
IBM ILOG JViews Gantt V8.6

Building Web Applications

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the Web technologies used in JViews Gantt.......................................7
Overview..8

Thin client applications...9
Thin client application designs...10
Ajax-enabled components..11

Rich Web applications...13
Overview...14
Applets...15
Java Web Start applications...16

Using DHTML-based JSF components to build Web applications......................17
Introduction..18

The architecture of JViews Gantt Faces..19
About support for JViews Gantt Faces...20
Servlet and component classes...21

The JViews Gantt Faces component set...25
Creating simple views...27
JViews Gantt Designer project...29
JViews Charts Designer project...30
Data source binding in JViews Gantt..31
Data source binding in JViews Charts..34
Styling Gantt chart data with CSS..36

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Styling chart data with CSS..37
Installing interactors in a Gantt chart..38
Installing interactors in a chart..39
Select interactor...40
Connecting a Gantt chart to a message box..48
Connecting a chart view to a message box..49
Adding a popup menu..50
Styling the popup menu..53
Managing the session expiration..54

JavaScript objects...55

Contexts for actions on the Gantt Chart view..57
Introduction...58
JavaServer Faces lifecycle context...59
Image servlet context...62

Integrating JViews Faces in your environment..63
JViews Faces configuration at JViews Framework level...64
Session persistence...66
Running JViews Faces components in JSR 168 portlets...67
Guide to using JViews components with ICEfaces..71

Settings for using JViews components in ICEfaces..72
Interoperability between JViews components and ICEfaces components..73
Push updates to JViews components...74
ICEfaces software in JViews...75

Supporting Facelets and Trinidad...76
Web Application Server support...77

Deploying an application as a DHTML-only thin client...79
JavaServer Faces components as opposed to DHTML thin client.......................................81

Overview..82

Gantt Thin-Client Web Architecture...83

Getting Started With the Gantt Thin Client: An Example...85
Creating a Gantt thin-client application..86
The Gantt Servlet Example..87
Installing and Running the Gantt Servlet Example...89

Developing the server side...91
Key classes and their associations...92
The servlet support class...94
Multithreading issues on the server side..96
The servlet class..97
Answering HTTP requests..98

Developing the client side..99

I B M ® I L O G ® J V I E W S G A N T T 8 . 64

Developing a Dynamic HTML client...100
The DHTML client for the Gantt Servlet example...104
The Popup menu in JavaScript...124

Adding client/server interactions...127
The client side..128
The server side...131
Actions that modify chart capabilities...132

The IlvGanttServlet and IlvGanttServletSupport classes..135
Creating a servlet...136
The servlet parameters..138
Multiple sessions..140

DHTML thin-client support in JViews Framework...143
Overview of thin-client support...145

IBM® ILOG® JViews thin-client Web architecture..146

Getting started with the IBM® ILOG® JViews thin client..147

Installing and running the XML Grapher example..149

Developing the server...150

Developing the client..155
Overview of client-side development..157
The IlvView JavaScript component...158
The IlvOverview JavaScript component...161
The IlvLegend JavaScript component..163
The IlvButton JavaScript component..165
The IlvZoomTool JavaScript component..171
The IlvZoomInteractor JavaScript component..172
IlvPanInteractor..174
The IlvPanTool JavaScript component...175
The IlvMapInteractor and IlvMapRectInteractor JavaScript components...176
The Popup menu in JavaScript...177

Adding client/server interactions...180

Generating a client-side image map..182

The IlvManagerServlet class..185
Overview of the predefined servlet...186
The servlet requests and parameters...187
Multiple sessions..192
Multithreading issues..194

The IlvManagerServletSupport class..195

Controlling tiling..197
Tiling...198

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 5

Tile size..199
Cache mechanisms..200
Developing client-side tiling..201
Developing server-side tiling..203
Client-side caching...204
Server-side caching and the tile manager..205

Index..207

I B M ® I L O G ® J V I E W S G A N T T 8 . 66

Introducing the Web technologies used in
JViews Gantt

This document provides information on how to deploy your application as an Internet-based
application. It discusses the two major categories of Internet applications: thin client
applications and rich Web applications.

In this section

Overview
Gives an overview of Internet-based applications.

Thin client applications
Describes thin client applications and use of JViews Faces components.

Rich Web applications
Introduces rich Web applications.

© Copyright IBM Corp. 1987, 2009 7

Overview

The versatility of Java™ deployment was one of the key factors driving the adoption of Java.
For many years, Java has been recognized for its multiplatform capabilities, for example,
running on both Microsoft® Windows® and Linux® . Java covers a wide spectrum of
execution environments, from traditional desktop environments to Internet-based applications.

I B M ® I L O G ® J V I E W S G A N T T 8 . 68

Thin client applications

Describes thin client applications and use of JViews Faces components.

In this section

Thin client application designs
Gives an overview of what thin client applications are.

Ajax-enabled components
Describes the use of Ajax-enabled JViews components in Web applications.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 9

Thin client application designs

As their name implies, thin client applications deploy minimal code on the clients and rely
heavily on the server to deal with user interactions and to respond with corresponding
displays.

In such application designs, application deployment is transparent and updates are
immediately available to all users. Application management can be centralized on a few
localized servers. Thus it requires fewer administration resources and helps to maximize
the availability of the application.

Against these advantages, you must weigh the most common drawbacks, which are:

♦ The relatively slow reaction of the application to user input.

♦ Poor server scalability for handling a large user base.

♦ Poor to no offline capability.

♦ Lack of advanced interactive graphics: since the local processing power is not leveraged,
the user’s machine is used only to display Web pages.

JViews Gantt provides advanced capabilities for such application designs. It relies on
JavaServer™ Faces (JSF) as the server-side component model and Dynamic HTML (DHTML)
as the client-side display technology. This combination facilitates development work and
provides easier integration with third-party components and tools.

Going beyond simple thin clients, JViews Gantt thin client leverages the local execution
capabilities of JavaScript™ to provide an advanced user experience; for demanding
interactions, Asynchronous JavaScript And XML concepts, or Ajax, are applied.

I B M ® I L O G ® J V I E W S G A N T T 8 . 610

Ajax-enabled components

With JViews Gantt Faces components and JavaScript™ you can develop a new generation
of highly responsive, highly interactive Web applications. The high responsiveness is
achievable through Ajax, which supports asynchronous and partial refreshes of a Web page.
A partial refresh means that when an interaction event fires, a Web server processes the
information and returns a response specific to the data it receives. The server does not send
back an entire page to the client of the Web application.

Why asynchronous? The client can continue processing while the server processes in the
background. A user can continue interacting with the client without noticing latency in the
response. The client does not have to wait for a response from the server before continuing,
as in the traditional synchronous approach.

See Using DHTML-based JSF components to build Web applications and Deploying an
application as a DHTML-only thin client for more information about these deployment
strategies.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 11

I B M ® I L O G ® J V I E W S G A N T T 8 . 612

Rich Web applications

Introduces rich Web applications.

In this section

Overview
Gives an overview of what rich Web applications are.

Applets
Introduces applets.

Java Web Start applications
Introduces Java™ Web Start applications.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 13

Overview

In the last few years, rendering technologies such as Flash® or Scalable Vector Graphics
(SVG) have emerged to overcome some user interaction issues and display limitations found
with the DHTML rendering described in Thin client application designs. In parallel, the role
of the client has been promoted to further leverage local processing power through
JavaScript™ . The objective is to improve user experience on the client and scalability on
the server and has led to the Ajax concept.

In such designs, servers are partially offloaded to focus mainly on data handling and less
on screen generation.

JViews Gantt helps you to develop such applications as:

♦ Applets

♦ Java™ Web Start Applications

I B M ® I L O G ® J V I E W S G A N T T 8 . 614

Applets

An applet is a traditional Java™ application that is wrapped as an applet and automatically
transferred by the server as needed.

Thus it retains the advantages of the thin client, provides more advanced user interactions,
and minimizes the server workload. The main drawbacks are that a Java virtual machine
needs to be installed in each execution environment and initial loading time can be long and
stressful for networks, since applications can be many megabytes.

When developing a JViews Gantt application using this approach, see Developing with the
JViews Gantt SDK.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 15

Java Web Start applications

Like applets, Java™ Web Start applications allow for traditional development techniques,
but applications have off-line capabilities and are cached locally in the execution environment.

They minimize start-up time and network bandwidth requirements, since servers only
distribute an application when updates are available. The major known drawback is the
need to install a Java Web Start environment that can be transparently streamed, but is
sometimes blocked by some network security policies.

When developing a JViews Gantt application using this approach, see Developing with the
JViews Gantt SDK and the Java Web Start documentation at
http://java.sun.com/products/javawebstart/developers.html.

I B M ® I L O G ® J V I E W S G A N T T 8 . 616

http://java.sun.com/products/javawebstart/developers.html

Using DHTML-based JSF components to
build Web applications

Shows you how to use the components of JViews Gantt Faces to create JavaServer Pages
(JSP) that are compliant with JavaServer Faces (JSF)

In this section

Introduction
Introduces JViews Gantt Faces.

The architecture of JViews Gantt Faces
Presents an overview of the architecture of JViews Gantt Faces.

The JViews Gantt Faces component set
Presents some examples to illustrate how to use JViews Gantt Faces components.

JavaScript objects
Explains the creation of JavaScript objects corresponding to JViews Gantt Faces components.

Contexts for actions on the Gantt Chart view
Describes the contexts in which actions can be executed in response to interactions on the
view.

Integrating JViews Faces in your environment
Provides information about configuring a JSF application in the application server, session
persistence, JSR 168 portlets, ICEfaces, and Facelets and Trinidad.

© Copyright IBM Corp. 1987, 2009 17

Introduction

This section shows you how to use the components of IBM® ILOG® JViews Gantt Faces to
create JavaServer™ Pages (JSP) that are compliant with JavaServer Faces (JSF). JViews
Gantt Components are available as a set of classes and a tag library. A set of renderers
generate DHTML code for rendering the components. The components also use servlet
technology to generate images to be transferred to the client.

JViews Gantt Faces provide Ajax-enabled components for developing highly responsive and
interactive Web applications.

The source code for the examples described in this section is provided under the directory:

<installdir>/jviews-gantt86/codefragments/jsf

I B M ® I L O G ® J V I E W S G A N T T 8 . 618

The architecture of JViews Gantt Faces

Presents an overview of the architecture of JViews Gantt Faces.

In this section

About support for JViews Gantt Faces
Describes thin-client support based on JavaServer Faces (JSF) technology.

Servlet and component classes
Identifies servlet and component classes for generating the visual representation of the
component.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 19

About support for JViews Gantt Faces

JViews Gantt Faces support is based on JavaServer™ Faces (JSF™) technology and consists
of:

♦ The tag library (a set of JSP™ tags).

♦ A Java™ API.

♦ A set of DHTML objects.

The JSP tags are used to build JSP pages. Each tag represents a component and has a set
of attributes for configuring the component. The JViews Gantt Faces component set includes:

♦ A Gantt chart view.

♦ A Schedule chart view.

♦ A set of interactors.

♦ A popup menu

Not all the components have a visual representation. For example, an interactor is intended
only to be set on a chart view and has no visual representation.

When a tag is processed by the JSP engine, it is compiled into Java code that is executed to
produce the page content. The tag library produces DHTML objects. Each object can be
referenced by JavaScript™ code and can be modified on the client side without a server
roundtrip.

See the Release Notes for the Web browsers and versions with which JViews Gantt Faces
components are compatible.

I B M ® I L O G ® J V I E W S G A N T T 8 . 620

Servlet and component classes

JSF Components in JViews Gantt use servlet technology to produce the images that are the
visual representation of the component on the client side. Dedicated servlet, servlet support,
and components are available to help create an application.

Servlet and component classes
DescriptionName

A dedicated IlvGanttServlet.In package ilog.views.gantt.faces.dhtml.
servlet. IlvFacesGanttServlet

A dedicated IlvGanttServletSupport.In package ilog.views.gantt.faces.dhtml.
servlet. IlvFacesGanttServletSupport

A view component extended to have DHTML
rendering that displays an IlvGanttChart.

In package ilog.views.gantt.faces.dhtml.
component. IlvFacesDHTMLGanttChartView

A view component extended to have DHTML
rendering that displays an IlvScheduleChart.

In package ilog.views.gantt.faces.dhtml.
component.
IlvFacesDHTMLScheduleChartView

An interactor that allows a hierarchy node (activity
or resource) to be expanded or collapsed.

In package ilog.views.gantt.faces.
interactor.
IlvFacesRowExpandCollapseInteractor

An interactor that allows you to pan the sheet view.In package ilog.views.gantt.faces.
interactor.
IlvFacesSheetScrollInteractor

An interactor that allows you to pan the table view.In package ilog.views.gantt.faces.
interactor.
IlvFacesTableScrollInteractor

An interactor that allows you to execute an action
in the servlet context by clicking the image.

In package ilog.views.gantt.faces.
interactor. IlvFacesRowSelectInteractor

An interactor that allows you to execute an action
in the JSF context by clicking the image.

In package ilog.views.gantt.faces.dhtml.
interactor.IlvFacesNodeSelectInteractor

A contextual popup menu.In package ilog.views.faces.component.
IlvFacesContextualMenu

An interactor that allows you to select activities,
reservations, and constraints and move activities
and reservations in the JSF context.

In package ilog.views.gantt.faces.dhtml.
interactor.
IlvFacesGanttSelectInteractor

A component that allows you to configure the
management of the selection on an

In package ilog.views.gantt.faces.dhtml.
component.IlvFacesGanttSelectionManager

IlvFacesDHTMLGanttChartView or
IlvFacesDHTMLScheduleChartView
component.

The associations between these classes are shown graphically in the following figures.

Servlet classes shows the servlet classes and their supporting classes.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 21

Servlet classes

Base UI component classes shows the Gantt chart view components and their associated
classes.

Base UI component classes

The following figure shows the interactor, popup menu, and data source components.

I B M ® I L O G ® J V I E W S G A N T T 8 . 622

Interactor, popup menu, and data source components

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 23

I B M ® I L O G ® J V I E W S G A N T T 8 . 624

The JViews Gantt Faces component set

Presents some examples to illustrate how to use JViews Gantt Faces components.

In this section

Creating simple views
Explains how to create various types of simple view.

JViews Gantt Designer project
Presents an example using the Designer for JViews Gantt.

JViews Charts Designer project
Presents an example using the Designer for JViews Charts.

Data source binding in JViews Gantt
Presents examples of connecting data source components to Gantt chart components.

Data source binding in JViews Charts
Presents examples of connecting data source components to chart components.

Styling Gantt chart data with CSS
Describes how to customize data display in a Gantt chart by using Cascading Style Sheets.

Styling chart data with CSS
Describes how to customize the chart data display using Cascading Style Sheets.

Installing interactors in a Gantt chart
Describes how to install interactors in a Gantt chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 25

Installing interactors in a chart
Describes how to install interactors in a chart.

Select interactor
Describes the use and behavior of the select interactor in a Gantt chart..

Connecting a Gantt chart to a message box
Describes how to connect a message box to a Gantt chart view.

Connecting a chart view to a message box
Describes how to connect a message box to a chartView.

Adding a popup menu
Explains how to add a popup menu.

Styling the popup menu
Explains how to use CSS classes to set popup menu properties for styling purposes.

Managing the session expiration
Describes the implications of session expiration and how to keep a user session alive when
it is about to expire.

I B M ® I L O G ® J V I E W S G A N T T 8 . 626

Creating simple views

The view component is the central component of a JViews Faces application. All the other
components depend on or interact with this view. The first and simplest page that can be
made with a JViews Faces component is an empty view.

Creating a Gantt chart view

Creating an empty view

<jvgf:ganttView style="width:500px; height:300px;" />

This produces a 500 by 300 pixel Gantt chart.

Declaring the namespace
The namespace jvgf (for JViews Gantt) must be declared in the page as follows:

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-gantt-faces.tld"
prefix="jvgf" %>

Using the width and height attributes
Using the style to specify the size of the component is preferable, but an alternative is to
use the width and height attributes.

<jvgf:ganttView width="500" height="500" />

The Schedule chart view component is used in the same way (tag attributes, behavior,
and so on) as the Gantt chart view component. The fundamental difference concerns

Note:

the wrapped component that is used to produce a view: an instance of
IlvScheduleChart or of IlvGanttChart. Other practical differences are mentioned
where appropriate.

Creating a chart view
The first and simplest page that can be made with a JViews Charts Faces component is a
chart view showing the default built-in data set.

Creating an empty view
To specify an empty view:

<jvcf:chartView style="width:500px; height:300px;" />

This produces a 500 by 300 pixel chart.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 27

Declaring the namespace
The namespace jvcf (for JViews Charts Faces) must be declared in the page as follows:

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-chart-faces.tld"
prefix="jvcf" %>

Using the width and height attributes
Using the style to specify the size of the component is preferable, but an alternative is to
use the width and height attributes.

<jvcf:chartView width="500" height="500" />

I B M ® I L O G ® J V I E W S G A N T T 8 . 628

JViews Gantt Designer project

The easiest way to configure the style and the data source of a hierarchy chart (Gantt or
Schedule chart) is to set a JViews Gantt Designer project to the Gantt view component. This
is done with the data attribute of the tag that points to an igpr file.

For more information about the Designer for JViews Gantt, see Using the Designer.

<jvgf:ganttView id="gantt"
data="data/gantt.igpr"
style="width:800;height:400" />

You can set the CSS stylesheet and data source separately.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 29

JViews Charts Designer project

The easiest way to configure the style and the data source of a chart is to set a JViews Charts
Designer project to the chart view component. This is done with the data attribute of the
tag that points to an icpr file.

For more information about the Designer for JViews Charts, see Using the Designer.

<jvcf:chartView id="chart"
data="data/chart.icpr"
style="width:800;height:400" />

You can set the CSS stylesheet and data source separately.

I B M ® I L O G ® J V I E W S G A N T T 8 . 630

Data source binding in JViews Gantt

If a project is not already set and you want to set a data source to a Gantt chart, a data
source component should be connected to the Gantt chart component.

Using an SDXL file
An easy way to connect to a data source is to use an XML file.

<jvgf:ganttView style="width:500 px; height:300 px;"
data="resources/gantt.sdxl" />

Using a value binding
Another way to specify a data source is to use a value binding. In this case, the Gantt data
model is provided by a bean property:

<jvgf:ganttView [...] data="#{ganttBean.ganttModel}" />

The bean should then provide the Gantt data model through its getGanttModel method:

public IlvGanttModel getGanttModel() {
if (ganttModel == null)

ganttModel = createDefaultModel();
return ganttModel;

}

To use the value binding attribute, the bean must be declared in the faces-config.xml file
or the managed-beans.xml file:

<faces-config>
<managed-bean>
<description>A gantt demo bean</description>
<managed-bean-name>ganttBean</managed-bean-name>
<managed-bean-class>GanttBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
</faces-config>

For further information about these configuration files, see the http://java.sun.com/j2ee/
javaserverfaces/reference/index.html JavaServer™ Faces specifications.

The JViews Gantt Faces component properties are all bindable.Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 31

http://java.sun.com/j2ee/javaserverfaces/reference/index.html
http://java.sun.com/j2ee/javaserverfaces/reference/index.html

DataSource and XMLDataSource components
Another way of setting a data source to a Gantt chart view is to use the dataSource and
XMLDataSource components. These components allow you to create and configure a data
source. The data source is stored in memory and is ready to be set on a Gantt chart
component.

Setting a Data Source on a Gantt Chart Component

<jvgf:XMLDataSource filename="resources/gantt.sdxl
id="xmlDataSource" />

<jvgf:dataSource value="#{ganttBean.ganttModel}" />

<jvgf:ganttView id="gantt" data="xmlDataSource" [...] />

<h:commandButton type="button" value="Set XML Data Source"
onclick="gantt.setDataSourceId(‘xmlDataSource’)" />

<h:commandButton type="button" value="Set Bound Data Source"
onclick="gantt.setDataSourceId(‘dataSource’)" />

In this example, we create two data sources: one filled from an XML file and another from
a bound Gantt data model.

The two data sources are present in memory. It is then possible to query the server for
switching the data source and updating the image without a complete page refresh by
clicking one of the command buttons. To perform this task, we use the client-side JavaScript™
proxy of the Gantt chart view.

The initial data source of the Gantt chart view is configured through the data tag attribute
that must match the id attribute of the desired data source component.

See JavaScript objects to learn how to use these proxies.

Creating a component in a managed bean
Another way to specify the data source is to create an IlvGanttChart component directly
in a managed bean:

<jvgf:ganttView id="chart"
style="width:500;height:300;"
chart="#{ganttBean.gantt}" />

Here the IlvGanttChart component is created directly by your bean instance and you can
set the data source in the bean code as shown in the bean getter:

public IlvGanttChart getGantt() {
if (ganttChart == null) {
ganttChart = new IlvGanttChart();
ganttChart.setGanttModel(getGanttModel());

I B M ® I L O G ® J V I E W S G A N T T 8 . 632

}
return ganttChart;

}

The bean must be declared in the faces-config.xml file or the managed-bean.xml file.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 33

Data source binding in JViews Charts

If a project is not already set and you want to set a data source to a chart, a data source
component should be connected to the chart component in order to display something.

Using an XML file
An easy way to connect to a data source is to use an XML file.

<jvcf:chartView style="width:500 px; height:300 px;"
data="resources/data.xml" />

Using a value binding
Another way to specify a data source is to use a value binding. In this case, the data source
is provided by a bean property:

<jvcf:chartView [...] data="#{dataBean.dataSource}" />

The bean should then provide the data source through its getDataSource method:

public IlvDataSource getDataSource() {
if(source == null) {
IlvDataSource source = new IlvDefaultDataSource();
double x = {1, 3, 2, 4, 6, 5};
IlvDefaultDataSet dds = new IlvDefaultDataSet("Sample", x);
source.setDataSet(0, dds);

}
return source;

}

To use the value binding attribute, the bean must be declared in the faces-config.xml file
or the managed-beans.xml file:

<faces-config>
<managed-bean>
<description> A Data Bean </description>
<managed-bean-name>dataBean</managed-bean-name>
<managed-bean-class>DataBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
</faces-config>

For further information about these configuration files, see the JavaServer Faces
specifications.

I B M ® I L O G ® J V I E W S G A N T T 8 . 634

http://java.sun.com/j2ee/javaserverfaces/reference/index.html

Creating a component in a managed bean
Another way to specify the data source is to create an IlvFacesChart component directly
in a managed bean:

<jvcf:chartView id="chart4"
style="width:500;height:300;"
chart="#{chartBean.chart}" />

Here the IlvFacesChart component is created directly by your bean instance and you can
set the data source in the bean code as shown in the bean getter:

public IlvChart getChart() {
try {
IlvFacesChart chart = new IlvFacesChart();
IlvDataSource source = new IlvDefaultDataSource();
double x[] = {1, 3, 2, 4, 6, 5, 10, 2, 3, 0};
IlvDefaultDataSet dds = new IlvDefaultDataSet("Sample", x);
source.setDataSet(0, dds);
chart.setDataSource(source);
return chart;

} catch (Exception e) {
e.printStackTrace();

}
return null;

}

The bean must be declared in the faces-config.xml or the managed-bean.xml file.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 35

Styling Gantt chart data with CSS

After you set the data source, you can customize the way it is displayed. You can use
Cascading Style Sheets (CSS) to style your data. CSS can be applied with a styleSheets
attribute:

<jvgf:ganttView id="gantt" [...] styleSheets="data/gantt.css" />

The CSS file must be present in the data directory of the Web application. The style sheet
file specification can also be a value binding, that is, a value provided by a bean.

I B M ® I L O G ® J V I E W S G A N T T 8 . 636

Styling chart data with CSS

After you set the data source, you can customize the way it is displayed. You can use
Cascading Style Sheets (CSS) to style your data. CSS can be applied with a styleSheets
attribute:

<jvcf:chartView id="chart5" [...] styleSheets="data/styleSheet.css" />

The CSS file must be present in the data directory of the Web application. The style sheet
file specification can also be a value binding, that is, a value provided by a bean.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 37

Installing interactors in a Gantt chart

You can now install interactors in the Gantt chart to interact with it. For example, install a
scroll interactor in the table and sheet views:

<jvgf:sheetScrollInteractor id="sheetScroll" />
<jvgf:tableScrollInteractor id="tableScroll" />
<jvgf:ganttView tableInteractorId="tableScroll"

sheetInteractorId="sheetScroll"/>

Different interactors can be installed in the table and the sheet views. For example, you can
install a row expand or collapse interactor on the table view and a scroll interactor in the
sheet view.

I B M ® I L O G ® J V I E W S G A N T T 8 . 638

Installing interactors in a chart

You can install interactors in the chart to allow interaction with the chart. For example,
install a zoom interactor:

<jvcf:chartView [...] interactorId="zoom" />
<jvcf:chartZoomInteractor id="zoom" />

You can zoom on the chart by clicking and dragging a rectangle. By default, the zoom
interactor only zooms along the x-axis. To zoom the chart freely or to constrain it along the
y-axis, use the XZoomAllowed and YZoomAllowed attributes. You can also customize the
appearance of the zoom interactor rectangle by using the lineWidth and lineColor
attributes. A pan interactor is also available to scroll a chartView. A message box component
can also be used to display messages originating from interactors and other components.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 39

Select interactor

The select interactor allows you to:

♦ select activities, resources, reservations or constraints, either in the Gantt table or in the
Gantt sheet,

♦ move activities and reservations in the Gantt sheet.

These operations occur without performing a full refresh of the page.

To define select interactors for the Gantt table and Gantt sheet use the following tags:

<jvgf:selectInteractor id="tableSelect">
<jvgf:selectInteractor id="sheetSelect">

To set them on a view, use the following code:

<jvgf:ganttView id="thegantt"
[...]
tableInteractorId="tableSelect"
sheetInteractorId="sheetSelect">

If you just want to trigger a server-side action when an object is clicked, use the
nodeSelectInteractor instead.

Note:

Moving the selected items
The select interactor allows you to move the selection when:

♦ The moveAllowed property of the interactor is set to true (default value).

♦ The server-side object is movable. By default, activities and reservations are movable.
Resources and constraints cannot be moved.

Configuring the rendering of the selection
The way the selection is performed and displayed can be customized on the ganttView tag
by using a selection manager facet as follows:

<jvgf:ganttView id="thegantt"
tableInteractorId="tableSelect"
sheetInteractorId="sheetSelect">

<facet name="tableSelectionManager">
<jvgf:selectionManager imageMode="false" [...] />

</facet>

I B M ® I L O G ® J V I E W S G A N T T 8 . 640

<facet name="sheetSelectionManager">
<jvgf:selectionManager imageMode="false" [...] />

</facet>
</jvgf:ganttView>

The selection manager has two display modes:

♦ Image mode (default)

The image is refreshed after each selection. A new image is requested from the server
at each selection which allows the client to get attractive selection graphics.

♦ Regular mode

Rectangles representing the selection are displayed on top of the view. The roundtrip to
the server is minimal; it does not require a new image to be generated and therefore the
response time is shorter but the selection feedback is limited to a selection rectangle.

Other parameters can be configured on the selection manager to specify the line width, the
color of the selection rectangle used in regular selection mode, or to define whether the
selection rectangles are filled or hollow.

<jvgf:selectionManager lineWidth="1" lineColor="orange" fillOn="true"/>

The selection must be configured separately for the Gantt sheet and Gantt table by using
the corresponding sheetSelectionManager and tableSelectionManager facets.

Listening for changes to the selection
To register a listener that will be called when the selection changes use the following code:

<jvgf:selectionManager […]
onSelectionChanged="displayProperties(selection)" />

The onSelectionChanged attribute value is JavaScript™ code that is called when the selection
has changed. The execution context defines the variable selection, which stores the current
selection as an array.

The JavaScript function can be as follows:

// Display the identifier and object type of all the selected objects.
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++) {
alert(selection[i].getID()+" "+selection[i].getObjectType());

}
}

The possible values for the objectType property are activity, constraint, reservation,
and resource.

The value of the property ID for activities and resources is the same as the property ID of
IlvActivity and IlvResource in the IlvGanttModel. Constraints and reservations have no

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 41

such property in the IlvGanttModel; the value of their property ID is constructed from the
identifiers of the activities and resources they relate to.

You may set a listener and a property accessor on both the tableSelectionManager
and the sheetSelectionManager, but this is not required nor always useful. A
selection manager handles only objects available in the corresponding component.

Note:

Therefore, in a ganttView the selection manager for the Gantt table handles only
activities; the selection manager for the Gantt sheet handles both activities and
constraints. In this case, listening to changes in the selection only through the
sheetSelectionManager fits most purposes.

In a scheduleView the selection manager for the Gantt table handles only resources;
the selection manager for the Gantt sheet handles only reservations. Depending on
your needs you may want to listen to changes in the selection for both the
sheetSelectionManager and tableSelectionManager.

Retrieving and setting properties of selected pbjects
Besides the ID and objectType properties of the selected object, you might want to retrieve
the properties of the selected objects in the JViews Gantt data model. This can be done by
configuring a property accessor on the selection manager used to handle the changes in the
selection:

<jvgf:selectionManager
propertyAccessor="{#serverBean.propertyAccessor}" [...] />

with:

public class ServerBean {
private IlvFacesGanttPropertyAccessor accessor =
new IlvFacesGanttPropertyAccessor();

public IlvFacesGanttPropertyAccessor getPropertyAccessor() {
return accessor;

}
}

The IlvFacesGanttPropertyAccessor contains several methods that can either be called
or redefined to configure or specialize the way it gives access to model properties.

Once the property accessor is defined, you can access the properties of the selected objects
in a JavaScript selection listener.

// Display properties of all the selected objects.
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++) {
var propertiesNames = selection[i].getObjectPropertyNames();
for (var j = 0; j < propertiesNames.length; j++)

I B M ® I L O G ® J V I E W S G A N T T 8 . 642

alert(selection[i].getObjectProperty(propertiesNames[j]));
}

}

In image mode the mechanism to retrieve properties is not active by default.To activate
it, you must force an additional request to the server by setting the selectionManager

Note:

attribute forceUpdateProperties to true. In regular mode the properties are
available without any overhead.

You can also change property values on the client and commit these changes to the server-side
model. To do this, first set the ganttView as editable:

<jvgf:ganttView editable="true" [...] />

Then, to change property values and commit the changes to the server:

// Modify a property on the first selected object in the Gantt sheet.
thegantt.getSheetSelectionManager().getSelection()[0].setObjectProperty(

"propertyName",
"propertyValue");

// [Other modifications]
// Commit the changes to the server.
thegantt.getSheetSelectionManager().commitSelectionProperties(true, oncompleted,
onfailed);

In the example:

♦ oncompleted is a JavaScript function that is called when the server has completed the
changes to handle errors that may have occurred while setting the new values. The
parameter of the oncompleted function is an array of IlvSelectionPropertiesError
objects that describe the errors that occurred while setting the changed values.

♦ onfailed is a JavaScript function that is called when the commit could not occur due to
network problems.

A property value must be either a JavaScript String or null. For more information on property
values see Predefined properties of Gantt data model objects and User-defined properties
of Gantt data model objects. For information on marshalling or unmarshalling the property
values, see Marshalling and unmarshalling property values.

Marshalling and unmarshalling property values
The property values are exchanged between the server and the client as String values and
may also be null.

The server uses IlvConvert to convert model object property values to String and from a
string back to object properties. The following table lists the types specific to JViews Gantt
for which converters are installed by default.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 43

Converters registered for marshalling or unmarshalling properties
ConverterType

Uses an ilog.views.util.beans.editor.
IlvDatePropertyEditor

java.util.Date

Uses an ilog.views.gantt.beans.editor.
IlvConstraintTypeEditor

ilog.views.gantt.
IlvConstraintType

Uses an ilog.views.gantt.beans.editor.
IlvDurationEditor

ilog.views.gantt.IlvDuration

Refer to ilog.views.util.convert.IlvConvert for information on how to register a
converter for a specific Java™ type. Note that you can register either a java.beans.
PropertyEditor to handle the conversion to and from String or two instances of
IlvConverter, one to convert from the value type to String and one to convert from String
to the value type.

On the client side, no converter is provided. The client is responsible for making sure that
the property values sent to the server are valid String values or null, such that they can be
unmarshalled by the server-side conversion mechanism. The server ignores property values
that it cannot unmarshall and notifies the client of the error using the oncompleted handler
that is defined when commitSelectionProperties is called.

Predefined properties of Gantt data model objects
The following table lists the predefined objects of the Gantt data model, their properties,
their server-side Java type, and the corresponding client-side values.

Predefined Gantt data model objects and related properties
Client-side ValueServer-side TypeProperty NameObject

Type

String representing the number of
milliseconds elapsed since 1970-01-01
00:00:00 GMT

java.util.DateendTimeactivity

Same as the server-side value.Stringid

Same as the server-side value.Stringname

See endTimejava.util.DatestartTime

Same as the server-side value.Stringidresource

Same as the server-side value.Stringname

String valueFloatquantity

Possible values:ilog.views.gantt.constraintTypeconstraint

"End-End",IlvConstraintType

"End-Start",

"Start-End",

I B M ® I L O G ® J V I E W S G A N T T 8 . 644

Client-side ValueServer-side TypeProperty NameObject
Type

"Start-Start".

ID of the IlvActivityilog.views.gantt.fromActivity

IlvActivity

ID of the IlvActivityilog.views.gantt.toActivity

IlvActivity

ID of the IlvActivityilog.views.gantt.activityreservation

IlvActivity

ID of the IlvResourceilog.views.gantt.resource

IlvResource

On the server, values of type java.util.Date are converted to String and back using the
ilog.views.util.beans.editor.IlvDatePropertyEditor. You can create the corresponding
JavaScript Date object on the client using the following JavaScript code:

var date = (value == null) ? null : new Date(parseInt(value));

Conversely, to create the property value suitable for committing to the server, use the
following JavaScript code:

var value = (date == null) ? null : date.valueOf().toString();

User-defined properties of Gantt data model objects
Gantt data model objects that implement IlvUserPropertyHoldermay contain user-defined
properties. To handle a user-defined property properly on the server, you must:

1. Make sure that the property type has appropriate converters registered in IlvConvert.
See Marshalling and unmarshalling property values for more information.

2. Register the type of the property value in your ilog.views.gantt.faces.dhtml.
component.IlvFacesGanttPropertyAccessor, as follows:

public class ServerBean {
private IlvFacesGanttPropertyAccessor accessor;
public ServerBean() {
accessor = new IlvFacesGanttPropertyAccessor();

// The user defined property 'myProperty' on activities,
// is of type MyPropertyType.
accessor.registerType(IlvActivity.class,

"myProperty",
MyPropertyType.class);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 45

}
public IlvFacesGanttPropertyAccessor getPropertyAccessor() {
return accessor;

}
}

By default, all user-defined properties are exported to the client and are settable. You can
customize this behavior by extending IlvFacesGanttPropertyAccessor and redefining one
or all of the methods getPropertyNames(), acceptProperty(), acceptGetProperty(), and
acceptSetProperty().

Selecting an object by its identifier
Objects can be selected by their identifiers with the JavaScript method selectById.

The object identifiers are controlled by the IlvGanttSelectionSupport.IdentifierFactory
set on IlvGanttSelectionSupport.

The identifiers are built by the default factory implementation:

♦ IlvActivity, identifier of the activity as returned by getID().

♦ IlvConstraint, identifier of the from and to activities, which are separated by a slash;
for example, a constraint from the activity A-1 to the activity A-2 gets the identifier A-1/
A-2.

♦ IlvResource, identifier of the resource as returned by getID().

♦ IlvReservation, identifier of the activity and resource, which are separated by a slash;
for example, a reservation of the resource R-1 for the activity A-1 gets the identifier A-1/
R-1.

The selectable type of object depends on the type of hierarchy chart displayed:

♦ Gantt chart: Only activities and constraints can be selected.

♦ Schedule chart: Only resources and reservations can be selected.

For example, you can select one activity in a Gantt chart as follows:

thegantt.getTableView().getSelectionManager().selectById("A-1", "activity");

This method call deselects the objects currently selected and selects the activity with the
identifier A-1. You can extend or reduce the selection by selecting or deselecting an activity
as follows:

thegantt.getTableView().getSelectionManager().selectById("A-1", "activity",
true);

This method call keeps the existing selection and selects the object with the identifier A-1
if it is not already selected. Otherwise, it will deselect it.

I B M ® I L O G ® J V I E W S G A N T T 8 . 646

Clear the selection
To clear the selection use the JavaScript method deselectAll.

For example:

thegantt.getTableView().getSelectionManager().deselectAll();

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 47

Connecting a Gantt chart to a message box

To connect a message box to a ganttView, use the following code:

<jvgf:ganttChartView [...] messageBoxId="messageBox"/>
<jv:messageBox id="messageBox" [...] />

The messages issued are displayed in the message box.

I B M ® I L O G ® J V I E W S G A N T T 8 . 648

Connecting a chart view to a message box

To connect a message box to a chartView, use the following code:

<jvcf:chartView [...] messageBoxId="messageBox"/>
<jv:messageBox id="messageBox" [...] />

The messages issued are now displayed in the message box.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 49

Adding a popup menu

The popup menu component allows you to display a static or contextual popup menu when
the application user right-clicks in the view.

For use of menus in Facelets environments, see also Supporting Facelets and Trinidad.

Popup menu tag in the view tag
Since the popup menu is attached to a view, its JSP™ tag must be enclosed in the JSP tag
of the view.

The popup menu can be contextual or static. The following examples show contextual popup
menu tags used in the view tag.

The following code is for JViews Gantt.

<jvgf:ganttView [...] >
<jvgf:ganttContextualMenu [...]/>

</jvgf:ganttView>

The following code is for JViews Charts.

<jvcf:chartView [...]>
<jvcf:chartContextualMenu [...]/>

</jvcf:chartView/>

Static popup menu
The menu displayed by the popup menu is static and fully on the client side.

To define amenu andmenu items in JViews Gantt use the menu, menuItem, and menuSeparator
tags as in the following example.

<jvgf:ganttContextualMenu>
<jv:menu label="root">
<jv:menuItem label="Zoom ..."

onclick="zoomButton.doClick()"
image="images/zoomrect.gif" />

<jv:menuItem label="Pan ..."
onclick="panButton.doClick()"
image="images/pan.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Zoom In"

onclick="viewID.zoomIn()"
image="images/zoom.gif" />

<jv:menuItem label="Zoom Out"
onclick="viewID.zoomOut()"
image="images/unzoom.gif"/>

<jv:menuItem label="Zoom to Fit"
onclick="viewID.zoomToFit()"
image="images/zoomfit.gif"/>

<jv:menuSeparator/>

I B M ® I L O G ® J V I E W S G A N T T 8 . 650

<jv:menuItem label="Select"
actionListener="#{ganttBean.action}"
image="images/arrow.gif"
invocationContext="IMAGE_SERVLET_CONTEXT" />

</jv:menu>
</jvgf:ganttContextualMenu>

To define a menu and menu items in JViews Charts use the menu, menuItem, and
menuSeparator tags as in the following example.

<jvcf:chartContextualMenu>
<jv:menu label="root">
<jv:menuItem label="Zoom ..."

onclick="zoomButton.doClick()"
image="images/zoomrect.gif" />

<jv:menuItem label="Pan ..."
onclick="panButton.doClick()"
image="images/pan.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Zoom In"

onclick="viewID.zoomInX()"
image="images/zoom.gif" />

<jv:menuItem label="Zoom Out"
onclick="viewID.zoomOutX()"
image="images/unzoom.gif"/>

<jv:menuItem label="Zoom to Fit"
onclick="viewID.zoomToFit()"
image="images/zoomfit.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Select"

actionListener="#{chartBean.action}"
image="images/arrow.gif"
invocationContext="IMAGE_SERVLET_CONTEXT" />

</jv:menu>
</jvcf:chartContextualMenu>

Contextual popup menu
The popup menu is dynamically generated on the server side by a menu factory depending
on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the application user triggers the popup menu.

JViews Gantt
To specify the factory use the factory or the factoryClass attribute of the contextual popup
menu tag.

<jvgf:ganttContextualMenu factory="#{bean.factory}" />
<jvgf:ganttContextualMenu factoryClass="com.xyz.demo.DemoFactory" />

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 51

JViews Charts
To specify the factory use the factory or the factoryClass attribute of the contextual popup
menu tag.

<jvcf:chartContextualMenu factory="#{bean.factory}" />
<jvcf:chartContextualMenu factoryClass="com.xyz.demo.DemoFactory" />

The factory must implement the IlvMenuFactory interface.

I B M ® I L O G ® J V I E W S G A N T T 8 . 652

Styling the popup menu

The popup menu is stylable by setting the following popup menu properties to a CSS class
name:

♦ ItemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

The following set of code examples shows CSS styling in a popup menu.

<html>
[...]

<style>
.menuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}
.menuItemHighlighted {
background: #057879;
color: white;

}
.menuItemDisabled {
background: #EEEEEE;
font-style: italic;
color: black;

}
</style>
[...]

Then continue with the code for a specific JViews Faces component.

For JViews Gantt

[...]
<jvgf:ganttContextualMenu itemStyleClass="menuItem"

itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

For JViews Charts

[...]
<jvcf:chartContextualMenu itemStyleClass="menuItem"

itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 53

Managing the session expiration

The user session expires after a certain period of inactivity, usually defined in the Web
deployment descriptor.

JViews objects are stored in the HTTP user session. For example, after the user session
expires, queries to update the image will fail.

The beforeSessionExpirationHandler property allows you to add a JavaScript™ handler
that will be invoked when the user session is about to expire.

For example, to keep the session alive as long as the browser page is open, use the following
code:

In JViews Gantt

<jvgf:view [...]
beforeSessionExpirationHandler="view.getTableView().updateImage();" />

In JViews Charts

<jvcf:view [...] beforeSessionExpirationHandler="view.updateImage();" />

This example shows how to query an image and keep the user session alive.

Note the use of view, the implicit object that represents the view JavaScript proxy. The
internal timer is reset only by requests issued by IBM® ILOG® JViews objects. If the
application implements other requests that do not refresh the image, this timer could be
inaccurate. To reset the timer manually, use the following JavaScript code:

viewID.getObject().resetSessionExpirationTimer();

where viewID is the value of the id property of your view component.

The beforeSessionExpirationHandler is called two minutes before the actual
session expiration time.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 654

JavaScript objects

Each time a JViews Gantt Faces component is created, a corresponding JavaScript object is
also created. You can access this object through a global JavaScript variable whose name
is the same as the id attribute of the tag. For example, the tag:

<jvgf:ganttView id="gantt" [...] />

will be rendered as the following JavaScript code:

gantt = new IlvHierarchyChartViewProxy ('gantt',' ...);

See the documentation of the Java API of each renderer to know which JavaScript
proxy will be generated for this component.

Note:

You can modify the object locally by using a set of methods attached to this object. For
further information about available JavaScript objects, see Javascript API.

For example, the following code defines two buttons that install respectively a scroll interactor
and a row expand or collapse interactor on the table of a ganttView.

<jv:imageButton [...] onclick="gantt.setTableInteractor(tableScrollInteractor)
" />
<jv:imageButton [...] onclick="gantt.setTableInteractor(tableExpandInteractor)
" />
<jvgf:ganttView id="gantt" [...] />

At rendering time, an IlvHierarchyChartViewProxy JavaScript object is created that is
accessible through the gantt JavaScript variable. Then, since rowExpandCollapseInteractor
and tableScrollInteractor JavaScript objects have been created in the same way, you
can directly set one of these interactors with the setInteractor method.

It is possible to set the interactor of the table and the sheet views in one call:

<jv:imageButton [...]
onclick="gantt.setInteractors(tableScrollInteractor, sheetScrollInteractor)

" />

Additionally, the behavior of these JavaScript objects is to keep their state, so that if a submit
request is issued, the state of the object is sent to the server. This behavior makes sure that
the client and the server remain coherent.

For further information about available JavaScript objects, see Javascript API, the JavaScript
API reference documentation of JViews Gantt.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 55

I B M ® I L O G ® J V I E W S G A N T T 8 . 656

Contexts for actions on the Gantt Chart view

Describes the contexts in which actions can be executed in response to interactions on the
view.

In this section

Introduction
Describes the JavaServer Faces lifecycle and image servlet contexts for actions on the view.

JavaServer Faces lifecycle context
Explains how to install a select object interactor and a listener in the JSF context.

Image servlet context
Describes the value change listener and interactor in the image servlet context.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 57

Introduction

Actions executed in response to interactions on the view can be executed in two different
contexts: JavaServer Faces lifecycle or image servlet. The execution context can be configured
by setting the invocationContext attribute on the JSF interactor components.

The value change listeners registered in the interactor can determine whether they are
called in a JSF context or in an image servlet context with the following code.

Determining the Context in Which a Value Change Listener is Called

IlvObjectSelectInteractor source =
(IlvObjectSelectInteractor)valueChangeEvent.getSource();

boolean jsfContext = source.getInvocationContext() ==
IlvDHTMLConstants.JSF_CONTEXT;

This section shows the differences between the two invocation contexts through the execution
of an action when a hierarchy node is selected.

I B M ® I L O G ® J V I E W S G A N T T 8 . 658

JavaServer Faces lifecycle context

This topic shows you the JViews Faces code for installing a select object interactor and a
listener. It also shows you the Java™ code for writing a value-change event listener.

In JViews Gantt
To expand an activity in a Gantt chart view, a select hierarchy node interactor must be
installed on the Gantt chart view. The value property of the interactor holds the
IlvHierarchyNode that was clicked. (The hierarchy node is an activity in a Gantt chart
or a resource in a Schedule chart.) Thus, a valueChangeListener can be registered to
handle the selection event.

Installing a select hierarchy node interactor and a listener

<jvgf:nodeSelectInteractor id="expand"
valueChangeListener="#{ganttBean.expandAllRows}"

invocationContext="JSF_CONTEXT"/>
<jvgf:ganttView id="ganttView" sheetInteractorId="expand" [...] />

JSF_CONTEXT is the default value, so the invocationContext attribute could have
been omitted.

Note:

Java code of the value-change event
The Java code of the value change event listener is:

public void expandAllRows (ValueChangeEvent event) {
IlvActivity activity = (IlvActivity) event.getNewValue();
if (activity != null) {

//The source of the event is the interactor
IlvFacesNodeSelectInteractor interactor =
(IlvFacesNodeSelectInteractor)event.getSource();

//Retrieve the JSF view connected to the interactor
IlvFacesHierarchyChartView jsfView =
(IlvFacesHierarchyChartView)interactor.getView();

//Retrieve the IlvHierarchyChart wrapped by the JSF component.
IlvHierarchyChart chart = jsfView.getChart();

if (chart.isRowExpanded(activity)) {
chart.collapseRow(activity);

} else {
chart.expandAllRows(activity);

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 59

}
}

In JViews Charts
To highlight a point in a chart view, a chart select interactor must be installed on the chart
view. The value property of the interactor holds the IlvDataSetPoint that was clicked.
Thus, a valueChangeListener can be registered to handle the selection event.

Installing a chart select interactor and a listener

<jvcf:chartSelectInteractor id="selectInteractor"
valueChangeListener="#{demoBean.pointSelected}"

pickingMode="item"
invocationContext="JSF_CONTEXT">

<jvcf:chartView id="chart" interactorId="objSelect" [...] />

JSF_CONTEXT is the default value, so the invocationContext attribute could have
been omitted.

Note:

Java code of the value-change event
The Java code of the value change event listener is:

public void pointSelected(ValueChangeEvent evt) {
IlvDataSetPoint point = (IlvDataSetPoint) evt.getNewValue();

if (point != null) {

//The source of the event is the interactor
IlvObjectSelectInteractor interactor =

(IlvObjectSelectInteractor) evt.getSource();
//Retrieve the JSF view connected to the interactor

IlvChartDHTMLView jsfView = (IlvChartDHTMLView) interactor.getView();

//Retrieve the IlvChart wrapped by the JSF component.
IlvChart chart = jsfView.getChart();
//Set a pseudo class on the display point.
//A CSS rule like point:selected { ... }

//will customize the graphic representation of the point.

chart.setPseudoClasses(point.getDataSet(),
point.getIndex(),
new String[]{"selected"});

}

Note the following concerning the use of this approach:

I B M ® I L O G ® J V I E W S G A N T T 8 . 660

♦ Since themethod is called during the JavaServer™ Faces lifecycle, there can be interaction
with other JSF components.

♦ The form is submitted, so the complete page is reloaded.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 61

Image servlet context

The image servlet uses the same value change listener as the JavaServer™ Faces lifecycle;
there is a slight difference in the interactor, which is shown in bold in the example.

Value change listener and interactor in image servlet context (JViews Gantt)

<jvgf:nodeSelectInteractor id="expand"
valueChangeListener="#{ganttBean.expandAllRows}"

invocationContext="IMAGE_SERVLET_CONTEXT"/>
<jvgf:ganttView id="ganttView" sheetInteractorId="expand" [...] />

Value change listener and interactor in image servlet context (JViews Charts)

<jvcf:chartSelectInteractor id="selectInteractor"
valueChangeListener="#{demoBean.pointSelected}"

invocationContext="IMAGE_SERVLET_CONTEXT">
pickingMode="item"

<jvcf:chartView id="chart" interactorId="objSelect" [...] />

In this mode the interactor queries an image update. The server fires the value change event
just before image generation.

This approach in JViews Gantt:

♦ Avoids submitting the page and refreshes the image only.

♦ Is outside the JSF lifecycle, so no interaction with JSF components is possible beyond the
ability to retrieve the IlvHierarchyChart object as shown in Java code of the value-change
event.

This approach in JViews Charts:

♦ Avoids submitting the page and refreshes the image only.

♦ Is outside the JSF lifecycle, so no interaction with JSF components is possible beyond the
ability to retrieve the IlvChart object as shown in Java code of the value-change event.

I B M ® I L O G ® J V I E W S G A N T T 8 . 662

Integrating JViews Faces in your
environment

Provides information about configuring a JSF application in the application server, session
persistence, JSR 168 portlets, ICEfaces, and Facelets and Trinidad.

In this section

JViews Faces configuration at JViews Framework level
Provides required and optional settings for JViews Faces configuration at the JViews
Framework level.

Session persistence
Explains how to disable session persistence.

Running JViews Faces components in JSR 168 portlets
Explains the JSR 168 requirements for JViews Faces components in portlets.

Guide to using JViews components with ICEfaces
Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

Supporting Facelets and Trinidad
Describes the mandatory actions required to make JViews Faces components compatible
with Facelets and Trinidad, plus optional actions to specify menus.

Web Application Server support
Describes the Web Application Servers supported for deploying JViews Web applications.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 63

JViews Faces configuration at JViews Framework level

Required settings
The standard configuration needed by a JSF application in the web.xml of your application
server is as follows.

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The JViews Faces Framework needs two additional settings in order to execute correctly,
namely:

♦ JViews Controller Servlet

The JViews Controller Servlet is in charge of loading the various resources used by the
JViews Faces Framework implementation like JavaScript™ libraries, images and the like.
But more importantly it provides clients with the latest state of their views capabilities
as well as their dynamically generated images.

You must declare and map the JViews Controller Servlet. To do this, use the following
code.

<servlet>
<servlet-name>Controller</servlet-name>
<servlet-class>ilog.views.faces.IlvFacesController</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Controller</servlet-name>
<url-pattern>/_contr/*</url-pattern>

</servlet-mapping>

♦ ilog.views.faces.CONTROLLER_PATH

This setting provides the users with the flexibility of defining a custom <url-pattern>
for the JViews Controller Servlet that will be appropriately communicated to the JViews
Faces Framework so that proper execution takes place.

You must set the ilog.views.faces.CONTROLLER_PATH context parameter which must
match the content of the <url-pattern> of the JViews Controller Servlet without the
wildcard part. For example, the following code would appear after the code for the JViews
Controller Servlet.

I B M ® I L O G ® J V I E W S G A N T T 8 . 664

<context-param>
<param-name>ilog.views.faces.CONTROLLER_PATH</param-name>
<param-value>/_contr</param-value>

</context-param>

Optional settings
The following optional setting is available in the JViews Faces Framework:

ilog.views.faces.CONTENT_LENGTH_ENABLED

The ilog.views.faces.CONTENT_LENGTH_ENABLED setting allows users to specify if the
underling servlet that is used to generate the client-side representation of the JViews Faces
Components is interacting with the client in a buffered mode or not. More specifically, it
enables the communication of the content length when the server responds to client requests.
This provides more optimal interaction between the client and the server.

For more insights see javax.servlet.ServletResponse.setContentLength and related
material on the Internet.

This setting is exposed through the context parameter facility and can be set as follows.

<context-param>
<param-name>ilog.views.faces.CONTENT_LENGTH_ENABLED</param-name>
<param-value>true</param-value>
</context-param>

Although optional, it is recommended to set this setting always to true.Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 65

Session persistence

Web servers often implement a session persistence mechanism used typically for traditional
server clustering and failover techniques.

Often, the JViews Faces components are not serializable as they pertain to view-related
abstractions which typically cannot be persistent and are stored in the HTTP session.

In order to prevent the typical serialization warnings derived from this mismatch, you can
disable the session serialization mechanism for the JViews Faces based application.

To disable session persistence in TOMCAT at web application level:

1. Create a file context.xml and place it in the META-INF directory of your .war file.

2. Use a TOMCAT configuration setting to disable the session serialization mechanism.

<Context path="/your-application-path">
<Manager className="org.apache.catalina.session.StandardManager"

pathname=""/>
</Context>

Note: 1. All the JViews Faces samples already have this session serialization setting
disabled for TOMCAT at this level.

2. These settings apply to TOMCAT 6.0 and later.

To disable session persistence in TOMCAT at web server level:

♦ Modify the TOMCAT/conf/context.xml to use this as the Session Manager definition.

<Manager pathname=""/>

These settings apply to TOMCAT 6.0 and later.Note:

For more details on these settings see the TOMCAT configuration documentation.

For details on how to disable session serialization with your Web server, see the server’s
configuration documentation.

I B M ® I L O G ® J V I E W S G A N T T 8 . 666

Running JViews Faces components in JSR 168 portlets

See the Release Notes for supported JSF implementations and JSF Portlet bridge
combinations.

Note:

If you want to use JViews Faces components in a JSR 168 portlet environment, you first need
to check with your portal vendor whether JavaServer™ Faces components are supported.

Your Web application must be correctly configured. This section describes each of the steps
required to make JViews Faces components compatible with portlets.

JViews Faces components are automatically switched to portlet mode if the classes
of the portlet API are detected in the class path.

Note:

To avoid naming clashes between portlets, the JSR 168 specification requires content to be
generated that is unique to each portlet. Therefore, the generated variables used by JViews
Faces components must be prefixed by the portlet namespace.

Scripts prefixed by a namespace
Since JViews 8.1, the servlet filter IlvJSNamespaceFilter is no longer needed and must not
be set on the controller servlet.

JavaScript variables prefixed by a namespace
In portlet mode, the generated JavaScript™ variables are prefixed by the portlet namespace.
Thus, their usage in the JSP™ page is quite different.

In IBM® ILOG® JViews a JavaScript action is built on a managed bean by using the static
method encodeJavaScriptVariables of ilog.views.faces.IlvFacesUtil.

The parameter is the desired JavaScript action where the variables are declared with the $
{id} notation. For example:

IlvFacesUtil.encodeJavaScriptVariables("${view}.setInteractor(${interactor})
");

where view and interactor represent JavaScript variables.

The result of calling this method is the final JavaScript action with namespace-encoded
variables.

The JViews Faces components that have JavaScript handlers need only to reference these
bean properties.

The following code examples show a more complete use of JavaScript actions in the JSP
page and the managed bean.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 67

In JViews Gantt
Using JavaScript actions in a JSP page

[...]
<jvgf:rowExpandCollapseInteractor id="tableExpand" />
<jvgf:rowExpandCollapseInteractor id="sheetExpand" />

<jv:imageButton [...] onclick="#{ganttBean.setExpandAction}" />
<jvgf:ganttView id="gantt" [...] />
[...]

Using JavaScript actions in a managed bean

public class GanttBean {
[...]
private String setExpandAction;
public GanttBean(){
setExpandAction =
IlvFacesUtil.encodeJavaScriptVariables("${gantt}.setInteractors(${
tableExpand}, ${sheetExpand})");

}
public String getSetExpandAction(){
return setExpandAction;

}
[...]
}

In JViews Charts
Using JavaScript actions in a JSP page

[...]
<jvcf:chartZoomInteractor id="zoom" [...] />
<jv:imageButton onclick="#{chartBean.setZoomAction}"/>
<jvcf:chartView id="chart" [...] />
[...]

Using JavaScript actions in a managed bean

public class ChartBean {
[...]
private String setZoomAction;
public ChartBean(){
setZoomAction =
IlvFacesUtil.encodeJavaScriptVariables("${chart}.setInteractor(${
zoom})");

}
public String getSetZoomAction(){
return setZoomAction;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 668

[...]
}

Declaring the image servlet
In portlet mode, the servlet used to render the image must be declared:

In JViews Gantt

<jvgf ganttView [...] servlet=
"ilog.views.gantt.faces.dhtml.servlet.IlvFacesGanttServlet />"

In JViews Charts

<jvcf chartView [...] servlet=
"ilog.views.chart.faces.dhtml.servlet.IlvFacesChartServlet />"

Integrating JSF components into the portal
Depending on your portal implementation, integrating JSF components may require special
configuration that is conditioned by the application server, the JSF implementation, the
portlet-JSF bridge, and so on. Check with your portal vendor for what you need to do in this
configuration step.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 69

I B M ® I L O G ® J V I E W S G A N T T 8 . 670

Guide to using JViews components with
ICEfaces

Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

In this section

Settings for using JViews components in ICEfaces
Describes the settings you need to use JViews JSF components with ICEfaces.

Interoperability between JViews components and ICEfaces components
Describes the interoperability between JViews components and ICEfaces components.

Push updates to JViews components
Describes the techniques for push updates (server-initiated rendering) with JViews
components.

ICEfaces software in JViews
Describes the ICEfaces binary files provided with JViews and lists the known issues.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 71

Settings for using JViews components in ICEfaces

You are assumed to be familiar with Web application development using JSF technologies.
You need to have JViews 8.5 or above and ICEfaces 1.7.2 or above installed. You can go to
http://www.icefaces.org to download a more recent version of ICEfaces. If you use Eclipse™
, ICEfaces also has a plug-in for this environment.

Since JViews 8.5, JViews JSF components support ICEfaces completely. JViews requires the
standard request mode of ICEfaces. This is the mode in which ICEfaces interoperates with
third-party components. To set this mode, you need to add the following element to the
web.xml file of your Web application.

<context-param>
<param-name>com.icesoft.faces.standardRequestScope</param-name>
<param-value>true</param-value>

</context-param>

For other settings required by JViews JSF components, see JViews Faces configuration at
JViews Framework level.

I B M ® I L O G ® J V I E W S G A N T T 8 . 672

http://www.icefaces.org

Interoperability between JViews components and ICEfaces
components

JViews components and ICEfaces components are both JSF components. They can work
together both on the client side and on the server side.

On the client side, JViews JSF components are high-level Ajax-enabled JavaScript™ objects.
You can direct the behavior of JViews components by invoking their JavaScript methods.
For example, when you click an ICEfaces button you can update the contents of a JViews
view by calling its JavaScript method: updateImage().

On the server side, both JViews components and ICEfaces components can be bound to
managed beans. This allows you to exchange parameters and data between the managed
beans of JViews components and ICEfaces components.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 73

Push updates to JViews components

One of the interesting features of ICEfaces is its server-initiated rendering. This technique
allows push updates to components rendered by Web browsers. This topic explains how to
make push updates to JViews components.

JViews components are Ajax-enabled components and their contents are generally GIF or
PNG images generated by JViews server-side servlet supports. There is no way to push
images directly to JViews components.

ICEfaces is able to push things such as HTML fragments and JavaScript™ code but not
images. However, you can use the ICEfaces push mechanism to notify client-side JViews
components that updates are available on the server. Then the JViews components can use
the Ajax mechanism to get the updated images. This approach is quite efficient in terms of
network traffic.

To notify client-side JViews components, you can use the ICEfaces server-initiated rendering
technique to push JavaScript code. The ICEfaces Ajax agent will receive and evaluate the
code. For example, you can put something like the following in JavaScript code.

<script type="text/javascript">chart.updateImage();</script>

This code tells a JViews chart component to update its contents.

For tips and tricks on how to push JViews components, look at the push example installed
with JViews Charts at <install-dir> /jviews-charts8.6/codefragments/jsf-charts-ice.

I B M ® I L O G ® J V I E W S G A N T T 8 . 674

ICEfaces software in JViews

ICEfaces binary files provided with JViews
ICEfaces binary files are included in the JViews distribution so that the integration code
samples can run out-of-the-box. ICEfaces jar files can be found under
<framework-install-dir>/lib/external. However, the full ICEfaces distribution is not
included.

To get a complete or more updated distribution, you can get ICEfaces source code at http:/
/www.icefaces.org.

Known ICEfaces issues
Issues may exist when using ICEfaces components with JViews components.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 75

http://www.icefaces.org
http://www.icefaces.org

Supporting Facelets and Trinidad

If you want to use JViews Framework Faces components in a Facelets context, your Web
application must be correctly configured.

Compatibility with Facelets and Trinidad
To make JViews Framework Faces components compatible with Facelets and Trinidad:

♦ Edit the configuration files.

To see examples of correct settings for Facelets with Trinidad, look at the
faces-config.xml and web.xml files. If you want to use Facelets without Trinidad, look
at faces-config-std.xml and web-std.xml instead.

♦ Develop XHTML-based pages according to the tag library documentation.

All attributes and all tags except the menu tags listed in Contextual menus are supported
in Facelets.

If you are using custom tags, make sure you provide a custom.taglib.xml file that
describes your custom library and declare its XML namespace in the page.

♦ Make sure that your .war files (or your server default libraries) include the necessary
Facelets (and possibly Trinidad) jar files.

Code examples
For complete JViews Gantt application examples configured for use with Facelets or Trinidad,
see <install-dir> /jviews-gantt8.6/codefragments/jsf-gantt-facelets/webpages/
index.xhtml.

Contextual menus
In a facelets context, you will be able to provide dynamic menus through the factory or
factoryClass attribute of a contextual menu object but you will not be able to use menu,
menuItem, or menuSeparator tag components directly in the page.

<... contextualMenu ... factoryClass="mydemo.somepackage.MenuFactory" />

For JViews Charts, the contextual menu element is chartContextualMenu.

For JViews Gantt, the contextual menu element is ganttContextualMenu.

Static menu
You will be able to bind a static menu (running the code of the factory only once), in addition
to dynamic menus, using the value attribute of the contextual menu element.

<... contextualMenu ... value="#{chartBean.menu}" />

I B M ® I L O G ® J V I E W S G A N T T 8 . 676

Web Application Server support

Apache Tomcat™ 6.0.14 is the reference Web Application Server (AS) shipped with IBM®
ILOG® JViews 8.6.

Other Web AS have been tested, including JBoss® AS 4.2.3.GA, IBM® WebSphere® 7.0,
and Oracle® Weblogic Server 10.3. The following sections give useful information you may
need when deploying JViews Web applications to one of these servers.

JBoss Application Server 4.2.3.GA

♦ JBoss AS 4.2.3.GA includes a JSF implementation. To avoid conflicts, you should not
include JSF jars in your .war file when deploying JViews Web applications.

♦ When deploying JViews FaceletsWeb applications, youmight need to exclude dom-3.0.jar
from the .war file to avoid XML parsing exceptions.

♦ JBoss AS 4.2.3.GA does not support multipattern <servlet-mapping> elements in web.xml.
You should use multiple <servlet-mapping> elements with separate patterns.

IBM WebSphere 7.0

♦ WebSphere 7.0 includes a JSF implementation. To avoid conflicts, you should not include
JSF jars in your .war file when deploying JViews Web applications.

♦ When deploying JViews FaceletsWeb applications, youmight need to exclude dom-3.0.jar
from the war file to avoid XML parsing exceptions.

♦ There is a known issue when deploying ICEfaces applications to WebSphere. See http://
jira.icefaces.org/browse/ICE-2330.

Oracle WebLogic Server 10.3

♦ You need to change the schema of your web.xml to 2.5.

♦ For the exception that the deferred EL expression is not allowed since
deferredSyntaxAllowedAsLiteral is false, you need to add <%@ page
deferredSyntaxAllowedAsLiteral="true" %> in the JSP page.

♦ In the Trinidad and Facelets samples, the TGO network view might not be shown; you
need to move the interactors out of the tr:panelTabbed component.

♦ For Trinidad demos with invalid PPR responses, the problem is caused by an invalid XML
response, which has been reported at https://issues.apache.org as JIRA issue
TRINIDAD-1170.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 77

http://jira.icefaces.org/browse/ICE-2330
http://jira.icefaces.org/browse/ICE-2330
https://issues.apache.org

I B M ® I L O G ® J V I E W S G A N T T 8 . 678

Deploying an application as a DHTML-only
thin client

Describes how to deploy an application as a DHTML-only thin client.

In this section

JavaServer Faces components as opposed to DHTML thin client
Recommends the use of DHTML-based JavaServer™ Faces (JSF) technology rather than
DHTML-only thin-client technology.

Overview
Gives an overview of the thin-client approach in JViews Gantt.

Gantt Thin-Client Web Architecture
Explains how the Gantt thin-client Web application support uses the Java servlet technology
to deliver information from a Gantt chart server-side application.

Getting Started With the Gantt Thin Client: An Example
Provides an example to help you get started with thin client development.

Developing the server side
Explains how to develop a server side JViews Gantt thin-client application.

Developing the client side
After creating the server side of your Gantt Web application, you create the client side. The
Gantt thin-client support allows you to easily build a client based on Dynamic HTML that
will run onWeb browsers that support DHTML. You build an HTMLWeb page for the DHTML
client using predefined JavaScript™ components.

© Copyright IBM Corp. 1987, 2009 79

Adding client/server interactions
The JViews Gantt thin-client support gives you a simplified way to define new actions that
should take place on the server side. For example, suppose you want to allow the user to
change the name of an activity that appears on the generated image. Part of this action,
clicking the image to select the activity, must be done on the client side. Changing the name
of the activity in the Gantt data model must be done on the server side before a new image
is generated. The notion of a “server-side action” exists to perform such behavior. An action
is defined by a name and a set of string parameters.

The IlvGanttServlet and IlvGanttServletSupport classes
Describes how to create a servlet and how the servlet responds to different requests.

I B M ® I L O G ® J V I E W S G A N T T 8 . 680

JavaServer Faces components as opposed to DHTML thin client

When you build a DHTML-based Web application, you are recommended to base the
application on JavaServer™ Faces (JSF) technology.

Build your application with the techniques described inUsing DHTML-based JSF components
to build Web applications

JSF components in JViews Gantt rely heavily on DHTML thin-client libraries, both on the
server and the client, so you need to be familiar with the topics discussed here to be able
to use the JSF components properly.

On the server side, the JSF components leverage the thin-client servlet to generate images
and other kinds of output for the client side. On the client side, the JSF components use
JavaScript™ classes of the DHTML thin client to provide Ajax features.

For a basic use of a JSF component, you probably do not need a full understanding of the
DHTML thin client. Advanced use requires you to have a reasonable knowledge of it.

In rare cases, such as environments where JSF is not available, you might need to rely solely
on the DHTML thin client.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 81

Overview

Developing with the JViews Gantt SDK discusses how you can use JViews Gantt on the client
side where you develop Java™ applets or applications. You can also use JViews Gantt on
the server side. Some Web applications require that the client stay very light, with most of
the functionality residing in the server. JViews Gantt thin-client support allows you to create
such types of applications easily. You can use the power of IBM® ILOG® JViews Gantt to
build Gantt or Schedule charts on the Web server. You can then use JViews Gantt thin-client
support on your Web browser to display and interact with those images created by the
server.

This section explains how to use JViews Gantt packages and classes on both the server side
and the client side.

♦ Gantt Thin-Client Web Architecture

♦ Getting Started With the Gantt Thin Client: An Example

♦ Developing the server side

♦ Developing the client side

♦ Adding client/server interactions

♦ The IlvGanttServlet and IlvGanttServletSupport classes

I B M ® I L O G ® J V I E W S G A N T T 8 . 682

Gantt Thin-Client Web Architecture

The Gantt thin-client Web application support is based on the Java servlet technology.
Servlets are Java programs that run on a Web server. They act as a middle layer between
HTTP requests coming from a Web browser or other HTTP clients (such as applets or
applications) and the application or databases on the Web server. The job of the servlet is
to read and interpret HTTP requests coming from an HTTP client program and to generate
a resulting document that in most cases is an HTML page. For more information about
servlet technology, you can visit the JavaSoft™ site http://java.sun.com/products/servlet.
This site also provides information about the Web servers that support Java servlets.

For the predefined Gantt thin client, the content created by the servlet is primarily a JPEG
or PNG image. The servlet generates the images from a Gantt chart server-side application
that is almost identical to the client-side Gantt chart applications discussed in previous
sections. The servlet acts as an intermediate layer. It interprets the HTTP requests from the
thin client running in the user’s browser, generates images of the Gantt chart server-side
application, and delivers the images in HTTP responses back to the client. In turn, the Gantt
chart server-side application may obtain the scheduling information that it displays from
XML files, databases, or other application-specific data. This basic architecture is illustrated
in Gantt thin-client Web application architecture:

Gantt thin-client Web application architecture

The JViews Gantt thin-client support contains the following:

♦ An abstract servlet class that can generate images from a Gantt chart display.

♦ A set of browser-independent Dynamic HTML scripts written in JavaScript™ that can be
used on the client side to display and interact with the images created on the server side.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 83

http://java.sun.com/products/servlet

I B M ® I L O G ® J V I E W S G A N T T 8 . 684

Getting Started With the Gantt Thin Client:
An Example

Provides an example to help you get started with thin client development.

In this section

Creating a Gantt thin-client application
Describes the steps necessary to create a Gantt thin-client application

The Gantt Servlet Example
Gives an overview of the Gantt Servlet example.

Installing and Running the Gantt Servlet Example
Describes the requirements to install and run this sample.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 85

Creating a Gantt thin-client application

Creating a Gantt thin-client application consists of two steps: developing the server side
and developing the client side. The Gantt Servlet example, provided with the distribution,
illustrates these steps in this section.

I B M ® I L O G ® J V I E W S G A N T T 8 . 686

The Gantt Servlet Example

The Gantt Servlet example can be found in the following directory:

<installdir>/jviews-gantt86/samples/servlet

This example allows you to show a standard Gantt chart of scheduling information in a
thin-client context.

The Gantt Servlet Example

The Gantt Servlet example is composed of the following:

The Server Side
The server side consists of three Java™ files located in the directory:

<installdir>/jviews-gantt86/samples/servlet/src

These files are:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 87

DescriptionFile

A servlet that produces JPEG images from a standard
IlvGanttChart component.

GanttChartServlet.java

A Gantt data model that contains the project scheduling
information.

SimpleProjectDataModel.java

A basic implementation of IlvGanttServleSupport that
handles all the HTTP requests for the servlet.

BasicServletSupport.java

The DHTML client
The DHTML client consists of:

♦ The HTML starting page:

<installdir>/jviews-gantt86/samples/servlet/web/index.html

♦ The set of JViews Framework common JavaScript™ DHTML components, located in:

<installdir>/jviews-framework86/lib/thinclient/javascript/

and the images needed for these components in:

<installdir>/jviews-framework86/lib/thinclient/javascript/images

♦ The set of Gantt JavaScript DHTML components, located in:

<installdir>/jviews-gantt86/lib/thinclient/javascript/gantt

I B M ® I L O G ® J V I E W S G A N T T 8 . 688

Installing and Running the Gantt Servlet Example

Running the Gantt Servlet example requires a Web server and a Web browser that support
Dynamic HTML. The Web server must support the Servlet API 2.1 or later.

This sample is compatible with the browsers and browser versions listed in the Release
notes.

The Gantt Servlet example contains a WAR file (Web Archive):

that allows you to easily install the example on the Web server of your choice. You can check
the latest list of servers that support servlets at:

http://java.sun.com/products/servlet/industry.html

For your convenience, the Apache Tomcat™ Web server is supplied with the JViews Gantt
distribution. The Gantt Servlet example is pre-installed in Tomcat and is ready to run.
TOMCAT is the official reference implementation of the Servlet and JSP™ specifications.
To get more information on Tomcat go to http://jakarta.apache.org/tomcat/.

The steps for running the Tomcat Web server supplied with the JViews Gantt installation
can be found at:

♦ <installdir>/jviews-gantt86/samples/servlet/gantt-thinclient.war

♦ Starting the samples

If you are running on Microsoft® Windows® then you will find menu items in the
Windows "start" menu to start and stop the Tomcat server.

Note:

1. Launch aWeb browser and open the page: http://localhost:8080/gantt-thinclient

2. For additional details, consult the instructions on how to run the IBM® ILOG® JViews
Gantt samples in:

Starting the samples

Your browser then shows the Gantt Servlet example.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 89

http://java.sun.com/products/servlet/industry.html
http://jakarta.apache.org/tomcat/

I B M ® I L O G ® J V I E W S G A N T T 8 . 690

Developing the server side

Explains how to develop a server side JViews Gantt thin-client application.

In this section

Key classes and their associations
Describes key classes used in a server side JViews Gantt thin-client application.

The servlet support class
Describes the main class used in the Gantt Servlet example.

Multithreading issues on the server side
Explains how to use non-multithreaded Swing GUI components in a multithreaded Web
server run-time environment.

The servlet class
Explains the function of the servlet class.

Answering HTTP requests
Describes what is returned when you call the server side of the Gantt chart Web application.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 91

Key classes and their associations

The server side of a JViews Gantt thin-client application is composed of two main parts:

♦ The JViews Gantt application itself, which can be any type of Gantt chart or Schedule
chart built upon the JViews Gantt components and APIs, and

♦ A servlet that interprets requests from the client to generate images of the chart.

The following figure shows an overview of the key classes and their associations.

Overview of key server-side classes

The server-side classes are colored to indicate their packaging:

♦ The yellow class, HTTPServlet, is part of the standard Java™ Servlet API. It is located
in the javax.servlet.http package and is the abstract base class for all HTTP servlet
implementations.

♦ The blue classes are members of the JViews Gantt API. The abstract classes
IlvGanttServlet and IlvGanttServletSupport belong to the ilog.views.gantt.servlet
package. IlvGanttServlet is an abstract servlet that responds to HTTP requests to
generate images of a Gantt chart or a Schedule chart. IlvGanttServlet is a very simple
class that delegates all its real work to an instance of IlvGanttServletSupport. This
allows you to easily integrate the full capabilities of the Gantt server-side classes into
your own servlet implementations.

♦ The green classes belong to the Gantt Servlet example and are located in the file:

<installdir>/jviews-gantt86/samples/servlet/src/GanttChartServlet.java

The class GanttChartServlet is the concrete servlet implementation for the server side
of the example. Its concrete inner support class, BasicServletSupport, generates images
of a standard Gantt chart in response to HTTP requests.

The subsequent sections explain how the server side is built in the Gantt Servlet example:

♦ The servlet support class

♦ Multithreading issues on the server side

♦ The servlet class

I B M ® I L O G ® J V I E W S G A N T T 8 . 692

♦ Answering HTTP requests

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 93

The servlet support class

The Gantt Servlet example displays a standard Gantt chart containing project scheduling
information. The IlvGanttServletSupport class does all the work on the server side to
generate images of the chart in response to HTTP requests. The concrete implementation
for this example is the IlvBasicServletSupport inner class, located in the file:

<installdir>/jviews-gantt86/samples/servlet/src/GanttChartServlet.java

The getChart method
The method:

createServletSupportpublic IlvHierarchyChart getChart(HttpServletRequest,
IlvServletRequestParameters) throws ServletException

is the only abstract method of the IlvGanttServletSupport class. It should return the
IlvGanttChart or IlvScheduleChart instance that will be used to satisfy an HTTP request.
The request is given as a parameter to the getChart method, so it is possible to provide
charts to the client that are session-specific. The servlet support class of the example has
been simplified to use a single Gantt chart instance to satisfy all HTTP requests. This means
that every client will see the same data.

Details of the code sample
The code of the example starts with include statements:

1. First, the import statements required to use the Java™ Servlet API:

import javax.servlet.*;
import javax.servlet.http.*;

2. Then the import statements that are required for JViews Gantt and the JViews Gantt
server-side classes:

import ilog.views.gantt.*;
import ilog.views.gantt.servlet.*;

The servlet support class of the example is very simple and consists of only two methods:

public class GanttServletSupport extends IlvGanttServletSupport
{
private IlvHierarchyChart _chart;

/**
* Creates the Gantt chart that will be used by the servlet to satisfy HTTP

* requests.
*/
private IlvHierarchyChart createChart(IlvGanttModel ganttModel)
{
IlvHierarchyChart chart = new IlvGanttChart();
chart.setGanttModel(ganttModel);

I B M ® I L O G ® J V I E W S G A N T T 8 . 694

... chart customizations ...
return chart;

}

/**
* Returns the chart used for the specified request. This implementation
* always returns the same chart.
* @param request The current HTTP request.
* @param params The parameters parsed from the request.
*/
public IlvHierarchyChart getChart(HttpServletRequest request,

IlvServletRequestParameters params)
throws ServletException

{
synchronized(this) {
if (_chart == null) {
_chart = createChart(new SimpleProjectDataModel());

}
}
return _chart;

}
}

As you can see, the steps necessary to create a chart on the server side are almost identical
to those discussed in earlier sections for developing client-side Java applications and applets.
In summary, you need to:

1. Create a concrete subclass of IlvGanttServletSupport.

2. Implement the getChart method to return an instance of IlvGanttChart or
IlvScheduleChart.

3. Connect the chart to your application data model and customize the appearance of the
chart as you desire.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 95

Multithreading issues on the server side

Using GUI components, such as the IlvGanttChart and IlvScheduleChart involves threading
issues on the server side. TheWeb server run-time environment is inherently multithreaded.
However, the Gantt chart components, like all Swing GUI components, are not
multithread-safe. There is also a further design constraint of Swing GUI components. Namely,
after the Web server has sent an image of a chart to the client for the first time, all
modifications to the visual properties of the chart must be performed on the AWT event
dispatch thread. The AWT event dispatch thread will never be the same thread that the
HTTP request is being serviced on.

In general, the IlvGanttServletSupport base class handles all these threading issues for
you. It ensures that all requests to modify a chart and generate its image are moved from
the HTTP request thread onto the AWT event dispatch thread as necessary. In the
createChart method of the servlet support class, you are able to customize the visual
properties of the chart on the HTTP request thread because the chart has not been sent to
the client yet. However, note the use of the synchronized block in the getChart(javax.
servlet.http.HttpServletRequest, ilog.views.gantt.servlet.
IlvServletRequestParameters)method. This is necessary to ensure that only a single chart
instance is ever created in the multithreaded Web server environment.

I B M ® I L O G ® J V I E W S G A N T T 8 . 696

The servlet class

The IlvGanttServlet class is a simple HTTP servlet implementation that delegates all its
work to its associated support class. It contains a single abstract method:

createServletSupport()

This method must return the single support instance that will service the HTTP requests
sent to the servlet. The implementation of this class for the example is located in the file:
<installdir>/jviews-gantt86/samples/servlet/src/GanttChartServlet.java

That implementation consists of only the createServletSupport method:

public class GanttChartServlet extends IlvGanttServlet
{
/**
* Creates the servlet support object to which this servlet delegates HTTP
* request handling.
*/
protected IlvGanttServletSupport createServletSupport()
{
IlvGanttServletSupport support = new BasicServletSupport();
... customize the support class ...
return support;

}
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 97

Answering HTTP requests

Creating the server side of the Gantt chart Web application is very simple. The servlet can
now answer HTTP requests from a client by sending JPEG images of the chart. If the Apache
Tomcat™ server is running, you can try typing the following HTTP request in your Web
browser:

http://localhost:8080/gantt-thinclient/
GanttChartServlet?request=image&width=400&height=300

This produces the following image:

This request asks the servlet named GanttChartServlet to produce an image of size
400 x 300 showing the entire IlvGanttChart component. In most cases, you do not have to
know the servlet parameters because the client-side Dynamic HTML objects provided by
JViews Gantt takes care of the HTTP requests for you.

I B M ® I L O G ® J V I E W S G A N T T 8 . 698

Developing the client side

After creating the server side of your Gantt Web application, you create the client side. The
Gantt thin-client support allows you to easily build a client based on Dynamic HTML that
will run onWeb browsers that support DHTML. You build an HTMLWeb page for the DHTML
client using predefined JavaScript™ components.

In this section

Developing a Dynamic HTML client
Explains the advantages of the Dynamic HTML client and the components supplied to develop
them.

The DHTML client for the Gantt Servlet example
Explains how to create a Dynamic HTML client.

The Popup menu in JavaScript
Describes the JavaScript component for the popup menu.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 99

Developing a Dynamic HTML client

The static nature of HTML limits the interactivity of Web pages. Dynamic HTML allows you
to create Web pages that are more interactive and engaging. It gives content providers new
controls and allows them to manipulate the contents of HTML pages through scripting. To
learn more about Dynamic HTML, you can search for the following items on Web sites:

♦ The Microsoft® Web Workshop within:

http://msdn.microsoft.com

IBM® ILOG® JViews Gantt provides a set of browser-independent Dynamic HTML
components written in JavaScript™ that allow you to build your DHTML pages very easily.

♦ JViews Framework common JavaScript DHTML components are located in:

<installdir>/jviews-framework86/lib/thinclient/javascript

♦ JViews Gantt JavaScript DHTML components

<installdir>/jviews-gantt86/lib/thinclient/javascript/gantt

Keep in mind that not all versions of Web browsers support DHTML. See the
Release notes for the browsers and browser versions that the IBM® ILOG® JViews
DHTML scripts have been tested on.

Warning:

Common DHTML components
See also The IlvView JavaScript Component in Advanced Features of IBM ILOG JViews
Framework.

The common JavaScript™ DHTML components are located in the directory:

<installdir>/jviews-framework86/lib/thinclient/javascript

Here is an overview of the common DHTML component classes and their relationships:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6100

http://msdn.microsoft.com

Common DHTML Components

Here is the list of common JavaScript files and a brief description of each:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 101

Common DHTML Script Files
DescriptionScript File

Defines the IlvAbstractPopupMenu, IlvMenu, and IlvMenuItem
classes that are the base classes of popup menus.

IlvAbstractPopupMenu.js

Defines the IlvAbstractView class, the base class for
IlvGanttComponentView.

IlvAbstractView.js

Defines the IlvButton class, a simple DHTML button.IlvButton.js

Defines the class IlvEmptyView, the base class for all view
components that have a size and position on the HTML page.

IlvEmptyView.js

Defines a very simple JavaScript debugging window that can be added
to your Web page.

IlvEvaluatorView.js

Defines the IlvGlassView class.IlvGlassView.js

Defines the IlvImageView and IlvImageEventView classes.IlvImageView.js

Defines the IlvInteractor class, the base class for all view
interactors.

IlvInteractor.js

Defines the IlvInteractorButton class, a subclass of IlvButton
that can set an interactor on a view.

IlvInteractorButton.js

Defines the IlvResizableView class, the base class for all view
components that can be interactively resized. This is the base class
for IlvGanttView.

IlvResizableView.js

Defines the DHTML scroll bar classes IlvScrollbar,
IlvVScrollbar, and IlvHScrollbar.

IlvScrollbar.js

Defines the IlvToolBar class, a DHTML toolbar that can contain
IlvButtons.

IlvToolBar.js

Dynamic HTML tools and functions used by other scripts.This file must
always be included. This file defines the IlvObject and IlvPanel
casses.

IlvUtil.js

The full reference documentation of each component can be found in the Dynamic HTML
Component Reference located in:

<installdir>/jviews-framework86/doc/html/refjs_fwork/index.html

Gantt DHTML components
The JViews Gantt JavaScript DHTML components are located in the directory:

<installdir>/jviews-gantt86/lib/thinclient/javascript/gantt

Here is an overview of the Gantt DHTML component classes and their relationships:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6102

Gantt DHTML Components

Here is the list of JViews Gantt JavaScript files and a brief description of each:

Gantt DHTML Script Files
DescriptionScript File

Defines the IlvGanttPopupMenu class that is the
Gantt-specific implementation of IlvAbstractPopupMenu.

IlvGanttPopupMenu.js

Defines the main Gantt view classes IlvGanttView,
IlvGanttComponentView, IlvGanttTableView, and
IlvGanttSheetView.

IlvGanttView.js

Defines the class IlvGanttTableScrollInteractor,
an interactor that lets you pan and scroll an
IlvGanttTableView.

IlvGanttTableScrollInteractor.
js

Defines the class IlvGanttSheetScrollInteractor,
an interactor that lets you pan and scroll an
IlvGanttSheetView.

IlvGanttSheetScrollInteractor.
js

Defines the class IlvRowExpandCollapseInteractor,
an interactor that lets you expand and collapse rows in an
IlvGanttTableView or an IlvGanttSheetView.

IlvRowExpandCollapseInteractor.
js

Defines the class IlvRowSelectInteractor, an interactor
that allows you to select rows in an IlvGanttTableView
or an IlvGanttSheetView

IlvRowSelectInteractor.js

The full reference documentation of each component can be found in the Dynamic HTML
Component Reference located in:

<installdir>/jviews-gantt86/doc/html/refjsgantt/index.html

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 103

The DHTML client for the Gantt Servlet example

You will now create a Dynamic HTML client for the Gantt Servlet example, starting with a
very simple example and including most of the DHTML components. The full HTML file for
the Gantt Servlet example is located in:

<installdir>/jviews-gantt86/samples/servlet/webpages/index.html

This section covers:

♦ Directory structure of the Web application

♦ The IlvGanttView DHTML component

♦ The message panel

♦ Interactively resizing the Gantt view

♦ Decorative panels

♦ IlvToolBar and IlvButton

♦ IlvGanttSheetScrollInteractor

♦ IlvRowExpandCollapseInteractor

♦ IlvInteractorButton

Directory structure of the Web application
Before you start using the Gantt DHTML components to build the client, you must first
decide on the directory structure that the users will see when they visit your Web application
with their browser. This structure does not, and should not, match the location of the example
and JavaScript files in the IBM® ILOG® JViews Gantt distribution. The Gantt Servlet
example is deployed to use the following directory structure:

Directory Structure of the Web Application

The Ant build file for the Gantt Servlet example:

<installdir>/jviews-gantt86/samples/servlet/build.xml

creates this directory structure in the gantt-thinclient.war Web Archive.

The IlvGanttView DHTML component
The IlvGanttView component (located in the IlvGanttView.js file) is themain Gantt DHTML
component. This component queries the servlet and displays the resulting image of the
chart. The steps are as follows:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6104

♦ Importing the JavaScript files

♦ Creating the Gantt View

♦ Defining JavaScript functions

Importing the JavaScript files
First, you must include the JavaScript files that are required to use the IlvGanttView
component:

♦ IlvUtil.js

♦ IlvEmptyView.js

♦ IlvImageView.js

♦ IlvGlassView.js

♦ IlvResizableView.js

♦ IlvAbstractView.js

♦ IlvScrollbar.js

♦ IlvGanttView.js

Here is a simple HTML page that creates an IlvGanttView object:

<HTML>
<HEAD>
<META HTTP-EQUIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
</HEAD>

<script TYPE="text/javascript" src="script/IlvUtil.js" ></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvScrollbar.js"></script>
<script TYPE="text/javascript" src="script/IlvGanttView.js"></script>

<script TYPE="text/javascript">
function init()
{
chartView.init();

}

function handleResize()
{
if (document.layers)
window.location.reload()

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 105

</script>
<body onload="init()" onunload=”ilvDispose()”

onresize="handleResize()" bgcolor="#ffffff">
<script TYPE="text/javascript">
// The Gantt chart servlet.
var servletName = "/gantt/GanttChartServlet";

// Position of the Gantt chart.
var chartX = 25;
var chartY = 25;
var chartH = 350;
var chartW = 700;

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.toHTML();

</script>
</body>
</html>

The example starts with importing the necessary JavaScript files:

<script TYPE="text/javascript" src="script/IlvUtil.js" ></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvScrollbar.js"></script>
<script TYPE="text/javascript" src="script/IlvGanttView.js"></script>

The JavaScript files must be placed in the head of the page. Note that the scripts are included
from the relative script subdirectory. Remember that when you build the Web application,
the HTML Web pages will be placed in the upper directory and the scripts will be in the
script directory (see Gantt DHTML Components).

Creating the Gantt View
In the body of the page, you create an IlvGanttView located in (25, 25) on the HTML page.
The size is 350 x 700. This view displays images produced by the servlet GanttChartServlet.
Note the toHTML method that creates the HTML necessary for the component.

Defining JavaScript functions
This example also defines two JavaScript functions:

♦ The init function, called on the onload event of the page, initializes the IlvGanttView
by calling its init method.

♦ The handleResize function, called on the onresize event of the page, will reload the
page if the browser is Netscape Communicator 4 or higher. This is necessary for a correct
resizing of Dynamic HTML content on Communicator.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6106

The global ilvDispose function must be called in the onunload event of the HTML
page.This function disposes of all the resources acquired by the DHTML components.

Note:

Once the image is loaded from the server, the page looks like this:

The message panel
You will now add a Dynamic HTML panel below our main view. A DHTML panel is an area
of the page that can contain some HTML content. You will use the DHTML panel to display
status messages as the user interacts with the JViews Gantt view. You create the message
panel using the class IlvHTMLPanel, defined in the IlvUtil.js file.

The body of the page is now:

<body onload="init()" onunload="ilvDispose()"
onresize="handleResize()" bgcolor="#ffffff">

<script TYPE="text/javascript">
// The Gantt chart servlet.
var servletName = "/gantt/GanttChartServlet";

// Position of the Gantt chart.
var chartX = 25;
var chartY = 25;
var chartH = 350;
var chartW = 700;

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.toHTML();

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 107

var messagePanel = new IlvHTMLPanel('');
messagePanel.setBackgroundColor('#B6D5DA');
messagePanel.setVisible(true);
chartView.setMessagePanel(messagePanel);

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop() + chart.getHeight() + 15,
chart.getWidth(),
45);

}
layoutPage(chartView);
chartView.addSizeListener(layoutPage);

</script>
</body>

Note that the class IlvHTMLPanel does not have a toHTML method, it generates its HTML
content immediately from within its constructor. Also, the IlvHTMLPanel is initially hidden.
You must explicitly call its setVisible method to show it on the page. These are the main
differences between the DHTML “view” components and the DHTML “panel” components.

In this example, we intend to make the main Gantt view interactively resizable. To this effect,
there is a layoutPage function that positions the message panel relative to the current size
and position of the main Gantt view:

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop() + chart.getHeight() + 15,
chart.getWidth(),
45);

}

The layoutPage function is then called to perform the initial arrangement of the components:

layoutPage(chartView);

The method addSizeListener is called to listen for resize events on layoutPage from the
IlvGanttView:

chartView.addSizeListener(layoutPage);

The Web page now looks like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6108

Interactively resizing the Gantt view
You will now make the main Gantt view interactively resizable by calling the setResizable
method:

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.setResizable(true);
chartView.toHTML();

Our IlvGanttView now displays a resize tool at its lower right corner:

You can now click and drag on the tool to interactively resize the Gantt view. When the
resize operation completes, the layoutPage method is invoked, and the position of the
message panel is updated to match that of the main view.

Decorative panels
Next, you will add some decorative panels around our main Gantt view to improve the
appearance of the Web page. You IlvHTMLPaneluse to display a tiled image pattern as a
background frame:

var backgroundPanel = new IlvHTMLPanel('');
backgroundPanel.setBackgroundImage(ilvImagePath + 'skybg.jpg');

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 109

backgroundPanel.setBackgroundColor('#909090');
backgroundPanel.setVisible(true);

The background panel must be created before the IlvGanttView.toHTMLmethod is invoked.
DHTML components have an implied z-order in the browser that is determined by the order
in which their HTML code is created in the page body. The IlvHTMLPanel component creates
its HTML code in its constructor and the IlvGanttView component creates its HTML code
in its toHTML method. By placing the background panel before the Gantt view in the page
body, you ensure that the panel will appear behind the Gantt view.

The ilvImagePath variable, used to define the tiled image for the background panel, is a
global variable defined in IlvUtil.js. It contains the path to the images used by the script
files. Its default value is script/images, which is the location of the image files relative to
the Web pages in the Web application.

You will also add a small company logo to display on the right side of the message panel.
You use an IlvImageView component instead of an IlvHTMLPanel because you do not want
to tile the logo image:

var logoPanel = new IlvImageView(0, 0, 67, 30,
ilvImagePath+'ilog-small.gif');

logoPanel.toHTML();

The IlvImageView component has the additional advantage of remaining hidden until its
image is loaded. This is important for a nice appearance when the images take some time
to download from the server due to image size or network latencies. Normally, if an image
has not been loaded from the server yet, the browser will display a box with a red “X” in

it:

The IlvImageView component avoids this effect and remains invisible until the image is
available to display.

Finally, you must update the layoutPage method to properly arrange the new panels:

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop()+chart.getHeight()+15,
chart.getWidth()-logoPanel.getWidth()-15,
logoPanel.getHeight());

backgroundPanel.setBounds(chart.getLeft() - 10,
chart.getTop() - 10,
chart.getWidth()+ 20,
messagePanel.getTop() +

messagePanel.getHeight() + 20 -
chart.getTop());

logoPanel.setLocation(messagePanel.getLeft() +
messagePanel.getWidth() + 15,

messagePanel.getTop());
}

The body of the HTML file now looks like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6110

<body onload="init()" onunload="ilvDispose()"
onresize="handleResize()" bgcolor="#ffffff">

<script TYPE="text/javascript">
// The Gantt chart servlet
var servletName = "/gantt/GanttChartServlet";

// Position of the Gantt chart.
var chartX = 25;
var chartY = 25;
var chartH = 350;
var chartW = 700;

var backgroundPanel = new IlvHTMLPanel('');
backgroundPanel.setBackgroundImage(ilvImagePath + 'skybg.jpg');
backgroundPanel.setBackgroundColor('#909090');
backgroundPanel.setVisible(true);

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.setResizable(true);
chartView.toHTML();

var messagePanel = new IlvHTMLPanel('');
messagePanel.setBackgroundColor('#B6D5DA');
messagePanel.setVisible(true);
chartView.setMessagePanel(messagePanel);

var logoPanel = new IlvImageView(0, 0, 67, 30, ilvImagePath+'ilog-small.gif')
;
logoPanel.toHTML();

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop() + chart.getHeight() + 15,
chart.getWidth() - logoPanel.getWidth() - 15,

logoPanel.getHeight());
backgroundPanel.setBounds(chart.getLeft() - 10,

chart.getTop() - 10,
chart.getWidth()+ 20,

messagePanel.getTop() +
messagePanel.getHeight() + 20 -

chart.getTop());
logoPanel.setLocation(messagePanel.getLeft()+messagePanel.getWidth()+15,

messagePanel.getTop());
}
layoutPage(chartView);
chartView.addSizeListener(layoutPage);

</script>
</body>

You should now see the following Web page:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 111

IlvToolBar and IlvButton
The IlvButton class is a simple DHTML button component that allows you to call some
JavaScript code when the user clicks on it. The IlvToolBar class is a component that you
can use to arrange IlvButtons vertically or horizontally. You will now add some buttons to
the page to zoom in and out on the chart. The steps are as follows:

♦ Importing the JavaScript files

♦ Creating the toolbar

♦ Creating buttons

♦ Updating the layoutPage function

Importing the JavaScript files
First, youmust include the JavaScript files that define the IlvButton and IlvToolBar classes.
The JavaScript import statements now look like this:

<script TYPE="text/javascript" src="script/IlvUtil.js" ></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvScrollbar.js"></script>
<script TYPE="text/javascript" src="script/IlvGanttView.js"></script>

I B M ® I L O G ® J V I E W S G A N T T 8 . 6112

<script TYPE="text/javascript" src="script/IlvButton.js"></script>
<script TYPE="text/javascript" src="script/IlvToolBar.js"></script>

Creating the toolbar
In the page body, you first create the vertical toolbar and give it the same background image
as the main background panel:

var backgroundPattern = ilvImagePath + 'skybg.jpg';
var toolbar = new IlvToolBar(0, 0);
toolbar.setOrientation(IlvToolBar.VERTICAL);
toolbar.setBackgroundColor('#53537A');
toolbar.setBackgroundImage(backgroundPattern);

Notice that the initial position of the toolbar is set to (0, 0) and its toHTML function is not
called until the layoutPage function has calculated the correct position of the toolbar and
generated its HTML code. This approachmakes the pagemoremaintainable by encapsulating
all the component positioning into the layoutPage function and eliminates complex initial
position calculations when you create each component.

Creating buttons
Next, you create three buttons and add them to the toolbar. Each button is defined by its
position, size, three images, and a piece of JavaScript to be executed when the button is
clicked. The actual positioning of each button will be controlled by the toolbar it is contained
in, so you simply set the initial position of each button to (0, 0). The three images used by
the button are:

♦ The main image specified in the IlvButton constructor. This is the image used when the
mouse is not over the button and the button is not selected.

♦ The rollover image is used when the mouse is over the button, but the button is not
selected.

♦ The selected image is used when the mouse button is pressed on the button.

The code to create the three zoom buttons is:

// Create the Zoom-In toolbar button.
var zoomInAction = function() {
chartView.zoomIn();

};
var zoomInButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomin-up.gif',
zoomInAction);

zoomInButton.setRolloverImage(ilvImagePath+'zoomin-sel.gif');
zoomInButton.setSelectedImage(ilvImagePath+'zoomin-dn.gif');
zoomInButton.setToolTipText("Zoom In");
zoomInButton.setMessage("Press to zoom in");
zoomInButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomInButton);

// Create the Zoom-Out toolbar button.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 113

var zoomOutAction = function() {
chartView.zoomOut();

};
var zoomOutButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomout-up.gif',
zoomOutAction);

zoomOutButton.setRolloverImage(ilvImagePath+'zoomout-sel.gif');
zoomOutButton.setSelectedImage(ilvImagePath+'zoomout-dn.gif');
zoomOutButton.setToolTipText("Zoom Out");
zoomOutButton.setMessage("Press to zoom out");
zoomOutButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomOutButton);

// Create the Zoom-To-Fit toolbar button.
var zoomFitAction = function() {
chartView.zoomToFit();

};
var zoomFitButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomfit-up.gif',
zoomFitAction);

zoomFitButton.setRolloverImage(ilvImagePath+'zoomfit-sel.gif');
zoomFitButton.setSelectedImage(ilvImagePath+'zoomfit-dn.gif');
zoomFitButton.setToolTipText("Zoom To Fit");
zoomFitButton.setMessage("Press to zoom to fit");
zoomFitButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomFitButton);

The zoomInButton simply calls the zoomInmethod of the IlvGanttView, the zoomOutButton
calls the zoomOutmethod, and the zoomFitButton calls the zoomToFitmethod. Each button
also has a message property. The message will be automatically displayed in the status
window of the browser when the mouse is over the button. Themessage can also be displayed
in an IlvHTMLPanel positioned on the page. This is accomplished by setting the messagePanel
property of the buttons.

Updating the layoutPage function
Finally, you must update the layoutPage function to arrange the toolbar on the page and
generate the HTML code for the toolbar:

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop()+chart.getHeight()+15,
chart.getWidth()- logoPanel.getWidth()-15,
logoPanel.getHeight());

backgroundPanel.setBounds(chart.getLeft() - 10,
chart.getTop() - 10,
chart.getWidth()+ 20,
messagePanel.getTop()
+ messagePanel.getHeight()
+ 20
- chart.getTop());

logoPanel.setLocation(messagePanel.getLeft()
+ messagePanel.getWidth()
+ 15,

I B M ® I L O G ® J V I E W S G A N T T 8 . 6114

messagePanel.getTop());
toolbar.setLocation(backgroundPanel.getLeft()

+ backgroundPanel.getWidth()
+ 15,

backgroundPanel.getTop());
}
layoutPage(chartView);
chartView.addSizeListener(layoutPage);
toolbar.toHTML();

The complete body of the page is now:

<body onload="init()" onunload=”ilvDispose()”
onresize="handleResize()" bgcolor="#ffffff">

<script TYPE="text/javascript">
// The Gantt chart servlet.
var servletName = "/gantt/GanttChartServlet";
// The background image.
var backgroundPattern = ilvImagePath + 'skybg.jpg';

// Position of the Gantt chart.
var chartX = 25;
var chartY = 25;
var chartH = 350;
var chartW = 700;

var backgroundPanel = new IlvHTMLPanel('');
backgroundPanel.setBackgroundImage(backgroundPattern);
backgroundPanel.setBackgroundColor('#909090');
backgroundPanel.setVisible(true);

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.setResizable(true);
chartView.toHTML();

var messagePanel = new IlvHTMLPanel('');
messagePanel.setBackgroundColor('#B6D5DA');
messagePanel.setVisible(true);
chartView.setMessagePanel(messagePanel);

var logoPanel = new IlvImageView(0, 0, 67, 30,
ilvImagePath+'ilog-small.gif');

logoPanel.toHTML();

var toolbar = new IlvToolBar(0, 0);
toolbar.setOrientation(IlvToolBar.VERTICAL);
toolbar.setBackgroundColor('#53537A');
toolbar.setBackgroundImage(backgroundPattern);

// Create the Zoom-In toolbar button.
var zoomInAction = function() {
chartView.zoomIn();

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 115

};
var zoomInButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomin-up.gif',
zoomInAction);

zoomInButton.setRolloverImage(ilvImagePath+'zoomin-sel.gif');
zoomInButton.setSelectedImage(ilvImagePath+'zoomin-dn.gif');
zoomInButton.setToolTipText("Zoom In");
zoomInButton.setMessage("Press to zoom in");
zoomInButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomInButton);

// Create the Zoom-Out toolbar button.
var zoomOutAction = function() {
chartView.zoomOut();

};
var zoomOutButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomout-up.gif',
zoomOutAction);

zoomOutButton.setRolloverImage(ilvImagePath+'zoomout-sel.gif');
zoomOutButton.setSelectedImage(ilvImagePath+'zoomout-dn.gif');
zoomOutButton.setToolTipText("Zoom Out");
zoomOutButton.setMessage("Press to zoom out");
zoomOutButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomOutButton);

// Create the Zoom-To-Fit toolbar button.
var zoomFitAction = function() {
chartView.zoomToFit();

};
var zoomFitButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomfit-up.gif',
zoomFitAction);

zoomFitButton.setRolloverImage(ilvImagePath+'zoomfit-sel.gif');
zoomFitButton.setSelectedImage(ilvImagePath+'zoomfit-dn.gif');
zoomFitButton.setToolTipText("Zoom To Fit");
zoomFitButton.setMessage("Press to zoom to fit");
zoomFitButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomFitButton);

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop()+chart.getHeight()+15,
chart.getWidth()- logoPanel.getWidth()-15,
logoPanel.getHeight());

backgroundPanel.setBounds(chart.getLeft() - 10,
chart.getTop() - 10,
chart.getWidth()+ 20,
messagePanel.getTop()
+ messagePanel.getHeight()
+ 20
- chart.getTop());

logoPanel.setLocation(messagePanel.getLeft()
+ messagePanel.getWidth()
+ 15,

I B M ® I L O G ® J V I E W S G A N T T 8 . 6116

messagePanel.getTop());
toolbar.setLocation(backgroundPanel.getLeft()

+ backgroundPanel.getWidth()
+ 15,

backgroundPanel.getTop());
}
layoutPage(chartView);
chartView.addSizeListener(layoutPage);
toolbar.toHTML();

</script>
</body>

The page now looks like this with our new vertical toolbar:

IlvGanttSheetScrollInteractor
Until now, you have added components and buttons to the page. You will now add an
interactor that allows direct interactionwith the image. The IlvGanttSheetScrollInteractor
allows the user to interactively scroll and pan the image of the Gantt sheet. The IlvGanttView
component is composed of two child views: an IlvGanttTableView that displays the image
of the table on the left side of the splitter, and an IlvGanttSheetView that displays the
image of the Gantt sheet on the right side of the splitter. This is shown in Gantt DHTML
Components. You set interactors separately on the Gantt table and sheet views. The code
to create an IlvGanttSheetScrollInteractor and set it on the IlvGanttSheetView is very
simple:

var sheetView = chartView.getSheetView();
var sheetScrollInteractor = new IlvGanttSheetScrollInteractor();
sheetView.setInteractor(sheetScrollInteractor);

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 117

In order to use the IlvGanttSheetScrollInteractor class, you must include the JavaScript
files that define the class and its base class, IlvInteractor:

<script TYPE="text/javascript" src="script/IlvInteractor.js"></script>
<script TYPE="text/javascript"
src="script/IlvGanttSheetScrollInteractor.js"></script>

IlvRowExpandCollapseInteractor
The IlvRowExpandCollapseInteractor can be set on both an IlvGanttTableView and an
IlvGanttSheetView. It allows the user to click on rows in the image to expand and collapse
them. You will set the interactor on the Gantt table view. The steps are as follows:

1. Include the JavaScript file that defines the class:

<script TYPE="text/javascript"
src="script/IlvRowExpandCollapseInteractor.js"></script>

2. Set the interactor on the IlvGanttTableView:

var tableView = chartView.getTableView();
var tableToggleRowInteractor =
new IlvRowExpandCollapseInteractor('toggleRow');

tableView.setInteractor(tableToggleRowInteractor);

The string ‘toggleRow’ refers to a named action on the server side that this interactor
invokes. On the server side, this action is registered with the servlet support object in the
file:

<installdir>/jviews-gantt86/samples/servlet/src/GanttChartServlet.java

in the createServletSupport method:

protected IlvGanttServletSupport createServletSupport()
{
IlvGanttServletSupport support = new ServletSupport();
support.addServerAction("toggleRow", new IlvRowExpandCollapseAction());
return support;

}

These types of interactors and how to use them are described in detail in Adding client/server
interactions.

IlvInteractorButton
The IlvInteractorButton class is a subclass of IlvButton that installs an interactor on a
view. If multiple interactor buttons are defined for the same view, they will behave like radio
buttons. When an interactor button is pressed, it installs its interactor and remains pressed
until another button installs a different interactor.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6118

In this example, you will define an IlvRowExpandCollapseInteractor for the Gantt sheet
view. You will then add two interactor buttons to the toolbar that toggle between the scroll
interactor and the new row interactor. The steps are as follows:

1. Include the JavaScript file that defines the IlvInteractorButton class:

<script TYPE="text/javascript" src="script/IlvInteractorButton.js"></
script>

2. Create the new interactor for the Gantt sheet view:

var sheetView = chartView.getSheetView();
var sheetScrollInteractor = new IlvGanttSheetScrollInteractor();
sheetView.setInteractor(sheetScrollInteractor);
var sheetToggleRowInteractor =
new IlvRowExpandCollapseInteractor('toggleRow');

3. Create the interactor buttons and add them to the toolbar:

// Create the scroll toolbar button for the Gantt sheet.
var sheetPanButton =
new IlvInteractorButton(0, 0, 20, 20,

ilvImagePath+'move-up.gif',
sheetScrollInteractor,
sheetView);

sheetPanButton.setRolloverImage(ilvImagePath+'move-sel.gif');
sheetPanButton.setSelectedImage(ilvImagePath+'move-dn.gif');
sheetPanButton.setToolTipText("Pan Gantt Sheet");
sheetPanButton.setMessage("Scroll and pan the Gantt sheet");
sheetPanButton.setMessagePanel(messagePanel);
toolbar.addButton(sheetPanButton);

// Create the toggle row toolbar button for the Gantt sheet.
var sheetToggleRowButton =
new IlvInteractorButton(0, 0, 20, 20,

ilvImagePath+'bluearrow-plusminus-up.gif',
sheetToggleRowInteractor,
sheetView);

sheetToggleRowButton.setRolloverImage(ilvImagePath+'bluearrow-
plusminus-sel.gif')

;
sheetToggleRowButton.setSelectedImage(ilvImagePath+'bluearrow-

plusminus-dn.gif');
sheetToggleRowButton.setToolTipText("Expand/Collapse Gantt Sheet Rows");
sheetToggleRowButton.setMessage("Expand/collapse rows in the Gantt sheet")
;
sheetToggleRowButton.setMessagePanel(messagePanel);
toolbar.addButton(sheetToggleRowButton);

The body of the page is now:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 119

<body onload="init()" onunload="ilvDispose()"
onresize="handleResize()" bgcolor="#ffffff">

<script TYPE="text/javascript">
// The Gantt chart servlet.
var servletName = "/gantt/GanttChartServlet";
// The background image.
var backgroundPattern = ilvImagePath + 'skybg.jpg';

// Position of the Gantt chart.
var chartX = 25;
var chartY = 25;
var chartH = 350;
var chartW = 700;

var backgroundPanel = new IlvHTMLPanel('');
backgroundPanel.setBackgroundImage(backgroundPattern);
backgroundPanel.setBackgroundColor('#909090');
backgroundPanel.setVisible(true);

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.setResizable(true);
chartView.toHTML();

var sheetView = chartView.getSheetView();
var sheetScrollInteractor = new IlvGanttSheetScrollInteractor();
sheetView.setInteractor(sheetScrollInteractor);
var sheetToggleRowInteractor =
new IlvRowExpandCollapseInteractor('toggleRow');

var tableView = chartView.getTableView();
var tableToggleRowInteractor =
new IlvRowExpandCollapseInteractor('toggleRow');

tableView.setInteractor(tableToggleRowInteractor);

var messagePanel = new IlvHTMLPanel('');
messagePanel.setBackgroundColor('#B6D5DA');
messagePanel.setVisible(true);
chartView.setMessagePanel(messagePanel);

var logoPanel = new IlvImageView(0, 0, 67, 30,
ilvImagePath+'ilog-small.gif');

logoPanel.toHTML();

var toolbar = new IlvToolBar(0, 0);
toolbar.setOrientation(IlvToolBar.VERTICAL);
toolbar.setBackgroundColor('#53537A');
toolbar.setBackgroundImage(backgroundPattern);

// Create the scroll toolbar button for the Gantt sheet.
var sheetPanButton =
new IlvInteractorButton(0, 0, 20, 20,

ilvImagePath+'move-up.gif',

I B M ® I L O G ® J V I E W S G A N T T 8 . 6120

sheetScrollInteractor,
sheetView);

sheetPanButton.setRolloverImage(ilvImagePath+'move-sel.gif');
sheetPanButton.setSelectedImage(ilvImagePath+'move-dn.gif');
sheetPanButton.setToolTipText("Pan Gantt Sheet");
sheetPanButton.setMessage("Scroll and pan the Gantt sheet");
sheetPanButton.setMessagePanel(messagePanel);
toolbar.addButton(sheetPanButton);

// Create the toggle row toolbar button for the Gantt sheet.
var sheetToggleRowButton =
new IlvInteractorButton(0, 0, 20, 20,

ilvImagePath+'bluearrow-plusminus-up.gif',
sheetToggleRowInteractor,
sheetView);

sheetToggleRowButton.setRolloverImage(ilvImagePath+'bluearrow-
plusminus-sel.gif');

sheetToggleRowButton.setSelectedImage(ilvImagePath+'bluearrow-
plusminus-dn.gif');

sheetToggleRowButton.setToolTipText("Expand/Collapse Gantt Sheet Rows");
sheetToggleRowButton.setMessage("Expand/collapse rows in the Gantt sheet");

sheetToggleRowButton.setMessagePanel(messagePanel);
toolbar.addButton(sheetToggleRowButton);

// Create a toolbar separator.
var separator = new IlvButton(0, 0, 20, 10,

ilvImagePath+'horzsep.gif');
toolbar.addButton(separator);

// Create the Zoom-In toolbar button.
var zoomInAction = function() {
chartView.zoomIn();

};
var zoomInButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomin-up.gif',
zoomInAction);

zoomInButton.setRolloverImage(ilvImagePath+'zoomin-sel.gif');
zoomInButton.setSelectedImage(ilvImagePath+'zoomin-dn.gif');
zoomInButton.setToolTipText("Zoom In");
zoomInButton.setMessage("Press to zoom in");
zoomInButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomInButton);

// Create the Zoom-Out toolbar button.
var zoomOutAction = function() {
chartView.zoomOut();

};
var zoomOutButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomout-up.gif',
zoomOutAction);

zoomOutButton.setRolloverImage(ilvImagePath+'zoomout-sel.gif');
zoomOutButton.setSelectedImage(ilvImagePath+'zoomout-dn.gif');
zoomOutButton.setToolTipText("Zoom Out");

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 121

zoomOutButton.setMessage("Press to zoom out");
zoomOutButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomOutButton);

// Create the Zoom-To-Fit toolbar button.
var zoomFitAction = function() {
chartView.zoomToFit();

};
var zoomFitButton = new IlvButton(0, 0, 20, 20,

ilvImagePath+'zoomfit-up.gif',
zoomFitAction);

zoomFitButton.setRolloverImage(ilvImagePath+'zoomfit-sel.gif');
zoomFitButton.setSelectedImage(ilvImagePath+'zoomfit-dn.gif');
zoomFitButton.setToolTipText("Zoom To Fit");
zoomFitButton.setMessage("Press to zoom to fit");
zoomFitButton.setMessagePanel(messagePanel);
toolbar.addButton(zoomFitButton);

var layoutPage = function(chart) {
messagePanel.setBounds(chart.getLeft(),

chart.getTop()+chart.getHeight()+15,
chart.getWidth()- logoPanel.getWidth()-15,
logoPanel.getHeight());

backgroundPanel.setBounds(chart.getLeft() - 10,
chart.getTop() - 10,
chart.getWidth()+ 20,
messagePanel.getTop()
+ messagePanel.getHeight()
+ 20
- chart.getTop());

logoPanel.setLocation(messagePanel.getLeft()
+ messagePanel.getWidth()
+ 15,
messagePanel.getTop());

toolbar.setLocation(backgroundPanel.getLeft()
+ backgroundPanel.getWidth()
+ 15,

backgroundPanel.getTop());
}
layoutPage(chartView);
chartView.addSizeListener(layoutPage);

toolbar.toHTML();

</script>
</body>

This results in the following page:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6122

You can now click the first two toolbar buttons to select which interactor is installed on the
Gantt sheet view.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 123

The Popup menu in JavaScript

The popup menu component is attached to the main view. This popup menu in JavaScript™
is triggered by a right-click in the view.

To use the popup menu, you must first include the following scripts.

The popup menu component is IlvGanttPopupMenu.

<script TYPE="text/javascript" src="script/IlvAbstractPopupMenu.js"></script>
<script TYPE="text/javascript" src="script/gantt/IlvGanttPopupMenu.js">
</script>

The popup menu can be contextual or static.

Static popup menu
The menu is static, that is, not conditioned by the context in which it is called, and is defined
in the HTML file by using IlvMenu and IlvMenuItem instances. The menu is a pure client-side
object and there is no roundtrip to the server to generate the menu.

Defining a static popup menu in the HTML file

//Creates the popup menu.
var popupmenu = new IlvGanttPopupmenu(true);

//Creates the menu model.
var root = new IlvMenu("root");
var item1 = new IlvMenuItem("item1", true, "alert('item1 clicked')");
var item2 = new IlvMenuItem("item2", true, "alert('item2 clicked')");
root.add(item1);
root.add(item2);

//Sets the menu model to the popup menu.
popupMenu.setMenu(root);

[...]

//Sets the popup menu to the view.
chartView.setPopupMenu(popupMenu);

Configuring servlet support for a popup menu

public class GanttChartServlet extends IlvGanttServlet
{

[...]
protected void configureServletSupport(IlvGanttServletSupport support) {
[...]

support.setPopupEnabled(true);
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6124

[...]
}

Contextual popup menu
The popup menu is dynamically generated by the server depending on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the user triggered the popup menu.

On the client side, you need only declare the popup menu and set it on the view.

Declaring a contextual popup menu and setting it on the view, client side

var popupMenu = new IlvGanttPopupMenu(true);

//Sets the popup menu to the view
chartView.setPopupMenu(popupMenu);

On the server side, you need to configure the servlet support to handle popup menus and
to set the factory that will generate the menu.

Configuring servlet support and setting the factory, server side

public class GanttChartServlet extends IlvGanttServlet {

[...]
protected void configureServletSupport(IlvGanttServletSupport support) {
[...]

support.setPopupEnabled(true);
support.getPopupMenuSupport().setMenuFactory(new SimpleMenuFactory());

}
[...]

}

The factory must implement the IlvMenuFactory interface.

Styling the popup menu
You can style the popup menu by setting a CSS class name in the following properties:

♦ itemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

The following example shows how to use CSS to style the popup menu.

[...]

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 125

<style>
.PopupMenuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}

.PopupMenuItemHighlighted {
background: #057879;
font-style: italic;
color: white;

}

.PopupMenuItemDisabled {
background-color: #EEEEEE;
font-style: italic;
color: black;

}
</style>

[...]

<script>

var popupMenu = new IlvGanttPopupMenu(true);
popupMenu.setItemStyleClass('PopupMenuItem');
popupMenu.setItemHighlightedStyleClass('PopupMenuItemHighlighted');
popupMenu.setItemDisabledStyleClass('PopupMenuItemDisabled');

</script>

I B M ® I L O G ® J V I E W S G A N T T 8 . 6126

Adding client/server interactions

The JViews Gantt thin-client support gives you a simplified way to define new actions that
should take place on the server side. For example, suppose you want to allow the user to
change the name of an activity that appears on the generated image. Part of this action,
clicking the image to select the activity, must be done on the client side. Changing the name
of the activity in the Gantt data model must be done on the server side before a new image
is generated. The notion of a “server-side action” exists to perform such behavior. An action
is defined by a name and a set of string parameters.

In this section

The client side
Explains how to use the performAction method.

The server side
Explains how to detect and execute an action request.

Actions that modify chart capabilities
Explains how to use state information to manage user preferences.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 127

The client side

In a dynamic HTML client, you tell the server to perform an action using the performAction
method of the IlvGanttTableView or IlvGanttSheetView JavaScript™ component. Here
is an example that asks the server side to execute the action “setName” with coordinate
and string parameters, assuming that view is an IlvGanttSheetView:

var x = 100;
var y = 50;
var params = new Array();
params[0]=x;
params[1]=y;
params[2]="New Activity Name";
view.performAction("setName", params);

The performAction method will ask the server for a new image. In the image request,
additional parameters are added so that the server side can execute the action. Thus, the
performAction call results in only one client/server round-trip.

Section Actions that modify chart capabilities discusses server actions that require two
client/server round trips.

Note:

Creating a custom interactor
This section explores how to create a custom client-side interactor that will allow you to
click on an activity graphic in the IlvGanttSheetView and ask the server side to execute
the “setName” action. You start by defining a new ActivityNameInteractor class, then you
override the mouseDown method. Finally, you make your interactor safer by overriding the
setView method.

Defining a new interactor class
First, you define the new ActivityNameInteractor class as a subclass of IlvInteractor.
IlvInteractor is the base class for all client-side interactors that operate on JavaScript
view components:

function ActivityNameInteractor() {
this.superConstructor();

}

ActivityNameInteractor.prototype = new IlvInteractor();
ActivityNameInteractor.prototype.setClassName("ActivityNameInteractor");

Overriding the mouseDown method
Then, you override the mouseDown method to convert the mouse coordinates to be relative
to the Gantt sheet and request the server side to perform the “setName” action:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6128

function ActivityNameInteractor() {
this.superConstructor();

}

ActivityNameInteractor.prototype = new IlvInteractor();
ActivityNameInteractor.prototype.setClassName("ActivityNameInteractor");

ActivityNameInteractor.prototype.mouseDown = function(e) {
// The JavaScript view component is always stored in the view
// instance variable of the interactor.
var view = this.view;
// The Y position of the mouse event is relative to the top of the DHTML
// IlvGanttSheetView. The action needs a Y position relative to the top of
// the Gantt sheet, ignoring the time scale.
var actionYPos = e.mouseY - view.cap_tableHeaderHeight;
if (actionYPos < 0) // Mouse is in timescale, so ignore
return;

// Create parameters for the setName action and send it to the server side.

var params = new Array();
params[0]=e.mouseX;
params[1]=actionYPos;
params[2]="New Activity Name";
view.performAction("setName", params);

}

Notice how the cap_tableHeaderHeight instance variable of the IlvGanttSheetView is used
to subtract out the height of the time scale. This variable is one of several that are initialized
when the server side sends capabilities information to the view. The full details of the
capabilities request are described in The capabilities request. You can find details on the
other instance variables that the view initializes from the capabilities information in the
JavaScript Reference Manual for the IlvGanttComponentView method.
IlvGanttComponentView is the superclass of IlvGanttSheetView.

Making the interactor safe
You can make our new interactor a little bit safer to use by overriding the setView method.
This method is inherited from IlvInteractor and is invoked automatically when an interactor
is set on or removed from a view.

By overriding this method, you can verify that the view is indeed an instance of
IlvGanttSheetView:

function ActivityNameInteractor() {
this.superConstructor();

}

ActivityNameInteractor.prototype = new IlvInteractor();
ActivityNameInteractor.prototype.setClassName("ActivityNameInteractor");

ActivityNameInteractor.prototype.mouseDown = function(e) {
// The JavaScript view component is always stored in the view
// instance variable of the interactor.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 129

var view = this.view;
// The Y position of the mouse event is relative to the top of the DHTML
// IlvGanttSheetView. The action needs a Y position relative to the top of
// the Gantt sheet, ignoring the time scale.
var actionYPos = e.mouseY - view.cap_tableHeaderHeight;
if (actionYPos < 0) // Mouse is in timescale
return;

// Create parameters for the setName action and send it to the server side.

var params = new Array();
params[0]=e.mouseX;
params[1]=actionYPos;
params[2]="New Activity Name";
view.performAction("setName", params);

}

ActivityNameInteractor.prototype.setView = function(view) {
if (view != null && !view.instanceOf(IlvGanttSheetView)) {
alert("ActivityNameInteractor can only be set on an IlvGanttSheetView");

}
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6130

The server side

On the server side, you need to detect that an action was requested and execute the action
before the image is generated and sent back to the client. This is done by implementing the
IlvServerAction interface. To listen for an action request from the client and execute the
action on the server side, you register the action with your instance of
IlvGanttServletSupport using the addServerAction(java.lang.String, ilog.views.
gantt.servlet.IlvServerAction) method.

For the “setName” action, you would add the following lines of code in the
createServletSupport method of the example GanttChartServlet:

protected IlvGanttServletSupport createServletSupport()
{
IlvGanttServletSupport support = new ServletSupport();
support.addServerAction("setName", new IlvServerAction()
{
public void actionPerformed(ServerActionEvent event)
throws ServletException;

{
int x = event.getIntParameter(0);
int y = event.getIntParameter(1);
String name = event.getStringParameter(2);
IlvHierarchyChart chart = event.getChart();
IlvGraphic graphic = chart.getGanttSheet().getGraphic(new Point(x, y)

);
if (graphic instanceof IlvActivityGraphic) {
IlvActivity activity = ((IlvActivityGraphic)graphic).getActivity();

activity.setName(name);
}

}
});
return support;

}
}});

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 131

Actions that modify chart capabilities

The DHTML client maintains certain state information about the server-side
IlvHierarchyChart object that it is displaying. You call this basic set of state information
capabilities. The capabilities information is sent by the server to the client when the client
side requests it. When the client side requests an updated set of capabilities data, the server
also sends an updated image to the client. The capabilities data includes the number of rows
currently visible, the height of the rows, and other basic state information that allows the
client to intelligently scroll andmanipulate the chart images. The full details of the capabilities
request and chart data are described in section The capabilities request.

Some server actions requested by the client may modify the capabilities state information
for the chart. In this case, the client must be able to request that the server perform the
action, send updated capabilities information to the client, and then send an updated image
to the client. For example, suppose you want to allow the user to click on a row in the table
and toggle the expand/collapse state of the row. As in the previous example, toggling the
row must be performed on the server side. However, expanding and collapsing rows in the
server-side chart modifies the capabilities data on how many rows are visible. The client
side must be updated with the new capabilities so that client-side scrolling and row hit
testing can be performed correctly.

You again use the performActionmethod of the IlvGanttTableView or IlvGanttSheetView
DHTML components to request this type of server action. This time however, you set the
optional third parameter, updateAll, to true. This requests the server to send updated
capabilities to the client, in addition to performing the action and sending an updated image.
Here is some example JavaScript™ code that asks the server side to execute the action
“toggleRow” with a y-coordinate relative to the first row in the table, assuming that view is
an IlvGanttTableView:

var mouseY = .. mouse pos relative to top of IlvGanttTableView ..
// Take table header into account.
mouseY = mouseY - view.cap_tableHeaderHeight;
// If mouse is in table header, nothing to do
if (mouseY < 0)
return;

// Take vertical scroll position into account.
mouseY = mouseY + view.getVerticalScrollPosition();
var params = new Array();
params[0] = tableYPos;
view.performAction("toggleRow", params, true);

As in the previous example, you register the action on the server side using the
addServerAction(java.lang.String, ilog.views.gantt.servlet.IlvServerAction).
method. For the “toggleRow” action, you would add the following lines of code in the
createServletSupport method of the example GanttChartServlet:

protected IlvGanttServletSupport createServletSupport()
{
IlvGanttServletSupport support = new ServletSupport();
support.addServerAction("toggleRow", new IlvServerAction()
{
public void actionPerformed(ServerActionEvent event)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6132

throws ServletException;
{
int yPos = event.getIntParameter(0);
IlvHierarchyChart chart = event.getChart();
IlvHierarchyNode row = chart.getVisibleRowAtPosition(yPos);
if (row == null)
return;

if (chart.isRowExpanded(row))
chart.collapseRow(row);

else
chart.expandRow(row);

}
});
return support;

}
}});

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 133

I B M ® I L O G ® J V I E W S G A N T T 8 . 6134

The IlvGanttServlet and
IlvGanttServletSupport classes

Describes how to create a servlet and how the servlet responds to different requests.

In this section

Creating a servlet
Explains how to create a servlet that can produce an image and send it to the client.

The servlet parameters
Explains how the servlet can respond to two different types of HTTP requests.

Multiple sessions
Explains how to create a chart and/or a data model and store them as parameters of a HTTP
session.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 135

Creating a servlet

The server side of a thin-client JViews Gantt Web application consists in creating a servlet
that can produce an image and send it to the client. The JViews Gantt thin-client support
provides a predefined servlet to achieve this task. The predefined servlet class is named
IlvGanttServlet. This class, which can be found in the package ilog.views.gantt.servlet,
is an abstract subclass of the HTTPServlet class from the Java™ servlet API.

Using the IlvGanttServlet class is an easy way to create a servlet, but it has one main
drawback. You cannot use it to add support for the JViews Gantt thin-client protocol to an
existing servlet. This is the purpose of the IlvGanttServletSupport class. The
IlvGanttServletSupport class implements all the JViews Gantt thin-client server-side
functionality. In fact, the IlvGanttServlet class is just a basic wrapper around an instance
of IlvGanttServletSupport. The doGet(javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse)method of IlvGanttServlet simply calls the
handleRequest method of its IlvGanttServletSupport instance.

In the same way, you can integrate an instance of IlvGanttServletSupport into your own
servlet to handle the requests coming from the Gantt client side. In our Gantt Servlet example,
the code of the servlet can be rewritten using the IlvGanttServletSupport class as follows:

import ilog.views.gantt.*;
import ilog.views.gantt.servlet.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GanttChartServlet extends HttpServlet
{
private IlvGanttServletSupport support;

public void init(ServletConfig config)
throws ServletException

{
super.init(config);
support = new ServletSupport();

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{
if (!support.handleRequest(request, response))
throw new ServletException("Unrecognized request");

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{
doGet(request, response);

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6136

}

class ServletSupport extends IlvGanttServletSupport
{
private IlvHierarchyChart _chart;

public ServletSupport()
{
_chart = createChart();

}

private IlvHierarchyChart createChart()
{
IlvHierarchyChart chart = new IlvGanttChart();
IlvGanttModel ganttModel = new SimpleProjectDataModel();
return chart;

}

public IlvHierarchyChart getChart(HttpServletRequest request,
IlvServletRequestParameters params)

throws ServletException
{
return _chart;

}

}

In this code you have created a new servlet class, GanttChartServlet, that is derived directly
from the HttpServlet class. The doGet method passes the requests to an instance of the
IlvGanttServletSupport class for handling.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 137

The servlet parameters

The JViews Gantt servlet support can respond to two different types of HTTP requests, the
image request and the capabilities request. The image request returns an image from the
Gantt or Schedule chart. The capabilities request returns information to the client, such as
the number of rows visible in the chart, the height of the rows, and the minimum and
maximum times for horizontally scrolling the Gantt sheet. This information allows the client
to know the capabilities of the chart in order to intelligently scroll and manipulate the chart
images. When developing the client side of your application, you will use the DHTML scripts
provided by the Gantt thin-client support. The scripts will create the HTTP request for you,
so you do not really need to write the HTTP request yourself.

The image request
The image request produces an image from the chart. Here is an example of a request for
the image of the table portion of a chart, assuming that myservlet is the name of the servlet:

http://host/servlets/myservlet?request=image
&comp=table
&width=300
&height=250

And here is an example for the image of the Gantt sheet portion of a chart:

http://host/servlets/myservlet?request=image
&comp=sheet
&width=500
&height=250
&startTime=2001,0,1
&endTime=2001,5,30

The Gantt sheet will display the time period from January 1, 2001 to June 30, 2001. A detailed
listing of the image request parameters can be found in the Java API Reference Manual for
the IlvGanttServletSupport class.

The capabilities request
The capabilities request tells the servlet to return the capabilities information about the
chart to the client. The capabilities request has the following syntax:

http://host/servlets/myservlet?request=capabilities
&format=(html|octet-stream)
[&onload= <a string>]

The format parameter tells the servlet which format should be used to return the capabilities
information. Two formats are supported, HTML or Octet stream.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6138

The HTML format is used when the client is a Dynamic HTML client. In this case, the result
is an empty HTML page that contains some JavaScript™ code. The JavaScript code is
executed on the client side, and some information variables are then available.

The octet-stream format is used when the client is a Java™ applet. In this case, the result
is a stream of octets. The data is produced using a java.io.DataOutput and can be read
using a java.io.DataInput.

The JViews Gantt thin-client support does not provide a predefined Java applet thin
client.

Note:

Full details on the capabilities request and the information returned by the server can be
found in the Java API Reference Manual for the IlvGanttServletSupport class. Details on
how the client-side DHTML components save and use the capabilities information can be
found in the JavaScript Reference Manual for the IlvGanttComponentView.getCapabilities
method.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 139

Multiple sessions

The Gantt Servlet example presented a very simple example that creates a single Gantt
chart for the servlet. This means that all calls to the servlet (that is, all clients) are looking
at the same chart and the same data model. In some applications, you may want to have a
chart and/or a separate data model for each client. In this case, you might use the notion of
HTTP sessions. You can then create a chart and/or a data model and store them as parameters
of the session.

Here you take our Gantt Servlet example and modify it slightly so that each client has its
own chart that is viewing a common data model. This way, each user can toggle rows to
expand and collapse without affecting the charts viewed by the other clients. You use an
instance of the IlvGanttSessionAttribute class to store the chart as an attribute of the
HTTP session. This class handles the details of properly disposing server-side GUI components
when the user session expires. Our updated IlvGanttServletSupport implementation now
looks like this:

class ServletSupport extends IlvGanttServletSupport
{
private IlvGanttModel _model;

private IlvHierarchyChart createChart()
{
synchronized(this) {
if (_model == null)
_model = new SimpleProjectDataModel();

}
IlvHierarchyChart chart = new IlvGanttChart();
chart.setGanttModel(_model);
chart.getGanttSheet().setVerticalGrid(new WeekendGrid());
... more chart customizations ...
return chart;

}

/**
* Returns the chart used for the specified request.
* @param request The current HTTP request.
* @param params The parameters parsed from the request.
*/
public IlvHierarchyChart getChart(HttpServletRequest request,

IlvServletRequestParameters params)
throws ServletException

{
IlvHierarchyChart chart = null;
HttpSession session = request.getSession();
if (session.isNew()) {
chart = createChart();
IlvGanttSessionAttribute chartProxy =
new IlvGanttSessionAttribute(chart);

session.setAttribute("IlvHierarchyChart", chartProxy);
} else {
IlvGanttSessionAttribute chartProxy =

I B M ® I L O G ® J V I E W S G A N T T 8 . 6140

(IlvGanttSessionAttribute)session.getAttribute("IlvHierarchyChart");
if (chartProxy != null)
chart = chartProxy.getChart();

}
if (chart == null)
throw new ServletException("session problem");

return chart;
}

}

If you store the chart directly as an attribute of the HTTP session, it will not be properly
garbage-collected when the session expires.You must wrapper the chart in an instance
of IlvGanttSessionAttribute to ensure that the chart is properly disposed of.

Note:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 141

I B M ® I L O G ® J V I E W S G A N T T 8 . 6142

DHTML thin-client support in JViews
Framework

Describes the support for thin-client applications in JViews Framework.

In this section

Overview of thin-client support
Gives background information on the support for thin-client applications.

IBM® ILOG® JViews thin-client Web architecture
Describes how a thin-client application is structured.

Getting started with the IBM® ILOG® JViews thin client
Explains how to build the server and client sides of a thin-client application.

Installing and running the XML Grapher example
Explains how to install and run the XML Grapher example.

Developing the server
Describes the server side of a thin-client application and how to develop a server.

Developing the client
Describes the client side of a thin-client application and how to develop a dynamic HTML
client by adding JavaScript™ components.

Adding client/server interactions
Describes how to add interactions between the server side and the client side.

© Copyright IBM Corp. 1987, 2009 143

Generating a client-side image map
Describes how to generate an image map on the client side.

The IlvManagerServlet class
Describes the predefined servlet and how to use it.

The IlvManagerServletSupport class
Describes how to add thin-client support to a servlet.

Controlling tiling
Describes how to control tiling on the client side and the server side.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6144

Overview of thin-client support

The IBM® ILOG® JViews class library can be used on the client side where you develop
Java™ applets or applications. It can also be used on the server side. Some Web browser
applications require that the client stay very light, with most of the functionality residing in
the server. The thin-client support in IBM® ILOG® JViews Framework allows you to create
such applications easily. You can use the power of the IBM® ILOG® JViews class library to
build complex two-dimensional representations on the Web server and use the Dynamic
HTML thin-client support of your Web browser to display and interact with the images
created by the server.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 145

IBM® ILOG® JViews thin-client Web architecture

The IBM® ILOG® JViews thin-client support is based on the Java™ servlet technology.
Servlets are Java programs that run on a web server. They act as a middle layer between
HTTP requests coming from a Web browser or other HTTP clients such as applets or
applications and the application or databases on the web server. The job of the servlet is to
read and interpret HTTP requests coming from an HTTP client program and to generate a
resulting document that in most cases is an HTML page.

For more information about servlet technology, you can visit the JavaSoft™ site http://
java.sun.com/products/servlet.

You will also find their information about the web servers supporting Java servlets.

For the predefined types of IBM® ILOG® JViews clients, the content created by the servlet
is primarily a JPEG image. On the client side, user interactions with the image are managed
by code in Dynamic HTML scripts.

Creating a web application with IBM® ILOG® JViews consists of using the IBM®
ILOG® JViews library on the server side to create complex two-dimensional displays based
on application data that resides on the server. A servlet will answer HTTP requests from a
client and deliver images to this client, as illustrated in the following figure.

Client-Server Display Interaction

IBM® ILOG® JViews Framework thin-client support contains the following:

♦ An abstract servlet class that can generate JPEG images from an IBM® ILOG® JViews
display.

♦ A set of Dynamic HTML scripts written in JavaScript™ that will be used on the client
side to display and interact with the image created on the server side.

Creating an IBM® ILOG® JViews thin-client application consists of developing the server
side and developing the client side.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6146

http://java.sun.com/products/servlet
http://java.sun.com/products/servlet

Getting started with the IBM® ILOG® JViews thin client

The XML Grapher example shows how to build the server side and also how to create a
Dynamic HTML client.

The XML Grapher example is available at <installdir> /jviews-framework8.6/samples/
xmlgrapher.

This example allows you to display a network of interconnected cities on top of the map in
a thin-client context.

The XML Grapher Example

The XML Grapher example is composed of the following pieces:

♦ An IBM® ILOG® JViews component that can read an XML file describing a set of
interconnected cities and display them on top of a map as shown in the picture above.

This component is located in the following files:

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/
XmlGrapher.java

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/
GrapherNode.java

♦ Some example XML files for the component, located in <installdir> /
jviews-framework86/samples/xmlgrapher/webpages/data

♦ A servlet that can produce JPEG images from the component described above.

The servlet is located in:

<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/servlet/
XmlGrapherServlet.java

♦ A Dynamic HTML client composed of:

● The HTML starting page: <installdir> /jviews-framework86/samples/xmlgrapher/
webpages/dhtml/index.html

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 147

● The set of JavaScript™ Dynamic HTML components, located in: <installdir> /
jviews-framework86/lib/thinclient/javascript

● Some images required for the example, located in: <installdir> /
jviews-framework86/samples/xmlgrapher/webpages/dhtml/images

I B M ® I L O G ® J V I E W S G A N T T 8 . 6148

Installing and running the XML Grapher example

This sample is compatible with the browsers and browser versions listed in the Release
notes under Requirements for running thin-client applications. The example contains aWAR
(Web ARchive) file that allows you to install the example easily on any server that supports
the Servlet API 2.1 or later.

For your convenience, theWAR file has already been installed for you on the Apache Tomcat™
Web server that is supplied with the IBM® ILOG® JViews installation. Tomcat is the official
reference implementation of the Servlet and JSP™ specifications. If you are already using
an up-to-date Web or application server, there is a good chance that it already has everything
you need. You can check the latest list of servers that support servlets at: http://java.sun.com/
products/servlet/industry.html.

To be able to run, this example requires a Web server and a Web browser that supports
Dynamic HTML (for the DHTML client).

To run the example on the TOMCAT web server supplied with the IBM® ILOG® JViews
installation:

1. Set the JAVA_HOME environment variable to point to your Java™ Platform, Standard
Edition installation.

2. Go to the TOMCAT bin directory located in

<installdir>/jviews-framework86/tools/apache-tomcat-6.0.14/bin

3. Depending on your system, run the startup.bat or startup.sh script to run the
Apache Tomcat™ server.

4. To see the example, launch a Web browser and open the page:

http://localhost:8080/xmlgrapher/index.html

You must use localhost instead of the name of your machine.
Otherwise, the sample applet may not be able to connect to the servlet.

Note:

The Web page gives you access to two different clients: a Dynamic HTML client and a thin
Java client.

The IBM® ILOG® JViews servlets can run with the headless support that is built-in since
Java SE 1.4, without an X server. For more information on this feature, refer to the Java SE
Release Notes.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 149

http://java.sun.com/products/servlet/industry.html
http://java.sun.com/products/servlet/industry.html
http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

Developing the server

The server side of an IBM® ILOG® JViews thin-client application is composed of two main
parts: the IBM® ILOG® JViews application itself, which can be any type of complex
two-dimensional display built on top of the IBM® ILOG® JViews API, and a Servlet that
produces JPEG images to the client.

The way the server side is built in the XML Grapher example helps in analyzing these parts.

The XML Grapher server
In the XML Grapher example, a graph of nodes and links is displayed on top of a map. This
IBM® ILOG® JViews application is defined in the file XmlGrapher.java, located in
<installdir> /jviews-framework86/samples/xmlgrapher/src/xmlgrapher/servlet/
XmlGrapherServlet.java

This part of the example contains only standard IBM® ILOG® JViews code and is
therefore not explained in detail.You will only see how the class is used to create the

Note:

example. The application on the server side really depends on the type of information
you want to display anyway.

The XmlGrapher class
The XmlGrapher class is a simple subclass of the IBM® ILOG® JViews IlvManagerView
class.

The main functionality of this small component is to read an XML file describing nodes and
links and to create an IBM® ILOG® JViews grapher that represents those nodes and links
on top of a map. This is done in the method:

public void setNetwork(URL url)

The XML file contains information on the map and the bitmap file of the map. It contains a
list of nodes, including the position, or location, of each node and information on links. In
the example, the position, or location, is described by using x-y coordinates. In a real mapping
application, the IBM® ILOG® JViews Maps API allows you to use geographical projections.

The setNetworkmethod parses the XML file, creates the map, and places the nodes and the
links on top of the map. It also applies an orthogonal link layout algorithm to lay out the
links automatically.

You can look at an XML example file in <install-dir> /jviews-framework86/samples/
xmlgrapher/webpages/data.

The servlet
Once the application is built, you need to create a servlet that produces images of the
application to a client. IBM® ILOG® JViews Framework provides a predefined servlet to

I B M ® I L O G ® J V I E W S G A N T T 8 . 6150

achieve this task. The predefined servlet class is named IlvManagerServlet. This class can
be found in the package ilog.views.servlet.

The servlet created for the XML Grapher example is very simple. To understand in depth
how the servlet works, read The IlvManagerServlet class. The servlet for the XML Grapher
example is located in the file: <installdir> /jviews-framework86/samples/xmlgrapher/
src/xmlgrapher/servlet/XmlGrapherServlet.java .

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;

import ilog.views.*;
import ilog.views.servlet.*;

import demo.xmlgrapher.*;

public class XmlGrapherServlet extends IlvManagerServlet
{
private XmlGrapher xmlGrapher;

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException
{
super.init(config);
xmlGrapher = new XmlGrapher();
String xmlfile = config.getInitParameter("xmlfile");

if (xmlfile == null) {
xmlfile = config.getServletContext().getRealPath("/data/world.xml");
xmlfile = "file:" + xmlfile;

}
try {
xmlGrapher.setNetwork(new URL(xmlfile));

} catch (MalformedURLException ex) {
}
setVerbose(true);

}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{
return xmlGrapher;

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view)

{
return 30;

}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 151

}

The import statements:

import javax.servlet.*;
import javax.servlet.http.*;

are required to use the Java Servlet API.

The import statements:

import ilog.views.*;
import ilog.views.servlet.*;

are required for using IBM® ILOG® JViews and the IBM® ILOG® JViews servlet support.

The import statement:

import demo.xmlgrapher.*;

is required for the XML Grapher class.

The IlvManagerServlet. class is an abstract Java™ class subclass of the HTTPServlet class
from the Java servlet API. The XmlGrapherServlet inherits from the IlvManagerServlet
class and defines only three methods.

The init method
This method initializes the servlet by creating an XmlGrapher object:

public void init(ServletConfig config) throws ServletException
{

xmlGrapher = new XmlGrapher();
...

Then an XML file is read by the XmlGrapher object using the setNetwork method:

String xmlfile = config.getInitParameter("xmlfile");
if (xmlfile == null)
xmlfile

= config.getServletContext().
getRealPath("/data/world.xml");

try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6152

The XML file can be specified in the configuration of the servlet. By default, the file world.
xml is used.

The getManagerView method
The getManagerViewmethod is the only abstract method of the IlvManagerServlet class
and should return an IlvManagerView that will be used to generate the image. Here the
XmlGrapher object is returned.

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{
return xmlGrapher;

}

The getMaxZoomLevel Method
This method allows you to fix the user’s maximum zoom level on the client side. Here we
overwrite the method to return a larger value.

As you have seen, creating the servlet is very simple. This servlet can now answer HTTP
requests from a client by sending JPEG images. If you have installed the example, you can
try the following HTTP request:

http://localhost:8080/xmlgrapher/
demo.xmlgrapher.servlet.XmlGrapherServlet?request=image

&format=JPEG&bbox=0,0,512,512
&width=400
&height=200
&layer=Cities,Links,background%20Map

This produces the following image:

Generated Bitmap Image

This request asks the servlet named demo.xmlgrapher.servlet.XmlGrapherServlet to
produce an image of size 400 x 200 showing the area (0, 0, 512, 512) of the manager with
the layers “Cities,” “Links,” and “Background Map” visible.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 153

In most cases, you do not have to know the servlet parameters because the Dynamic HTML
objects or the Java™ classes provided by IBM® ILOG® JViews for the client side will take
care of the HTTP requests for you.

This example is a very simple servlet. This servlet uses the same IlvManagerView instance
for all clients; this means that every client will see the same data. For more complex usage
of the IlvManagerServlet classes, read The IlvManagerServlet class.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6154

Developing the client

Describes the client side of a thin-client application and how to develop a dynamic HTML
client by adding JavaScript™ components.

In this section

Overview of client-side development
Describes how Dynamic HTML influences client-side development.

The IlvView JavaScript component
Describes the IlvView component.

The IlvOverview JavaScript component
Describes the IlvOverview component.

The IlvLegend JavaScript component
Describes the IlvLegend component.

The IlvButton JavaScript component
Describes the IlvButton component.

The IlvZoomTool JavaScript component
Describes the IlvZoomTool component.

The IlvZoomInteractor JavaScript component
Describes the IlvZoomInteractor component.

IlvPanInteractor
Describes the IlvPanInteractor component.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 155

The IlvPanTool JavaScript component
Describes the IlvPanTool component.

The IlvMapInteractor and IlvMapRectInteractor JavaScript components
Describes the IlvMapInteractor and IlvMapRectInteractor components.

The Popup menu in JavaScript
Describes the JavaScript component for the popup menu.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6156

Overview of client-side development

After creating the server (see Developing the server), you can create the client side. The
IBM® ILOG® JViews thin-client support allows you to build a DHTML client easily. The
static nature of HTML limits the interactivity of web pages. Dynamic HTML allows you to
create more interactive and engaging web pages. It gives content providers new controls
and allows them to manipulate the contents of HTML pages through scripting.

IBM® ILOG® JViews provides a set of Dynamic HTML components written in JavaScript™
that allows you to build your DHTML pages very easily. The JavaScript files are located in
<installdir> /jviews-framework86/lib/thinclient/javascript.

This sample is compatible with the browsers and browser versions listed in the
Release notes under Requirements for running thin-client applications.

Important:

The Dynamic HTML client for the XML Grapher example includes most of the DHTML
components. The full HTML file for the XML Grapher example is located in <installdir>
/jviews-framework86/samples/xmlgrapher/index.html.

The full reference documentation of each component can be found in the JavaScript Reference
Manual located in <installdir> /jviews-framework86/doc/html/en-US/refjsf/html/
index.html.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 157

The IlvView JavaScript component

The IlvView component (located in the IlvView.js file) is the main component. This
component queries the servlet and displays the resulting image.

To use this component, you need to include the following JavaScript™ files: IlvUtil.js ,
IlvView.js , the files for the superclasses of IlvView: IlvAbstractView.js,
IlvResizableView.js, and IlvEmptyView.js, and IlvGlassView.js.

Instead of including the individual .js files of each component, you can add the file
framework.js which is located in <installdir> /jviews-framework86/lib/thinclient/
framework/framework.js

This file is a concatenation of all the .js files required for doing DHML thin client in the
Framework.

Here is a simple HTML page that creates an instance of IlvView:

HTML code

<html>
<head>
<META HTTP-EQUIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
</head>
<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvView.js"></script>
<script TYPE="text/javascript">

function init() {
view.init()
return false

}

function handleResize() {
if (document.layers)
window.location.reload()

}
</script>
<body onload="init()" onunload=”IlvObject.callDispose()”

onresize="handleResize()" bgcolor="#ffffff">
<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

I B M ® I L O G ® J V I E W S G A N T T 8 . 6158

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)
view.toHTML()

</script>
</body>
</hmtl>

This example starts by importing some JavaScript files:

<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvView.js"></script>

In the body of the page, the example creates an IlvView object located in (40, 40) on the
HTML page. The size is 440 x 270. This view displays images produced by the servlet
XmlGrapherServlet. Note the toHTML method that creates the HTML necessary for the
component.

This example also defines two JavaScript functions:

♦ The init function, called on the onload event of the page, initializes the IlvView by
calling its init method.

♦ The handleResize function, called on the onresize event of the page, will reload the
page if the browser is Netscape Communicator 4 or higher. This is necessary for a correct
resizing of Dynamic HTML content on Communicator.

The global IlvObject.callDispose() function must be called in the onunload
event of the HTML page.This function disposes of all resources acquired by the JViews
DHTML components.

Note:

Once the image is loaded from the server, the page now looks like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 159

Generated HTML Page

I B M ® I L O G ® J V I E W S G A N T T 8 . 6160

The IlvOverview JavaScript component

The IlvOverview component (located in the IlvOverview.js) file shows an overview of the
manager. An IlvOverview is linked to an IlvView component. By default, the IlvOverview
queries the server to obtain an image of the global area and displays it. Once the overview
is visible, a rectangle corresponding to the area visible in the main view is drawn on top of
the overview. You can move this rectangle to change the area visible in the main view.

Here is the body of the previous example with an IlvOverview component. Note that you
cannot move the rectangle of the overview now because the complete area is visible in the
main view. You will be able to do that later when the zooming functionality is added.

The lines added are in bold.Note:

<body onload="init()" onunload=”IlvObject.callDispose()”
onresize="handleResize()" bgcolor="#ffffff">

<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)

view.toHTML()
overview.toHTML()

</script>

Compared to the previous example, there is a new import statement for IlvOverview.js:

<script TYPE="text/javascript" src="script/IlvOverview.js"></script>

An IlvOverview object located in (x+w+50, y+4) with a size of 120 x 70 was created:

var overview = new IlvOverview(x+w+50, y+4, 120, 70, view)

The following line sets the color of the draggable rectangle:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 161

overview.setColor(’white’)

The page looks now like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6162

The IlvLegend JavaScript component

You can add an IlvLegend component to the page. The IlvLegend component shows a list
of layers that are available on the server side, and allows you to turn the visibility of a layer
on and off.

To use the IlvLegend, you must first include the IlvLegend.js file.

<script TYPE="text/javascript" src="IlvLegend.js"></script>

The body of the HTML file now looks like this:

<body onload="init()" onunload="IlvObject.callDispose()"
onresize="handleResize()" bgcolor="#ffffff">

<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)

// Legend
var legend = new IlvLegend(x+w+50, y+150 ,120, 115, view)
legend.setTitle(’Themes’)
legend.setTitleBackgroundColor(’#21bdbd’)
legend.setTextColor(’white’)
legend.setBackgroundColor(’#21d6d6’)
legend.setTitleFontSize(2);

view.toHTML()
overview.toHTML()
legend.toHTML()
</script>
</body>

You should see the following page:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 163

The visibility of layers can now be turned on and off.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6164

The IlvButton JavaScript component

The IlvButton component is a simple button that allows you to call some JavaScript™ code
by clicking it. You can add some buttons to the page to zoom in and out.

In addition to buttons, you can add some Dynamic HTML panels to create a frame around
the main view. A Dynamic HTML panel is an area of the page that can contain some HTML.
Creating a panel is done using the class IlvHTMLPanel, defined in the IlvUtil.js file.

The body of the page is now:

<body onload="init()" onunload="IlvObject.callDispose()"
onresize="handleResize()" bgcolor="#ffffff" >

<script>

//position of the main view

var y = 40
var x = 40
var h = 270
var w = 440

// Creates a frame around the main view
var frameBackground = new IlvHTMLPanel(’’)
frameBackground.setBounds(x-20, y-20, w+210, h+80)
frameBackground.setVisible(true)
frameBackground.setBackgroundColor(’#21bdbd’)

var frameTopLeft = new IlvHTMLPanel(’’)
frameTopLeft.setBounds(x-20, y-20, 40, 40)
frameTopLeft.setVisible(true)

var frameBottomLeft =new IlvHTMLPanel(’’)
frameBottomLeft.setBounds(x-20, y+h+20, 40, 40)
frameBottomLeft.setVisible(true)

var frameTopRight = new IlvHTMLPanel(’’)
frameTopRight.setBounds(x+w+150, y-20, 40, 40)
frameTopRight.setVisible(true)

var frameBottomRight = new IlvHTMLPanel(’<IMG src="images/frame_bottomright.
gif">’)
frameBottomRight.setBounds(x+w+150, y+h+20, 40, 40)
frameBottomRight.setVisible(true)

var frameTop = new IlvHTMLPanel(’’)
frameTop.setBounds(x+20, y-20, 570, 40)
frameTop.setVisible(true)

var frameBottom = new IlvHTMLPanel(’’)
frameBottom.setBounds(x+20, y+h+20, 570, 40)
frameBottom.setVisible(true)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 165

var frameLeft = new IlvHTMLPanel(’’)
frameLeft.setBounds(x-20, y+20, 5, 270)
frameLeft.setVisible(true)
var frameRight = new IlvHTMLPanel(’’)
frameRight.setBounds(x+w+185, y+20, 5, 270)
frameRight.setVisible(true)

var border = new IlvHTMLPanel(’’)
border.setBounds(x+w+45, y, 130, h)
border.setVisible(true)
border.setBackgroundColor(’#09a5a5’)

var secondBorder = new IlvHTMLPanel(’’)
secondBorder.setBounds(x+w+47, y+2, 128, h-2)
secondBorder.setVisible(true)
secondBorder.setBackgroundColor(’#21d6d6’)

// message panel
var messagePanel = new IlvHTMLPanel(’’)
messagePanel.setBounds(x, y+h+20, w, 25)
messagePanel.setVisible(true)
messagePanel.setBackgroundColor(’#21d6d6’)
IlvButton.defaultMessagePanel = messagePanel;

// IBM® ILOG® logo
var logo = new IlvHTMLPanel(’’)
logo.setBounds(x+w+95, y+h+10, 85, 40)
logo.setVisible(true)

IlvButton.defaultInfoPanel = messagePanel;

// Main view
var view = new IlvView(x, y, w, h)
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’)
view.setMessagePanel(messagePanel)

// Overview window.
var overview=new IlvOverview(x+w+50, y+4, 120, 70, view)
overview.setColor(’white’)
overview.setMessagePanel(messagePanel)

// Legend
var legend = new IlvLegend(x+w+50, y+150 ,120, 115, view)
legend.setTitle(’Themes’)
legend.setTitleBackgroundColor(’#21bdbd’)
legend.setTextColor(’white’)
legend.setBackgroundColor(’#21d6d6’)
legend.setTitleFontSize(2);
// Some buttons for navigation
var topbutton, bottombutton, rightbutton, leftbutton

topbutton = new IlvButton(x+w/2, y-15, 30, 13,’images/north.gif’,’view.panNorth
()’)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6166

topbutton.setRolloverImage(’images/northh.gif’)
topbutton.setToolTipText(’pan north’)
topbutton.setMessage(’pan the map to the north’)

bottombutton = new IlvButton(x+w/2, y+h, 33, 13,’images/south.gif’,’view.
panSouth()’)
bottombutton.setRolloverImage(’images/southh.gif’)
bottombutton.setToolTipText(’pan south’)
bottombutton.setMessage(’pan the map to the south’)

leftbutton=new IlvButton(x-13, y+h/2-10, 13, 30,’images/west.gif’,’view.panWest
()’)
leftbutton.setRolloverImage(’images/westh.gif’)
leftbutton.setToolTipText(’pan west’)
leftbutton.setMessage(’pan the map to the west’)

rightbutton=new IlvButton(x+w, y+h/2-25, 13, 28, ’images/east.gif’, ’view.
panEast()’)
rightbutton.setRolloverImage(’images/easth.gif’)
rightbutton.setToolTipText(’pan east’)
rightbutton.setMessage(’pan the map to the east’)

// Buttons to zoom in and out
var zoominbutton, zoomoutbutton

zoominbutton=new IlvButton(x+w+30, y+h-16,12, 12, ’images/zoom.gif’, ’view.
zoomIn()’)
zoominbutton.setRolloverImage(’images/zoomh.gif’)
zoominbutton.setMessage(’click to zoom by 2’)
zoominbutton.setToolTipText(’Zoom In’)

zoomoutbutton=new IlvButton(x+w+30, y, 12, 12, ’images/unzoom.gif’, ’view.
zoomOut()’)
zoomoutbutton.setRolloverImage(’images/unzoomh.gif’)
zoomoutbutton.setMessage(’click to zoom out by 2’)
zoomoutbutton.setToolTipText(’Zoom Out’)

view.toHTML()
overview.toHTML()
legend.toHTML()
topbutton.toHTML()
bottombutton.toHTML()
leftbutton.toHTML()
rightbutton.toHTML()
zoomoutbutton.toHTML()
zoominbutton.toHTML()

</script>
</body>
</hmtl>

The page now looks like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 167

A frame around the page was created by the following lines:

var frameBackground = new IlvHTMLPanel(’’)
frameBackground.setBounds(x-20, y-20, w+210, h+80)
frameBackground.setVisible(true)
frameBackground.setBackgroundColor(’#21bdbd’)

var frameTopLeft = new IlvHTMLPanel(’’)
frameTopLeft.setBounds(x-20, y-20, 40, 40)
frameTopLeft.setVisible(true)

var frameBottomLeft=new IlvHTMLPanel(’’)
frameBottomLeft.setBounds(x-20, y+h+20, 40, 40)
frameBottomLeft.setVisible(true)

var frameTopRight = new IlvHTMLPanel(’’)
frameTopRight.setBounds(x+w+150, y-20, 40, 40)
frameTopRight.setVisible(true)

var frameBottomRight = new IlvHTMLPanel(’<IMG src="images/frame_bottomright.
gif">’)
frameBottomRight.setBounds(x+w+150, y+h+20, 40, 40)
frameBottomRight.setVisible(true)

var frameTop = new IlvHTMLPanel(’’)
frameTop.setBounds(x+20, y-20, 570, 40)
frameTop.setVisible(true)

var frameBottom = new IlvHTMLPanel(’’)
frameBottom.setBounds(x+20, y+h+20, 570, 40)
frameBottom.setVisible(true)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6168

var frameLeft = new IlvHTMLPanel(’’)
frameLeft.setBounds(x-20, y+20, 5, 270)
frameLeft.setVisible(true)

var frameRight = new IlvHTMLPanel(’’)
frameRight.setBounds(x+w+185, y+20, 5, 270)
frameRight.setVisible(true)

This creates four DHTML panels for the corners, four additional panels for the sides, and a
panel for the background. The corners and the sides of the frame are composed of simple
GIF images.

Four buttons to pan south, north, east, and west have been added by the lines:

topbutton = new IlvButton(x+w/2, y-15, 30, 13,’images/north.gif’,’view.panNorth
()’)
topbutton.setRolloverImage(’images/northh.gif’)
topbutton.setToolTipText(’pan north’)
topbutton.setMessage(’pan the map to the north’)

bottombutton = new IlvButton(x+w/2, y+h, 33, 13,’images/south.gif’,’view.
panSouth()’)
bottombutton.setRolloverImage(’images/southh.gif’)
bottombutton.setToolTipText(’pan south’)
bottombutton.setMessage(’pan the map to the south’)

leftbutton=new IlvButton(x-13, y+h/2-10, 13, 30,’images/west.gif’,’view.panWest
()’)
leftbutton.setRolloverImage(’images/westh.gif’)
leftbutton.setToolTipText(’pan west’)
leftbutton.setMessage(’pan the map to the west’)

rightbutton=new IlvButton(x+w, y+h/2-25, 13, 28, ’images/east.gif’, ’view.
panEast()’)
rightbutton.setRolloverImage(’images/easth.gif’)
rightbutton.setToolTipText(’pan east’)
rightbutton.setMessage(’pan the map to the east’)

A button is defined by its position and size, two images, the main image and the rollover
image, and a piece of JavaScript to be executed when the button is clicked.

Note that in order to pan to the north, you use the panNorth method of IlvView.

Two additional buttons have been created to zoom in and out, by the lines:

var zoominbutton, zoomoutbutton

zoominbutton=new IlvButton(x+w+30, y+h-16,12, 12, ’images/zoom.gif’, ’view.
zoomIn()’)
zoominbutton.setRolloverImage(’images/zoomh.gif’)
zoominbutton.setMessage(’click to zoom by 2’)
zoominbutton.setToolTipText(’Zoom In’)

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 169

zoomoutbutton=new IlvButton(x+w+30, y, 12, 12, ’images/unzoom.gif’, ’view.
zoomOut()’)
zoomoutbutton.setRolloverImage(’images/unzoomh.gif’)
zoomoutbutton.setMessage(’click to zoom out by 2’)
zoomoutbutton.setToolTipText(’Zoom Out’)

Each button has a message property. The message will be automatically displayed in the
status window of the browser when the mouse is over the button. The message can also be
displayed in an additional panel. This is why the line:

IlvButton.defaultInfoPanel=messagePanel

tells you that messages of buttons will also be displayed in the DHTML message panel.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6170

The IlvZoomTool JavaScript component

The IlvZoomTool component is a DHTML component that shows a set of buttons. Each
button corresponds to a zoom level; clicking the button will zoom the view to this zoom level.
The button corresponding to the current zoom level is visually different from others so that
you can tell what the current zoom level is. The component can be vertical or horizontal,
and the images of the buttons can be customized.

To add the component, add the following lines to the page:

<script TYPE="text/javascript" src="script/IlvZoomTool.js"></script>

This line imports the script.

Note that this component uses the IlvButton class, so the IlvButton.js script must be
included also.

var zoomtool = new IlvZoomTool(x+w+25, y+15, 25, h-30, 10 , view)
zoomtool.setOrientation(’Vertical’)
zoomtool.upImage = ’images/button.gif’
zoomtool.rolloverUpImage = ’images/buttonh.gif’
zoomtool.downImage = ’images/button.gif’
zoomtool.rolloverDownImage = ’images/buttonh.gif’
zoomtool.currentImage = ’images/center.gif’
zoomtool.rolloverCurrentImage = ’images/centerh.gif’

zommtool.toHTML()

The page now looks like this, with the vertical zoom tool on the right of the main view:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 171

The IlvZoomInteractor JavaScript component

The IlvZoomInteractor allows direct interaction with the image; it allows the user to select
an area on the image to zoom this area. Installing an interactor on the view is simple: you
need only create the interactor and set it to the view:

var zoomInteractor = new IlvZoomInteractor()
view.setInteractor(zoomInteractor)

In the example, you add a button that will install the interactor. To do this, add the following
lines to the page:

<script TYPE="text/javascript"
src="script/IlvInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvDragRectangleInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvZoomInteractor.js"></script>

<script TYPE="text/javascript"
src="script/IlvInteractorButton.js"></script>

To use the interactor, you have to import three JavaScript™ files: IlvInteractor.js,
IlvDragRectangleInteractor.js, and IlvZoomInteractor.js. This is because the
IlvZoomInteractor component is a subclass of the IlvDragRectangleInteractor component.

Then you add the following lines to the body of the page:

var zoomInteractor = new IlvZoomInteractor()
zoomInteractor.setLineWidth(1)
zoomInteractor.setColor(’#00ffff’)

...

var zoomrectbutton

zoomrectbutton=new IlvInteractorButton(x+w+50, y+90, 112, 24,
’images/zoomrect.gif’, zoomInteractor,

view)
zoomrectbutton.setRolloverImage(’images/zoomrecth.gif’)
zoomrectbutton.setMessage(’click to set zoom mode’)
zoomrectbutton.setToolTipText(’Zoom Mode’)

...

zoomrectbutton.toHTML()

This results in the following page:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6172

You can now click the “Select Zoom Area” button to install the interactor and then select
an area to zoom in.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 173

IlvPanInteractor

The IlvPanInteractor component allows the user to click in the main view to pan the view.
Just as for the IlvZoomInteractor, use the setInteractormethod of IlvView to install the
interactor. In the example, add another button that will install this interactor (see The
IlvZoomInteractor JavaScript component). You will now be able to switch from the “Pan”
mode and the “Zoom” mode.

To be able to use the component, import the corresponding JavaScript™ file:

<script TYPE="text/javascript"
src="script/IlvPanInteractor.js"></script>

Then add the following lines to the body of the page:

var panInteractor = new IlvPanInteractor()
panbutton=new IlvInteractorButton(x+w+50, y+110, 63, 22, ’images/pan.gif’,

panInteractor, view)
panbutton.setRolloverImage(’images/panh.gif’)
panbutton.setMessage(’click to set pan mode’)
panbutton.setToolTipText(’Pan Mode’)
...

panbutton.toHTML()

The page now has one additional button labelled “Pan View”:

The example is now complete; it uses most of the DHTML components provided by IBM®
ILOG® JViews.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6174

The IlvPanTool JavaScript component

The IlvPanTool component (located in the IlvPanTool.js file) is a component that allows
panning of the view in all directions. You create the component in this way:

var pantool = new IlvPanTool(10, 10, view)
pantool.toHTML()

Note that this component uses the IlvButton class, so the IlvButton.js script must be
included also.

This component looks like this:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 175

The IlvMapInteractor and IlvMapRectInteractor JavaScript components

The IlvMapInteractor and IlvMapRectInteractor components are two additional interactors
that can be used to perform an action on the server side when a point or an area of the
image is selected by the client. These interactors and how to use them are described in
detail in Adding client/server interactions.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6176

The Popup menu in JavaScript

The popup menu component is attached to the main view. This popup menu in JavaScript™
is triggered by a right-click in the view.

To use the popup menu, you must first include the following scripts.

The popup menu component is IlvGanttPopupMenu.

<script TYPE="text/javascript" src="script/IlvAbstractPopupMenu.js"></script>
<script TYPE="text/javascript" src="script/gantt/IlvGanttPopupMenu.js">
</script>

The popup menu can be contextual or static.

Static popup menu
The menu is static, that is, not conditioned by the context in which it is called, and is defined
in the HTML file by using IlvMenu and IlvMenuItem instances. The menu is a pure client-side
object and there is no roundtrip to the server to generate the menu.

Defining a static popup menu in the HTML file

//Creates the popup menu.
var popupmenu = new IlvGanttPopupmenu(true);

//Creates the menu model.
var root = new IlvMenu("root");
var item1 = new IlvMenuItem("item1", true, "alert('item1 clicked')");
var item2 = new IlvMenuItem("item2", true, "alert('item2 clicked')");
root.add(item1);
root.add(item2);

//Sets the menu model to the popup menu.
popupMenu.setMenu(root);

[...]

//Sets the popup menu to the view.
chartView.setPopupMenu(popupMenu);

Configuring servlet support for a popup menu

public class GanttChartServlet extends IlvGanttServlet
{

[...]
protected void configureServletSupport(IlvGanttServletSupport support) {
[...]

support.setPopupEnabled(true);
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 177

[...]
}

Contextual popup menu
The popup menu is dynamically generated by the server depending on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the user triggered the popup menu.

On the client side, you need only declare the popup menu and set it on the view.

Declaring a contextual popup menu and setting it on the view, client side

var popupMenu = new IlvGanttPopupMenu(true);

//Sets the popup menu to the view
chartView.setPopupMenu(popupMenu);

On the server side, you need to configure the servlet support to handle popup menus and
to set the factory that will generate the menu.

Configuring servlet support and setting the factory, server side

public class GanttChartServlet extends IlvGanttServlet {

[...]
protected void configureServletSupport(IlvGanttServletSupport support) {
[...]

support.setPopupEnabled(true);
support.getPopupMenuSupport().setMenuFactory(new SimpleMenuFactory());

}
[...]

}

The factory must implement the IlvMenuFactory interface.

Styling the popup menu
You can style the popup menu by setting a CSS class name in the following properties:

♦ itemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

The following example shows how to use CSS to style the popup menu.

[...]

I B M ® I L O G ® J V I E W S G A N T T 8 . 6178

<style>
.PopupMenuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}

.PopupMenuItemHighlighted {
background: #057879;
font-style: italic;
color: white;

}

.PopupMenuItemDisabled {
background-color: #EEEEEE;
font-style: italic;
color: black;

}
</style>

[...]

<script>

var popupMenu = new IlvGanttPopupMenu(true);
popupMenu.setItemStyleClass('PopupMenuItem');
popupMenu.setItemHighlightedStyleClass('PopupMenuItemHighlighted');
popupMenu.setItemDisabledStyleClass('PopupMenuItemDisabled');

</script>

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 179

Adding client/server interactions

Overview of actions on the server and client sides
The IBM® ILOG® JViews thin-client support gives you a simplified way to define new actions
that should take place on the server side. For example, suppose you want to allow the user
to delete a graphic object that appears on the generated image. Part of this action—clicking
the image to select the object—must be done on the client side. The destruction of the object
must be done on the server side before a new image is generated. The notion of “server-side
action” exists to perform such behavior. An action is defined by a name and a set of string
parameters.

Actions on the client side
In a dynamic HTML client, you tell the server to perform an action using the performAction
method of the IlvView JavaScript™ component.

Here is an example that asks the server side to execute the action “delete” with coordinate
parameters, assuming that view is an IlvView:

var x = 100;
var y = 50;
var params = new Array();
params[0]=x;
params[1]=y;
view.performAction(“delete”, params);
In a thin-Java client the system is the same:
float x = 100f;
float y = 50f;
String[] params = new String[2];
params[0] = Float.toString(x);
params[1] = Float.toString(y);
view.performAction(“delete”, params);

The performAction method will ask the server for a new image. In the image request,
additional parameters are added so that the server side can execute the action. Thus, the
performAction call results in only one client/server round-trip.

Note that predefined interactors are provided to help you define new actions on the client
side. They are explained in Predefined interactors.

Actions on the server side
On the server side, you need to detect that an action was requested and execute the action.
This is done using the interface ServerActionListener.

To be able to listen and execute an action on the server side, you simply add an action
listener to your servlet. In the performAction method of the listener, you check the action
name and perform the action.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6180

For the “delete” action, we would add the following lines of code in the init method of the
servlet:

addServerActionListener(new ServerActionListener() {
public void actionPerformed(ServerActionEvent e) throws ServletException
{
if (e.getActionName().equals("delete")) {
IlvPoint p = e.getPointParameter(0);
// find object under this point and delete it if there is one.

}
}

});

The ServerActionEvent object can give you all necessary information about the action, the
name, and its parameters.

Predefined interactors
Two predefined interactors are provided to help you create new actions: IlvMapInteractor
and IlvMapRectInteractor.

IlvMapInteractor allows the user to click in the map; it will ask the server to execute an
action, with the coordinates of the clicked point passed as parameters. The second interactor
is almost the same except that the user selects an area of the image instead of clicking on
it.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 181

Generating a client-side image map

If you are creating a Dynamic HTML client, the IBM® ILOG® JViews thin-client support
allows you to create a client-side image map. Image maps are images with an attached map
that points out hot spots, or clickable areas. In the IBM® ILOG® JViews thin-client support,
a clickable area can be generated for each graphic object of the manager.

To create a client side image map:

♦ Define the image map on the server side

♦ Use the image map on the client side

Define the image map on the server side
The servlet provided by IBM® ILOG® JViews (IlvManagerServlet) is able to generate an
image map for your IBM® ILOG® JViews application, but it is likely that you do not want
to generate a clickable area for every graphic object. On the server side, you will then have
to tell the manager servlet which IBM® ILOG® JViews layer and which graphic object are
part of the image map generation. For both layer and graphic object, this is done by setting
a property on them.

On a layer, assuming that the variable manager is an IlvManager, you will do:

manager.getManagerLayer(index).setProperty(IlvManagerServlet.
ImageMapAreaGeneratorProperty, Boolean.TRUE);

On a graphic object you can do almost the same thing, but the value of the property must
be an instance of the class IlvImageMapAreaGenerator. This class is responsible for
generating the AREA part of the image map.

Note that the same instance of IlvImageMapAreaGenerator can be used for all graphic
objects.

By default, IlvImageMapAreaGenerator will generate a rectangular area with no HREF in
it. You will have to subclass it to generate an HREF for your graphic object.

Here is an example that creates a custom IlvImageMapAreaGenerator and sets it on some
objects:

IlvGraphic object1, object2;
....
IlvImageMapAreaGenerator generator = new IlvImageMapAreaGenerator() {

public String generateHREF(IlvManagerView v, IlvGraphic obj) {
String href;
// place here code the
// computes the URL depending on the graphic object
return href;

}

};

I B M ® I L O G ® J V I E W S G A N T T 8 . 6182

object1.setProperty(IlvManagerServlet.ImageMapAreaGeneratorProperty,
generator);

object2.setProperty(IlvManagerServlet.ImageMapAreaGeneratorProperty,
generator);

The HREF can be a URL to which the browser will jump when the area is clicked, but it can
also be a call to a JavaScript™ method.

For example, in the XML Grapher example, you can define the generator like this:

IlvImageMapAreaGenerator generator = new IlvImageMapAreaGenerator() {

public String generateALT(IlvManagerView v, IlvGraphic obj) {
return ((GrapherNode)obj).getLabel();

}

public String generateHREF(IlvManagerView v, IlvGraphic obj) {
return "javascript:doSomething(’"+

((GrapherNode)obj).getLabel()+"’)";
}

};

In this example, the HREF generated is a call to the JavaScript method doSomething. You
will have to define this method in the HTML page.

For more information about customizing an area, see the IlvImageMapAreaGenerator class
in the Java API Reference Manual.

Use the image map on the client side
To tell the Dynamic HTML client to generate a client-side image map, you only need to set
the imageMap property of the IlvView JavaScript™ component to true:

var view = new IlvView(40, 40, 300, 400);
view.setRequestURL(’/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet’);
view.setGenerateImageMap(true);

When this is done, the IlvView component will ask the servlet to generate the image map.

To make the image map visible, there are two possibilities. You can:

♦ Directly call the showImageMap method of IlvView:

view.showImageMap();

♦ Use the IlvImageMapInteractor class. This class is a simple interactor that will show
the image map when installed and hide it when de-installed.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 183

I B M ® I L O G ® J V I E W S G A N T T 8 . 6184

The IlvManagerServlet class

Describes the predefined servlet and how to use it.

In this section

Overview of the predefined servlet
Presents the predefined servlet.

The servlet requests and parameters
Presents the requests to which the servlet can respond and the parameters they take.

Multiple sessions
Describes the need for multiple sessions and gives an example.

Multithreading issues
Describes the use of single-thread and multithread versions of servlets and resulting
synchronization requirements.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 185

Overview of the predefined servlet

Developing the server side of a thin-client application consists of creating a servlet that can
produce an image to the client. IBM® ILOG® JViews Framework provides a predefined
servlet to achieve this task. The predefined servlet class is named IlvManagerServlet. This
class can be found in the package ilog.views.servlet.

The IlvManagerServlet class is an abstract Java™ subclass of the HTTPServlet class from
the Java servlet API.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6186

The servlet requests and parameters

The servlet can respond to three different types of HTTP requests, the “image” request, the
“image map” request, and the “capabilities” request. The image request will return an image
from the IBM® ILOG® JViews manager. The capabilities request will return information to
the client, such as the layers available in the manager and the global area of the manager.
This information allows the client to know the capabilities of the servlet in order to build
the image request. When developing the client side of your application, you will use the
DHTML scripts or the JavaBeans™ provided by IBM® ILOG® JViews; both will create the
HTTP request for you, so you do not really need to write the HTTP request yourself.

The image request
The image request produces a JPEG image from the manager. The request has the following
syntax, assuming that myservlet is the name of the servlet:

http://host/myservlet?request=image
&bbox=x,y,width,height (area in the manager coordinate system)
&width=width of the returned image
&height=height of the returned image
&layer=comma separated list of layers
&format=JPEG
&bgcolor=0xFFFFFF

Here is a list of parameters and their meanings.

Parameters of the IlvManagerServlet
DescriptionParameter ValueParameter Name

Asks the servlet to generate an image.imagerequest

The area of the manager that will be displayed in
the image. The first two values are the upper left

Float, Float, Float, Floatbbox

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 187

DescriptionParameter ValueParameter Name

corner of the area. The last two values are the
width and height of the area.

Width of the resulting image.Integerwidth

Height of the resulting image.Integerheight

The format of the resulting image.JPEGformat

The layers of the IlvManager that will be visible.Comma-separated list of
strings. For example: Cities,
Roads

layer

The background color of the resulting image.This
parameter is optional.

0xrrggbb

For example, 0xffffff for
white

bgcolor

Specifies an action to be executed on the server
before the image is generated.

actionName(param1, param2)action

The following request will produce a JPEG image of size (250, 250) showing the area
(0, 0, 1000, 1000) of the manager; only the layers named “Cities” and “Roads” will be visible:

http://host/myservlet?request=image
&bbox=0,0,1000,1000
&width=250
&height=250
&layer=Cities,Roads
&format=JPEG

The capabilities request
The capabilities request produces information to the client. This request returns information
on the manager.

The capabilities request has the following syntax:

http://host/myservlet?request=capabilities
&format=(html|octet-stream)

[&onload= <a string>]

The request parameter set to capabilities instead of image tells the servlet to return the
capabilities information. The format parameter tells which format should be returned.

The result can be of two different formats, HTML or Octet stream.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6188

HTML format
The HTML format is used when the client is a Dynamic HTML client. In this case, the result
is a empty HTML page that contains some JavaScript™ code. The JavaScript code is executed
on the client side, and some information variables are then available.

<html>
<head>
<script language="JavaScript">
var minx=0.0;
var miny=0.0;
var maxx=1024.0;
var maxy=512.0;
var themes=new Array();
var overviewthemes=new Array();
themes[0]="a layer name";
overviewthemes[0]=true;
themes[1]="another layer";
overviewthemes[1]=true;
themes[2]="a third layer";
overviewthemes[2]=true;
var maxZoom=6;
</script>
</head>
<body>
</body>
</html>

The variables minx, miny, maxx, maxy are defining the global area of the manager that can
be queried. The themes variable is the list of layers available on the server side. The
overviewthemes variable tells if a layer should be visible in the overview window. The
maxZoom variable is the maximum level of zoom the application should perform.

The onload parameter allows you to specify a String that is used for the onload event of the
generated HTML page. When an onload parameter is specified, the body tag of the HTML
page is the following:

<body onLoad="+onload+">

Octet-stream format
The octet-stream format is used when the client is a Java™ applet. In this case, the result
is a stream of octets. The data is produced using a java.io.DataOutput and can be read
using a java.io.DataInput. It is organized as follows:

Float: left coordinate of manager’s bounding box.
Float: top coordinate of manager’s bounding box.
Float: right coordinate of manager’s bounding box.
Float: bottom coordinate of manager’s bounding box.
Int: number of layers.

for each layer:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 189

String (UTF format): name of the layer.
Boolean: is the layer an overview layer.

Float: Maximum zoom level

You see that this format gives the same type of information as the HTML format. Once again,
you do not need to decode or read these formats. The client-side components provided by
IBM® ILOG® JViews will do that for you.

The image map request
The image map request produces an image and a client-side image map. The parameters
for this request are the same as for the image request except that the request parameter
must have the value imagemap.

For example, the following code to the servlet:

http://host/myservlet?request=imagemap
&width=400
&height=200
&bbox=0,0,500,500
&format=JPEG
&layer=Cities,Links,background%20Map

will produce something like:

<html>
<body>
<map name="imagemap">
<area shape="rect" coords="242,81,261,83" href="..." >
....
</map>
<img usemap="#imagemap" width="400" height="200"
src="myservlet?request=image&layer=Cities,Links,background%20Map&width=400
&format=JPEG&bbox=0,0,500,500&height=200" border=0>

</body>
</html>

The call generates an HTML document containing the client-side image map and an image.
The contents of the image are then generated by another call to the servlet.

The graphic objects that are taken into account when generating the map can be specified
as well as the shape of the clickable area and what appends when you click on it. All this is
explained in Generating a client-side image map.

The image map request has two additional optional parameters:

♦ The mapname parameter allows you to specify the name of the map. The default name is
imagemap.

♦ The onload parameter allows you to specify a String that is used for the onload event of
the generated HTML page. When an onload parameter is specified, the body tag of the
HTML page is the following:

I B M ® I L O G ® J V I E W S G A N T T 8 . 6190

<body onLoad="+onload+">

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 191

Multiple sessions

The XML Grapher is a very simple example that creates a single manager view for the servlet.
This means that all calls to the servlet (that is, all clients) are looking at the same view. This
is fine when the same data is used for all clients but in some applications—for example,
when you want to allow the user to edit the graphic representation—you might want to have
a view (and thus a manager) for each client. In this case, you might use the notion of HTTP
sessions. You can then create a view and a manager and store them as parameters of the
session.

Here is a slightly modified version of the XML Grapher servlet using sessions:

package demo.xmlgrapher.servlet;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;
import ilog.views.*;
import ilog.views.servlet.*;
import demo.xmlgrapher.*;

public class XmlGrapherServlet extends IlvManagerServlet
{
String xmlfile;

public void init(ServletConfig config)
throws ServletException

{

xmlfile = config.getInitParameter("xmlfile");
if (xmlfile == null)
xmlfile = config.getServletContext().

getRealPath("/data/world.xml");
setVerbose(true);

}

protected void prepareSession(HttpServletRequest request)
{
HttpSession session = request.getSession();
if (session.isNew()) {

XmlGrapher xmlGrapher = new XmlGrapher();
try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}
session.putValue("IlvManagerView", xmlGrapher);

}
}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException

{

I B M ® I L O G ® J V I E W S G A N T T 8 . 6192

HttpSession session = request.getSession(false);
if (session!= null)
return (IlvManagerView)session.getValue("IlvManagerView");

else
throw new ServletException("session problem");

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view)

{
return 30;

}
}

The init method does not create any XmlGrapher object any more. Instead, the
prepareSession method (which has a default empty implementation) is overwritten to get
the HTTP session. If this is a new session, an XmlGrapher object is created and stored as a
parameter of the session. The getManagerViewmethod returns the XmlGrapher object stored
in the session.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 193

Multithreading issues

The IlvManagerServlet class does not implement the SingleThreadModel interface from
the Servlet API, so you can create servlets that use the multithread or single-thread model.

If your servlet implements the SingleThreadModel interface, then you do not have to deal
with concurrent access to your servlet. The servlet will be thread safe. However, this interface
does not prevent synchronization problems that result from servlets accessing shared
resources such as static class variables or classes outside the scope of the servlet.

If your servlet does not implement the SingleThreadModel interface, then you might have
to be concerned with concurrent access to the servlet. All basic operations done by the
IlvManagerServlet on the IlvManagerView are already synchronized. This means that you
will have to take care of concurrent access only if you are doing additional actions on the
IlvManagerView. In this case you can define a locking object and use the getLock method
of the IlvManagerServlet. Each request handling is implemented in the following way:

... reads the request parameters ...

synchronized(getLock(request)) {
IlvManagerView view = getManagerView(request);

... handle the request ...
}

By default, the getLockmethod returns a new object each time. This means that the section
is not synchronized.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6194

The IlvManagerServletSupport class

The IlvManagerServlet class used in the XMLGrapher example gives an easy way to create
a servlet that supports the IBM® ILOG® JViews thin-client protocol. Using the
IlvManagerServlet class is an easy way to create a servlet but has one main drawback.
You cannot add the support for the IBM® ILOG® JViews thin-client protocol to an existing
servlet since the IlvManagerServlet class derives from the HttpServlet class. The
IlvManagerServletSupport class will allow you to do this. This class has the same API as
the IlvManagerServlet but is not a servlet (that is, it does not derive from the HttpServlet
class). You can thus create your own servlet and an instance of the IlvManagerServlet
support class in this servlet to handle the requests coming from the IBM® ILOG® JViews
client side.

Thin-client support in the XML Grapher example
In the XML Grapher example, the code of the servlet can be rewritten using the
IlvManagerServletSupport class as follows:

package demo.xmlgrapher.servlet;

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;
import java.io.*;
import ilog.views.*;
import ilog.views.servlet.*;

import demo.xmlgrapher.*;

public class XmlGrapherServlet extends HttpServlet
{
IlvManagerServletSupport servletSupport ;

class MySupport extends IlvManagerServletSupport {

private XmlGrapher xmlGrapher;

public MySupport(ServletConfig config) {
super();
xmlGrapher = new XmlGrapher();

String xmlfile = config.getInitParameter("xmlfile");

if (xmlfile == null)
xmlfile = config.getServletContext().getRealPath("/data/world.xml");

try {
xmlGrapher.setNetwork(new URL("file:" + xmlfile));

} catch (MalformedURLException ex) {
}

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 195

setVerbose(true);
}

public IlvManagerView getManagerView(HttpServletRequest request)
throws ServletException {
return xmlGrapher;

}

protected float getMaxZoomLevel(HttpServletRequest request,
IlvManagerView view) {

return 30;
}

}

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException {
servletSupport = new MySupport(config);

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
if (!servletSupport.handleRequest(request, response))
throw new ServletException("unknow request type");

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
doGet(request, response);

}

}

This code creates a new servlet class, XmlGrapherServlet, that derives directly from the
HttpServlet class. The doGet method passes the requests to an instance of the
IlvManagerServletSupport class.

Specifying fixed zoom levels on the client side
Override the following method of the IlvManagerServletSupport class to specify the zoom
levels that must be used on the client side:

public double[] getZoomLevels(HttpServletRequest request, IlvManagerView view)

In this case, the maximum zoom level is not used.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6196

Controlling tiling

Describes how to control tiling on the client side and the server side.

In this section

Tiling
Explains what tiling is and its advantages.

Tile size
Explains tile size and its implications for performance and caching.

Cache mechanisms
Explains the cache mechanisms you can apply.

Developing client-side tiling
Describes how to develop the code on the client side if you use tiling.

Developing server-side tiling
Describes how to develop the code on the server side if you use tiling.

Client-side caching
Describes how to develop code for caching on the client side by managing HTTP headers.

Server-side caching and the tile manager
Describes how to develop code for caching on the server side by using a tile manager.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 197

Tiling

The static layers are represented by a grid of images of a fixed size. These fixed-size images
are referred to as tiles. Dynamic layers are represented by a single image with a transparent
background overlaying the view.

A static layer is not supposed to change during the application lifecycle and so can be
generated once only. Typically, a static layer is the background of the view, such as a
background map.

A dynamic layer contains objects, such as symbols, that can move and change their graphic
representation.

Dynamic layers must be placed on top of a static layer. Otherwise, they are not
displayed.

Note:

The advantages of a tiled view are continuous panning and the capability of caching tiles.
On the client side this avoids a roundtrip to the server and gives a better response time. On
the server side it allows the server to receive the request, retrieve the image, and respond
with the image without having to generate it. Not having to generate the image for the
response is especially advantageous in complex applications.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6198

Tile size

The size of the tile determines the number of tiles needed to cover the view.

The tile size must be carefully chosen because it can have a considerable and potentially
critical impact on performance. The larger the number of tiles needed because of their size
relative to the size of the view to be covered, the more simultaneous requests to be addressed
to the image servlet. There will also be more graphic objects to manage on the client side.

If a server-side caching mechanism is implemented, such as pregenerated tiles, the size
must be consistent with the configuration of the server-side caching mechanism. See
IlvTileManager for more details about server-side caching mechanisms.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 199

Cache mechanisms

Since tiles in static layers are not subject to change, they can be cached on the client side
to be reused directly without the need for a server roundtrip.

You can consider several possible caching strategies on the server side:

♦ No caching: the server generates the images each time they are requested.

♦ Dynamic caching: the server can cache every generated tile, for example in the file system.
This strategy allows you to have a quicker response for popular tiles and to limit the size
of the cache.

♦ Pregeneration: a partial or complete set of tiles for specific zoom levels can be
pregenerated and returned directly by the server without need of dynamic generation.

To manage the cache efficiently on the client and the server, the zoom levels must be fixed.
If there is a free choice of what zoom level to apply, the probability of the client retrieving
a cached tile is severely limited.

See Specifying fixed zoom levels on the client side for how to specify the zoom levels.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6200

Developing client-side tiling

The API of the IlvTileView class is very similar to IlvView. To use the tiled view, import
IlvTiledView.js instead of IlvView.js.

To instantiate an IlvTiledView object, proceed as with IlvView, but the class takes an
additional argument that defines the tile size as shown in the following XML example.

<html>
<head>
<META HTTP-EQIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQIV="pRAGMA" CONTENT="No-cache">
</head>
<script TYPE="text/javascript" src="script/IlvUtil.js"></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvTiledView.js"></script>
<script TYPE="text/javascript">
function init() {
view.init()
return false

}

function handleResize() {
if (document.layers)
window.location.reload()

}
</script>
<body onload="init()" onunload="IlvObject.callDispose()"

onresize="handleResize()" bgcolor="#ffffff">
<script>

//position of the main view
var y = 40
var x = 40
var h = 270
var w = 440

//tile size
var t = 256

//Main view
var view = new IlvView(x,y,w,h,t)
view.setRequestURL('/xmlgrapher/demo.xmlgrapher.servlet.XmlGrapherServlet')
view.toHTML()
</script>

</body>
</html>

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 201

I B M ® I L O G ® J V I E W S G A N T T 8 . 6202

Developing server-side tiling

The tile manager stores and retrieves static and dynamic layers. See In Server-side caching
and the tile manager for a description of the tile manager and Tiling for what is meant by
static and dynamic layers in the context of tiling.

The list of dynamic layers is computed by the following method of the
IlvManagerServletSupport class:

public IlvManagerLayer[] getDynamicLayers(HttpServletRequest request,
IlvManagerView view)

The default implementation of this method classifies the layers according to the value
returned by the getTripleBufferedLayerCount() method. If the layer index is greater or
equal to this value, the layer is dynamic. If not, it is a static layer. You can override this
method to determine which are the dynamic layers in a different way.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 203

Client-side caching

HTTP headers are sent with the tile image to control the caching of tiles on the client side.

There are two ways of specifying expiry data for tiles on the client side.

♦ Override the following method of IlvManagerServletSupport:

public long getExpirationDate(HttpServletRequest request)

This method returns the expiry date in milliseconds of tile lifespan in the client-side cache.

♦ Override the protected method:

void setImageResponseCachePolicy(HttpServletRequest request,
HttpServletResponse response);

This method sends the HTTP headers to the client, so that the server instructs the client
how to cache the tiles.

See RFC 2616 on HTTP/1.1 for a full description of HTTP headers.

You need to take the following cases into account:

1. The normal image request: you should prevent caching in this case.

2. The tile image request, which is identified by the tile request parameter: this type of
request can be cached on the client.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6204

Server-side caching and the tile manager

Use IlvTileManager to manage caching on the server side.

Static or dynamic layers can be used in conjunction with tiled views on the client side.

Static layers can be cached or pregenerated on the server. Cached tiles are part of layers
that are not expected to change within the application lifecycle, as, for example, in a
background map. Cached tiles can be retrieved through a tile manager.

Dynamic layers are likely to change between requests to the server, such as labeling or
network display.

The tile manager, an instance of IlvTileManager, stores and retrieves tiles on the server
side. IlvManagerServlet can take advantage of such a tile manager if one is installed on
the servlet.

When an image request is received by the servlet, if a tile that matches the current request
is managed by the tile manager, it will return this cached tile instead of generating a new
image from IlvManagerView. If a tile is not yet managed by the tile manager, generate the
image from IlvManagerView and ask the tile manager to manage it for future access.

When IlvManagerServletSupport responds to an image request, it uses the tile manager
as follows:

if (useTileManager(request)) {
IlvTileManager tm = getTileManager(request);
if (tm != null) {
Object key = getKey(request);
BufferedImage image = tm.getImage(key);
if (image == null) {
image = doGenerateImageImpl(...);
tm.putImage(key, image);
}
return image;
}
}
return doGenerateImageImpl(...);

The tile manager is invoked by default if the request contains a parameter of the form
tile=true. If the request contains such a parameter, useTileManager(javax.servlet.
http.HttpServletRequest)will return true. You can override the useTileManagermethod
to call the tile manager in other situations.

If a tile manager is installed, it will be retrieved and a key object will be constructed from
the request to reference the tile. Then, an attempt is made to retrieve a tile from the tile
manager. If the attempt is successful, the tile is returned as the response to the request.

If no tile is retrieved, an image will be constructed through the normal image generation
process. This image is passed to the tile manager for use in future retrievals.

The tile manager is not installed by default in an IlvManagerServletSupport object. You
need to subclass it to install a tile manager.

The method to override is getTileManager(javax.servlet.http.HttpServletRequest).
By default, this method returns null.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 205

protected IlvTileManager getTileManager(HttpServletRequest request)
throws ServletException {

return null;
}

A default implementation of the tile manager is supplied. This implementation stores tiles
on disk. You can use it to develop your own implementation of the getTileManagermethod.

protected IlvTileManager getTileManager(HttpServletRequest request)
throws ServletException {

ServletContext context = request.getSession().getServletContext();
IlvTileManager tileManager = (IlvTileManager)context.getAttribute

("tileManagerKey");
if(tileManager == null) {
tileManager = new IlvFileTileManager(getBase(), getMaxCacheSize(),
getMinCacheSize());
context.setAttribute("tileManagerKey", tileManager);

}
return tileManager;

}

In this implementation you need to provide:

♦ The base directory where the tiles are written.

♦ The maximum size allowed for the cache.

♦ The size to which the cache will be reduced by removing files when the maximum size is
reached.

When the maximum size is reached, the cache is considered to be full and files will be
removed to reduce the size of the cache to the level indicated.

The tile manager is stored and retrieved from the ServletContext, so that the same tile
manager is used for the same application. You can use a different strategy for storing and
retrieving the tile manager.

You can also customize the reading and writing of tiles and the name of the file that is
generated for each tile. This default implementation of the tile manager constructs a file
name of the form x_y_width_height.jpg, where x, y, width, and height are the manager
coordinates of the image request passed as the bbox attribute of the request.

This file is stored in and retrieved from the base directory provided when the
IlvFileTileManager is constructed. This customization can be performed through the
IlvFileTileURLFactory, which is responsible for building a URL from the key that identifies
the tile. The default key is a Rectangle2D.Double object, which is created from the bbox
parameter of the request.

I B M ® I L O G ® J V I E W S G A N T T 8 . 6206

A
Ajax

JavaScript objects for JViews Gantt Faces
components 55

Ajax-enabled components
JSF 18, 25

AWT
event dispatch thread 96

C
capabilities

chart capabilities in DHTML thin client 132
capabilities request 138
client/server interaction

adding 127
client side 128
server side 131

common DHTML components, overview 100
components, servlet and classes 21
contextual popup menu

dynamic HTML component 125, 178
dynamic HTML component on the client side
125, 178
dynamic HTML component on the server side
125, 178
JSF 51
JSF adding 50

CSS
styling a data source 36, 37

customizing
interactor in client-server interaction 128

D
dataSourceId attribute 31, 34
decorative panels 109
deploying

as thin client 82
deselectAll method

IlvGanttComponentSelectionManager class
47

DHTML components
common 100
IlvAbstractPopupMenu 100
IlvAbstractView 100
IlvButton 100, 112
IlvEmptyView 100
IlvGanttComponentView 100
IlvGanttPopupMenu 102
IlvGanttSheetScrollInteractor 102, 117
IlvGanttSheetView 102, 117
IlvGanttTableScrollInteractor 102
IlvGanttTableView 102
IlvGanttView 102, 104
IlvGlassView 100
IlvHTMLPanel 107
IlvImageEventView 100
IlvImageView 100, 109
IlvInteractor 100, 117
IlvInteractorButton 100, 118
IlvMenu 100
IlvMenuItem 100
IlvObject 100
IlvPanel 100
IlvResizableView 100
IlvRowExpandCollapseInteractor 102, 118
IlvScrollBar 100
IlvTableSheetView 117
IlvToolBar 100, 112

Dynamic HTML
client 100

dynamic HTML components
contextual popup menu 125, 178
contextual popup menu on the client side
125, 178

© Copyright IBM Corp. 1987, 2009 207

I N D E X

Index

contextual popup menu on the server side
125, 178
IlvMenu 124, 177
IlvMenuItem 124, 177
prerequisite scripts for popupmenu
component 124, 177
static popup menu 124, 177

dynamic HTML popup menu
styling 125, 178

dynamic menus 76

E
empty view 27
event dispatch thread, AWT 96
examples

Gantt Servlet 87
XML Grapher, thin client 85

F
Facelets 76
faces-config.xml 31, 32, 34, 35
files

GanttChartServlet.java 87
SimpleProjectDataModel.java 87
WAR 89, 104

G
Gantt Servlet example

description 87
DHTML client 104
installing and running 89
message panel 107

gantt-thinclient.war file 89, 104
GanttChartServlet.java file 87
ganttView

JViews Gantt Faces components 25
ganttView tag 31
getChart method

IlvGanttServletSupport class 94
IlvHierarchyChart class 94

getDataSource method 31, 34

H
handleResize JavaScript function 106
HTTP requests. See thin client 83
HTTP sessions 140

I
IlvAbstractPopupMenu DHTML component 100
IlvAbstractView DHTML component 100
IlvButton DHTML component 100, 112
IlvChart interface 62
IlvDataSetPoint class 59
IlvDiagrammer interface 62
IlvEmptyView DHTML component 100
IlvFacesContextualMenu class 21
IlvFacesDHTMLGanttChartView class 21

IlvFacesDHTMLScheduleChartView class 21
IlvFacesGanttSelectInteractor class 21
IlvFacesGanttSelectionManager class 21
IlvFacesGanttServlet class 21
IlvFacesGanttServletSupport class 21
IlvFacesNodeSelectInteractor class 21
IlvFacesRowExpandCollapseInteractor class 21
IlvFacesRowSelectInteractor class 21
IlvFacesSheetScrollInteractor class 21
IlvFacesTableScrollInteractor class 21
IlvGanttchartServlet.ServletSupport inner
class 92, 94
IlvGanttComponentSelectionManager class

deselectAll method 47
selectById method 46

IlvGanttComponentView DHTML component 100
IlvGanttPopupMenu DHTML component 102
IlvGanttSelectionSupport class 46
IlvGanttServlet class 92, 97, 135
IlvGanttServletSupport class 92, 94, 135

getChart method 94
IlvGanttSheetScrollInteractor DHTML
component 102, 117
IlvGanttSheetView DHTML component 102, 117
IlvGanttTableScrollInteractor DHTML
component 102
IlvGanttTableView DHTML component 102, 117
IlvGanttView DHTML component 102, 104

decorative panels 109
resizing 109

IlvGanttView JavaScript class
toHTML method 109

IlvGlassView DHTML component 100
IlvHierarchyChart interface 62
IlvHierarchyNode interface 59
IlvHTMLPanel DHTML component 107, 109
IlvImageEventView DHTML component 100
ilvImagePath global variable 109
IlvImageView DHTML component 100, 109
IlvInteractor class 128
IlvInteractor DHTML component 100, 117
IlvInteractorButtonDHTML component 100, 118
IlvManagerView interface 62
IlvMenu DHTML component 100
IlvMenu dynamic HTML component 124, 177
IlvMenuFactory interface 51, 125, 178
IlvMenuItem DHTML component 100
IlvMenuItem dynamic HTML component 124, 177
IlvObject DHTML component 100
IlvPanel DHTML component 100
IlvResizableView DHTML component 100
IlvRowExpandCollapseInteractor DHTML
component 102, 118
IlvScrollBar DHTML component 100

I B M ® I L O G ® J V I E W S G A N T T 8 . 6208

IlvSDMNode interface 59
IlvSelectionPropertiesError

JavaScript class 42
IlvServerAction interface 131
IlvToolBar DHTML component 100, 112
image request, in client-server interaction 138
image server

declaring in portlet mode 69
image servlet

interactions 62
value change listener 62

init JavaScript function 106
interactions

executing in image servlet context 62
executing in JSF lifecycle 59

interactors, installing 38
interactors, installing in chart 39

J
JavaScript

common DHTML components 88, 100
DHTML scripts 83
files

importing 105, 112
functions 106

JavaScript action
in managed bean 67
namespace-encoded variables 67
notation 67
variables 67

JavaScript objects 55
JavaScript variables

action 67
portlet namespace 67

javax.servlet.http package 92
JSF 18

components and portlets 67
JSF components

integrating into portal 69
JSF lifecycle

interactions 59
value change listener 59

JSF menu factory
contextual popup menu 51

JSF popup menu
adding a contextual 50
contextual 51
contextual menu factory 51
static 50
styling 53

JSP 18
JSR 168

portlets 67
jv

menu tag 50
menuItem tag 50

menuSeparator tag 50
JViews Gantt Faces

Ajax-enabled components 18, 25
JViews Gantt Faces components

ganttView 25

M
managed bean

JavaScript action 67
managed-beans.xml 31, 32, 34, 35
menu binding

static 76
menus

dynamic 76
message box, connecting chart view 49
message box, connecting to 48
message panel 107
multiple sessions 140

N
namespace

JavaScript variables in portlets 67
portlet 67
scripts in portlets 67

namespace-encoded variables
JavaScript action 67

notation
JavaScript action 67

O
octet-stream format for capabilities information
138

P
popup menu

prerequisite scripts for dynamic HTML
component 124, 177

portal
integrating JSF components 69

portlets
and JSF components 67
declaring image server 69
JSR 168 67
namespace 67

R
refjavacharts

ilog/views/chart/data/IlvDataSetPoint.html
59

S
scripts

portlet namespace 67
selectById method

IlvGanttComponentSelectionManager class
46

server side of thin client
developing 91

I B M ® I L O G ® J V I E W S G A N T T 8 . 6 209

key classes 92
multithreading 96

servlet
capabilities request 138
creating 97
IlvGanttServlet class 97
image request 138
multiple sessions 140
parameters 138

setInteractor method 55
simple view 27
SimpleProjectDataModel.java file 87
static menu 76
static popup menu

dynamic HTML component 124, 177
JSF 50

structure of web application 104
styleSheets attribute 36, 37
styling

dynamic HTML popup menu 125, 178
JSF popup menu 53

T
thin client

adding client/server interactions 127
chart capabilities 132
client side, developing 99
DHTML client 100
example 85
server side, developing 91
web architecture 83
XML Grapher example 85

toHTML method
IlvGanttView JavaScript class 109

Tomcat 89
Trinidad 76

V
value change listener

image servlet 62
JSF lifecycle 59

view
empty 27
simple 27

W
WAR files

gantt-thinclient 89, 104
web application directory structure 104

X
XML Grapher, thin client example 85
XMLDataSource tag 31, 34

I B M ® I L O G ® J V I E W S G A N T T 8 . 6210

	Table of contents
	Introducing the Web technologies used in JViews Gantt
	Overview
	Thin client applications
	Thin client application designs
	Ajax-enabled components

	Rich Web applications
	Overview
	Applets
	Java Web Start applications

	Using DHTML-based JSF components to build Web applications
	Introduction
	The architecture of JViews Gantt Faces
	About support for JViews Gantt Faces
	Servlet and component classes

	The JViews Gantt Faces component set
	Creating simple views
	JViews Gantt Designer project
	JViews Charts Designer project
	Data source binding in JViews Gantt
	Data source binding in JViews Charts
	Styling Gantt chart data with CSS
	Styling chart data with CSS
	Installing interactors in a Gantt chart
	Installing interactors in a chart
	Select interactor
	Connecting a Gantt chart to a message box
	Connecting a chart view to a message box
	Adding a popup menu
	Styling the popup menu
	Managing the session expiration

	JavaScript objects
	Contexts for actions on the Gantt Chart view
	Introduction
	JavaServer Faces lifecycle context
	Image servlet context

	Integrating JViews Faces in your environment
	JViews Faces configuration at JViews Framework level
	Session persistence
	Running JViews Faces components in JSR 168 portlets
	Guide to using JViews components with ICEfaces
	Settings for using JViews components in ICEfaces
	Interoperability between JViews components and ICEfaces components
	Push updates to JViews components
	ICEfaces software in JViews

	Supporting Facelets and Trinidad
	Web Application Server support

	Deploying an application as a DHTML-only thin client
	JavaServer Faces components as opposed to DHTML thin client
	Overview
	Gantt Thin-Client Web Architecture
	Getting Started With the Gantt Thin Client: An Example
	Creating a Gantt thin-client application
	The Gantt Servlet Example
	Installing and Running the Gantt Servlet Example

	Developing the server side
	Key classes and their associations
	The servlet support class
	Multithreading issues on the server side
	The servlet class
	Answering HTTP requests

	Developing the client side
	Developing a Dynamic HTML client
	The DHTML client for the Gantt Servlet example
	The Popup menu in JavaScript

	Adding client/server interactions
	The client side
	The server side
	Actions that modify chart capabilities

	The IlvGanttServlet and IlvGanttServletSupport classes
	Creating a servlet
	The servlet parameters
	Multiple sessions

	DHTML thin-client support in JViews Framework
	Overview of thin-client support
	IBM® ILOG® JViews thin-client Web architecture
	Getting started with the IBM® ILOG® JViews thin client
	Installing and running the XML Grapher example
	Developing the server
	Developing the client
	Overview of client-side development
	The IlvView JavaScript component
	The IlvOverview JavaScript component
	The IlvLegend JavaScript component
	The IlvButton JavaScript component
	The IlvZoomTool JavaScript component
	The IlvZoomInteractor JavaScript component
	IlvPanInteractor
	The IlvPanTool JavaScript component
	The IlvMapInteractor and IlvMapRectInteractor JavaScript components
	The Popup menu in JavaScript

	Adding client/server interactions
	Generating a client-side image map
	The IlvManagerServlet class
	Overview of the predefined servlet
	The servlet requests and parameters
	Multiple sessions
	Multithreading issues

	The IlvManagerServletSupport class
	Controlling tiling
	Tiling
	Tile size
	Cache mechanisms
	Developing client-side tiling
	Developing server-side tiling
	Client-side caching
	Server-side caching and the tile manager

	Index

