()

void setLabelPaint(Paint paint)

int getLabelMargin()

void setLabelMargin(int margin)

Paint getSelectionStrokePaint()Selection

void setSelectionStrokePaint(Paint paint)

Paint getSelectionFillPaint()

void setSelectionFillPaint(Paint paint)

Image getClockImage()Clock Image

void setClockImage(Image image)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 293

Milestone renderers

The default rendering of milestones in a Calendar Views component is performed by the
IlvDefaultMilestoneCalendarRenderer class. The renderer is responsible for drawing a
labeled symbol representing the milestone. When a calendar view wants to draw amilestone,
the renderer's draw method is invoked:

void draw(Graphics g,
IlvActivity milestone,
boolean isSelected,
Rectangle rect,
Color background,
ComponentOrientation orientation)

The following figures show that the default milestone renderer supports four predefined
symbol shapes:

♦ MILESTONE_CIRCLE

♦ MILESTONE_DIAMOND

♦ MILESTONE_SQUARE

♦ MILESTONE_TRIANGLE

The following table shows the APIs that can be used to customize the appearance of the
default milestone renderer.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6294

MethodsProperty

int getSymbol()Symbol

void setSymbol(int symbol)

Stroke getStroke()Stroke

void setStroke(Stroke stroke)

Paint getStrokePaint()

void setStrokePaint(Paint paint)

Paint getFillPaint()Fill

void setFillPaint(Paint paint)

Font getLabelFont()Label

void setLabelFont(Font font)

Paint getLabelPaint()

void setLabelPaint(Paint paint)

int getLabelMargin()

void setLabelMargin(int margin)

Paint getSelectionStrokePaint()Selection

void setSelectionStrokePaint(Paint paint)

Paint getSelectionFillPaint()

void setSelectionFillPaint(Paint paint)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 295

Deploying as an applet

With a deployed applet, users can view the displayed data and edit it but cannot save any
changes.

The other two ways of deploying an JViews Gantt application are:

♦ Swing application, see Writing an application in Using the Designer.

♦ Thin client deployed over the Web, see Deploying an application as a DHTML-only thin
client.

Creating an applet
The IlvGanttChart, IlvScheduleChart, and IlvResourceDataChart instances and their
associated Beans can be used in applets in exactly the same way as in Swing applications.
The only limitations are the restricted permissions in applets, for example, it is not possible
to save data files from an applet.

The AbstractExample class found in <installdir>/jviews-gantt86/samples/ganttChart/
src/shared/AbstractExample.java extends the Swing JApplet class and is the base class
for all of the JViews Gantt samples in <installdir>/jviews-gantt86/samples, except for
the servlet and thinclient samples. Therefore, any of these samples can be used directly
in an HTML applet tag. For an example of an applet application, see the Gantt chart sample
in:

<installdir>/jviews-gantt86/samples/ganttChart

© Copyright IBM Corp. 1987, 2009296

Using JViews products in Eclipse RCP applications

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic describes how to use
JViews TGO inside Eclipse or RCP. It shows you how to display network, equipment, table,
and tree components embedded in an SWT window.

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic shows you how to display
diagrams and dashboards embedded in an SWT window.

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic shows you how to display
IlvGanttChart or IlvScheduleChart objects in an SWT window, together with other SWT
or JFace controls.

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse™ development
environment and the Eclipse Rich Client Platform (RCP). This topic shows you how to display
charts embedded in an SWT window.

Installing the JViews runtime plugin
JViews provides an IlvSwingControl class that encapsulates a Swing JComponent in an
SWT widget. It allows you to use IlpNetwork, IlpEquipment, IlpTree, and IlpTable objects
in an SWT window, together with other SWT or JFace controls. In this way, it provides a
bridge between the AWT/Swing windowing system and the SWT windowing system.

IBM® ILOG® JViews Gantt provides jar files in the form of a pre-packaged Eclipse™ plugin.
The name of this package is ilog.views.eclipse.gantt.runtime.

IBM® ILOG® JViews Maps JViews Maps for Defense provides jar files in the form of a
pre-packaged Eclipse plugin. The name of this package is ilog.views.eclipse.maps.
runtime.

IBM® ILOG® JViews Diagrammer provides jar files in the form of a pre-packaged Eclipse
plugin. The name of this package is ilog.views.eclipse.diagrammer.runtime.

IBM® ILOG® JViews Charts provides jar files in the form of a pre-packaged Eclipse plugin.
The name of this package is ilog.views.eclipse.chart.runtime.

In order to install the IBM® ILOG® JViews Eclipse plugins, you need to install from the
local site as shown below.

For Eclipse 3.3:

1. Launch your Eclipse installation.

2. Go to Help/Software Updates/Find And Install.

3. In the Install/Update dialog box, click Search for new features to install.

4. Define a New Local Site with the directory <installdir>/jviews-framework86/tools/
ilog.views.eclipse.update.site.

5. Select the features you want to install.

For Eclipse 3.4:

© Copyright IBM Corp. 1987, 2009 297

1. Launch your Eclipse installation.

2. Go to Help/Software Updates and select the Available Software tab.

3. Add a new local site: ClickAdd Site, then Local and specify the directory <installdir>/
jviews-framework86/tools/ilog.views.eclipse.update.site

4. Select the features you want to install, and press the Install button.

This installation also installs some examples. See Installing and using Eclipse samples for
more information.

In your applications, you need the ilog.views.eclipse.gantt.runtime plugin and its
dependencies:

♦ ilog.views.eclipse.gantt.runtime

♦ ilog.views.eclipse.chart.runtime

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

In your applications, you need the ilog.views.eclipse.maps.runtime plugin and its
dependencies:

♦ ilog.views.eclipse.maps.runtime

♦ ilog.views.eclipse.diagrammer.runtime (optional)

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

In your applications, you need the ilog.views.eclipse.maps.runtime plugin and its
dependencies:

♦ ilog.views.eclipse.maps.runtime

♦ ilog.views.eclipse.maps.defense.runtime

♦ ilog.views.eclipse.diagrammer.runtime (optional)

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

This installation also installs some examples. See Installing and using Eclipse samples for
more information.

In your applications, you need the ilog.views.eclipse.chart.runtime plugin and its
dependencies:

♦ ilog.views.eclipse.chart.runtime

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

I B M ® I L O G ® J V I E W S G A N T T 8 . 6298

This installation also installs some examples. See Installing and using Eclipse samples for
more information.

In your applications, you need the ilog.views.eclipse.diagrammer.runtime plugin and
its dependencies:

♦ ilog.views.eclipse.diagrammer.runtime

♦ ilog.views.eclipse.framework.runtime

♦ ilog.views.eclipse.utilities.runtime

Providing access to class loaders
Many services in JViews need to look up a resource. Since the classical way to provide access
to resources is a classloader, JViews uses classloaders for this purpose. But in Eclipse/RCP
applications, each plugin corresponds to a classloader, and the JViews classloader sees only
its own resources, not the application resources. To fix this problem, you can register plugin
classloaders with JViews through the IlvClassLoaderUtil.registerClassLoader function.
Each resource lookup then considers the registered classloaders and, if the plugins are
configured accordingly, also considers the dependencies of the registered classloaders.

The code for doing this is usually located in a plugin activator class. For example:

public class MyPluginActivator extends AbstractUIPlugin
{

/**
* This method is called upon plugin activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
IlvClassLoaderUtil.registerClassLoader(getClass().getClassLoader());

}

/**
* This method is called when the plugin is stopped
*/
public void stop(BundleContext context) throws Exception {
super.stop(context);
IlvClassLoaderUtil.unregisterClassLoader(getClass().getClassLoader());

}

}

The overriding of stop() is necessary so that, when the plugin gets unloaded, JViews gets
notified about the plugin that is going to stop and can drop references to its resources or
instances of its classes. The activator plugin is usually also the place where IlvProductUtil.
registerApplication is called. See section Before you start deploying an application for
an example.

The bridge between AWT/Swing and SWT
The bridge between the AWT/Swing windowing system and the SWT windowing system
consists of an IlvSwingControl class that encapsulates a Swing JComponent in an SWT

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 299

widget. This class allows you to use IlpNetwork, IlpEquipment, IlpTree, and IlpTable
objects in an SWT window, together with other SWT or JFace controls.

The following code shows how to create a bridge object:

Composite parent = ...;
IlpNetwork network = new IlpNetwork();
ControlSWTnetwork = new IlvSwingControl(parent, SWT.NONE, network);

The bridge between the AWT/Swing windowing system and the SWT windowing system
consists of an IlvSwingControl class that encapsulates a Swing JComponent in an SWT
widget. This class allows you to use IlvDiagrammer, IlvJScrollManagerView, or
IlvJManagerViewPanel objects in an SWTwindow, together with other SWT or JFace controls.

The following code shows how to create a bridge object:

Composite parent = ...;
IlvDiagrammer diagrammer = new IlvDiagrammer();
ControlSWTdiagrammer = new IlvSwingControl(parent, SWT.NONE, diagrammer);

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse development
environment and the Eclipse Rich Client Platform (RCP).

JViews provides an IlvSwingControl class that encapsulates a Swing JComponent in an
SWT widget. It allows you to use IlvChart or IlvLegend objects in an SWT window, together
with other SWT or JFace controls. In this way, it provides a bridge between the AWT/Swing
windowing system and the SWT windowing system.

The following code shows how to create a bridge object:

Composite parent = ...;
IlvChart chart = new IlvChart();
ControlSWTchart = new IlvSwingControl(parent, SWT.NONE, chart);

The Standard Widget Toolkit (SWT) is the window toolkit of the Eclipse development
environment and the Eclipse Rich Client Platform (RCP).

JViews provides an IlvSwingControl class that encapsulates a Swing JComponent in an
SWT widget. It allows you to use IlvGanttChart objects in an SWT window, together with
other SWT or JFace controls. In this way, it provides a bridge between the AWT/Swing
windowing system and the SWT windowing system.

At the JViews Framework level, the bridge between the AWT/Swing windowing system
and the SWT windowing system consists of an IlvSwingControl class that encapsulates a
Swing JComponent in an SWT widget. This class allows you to use IlvManager or
IlvJManagerViewPanel objects in an SWTwindow, together with other SWT or JFace controls.

The following code shows how to create a bridge object at the JViews Framework level:

Composite parent = ...;
IlvManagerView mgrView = ...;
IlvJManagerViewPanel jmgrView = new IlvJManagerViewPanel(mgrView);
ControlSWTview = new IlvSwingControl(parent, SWT.NONE, jmgrView);

Using IlvSwingControl instead of the native SWT_AWT class has the following benefits:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6300

♦ Simplicity: it is easier to use, since you do not have to worry about the details of the
Component hierarchy (see http://java.sun.com/javase/6/docs/api/java/awt/Component.html).

♦ Portability: IlvSwingControl also works on platforms that do not have SWT_AWT, like
X11/Motif® and MacOS® X 10.4.

♦ Less flickering: on Linux®/Gtk, flickering is reduced.

♦ Popup menus: popup menus can be positioned on each Component inside the AWT
component hierarchy. For details of components, see
http://java.sun.com/javase/6/docs/api/java/awt/Component.html.

♦ Better size management: the size management between SWT and AWT (LayoutManager)
is integrated.

♦ Focus: it provides a workaround for a focus problem onMicrosoft®Windows® platforms.

The IlvSwingControl bridge is not supported on all platforms. It is only supported
on Windows, UNIX® with X11 (Linux, Solaris™, AIX®, HP-UX®), and MacOS X 10.4
or later.

Note:

The IlvSwingControl bridge does not support arbitrary JComponents. Essentially,
components that provide text editing are not supported. See IlvSwingControl for
a precise description of the limitations.

Threading modes
You can handle the SWT-Swing user interface events in one or two threads.

Single-thread mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal JInternalFrames

Note:

in your application. There are also some other limitations. See the class
IlvEventThreadUtil for a precise description of the limitations.

♦ Two-thread mode

The SWT events are handled in the SWT event thread and AWT/Swing events are handled
in the AWT/Swing event thread. This is the default mode.

You can switch between the two threads by using the SWT method Display.asyncExec
() and the AWT method EventQueue.invokeLater().

If your application uses this mode, you must be careful to:

● Make API calls on SWT widgets only in the SWT event thread. Otherwise, you will get
SWTExceptions of type ERROR_THREAD_INVALID_ACCESS.

● Make API calls on JComponents, which include IlpNetwork, IlpEquipment, IlpTree,
and IlpTable, only in the AWT/Swing event thread. Otherwise, you risk deadlocks.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 301

http://java.sun.com/javase/6/docs/api/java/awt/Component.html
http://java.sun.com/javase/6/docs/api/java/awt/Component.html

Make API calls on JComponents, which include IlvDiagrammer,
IlvJScrollManagerView, and IlvJManagerViewPanel, only in the AWT/Swing event
thread. Otherwise, you risk deadlocks.

Make API calls on JComponents, which include IlvChart and IlvLegend, only in the
AWT/Swing event thread. Otherwise, you risk deadlocks.

You can switch between the two threads by using the SWTmethod Display.asyncExec
() and the AWT method EventQueue.invokeLater().

Make API calls on JComponents, which include , only in the AWT/Swing event thread.
Otherwise, you risk deadlocks.

At the JViews Framework level, make API calls on JComponents, which include
IlvManager and IlvJManagerViewPanel, only in the AWT/Swing event thread.
Otherwise, you risk deadlocks.

♦ Single-thread mode

In single-thread mode, SWT and AWT/Swing events are handled in the same thread.

Single-thread mode reduces the risk of producing deadlocks.

Enable this mode by calling setAWTThreadRedirect or enableAWTThreadRedirect()
early during initialization.

The following example shows how to enable single-thread mode:

// Switch single-event-thread mode during a static initialization.
static {

IlvEventThreadUtil.enableAWTThreadRedirect();
}

If you are using JComponents other than IlpNetwork, IlpEquipment, IlpTree, and
IlpTable in your application, your JComponents must use the method IlvSwingUtil.
isDispatchThread() rather than EventQueue.isDispatchThread() or SwingUtilities.
isEventDispatchThread().

For example:

// Switch single-event-thread mode during a static initialization.
static {

IlvEventThreadUtil.enableAWTThreadRedirect();
}

This mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal

Note:

JInternalFrames in your application. There are also some other limitations.
See the class IlvEventThreadUtil for a precise description of the limitations.

If you are using JComponents other than IlvDiagrammer, IlvJScrollManagerView, and
IlvJManagerViewPanel in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() or SwingUtilities.
isEventDispatchThread() .

I B M ® I L O G ® J V I E W S G A N T T 8 . 6302

http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()

This mode reduces the risk of producing deadlocks. If you are using JComponents other
than IlvChart and IlvLegend in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() or SwingUtilities.
isEventDispatchThread().

This mode is incompatible with AWT/Swing Dialogs. If you use single-thread
mode, you cannot use AWT Dialogs, Swing JDialogs, or modal JInternalFrames

Note:

in your application. There are also some other limitations. See the class
IlvEventThreadUtil for a precise description of the limitations.

This mode reduces the risk of producing deadlocks. If you are using JComponents other
than IlvGanttChart in your application, your JComponents must use the method
isDispatchThread() rather than http://java.sun.com/javase/6/docs/api/java/awt/
EventQueue.html#isDispatchThread() or http://java.sun.com/javase/6/docs/api/javax/
swing/SwingUtilities.html#isEventDispatchThread().

At the JViews Framework level, if you are using JComponents other than IlvManager
and IlvJManagerViewPanel in your application, your JComponents must use the method
isDispatchThread() rather than EventQueue.isDispatchThread() (see http://
java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()) or
SwingUtilities.isEventDispatchThread() (see http://java.sun.com/javase/6/docs/api/
javax/swing/SwingUtilities.html#isEventDispatchThread().)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 303

http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html#isDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()
http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html#isEventDispatchThread()

I B M ® I L O G ® J V I E W S G A N T T 8 . 6304

Printing

Describes how JViews Gantt provides APIs that allow you to print Gantt, Schedule and
Resource Data charts for a single or multi-page document without having to scroll the user
interface.

In this section

Printing Gantt and Schedule charts
Describes the main classes in the printing API and explains how to use them.

Printing a Resource Data chart
Explains how to use the printing APIs.

© Copyright IBM Corp. 1987, 2009 305

I B M ® I L O G ® J V I E W S G A N T T 8 . 6306

Printing Gantt and Schedule charts

Describes the main classes in the printing API and explains how to use them.

In this section

Overview
Explains the relation between the classes in the JViews Gantt API.

Introduction
Describes the main classes in the JViews Gantt printing framework and explains the
relationship between the classes.

The GanttPrintExample demo
Explains how to run and use this sample application.

Printing Framework API
Describes the properties of the main classes in the Resource Data chart printing framework.

How it works
Explains how to initiate and process a printing task.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 307

Overview

The IlvGanttChart and IlvScheduleChart classes are UI components designed to display
your projects on screen. To distribute and to exchange the projects, you may need to print
the projects on paper. You may also need to print not only the visible part of the projects
but also the part that is not visible.

JViews Gantt provides APIs that allow you to print the Gantt or Schedule charts in a document
(single or multiple pages) without scrolling the UI. These APIs collectively are referred to
as the JViews Gantt printing framework.

Before reading this section you should familiarize yourself with sections The generic
printing framework and Printing framework for manager content of Advanced Features
of IBM® ILOG® JViews Framework.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6308

Introduction

The JViews Gantt printing framework extends the basic IBM® ILOG®JViews Framework
printing framework to add support to IlvGanttChart and IlvScheduleChart objects. The
generic classes of the ilog.views.util.print package have been subclassed to handle
specific Gantt properties.

These classes are:

♦ IlvGanttPrintingController: A Gantt printing controller controls the printing process.

♦ IlvGanttPrintableDocument: A Gantt printable document defines the printing
configuration and contains the Gantt data you want to print in a set of pages.

♦ IlvPrintableGanttSheet: A Gantt sheet printable object is used to print a portion of an
IlvGanttSheet object.

♦ IlvPrintableTimeScale : A time scale printable object is used to print a portion of an
IlvTimeScale.

For information on how to use these classes, see Printing Framework API.

The following figure shows the associations between classes for printing a Gantt chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 309

The GanttPrintExample demo

The GanttPrintExample demo is a simple example for printing a Gantt chart.

To run the demo:

1. Open the file:

<installdir>/jviews-gantt86/samples/print

2. Follow the instructions to run the example given in the print demo.

The source code of this example can be found in :

<installdir>/jviews-gantt86/samples/print/src/print/GanttPrintExample.java

To use Gantt printing:

1. Create an instance of an IlvGanttPrintingController:

IlvGanttChart gantt = ...;
IlvGanttPrintingController printController =

new IlvGanttPrintingController(gantt);

2. Invoke on that instance the action you want to see performed, such as print(boolean),
setupDialog(java.awt.Window, boolean, boolean), or printPreview(java.awt.
Window) as shown here:

printController.printPreview((java.awt.Frame)gantt.getTopLevelAncestor()
);

The following figure shows the result of invoking the printPreview method:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6310

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 311

Printing Framework API

The following classes are involved in the JViews Gantt printing framework:

♦ IlvGanttPrintableDocument

♦ IlvGanttPrintingController

♦ IlvPrintableGanttSheet

♦ IlvPrintableTimeScale

IlvGanttPrintableDocument
The Gantt printable document stores the printed document structure and defines a set of
parameters to customize the printing (the printed data window, which part of the Gantt is
printed, how the Gantt fits on the page, and so on). The printable document is responsible
for creating and populating the pages.

The following table shows the different properties you can customize for printing.

DescriptionProperty

Defines the position on the page that separates the table and the Gantt
sheet (the value must be between 0 and 1).

Divider position

The JViews Gantt printing framework provides support for multipage
printing through the “pages per band” property. This represents the

Number of pages per band

number of horizontal pages you want printed between the start and the
end date.

Indicates whether the table should be printed repeatedly on every page.Repeat table

The start date of the first printed page. This defines the beginning of the
printed data.

Start date

The end date for the last printed page in a band. This defines the end of
the printed data.

End date

Indicates the number of table columns to be printed.Number of columns of the
table

All these properties are also accessible from the JViews Gantt Print Setup dialog box,
which you can invoke by calling the method setupDialog on the
IlvGanttPrintingController instance.

Note:

The following table summarizes the IlvGanttPrintableDocument properties.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6312

Field in JViews
Gantt Designer

Default value
when
automatically
created

MethodsProperty

Table, Table size0.5getDividerPosition()
setDividerPosition
(double)

Divider position

Print Range, Dates, ToThe chart visible time
+

getEnd() setEnd(java.
util.Date)

End date of the last
page in a band

the chart visible
duration

Print Range, Fit to2getPagesPerBand()
setPagesPerBand(int)

Number of pages per
band

Table, Print table on all
pages

FalsegetRepeatTable()
setRepeatTable
(boolean)

Whether the table is
printed repeatedly on
every page

Print Range, Dates,
From

The chart visible timegetDividerPosition()
setStart(java.util.
Date)

Start date of the first
page

Table, Print <n> table
column(s)

The chart table
column count

getTableColumnCount()
setTableColumnCount
(int)

Number of columns of
the table

The following figure shows the default print settings.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 313

With these settings, you get two pages in the Print Preview window. You can see that the
table, with its six columns, is only displayed on the first page occupying 50% of the page
size.

The following figure shows the second page of the Print Preview dialog.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6314

IlvGanttPrintingController
The printing controller controls the printing process. It initiates the printer job, handles the
Setup and Preview dialog boxes, and configures the document accordingly.

The configuration of the document can be done:

♦ Automatically, by using the following constructor:

public IlvGanttPrintingController(IlvHierarchyChart chart)

In this case, a printable document is created with the pages oriented in landscape, two
pages per band, and all the columns of the Gantt table printed on the first page only
(occupying half of the page size). See Examples.

♦ Through code, by creating a Gantt printable document and setting the parameters as
described in section IlvGanttPrintableDocument.

IlvPrintableGanttSheet
An instance of the class IlvPrintableGanttSheet represents the concrete Gantt sheet
object that can be printed. It extends the IlvPrintableComponent class, which itself is a

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 315

subclass of IlvPrintableObject. IlvPrintableGanttSheet lets you print the IlvGanttSheet
within a region of the printable area of an IlvPage.

The way the Gantt fills the region is determined by the different document properties.
Consequently, you do not need to use the IlvPrintableGanttSheet class directly if you
want to print using the parameters provided by the Setup dialog box. You will need this
class only if you want to control your IlvPrintableDocument object by creating pages and
adding your own IlvPrintableObject instances.

For information on IlvPrintable, IlvPrintableDocument, and IlvPrintableObject, see
The generic printing framework in Advanced Features of IBM® ILOG® JViews Framework.

IlvPrintableTimeScale
An instance of the class IlvPrintableTimeScale represents the concrete time scale object
that can be printed. It also extends IlvPrintableComponent, which, as you saw in
IlvPrintableGanttSheet, is a subclass of IlvPrintableObject. IlvPrintableTimeScale lets
you print a portion of the IlvTimeScale object within an IlvPage.

The way the Gantt fills the region is determined by the different document properties.
Consequently you do not need to use the IlvPrintableTimeScale class directly if you want
to print using the parameters provided by the Setup dialog box. You will need this class only
if you want to control your IlvPrintableDocument by creating pages and adding your own
IlvPrintableObject instances.

For information on IlvPrintableDocument, IlvPrintableComponent, and
IlvPrintableObject, see The generic printing framework in Advanced Features of IBM®
ILOG® JViews Framework.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6316

How it works

A printing task is initiated and processed by an IlvGanttPrintingController instance:

♦ by code, via the method print(boolean), or

♦ from a GUI request using the Setup or Preview dialog, via the methods:

IlvPrintingController.printPreview(Window)

and

IlvPrintingController.setupDialog(Window, boolean, boolean)

When a printing task is initiated, the document associated with the printing controller is
prepared for printing: pages are initialized with the printable objects and added to the
document.

See section IlvGanttPrintingController for a description of how a document is associated
with the IlvGanttPrintingController.

Note:

This section covers:

♦ Handling pages

♦ Populating a page

Handling pages
Pages of a Gantt document are instances of the IlvPage class. They handle a collection of
printable objects, instances of IlvPrintableObject.

Populating a page
Pages created by an IlvGanttPrintableDocument are populated in the createPages()
method. You may override the createPages method if you want to add additional printable
objects to the page.

The createPages implementation uses the following printable objects:

♦ ilog.views.util.print. IlvPrintableTableHeader, if there are columns to print

♦ ilog.views.util.print. IlvPrintableTable, if there are columns to print

♦ ilog.views.gantt.print. IlvPrintableTimeScale

♦ ilog.views.gantt.print. IlvPrintableGanttSheet

♦ ilog.views.util.print. IlvPrintableRectangle

The following figure shows the associations between classes for populating a page.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 317

I B M ® I L O G ® J V I E W S G A N T T 8 . 6318

Printing a Resource Data chart

Explains how to use the printing APIs.

In this section

Introduction
Describes the APIs provided for printing the Resource Data chart in a single or multi-page
document.

The Printing Resource Data chart Example
Describes how to run and use the example.

Printing framework API
Describes the properties of the main classes in the Resource Data chart printing framework.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 319

Introduction

The IlvResourceDataChart class is a UI component designed to display numerical
information derived from resources in an on screen Gantt data model. To distribute and
exchange this numerical information, you may need to print the Resource Data chart on
paper. JViews Gantt provides APIs for printing the Resource Data chart in a single or
multi-page document without having to scroll the user interface.

The IBM® ILOG® JViews Resource Data chart printing framework extends the basic IBM®
ILOG® JViews Charts printing framework to add support to the IlvResourceDataChart
object.

The generic classes of the ilog.views.schedule.print have been subclassed to handle
specific Resource Data chart properties. These classes are the following:

♦ IlvResourceDataChartPrintingController: Controls the printing process.

♦ IlvResourceDataChartPrintableDocument: Defines the printing configuration and
contains the Resource Data chart data you want to print in a set of pages.

♦ IlvPrintableResourceDataChart: Used to print a part of an IlvResourceDataChart
object.

The following figure shows the associations between classes for printing a Resource Data
chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6320

The Printing Resource Data chart Example

The Printing Resource Data chart Example is a simple sample of printing a Resource Data
chart.

To run this example:

1. Open the file:

<installdir>/jviews-gantt86/samples/printResourceData

2. Follow the instructions to run the Resource Data chart Printing sample.

The source code of this sample can be found in:

<installdir>/jviews-gantt86/samples/printResourceData/src/print/
ResourceDataPrintActions.java

To print the Resource Data chart:

1. Create an instance of an IlvResourceDataChartPrintingController:

IlvResourceDataChart chart = ...;
IlvResourceDataChartPrintingController printController =

new IlvResourceDataChartPrintingController(chart);

2. Invoke on that instance the action you want to see performed. For example print(),
setupDialog(), or printPreview() as shown below:

printController.printPreview(JOptionPane.getFrameForComponent(chart));

The following figure shows the result of invoking the printPreview method.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 321

Printing framework API

The following classes are involved in the Resource Data chart printing framework:

♦ IlvResourceDataChartPrintableDocument

♦ IlvResourceDataChartPrintingController

♦ IlvPrintableResourceDataChart

IlvResourceDataChartPrintableDocument
The IlvResourceDataChartPrintableDocument class stores the document print structure
and a set of parameters to customize printing, such as:

♦ The printed data window; that is, the part of the chart to be printed.

♦ How the chart fits on the page.

This class extends IlvChartPrintableDocument and thus supports the properties contained
in that class. It is used to create and populate pages to be printed. It also supports a
convenient way of defining the printed data window using a start date and a duration. The
previous figure shows the customizable properties of this class.

The following table shows the customizable properties of an
IlvResourceDataChartPrintableDocument instance.

DefaultDescriptionProperty

The chart visible timeThe start date of the first printed page. This sets the beginning
of the printed data window.

start

The chart visible duration.The duration to the last printed page. This is used to set the
end of the printed data window.

duration

All these properties are accessible from the JViews Resource Data chart Print Setup
dialog box.You can invoke this dialog box by calling the method setupDialog on
an IlvResourceDataChartPrintingController instance.

Note:

IlvResourceDataChartPrintingController
The IlvResourceDataChartPrintingController class controls the printing process. It
initiates the printer job, handles the Setup and Preview dialog boxes, and configures the
document accordingly. This class extends IlvChartPrintingController. By default it
provides the chart Setup window.

Document configuration can be done in the following ways:

♦ Automatically, by using the following constructor:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6322

public IlvResourceDataChartPrintingController(IlvResourceDataChart chart)

When you call this function a single landscape oriented printable document page is
created. The printed data window size is equal to the visible data ranges on the x-axis.

♦ Programatically, by creating a Resource Data chart printable document and setting the
parameters as described in IlvResourceDataChartPrintableDocument section.

IlvPrintableResourceDataChart
The IlvPrintableResourceDataChart class represents a printable Resource Data chart
object. It extends the IlvPrintableChart class. This class allows you to print the
IlvResourceDataChart within the printable area of an IlvPage.

The way the Resource Data chart fills the region is determined by the document properties.
You do not need to call IlvPrintableResourceDataChart directly to print using parameters
provided by the Setup dialog box. This class is necessary only if you want to control your
IlvPrintableDocument object by creating pages and adding IlvPrintableObject instances.

For information on IlvPrintableDocument, and IlvPrintableObject, see The generic
printing framework in Advanced Features of IBM® ILOG® JViews Framework.

To see how IlvPrintableResourceDataChart is used, see the print implementation in the
Resource Data chart demo. This demo can be found at:

<installdir>/jviews-gantt86/samples/printResourceData

The sample Synchronized Schedule and Load charts shows how to implement a printable
document composed of a Gantt chart on top of a Resource Data chart. This sample can be
found at:

<installdir>/jviews-gantt86/samples/resourceLoadChart

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 323

I B M ® I L O G ® J V I E W S G A N T T 8 . 6324

Critical path analysis

Describes the critical path analysis feature, that is, the process for finding the activities in
the project schedule that, if delayed, will hold up completion of the entire project.

In this section

Critical path analysis overview
Explains the facilities provided by JViews Gantt to compute the critical path automatically
or manually.

Example
Explains how to run the critical path example and describes the code necessary to analyze
the critical path.

Handling errors
Describes the situations that make critical path analysis impossible and explains how to
cope with errors.

© Copyright IBM Corp. 1987, 2009 325

Critical path analysis overview

JViews Gantt provides basic facilities for automatically or manually computing the critical
path for a Gantt data model. Critical path analysis is the process of finding those activities
in the data model that, if delayed, will hinder completion of the entire project schedule.

The ilog.views.gantt.model package contains the following classes that perform critical
path analysis:

♦ IlvCriticalPathCalculator: Performs manual critical path analysis of a Gantt data
model on request.

♦ IlvGanttModelScheduler: Uses an instance of IlvCriticalPathCalculator to perform
automatic critical path analysis of a Gantt data model each time the activities in the
schedule change.

The following figure shows the relationship of these classes.

JViews Gantt performs critical path analysis by rescheduling all activities in the Gantt data
model to occur as soon as possible after the project start time. This is done by modifying
the activity start and end times. Preceding and succeeding constraints are taken into account
in the analysis. Activities that are computed to have a total slack time that is less than a
threshold are considered to be on the critical path. The default threshold value is zero.

Activity reservations are not taken into account and resource leveling is not performed
when critical path analysis is performed.

Note:

In addition to updating each activity's start and end times, critical path analysis sets several
additional properties for each activity. If the default property names conflict with properties
that are already being used in your Gantt data model, property naming methods are available
for both IlvCriticalPathCalculator and IlvGanttModelScheduler. These methods are
used so the class instances can be customized to set different property names for your
activities.

The following table shows the activity properties set by critical path analysis.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6326

Methods to change property nameDefault
activity

property

Property

type

Description

String getEarliestStartProperty()earliestStartDateEarliest start
time

void setEarliestStartProperty(String
propertyName)

String getEarliestFinishProperty()earliestFinishDateEarliest finish
time

void setEarliestFinishProperty(String
propertyName)

String getLatestStartProperty()latestStartDateLatest start time

void setLatestStartProperty(String
propertyName)

String getLatestFinishProperty()latestFinishDateLatest finish
time

void setLatestFinishProperty(String
propertyName)

String getTotalSlackProperty()totalSlackIlvDurationTotal slack

void setTotalSlackProperty(String
propertyName)

String getCriticalProperty()criticalBooleanCritical

void setCriticalProperty(String
propertyName)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 327

Example

A basic sample Java™ application, CriticalPathExample.java, illustrates the critical path
capabilities of the IBM® ILOG® JViews Gantt. Open the sample index file found at:

<installdir>/jviews-gantt86/samples/criticalPath.

The instructions in index.html explain how to run the Critical Path example. The source
code of this example can be found in:

<installdir>/jviews-gantt86/samples/criticalPath/src/criticalPath.

To analyze the critical path:

1. Create an IlvGanttModelScheduler that will automatically analyze the critical path
of a Gantt data model as its activities change:

IlvGanttModel model = ...
IlvGanttModelScheduler scheduler = new IlvGanttModelScheduler(ganttModel)
;
scheduler.setAutoScheduling(true);

2. Use an IlvGanttModelSchedule to manually analyze the critical path of a Gantt data
model in the following way:

IlvGanttModel model = ...
IlvGanttModelScheduler scheduler = new IlvGanttModelScheduler(ganttModel)
;
scheduler.schedule();

3. It is also possible to use an IlvCriticalPathCalculator instance to manually analyze
the critical path:

IlvGanttModel model = ...
IlvCriticalPathCalculator calc = new IlvCriticalPathCalculator(ganttModel)
;
try {
calc.computeSchedule();

} catch (IlvConstraintCycleException ex)
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6328

Handling errors

Critical path analysis cannot be performed if cyclical dependencies exist between the activities
and constraints in your Gantt datamodel. The IlvCriticalPathCalculator.computeSchedule
() method will throw an IlvConstraintCycleException if such a cyclical dependency is
detected. By contrast, the IlvGanttModelScheduler class does not directly throw exceptions
when a cyclical dependency is found. Instead, it notifies its currently registered error handler
of the problem. This allows you to easily implement a custom error handler that can inform
the user in a manner that is appropriate to your application's user interface. The default
error handler simply logs the exception. The following code shows a custom error handler
that displays detected cycles in a Swing JLabel object:

JLabel errorText = ...
IlvGanttModel model = ...
IlvGanttModelScheduler scheduler = new IlvGanttModelScheduler(ganttModel);
scheduler.setErrorHandler(new IlvGanttModelScheduler.ErrorHandler() {
public void error(IlvConstraintCycleException ex,

IlvGanttModel ganttModel) {
errorText.setText("Cycle at " + ex.getActivity().getName());

}
});

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 329

I B M ® I L O G ® J V I E W S G A N T T 8 . 6330

Loading data on demand

Explains the mechanism used to load data into memory as it is needed.

In this section

Vertical load-on-demand
Explains the mechanism for loading data into memory as it is needed.

Horizontal load-on-demand
Explains how a resource-oriented Schedule chart can defer the loading of reservation data
based upon the currently visible time interval.

© Copyright IBM Corp. 1987, 2009 331

I B M ® I L O G ® J V I E W S G A N T T 8 . 6332

Vertical load-on-demand

Explains the mechanism for loading data into memory as it is needed.

In this section

Overview
Explains the difference between horizontal and vertical load-on-demand.

Running the Database Gantt example
Describes how to run the sample.

Understanding the Database Gantt example
Explains the classes and methods used to visualize a read-only relational database containing
scheduling data.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 333

Overview

JViews Gantt provides a mechanism for loading data into memory as it is needed for display.
This mechanism is called load-on-demand and is very valuable when visualizing large
scheduling data sets. The JViews Gantt load-on-demandmechanism consists of two separate
parts. The first is called “vertical load-on-demand” and can be used to defer loading of row
data in both the Gantt and Schedule charts. The second is called “horizontal load-on-demand”
and is available only in the resource-oriented Schedule chart. It allows you to defer loading
of reservation data based upon the current visible time interval being displayed.

Vertical load-on-demand refers to the ability to defer loading of row-oriented information
until it is needed for display. Row-oriented information is activity data for a Gantt chart and
resource data for a Schedule chart. Vertical load-on-demand is facilitated by the design of
JViews Gantt and also requires appropriate design of the IlvGanttModel Implementation.
The default in-memory data model implementation, IlvDefaultGanttModel, does not support
load-on-demand. The Database examples are provided to illustrate the basics of how to
implement a load-on-demand data model.

The classes provided in these examples can be customized for your own use, or they can
serve as a source of ideas for your own implementation:

♦ Running the Database Gantt example explains how to start the example.

♦ Understanding the Database Gantt example explains the design and purpose of the
example.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6334

Running the Database Gantt example

The source code file of the Database Gantt example application can be found in:

<installdir>/jviews-gantt86/samples/databaseGantt/src/database/
DBGanttExample.java

To run the example:

1. Ensure that the Ant utility is properly configured. If not, read Starting the samples
for instructions on how to configure Ant for JViews Gantt.

2. Go to the directory where the sample is installed and type:

ant run

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 335

Understanding the Database Gantt example

The Database Gantt example application visualizes a read-only relational database containing
scheduling data. The Gantt chart is bound to an instance of the DBROGanttModel class. This
data model implementation is designed to query a relational database defined by the
GanttDBRO interface. The GanttModelDBROWrapper class implements the GanttDBRO interface
by simulating a database view of an existing Gantt data model.

The following figure shows the class relationships of the Database Gantt example:

The DBROGanttModel data model implementation is designed to load scheduling data
on-demand from an underlying relational database defined by the GanttDBRO interface. The
GanttDBRO interface defines four inner interfaces that define the record structure of the
activity, resource, constraint, and reservation data.

The following table show the GanttDBRO inner interfaces.

Database record interfaceData model entity

GanttDBRO.ActivityRecordActivities

GanttDBRO.ResourceRecordResources

GanttDBRO.ConstraintRecordConstraints

GanttDBRO.ReservationRecordReservations

Each data model entity has a String lookup key that is unique among its instances. For
activities and resources, this can be the same as the ID property, but this is not a requirement.
The GanttDBRO interface defines the following database query methods:

The following table show the GanttDBRO database query methods.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6336

GanttDBRO methodsData model
entity

String queryRootActivityKey()Activities

ActivityRecord queryActivity(String key)

String queryActivityParent(String key)

String[] queryActivityChildren(String key)

String queryRootResourceKey()Resources

ActivityRecord queryResource(String key)

String[] queryResourceChildren(String key)

String queryResourceParent(String key)

String[] queryConstraints()Constraints

String[] queryConstraintsFromActivity(String activityKey)

String[] queryConstraintsToActivity(String activityKey)

ConstraintRecord queryConstraint(String key)

String[] queryReservations()Reservations

String[] queryReservationsForActivity(String activityKey)

String[] queryReservationsForResource(String resourceKey)

String[] queryReservationsForResource(String resourceKey, Date
start, Date end)

ReservationRecord queryReservation(String key)

The GanttModelDBROWrapper class simulates a GanttDBRO database by creating in-memory
tables and keys from an existing Gantt data model. When you open an XML schedule data
file in the Database Gantt Example, a standard IlvDefaultGanttModel instance is created
from the data. This data model is then wrappered by an instance of GanttModelDBROWrapper
that is bound to a DBROGanttModel instance.

The following figure shows the object relationships of the Database Gantt example.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 337

When an activity row is first displayed in the Gantt chart, the chart calls the method
queryActivityChildren of the database. This is to determine whether the activity is a
parent or a leaf row so that it can be rendered properly. The keys of the activity children
are then cached in the DBROGanttModel. Then, when the activity row is expanded, the chart
will call the queryActivity method of the database for each newly visible child row. This
is to obtain the activity properties that are displayed. You can monitor this behavior by
selecting Display Database Queries from the File menu. This will log all accesses from the
DBROGanttModel to the GanttModelDBROWrapper database implementation onto the system
console.

In order to achieve the same vertical load-on-demand capabilities for your application, you
can create an implementation of the GanttDBRO interface that connects to the source of your
scheduling data. Your scheduling data schema should be organized as four separate tables
for activity, resource, constraint, and reservation records, and each table must have a primary
key string that uniquely identifies each record. You can use the source code for the
GanttModelDBROWrapper class to get ideas on how to design your implementation. Once you
have created a GanttDBRO implementation, you can bind it to a DBROGanttModel instance
and then to your chart, as follows:

IlvGanttModel dbModel = new DBROGanttModel(aGanttDBRO);
aChart.setGanttModel(dbModel);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6338

Horizontal load-on-demand

Explains how a resource-oriented Schedule chart can defer the loading of reservation data
based upon the currently visible time interval.

In this section

Overview
Describes the technology and features used in the example.

Running the Database Schedule example
Explains how to run the Database Schedule example.

Understanding the Database Schedule example
Describes the classes and code used in this example and explains how they relate to the
GUI and user actions.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 339

Overview

Horizontal load-on-demand is a capability of the resource-oriented Schedule chart to defer
loading of reservation data based upon the currently visible time interval. As the chart is
scrolled or zoomed horizontally to display different time intervals, the Schedule chart queries
the data model for new reservations that need to be displayed.

The Database Schedule example application illustrates this feature:

♦ Running the Database Gantt example explains how to start the example.

♦ Understanding the Database Gantt example explains the design and purpose of the
example

I B M ® I L O G ® J V I E W S G A N T T 8 . 6340

Running the Database Schedule example

The source code file of the Database Schedule example application is named
DBScheduleExample.java and can be found in:

<installdir>/jviews-gantt86/samples/databaseSchedule/src/database/
DBScheduleExample.java

To run the example,

1. Ensure that the Ant utility is properly configured.

If not, see the Starting the samples for instructions on how to configure Ant for JViews
Gantt.

2. To run the example as an application, go to the directory where the example is installed
and type:

ant runschedule

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 341

Understanding the Database Schedule example

The Database Schedule example application visualizes the same relational database of
scheduling data as theUnderstanding the Database Gantt example. Therefore, the Schedule
chart performs vertical load-on-demand of resource-oriented row information in the same
manner that the Gantt chart defers loading activity-oriented row information. In addition,
the Database Schedule example application illustrates the horizontal load-on-demand
capability of the Schedule chart.

Here are the IlvScheduleChart methods that control this feature:

♦ boolean isReservationCachingEnabled()

♦ void setReservationCachingEnabled(boolean enabled)

♦ void setReservationCachingEnabled(boolean enabled)

♦ void setReservationCachingEnabled(boolean enabled)

♦ void setReservationCachingEnabled(boolean enabled)

♦ void setReservationCachingEnabled(boolean enabled)

By default, the reservation caching property of an IlvScheduleChart is disabled. The
Database Schedule example explicitly enables reservation caching in its createGanttModel
method:

schedule.setReservationCachingEnabled(true)

Once reservation caching is enabled, the Schedule chart uses the values of its
reservationCacheLoadThreshold and reservationCacheLoadFactor properties to determine
how often and by how much it should query the data model for reservations that need to be
displayed as the chart is scrolled horizontally. Both values are floating point numbers that
are multiplied by the current visible duration displayed by the chart. The load threshold
indicates how far the chart must be scrolled before it queries the data model for fresh
reservations to display. The load factor determines the time duration that the chart will use
when it queries the data model for new reservations.

The following figure shows the relationship between these settings,

I B M ® I L O G ® J V I E W S G A N T T 8 . 6342

The Schedule chart is initially displayed with a visible duration of 4 days, from November 20
through November 23. The chart reservationCacheLoadThreshold is set to its default value
of 0.25 and the reservationCacheLoadFactor is set to its default value of 1.5. When the
chart is first displayed, it will query the data model for all reservations assigned to the visible
resource rows and for which the reserved activity intersects the time interval of November
14 through November 29, a total of 16 days. The chart does this by invoking the method
IlvGanttModel.reservationIterator (IlvResource resource, IlvTimeInterval
interval). The time interval for which the chart queries the data model is computed as:

from: visibleStartTime – (visibleDuration * reservationCacheLoadFactor)

to: visibleEndTime + (visibleDuration * reservationCacheLoadFactor)

If the reservationCacheLoadFactor is set to its minimum value of 0, the chart will only
query the data model for the exact visible time interval. The larger the load factor, the larger
the time span that the chart will query the data model each time. In the above example, the
reservations named “Detailing”, “Burn-in Testing”, and “Write up requirements” have all
been loaded into the chart’s internal cache, even though “Detailing” and “Burn-in Testing”
are not currently visible. The reservation named “Prepare Demo”, to the far right side, is
not currently cached by the chart because it is outside the computed time interval.

The Schedule chart reservationCacheLoadThreshold determines the trigger point at which
the chart will query the data model for fresh reservations to display. In this example, the
default value of 0.25 multiplied by a visibleDuration of 4 days gives a trigger threshold
of 1 day. This means that when the chart is scrolled horizontally to within 1 day of the time
span currently cached, the chart will query the data model for new reservations to display
based upon the reservationCacheLoadFactor formula presented earlier.

Here is the sequence of events in more detail:

1. The chart is initially displayed with a visible time interval of November 20 through
November 23, a total of 4 days. The chart caches reservations for the time interval of
November 14 through November 29, a total of 16 days.

2. The chart is scrolled forward in time to the 4 day visible time interval of November 25
through November 28.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 343

3. The chart is scrolled forward a bit more, so that the beginning of November 29 just
becomes visible. This triggers the reservationCacheLoadThreshold and the chart
queries the datamodel for the reservations based upon the reservationCacheLoadFactor
and the currently visible time interval. This will be the 16 days centered around
November 25 throughNovember 29, and is computed to be the time interval of November
19 through December 4. However, the reservations for November 19 through November
29 are already cached by the chart. Therefore, the chart only queries the data model
for the reservations in the time interval of November 30 through December 4.

The same logic is applied to load reservations from the data model when the Schedule chart
is scrolled backwards in time, is zoomed, or the visible time interval is changed by invoking
the appropriate APIs. You can monitor how the Database Schedule example application
queries the data model by selecting Display Database Queries from the File menu. This will
log all queries to the system console.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6344

Document type definition for SDXL

The DTD used is the following:

<!--
This is the DTD for IBM® ILOG JViews Schedule Data Exchange Language.

Version 5.5, Dec 20, 2002
-->

<!-- ISO date format -->
<!ENTITY % Datetime "CDATA">

<!ENTITY % Text "CDATA">

<!-- Must be an activity ID in the document -->
<!ENTITY % ActivityID "CDATA">

<!-- Must be an resource ID in the document -->
<!ENTITY % ResourceID "CDATA">

<!ENTITY % ConstraintType "(Start-Start|Start-End|End-Start|End-End)">

<!ELEMENT activity (activity|property)*>
<!ATTLIST activity

id ID #REQUIRED
name %Text; #REQUIRED
start %Datetime; #REQUIRED
end %Datetime; #REQUIRED
info %Text; #IMPLIED >

<!ELEMENT activities (activity)+>
<!ATTLIST activities

dateFormat %Text; #IMPLIED >

<!ELEMENT resource (resource|property)*>
<!ATTLIST resource

id ID #REQUIRED
name %Text; #REQUIRED
quantity %Text; #IMPLIED
info %Text; #IMPLIED >

<!ELEMENT resources (resource)+>
<!ATTLIST resources>

<!ELEMENT reservation (property)*>
<!ATTLIST reservation

activity %ActivityID; #REQUIRED
resource %ResourceID; #REQUIRED
info %Text; #IMPLIED >

<!ELEMENT reservations (reservation)+>
<!ATTLIST reservations >

© Copyright IBM Corp. 1987, 2009 345

<!ELEMENT constraint (property)*>
<!ATTLIST constraint

from %ActivityID; #REQUIRED
to %ActivityID; #REQUIRED
type %ConstraintType; #REQUIRED
info %Text; #IMPLIED >

<!ELEMENT constraints (constraint)+>
<!ATTLIST constraints >

<!ELEMENT title (#PCDATA)>
<!ELEMENT desc (#PCDATA)>

<!ELEMENT schedule (title?, desc?, resources?, activities?,
constraints?, reservations?) >

<!ATTLIST schedule
version %Text; #REQUIRED >

<!ELEMENT property (#PCDATA)>
<!ATTLIST property

name %Text; #REQUIRED
javaClass %Text; #IMPLIED >

I B M ® I L O G ® J V I E W S G A N T T 8 . 6346

A
abstract interfaces 14
AbstractExample class 296
AbstractGanttExample class 182
activities

and reservations 34
changing start/end time 256, 258
creating using the mouse 260
CSS pseudoclasses 134
expanding/collapsing 190
ID selectors 131
in the Gantt sheet 196, 198
populating the data model 27
querying from JDBC 67
rendering 197
root, parent, leaf 27
rows 198
styling 125

activity data
load on demand 334
record structure 336

activity element type 125
activity factory 30, 260
activity graphic

popup menus 262
activity graphics

description 197
layout 205
moving 256
resizing 258
selecting 255
stacking order 205

activity renderers 72
customizing 221
factory 223
target objects 128

activityProperty function 146

addResource method
IlvGanttModel interface 28

analysis
critical path 326

Apache Xerces parser implementation 39
applet, creating 282, 296
architecture

of a data model 19
of Gantt chart and Schedule chart beans 173
of Resource Data chart 268
of the Gantt sheet 196

attribute matching 87
CSS2 syntax 98
dynamic behavior 87

AWT
packages, importing 182

B
background color property 176
Bean properties

for IlvBasicActivityBar 125
for IlvChart.Area 151
for IlvConstraintGraphic 141
for IlvGrid 157
for IlvResourceDataChart 148
for IlvScale 155
for IlvTimeScale 155
for the point model object type 162
for the series model object type 162
in the CSS engine 86
property editorsetAsText method 86

Beans
creating, CSS recursion 92
Gantt chart and Schedule chart 173

using, basic steps 177
Resource Data chart 267
using in applets 296

bounded, scroll bar operation mode 192

© Copyright IBM Corp. 1987, 2009 347

I N D E X

Index

C
Cascade layout, in Schedule chart 206
cascading

CSS2 syntax 98
definition 82

cell editor 244
cell renderer 243
cellUpdated method

IlvAbstractJTableColumn class 244
changing time indicators 203
changing visibility

of time indicators 203
chart area component

styling, Bean properties 151
chart CSS element type 148
chart grid, styling 157
chart legend, styling 152
chart renderer, styling 154
chart scales, styling 155
chartArea CSS element type 151
chartGrid CSS element type 157
chartLegend CSS element type 152
chartRenderer CSS element type 154
chartScale CSS element type 155
class loader 299
class property name 88
class relationships

in Database Gantt example 336
classes

critical path 326
collapsing activities and resources 190
color, Gantt Bean property 176
combinator, in selector 80
comparing attribute patterns 98
connecting to data

custom data models 72
Swing TableModel instances 49

complex mappings 62
dynamic behavior 60
read-write support 59
reading data from CSV files 61

via JDBC 65
XML data 37

constraint
popup menus 262

constraint CSS element type 137
constraint data

record structure 336
constraint factory 33, 261
constraint graphics

not movable 256
selecting 255
target objects, Bean properties 141

constraints
automatic removal 32

creating 32
using the mouse 261

CSS pseudoclasses 145
in the activity Gantt sheet 198
in the Gantt sheet 196
querying from JDBC 67
representation 198
styling 137

createActivity method
IlvActivityFactory interface 30

createConstraint method
IlvConstraintFactory interface 33

createGanttModel method
IlvScheduleChart class 342

createPages method
IlvGanttPrintableDocument class 317

createReservation method
IlvReservationFactory interface 35

createResource method
IlvResourceFactory interface 30

creating
time indicator 200

creating current time indicators 202
critical path

analysis 326
classes 326
errors 329
example 328
rescheduling 326
threshold 326

CSS
!important token 82
and CSS2 98
applying to Java objects 83
class property name 88
customizing charts with 75
data model 87

user-defined types 87
origins 79
property 108
recursion 91
renderer target objects 128
styling constraints 137
tag 87
transition symbols 72
user-defined properties 107
W3C 79

CSS classes 87
and object IDs 88
for IlvGeneralActivity 133
for IlvGeneralConstraint 144
for Resource Data chart data 164

CSS element types
activity 125
chart 148

I B M ® I L O G ® J V I E W S G A N T T 8 . 6348

chartArea 151
chartGrid 157
chartLegend 152
chartScale 155
constraint 137
for Gantt and Schedule chart components
118
for Resource Data chart components 148
number, for rule priority 81
point 161
syntax, use of quotes 98

CSS engine 86
CSS examples 17

Gantt chart and Schedule chart 105
Resource Data chart 111

CSS model object types
series 161

CSS pseudoclasses
for activities 134
for constraints 145

CSS syntax
cascading 82
classes and object IDs 88
declarations 81
inheritance 82
presentation 80
priority 81
selectors 80

minimal building blocks 72
using in style sheets 77

CSS2 (Cascading Style Sheet level 2) 78
CSS2 syntax 98

attribute matching 98
cascading 98
empty string 99
enhancement 98
null value 99
pseudoclasses 89, 98
pseudoelements 89, 98

CSV (Comma-Separated Values) files, reading Gantt
data from 61
custom data models, implementing 72
custom functions

in expressions 95
registering 97

custom icon 218
CustomActivity class

instantiating 220
CustomActivityCompositeGraphicRendererFactory
example class for composite graphics 236
CustomActivityRenderer.java file 224
CustomGanttExample.java sample file 216
customizable properties

time indicator 202
customizing

activity rendering 221
charts

applying a CSS 108
Gantt charts 183, 215
Gantt data model 219
SDXL readers and writers 42
table columns 239
time indicator 202

customizing default renderer
time indicator 200

customizing time indicator
graphic properties 202

CustomLeafActivityCompositeGraphic example
class for composite graphics 232
CustomLeafActivityCompositeGraphicRenderer
example class for composite graphics 234
CustomParentActivityCompositeGraphic example
class for composite graphics 232
CustomParentActivityCompositeGraphicRenderer
example class for composite graphics 234

D
data

reading
from CSV files 61
from Swing TableModel instances 49
from XML files 37
via JDBC 65

rendering in Gantt sheet 198
styling

Gantt chart and Schedule chart 123
Resource Data charts 159

data model
architecture 19
binding Gantt chart components 19
binding the Beans 183
creating 182
custom, implementing 72
customizing 219
definition 14
for CSS 87
implementations

abstract 16
concrete 17
connection to a JDBC database 18
connection to Swing TableModel
instances 18
default 17
simple 17

indirection 89
lookup keys for entities 336
populating 26

from Swing TableModel instances 49
from XML files 37
using JDBC queries 67

data nodes 242

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 349

visibility states 190
data series (Resource Data charts)

properties 168
rendering 85

database examples 16
Gantt chart

class relationships 336
object relationships 336
running 335
understanding 336

Schedule chart
running 340
understanding 342

Date Java class 20
declarations

CSS syntax 81
inheritance 82
style rule 78, 80

default graphic
time indicator 200

default readers and writers 21
default renderer

time indicator 200
DefaultTableModel Swing class 59
DefaultTreeCellRenderer Swing API 241, 243
defining a renderer

time indicator 200
defining new renderer

time indicator 200
deploying

Gantt application 186
depopulating

in-memory data model 26
divider position

printable document 312
draw method

IlvActivityRenderer interface 197
Duration

printable document 322
duration

time scale 213
duration of an activity

API 20
dynamic behavior

attribute matching 87

E
Eclipse Rich Client Platform 297

class loader 299
runtime plugin 297

element types
See CSS element types

emphasis
time scale 213

empty string
CSS2 syntax 99

enableAWTThreadRedirect method
IlvEventThreadUtil class 301

end date, printable document 312
end time

changing 256, 258
creating a constraint 261
drawing a constraint 261

end-to-end, constraint type 32
end-to-start, constraint type 32
errors

critical path 329
errors in CSS 94
EventQueue class

isDispatchThread method 301
example

critical path 328
examples

CSS 17
Custom Gantt chart 216
database 16, 72
Database Gantt 335
Database Schedule 340
Filter 72
Gantt chart and Schedule chart 179
Gantt CSS and Schedule CSS 105
Gantt printing 310
harbor.mdb 69
Resource Data CSS 111

expanding activities and resources 190
expressions 93

CSS 94

F
factories

activities 30
constraints 33
custom activity renderer 223
reservations 35
resources 30

font
property

for Gantt Beans 176
foreground color

property
for Gantt Beans 176, 188

formatDate function 135
formatDuration function 135
From activity 261
functions

activityProperty 146
custom 95
formatDate and formatDuration 135
standard 94

G
Gantt application, deploying 186

I B M ® I L O G ® J V I E W S G A N T T 8 . 6350

Gantt chart
activity Gantt sheet 198
adding to the user interface 184
and styling 85
and vertical load-on-demand 333
binding to the data model 19
class overview 10
creating constraints 261
CSS example 105
customizing 183, 215

with style sheets 118
example 180
interacting with 253
moving activity graphics 256
popup menus 262
scrolling 192
table columns 242
using 187

Gantt chart bean
binding to the data model 183
creating 183
example 180
using 177
visual properties 188

Gantt Data Model
connecting to business data 272
instantiating 272

Gantt data model 85
binding instances to a chart 272
binding to a chart 272
customizing 219
JDBC read-only mode 70
JDBC read-write mode 70
passing JDBC data to 70
Resource Data chart 268

Gantt sheet 195
adding time indicator 203
architecture 196
interacting with, using the mouse 259
rendering data 198
scrolling 192

ganttRowIterator method
IlvGanttSheet class 196

GenericEventListener interface
inform method 244
introduction 244

getActivityFactory method
IlvHierarchyChart class 30

getActivityRenderer method
IlvActivityGraphic class 197

getBounds method
IlvActivityRenderer interface 224

getColumnClass method
TableModel class 54

getColumnName method

TableModel class 54
getConstraint method

IlvConstraintGraphic class 198
getDividerPosition method

IlvGanttPrintableDocument class 312
getEnd method

IlvGanttPrintableDocument class 312
getGanttModel method

IlvHierarchyChart class 19
getGanttRowCount method

IlvGanttSheet class 196
getGanttSheet method

IlvHierarchyChart class 176
getID method

IlvSDMModel interface 89
getMax/getMinVisibleTime methods

IlvHierarchyChart class 192
getName method

IlvDataSet interface 162
getPagesPerBand method

IlvGanttPrintableDocument class 312
getRepeatTable method

IlvGanttPrintableDocument class 312
getReservation method

IlvReservationGraphic class 198
getReservationCacheLoadFactor method

IlvScheduleChart class 342
getReservationCacheLoadThreshold method

IlvScheduleChart class 342
getRootActivity method

IlvGanttModel interface 29
getRootResource method

IlvGanttModel interface 29
getSelectedGraphics method

IlvHierarchyChart class 255
getStart method

IlvGanttPrintableDocument class 312
getTable method

IlvHierarchyChart class 176, 247
getTableColumnCount method

IlvGanttPrintableDocument class 312
getting current time indicator 203
getting specific time indicator 203
getting time indicators 203
getValue method

IlvJTableColumn interface 243
getVisibleGanttRowAt method

IlvGanttSheet class 196
getVisibleGanttRowCount method

IlvGanttSheet class 196

H
hiding the table view 176
hierarchical structure

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 351

expanding/collapsing 190
of activities 27
of resources 27

horizontal load-on-demand
description 340

horizontal scrolling 192

I
icon

custom 218
tree column 241

ID selectors
#timeScale 155
#xGrid 157
#yGrid 157
for activities 131
yScale 155

identifiers of objects
and CSS classes 88

IlvAbstractGanttModel class 26
IlvAbstractJTableColumn class 243

cellUpdated method 244
IlvAbstractUserDefinedProperty class 249, 250
IlvActivity interface 10, 14, 27, 51, 128, 260
IlvActivityCompositeGraphicRenderer class 222,
234
IlvActivityCompositeRenderer class 92, 128, 222,
223, 224
IlvActivityFactory interface 30

createActivity method 30
IlvActivityGraphic class

description 197
getActivityRenderer method 197
setActivityRenderer method 197

IlvActivityGraphicMoveInteractor class 256
IlvActivityGraphicRenderer class 128, 222, 234
IlvActivityLayout interface 205
IlvActivityRenderer interface 87, 88, 124, 128

description 197
draw method 197
getBounds method 224
isRedrawNeeded method 224

IlvActivityRendererFactory interface 88, 125,
128
IlvActivitySummary class 223
IlvActivityUserDefinedProperty class 250
IlvAxis class 271
IlvBasicActivityBar class 92, 125, 134
IlvBasicActivityLabel class 128
IlvBasicActivitySymbol class 128
IlvBasicTimeScaleVisibilityPolicy class 211
IlvChart class 268
IlvChart instance 271
IlvChartRenderer class 168
IlvChartRenderer implementation 278

IlvConfigurableTableColumn class 249, 251
IlvConstraint interface 10, 14, 32, 198, 261
IlvConstraintFactory interface

createConstraint method 33
description 33

IlvConstraintGraphic class 87, 88, 124, 137, 141
description 198
getConstraint method 198

IlvConstraintGraphicFactory interface 88, 137,
141
IlvConstraintType class 32, 54
IlvConvert class 250
IlvCriticalPathCalculator class 326
IlvCSSFunction class 95
IlvCurrentTimeIndicator class 201
IlvDataAnnotation class 166
IlvDataSet interface 268

getName method 162
IlvDataSource interface 271
IlvDataValue class 277
IlvDayView class 10, 19
IlvDefaultGanttModel class 334
IlvDefaultTableCellRenderer class 251
IlvDuration class 20, 94
IlvEventThreadUtil class

enableAWTThreadRedirect method 301
setAWTThreadRedirect method 301

IlvFilterGanttModel class 72
IlvFixedTimeIndicator class 201
IlvFormattedNumberProperty class 224
IlvGanttChart class 102, 174, 177, 185, 190, 248

printing 308
using in applets 296

IlvGanttConfiguration class 175
IlvGanttDocumentReader class 47

readGanttModel method 47
IlvGanttDocumentWriter class

writeGanttModel method 44
IlvGanttGridRenderer interface 271, 279
IlvGanttModel implementation 270, 272
IlvGanttModel interface 28, 183, 268, 270, 282

addResource method 28
definition 14
design for load-on-demand 334
getRootActivity method 29
getRootResource method 29
instantiating 177
moveActivity method 29
moveResource method 29
removeActivity method 29
removeResource method 29
setRootActivity method 29
setRootResource method 29

IlvGanttPrintableDocument class

I B M ® I L O G ® J V I E W S G A N T T 8 . 6352

createPages method 317
description 312
getDividerPosition method 312
getEnd method 312
getPagesPerBand method 312
getRepeatTable method 312
getStart method 312
getTableColumnCount method 312
setDividerPosition method 312
setEnd method 312
setPagesPerBand method 312
setRepeatTable method 312
setStart method 312
setTableColumnCount method 312

IlvGanttPrintingController class 310
description 315

IlvGanttReaderException class 48
IlvGanttRow class 196
IlvGanttSelectInteractor class 256
IlvGanttSheet

controlling time indicators 203
methods controlling time indicators 203

IlvGanttSheet class 175, 203
description 196
ganttRowIterator method 196
getGanttRowCount method 196
getVisibleGanttRowAt method 196
getVisibleGanttRowCount method 196

IlvGanttStreamWriter class 45
IlvGanttTimeScale class 208, 279
IlvGeneralActivity class 88, 132, 248, 250

CSS classes 133
description 107, 113, 219
properties 132
pseudoclasses 134

IlvGeneralActivity.Factory class 30
IlvGeneralConstraint class 88, 107, 113, 219

CSS classes 144
properties 143

IlvGeneralConstraint.Factory class 33
IlvGeneralPath class 200, 202
IlvGeneralReservation class 107, 113, 219
IlvGeneralReservation.Factory class 35
IlvGeneralResource class 107, 113, 162, 164, 219,
248, 250
IlvGeneralResource.Factory class 30
IlvGraphic

new renderer for time indicator 200
IlvGraphic class 88, 128, 200, 201, 222
IlvGrid class 271
IlvHierarchyChart class 30, 59, 97, 102, 104

getActivityFactory method 30
getGanttModel method 19
getGanttSheet method 176

getMax/getMinVisibleTime methods 192
getSelectedGraphics method 255
getTable method 176, 247
setActivityFactory method 30
setDisplayingConstraints method 198
setGanttModel method 19, 176
setMax/setMinVisibleTime methods 192
static constants 193

IlvHierarchyNode interface 27, 251
IlvJDBCGanttModel class 14, 51, 66
IlvJTable class 175, 251
IlvJTableColumn interface 251

getValue method 243
implementation 242
isCellEditable method 243
setValue method 243

IlvLegend class 152
IlvLine class 200
IlvLinearTimeConverter interface 213
IlvMakeActivityInteractor class 260
IlvMakeConstraintInteractor class 261
IlvManagerView class

pushInteractor method 255, 260
IlvMonthView class 10, 19
IlvPrintableGanttSheet class 315
IlvPrintableResourceDataChart class 320

description 323
IlvPrintableTimeScale class 316
IlvPrintingController class

print method 317
printPreview method 317
setupDialog method 317

IlvReservation interface 10, 14, 34, 198, 260
IlvReservationDataPolicy interface 277
IlvReservationFactory interface

createReservation method 35
description 35

IlvReservationGraphic class
description 198
getReservation method 198

IlvReservationLoadData 277
IlvResource interface 10, 14, 27
IlvResourceDataChart class 102, 268, 272, 279

printing 320
using in applets 296

IlvResourceDataChartPrintableDocument class
320

description 322
IlvResourceDataChartPrintingController class
320

description 322
IlvResourceDataSet class 87, 268, 277
IlvResourceFactory interface 30
IlvResourceUserDefinedProperty class 250

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 353

IlvRowSetTableModel class 51
IlvScale class 155
IlvScheduleChart class 30, 97, 102, 177, 185, 190,
248, 342

createGanttModel method 342
getReservationCacheLoadFactor method
342
getReservationCacheLoadThresholdmethod
342
isReservationCachingEnabled method 342
printing 308, 309
setReservationCacheLoadFactor method
342
setReservationCacheLoadThresholdmethod
342
setReservationCachingEnabledmethod 342
using in applets 296

IlvScheduleDataChart class 102, 268
setStyleSheets method 104

IlvSDMModel interface
getID method 89

IlvSingleChartRenderer class
isFilled method 165

IlvStairChartRenderer class 168, 278
IlvStringColumn class 251
IlvStringProperty interface 249, 250, 251
IlvStylable interface 102
IlvSwingControl class 297
IlvSwingUtil class

isDispatchThread method 301
IlvTableActivity class 14, 52
IlvTableConstraint class 14, 52
IlvTableGanttModel class 14, 51
IlvTableModelEvent class 60
IlvTableReservation class 14, 53
IlvTableResource class 14, 52
IlvTextFieldTableEditor class 251
IlvTimeConverter interface 213
IlvTimeIndicator class 200, 201
IlvTimeInterval class 20, 21
IlvTimeScale class 155, 175, 208, 279
IlvTimeScale.html class 279
IlvTimeScaleRow class 208
IlvTimeScaleVisibilityPolicy interface 210
IlvTimeScrollable interface 279
IlvTimeWidthVisibilityPredicate class 211
IlvTreeColumn class 241
IlvUserPropertyHolder interface 107, 113, 124,
132, 143, 162, 164, 250
IlvVisibilityPredicate interface 211
IlvVisibleTimeScaleRows class 211
IlvWeekendGrid 271, 279
IlvWeekTimeScaleRow class 208
implementations

general
referencing user-defined properties 107

implementations of data model
abstract 16
concrete 17
connection to a JDBC database 18
connection to Swing TableModel instances
18
default 17
simple 17

import statement 82
in-memory data model

depopulating 26
inform method

GenericEventListener interface 244
inherit token 82
inheritance

CSS syntax 82
of declarations 82

input source
creating 46
parsing 46

interactors
creating a constraint 261
creating an activity or reservation 30, 260
moving a graphic 256
selecting a graphic 255

isCellEditable method
IlvJTableColumn interface 243

isDispatchThread method
EventQueue class 301
IlvSwingUtil class 301

isEventDispatchThread method
SwingUtilities class 301

isRedrawNeeded method
IlvActivityRenderer interface 224

isReservationCachingEnabled method
IlvScheduleChart class 342

J
JApplet Swing API 182
JApplet Swing class 296
Java objects

applying CSS to 83
attribute matching 98

JAXP 39
JDBC

retrieving data via 65
JLabel Swing API 242
JTable Swing API 176
JTextField Swing API 242
JTree Swing API 241
JViews Charts

compared to Resource Data chart 271

I B M ® I L O G ® J V I E W S G A N T T 8 . 6354

L
leaf activity 27

rendering 218, 223
leaf activity pseudoclass 134
leaf resource 27
levels

for SDXL readers and writers 39
literal

CSS declaration 86
load factor 342
load threshold 342
load-on-demand

database query methods 336
design 334
horizontal 340
introduction 334
vertical 333

M
main method 182
memory

popup menus 262
milestone activity pseudoclass 134
minimal building blocks of a selectors 72
model indirection 89
model property name 89
model-view separation 72
move interactor 256
moveActivity method

IlvGanttModel interface 29
moveResource method

IlvGanttModel interface 29
moving graphics 256
multiple selection 255

N
nonlinear

time scale 213
null value

CSS2 syntax 99
number of columns

printable document 312

O
object identifiers 88
object relationships

database Gantt example 336
output stream

creating 44
writing a document to 45

P
pages per band

printable document 312
parent activity 27

rendering 223
parent activity pseudoclass 134

parent resource 27
parsing an input source 46
point CSS element type 161, 162
popup Menus 262
popup menus

activity graphic 262
constraint 262
Gantt chart 262
memory 262
register 262

Pretty layout, in Schedule chart 205
print method

IlvPrintingController class 317
printable document

description 312
divider position 312
Duration 322
end date 312
number of columns 312
pages per band 312
repeat table 312
Start date 322
start date 312

printing 308
examples

resource data chart 321
Gantt example 310
printing framework 309

printing controller
configuration 315
description 315

printing framework
Gantt 309
resource data chart 320

printPreview 321
printPreview method

IlvPrintingController class 317
priority

CSS syntax 81
priority property

user-defined 219
PriorityColumn class 242, 247
properties

CSS 108
customizing time indicator graphic 202
of IlvGeneralActivity 132
tags 88
user-defined for activities 107
user-defined in CSS 107

pseudoclasses 98
CSS2 syntax 89
divergences from CSS2 98
for activities 134
for constraints 145

pseudoelements

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 355

CSS2 syntax 89
divergences from CSS2 98

pushInteractor method
IlvManagerView class 255, 260

Q
queries to a JDBC database 67

R
RCP 297
read-only database connection

Gantt data model 70
read-write database connection

Gantt data model 70
readers, SDXL 39

customizing 42
default 21
levels 39

readGanttModel method
IlvGanttDocumentReader class 47

record structure 336
recursion

CSS 91
refjavagantt

IlvSimpleCompositeChartRenderer 278
register

popup menus 262
registering custom functions 97
removeActivity method

IlvGanttModel interface 29
removeResource method

IlvGanttModel interface 29
renderers

to style activities 72
rendering data

Gantt sheet 198
repeat table

printable document 312
representing current time

time indicator 201
representing specific time

time indicator 201
rescheduling

critical path 326
reservation data

load on demand 340
record structure 336

reservation factory 35, 260
reservation graphics

description 198
duplicating 257
layout 205
moving 256
resizing 258
selecting 255

reservations

creating 34
creating using the mouse 260
in the Gantt sheet 196
in the resource Gantt sheet 198
querying from JDBC 68

resolving URLs 89
Resource Data

computing 272
displaying 272

resource data
computing 277
displaying 278
load on demand 334
record structure 336

Resource Data chart
Bean 267
class overview 10
compared to IBM® ILOG JViews Charts 271
CSS element types 148
CSS examples 111
data

selector patterns 161
styling 159

styling 85, 147
synchronizing 273
x-axis 279
x-grid 279

Resource Data chart bean
using 267
using, basic steps details 270

Resource Data charts
architecture 268
definition 267

resource display modes 275
resource factory 30
resources

as rows in the Gantt sheet 198
displaying 275
expanding/collapsing 190
Gantt sheet 198
populating the data model 27
querying from JDBC 67
root, parent, leaf 27
selecting for display 275

root activity/resource 27
rows

changing height 184
data, load on demand 334
description 196
layout of reservation graphics 205
of a time scale

creating 208
visibility 211

visibility 190
rules

I B M ® I L O G ® J V I E W S G A N T T 8 . 6356

See style rules
runtime plugin 297

S
Scalable Vector Graphics (SVG)

supported/unsupported CSS properties 301
Schedule chart

and horizontal load-on-demand 340
and styling 85
class overview 10
creating activities and reservations 260
CSS example 105
customizing with style sheets 118
example 185
Gantt sheet 198
moving reservation graphics 256
scrolling 192
table columns 242
using 187

Schedule chart bean
example 185
using 185

basic steps 177
visual properties 188

schedule data
serializing 43

scheduling data
for Gantt and Schedule chart CSS examples
107
for the Resource Data chart CSS example
113

scrolling in the Gantt sheet
horizontally 192
vertically 193

SDXL
creating

a document 43
a stream writer 44
an IlvGanttDocumentWriter 44
an input source 46
an output stream 44

design criteria 39
overview 39
parsing an input source 46
readers and writers

API f 39
customizing 42
default 21

reading
a Gantt data model 47
from a file 43, 46

scenarios 39
writing

a document to an output stream 45
a Gantt data model to a document 44

selected activity pseudoclass 134

selection interactor
creating a move interactor 256
description 255
installing 255

selectors
combinator 80
CSS 80
element patterns

Resource Data chart data 161
minimal building blocks 72
style rule 78, 80
transitions 87

serializing schedule data 43
series CSS element type 162
series CSS model object type 161
setActivityFactory method

IlvHierarchyChart class 30
setActivityRenderer method

IlvActivityGraphic class 197
setAsText method

property editor of Bean property 86
setAWTThreadRedirect method

IlvEventThreadUtil class 301
setDisplayingConstraints method

IlvHierarchyChart class 198
setDividerPosition method

IlvGanttPrintableDocument class 312
setEnd method

IlvGanttPrintableDocument class 312
setGanttModel method

IlvHierarchyChart class 19, 176
setMax/setMinVisibleTime methods

IlvHierarchyChart class 192
setPagesPerBand method

IlvGanttPrintableDocument class 312
setRepeatTable method

IlvGanttPrintableDocument class 312
setReservationCacheLoadFactor method

IlvScheduleChart class 342
setReservationCacheLoadThreshold method

IlvScheduleChart class 342
setReservationCachingEnabled method

IlvScheduleChart class 342
setRootActivity method

IlvGanttModel interface 29
setRootResource method

IlvGanttModel interface 29
setStart method

IlvGanttPrintableDocument class 312
setStyleSheets method

IlvScheduleDataChart class 104
setTableColumnCount method

IlvGanttPrintableDocument class 312
setupDialog method

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 357

IlvPrintingController class 317
setValue method

IlvJTableColumn interface 243
sharing an empty string 99
showing the table view 176
Simple layout, in Schedule chart 205
specificity of style rules 81
standard functions

in expressions 94
Standard Widget Toolkit 297
Start date

printable document 322
start date

printable document 312
start time

changing 256, 258
creating a constraint 261
drawing a constraint 261

start-to-end, constraint type 32
start-to-start, constraint type 32
stream writer, creating 44
style rules

declaration 78, 80
example 78
general template 78
selector 78, 80
specificity and priority 81
syntax 80
two kinds 117

style sheets
and style rules 80
applying and disabling styles 101
example of a simple one 108
for Gantt and Schedule chart components
118
for Resource Data chart components 148
specifying rendering attributes

of activities and constraints 124
of Resource Data chart data series 160

syntax 78, 80
styles

applying 102
disabling 104

styling
activities 125

ID selectors 131
renderer target objects 128

chart area component 151
chart grid 157
chart legend 152
chart renderer 154
chart scales 155
constraints 137

graphic target objects 141
examples 75

Gantt and Schedule chart components 118
Gantt chart and Schedule chart data 123
Resource Data chart

components 147
data 159

Swing API
DefaultTreeCellRenderer 241, 243
IlvJTable 176
importing packages 182
JApplet 182, 296
JLabel 242
JTextField 242
JTree 241
TableColumn 242
TreeCellRenderer interface 241

Swing classes
DefaultTableModel 59, 60
TableModel 51

SwingUtilities class
isEventDispatchThread method 301

syntax enhancement
CSS2 syntax 98

T
table columns

customizing 239
TableColumn Swing API 242
TableModel Swing class 51

getColumnClass method 54
getColumnName method 54

tag
CSS data model 87

tags property
for identifying CSS classes 88
of resources 164

threshold
critical path 326

Tile layout, in Schedule chart 206
time indicators

adding to Gantt sheet 203
changing 203
changing their visibility 203
creating 200
creating current 202
customizable properties 202
customizing 202
customizing default renderer 200
default graphic 200
default renderer 200
defining a renderer 200
defining new renderer 200
getting all time indicators 203
getting current time indicator 203
getting specific 203
IlvGraphic as new renderer 200

I B M ® I L O G ® J V I E W S G A N T T 8 . 6358

representing current time 201
representing specific time 201

time intervals
changing 192
computing 342
definition 21

time scale
changing rows 208
create 213
duration 213
emphasis 213
nonlinear 213
row visibility 211
scrolling 192
using 207

time, API 20
To activity 261
tokens

cascading priority 82
transitions

selector 87
symbols 72

tree column icon 241
TreeCellRenderer Swing API 241

U
unbounded, scroll bar operation mode 192
URL

resolving 89
user-defined

priority property 219
user-defined properties

and general data-model implementation 107
data model classes supporting 39

user-defined type
CSS data model 87

V
vertical load-on-demand

description 333
design 334

vertical scrolling 193
VERTICAL_SCROLLBAR_XXX static constants 193
visibility

of activity/resource rows (data nodes) 190
of time scale rows 210

W
W3C

CSS 79
writeGanttModel method

IlvGanttDocumentWriter class 44
writers, SDXL 39

customizing 42
default 21
levels 39

X
Xdefault

X Window System 79
Xerces parser implementation 39
XML

scheduling data file 107
serializing schedule data 39

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 359

	Table of contents
	Introducing the main classes
	Class overview
	Data model classes
	The interaction between abstract and concrete elements
	Using the abstract implementation to create a custom data model
	Concrete data model implementations

	Binding the Gantt chart components to the data model
	Time and duration

	Connecting to data
	Connecting to data in-memory
	When to use data in-memory
	Activities and resources
	Populating the data model
	Manipulating activities and resources
	Activity and resource factories
	Constraints
	Reservations

	Connecting to XML data
	The SDXL format
	The schedule data exchange language
	How to write an IlvGanttModel to an SDXL file using serialization
	How to read an IlvGanttModel from an SDXL file using serialization
	Handling exceptions while reading SDXL files

	Connecting to Swing TableModel instances
	Overview
	Data required by IlvTableGanttModel
	Converting TableModel data to IlvTableGantt Model data
	Configuring the IlvTableGanttModel object correctly
	Read/write support
	Dynamic behavior
	Reading data from CSV files
	Complex mappings

	Connecting to data through JDBC
	Overview
	Writing queries to populate the data model
	The harbor example
	Passing the data to the Gantt data model

	Implementing custom data models

	Styling
	Styling examples
	Using CSS syntax in the style sheet
	Overview
	The origins of CSS
	The CSS syntax

	Applying CSS to Java objects
	Overview
	The CSS engine
	The CSS data model
	CSS recursion
	Constructs
	Expressions
	Custom functions
	Registering custom functions
	Divergences from CSS2

	Using style sheets
	Applying styles
	Disabling styling

	The Gantt and Schedule CSS examples
	Running the examples
	Scheduling data
	Customizing a Gantt chart using a simple style sheet

	The resource data CSS example
	Running the Example
	Scheduling data
	Customizing a Resource Data style sheet
	Two kinds of rules

	Styling Gantt and Schedule chart components
	Styling Gantt chart and Schedule chart data
	Overview
	Styling activities
	Activity model objects
	Activity renderer target objects
	Activity ID selectors
	IlvGeneralActivity properties
	IlvGeneralActivity CSS classes
	Activity CSS pseudoclasses
	The formatDate and formatDuration functions

	Styling constraints
	Constraint model objects
	Constraint graphic target objects
	Constraint ID selector
	IlvGeneralConstraint properties
	IlvGeneralConstraint CSS classes
	Constraint CSS pseudoclasses
	The activityProperty function

	Styling Resource Data chart components
	Overview
	Styling the Chart Area component
	Styling the Chart Legend
	Styling the chart renderer
	Styling the chart scales
	Styling the chart grids

	Styling the Resource Data chart data
	Overview
	Selector patterns
	Attributes of model objects
	CSS classes
	Properties
	Properties for data series

	Gantt charts
	The architecture of the Gantt charts
	The Gantt beans
	Overview
	Structure
	Properties

	Basic steps for using the Gantt chart and Schedule chart beans
	Running the samples
	Gantt chart
	Running the sample as an application
	Schedule chart
	Deploying a Gantt application

	Using Gantt and Schedule charts
	Chart visual properties
	Expanding or collapsing and hiding or showing rows
	Controlling row structure and visibility
	Scrolling in the Gantt sheet

	Using the Gantt sheet
	Gantt sheet architecture
	Rendering the data in the Gantt sheet
	Time indicators
	Activity layouts

	Using the time scale
	Changing the rows of a time scale
	Visibility policy
	Controlling row visibility
	Nonlinear time scale

	Customizing Gantt charts
	Customization examples
	Running the Custom Gantt example
	Customization overview
	Customizing the Gantt data model

	Customizing activity rendering
	The Activity Rendering API
	Simple activity renderers
	Combining activity renderers
	Rendering Activities with Multiple Dates
	Using Composite Graphics
	Installing Custom Activity Renderers

	Customizing table columns
	Running the example
	Tree column icons
	The PriorityColumn class
	Adding the column to the table
	Dynamic columns

	Interacting with the Gantt charts
	Class associations for interactors
	Selecting activities and constraints
	Moving activity and reservation graphics
	Duplicating reservation graphics
	Resizing activity and reservation graphics

	Interacting with the Gantt sheet using the mouse
	Creating activities and reservations
	Creating constraints
	Popup menus

	Resource Data charts
	The architecture of the Resource Data chart
	The Resource Data chart bean
	Basic architecture
	Basic steps in using the Resource Data chart bean - details

	Comparing the Resource Data chart with IBM® ILOG® JViews Charts
	Computing and displaying resource data
	Synchronizing Schedule charts and Resource Data charts
	Overview
	Selecting resources for display
	Computing resource data
	Rendering resource data
	The x-axis

	Calendar view components
	Calendar view beans
	Running the Calendar View sample
	Basic architecture
	Overview
	Calendar View models
	Calendar View renderers
	Leaf activity and holiday renderers
	Milestone renderers

	Deploying as an applet
	Using JViews products in Eclipse RCP applications
	Printing
	Printing Gantt and Schedule charts
	Overview
	Introduction
	The GanttPrintExample demo
	Printing Framework API
	How it works

	Printing a Resource Data chart
	Introduction
	The Printing Resource Data chart Example
	Printing framework API

	Critical path analysis
	Critical path analysis overview
	Example
	Handling errors

	Loading data on demand
	Vertical load-on-demand
	Overview
	Running the Database Gantt example
	Understanding the Database Gantt example

	Horizontal load-on-demand
	Overview
	Running the Database Schedule example
	Understanding the Database Schedule example

	Document type definition for SDXL
	Index

