
IBM ILOG JViews Maps V8.6

Building Web Applications

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright notices

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

IBM ILOG JViews Maps copyright

For further copyright information see <installdir> /license/notices.txt

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing the Web technologies used in JViews Maps.......................................7
Overview..8

Thin client applications...9
Thin client application designs...10
Ajax-enabled components..11

Rich Web applications...13
Overview...14
Applets...15
Java Web Start applications...16

Using DHTML-based JSF Components to build Web applications......................17
Overview..18

The architecture of JViews Maps Faces..19
About support for JViews Faces...20
Servlet and component classes...22

The JViews Maps Faces component set...25
Overview...28
Creating simple views...29
Creating a Google Maps view..31
Controlling the display of the view..33
Zoom constraints..35
Zoom levels and dynamic layers..37

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Tiling the view...38
Visible layers...40
Image maps..42
Adding a popup menu..44
Styling the popup menu..47
Adding a legend...48
Adding a Message Box...49
Adding an Overview...50
Adding a Pan Tool and a Zoom Tool...51
Server-side caching..52
Managing the session expiration..53
The map view as a Diagrammer view..54
JViews Maps project...55
JViews Diagrammer Designer Project..56
Data Source Binding..57
Styling with CSS...59
Installing Interactors...60
Select Interactor...61
Creating nodes and links..66
Deleting selected nodes and links..67
Dashboard diagram..68

JavaScript objects...69

Contexts for actions on the view...71
Overview...72
JavaServer Faces lifecycle context...73
Image servlet context...76

Integrating JViews Faces in your environment..77
JViews Faces configuration at JViews Framework level...78
Session persistence...80
Running JViews Faces components in JSR 168 portlets...81
Guide to using JViews components with ICEfaces..85

Settings for using JViews components in ICEfaces..86
Interoperability between JViews components and ICEfaces components..87
Push updates to JViews components...88
ICEfaces software in JViews...89

Supporting Facelets and Trinidad...90
Web Application Server support...91

Deploying a JViews Maps application as a DHTML-only thin client....................93
JavaServer Faces components as opposed to DHTML thin client.......................................94

Thin-client classes for the server side..95
Overview...96

I B M ® I L O G ® J V I E W S M A P S 8 . 64

The IlvMapServlet class...97
The IlvMapServletSupport class..98

Deploying an application as a DHTML-only thin client..99
JavaServer Faces components as opposed to DHTML thin client...101
Thin-client library..102
Creating a thin-client application..103
Thin-client classes for the server side..105

The IlvDiagrammerServlet class...106
The IlvDiagrammerServletSupport class..107

Writing the client side of Web applications using JViews Diagrammer..108
Managing selection..109
Creating nodes and links..113

Overview...114
Client-side configuration..115
Server-side configuration..116

Deleting selected nodes and links..117
Overview...118
Client-side configuration..119
Server-side configuration..120

Index..121

I B M ® I L O G ® J V I E W S M A P S 8 . 6 5

I B M ® I L O G ® J V I E W S M A P S 8 . 66

Introducing the Web technologies used in
JViews Maps

This document provides information on how to deploy your application as an Internet-based
application. It discusses the two major categories of Internet applications: thin client
applications and rich Web applications.

In this section

Overview
Gives an overview of Internet-based applications.

Thin client applications
Describes thin client applications and use of JViews Faces components.

Rich Web applications
Introduces rich Web applications.

© Copyright IBM Corp. 1987, 2009 7

Overview

The versatility of Java™ deployment was one of the key factors driving the adoption of Java.
For many years, Java has been recognized for its multiplatform capabilities, for example,
running on both Microsoft® Windows® and Linux® . Java covers a wide spectrum of
execution environments, from traditional desktop environments to Internet-based applications.

I B M ® I L O G ® J V I E W S M A P S 8 . 68

Thin client applications

Describes thin client applications and use of JViews Faces components.

In this section

Thin client application designs
Gives an overview of what thin client applications are.

Ajax-enabled components
Describes the use of Ajax-enabled JViews components in Web applications.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 9

Thin client application designs

As their name implies, thin client applications deploy minimal code on the clients and rely
heavily on the server to deal with user interactions and to respond with corresponding
displays.

In such application designs, application deployment is transparent and updates are
immediately available to all users. Application management can be centralized on a few
localized servers. Thus it requires fewer administration resources and helps to maximize
the availability of the application.

Against these advantages, you must weigh the most common drawbacks, which are:

♦ The relatively slow reaction of the application to user input.

♦ Poor server scalability for handling a large user base.

♦ Poor to no offline capability.

♦ Lack of advanced interactive graphics: since the local processing power is not leveraged,
the user’s machine is used only to display Web pages.

JViews Maps provides advanced capabilities for such application designs. It relies on
JavaServer™ Faces (JSF) as the server-side component model and Dynamic HTML (DHTML)
as the client-side display technology. This combination facilitates development work and
provides easier integration with third-party components and tools.

Going beyond simple thin clients, JViews Maps thin client leverages the local execution
capabilities of JavaScript™ to provide an advanced user experience; for demanding
interactions, Asynchronous JavaScript And XML concepts, or Ajax, are applied.

I B M ® I L O G ® J V I E W S M A P S 8 . 610

Ajax-enabled components

With JViews Maps Faces components and JavaScript™ you can develop a new generation
of highly responsive, highly interactive Web applications. The high responsiveness is
achievable through Ajax, which supports asynchronous and partial refreshes of a Web page.
A partial refresh means that when an interaction event fires, a Web server processes the
information and returns a response specific to the data it receives. The server does not send
back an entire page to the client of the Web application.

Why asynchronous? The client can continue processing while the server processes in the
background. A user can continue interacting with the client without noticing latency in the
response. The client does not have to wait for a response from the server before continuing,
as in the traditional synchronous approach.

SeeUsing DHTML-based JSF Components to build Web applications and Deploying a JViews
Maps application as a DHTML-only thin client for more information about these deployment
strategies.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 11

I B M ® I L O G ® J V I E W S M A P S 8 . 612

Rich Web applications

Introduces rich Web applications.

In this section

Overview
Gives an overview of what rich Web applications are.

Applets
Introduces applets.

Java Web Start applications
Introduces Java™ Web Start applications.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 13

Overview

In the last few years, rendering technologies such as Flash® or Scalable Vector Graphics
(SVG) have emerged to overcome some user interaction issues and display limitations found
with the DHTML rendering described in Thin client application designs. In parallel, the role
of the client has been promoted to further leverage local processing power through
JavaScript™ . The objective is to improve user experience on the client and scalability on
the server and has led to the Ajax concept.

In such designs, servers are partially offloaded to focus mainly on data handling and less
on screen generation.

JViews Maps helps you to develop such applications as:

♦ Applets

♦ Java™ Web Start Applications

I B M ® I L O G ® J V I E W S M A P S 8 . 614

Applets

An applet is a traditional Java™ application that is wrapped as an applet and automatically
transferred by the server as needed.

Thus it retains the advantages of the thin client, provides more advanced user interactions,
and minimizes the server workload. The main drawbacks are that a Java virtual machine
needs to be installed in each execution environment and initial loading time can be long and
stressful for networks, since applications can be many megabytes.

When developing a JViews Maps application using this approach, see Programming with
JViews Maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 15

Java Web Start applications

Like applets, Java™ Web Start applications allow for traditional development techniques,
but applications have off-line capabilities and are cached locally in the execution environment.

They minimize start-up time and network bandwidth requirements, since servers only
distribute an application when updates are available. The major known drawback is the
need to install a Java Web Start environment that can be transparently streamed, but is
sometimes blocked by some network security policies.

When developing a JViews Maps application using this approach, see Programming with
JViews Maps and the Java Web Start documentation at
http://java.sun.com/products/javawebstart/developers.html.

I B M ® I L O G ® J V I E W S M A P S 8 . 616

http://java.sun.com/products/javawebstart/developers.html

Using DHTML-based JSF Components to
build Web applications

Shows how to use the components of IBM® ILOG® JViewsMaps Faces to create JavaServer™
Pages (JSP™) compliant with JavaServer Faces (JSF).

In this section

Overview
Shows you how to use the components of JViews Maps Faces to create JavaServer™ Pages
compliant with JavaServer Faces.

The architecture of JViews Maps Faces
Presents an overview of the architecture of JViews Maps Faces.

The JViews Maps Faces component set
Illustrates how to use the Faces components of JViews Maps.

JavaScript objects
Describes the use of JavaScript™ objects.

Contexts for actions on the view

Integrating JViews Faces in your environment
Provides information about configuring a JSF application in the application server, session
persistence, JSR 168 portlets, ICEfaces, and Facelets and Trinidad.

© Copyright IBM Corp. 1987, 2009 17

Overview

This section shows you how to use the components of JViews Maps Faces to create
JavaServer™ Pages (JSP) compliant with JavaServer Faces (JSF). JViews Maps Faces
Components are available as a set of classes and a tag library. A set of renderers generate
DHTML code for rendering the components. The components also use servlet technology
to generate images to be transferred to the client.

JViews Maps Faces provide Ajax-enabled components for developing highly responsive and
interactive Web applications.

I B M ® I L O G ® J V I E W S M A P S 8 . 618

The architecture of JViews Maps Faces

Presents an overview of the architecture of JViews Maps Faces.

In this section

About support for JViews Faces
Describes thin-client support based on JavaServer™ Faces (JSF) technology.

Servlet and component classes
Identifies servlet and component classes for generating the visual representation of the
component.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 19

About support for JViews Faces

The thin-client support based on JavaServer™ Faces (JSF) support consists of:

♦ The tag library (a set of JSP™ tags)

♦ A Java™ API

♦ A set of DHTML objects

The JSP™ tags are used to build JSP pages. Each tag represents a component and has a set
of attributes for configuring the component.

Not all the components have a visual representation. For example, an interactor is intended
only to be set on a view and has no visual representation.

When a tag is processed by the JSP engine, it is compiled into Java code that is executed to
produce the page content. The tag library produces DHTML objects. Each object can be
referenced by JavaScript™ code and can be modified on the client side without a server
roundtrip.

See the Release Notes for the Web browsers and versions with which the JViewsMaps Faces
components are compatible.

Component set of JViews Maps Faces
The JViews Maps Faces component set includes:

♦ A view

♦ A legend tool

Component set of JViews Diagrammer Faces
The JViews Diagrammer Faces component set includes:

♦ A view

♦ An overview

♦ A pan tool

♦ A zoom tool

♦ A set of interactors

♦ A popup menu

Component set of JViews Framework Faces
The JViews Framework Faces component set includes:

♦ A view

I B M ® I L O G ® J V I E W S M A P S 8 . 620

♦ An overview

♦ A pan tool

♦ A zoom tool

♦ A set of interactors

I B M ® I L O G ® J V I E W S M A P S 8 . 6 21

Servlet and component classes

JSF components in JViews Maps use servlet technology to produce the images that are the
visual representation of the component on the client side. Dedicated servlet, servlet support,
and components are available to help create an application.

I B M ® I L O G ® J V I E W S M A P S 8 . 622

Servlet and component classes in JViews Maps
DescriptionName

A dedicated
IlvFacesDiagrammerServlet.

In package ilog.views.maps.servlet:
IlvFacesMapsServlet

A dedicated
IlvFacesDiagrammerServletSupport.

In package ilog.views.maps.servlet:
IlvFacesMapsServletSupport

A dedicated IlvFacesMapsServletIn package ilog.views.maps.servlet:
IlvFacesGoogleViewServlet

A dedicated
IlvFacesMapsServletSupport

In package ilog.views.maps.servlet:
IlvFacesGoogleViewServletSupport

A diagram view with additional support
for maps. A dedicated
IlvFacesDHTMLDiagrammerView

In package ilog.views.maps.faces.dhtml.component:
IlvFacesDHTMLMapView

A map view overlayed on Google
Maps™ thin client.

In package ilog.views.maps.faces.dhtml.component:
IlvFacesGoogleViewComponent

The layer tool is a display tool that allows
the user to change the visible layers.

In package ilog.views.maps.faces.component:
IlvFacesLayerVisibilityTool

Servlet and component classes in JViews Diagrammer
DescriptionName

A dedicated IlvDiagrammerServlet.ilog.views.diagrammer.faces.dhtml.servlet.
IlvFacesDiagrammerServlet

A dedicated
IlvDiagrammerServletSupport.

ilog.views.diagrammer.faces.dhtml.servlet.
IlvFacesDiagrammerServletSupport

A diagram view component extended to
have DHTML rendering.

ilog.views.diagrammer.faces.dhtml.component.
IlvFacesDHTMLDiagrammerView

An interactor that allows you to select a
node or a link in the JSF context by
clicking the image.

ilog.views.diagrammer.faces.dhtml.interactor.
IlvFacesNodeOrLinkSelectInteractor

An interactor that allows you to select
nodes and links in the JSF context by
dragging a rectangle on the image.

ilog.views.diagrammer.faces.dhtml.interactor.
IlvFacesNodeOrLinkSelectRectInteractor

An interactor that allows you to select and
move nodes and links in the JSF context.

ilog.views.diagrammer.faces.dhtml.interactor.
IlvFacesSelectInteractor

A component that allows users to
configure how selection management on

ilog.views.diagrammer.faces.dhtml.component.
IlvFacesDiagrammerSelectionManager

the IlvFacesDHTMLDiagrammerView
works.

The diagram component also uses the following component classes of the JViews Framework:

♦ IlvFacesDHTMLOverview

I B M ® I L O G ® J V I E W S M A P S 8 . 6 23

♦ IlvFacesZoomTool

♦ IlvFacesPanTool

♦ IlvFacesPanInteractor

♦ IlvFacesZoomInteractor

♦ IlvFacesContextualMenu

Servlet and component classes in JViews Framework
DescriptionName

A dedicated IlvManagerServlet.IlvFacesManagerServlet

A dedicated
IlvManagerServletSupport.

IlvFacesManagerServletSupport

A view component extended to have
DHTML rendering.

IlvFacesDHTMLView

An overview component.IlvFacesDHTMLOverview

A tool that allows you to choose a view
zoom level.

ilog.views.faces.component. IlvFacesZoomTool

A tool that allows you to pan in each
direction and to fit the view.

ilog.views.faces.component. IlvFacesPanTool

An interactor that allows you to zoom the
view.

ilog.views.faces.interactor. IlvFacesZoomInteractor

An interactor that allows you to pan the
view.

ilog.views.faces.interactor. IlvFacesPanInteractor

An interactor that allows you to execute
an action in the servlet context by clicking
the image.

ilog.views.faces.interactor. IlvFacesMapInteractor

An interactor that allows you to execute
an action in the servlet context by dragging
a rectangle on the image.

ilog.views.faces.interactor.IlvFacesMapRectInteractor

An interactor that allows you to execute
an action in the JSF context by clicking
the image.

ilog.views.faces.dhtml.interactor.
IlvFacesObjectSelectInteractor

An interactor that allows you to execute
an action in the JSF context by dragging
a rectangle on the image.

ilog.views.faces.dhtml.interactor.
IlvFacesObjectSelectRectInteractor

A contextual popup menu.ilog.views.faces.component. IlvFacesContextualMenu

I B M ® I L O G ® J V I E W S M A P S 8 . 624

The JViews Maps Faces component set

Illustrates how to use the Faces components of JViews Maps.

In this section

Overview
Shows the class relationships of the Faces component set.

Creating simple views
Explains how to create various types of simple view.

Creating a Google Maps view
Explains how to use the JViews Maps Faces Google™ View component to display a Google™
Map in a page.

Controlling the display of the view
Explains how to control the visible area of a view and how to reset or change it.

Zoom constraints
Explains zoom factors and the constraints on zooming and panning.

Zoom levels and dynamic layers
Explains fixed and dynamic zoom layers.

Tiling the view
Explains how to set a tile size and other attributes in order to use tiling in a view.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 25

Visible layers
Describes how to use the visibleLayers property to specify the manager layers displayed
by a view.

Image maps
Explains how to add an image map to an image on the client side.

Adding a popup menu
Explains how to add a popup menu.

Styling the popup menu
Explains how to use CSS classes to set popup menu properties for styling purposes.

Adding a legend
Explains how to add a legend.

Adding a Message Box
Shows how to connect a message box to your diagram.

Adding an Overview
Shows how to add an overview to display the global area and a rectangle that corresponds
to the visible area in the main view.

Adding a Pan Tool and a Zoom Tool
Shows how to add a pan tool or zoom tool to the view to allow panning and zooming.

Server-side caching
Describes how to use server-side caching with a tiled view.

Managing the session expiration
Describes the implications of session expiration and how to keep a user session alive when
it is about to expire.

The map view as a Diagrammer view
Presents the map view as a Diagrammer view.

JViews Maps project
Shows how to configure the content of a map view.

JViews Diagrammer Designer Project
Shows how to configure the style and data source of a diagram component by setting a
Designer project.

Data Source Binding
Shows how to connect a data source component to the diagram.

Styling with CSS
Shows how to customize the way the data source is displayed using Cascading Style Sheets
(CSS).

I B M ® I L O G ® J V I E W S M A P S 8 . 626

Installing Interactors
Shows how to install an interactor on the view to interact with it.

Select Interactor
Describes the select interactor, used to select one or more objects and move them without
performing a full screen refresh.

Creating nodes and links
Shows how to create nodes and links on the view.

Deleting selected nodes and links
Shows how to delete selected nodes and links on the view.

Dashboard diagram
Shows how to add a dashboard component to the view.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 27

Overview

The class relationship of the JViews Maps Faces component set is shown in JViews Maps
Faces Component Set UML Diagram.

JViews Maps Faces Component Set UML Diagram

I B M ® I L O G ® J V I E W S M A P S 8 . 628

Creating simple views

The view component is the central component of a JViews Faces application. All the other
components depend on or interact with this view. The first and simplest page that can be
made with a JViews Faces component is an empty view.

Creating a map view
The map view extends the diagram view, so the common overview, zoom tool, pan tool, and
interactor components are compatible.

Creating an empty view
To specify an empty view:

<jvmf:mapView style="width:500px; height:300px;" />

This produces a 500 by 300 pixel view.

Declaring the namespace
The namespace jvmf (for JViews Maps Faces) must be declared in the page.

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-maps-faces.tld
prefix="jvmf" %>

Using the width and height attributes
Using the style to specify the size of the component is preferable, but an alternative is to
use the width and height attributes.

<jvmf:mapView width="500" height="500" />

Creating a diagram view
The diagram view extends the common view so the common overview, zoom tool, pan tool,
and interactor components are compatible.

Creating an empty view
To specify an empty view:

<jvdf:diagrammerView style="width:500px; height:300px;" />

This produces a 500 by 300 pixel view.

Declaring the namespace
The namespace jvdf (for JViews Diagrammer Faces) must be declared in the page as follows:

<%@ taglib

I B M ® I L O G ® J V I E W S M A P S 8 . 6 29

uri="http://www.ilog.com/jviews/tlds/jviews-diagrammer-faces.tld"
prefix="jvdf" %>

Using the width and height attributes
Using the style to specify the size of the component is preferable, but an alternative is to
use the width and height attributes.

<jvdf:diagrammerView width="500" height="500" />

Creating a view at the JViews Framework level
This view can be extended to make more specific components.

Creating an empty view
Specify an empty view.

<jvf:view style="width:500px; height:300px;" />

This produces a 500 by 300 pixel view.

Declaring the namespace
The namespace jvf (for JViews Framework Faces) must be declared in the page as follows:

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-framework-faces.tld"
prefix="jvf" %>

Using the width and height attributes
Using the style to specify the size of the component is preferable, but an alternative is to
use the width and height attributes.

<jvf:view width="500" height="500" />

I B M ® I L O G ® J V I E W S M A P S 8 . 630

Creating a Google Maps view

A simple page that can be made with the JViews Maps Faces Google™ View component is
to display a Google™ Map in the page.

Creating a simple Google Maps view
<jvmf:googleView style="width:500 px; height:300 px;" level="6" lon="-100"
lat="40"
key="myGoogleMapKey"/>

This produces a 500 by 300 pixel view, centered on 40°N 100°W, at a zoom level of 7.

Declaring the namespace
The namespace jvmf (for JViews Maps Faces) must be declared in the page:

<%@ taglib
uri="http://www.ilog.com/jviews/tlds/jviews-maps-faces.tld
prefix="jvmf" %>

The Google View component makes use of the Google Maps API (client side). The Google
key provided in the component should contain a valid application key in order to allow the
component to display on any server (apart from the localhost). To retrieve that key, you
need to access http://code.google.com/apis/maps/signup.html, “Sign Up for the Google Maps
API” and register your key before using the JViews Google Maps component.

An alternative to specifying the size of the component is to use the width and height
attributes, but using the style is preferable.

Using the Width and Height attributes
<jvmf:googleView width="500" height="300" level="6" lon="-100" lat="40"
key="myGoogleMapKey"/>

In some environments, for example those that use PPR (Partial Page Refresh), you
may have to register the key in a separate statement, and not use it in the component
tag itself.

Note:

Pre-declaring the Google Maps key in trinidad
For example, in trinidad:

<trh:script source="http://maps.google.com/maps?file=api&v=2&2=mykey" />
...
<tr:showDetailItem text="Background map">
<jvmf:googleView id="mapID" level="7" style="width:500px;height:300px" data="/
data/world.ivl" />
</tr:showDetailItem>

The overview, zoom tool, pan tool, and interactors common component are not compatible
with this view, but are provided through the use of Google Maps Controls. You can select
the controls to display with the controls attribute (see http://code.google.com/apis/maps/
documentation/controls.html).

I B M ® I L O G ® J V I E W S M A P S 8 . 6 31

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/documentation/controls.html
http://code.google.com/apis/maps/documentation/controls.html

The main use of this JSF component is to overlay JViews map layers, symbols and links on
a Google Maps background. This can be done through the data attribute. In this case, the
lat and lon attributes are not longer necessary - The Google map component will be, by
default, centered on the JViews data.

You can also indicate that you allow the user to move the overlaid symbols with the
nodeMovable attribute. If this flag is set, each interaction of the user will affect the server
side location of symbols, effectively modifying their location.

Using JViews map layers and Google Maps controls
<jvmf:googleView id="gmapID"

key="some Google Maps Key"
style="width:500px;height:500px" data="/data/usa.idpr"
controls="GLargeMapControl,GOverviewMapControl" nodeMovable="true"
level="7" />

The only other JViews component that can be used in relation with the Google Maps view
is the legend tool. This allows the user to select which overlaid layers should be visible. All
the other JViews interactors and dependent views will have no effect.

Using JViews map layers tool with a Google Maps view
<jvmf:layerTool id="layerTool" title="Google View Layers" viewId="gmapID"

enabled="true" />

I B M ® I L O G ® J V I E W S M A P S 8 . 632

Controlling the display of the view

The boundingBox property specifies the area in manager coordinates represented by the
view. This property can be used to set the initial visible area.

The changeBoundingBox property can be used during a JSF action to reset or modify the
visible area.

JViews Maps
This section shows the use of the boundingBox and changeBoundingBox properties.

Setting the initial visible area of the view
The following code example shows how to control the initial display of the view.

<jvmf:mapView [...] boundingBox="0,0,100,200"/>

Resetting or changing the visible area of the view
The following code example shows how to reset or change the visible area of the view.

public class MapBean {
[...]

public void changeBoundingBox() {
IlvFacesMapsView jsfView = getJSFViewComponent();
jsfView.setBoundingBox(new IlvRect(0,0,100,100));

}
}

JViews Diagrammer
This section shows the use of the boundingBox and changeBoundingBox properties.

Setting the initial visible area of the view
The following code example shows how to control the initial display of the view.

<jvdf:diagrammerView [...] boundingBox="0,0,100,200"/>

Resetting or changing the visible area of the view
The following code example shows how to reset or change the visible area of the view.

public class DiagrammerBean {
[...]

public void changeBoundingBox() {
IlvFacesDHTMLDiagrammerView jsfView = getJSFViewComponent();
jsfView.setBoundingBox(new IlvRect(0,0,100,100));

I B M ® I L O G ® J V I E W S M A P S 8 . 6 33

}
}

At the JViews Framework level
This section shows the use of the boundingBox and changeBoundingBox properties.

Setting the initial visible area of the view
The following code example shows how to control the initial display of the view.

<jvf:view [...] boundingBox="0,0,100,200"/>

Resetting or changing the visible area of the view
The following code example shows how to reset or change the visible area of the view.

public class FrameworkBean {
[...]

public void changeBoundingBox() {
IlvFacesDHTMLView jsfView = getJSFViewComponent();
jsfView.setBoundingBox(new IlvRect(0,0,100,100));

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 634

Zoom constraints

When the zoom level is equal to 1, the manager content is adjusted to the bounds of the JSF
view so as to be displayed entirely. Consequently, a zoom level of n means that the content
is scaled by a factor of n. For example, a zoom factor of 2 means that the manager content
is displayed double its size.

By default, the view is constrained by the manager content bounds. The direct consequences
are that:

♦ Pan actions or zoom interactions cannot go out of the manager content bounds.

♦ The view zoom level cannot be lower than 1.

This constraint can be removed by setting the constrainedOnContents property to false.

The zoom level applied to the view by using the zoom interactor of JavaScript™ zoom actions
can be free or constrained to specified zoom levels. In the free zoom mode, the only
constraints are the minimum and maximum zoom levels. The default value of the minimum
zoom level is set to 1 and the default value of the maximum zoom level is set to 10. These
constraints can be customized with the minZoomLevel and the maxZoomLevel properties
respectively.

By default, the minimum zoom level cannot be lower than 1.Note:

To specify fixed zoom levels, use the zoomLevels property.

When this property is set:

♦ The minZoomLevel and maxZoomLevel properties are ignored.

♦ The minZoomLevel becomes the first zoom level and the maxZoomLevel the last zoom level
in the list.

♦ The zoom interactor will fit to the nearest zoom level.

♦ The built-in zoom actions on the JavaScript view proxy use these fixed zoom levels.

Fixed zoom levels must be used in order for a tiled view to be cached on the client-side.

JViews Diagrammer
This section shows how to use these properties in JViews Diagrammer Faces.

Removing the constraint on the manager content

<jvdf:diagrammerView constrainedOnContents="false" [...] />

Customizing the minimum and maximum zoom levels in free zoom mode

<jvdf:diagrammerView minZoomLevel="2" maxZoomLevel="20" [...] />

I B M ® I L O G ® J V I E W S M A P S 8 . 6 35

Specifying fixed zoom levels

<jvdf:diagrammerView zoomLevels="1.0, 2.0, 5.0, 10.0" [...] />

At the JViews Framework level
This section shows how to use these properties at the JViews Framework level.

Removing the constraint on the manager content

<jvf:view constrainedOnContents="false" [...] />

Customizing the minimum and maximum zoom levels in free zoom mode

<jvf:view minZoomLevel="2" maxZoomLevel="20" [...] />

Specifying fixed zoom levels

<jvf:view zoomLevels="1.0, 2.0, 5.0, 10.0" [...] />

I B M ® I L O G ® J V I E W S M A P S 8 . 636

Zoom levels and dynamic layers

Fixed zoom levels, which should be used if the view is tiled, must be set so that the client
can cache the tiles. This can be achieved in two different ways:

♦ Specify the thin client property scales in the Map Builder.

♦ Specify the zoom levels in the JSP™ tag using the zoomLevels property, for example:

<jvmf:mapView zoomLevels="1.0, 2.0, 5.0, 10.0" [...] />

Dynamic layers can also be specified in the Map Builder by setting the
THIN_CLIENT_BACKGROUND property to false. Layers that have their
THIN_CLIENT_BACKGROUND property set to true are then taken as static layers.

The JSP tag attribute overrides the scales and layer properties set in the Map Builder.
Be careful when setting the zoomLevels property and the staticLayers property,
if your map already contains scales and static layers specified in the Map Builder.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 37

Tiling the view

To implement tiling in the view you must specify the tile size. Other attributes, that
is, the zoom levels and the dynamic or static layers, must be set to make tiling fully
operational.

1. Specifying the tile size
To make tiling available in the view, you must specify a tile size. The tile size must be
carefully chosen because it can have a considerable and potentially critical impact on
performance. The larger the number of tiles needed because of their size relative to
the size of the view to be covered, the more simultaneous requests to be addressed
to the image servlet. There will also be more graphic objects to manage on the client
side.

If a server-side caching mechanism is implemented, such as pregenerated tiles, the
size must be consistent with the configuration of the server-side caching mechanism.
See IlvTileManager for more details about server-side caching mechanisms.

Setting the tile size parameter in JViews Maps

<jvmf:mapView [...] tileSize="256"/>

Setting the tile size parameter in JViews Diagrammer

<jvdf:diagrammerView [...] tileSize="256"/>

Setting the tile size parameter at the JViews Framework level

<jvf:view [...] tileSize="256"/>

2. Specifying the zoom levels
Specify the zoomLevels attribute to allow the client to cache the tiles for predefined
levels.

See Zoom constraints.

3. Specify the dynamic and static layers
Specify which layers are subject to changes (dynamic layers) and which layers are not
supposed to change (static layers). Static layers can be tiled and cached.

The staticLayersCount attribute allows you to specify howmany layers at the bottom
of the JViews Faces view component are static.

Specifying static layers in JViews Maps
The static and dynamic layer list is determined automatically by
IlvFacesMapsServletSupport according to the value of the layer style property
ThinClientBackground.

Specifying static layers in JViews Diagrammer

<jvdf:diagrammerView [...] staticLayersCount="3"/>

I B M ® I L O G ® J V I E W S M A P S 8 . 638

Specifying static layers at the JViews Framework level

<jvf:view [...] staticLayersCount="3"/>

For more information on the use of tiling for building Web applications, see Tiling.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 39

Visible layers

The visibleLayers property contains the list of the names of the visible manager layers
displayed by the view.

At first, all the layers are visible by default. To specify the visible layers at initialization, use
the visibleLayers JSP™ tag attribute.

Then, if a JSF action adds or removes some layers, the values specified by this property can
be updated.

Visible layers in the map view
To specify the initial visible layers:

<jvmf:mapView [...] visibleLayers="layer1,layer2,layer3" />

To update the list of visible layers:

public class MapBean {
[...]

public void addLayer() {
IlvFacesMapsView jsfView = getJSFViewComponent();
//Adds a new visible layer.
ArrayList list = jsfView.getVisibleLayers();
list.add(newLayer.getName());
jsfView.setVisibleLayers(list);

}
}

Visible layers in the diagram view
To specify the initial visible layers:

<jvdf:diagrammerView [...] visibleLayers="layer1,layer2,layer3" />

To update the list of visible layers:

public class DiagrammerBean {
[...]

public void addLayer() {
IlvFacesDHTMLDiagrammerView jsfView = getJSFViewComponent();
//Adds a new visible layer.
ArrayList list = jsfView.getVisibleLayers();
list.add(newLayer.getName());
jsfView.setVisibleLayers(list);

}
}

Visible layers at the JViews Framework level
To specify the initial visible layers:

I B M ® I L O G ® J V I E W S M A P S 8 . 640

<jvf:view [...] visibleLayers="layer1,layer2,layer3" />

To update the list of visible layers:

public class FrameworkBean {
[...]

public void addLayer() {
IlvFacesDHTMLView jsfView = getJSFViewComponent();
//Adds a new visible layer.
ArrayList list = jsfView.getVisibleLayers();
list.add(newLayer.getName());
jsfView.setVisibleLayers(list);

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 41

Image maps

The image map allows you to have images on the client-side with an attached map that points
out certain hot spots or clickable areas. A typical use case for image maps is for displaying
tooltips.

The role of the image map generator is to configure the attributes and JavaScript™ handlers
for each zone of the image map.

See IlvSDMImageMapAreaGenerator and the associated sampleDiagram Gallery for details
of how to implement an image map object in JViews Diagrammer.

See IlvImageMapAreaGenerator and the associated sample Using a Manager View for
details of how to implement an image map object at the JViews Framework level.

JViews Diagrammer
Adding and displaying an image map
To add an image map and to display it, use the following code.

<jvdf:diagrammerView [..] generateImageMap="true"
imageMapGenerator="#{diagrammerBean.imapGenerator}"
imageMapVisible="true"/>

Showing or hiding an image map
You can use the JavaScript representation of the view to show or hide the image map.

<jvdf:diagrammerView [..] id="view"/>
<jv:imageButton id="bImgMap"

[...]
onclick="view.setImageMapVisible(bImgMap.isSelected

())"
toggle="true"
message="Show/Hide Tooltips" />

At the JViews Framework level
Adding and displaying an image map
To add an image map and to display it, use the following code.

<jvf:view [..] generateImageMap="true"
imageMapGenerator="#{frameworkBean.imapGenerator}"
imageMapVisible="true"/>

Showing or hiding an image map
You can use the JavaScript representation of the view to show or hide the image map.

<jvf:view [..] id="view" />
<jv:imageButton id="bImgMap"

[...]

I B M ® I L O G ® J V I E W S M A P S 8 . 642

onclick="view.setImageMapVisible(bImgMap.isSelected
())"

toggle="true"
message="Show/Hide Tooltips" />

Hiding an image map for use with interactors
The image map must be hidden to use interactors. The following code sample shows how
to hide the image map when another button in the same button group is clicked.

<jv:imageButton id="bZoom"

[...]
onclick="view.setInteractor(zoomInteractor)"

buttonGroupId="interactors"
message="Zoom" />

<jv:imageButton id="bImgMap"

[...]
onclick="view.setImageMapVisible(bImgMap.isSelected

())"
buttonGroupId="interactors"
doActionOnBGDeselect="true"
message="Show/Hide Tooltips" />

When the image map is displayed, the current interactor is disabled.To use interactors,
the image map must be hidden.

Note:

See JavaScript objects for more details on the client-side representation of
JSF-compatible components.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 43

Adding a popup menu

The popup menu component allows you to display a static or contextual popup menu when
the application user right-clicks in the view.

For use of menus in Facelets environments, see also Supporting Facelets and Trinidad.

Popup menu tag in the view tag
Since the popup menu is attached to a view, its JSP™ tag must be enclosed in the JSP tag
of the view.

The popup menu can be contextual or static. The following examples show contextual popup
menu tags used in the view tag.

The following code is for JViews Diagrammer.

<jvdf:diagrammerView [...] >
<jvf:contextualMenu [...]/>

</jvdf:diagrammerView>

The following code is for JViews Framework.

<jvf:view [...] >
<jvf:contextualMenu [...]>

</jvf:view>

Static popup menu
The menu displayed by the popup menu is static and fully on the client side.

To define a menu and menu items in JViews Diagrammer use the menu, menuItem, and
menuSeparator tags as shown in the following example.

<jvf:contextualMenu
<jv:menu label="root">
<jv:menuItem label="Zoom ..."

onclick="zoomButton.doClick()"
image="images/zoomrect.gif" />

<jv:menuItem label="Pan ..."
onclick="panButton.doClick()"
image="images/pan.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Zoom In"

onclick="viewID.zoomIn()"
image="images/zoom.gif" />

<jv:menuItem label="Zoom Out"
onclick="viewID.zoomOut()"
image="images/unzoom.gif"/>

<jv:menuItem label="Zoom to Fit"
onclick="viewID.showAll()"

I B M ® I L O G ® J V I E W S M A P S 8 . 644

image="images/zoomfit.gif"/>
<jv:menuSeparator/>
<jv:menuItem label="Select"

actionListener="#{diagrammerBean.action}"
actionListener="#{ganttBean.action}"
image="images/arrow.gif"
invocationContext="IMAGE_SERVLET_CONTEXT" />

</jv:menu>
</jvf:contextualMenu>

To define a menu and menu items at the JViews Framework level use the menu, menuItem,
and menuSeparator tags as in the following example.

<jvf:contextualMenu
<jv:menu label="root">
<jv:menuItem label="Zoom ..."

onclick="zoomButton.doClick()"
image="images/zoomrect.gif" />

<jv:menuItem label="Pan ..."
onclick="panButton.doClick()"
image="images/pan.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Zoom In"

onclick="viewID.zoomIn()"
image="images/zoom.gif" />

<jv:menuItem label="Zoom Out"
onclick="viewID.zoomOut()"
image="images/unzoom.gif"/>

<jv:menuItem label="Zoom to Fit"
onclick="viewID.showAll()"
image="images/zoomfit.gif"/>

<jv:menuSeparator/>
<jv:menuItem label="Select"

actionListener="#{frameworkBean.action}"
actionListener="#{ganttBean.action}"
image="images/arrow.gif"
invocationContext="IMAGE_SERVLET_CONTEXT" />

</jv:menu>
</jvf:contextualMenu>

Contextual popup menu
The popup menu is dynamically generated on the server side by a menu factory depending
on:

♦ The menuModelId property of the current interactor set on the view.

♦ The object selected when the application user triggers the popup menu.

JViews Diagrammer
To specify the factory use the factory or the factoryClass attribute of the contextual popup
menu tag.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 45

<jvf:contextualMenu factory="#{bean.factory}"/>
<jvf:contextualMenu factoryClass="com.xyz.demo.DemoFactory"/>

At the JViews Framework level
To specify the factory use the factory or the factoryClass attribute of the contextual popup
menu tag.

<jvf:contextualMenu factory="#{bean.factory}"/>
<jvf:contextualMenu factoryClass="com.xyz.demo.DemoFactory"/>

The factory must implement the IlvMenuFactory interface.

I B M ® I L O G ® J V I E W S M A P S 8 . 646

Styling the popup menu

The popup menu is stylable by setting the following popup menu properties to a CSS class
name:

♦ ItemStyleClass: the base CSS class name applied to a menu item.

♦ itemHighlightedStyleClass: the style applied over the base style when the cursor is
over the item.

♦ itemDisabledStyleClass: the style applied over the base style when the cursor is disabled.

The following set of code examples shows CSS styling in a popup menu.

<html>
[...]

<style>
.menuItem {
background: #21bdbd;
color: black;
font-family: sans-serif;
font-size: 12px;

}
.menuItemHighlighted {
background: #057879;
color: white;

}
.menuItemDisabled {
background: #EEEEEE;
font-style: italic;
color: black;

}
</style>
[...]

Then continue with the code for a specific JViews Faces component.

For JViews Diagrammer

[...]
<jvf:contextualMenu itemStyleClass="menuItem"

itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

At the JViews Framework level

[...]
<jvf:contextualMenu itemStyleClass="menuItem"

itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

I B M ® I L O G ® J V I E W S M A P S 8 . 6 47

Adding a legend

A legend displays and controls the visibility of the layers that compose the map. The legend
is connected with the view in the usual way by using an identifier.

Connecting a legend to a view

<jvmf:mapView id="map" [...] />
<jvmf:layerTool viewId="map" [...] enabled="true" />

You can use the legend tool in read only mode (to display which layers are visible) by setting
its enabled property to false.

For performance related reasons tiles are often cached on the client and/or server
side.Therefore, if you are using a view in tiled mode, you cannot control the background
layer visibility because the layer images would be inconsistent with the cached tiles.

Note:

The legend tool is based on an HTML TABLE element. You can style the various elements
of the legend using CSS styling mechanisms. For example, if you declare your legend as
follows:

<jvmf:layerTool styleClass="legendStyle" viewId="map"/>

Then you can create the following style rules to choose the appearance of the table header,
background, cells, and so on.

. legendStyle {background: #d0d0d0; }
table.legendStyle {border-collapse: collapse; border: thin solid gray}
td.legendStyle {background: #d0d0d0; font-weight: normal ;}
thead.legendStyle {background: #d00000; font-weight: bold ;}

I B M ® I L O G ® J V I E W S M A P S 8 . 648

Adding a Message Box

To connect a message box to a view, use the following code:

<jvdf:diagrammerView [...] messageBoxId="messageBox"/>
<jv:messageBox id="messageBox" [...] />

The messages issued are now displayed in the message box.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 49

Adding an Overview

An overview displays the global area and a rectangle corresponding to the area visible in
the main view. You can move this rectangle to change the area visible in the main view. This
overview is connected with the view in the usual way with the identifier.

<jvdf:diagrammerView id="diagrammer" [...] />
<jvf:overview viewId="diagrammer" [...] />

I B M ® I L O G ® J V I E W S M A P S 8 . 650

Adding a Pan Tool and a Zoom Tool

The zoomTool component that shows a set of buttons. Each button corresponds to a zoom
level; clicking the button will zoom the view to this zoom level. The button corresponding
to the current zoom level is visually different from others so that you can tell what the current
zoom level is. The component can be vertical or horizontal.

The panTool component is a component that allows you to pan the view in all directions.

The connection to the view will be done by setting the identifier of the view to the viewId
property of the tools.

<jvdf:diagrammerView id="diagrammer" [...] />
<jvf:panTool viewId="diagrammer" [...] />
<jvf:zoomTool viewId="diagrammer" [...] />

I B M ® I L O G ® J V I E W S M A P S 8 . 6 51

Server-side caching

When the view is tiled, a server-side caching mechanism for tiles of static layers can be
installed by using the tileManager property. No server-side caching mechanism is installed
by default.

The following code example shows server-side caching of tiles.

In JViews Maps

<jvmf:mapView tileManager="#{mapBean.tileManager}" [...] />

In JViews Diagrammer

<jvdf:diagrammerView tileManager="#{diagrammerBean.tileManager}" [...] />

At the JViews Framework level

<jvf:view tileManager="#{frameworkBean.tileManager}" [...] />

See Server-side caching and the tile manager for more information.

I B M ® I L O G ® J V I E W S M A P S 8 . 652

Managing the session expiration

The user session expires after a certain period of inactivity, usually defined in the Web
deployment descriptor.

JViews objects are stored in the HTTP user session. For example, after the user session
expires, queries to update the image will fail.

The beforeSessionExpirationHandler property allows you to add a JavaScript™ handler
that will be invoked when the user session is about to expire.

For example, to keep the session alive as long as the browser page is open, use the following
code:

In JViews Maps

<jvmf:mapView [...] beforeSessionExpirationHandler="view.updateImage();" />

In JViews Diagrammer

<jvdf:diagrammerView [...] beforeSessionExpirationHandler="view.updateImage()
;"
/>

At the JViews Framework level

<jvf:view [...] beforeSessionExpirationHandler="view.updateImage();" />

This example shows how to query an image and keep the user session alive.

Note the use of view, the implicit object that represents the view JavaScript proxy. The
internal timer is reset only by requests issued by IBM® ILOG® JViews objects. If the
application implements other requests that do not refresh the image, this timer could be
inaccurate. To reset the timer manually, use the following JavaScript code:

viewID.getObject().resetSessionExpirationTimer();

where viewID is the value of the id property of your view component.

The beforeSessionExpirationHandler is called two minutes before the actual
session expiration time.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 53

The map view as a Diagrammer view

The map view component is a specialized subclass of the Diagrammer view component. For
more information, refer to Creating a diagram view.

I B M ® I L O G ® J V I E W S M A P S 8 . 654

JViews Maps project

The easiest way to configure the content of a map view is to set a Map Builder IVL file or a
JViews Diagrammer project to the map view component. This is done with the map attribute
of the tag that points to a .ivl file or a .idpr file, as shown in the following example.

Building a Map Builder project

<jvmf:mapView id="map"
map="data/usa.ivl"
style="width:800;height:400" />

For more information about the Map Builder, see Using the Map Builder.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 55

JViews Diagrammer Designer Project

The easiest way to configure the style and the data source of a diagram component is to set
a JViews Diagrammer Designer project to the diagram view component. This is done with
the data attribute of the tag that points to an idpr file.

<jvdf:diagrammerView id="diagrammer"
data="data/diagrammer.idpr"
style="width:800;height:400" />

You can set the CSS style sheet and data source separately.

I B M ® I L O G ® J V I E W S M A P S 8 . 656

Data Source Binding

If a project is not already set and you want to set a data source to a diagram, a data source
component should be connected to the diagram.

Using an XML File
An easy way to connect to a data source is to use an XML file in diagram format.

<jvdf:diagrammerView id="diagrammer" data="data/molecule.xml"/>

If your XML file is not in diagram format, you can use the XMLDataSource component
to specify an XSLT file.

Note:

Using a Value Binding
Another way to specify a data source is to use a value binding. In this case, the data model
will be provided by a Bean property:

<jvdf:diagrammerView [...] data="#{diagrammerBean.dataSource}" />

The Bean should then provide the data model through its getDataSource method:

public IlvDiagrammerDataSource getDataSource() {
if (dataSource == null)

dataSource = createDataSource();
return dataSource;

}

The JViews Diagrammer Faces component properties are all bindable.Note:

To use the value binding attribute, the Bean must be declared in the faces-config.xml file
or the managed-beans.xml:

<faces-config>
<managed-bean>
<description>A diagram component demo bean</description>

I B M ® I L O G ® J V I E W S M A P S 8 . 6 57

<managed-bean-name>diagrammerBean</managed-bean-name>
<managed-bean-class>diagrammerBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
</faces-config>

For further information about these configuration files, see the http://java.sun.com/j2ee/
javaserverfaces/reference/index.htmlJavaServer Faces specifications.

DataSource and XMLDataSource Components
Another way of setting a data source to a diagram view is to use the dataSource and
XMLDataSource components. These components allow you to create and configure a data
source. The data source is stored in memory and is ready to be set on a diagram component.

Setting a data source on a diagram component

<jvdf:XMLDataSource filename="data/molecule.xml" id="xmlDataSource" />

<jvdf:dataSource value="#{diagrammerBean.datasource}" />

<jvdf:diagrammerView id="diagrammer" data="xmlDataSource" [...] />

<h:commandButton type="button" value="Set XML Data Source"
onclick="diagrammer.setDataSourceId(‘xmlDataSource’)" />

<h:commandButton type="button" value="Set Bound Data Source"
onclick="diagrammer.setDataSourceId(‘dataSource’)" />

This example creates two data sources: one filled from an XML file and another one from a
bound diagram data source.

The two data sources are present in memory. It is then possible to query the server for
switching the data source and updating the image without a complete page refresh by
clicking one of the command buttons. To perform this task, use the client-side JavaScript
proxy of the diagram view.

The initial data source of the diagram view is configured through the data tag attribute that
must match the id attribute of the desired data source component.

To learn how to use these proxies, see JavaScript objects.

The diagrammer property allows you to bind an existing IlvDiagrammer instance to be reused
by the diagrammerView component.

<jvdf:diagrammerView [...] diagrammer="#{diagrammerBean.diagrammer}" />

I B M ® I L O G ® J V I E W S M A P S 8 . 658

http://java.sun.com/j2ee/javaserverfaces/reference/index.html
http://java.sun.com/j2ee/javaserverfaces/reference/index.html

Styling with CSS

After you set the data source, you can customize the way it is displayed. You can use
Cascading Style Sheets (CSS) to style your data. CSS can be applied with a styleSheets
attribute:

<jvdf:diagrammerView id="diagrammer" [...] styleSheets="data/diagrammer.css"
/>

The CSS file must be present in the data directory of the Web application. The style sheet
file specification can also be a value binding, that is, a value provided by a Bean.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 59

Installing Interactors

You can now install interactors on the view to interact with it:

<jvf:zoomInteractor id="zoom" />
<jvdf:diagrammerView interactorId="zoom" [...] />

The link between the view and its interactor is done through the identifier of the interactor.
It is now possible to zoom on a view area by dragging a rectangle on the view.

I B M ® I L O G ® J V I E W S M A P S 8 . 660

Select Interactor

The select interactor allows you to select one or more objects and move them without
performing a full refresh of the page.

To define one object, use the following tag:

<jvdf:selectInteractor id="select"/>

To set the object on the view, use the following tag:

<jvdf:diagrammerView id="thediagrammer" interactorId="select"/>

If you just want to trigger a server-side action when an object is clicked, use the
nodeOrLinkSelectInteractor instead.

Note:

Move Selection
The select interactor allows you to move the selection if the following conditions are met:

♦ The moveAllowed property of the interactor is set to true (default value).

♦ The server-side object is movable.

♦ The node layout is disabled.

Basic Selection Management Configuration
You can customize the way the selection is performed and displayed by using a facet on the
diagrammerView tag, as follows:

<jvdf:diagrammerView id="thediagrammer" interactorId="select">
<f:facet name="selectionManager">

<jvdf:selectionManager imageMode="false" […] />
</f:facet>

</jvdf:diagramerView>

The selection manager has two display modes:

♦ image mode

The image is refreshed after each selection. A new image is requested to the server at
each selection which allows the client to get nice selection graphics.

♦ regular mode

I B M ® I L O G ® J V I E W S M A P S 8 . 6 61

Rectangles representing the selection are displayed on top of the view. The roundtrip to
the server is minimal: the generation of a new image is not required and the response
time is faster but the selection feedback is limited to a selection rectangle.

The default mode is the image mode.

Other parameters can be configured on the selection manager, like for example the line
width or the color of the selection rectangle used in regular selection mode:

<jvdf:selectionManager lineWidth="2" lineColor="red"/>

Information on Selection
You can register a listener that will be called when the selection changes:

<jvdf:selectionManager onSelectionChanged="displayProperties(selection)"/>

The onSelectionChanged attribute value is JavaScript™ code that is called when the selection
has changed. The execution context defines the variable selection, which stores the current
selection as an array of IlvSelectionRectangle instances.

The JavaScript function can be as follows:

// Alert the ID and bounds of all the selected objects
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++)
alert(selection[i].getID()+" "+selection[i].getBounds());

}

Besides ID and bounds properties of the selected object, you might want to get also the
properties of the selected node or link in the JViews Diagrammer model.

This can be done by configuring a property accessor on the selection manager:

<jvdf:selectionManager propertyAccessor="#{serverBean.propertyAccessor}" [...
] />

With:

public class ServerBean {
private IlvFacesDiagrammerPropertyAccessor accessor =
new IlvFacesDiagrammerPropertyAccessor();
public IlvFacesDiagrammerPropertyAccessor getPropertyAccessor() {
return accessor;

}
}

The IlvFacesDiagrammerPropertyAccessor contains several methods that can be either
called or redefined to configure or specialize the way it gives access to model properties.

I B M ® I L O G ® J V I E W S M A P S 8 . 662

Once done, in the JavaScript you can access all the methods of the IlvSelectionRectangle
and do the following:

// Alert all the properties of all the selected objects
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++) {
var propertiesNames = selection[i].getObjectPropertyNames();
for (var j = 0; j < propertiesNames.length; j++)

alert(selection[i].getObjectProperty(propertiesNames[j]));
}

}

In addition, if the diagrammerView has been set as editable:

<jvdf:diagrammerView editable="true" [...] />

you can also set properties on the client such that they can be committed back to the model
on the server. You can do this by using the following code:

// Modify a property on the first selected object
thediagrammer.getSelectionManager().getSelection()[0].
setObjectProperty("propertyName","propertyValue");
// [other modifications]
thediagrammer.getSelectionManager().

commitSelectionProperties(true, oncompleted, onfailed);

where:

♦ oncompleted is a JavaScript function that is called when the server has completed the
changes, to handle errors that may have occurred while setting the new values. The
parameter of the oncompleted method is an array of IlvSelectionPropertiesError
objects.

♦ onfailed is a JavaScript function that is called when the commit could not occur due to
network problems.

To obtain selected object properties information on the client side while you are running
the selection in image mode, you need to force an additional request by setting the property
forceUpdateProperties to true. In regular mode this feature is available without any
overhead.

Select an Object by Its Identifier
Objects can be selected on the client side by their identifier by means of the following
JavaScript method: IlvAbstractSelectionManager.selectById(id, extend).

The identifier of an object is retrieved through the SDM model (see Implementing the
behavior of data model objects). You can also retrieve the identifier by using directly the
JViews Diagrammer method getID(java.lang.Object).

I B M ® I L O G ® J V I E W S M A P S 8 . 6 63

You can select one object by means of the following JavaScript method call:

thediagrammer.getSelectionManager().selectById("nodeId");

This method call deselects the objects currently selected and selects the object with the
identifier nodeId. You can extend or reduce the selection by selecting or deselecting a node
as follows:

thediagrammer.getSelectionManager().selectById("nodeId", true);

This method call keeps the existing selection and selects the object with the identifier nodeId
if it is not already selected, otherwise it will deselect it.

Clear the Selection
To clear the selection use the following JavaScript method call:
IlvAbstractSelectionManager.deselectAll()

For example:

thediagrammer.getSelectionManager().deselectAll();

Select all the Objects
To select all the selectable objects use the following JavaScript method:
IlvAbstractSelectionManager.selectAll()

For example:

thediagrammer.getSelectionManager().selectAll();

If the select interactor is set on the view and if the view has the focus, you can use
CTRL+A to select all the objects.

Note:

Image Mode or Rectangle Mode
Using one mode rather than the other depends on your criteria: performance or graphic
feedback.

Imagemode provides a better graphic feedback but is slower because of the image generation
and the need for an extra request to get additional information about the selection on the
client.

Rectangle mode offers basic graphic feedback but better performance.

Move Selection
The select interactor also allows you to move the selection if:

♦ The moveAllowed property of the interactor is set to true (default value).

I B M ® I L O G ® J V I E W S M A P S 8 . 664

♦ The server-side object is movable.

♦ The node layout is disabled.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 65

Creating nodes and links

If you want to create nodes and/or links on the view, you have to set the editable mode on
the view component as follows:

<jvdf:diagramerView id="thediagrammer" editable="true" [...] />

For example, by calling the following extract of JavaScript™ in response to a user action,
an interactor will be set on the view. This interactor allows you to create a link with the
thetag tag in the JViews Diagrammer model attached to the view.

thediagrammer.setCreateLinkInteractor("thetag", true);

When the second parameter is set to true, the create action is available only once. If you
want to have the interactor available permanently, you can ignore that parameter.

Similarly, you can set a node creation interactor:

thediagrammer.setCreateNodeInteractor("anothertag", true);

In addition to the tag name, the interactor can be configured to set some initial properties
on the selected object at creation time:

var properties = {propertyName1: "propertyValue1", propertyName2:
"propertyValue2"};
thediagrammer.setCreateNodeInteractor("anothertag", true, properties);

In order to work correctly, a property accessor must be set and configured on the facet (see
Information on selection).

I B M ® I L O G ® J V I E W S M A P S 8 . 666

Deleting selected nodes and links

If you want to be able to delete selected nodes and links on the view, you have to set the
editable mode on the view component as follows:

<jvdf:diagrammerView id="thediagrammer" editable="true" [...] />

This allows you to ask for deletion of the selected objects on the client side by using the
following JavaScript™ code:

thediagrammer.getSelectionManager().deleteSelection();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 67

Dashboard diagram

The jvdf:dashboardView component allows you to display a dashboard diagram. This JSF
component manages an IlvDashboardDiagram instance to display the image. This class is
an IlvDiagrammer subclass, therefore the diagrammerView and the dashboardView share a
lot of properties. This component can be used in the same way as the diagrammerView,
except that the only way to set data is to use the data attribute (no project, style sheets
properties). This attribute only accepts idbd files.

<jvdf:dashboardView [...] data="/data/dashboard.idbd" />

The dashboardDiagram property allows you to bind an existing IlvDashboardDiagram
instance to be reused by the dashboardView component.

<jvdf:dashboardView [...] dashboardDiagram="#{dashboardBean.dashboard}" />

Palettes files (JARs) must be in the application classpath (usually in the WEB-INF/
lib of the WAR file) for the dashboardView component to load the dashboard.

Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 668

JavaScript objects

Each time a JViews Maps Faces component is created, a corresponding JavaScript™ object
is also created. You can access this object through a global JavaScript variable whose name
is the same as the id attribute of the tag. For example, the tag:

<jvmf:mapView id="map" [...] />

will be rendered as the following JavaScript code:

map = new IlvDiagrammerViewProxy ('map', ...);
map.setServletClass("ilog.views.maps.servlet.IlvFacesMapsServlet");

See the documentation of the Java™ API (overview-summary) of each renderer to know
which JavaScript proxy will be generated for this component.

You can modify the object locally by using a set of methods attached to this object. For
further information about available JavaScript objects, see the DHTML reference
documentation of JViews Maps.

The following example defines a button that dynamically installs a zoom interactor on the
view without a server round trip.

Defining a dynamic zoom interactor button

<jvf:panInteractor id="pan"
<jvf:imageButton [...] onclick="map.setInteractor(pan)" />
<jvmf:mapView id="map" [...] />

At rendering time, an IlvDiagrammerViewProxy JavaScript object is created, accessible
through the JavaScript variable.

Then, since a JavaScript object named pan has been created in the same way, you can directly
set this interactor with the setInteractor method.

Additionally, the behavior of these JavaScript objects is to keep their state, so that if a submit
request is issued, the state of the object is sent to the server. This behavior makes sure that
the client and the server remain coherent.

For further information about available JavaScript objects, see the JavaScript API DHTML
reference documentation of JViews Maps.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 69

I B M ® I L O G ® J V I E W S M A P S 8 . 670

Contexts for actions on the view

In this section

Overview

JavaServer Faces lifecycle context
Explains how to install a select object interactor and a listener in the JSF context.

Image servlet context
Describes the value change listener and interactor in the image servlet context.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 71

Overview

Actions executed in response to interactions on the view can be executed in two different
contexts: JavaServer™ Faces lifecycle or image servlet. The execution context can be
configured by setting the invocationContext attribute on the JSF interactor components.

The value change listeners registered in the interactor can determine whether they are
called in a JSF context or in an image servlet context with the following code:

Determining in Which Context a Value Change Listener is Called

IlvObjectSelectInteractor source =
(IlvObjectSelectInteractor)valueChangeEvent.getSource();

boolean jsfContext = source.getInvocationContext() ==
IlvDHTMLConstants.JSF_CONTEXT;

This section shows the differences between the two invocation contexts through the execution
of an action when a node is selected.

I B M ® I L O G ® J V I E W S M A P S 8 . 672

JavaServer Faces lifecycle context

This topic shows you the JViews Faces code for installing a select object interactor and a
listener. It also shows you the Java™ code for writing a value-change event listener.

In JViews Diagrammer
To select an SDM node in a view, a select object interactor must be installed on the diagram
component view. The value property of the interactor holds the IlvSDMNode object that was
clicked. Thus, a valueChangeListener can be registered to handle the selection event.

Installing a select node or link interactor and a listener

<jvdf:nodeOrLinkSelectInteractor id="objSelect"
valueChangeListener="#{diagrammerBean.onSelectNode}"

invocationContext="JSF_CONTEXT"/>

<jvdf:diagrammerView id="diagrammer" interactorId="objSelect" [...] />

JSF_CONTEXT is the default value, so the invocationContext attribute could have
been omitted.

Note:

Java code of the value-change event
The Java code of the value change event listener is:

public void onSelectNode(ValueChangeEvent event) {
IlvSDMNode node = (IlvSDMNode) event.getNewValue();
if (node != null) {

//The source of the event is the interactor
IlvFacesNodeOrLinkSelectInteractor source =

(IlvFacesNodeOrLinkSelectInteractor)valueChangeEvent.getSource
();

//Retrieve the JSF view connected to the interactor
IlvFacesDiagrammerView jsfDiagrammer =
(IlvFacesDiagrammerView)source.getView();

try {
//Retrieve the IlvDiagrammer wrapped by the JSF component.
IlvDiagrammer diagrammer = jsfDiagrammer.getDiagrammer();

//Select the clicked object
diagrammer.deselectAll();
diagrammer.setSelected(node, true);

} catch (Exception e) {
e.printStackTrace();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 73

}
}

}

At the JViews Framework level
To select a graphic object in a view at the JViews Framework level, a select object interactor
must be installed on the view. The value property of the interactor holds the IlvGraphic
object that was clicked. Thus, a valueChangeListener can be registered to handle the
selection event.

Installing a select object interactor and a listener

<jvf:objectSelectInteractor id="objSelect"
valueChangeListener="#{frameworkBean.selectObject}"

invocationContext="JSF_CONTEXT"/>

<jvf:view id="view" interactorId="objSelect" [...] />

JSF_CONTEXT is the default value, so the invocationContext attribute could have
been omitted.

Note:

Java code of value-change event
The Java code of the value change event listener is:

public void selectObject(ValueChangeEvent event) {
Object value = event.getNewValue();
if (value != null && value instanceof IlvGraphic) {

//The source of the event is the interactor
IlvFacesObjectSelectInteractor source =

(IlvFacesObjectSelectInteractor)valueChangeEvent.getSource();

//Retrieve the JSF view connected to the interactor
IlvFacesView jsfView = (IlvFacesView)source.getView();

//Retrieve the IlvManagerView wrapped by the JSF component.
IlvManagerView managerView = jsfView.getView();

//Select the clicked object
IlvGraphic g = (IlvGraphic) value;
managerView.getManager().deSelectAll(false);
managerView.getManager().setSelected(g, true, false);

}
}

Note the following concerning the use of this approach:

I B M ® I L O G ® J V I E W S M A P S 8 . 674

♦ Since themethod is called during the JavaServer™ Faces lifecycle, there can be interaction
with other JSF components.

♦ The form is submitted, so the complete page is reloaded.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 75

Image servlet context

The image servlet uses the same value change listener as the JavaServer™ Faces lifecycle;
there is a slight difference in the interactor, which is shown in bold in the example.

Value change listener and interactor in image servlet context (JViews Diagrammer)

<jvdf:nodeOrLinkSelectInteractor id="objSelect"
valueChangeListener="#{diagrammerBean.onSelectNode}"

invocationContext="IMAGE_SERVLET_CONTEXT"/>

<jvdf:diagrammerView id="diagrammer" interactorId="objSelect" [...] />

Value change listener and interactor in image servlet context (JViews Framework level)

<jvf:objectSelectInteractor id="objSelect"
valueChangeListener="#{frameworkBean.selectObject}"

invocationContext="IMAGE_SERVLET_CONTEXT"/>

<jvf:view id="view" interactorId="objSelect" [...] />

In this mode the interactor queries an image update. The server fires the value change event
just before image generation.

This approach in JViews Diagrammer:

♦ Avoids submitting the page and refreshes the image only.

♦ Is outside the JSF lifecycle, so no interaction with JSF components is possible beyond the
ability to retrieve the IlvDiagrammer object as shown in Java code of the value-change
event..

This method at JViews Framework level:

♦ Avoids submitting the page and refreshes the image only.

♦ Is outside the JSF lifecycle, so no interaction with JSF components is possible beyond the
ability to retrieve the IlvManagerView as shown in Java code of value-change event.

I B M ® I L O G ® J V I E W S M A P S 8 . 676

Integrating JViews Faces in your
environment

Provides information about configuring a JSF application in the application server, session
persistence, JSR 168 portlets, ICEfaces, and Facelets and Trinidad.

In this section

JViews Faces configuration at JViews Framework level
Provides required and optional settings for JViews Faces configuration at the JViews
Framework level.

Session persistence
Explains how to disable session persistence.

Running JViews Faces components in JSR 168 portlets
Explains the JSR 168 requirements for JViews Faces components in portlets.

Guide to using JViews components with ICEfaces
Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

Supporting Facelets and Trinidad
Describes the mandatory actions required to make JViews Faces components compatible
with Facelets and Trinidad, plus optional actions to specify menus.

Web Application Server support
Describes the Web Application Servers supported for deploying JViews Web applications.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 77

JViews Faces configuration at JViews Framework level

Required settings
The standard configuration needed by a JSF application in the web.xml of your application
server is as follows.

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The JViews Faces Framework needs two additional settings in order to execute correctly,
namely:

♦ JViews Controller Servlet

The JViews Controller Servlet is in charge of loading the various resources used by the
JViews Faces Framework implementation like JavaScript™ libraries, images and the like.
But more importantly it provides clients with the latest state of their views capabilities
as well as their dynamically generated images.

You must declare and map the JViews Controller Servlet. To do this, use the following
code.

<servlet>
<servlet-name>Controller</servlet-name>
<servlet-class>ilog.views.faces.IlvFacesController</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Controller</servlet-name>
<url-pattern>/_contr/*</url-pattern>

</servlet-mapping>

♦ ilog.views.faces.CONTROLLER_PATH

This setting provides the users with the flexibility of defining a custom <url-pattern>
for the JViews Controller Servlet that will be appropriately communicated to the JViews
Faces Framework so that proper execution takes place.

You must set the ilog.views.faces.CONTROLLER_PATH context parameter which must
match the content of the <url-pattern> of the JViews Controller Servlet without the
wildcard part. For example, the following code would appear after the code for the JViews
Controller Servlet.

I B M ® I L O G ® J V I E W S M A P S 8 . 678

<context-param>
<param-name>ilog.views.faces.CONTROLLER_PATH</param-name>
<param-value>/_contr</param-value>

</context-param>

Optional settings
The following optional setting is available in the JViews Faces Framework:

ilog.views.faces.CONTENT_LENGTH_ENABLED

The ilog.views.faces.CONTENT_LENGTH_ENABLED setting allows users to specify if the
underling servlet that is used to generate the client-side representation of the JViews Faces
Components is interacting with the client in a buffered mode or not. More specifically, it
enables the communication of the content length when the server responds to client requests.
This provides more optimal interaction between the client and the server.

For more insights see javax.servlet.ServletResponse.setContentLength and related
material on the Internet.

This setting is exposed through the context parameter facility and can be set as follows.

<context-param>
<param-name>ilog.views.faces.CONTENT_LENGTH_ENABLED</param-name>
<param-value>true</param-value>
</context-param>

Although optional, it is recommended to set this setting always to true.Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 79

Session persistence

Web servers often implement a session persistence mechanism used typically for traditional
server clustering and failover techniques.

Often, the JViews Faces components are not serializable as they pertain to view-related
abstractions which typically cannot be persistent and are stored in the HTTP session.

In order to prevent the typical serialization warnings derived from this mismatch, you can
disable the session serialization mechanism for the JViews Faces based application.

To disable session persistence in TOMCAT at web application level:

1. Create a file context.xml and place it in the META-INF directory of your .war file.

2. Use a TOMCAT configuration setting to disable the session serialization mechanism.

<Context path="/your-application-path">
<Manager className="org.apache.catalina.session.StandardManager"

pathname=""/>
</Context>

Note: 1. All the JViews Faces samples already have this session serialization setting
disabled for TOMCAT at this level.

2. These settings apply to TOMCAT 6.0 and later.

To disable session persistence in TOMCAT at web server level:

♦ Modify the TOMCAT/conf/context.xml to use this as the Session Manager definition.

<Manager pathname=""/>

These settings apply to TOMCAT 6.0 and later.Note:

For more details on these settings see the TOMCAT configuration documentation.

For details on how to disable session serialization with your Web server, see the server’s
configuration documentation.

I B M ® I L O G ® J V I E W S M A P S 8 . 680

Running JViews Faces components in JSR 168 portlets

See the Release Notes for supported JSF implementations and JSF Portlet bridge
combinations.

Note:

If you want to use JViews Faces components in a JSR 168 portlet environment, you first need
to check with your portal vendor whether JavaServer™ Faces components are supported.

Your Web application must be correctly configured. This section describes each of the steps
required to make JViews Faces components compatible with portlets.

JViews Faces components are automatically switched to portlet mode if the classes
of the portlet API are detected in the class path.

Note:

To avoid naming clashes between portlets, the JSR 168 specification requires content to be
generated that is unique to each portlet. Therefore, the generated variables used by JViews
Faces components must be prefixed by the portlet namespace.

Scripts prefixed by a namespace
Since JViews 8.1, the servlet filter IlvJSNamespaceFilter is no longer needed and must not
be set on the controller servlet.

JavaScript variables prefixed by a namespace
In portlet mode, the generated JavaScript™ variables are prefixed by the portlet namespace.
Thus, their usage in the JSP™ page is quite different.

In IBM® ILOG® JViews a JavaScript action is built on a managed bean by using the static
method encodeJavaScriptVariables of ilog.views.faces.IlvFacesUtil.

The parameter is the desired JavaScript action where the variables are declared with the $
{id} notation. For example:

IlvFacesUtil.encodeJavaScriptVariables("${view}.setInteractor(${interactor})
");

where view and interactor represent JavaScript variables.

The result of calling this method is the final JavaScript action with namespace-encoded
variables.

The JViews Faces components that have JavaScript handlers need only to reference these
bean properties.

The following code examples show a more complete use of JavaScript actions in the JSP
page and the managed bean.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 81

In JViews Diagrammer
Using JavaScript actions in a JSP page

[...]
<jvf:zoomInteractor id="zoom" />
<jv:imageButton onclick="#{diagrammerBean.setZoomAction}"/>
<jvdf:diagrammerView id="diagrammer" />
[...]

Using JavaScript actions in a managed bean

public class DiagrammerBean {
[...]
private String setZoomAction;
public DiagrammerBean(){
setZoomAction =
IlvFacesUtil.encodeJavaScriptVariables("${diagrammer}.setInteractor(${
zoom})");

}
public String getSetZoomAction(){
return setZoomAction;

}
[...]
}

At the JViews Framework level
Using JavaScript actions in a JSP page

[...]
<jvf:zoomInteractor id="zoom" />
<jv:imageButton onclick="#{frameworkBean.setZoomAction}"/>
<jvf:view id="view" />
[...]

Using JavaScript actions in a managed bean

public class FrameworkBean {
[...]
private String setZoomAction;
public FrameworkBean(){
setZoomAction =
IlvFacesUtil.encodeJavaScriptVariables("${view}.setInteractor(${zoom})

");
}
public String getSetZoomAction(){
return setZoomAction;

}
[...]
}

I B M ® I L O G ® J V I E W S M A P S 8 . 682

Declaring the image servlet
In portlet mode, the servlet used to render the image must be declared:

In JViews Diagrammer

<jvdf diagrammerView [...] servlet=
"ilog.views.diagrammer.faces.dhtml.servlet.IlvFacesDiagrammerServlet />"

At the JViews Framework level

<jvf view [...] servlet=
"ilog.views.faces.dhtml.servlet.IlvFacesManagerServlet />"

Integrating JSF components into the portal
Depending on your portal implementation, integrating JSF components may require special
configuration that is conditioned by the application server, the JSF implementation, the
portlet-JSF bridge, and so on. Check with your portal vendor for what you need to do in this
configuration step.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 83

I B M ® I L O G ® J V I E W S M A P S 8 . 684

Guide to using JViews components with
ICEfaces

Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

In this section

Settings for using JViews components in ICEfaces
Describes the settings you need to use JViews JSF components with ICEfaces.

Interoperability between JViews components and ICEfaces components
Describes the interoperability between JViews components and ICEfaces components.

Push updates to JViews components
Describes the techniques for push updates (server-initiated rendering) with JViews
components.

ICEfaces software in JViews
Describes the ICEfaces binary files provided with JViews and lists the known issues.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 85

Settings for using JViews components in ICEfaces

You are assumed to be familiar with Web application development using JSF technologies.
You need to have JViews 8.5 or above and ICEfaces 1.7.2 or above installed. You can go to
http://www.icefaces.org to download a more recent version of ICEfaces. If you use Eclipse™
, ICEfaces also has a plug-in for this environment.

Since JViews 8.5, JViews JSF components support ICEfaces completely. JViews requires the
standard request mode of ICEfaces. This is the mode in which ICEfaces interoperates with
third-party components. To set this mode, you need to add the following element to the
web.xml file of your Web application.

<context-param>
<param-name>com.icesoft.faces.standardRequestScope</param-name>
<param-value>true</param-value>

</context-param>

For other settings required by JViews JSF components, see JViews Faces configuration at
JViews Framework level.

For more settings and concrete examples, look at the code sample installed in <install-dir>
/jviews-maps8.6/codefragments/jsf-maps-ice.

I B M ® I L O G ® J V I E W S M A P S 8 . 686

http://www.icefaces.org

Interoperability between JViews components and ICEfaces
components

JViews components and ICEfaces components are both JSF components. They can work
together both on the client side and on the server side.

On the client side, JViews JSF components are high-level Ajax-enabled JavaScript™ objects.
You can direct the behavior of JViews components by invoking their JavaScript methods.
For example, when you click an ICEfaces button you can update the contents of a JViews
view by calling its JavaScript method: updateImage().

On the server side, both JViews components and ICEfaces components can be bound to
managed beans. This allows you to exchange parameters and data between the managed
beans of JViews components and ICEfaces components.

Suppose that you have a diagram view showing a number of nodes and links. You want to
display a particular node and center it on the screen when you click an ICEfaces button.
This use case is shown in the code sample <install-dir> /jviews-diagrammer8.6/
codefragments/jsf-diagrammer-ice in diagrammer.jsp. Run this sample now to understand
the situation better.

The action is initiated on the client side by clicking a button. However, the task cannot be
performed completely on the client side because there is not enough information on the
selected node. Therefore you have to submit the request to the server and ask the server to
perform more computation.

Once the managed bean on the server side has computed the offset to be applied to center
the selected node on the screen, you need to find a way to tell the client-side JViews
components to apply that offset. For this purpose, ICEfaces provides a way for you to send
JavaScript code from the server to the client. The code is as follows.

com.icesoft.faces.context.effects.JavascriptContext
.addJavascriptCall(FacesContext.getCurrentInstance(),
"diagrammer.moveTo(300, 500);");

The ICEfaces Ajax agent on the client will evaluate the received JavaScript code in order to
scroll the diagram to the expected position.

For more details, see the DiagrammerBean.java file in the same sample.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 87

Push updates to JViews components

One of the interesting features of ICEfaces is its server-initiated rendering. This technique
allows push updates to components rendered by Web browsers. This topic explains how to
make push updates to JViews components.

JViews components are Ajax-enabled components and their contents are generally GIF or
PNG images generated by JViews server-side servlet supports. There is no way to push
images directly to JViews components.

ICEfaces is able to push things such as HTML fragments and JavaScript™ code but not
images. However, you can use the ICEfaces push mechanism to notify client-side JViews
components that updates are available on the server. Then the JViews components can use
the Ajax mechanism to get the updated images. This approach is quite efficient in terms of
network traffic.

To notify client-side JViews components, you can use the ICEfaces server-initiated rendering
technique to push JavaScript code. The ICEfaces Ajax agent will receive and evaluate the
code. For example, you can put something like the following in JavaScript code.

<script type="text/javascript">diagrammer.updateImage();</script>

This code tells a JViews diagram component to update its contents.

For tips and tricks on how to push JViews components, look at the push example installed
with JViews Diagrammer at <install-dir> /jviews-diagrammer8.6/codefragments/
jsf-diagrammer-ice.

I B M ® I L O G ® J V I E W S M A P S 8 . 688

ICEfaces software in JViews

ICEfaces binary files provided with JViews
ICEfaces binary files are included in the JViews distribution so that the integration code
samples can run out-of-the-box. ICEfaces jar files can be found under
<framework-install-dir>/lib/external. However, the full ICEfaces distribution is not
included.

To get a complete or more updated distribution, you can get ICEfaces source code at http:/
/www.icefaces.org.

Known ICEfaces issues
Issues may exist when using ICEfaces components with JViews components.

ICEfaces is not able to parse JViews component <jvf:view> in JSP™ mode probably because
it confuses this tag with <f:view> although they are in different namespaces. A workaround
has been found. See the Graphic Framework example and the iview.tld file in the sample
installed in <install-dir> /jviews-diagrammer8.6/codefragments/jsf-diagrammer-ice.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 89

http://www.icefaces.org
http://www.icefaces.org

Supporting Facelets and Trinidad

If you want to use JViews Framework Faces components in a Facelets context, your Web
application must be correctly configured.

Compatibility with Facelets and Trinidad
To make JViews Framework Faces components compatible with Facelets and Trinidad:

♦ Edit the configuration files.

To see examples of correct settings for Facelets with Trinidad, look at the
faces-config.xml and web.xml files. If you want to use Facelets without Trinidad, look
at faces-config-std.xml and web-std.xml instead.

♦ Develop XHTML-based pages according to the tag library documentation.

All attributes and all tags except the menu tags listed in Contextual menus are supported
in Facelets.

If you are using custom tags, make sure you provide a custom.taglib.xml file that
describes your custom library and declare its XML namespace in the page.

♦ Make sure that your .war files (or your server default libraries) include the necessary
Facelets (and possibly Trinidad) jar files.

Code examples
For complete JViewsMaps application examples configured for use with Facelets or Trinidad,
see <install-dir> /jviews-maps8.6/codefragments/jsf-maps-facelets/webpages/
index.xhtml.

Contextual menus
In a facelets context, you will be able to provide dynamic menus through the factory or
factoryClass attribute of a contextual menu object but you will not be able to use menu,
menuItem, or menuSeparator tag components directly in the page.

<... contextualMenu ... factoryClass="mydemo.somepackage.MenuFactory" />

At the JViews Framework level, the contextual menu element is contextualMenu.

Static menu
You will be able to bind a static menu (running the code of the factory only once), in addition
to dynamic menus, using the value attribute of the contextual menu element.

<... contextualMenu ... value="#{chartBean.menu}" />

I B M ® I L O G ® J V I E W S M A P S 8 . 690

Web Application Server support

Apache Tomcat™ 6.0.14 is the reference Web Application Server (AS) shipped with IBM®
ILOG® JViews 8.6.

Other Web AS have been tested, including JBoss® AS 4.2.3.GA, IBM® WebSphere® 7.0,
and Oracle® Weblogic Server 10.3. The following sections give useful information you may
need when deploying JViews Web applications to one of these servers.

JBoss Application Server 4.2.3.GA

♦ JBoss AS 4.2.3.GA includes a JSF implementation. To avoid conflicts, you should not
include JSF jars in your .war file when deploying JViews Web applications.

♦ When deploying JViews FaceletsWeb applications, youmight need to exclude dom-3.0.jar
from the .war file to avoid XML parsing exceptions.

♦ JBoss AS 4.2.3.GA does not support multipattern <servlet-mapping> elements in web.xml.
You should use multiple <servlet-mapping> elements with separate patterns.

IBM WebSphere 7.0

♦ WebSphere 7.0 includes a JSF implementation. To avoid conflicts, you should not include
JSF jars in your .war file when deploying JViews Web applications.

♦ When deploying JViews FaceletsWeb applications, youmight need to exclude dom-3.0.jar
from the war file to avoid XML parsing exceptions.

♦ There is a known issue when deploying ICEfaces applications to WebSphere. See http://
jira.icefaces.org/browse/ICE-2330.

Oracle WebLogic Server 10.3

♦ You need to change the schema of your web.xml to 2.5.

♦ For the exception that the deferred EL expression is not allowed since
deferredSyntaxAllowedAsLiteral is false, you need to add <%@ page
deferredSyntaxAllowedAsLiteral="true" %> in the JSP page.

♦ In the Trinidad and Facelets samples, the TGO network view might not be shown; you
need to move the interactors out of the tr:panelTabbed component.

♦ For Trinidad demos with invalid PPR responses, the problem is caused by an invalid XML
response, which has been reported at https://issues.apache.org as JIRA issue
TRINIDAD-1170.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 91

http://jira.icefaces.org/browse/ICE-2330
http://jira.icefaces.org/browse/ICE-2330
https://issues.apache.org

I B M ® I L O G ® J V I E W S M A P S 8 . 692

Deploying a JViews Maps application as a
DHTML-only thin client

Explains how to deploy JViews Maps Faces application as a DHTML-only thin client.

In this section

JavaServer Faces components as opposed to DHTML thin client
Recommends the use of DHTML-based JavaServer™ Faces (JSF) technology rather than
DHTML-only thin-client technology.

Thin-client classes for the server side
Describes the classes provided to implement thin-client server-side applications.

Deploying an application as a DHTML-only thin client
Describes how to deploy a JViews Diagrammer application as a DHTML-only thin client.

© Copyright IBM Corp. 1987, 2009 93

JavaServer Faces components as opposed to DHTML thin client

When you build a DHTML-based Web application, you are recommended to base the
application on JavaServer™ Faces (JSF) technology.

Build your application with the techniques described inUsing DHTML-based JSF Components
to build Web applications

JSF components in JViews Maps rely heavily on DHTML thin-client libraries, both on the
server and the client, so you need to be familiar with the topics discussed here to be able
to use the JSF components properly.

On the server side, the JSF components leverage the thin-client servlet to generate images
and other kinds of output for the client side. On the client side, the JSF components use
JavaScript™ classes of the DHTML thin client to provide Ajax features.

For a basic use of a JSF component, you probably do not need a full understanding of the
DHTML thin client. Advanced use requires you to have a reasonable knowledge of it.

In rare cases, such as environments where JSF is not available, you might need to rely solely
on the DHTML thin client.

I B M ® I L O G ® J V I E W S M A P S 8 . 694

Thin-client classes for the server side

Describes the classes provided to implement thin-client server-side applications.

In this section

Overview
Lists the classes used to implement thin-client server-side applications.

The IlvMapServlet class
Describes the IlvMapServlet class.

The IlvMapServletSupport class
Describes the IlvMapServletSupport class.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 95

Overview

The following classes are provided for to help you implement thin-client server side
applications:

Thin-Client Server Side Classes
DescriptionName

A ready-to-use servlet.IlvMapServlet

Provides servlet functionality but is not a ready-to-use servlet.IlvMapServletSupport

I B M ® I L O G ® J V I E W S M A P S 8 . 696

The IlvMapServlet class

The IlvMapServlet class is a concrete servlet class that handles HTTP requests to build an
image of a diagram.

This class accepts one parameter: the project file which refers to the XML data file and the
style sheet on which the diagram is based. This parameter can be specified at initialization
time (as a static configuration parameter of the servlet) or dynamically in the request URL.

IlvMapServlet provides support for client-side image maps. The image map can be used
to attach actions to every node or link displayed in the diagram.

IlvMapServlet extends IlvDiagrammerServlet, it uses the same protocols as
IlvManagerServlet to communicate with clients. IlvMapServlet is also subclass of
IlvSDMServlet and inherits its session capabilities. Depending on the value of the
multiSession configuration parameter, the JViews Maps servlet can work in either
mono-session or multi-session mode. By default, the servlet runs in mono-session mode. See
Mono-session and multi-session modes for more information.

Mono-session and multi-session modes
DescriptionName

If multiSession is set to false, one SDM engine and one SDM view, including one
grapher, are created. All the requests to the servlet will return an image of the same

Mono-session

shared diagram. This option is appropriate if the users are not allowed to modify the
contents of the diagram or if the changes should be visible by all users.

If multiSession is set to true, a new SDM engine, and its associated SDM view and
grapher, is created for every different client session connected to the servlet. This mode
is appropriate if users are allowed to modify the XML file or the style sheet.

Multi-session

I B M ® I L O G ® J V I E W S M A P S 8 . 6 97

The IlvMapServletSupport class

The class IlvMapServletSupport is a subclass of IlvDiagrammerServletSupport, it
implements the functionality of the JViews Maps servlet but is not a servlet itself.

The purpose of IlvMapServletSupport is to let you do the following:

♦ Build multiplexing servlets that can handle requests for images.

♦ Handle other kinds of requests that call other parts of your application.

The class IlvMapServlet is a facade that forwards requests to IlvMapServletSupport.

I B M ® I L O G ® J V I E W S M A P S 8 . 698

Deploying an application as a DHTML-only
thin client

Describes how to deploy a JViews Diagrammer application as a DHTML-only thin client.

In this section

JavaServer Faces components as opposed to DHTML thin client
Recommends the use of DHTML-based JavaServer™ Faces (JSF) technology rather than
DHTML-only thin-client technology.

Thin-client library
Describes the elements of the IBM® ILOG® JViews Diagrammer thin-client library.

Creating a thin-client application
Shows how to create a thin-client application.

Thin-client classes for the server side
Defines the server-side thin-client classes.

Writing the client side of Web applications using JViews Diagrammer
Shows how to write the client side of your Web applications using JViews Framework DHTML
libraries.

Managing selection
Describes how to use the classes that manage selection.

Creating nodes and links
Describes how to create nodes and links in your Web applications.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 99

Deleting selected nodes and links
Shows how to delete selected nodes and links.

I B M ® I L O G ® J V I E W S M A P S 8 . 6100

JavaServer Faces components as opposed to DHTML thin client

When you build a DHTML-based Web application, you are recommended to base the
application on JavaServer™ Faces (JSF) technology.

Build your application with the techniques described inUsing DHTML-based JSF Components
to build Web applications

JSF components in JViews Maps rely heavily on DHTML thin-client libraries, both on the
server and the client, so you need to be familiar with the topics discussed here to be able
to use the JSF components properly.

On the server side, the JSF components leverage the thin-client servlet to generate images
and other kinds of output for the client side. On the client side, the JSF components use
JavaScript™ classes of the DHTML thin client to provide Ajax features.

For a basic use of a JSF component, you probably do not need a full understanding of the
DHTML thin client. Advanced use requires you to have a reasonable knowledge of it.

In rare cases, such as environments where JSF is not available, you might need to rely solely
on the DHTML thin client.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 101

Thin-client library

The thin-client library provides the basic infrastructure for building Web applications that
display a graph. In IBM® ILOG® JViews Diagrammer, the contents of the graph come from
a diagram component.

To make it easier to build Web applications that display a diagram component, IBM®
ILOG® JViews Diagrammer extends the generic thin-client support, providing classes that
let you implement the server side of your Web applications with little or no coding.

If you want full details of lower-level thin-client support, see DHTML thin-client support
in JViews Framework in Advanced Features of JViews Framework. Note in particular that
the architecture for JViews Diagrammer is equivalent to what is shown in IBM®
ILOG® JViews thin-client Web architecture in Advanced Features of JViews Framework,
but with the following specifics:

♦ The JViews Application is a JViews Diagrammer application, containing an IlvDiagrammer
instance.

♦ The JViews Servlet is a JViews Diagrammer servlet, based on a JViews Diagrammer
server-side class.

I B M ® I L O G ® J V I E W S M A P S 8 . 6102

Creating a thin-client application

To create a thin-client (Web) application, use the class IlvDiagrammerServlet. This class
accepts JViews Diagrammer project files as input, so all you have to do to display a diagram
in a thin-client application is to pass the project file as a parameter to the servlet.

An example of a thin-client application based on JViews Diagrammer is supplied in
<installdir>/jviews-diagrammer86/samples/diagrammer/thinclient/.

This example uses the JViews Diagrammer servlet to display a workflow process in a Web
browser. The user can choose different processes to display and different style sheets to
render them. The elements of the workflow can also be selected.

Only the browsers and browser versions listed in the Release notes are supported
by the IBM® ILOG® JViews DHTML thin client.

Important:

I B M ® I L O G ® J V I E W S M A P S 8 . 6 103

I B M ® I L O G ® J V I E W S M A P S 8 . 6104

Thin-client classes for the server side

Defines the server-side thin-client classes.

In this section

The IlvDiagrammerServlet class
Describes the IlvDiagrammerServlet class.

The IlvDiagrammerServletSupport class
Describes the IlvDiagrammerServletSupport class.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 105

The IlvDiagrammerServlet class

The IlvDiagrammerServlet class in the package ilog.views.diagrammer.servlet is a
concrete servlet class that handles HTTP requests to build an image of the diagram.

This class accepts one parameter: the project file which refers to the XML data file and the
style sheet on which the diagram is based.

This parameter can be specified at initialization time (as a static configuration parameter
of the servlet) or dynamically in the request URL.

The JViews Diagrammer servlet can work in two modes, depending on the value of the
multiSession configuration parameter:

♦ Mono-session mode: If multiSession is false, only one SDM engine and one SDM view
(and one grapher) are created. All the requests to the servlet will return an image of the
same shared diagram. This option is appropriate if the users are not allowed to modify
the contents of the diagram or if the changes should be visible by all users.

♦ Multi-session mode: If multiSession is true, a new SDM engine (with its associated SDM
view and grapher) is created for every different client session connected to the servlet.
This mode is appropriate if users are allowed to modify the XML file or the style sheet.

By default, the servlet runs in mono-session mode.

The class IlvDiagrammerServlet provides support for client-side image maps. The image
map can be used to attach actions to every node or link displayed in the diagram.

The class IlvDiagrammerServlet is a subclass of IlvManagerServlet that is using the same
protocols as IlvDiagrammerServlet to communicate with clients.

I B M ® I L O G ® J V I E W S M A P S 8 . 6106

The IlvDiagrammerServletSupport class

The class IlvDiagrammerServletSupport is a subclass of IlvManagerServletSupport. This
class implements the functionality of the JViews Diagrammer servlet but is not a servlet
itself.

The purpose of IlvDiagrammerServletSupport is to let you build “multiplexing” servlets
that can handle requests for images, but also other kinds of requests that call other parts
of your application.

The class IlvDiagrammerServlet is a facade that forwards requests to the class
IlvDiagrammerServletSupport .

I B M ® I L O G ® J V I E W S M A P S 8 . 6 107

Writing the client side of Web applications using JViews Diagrammer

To write the client side of your Web applications, you use the JViews Framework DHTML
libraries. See DHTML thin-client support in JViews Framework in Advanced Features of
JViews Framework for information on how to use the JViews Framework DHTML thin client.

To specify from the client side the XML, CSS or project files to be used by the JViews
Diagrammer servlet, you can put parameters on the query URL with the given names (XML,
CSS, project).

In addition to the features available in the JViews Framework DHTML library, you can add
features that are specific to JViews Diagrammer DHTML and that are described in the
following sections.

I B M ® I L O G ® J V I E W S M A P S 8 . 6108

Managing selection

Selection in a DHTML thin-client application is handled through the IlvSelectionManager
and IlvSelectInteractor classes.

The IlvSelectionManager allows you to select one or more objects in the view and to move
the current selection. The IlvSelectInteractor directly uses the selection manager to
perform these tasks.

Selection makes sense in multisession mode only.Note:

Client-side configuration
To use the selection on the client side, import the following scripts:

<script TYPE="text/javascript" src="script/IlvAbstractSelectionManager.js"></
script>
<script TYPE="text/javascript" src="script/framework/IlvSelectionManager.js"></
script>
<script TYPE="text/javascript" src="script/framework/IlvSelectInteractor.js"></
script>

To retrieve the selection manager on the client side, use the following code:

var selectionManager = view.getSelectionManager();

Server-side configuration
By default, the selection feature is not enabled in the image servlet support.

To make the selection feature available, you need to call setSelectionEnabled(true).

Example:

public class DiagrammerServlet extends IlvDiagrammerServlet {

protected IlvSDMServletSupport createServletSupport(ServletContext context)
{

return new DiagrammerServletSupport(context);
}

}

public class DiagrammerServletSupport extends IlvDiagrammerServletSupport {

I B M ® I L O G ® J V I E W S M A P S 8 . 6 109

public DiagrammerServletSupport(ServletContext context) {
super(context);
setSelectionEnabled(true);

}
}

Image mode or Rectangle mode
The selection manager provides two modes for displaying the selection of objects:

♦ Image mode: after each selection on the client, an image request is issued.

♦ Rectangle mode: after each selection on the client, the bounding box of each selected
object is queried to the server and displayed on the client.

The color and thickness of the bounding box rectangles can be configured through the
selection manager.

Properties
The selection servlet can be configured to provide additional information for each selected
object. This information corresponds to additional properties that can be used on the client.

To do so, you need to subclass the selection support implementation to override
getAdditionalProperties(IlvSelectionResponse response, Object object), as in the
following example.

The following selection support adds the properties of an SDM node:

//Subclass to override the getAdditionalProperties method
public class DiagrammerSelectionSupport extends IlvDiagrammerSelectionSupport
{

public DiagrammerSelectionSupport(IlvDiagrammerServletSupport support) {
super(support);

}

protected ArrayList getAdditionalProperties(IlvSelectionResponse response,
Object object) {
ArrayList props = super.getAdditionalProperties(response, object);

IlvSDMNode node = (IlvSDMNode) object;
IlvDiagrammer diagrammer = (IlvDiagrammer)

response.getProperty(DIAGRAMMER_KEY);
IlvSDMModel model = diagrammer.getEngine().getModel();

String names[] = model.getObjectPropertyNames(node);

for (int i = 0; i < names.length; i++) {
ArrayList l = new ArrayList();
l.add(names[i]);
l.add(model.getObjectProperty(node, names[i]));
props.add(l);

I B M ® I L O G ® J V I E W S M A P S 8 . 6110

}

return props;
}

}

//Use the new selection selection support class in the servlet support.
public class DiagrammerServletSupport extends IlvDiagrammerServletSupport {

[...]

protected IlvSelectionSupport createSelectionSupport() {
return new DiagrammerSelectionSupport(this);

}

}

In image mode, you need to issue an additional request to get the selection information (the
information is disabled by default). To force this additional request on each selection, use
view.getSelectionManager().setForceUpdateProperties(true).

In rectangle mode, the selection information is always enabled.

There are two ways to retrieve the selection information on the client side:

♦ Get the current selection at any time.

view.getSelectionManager().getSelection()

♦ Register a listener for selection changes.

The listener will be notified of the current selection.

The additional properties are available in the properties of a selection rectangle.

If the selection support example illustrated earlier in this section is used, the following
listener example will fill a panel with properties of the selected object:

function showProperties(rList) {

if (rList.length == 1) {
var p = "<table>";

for(var i=0; i<rList[0].getProperties(length); i++){
var props = rList[0].getProperties();
p += "<td>" + props[i][0]+ "</td>";
p += "<td>" + props[i][1]+ "</td>";

}
p +="<table>";
propPanel.setContent(p);

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6 111

Listeners
Listeners can be registered for the selection manager to keep track of the selection when
the selection manager is in rectangle mode. To add a listener to the selection manager, use
the following method:

view.getSelectionManager().addSelectionChangedListener(listener)

listener is a function with one parameter that corresponds to the selection: a list of
rectangles with additional properties.

In image mode, you need to issue an additional request to get the selection information;
listeners are not notified by default.

To force this second request on each selection, use:

view.getSelectionManager().setForceUpdateProperties(true)

Moving
If moving objects is allowed on the client and server sides, the IlvSelectInteractor allows
you to drag and drop objects.

To avoid user actions to be overridden by the automatic layout, the node layout
must be disabled when using that feature.

Important:

I B M ® I L O G ® J V I E W S M A P S 8 . 6112

Creating nodes and links

Describes how to create nodes and links in your Web applications.

In this section

Overview
Provides an overview of the class used to create nodes and links.

Client-side configuration
Shows how to configure nodes and links on the client side of the Web application.

Server-side configuration
Shows how to configure nodes and links on the server side of the Web application.

I B M ® I L O G ® J V I E W S M A P S 8 . 6 113

Overview

The ability of interactively creating nodes and links in a DHTML thin-client application is
handled through the IlvMakeObjectInteractor class.

When the IlvMakeObjectInteractor class is set on the view and configured as a node
creation interactor, it allows you to create nodes by clicking on their expected position on
the view.

Alternatively, when the IlvMakeObjectInteractor class is configured as a link creation
interactor, it allows you to create links by clicking the mouse on the origin node, dragging
the mouse and then releasing it on top of the destination node.

Normally, the creation of nodes and links is expected only in multisession mode.Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6114

Client-side configuration

To be able to interactively create nodes and links on the client side, import the following
scripts:

<script TYPE="text/javascript" src="script/IlvAbstractSelectionManager.js">
</script>
<script TYPE="text/javascript" src="script/framework/IlvSelectionManager.js">
</script>
<script TYPE="text/javascript" src="script/framework/IlvMakeObjectInteractor.
js"></script>

The interactor can be instantiated, configured and set as follows:

var interactor = new IlvMakeObjectInteractor();
// optionally make it a link interactor
interactor.setLinkMode(true);
// mandatory, set the tag of the created object in the diagrammer model
interactor.setAdditionalParameters("tagname");
view.setInteractor(interactor);

In addition to the tag name, the interactor can be configured to set some initial properties
on the selected object at creation time:

var properties = {propertyName1: "propertyValue1",
propertyName2: "propertyValue2"};

interactor.setProperties(properties);

I B M ® I L O G ® J V I E W S M A P S 8 . 6 115

Server-side configuration

To be able to deal with the actions submitted by the IlvMakeObjectInteractor class from
the client side, the image Servlet support must be configured by adding the action listener
that can handle those actions.

Example:

public class DiagrammerServlet extends IlvDiagrammerServlet {
protected IlvSDMServletSupport createServletSupport(ServletContext context)
{

return new DiagrammerServletSupport(context);
}

}

public class DiagrammerServletSupport extends IlvDiagrammerServletSupport {
public DiagrammerServletSupport(ServletContext context) {
super(context);
addServerActionListener(new IlvDiagrammerCreateActionListener());;

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6116

Deleting selected nodes and links

Shows how to delete selected nodes and links.

In this section

Overview
Provides an overview of the class used to delete selected nodes and links.

Client-side configuration
Shows how to configure deletion of selected nodes and links on the client side of the Web
application.

Server-side configuration
Shows how to configure deletion of selected nodes and links on the server side of the Web
application

I B M ® I L O G ® J V I E W S M A P S 8 . 6 117

Overview

The ability to delete selected nodes and links in a DHTML thin-client application is handled
through the IlvSelectionManager class.

Once set on the view and configured (see Managing selection) you can call the
deleteSelection() method on the IlvSelectionManager class to delete objects that have
been selected using the IlvSelectInteractor.

Nodes and Links deletion makes sense in multisession mode only.Note:

I B M ® I L O G ® J V I E W S M A P S 8 . 6118

Client-side configuration

To be able to delete the selected nodes and links on the client side, import the following
scripts:

<script TYPE="text/javascript" src="script/IlvAbstractSelectionManager.js">
</script>
<script TYPE="text/javascript" src="script/framework/IlvSelectionManager.js">
</script>

Once selected by the user, the objects can be deleted using the following line of code:

view.getSelectionManager().deleteSelection();

I B M ® I L O G ® J V I E W S M A P S 8 . 6 119

Server-side configuration

To be able to deal with the actions submitted by the deleteSelection() call from the client
side, the image servlet support must be configured by adding the action listener that can
handle them.

Example:

public class DiagrammerServlet extends IlvDiagrammerServlet {
protected IlvSDMServletSupport createServletSupport(ServletContext context)
{

return new DiagrammerServletSupport(context);
}

}

public class DiagrammerServletSupport extends IlvDiagrammerServletSupport {
public DiagrammerServletSupport(ServletContext context) {
super(context);
addServerActionListener(new IlvDiagrammerDeleteActionListener());;

}
}

I B M ® I L O G ® J V I E W S M A P S 8 . 6120

A
adding and displaying an image map

JSF 42
Ajax

JavaScript objects for JViews Maps Faces
components 69

attributes (JSP tags))
visibleLayers 40

B
boundingBox

JViews Faces component property 33

C
configuration

client side 115
server side 116

configuring each image map zone
image map generator with JSF technology
42

constrainedOnContents
JViews Faces component property 35

contextual popup menu
JSF 45
JSF adding 44

D
dynamic menus 90

E
empty view 29

F
Facelets 90
file

.idpr 55

.ivl 55

G
getDataSource method 57

H
hiding an image map

JSF 42
hot spots

JSF image map 42

I
IlvChart interface 76
IlvDashboardDiagram class 68
IlvDataSetPoint class 73
IlvDiagrammer class 68
IlvDiagrammer interface 76
IlvDiagrammerServlet class 97
IlvDiagrammerServletSupport class 98
IlvFacesChartImageMapGenerator class 42
IlvFacesDiagrammerPropertyAccessor class 62
IlvHierarchyChart interface 76
IlvHierarchyNode interface 73
IlvImageMapAreaGenerator class 42
IlvIMapDefinition class 42
IlvMakeObjectInteractor class 114, 116
IlvManagerServlet class 97
IlvManagerView interface 76
IlvMapServlet class 97
IlvMapServletSupport class 98
IlvMapViewProxy object 69
IlvMenuFactory interface 45
IlvSDMImageMapAreaGenerator class 42
IlvSDMNode interface 73
IlvSDMServlet class 97
IlvSelectInteractor class 118
IlvSelectionManager class 118
IlvSelectionPropertiesError class 62
IlvSelectionRectangle class 62
image map

adding and displaying with JSF technology
42
JSF 42

© Copyright IBM Corp. 1987, 2009 121

I N D E X

Index

image map generator
configuring each zone with JSF 42

image maps 106
image server

declaring in portlet mode 83
image servlet

interactions 76
value change listener 76

interactions
executing in image servlet context 76
executing in JSF lifecycle 73

interactors
JSF image map 42

interactors, installing 60

J
JavaScript action

in managed bean 81
namespace-encoded variables 81
notation 81
variables 81

JavaScript variables
action 81
portlet namespace 81

JSF 18
components and portlets 81
hiding an image map 42
image map hot spots 42
interactors and image map 42
showing an image map 42

JSF components
integrating into portal 83

JSF image map
adding 42

JSF lifecycle
interactions 73
value change listener 73

JSF menu factory
contextual popup menu 45

JSF popup menu
adding a contextual 44
contextual 45
contextual menu factory 45
static 44
styling 47

JSP 18, 37
JSR 168

portlets 81
jv

menu tag 44
menuItem tag 44
menuSeparator tag 44

JViews Maps Faces
component set 25
getting started with 28

L
layers

static in tiling 52

M
managed bean

JavaScript action 81
manager layers

visible (JSF) 40
maxZoomLevel

JViews Faces component property 35
menu binding

static 90
menus

dynamic 90
message box, connecting to 49
minZoomLevel

JViews Faces component property 35

N
namespace

JavaScript variables in portlets 81
portlet 81
scripts in portlets 81

namespace-encoded variables
JavaScript action 81

nodes and links
creating 113
deleting 117

notation
JavaScript action 81

P
portal

integrating JSF components 83
portlets

and JSF components 81
declaring image server 83
JSR 168 81
namespace 81

project file
as parameter to IlvDiagrammerServlet 106

properties (JSF)
boundingBox 33
maxZoomLevel 35
minZoomLevel 35
tileManager 52
visibleLayers 40
zoomLevels 35

R
refjavacharts

ilog/views/chart/data/IlvDataSetPoint.html
73

S
scripts

portlet namespace 81

I B M ® I L O G ® J V I E W S M A P S 8 . 6122

select interactor 61
selection

client side 109
JSF components 61
listeners 110
server side 109

showing an image map
JSF 42

simple view 29
static menu 90
static popup menu

JSF 44
styling

JSF popup menu 47

T
thin clients

client side using SDM 108
thin-client 95
tileManager

JViews Faces component property 52
tiling

static layers 52
Trinidad 90

V
value change listener

image servlet 76
JSF lifecycle 73

view
empty 29
simple 29

view component (JSF)
fixed zoom level 35
free zoom level 35
maximum free zoom level 35
minimum free zoom level 35
visible manager layers 40
zoom level constraints 35

visibleLayers
JSP tag attribute 40
JViews Faces component property 40

W
workflow process

in thin-client example 103

Z
zoom constraints

manager content 35
zoom levels

constraints for JViews Faces view component
35
fixed for JViews Faces view component 35
free for JViews Faces view component 35
maximum free zoom level 35
minimum free zoom level 35

zoomLevels
JViews Faces component property 35

I B M ® I L O G ® J V I E W S M A P S 8 . 6 123

	Table of contents
	Introducing the Web technologies used in JViews Maps
	Overview
	Thin client applications
	Thin client application designs
	Ajax-enabled components

	Rich Web applications
	Overview
	Applets
	Java Web Start applications

	Using DHTML-based JSF Components to build Web applications
	Overview
	The architecture of JViews Maps Faces
	About support for JViews Faces
	Servlet and component classes

	The JViews Maps Faces component set
	Overview
	Creating simple views
	Creating a Google Maps view
	Controlling the display of the view
	Zoom constraints
	Zoom levels and dynamic layers
	Tiling the view
	Visible layers
	Image maps
	Adding a popup menu
	Styling the popup menu
	Adding a legend
	Adding a Message Box
	Adding an Overview
	Adding a Pan Tool and a Zoom Tool
	Server-side caching
	Managing the session expiration
	The map view as a Diagrammer view
	JViews Maps project
	JViews Diagrammer Designer Project
	Data Source Binding
	Styling with CSS
	Installing Interactors
	Select Interactor
	Creating nodes and links
	Deleting selected nodes and links
	Dashboard diagram

	JavaScript objects
	Contexts for actions on the view
	Overview
	JavaServer Faces lifecycle context
	Image servlet context

	Integrating JViews Faces in your environment
	JViews Faces configuration at JViews Framework level
	Session persistence
	Running JViews Faces components in JSR 168 portlets
	Guide to using JViews components with ICEfaces
	Settings for using JViews components in ICEfaces
	Interoperability between JViews components and ICEfaces components
	Push updates to JViews components
	ICEfaces software in JViews

	Supporting Facelets and Trinidad
	Web Application Server support

	Deploying a JViews Maps application as a DHTML-only thin client
	JavaServer Faces components as opposed to DHTML thin client
	Thin-client classes for the server side
	Overview
	The IlvMapServlet class
	The IlvMapServletSupport class

	Deploying an application as a DHTML-only thin client
	JavaServer Faces components as opposed to DHTML thin client
	Thin-client library
	Creating a thin-client application
	Thin-client classes for the server side
	The IlvDiagrammerServlet class
	The IlvDiagrammerServletSupport class

	Writing the client side of Web applications using JViews Diagrammer
	Managing selection
	Creating nodes and links
	Overview
	Client-side configuration
	Server-side configuration

	Deleting selected nodes and links
	Overview
	Client-side configuration
	Server-side configuration

	Index

