
IBM ILOGJViewsMaps for Defense V8.6

ProgrammingwithJViewsMaps
for Defense

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright notices

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

IBM® ILOG® JViews Maps for Defense copyright

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Readers and writers...7
Overview..8

The ASRP reader...9
Overview...10
The IlvRasterASRPReader class...11
Using the IlvRasterASRPReader class to create images...12

The USRP reader...13
Overview...14
The IlvRasterUSRPReader class...15
Using the IlvRasterUSRPReader class to create images..16

The CADRG reader..17
Overview...18
Classes for reading the CADRG format...21

Overview...22
The IlvCADRGTocReader class and the CADRG model..23
The IlvCADRGFrameReader class...24
Creating an IlvCADRGFrameReader object...25
The IlvCADRGLayer class..26
Example of using the CADRG reader to read frames and create layers...27

The IlvRasterCADRGReader class..29
Using the IlvRasterCADRGReader class to create images...30

The DAFIF reader...33

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Overview...34
The IlvDAFIFReader class...35
Using the IlvDAFIFReader class to create vector data...36
The IlvDAFIFDataSource class..37
Using the IlvDAFIFDataSource class to create vector data..38

The VMAP Reader..39
Overview...40
The IlvVMAPReader class...41
Using the IlvVMAPReader class to create images...42
The IlvVMAPDataSource class..44
Using the IlvVMAPDataSource class to create vector data..45

The S57 Reader...47
Overview...48
The IlvS57Reader class...49
Using the IlvS57Reader class to create vector data...50
The IlvS57DataSource class..51
Using the IlvS57DataSource Class to Create Vector Data...52

Creating defense data source objects..53
Vector data sources..55
Overview...56
Creating a data source from a VMAP database...57
Creating a data source from a DAFIF file...58
Creating a Data Source from an S57 File or Catalog...59

Raster data sources..60

Map Defense GUI interactors..61
Overview..63

Line of Sight interactor...65
Overview...66
Creating and installing the Line of Sight interactor...67
Using the Line of Sight interactor...68
Altitude Visibility Chart bean...69

Area of Sight interactor..71
Overview...72
Creating and Installing the Area of Sight interactor..73
Using the Area of Sight interactor..74

Gradient interactor..75
Overview...76
Creating and Installing the Gradient interactor...77
Using the Gradient interactor..78

Valleys and Elevated Areas interactor...79

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 64

Overview...80
Creating and installing the Valleys and Elevated Areas interactor..81
Using Valleys and Elevated Areas interactor..82

Terrain Cut interactor..83
Overview...84
Creating and installing the Terrain Cut interactor..85
Using the Terrain Cut interactor..86
Altitude Chart bean...87

3D View interactor...89
Overview...90
Creating and installing the 3D View interactor..91
Using the 3D View interactor..92
3D View bean...94

Fly Through interactor...95
Overview...96
Creating and installing the Fly Through interactor..97
Using the Fly Through interactor..98

Symbol Unclutterer interactor..99
Overview...100

Creating and installing the Symbol Unclutterer interactor..101

Customizing the Symbol Unclutterer interactor...102

Using the GUI beans..103
Overview..104

The Altitude Visibility Chart bean..105
Overview...106
Integrating the Altitude Visibility Chart bean into an Application..107

The Altitude Chart bean..109
Overview...110
Integrating the Altitude Chart bean into an application...111

The 3D View bean..113
Overview...114
Integrating the 3D View bean into an application...115
Displaying a part of the map in a 3D View..116

The Fly Through action...117
Overview...118
Integrating the Fly Through action into an application..119

Using Terrain Analysis...123
Lines of Sight and Altitude Visibility charts..124

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 5

Terrain Cut and Altitude charts..125

Gradient, Valley and Elevated Areas, and Area of Sight computations..............................127
Overview...128
Using Gradient, Valley and Elevated Areas, and Area of Sight computations..129

Building and displaying a 3D View of a map...131
Overview...132
Building the 3D terrain..133
Displaying the 3D scene...134
Adding Symbology to the 3D Model...137
Adding 3D components..139

Overview...140
Adding an Ilv3DSphere or Ilv3DHemisphere..141
Adding an Ilv3DCorridor..142
Adding an Ilv3DLabel..143
Adding an Ilv3DExtrudedPolygon...144

Extending the API...145
Adding new 3D components...146
Customizing OpenGL rendering by adding custom lighting for 3D components.............................148

Fly Through paths..149

Symbology..151
Creating and managing APP-6a symbols...153
APP-6a symbols...154
Symbol identification coding scheme...155
Symbol modifiers..162
SDM design and APP-6a symbols...165
Developing with APP-6a symbols...167

The IlvApp6aSymbol class..168
Symbol properties...169
Displaying a symbol..170
The IlvApp6aSymbologyTreeViewActions class...171

Managing groups of symbols automatically...173
Overview...174
Automatic expansion and collapse of symbol groups...175
Automatic displacement of groups and their children...177

Index..179

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 66

Readers and writers

Introduces the predefined readers supplied with JViews Maps for Defense.

In this section

Overview
Lists the subpackages for the predefined readers.

The ASRP reader
Describes the ASRP readers provided.

The USRP reader
Describes the USRP reader provided.

The CADRG reader
Describes the CADRG readers provided.

The DAFIF reader
Describes the DAFIF readers provided.

The VMAP Reader
Describes the VMAP readers provided.

The S57 Reader
Describes the S57 Reader provided.

© Copyright IBM Corp. 1987, 2009 7

Overview

This section introduces you to the predefined readers supplied with JViewsMaps for Defense:

These readers are defined in subpackages of the ilog.views.maps.format package.

For information about other Readers, see Introducing the main classes in Programming with
JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 68

The ASRP reader

Describes the ASRP readers provided.

In this section

Overview
Provides packaging and general information for the ASRP reader.

The IlvRasterASRPReader class
Describes the characteristics of the IlvRasterASRPReader class.

Using the IlvRasterASRPReader class to create images
Explains how to create the ASRP reader, the data source and read the data to create images.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 9

Overview

This package contains classes for reading ARC Standardized Raster Product (ASRP) files.
The ASRP format (see DIGEST ASRP and USRP) is a map format for scanned maps that is
published by the Digital Geographic Information Exchange Standard (DIGEST), see
http://www.digest.org/.

The ASRP readers provided by JViews Maps for Defense are based on the specification
document The Arc Standard Raster Product Specification: Edition 1.2, March 1995.

A set of ASRP files describes a single scanned map, transformed to the Equal Arc-Second
Raster Chart/Map (ARC) system frame of reference.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 610

http://www.digest.org/

The IlvRasterASRPReader class

The IlvRasterASRPReaderIlvRaster class reads ASRP images. It has the following
characteristics:

♦ It needs the ASRP .IMG, .GEN and .QUA files to be able to parse bitmap data.

♦ It implements the IlvMapFeatureIterator interface.

♦ It can manage more than one image.

♦ For each ASRP image added, the reader returns one IlvMapFeature object, which is the
geo-referenced image stored in the ASRP files. The map feature has:

● Geometry of type IlvMapImage.

● Attributes created from the .QUA file metadata.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 11

Using the IlvRasterASRPReader class to create images

Creating the reader
To create the IlvRasterASRPReaderIlvRaster :

♦ Provide the name of the .GEN file describing the ASRP image:

IlvRasterASRPReader imageReader = new IlvRasterASRPReader();
imageReader.addMap(fileName);

The reader removes the extension, that is, the characters after the last period (.) at the end
of the filename, and constructs the names of the .GEN, .IMG and .QAL files from that base
name. Note that a field inside the .GEN file can possibly override this default mechanism.

Creating a data source
To create a data source and link it with the manager properties:

♦ Define and insert the data source in the data source tree:

IlvMapDataSource imageDataSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager,imageReader,

true,true,null);
IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

dataSourceModel.insert(imageDataSource);

Reading the data
To start reading your data:

♦ Start the data source:

dataSourceModel.start();

Starting the data source creates the necessary tiled layers, tile managers, and IlvRasterIcon
instances to manage the pixel-on-demand feature and the progressive display of the
geo-referenced image.

For further information, see:

♦ Raster data sources, for defense-specific data sources.

♦ Introducing the main classes and Creating a map application using the API for non
defense-specific data sources, properties, tiling, and pixel-on-demand.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 612

The USRP reader

Describes the USRP reader provided.

In this section

Overview
Provides packaging and general information for the USRP reader.

The IlvRasterUSRPReader class
Describes the characteristics of the IlvRasterUSRPReader class.

Using the IlvRasterUSRPReader class to create images
Explains how to create the USRP reader, the data source and read the data to create images.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 13

Overview

This package contains classes for reading UTM/UPS Standardized Raster Product (USRP)
files. The USRP format (see DIGEST ASRP and USRP) is a map format for scanned maps
that is published by the Digital Geographic Information Exchange Standard (DIGEST), see
http://www.digest.org/.

The USRP readers provided by JViewsMaps for Defense are based on specification document
The UTM/UPS Standard Raster Product Specification: Edition 1.3, August 1997. A set of
USRP files contains a single scanned map transformed to either a Universal Polar
Stereographic (for polar regions) or a Universal Transverse Mercator (for the rest of the
world) frame of reference.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 614

http://www.digest.org/

The IlvRasterUSRPReader class

The IlvRasterUSRPReader class reads USRP images. It has the following characteristics:

♦ It needs the USRP .IMG, .GEN and .QUA files to be able to parse bitmap data.

♦ It implements the IlvMapFeatureIteratorinterface.

♦ It can manage more than one image.

♦ For each USRP image added, the reader returns one IlvMapFeature object, which is the
geo-referenced image stored in the USRP files. The map feature has:

● Geometry of type IlvMapImage.

● Attributes created from the .QUA file metadata.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 15

Using the IlvRasterUSRPReader class to create images

To create the IlvRasterUSRPReader:

♦ Provide the name of the .GEN file describing the USRP image:

IlvRasterUSRPReader imageReader = new IlvRasterUSRPReader();
imageReader.addMap(fileName);

The reader removes the extension, that is, the characters after the last period (.) at the end
of the filename, and constructs the names of the .GEN, .IMG and .QAL files from that base
name. Note that a field inside the .GEN file can possibly override this default mechanism.

To create a data source and link it with the manager properties:

♦ Define and insert the data source in the data source tree:

IlvMapDataSource imageDataSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager,imageReader,

true,true,null);
IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

dataSourceModel.insert(imageDataSource);

To start reading the data:

♦ Start the data source:

dataSourceModel.start();

Starting the data source creates the necessary tiled layers, tile managers, and IlvRasterIcon
instances to manage the pixel-on-demand feature and the progressive display of the
geo-referenced image.

For further information, see:

♦ Raster data sources, for defense-specific data sources.

♦ Introducing the main classes and Creating a map application using the API for non
defense-specific data sources, properties, tiling, and pixel-on-demand.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 616

The CADRG reader

Describes the CADRG readers provided.

In this section

Overview
Provides general information and illustrates the class relationship for a CADRG Reader.

Classes for reading the CADRG format
Describes classes for reading the CADRG format.

The IlvRasterCADRGReader class
Describes the IlvRasterCADRGReader class.

Using the IlvRasterCADRGReader class to create images
Explains how to create the CADRG Raster reader, the data source and read the data to
create images.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 17

Overview

The following figure shows the class relationship for a CADRG Reader.

CADRG reader UML diagram

This package contains classes for reading Compressed ARC Digitized Raster Graphics
(CADRG) files. The CADRG format is a map format for scanned maps published by the US
National Imagery and Mapping Agency (NIMA). The CADRG readers provided by JViews
Maps for Defense are based on specification document MIL-C-89038 October 6th, 1994.
Note that CADRG data is available on the maps data DVD supplied with the installers for
JViews Maps for Defense.

To automatically read a CADRG coverage using the IBM® ILOG® JViews load-on-demand
mechanism, you can use an IlvCADRGLayer. A CADRG database covers an area with scanned
maps of various scales. It is composed of:

♦ A main directory (generally called the rpf directory) that contains a table of contents
file, called A.TOC that can be read using an IlvCADRGTocReader.

♦ One or more subdirectories, each corresponding to a specific coverage. These
subdirectories contain the CADRG frames that make up the coverage. A complete CADRG
frame is made up of 36 subframes, 6 by 6. Generally CADRG coverages are in the
geographic projection except for the poles, for which the azimuthal equidistant projection
is more appropriate. These subdirectories contain the CADRG frames that make up the
coverage and can be read using an IlvCADRGFrameReader.

♦ Other general information, such as overviews of the area represented in the coverage,
and one or more legend files.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 618

The CADRG structure is particularly suited to load-on-demand and allows you to select the
coverage that is best adapted to a given display scale.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 19

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 620

Classes for reading the CADRG format

Describes classes for reading the CADRG format.

In this section

Overview
Introduces the classes in the ilog.views.maps.format.cadrg package.

The IlvCADRGTocReader class and the CADRG model
Describes the IlvCADRGTocReader class.

The IlvCADRGFrameReader class
Describes the characteristics of the IlvCADRGFrameReader class

Creating an IlvCADRGFrameReader object
Explains how to create an IlvCADRGFrameReader object.

The IlvCADRGLayer class
Describes the IlvCADRGLayer class.

Example of using the CADRG reader to read frames and create layers
Provides an example which demonstrates how to use the classes.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 21

Overview

The ilog.views.maps.format.cadrg package includes the following classes:

♦ IlvCADRGTocReader for reading the table of contents of a CADRG volume.

♦ IlvCADRGFrameReader for reading a CADRG frame.

♦ IlvCADRGLayer for implementing load-on-demand for the CADRG format.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 622

The IlvCADRGTocReader class and the CADRG model

The IlvCADRGTocReader class allows you to read a table of contents file (the A.TOC file). It
gives access to the elements of the CADRG volume according to the following object model:

♦ The CADRG coverages are represented by instances of the class IlvCADRGCoverage.

♦ The CADRG frames are represented by instances of the class IlvCADRGFrame class.

The following example reads the table of contents of a CADRG volume:

IlvCADRGTocReader tocReader = new IlvCADRGTocReader(fileName);
Enumeration frames = tocReader.getOverviewFrames();
while (frames.hasMoreElements()) {
IlvCADRGFrame frame = (IlvCADRGFrame) frames.nextElement();
IlvMapFeatureIterator iterator = frame.makeReader(false);
mapLoader.load(iterator);

}

In this example, mapLoader is an instance of the IlvMapLoader class. For details about the
map loader, see Creating a map application using the API.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 23

The IlvCADRGFrameReader class

The IlvCADRGFrameReader class allows you to read a CADRG frame directly. It has the
following characteristics:

♦ It implements the IlvMapFeatureIterator interface.

♦ For each CADRG subframe added, it returns one IlvMapFeature object. The map feature
has:

● Geometry of type IlvMapImage.

● No attributes.

♦ The default renderer is an IlvDefaultImageRenderer object. Note that this renderer is
not able to reproject images.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 624

Creating an IlvCADRGFrameReader object

To create an IlvCADRGFrameReader object :

♦ Call the makeReader() method with the name of the frame to be read, see The
IlvCADRGTocReader class and the CADRG model.

or

Provide the name of the frame to be read to the class constructor.

or

Provide the URL to the frame to be read to the class constructor.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 25

The IlvCADRGLayer class

The IlvCADRGLayer class is included for compatibility with previous versions of JViews
Maps. It is recommended that you use the IlvRasterCADRGReader and the free tile
mechanism to take advantage of image reprojection and pixel-on-demand features.

Note:

The class implements load-on-demand for a CADRG coverage. It is created from an instance
of the IlvCADRGCoverage class. The size of a tile corresponds to the size of a CADRG frame.
This implementation of a tiled layer works exclusively with the geographic projection for
the nonpolar zones of CADRG.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 626

Example of using the CADRG reader to read frames and create layers

This example is given for compatibility reason for versions of JViews Maps. It is
recommended that you use the IlvRasterCADRGReader and the free tile mechanism
to take advantage of image reprojection and pixel-on-demand features.

Note:

The code that follows demonstrates how to use the classes described in Classes for reading
the CADRG format.

The complete source code for this example is in the following file:

<installdir> /jviews-maps86/codefragments/readers/src/CADRGReader.java.

/**
* Examples of how to use the CADRG reader package.
*/
public class CADRGReader {
IlvManager manager = new IlvManager();

/**
* Reads a single CADRG frame.
*/
public void readSingleFrame(String frameFileName)
throws IlvMapFormatException,

IOException,
IlvMapRenderException,
IlvCoordinateTransformationException {

//Instantiate a reader.
IlvCADRGFrameReader freader = new IlvCADRGFrameReader(frameFileName,
false);

// Retrieve the default renderer.
IlvFeatureRenderer renderer = freader.getDefaultFeatureRenderer();
((IlvDefaultImageRenderer)renderer).getImageRenderingStyle().
setHighQualityRendering(true);

// Create a dummy transformation. CADRG files cannot be reprojected.
IlvCoordinateTransformation tr =

IlvCoordinateTransformation.CreateTransformation(null, null);
// Retrieve the first map feature.
IlvMapFeature feature = freader.getNextFeature();
while (feature != null) {
// Create corresponding graphic object.
IlvGraphic graphic = renderer.makeGraphic(feature, tr);
// Adds it to a manager.
manager.addObject(graphic, false);
// Loop on features.
feature = freader.getNextFeature();

}
}

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 27

/**
* Create an IlvCADRGLayer for each coverage.
* Each layer being a load-on-demand layer.
*/
public void readFromToc(String aDotToc)
throws FileNotFoundException,

IlvMapFormatException,
IOException {

// Create table of content reader.
IlvCADRGTocReader tocReader = new IlvCADRGTocReader(aDotToc);
// Retrieve coverages.
IlvCADRGCoverage coverages[] = tocReader.getCoverages();
// Create a layer for each coverage, add it to the manager.
for(int i = 0; i < coverages.length; i++) {
IlvCADRGLayer layer = new IlvCADRGLayer(coverages[i]);
manager.addLayer(layer, -1);

}
}

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 628

The IlvRasterCADRGReader class

The IlvRasterCADRGReader class creates images for a set of CADRG coverages.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 29

Using the IlvRasterCADRGReader class to create images

Creating the reader
To create the CADRG Raster reader:

♦ Use the IlvRasterCADRGReader class:

IlvRasterCADRGReader imageReader = new IlvRasterCADRGReader();

Working with coverages
To use the CADRGCoverage class:

1. Read the CADRG table of contents:

IlvCADRGTocReader tocReader = new IlvCADRGTocReader(tocFileName);

2. Retrieve the CADRG coverages you require:

IlvCADRGCoverage coverages[]= tocReader.getCoverages();

To provide better control over the displayed data, you can use more than one
IlvRasterCADRGReader and arrange coverages in different layers.

Organizing layers
To organize layers so that they contain coverages of the same resolution:

1. Use the IlvCADRGCoverageList:

IlvCADRGCoverageList list = new IlvCADRGCoverageList();
list.addCoverages(tocFileName, tocReader.getCoverages());
Integer scales[] = list.getOrderedScaleList();
String scaleDesc[] = list.getOrderedScaleDescription();
IlvCADRGCoverage coverages[] = list.getCoverageList(scales[i]);

2. Retrieve all the coverages of the same resolution and add the coverages you want to
display to the raster reader. For example:

for(int iCov=0;iCov<coverages.length;iCov++) {
imageReader.addCADRGCoverage(coverages[iCov]);

}

Creating a data source
To create a data sourceand link it with the manager properties:

♦ Define and insert the data source into the data source tree:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 630

IlvMapDataSource imageDataSource =
IlvRasterDataSourceFactory.buildTiledImageDataSource(manager,imageReader,

true,true,null);
IlvMapDataSourceModel dataSourceModel =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

dataSourceModel.insert(imageDataSource);

Reading the data
To start reading your data:

♦ Start your data source:

dataSourceModel.start();

Starting the data source creates the necessary tiled layers, tile managers and IlvRasterIcon
instances to manage pixel-on-demand and progressive display of the geo-referenced image.

For further information, see: Raster data sources

♦ Raster data sources, for defense-specific data sources.

♦ Introducing the main classes and Creating a map application using the API for non
defense-specific data sources, properties, tiling, and pixel-on-demand.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 31

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 632

The DAFIF reader

Describes the DAFIF readers provided.

In this section

Overview
Indicates the packaging and reference information for the DAFIF reader.

The IlvDAFIFReader class
Describes the IlvDAFIFReader class.

Using the IlvDAFIFReader class to create vector data
Explains how to create an IlvDAFIFReader instance, define features to be read and create
a default renderer.

The IlvDAFIFDataSource class
Describes the IlvDAFIFDataSource class.

Using the IlvDAFIFDataSource class to create vector data
Explains how to create a data source, connect it to the view manager and read the data.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 33

Overview

This package contains classes for reading Digital Aeronautical Flight Information Files (see
DAFIF file). The format is a numerical map format for aeronautical maps that is published
by the National Geospatial Intelligence Agency. The DAFIF readers provided in this package
are based on DAFIF specification Edition 8.

Basically, a DAFIF catalog covers the whole world with aeronautical data. It is composed
of a main directory (DAFIFT). This main directory is divided into subdirectories, each
corresponding to a specific table set (ARPT, HLPT,IR,TZ,...). These subdirectories contain
the table description TXT files that make up the table set.

To find more information, you need to access the NGA NIPRNET/Extranet. To access the
NGA NIPRNET/Extranet, you need additional access privileges granted by NGA. Register
for access by going to https://www.extranet.nga.mil.

There are two ways of reading DAFIF data:

♦ Using an IlvDAFIFReader instance directly. In this case, you must write all the code
required to render the DAFIF map features into graphic objects, and then add them to
the manager.

♦ Using an IlvDAFIFDataSource. This is a convenient way of performing all the above
operations at once and is more integrated with the data model of the map.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 634

https://www.extranet.nga.mil

The IlvDAFIFReader class

This class reads DAFIF features from a specified DAFIF file or catalog. It implements the
IlvMapFeatureIterator interface to iterate over the read features.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 35

Using the IlvDAFIFReader class to create vector data

To read DAFIF features using the IlvDAFIFReader object:

1. Create an IlvDAFIFReader instance from the path of the DAFIF catalog:

String dafifpath = "C:/maps/dafif_0606_ed8/DAFIFT";
IlvDAFIFReader reader = new IlvDAFIFReader(dafifpath);

2. You can also limit what is read to features specified by particular tables (for further
information about DAFIF tables, refer to the DAFIFT format specification). For example,
to read only an ARPT table you can use:

reader.setFeatureClassFilter(new IlvFeatureClassInformation
(IlvDAFIFDataSource.CODE_PROPERTY_NAME,"ARF/ARF_PAR"));

3. Create a default renderer:

IlvFeatureRenderer renderer = new IlvDefaultFeatureRenderer();

4. Iterate over the features, render them with an appropriate IlvFeatureRenderer, and
assign them to a manager:

IlvMapFeature feature = reader.getNextFeature();
while(feature != null) {
// Render map feature into graphic object.
IlvGraphic graphic = renderer.makeGraphic(feature,null);
// Add this object to the first layer of the manager.
manager.addObject(graphic, 0, false);
feature = reader.getNextFeature();

}

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 636

The IlvDAFIFDataSource class

The IlvDAFIFDataSource class provides a convenient way of creating a set of layers
containing DAFIF data in a manager. You can also filter the geographic objects to be created
as DAFIF datasets can be large.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 37

Using the IlvDAFIFDataSource class to create vector data

To read DAFIF features using the IlvDAFIFDataSource: object:

1. Create an IlvDAFIFDataSource:

String dafifpath = " C:/maps/dafif_0606_ed8/DAFIFT";
IlvDAFIFDataSource source = new IlvDAFIFDataSource(dafifpath);

2. Connect this data source to the manager of the view:

source.setManager(getView().getManager());

3. Select the map features you want to read by specifying the DAFIF tables for those
features (for further information about object codes, refer to the DAFIFT format
specification). For example, to read only roads you can use:

source.setAcceptedCodeList(new String[] { "ARPT/ARPT" });

4. Start the DAFIF data source:

source.start();

For further information, see:

♦ Vector data sources, for defense-specific data sources.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 638

The VMAP Reader

Describes the VMAP readers provided.

In this section

Overview
Provides general information on the VMAP reader.

The IlvVMAPReader class
Describes the IlvVMAPReader class.

Using the IlvVMAPReader class to create images
Explains how to create a VMAP reader, limit the features to be read and create a default
renderer.

The IlvVMAPDataSource class
Describes the IlvVMAPDataSource class.

Using the IlvVMAPDataSource class to create vector data
Explains how to create a VMAP data source, limit the features to be read and read the data.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 39

Overview

VMAP (see VMAP format) is a comprehensive vector basemap of the world. It consists of
cartographic, attribute, and textual data, usually stored on CD-ROM in a specified file and
folder structure. The data is tiled and spatially indexed for rapid access. The precision levels
for VMAP data for JViewsMaps for Defense are: level 0 (1:1,000,000 scale), level 1 (1:250,000
scale), and level 2 (1:100,000 and 1:50,000 scale). VMAP data is in geographic projection
and coordinates are expressed in degrees.

There are two ways of reading VMAP data:

♦ Use an IlvVMAPReader instance directly. In this case, you must write all of the code
required to render the VMAP map features into graphic objects, and to add them to the
manager.

♦ Use an IlvVMAPDataSource. This is a convenient way of performing all of the above
operations at once and is more integrated with the data model of the map.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 640

The IlvVMAPReader class

This class reads VMAP features from a specified VMAP database. It implements” the
IlvMapFeatureIterator interface to iterate over the read features.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 41

Using the IlvVMAPReader class to create images

To read VMAP features using the IlvVMAPReader object:

1. Create an IlvVMAPReader instance from the path of the VMAP database (the directory
containing DHT and LAT files, parent of the libraries):

String databasePath = "C:/VMAP/vmaplv0/";
IlvVMAPReader VMAPReader = new IlvVMAPReader(databasePath);

2. You must also specify the library to read. The libraries available in a database
correspond to the sub-directories of the database directory. Here we assume that the
database directory is vmaplv0 and that there is a subdirectory vmaplv0/eurnasia:

VMAPReader.setLibraryName("eurnasia"); // this is Europe and Northern
Asia
library

3. Optionally, you can specify the region of interest (in degrees). Only features of this
area are read:

VMAPReader.setRegionOfInterest(0,30,15,45);

4. You can also limit what is read to features specified by particular FACC codes (for
further information about FACC codes, refer to the VMAP format specification). For
instance, to read only roads, you can use:

VMAPReader.setFaccFilter(new String[]{"AP030"});

5. Finally, iterate over the features, render them with an appropriate
IlvFeatureRenderer, and assign them to a manager:

IlvMapFeature feature = VMAPReader.getNextFeature();
IlvManager manager = view.getManager();

// Create default renderer
IlvFeatureRenderer renderer = new IlvDefaultFeatureRenderer();

while(feature != null) {

// Render map feature into graphic object
IlvGraphic graphic = renderer.makeGraphic(feature,null);

// Add this object on the first layer of the manager
manager.addObject(graphic, 0, false);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 642

feature = VMAPReader.getNextFeature();
}

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 43

The IlvVMAPDataSource class

The IlvVMAPDataSource class provides a convenient way of creating a layer containing
VMAP data in a manager. You can also use the load-on-demandmechanism as VMAP datasets
can be quite big.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 644

Using the IlvVMAPDataSource class to create vector data

To read VMAP features using the IlvVMAPDataSource: object:

1. Create an IlvVMAPDataSource. Note that the path of the VMAP library, not the path
of the database, must be passed to the constructor:

String libraryPath = ":/VMAP/vmaplv0/eurnasia";
IlvVMAPDataSource VMAPSource = new IlvVMAPDataSource(libraryPath);

// connect this data source with the manager of the view
VMAPSource.setManager(getView().getManager());

2. Select the map features you want to read by specifying the FACC codes for those
features (for further information about FACC codes, refer to the VMAP format
specification). For instance, to read only roads, you can use:

VMAPSource.setFaccCodeList(new String[]{"AP030"});

3. Specify the area of interest (in degrees). Only features in this area are read:

VMAPSource.setAreaOfinterest(Math.toRadians(0),Math.toRadians(30),
Math.toRadians(15),Math.toRadians(45));

4. Choose whether to use load-on-demand. This is useful when you specify a large area
of interest but want to display only a small part of it:

boolean useTiling = true;
int rowCount = 5;
int columnCount = 5;
VMAPSource.setTilingParameters(useTiling, rowCount, columnCount);

5. Finally, start the VMAP data source:

VMAPSource.start();

For further information, see:

♦ Vector data sources, for defense-specific data sources.

♦ Introducing the main classes and Creating a map application using the API for non
defense-specific data sources, properties, tiling, and pixel-on-demand.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 45

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 646

The S57 Reader

Describes the S57 Reader provided.

In this section

Overview
Introduces the S57 standard.

The IlvS57Reader class
Describes the IlvS57Reader class.

Using the IlvS57Reader class to create vector data
Explains how to create an S57 reader, limit the features to be read and create a default
renderer.

The IlvS57DataSource class
Describes the IlvS57DataSource class.

Using the IlvS57DataSource Class to Create Vector Data
Explains how to create an S57 data source, connect it to the manager, limit the features to
be read and read the data.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 47

Overview

This package contains classes for reading S57 files. The S57 standard is a numerical map
format for nautical maps, which is a standard published by the International Hydrographic
Organization (IHO). You can find more information at:

http://www.iho.shom.fr/

The S57 readers provided in this package are based on the IHO TRANSFER STANDARD
FOR DIGITAL HYDROGRAPHIC DATA Edition 3.1.

The S57 Reader module provides access to data in IHO S57 formatted file sets. The S57
Reader module produces S57 features in one or more related S57 data files. An S57 dataset
can be a directory, in which case all S57 files in the directory are selected, an S57 catalog
file, in which case all files referred to from the catalog are selected, or an individual S57
data file. An S57 catalog covers an area with nautical data. It is composed of a single directory
containing both a catalog file (.030 or .031) and cell files (.000). Usually cells contain data
for only a subzone of the global catalog zone.

S57 feature objects are translated into features. S57 geometry objects are automatically
collected and formed into geometries on the features. Geometry objects are not separately
accessible with the S57 reader.

When simplified rendering is activated, S52 symbols are rendered using a predefined icon
per object type, whatever the object attributes are. Polygon and polyline colors are likewise
predefined. When simplified rendering is deactivated, JViews Maps for Defense uses the
IHO ECDIS Presentation library (Edition 3.3, March 2004) definitions to create S52 symbols
according to attribute content.

The following limitations apply to the use of the ECDIS Presentation library:

♦ Conditional procedures defined in this document are not implemented, except for a partial
implementation of DEPARE02 DEPCNT03 LIGHTS05 and QUAPOS01.

♦ Complex line sets are not used.

♦ S52 Symbols are displayed based on the SIMPLIFIED look up table

♦ The styling of polygons and areas is limited to the polygon style supported, and is built
based on PLAIN_BOUNDARIES, LINES_SET or SIMPLIFIED look up tables.

♦ S52 symbols for lights are not rotated.

There are two ways of reading S57 data:

♦ Using an IlvS57Reader instance directly. In this case, you must write all the code required
to render the map features into graphic objects, and to add them to the manager.

♦ Using an IlvS57DataSource instance. This is a convenient way of performing all the
above operations at once and is more integrated with the map data model.

The source code for the Map Builder demonstration, which contains all the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 648

http://www.iho.shom.fr/

The IlvS57Reader class

The IlvS57Reader class reads S57 features from a specified S57 file or catalog. It implements
the IlvMapFeatureIterator interface to iterate over the read features.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 49

Using the IlvS57Reader class to create vector data

To read S57 features using the IlvS57Reader object:

1. Create an IlvS57Reader instance from the path of the S57 cell or catalog. Note that
if the file name ends with 000, it will point to a single S57 cell. If it ends with 030, it
will point to a S57 catalog that merges many S57 cells:

String s57path = "C:/S57/sxx.000";
IlvS57Reader S57Reader = new IlvS57Reader(s57path);

2. You can also limit what is read to features specified by particular object codes (for
more information about S57 Object codes, refer to the S57 format specification). For
example, to read only roads you can use:

S57Reader.setFeatureClassFilter
(new IlvFeatureClassInformation("Roads","116"));

3. Create a default renderer:

IlvFeatureRenderer renderer = new IlvDefaultFeatureRenderer();

4. Iterate over the features, render them with an appropriate IlvFeatureRenderer, and
assign them to a manager:

IlvMapFeature feature = S57Reader.getNextFeature();
while(feature != null) {
// Render map feature into graphic object
IlvGraphic graphic = renderer.makeGraphic(feature,null);
// Add this object on the first layer of the manager
manager.addObject(graphic, 0, false);
feature = S57Reader.getNextFeature();

}

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 650

The IlvS57DataSource class

The IlvS57DataSource class provides a convenient way of creating a layer containing S57
data in a manager. You can also filter the geographic objects to create, as S57 datasets can
be quite large.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 51

Using the IlvS57DataSource Class to Create Vector Data

To read S57 features using the IlvS57DataSource object:

1. Create an IlvS57DataSource. Note that if the file name ends with 000, it will point to
a single S57 cell. If it ends with 030, it will point to a S57 catalog that merges many
S57 cells:

String s57path = "C:/S57/sxx.000";
IlvS57DataSource S57Source = new IlvS57DataSource(s57path);

2. Connect this data source with the manager of the view:

S57Source.setManager(getView().getManager());

3. Select the map features you want to read by specifying the S57 object codes for those
features (for further information about object codes, refer to the S57 format
specification). For example, to read only roads you can use:

S57Source.setAcceptedCodeList(new String[]{"116"});

4. Select the way you want to render S52 symbology. For example:

S57Source.setSimplifiedRendering(false);
S57Source.setColorSet("DUSK");

5. Start the S57 data source:

S57Source.start(); S57Source.start();

For further information about defense-specific data sources, see:

♦ Vector data sources, for defense-specific data sources.

♦ Introducing the main classes and Creating a map application using the API for non
defense-specific data.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 652

Creating defense data source objects

Describes how to create defense specific data source objects for vector and raster data
sources.

In this section

Vector data sources
Describes the vector data sources provided.

Raster data sources
Describes the defense-specific raster image formats and data source objects.

Related sections

Creating a map application using the API

© Copyright IBM Corp. 1987, 2009 53

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 654

Vector data sources

Describes the vector data sources provided.

In this section

Overview
Lists defense-specific vector image formats.

Creating a data source from a VMAP database
Explains how to implement the various options available when you create data source objects
for a VMAP database.

Creating a data source from a DAFIF file
Explains how to create a DAFIF data source and select the features to be imported.

Creating a Data Source from an S57 File or Catalog
Explains how to create an S57 data source and select the features to be imported.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 55

Overview

The defense-specific vector image formats used in JViews Maps for Defense are DAFIF file
format, VMAP format and S57 standard format. The Map Builder demonstration, which
contains all of the code described in this section, can be found at <installdir> /
jviews-maps86/samples/mapbuilder/index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 656

Creating a data source from a VMAP database

To use tiling:

♦ Load data with tiling:

IlvVMAPDataSource source = new IlvVMAPDataSource(fileName);
source.setManager(getView().getManager());

VMAPs can be loaded with or without a tiling mechanism. When using tiling, data is loaded
in a background thread:

To select features to Import using FACC codes:

♦ VMAP data contains many different features. Select the features to import into your
map by choosing the appropriate FACC code:

source.setFaccCodeList stringTable;

To select the area of interest:

♦ You can restrict the area you want to import (typical VMAP Data level 0 spans a
continent) by choosing latitude and longitude bounds. For example, JViews Maps for
Defense provides a bean to let end users select their own areas:

// Building GUI.
cPanel = IlvCoordinatePanelFactory.

createCoordRectangleInputPanel(view,prefs.getCoordinateFormatter());
...
// When user presses OK.
source.setAreaOfinterest(cPanel.getLonMin(),cPanel.getLatMin(),

cPanel.getLonMax(),cPanel.getLatMax());

To use load-on-demand

♦ You can use a load-on-demand tiling mechanism with VMAP data by setting the data
source tiling parameters, for example:

source.setTilingParameters(true,numRows,numColumns);

For further information about data sources, see Creating data source objects.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 57

Creating a data source from a DAFIF file

To create a DAFIF data source:

1. Create data source objects for a DAFIF file:

IlvDAFIFDataSource source = new IlvDAFIFDataSource
("C:/maps/dafif_0606_ed8/DAFIFT");

source.setManager(getView().getManager());

2. DAFIF data contains many different features. Select the features you want to import
into your map by choosing the feature codes:

source.setAcceptedCodeList(new String[] { "ARPT/ARPT" });

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 658

Creating a Data Source from an S57 File or Catalog

1. To create data source objects for an S57 file or catalog:

IlvS57DataSource source = new IlvS57DataSource (fileName);
source.setManager(getView().getManager());

2. S57 data contains many different features. Select the features you want to import into
your map by choosing the feature codes:

source.setCodelist(codes);

For further information about data sources, see Creating data source objects

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 59

Raster data sources

The defense-specific raster image formats used in JViews Maps for Defense are:

♦ ASRP

♦ USRP (see DIGEST ASRP and USRP)

♦ CADRG (see CADRG format)

To create raster data source objects for these formats, follow the procedure in Creating a
map application using the API , noting that the raster reader class table for the ASRP, USRP,
and CADRG image formats is as follows:

ASRP
IlvRasterASRPReader
USRP
IlvRasterUSRPReader
CADRG
IlvRasterCADRGReader

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

For further information about data sources, see Creating data source objects.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 660

Map Defense GUI interactors

Describes the defense specific user interactions that you can add to your application.

In this section

Overview
Describes defense components.

Line of Sight interactor
Describes the Line of Sight interactor.

Area of Sight interactor
Describes the Area of Sight interactor.

Gradient interactor
Describes the Gradient interactor.

Valleys and Elevated Areas interactor
Describes the Valleys and Elevated Areas interactor.

Terrain Cut interactor
Describes the Terrain Cut interactor.

3D View interactor
Describes the 3D View interactor.

Fly Through interactor
Describes the Fly Through interactor.

© Copyright IBM Corp. 1987, 2009 61

Symbol Unclutterer interactor
Describes the Symbol Unclutterer interactor

Creating and installing the Symbol Unclutterer interactor
Provides code for creating the Symbol Unclutterer interactor.

Customizing the Symbol Unclutterer interactor
Provides code for customizing the Symbol Unclutterer interactor.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 662

Overview

JViews Maps for Defense provides several defense specific interactions that you can add to
your application. These interactors allow you to display the terrain along a given line of
sight, determine the slope or condition of the terrain at a given point, as well as the visible
and hidden parts of the terrain from an observation point. In addition, you can create terrain
cuts, 3D views, and simulate approaches on selected targets.

For information about other Interactors, see Map GUI interactors.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 63

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 664

Line of Sight interactor

Describes the Line of Sight interactor.

In this section

Overview
Explains the use of the IlvMakeLineOfVisibilityInteractor class to display a color-coded
line of sight on a map.

Creating and installing the Line of Sight interactor
Provides code for creating the Line of Sight interactor and Altitude Visibility Chart.

Using the Line of Sight interactor
Describes the functioning of the Line of Sight interactor and the style parameters that can
be used.

Altitude Visibility Chart bean
Describes the Altitude Visibility Chart produced with the Line of Sight.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 65

Overview

The IlvMakeLineOfVisibilityInteractor allows the end user to display a color coded line
of sight on a map. The color coding indicates the visible and hidden parts of the terrain from
the observation point, that is, one end of the line. If specified, the interactor can also create
an Altitude Visibility Chart, which displays a tabbed pane containing a terrain cut along the
Line of Sight, see Altitude Visibility Chart bean.

The following figure shows an example of a Line of Sight.

Line of Sight

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 666

Creating and installing the Line of Sight interactor

To create the Line of Sight interactor and Altitude Visibility Chart use the following line of
code:

IlvMakeLineOfVisibilityInteractor interactor=new
IlvMakeLineOfVisibilityInteractor(tabbedpane);

The tabbedPane parameter can be null if you do not want the interactor to create a vertical
view of the terrain, see Altitude Visibility Chart bean.

You can then install this interactor as described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 67

Using the Line of Sight interactor

When the interactor is used, it creates an IlvGraphicLayerDataSource and inserts it into
the data source model of the manager. This data source manages a single graphic object,
an IlvLineOfVisibility.

At the same time, the interactor creates an IlvMapLayer to display this new graphic object
and adds it to the map layer tree under a Terrain Analysis group. The end user can use the
style of that layer, an IlvLineOfVisibilityStyle, to customize the appearance of that
particular Line of Sight in the map layer tree. This is done by changing the following Line
of Sight parameters:

♦ The Point of View Height attribute. The height, in meters, of the virtual observer above
ground.

♦ The Hidden Zone Color attribute. The color of those parts of the terrain not visible to
the virtual observer on the Line of Sight and Altitude Visibility Chart.

♦ The Visible Zone Color attribute. The color of parts of the terrain visible on the Line
of Sight and Altitude Visibility Chart.

♦ The Precision attribute. The visibility algorithm samples the map altitude data according
to the value of the precision attribute, for example, every 100 meters. It then constructs
the visible and invisible parts from this table of altitudes, taking into account the curvature
of the earth (by default).

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 668

Altitude Visibility Chart bean

If specified, the interactor also creates an IlvAltitudeVisibilityChart in a tabbed pane
as soon as the line of visibility is added on the map, see Creating and installing the Line of
Sight interactor. This chart displays a terrain cut along the line, identifying the observation
point and showing the parts of the terrain visible or hidden to the virtual observer.

If the end user changes the Line of Sight, either by using the select tool and moving the line
extremities, or by modifying the style parameters, JViews Maps for Defense updates the
Altitude Visibility Chart.

For further information about this bean, see The Altitude Visibility Chart bean.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 69

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 670

Area of Sight interactor

Describes the Area of Sight interactor.

In this section

Overview
Explains the use of the IlvMakeAreaOfSightInteractor class to display the area visible
from a point on the map.

Creating and Installing the Area of Sight interactor
Provides code for creating the Area of Sight interactor.

Using the Area of Sight interactor
Describes the functioning of the Area of Sight interactor and the style parameters that can
be used.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 71

Overview

The IlvMakeAreaOfSightInteractor allows the end user to display in a manager view the
area visible from a point on the map indicated by the mouse pointer. When the end user
moves the mouse, the interactor computes and displays an approximation of the Area of
Sight in accordance with the mouse movements. When the end user presses the mouse
button, a more detailed area of sight is displayed centered on the point at which the mouse
was clicked.

The following figure shows an example of the approximation and detailed views of the Area
of Sight.

Area of Sight approximate and detailed views

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 672

Creating and Installing the Area of Sight interactor

To create this interactor, use the following line of code:

IlvMakeAreaOfSightInteractor interactor=new IlvMakeAreaOfSightInteractor();

You can then install this interactor as described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 73

Using the Area of Sight interactor

When the interactor is used, it creates an IlvTiledRasterDataSource. This data source is
based on an IlvComputedRasterReader that uses a single image computed from altitude
information and held in memory.

At the same time, the interactor creates an IlvMapLayer to display this new graphic object
and adds it to the map layer tree under a Terrain Analysis group. The end user can use the
style of that layer, an IlvLineOfSightRasterStyle, to customize the appearance of that
particular area of sight in the map layer tree. This is done by changing the following
parameters:

♦ The Bounds attribute. The area of interest for which the line of sight computations are
made.

♦ The Point of View Latitude attribute. The latitude of the virtual observer.

♦ The Point of View Longitude attribute. The longitude of the virtual observer.

♦ The Point of View Height attribute. The height, in meters, of the virtual observer above
ground.

♦ The Color Model attribute. Describes the color of the visible and hidden areas within the
area of sight bounds, and also a specific color identifying the position of the observer.

♦ The Precision attribute. The visibility algorithm samples the map altitude data according
to the value of the precision attribute, for example, every 100 meters. It then constructs
the visible and invisible parts from this table of altitudes, taking into account the curvature
of the earth (by default).

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 674

Gradient interactor

Describes the Gradient interactor.

In this section

Overview
Explains the use of the IlvMakeGradientInteractor class to display color-coded gradients
within a selected rectangle of terrain.

Creating and Installing the Gradient interactor
Provides code for creating the Gradient interactor.

Using the Gradient interactor
Describes the functioning of the Gradient interactor and the style parameters that can be
used.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 75

Overview

The IlvMakeGradientInteractor allows the end user to display in a manager view color
coded gradients within a selected rectangle of terrain.

To use this interactor, the end user selects the area for which gradients are to be computed
and defines the initial style and parameters to use for the computation. A new area, colored
according to the gradient, is then added to the map.

The following figure shows an example of a gradient computation

Gradient computation

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 676

Creating and Installing the Gradient interactor

To create this interactor, use the following line of code:

IlvMakeGradientInteractor interactor=new IlvMakeGradientInteractor();

You can then install this interactor as described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 77

Using the Gradient interactor

When the interactor is used, it creates an IlvTiledRasterDataSource. This data source is
based on an IlvComputedRasterReader that computes a single image from the altitude data.
The computation of gradient values is made through the implementation of
IlvImageComputation by the interactor.

At the same time, the interactor creates an IlvMapLayer to display this new graphic object
and adds it to the map layer tree under a Terrain Analysis group. the end user can use the
style of that layer, an IlvGradientRasterStyle, to customize the appearance of that
particular gradient area in the map layer tree. This is done by changing the following
parameters:

♦ The Bounds attribute. Describes the area of interest for which the gradient computations
are made.

♦ The Color Model attribute. Describes the color of different slope values within the area
gradient bounds.

♦ The Precision attribute. An algorithm samples the map altitude data according to the
value of the precision attribute, for example, every 100 meters. It then constructs the
gradients from this table of altitudes.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 678

Valleys and Elevated Areas interactor

Describes the Valleys and Elevated Areas interactor.

In this section

Overview
Explains the use of the IlvMakeValleyInteractor class to display color-coded valley and
elevated areas within a selected rectangle.

Creating and installing the Valleys and Elevated Areas interactor
Provides code for creating the Valleys and Elevated Areas interactor.

Using Valleys and Elevated Areas interactor
Describes the functioning of the Valleys and Elevated Areas interactor and the style
parameters that can be used.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 79

Overview

The IlvMakeValleyInteractor allows the end users to display color coded valley and
elevated areas within a rectangle selected in a manager view. This interactor displays the
peaks and valleys of the terrain, that is, the highest and lowest points.

To use this interactor, the end user selects the area for which valleys and elevated areas
are to be computed and defines the initial style and parameters to use for the computation
in a dialog box. A new area, colored according to the status (valley, elevated area or
undetermined) of each terrain point, is added to the map.

The following figure shows an example of a valley computation.

Valley computation

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 680

Creating and installing the Valleys and Elevated Areas interactor

To create this interactor, use the following line of code:

IlvMakeValleyInteractor interactor=new IlvMakeValleyInteractor();

You can then install this interactor as is described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 81

Using Valleys and Elevated Areas interactor

When the interactor is used, it creates an IlvTiledRasterDataSource. This data source is
based on an IlvComputedRasterReader that computes a single image from the altitude data.
The computation of status values is made through the implementation of
IlvImageComputation by the interactor.

At the same time, the interactor creates an IlvMapLayer to display this new graphic object
and adds it to the map layer tree under a Terrain Analysis group. the end user can use the
style of that layer, an IlvValleyRasterStyle, to customize the appearance of that particular
valley or elevated area zone in the map layer tree. This is done by changing the following
parameters:

♦ The Bounds attribute. Describes the area of interest for which the status computation is
made.

♦ The Color Model attribute. Describes the color of different status values within the area
bounds.

♦ The Altitude Tolerance attribute. Describes the maximum altitude difference used to
detect whether a point is outside a valley or elevated area.

♦ The Precision attribute. An algorithm samples the map altitude data, taking according
to the value of the precision attribute, for example, every 100 meters. It then constructs
the areas from this table of altitudes.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 682

Terrain Cut interactor

Describes the Terrain Cut interactor.

In this section

Overview
Explains the use of the IlvMakeTerrainCutInteractor class to draw a polyline representing
an irregular cut through a terrain.

Creating and installing the Terrain Cut interactor
Provides code for creating the Terrain Cut interactor.

Using the Terrain Cut interactor
Describes the functioning of the Terrain Cut interactor and the possible style customization.

Altitude Chart bean
Describes the Altitude Chart bean produced with the Terrain Cut interactor.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 83

Overview

The IlvMakeTerrainCutInteractor allows the end user to draw a polyline in a manager
view representing an irregular cut through the terrain. Each point on the polyline is shown
in the line of sight. This enables you to study more complex ways of approaching a given
target or to set up a particular defense strategy. If specified, the interactor can also create
an Altitude Chart, which displays a vertical view of the terrain altitudes along the polyline
in a tabbed pane, see Altitude Chart bean.

The following shows an example of a Terrain Cut.

Terrain Cut

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 684

Creating and installing the Terrain Cut interactor

To create the Terrain Cut interactor and Altitude Chart, use the following line of code:

IlvMakeTerrainCutInteractor interactor=new
IlvMakeTerrainCutInteractor(tabbedpane);

The tabbedPane parameter can be null if you do not want the interactor to create a vertical
view of the terrain, see Altitude Chart bean.

You can then install this interactor as described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 85

Using the Terrain Cut interactor

When the interactor is used, it creates an IlvGraphicLayerDataSource and inserts it into
the data source model of the manager. This data source manages a single graphic object,
an IlvTerrainCut. This object is a standard polyline that allows control of a bean (the
Altitude Chart) whenever its points are moved.

At the same time, the interactor creates an IlvPolylineStyle to display this new graphic
object and adds it to the map layer tree under a Terrain Analysis group. The end user can
use the style of that layer, an IlvPolylineStyle, to customize the appearance of that
particular polyline in the map layer tree. A listener is also added to the terrain cut, so that
the altitude chart is updated whenever the terrain cut points are moved.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 686

Altitude Chart bean

If specified, the interactor also creates an IlvAltitudeChart in a tabbed pane as soon as
the line of visibility is added on the map, see Creating and installing the Terrain Cut
interactor. This chart displays a terrain cut along the polyline, identifying the observation
point and showing the intermediary points of the polyline.

If the end user changes the Terrain Cut polyline, either by using the select tool and moving
the polyline points, or by modifying the style parameters, JViews Maps for Defense updates
the Altitude Chart.

For further information, see The Altitude Chart bean.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 87

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 688

3D View interactor

Describes the 3D View interactor.

In this section

Overview
Explains the use of the IlvMake3DViewInteractor class to display a 3D View of a selected
part of a map.

Creating and installing the 3D View interactor
Provides code for creating the 3D View interactor.

Using the 3D View interactor
Describes the functioning of the 3D View interactor, the style parameters that can be used
and the mouse and GUI interactors available in the 3D View.

3D View bean
Describes the 3D View bean.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 89

Overview

The IlvMake3DViewInteractor allows the end user to select part of the map in a manager
view using a selection rectangle, and display a 3D View of it to study the terrain of interest
from all angles and all points of view. The 3D View enables you to turn the image through
360 degrees and change the angle of view. You can also use an exaggeration factor to
increase or decrease the elevation data display. If specified, the interactor creates a 3D
View, which displays a relief of the terrain elevation in a tabbed pane, see 3D View bean.

The following figure shows an example of 3D View selection.

3D View selection

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps-defense86/samples/3dview/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 690

Creating and installing the 3D View interactor

To create the 3D View interactor and 3D View, use the following line of code:

IlvMake3DViewInteractor interactor=new IlvMake3DViewInteractor(tabbedpane);

For more information, see 3D View bean.

You can then install this interactor as described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 91

Using the 3D View interactor

When the interactor is used, it creates an Ilv3DViewBoundsDataSource and inserts it into
the data source model of the manager. This data source manages a single graphic object,
an IlvMapGraphicPath. that represents the bounds of the 3D View.

At the same time, the interactor creates an IlvMapLayer to display this new graphic object
and adds it to the map layer tree under a Terrain Analysis group. The end user can use the
style of that layer, an Ilv3DViewBoundsStyle, to customize the graphical attributes of the
rectangle and the bounds of that particular 3D View in the map layer tree. This is done by
changing the following parameters:

♦ The Bounds attribute: The coordinates of the area contained within the selection rectangle
that determine the size of the 3D View.

♦ The Line Color attribute: The color defined for the selection rectangle.

Mouse interactors
The following interactors are available on the 3D View using the mouse:

♦ Left click to grab and pan: Moves the 3D View around the panel.

♦ Right click to grab and rotate: Changes the angle and point of view.

♦ Mouse wheel: Turn the mouse wheel away from you or towards you to zoom in/out.

Graphical User Interface interactors
The following interactors are available in the 3D View using the Graphical User Interface
(GUI) buttons, sliders, shortcut menu, and the Terrain Style & Performance window:

♦ Frames per second (FPS): Provides a slider to set the position that corresponds to the
FPS you want to set. This sets the number of 3D View refresh operations per second. The
lower the value the less the graphics card has to work. If set too high, the graphics card
may be overwhelmed and then the CPU will try to help the card, raising the CPU usage
to perhaps 100%. If set correctly (depending on the graphics card capabilities), the CPU
should remain at around 0% because the graphics card should be able to manage alone.
If you want to leave most of the CPU capacity for other tasks, move this slider to the
extreme left.

♦ Wireframe: When active, this option shows the 3D View as a terrain mesh.

♦ Bilinear Filtering: When active (selected by default), this option smooths the texture
of the 3D image to hide the underlying mesh.

♦ Enable Lighting. When active, this option activates light computation on a 3D scene.
You can use this to smooth the shading using a gouraud algorithm to compute it (otherwise
flat shading is applied), set the orientation to change the horizontal direction of the light
(for example, 'N' means that light is directed towards the north, 'S' towards the south
and so on), and set the elevation to change the vertical direction of the light (you can set
the elevation between 0˚ (the light is horizontal) and 90˚ (the light is vertical, descending).

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 692

♦ Use 2D view as texture: Sets the mode to Use 2D view as texture (selected by default).
The 2D View presents a view from a satellite. When this option is inactive, the colors used
for the 3D View are generated from the altitude data. When active, all the layers of the
2D View with the map style Visible in 3D View set are draped on top of the terrain mesh.

♦ Texture Oversampling: Provides a slider to set the position that corresponds to the
Texture Oversampling you want to set. You can set the Texture Oversampling value to
between 1 and 16. By default Texture Oversampling = 1, which means that there is 1
pixel per 3D square. In this case, the 2D View is displayed using the same resolution as
the terrain data.

However, if you have elevation data with a precision of one elevation every 100 meters
and you would like to drop a satellite view onto it with a precision of 1 meter, that is, 100
times more precise than the elevation data you have, you can do so using Texture
Oversampling.

For example, when set to 2, the 3D square displays 2x2 pixels giving a texture 4 times
more precise, and when set to 8 the texture is 8x8=64 times more precise and so on.
Note however, that the greater the value, the slower the display, and the greater the
memory required.

♦ Height Exaggeration: Provides a slider to set the position that corresponds to the Height
Exaggeration factor you want to set. This value determines the degree to which the 3D
View is brought into relief. You can set the Height Exaggeration factor to between 1 and
30. By default 1km altitude equals 1km distance.

or

Click on the 3D View to activate it and press the A key to increase the Height Exaggeration
factor of the 3D image or the Z key to decrease it.

♦ Terrain Precision: Provides a slider to set the position that corresponds to the Terrain
Precision you want to set. You can choose between 3D View precision and CPU usage by
increasing or decreasing this option. When set to minimum, very few 3D points are used
to create the terrain mesh, so the terrain is less precise but the display is faster.

When set to maximum, more 3D squares are created, so the terrain is more precise, but
the display much slower. In this case, the sooner the zoom level is reached at which each
terrain data point has its own mesh rectangle. The more powerful the graphics card, the
higher the setting can be. This is the only option you can use to set the terrain precision.
The dynamic more/less detail behavior is hard coded and depends only on the zoom level.

♦ Change Symbol Style: Opens the 3D View Symbol Style window. You can edit the style
of any symbols you have created in the 3D View by setting their properties.

♦ Reset Camera: Resets the 3D View and the camera to their original state.

♦ Zoom/Pan/Rotate/Tilt: These operations are carried out by the set of buttons and sliders
on the right of the 3D View pane.

In JViews Maps for Defense, APP-6a symbols (2-dimensional) can be added to a 3D View and
managed. For more information, see Adding Symbology to the 3D Model.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 93

3D View bean

The interactor creates an Ilv3DView in a tabbed pane as soon as the bounds are drawn on
the map, see Creating and installing the 3D View interactor. This panel displays a 3D View
of the selected area of the map.

If the end user changes the 3D Views bounds, either by using the select tool, or by modifying
the style parameters, JViews Maps for Defense updates the 3D View.

For further information, see The 3D View bean.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 694

Fly Through interactor

Describes the Fly Through interactor.

In this section

Overview
Explains the use of the IlvMake3DFlyThroughInteractor class to display a trajectory in a
3D View and simulate an approach to a target.

Creating and installing the Fly Through interactor
Provides code for creating the Fly Through interactor.

Using the Fly Through interactor
Describes the functioning of the Fly Through interactor, the possible style customization
and the available GUI interactor.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 95

Overview

The IlvMake3DFlyThroughInteractor allows the end user to display a trajectory in a 3D
View and simulate an approach to a target for ground vehicles, foot soldiers, or for fighter
planes that fly close to the ground. With the Fly Through interactor, you have all the
functionality and operations of the 3D View available.

The following figure shows an example of a Fly Through .

Fly Through

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps-defense86/samples/3dview/
index.html

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 696

Creating and installing the Fly Through interactor

To create the Fly Through interactor and Fly Through menu, use the following line of code:

IlvMake3DFlyThroughInteractor interactor=new IlvMake3DFlyThroughInteractor();

You can then install this interactor as described in the Using the GUI beans section in
Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 97

Using the Fly Through interactor

When the interactor is used, it creates an IlvGraphicLayerDataSource and inserts it into
the data source model of the manager. This data source manages a single graphic object,
an IlvMapTerrainFlyThrough. This object is a standard polyline that allows control of a
bean (the Fly Through) whenever its points are moved.

At the same time, the interactor creates an IlvFlyThroughStyle to display this new graphic
object and adds it to the map layer tree under a Fly Through group. The end user can use
the style of that layer, an IlvFlyThroughStyle, to customize the appearance of that particular
polyline in the map layer tree. A listener is also added to the polyline, so that the Fly Through
action is updated whenever its points are moved.

Graphical User Interface Interactor
If one or more 3D Views are available, the Fly Through interactor also adds an action to
them on the toolbar and shortcut menu. This is in the form of a IlvFlyThroughAction, which
is carried out by a call to:

Ilv3DView.registerFlyThrough(flyThoughLayer,flyThroughAction);

The IlvFlyThroughAction bean enables the end user to start and stop the Fly Through.
When started, it registers a thread (through Ilv3DView.setCameraMovingThread) that
regularly changes the camera position and orientation.

If the end user changes the Fly Through trajectory using the select tool or by modifying the
style parameters, JViews Maps for Defense updates the trajectory and Action button to
reflect these changes.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 698

Symbol Unclutterer interactor

Describes the Symbol Unclutterer interactor

In this section

Overview
Explains the use of the IlvMagnifySymbolsInteractor class to move apart overlapping
symbols displayed on part of a view.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 99

Overview

The IlvMagnifySymbolsInteractor is an interactor designed to move apart overlapping
symbols displayed on a part of the view. This is done by clicking and holding down the mouse
button and dragging the mouse over the view. It acts as a magnifying rectangle that displaces
all the graphics related to the current SDM model displayed by the view. All the graphics
contained in the rectangle are displaced making them easier to see.

The following figure shows an example of symbol uncluttering.

Symbol Unclutterer

This interactor only has an effect on a view that contains an IlvGrapher managed by an
SDM engine.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6100

Creating and installing the Symbol Unclutterer interactor

You can create the interactor and set it as the current interactor on the view using, for
example:

IlvMagnifySymbolsInteractor magInteractor=new IlvMagnifySymbolsInteractor();
view.setInteractor(magInteractor);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 101

Customizing the Symbol Unclutterer interactor

When a symbol has to be displaced because it collides with another one, this interactor
draws a connecting line and a marker at the initial position. You can change the default
markers and lines using code such as:

IlvArrowLine lineTemplate = new IlvArrowLine();
lineTemplate.setForeground(Color.red);
lineTemplate.setLineWidth(2);
lineTemplate.setArrowPosition(1);

Or, to set up a specific marker:

IlvMarker markerTemplate = new IlvMarker();
markerTemplate.setType(IlvMarker.IlvMarkerFilledCircle);
markerTemplate.setForeground(Color.orange);
markerTemplate.setSize(2);
magInteractor.setTargetMarkerTemplate(markerTemplate);

The displacement of the symbols is done through an IlvAnnealingLabelLayout that you
can configure. For example, if you want all the symbols to be displaced, even when not
necessary, you can call:

magInteractor.getAnnealingLabelLayout().setLabelMovementPolicy(null);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6102

Using the GUI beans

Describes the use of User Interface beans

In this section

Overview
Describes the beans described in this section.

The Altitude Visibility Chart bean
Describes the Altitude Visibility Chart bean and how to use it.

The Altitude Chart bean
Describes the Altitude Chart bean and how to use it.

The 3D View bean
Describes the 3D bean and how to use it.

The Fly Through action
Describes the Fly Through action and how to use it.

© Copyright IBM Corp. 1987, 2009 103

Overview

This section describes the JViews Maps for Defense beans, which enable you to create Lines
of Sight, Terrain Cuts, 3D Views, and Fly Through paths. For information about other beans,
see Using the GUI beans in Programming with JViews Maps.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6104

The Altitude Visibility Chart bean

Describes the Altitude Visibility Chart bean and how to use it.

In this section

Overview
Describes the Altitude Visibility Chart bean.

Integrating the Altitude Visibility Chart bean into an Application
Explains how to integrate the Altitude Visibility chart bean into your application.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 105

Overview

The Altitude Visibility Chart bean is represented by the IlvAltitudeVisibilityChart class.
This bean is used by the Line of Sight interactor. The Line of Sight interactor is a graphic
object displayed in one of the layers of a view and represented by the IlvLineOfVisibility
class, see Line of Sight interactor.

To create the Altitude Visibility Chart, you can either use the Line of Sight interactor, see
Creating and Installing the Area of Sight interactor, or, for more precise control, write the
lines of code given in this section.

The following figure shows an example of an Altitude Visibility Chart.

Altitude Visibility Chart

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6106

Integrating the Altitude Visibility Chart bean into an Application

To integrate the Altitude Visibility Chart bean into your application, you must first create
the Line of Sight object in your program:

Setting the Line of Sight interactor parameters

♦ Set the points defining the Line of Sight polyline for which the altitudes will be
displayed:

IlvPoint[] points = new IlvPoint[] {
// Define your points as view coordinates here.

};

// Transform the points into manager coordinates.
// You can also define your points directly in
// manager coordinates.

for(int i = 0; i < points.length; i++)
view.getTransformer().inverse(points[i]);

// Create the line of visibility
IlvLineOfVisibility lineofvisibility = new

IlvLineOfVisibility(manager,100,1000,points[0],points[2]);

Creating a data source and map layer

♦ To manage the Line of Sight in standard JViews Maps beans, you also need to create
a data source and Map Layer, and link them with the manager properties.

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(manager);

IlvMapDataSourceModel dsm =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

IlvGraphicLayerDataSource dataSource=new IlvGraphicLayerDataSource();
dsm.insert(dataSource);
IlvMapLayer mapLayer = dataSource.getInsertionLayer();
mapLayer.setAllowingMoveObjects(true);
mapLayer.setStyle(new IlvLineOfVisibilityStyle());
ltm.addChild(null, mapLayer);

Adding the Line of Sight to the data source

♦ Add the Line of Sight object to the data source so that it can be managed by the data
source, for example, to change the representation when the coordinate system changes.

dataSource.add(lineofvisibility);

Creating an Altitude Visibility chart

♦ Create the Altitude Visibility chart from a Line of Sight:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 107

IlvAltitudeVisibilityChart avc = new
IlvAltitudeVisibilityChart(manager,lineofvisibility);

Recomputing the Altitude Visibility chart

♦ Recompute the chart when it has been resized:

avc.addComponentListener(new ComponentAdapter() {
public void componentResized(ComponentEvent e) {

avc.updateChart();
}

});

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6108

The Altitude Chart bean

Describes the Altitude Chart bean and how to use it.

In this section

Overview
Describes the Altitude Chart bean.

Integrating the Altitude Chart bean into an application
Explains how to integrate the Altitude Chart bean into your application.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 109

Overview

The Altitude Chart bean is represented by the IlvAltitudeChart class. This bean is used
by the Terrain Cut interactor. The Terrain Cut interactor is a graphic object displayed in
one of the layers of a view and represented by the IlvMakeTerrainCutInteractor class,
see Terrain Cut interactor.

To create the Altitude Chart, you can either use the Terrain Cut interactor, see Creating
and installing the Terrain Cut interactor, or, for more precise control, write the lines of code
given in this section.

The following figure shows a example of an Altitude Chart.

The Altitude Chart bean

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6110

Integrating the Altitude Chart bean into an application

When integrating the Altitude Chart bean into your application, you must first create the
Terrain Cut object in your program.

Setting the Terrain Cut interactor parameters

♦ Set the points defining the Terrain Cut polyline for which the altitudes will be displayed:

IlvPoint[] points = new IlvPoint[] {
// Define your points as view coordinates here.

};
// Transform the points into manager coordinates.
// You can also define your points directly in
// manager coordinates.

for(int i = 0; i < points.length; i++)
view.getTransformer().inverse(points[i]);

// Create the terrain cut object.
IlvTerrainCut tc = new IlvTerrainCut(points);

Creating a data source and Map layer

♦ To manage the Terrain Cut in standard JViews Maps beans, you also need to create a
data source and Map Layer, and link them with the manager properties.

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(manager);

IlvMapDataSourceModel dsm =
IlvMapDataSourceProperty.GetMapDataSourceModel(manager);

IlvGraphicLayerDataSource dataSource=new IlvGraphicLayerDataSource();
dsm.insert(dataSource);
IlvMapLayer mapLayer = dataSource.getInsertionLayer();
mapLayer.setAllowingMoveObjects(true);
mapLayer.setStyle(new IlvPolylineStyle());
ltm.addChild(parent, mapLayer);

Adding the Terrain Cut to the data source

♦ You can then add the Terrain Cut object to the data source so that it can be managed
by the data source, for example, to change the representation when the coordinate
system changes.

dataSource.add(tc);

Creating an Altitude Chart

♦ To create the Altitude Chart from a Terrain Cut:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 111

IlvAltitudeChart ac = new IlvAltitudeChart(manager,tc.getLatLongs());

You do not need a Fly Through graphic to create an altitude chart. If the end user does
not need feedback and control on the map view, only the table of latitudes and
longitudes are required.

Note:

Recomputing the Altitude Chart

♦ To recompute the chart when it has been resized:

ac.addComponentListener(new ComponentAdapter() {
public void componentResized(ComponentEvent e) {

ac.updateChart();
}

});

Updating the Altitude Chart

♦ To update the chart when a Terrain Cut changes:

tc.addChangeListener(new IlvMapControllingPolyline.ComputeListener() {
public void computationDone(IlvMapControllingPolyline tc) {

if (ac != null) {
ac.setPoints(tc.getLatLongs());

}
}

});

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6112

The 3D View bean

Describes the 3D bean and how to use it.

In this section

Overview
Describes the 3D bean.

Integrating the 3D View bean into an application
Explains how to integrate the 3D View bean into your application.

Displaying a part of the map in a 3D View
Explains how to specify which part of the map you want to display in 3D.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 113

Overview

The 3D bean is represented by the Ilv3DView class and displays a 3D representation of a
map. This bean is used by the 3D View interactor. The 3D View interactor is a graphic object
displayed in one of the layers of a view and represented by the IlvMake3DViewInteractor
class, see 3D View interactor.

To create the 3D View, you can either use the 3D View interactor, see Creating and installing
the 3D View interactor, or, for more precise control, write the lines of code given in this
section.

The following figure shows an example of a 3D View.

The 3D View bean

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps-defense86/samples/3dview/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6114

Integrating the 3D View bean into an application

To integrate the 3D View bean into your application, create the 3D View object in your
program:

♦ Create an Ilv3DModel from an IlvManager (your map container):

Ilv3DModel model3D = new Ilv3DModel(manager);
Ilv3DView view3D = new Ilv3DView(model3D);

Since the Ilv3DView extends javax.swing.JPanel, you can integrate it into any Swing
container of your application. For example, in a javax.swing.JFrame:

JFrame frame = new JFrame();
frame.setContentPane(view3D);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 115

Displaying a part of the map in a 3D View

To specify which part of the map you want to display in 3D:

1. Specify the region to be displayed in longitude and latitude and in radians.

model3D.buildTerrain(Math.toRadians(10), Math.toRadians(45),
Math.toRadians(11), Math.toRadians(46));

2. Make the frame visible:

frame.setVisible(true);

Note that you need to choose a region that contains actual elevation data to get a 3D terrain
representation (elevation data is provided by raster DEM formats such as DTED format or
GTOPO30).

For more information about how to display a 3D View of a map and add symbols to it, see
Building and displaying a 3D View of a map.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6116

The Fly Through action

Describes the Fly Through action and how to use it.

In this section

Overview
Describes the Fly Through action.

Integrating the Fly Through action into an application
Explains how to integrate a Fly Through action into your application.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 117

Overview

The Fly Through action is represented by the IlvFlyThroughAction class. This action is
usually created and updated by the Fly Through interactor. The Fly Through interactor also
creates a graphic object displayed in one of the layers of a view and is represented by the
IlvMake3DFlyThroughInteractor class, see Fly Through interactor.

To create the Fly Through Action, you can either use the Fly Through interactor, see Creating
and installing the Fly Through interactor, or, for more precise control, write the lines of
code given in this section.

The following figure shows an example of a Fly Through Action.

The Fly Through action

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps-defense86/samples/3dview/
index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6118

Integrating the Fly Through action into an application

When integrating a Fly Through into your application, if you need to show a graphical 2D
representation (Fly Through graphics), you first need to create a data source and a map
layer, and then link them with the manager properties.

Creating a data source and map layer
1. Retrieve the following global properties of the manager:

IlvMapDataSourceModel dsm =
IlvMapDataSourceProperty.GetMapDataSourceModel(view.getManager());

IlvMapLayerTreeModel ltm =
IlvMapLayerTreeProperty.GetMapLayerTreeModel(view.getManager());

2. Create a data source to store the Fly Through polygon:

IlvGraphicLayerDataSource ds = new IlvGraphicLayerDataSource();
ds.setManager(view.getManager());

3. Insert the data source into the data source tree of the manager:

dsm.insert(ds);

4. Set up the layer:

final IlvMapLayer layer = ds.getInsertionLayer();
layer.setAllowingMoveObjects(true);
layer.setName("Fly Through");
layer.setStyle(new IlvFlyThroughStyle());

5. Insert the layer into the layer tree of the manager:

ltm.addChild(null, layer);

Creating a Fly Through in graphical 2D representation
1. You can now create the Fly Through object in your program and add it to the data

source so that it can be managed by the data source (for example, to change the
representation when the coordinate system changes):

IlvPoint points[]= {
new IlvPoint((float)Math.toRadians(10.2), -(float)Math.toRadians(45.

8)),
new IlvPoint((float)Math.toRadians(10.8), -(float)Math.toRadians(45.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 119

2)),
};
IlvMapTerrainFlyThrough flyThroughGraphics = new

IlvMapTerrainFlyThrough(points);
flyThroughGraphics.setStyle(layer.getStyle());

2. Since the Fly Through is created using KERNEL coordinates in the example above
(hence the negative values for the latitude coordinates, because the JViews Y axis is
opposed to the latitude direction), you only need to call:

ds.add(flyThroughGraphics,IlvGeographicCoordinateSystem.KERNEL);

3. Now start the data source to (potentially) transform the polygon and display it in the
3D View.

ds.start();

Registering a Fly Through action
What is created above is a polygonal representation of the Fly Through in the 2D View. You
now need to create an action that will Start/Stop the Fly Through in the 3D View.

1. Using the example above, retrieve the Fly Through coordinates and style parameters:

IlvCoordinate []coords=flyThroughGraphics.getLatLongs();
IlvFlyThroughStyle
ftstyle=(IlvFlyThroughStyle)flyThroughGraphics.getStyle();

2. With these coordinates and parameters create a Fly Through trajectory:

Ilv3DTrajectory.Point [] trajPoints=new
Ilv3DTrajectory.Point[coords.length];
for (int i = 0; i < coords.length; i++) {

trajPoints[i]=new Ilv3DTrajectory.Point(ftstyle.getSpeed(),coords[i].
x,

coords[i].y,ftstyle.getAltitude());
}

Ilv3DTrajectory traj= new Ilv3DTrajectory(trajPoints);

3. Create the Fly Through action and register it:

IlvFlyThroughAction action = new IlvFlyThroughAction(layer.getName(),
traj,view3D);

4. Register the action in the 3D View:

view3D.registerFlyThrough(layer,action);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6120

Recomputing the Fly Through action
When the Fly Through graphic polygon is moved or resized, you will probably want the
action on the 3D view to be updated too. To update the action on the 3D view.

♦ Add a listener to the Fly Through graphic:

flyThroughGraphics.addChangeListener(new
IlvMapControllingPolyline.ComputeListener() {

public void computationDone(IlvMapControllingPolyline tc) {
// Retrieve the fly through coordinates.

IlvCoordinate []coords=flyThroughGraphics.getLatLongs();
// Retrieve other parameters in the object style.

IlvFlyThroughStyle
ftstyle=(IlvFlyThroughStyle)flyThroughGraphics.getStyle();

// Create a fly through trajectory.
Ilv3DTrajectory.Point [] trajPoints=new

Ilv3DTrajectory.Point[coords.length];
for (int i = 0; i < coords.length; i++) {

Ilv3DTrajectory.Point lookat = new Ilv3DTrajectory.Point(...);
}

Ilv3DTrajectory traj= new Ilv3DTrajectory(trajPoints);

// Create the fly through action and register it.
IlvFlyThroughAction action = new IlvFlyThroughAction(layer.getName(),

traj,view3D);
view3D.registerFlyThrough(layer,action);

}
});

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 121

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6122

Using Terrain Analysis

Describes how to create new raster images containing line of sight, gradient, valley and
elevated areas, and area of sight information. For further information about altitude
management, see Map-specific manager properties in Programming with JViews Maps.

In this section

Lines of Sight and Altitude Visibility charts
Gives the the class for providing your own visibility computation mechanism.

Terrain Cut and Altitude charts
Gives the class for providing your own altitude computation mechanism.

Gradient, Valley and Elevated Areas, and Area of Sight computations
Describes gradient, valley and elevated areas, and area of sight information features and
how to use them.

Building and displaying a 3D View of a map
Describes the class relationship for a 3D View and how to create, customize, and display a
3D View of the terrain.

Fly Through paths
Provides class information for Fly Through paths.

© Copyright IBM Corp. 1987, 2009 123

Lines of Sight and Altitude Visibility charts

To create a Line of Sight, see Using the GUI beans.

You can also provide your own visibility computation mechanism by deriving the
IlvLineOfVisibility class. There is a specific demonstration located in <installdir> /
jviews-maps-defense86/samples/terrain/index.html that explains how to perform your
own terrain analysis by implementing different algorithms.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6124

Terrain Cut and Altitude charts

To create a Terrain Cut, see Using the GUI beans.

You can also provide your own altitude computation mechanism by deriving the
IlvMakeTerrainCutInteractor class. There is a specific demonstration located in
<installdir> /jviews-maps-defense86/samples/terrain/index.html that explains how
to perform your own terrain analysis by implementing different algorithms.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 125

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6126

Gradient, Valley and Elevated Areas, and
Area of Sight computations

Describes gradient, valley and elevated areas, and area of sight information features and
how to use them.

In this section

Overview
Introduces the gradient, valley and elevated areas, and area out of sight information features.

Using Gradient, Valley and Elevated Areas, and Area of Sight computations
Explains how to create gradients or valley images in your application and provide image
computation methods.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 127

Overview

These features compute new raster images containing the gradient, valley and elevated
areas, and area of sight information from raw altitude information.

The source code for the Map Builder demonstration, which contains all of the code described
in this section, can be found at <installdir> /jviews-maps86/samples/mapbuilder/
index.html

There is also a specific demonstration that explains how to perform your own terrain analysis
by implementing different algorithms in <installdir> /jviews-maps-defense86/samples/
3dview/index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6128

Using Gradient, Valley and Elevated Areas, and Area of Sight
computations

Creating the reader
To create gradients or valley images in your application:

1. Use an IlvComputedRasterReader to create IlvRasterIcon graphic objects:

IlvComputedRasterReader reader = new IlvComputedRasterReader(manager);

This reader encapsulates an object to provide the image computation methods that
implement the IlvImageComputation interface.

2. You can use the terrain analysis interactors for this, or provide your own computation
classes:

reader.setImageComputation(new IlvMakeGradientInteractor());

Defining the computation parameters
To define the computation parameters:

1. To make these easy for the end user to modify, set these in a map style that can be
edited in the Map Layer Tree panel:

IlvGradientRasterStyle style = new IlvGradientRasterStyle(reader);
reader.setStyle(style);

2. You need to define at least two parameters in this style:

The bounds of the computation, that is, the bounds of the images:

style.setBounds(new Rectangle2D.Double(latLonMin.x, latLonMax.y, latLonMax.
x

- latLonMin.x, latLonMin.y - latLonMax.y));

The color model used to represent the values computed. The image computation object
creates a table of pixel values. Each of these pixel values must be attached to a color
through a color model. For example:

style.setColorModel(new IlvGradientIntervalColorModel());

Creating the data source and configuring the map layer
1. Create a map data source based on this reader and start it:

IlvTiledRasterDataSource ds =

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 129

IlvRasterDataSourceFactory.buildTiledImageDataSource(manager, reader,

true, true, null);
ds.start();

2. Configure the map layer to use the same style as that shown in the map layer tree:

IlvMapLayer mapInsertionLayer = ds.getInsertionLayer();
mapInsertionLayer.setStyle(style);

This layer and data source must then be linked with the manager properties (see Using
data sources in Programming with JViews Maps).

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6130

Building and displaying a 3D View of a map

Describes the class relationship for a 3D View and how to create, customize, and display a
3D View of the terrain.

In this section

Overview
Presents the class relationship for a 3D View.

Building the 3D terrain
Explains how to build a 3D terrain.

Displaying the 3D scene
Explains how to create a 3D view, set camera positions and set parameters to alter the
appearance and lighting.

Adding Symbology to the 3D Model
Explains how to add symbology and change its style.

Adding 3D components
Explains how to add one of the five provided ready-to-use 3D components to your 3D scene.

Extending the API
Presents two examples of API subclassing, one to add custom 3D components, and another
to add lighting to 3D components.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 131

Overview

The following figure shows the class relationship for a 3D View.

3D View UML diagram

If your map contains elevation data, for example, a DTED format map or any other raster
data source that acts as an elevation provider, you can display a 3D View of it showing the
terrain relief. There is a specific demonstration that explains how to perform your own
terrain analysis using the 3D function in <installdir> /jviews-maps-defense86/samples/
3dview/index.html.

This view can also display symbols belonging to any symbology, see Adding 3D components
and Using symbols through the API in Programming with JViews Maps.

Ilv3DSphere, Ilv3DHemisphere, Ilv3DCorridor, Ilv3DLabel, and Ilv3DExtrudedPolygon
are five predefined 3D shapes ready to be added to your 3D model.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6132

Building the 3D terrain

To build a 3D terrain:

1. First, create an instance of Ilv3DModel that contains the 3D scene displayed in the
3D View:

Ilv3DModel model3D = new Ilv3DModel(view.getManager());

2. Then, build the mesh representing the terrain within the specified region (the longitude
and latitude in radians):

model3D.buildTerrain(Math.toRadians(10),Math.toRadians(45),
Math.toRadians(11), Math.toRadians(46));

This call checks for any data source in the map (stored in the IlvManager passed to
the 3D model) that provides elevation data for the specified region in order to create
a 3D mesh of the terrain.

3. This mesh is textured using an image generated from the altitude data (using the color
model of the corresponding raster data source) by calling:

model3D.setUse2DViewAsTexture(false);

If the parameter is set to true (the default value), all the layers of the 2D View are
draped on top of the terrain mesh, depending on the setting of the Visible in 3D
View property of the layer style.

4. In the case of true, you may want to force the texture resolution to be greater than
the terrain resolution, especially if you want to use satellite photographs that have
much higher precision than the underlying terrain elevation data. You can do this as
follows:

model3D.setTextureOversampling(2);

The integer passed in parameter is used as an exponent to increase the texture size.
For example, a value of 2 multiplies the texture width by 4 (2exp2 = 4), and the texture
height by 4 also. This is known as Texture Oversampling. Note however, that increasing
the Texture Oversampling may lead to texture sizes that are not acceptable to your
OpenGL implementation or your graphics card.

5. You can query the maximum supported texture size by calling the static method:

Ilv3DView.getMaximumSupportedTextureSize().

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 133

Displaying the 3D scene

To display the 3D scene:

1. Create a 3D View:

Ilv3DView view3D = new Ilv3DView(model3D);

The 3D View displays the terrain using the default parameters, that is with:

a. The camera located above the terrain, looking at its center along the vertical axis.

b. The distance from the center of the terrain equal to the “radius” of the terrain
(that is, the maximum of half the terrain width and half the terrain height).

The simple way to change the position of the camera is using the 3D View mouse
interactors, see Creating a 3D View in Using the Map Builder for JViews Maps for
Defense for details of how to do this.

xref above targets to defbldr_more.fm in usrbldextdef

However, you can set an absolute position for the camera (for example, as done for a
Fly Through) using the following code:

Ilv3DCamera camera = view3D.getCamera();

// Position of the camera in longitude, latitude and elevation.
IlvGeographicPoint cameraGeoPosition = new IlvGeographicPoint(posLon,

posLat, posElev);

// Convert position to 3D space.
Ilv3DVertex pos3D =

view3D.get3DCoordinateConverter().convertTo3DVertex(cameraGeoPosition)
;

// Set position.
camera.setPosition(new Ilv3DDoubleVector(pos3D.getX(),pos3D.getY(),pos3D.
getZ()));

// “Target” point of camera in longitude, latitude and elevation.
IlvGeographicPoint cameraGeoTarget = new Ilv3DGeographicPoint(targetLon,

targetLat, targetElev);

// Convert position to 3D space.
pos3D =
view3D.get3DCoordinateConverter().convertTo3DVertex(cameraGeoTarget);

// Set the target point.
camera.lookAt(new Ilv3DDoubleVector(pos3D.getX(),pos3D.getY(),pos3D.getZ
()),

view3D.UP_VECTOR);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6134

The camera position must be set before the target position to ensure the
correct result. Setting the camera position after the target position does

Note:

not modify the direction in which the camera is looking, but the camera
may no longer be looking at the target point.

2. Some parameters of the 3D View can be changed to alter the appearance of the terrain.
For example, you can:

a. Render the terrain in Wireframe mode (default is false):

view3D.setWireFrameMode(true);

b. Enable or disable Bilinear Filtering for terrain texture (default is true):

view3D.setBilinearFiltering(true);

c. Enable Lighting in the 3D View (default is false):

view3D.setUseLighting(true);

3. You can then change the following lighting parameters:

a. The horizontal direction of the light by specifying the angle in radians (0 means
towards the north).

view3D.setLightOrientationAngle(angleInRadians);

b. The vertical direction of the light by specifying the angle is in radians (0 means
horizontal and Math.PI means vertical and downward).

view3D.setLightElevationAngle(angleInRadians);

c. The shading algorithm by enabling gouraud shading (default is true):

view3D.setSmoothShading(true);

d. Change the Height Exaggeration factor:

view3D.setHeightExaggeration(2.0);

e. Change the Terrain Precision factor:

view3D.setTerrainPrecisionFactor(8.0f);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 135

For more information about how to set these parameters, see Creating a 3D View in Using
the Map Builder for JViews Maps for Defense.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6136

Adding Symbology to the 3D Model

To add symbology to the 3D model so that symbols are displayed in the 3D View:

1. Create an Ilv3DSymbolManager instance that takes an IlvSDMEngine as a parameter
and sets this manager for the 3D model.

IlvSDMEngine symbology = new IlvSDMEngine();

// Create and configure your symbology here//
…
//

// Create a 3D symbol manager.
Ilv3DSymbolManager symbolManager=new Ilv3DSymbolManager(symbology,view3D)
;
model3D.setSymbolManager(symbolManager);

See Using symbols through the API in Programming with JViews Maps for more
information

The Ilv3DSymbolManager monitors changes in the symbology and reflects these
changes in the 3D View, for example, creation or deletion of symbols, changes in their
properties, and so on.

Only node symbols (IlvSDMNode) will be created by the
Ilv3DSymbolManager instance and each one will have an associated

Note:

Ilv3DSymbol object. Links will be ignored and cannot be displayed in
the 3D View.

2. Change the way symbols are drawn in the 3D View by setting an Ilv3DSymbolStyle
on the Ilv3DSymbolManager:

symbolManager.setSymbolStyle(new Ilv3DSymbolStyle());

This style holds several properties, all accessible through “getters” and “setters”.

The following table describes the style properties

.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 137

Style properties
DescriptionProperty Name

The offset distance in meters between the icon representing the symbol
and the point representing its actual location on the map. The default
is 1000 meters.

iconOffsetAbovePoint

The color of the point representing the symbol location on the map.
The default is black.

pointColor

A boolean specifying whether a high resolution image should be used
to represent the symbol. The default is true.

preciseImage

A boolean specifying whether a dotted line should be drawn between
the location point of the symbol and its projected location on the ground
(that is, elevation = 0). The default is true.

showGroundImprintLine

The color of the ground imprint line. The default is cyan.groundImprintColor

A boolean specifying whether the icon representing the symbol should
be drawn. The default is true.

showSymbolIcon

A boolean specifying whether the point representing the location of the
symbol on the map should be drawn. The default is true.

showSymbolPoint

A boolean specifying whether symbols should be drawn using
z-buffering. If false, symbols overlap any other object of the 3D scene,

symbolsOrdered

including terrain, and are drawn in the same order they were added.
The default is true, in which case symbols could be hidden by the
terrain, for example a mountain.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6138

Adding 3D components

Explains how to add one of the five provided ready-to-use 3D components to your 3D scene.

In this section

Overview
Introduces the ready–to–use 3D components.

Adding an Ilv3DSphere or Ilv3DHemisphere
Explains how to add a 3D sphere or hemisphere to a 3D scenes and change its appearance.

Adding an Ilv3DCorridor
Explains how to add a corridor to a 3D scene and change its appearance.

Adding an Ilv3DLabel
Explains how to add an 3D label to a 3D scene.

Adding an Ilv3DExtrudedPolygon
Explains how to add an extruded polygon to a 3D scene and change its color.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 139

Overview

You can add 3D components to your 3D scene. A 3D component is any object implementing
the Ilv3DComponent interface. The interface requires that the object holds its center position
in geographic coordinates (that is, longitude, latitude, and elevation), and is able do draw
itself in a specified OpenGL context.

It is assumed that you are familiar with the OpenGL API and Java™ JOGL API.Note:

Five ready-to-use 3D components are provided: Ilv3DSphere, Ilv3DHemisphere,
Ilv3DCorridor, Ilv3DLabel, and Ilv3DExtrudedPolygon.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6140

Adding an Ilv3DSphere or Ilv3DHemisphere

An Ilv3DSphere or an Ilv3DHemisphere can be used to represent, for example, a radar
coverage zone. It is defined by its center (longitude and latitude in radians, elevation in
meters) and its radius in meters.

1. You can add a 3D sphere or hemisphere to a 3D scenes:

// Create a hemisphere located at W0˚,N45˚ and 0 meters above ground,
with
// a radius of 20000 meters.
Ilv3DHemisphere hemisphere = new Ilv3DHemisphere(0,Math.PI/4,0,20000);

// Add it to the 3D model.
view3D.get3DModel().add3DComponent(hemisphere);

2. You can refine the appearance of the hemisphere by increasing the number of steps,
that is, intermediate points in the longitude-latitude plane (about the center), and
along the elevation axis. The default value is 20 for both directions.

hemisphere.setLonLatSteps(50);
hemisphere.setElevationSteps(50);

3. You can change the color of the hemisphere by calling:

hemisphere.setColor(new Color(1.0f,0,0,0.5f)); // half transparent red

Better clarity is achieved using transparent
colors.

Note:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 141

Adding an Ilv3DCorridor

An Ilv3DCorridor can be used to represent, for example, a missile trajectory or an air traffic
lane. It is defined by a list of points (longitude, latitude in radians, elevation in meters) and
a list of radiuses in meters (radius of the “tube” at each point).

1. The following is an example of how to add a corridor to a 3D scene:

// Corridor coordinates (3 arrays of longitudes, latitudes, elevations).
double[] longs = new double[]{Math.toRadians(10.25),Math.toRadians(11)};
double[] lats = new double[]{Math.toRadians(45.25), Math.toRadians(46)};
double[] elevs = new double[]{0 ,5000};

// Corridor radius.
double[] radiuses = new double[]{2000,6000}; // in meters

// Create 3D corridor.
Ilv3DCorridor corridor = new Ilv3DCorridor(longs,lats,elevs,radiuses);

// Add it to the 3D model.
model3D.add3DComponent(corridor);

2. You can change the color of the corridor as follows:

corridor.setColor(new Color(0,0,1.0f,0.5f)); // half transparent blue

3. You can also refine its appearance by changing the number of steps about and along
the axis of the corridor (default values are 20 about the axis and 1 along the axis for
each portion of the corridor).

corridor.setStepsAboutAxis(50);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6142

Adding an Ilv3DLabel

An Ilv3DLabelIlv3D is a flat, always-facing and non-zoomable text object used, for example,
to annotate other 3D features. It is attached to an anchor point specified by its longitude,
latitude and altitude.

1. To specify the distance between the String reference point and the 3D label anchor
point use the setHorizontalOffset(int) and setVerticalOffset(int) methods.

2. The following is an example of how to add an Ilv3DLabel to a 3D scene:

double longitude = Math.toRadians(45);
double latitude = Math.toRadians(45);

// Create font
Font font = new Font("Times New Roman", Font.ITALIC,16);
Ilv3DLabel label = new Ilv3DLabel(longitude ,latitude , 1000,"This is a
3D
label",font);

// Set label parameters
label.setTextColor(Color.BLACK);
label.setBackgroundColor(Color.WHITE);
label.setDrawLabelOutline(true);

// To draw an outline using background color.
model3D.add3DComponent(label);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 143

Adding an Ilv3DExtrudedPolygon

An Ilv3DExtrudedPolygon is a volume object whose base is a freely specified polygon, but
which is then extruded along its altitude axis. It is useful for representing many common
shapes such as boxes (buildings for example), coverage zones, cubes, and so on. It is defined
by an array of coordinates (longitude and latitude in radians), which make up its base, and
two altitudes - one for its base and one for its top.

1. The following is an example of how to add an extruded polygon to a 3D scene:

// Coordinates defining the base (2 arrays of longitudes, latitudes,
elevations).
double[] longs = new double[]{Math.toRadians(10.25),Math.toRadians(11)};
double[] lats = new double[]{Math.toRadians(45.25), Math.toRadians(46)};
// Base and top altitudes.
double baseElevation = 1000; // in meters
double topElevation = 1200; // in meters
// Create extruded polygon.
Ilv3DExtrudedPolygon extrudedPoly = new Ilv3DExtrudedPolygon

(longs,lats,baseElevation,topElevation);
// Add it to the 3D model.
model3D.add3DComponent(corridor);

2. You can change the color of the extruded polygon as follows:

extrudedPoly.setColor(new Color(0,0,1.0f,0.5f)); // half transparent blue

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6144

Extending the API

Presents two examples of API subclassing, one to add custom 3D components, and another
to add lighting to 3D components.

In this section

Adding new 3D components
Describes the steps involved in creating a custom 3D component.

Customizing OpenGL rendering by adding custom lighting for 3D components
Explains how to customize OpenGL rendering.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 145

Adding new 3D components

To create a custom 3D component, implement the Ilv3DComponent interface:

1. For example, to add a simple cube component, defined by its center and its half-side
length:

public class My3DCube implements Ilv3DComponent {
//…

}

2. Implement the Ilv3DComponent methods relative to the center of the component’s
position. The coordinates of the center are stored with double precision:

private double centerLongitude;
private double centerLatitude;
private double centerElevation;

// Also store cube’s side half length (in meters).
private double sideHalfLength = 5000;

public double getCenterLongitude() {
return centerLongitude;

}

public double getCenterLatitude() {
return centerLatitude;

}

public double getCenterElevation() {
return centerElevation;

}

3. Implement the display method that actually draws the component in an OpenGL
context.

.

It is assumed that you are familiar with OpenGL programming and with
the Java™ JOGL (OpenGL binding) library.

Note:

This method takes an OpenGL context and an Ilv3DCoordinateConverter. This
converter is used to transform any geographic point (longitude, altitude, elevation)
into a 3D point in the 3D scene.

Note that the GL context passed in parameter is already centered on the center of the
component. This implies that any coordinate should be relative to the center of the
component being drawn.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6146

public void display(GL gl, Ilv3DCoordinateConverter converter) {
// Create a GLUT object.
GLUT glut = new GLUT();

// Compute the side length of the cube in 3D space.

// First, find the coordinates of a point on the surface of the cube.

IlvGeodeticComputation comp = new
IlvGeodeticComputation(IlvEllipsoid.SPHERE);

comp.setPoint1(centerLongitude, centerLatitude);
comp.setDistance(sideHalfLength);
comp.setForwardAzimuth(0);
comp.computeGeodeticForward();

double ptLon = comp.getLongitude2();
double ptLat = comp.getLatitude2();

// Now transform the geographic coordinates into 3D space coordinates.

// Convert the center of the cube.
Ilv3DVertex vertex1 =

converter.convertTo3DVertex(new IlvGeographicPoint(
centerLongitude,centerLatitude,centerElevation));

// Convert the second point of the cube.
Ilv3DVertex vertex2 =

converter.convertTo3DVertex(new IlvGeographicPoint(
ptLon, ptLat,centerElevation));

// The half side length of the cube is the distance between the 2
points

// i.e. the norm of the vector.
Ilv3DDoubleVector v = new

Ilv3DDoubleVector(vertex1.getX(),vertex1.getY(),vertex1.getZ()).
minus(new

Ilv3DDoubleVector(vertex2.getX(),vertex2.getY(),vertex2.getZ())
);

float halfLength = (float)v.length();

// Set the color on the GL context.
gl.glColor4d(1.0,0,0,1.0); // opaque red

// Draw the cube.
glut.glutSolidCube(halfLength);

}

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 147

Customizing OpenGL rendering by adding custom lighting for 3D
components

To add custom lighting for 3D components subclass the Ilv3DView and override the
draw3DComponents method to enable and configure lighting on the OpenGL GL context.

♦ The overridden method is as follows:

protected void draw3DComponents(GL gl) {
// Setup lighting before calling super.
gl.glEnable(GL.GL_LIGHTING); // enable lighting
gl.glEnable(GL.GL_LIGHT0); // enable light 0
gl.glEnable(GL.GL_COLOR_MATERIAL); // enable use of color for material

// Color is used for ambient and diffuse material properties.
gl.glColorMaterial(GL.GL_FRONT_AND_BACK,GL.GL_AMBIENT_AND_DIFFUSE);
// Set material shininess.
gl.glMaterialfv(GL.GL_FRONT_AND_BACK,GL.GL_SHININESS,new float[]{75}

,0);
// Set material specular color.
gl.glMaterialfv(GL.GL_FRONT_AND_BACK,GL.GL_SPECULAR,new

float[]{1.0f,1.0f,1.0f,1.0f},0);
// Set light direction.
float position[] = {0, 1.0f, 0, 1.0f};
gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, position,0);

// Call super method.
super.draw3DComponents(gl);

// Turn the lighting off.
gl.glDisable(GL.GL_LIGHTING);

}

Refer to the OpenGL reference documentation for more information about lighting.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6148

Fly Through paths

To create a Fly Through, see Using the GUI beans.

You can also derive the IlvMake3DFlyThroughInteractor class. There is a specific
demonstration located in <installdir> /jviews-maps-defense86/samples/3dview/
index.html that explains how to perform your own terrain analysis by implementing different
algorithms.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 149

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6150

Symbology

Describes APP-6a symbology, how to use JViews Maps for Defense to create and manage
APP-6a symbols in your application, and how to automatically manage symbol groups.

In this section

Creating and managing APP-6a symbols
Describes how to create and manage APP-6a symbols.

Managing groups of symbols automatically
Describes how groups of symbols can be managed automatically.

© Copyright IBM Corp. 1987, 2009 151

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6152

Creating and managing APP-6a symbols

Describes how to create and manage APP-6a symbols.

In this section

APP-6a symbols
Describes APP-6a symbols.

Symbol identification coding scheme
Describes the symbol identification coding scheme.

Symbol modifiers
Describes symbol modifiers.

SDM design and APP-6a symbols
Provides typical code for displaying symbols.

Developing with APP-6a symbols
Describes the classes that control the appearance of APP-6a symbols and a symbol manager
for editing or creating a new symbol. The complete source code for an APP-6a demonstration
can be found at <installdir> /jviews-maps-defense86/samples/app6a/index.html.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 153

APP-6a symbols

APP-6a standard is a subset of theMIL-STD-2525B standard. The standard provides common
warfighting symbology for Command, Control, Communications, Computer, and Intelligence
(C4I) systems development, operations, and training.

A tactical symbol is composed of a frame, fill, and icon and may include text and/or graphic
modifiers that provide additional information.

The following figure shows an example of a tactical symbols.

APP-6a symbol schematic

The frame attributes, that is, affiliation, battle dimension, and status, determine the type of
frame for a given symbol. Fill color is a redundant indication of the affiliation of the symbol
(frame shape also indicates affiliation, see Symbol modifiers).

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6154

Symbol identification coding scheme

An APP-6a symbol ID code is a 15-character alphanumeric identifier that provides the
information necessary to display a tactical symbol.

You can use the NATO Symbol Manager (for example, in the Map Builder) to hierarchically
retrieve the ID code prototype or construct it from its base elements.

The positions of the symbol ID code are described below. Since many symbols do not have
an entry in every code position, a dash (-) is used to fill each unused position.

An asterisk (*) indicates positions that are user-defined, based on specific symbol
circumstances such as affiliation or echelon/mobility.

♦ Position 1: the “Coding Scheme” indicates which overall symbology set a symbol belongs
to:

WARFIGHTINGS

TACTICAL GRAPHICSG

METOCW

INTELLIGENCEI

MAPPINGM

MILITARY OPERATIONSO

IBM® ILOG® JViews provides only WARFIGHTING Symbols.

♦ Position 2: “Affiliation” indicates the affiliation of the symbol:

PENDINGP

UNKNOWNU

ASSUMED FRIENDA

FRIENDF

NEUTRALN

SUSPECTS

HOSTILEH

JOKERJ

FAKERK

NONE SPECIFIEDO

♦ Position 3: “Battle Dimension” indicates the battle dimension of the symbol:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 155

SPACEP

AIRA

GROUNDG

SEA SURFACES

SEA SUBSURFACEU

SOFF

OTHER (No frame)X

♦ Position 4: “Status” indicates the planned or present status of the symbol:

ANTICIPATED/PLANNEDA

PRESENTP

♦ Positions 5 through 10: “Function ID” identifies a symbol’s function. Each position
indicates an increasing level of detail and specialization. For example:

COMBAT SERVICE SUPPORTUS----

COMBAT SERVICE SUPPORT (MEDICAL)USM---

COMBAT SERVICE SUPPORT (MEDICAL PSYCHOLOGICAL)USMP--

COMBAT SERVICE SUPPORT (MEDICAL PSYCHOLOGICAL CORPS)USMPC-

♦ Positions 11 and 12: “Symbol Modifier Indicator” identifies indicators present on the
symbol such as echelon, feint/dummy, installation, task force, headquarters staff, and
equipment mobility:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6156

NULL--

TEAM/CREW-A

SQUAD-B

SECTION-C

PLATOON/DETACHMENT-D

COMPANY/BATTERY/ TROOP-E

BATTALION/SQUADRON-F

REGIMENT/GROUP-G

BRIGADE-H

DIVISION-I

CORPS/MEF-J

ARMY-K

ARMY GROUP/FRONT-L

REGION-M

HEADQUARTERS (HQ)A-

HQ TEAM/CREWAA

HQ SQUADAB

HQ SECTIONAC

HQ PLATOON/DETACHMENTAD

HQ COMPANY/BATTERY TROOPAE

HQ BATTALION/SQUADRONAF

HQ REGIMENT/GROUPAG

HQ BRIGADEAH

HQ DIVISIONAI

HQ CORPS/MEFAJ

HQ ARMYAK

HQ ARMY GROUP/FRONTAL

HQ REGIONAM

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 157

TASK FORCE (TF) HQB-

TF HQ TEAM/CREWBA

TF HQ SQUADBB

TF HQ SECTIONBC

TF HQ PLATOON/DETACHMENTBD

TF HQ COMPANY/BATTERY/TROOPBE

TF HQ BATTALION/SQUADRONBF

TF HQ REGIMENT/GROUPBG

TF HQ BRIGADEBH

TF HQ DIVISIONBI

TF HQ CORPS/MEFBJ

TF HQ ARMYBK

TF HQ ARMY GROUP/FRONTBL

TF HQ REGIONBM

FEINT DUMMY (FD) HQC-

FD HQ TEAM/CREWCA

FD HQ SQUADCB

FD HQ SECTIONCC

FD HQ PLATOON/DETACHMENTCD

FD HQ COMPANY/BATTERY/TROOPCE

FD HQ BATTALION/SQUADRONCF

FD HQ REGIMENT/GROUPCG

FD HQ BRIGADECH

FD HQ DIVISIONCI

FD HQ CORPS/MEFCJ

FD HQ ARMYCK

FD HQ ARMY GROUP/FRONTCL

FD HQ REGIONCM

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6158

FEINT DUMMY/TASK FORCE (FD/TF) HQD-

FD/TF HQ TEAM/CREWDA

FD/TF HQ SQUADDB

FD/TF HQ SECTIONDC

FD/TF HQ PLATOON/DETACHMENTDD

FD/TF HQ COMPANY/BATTERY/TROOPDE

FD/TF HQ BATTALION/SQUADRONDF

FD/TF HQ REGIMENT/GROUPDG

FD/TF HQ BRIGADEDH

FD/TF HQ DIVISIONDI

FD/TF HQ CORPS/MEFDJ

FD/TF HQ ARMYDK

FD/TF HQ ARMY GROUP/FRONTDL

FD/TF HQ REGIONDM

TASK FORCE (TF)E-

TF TEAM/CREWEA

TF SQUADEB

TF SECTIONEC

TF PLATOON/DETACHMENTED

TF COMPANY/BATTERY/TROOPEE

TF BATTALION/SQUADRONEF

TF REGIMENT/GROUPEG

TF BRIGADEEH

TF DIVISIONEI

TF CORPS/MEFEJ

TF ARMYEK

TF ARMY GROUP/FRONTEL

TF REGIONEM

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 159

FEINT DUMMY (FD)F-

FD TEAM/CREWFA

FD SQUAD FCFB

SECTIONFD

FD PLATOON/DETACHMENTFD

FD COMPANY/BATTERY/TROOPFE

FD BATTALION/SQUADRONFF

FD REGIMENT/GROUPFG

FD BRIGADEFH

FD DIVISIONFI

FD CORPS/MEFFJ

FD ARMYFK

FD ARMY GROUP/FRONTFL

FD REGIONFM

FEINT DUMMY/TASK FORCE (FD/TF)G-

FD/TF TEAM/CREWGA

FD/TF SQUADGB

FD/TF SECTIONGC

FD/TF PLATOON/DETACHMENTGD

FD/TF COMPANY/BATTERY/TROOPGE

FD/TF BATTALION/SQUADRONGF

FD/TF REGIMENT/GROUPGG

FD/TF BRIGADEGH

FD/TF DIVISIONGI

FD/TF CORPS/MEFGJ

FD/TF ARMYGK

FD/TF ARMY GROUP/FRONTGL

FD/TF REGIONGM

INSTALLATIONH-

FEINT DUMMY INSTALLATIONHB

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6160

MOBILITY EQUIPMENTM-

MOBILITY WHEELED/LIMITED CROSS COUNTRYMO

MOBILITY CROSS COUNTRYMP

MOBILITY TRACKEDMQ

MOBILITY WHEELED AND TRACKEDMR

MOBILITY TOWED COMBINATIONMS

MOBILITY RAILMT

MOBILITY OVER THE SNOWMU

MOBILITY SLEDMV

MOBILITY PACK ANIMALSMW

MOBILITY BARGEMX

MOBILITY AMPHIBIOUSMY

TOWED ARRAY (SHORT)NS

TOWED ARRAY (LONG)NL

♦ Positions 13 and 14: “Country Code” identifies the country with which a symbol is
associated, for example:

CANADACA

UNITED STATESUS

♦ Position 15: “Order of Battle” provides additional information about the role of a symbol
in the battlespace. For example, a bomber that has nuclear weapons on board could be
designated as strategic force related:

AIR OBA -

CIVILIAN OBC -

GROUND OBG -

MARITIME OBN -

STRATEGIC FORCE RELATEDS -

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 161

Symbol modifiers

The standard defines a set of modifiers that provides optional additional information about
a symbol. Modifier information is represented around the central frame.

The following figure shows a schematic of the symbol modifier information.

APP-6a symbol modifiers

The following table provides descriptions of these modifiers.

APP-6a symbol modifiers
DescriptionModifierCode

The innermost part of a symbol that represents a warfighting object.Symbol IndicatorA

Graphic modifier in a unit symbol that identifies the command level.EchelonB

A text modifier in an equipment symbol that identifies the number
of items present.

QuantityC

A graphic modifier in a unit symbol that identifies a unit as a task
force.

Task Force IndicatorD

Graphic modifiers that help determine the affiliation and/or battle
dimension of an object (“U,”“?,”“J,” and“K”).

Frame Shape ModifierE

A text modifier in a unit symbol that should be (+) for reinforced, (-)
for reduced, (+/-) reinforced and reduced.

Reinforced or ReducedF

A text modifier for units, equipment and installations.Staff CommentsG

A text modifier for units, equipment, and installations.Additional InformationH

A text modifier for units, equipment, and installations that consists
of a one-letter reliability rating and a one-letter credibility rating.

Evaluation RatingJ

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6162

DescriptionModifierCode

Reliability Ratings:

A-completely reliable

B-usually reliable

C-fairly reliable

D-not usually reliable

E-unreliable

F-reliability cannot be judged

Credibility Ratings:

1-confirmed by other sources

2-probably true

3-possibly true

4-doubtfully true

5-improbable

6-truth cannot be judged

A text modifier for units and equipment that indicates unit
effectiveness or installation capability.

Combat EffectivenessK

A text modifier for hostile equipment; “!” indicates detectable
electronic signatures.

Signature EquipmentL

A text modifier for units that indicates the number or title of a higher
echelon command (corps are designated by Roman numerals).

Higher FormationM

A text modifier for equipment; letters "ENY" denote hostile symbols.Hostile (Enemy)N

A text modifier displaying IFF/SIF Identification modes and codes.IFF/SIFP

A graphic modifier for units, equipment, and installations that
identifies the direction of movement or intended movement of an
object.

Direction of Movement
Indicator

Q

A graphic modifier for equipment that depicts the mobility of an
object.

Mobility IndicatorR

M = Mobile, S = Static, or U = Uncertain.SIGINT Mobility IndicatorR2

Headquarters staff indicator: A graphic modifier for units, equipment,
and installations that identifies a unit as a headquarters location.

Headquarters Staff
Indicator/Offset location
indicator

S

Offset location indicator: A graphic modifier for units, equipment,
and installations used when placing an object away from its actual
location.

Text modifier for units, equipment, and installations that uniquely
identifies a particular symbol; track number.

Unique DesignationT

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 163

DescriptionModifierCode

Identifies acquisition number when used with SIGINT symbology.

A text modifier for equipment that indicates the type of equipment.TypeV

A text modifier for units, equipment and installations that displays
traditional military Date/Time Group format DDHHMMSSZMONYY.

Date/Time Group (DTG)W

A text modifier for units, equipment, and installations that displays
the altitude portion of GPS: flight level for aircraft, depth for

Altitude/DepthX

submerged objects, height in feet of equipment or structures on the
ground.

A text modifier for units, equipment, and installations that displays
the location of a symbol in degrees, minutes, and seconds (or in
UTM or other applicable display format).

LocationY

A text modifier for units, equipment, and installations that displays
velocity as described in MIL-STD-6040.

SpeedZ

A text modifier for units; the indicator contained inside the frame
contains the name of the special C2 headquarters.

Special C2 HeadquartersAA

Feint or dummy indicator: A graphic modifier for units, equipment,
and installations that identifies an offensive or defensive unit intended

Feint/Dummy IndicatorAB

to draw the attention of the enemy away from the area of the main
attack.

A graphic modifier for units, equipment, and installations used to
show that a particular symbol denotes an installation.

InstallationAC

The following figure shows some examples of APP-6a symbols:

Example APP-6a symbols

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6164

SDM design and APP-6a symbols

APP-6a Symbols are a specialized use of JViews Diagrammer capabilities and take advantage
of JViews Diagrammer technology. The coding of the APP-6a standard in a set of java classes
provides even greater performance than the (more flexible) output of the Symbol Editor.
APP-6a Symbols . The symbols are nodes of a diagrammer data model that are rendered
into the graphical view with styling information contained in a Cascading Style Sheet. (See
also Basic Concepts in Introducing JViews Diagrammer).

Using symbols and maps in the Map Builder
The Symbols view in the Map Builder provides a way to edit an APP-6a symbol model. You
can add, remove or modify objects from this model but, by default, it does not provide
persistence for these symbols.

Symbol rendering is based on Cascading Style Sheet (CSS) files that provide the basic rules
to build graphic objects from the symbol model.

Providing the Map Builder with a different CSS (data/app6.css file) can change the way
APP-6a symbols appear. The APP-6a model content, however, is hard coded, so you need to
use the same model properties in the new CSS as are used in the default file.

There are a few classes inside the Map Builder that deal with symbols. You can change these
to better suit your model by using the JViews Diagrammer SDK.

Storing symbols
You can use a default SDM Model to store your symbols such as:

IlvSDMEngine engine = new IlvSDMEngine();
engine.setGrapher((IlvGrapher)view.getManager());
engine.setReferenceView(view);

Displaying symbols
In order to display APP-6a Symbols on your map, you need to use IlvApp6aGraphic graphic
objects. These manage all the complexity of rendering the correct symbol from the provided
properties.

In order to pass parameters between the model and the CSS engine, the symbols provide a
this property that can be used to transfer all APP-6a properties and ID code to the
IlvApp6aGraphic in a single line of code. An APP-6a CSS file can then be something like:

node {
class : "ilog.views.maps.defense.symbology.app6a.IlvApp6aGraphic" ;
symbol : @this;
visible : "@visible";
highContrast : "true" ;
iconAntialiasing : "true" ;
displayModifiers : "true" ;

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 165

displayDirection : "true" ;
}

The other settings in this example are options of the IlvApp6aGraphic that determine the
parts of the graphic to be rendered. The example settings display all of the optional data
but, for performance and decluttering reasons, it may be necessary to hide the modifiers,
or the direction line.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6166

Developing with APP-6a symbols

Describes the classes that control the appearance of APP-6a symbols and a symbol manager
for editing or creating a new symbol. The complete source code for an APP-6a demonstration
can be found at <installdir> /jviews-maps-defense86/samples/app6a/index.html.

In this section

The IlvApp6aSymbol class
Describes the IlvApp6aSymbol class

Symbol properties
Lists the constants that identify the symbol properties and the part of the symbol they control.

Displaying a symbol
Explains how to display a symbol.

The IlvApp6aSymbologyTreeViewActions class
Describes the use of the IlvSymbologyTreeView bean.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 167

The IlvApp6aSymbol class

The IlvApp6aSymbol class implements the representation for war fighting symbols. Its
appearance is rendered using an IlvApp6aGraphic class. As with any other JViews graphic,
an IlvApp6aGraphic can be customized through individual CSS declarations that refer to
properties of the data model (usually IlvApp6aSymbol nodes). However, they also have a
special declaration that simplifies the syntax for APP-6a applications. You can simply declare
the entire IlvApp6aSymbol instance as a data model property for the IlvApp6aGraphic using
the following syntax:

node {
class: "ilog.views.maps.defense.symbology.app6a.IlvApp6aGraphic";
symbol: @this;

}

In keeping with the APP-6a standard, these IlvApp6aSymbol are defined by a set of predefined
properties:

♦ An ID code to identify the symbol.

♦ Modifiers that are displayed around the symbol frame.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6168

Symbol properties

IBM® ILOG® JViews constructs all the other graphical indicators automatically from the
ID_CODE property.

The following table contains a list of constants that identify the symbol properties and the
part of the symbol they control.

APP-6a symbol properties
ModifierCodeProperty

QuantityCMODIFIER_QUANTITY_OF_EQUIPMENT

Reinforced or ReducedFMODIFIER_REINFORCED_OR_DETACHED

Staff CommentsGMODIFIER_STAFF_COMMENTS

Additional InformationHMODIFIER_ADDITIONAL_INFORMATION

Evaluation RatingJMODIFIER_EVALUATION_RATING

Combat EffectivenessKMODIFIER_COMBAT_EFFECTIVENESS

Signature EquipmentLMODIFIER_SIGNATURE_EQUIPMENT

Higher FormationMMODIFIER_HIGHER_FORMATION

Hostile (Enemy)NMODIFIER_HOSTILE

IFF/SIFPMODIFIER_IFF_SIF

Direction of Movement IndicatorQMODIFIER_DIRECTION_OF_MOVEMENT_INDICATOR

Unique DesignationTMODIFIER_UNIQUE_DESIGNATION

TypeVMODIFIER_TYPE_OF_EQUIPMENT

Date/Time Group (DTG)WMODIFIER_DATE_OR_TIME_GROUP

Altitude/DepthXMODIFIER_ALTITUDE_OR_DEPTH

LocationYMODIFIER_LOCATION

SpeedZMODIFIER_SPEED

Special C2 HeadquartersAAMODIFIER_SPECIAL_C2_HEADQUARTERS

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 169

Displaying a symbol

To display a symbol:

1. Create the symbol, giving it a latitude and longitude location.

IlvApp6aSymbol symbol = new IlvApp6aSymbol ("SUGPUSTA-------",
Math.toRadians
(-180), Math.toRadians(0));

2. Then you can set the properties as shown in the following code sample:

// set modifiers that are defined for the symbol
symbol.setProperty(IlvApp6aSymbol.MODIFIER_DIRECTION_OF_MOVEMENT_INDICATOR,

"241");
symbol. setProperty (IlvApp6aSymbol.MODIFIER_STAFF_COMMENTS, "Very
hostile");

3. Once you created the symbol, it must be added to the SDM engine, so that the symbol
appears on the map:

engine.getModel().addObject(symbol, null, null);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6170

The IlvApp6aSymbologyTreeViewActions class

If you want to use an IlvSymbologyTreeView bean in your code to manage APP-6a symbols,
you need to create an instance of IlvApp6aSymbologyTreeViewActions. This object is then
responsible for displaying the APP-6a symbol manager when editing or creating a new
symbol.

IlvSymbologyTreeView treeView=new IlvSymbologyTreeView(engine);
IlvApp6aSymbologyTreeViewActions actions=new

IlvApp6aSymbologyTreeViewActions();
actions.setView(treeView);
treeView.setSymbologyTreeViewActions(actions);

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 171

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6172

Managing groups of symbols automatically

Describes how groups of symbols can be managed automatically.

In this section

Overview
Describes how to automatically manage the visibility of symbol groups according to the
scale level and their level in the hierarchy.

Automatic expansion and collapse of symbol groups
Describes and illustrates how the expansion and collapse of symbol groups can be specified.

Automatic displacement of groups and their children
Describes how group location is set and the consequent effect of moving groups or children.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 173

Overview

You can automatically manage the visibility of symbol groups according to the scale level
and their level in the hierarchy through the use of an IlvSDMHierarchyExpandManager.

You first need to create the manager, and specify which SDM engine is impacted:

IlvSDMHierarchyExpandManager em=new IlvSDMHierarchyExpandManager(engine);

This acts on specific node properties such as longitude, latitude, and visible, and pseudo
classes such as expanded or collapsed.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6174

Automatic expansion and collapse of symbol groups

Once the manager is created, you can specify at which scale the expansion will trigger for
each level in the hierarchy. For example, use the following line to specify that root level
groups will be expanded below the scale 1/2 000 000:

em.addHierarchyLevelExpansionScale(0,2000000);

Or to specify that level 1 groups will be expanded below the scale 1/1 000 000:

em.addHierarchyLevelExpansionScale(1,1000000);

You then need to use the manager to listen to view changes in scale, in order to trigger the
automatic collapse:

view.addTransformerListener(em);

Once this is done, the groups are collapsed (their children are recursively hidden and the
group itself is shown) or expanded (the group is hidden, but the child nodes are shown)
automatically.

This is illustrated in the following figures.

The following figure shows a map with a scale of 1/20 000 000 in which only the root level
groups are visible:

Root level groups visible

The following figure shows a map with a scale of 1/10 000 000 in which the level 1 groups
are visible:

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 175

Level 1 groups visible

The following figure shows a map with a scale of 1/5 000 000 in which the level 2 groups
are visible:

Level 2 groups visible

This manager manages the collapsed and expanded SDM pseudo classes, if you need to set
up specific styling rules using the Diagrammer designer.

In contrast to the SDM IlvExpandCollapseRenderer class, the manager does not provide
additional decoration when a group is collapsed, and does not use subgraphs to manage
children.

Note that using this automatic expansion and collapse will change the visibility of the groups
and nodes, and will dynamically change any element visibility settings defined by your users.

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6176

Automatic displacement of groups and their children

In addition, the manager provides features that compute and enforce group/child location
relationships when one or the other is moved:

em.setAutoComputeGroupLocation(true);

Moving a group
When the user interactively moves a group, the children belonging to that group are all
moved using the same offsets.

The following figure shows how the children are moved when the group is moved.

Moving a group

Moving children
When the user interactively moves the children of a group to a new position, the
corresponding group is moved accordingly.

The following figure shows how the group is moved when the children are moved.

Moving children

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6 177

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6178

A
ARC 10
ASRP

data source 60
data source, creating 12
format 10
images, creating from 12
reader 11, 12
tiling 12

C
CADRG

coverages 30
data source 60
data source, creating 30
format 18
images, creating from 30
load-on-demand 18, 22, 26
reader 23
tiling 26, 31
using 27, 30

catalog, DAFIF 58
catalog, S57 59
creating

S57 vector data 50, 52

D
DAFIF

catalog 58
data source 58
using 36

data source
ASRP 12, 60
CADRG 30, 60
DAFIF 58
raster 60
S57 59
USRP 16, 60

vector 55
VMAP 44, 45, 57

database
VMAP 57

DIGEST 10

F
file, S57 59
format, S57 48

I
IHO 48
IlvCADRGCoverage class 23, 26
IlvCADRGCoverageList class 30
IlvCADRGFrame class 23
IlvCADRGFrameReader class 18, 22, 24
IlvCADRGFramereader object 25
IlvCADRGLayer class 18, 22, 26
IlvCADRGTocReader class 18, 22
IlvDAFIFDataSource 34, 37, 38
IlvDAFIFDataSource class 37
IlvDAFIFReader 34, 36
IlvDAFIFReader class 35
IlvDefaultImageRenderer object 24
IlvFeatureRenderer 36
IlvFeatureRenderer class 42, 50
IlvMapFeature 11, 15
IlvMapFeature class 24
IlvMapFeatureIterator 11, 15
IlvMapFeatureIterator class 35, 41
IlvMapFeatureIterator interface 24, 49
IlvMapImage type 11, 15, 24
IlvMapLoader class 23
IlvRasterASRPReader 11, 12
IlvRasterCADRGReader class 26, 29, 30
IlvRasterIcon instance 12, 16, 31
IlvRasterUSRPReader class 15
IlvS57DataSource class 51

© Copyright IBM Corp. 1987, 2009 179

I N D E X

Index

IlvS57DataSource instance 48
IlvS57DataSource object 52
IlvS57Reader class 49
IlvS57Reader instance 48
IlvS57Reader object 50
IlvVMAPDataSource class 40, 44, 45
IlvVMAPReader instance 40, 42

L
load-on-demand

CADRG 18, 22, 26
VMAP 44, 45, 57

R
raster data source 60
reader

ASRP 9
CADRG 17
DADIF 33
S57 47
USRP 13
VMAP 39

S
S57

catalog 59
data files 48
data source 59
file 59
format 48
reader 47
vector data, creating 50, 52

T
tiling

ASRP 12
CADRG 26, 31
USRP 16
VMAP 40, 57

U
USRP

data source 60
data source, creating 16
format 14
images, creating from 16
reader 15, 16
tiling 16

V
vector data source 55
VMAP

data source 57
data source, creating 44, 45
database 57
images, creating from 42, 45
load-on-demand 44, 45
tiling 40, 57

I B M ® I L O G ® J V I E W S M A P S F O R D E F E N S E 8 . 6180

	Table of contents
	Readers and writers
	Overview
	The ASRP reader
	Overview
	The IlvRasterASRPReader class
	Using the IlvRasterASRPReader class to create images

	The USRP reader
	Overview
	The IlvRasterUSRPReader class
	Using the IlvRasterUSRPReader class to create images

	The CADRG reader
	Overview
	Classes for reading the CADRG format
	Overview
	The IlvCADRGTocReader class and the CADRG model
	The IlvCADRGFrameReader class
	Creating an IlvCADRGFrameReader object
	The IlvCADRGLayer class
	Example of using the CADRG reader to read frames and create layers

	The IlvRasterCADRGReader class
	Using the IlvRasterCADRGReader class to create images

	The DAFIF reader
	Overview
	The IlvDAFIFReader class
	Using the IlvDAFIFReader class to create vector data
	The IlvDAFIFDataSource class
	Using the IlvDAFIFDataSource class to create vector data

	The VMAP Reader
	Overview
	The IlvVMAPReader class
	Using the IlvVMAPReader class to create images
	The IlvVMAPDataSource class
	Using the IlvVMAPDataSource class to create vector data

	The S57 Reader
	Overview
	The IlvS57Reader class
	Using the IlvS57Reader class to create vector data
	The IlvS57DataSource class
	Using the IlvS57DataSource Class to Create Vector Data

	Creating defense data source objects
	Vector data sources
	Overview
	Creating a data source from a VMAP database
	Creating a data source from a DAFIF file
	Creating a Data Source from an S57 File or Catalog

	Raster data sources

	Map Defense GUI interactors
	Overview
	Line of Sight interactor
	Overview
	Creating and installing the Line of Sight interactor
	Using the Line of Sight interactor
	Altitude Visibility Chart bean

	Area of Sight interactor
	Overview
	Creating and Installing the Area of Sight interactor
	Using the Area of Sight interactor

	Gradient interactor
	Overview
	Creating and Installing the Gradient interactor
	Using the Gradient interactor

	Valleys and Elevated Areas interactor
	Overview
	Creating and installing the Valleys and Elevated Areas interactor
	Using Valleys and Elevated Areas interactor

	Terrain Cut interactor
	Overview
	Creating and installing the Terrain Cut interactor
	Using the Terrain Cut interactor
	Altitude Chart bean

	3D View interactor
	Overview
	Creating and installing the 3D View interactor
	Using the 3D View interactor
	3D View bean

	Fly Through interactor
	Overview
	Creating and installing the Fly Through interactor
	Using the Fly Through interactor

	Symbol Unclutterer interactor
	Overview

	Creating and installing the Symbol Unclutterer interactor
	Customizing the Symbol Unclutterer interactor

	Using the GUI beans
	Overview
	The Altitude Visibility Chart bean
	Overview
	Integrating the Altitude Visibility Chart bean into an Application

	The Altitude Chart bean
	Overview
	Integrating the Altitude Chart bean into an application

	The 3D View bean
	Overview
	Integrating the 3D View bean into an application
	Displaying a part of the map in a 3D View

	The Fly Through action
	Overview
	Integrating the Fly Through action into an application

	Using Terrain Analysis
	Lines of Sight and Altitude Visibility charts
	Terrain Cut and Altitude charts
	Gradient, Valley and Elevated Areas, and Area of Sight computations
	Overview
	Using Gradient, Valley and Elevated Areas, and Area of Sight computations

	Building and displaying a 3D View of a map
	Overview
	Building the 3D terrain
	Displaying the 3D scene
	Adding Symbology to the 3D Model
	Adding 3D components
	Overview
	Adding an Ilv3DSphere or Ilv3DHemisphere
	Adding an Ilv3DCorridor
	Adding an Ilv3DLabel
	Adding an Ilv3DExtrudedPolygon

	Extending the API
	Adding new 3D components
	Customizing OpenGL rendering by adding custom lighting for 3D components

	Fly Through paths

	Symbology
	Creating and managing APP-6a symbols
	APP-6a symbols
	Symbol identification coding scheme
	Symbol modifiers
	SDM design and APP-6a symbols
	Developing with APP-6a symbols
	The IlvApp6aSymbol class
	Symbol properties
	Displaying a symbol
	The IlvApp6aSymbologyTreeViewActions class

	Managing groups of symbols automatically
	Overview
	Automatic expansion and collapse of symbol groups
	Automatic displacement of groups and their children

	Index

