
IBM ILOG JViews TGO V8.6

Styling

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing cascading style sheets..9
Cascading style sheets...10

Getting started with JViews TGO style sheets...11
Writing a style sheet...12
Declarations...14
Specializing CSS rules...15
The priority of CSS rules..17
Debugging a style sheet...18

The CSS specification...19
CSS Syntax..20
Applying CSS to Java objects..21
The CSS engine in JViews TGO..23
JViews TGO Functions...28
Divergences from CSS2...38

How to represent a business object..41
Business class properties...42
Attribute properties...44

Retrieving the value of a property...45

Using custom pseudo-classes...46

Using Cascading Style Sheets..49
Using global settings..52

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Customizing network and equipment nodes..55
Representing nodes as business objects...56
Adding new decorations to predefined business objects..57

Advanced customization of nodes..65

Customizing network and equipment links..67

Customizing tree nodes..69
Representing tree nodes as graphic objects or icons with labels...70
Advanced customization of tree nodes...76
Improving the performance of predefined business objects (tree component)...78

Customizing table cells...79
Representing table cells as business objects or labels with optional icons..80
Advanced customization of table cells..86
Improving the performance of table cell rendering...88

Customizing table column headers and rows..89

Customizing the label of a business object..93

Customizing the label in table cells...98

Changing the font of all labels...100

Customizing tooltips...102

Customizing object and alarm states of predefined business objects..............................107
Overview of customizing the states of predefined business objects..109
Secondary states and information window properties..110
Alarm configuration properties...113
Alarm balloon configuration properties...117
Alarm count configuration properties...120
SNMP system info configuration properties...122
Changing the icon color of predefined business objects..123

Customizing the icon of business objects..125

Adding a user-defined business attribute to the system window......................................126

Changing the background color of all columns in a table..128

Displaying the same attribute with different representations...131

Customizing node and link layouts...133

Customizing link label layout...135

Customizing the selection border in the network and equipment......................................139

Customizing selection in a table or a tree...140

Customizing the expansion of business objects...141

Customizing network elements...143

S T Y L I N G4

Representing network elements..144

Customizing network element types...147
Representing a network element type..149
Customizing existing network element types..150
Creating network element types from images and customizing them..157
Using the imagecolortuner application to configure the renderer factory...163
Customizing network element types from SVG graphics...164
Extending the class IltNEBaseRenderer..166
Localizing network element types..173

Customizing network element functions..174

Customizing network element families...176

Customizing different aspects of network elements...178

Customizing user-defined business objects...181
Representing business objects...182

Customizing user-defined network nodes..183
Customizing a node shape...184
Customizing the color of a node shape with paint styles..189
Customizing the border of a node shape...191
Customizing a node icon..192
Customizing a node label...193
Automatic resizing for a node shape with an icon in it..194

Customizing user-defined network links..195
Customizing a link..196
Customizing various aspects of links..200
Customizing a link label..211

Customizing tooltips of user-defined business objects..212

Customizing links...213
Links...215

Representing links..216

Customizing link representations..217

Changing the representation of individual links..220

Customizing the link information cluster..222

Customizing link media..223

Customizing link technology..225

Customizing various aspects of links...228

Customizing link tiny types..230

S T Y L I N G 5

Customizing link sets...231

Customizing link bundles...232

Customizing link set and link bundle tiny types..234

Customizing groups...235
Groups..236

Representing groups and attributes..238

Customizing group representations..239

Customizing various aspects of groups...248

Customizing subnetworks...253
Representing subnetworks..254

Customizing the representation of subnetworks...255

Customizing shelves and cards..259
Representing physical telecommunication equipment...261

Representing shelves...262

Customizing shelf representations...263

Customizing various aspects of shelves..265

Representing and customizing card carriers...270

Customizing various aspects of card carriers..271

Representing and customizing cards..274

Customizing various aspects of card carriers..275

Representing and customizing ports..280

Customizing various aspects of ports..281

Representing and customizing LEDs..285

Customizing various aspects of LEDs..287

Customizing BTS..293
Representing and customizing BTS..294

Customizing BTS antennas..296

Customizing various aspects of BTS antennas...298

Customizing alarms...301
Representing alarms...302

Customizing various aspects of alarms..303

Customizing off-page connectors..305

S T Y L I N G6

Representing off-page connectors..306

Customizing existing off-page connector types..307

Customizing new off-page connector types...311

Customizing other aspects of off-page connectors...315

Customizing object states...317
Customizing the object representation based on states...319
Representing and customizing state information...321
OSI states...323
Bellcore states..325
SNMP states..327
SONET states..329
Miscellaneous states..331
Performance states..332
SAN states...334
Alarms..336
Traps...338

Customizing passive devices...340

Customizing the OSI state system..341

Customizing the Bellcore state system..343

Customizing the SNMP state system..345
SNMP primary and secondary states...346
Customizing SNMP secondary states..348
Creating a new attribute in the System group..353

Customizing the SONET state system..355
Customizing SONET states..356
Customizing SONET protection states...359

Customizing the Miscellaneous state system..361

Customizing the Performance State System..363
Creating new Performance secondary states...364
Customizing Performance secondary states..366

Customizing the SAN state system...371
Creating new SAN secondary states..372
Customizing SAN Secondary States..374

Customizing alarm severities...379

Customizing alarm count attributes..386

Customizing trap types...392

Customizing the secondary state icons..396

S T Y L I N G 7

Index..397

S T Y L I N G8

Introducing cascading style sheets

Describes the Cascading Style Sheet (CSS) mechanism.

In this section

Cascading style sheets
Explains what style sheets are used for and describes the Cascading Style Sheets (CSS)
mechanism.

Getting started with JViews TGO style sheets
Describes how style sheets function in JViews TGO.

The CSS specification
Contains reference information on CSS and explains how CSS concepts are used in JViews
TGO.

How to represent a business object
Describes how business objects are represented by business class properties and attribute
properties:

Retrieving the value of a property
Describes how to retrieve property values for a user-defined graphic renderer or graphic
class.

Using custom pseudo-classes
Describes how to create and register your own pseudo-classes for the objects displayed in
graphic components.

© Copyright IBM Corp. 1987, 2009 9

Cascading style sheets

Style sheets contain collections of graphic settings, such as color, font, or icon, which are
used to render objects and associated attributes in graphic components. Cascading Style
Sheets (CSS) provide a powerful mechanism for customizing HTML rendering in a web
browser. The CSS specification originates from the World Wide Web Consortium (W3C) and
has the status of a W3C Recommendation.

The CSS mechanism is a great improvement over the .Xdefault resource mechanism of the
XWindow System. The basic idea remains the same: matching a pattern and setting resource
values. CSS are intended for HTML rendering, matching HTML tags, and setting style values.
XML is also a CSS target, especially in the context of the Scalable Vector Graphic (SVG)
specification of W3C.

In ILOG JViews TGO, the CSS level 2 (CSS2) Recommendation is transposed to the Java™
language and used to set JavaBean™ properties in accordance with the Java object hierarchy
and state.

JViews TGO graphic components use CSS chiefly for the following purposes:

♦ To define how each business object is to be displayed in the graphic components.

♦ To define a setting specific to one graphic component, but generalized within that
component, such as the background color of a view.

JViews TGO supplies a large number of predefined ready-to-use CSS properties that apply
to both predefined and custom business classes, objects, and attributes of these objects.
Graphic components use these properties to render data. JViews TGO provides default
property values for creating a default look for data appearing across different graphic
components.

S T Y L I N G10

Getting started with JViews TGO style
sheets

Describes how style sheets function in JViews TGO.

In this section

Writing a style sheet
Explains the syntax of style sheets through a simple example.

Declarations
Explains what declarations are with a simple example.

Specializing CSS rules
Explains the syntax of CSS rules with simple examples.

The priority of CSS rules
Explains how specificity determines the priority of CSS rules with a simple example.

Debugging a style sheet
Describes common problems in debugging a style sheet and the use of a debug mask.

S T Y L I N G 11

Writing a style sheet

Here is a basic example to start with, which is intended to help you understand quickly how
to write style sheets in JViews TGO.

How to write an easy style sheet
A CSS usually starts with the configuration of the graphic component. The graphic component
configuration includes the configuration of the view, the interactor, the adapter and of some
other elements in relation to the graphic component. For example, to set a background color
in a tree component, you can write:

Tree {
view: true;

}
View {
background: orange;

}

The configuration of each graphic component is specified in a CSS rule, which is identified
by the name of the graphic component:

♦ Table

♦ Tree

♦ Network

♦ Equipment

Each graphic component has a set of properties that can be customized through CSS.

For information on the properties in each graphic component, see the following topics:

♦ Table: Table component

♦ Tree: Tree component

♦ Network: Network component

♦ Equipment: Equipment component

Once a graphic component is configured, you can start to set the characteristics of the
graphic representation of objects that are to be displayed in the component. In JViews TGO,
all objects from the model have the CSS type object.

The following CSS extract shows how to configure objects of the business class Alarm. The
complete version of this configuration is in the tutorial in <installdir>
/tutorials/gettingStarted.

Normally, the JViews TGO tree component displays objects of a custom class as tree nodes
indicated by a default icon and a label. You can specify a different behavior by customizing
the graphic representation of these objects: you can set a specific icon and define that the
label of the tree node has the value of the identifier attribute. A special character, the

S T Y L I N G12

commercial at sign (@), informs JViews TGO that it must get the value from the business
model. The @ character is used as a prefix of the name of the attribute from the model.

object.Alarm {
label: @identifier;

}

When you have configured the style sheet, you can load it into the various graphic components
with the method setStyleSheets:

//Load the tree component configuration
String[] css = new String[] { "tree.css" };
try {
treeComponent.setStyleSheets(css);

} catch (Exception e) {
e.printStackTrace();

}

The style sheet is dynamically interpreted, that is, you can load a new CSS configuration in
a graphic component without recompiling or relaunching the application.

S T Y L I N G 13

Declarations

In CSS, the term declaration is used to describe the statements placed between braces ({}).
Declarations represent property settings. They are used in JViews TGO like a JavaBean™
for customizing graphic objects. Typically, the left part of a declaration contains the name
of a property of a graphic object and the right part contains the value set for the property.
Sometimes, the left part of a declaration is not used to refer to a property of a graphic object.
For example, class is a reserved word that represents the class name of the graphic
representation.

JViews TGO defines a set of properties that can be applied to user-defined and predefined
business objects to customize their graphic representation.

You can also define your own graphic representation by declaring the class property with
your JavaBean class and setting it in the CSS rule.

How to define your own graphic representation

object.Alarm {
class: 'javax.swing.JButton';
text: @identifier;
background: blue;
foreground: yellow;

}

The CSS rule defined in this example states that objects from the business class Alarm are
represented by JButton instances that are configured with the properties text, background,
and foreground.

S T Y L I N G14

Specializing CSS rules

A CSS rule consists of a selector followed by one or more declarations contained within
braces ({}). Up until now, selectors have only been used to distinguish CSS types and CSS
classes.

CSS Class
In JViews TGO, the CSS class corresponds to the business model class.

How to match a business class
Within a selector, the syntax for matching a business class is:

object."ilog.tgo.model.IltObject" {
label: @name;

}

How to match a business attribute
In the table component, table cells have a specific CSS class that is made up of the business
class and attribute (column) names. The syntax for a business attribute is the following:

object."Alarm/identifier" {
label: @identifier;

}

Matching object identifiers
Identifier matching in the selector is used to match a specific business object in the model.
It is expressed in the format #id. When you use this type of selector, you can customize each
individual business object through the style sheet. However, the benefits of factorization
through declarations are lost.

How to match object identifiers

#RJLed0 {
foreground: yellow;

}

Add this rule to the style sheet to set the foreground color of the object RJLed0 to yellow.

Matching attribute values
The syntax for matching attribute values is expressed in the format [att=val]. This syntax
allows you to write patterns in the style sheet that are close to the objects in the business
model and to test the attribute against a value.

S T Y L I N G 15

The following example adjusts the background color of the table cells in the column
identifier according to the value of the attribute perceivedSeverity.

How to vary table cell background color depending on attribute
value

object."Alarm/identifier"[perceivedSeverity=0] {
labelBackground: '#FFFFFF';

}

S T Y L I N G16

The priority of CSS rules

Declarations that are not overridden are still valid. This mechanism allows you to write
default declarations for common objects and to refine customization with rules that apply
to more specialized objects in the model by overriding the default declarations.

In the following example, business objects of class Alarm have a label with a yellow
background when the attribute perceivedSeverity is 0, and a white background when this
attribute has a different value.

How to customize the representation of an object depending on
a specific value

object.Alarm {
label: @identifier;
labelBackground: white;

}

object.Alarm[perceivedSeverity=0] {
labelBackground: yellow;

}

S T Y L I N G 17

Debugging a style sheet

When styling with CSS, one of the most common problems concerns the order of priority.
A rule can be assumed to have a greater or lesser priority than is actually the case. Then,
unsuitable declarations are applied. With many rules, it can be difficult to determine which
declarations apply to which conditions. Understanding the priority of CSS rules is the most
difficult aspect of a large style sheet.

Another common problem is syntax errors in the declarations. If an identifier on the left
does not refer to a valid property, it will be silently ignored. If the value on the right is
invalid, it may also be ignored by the target object. In both cases, the declaration has no
visible effect.

Yet another common problem concerns changes in properties. An event marking a new value
may trigger a new rule. When the object in the model reverts to its previous state, the
previous set of rules applies. Therefore, the previous set of rules must contain declarations
that undo the changes in the properties of the graphic object correctly. For example, if a
node switches to an alarm state, a CSS rule will create an alarm decoration. When the alarm
state is resolved, the decoration should be canceled by a declaration in the normal set of
rules.

You can specify a styleSheetDebugMask property in the graphic components. This flag has
several levels that help in debugging problems. The style sheet debug mask can be set
directly in the graphic component with the method setStyleSheetDebugMask(int) or it can
be customized in the style sheet itself.

StyleSheet {
styleSheetDebugMask: "DECL_MASK|DECL_VALUE_MASK";

}

See the interface IlvStylable for more details on the available debug levels.

S T Y L I N G18

The CSS specification

Contains reference information on CSS and explains how CSS concepts are used in JViews
TGO.

In this section

CSS Syntax
Describes the main syntax elements of CSS.

Applying CSS to Java objects
Describes how CSS is applied to style Java objects instead of XML documents.

The CSS engine in JViews TGO
Describes the role of the CSS engine with respect to graphic objects.

JViews TGO Functions
Describes the set of functions provided for use directly in your CSS files.

Divergences from CSS2
Describes the way CSS has been adapted to accommodate Java objects.

S T Y L I N G 19

CSS Syntax

CSS syntax is described more fully in Using CSS syntax in the style sheet

The main elements of syntax are:

Style rule
A CSS document, or style sheet, consists of a set of style rules. Each style rule starts
with a selector and is followed by a declaration.

Selector
A selector is composed of one or more simple selectors. A simple selector is made of
minimal building blocks. When two or more simple selectors are aggregated into a
selector, they are separated by combinators. A combinator is a single character; extra
spaces are ignored.

Declaration
Declarations are property-value pairs that are enclosed in braces ({}). The separator is
a colon (:). Each declaration is terminated by a semicolon (;). The property represents
a predefined graphic attribute and the value is a literal, with its type dependent on the
property. All property-value pairs are String.

Priority
Priority depends on specificity. Specificity is computed as three numbers, a-b-c (in a
number systemwith a large base). The number of ID building blocks in the selector gives
the first number a, the number of classes and attributes gives b, and the number of
element types gives c.

Cascading
Cascading consists in supplying several sources for the style: the browser, the user, and
the document in HTML environments. Each source is weighted in relation to the others,
with document style taking precedence over user style, which takes precedence over
browser style when the specificity is the same. CSS can also make use of internal
cascading, when it imports other style sheets by referring to a URL.

Inheritance
Inheritance of declarations occurs when matched declarations are sorted according to
the priority of the rules and declarations are merged. Higher priority settings override
lower ones as described in The priority of CSS rules.

S T Y L I N G20

Applying CSS to Java objects

The CSS selector is designed to match HTML or XML documents. It can also be used to
match a hierarchy of Java™ objects accessible through a model interface. The declarations
are then sorted for the objects in the model and are used depending on the application that
controls the CSS engine. In JViews TGO, declarations create and customize one graphic
object for each object in the model.

The input model represents the kernel of the CSS for Java engine. It provides these important
categories of information:

♦ The tree structure of objects, which is exploited by selector transitions

♦ Object type, ID, and CSS classes

♦ Attribute value that matches the selector attribute of the same name

The declarations part represents property settings on a target object. The target object
depends on the way the CSS engine is used. In JViews TGO, the target object is the rendering
object associated with the object in the model. JViews TGO provides a default graphic
representation for user-defined business classes and predefined business classes. This
graphic representation has a set of properties that are used to customize its appearance.

Instead of using the default graphic representation supplied by JViews TGO, you can define
your own rendering object, an IlvGraphic or a JComponent. In this case, the declarations
change property values on the graphic object that corresponds to the object matched in the
model.

How to customize the graphic representation

object."test.Vehicle"[model=sports] {
icon: "sports-car.gif";

}

This example matches the object of the class test.Vehicle with the property model (which
has the value sports) and fixes the property icon of the graphic object associated with this
object to sports-car.gif. (The association of the object with the graphic object is defined
elsewhere.)

The enclosing double quotes around test.Vehicle are used so that the dot is not
interpreted as a CSS class pattern; that is, an object of type test with CSS class
Vehicle.

Note:

Property matching can be used to add dynamic behavior. An event that changes attribute
values occurring on the model can activate the CSS engine to establish new property values.

S T Y L I N G 21

How to add dynamic behavior through property matching

object.computer[state=down] {
foreground: gray;

}

This example changes the foreground color whenever an object of CSS class computer has
the value of the property state set to down.

S T Y L I N G22

The CSS engine in JViews TGO

In JViews TGO, the CSS engine is responsible for creating and customizing graphic objects
and renderers when the data is loaded. At run time, the engine customizes the graphic
objects according to changes in the model.

The left side of a declaration usually represents a JavaBean™ property of the graphic property.
The right side is a literal. If the literal requires type conversion, the method setAsText()
is invoked on the property editor associated with the JavaBean property.

Class property
The class property name is a reserved keyword that indicates the class name of the generated
graphic object. JViews TGO provides a predefined representation for the objects in all graphic
components, which means that the class property is optional. It can be used when you want
to replace the predefined representation.

How to use the Class property
The right side of a class declaration could contain:

♦ The class name, loaded with the application context class loader.

For example:

object {
class: ilog.views.sdm.graphic.IlvGeneralNode;
foreground: red;

}

♦ A pathname to a file. In fact, the class name is forwarded to the JavaBeans library with
the method java.beans.Beans.instantiate(), so a serialized JavaBean is suitable. For
example:

object {
class: data.beans.gauge;
foreground: red;

}

The JavaBeans documentation states: “When using the beanName as a serialized object
name, we convert the given beanName to a resource pathname and add a trailing ‘.ser’
suffix. We then try to load a serialized object from that resource.”

In the example given, the method Beans.instantiate() would try to read a serialized
object from the resource data/beans/gauge.ser.

In the network and equipment components, the class declaration is applied only when a
creation request occurs. When the model state changes, graphic components are customized
by applying only new declarations from the matching rules in the CSS. The class declaration
is ignored. To change the class, the object in the model must be removed and then added
again.

S T Y L I N G 23

Model indirection
The right side of a declaration contains a literal that is converted dynamically through a
property editor. If the literal is prefixed by @, the remainder of the string is treated as a
model attribute name. The declaration expects the attribute value of the object from the
model.

How to refer to attribute values of model objects

object."ilog.tgo.model.IltObject" {
label: @name;

}

The label property is set to the value of the attribute named name in the model.

Besides the standard model attributes, JViews TGO also provides the following attributes
that you can use when customizing objects and graphic components:

♦ @__ID

Returns the object identifier. You can use it to customize objects as illustrated below:

object {
toolTipText: @__ID;

}

♦ @__ADAPTER

Returns the component adapter. You can use it to customize graphic components adapters.
For more information about component customization using CSS, see the following topics:

Configuring a network component through a CSS file

Configuring an equipment component through CSS

Configuring the tree component through a CSS file

Configuring the table component through a CSS file

Resolving URLs
Sometimes declaration values are URLs relative to the style sheet location. A special
construct, standard in CSS level 2, allows you to create a URL from the base URL of the
current style sheet. For example, the following declaration extends the path of the current
style sheet URL with images/icon.gif.

How to extend the path of the current style sheet

imageURL: url(images/icon.gif);

This feature is very useful for creating style sheets with images located relative to the style
sheet itself, since the URL remains valid even when the CSS is cascaded or imported
elsewhere.

S T Y L I N G24

CSS recursion
You may want to specify a Java object as the value of a declaration. A simple convention
allows you to recurse in the style sheet; that is, to define a new Java object which has the
same style sheet, but is unrelated to the current model.

Prefix the value with @# to create a new JavaBean dynamically.

How to Create a New JavaBean Dynamically

object."Alarm/creationTime" {
toolTipText: "@#tooltipFormatBean";
label: @creationTime;

}
Subobject#toolTipFormatBean {

class:"ilog.cpl.util.text.IlpSimpleDataFormat";
pattern: "HH:mm:ss z";

}

The @# operator extends the current data model by adding a dummy model object as the
child of the current object. The object ID of the dummy object is the remainder of the string,
beyond the @# operator. The type of the dummy object is Subobject. The dummy object
inherits CSS classes and attributes from its parent.

The CSS engine creates and customizes a new subobject according to the declarations it
finds for the dummy object. This means, in particular, that the Java class of the subobject
is determined by the value of the class property. The newly created subobject becomes the
value of the @# expression. In the declarations for the subobject, attribute references through
the @ operator refer to the attributes of the parent object.

Once the subobject is completed, the previous model is restored, so that normal processing
is resumed.

In the example, an IlpSimpleDateFormat object is created, with the pattern property set
to HH:mm:ss z, and is assigned to the toolTipText property of the object.

There are two refinements to the @#ID operator:

♦ @=ID

Using @=ID instead of @#ID shares the instance. The first time the declaration is resolved,
the object is created as with the @# operator. But for all subsequent access to the same
value, @=ID returns the same instance, the one created the first time and without applying
the CSS rules.

♦ @+ID

Using @+ID instead of @#ID avoids unnecessary creation of objects. The CSS engine first
checks whether the property value corresponding to the declaration is defined and not
null. If the property value is defined, this current value is customized directly using the
rules for the #ID operator, deliberately ignoring any class declaration. If it is not defined,
the operator behaves exactly as with the @# operator. In this case, the operator creates
the property value only when required and customizes it in all cases.

S T Y L I N G 25

The need for these refinements arises from a performance issue. The @# operator creates a
new object each time a declaration is resolved. Usually, a declaration is applied when
properties change. Under certain circumstances, the creation of objects may lead to expensive
processing. These optional mechanisms minimize the creation of objects.

CSS expressions and functions
The values of CSS declarations can be literals, @# constructions, or attributes from the model
(prefixed by @). In addition, you can also declare a value with @| which considers the rest
of the value as an expression.

The syntax of the expression after the @| prefix is close to Java syntax. Expressions can be,
for example, arithmetic (int, long, float, or double), Boolean, or String.

Syntax of Expression Values
MeaningExpression Syntax

13@|3+2*5

true@|true&&(true||!true)

"foobar"@|foo+bar

Expressions can also refer to attributes in the model. The syntax used is the normal one.

Syntax of Expressions Referring to Attributes in the Model
MeaningExpression Syntax

1/100 of the value of speed plus value of drift, where speed and drift
are attributes of the current object.

@|@speed/100+@drift

"name is: Bob", if the value of the current object attribute name is Bob.
Note the use of double quotes to retain the space characters.

'@|"name is: " + @name'

The usual functions are accepted:

♦ abs()

♦ acos()

♦ asin()

♦ atan()

♦ ceil()

♦ cos()

♦ exp()

♦ floor()

♦ log()

♦ pi

S T Y L I N G26

♦ rint()

♦ round()

♦ sin()

♦ sqrt()

♦ tan()

For example:

@|3+sin(pi/2)

which results in the value 4.

CSS also supports functions as part of expressions.

S T Y L I N G 27

JViews TGO Functions

Functions for direct use in CSS files
Functions for direct use in CSS files

UsageClass NameDescriptionFunction Name

Parameter:IlpImageFunctionRetrieves an image from
the Image Repository

image

image locationservice registered in your
application context. Example:

@|image("ilog/tgo/
ilt_busy.png")

Parameters:IlpResourceFunctionRetrieves a resource value
from a given
ResourceBundle.

resource

ResourceBundle name
(mandatory)

Message identifier
(mandatory)

Default message value
(optional). Returned if the
message requested was
not found in the given
resource bundle.

Example:

@|resource("ilog.
tgo.messages.
JTGOMessages",
"ilog.tgo.
Operational_State")

Parameters:IlpValueMapFunctionRetrieves a value from an
IlpValueMap object that

valuemap

IlpValueMap instancecorresponds to the
specified key. Object key

Example:

@|valuemap
(@#valuemap,
@severity);

Parameters:IlpFormatFunctionApplies a format to the
given values.

format

java.text.Format
instance

Arguments of the Format

S T Y L I N G28

UsageClass NameDescriptionFunction Name

Example:

@|format
(@#formatBean,
@attribute)

Parameters:IltBlinkingColorFunctionCreates a blinking color.blinkingcolor

on color

off color

on period

off period

Example:

@|blinkingcolor
(black, white,1000,
500)

Parameter:IltPatternFunctionCreates a pattern
description, IlPattern,

pattern

Pattern type, which can
have one of the following
values:

which can be used to
customize the
representation of JViews
TGO predefined business
objects.

Grid, SkewGrid, Dots,
ThinHatching.

It can also generate
patterns defined in
IlvPattern, for example,
LIGHT_VERTICAL.

Depending on the pattern
type, other arguments can
be passed to configure the
pattern instance.

Grid patterns accept two
integer arguments:
xPeriod and yPeriod.

SkewGrid patterns accept
two integer arguments:
uPeriod and vPeriod.

Examples:

@|pattern("Grid", 3,
2)

@|pattern
("SkewGrid", 2, 2)

S T Y L I N G 29

UsageClass NameDescriptionFunction Name

@|pattern
("LIGHT_VERTICAL")

Parameter:IltAcknowledgedAlarmCountFunctionReturns the number of
acknowledged alarms for
a given business object.

acknowledgedAlarmCount

One of the following
possibilities:

Default: all raw severities or
traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|acknowledgedAlarmCount
("Impact")';

label:
'@|acknowledgedAlarmCount
("Impact.MajorHigh")
';

Parameter:IltAcknowledgedAlarmSummaryFunctionReturns a summary of
acknowledged alarms for

acknowledgedAlarmSummary

One of the following
possibilities:

a given business object.
The returned value is a
String listing the number Default: all raw severities or

trapsof acknowledged alarms
for each chosen severity.

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|acknowledgedAlarmSummary
("Impact")';

label:
'@|acknowledgedAlarmSummary
("Raw.Major")';

Parameter:IltAlarmCountFunctionReturns the number of
outstanding alarms for a
given business object.

alarmCount

S T Y L I N G30

UsageClass NameDescriptionFunction Name

One of the following
possibilities:

Default: all raw severities or
traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label: '@|alarmCount
("Impact")';

label: '@|alarmCount
("Raw.Major")';

Parameter:IltAlarmSummaryFunctionReturns the summary of
new and acknowledged

alarmSummary

One of the following
possibilities:

alarms for a given
business object.

Default: all raw severities or
traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|alarmSummary()';
///Equivalent to
"Default"

label:
'@|alarmSummary
("Impact")'; ///
Impact alarms

label:
'@|alarmSummary
("Raw.Major")'; ///
Consider only raw
major alarms

Parameter:IltHighestAcknowledgedSeverityFunctionReturns the highest
severity of acknowledged

highestAcknowledgedSeverity

S T Y L I N G 31

UsageClass NameDescriptionFunction Name

One of the following
possibilities:

alarms for a given
business object.

Default: all raw alarm
severities or traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|highestAcknowledgedSeverity
()'; ///Equivalent
to "Default"

label:
'@|highestAcknowledgedSeverity
("Impact")'; ///
Impact alarms

label:
'@|highestAcknowledgedSeverity
("Raw.Major")'; ///
Consider only raw
major alarms

Parameter:IltHighestNewSeverityFunctionReturns the highest
severity of new alarms for
a given business object.

highestNewSeverity

One of the following
possibilities:

Default: all raw alarm
severities or traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|highestNewSeverity
()'; ///Equivalent
to "Default"

label:
'@|highestNewSeverity

S T Y L I N G32

UsageClass NameDescriptionFunction Name

("Impact")'; ///
Impact alarms

label:
'@|highestNewSeverity
("Raw.Major")'; ///
Consider only raw
major alarms

Parameter:IltHighestSeverityFunctionReturns the highest
severity of outstanding

highestSeverity

One of the following
possibilities:

alarms for a given
business object.

Default: all raw alarm
severities or traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|highestSeverity()
'; ///Equivalent to
"Default"

label:
'@|highestSeverity
("Impact")'; ///
Impact alarms

label:
'@|highestSeverity
("Raw.Major")'; ///
Consider only raw
major alarms

Parameter:IltNewAlarmCountFunctionReturns the number of
new alarms for a given
business object.

newAlarmCount

One of the following
possibilities:

Default: all raw alarm
severities or traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

S T Y L I N G 33

UsageClass NameDescriptionFunction Name

Examples:

label:
'@|newAlarmCount()';
///Equivalent to
"Default"

label:
'@|newAlarmCount
("Impact")'; ///
Impact alarms

label:
'@|newAlarmCount
("Impact.MajorLow")
'; ///Consider only
raw major alarms

Parameter:IltNewAlarmSummaryFunctionReturns the summary of
new alarms for a given
business object.

newAlarmSummary

One of the following
possibilities:

Default: all raw alarm
severities or traps

Impact: all impact alarm
severities

Alarm severity name: for
example, Raw.Major,
Impact.MajorHigh

Examples:

label:
'@|newAlarmSummary()
'; ///Equivalent to
"Default"

label:
'@|newAlarmSummary
("Impact")'; ///
Impact alarms

label:
'@|newAlarmSummary
("Impact.MajorLow")
'; ///Consider only
raw major alarms

Example:IltPrimaryStateSummaryFunctionReturns the summary of
the primary state

primaryStateSummary

S T Y L I N G34

UsageClass NameDescriptionFunction Name

label:
'@|primaryStateSummary
()';

information for a given
business object.

Example:IltSecondaryStateSummaryFunctionReturns the summary of
the secondary state

secondaryStateSummary

label:
'@|secondaryStateSummary
()';

information for a given
business object.

Parameter:IltSettingsFunctionReturns an
IltSettings.

settings

Setting key

Example:

icon: '@|settings
("Link.Media.Fiber.
Icon")';

Parameter:IltSeverityColorFunctionReturns the color
corresponding to a given
alarm severity.

severityColor

Alarm severity

Examples:

labelBackgroundColor:
'@|severityColor
(@|highestNewSeverity
())';

labelBackgroundColor:
'@|severityColor
("Raw.Major")';

Parameter:IltSeverityBrightColorFunctionReturns the bright color
corresponding to a given
alarm severity.

severityBrightColor

Alarm severity

Example:

alarmBrightColor:
'@|severityBrightColor
(@|highestNewSeverity
())';

Parameter:IltSeverityDarkColorFunctionReturns the dark color
corresponding to a given
alarm severity.

severityDarkColor

Alarm severity

Example:

alarmDarkColor:
'@|severityDarkColor

S T Y L I N G 35

UsageClass NameDescriptionFunction Name

(@|highestNewSeverity
())';

Parameter:IltSeverityIconFunctionReturns the icon
corresponding to a given
alarm severity.

severityIcon

IltAlarmSeverity or the
String representation of an
IltAlarmSeverity.

Example:

alarmIcon:
'@|severityIcon
("Raw.Major")';

alarmIcon:
'@|severityIcon
(@|highestSeverity()
)';

alarmIcon:
'@|severityIcon
(@|highestSeverity
("Impact"))';

Example:IltTinyImageFunctionReturns an image
displaying the tiny

tinyImage

icon : '@|tinyImage
()';

representation of a
predefined business
object.

How to create new CSS functions
JViews TGO allows you to create and register new functions to be used in CSS files to
customize the representation of your business objects. These functions should implement
the interface IlpCSSFunction. This interface defines the following methods:

♦ getName()

Returns the name of the function that is used to identify the function in the CSS files.

♦ getDelimiters()

Returns the delimiters that are used to identify the parameters of the function; for example,
comma (,).

♦ returnDelimitersAsToken()

Indicates whether the delimiters will also be returned as tokens.

♦ call(java.lang.Object[], java.lang.Class, ilog.cpl.service.IlpContext, ilog.
cpl.graphic.IlpGraphicView, ilog.cpl.model.IlpRepresentationObject, ilog.
cpl.model.IlpAttribute)

This method is the core of the function, where the value will be computed and returned.

S T Y L I N G36

The signature of the main method is:

public Object call (Object[] args,
Class type,
IlpContext appc,
IlpGraphicView view,
IlpRepresentationObject ro,
IlpAttribute attribute);

When a function is evaluated, the parameters are first resolved as subexpressions. Then,
the final values of the parameters are passed to the args array.

The parameter type is the expected type of the function when it is known. A null value is
possible. The implementation should be careful to return an object of the appropriate type.
Otherwise, a simple conversion is applied, if conversion is possible, that is, between primitive
types or to a String.

The other parameters provide information about the application context, graphic view,
representation object, and attribute at the time when the call is made. Stateless expressions
do not need these parameters.

If an error occurs during a call, an exception will be reported and the current property
setting will be canceled.

The following application is provided as part of the JViews TGO demonstration software:
<installdir> /samples/framework/datasource-explorer2. It shows how to implement
and register a new function. See file ByteFunction.java.

Functions are registered in the CSS file with one of the following properties:

♦ functionList: lists the functions as a comma-separated list of function names.

♦ functions: an indexed property of function names. Allows you to specify the list of
functions according to indices. With this indexed property, you can register functions in
a modular way in different CSS files.

How to register a function in a CSS file

StyleSheet {
functionList: "test.function.FirstFunction,test.function.SecondFunction";

}

or

StyleSheet {
functions[0]: "test.function.FirstFunction";
functions[1]: "test.function.SecondFunction";

}

S T Y L I N G 37

Divergences from CSS2

Java objects are not HTML documents. The differences lead to an adaptation of the CSS, so
that its power can be fully exploited. The CSS2 syntax is retained. Therefore, a CSS editor
can still be used to create the style sheet.

Cascading
Cascading is explicit. The API provides a means of cascading the style sheets. The !important
and inherit tags are not supported. They have not been implemented for the sake of
simplicity.

Pseudo-classes and pseudo-elements
Pseudo-classes are minimal building blocks which match model objects according to an
external context. The syntax is like a CSS class, but uses a colon (:) instead of a dot (.). For
example, :link-visitedmatches a link element only if it is already visited. Only the browser
can resolve this pseudoclass at run time.

The pseudo-classes are fully implemented and are used by all JViews TGO renderers. JViews
TGO recognizes the pseudo-classes :selected, :focus, and :expanded by default.

A pseudo-class has the same specificity as a CSS class.

Pseudo-elements are metaclasses like pseudo-classes, but match document structure instead
of the browser state; for example, :first-child.

The CSS2 predefined pseudoelements and pseudo-classes (:link, :hover, and so forth) are
not implemented: they have no meaning in Java™.

Attribute matching
Each attribute value must be converted to String. This conversion is done using the Type
converter specified in your application context.

The attribute pattern in CSS2 checks only the presence [att], equality [att=val], and
inclusion [att~=val] of strings. The |= operator is disabled. In Java, numeric comparators
>, >=, <>, <=, < have been added, with the usual semantics.

S T Y L I N G38

Operators available in the attribute selectors
Applicable ToMeaningOperator

stringspresentA

stringsequalsA=val

stringsnot equalsA~val

stringscontains the wordA~=val

numbersequalsA==val

numbersnot equalsA<>val

numbersless thanA<val

numbersless than or equalsA<=val

numbersgreater thanA>val

numbersgreater than or equalsA>=val

Syntax enhancement
CSS for Java requires the use of quotation marks when a token contains special characters
such as dot (.), colon (:), commercial at sign (@), hash sign (#), space (), and so on. Quotes
can be used almost everywhere, in particular to delimit a declaration value, an element type,
or a CSS class with reserved characters. The closing semicolon (;) is optional.

Null value
Sometimes it makes sense to specify a null value in a declaration. By convention, null is a
zero-length string '' or "".

How to specify a null value

object {
labelBackground: '';

}

The notation '' is also used to denote a null array for properties that expect an array of
values.

Empty string
The null syntax does not distinguish the ability to write an empty string in the style sheets.
If an empty string is required, it is easy to create it dynamically.

S T Y L I N G 39

How to create an empty string

object {
label: @#emptyString;

}

Subobject#emptyString {
class: 'java.lang.String';

}

You can use the sharing mechanism to avoid creating several strings.The @= construct
creates the empty string the first time only and reuses the same instance for all other
occurrences of @=emptyString.

Note:

S T Y L I N G40

How to represent a business object

Describes how business objects are represented by business class properties and attribute
properties:

In this section

Business class properties
Describes the types of business class and the inheritance and override mechanisms.

Attribute properties
Describes the use of attribute properties in the table component.

S T Y L I N G 41

Business class properties

The representation of each instance of a given business object class is based on the
declarations defined in the business object class selector. See The CSS specification for
more information on CSS syntax and selectors.

JViews TGO has two categories of business object classes:

♦ Predefined

Predefined classes are provided by JViews TGO and oriented towards telecommunications.
These classes include a predefined set of attributes and a corresponding default
representation.

♦ User-defined

User-defined classes are defined by you according to your business model. These classes
have no predefined set of attributes and the default graphic representation is basic. You
will probably want to define your own graphic settings.

JViews TGO style sheets provide a built-in inheritance mechanism based on the business
class hierarchy. This inheritance mechanism allows objects of a given business class to
inherit settings from their parent business class. The advantage of the inheritancemechanism
is that you can have a unified look-and-feel for all subclasses of a given class. If you define
a graphic setting in a base class selector, this setting will be applied to all subclasses. For
example, to apply a setting to all the predefined business classes, you must define the setting
in the selector object ilog.tgo.model.IltObject. The overriding mechanism allows you
to define exceptions in subclasses.

In the following example, the label is defined as invisible for all IltObject instances, except
for instances of IltNetworkElement.

How to override an inherited setting

object."ilog.tgo.model.IltObject" {
labelVisible: false;

}
object."ilog.tgo.model.IltNetworkElement" {

labelVisible: true;
}

JViews TGO provides default property values for all predefined business object classes.
These default property values ensure that all graphic components have an attractive display,
which underpins the JViews TGO look-and-feel. This look-and-feel follows the
Telecommunications Management Network (TMN) standard. The look-and-feel can be
modified by overriding default property values. See the appropriate sections in this
documenation for a complete list of all properties that can be used to customize the JViews
TGO look-and-feel for predefined business objects.

When you work with user-defined business classes, their default graphic representation is
basic. Therefore, you must define your own look by defining your own default values for
these properties. The default property values for user-defined business classes are set to
give a very simple look-and-feel in all graphic components. You can customize properties
for user-defined business classes using the business class hierarchy.

S T Y L I N G42

How to customize properties for user-defined business classes

object.MyBusinessClass {
label: @myNameAttribute;

}

If you want to customize the representation of all business classes, regardless of whether
they are predefined or user-defined business classes, use the selector based on the object
type.

How to customize the representation of all business classes

object {
foreground: gray;

}

S T Y L I N G 43

Attribute properties

Attribute properties are mainly used in the table component. For example, each cell in a
table represents one attribute of a business object. Each attribute has its own associated
set of properties that represent the graphic settings used by the table cell renderer to render
the attribute value.

Attribute declarations are set using a CSS selector that is based on type object and a CSS
class formed from the business class name and the attribute name.

How to customize attributes

object."ilog.tgo.model.IltObject/name" {
label: @name;

}

JViews TGO provides default property values for all predefined business attributes. The use
of these property values provides an esthetic display in a table, which corresponds to the
JViews TGO look-and-feel.

Each attribute of the user-defined classes has an associated set of properties with default
values. Attribute properties are also organized in a hierarchy. If an attribute is inherited
from a parent class, its attribute property will inherit from the attribute property defined
in the parent class. For example, the attribute property of IltNetworkElement inherits from
the attribute property of IltObject.

How to use the inheritance mechanism for attributes

object."ilog.tgo.model.IltObject/name" {
labelFont: "arial-plain-10";

}
object."ilog.tgo.model.IltNetworkElement/name" {

labelFont: "arial-plain-12";
}

S T Y L I N G44

Retrieving the value of a property

When you use CSS and implement your own graphic renderer or graphic class, you might
be interested in the values of certain graphic properties.

How to retrieve the value of a property
Property values can be retrieved with the class IlpGraphicRendererContext. This class
provides the following method:

♦ public Object getPropertyValue (String property,IlpGraphicView
view,IlpRepresentationObject)

Returns the value of a property defined for the given representation object in the given
view. This method applies to all graphic components.

object."Alarm" {
label: @identifier;
iconVisible: true;

}

♦ public Object getPropertyValue (String property,IlpGraphicView
view,IlpRepresentationObject ro,IlpAttribute attribute)

Returns the value of a property defined for a specific attribute in a representation object.
This method applies to objects displayed in the table, network, or equipment components.
It returns the properties declared using the object type selector.

object."Alarm/creationTime" {
label: '@|format(@#labelFormat,@creationTime)';
toolTipText: '@|format(@#toolTipFormat,@creationTime)';

}

♦ public Object getPropertyValue (String property,IlpGraphicView view,IlpClass
bclass,IlpAttribute attribute)

Returns the value of a property defined for a specific attribute in a business class. This
method applies to business attributes displayed in the table component only. It returns
the configuration used to represent the columns of the table. It mainly returns the
properties declared using the attribute type selector.

attribute."Alarm/creationTime" {
label: "Created";
toolTipText: "Creation time";
preferredWidth: 130;

}

S T Y L I N G 45

Using custom pseudo-classes

JViews TGO allows you to create and register your own pseudo-classes for the objects
displayed in graphic components. For more information about pseudo-classes, see
Pseudo-classes and pseudo-elements.

All JViews TGO graphic components allow you to add and remove pseudo-classes dynamically
for the objects represented in their graphic view. Pseudo-classes allow you to specify CSS
properties according to the graphic view context. In the tree, network and equipment
components, you can use the methods available in the corresponding graphic view to register
and unregister pseudo-classes for a given representation object. For example:

♦ public void addPseudoClass (IlpObject bo, String pseudo): adds a given
pseudo-class to the business object.

♦ public void removePseudoClass (IlpObject bo, String pseudo): removes a given
pseudo-class from the business object.

These methods are available in each JViews TGO component: IlpNetwork, IlpEquipment
and IlpTree.

In the table component, you can register and unregister pseudo-classes for each table cell
by using the following methods of the IlpTable:

♦ public void addPseudoClass (IlpObject bo, IlpAttribute a, String pseudo)

♦ public void removePseudoClass (IlpObject bo, IlpAttribute a, String pseudo)

The following example shows you how to specify a new pseudo-class in the network
component to highlight an object from the business class ServiceManagedObject:

object."ServiceManagedObject" {
foreground: black;
background: #00000000;

}
object."ServiceManagedObject":highlight {

background: yellow;
}

This style sheet extract illustrates two selectors used to define the representation of objects
of the class ServiceManagedObject in their normal state and with the pseudo-class highlight.

In your application, when you want to highlight the objects, you just have to add the given
pseudo-class to the business object. For example:

IlpObject bo = dataSource.getObject("NE1");
networkComponent.addPseudoClass(bo, "highlight");

This example retrieves the business object identified as NE1 and highlights its graphic
representation by adding a pseudo-class. The graphic representation of the object will be
recomputed according to the new pseudo-classes and will match the corresponding selectors
in your style sheets.

S T Y L I N G46

To revert to the object representation normal state, you just have to remove the previously
added pseudo-class as follows:

view.removePseudoClass(bo, "highlight");

JViews TGO automatically handles pseudo-classes for selection and focus management. All
you have to do is define your CSS selectors with the pseudo-classes "selected" and "focus."

S T Y L I N G 47

S T Y L I N G48

Using Cascading Style Sheets

Shows you how to use Cascading Style Sheets (CSS) to customize an application in the
various graphic components. Each use case contains a style sheet extract, which can be
loaded into the graphic component using the method setStyleSheets.

In this section

Using global settings
Describes the use of global settings to define the look and feel of the graphic components
in an application.

Customizing network and equipment nodes
Describes how to customize the nodes in a network or equipment component.

Advanced customization of nodes
Describes how to use other classes for more complex representations of nodes.

Customizing network and equipment links
Describes how to customize the links in a network or equipment component.

Customizing tree nodes
Describes the graphical representation of tree nodes and the ways of customizing them.

Customizing table cells
Describes the graphical representation of table cells and the ways of customizing them.

Customizing table column headers and rows
Describes the graphical representation of table column headers and rows and the ways of
customizing them

© Copyright IBM Corp. 1987, 2009 49

Customizing the label of a business object
Describes how to customize the labels of your business objects in the network component,
the equipment component, and the tree component.

Customizing the label in table cells
Describes how to customize the label that represents an attribute in the table component.

Changing the font of all labels
Describes how to configure and change the font of all the labels in your application (all
graphic components).

Customizing tooltips
Describes how to customize the tooltips used to describe your business objects (tree
component, table component, network component, and equipment component).

Customizing object and alarm states of predefined business objects
Describes how to customize the object and alarm states of all the predefined business objects.

Customizing the icon of business objects
Describes how to customize the icon used to represent your business objects (tree component
and table component).

Adding a user-defined business attribute to the system window
Describes how to add an attribute to the systemwindow (network component and equipment
component).

Changing the background color of all columns in a table
Describes how to change the background color of the columns in a table based on an attribute
(table component).

Displaying the same attribute with different representations
Describes how to add several columns to a table in which the same attribute is represented
in different ways (table component).

Customizing node and link layouts
Describes how to customize the layout of nodes and links in a network.

Customizing link label layout
Describes how to customize the link label layout in a network and in an equipment component.

Customizing the selection border in the network and equipment
Describes how to customize the selection border of your business objects (network component
and equipment component).

Customizing selection in a table or a tree
Describes how to customize the selection of your business objects in a (table component
and tree component).

S T Y L I N G50

Customizing the expansion of business objects
Describes how to customize the expansion of an object in the tree component, the network
component, and the equipment component.

S T Y L I N G 51

Using global settings

While CSS properties allow you to configure objects for a graphic component, global settings
allow you to define a common look and feel for all the graphic components in the application.
Global settings are stored in and managed by the class ilog.tgo.resource.IltSettings.
The IltSettings class stores a predefined look and feel at start up.

There are two ways to set global settings: through the API or through CSS.

How to set global settings through the API
You can assign new global settings or retrieve existing ones by directly calling the static
methods IltSettings.SetValue(Object, Object) or IltSettings.GetValue(Object).

IltSettings.SetValue("Alarm.Impact.CriticalHigh.Description", "Critical High")
;

The setting shown customizes the description text for all Critical High Impact alarms.

String description = (String)
IltSettings.GetValue("Alarm.Impact.CriticalHigh.Description");

You can retrieve the value of the setting using the GetValue method.

How to set global settings through CSS
Global settings defined in CSS allow you to create global state objects, alarm objects or
telecom objects in the system and refer to them by their names when you customize them.

To do so, you need first to create a CSS file containing all the global settings.

Settings {
alarm: true;

}

Alarm {
impactSeverities[0]: @+impactSeverity0;

}
Subobject#impactSeverity0 {
class: 'ilog.tgo.model.IltAlarm.ImpactSeverity';
name: "Alarm.Impact.InformationalHigh";
severity: 220;

}

setting."ilog.tgo.model.IltAlarm.ImpactSeverity"[name="Alarm.Impact.Information
alHigh"] {
description: "Informational High";

}

S T Y L I N G52

This example shows how to create an impact severity object, then add it to the state system.
The creation is enabled by the alarm: true declaration. Next, objects with impact severites
of the type created can be customized with a new description message.

Once the global CSS settings file is created, an instance of ilog.tgo.resource.IltSettings,
which serves as the global settings root object, is created. The CSS settings file is then
assgined to the root object using the setStyleSheets method:

IlpContext context = IltSystem.GetDefaultContext();
IltSettings settingsRoot = new IltSettings(context);
try{

settingsRoot.setStyleSheets(new String[] {"global.css"});
}
catch (IlvStylingException e) {

e.printStackTrace();
}

The default settings can be restored by passing null to the setStyleSheets method:

IlpContext context = IltSystem.GetDefaultContext();
IltSettings settingsRoot = new IltSettings(context);
try{

settingsRoot.setStyleSheets(null);
}
catch (IlvStylingException e) {

e.printStackTrace();
}

New objects previously created through the global settings CSS file remain in the
system.

Note:

S T Y L I N G 53

S T Y L I N G54

Customizing network and equipment nodes

Describes how to customize the nodes in a network or equipment component.

In this section

Representing nodes as business objects
Describes the graphical representation of a node and how to customize it.

Adding new decorations to predefined business objects
Describes how to add new decorations to a predefined business object, and how to customize
various aspects of the decorations.

S T Y L I N G 55

Representing nodes as business objects

Nodes are graphically represented in a network or equipment component according to the
properties of their business object class.

ILOG JViews TGO provides predefined business objects and supports user-defined business
objects. In both cases, the node representation is fully customizable through CSS.

You can customize the node representation by changing the properties of the business object
class that graphically represents the node.

Predefined business objects
To customize the graphic representation of predefined business objects, you can change
the properties of their predefined graphical representation.

For details, refer to the section corresponding to the type of object:

♦ Customizing network elements

♦ Customizing groups

♦ Customizing subnetworks

♦ Customizing shelves and cards

♦ Customizing BTS

♦ Customizing off-page connectors

User-defined business objects
To customize the default graphic representation of user-defined business objects in a network
or equipment component, refer to Customizing user-defined business objects.

S T Y L I N G56

Adding new decorations to predefined business objects

To extend the predefined graphical representation of predefined business objects, you may
also add new decorations.

How to add new decorations to network and equipment nodes
This use case illustrates how you can extend the predefined business object representation
by adding new decorations. It applies to the network and equipment components.

The network and equipment node representation of predefined business objects cannot be
replaced, but you can extend it by adding new decorations.

The following properties are available to add a new decoration:

♦ children: An indexed property each element of which is an IlvGraphic. Each IlvGraphic
is a new decoration that will be added to the graphic representation.

♦ constraints: An indexed property each element of which is an attachment constraint.
The attachment constraint indicates how the new property is attached to the object base.
It is an instance of ilog.views.graphic.composite.layout.IlvAttachmentConstraint.

The following application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/decoration.

It illustrates how to extend a predefined business object representation with a new decoration.
In this use case, the following customization is notable:

object."SampleNetworkElement" {
children[0]: '';
constraints[0]: '';
children[1]: '';
constraints[1]: '';

}

object."SampleNetworkElement"[comments] {
children[0]: @+commentIcon;
constraints[0]: @+commentIconConstraint;

}

The selectors in this extract indicate that a new decoration will be added to the object
representation when the attribute comments is set in the object. When the attribute is set,
an icon is attached to the bottom left side of the base as illustrated by the following CSS
extract.

// ~~
// This selector creates an icon decoration.
//
// Here we show the use of built-in properties:
// * ILPATTRIBUTE
// * ILPDECORATIONNAME
//

S T Y L I N G 57

// 1. To associate a decoration to an IlpAttribute
// specify the 'ILPATTRIBUTE' property as illustrated
// below.
//
// This property is used to associate a graphic decoration
// to an attribute in the business model.
//
// The ILPATTRIBUTE property type is String. Its value
// should be an attribute name.
//
// Once this association is done, tooltips and interactors
// can be defined in CSS for the business attribute
// and will be displayed/triggered when the event
// occurs in the decoration graphic.
//
// 2. To associate a decoration to a name specify
// the 'ILPDECORATIONNAME' property as illustrated
// below.
//
// The ILPDECORATIONNAME property type is a String.
// Its value should be a ilog.tgo.graphic.IltGraphicElementName
// value.
//
// Once this association is done, it will be possible
// to customize the layer policy and zoom policy to
// take into account your new decorations.
// ~~
Subobject#commentIcon {
class: 'ilog.views.graphic.IlvIcon';
image: '@|image("commentIcon.png")';
ILPATTRIBUTE: "comments";
ILPDECORATIONNAME: "Comments";

}

Subobject#commentIconConstraint {
class: 'ilog.views.graphic.composite.layout.IlvAttachmentConstraint';
hotSpot: BottomLeft;
anchor: BottomLeft;

}

New decorations can be added to all predefined business objects, either nodes or links. The
attachment locations vary depending on whether the object is a node or a link.

In the case of nodes, new decorations can be added to the following attachment locations,
relative to the object base (see IlvAttachmentLocation):

♦ TopLeft, TopCenter, TopRight

♦ LeftCenter

♦ Center

♦ RightCenter

♦ BottomLeft, BottomCenter, BottomRight

S T Y L I N G58

♦ HotSpot

In the case of links, new decorations can be added to the following attachment locations,
relative to the link shape (see IlvLinkAttachmentLocation) :

♦ NearFromLink

♦ NearToLink

♦ FromLink

♦ ToLink

♦ MiddleLink

For details about creating and customizing composite graphics, see the section on developing
composite nodes in Developing with the JViews Diagrammer SDK.

You can use the following features when new decorations are added to the predefined
business object representation:

♦ Define a tooltip to be displayed when the mouse is over the new decoration

♦ Define interactors to be executed when events occur on the new decoration

♦ Specify in which layer the decoration will be placed

♦ Specify a visibility threshold that will make the decoration disappear depending on the
zoom level of the view

To customize the new decoration and make use of these features, you need to declare the
following two properties with the new decoration:

♦ ILPATTRIBUTE: This property associates the decoration with a business attribute in the
object. It is used to customize the decoration tooltip and interactor.

♦ ILPDECORATIONNAME: This property associates the decoration with a decoration name,
which is the identifier used by the layer policy and zoom policy configurations in the
network and equipment components.

The following sections provide examples of how to use these properties to achieve the desired
configurations.

How to customize the tooltip and Interactor of a new decoration
added to a predefined business object
This use case illustrates how you can configure new decorations added to predefined business
objects to display tooltips and react to events. It applies to the network and equipment
components.

The following application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/decoration.

You can add new decorations to the graphic representation of a predefined business object
through cascading style sheets.

S T Y L I N G 59

To configure a tooltip and an interactor for a new decoration, you need to associate the new
decoration with a business attribute of the object that is represented. This configuration is
performed using property ILPATTRIBUTE, as follows:

Subobject#commentIcon {
class: 'ilog.views.graphic.IlvIcon';
image: '@|image("commentIcon.png")';
ILPATTRIBUTE: "comments";
ILPDECORATIONNAME: "Comments";

}

The ILPATTRIBUTE value is the attribute name as it has been defined in the business model.
In this example, the new decoration is associated with the attribute "comments" from the
business class SampleNetworkElement.

Once the decoration has been associated with a business attribute, you can customize a
tooltip and an interactor using attribute selectors and properties toolTipText,
toolTipGraphic and interactor.

For example:

object."SampleNetworkElement/comments"[comments] {
interactor: @+showCommentInteractor;
toolTipText: '@|concat(@name, " Comments")';

}
Subobject#showCommentInteractor {
class: 'ilog.cpl.interactor.IlpDefaultObjectInteractor';
action[0]: @+commentButton;

}
Subobject#commentButton {
class: 'ilog.cpl.interactor.IlpGestureAction';
gesture: BUTTON1_CLICKED;
action: @+toggleCommentAction;

}
Subobject#toggleCommentAction {
class: 'ToggleCommentWindowAction';

}

Please note that the interactor customization can only be achieved if the Interactor renderer
is enabled. Be sure to enable the renderer if this feature is to be used:

Network {
interactor: true;

}

How to define a decoration name for a new decoration added to
a predefined business object
This use case illustrates how you can define a new decoration name and associate it with a
new decoration that is added to a predefined business object. It applies to the network and
equipment components.

S T Y L I N G60

The following application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/decoration.

You can add new decorations to the graphic representation of predefined business objects
through cascading style sheets.

The decoration name is an instance of IltGraphicElementName. New decoration names can
be created by the application, as follows:

IltGraphicElementName comments = new IltGraphicElementName("Comments");

Note that the decoration name is an enumeration. Therefore, when creating new values for
the enumeration, they must be uniquely identified within the application.

You can also use any of the existing decoration names:

♦ AlarmBalloon

♦ AlarmCount

♦ Base

♦ ContainerStatus

♦ Family

♦ Function

♦ Icon

♦ InformationIcon

♦ InformationWindow

♦ InState

♦ Media

♦ Name

♦ OutState

♦ Plinth

♦ PSRIFromEnd

♦ PSRIToEnd

♦ SecondaryStateModifiers

♦ SystemIcon

♦ SystemWindow

♦ Generic

Once the decoration name has been created, you can associate it with the new decoration
in the cascading style sheet file by defining the value of property ILPDECORATIONNAME:

S T Y L I N G 61

Subobject#commentIcon {
class: 'ilog.views.graphic.IlvIcon';
image: '@|image("commentIcon.png")';
ILPATTRIBUTE: "comments";
ILPDECORATIONNAME: "Comments";

}

If the ILPDECORATIONNAME property is not defined, the decoration name is set by default to
Generic.

How to customize the layer of a new decoration added to a
predefined business object
This use case illustrates how you can configure new decorations to be displayed in specific
layers. It applies to the network and equipment components.

The following application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/decoration.

You can add new decorations to the graphic representation of a predefined business object
through cascading style sheets.

To configure the layer where a new decoration is to be placed, specify the decoration name
to be used as the identifier of the decoration by the network or equipment component layer
policy (see Network component). See also How to define a decoration name for a new
decoration added to a predefined business object.

You can then create a custom layer policy which defines specific layers for the decoration
names.

The following application is provided as part of the JViews TGO demonstration software:
<installdir>
/samples/network/decoration/srchtml/decoration/CustomLayerPolicy.java.html.

The layer policy implementation must provide at least the following methods: attach, detach
and getElementLayer.

/**
* Attaches the layer policy to the manager.
*/
public void attach(IltcCompositeManager manager) {
super.attach(manager);
this.commentsLayer = manager.addLayerOnTop(this.getSystemWindowLayer());
this.commentsLayer.setName("Comments");

}

The attachmethod is called whenever the layer policy is attached to a network component.
This method should be used to perform any initialization required, for example, creating
the layers that will be used by the layer policy implementation.

/**
* Detaches the layer policy from the manager.

S T Y L I N G62

*
*/
public void detach(IltcCompositeManager manager) {
super.detach(manager);
manager.removeLayer(this.commentsLayer);
this.commentsLayer = null;

}

The detach method is called whenever the layer policy is removed from the network
component. This method should be used to perform cleanup operations on the resources
created by the layer policy implementation.

/**
* Returns the layer where the elements with the given name
* should be placed.
*/
public IltcLayer getElementLayer (IltcCompositeGraphic graphic,

IltGraphicElementName elementName) {
if (elementName.getName().equals(COMMENTS_DECORATION_NAME)) {
return this.commentsLayer;

} else
return super.getElementLayer(graphic, elementName);

}

The getElementLayer method is used to specify in which layer the decoration with a given
name should be placed. This method should verify whether the decoration name passed as
argument is the one that you have created, and, if so, return the appropriate layer.

Finally, the custom layer policy is associated with the network or equipment component as
follows:

CustomLayerPolicy policy = new CustomLayerPolicy();
networkComponent.getView().getCompositeGrapher().setLayerPolicy(policy);

How to customize the visibility threshold of a new decoration
added to a predefined business object
This use case illustrates how you can configure new decorations added to predefined business
objects to have specific visibility thresholds below which the decorations become invisible
when the network component is configured with the physical or mixed zoom policies. It
applies to the network and equipment components.

The following application is provided as part of the JViews TGO demonstration software:
<installdir> /samples/network/decoration.

You can add new decorations to the graphic representation of a predefined business object
through cascading style sheets.

To configure the visibility threshold for a new decoration, first specify the decoration name
to be used as the identifier of the decoration by the network or equipment component zoom
policy (see Network component). See also How to define a decoration name for a new
decoration added to a predefined business object.

S T Y L I N G 63

Once the decoration name has been defined and associated with the decoration using the
ILPDECORATIONNAME property, you can specify the visibility threshold in the network
component configuration. The visibility threshold information applies to the physical and
mixed zoom policies.

You have to enable the Zooming renderer in the network component configuration as follows
to achieve the desired result:

Network {
zooming: true;

}

Configure the zoom policy to be used, for example, the physical zoom policy and specify the
visibility threshold for the new decoration name by using the indexed properties
decorationNames and visibilityThresholds:

Zooming {
type: "Physical";
decorationNames[0]: Comments;
visibilityThresholds[0]: 0.5;

}

For more information on zoom policy configuration, refer to Network component.

S T Y L I N G64

Advanced customization of nodes

To further customize the network and equipment node rendering, you may also:

♦ Use an IlvGraphic to generate an arbitrarily complex graphic representation (
IlvCompositeGraphic). For more information about composite graphics, see the section
on graphic objects in Architecture of graphic components.

♦ Use a JComponent to generate a graphic representation and customize it using CSS.

How to use an IlvGraphic to generate a network node
representation
IlvGraphic instances can be used to represent network and equipment nodes through the
property 'class'. The given class must follow the JavaBeans™ pattern; its properties can
be directly customized in CSS.

The following application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/compositeGraphic.

It illustrates how to use an IlvGraphic to generate a network node representation. This
sample shows how to create a complex graphic representation using composite graphics
that are fully customizable through CSS.

For information about how to use JavaBeans in CSS and how to use the class property,
refer to Class property.

How to use a JComponent to generate a network or equipment
node representation
In the following example, a JComponent is used to generate the network node representation
of a user-defined class named Workstation. Business objects of this class are represented
in the network component as a JButton with the given label and icon.

object."Workstation" {
class: 'javax.swing.JButton;
icon : @=icon;
label: @name;
foreground: black;

}
object."Workstation":selected {
foreground: red;

}
Subobject#icon {
class: 'javax.swing.ImageIcon';
image: '@|image("workstation.png")';

}

The given class must follow the JavaBeans pattern; its properties can be customized directly
in CSS (icon, label, foreground).

S T Y L I N G 65

For information about how to use JavaBeans in CSS and how to use the class property,
refer to Class property.

S T Y L I N G66

Customizing network and equipment links

Links are graphically represented in a network or equipment component according to the
properties of their business object class. JViews TGO provides a predefined business class,
IltLink, which displays links with telecommunications information such as states and
alarms. In addition, it provides a general purpose link. In both cases, the link representation
is fully customizable through CSS.

For details about the customization of links, refer to:

♦ Customizing links

♦ Customizing user-defined business objects

Just like network and equipment nodes, you can extend links by adding new decorations to
them. For more information, refer toHow to add new decorations to network and equipment
nodes.

S T Y L I N G 67

S T Y L I N G68

Customizing tree nodes

Describes the graphical representation of tree nodes and the ways of customizing them.

In this section

Representing tree nodes as graphic objects or icons with labels
Describes the graphical representation of a tree node and how to customize it.

Advanced customization of tree nodes
Describes how to use other classes for more complex representations of tree nodes.

Improving the performance of predefined business objects (tree component)
Describes how to improve rendering performance using static images.

S T Y L I N G 69

Representing tree nodes as graphic objects or icons with labels

Graphical representation of tree nodes
Tree nodes are graphically represented with a graphic object or icon and a label, as illustrated
in the following example.

The default representation for business objects is a representation that combines a label
with an optional icon, overlapping icon, and tool tip as illustrated in the following example.

Properties for customizing tree nodes
The following table lists the properties that are common to both predefined and user-defined
business objects represented in a tree component.

S T Y L I N G70

Common CSS properties for tree node rendering
DescriptionDefaultType of ValueProperty Name

Determines whether an object should
be expandable in the tree, so that its

IN_PLACEIlpObject.
ExpansionType

expansion

children can be displayed. Possible
values are:

IN_PLACE

IN_PLACE_MINIMAL_LOADING

NO_EXPANSION

For details, refer to Customizing the
expansion of business objects.

Color to be used for the focus border
of the node.The focus border shows

nullColorfocusBorderColor

which cell has the focus. If the value
is null, the color of the active
look-and-feel is used.

Width of the focus border, in pixels.1IntegerfocusBorderWidth

Icon to be displayed. If the value is
null, no icon is displayed.

nullImageicon

Controls whether the icon is
displayed or not. If this value is true

trueBooleaniconVisible

and icon is null, a default icon will
be displayed.

Text to be displayed for the label. If
the value is null, the identifier of the
business object is displayed.

nullStringlabel

Color to be used for the label
background. If the value is null, the

nullColorlabelBackground

color of the active look-and-feel is
used.

Font to be used for the label. If the
value is null, the font of the active
look-and-feel is used.

nullFontlabelFont

Color to be used for the label
foreground. If the value is null, the

nullColorlabelForeground

color of the active look-and-feel is
used.

Position of the label relative to the
icon. Possible values are:

RightIlvDirectionlabelPosition

Left

Right

Top

S T Y L I N G 71

DescriptionDefaultType of ValueProperty Name

Bottom

Center

Spacing between the label and the
icon in pixels.

2fFloatlabelSpacing

Controls whether the label string is
displayed or not.

trueBooleanlabelVisible

Defines the image used for the
overlap icon.

nullImageoverlapIcon

Determines whether the overlap icon
is to be visible or not.

trueBooleanoverlapIconVisible

Determines the rendering of the
selection and focus. Possible values
are:

CELL_SELECTION_FOCUS_MODEIlpSelectionFocusModeselectionFocusMode

CELL_SELECTION_FOCUS_MODE:
select both icon and label.

LABEL_SELECTION_FOCUS_MODE:
select only the label.

The third possible value for this
property,
BASE_SELECTION_FOCUS_MODE,
is not recommended for use in the
tree.

This property accepts IlvGraphic
and JComponent objects that are

nullIlvGraphic or
JComponent

toolTipGraphic

created in CSS using @+, @=, or
@# constructors.

Tooltip text for the cell, used only if
toolTipGraphic is null. If the value

nullStringtoolTipText

of this property and the
toolTipGraphic property are both
null, no tooltip is displayed.

Predefined business objects for tree nodes
By default, the predefined business objects for managed objects are displayed in the tiny
representation. The tiny representation can be customized using the same CSS properties
as for the symbolic representation (for example, foreground, background, label,
labelPosition)..

For a list of the properties that you can customize of each type of predefined business object,
refer to the following sections:

♦ Customizing network elements

♦ Customizing links

S T Y L I N G72

♦ Customizing groups

♦ Customizing subnetworks

♦ Customizing shelves and cards

♦ Customizing BTS

♦ Customizing off-page connectors

Objects of the IltNetworkElement and IltLink classes are represented as follows in a tree:

Objects of the IltShelf, IltCard, IltPort, and IltLed classes are represented as follows
in a tree:

User-defined business objects
The default representation for user-defined business objects is a simple representation which
combines a label with an optional icon, overlapping icon, and tool tip.

S T Y L I N G 73

How to customize tree nodes
The following example shows you how you can customize the tree nodes. It is based on a
CSS file.

The following CSS file is provided as part of the JViews TGO demonstration software at
installdir/samples/tree/customClasses/data/tree.css.

The CSS selectors used to customize the nodes of the tree component are formed by the
CSS type object and the CSS class <business class name>, as illustrated below:

object."NetworkElement" {
label : @name;
labelForeground : black;
iconVisible : true;
toolTipText : @name;

}

object."NetworkElement":selected {
labelForeground: red;

}

The example above illustrates a tree node configuration using pseudoclasses: the graphic
representation of the nodes is based on the pseudoclass "selected", so that the label
foreground color changes whether the object is selected or not in the tree component.

Besides the selection state, you can also customize tree nodes according to the focus state
or to custom pseudoclasses. The following example shows tree nodes whose label foreground
color changes according to the focus and selection state:

object:selected {
labelForeground: red;

}

object:focus {
labelForeground: blue;

}

object {
labelForeground: black;

}

S T Y L I N G74

How to customize an overlapping icon
You can define an overlapping icon to be displayed over the default tree node icon.

To set an overlapping icon for all instances of a given business class, use the following style
sheet extract:

object."Domain" {
overlapIcon: '@|image("overlap.png")';
overlapIconVisible: true;

}

S T Y L I N G 75

Advanced customization of tree nodes

To further customize the tree node rendering, you may also:

♦ Use an IlvGraphic to generate an arbitrarily complex graphic representation (
IlvCompositeGraphic). For more information about composite graphics, see the section
on graphic objects in Architecture of graphic components.

♦ Use a JComponent to generate a graphic representation and customize it using CSS.

♦ Create your own renderer (which should implement the Swing TreeCellRenderer
interface) to generate an arbitrary Swing Component.

How to use an IlvGraphic to generate a tree node representation
IlvGraphic instances can be used to represent tree nodes through the property 'class'.
The given class must follow the JavaBeans™ pattern; its properties can be directly customized
in CSS.

The following example illustrates the use of IlvCompositeGraphic to represent tree nodes.

object."Workstation" {
class: 'ilog.views.graphic.composite.IlvCompositeGraphic';
layout: @+attachmentLayout;
children[0]: @+wsBase;
children[1]: @+wsLabel;
constraints[1]: @+wsLabelConstraint;

}

Subobject#attachmentLayout {
class: 'ilog.views.graphic.composite.layout.IlvAttachmentLayout';

}
Subobject#wsBase {
class: 'ilog.views.graphic.IlvIcon';
image: '@|image("workstation.png")';

}
Subobject#wsLabel {
class: 'ilog.views.graphic.IlvText';
label: @name;
foreground: black;
font: 'arial-bold-12';

}
Subobject#wsLabel:selected {
foreground: red;

}
Subobject#wsLabelConstraint {
class: 'ilog.views.graphic.composite.layout.IlvAttachmentConstraint';
hotSpot: Left;
anchor: Right;
offset: 3,0;

}

S T Y L I N G76

For information about how to use JavaBeans in CSS and how to use the class property,
refer to Class property.

How to use a JComponent to generate a tree node representation
The following example shows how to define a JComponent to generate a tree node
representation. It is based on a CSS file.

The following CSS file is provided as part of the JViews TGO demonstration software at
<installdir> /samples/tree/customClasses/data/tree.css.

In this example, tree nodes are represented using a simple JLabel whose properties text,
icon and foreground are customized according to the business attributes and the selection
state of the tree node.

object."Workstation" {
class: 'javax.swing.JLabel';
icon : @=icon;
text: @name;
foreground: black;

}
object."Workstation":selected {
foreground: red;

}
Subobject#icon {
class: 'javax.swing.ImageIcon';
image: '@|image("workstation.png")';

}

As illustrated in this example, JComponent instances can be used to represent tree nodes
through the property 'class'. The given class must follow the JavaBeans pattern; its
properties can be customized directly in CSS (icon, text, foreground).

For information about how to use JavaBeans in CSS and how to use the class property,
refer to Class property.

Creating your own renderer
You may want to replace the JViews TGO tree node representation by your own
representation. To do so, you need to create your own implementation of the Swing
TreeCellRenderer interface. For details, refer to Using an arbitrary TreeCellRenderer.

You will then be able to register the new tree cell renderer in the tree component through
CSS or through the API.

For information on how to set a new tree cell renderer through CSS, refer to The View rule.

For information on how to set a new tree cell renderer through the API, refer to Configuring
the tree component.

S T Y L I N G 77

Improving the performance of predefined business objects (tree
component)

You can improve the rendering performance of predefined business objects by replacing
their graphic representation with a static image.

How to improve performance in the Tree component by rendering
predefined business objects as static images
By default, the representation of predefined business objects is generated from the tiny
representation of the object. If the information about alarms and states is not important to
your application, the performance of your application will be better if you replace the default
representation by static images.

The following CSS example configures all ilog.tgo.model.IltObject business objects to
be represented by the image myImage.png:

object."ilog.tgo.model.IltObject" {
icon: '@|image("resource/myImage.png")';
iconVisible: true;

}

S T Y L I N G78

Customizing table cells

Describes the graphical representation of table cells and the ways of customizing them.

In this section

Representing table cells as business objects or labels with optional icons
Describes the graphic representation of a table cell and how to customize it.

Advanced customization of table cells
Describes how to use other classes for more complex representations of table cells.

Improving the performance of table cell rendering
Describes how to make the rendering of predefined business objects in tables faster.

S T Y L I N G 79

Representing table cells as business objects or labels with optional
icons

The default table cell renderer (IlpTableCellRenderer) generates two default types of
graphic representation for table cells:

♦ The predefined business objects representation, where the main attributes are displayed
using labels and icons, and the object representation is displayed as a compact version
of the standard JViews TGO look seen in the network component. This compact version
is also known as the object tiny representation.

♦ A simple representation, combining a label with an optional icon.

Both of these representations can be customized through the use of style sheets.

Predefined business objects for table cells
Objects of the IltNetworkElement class are represented as follows in the table:

Objects of the IltLink class are represented as follows in the table:

Objects of the IltShelf class are represented as follows in the table:

Objects of the IltCard class are represented as follows in the table. (Objects of classes
IltPort and IltLed differ only by the icon in the column “Object.”)

S T Y L I N G80

Objects of class IltAlarm are represented as follows in the table:

Simple representation for table cells
The simple representation is the default representation for user-defined business objects.

Properties for customizing table cells
The following table lists the properties involved in the table cell rendering.

CSS properties for the table cells
DescriptionDefaultType of ValueProperty Name

Color to be used for the focus border of the
cell. The focus border shows which cell has

nullColorfocusBorderColor

the focus. The default color is the same as
in a JTable.

Width of the focus border of the cell.1IntegerfocusBorderWidth

Horizontal position of the label and icon in
the cell. Possible values are:

LeftSwingConstantshorizontalAlignment

S T Y L I N G 81

DescriptionDefaultType of ValueProperty Name

Center

Left

Right.

Icon to be displayed. By default, no icon is
displayed.

nullImageicon

Determines whether the icon is displayed or
not.

trueBooleaniconVisible

Color to be used for the label background of
a cell. By default, the color is white.

nullColorlabelBackground

Font to be used for the label. By default, it
is a sans serif font.

nullFontlabelFont

Color to be used for the label foreground of
a cell. By default, the color is black.

nullColorlabelForeground

Space in pixels around the label and icon.1IntegerlabelInsets

Position of the label relative to the icon.
Possible values are:

RightIlvDirectionlabelPosition

Center

Top

Left

Bottom

Right.

Spacing between the label and the icon.4FloatlabelSpacing

Text to be displayed for the label. By default,
no text is displayed.

nullStringlabel

Determines whether the label is displayed
or not.

trueBooleanlabelVisible

This property accepts IlvGraphic and
JComponent objects that are created in
CSS using @+, @=, or @# constructors.

nullIlvGraphic or
JComponent

toolTipGraphic

Tooltip text for the cell. By default, no tooltip
string is displayed.

nullStringtoolTipText

Vertical position of the label and icon in the
cell. Possible values are:

CenterSwingConstantsverticalAlignment

Center

Top

S T Y L I N G82

DescriptionDefaultType of ValueProperty Name

Bottom.

How to customize the object column for predefined business
objects in table cells
In the case of predefined business objects for managed objects, an Object column displays
the value of the attribute graphicRepresentation. It shows the tiny representation of the
business object displayed in the table row. To customize this tiny representation, you can
use the same CSS properties as for the symbolic representation of the specific predefined
business class (for example, foreground, background, label, labelPosition). The following
code extract:

object."ilog.tgo.model.IltNetworkElement" {
foreground: green;

}

changes the foreground color used in the tiny representation of network elements.

For a list of the properties that you can customize per type of predefined business object,
refer to the following sections:

♦ Customizing network elements

♦ Customizing links

♦ Customizing groups

♦ Customizing subnetworks

♦ Customizing shelves and cards

♦ Customizing BTS

♦ Customizing off-page connectors

How to customize table cells
This use case shows you how to customize the cells of the table. The CSS selectors used to
customize the table cells are formed by the CSS type object and the CSS class <business
class name/attribute name>, as illustrated in the following example.

The following CSS file is provided as part of the JViews TGO demonstration software at
<installdir> /samples/table/styling/data/table.css.

object."Alarm/perceivedSeverity"[perceivedSeverity=0] {
labelBackground: '#FFFFFF';
label: Cleared;
toolTipText: "Cleared alarm";

}

S T Y L I N G 83

object."Alarm/perceivedSeverity"[perceivedSeverity=1] {
labelBackground: '#C0C0C0';
label: Indeterminate;
toolTipText: "Indeterminate alarm";

}

The example illustrates a table cell configuration based on the value of the attribute
perceivedSeverity.

By means of cascading style sheets, you can also customize the table cell representation
according to the focus and selection states. To do so, you use the pseudoclasses focus and
selected, as follows:

object."ilog.tgo.model.IltObject/name":selected {
labelForeground: red;

}

object."ilog.tgo.model.IltObject/name":focus {
labelForeground: blue;

}

object."ilog.tgo.model.IltObject/name" {
labelForeground: black;

}

How to customize multiple table cells using wildcards
This use case shows you how to customize multiple cells of a table. The CSS selectors used
to customize the table cells are formed by the CSS type object and the CSS class <business
class name/attribute name>, as illustrated in the previous example. However, you can
use the * wildcard to indicate that multiple attributes of a given business class should be
configured using a single selector.

The following example illustrates how you can configure all cells of business class ilog.
tgo.model.IltNetworkElement to have a blue background:

object."ilog.tgo.model.IltNetworkElement/*" {
labelBackground: blue;

}

You can also specify that all columns related to alarms should have a bold font:

object."ilog.tgo.model.IltObject/*larm*" {
labelFont: "arial-bold-12";

}

The following CSS extract can be found in a CSS file provided as part of the JViews TGO
demonstration software at <installdir> /samples/table/styling/data/table.css.

This CSS extract configures the background of all the cells in the rows displaying objects
of the business class Alarm according to the value of the perceivedSeverity attribute.

S T Y L I N G84

object."Alarm/*"[perceivedSeverity] {
labelBackground: '@|valuemap(@=perceivedSeverityBackgroundMap,

@perceivedSeverity)';
}

object."Alarm/*"[perceivedSeverity]:selected {
labelBackground: '@|valuemap(@=perceivedSeveritySelectionBackgroundMap,

@perceivedSeverity)';
}

S T Y L I N G 85

Advanced customization of table cells

To further customize the table cell rendering, you may also:

♦ Use an IlvGraphic to generate an arbitrarily complex graphic representation (
IlvCompositeGraphic). For more information about composite graphics, see the section
on graphic objects in Architecture of graphic components.

♦ Use a JComponent to generate a graphic representation and customize it using CSS.

♦ Create your own renderer (which should implement the Swing TableCellRenderer
interface) to generate an arbitrary Swing Component.

How to use an IlvGraphic to generate a table cell representation
IlvGraphic instances can be used to represent table cells through the property 'class'.
The given class must follow the JavaBeans™ pattern; its properties can be directly customized
in CSS.

The following example illustrates the use of IlvGeneralNode to represent table cells:

object."Service/type" {
class: 'ilog.views.sdm.graphic.IlvGeneralNode';
label: @name;
labelPosition: Right;
labelColor: black;
labelSpacing: 4;
shapeType: RECTANGLE;
shapeWidth: 12;
shapeHeight: 12;

}
object."Service/type":selected {
labelColor: red;

}

For information about how to use JavaBeans in CSS and how to use the class property,
refer to Class property.

How to use a JComponent to generate a table cell representation
JComponent instances can be used to represent table cells in the same way as they are used
to represent tree nodes (see How to use a JComponent to generate a tree node
representation).

In the following example, table cells are represented using a simple JLabelwhose properties
text, icon and foreground are customized according to the business attribute and the
selection state of the table cell.

object."Service/type" {
class: 'javax.swing.JLabel';

S T Y L I N G86

icon : @=icon;
text: @type;
foreground: black;

}
object."Service/type":selected {
foreground: red;

}
Subobject#icon {
class: 'javax.swing.ImageIcon';
image: '@|image("service.png")';

}

As illustrated in this example, JComponent instances can be used to represent table cells
through the property 'class'. The given class must follow the JavaBeans pattern; its
properties can be customized directly in CSS (icon, text, foreground).

For information about how to use JavaBeans in CSS and how to use the class property,
refer to Class property.

Creating your own renderer for table cells
Youmay want to replace the JViews TGO table cell representation by your own representation.
To do so, you need to create your own implementation of the Swing TableCellRenderer
interface. For details, refer to Using an arbitrary TreeCellRenderer.

You will then be able to register the new table cell renderer in the table component through
CSS or through the API.

For information on how to set a new table cell renderer through CSS, refer to The View rule
.

For information on how to set a new table cell renderer through the API, refer to Configuring
the tree component.

S T Y L I N G 87

Improving the performance of table cell rendering

You can improve the rendering performance of predefined business objects by replacing
their graphic representation with a static image.

How to improve performance in the table component by rendering
predefined business objects as static images
The graphicRepresentation attribute of predefined business objects can be configured
with the useDefaultCellRenderer CSS property so that predefined business objects are
rendered as static images in the table component. This technique will improve performance
as static images are faster to render than the alarm-colored tiny representation of predefined
objects.

The following CSS example configures all ilog.tgo.model.IltObject business objects to
be represented by the image myImage.png:

object."ilog.tgo.model.IltObject/graphicRepresentation" {
useDefaultCellRenderer: true;
icon: '@|image("resource/myImage.png")';
iconVisible: true;

}

S T Y L I N G88

Customizing table column headers and rows

The table component uses a default renderer to render the column header (an instance of
IlpTableHeaderRenderer). This renderer is based on the CSS configuration of the business
objects, the attributes, and the table component itself.

How to customize the table header
The following table lists the properties used by the JViews TGO default header renderer.

CSS properties for the table header
UsageDefaultType of ValueCSS Property

Horizontal position of the label and icon in
the header cell. Possible values are:

CenterSwingConstantshorizontalAlignment

Center

Left

Right

Icon to be displayed.nullImageicon

Determines whether the icon is displayed or
not. If this value is true and icon is null,
the icon will not be displayed.

trueBooleaniconVisible

Color to be used for the label background.
By default, the color is gray.

nullColorbackground

Color to be used for the label foreground. By
default, the color is black.

nullColorforeground

Font to be used for the label. By default, it
is a sans serif font.

nullFontlabelFont

Space in pixels around the label and icon.1IntegerlabelInsets

Position of the label relative to the icon.
Possible values are:

RightIlvDirectionlabelPosition

Center

Top

Left

Bottom

S T Y L I N G 89

UsageDefaultType of ValueCSS Property

Right

Spacing between the label and the icon.4.0fFloatlabelSpacing

Text to be displayed for the label. By default,
there is no text.

nullStringlabel

Determines whether the label string is
displayed or not.

trueBooleanlabelVisible

Tooltip text for the header cell. By default,
there is no tooltip text.

nullStringtoolTipText

Vertical position of the label and icon in the
header cell. Possible values are:

CenterSwingConstantsverticalAlignment

Center

Top

Bottom.

The table will attempt to use this as the width
of the column corresponding to the attribute.

-1IntegerpreferredWidth

The actual width may be different if you have
set an autoresize mode other than
AUTO_RESIZE_OFF.

Determines the sort priority of the column.
0=highest priority. If several columns have
a 0 priority, the sort order will be random.

0IntegersortingPriority

Sorting mode of the column. Possible values
are:

NoneIlpSortingModesortingMode

ASCENDING

DESCENDING

NONE

Determines whether the corresponding
column should be hidden or shown by
default.

trueBooleanvisible

Determines the index of the column that
represents the attribute. This value takes

-1Integerindex

precedence over the tableColumnOrder
property.

The following example shows you how you can customize the header of the table.

It is based on a CSS file provided as part of the JViews TGO demonstration software at
<installdir> /samples/table/styling/data/table.css.

The CSS selectors used to customize the table header are formed by the CSS type attribute
and the CSS class <business class name/attribute name>, as illustrated below:

S T Y L I N G90

attribute."Alarm/identifier" {
label: "Alarm ID";
toolTipText: "Alarm identifier";
preferredWidth: 200;
horizontalAlignment: Center;
iconVisible: false;

}

attribute."Alarm/creationTime" {
label: "Created";
toolTipText: "Creation time";
preferredWidth: 250;
sortingMode: DESCENDING;

}

How to customize multiple columns in the table header using
wildcards
The CSS selectors used to customize the table header are formed by the CSS type attribute
and the CSS class <business class name/attribute name>, as illustrated in the example
above. However, you can use the * wildcard to indicate that multiple attributes of a given
business class should be configured using a single selector.

The following example illustrates how you can configure all the columns of the Alarm business
class to have a specific horizontal alignment and icon visibility:

attribute."Alarm/*" {
horizontalAlignment: Center;
iconVisible: false;

}

How to customize the order of columns in a table
The property listed in the following table controls the order of columns in a table.

CSS property for the table column order
UsageDefaultType of ValueCSS Property

Defines the column order for the business class
represented in the table. Contains a list of attribute
names. By default, no column order is defined.

nullStringtableColumnOrder

The order of the columns in a table is associated with the business class that is represented.
The CSS selectors used to customize this accepted class are formed by the CSS type object
and the CSS class <business class name>, as illustrated below:

object."Alarm" {
tableColumnOrder: "identifier, creationTime, acknowledged,

S T Y L I N G 91

perceivedSeverity";
}

How to customize the height of rows in a table
The property listed in the following table controls the height of rows in a table.

CSS Property for the Table Row Height
UsageDefaultType of ValueCSS Property

Defines the row height for the business class
represented in the table.

16IntegertableRowHeight

The height of rows in a table is associated with the business class that is represented. The
CSS selectors used to customize this accepted class are formed by the CSS type object and
the CSS class <business class name>, as illustrated below:

object."ilog.tgo.model.IltLink" {
tableRowHeight: 27;

}

S T Y L I N G92

Customizing the label of a business object

Customizing label parameters in the graphic representation of a business object is based
on the properties listed in the following table.

CSS properties for labels
DescriptionDefault ValueTypeProperty Name

Controls whether the label is
shown or not.

truebooleanlabelVisible

Text to be displayed for the label.
If the value is null, the identifier
of the business object is displayed.

nullStringlabel

Specifies the font to use to draw
the label.

Helvetica 12, except:

- in IltShelf:
Helvetica 10

FontlabelFont

- in IltShelfItem:
Helvetica 11 (Courier
New 11 on Windows®
)

Gives the color of the label text.black, except:ColorlabelForeground

- in IltEmptySlot:
50% gray

Gives the color of the label
background. The background is

nullColorlabelBackground

transparent when this value is
null.

Defines the position of the label
relative to the base or to the

BottomIlvDirectionlabelPosition

information cluster. Its possible
values are:

Top

Bottom

Right

Left

Center

BadPosition.

When labelPosition is set to
BadPosition, JViews TGO is
responsible for defining the label

S T Y L I N G 93

DescriptionDefault ValueTypeProperty Name

position that best fits with the kind
of telecom object being displayed.

Controls whether the label is
drawn using antialiasing or not.

truebooleanlabelAntialiasing

Defines the distance between the
label and the object base.

2: For custom
business objects.

floatlabelSpacing

Predefined business objects also
support the property

0: For predefined
business objects.

labelOffset that allows you to
define the X and Y distance
between the label and the base.
This property has priority over the
property labelSpacing.

Indicates the offset in x,y
coordinates between the label and
the object base.

0, 0IlvPointlabelOffset

Defines the wrapping mode of the
object label representation. The

NoneshortlabelWrappingMode

following values are available:
None, Word Wrap, Truncate,
Wrap and Truncate.

Defines the label width above
which the label will be truncated or

-1

The width is
automatically defined

floatlabelWrappingWidth

wrapped according to the wrapping
mode.

by JViews TGO
according to the object
base dimensions. For
off-page connectors,
the default value is set
to 60 pixels.

Defines the label height above
which the label will be truncated.

-1

The height is
automatically defined

floatlabelWrappingHeight

by JViews TGO
according to the object
base dimensions.

Defines the margin between the
label and the edge of the shape

0: for all objects.

35: for
IltShelfItem.

floatlabelMargin

when performing wordwrapping or
truncation

Defines the alignment of the label
when it has several lines.

-1: The label
alignment is
automatically

intlabelAlignment

Possible values are:

S T Y L I N G94

DescriptionDefault ValueTypeProperty Name

Topcomputed based on
the label position:

Bottom
- If the label position is
Bottom or Top, the Center

alignment will be
Center.

Left

Right
- If the label position is
Left, the alignment is
Right.

- If the label position is
Right, the alignment
is Left.

Gives the color used to draw a
border around the label; the border

transparent (null)ColorlabelBorderColor

will be displayed only if this value
is not null.

Defines the direction used to draw
the label (vertical or horizontal).

Right, except in:

- IltShelfItem:
Top

IlvDirectionlabelDirection

Possible values are:

Top

Bottom

Left

Right

Defines a scale factor that is
applied to the label so that it can

1floatlabelScaleFactor

be adjusted independently from
the object base.

Defines the distance between lines
when the label is on several lines.

-1: The label will use
the default TextLayout
leading.

floatlineSpacing

Defines the minimum label zoom
below which the label becomes
invisible.

0.6floatminLabelZoom

Defines the maximum label zoom
above which the label becomes
invisible.

500floatmaxLabelZoom

The customization of labels in a tree component uses all of these properties except
labelScaleFactor, minLabelZoom, and maxLabelZoom.

Note:

S T Y L I N G 95

The customization of labels in a table component follows the table cell customization,
that is, it uses the properties listed in CSS properties for the table cells .

How to customize the label from a business attribute
The following example shows you how to customize a label according to the name attribute
of the business object:

object."ilog.tgo.model.IltObject" {
label: @name;

}

How to customize the label based on specific attribute values
The following example shows you how to customize the graphical representation of the
business class IltNetworkElement so that the label foreground color is based on the value
of the attribute type:

object."ilog.tgo.model.IltNetworkElement"[type="NMW"] {
labelForeground: blue;
}
object."ilog.tgo.model.IltNetworkElement"[type="BSC"] {
labelForeground: green;
}

In this example, IltNetworkElement instances whose type attribute is set to NMW have a
blue label. Instances whose type attribute is set to BSC have a green label.

How to customize the label to wrap or truncate automatically
The following example specifies that the network element labels will wrap automatically if
they are larger than 50 pixels.

object."ilog.tgo.model.IltNetworkElement" {
labelWrappingMode: Word Wrap;
labelWrappingWidth: 50;

}

You can also specify that the label will be truncated automatically if it is larger than a specific
value. In this case, the label is truncated and ‘...’ is added at the end. The following example
specifies that network elements will have their label truncated, except when the object is
selected.

object."ilog.tgo.model.IltNetworkElement" {
labelWrappingMode: Truncate;

S T Y L I N G96

labelWrappingWidth: 50;
}

object."ilog.tgo.model.IltNetworkElement":selected {
labelWrappingMode: None;

}

S T Y L I N G 97

Customizing the label in table cells

Properties for customizing labels
You can use the CSS properties listed in the following table to customize the label used to
represent an attribute in a table component.

UsageDefaultType of ValueCSS Property

Text to be displayed for the label. By default, no
text is displayed.

nullStringlabel

Determines whether the label is displayed or not.trueBooleanlabelVisible

Font to be used for the label. By default, it is a sans
serif font.

nullFontlabelFont

Color to be used for the label foreground of a cell.
By default, the color is black.

nullColorlabelForeground

Color to be used for the label background of a cell.
By default, the color is white.

nullColorlabelBackground

How to customize an attribute in a table component
This example shows how to customize the representation of the attribute throughput in a
table component.

<class>
<name>Element</name>
<superClass>ilog.tgo.model.IltNetworkElement</superClass>
<attribute>
<name>throughput</name>
<javaClass>java.lang.Integer</javaClass>

</attribute>
</class>

How to customize cell labels
The following example shows how to customize the cell labels in the class Element.

object."Element/throughput" {
label: @throughput;
labelForeground: yellow;
labelBackground: red;

}

In this example, the value of throughput is automatically converted from Integer to String
through the application type converter when the value of label is computed. Alternatively,

S T Y L I N G98

you could use a format function (@|format) to obtain the same result. See CSS expressions
and functions for more information.

S T Y L I N G 99

Changing the font of all labels

The label font is configured according to whether the object that is linked to the label is a
predefined business object, a user-defined business object, or an attribute.

Properties for customizing the font of labels
The following properties are used to configure the label font.

UsageDefaultType of
Value

CSS Property

Specifies the font to be used for
the label. By default, it is a sans
serif font.

Network and Equipment:

Helvetica 12, except:

FontlabelFont

- in IltShelf: Helvetica 10

- in IltShelfItem:
Helvetica 11 (Courier New
11 on Windows®)

Table and Tree:

null

Denotes the font used to display
the text in the alarm balloon.

Helvetica 12 boldFontalarmBalloonTextFont

Denotes the font used in alarm
counts displayed in the object
base.

Helvetica 12 boldFontalarmCountFont

Defines the font of the text
displayed in the Information
Window.

Helvetica 10FontinfoWindowTextFont

The desired configuration is obtained by changing the value of each of these properties
through the appropriate CSS selectors. Since you want to see the modification reflected in
all objects and attributes, modify these values using the selectors that contain only the CSS
type information:

♦ object: selector that identifies all business objects.

♦ attribute: selector that applies to attributes in the table component header.

How to configure user-defined business objects
The following example shows the configuration for all user-defined business objects.

object {

S T Y L I N G100

labelFont: "sansserif-PLAIN-12";
}

How to configure attributes in the table component header
The following example shows the configuration for all attributes.

attribute {
labelFont: "sansserif-PLAIN-12"

}

How to configure predefined business objects
The following example shows the configuration for all predefined business objects.

object."ilog.tgo.model.IltObject" {
labelFont:"sansserif-PLAIN-12";
alarmBalloonTextFont:"sansserif-PLAIN-12";
alarmCountFont:"sansserif-PLAIN-12";
infoWindowTextFont:"sansserif-PLAIN-12";

}

To have these properties valid for all graphic components, you can use the cascading behavior
in the style sheets, so that this style sheet is imported by all the style sheets set in your
specific components.

For example, you should first create a style sheet, shared.css, that defines the values of
these properties only. Then, you should import this style sheet into each component-specific
style sheet with the @import statement:

@import "shared.css";

S T Y L I N G 101

Customizing tooltips

Properties for customizing tooltips
The following properties are used to customize tooltips.

CSS properties for tooltips
DescriptionDefaultType of

Value
Property Name

If the value is other than null, the
given graphic object is used as the

nullIlvGraphic
or
JComponent

toolTipGraphic

tooltip. If the value is null, the tooltip
will be a simple string as configured
by the toolTipText property.

Tooltip text for the object, used only
if toolTipGraphic is null. If the

nullStringtoolTipText

values of this property and the
toolTipGraphic property are both
null, no tooltip is displayed.

Defines the font to be used when
creating text tooltips.

null (the default tooltip
font defined in the Java™
environment is used)

FonttoolTipFont

Defines the foreground color to be
used when creating text tooltips.

null (the default tooltip
foreground color defined

ColortoolTipForeground

in the Java environment
is used)

Defines the background color to be
used when creating text tooltips.

null (the default tooltip
background color defined

ColortoolTipBackground

in the Java environment
is used)

How to customize a tooltip
The following example is valid for network nodes and links, equipment nodes and links, and
tree nodes:

object."ilog.tgo.model.IltObject" {
toolTipText: @name;

}

How to customize tooltips with a specific font
The following example shows you how to customize your component to display tooltips with
a specific font on the objects:

S T Y L I N G102

object."ilog.tgo.model.IltObject" {
toolTipText: @name;
toolTipFont: "arial-plain-12";

}

How to create a multiline tooltip
The value of the tooltip string is rendered by default in a single line of text. If you want a
multiline tooltip or you use fonts with different styles, you can prefix the string with the tag
<HTML> and then use HTML notation for text attributes. For example, the tooltip shown in
A two-line tooltip with different font styles uses the following string:

<HTML>A simple tool tip
with <u>two</u> lines</HTML>

A two-line tooltip with different font styles

The following example shows how to obtain this result:

object."ilog.tgo.model.IltObject" {
toolTipText: "<HTML>A simple tool tip
with <u>two</u> lines</

HTML>";
}

How to create a graphic tooltip
You can also customize tooltips that are IlvGraphic or JComponent instances. Graphic
tooltips are customized in CSS through the property 'toolTipGraphic' as follows:

object."ilog.tgo.model.IltObject" {
toolTipGraphic: @+myToolTip;

}

Subobject#myToolTip {
class: 'ilog.views.graphic.IlvIcon';
image: '@|image("question.png")';

}

This example creates a graphic tooltip that displays an icon. The icon graphic is created by
the styling engine as a JavaBean™. For details, see How to Create a New JavaBean
Dynamically.

How to customize a tooltip for a table cell
In the table component, you can customize tooltips for an entire row as explained in previous
sections, or you can specify tooltips for a specific table cell. The following example shows

S T Y L I N G 103

how to specify tooltips for table cells that represent network element objects and the family
attribute.

object."ilog.tgo.model.IltNetworkElement/family" {
toolTipText: @family;

}

How to customize a tooltip for a specific decoration
In the network and equipment components, you can customize tooltips for an entire object
as explained in previous sections, or you can specify tooltips for a specific decoration. A
decoration is created to graphically represent an attribute of the business object. Customizing
tooltips for a specific decoration is accomplished by defining CSS selectors for business
attributes. In the following example, network elements are customized in a way that their
label is truncated when its width is larger than 50. Besides, a tooltip is defined for the 'name'
attribute displaying the full value of the attribute over the label decoration so that you can
still see the full name of the object.

object."ilog.tgo.model.IltNetworkElement" {
label: @name;
labelWrappingMode: Truncate;
labelWrappingWidth: 50;

}

object."ilog.tgo.model.IltNetworkElement/name" {
toolTipText: @name;

}

The following CSS file is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/decoration.

It illustrates how to define graphic tooltips for a specific business attribute.

How to customize tooltips for secondary states in predefined
business objects
In the network and equipment components, you can specify that tooltips are to be displayed
for secondary states. A tooltip will be automatically retrieved for each secondary state that
is displayed in the business object graphic representation.

object."ilog.tgo.model.IltObject/objectState" {
toolTipGraphic: @+SecStateModifierToolTipGraphic;

}
#SecStateModifierToolTipGraphic {
class: 'ilog.tgo.graphic.IltSecStateModifierToolTipGraphic';

}

The tooltip graphic displays the description of the state. This description is defined when
the state is created. For all the predefined states, the description can be modified in the

S T Y L I N G104

JViews TGO resource bundle file. For states that you have created using the API, specify the
state description as argument when creating the new state.

S T Y L I N G 105

S T Y L I N G106

Customizing object and alarm states of
predefined business objects

Describes how to customize the object and alarm states of all the predefined business objects.

In this section

Overview of customizing the states of predefined business objects
Lists the properties that you can use to customize the state parameters in the graphic
representation of a business object.

Secondary states and information window properties
Lists the properties for customizing the secondary states and information window and
explains how to use them.

Alarm configuration properties
Lists the properties for customizing the alarm configuration and explains how to use them.

Alarm balloon configuration properties
Lists the properties for customizing the alarm balloon configuration and explains how to
use them.

Alarm count configuration properties
Lists the properties for customizing the alarm count configuration and explains how to use
them.

SNMP system info configuration properties
Lists the properties for customizing the system info configuration and explains how to use
them.

S T Y L I N G 107

Changing the icon color of predefined business objects
Shows you how to change the color of business objects that belong to a predefined business
class (tree component, network component, and equipment component).

S T Y L I N G108

Overview of customizing the states of predefined business objects

Customizing state parameters in the graphic representation of a business object is based
on the following properties:

♦ Secondary states and information window properties

♦ Alarm configuration properties

♦ Alarm balloon configuration properties

♦ Alarm count configuration properties

♦ SNMP system info configuration properties

S T Y L I N G 109

Secondary states and information window properties

Properties for customizing secondary states and information
window
CSS properties for secondary states and information window

DescriptionDefault
Value

TypeProperty Name

Defines whether the object base is
modified according to the object
state set in the instance.

true for
all objects
except
groups

booleanbaseStyleEnabled

Defines whether the secondary state
icons are displayed or not

truebooleansecondaryStateVisible

Defines the position of the
secondary state icons relative to the
base. Possible values are:

TopIlvDirectionsecondaryStatePosition

Top

Bottom.

Defines the maximum number of
secondary state icons that can be
displayed.

2intinfoIconThreshold

When the number of secondary
state icons is bigger than this
threshold, the icons are replaced by
an information icon and the state
information is available through the
Information window.

Defines the color used to draw the
background of the Information
window.

10% grayColorinfoWindowColor

Defines the color used to draw the
border of the Information window.

blackColorinfoWindowBorderColor

Defines the color used to draw the
shadow of the information window.

60% grayColorinfoWindowShadowColor

Determines whether the Information
window is visible or not.

truebooleaninfoWindowVisible

Determines whether the Information
window is always available. When

falsebooleaninfoWindowPresent

this value is set to false, the
Information window is only available
when the number of secondary state

S T Y L I N G110

DescriptionDefault
Value

TypeProperty Name

icons exceeds the limit defined by
the property
infoWindowThreshold.

When this value is set to true, the
Information window can be
accessed by clicking the secondary
state icons.

Defines the font of the text displayed
in the Information Window.

Helvetica
10

FontinfoWindowTextFont

Determines whether the text
displayed in the Information window
uses antialiasing or not.

truebooleaninfoWindowTextAntialiasing

Defines the background color of the
text displayed in the Information
window.

nullColorinfoWindowTextBackground

Defines the foreground color of the
text displayed in the Information
window.

blackColorinfoWindowTextForeground

Determines whether the primary
state information is listed in the
Information window or not.

true for
OSI and
SNMP

booleanlistPrimaryState

false for
other state
systems

Lists the primary alarm state
information in the Information
window.

falsebooleanlistPrimaryAlarmState

Lists the secondary alarm state
information in the Information
window.

falsebooleanlistSecondaryAlarmState

Determines whether the alarm state
information listed in the Information

falsebooleanlistAlarmStateAbbreviated

window displays alarm severities
using their abbreviation or their
description.

How to customize the secondary states
The following CSS extract modifies the network element graphic representation by specifying
that the Information window will always be available when the object has secondary states.
To open the Information window, simply click any of the secondary state icons or the
Information icon, if it is present.

S T Y L I N G 111

object."ilog.tgo.model.IltNetworkElement" {
infoWindowPresent: true;
listPrimaryAlarmState: true;
listSecondaryAlarmState: true;
listState: true;

}

This extract also specifies that the primary state information and the alarm state information
are displayed in the Information window.

S T Y L I N G112

Alarm configuration properties

Properties for customizing the alarm configuration
CSS properties for the alarm configuration

DescriptionDefault
Value

TypeProperty Name

Determines whether the raw
alarms or the impact alarms are

RawIltAlarmStateEnumprimaryAlarmState

displayed as the primary alarm
state. Possible values are:

Raw

Impact

Indicates whether the alarm
border is visible or not around
the object base.

truebooleanalarmBorderVisible

Defines the color used to
represent the alarm border
around the base.

transparent
(null)

ColoralarmBorderColor

Defines the width of the alarm
border.

2intalarmBorderWidth

Determines whether the alarm
color is visible or not in the object
value.

truebooleanalarmColorVisible

Determines the color
representing alarms in the object

transparent
(null)

ColoralarmColor

base.This property is only taken
into account when property
alarmColorVisible is set to
true.

Determines the bright color
representing alarms in the object

transparent
(null)

ColoralarmBrightColor

base.This property is only taken
into account when property
alarmColorVisible is set to
true.

Determines the dark color
representing alarms in the object

transparent
(null)

ColoralarmDarkColor

base.This property is only taken
into account when property

S T Y L I N G 113

DescriptionDefault
Value

TypeProperty Name

alarmColorVisible is set to
true.

Defines whether the new alarm
information is displayed using

falsebooleanalarmAsMark

the alarm balloon or an alarm
marker. The alarm marker is
another type of balloon with a
triangular format. It is displayed
in the color of the new alarm
highest severity, without the
alarm count information.

Denotes whether the loss of
connectivity alarm state

truebooleanalarmLossOfConnectivityOverride

overrides the highest alarm
representation in the object
base. If the object has the loss
of connectivity state set and this
property is set to true, the
object base is displayed using
the loss of connectivity colors. If
this property is set to false, the
object base is displayed as
usual, and the loss of
connectivity is represented using
a secondary state icon.

Defines the position of the loss
of connectivity indicator when the

AlarmCountIltGraphicElementNamealarmLossOfConnectivityPosition

loss of connectivity override
property is set to true.

Possible values are:

AlarmCount: the indicator is the
string specified by the Alarm.
LossOfConnectivity.
Abbreviation setting and is
displayed as an alarm count.

SecondaryStateModifiers:
the indicator is the loss of
connectivity icon. It is displayed

S T Y L I N G114

DescriptionDefault
Value

TypeProperty Name

as a secondary state and takes
the loss of connectivity color .

How to customize the alarm representation for predefined business
objects
The following CSS extract modifies the graphic representation of network element objects,
so that raw alarms are considered as primary alarms. As such, they are represented in the
object base, the alarm count and the alarm balloon using the default JViews TGO look and
feel. In addition, the example modifies the object so that, when the Loss Of Connectivity
alarm state is set, it is graphically represented as a secondary state icon and the object base
color and object border color are not affected.

object."ilog.tgo.model.IltNetworkElement" {
primaryAlarmState: Raw;
alarmLossOfConnectivityOverride: false;

}

How to customize the alarm representation for predefined business
objects to use blinking colors
The following CSS extract shows how you can modify the object representation of JViews
TGO predefined business objects to use blinking colors instead of alarm balloon decorations
to highlight the presence of new alarms.

This extract illustrates the following configuration:

♦ The alarm balloon decoration is hidden

♦ New alarms are represented in the object base by blinking colors

♦ Outstanding alarms are represented in the object base using the default color configuration

♦ The loss of connectivity status is represented in the object base using the default color
configuration

To achieve this configuration, the following CSS properties are used:

♦ alarmBalloonVisible

♦ alarmColorVisible

♦ alarmColor

♦ alarmBrightColor

♦ alarmDarkColor

S T Y L I N G 115

object."ilog.tgo.model.IltObject" {
alarmBalloonVisible: false;
alarmColorVisible: false;
alarmColor: '';
alarmBrightColor: '';
alarmDarkColor: '';

}

object."ilog.tgo.model.IltObject"[alarmHighestSeverity] {
alarmColorVisible: true;
alarmColor: '@|severityColor(@|highestSeverity())';
alarmBrightColor: '@|severityBrightColor(@|highestSeverity())';
alarmDarkColor: '@|severityDarkColor(@|highestSeverity())';

}

object."ilog.tgo.model.IltObject"[newAlarmHighestSeverity] {
alarmColorVisible: true;
alarmColor: '@|blinkingcolor(@|severityColor(@|highestNewSeverity()),

"#50FFFFFF")';
alarmBrightColor:

'@|blinkingcolor(@|severityBrightColor(@|highestNewSeverity()), "#50FFFFFF")
';
alarmDarkColor: '@|blinkingcolor(@|severityDarkColor(@|highestNewSeverity()

),
"#50FFFFFF")';
}

object."ilog.tgo.model.IltObject"["objectState.Alarm.LossOfConnectivity"=true]

{
alarmColorVisible: true;
alarmColor: '@|settings("Alarm.LossOfConnectivity.Color")';
alarmBrightColor: '@|settings("Alarm.LossOfConnectivity.BrightColor")';
alarmDarkColor: '@|settings("Alarm.LossOfConnectivity.DarkColor"';

}

You can also customize the default alarm configuration. For more information, refer to
Customizing alarm severities.

S T Y L I N G116

Alarm balloon configuration properties

Properties for customizing the alarm balloon configuration
The following properties apply to the alarm balloon displayed on the base of predefined
business objects.

CSS properties for alarm balloon representations
DescriptionDefault ValueTypeProperty Name

Denotes whether the
alarm balloon is visible or
not.

truebooleanalarmBalloonVisible

Denotes the color of the
alarm balloon. This

28% greyColoralarmBalloonColor

property is mapped and
its value is set according
to the color of the highest
alarm severity present in
the object.

Denotes the color of the
alarm balloon shadow.

blackColoralarmBalloonShadowColor

Denotes the font used to
display the text in the
alarm balloon.

Helvetica 12 boldFontalarmBalloonTextFont

Denotes whether the text
inside the alarm balloon is

truebooleanalarmBalloonTextAntialiasing

displayed with antialiasing
or not.

Denotes the foreground
color used to display the
text in the alarm balloon.

blackColoralarmBalloonTextForeground

Denotes the background
color used to display the
text in the alarm balloon.

transparent
(null)

ColoralarmBalloonTextBackground

Denotes whether the
alarm count displayed in

falsebooleanalarmBalloonCountAbbreviated

the alarm balloon is
abbreviated or not in its
collapsed representation.
An abbreviated alarm
count displays only the
number of alarms and the
alarm severity
abbreviation for the

S T Y L I N G 117

DescriptionDefault ValueTypeProperty Name

highest alarm present in
the object.

Defines the label to be
used for the alarm count
in the alarm balloon.

The alarm count
to be displayed in
the object alarm

StringalarmBalloonCountLabel

balloon. It is
composed of the
number of new
alarms of the
highest severity,
the short
description of the
highest new alarm
severity and a '+'
sign in case the
object has other
alarms of lower
severity. For
example: 10C+

Defines the image to be
used with the label to

The image
registered for the

ImagealarmBalloonCountIcon

compose the alarm count
in the alarm balloon.

highest new alarm
severity currently
present in the
object

Denotes the position of
the alarm balloon around
the object base.

TopIlvDirectionalarmBalloonPosition

Possible values are:

Top

Bottom

Left,

Right

Denotes whether the
alarm count displayed in

truebooleanalarmBalloonCollapsed

the alarm balloon is
abbreviated or not. When
this property is set to
false, the balloon
displays the complete list
of alarms according to
their severities.

Determines whether the
alarm count icon will be

truebooleanalarmCountIconVisible

used to create the alarm

S T Y L I N G118

DescriptionDefault ValueTypeProperty Name

count in the object base
and in the alarm balloon.

Defines whether the alarm
count icon will be placed

IlvConstants.
TRAILING

intalarmCountIconPosition

before or after the alarm
severity description.
Possible values are:
IlvConstants.
LEADING or
IlvConstants.
TRAILING.

How to customize the alarm balloon representation
The following CSS extract illustrates how you can customize the alarm balloon representation
in your predefined business objects.

object."ilog.tgo.model.IltNetworkElement" {
alarmBalloonPosition: Bottom;
alarmBalloonTextForeground: white;

}

S T Y L I N G 119

Alarm count configuration properties

Properties for customizing the alarm count configuration
The following properties apply to the alarm count displayed on the base of predefined
business objects.

CSS properties for alarm count
DescriptionDefault ValueTypeProperty Name

Denotes whether the alarm
count in the object base is visible
or not.

truebooleanalarmCountVisible

Denotes the font used in alarm
counts displayed in the object
base.

Helvetica 12 boldFontalarmCountFont

Denotes the foreground color of
the alarm count text displayed in
the object base.

blackColoralarmCountForeground

Denotes the background color
of the alarm count text displayed
in the object base.

transparent (null)ColoralarmCountBackground

Denotes whether the alarm
count in the object base is
abbreviated or not.

falsebooleanalarmCountAbbreviated

Denotes whether the alarm
count in the object base is

truebooleanalarmCountAntialiasing

displayed using antialiasing or
not.

Denotes whether the alarm
count in the object base displays

false, except for network
elements of type

booleanalarmCountMultiline

on two lines or not. When thisNEComponent and
NEComponent_Logical property is set to true, the

number of alarms displays on
the first line and the alarm

S T Y L I N G120

DescriptionDefault ValueTypeProperty Name

severity abbreviation displays on
the second line.

Defines the label to be used for
the alarm count in the object
base.

The alarm count to be
displayed in the object
base. It is composed of the

StringalarmCountLabel

number of outstanding
alarms of the highest
severity, the short
description of the highest
outstanding alarm severity
and a '+' sign in case the
object has other alarms of
lower severity. For
example: 10C+

Defines the image to be used
with the label to compose the
alarm count in the object base.

The image registered for
the highest outstanding
alarm severity currently
present in the object

ImagealarmCountIcon

How to customize the alarm count representation
The following CSS extract illustrates how you can customize the graphic representation of
the alarm count displayed on the object base.

object."ilog.tgo.model.IltNetworkElement" {
alarmCountAntialiasing: true;
alarmCountForeground: yellow;

}

S T Y L I N G 121

SNMP system info configuration properties

Properties for customizing the system info configuration
The following properties apply when a business object has an SNMP object state:

CSS properties applying to SNMP system group
DescriptionDefault ValueTypeProperty Name

Defines the property
that denotes the

Contact (ilog.tgo.
SNMP_System_Contact)

StringsnmpSystemContact

description of the
The value in parenthesis represents the
name of the resource that stores the value

SNMP system
contact attribute.

of the property in the JViews TGO
Resource bundle. When dealing with
different locales, the value can be
changed according to the locale by
defining the value of this property in the
appropriate resource file.

Defines the property
that denotes the

Description (ilog.tgo.
SNMP_System_Description)

StringsnmpSystemDescription

description of the
The value in parenthesis represents the
name of the resource that stores the value

SNMP system
description attribute.

of the property in the JViews TGO
Resource bundle. When dealing with
different locales, the value can be
changed according to the locale by
defining the value of this property in the
appropriate resource file.

Defines the property
that denotes the

Location (ilog.tgo.
SNMP_System_Location)

StringsnmpSystemLocation

description of the
The value in parenthesis represents the
name of the resource that stores the value

SNMP system
location attribute.

of the property in the JViews TGO
Resource bundle. When dealing with
different locales, the value can be
changed according to the locale by
defining the value of this property in the
appropriate resource file.

S T Y L I N G122

Changing the icon color of predefined business objects

In these components, the predefined business class is an extension of IltNetworkElement.
The color is customized with the property foreground.

The following extract of XML represents the definition of a business class that extends the
predefined business class IltNetworkElement.

How to extend a predefined business class

<class>
<name>myNetworkElement</name>
<superClass>ilog.tgo.model.IltNetworkElement</superClass>
<attribute>
<name>siteName</name> <javaClass>java.lang.String</javaClass>

</attribute>
<attribute>

<name>customerName</name> <javaClass>java.lang.String</javaClass>
</attribute>

</class>

How to use literal values for customizing colors

object.myNetworkElement {
foreground: '#FF0000';

}

In this example, the foreground color of the icon representing business objects of the class
myNetworkElement is set to red.

How to customize the icon color based on specific attribute values

object.myNetworkElement[type=NE] {
foreground:'#FFFFFF';

}
object.myNetworkElement[type=MD] {

foreground:'#C0C0C0';
}
object.myNetworkElement[type=Server] {

foreground:'#FFCC00';
}
object.myNetworkElement[type=BSC] {

foreground:'#FFB200';
}
object.myNetworkElement[type=Desktop] {

S T Y L I N G 123

foreground:'#FF0000';
}

In this example, the foreground color of the icon representing business objects of the class
myNetworkElement is set to depend on the value of the attribute type defined in the class
IltNetworkElement. So myNetworkElement with the type NE will have a white foreground.

S T Y L I N G124

Customizing the icon of business objects

Properties for customizing icon parameters
Customizing icon parameters in the graphic representation of a business object is based on
the following properties of the graphic representation.

UsageDefaultType of ValueCSS Property

Icon to be displayed.nullImageicon

Determines whether the icon is displayed or not. If this
value is true and icon is null, the icon will not be
displayed.

trueBooleaniconVisible

How to customize the icon based on the business object identifier
The CSS selector in this use case is defined based on the object identifier as shown in the
following example.

Subobject#id {
icon: '@|image("customer.png")';
iconVisible: true;

}

In this example, the business object with the object identifier id will use the icon customer.
png.

How to customize the icon used in a table cell

object."CustomIltNetworkElement/site" {
iconVisible: true;
icon: '@|image("site.png")';

}

In this example, the table cells in the column sitewill display the icon site.png for objects
of the class CustomIltNetworkElement.

S T Y L I N G 125

Adding a user-defined business attribute to the system window

Properties of predefined business objects in the system window
In the network and equipment graphic components, predefined business objects can have
a specific graphic called the System window, which displays a list of attribute values. You
can add attributes to the Systemwindow through the properties listed in the following table.

UsageDefaultType of ValueCSS Property

Indicates that the attribute should be
displayed in the System window.

falsebooleanvisibleInSystemWindow

Indicates the value to be used to represent
the attribute in the System window.

nullStringlabel

You can also specify the description of the attribute. If the description is set, the attribute
will be displayed in the System window in the format <description: value>.

The attribute description is configured with the properties listed in the following table.

UsageDefaultType of ValueCSS Property

Indicates the label of the description.nullStringcaptionLabel

Indicates whether the description is displayed
or not.

truebooleancaptionLabelVisible

An attribute is only added to the System window if the value
visibleInSystemWindow is set and if the label property is defined with a
meaningful value.

Important:

Predefined attributes such as Name or ObjectState are not added to the System
window, since they are already graphically represented by other decorations.

How to extend a predefined business class
The following example shows how to create a class that extends IltNetworkElement and to
declare the new attributes site and vendor.

In this customization you see that the attribute site is added to the System window and is
displayed in the format Site: value.

The following CSS file is provided as part of the JViews TGO demonstration software at
<installdir> /samples/network/customClasses/data/customClasses.xml.

The following extract in XML shows how to define the business class.

S T Y L I N G126

<class>
<name>NMW</name>
<superClass>ilog.tgo.model.IltNetworkElement</superClass>
<attribute>
<name>site</name>
<javaClass>java.lang.String</javaClass>

</attribute>
<attribute>
<name>vendor</name>
<javaClass>java.lang.String</javaClass>

</attribute>
</class>

How to display an attribute in the system window
The following extract in CSS shows how to declare the new attribute, so that its content is
displayed in the System window.

Attributes are configured in CSS with the type object and the CSS class formatted as
business class/attribute name.

object."NMW/site" {
label: @site;
visibleInSystemWindow: true;
captionLabel: Site;
captionLabelVisible: true;

}

The property visibleInSystemWindow indicates that the attribute is to be displayed inside
the System window graphic.

The property label indicates that the attribute site is to be represented as text with the
value of the attribute.

The properties captionLabelVisible and captionLabel indicate whether or not the attribute
is to be displayed with a description in the System window.

S T Y L I N G 127

Changing the background color of all columns in a table

You can use the labelBackground property to change the background color of all the columns.

How to have all the columns use the same background color
This example shows how to get all the columns to have the same background color. The
background color is based on the value of one of the attributes.

The following CSS file is provided as part of the JViews TGO demonstration software at
<installdir> /samples/table/customClasses/data/alarm.css.

The following extract in XML shows the business class definition.

<class>
<name>Alarm</name>
<attribute>
<name>identifier</name>
<javaClass>java.lang.String</javaClass>

</attribute>
<attribute>
<name>perceivedSeverity</name>
<javaClass>java.lang.Integer</javaClass>

</attribute>
<attribute>
<name>acknowledged</name>
<javaClass>java.lang.Boolean</javaClass>

</attribute>
<attribute>
<name>creationTime</name>
<javaClass>java.util.Date</javaClass>

</attribute>
</class>

The following configuration shows that the background color is changed depending on the
value of the attribute perceivedSeverity. In the following style sheet extract, the background
color is reset when the object is selected in the table. Selected objects are displayed with
the default table selected color.

The pseudoclass selected is used to configure the representation of the selected objects.
In this example, the pseudoclass is repeated to increase the specificity of therule that handles
the way a selected object is rendered, thus forcing this rule to have priority over the other
rules. See The CSS specification for more information.

object."Alarm/perceivedSeverity":selected:selected
{
labelBackground: '';

}

S T Y L I N G128

How to make property values dependent on an attribute value
The following example shows that the background color, label, and tooltip change, depending
on the value of the attribute.

object."Alarm/perceivedSeverity"[perceivedSeverity=0] {
labelBackground: '#FFFFFF';
label: Cleared;
toolTipText: "Cleared alarm";

}
object."Alarm/perceivedSeverity" [perceivedSeverity=1] {

labelBackground: '#C0C0C0';
label: Indeterminate;
toolTipText: "Indeterminate alarm";

}
object."Alarm/perceivedSeverity" [perceivedSeverity=2] {

labelBackground: '#FFCC00';
label: Warning;
toolTipText: "Warning alarm";

}
object."Alarm/perceivedSeverity"[perceivedSeverity=3] {

labelBackground: '#FFB200';
label: Minor;
toolTipText: "Minor alarm";

}
object."Alarm/perceivedSeverity" [perceivedSeverity=4] {

labelBackground: '#FF0000';
label: Major;
toolTipText: "Major alarm";

}
object."Alarm/perceivedSeverity" [perceivedSeverity=5] {

labelBackground: '#FF0000';
label: Critical;
toolTipText: "Critical alarm";

}

The background color configuration of the other table columns follows the same principle;
the customization of the column identifier is shown in the following example:

object."Alarm/identifier":selected:selected {
labelBackground: '';

}
object."Alarm/identifier"[perceivedSeverity=0] {

labelBackground: '#FFFFFF';
}
object."Alarm/identifier"[perceivedSeverity=1] {

labelBackground: '#C0C0C0';
}
object."Alarm/identifier" [perceivedSeverity=2] {

labelBackground: '#FFCC00';
}
object."Alarm/identifier"[perceivedSeverity=3] {

S T Y L I N G 129

labelBackground: '#FFB200';
}
object."Alarm/identifier"[perceivedSeverity=4] {

labelBackground: '#FF0000';
}
object."Alarm/identifier"[perceivedSeverity=5] {

labelBackground: '#FF0000';
}

S T Y L I N G130

Displaying the same attribute with different representations

To obtain the desired result, you need to extend the table component with new attributes.
The new attributes refer to attributes of the business class represented in the table
component. You configure each attribute to be properly displayed in the table component.

How to extend a table component with new attributes
The following example shows you how to extend a table component with new attributes.

The following application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/table/customAttributes/index.html.

// Create a table component
IlpTable tableComponent = new IlpTable();
// Get the Alarm class
IlpClass alarmClass = context.getClassManager().getClass("Alarm");
// Set the datasource to the component, and show instances
// of the Alarm class
tableComponent.setDataSource(dataSource, alarmClass);
// Add custom attributes
// Get the existing severity attribute
IlpAttribute severity = alarmClass.getAttribute("perceivedSeverity");
// Create a 'Short severity' attribute that represents the severity
// in a concise way
IlpAttribute shortSeverityAttribute =
new IlpReferenceAttribute("shortSeverity", severity);

tableComponent.addAttribute(shortSeverityAttribute);

IlpReferenceAttributemodels an attribute instance that is a reference to another attribute.
In this example, the value returned from querying perceivedSeverity and shortSeverity
is the same.

The following CSS file is provided as part of the JViews TGO demonstration software at
<installdir> /samples/table/customAttributes/index.html.

How to customize the way new attributes are displayed
To customize the way the new attributes are to be displayed in the table header, use a
selector of type attribute followed by the name of the attribute.

attribute.shortSeverity {
label: "S";
toolTipText: "Perceived severity";
preferredWidth: 20;

}
attribute.priority {

label: "P";
toolTipText: "Priority";

S T Y L I N G 131

preferredWidth: 20;
}

How to configure the way the table cells are displayed
To configure how the table cells are to be displayed, use a selector of type object.

object.priority {
labelVisible: false;
iconVisible: true;

}
object.priority[priority=0] {

icon: '';
toolTipText: '@|format(@#priorityFormat, "Low")';

}
object.priority[priority=10] {

icon: '@|image("ilog/tgo/ilt_bundle.png")';
toolTipText: '@|format(@#priorityFormat, "Medium")';

}
object.priority[priority=20] {

icon: '@|image("ilog/tgo/ilt_busy.png")';
toolTipText: '@|format(@#priorityFormat, "High")';

}
Subobject#priorityFormat {

class: 'ilog.cpl.util.text.IlpMessageFormat';
pattern: "{0} priority";

}

S T Y L I N G132

Customizing node and link layouts

For details about layout, see Layout.

Properties for customizing the layout of nodes or links
The customization of the layout is based on the properties listed in the following table.

CSS properties for node and link layout
DescriptionDefault ValueTypeProperty

Name

Applies only to nodes. This property denotes which
link ports are recognized by the node when links are

Top, Bottom,
Left, Right
and Center

IltLinkPort
[]

linkPorts

attached to it. This property affects the link layout
when set to IltLinkLayout or
IltShortLinkLayout.

Possible values are:

Top, Bottom, Left, Right or Center.

It is possible to create new link ports by creating new
instances of IltLinkPort.

Applies only to links. Denotes the preferred link port
at the "from" end side. Only effective when an
IltShortLinkLayout is used.

nullIltLinkPortfromPort

Applies only to links. Denotes the preferred link port
at the "to" end side. Only effective when an
IltShortLinkLayout is used.

nullIltLinkPorttoPort

How to customize the layout for links
The following CSS extract illustrates how to customize the link layout using link ports. This
example features two network elements identified as NE1 and NE2. Each network element
has a set of link ports defined to connect the links that are attached to the node. In addition,
there is a link connecting NE1 to NE2. For this link, the example specifies the link ports where
the link should be attached by the link layout.

#NE1 {
linkPorts[0]: "Center";

}

#NE2 {
linkPorts[0]: Left;
linkPorts[1]: Top;
linkPorts[2]: Bottom;

}

S T Y L I N G 133

#Link1 {
fromPort: Center;
toPort: Left;

}

Link ports are only available when the network or equipment components are configured
to use the IltShortLinkLayout. Refer to The LinkLayout rule.

Setting parameters to customize nodes or links in a layout
You can set parameters for a particular node or link in a graph layout. This typically applies
to certain types of layout, like IlvBusLayout (to set the bus object) or the IlvTreeLayout
(to specify the root object), but you can also set parameters to specify that certain nodes or
links must remain fixed. For more information, refer to The GraphLayout rule.

S T Y L I N G134

Customizing link label layout

For details about label layout, refer to Label layout.

The customization of link label layout is based on the following CSS properties, valid for
IltLink, IltLinkBundle and IltLinearGroup.

CSS properties for link label layout
DescriptionDefault

Value
TypeProperty Name

Defines the start point of the area
of the polyline that should be used

0floatlinkLabelMinPercentageFromStart

for the label when a label layout
is performed. This start point is
expressed as a percentage of the
length of the polyline.

Defines the end point of the area
of the polyline that should be used

100floatlinkLabelMaxPercentageFromStart

for the label when a label layout
is performed. This end point is
expressed as a percentage of the
length of the polyline.

Defines the maximum distance
allowed between the label and the

10floatlinkLabelMaxDistFromPath

path when a label layout is
performed.

Defines the preferred distance
between the label and the path
when a label layout is performed.

0floatlinkLabelPreferredDistFromPath

Defines the preferred side where
the label should be placed when

BottomIlvDirectionlinkLabelPreferredSide

a label layout is performed. The
meaning of this property depends
on property
linkLabelSideAssociation.

If the side association is LOCAL,
the following options can be used
to specify the allowed and
preferred sides:

♦ Left: left side in polyline flow
direction

♦ Right: right side in polyline
flow direction

If the side association is GLOBAL,
the following options can be used

S T Y L I N G 135

DescriptionDefault
Value

TypeProperty Name

to specify the allowed and
preferred sides:

♦ Left: left side.

♦ Right: right side

♦ Top: top side

♦ Bottom: bottom side

♦ TopLeft: top side or left side

♦ TopRight: top side or right
side

♦ BottomLeft: bottom side or
left side

♦ BottomRight: bottom side or
right side

Defines the sides that are allowed
for the label placement when a

0integerlinkLabelAllowedSide

label layout is performed. The
value can be 0, if all sides are
allowed. The meaning of this
property depends on the property
linkLabelSideAssociation.

If the side association is LOCAL,
the following options can be used
to specify the allowed and
preferred sides:

♦ Left: left side in polyline flow
direction

♦ Right: right side in polyline
flow direction

If the side association is GLOBAL,
the following options can be used
to specify the allowed and
preferred sides:

♦ Left: left side.

♦ Right: right side

♦ Top: top side

S T Y L I N G136

DescriptionDefault
Value

TypeProperty Name

♦ Bottom: bottom side

♦ TopLeft: top side or left side

♦ TopRight: top side or right
side

♦ BottomLeft: bottom side or
left side

♦ BottomRight: bottom side or
right side

Defines an association between
the preferred and the allowed side

GLOBALIlvAnnealingPolylineLabelDescriptorlinkLabelSideAssociation

for the label when a label layout
is performed.

Valid options for the side
association are:

♦ LOCAL

♦ GLOBAL

Defines the number of pixels the
top side of the label can overlap

0floatlinkLabelTopOverlap

the related obstacle when a label
layout is performed.

Defines the number of pixels the
bottom side of the label can

0floatlinkLabelBottomOverlap

overlap the related obstacle when
a label layout is performed.

Defines the number of pixels the
left side of the label can overlap

0floatlinkLabelLeftOverlap

the related obstacle when a label
layout is performed.

Defines the number of pixels the
right side of the label can overlap

0floatlinkLabelRightOverlap

the related obstacle when a label
layout is performed.

How to customize link label layout
The following CSS extract illustrates how you can configure your link objects to customize
the behavior of the label layout associated with a network or equipment component.

It is provided as part of the JViews TGO demonstration software at <installdir>
/samples/network/labelLayout/data/network.css.

S T Y L I N G 137

object {
linkLabelMinPercentageFromStart: 40;
linkLabelMaxPercentageFromStart: 60;
linkLabelMaxDistFromPath: 5;
linkLabelPreferredDistFromPath: 5;
linkLabelSideAssociation : 1;
linkLabelPreferredSide: Bottom;
linkLabelAllowedSide: Bottom;
linkLabelTopOverlap: 0;
linkLabelBottomOverlap: 0;
linkLabelLeftOverlap: 0;
linkLabelRightOverlap: 0;

}

S T Y L I N G138

Customizing the selection border in the network and equipment

Customizing the selection border is based on the following properties.

CSS properties for object selection border in the network and equipment components
DescriptionDefault

Value
TypeProperty Name

Defines whether an object is selectable
or not in the graphic component.

truebooleanselectable

Defines the foreground color used to
draw the selection border.

whiteColorselectionBorderForeground

Defines the background color used to
draw the selection border. This property

nullColorselectionBorderBackground

is only considered if the selection border
line style is not solid.

Defines the width of the selection border.2intselectionBorderWidth

Defines the line style used to draw the
selection border.

Solid
(null)

float[]selectionBorderLineStyle

How to customize the object selection border in the network and
equipment components
The following example shows you how to customize the selection border displayed around
the object in the network and equipment graphic components.

The example sets a dashed yellow selection border with a width of 2 pixels.

object {
selectionBorderLineStyle: "3,3";
selectionBorderForeground: yellow;
selectionBorderWidth: 2;

}

S T Y L I N G 139

Customizing selection in a table or a tree

How to customize selection in the tree component
To customize object selection in the tree component, you should use the "selected"
pseudoclass, and define the behavior that you want using the CSS properties that are
available for the business objects displayed.

The following example changes the label foreground of the object to red when it is selected:

object {
labelForeground: black;

}
object:selected {
labelForeground: red;

}

How to customize selection in the table component
To customize object selection in the table component, you should use the "selected"
pseudoclass, and define the behavior that you want using the CSS properties that are
available for the business objects and attributes displayed.

For example, in a table component that displays network element objects, you can change
the color of the label in the Name column using the following CSS extract:

object."ilog.tgo.model.IltObject/name" {
labelForeground: black;

}
object."ilog.tgo.model.IltObject/name":selected {
labelForeground: red;

}

S T Y L I N G140

Customizing the expansion of business objects

In JViews TGO, the tree, the network and the equipment components are able to display
containment relationships between the business objects. These relationships define a
hierarchy of objects that can later be displayed in the components. The object hierarchy is
defined through a parent-child relationship set at the data source level. Although the
containment relationship is defined at the data source level, it is still possible to specify, at
the component level, whether a certain object will be graphically represented as a container
or not.

Such configuration is achieved using the following property:

CSS Property for Expanding Business Objects
DescriptionDefault ValueTypeProperty

Name

Determines whether an object
should be expandable, so that its
children can be displayed.

NO_EXPANSION in the
network and equipment
components

IlpObjectExpansionTypeexpansion

Possible values are:IN_PLACE in the tree
component

IN_PLACE

IN_PLACE_MINIMAL_LOADING

NO_EXPANSION

You can set the expansion property for a business object to one of the following values:

♦ IN_PLACE: Loads the child objects automatically in the graphic component. In the tree
component, the child objects are loaded on demand, as the user expands the parent node.
In the network and equipment components, all child objects are automatically represented
in the component when the parent object is created. When the value IN_PLACE is used,
an object is considered as a parent object if it has containment relationships defined in
the attached data source, through the IlpContainer interface. The child objects should
already be loaded in the data source, and should be visible according to the data source
filter, if any.

♦ IN_PLACE_MINIMAL_LOADING: Loads the child objects on demand, as the user expands the
parent object. All nodes with this expansion strategy are considered as possible parent
nodes, and therefore are represented with an expansion icon. If a tree node does not
contain child objects, the expansion icon disappears when the expansion is executed the
first time.

♦ NO_EXPANSION: Expansion is not supported by the node. In this case, even if the node
contains child objects at the data source level, it will be displayed as a leaf in the graphic
component.

How to customize node expansion

object."ilog.tgo.model.IltNetworkElement" {

S T Y L I N G 141

expansion: NO_EXPANSION;
}

object."test.CustomObject" {
expansion: IN_PLACE;

}

S T Y L I N G142

Customizing network elements

Describes what network elements are, how they are represented, and how the representation
of different types, aspects, and attributes (decorations) can be customized.

In this section

Representing network elements
Describes what network elements correspond to in the real world and how they are
represented graphically.

Customizing network element types
Describes how the representation of a network element is customized graphically to indicate
the network element type.

Customizing network element functions
Explains how to create new network element functions, associate them with icons and
customize the function icons.

Customizing network element families
Describes how to create a new network element family, which is similar to adding a new
function.

Customizing different aspects of network elements
Summarizes how to customize the following aspects of network elements: names, shortcuts,
partial network elements, states and alarms, tooltips, decorations.

© Copyright IBM Corp. 1987, 2009 143

Representing network elements

Network elements are predefined business objects that represent any kind of shelf-based
telecom or data-communications equipment (switch, multiplexer, cross-connect or similar),
or outside plant equipment (such as a coax node), or peripheral equipment (such as a terminal
or printer).

Whole network elements
A whole network element can be represented by a pictorial representation (bitmap image
or vector drawing), a symbol, or a shape. Not all physical details of the element are visible
in the representation.

♦ Pictorial representation. The network element base is a bitmap image or vector drawing.
This drawing is meant to be realistic. Several predefined bases are available for shelf-based
equipment, terminals, and mobile phone access network elements. New bases can easily
be introduced by providing bitmap images.

Pictorial representations of shelf-based equipment and terminal

♦ Symbolic representation. The network element base has a square and the network
element function is denoted by a symbol containing ITU/ANSI or traditional symbols. The
default type corresponding to the default symbolic network element representation is
called NE (Network Element). Symbolic representation of NE type network element
illustrates an NE type network element: here, an add-drop multiplexer with a capacity of
OC192.

Symbolic representation of NE type network element

♦ Shape representation. The network element base has a geometric shape that symbolizes
the network element type (or function class). The center of the base may contain an icon
that further refines the network element function. Several predefined shapes are provided
as types of the network elements. Shape representation of mux network element illustrates
a Mux shape network element.

Shape representation of mux network element

Partial network elements
A partial network element is an abstraction which denotes a network element that is only
part of the real-world network element. Partial network elements can be used in several
situations, for example:

S T Y L I N G144

♦ To represent distributed clusters where parts of a cluster need to be divided across
different subnetworks.

♦ To allow one network element to be used by different service providers. In this case, the
network element needs to be divided in several parts. Each part is represented as a partial
network element and its state reflects only the elements that are interesting for the service
provider that is using it.

Shortcuts
A shortcut network element is an abstraction denoting an object that is only a reference to
an existing network element.

Attributes
The grapic representation of the network element and the decorations added to it are based
on the information that is available in the business model. Each decoration that is created
depends on an attribute and on properties that can be customized through CSS. Symbolic
network element with attributes shows a symbolic network element with the following
attribute set:

♦ Type: NE

♦ Function: Access

♦ Family: OC96

♦ Name: NE

♦ Object State: OSI Object State

♦ Partial: true

Symbolic network element with attributes

S T Y L I N G 145

S T Y L I N G146

Customizing network element types

Describes how the representation of a network element is customized graphically to indicate
the network element type.

In this section

Representing a network element type
Describes how the network element type affects the rendering of the object.

Customizing existing network element types
Describes in detail the CSS properties that you can use to customize all network element
types and various subsets of network element types.

Creating network element types from images and customizing them
Describes how to define new network element types with new representations without
extending an existing base renderer class.

Using the imagecolortuner application to configure the renderer factory
Describes how to find the best values for the parameters of the factory used to create a base
renderer for a network element from an image.

Customizing network element types from SVG graphics
Describes how to define new network element types with new representations without
extending an existing base renderer class, by using SVG graphics.

Extending the class IltNEBaseRenderer
Explains with an example how to create a new type of network element by extending the
base class for the renderer.

S T Y L I N G 147

Localizing network element types
Describes how to localize then name of the network element type in labels and tooltips in
the resource bundle.

S T Y L I N G148

Representing a network element type

In ILOG JViews TGO, the type of the network element defines how the object base will be
represented. Each network element type is associated with a specific base renderer that is
in charge of drawing the object according to its type and state information.

In JViews TGO, you can customize the behavior of the base renderer by using CSS. In addition,
you can extend the base representation of graphic objects in two different ways, either by
using a predefined base renderer factory class (IltNEImageBaseRendererFactory or
IltNESVGBaseRendererFactory), or by implementing your own subclass of
IltNEBaseRenderer for each new type of network element that you want to create.

S T Y L I N G 149

Customizing existing network element types

For details about the network element types and their graphic representation, refer to
Network elements

Properties for customizing all network element types
The following properties are common to all network element types:

CSS properties common to all network element types
DescriptionDefault ValueTypeProperty

Name

Defines whether the object is displayed in its
normal size or its reduced size.

falsebooleancollapsed

When the network element is shown in its
reduced size, fewer decorations are displayed.
In particular, there is no space for an alarm
count on the base and an alarm balloon would
hide secondary state icons. .

A magnification of the node.nullIlvTransformersizeRatio

Sets the network element base to its tiny
representation. The tiny representation is used
mainly in the Tree and Table components.

false in network
and equipment
components

booleantiny

true in tree and
table components

Sets the network element base to its logical
representation. In the logical representation, all

falsebooleanlogical

network element types are displayed in the
same way using a rectangular shape.

Mapped properties
The following properties are mapped, that is, their value is computed automatically by JViews
TGO according to the states and alarms currently set in the object (column Set). You can
however override the mapped values or customize their graphic representation even when
the object does not carry states and alarms.

S T Y L I N G150

Mapped CSS properties
DescriptionDefault ValueSetTypeProperty Name

Defines the level of detail to be
used to draw the base.

MaximumDetailsYesenumdetailLevel

Denotes the primary color of the
base border.

10% grayYesColorborderColor

Denotes the secondary color of
the base border.

60% grayYesColorborderColor2

Denotes the width of the base
border.

1 pixelYesfloatborderWidth

Denotes whether the base border
is drawn in relief or not.

trueYesbooleanreliefBorders

Denotes the line style used to
draw the base border.

null (Solid)Yesfloat[]borderLineStyle

Denotes the pattern used to draw
the base border.

nullYesPatternborderPattern

Denotes the foreground color of
the base.

28% gray in the
IltObject class
style

YesColorforeground

Denotes the background color of
the base.

Transparent (null)YesColorbackground

Denotes the style used to fill the
base of an object.

IlFillStyle.
SOLID_COLOR for
user-defined
business objects

Network
node

ilog.util.
IlFillStyle

fillStyle

Possible values are:

IlFillStyle.NO_FILLIlFillStyle.
PATTERN for IlFillStyle.SOLID_COLOR
predefined
business objects IlFillStyle.

LINEAR_GRADIENT

IlFillStyle.
RADIAL_GRADIENT

IlFillStyle.TEXTURE

IlFillStyle.PATTERN

Returns the angle (in degrees) of
the gradient used to fill the base

0Network
node

floatfillAngle

of an object. This property is only
used if fillStyle is set to
IlFillStyle.
RADIAL_GRADIENT or

S T Y L I N G 151

DescriptionDefault ValueSetTypeProperty Name

IlFillStyle.
LINEAR_GRADIENT

Returns the position where the
gradient of an object ends, that is,

1fNetwork
node

floatfillEnd

where the color is the one defined
by property background. This
property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT

Returns the position where the
gradient of an object starts, that

0fNetwork
node

floatfillStart

is, where the color is the one
defined by property foreground.
This property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

Denotes the texture used to fill the
base of an object. This property

nullNetwork
node

ImagefillTexture

is only used if fillStyle is set
to IlFillStyle.TEXTURE.

Denotes the pattern used to fill the
base of an object. This property

null (Solid)YesPatternfillPattern

is only used if fillStyle is set
to IlFillStyle.PATTERN.

Properties for types with dotted borders
The following types (IltNetworkElement.Type.xxx) have dotted borders: BTS,
TransportShape, StationShape, MuxShape, NetworkShape.

These types have a dotted border displayed around the main shape by default. The dotted
border is configured through the properties listed in the following table.

S T Y L I N G152

CSS properties for dotted borders
DescriptionDefault ValueSetTypeProperty Name

Denotes the foreground color
used to display the extra border
around the base.

53% gray in the
IltObject class
style

NoColordottedBorderForeground

Denotes the background color
used to display the extra border
around the base.

Transparent
(null)

NoColordottedBorderBackground

Denotes the line style used to
display the extra border around
the base.

"1,1"Nofloat[]dottedBorderLineStyle

Properties for mediation devices

The type IltNetworkElement.Type.MD determines the graphic representation of a mediation
device in the form of a stylized shelf with five slots. It can be customized through the
properties listed in the following table.

CSS properties for mediation devices
DescriptionDefault ValueSetTypeProperty Name

When the network element is carrying
traffic, two cards are drawn with colored

100% red

0% green

NoColormdRedButtonColor

buttons. This property denotes the color of
the first buttons (which are red by default).20% blue

When the network element is carrying
traffic, two cards are drawn with colored

0% red

60% green

NoColormdGreenButtonColor

buttons. This property denotes the color of
the last buttons (which are green by
default).

60% blue

Denotes the color of the shadowed lines
that are used to draw the slots that do not
contain any card.

53% grayNoColormdShadowColor

Properties for servers

S T Y L I N G 153

The type IltNetworkElement.Type.Server determines the graphic representation of a
server in the form of a stylized equipment unit with a colored button and a vent grid. It can
be customized through the properties listed in the following table.

CSS properties for servers
DescriptionDefault ValueSetTypeProperty Name

Defines the color of the server button.100% blueNoColorserverButtonColor

Defines the color of the server grid.10% grayNoColorserverGridColor

Properties for network management workstations

The type IltNetworkElement.Type.NMW determines the graphical representation of a network
management workstation in the form of a stylized workstation. It can be customized through
the properties listed in the following table.

CSS properties for network management workstations
DescriptionDefault ValueSetTypeProperty Name

When the network element is carrying traffic, the
screen of the workstation is colored with a

67% grayYesColornmwScreenColor

different shade of gray, which is determined by
the value of this property. If the network element
holds new alarms, this property is set by JViews
TGO.

Denotes the color of the button that is drawn on
the central unit of the workstation.

0% red

60% green

NoColornmwButtonColor

60% blue

Property for Base Station Controllers

The type IltNetworkElement.Type.BSC determines the graphical representation of a wireless
Base Station Controller (BSC). It can be customized through the property in the following
table.

S T Y L I N G154

CSS property for BSC equipment
DescriptionDefault

Value
SetTypeProperty Name

Denotes the border width that is used when the
element is carrying traffic. This type uses a

1 pixelNointbscActiveBorderWidth

different border width than the value specified
by activeBorderWidth, as
activeBorderWidth is designed for “large”
representations, such as the generic square
chiclet or geometric shapes, whereas the BSC
representation uses thinner lines.

Property for Mobile Switching Center

The type IltNetworkElement.Type.MSC determines the graphic representation of a Mobile
Switching Center (MSC). It can be customized through the following property.

CSS property for MSC equipment
DescriptionDefault

Value
SetTypeProperty Name

Denotes the border width that is used when the
element is carrying traffic. This type uses a

1 pixelNointmscActiveBorderWidth

different border width than the value specified
by activeBorderWidth, as
activeBorderWidth is designed for “large”
representations, such as the generic square
chiclet or geometric shapes, whereas the MSC
representation uses thinner lines.

Property for Base Transceiver Stations

The type IltNetworkElement.Type.BTS determines the graphical representation of a Base
Transceiver Station (BTS). It can be customized through the property listed in the following
table.

S T Y L I N G 155

CSS property for a BTS object
DescriptionDefault

Value
SetTypeProperty Name

Denotes the border width that is used when the
element is carrying traffic. This type uses a

1 pixelNointbtsActiveBorderWidth

different border width than the value specified
by activeBorderWidth, as
activeBorderWidth is designed for “large”
representations, such as the generic square
chiclet or geometric shapes, whereas the BTS
representation uses thinner lines.

Properties for Base Transceiver Station equipment

The type IltNetworkElement.Type.BTSEquipment determines the graphical representation
of the BTS equipment that is part of a BTS object. It can be customized through the following
properties.

CSS properties for a BTS equipment
DescriptionDefault ValueTypeProperty Name

Defines whether the object is displayed with
sharp and neat lines.

truebooleanantialiasing

Defines the radius of the BTS equipment.10intbtsEquipmentRadius

S T Y L I N G156

Creating network element types from images and customizing them

JViews TGO provides a base renderer factory class, IltNEImageBaseRendererFactory, that
simply requires an image from which it will automatically compute all the representations
that a network element can have according to the state it is in (out of service, in service
carrying traffic, in service carrying no traffic, or not installed) or the alarms it raises. See
States.

How to create a new type of network element from an image (using
the API)
To create a new type of network element using an image:

♦ Create a new type of network element with the following code:

IltNetworkElement.Type myNewType =
new IltNetworkElement.Type(YOUR_NEW_TYPE_NAME);

♦ Create the image corresponding to the base style Carrying Traffic without any alarm and
instantiate an IltNEImageBaseRendererFactory using this image:

IltNEImageBaseRendererFactory factory = new
IltNEImageBaseRendererFactory(image, YOUR_IMAGE_PARAMETERS);

♦ Map the factory with the new type using SetValue(java.lang.Object, java.lang.
Object):

IltSettings.SetValue("NetworkElement.Type.YOUR_NEW_TYPE_NAME.Renderer",facto
ry);

How to create a new type of network element from an image (using
CSS)
You can create new network element types using global CSS settings as shown in the
following example.

setting."ilog.tgo.model.IltNetworkElement"{
types[0]: @+neType0;

}
Subobject#neType0 {
class: 'ilog.tgo.model.IltNetworkElement.Type';
name: "YOUR_NEW_TYPE_NAME";

}

See Using global settings for more information.

S T Y L I N G 157

How to customize a network element renderer (using CSS)
You can customize the renderer for the network element type using global CSS settings. To
do so, you need to specify the full path to the object to be customized, as well as the value
of its name attribute in order to match the right type of object in the system. The CSS property
to customize is renderer as shown in the following example.

setting."ilog.tgo.model.IltNetworkElement.Type"[name=YOUR_NEW_TYPE_NAME] {
renderer: @+neRendererFactory0;

}
Subobject#neRendererFactory0 {

class: 'MyNERendererFactory';
}

In this example, the name of the renderer factory class that is included in the search path
is MyNERendererFactory.

Starting from an original image of type java.awt.Image corresponding to the Carrying
Traffic base style without any alarm, JViews TGO automatically processes the range of
representations corresponding to other states and alarms.

Suppose that you want to define a new network element with the following representation
for the base style Carrying Traffic with no alarms.

Sample new network element

To define this new network element representation, all you have to do is instantiate an
IltNEImageBaseRendererFactory and provide the bitmap image as an argument to its
constructor. JViews TGO automatically computes the various representations that this
network element can have according to its associated state and alarms.

The IltNEImageBaseRendererFactory has three constructors:

♦ The first constructor has four arguments and enables you to customize the way the
different representations are computed.

The first parameter is of type java.awt.Image. It is the original image used to compute
all other representations.

The first and the second int are thresholds indicating which part of the original image
should be considered as details and drawn in the dark color. The third int is the gray
level that should be mapped to the normal alarm color.

♦ The second constructor has the same parameters as the first one and an additional boolean
parameter that indicates whether an additional dotted border should be drawn around
the base.

♦ The third constructor has only one argument, which is the java.awt.Image that should
be used to compute the different representations of the new type. It calls the constructor
with four arguments, with the image and 200 as the threshold for bright colors, 50 as the
threshold for dark colors, and 128 as the gray level to be mapped to the normal alarm
color.

S T Y L I N G158

Sample Instantiations of New Network Elements presents the four base styles (rows) with
their various representations corresponding to alarms of different severity and loss of
connectivity (columns).

Sample Instantiations of New Network Elements

How to create a new type of network element using one image per
base style
Another way to represent a type with an image is to specify a source image and an alarm
color level parameter for every required base style, directly in CSS. No other base style
property or renderer parameter is needed, as a complete image is provided for every required
base style.

To create a new type of network element using an image per base style:

♦ Create a new type of network element

Using the API:

IltNetworkElement.Type myNewType = new
IltNetworkElement.Type(YOUR_NEW_TYPE_NAME);

or, using global CSS settings:

setting."ilog.tgo.model.IltNetworkElement" {
types[0]: @+neType0;

}

Subobject#neType0 {
class: 'ilog.tgo.model.IltNetworkElement.Type';
name: YOUR_NEW_TYPE_NAME;

}

S T Y L I N G 159

♦ Map an IltNEDirectImageBaseRendererFactory to the new type

Using the API SetValue(java.lang.Object, java.lang.Object):

IltSettings.SetValue("NetworkElement.Type.YOUR_NEW_TYPE_NAME.Renderer", new

IltNEDirectImageBaseRendererFactory());

or, using global CSS settings:

setting."ilog.tgo.model.IltNetworkElement.Type"[name=YOUR_NEW_TYPE_NAME] {
renderer: @+neRendererFactory;

}

Subobject#neRendererFactory {
class: 'ilog.tgo.graphic.renderer.IltNEDirectImageBaseRendererFactory';

}

♦ Define an image and an alarm color or gray-level parameter in CSS for each required
base style

object."ilog.tgo.model.IltNetworkElement"["type"=YOUR_NEW_TYPE_NAME]["object
State.Bellcore.State"=EnabledActive] {
sourceImage: '@|image("newType_enabledActive.png")';
alarmColorLevel: 128;

}
object."ilog.tgo.model.IltNetworkElement"["type"=YOUR_NEW_TYPE_NAME]["object
State.Bellcore.State"=DisabledActive] {
sourceImage: '@|image("newType_disabledActive.png")';
alarmColorLevel: 140;

}

How to define a network element type from an image
If the base style is Carrying Traffic no alarms, the representation is the original image.

Sample original image

In all other cases, the representation is automatically computed by JViews TGO, as follows:

♦ Carrying Traffic with alarms: A color scale corresponding to the alarm color is applied
to the original image. This color scale uses three colors: a bright alarm color, a normal
alarm color, and a dark alarm color.

For example, for a major alarm JViews TGO uses the colors bright red, red, and dark red.
The color scale is applied to the original image by first converting it to a normalized
grayscale image (that is, gray levels in the range 0..255). Then, the normalized grayscale
image is colored by mapping each gray level to a color level. The brighter gray is mapped
to the bright alarm color, the darker gray is mapped to the dark alarm color, and the gray

S T Y L I N G160

level corresponding to the third integer in the factory constructor is mapped to the normal
alarm color (if this integer is not explicitly given, the default value used is 128). Any other
gray level different from the brighter one, the darker one, or the one given in the factory
constructor is mapped to the appropriate color in a continuous manner.

Sample with Color

♦ No Traffic (with or without alarms): The original image, which is supposed to be a
relief image (according to the JViews TGO look-and-feel), is transformed to a flat image.
The flat image is composed of only two colors: in the absence of alarms, one gray and
one darker gray, otherwise one alarm color and one dark alarm color. Using only two
colors ensures a flat visual aspect. To follow the JViews TGO look-and-feel, the whole
object should be represented in the normal color with its border in the dark color, plus
possibly some details of the inside of the object also in the dark color. For example, the
figure shows that the border is in the dark color as well as the outline of the small screen
and the receiver of the phone. To indicate which details of the original image you want
in the dark color and which you do not, you must use the first two integers of the factory
constructor. The first integer indicates a threshold above which the bright colors of the
original image should be considered as details and drawn in the dark color; if this integer
is not explicitly given, the default value used will be 200. For example, Sample Dark and
Light Colors shows examples where the threshold assumed is 200 (in the range 0..255).
In this way, the left border of the receiver and the lower right border of the screen are
drawn in the dark color. The second integer is a threshold indicating which of the dark
colors of the original image should be considered as details and also drawn in the dark
color; if this integer is not explicitly provided, the default value will be 50. For example,
in Sample Dark and Light Colorswe indicate that this threshold is 11 (in the range 0..255).
This causes the lower right border of the receiver and the upper left border of the screen
to be drawn in the dark color.

Sample Dark and Light Colors

♦ Out of Service and Not Installed (with or without alarms): According to the
ILOG JTGO look-and-feel, the object should be represented with only two colors, a dashed
border and a pattern inside, but no other details. JViews TGO uses the transparency, if
any, to determine the border of the image. When there is no transparency, the rectangle
of the image is considered to be the border. Then, the interior is filled with the appropriate
pattern and the border is drawn as a dashed line. JViews TGO does not need any extra
parameters (threshold or gray level as mentioned above) to compute these representations
correctly.

S T Y L I N G 161

Sample Representations

Note that JViews TGO provides the imagecolortuner application to help you find the best
values for the thresholds and the gray level. For details, see Using the imagecolortuner
application to configure the renderer factory.

For the IltNEImageBaseRendererFactory class to process the supported image types (GIF,
PNG and JPG) correctly, the only constraint on the image itself is that the number of colors,
C, be as follows:

2 <= C <= 256

The IltNEImageBaseRendererFactory class preserves transparency, so transparency is not
considered a color. Consequently, IltNEImageBaseRendererFactory does not color the
transparent pixels of the image. For example, an image that contains the color black as the
foreground color, and transparency as the background, will not have the regular coloring
scheme applied as it fails to meet the constraint on the number of colors.

S T Y L I N G162

Using the imagecolortuner application to configure the renderer factory

The imagecolortuner application can be found in <installdir>/bin where <installdir>
is the directory where you have installed JViews TGO. This utility enables you to find the
best values for the parameters of IltNEImageBaseRendererFactory quickly and easily.

To set the parameters:

1. Click File>Load Image to load your image.

2. Customize the Carrying Traffic with alarm representations. You have to choose the
gray level that will be mapped to the normal alarm color. For details see Creating
network element types from images and customizing them. To do so, you can either
display the tab called Row 1 and use the slider or click in the zoomed view on a pixel
that has the color you want to be mapped to the normal alarm color.

3. Customize the No Traffic representation. You have to indicate which details of your
original image should have the dark color. For details see Creating network element
types from images and customizing them. To do so, display the tab called Row 2 and
adjust the two sliders. The first slider adjusts the threshold for bright colors: colors of
the original image brighter than this threshold will be displayed in the appropriate dark
color depending on the state and alarms. The second slider adjusts the threshold for
dark colors: colors of the original image darker than this threshold will also be displayed
in the appropriate dark color depending on the state and alarms.

4. Click File>View Source to display the sample source code. The source code needed
to create your new type as it is currently represented on screen is displayed. The factory
constructor contains the appropriate values.

You can create your new type by noting or copying the parameter values or the entire code
and pasting it into your JViews TGO application.

S T Y L I N G 163

Customizing network element types from SVG graphics

How to create a new type of network element from an SVG file
(using the API)
JViews TGO provides a base renderer factory class, IltNESVGBaseRendererFactory, that
simply requires an SVG input file. When using SVG input files, all the possible representations
of a network element (according to the state) are mapped to the same SVG graphic.

To create a new type of network element using SVG:

♦ Create a new type of network element with the following code:

IltNetworkElement.Type myNewType = new
IltNetworkElement.Type(YOUR_NEW_TYPE_NAME);

♦ Create the SVG file corresponding to the network element representation and instantiate
an IltNESVGBaseRendererFactory using this file:

URL url = new URL("file","",YOUR_SVG_FILE_NAME);
IltNESVGBaseRendererFactory factory = new IltNESVGBaseRendererFactory(url)
;

♦ Map the factory with the new type using SetValue(java.lang.Object, java.lang.
Object):

IltSettings.SetValue("NetworkElement.Type.YOUR_NEW_TYPE_NAME.Renderer" ,
factory);

How to create a new type of network element from an SVG file
(using CSS)
You can create new network element types by using global CSS settings.

setting."ilog.tgo.model.IltNetworkElement"{
types[0]: @+neType0;

}
Subobject#neType0 {
class: 'ilog.tgo.model.IltNetworkElement.Type';
name: "YOUR_NEW_TYPE_NAME";

}

For more information, see Using global settings.

S T Y L I N G164

How to customize a renderer for a network element type (using
CSS)
You can customize the renderer for the network element type using global CSS settings. To
do so, you need to specify the full path to the object to be customized, as well as the value
of its name attribute in order to match the right type of object in the system. The CSS property
to customize here is renderer. In the example below, the name of the renderer factory class
that is included in the search path is MyNESVGRendererFactory.

setting."ilog.tgo.model.IltNetworkElement.Type"[name=YOUR_NEW_TYPE_NAME] {
renderer: @+neSVGRendererFactory0;

}
Subobject#neSVGRendererFactory0 {

class: 'MyNESVGRendererFactory';
}

S T Y L I N G 165

Extending the class IltNEBaseRenderer

Drawing principles
The base of a network element has four different visual aspects, each corresponding to one
of the following fundamental states:

Out Of Service (OOS)
The base has a hatched outline. Inside the base, drawings are not displayed.

In service, carrying No Traffic (NT)
The base and its inside drawings are in full outline.

In service, Carrying Traffic (CT)
The base and its inside drawings are in relief.

Not Installed (NI)
The base is striped and has a hatched outline. Inside the base, drawings are not displayed.
This is a special case where the base drawing changes when a secondary state is
represented.

These fundamental states are enumerated in the class IltBaseStyle.

The drawings representing the network element base are specified in a single class that
inherits from IltNEBaseRenderer. The four visual aspects of the base are drawn using the
drawMain(java.awt.Graphics, ilog.views.IlvTransformer, ilog.views.IlvRect)
method to draw the base and additional methods to access the resources used to draw the
base.To create new vector drawings for network elements, you have to extend the
IltNEBaseRenderer class and override the methods drawMain(java.awt.Graphics, ilog.
views.IlvTransformer, ilog.views.IlvRect) and getPreferredSize(boolean).

Once the class is created, you must tell JViews TGO how to use it to draw a network element
of a particular type. To do so, you must create a new IltNetworkElement.Type., add it to
the existing types, and associate it with the drawing class using the mapping function
SetValue(java.lang.Object, java.lang.Object) or global CSS settings.

How to extend a network element
This example illustrates how to define a new type of network element called Server. You
add myServer to the existing types (NE, MD, NMW, BTS, and so on).

The four graphic states that the new network element type can have are illustrated in The
Server graphic states.

The Server graphic states

When you extend the class IltNEBaseRenderer , you must create the drawing class and
define its basic methods and the drawMain method.

S T Y L I N G166

The following code shows how to write a class ServerBaseRenderer that extends
IltNEBaseRenderer and redefine its method getPreferredSize(boolean). This class will
be enhanced later on to draw the Server element base.

static class ServerBaseRenderer extends IltNEBaseRenderer {
private static Dimension NormalSize = new Dimension(25,40);
private static Dimension SmallSize = new Dimension(13,21);
public Dimension getPreferredSize (boolean collapsed) {

if (collapsed)
return SmallSize;

else
return NormalSize;

}
}

The two fields NormalSize and SmallSize define the normal dimension of the base and its
dimension when it is collapsed. Calling getPreferredSize returns the current size of the
base.

The following fields are added to initialize numbers that are used to draw the base. Since
there is only one method to draw both collapsed and noncollapsed bases, these numbers
ease the readability of the code.

// Some factors for drawing:
private static final float _XGrid = 4.0f / 25.0f;
private static final float _YGrid = 4.0f / 40.0f;
private static final float _WGrid = 13.0f / 25.0f;
private static final float _HGrid = 1.0f / 40.0f;
private static final float _VStepGrid = 2.0f / 40.0f;
private static final float _XButton = 19.0f / 25.0f;
private static final float _YButton = 4.0f / 40.0f;
private static final float _WButton = 2.0f / 25.0f;
private static final float _HButton = 2.0f / 40.0f;
private static final float _XDisk = 18.0f / 25.0f;
private static final float _YDisk = 23.0f / 40.0f;
private static final float _WDisk = 3.0f / 25.0f;
private static final float _HDisk = 12.0f / 40.0f;

Standard palettes
The class IltNEBaseRenderer provides three standard drawing palettes that you can access
easily with the methods getPalette(), getBrightPalette(), and getDarkPalette().

♦ getPalette() returns the ordinary palette, commonly used to draw the face part.

♦ getBrightPalette() returns the palette used to draw the bright parts of a 3D border.

♦ getDarkPalette() returns the palette used to draw the ordinary border, and the dark
parts of a 3D border.

These palettes automatically take into account the semantic state of the associated
IltNetworkElement when changing colors. For example, when a new alarm is set to an
object the ordinary palette may become red instead of grey.

S T Y L I N G 167

How to initialize and use new palettes
It is necessary to define new palettes when the base drawings include elements that are not
represented in the standard palettes. These palettes are initialized in the initResources()
method and used in the drawMain(java.awt.Graphics, ilog.views.IlvTransformer,
ilog.views.IlvRect) method.

In the following code, the new palettes are declared as fields and initialized in initResources
().

private static Color GridColor =
IltrColor.NewColor("server grid color", IltrColor._90PctGrey);

private static Color ButtonColor =
IltrColor.NewColor("server button color", Color.blue);

private Ilt2DPalette GridPalette;
private Ilt2DPalette ButtonPalette;

protected void initResources () {
super.initResources();
GridPalette = Ilt2DPalette.NewSimple2DPalette(GridColor);
ButtonPalette = Ilt2DPalette.NewSimple2DPalette(ButtonColor);

}

How to define the main drawing method
The programming principle for the drawMain(java.awt.Graphics, ilog.views.
IlvTransformer, ilog.views.IlvRect) method is similar to the draw method of an
IlvGraphic object. The method receives a graphic to draw with, a transformer linked to the
associated view, and an IlvRect object that gives the size and position of the base.

The following code shows the beginning of the drawMain(java.awt.Graphics, ilog.views.
IlvTransformer, ilog.views.IlvRect) function.

public void drawMain (Graphics g, IlvTransformer t, IlvRect rect) {

// Get the corners of the base rectangle.
int x1 = (int)rect.x;
int y1 = (int)rect.y;
int x2 = x1 + (int)rect.width-1;
int y2 = y1 + (int)rect.height-1;

// Get the state dependent parameters.
IltDetailLevel detailLevel = getDetailLevel();
Ilt2DPalette palette = getPalette();
Ilt2DPalette brightPalette = getBrightPalette();
Ilt2DPalette darkPalette = getDarkPalette();
int borderThickness = getBorderThickness();

In this code, there are the position of the base, its style (OOS, NT, CT or NI—see The Server
graphic states), and the standard palettes.

S T Y L I N G168

How to draw the base of a new type of network element
You can start drawing with IltGraphicUtil, a collection of graphic functions that simplify
the drawing of common shapes.

The following code starts drawing the base.

if (x1<=x2 && y1<=y2) {

IltGraphicUtil.FillRect(g,t,x1,y1,x2,y2,palette);

// Paint the border
if (detailLevel.equals(IltDetailLevel.MaximumDetails)) {
if (rect.width < 20 && borderThickness > 1)
IltGraphicUtil.DrawReliefRect (g,t,x1,y1,x2,y2,

brightPalette, darkPalette,
borderThickness);

else {
IltGraphicUtil.DrawRect(g,t,x1,y1,x2,y2,

darkPalette,
borderThickness);

}

The code has to manage the four different styles of the base, so the border thickness is taken
into account to get drawings that look nice. The rest of the drawMain(java.awt.Graphics,
ilog.views.IlvTransformer, ilog.views.IlvRect)methodmust alsomanage the different
styles and the two different dimensions of the base.

// Paint the grid, button and disk.
if (detailLevel.equals(IltDetailLevel.MaximumDetails)

|| detailLevel.equals(IltDetailLevel.FewDetails)){
// Grid, button and disk dimensions.
final int gridWidth = Math.round(rect.width * _WGrid);
final int gridHeight = Math.round(rect.height * _HGrid);
final int buttonWidth = Math.round(rect.width * _WButton);
final int buttonHeight = Math.round(rect.height * _HButton);
final int diskWidth = Math.round(rect.width * _WDisk);
final int diskHeight = Math.round(rect.height * _HDisk);
// Grid rectangle corners.
final int gx1 = x1 + Math.round(rect.width * _XGrid);
int gy1 = y1 + Math.round(rect.height * _YGrid);
final int gx2 = gx1 + gridWidth-1;
int gy2 = gy1 + gridHeight-1;
final int gvstep = Math.round(rect.height * _VStepGrid);
// Button rectangle corners.
final int bx1 = x1 + Math.round(rect.width * _XButton);
final int by1 = y1 + Math.round(rect.height * _YButton);
final int bx2 = bx1 + buttonWidth-1;
final int by2 = by1 + buttonHeight-1;
// Disk rectangle corners.
final int dx1 = x1 + Math.round(rect.width * _XDisk);
final int dy1 = y1 + Math.round(rect.height * _YDisk);

S T Y L I N G 169

final int dx2 = dx1 + diskWidth-1;
final int dy2 = dy1 + diskHeight-1;
// Grid and button colors.
final Ilt2DPalette gridPalette =
(detailLevel.equals(IltDetailLevel.FewDetails) ? darkPalette

: GridPalette);
final Ilt2DPalette buttonPalette =
(detailLevel.equals(IltDetailLevel.FewDetails) ? darkPalette

: ButtonPalette);
// Paint the grid.
if (gvstep > 1) {
for (int i = 0; i < 7; i++) {
IltGraphicUtil._FillRect(g,t, gx1,gy1,gx2,gy2, gridPalette);
gy1 += gvstep; gy2 += gvstep;

}
} else if (gvstep == 1) {
// Paint a grey rectangle instead of the grid.
Color rectColor = palette.getForeground();
Color gridColor = gridPalette.getForeground();
Color greyColor =
new Color((rectColor.getRed()+gridColor.getRed())/2,

(rectColor.getGreen()+gridColor.getGreen())/2,
(rectColor.getBlue()+gridColor.getBlue())/2);

Ilt2DPalette greyPalette =
Ilt2DPalette.NewSimple2DPalette(greyColor);

IltGraphicUtil._FillRect(g,t, gx1,gy1,gx2,gy2+6*gvstep,
greyPalette);

}

// Paint the button.
IltGraphicUtil._FillRect(g,t, bx1,by1,bx2,by2, buttonPalette);

// Paint the disk.
if (detailLevel.equals(IltDetailLevel.FewDetails)) {
IltGraphicUtil._FillRect(g,t, dx1,dy1,dx2,dy2, darkPalette);

} else {
IltGraphicUtil._FillRect(g,t, dx1,dy1,dx2,dy2, palette);
IltGraphicUtil.DrawReliefRect(g,t, dx1,dy1,dx2,dy2,

brightPalette,darkPalette,
1);

}

Themethod drawExtraBorders(java.awt.Graphics, ilog.views.IlvTransformer, ilog.
views.IlvRect) is the standard method used in this example.

How to implement a method for drawing a rectangular base
If the object that you want to draw is not a rectangle, but a phone for example, you must
override this method to get a selection border that is tightly drawn around the base.

The following code shows the default implementation used for a rectangular base.

protected void drawExtraBorders (Graphics g, IlvTransformer t, IlvRect rect)

S T Y L I N G170

{
{ // Draw the alarm border, if needed according to the state.
Color c = getAlarmBorderColor();
if (c != null)
drawExtraBorder(g,t,rect,c,0,IltrThickness.AlarmBorderThickness);

}
{ // Draw the selection border, if the object is currently selected.
Color c = getSelectionBorderForeground();
if (c != null)
drawExtraBorder(g,t,rect,c,IltrThickness.AlarmBorderThickness,

IltrThickness.SelectionBorderThickness);
}

}

How to create and register a network element type (using the API)
If you run the sample program, the main file creates and registers a network element of
type server.

static IltNetworkElement.Type Server = new IltNetworkElement.Type("Server");

static {
IltSettings.SetValue("NetworkElement.Type.Server.Renderer",

new IltBaseRendererFactory() {
public IltBaseRenderer createValue() {
return new ServerBaseRenderer();

}
}

);
}

IltDefaultDataSource dataSource = new IltDefaultDataSource();
IltNetworkElement ne = new IltNetworkElement

("NE", Server, new IltOSIObjectState());
ne.setAttributeValue(IltObject.PositionAttribute, new IlpPoint(100,100));
dataSource.addObject(ne);
IlpNetwork network = new IlpNetwork();
network.setDataSource(dataSource);

How to create and register a network element type (using CSS)
You can create the new network element type using global CSS settings instead of the API,
as follows.

setting."ilog.tgo.model.IltNetworkElement"{
types[0]: @+neType0;

}
Subobject#neType0 {
class: 'ilog.tgo.model.IltNetworkElement.Type';

S T Y L I N G 171

name: "Server";
}

To customize the renderer using global CSS settings, you need first to create a renderer
factory class and make sure it is included in the search path.

public class MyNERendererFactory implements IltBaseRendererFactory {
public IltBaseRenderer createValue() {

return new ServerBaseRenderer();
}

}

Then you can customize the renderer in CSS as follows:

setting."ilog.tgo.model.IltNetworkElement.Type"[name="Server"] {
renderer: @+neRendererFactory0;

}
Subobject#neRendererFactory0 {

class: 'MyNERendererFactory';
}

As illustrated in this example, you can create a network element with a specific type or set
a type for it afterwards with either one of two methods.

ne.setType (Server);

or

ne.setAttributeValue (IltNetworkElement.TypeAttribute, Server);

S T Y L I N G172

Localizing network element types

In JViews TGO, the network element type defines how the object base will be represented.
You may also be interested in displaying the name of the network element type in your
application, for example, as a label in a table cell or as a tooltip.

All the predefined network element types have labels and tooltips specified in the JViews
TGO resource bundle. See About internationalization.

The resources that apply to network element types are identified as:

♦ ilog.tgo.NetworkElement_Type_<TYPE NAME>: network element type labels

♦ ilog.tgo.NetworkElement_Type_<TYPE NAME>_ToolTip: network element type tooltips

You can edit the values directly in the JViews TGO resource bundle file.

When you create new network element types, the label and tooltip information will also be
retrieved from this resource bundle to be displayed, for example, in a table cell. As you
create new network element types, register the corresponding entries into the resource
bundle file, as follows.

Suppose that you have created the following new network element type:

IltNetworkElement.Type myNewType = new IltNetworkElement.Type("MyType");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.NetworkElement_Type_MyType=My Type

♦ ilog.tgo.NetworkElement_Type_MyType_ToolTip=My New Network Element Type

S T Y L I N G 173

Customizing network element functions

You need to do the following:

♦ Add a new entry to the IltNetworkElement.Function enumeration by instantiating the
class IltNetworkElement.Function.

♦ Create an Image corresponding to the icon that will be associated with the new function.

♦ Map the icon to the function instance. Refer to the SetValue(java.lang.Object, java.
lang.Object) member function in the class IltSettings.

You can also customize the functions

How to add a function and associate It with an Icon (using the API)
The following example shows how to add a Router function and associate it with an icon,
which is stored in a file called router.gif.

IlpContext context = IltSystem.GetDefaultContext();
IltNetworkElement.Function router = new IltNetworkElement.Function("router");
Image routerIcon = context.getImageRepository().getImage("router.gif");
IltSettings.SetValue("NetworkElement.Function.Router.Icon", routerIcon);

How to add a function, associate It with an icon, and customize
the icon (using CSS)
You can create new network element functions by using global CSS settings.

setting."ilog.tgo.model.IltNetworkElement"{
functions[0]: @+neFunction0;

}
Subobject#neFunction0 {
class: 'ilog.tgo.model.IltNetworkElement.Function';
name: "router";

}

You can also customize the icon using global CSS settings. To do so, you need to specify the
full path to the object to be customized, as well as the value of its name attribute in order
to match the right object in the system. The CSS property to customize here is icon.

setting."ilog.tgo.model.IltNetworkElement.Function"[name="router"] {
icon: '@|image("router.gif")';

}

See Using global settings for more information.

S T Y L I N G174

Showing and hiding function icons
The following property is used to customize the display of network element functions:

CSS Properties for Network Element Functions
DescriptionDefault ValueTypeProperty Name

Controls whether the function icon of a network
element is shown or not

truebooleanfunctionVisible

Declaring tooltips for function icons
Network element functions provide a default tooltip which is retrieved from the JViews TGO
resource bundle. See About internationalization.

The resource that applies to network element functions is:

♦ ilog.tgo.NetworkElement_Function_<FUNCTION NAME>_ToolTip: network element
function tooltips

For the predefined network element functions, you can edit the value directly in the JViews
TGO resource bundle file.

For newly created network element functions, the tooltip information will also be retrieved
from this resource bundle. As you declare new network element functions, register the
corresponding entries in the resource bundle file.

Considering that you have created the network element function "router", you should
declare the entry in the resource bundle file as follows:

♦ ilog.tgo.NetworkElement_Function_router_ToolTip=Router

S T Y L I N G 175

Customizing network element families

Creating a new network element family entails:

♦ Extending the IltNetworkElement.Family enumeration.

♦ Mapping the new family with a label.

How to create a network element family (using the API)

IltNetworkElement.Family OC999 =
new IltNetworkElement.Family("OC999");

IltSettings.SetValue("NetworkElement.Family.OC999.Label","999");

How to create a network element family (using CSS)
You can also create new network element families by using global CSS settings (see Using
global settings in Using Cascading Style Sheets for more information):

setting."ilog.tgo.model.IltNetworkElement"{
families[0]: @+neFamily0;

}
Subobject#neFamily0 {
class: 'ilog.tgo.model.IltNetworkElement.Family';
name: "OC999";

}

The following properties are used to customize the display of network element families.

CSS properties for network element families
DescriptionDefault ValueTypeProperty Name

Determines whether the family label is
displayed or not

truebooleanfamilyVisible

Defines the font used to draw the family labelHelvetica 10FontfamilyFont

Defines the color of the family label text35% grayColorfamilyForeground

Defines the color of the family label
background, with a null value meaning a
transparent background

transparent (null)ColorfamilyBackground

Determines whether the family label is
displayed using antialiasing or not

falsebooleanfamilyAntialiasing

You canmap network element families to labels by using the method IltSettings.SetValue.
You can also associate a network element family with a resource that is retrieved from the
JViews TGO resource bundle (see About internationalization).

Example:

S T Y L I N G176

IltSettings.SetValue("NetworkElement.Family.OC999.Label","My_NetworkElement_Fam
ily_999");

You can obtain the same customization using global CSS settings. To do so, you need to
specify the full path to the object to be customized, as well as the value of its name attribute
in order to match the right object in the system. The CSS property to customize here is
label.

setting."ilog.tgo.model.IltNetworkElement.Family"[name="OC192-UsrDf"] {
label: "My_NetworkElement_Family_999";

}

By default, network element families and resources are associated automatically. A label
and a tooltip are displayed for the new network element family provided that the following
resources have been declared in the JViews TGO resource bundle:

♦ ilog.tgo.NetworkElement_Family_<FAMILY NAME>: network element family label

♦ ilog.tgo.NetworkElement_Family_<FAMILY NAME>_ToolTip: network element family
tooltip

For the predefined network element families, you can edit the values directly in the JViews
TGO resource bundle file.

For newly created network element families, the label and tooltip information will also be
retrieved from this resource bundle. As you declare new network element families, register
the corresponding entries into the resource bundle file.

Considering that you have created the network element family "OC999", you should declare
the corresponding entries in the resource bundle file as follows:

♦ ilog.tgo.NetworkElement_Family_OC999=999

♦ ilog.tgo.NetworkElement_Family_OC999_ToolTip=OC 999

S T Y L I N G 177

Customizing different aspects of network elements

Customizing network element names
You can customize the display of network element names through the following CSS
properties:

♦ label

♦ labelVisible

♦ labelFont

♦ labelForeground

♦ labelBackground

♦ labelPosition

♦ labelAntialiasing

♦ labelSpacing

♦ labelWrappingMode

♦ labelWrappingWidth

♦ labelWrappingHeight

♦ labelMargin

♦ labelAlignment

♦ labelBorderColor

♦ labelDirection

♦ lineSpacing

♦ minLabelZoom

♦ maxLabelZoom

♦ labelScaleFactor

Refer to Customizing the label of a business object for details on these properties and how
to use them.

Customizing network element shortcuts
The shortcut representation is displayed according to the business object CSS configuration.
The following properties can be used to customize the shortcut representation.

S T Y L I N G178

CSS properties for group shortcuts
DescriptionDefault ValueTypeProperty Name

Defines the icon to be used in
the shortcut representation.

ilt_shortcut.png for the
standard representation

ImageshortcutIcon

ilt_dangling_shortcut.
png for the dangling
representation

Defines whether the shortcut
icon is displayed or not.

truebooleanshortcutIconVisible

The result is shown in the following images.

Standard shortcuts

Dangling shortcuts

Customizing partial network elements
The partial representation is displayed according to the business object CSS configuration.
The following properties can be used to customize the partial representation:

♦ partialIcon: This property defines the icon that is used in the partial representation.
By default, the image ilt_partial.png available in the distribution is used.

♦ partialIconVisible: This property defines whether the partial icon is displayed or not.

The result is shown in the following images:

Partial network elements expanded and collapsed

S T Y L I N G 179

Customizing network element states and alarms
Refer to Customizing object and alarm states of predefined business objects for information
on how to customize the network element representation when it contains states and alarms.
The information that you will find in that section is valid for all IltObject classes.

Customizing network element tooltips
You can customize the display of network element tooltips through the following CSS
properties:

♦ toolTipGraphic

♦ toolTipText

Refer to Changing the font of all labels for details on these properties and how to use them.

Adding new decorations to network elements
You can add new decorations to the predefined business objects representation.

For details, refer to How to add new decorations to network and equipment nodes.

S T Y L I N G180

Customizing user-defined business objects

Describes how user-defined business objects are represented and how to customize them.

In this section

Representing business objects
Describes how to represent user-defined business objects.

Customizing user-defined network nodes
Describes how to customize the shape, color, and other aspects of user-defined network
nodes.

Customizing user-defined network links
Describes how to customize the shape, color, and other aspects of user-defined network
links.

Customizing tooltips of user-defined business objects
Describes how to customize the display of a tooltip for a network node or link.

© Copyright IBM Corp. 1987, 2009 181

Representing business objects

ILOG JViews TGO graphic components provide support to graphically represent your own
business objects, known as user-defined business objects. These business objects are generally
represented with a simple implementation that you can customize and extend by means of
cascading style sheets.

For an example of how to customize user-defined business objects in the network component,
refer to <installdir> /samples/network/customClasses.

Nodes
In the network and equipment components, user-defined business objects that represent
nodes are graphically represented by a shape and a label, as shown in the following figure.

A user-defined network node

For information on how to customize the default graphic representation of user-defined
business objects in the network and equipment graphic components, see

♦ Network and equipment: Customizing network and equipment nodes

♦ Tree: Customizing tree nodes

♦ Table: Customizing table cells

Links
In the network and equipment components, user-defined business objects that represent
links are rendered as a general link graphic object when they implement IlpObject directly,
that is, when they do not extend a predefined business link class. The graphical representation
is illustrated in the following figure.

A user-defined network link

S T Y L I N G182

Customizing user-defined network nodes

Describes how to customize the shape, color, and other aspects of user-defined network
nodes.

In this section

Customizing a node shape
Lists all the properties you can use to customize a node shape and describes how to customize
sizing aspects of the shape.

Customizing the color of a node shape with paint styles
Lists the values of the node properties related to color and shows the effects they give.

Customizing the border of a node shape
Lists the properties related to the node border and shows how to use them with an example.

Customizing a node icon
Describes how to display an icon in a network node and how to position it with respect to
the label.

Customizing a node label
Describes how to customize the display of a label in a network node representation.

Automatic resizing for a node shape with an icon in it
Describes how automatic resizing of a shape with an icon operates.

S T Y L I N G 183

Customizing a node shape

You can customize the node shape using the properties listed in the following table.

.

CSS properties for network nodes
DescriptionDefault ValueTypeProperty Name

Sets the shape of an ilog.views.sdm.graphic.
IlvGeneralNode. The values are those accepted by
setShapeType(int).

ROUND_RECTANGLEintshapeType

Sets the width of the shape of an ilog.views.sdm.
graphic.IlvGeneralNode.

40floatshapeWidth

Sets the height of the shape of an ilog.views.sdm.
graphic.IlvGeneralNode. Use only when the value of
the property keepingAspectRatio is false.

40floatshapeHeight

Sets the aspect ratio of the shape of an ilog.views.
sdm.graphic.IlvGeneralNode.

1floatshapeAspectRatio

Specifies whether the width/height ratio is preserved by the
value of the properties shapeWidth and shapeHeight.

truebooleankeepingAspectRatio

Denotes the node foreground color.Color.darkGrayColorforeground

Denotes the node background color.Color
(192,192,192,128)

Colorbackground

Sets the style used to fill the shape of an ilog.views.
sdm.graphic.IlvGeneralNode. The possible values

SOLID_COLORintfillStyle

are those defined in ilog.views.sdm.graphic.
IlvGeneralNode#setFillStyle:

NO_FILL

SOLID_COLOR

LINEAR_GRADIENT

RADIAL_GRADIENT

S T Y L I N G184

DescriptionDefault ValueTypeProperty Name

TEXTURE

Sets the texture used to fill the shape of the general node
or the general link.

nullImagefillTexture

Sets the angle (in degrees) of the gradient used to fill the
shape of an ilog.views.sdm.graphic.
IlvGeneralNode.

0floatfillAngle

Sets the position where the gradient of a fillColor2
starts; that is, where the color is the first color set by
background.

0ffloatfillStart

Sets the position where the gradient of an ilog.views.
sdm.graphic.IlvGeneralNode ends; that is, where
the color is the first color set by fillColor2.

1ffloatfillEnd

Sets the margin that is left on both sides of the shape when
it is horizontally resized automatically.

2ffloathorizontalAutoResizeMargin

Sets the horizontal autoresize mode of an
IlvGeneralNode.The possible values are those accepted

NO_AUTO_RESIZEinthorizontalAutoResizeMode

by ilog.views.sdm.graphic.
IlvGeneralNode#setHorizontalAutoResizeMode:

NO_AUTO_RESIZE

EXPAND_ONLY

SHRINK_ONLY

EXPAND_OR_SHRINK

Sets the margin that is left on both sides of the shape when
it is autoresized vertically.

2ffloatverticalAutoResizeMargin

Sets the vertical autoresize mode of an ilog.views.sdm.
graphic.IlvGeneralNode. The possible values are:

NO_AUTO_RESIZEintverticalAutoResizeMode

NO_AUTO_RESIZE

EXPAND_ONLY

SHRINK_ONLY

EXPAND_OR_SHRINK

Determines the image used for the icon.nullImageicon

Sets the position of the icon with respect to the label of an
IlvGeneralNode. This property is only effective if the

BottomIlvDirectioniconPosition

label position is equal to IlvDirection.Center, that is,
the label is inside the shape. If the label is outside the
shape, the icon is always at the center of the shape. The

S T Y L I N G 185

DescriptionDefault ValueTypeProperty Name

value is one of the static fields of the {@link.ilog.
views.IlvDirection} interface.

Denotes whether the icon is visible or not in the object.truebooleaniconVisible

Sets the color of the shape border.120,120,120ColorborderColor

Sets the end cap style of the shape border. The end cap
style controls what the ends of the segments of the border

BasicStroke.
CAP_BUTT

BasicStrokeborderEndCap

look like when the border is dashed. The possible values
are:

CAP_BUTT

CAP_ROUND

CAP_SQUARE

Sets the line join style of the shape border. The line join
property controls what the angles connecting the segments
of the border look like. The possible values are:

BasicStroke.
JOIN_MITER

BasicStrokeborderLineJoin

JOIN_BEVEL

JOIN_MITER

JOIN_ROUND

Sets the miter limit of the shape border. The miter limit
controls how far the angles of the border are allowed to
extend when the angle is very sharp.

10ffloatborderMiterLimit

Sets the width of the border of the object.2floatborderWidth

Sets the line style of the shape border.The line style allows
you to have a dashed border. For example, setting the line

null (Solid)float[]borderLineStyle

style to 4,8 creates a dashed border with segments of 4
pixels in length separated by spaces of 8 pixels. The line
style can contain more than two values to create longer
line style patterns.

Sets the line style phase of the shape border.This property
can be used to adjust the positions of the dashes on the

0ffloatborderLineStylePhase

border. This is useful if the dashes look unattractive at the
corners of the shape.

How to use network node properties in a user-defined business
class

object."test.MyNetworkElement" {
shapeType: ROUND_RECTANGLE;
shapeWidth: 30;
shapeHeight: 30;
label: @name;

S T Y L I N G186

labelSpacing: 3;
}

Shape type
The basic shape of the user-defined node is controlled by the shapeType property. The
possible values are listed in the following table.

Shape type properties
RenderingCSS Property and Values

shapeType = RECTANGLE

shapeType = ROUND_RECTANGLE

shapeType = ELLIPSE

shapeType = DIAMOND

shapeType = TRIANGLE_UP

shapeType = TRIANGLE_DOWN

shapeType = TRIANGLE_LEFT

shapeType = TRIANGLE_RIGHT

shapeType = MARKER

How to control the width and height of the shape of a user-defined
business object
The horizontal and vertical sizes of the shape are controlled through the properties
shapeWidth, shapeHeight, and shapeAspectRatio.

S T Y L I N G 187

There are two policies for setting the width and height of the shape.

♦ You can set the properties shapeWidth and shapeHeight. In this case, the aspect ratio
of the shape is not preserved.

For example:

#Node {
shapeWidth: 100;
shapeHeight: 50;

}

♦ You can set the property shapeWidth to the desired width and the property
shapeAspectRatio to the desired width:height ratio. For example:

#Node {
shapeWidth: 100;
shapeAspectRatio: 2;

}

If you change the shape width in another rule, the aspect ratio will be preserved.

The property keepingAspectRatio is used to preserve the width to height ratio. This property
sets a flag that specifies whether the width to height ratio is preserved by the properties
shapeWidth and shapeHeight.

If the flag is set to true, the dimensions of the shape are controlled by calling either
shapeWidth or shapeHeight and by setting shapeAspectRatio.

If the flag is set to false, the dimensions of the shape are controlled by setting shapeWidth
and shapeHeight.

Setting shapeHeight explicitly also causes the keep aspect ratio flag to be set to
false. Setting shapeAspectRatio causes the keep aspect ratio flag to be set to
true .

Note:

If the keep aspect ratio flag is true, the properties shapeWidth and shapeHeightwill preserve
the width-to-height ratio of the shape of the node. Otherwise, you can set the width and the
height independently.

S T Y L I N G188

Customizing the color of a node shape with paint styles

The following properties control the way the interior of the shape is painted: fillStyle,
foreground, background, fillStart, fillEnd, fillAngle, and fillTexture.

The fillStyle property specifies the type of paint object used to fill the shape. The possible
values are listed in the following table.

Fill style properties
RenderingCSS Property and Values

fillStyle = SOLID_COLOR

fillStyle = LINEAR_GRADIENT

fillStyle = RADIAL_GRADIENT

fillStyle = TEXTURE

The foreground and background properties specify the colors used:

♦ In SOLID_COLOR mode, the shape is filled with foreground.

♦ In LINEAR_GRADIENT and RADIAL_GRADIENT modes, the gradient starts with foreground
and ends with background:

Fill color properties
RenderingCSS Properties and Values

fillStyle = LINEAR_GRADIENT

foreground = blue

background = red

fillStyle = RADIAL_GRADIENT

foreground = blue

background = red

In LINEAR_GRADIENT and RADIAL_GRADIENTmodes, the fillStart, fillEnd, and fillAngle
properties define the geometry of the gradient. A gradient is defined by two points, P1 and
P2. The following figures show the results of the properties.

The following figure shows the geometry of a linear gradient.

S T Y L I N G 189

Linear gradient

Note that the linear gradient is always in reflectmode, so the colors go back and forth from
foreground to background outside the (P1, P2) segment.

The following figure shows the geometry of a radial gradient.

Radial gradient

The fillTexture property specifies an image that will be used as a texture in TEXTUREmode.

S T Y L I N G190

Customizing the border of a node shape

Properties for customizing a node border
The border of the shape is controlled by the properties borderColor, borderWidth,
borderLineStyle, borderEndCap, borderLineJoin, borderMiterLimit, and
borderLineStylePhase.

The borderColor property sets the color used to paint the border.

The other properties are used to create an instance of java.awt.BasicStroke:

♦ borderWidth specifies the width of the border.

♦ borderLineStyle is used to create dashed or dotted borders. It is an array of floating-point
values that specify the lengths of the alternate painted and transparent segments.

♦ borderEndCap specifies the shape of the ends of the dash segments.

♦ borderLineJoin and borderMiterLimit control the appearance of the border at the
angles between two segments.

See the Java™ documentation of the java.awt.BasicStroke class for more details on these
properties.

How to control the border of a user-defined business object
The following CSS file creates a dashed blue border with rounded segment ends, visible
segments that have a length of 4, and transparent segments that have a length of 2.

#Node {
borderColor: blue;
borderLineStyle: "4, 2";
borderEndCap: CAP_ROUND;

}

S T Y L I N G 191

Customizing a node icon

To display an icon inside the shape of a network node, set the property icon to the URL of
the icon to be displayed. Note that the URL should be absolute. The URL Access Service is
not implicitly used here. If you want to use it, you must do so explicitly.

If you do not want an icon, set the property iconVisible to false.

The icon is always displayed inside the shape (or centered on top of the marker if the shape
type is MARKER).

If the label is inside the shape (labelPosition = Center), the position of the icon relative
to the label is controlled by the property iconPosition, which can be any direction defined
by the interface IlvDirection. For example, iconPosition = Left places the icon to the
left of the label.

S T Y L I N G192

Customizing a node label

The label decoration of a user-defined business object is customized using the same properties
as for labels of predefined business objects.

How to use label properties in a user-defined business class

object."test.MyNetworkElement" {
labelBackground: white;
labelForeground: blue;
labelPosition: Right;
label: @name;
labelVisible: true;

}

For a complete list of the available label properties, refer to Customizing the label of a
business object.

S T Y L I N G 193

Automatic resizing for a node shape with an icon in it

The representation of a user-defined node automatically computes the size of its shape
according to the size of the icon.

Autoresizing can be controlled independently in the vertical and horizontal directions through
the properties horizontalAutoResizeMode and verticalAutoResizeMode. These properties
accept the values listed in the following table.

CSS Properties for Autoresizing of Nodes
BehaviorValues

Autoresize is disabled.NO_AUTO_RESIZE

The node is allowed to grow in the specified direction, but not to shrink.EXPAND_ONLY

The node is allowed to shrink in the specified direction, but not to grow.SHRINK_ONLY

The node is allowed to expand or to shrink as needed.EXPAND_OR_SHRINK

You can control how much space is left between the border of the shape and its content
(icon) using the properties horizontalAutoResizeMargin and verticalAutoResizeMargin.

S T Y L I N G194

Customizing user-defined network links

Describes how to customize the shape, color, and other aspects of user-defined network
links.

In this section

Customizing a link
Lists all the properties you can use to customize a link and shows how to customize the line
aspect of the link with an example.

Customizing various aspects of links
Describes how to customize various aspects of network links.

Customizing a link label
Describes how to customize the display of a label in a network link representation.

S T Y L I N G 195

Customizing a link

You can customize a network link using the properties listed in the following table.

CSS properties for network links
DescriptionDefault ValueTypeProperty Name

Sets the alternate color.nullColoralternateColor

Sets the animate speed.0floatanimateSpeed

Sets the arrow color.Color.blackColorarrowColor

Sets the arrow-drawing style. The possible
values are:

ARROW_FILLintarrowMode

ARROW_FILL

ARROW_OPEN

ARROW_GRADIENT

ARROW_DECOERRATION

Sets the position of the arrow as the ratio
of the link length. For example, 0.5f is the
middle of the link.

1ffloatarrowPosition

Sets the size of the arrow proportionately
to the length of the link.

1ffloatarrowRatio

Sets the border color.nullColorborderColor

Sets the lower border color.nullColorborderColor2

Sets the array that represents the lengths
of the dash segments for the border. The
possible values are:

nullfloat[]borderLineStyle

Solid

Dot

Dash

DashDot

DashDoubleDot

Alternate

LongDash

DoubleDot

S T Y L I N G196

DescriptionDefault ValueTypeProperty Name

or an array that defines a new line style.

Sets the dash pattern offset for the border.0ffloatborderLineStylePhase

Sets the border width.0ffloatborderWidth

Sets the curved appearance and the
smoothness of the spline.

0ffloatcurved

Sets the decorations applied to the end of
the polyline. The possible values are:

CAP_SQUAREintendCap

CAP_BUTT

CAP_ROUND

CAP_SQUARE

Sets the internal scale factor.1ffloatinternalZoom

Sets the decoration applied when two
segments are joined. The possible values
are:

JOIN_MITERintlineJoin

JOIN_BEVEL

JOIN_MITER

JOIN_ROUND

Sets the array that represents the lengths
of the dash segments. The possible values
are:

nullfloat[]lineStyle

Solid

Dot

Dash

DashDot

DashDoubleDot

Alternate

LongDash

DoubleDot

S T Y L I N G 197

DescriptionDefault ValueTypeProperty Name

or an array that defines a new line style.

Sets the dash pattern offset.0ffloatlineStylePhase

Sets the line width.5ffloatlineWidth

Sets the maximum line width when zooming
in.

0floatmaxLineWidth

Sets the minimum line width when zooming
out.

0ffloatminLineWidth

Sets the link-drawing mode. The possible
values are:

MODE_GRADIENTintmode

MODE_TEXTURE

MODE_UNICOLOR

MODE_GRADIENT

MODE_NEON

Caution: Do not use the border with the
mode ilog.views.sdm.graphic.
IlvGeneralLink.MODE_NEON.

Sets the link as oriented or not oriented.falsebooleanoriented

Controls the quality of the rendering of the
link.You can modify this property for faster
interaction or high quality printing.

3intqualityLevel

The following values achieve the following
effects respectively:

0: The link is rendered as a single line only.

1: MODE_UNICOLOR is forced, with no
border, no wave effect, and a classic arrow.

2: Gives the effect of 1 with a border.

3: All, the default value.

4: Very fine-gradient spectra.

5: All BasicStroke with float value and
no cache.

Sets the wavy outline of the link. Use 0/0
to cancel the wave effect. The value is a

"0/0"Stringwave

formatted string that describes the wave.
The format is a/p, where a is an int
representing the amplitude of the wave in

S T Y L I N G198

DescriptionDefault ValueTypeProperty Name

pixels and p is an int representing the
period or length of the wave in pixels.

How to use network link properties in a user-defined business
class

object."test.MyLink" {
oriented: true;
lineWidth: 5;
lineStyle: "4,4,2";
endCap: CAP_ROUND;
wave: "1/2";

}

S T Y L I N G 199

Customizing various aspects of links

You can customize the following aspects of network links:

♦ Major appearance modes

♦ An optional border

♦ End cap and join style of the stroke

♦ Curves

♦ Dashes

♦ Alternating colors

♦ Arrows

♦ Waves

♦ Animation

♦ Zoom

♦ Special effects

Color values are given as literals or hexadecimal codes.The resulting colors are shown
in the figures.

Note:

Major appearance modes
The general link has three principal looks associated with the property mode. For the first
two looks, the foreground property sets the main color.

Three main looks for links

The properties of the first look shown in the figure are composed as follows:

mode = MODE_UNICOLOR
lineWidth = 10
foreground = pink

The properties of the second look shown in the figure are composed as follows:

S T Y L I N G200

mode = MODE_GRADIENT
lineWidth = 10
foreground = pink

The properties of the third look shown in the figure are composed as follows:

mode = MODE_TEXTURE
lineWidth = 10
fillTexture = wood.png

The fillTexture property specifies the URL of an image file to use as a texture in TEXTURE
mode. Note that the URL does not use the URL Access Service.

An optional border
A border is painted when the borderWidth property is greater than 0, the default value.
The default border color is black. Two other properties control the line style (such as dashes).

Links with simple borders

The properties of the top link in the figure are composed as follows:

lineWidth = 10
foreground = #90EE90
endCap = CAP_ROUND
borderWidth = 4
borderColor = red

The properties of the center link in the figure are composed as follows:

lineWidth = 10
foreground = #90EE90
endCap = CAP_ROUND
borderWidth = 4
borderColor = gray
borderLineStyle = "10,5"

borderLineStyle is expressed as a float array.

The properties of the bottom link in the figure are composed as follows:

lineWidth = 10
foreground = #90EE90

S T Y L I N G 201

endCap = CAP_ROUND
borderWidth = 2

Links with more complex borders

The properties of the top link in the figure are composed as follows:

lineWidth = 10
mode = MODE_UNICOLOR
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
borderWidth = 4
borderColor = white
borderColor2 = black
foreground = #FFAFAF

The properties of the center link in the figure are composed as follows:

lineWidth = 10
mode = MODE_UNICOLOR
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
borderWidth = 4
borderColor = white
borderColor2 = black
foreground = #FFC800
borderLineStyle = "10,10"

borderLineStyle is expressed as a float array.

The properties of the bottom link in the figure are composed as follows:

lineWidth = 10
mode = MODE_UNICOLOR
endCap = IlvStroke.CAP_ROUND
lineJoin = IlvStroke.JOIN_ROUND
borderWidth = 4
borderColor = yellow
borderColor2 = blue
foreground = #1EC830

S T Y L I N G202

End cap and join style of the stroke
The default stroke parameters are JOIN_MITER and CAP_SQUARE. You can change the end
cap and join style, as shown in the following figure.

Different values for stroke parameters

The properties of the top link in the figure are composed as follows:

lineWidth = 10
endCap = IlvStroke.CAP_ROUND
lineJoin = IlvStroke.JOIN_ROUND
borderWidth = 2
foreground = #9A9AFF

The properties of the center link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_MITER
borderWidth = 2
foreground = #9A9AFF

The properties of the bottom link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_SQUARE
lineJoin = JOIN_BEVEL
borderWidth = 2
foreground = #9A9AFF

Curves
The curved property uses the link points to feed a Bezier function which renders a curved
link. Intermediate points show the path for the Bezier computation. With two points, a
standard deviation applies, that is, at 1/4 before the end of the link. The curved value is a
float between 0f and 1f. A value of 0 means no curve at all (the default), and a value of 1
means the sharpest curve. Use a value of 0.65f for an attractive curve.

S T Y L I N G 203

Curved links

The properties of the top link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #FFDAB9
curved = 0.65
mode = MODE_UNICOLOR

The properties of the center link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_SQUARE
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #FFDAB9
curved = 0.65
lineStyle = [10,20]

lineStyle is expressed as a float array.

The properties of the bottom link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_SQUARE
lineJoin = JOIN_BEVEL
borderWidth = 6
foreground = #FFDAB9
curved = 0.65
borderLineStyle = [1,10]

borderLineStyle is expressed as a float array.

Dashes
Dashes provide interesting effects together with endCap values. Dashes are controlled by
the lineStyle property. They are expressed as a float array. Alternate entries in the array
represent lengths of the opaque and transparent segments of the dashes.

Note that the dash specification also applies to the border unless the borderLineStyle
property overrides it.

S T Y L I N G204

Links with dashed line styles

The properties of the top link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #55BEF3
lineStyle = [1,15]

The properties of the center link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #FFC800
lineStyle = [10,8,20,8]

The properties of the bottom link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = red
mode = MODE_UNICOLOR
lineStyle = [4,4]
curved = 0.65

Alternating colors
The alternateColor property toggles the link in alternate mode with the specified color.
The segment size equals the thickness of the link. Otherwise, the segment size can be
specified with the lineStyle property.

The lineStylePhase property sets the initial offset. If no lineStyle is specified, the phase
is proportional to twice the line width. In the following figure, the bottom link starts the
alternate color one segment later than the top one.

S T Y L I N G 205

Links with alternate colors

The appropriate values for the links are as follows.

The properties of the top link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = yellow
alternateColor = darkGray
curved = 0.65

The properties of the center link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = yellow
alternateColor = darkGray
curved = 0.65
lineStyle = [4,3]

lineStyle is expressed as a float array.

The properties of the bottom link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = yellow
alternateColor = darkGray
curved = 0.65
lineStylePhase = 1
mode = MODE_UNICOLOR

Arrows
There are four modes for representing an arrow controlled by the arrowMode property.

♦ The ARROW_FILL mode value (the default) draws a filled triangular arrow.

S T Y L I N G206

♦ The ARROW_OPEN mode value draws a two-arm arrow.

♦ The ARROW_GRADIENTmode value shows an oriented link by smoothly varying the luminosity
along the link. The link appears darker near the source and brighter near the target.

♦ The ARROW_DECORATION mode value delegates the task of displaying the arrow to one of
the link decorations.

In the first two modes, the arrowPosition property controls the position of the arrow along
the link. Its value is a float between 0 and 1. A value of 0 means the start of the link. A
value of 1 means the end of the link (the default). The arrow direction is aligned with the
link segment below it.

The property arrowRatio controls the size of the arrow, which is proportional to the width
of the link. A float value of 0.5 means the arrow is the same size as the link. The default
value 1 means the arrow is twice as wide as the link. This property applies to all four arrow
modes.

The default color of an arrow is black. The color can be set by the property arrowColor.

Links with arrows

The properties of the top link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #FF82AB
arrowMode = ARROW_GRADIENT
oriented = true

The properties of the center link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #FF82AB
arrowMode = ARROW_GRADIENT
oriented = true
mode = MODE_UNICOLOR
arrowMode = ARROW_FILL

The properties of the bottom link in the figure are composed as follows:

S T Y L I N G 207

lineWidth = 10
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #FF82AB
arrowMode = ARROW_OPEN
oriented = true
arrowColor = #A3056E
arrowPosition = 0.2

Waves
A wave effect is very effective for representing a wireless connection. The wave specification
consists of two numbers in pixels representing the wave amplitude and its period. The
property type is String, where two integers separated by a forward slash or solidus (/)
represent the amplitude and period respectively. The effect is rendered best with straight
lines, but remains compatible with any shape.

The wave effect can also be combined with dashes, border, arrow, and so on.

Link with wave effect

The properties of the link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
borderWidth = 2
foreground = #EEAEEE
wave = 20/30

Animation
A link with dashes (see the lineStyle property) or alternate colors (see the alternateColor
property) can be animated. The animation consists of incrementing the lineStylePhase
value at regular intervals, so that the dash pattern is shifted at each animation frame. The
current implementation updates every 500 ms.

The animateSpeed property controls animation of the link and how much the phase is
incremented. If the value is 0, the animation is stopped. Otherwise, the valuemust be between
0f and 1f and represents a fraction of the dash pattern length. For example, 0.1means that
ten frames elapse before seeing the first frame again. Note that 0.9 represents the same
increment but in the reverse direction.

S T Y L I N G208

Zoom
The maxLineWidth property sets the maximum width of the line. The link is zoomable only
if one edge node is zoomable. Note that the link border cannot be zoomed.

The minLineWidth property sets the minimum width of the line.

Special effects
MODE_NEON is a minor mode that is a variation of MODE_GRADIENT. It displays the link with
transparent colors, giving a glowing effect. (This effect works best with larger links and
with darker backgrounds.) The border is automatically disabled in this mode. Neon mode
could be used to mark link selection, for example.

The preceding figures show some of the diversity offered in the appearance of links. By
combining some of the properties, you can obtain some special effects, such as the road link
in the following figure, where the large border is the same gray color as the link foreground
and the white value of the alternateColor property looks like the center line of a road.

Links with special effects

The style of the top link in the figure is composed as follows:

lineWidth = 20
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
foreground = #FFB5C5
mode = MODE_NEON

The properties of the center link in the figure are composed as follows:

lineWidth = 10
endCap = CAP_ROUND
lineJoin = JOIN_ROUND
foreground = #FFB5C5

The properties of the bottom link in the figure are composed as follows:

lineWidth = 15
endCap = CAP_BUTT
lineJoin = JOIN_ROUND
borderWidth = 12
foreground = #404040
borderColor = #404040

S T Y L I N G 209

alternateColor = white
curved = 0.65
mode = MODE_UNICOLOR
LineStyle = [20,10]

lineStyle is expressed as a float array.

S T Y L I N G210

Customizing a link label

The label decoration for a network link is customized using the same properties as for the
labels of predefined business objects.

How to use label properties in a user-defined business class

object."test.MyNetworkElement" {
labelBackground: white;
labelForeground: blue;
labelPosition: Right;
label: @name;
labelVisible: true;

}

For a complete list of the available link properties, refer to Customizing the label of a business
object.

S T Y L I N G 211

Customizing tooltips of user-defined business objects

The tooltips of user-defined business objects can be customized using the same properties
as used for the tooltips of the predefined business objects.

How to use tooltip properties in a user-defined business class

object."test.MyNetworkElement" {
toolTipText: @name;

}

For a complete list of the available properties for tooltips, refer to Changing the font of all
labels.

For details about using a graphic as a tooltip, refer to How to use a JComponent to generate
a tree node representation and How to use an IlvGraphic to generate a network node
representation.

S T Y L I N G212

Customizing links

Describes what links, link sets, and link bundles are, how they are represented, and how
different aspects of their representations can be customized.

In this section

Links
Defines links and describes the support provided for links, link sets, and link bundles.

Representing links
Describes the way that links are represented.

Customizing link representations
Provides details about the CSS properties that you can use to customize the representation
of links.

Changing the representation of individual links
Describes how to customize links by making the representation of a specific link different
from the others.

Customizing the link information cluster
Describes how to customize the link information cluster which groups the decorations
displayed on a link.

Customizing link media
Describes how to create a new link medium.

Customizing link technology
Describes how to create a new link technology. This operation is similar to adding a new
medium to links.

© Copyright IBM Corp. 1987, 2009 213

Customizing various aspects of links
Lists the properties available for customizing different aspects of links in CSS.

Customizing link tiny types
Describes how to customize the tiny types for links with examples.

Customizing link sets
Discusses link set representation and describes how to set the interlink distance within a
link set.

Customizing link bundles
Describes how link bundles are represented and how to customize this representation.

Customizing link set and link bundle tiny types
Describes how to customize the tiny types for link sets and link bundles with examples.

S T Y L I N G214

Links

Links are predefined business objects that represent a connection between two network
elements.

ILOG JViews TGO provides the following predefined link support:

Links
Links are used to display the transmission elements making up the network lines. Links
feature the same dynamic display as network elements. For more information on links,
see Links.

Link sets
Link sets let you group together links between two nodes, so that the graph layout cannot
insert a link that is not in the link set between them or have them follow different paths.
You can fix the order of the links in the set and specify the distance that separates two
links.

For more information on link sets, see Link sets.

Link bundles
Link bundles let you group together links between two nodes. You can collapse a link
bundle to show only a single link (an overview link). The single link has an icon, when
you click it, it causes the link bundle to expand and show the child links.

For more information on link bundles, Link bundles.

S T Y L I N G 215

Representing links

The graphic representation of a link is based on the information that is available in the
business model. Each decoration that is created depends on an attribute and on properties
that can be customized through CSS. Figure Link with attributes shows a link with the
following attribute set:

♦ Media: Fiber

♦ Name: NE1-NE2

♦ Object State: BiSONET Object State

Link with attributes

S T Y L I N G216

Customizing link representations

Some properties are mapped, which means that they are computed on the basis of the state
and alarm information set in the object (column Set).

The properties can be divided into three categories:

♦ Properties applying to the link base

♦ Properties applying to the arrows on link base elements

♦ Properties applying to the inner line of link base elements

CSS properties applying to the link base
DescriptionDefault ValueSetTypeProperty Name

Specifies the background color; if this value
is null, it is interpreted as a transparent
color

Transparent
(null)

YesColorbackground

Specifies the foreground color of the base.28% gray in the
IltObject
class style

YesColorforeground

Specifies the color of the border lines of the
linear base.

10% grayYesColorborderColor

Specifies the color of the background of the
border lines. It is used only if the line style is
not solid.

60% grayYesColorborderColor2

Determines the width of each border. If the
borderWidth property is zero (0), no border
line will be drawn.

1 pixelYesFloatborderWidth

Stores the line style of the border lines.null (Solid)Yesfloat[]borderLineStyle

Discriminates between two identical border
lines (false value) and two differently
colored borders to produce a relief effect.

trueYesBooleanreliefBorders

Defines the style of the linear base.null (Solid)Yesfloat[]lineStyle

Defines the width of the center line of the
base in the case of a linear base.

5fYesFloatlineWidth

If the value of this property is not zero, the
width of the center line is augmented or

0NoFloatforcedWidth

S T Y L I N G 217

DescriptionDefault ValueSetTypeProperty Name

diminished so that the total width equals the
width stored in forcedWidth.

CSS properties applying to arrows on link base elements
DescriptionDefault

Value
SetTypeProperty Name

These two properties determine
whether there is an arrow or not at the
beginning and end of the link

falseYesbooleanhasFromArrow

hasToArrow

Define the length of the arrow at the
beginning and end of the link

8 pixelsNofloatfromArrowSize

toArrowSize

Define the color of the center of the
arrow, if the arrow has a border, or the
whole arrow, if the arrow has no border

28% grayYesColorfromArrowColor

toArrowColor

Gives a relief effect to the arrow bordertrueYesbooleanfromArrowReliefBorders

toArrowReliefBorders

Defines the color of the arrow border10% grayYesColorfromArrowBorderColor

toArrowBorderColor

If FromArrowReliefBorders (or
ToArrowReliefBorders) is true ,

60% grayYesColorfromArrowBorderColor2

toArrowBorderColor2 this property defines the dark color of
the relief effect

CSS properties applying to the inner line of link base elements
DescriptionDefault

Value
SetTypeProperty Name

Denotes the width of the center line of
the inner part of the link base, if any.

null (Solid)Yesfloat[]innerLineWidth

Defines the width of the border line of the
inner part of the link base, if any.

0YesfloatinnerBorderWidth

Defines the style of the inner line of the
link base, if any

SolidYesfloat[]innerLineStyle

Defines the foreground color of the inner
line of the link base, if any

28% grayYesColorinnerForeground

Defines the background color of the inner
line of the link base, if any

transparent
(null)

YesColorinnerBackground

Discriminates between two identical
border lines (false value) and two

trueYesbooleaninnerReliefBorders

S T Y L I N G218

DescriptionDefault
Value

SetTypeProperty Name

differently colored borders to produce a
relief effect for the inner line, if any

Stores the line style of the border lines of
the inner line, if any

SolidYesfloat[]innerBorderLineStyle

Specifies the color of the border lines of
the inner line, if any

10% grayYesColorinnerBorderColor

Specifies the color of the background of
the border lines of the inner line, if any.
It is used only if the line style is not solid.

60% grayYesColorinnerBorderColor2

The inner line set of properties apply to links that use the IltBiSONET object state.You
can also customize other links with an inner line.

Note:

S T Y L I N G 219

Changing the representation of individual links

By default, the representation of the base of a link is determined by its base style, which is
itself calculated from the state of the link.

How to change the graphical representation of a link (using CSS)
You might want to define specific link representations, regardless of the base styles managed
by JViews TGO (when you do not use states, for example). In this case, you can change the
representation of the link using cascading style sheets.

The following example shows an extract of a CSS file which changes the representation of
a given link. Note that to make this possible, you must use the object state
IltAlarmObjectState, IltTrapObjectState, or no object state at all for this specific link,
since using another state system would force the appearance of the link base.

#myLink {
centerWidth: 6;
foreground: blue;
background: '';
lineStyle: "3.000001, 1.000001";
borderWidth: 3;
borderColor: yellow;
borderColor2: blue;
reliefBorders: false;
borderLineStyle: Dot;

}

For details on how to load a configuration like this one in a network component, see How
to load a CSS file in a network component.

The link is represented as a hatched central line with a blue background color and two
identical border lines hatched in yellow on a transparent background, as shown below:

Customizing a link representation

Changing the representation of links based on states and llarms
For details about how to customize the links that are based on object and alarm states, refer
to Customizing the object representation based on states.

S T Y L I N G220

Customizing link states and alarms
For information on how to customize the link representation when it contains states and
alarms, refer to Customizing object and alarm states of predefined business objects. The
information that you will find in that section is valid for all IltObject classes.

S T Y L I N G 221

Customizing the link information cluster

The link information cluster designates the group of decorations displayed in the middle of
the link. This cluster can show the name, media, technology, alarm count, or any combination
of them grouped in a plinth.

Link information cluster properties
The properties listed in the following table allow you to customize the link information
cluster.

CSS properties for the link information cluster
DescriptionDefault

Value
SetTypeProperty Name

Defines the offset used to attach the
link information cluster to the center of
the link.

0,0NoIlpPointdecorationsOffset

Denotes the color of the plinth.67% greyYesColorplinthColor

Denotes the brighter color of the plinth.87% greyYesColorplinthBrightColor

Denotes the darker color of the plinth.33% greyYesColorplinthDarkColor

Denotes whether the plinth is visible
or not.

trueNobooleanplinthVisible

Defines the vertical margin between
the plinth and its contents.

1NointplinthVerticalMargin

Defines the horizontal margin between
the plinth and its contents.

4NointplinthHorizontalMargin

Denotes whether or not to use the
alarm color to display the link base. If

falseNobooleanuseAlarmColorForBase

the alarm color is not used, the regular
properties linked to each primary state
are used.

How to customize the link information cluster
The following CSS extract shows how to customize the position of a link information cluster.
By default, the cluster is positioned in the center of the middle segment of links. You can
fine-tune this position by defining an offset that will be applied relative to the default position.

object."ilog.tgo.model.IltLink" {
decorationsOffset: "5,0";

}

S T Y L I N G222

Customizing link media

This operation is similar to adding a new function or family for network elements.

How to create a new link medium (using the API)
To create a new link medium, you must extend the IltLink.Media enumeration. You can
map the new medium to an icon.

IltLink.Media satellite = new IltLink.Media("satellite");
IlpContext context = IltSystem.GetDefaultContext();
IlpImageRepository imageRep = context.getImageRepository();
Image satelliteImage = imageRep.getImage("sat.png");
IltSettings.SetValue("Link.Media.satellite.Icon", satelliteImage);

How to create a new link medium (using CSS)
You can create new link media by using global CSS settings.

setting."ilog.tgo.model.IltLink"{
media[0]: @+linkMedia0;

}
Subobject#linkMedia0 {
class: 'ilog.tgo.model.IltLink.Media';
name: "satellite";

}

For more information, see Using global settings.

How to customize a link medium (using CSS)
You can obtain the same customization as with the API by using global CSS settings. To do
so, you need to specify the full path to the object to be customized, as well as the value of
its name attribute in order to match the right object in the system. The CSS property to
customize here is icon.

setting."ilog.tgo.model.IltLink.Media"[name="satellite"] {
icon: '@|image("sat.png")';

}

The following properties allow you to customize the representation of link media:

S T Y L I N G 223

CSS properties for link media
DescriptionDefault ValueSetTypeProperty Name

Defines whether the media icon is
visible or not.

trueNobooleanmediaVisible

Defines the image to be used to
represent the media in a given link.

The image defined for each
media value in
IltSettings

YesImagemediaIcon

How to hide link media
You can show or hide link media using the property mediaVisible as follows:

object."ilog.tgo.model.IltLink" {
mediaVisible: false;

}

Tooltips for link media
Link media are associated with a default tooltip which is retrieved from the JViews TGO
resource bundle (see About internationalization in the Context and Deployment Descriptor
documentation).

The resource that applies to link media is:

♦ ilog.tgo.Link_Media_<MEDIA NAME>_ToolTip: link media tooltips

For the predefined link media, you can edit this value directly in the JViews TGO resource
bundle file.

For newly created media values, the tooltip information will also be retrieved from this
resource bundle. As you declare newmedia, register the corresponding entry in the resource
bundle file so that tooltips can be automatically displayed.

Considering that you have created the link media "satellite", you should declare the entry
in the resource bundle file as follows:

♦ ilog.tgo.Link_Media_satellite_ToolTip=Satellite

S T Y L I N G224

Customizing link technology

How to create a new link technology (using the API)
To create a new link technology, you must extend the IltLink.Technology enumeration.

You map the new technology to an icon and a color.

IltLink.Technology pSwitching = new IltLink.Technology("PacketSwitching");
IlpContext context = IltSystem.GetDefaultContext();
IlpImageRepository imageRep = context.getImageRepository();
Image pSwitchingImage = imageRep.getImage("pSwitching.png");
IltSettings.SetValue("Link.Technology.PacketSwitching.Icon",

pSwitchingImage);
IltSettings.SetValue("Link.Technology.PacketSwitching.Color", new

Color(128,196,210));

How to create a new link technology (using CSS)
You can create new link technologies by using global CSS settings.

setting."ilog.tgo.model.IltLink" {
technology[0]: @+linkTechnology0;

}
Subobject#linkTechnology0 {

class: 'ilog.tgo.model.IltLink.Technology';
name: "PacketSwitching";

}

For more information, see Using global settings.

Customizing link technologies
You can obtain the same customization as with the API by using global CSS settings. To do
so, you need to specify the full path to the object to be customized, as well as the value of
its name attribute in order to match the right object in the system. The CSS properties to
customize here are icon and color.

setting."ilog.tgo.model.IltLink.Technology"[name="PacketSwitching"] {
icon: '@|image("pSwitching.png")';
color: '#80C4D2';

}

The following properties allow you to customize the representation of link technology:

S T Y L I N G 225

CSS properties for link technology
DescriptionDefault ValueTypeProperty Name

Defines whether the link technology
icon is visible or not.

falsebooleantechnologyIconVisible

Defines whether the link technology
color is mapped to the link base or
not.

falsebooleantechnologyColorVisible

Defines a border around the
technology icon, in pixels.

1inttechnologyIconBorder

Defines the image to be used to
represent the technology in a given
link.

The image defined for
each technology value
in IltSettings

ImagetechnologyIcon

Defines the color to be used to
represent the technology in a given
link.

The color defined for
each technology value
in IltSettings

ColortechnologyColor

How to show link technology
By default, the link technology is hidden, but you can show or hide it using the properties
technologyIconVisible and technologyColorVisible as follows:

object."ilog.tgo.model.IltLink" {
technologyIconVisible: true;
technologyColorVisible: true;

}

Note that the primary state color of a link will override the technology color. You can force
the link technology color by using the property baseStyleEnabled as follows:

object."ilog.tgo.model.IltLink" {
baseStyleEnabled: false;

}

How to customize the link technology tooltip
The resource that applies to link technology is:

ilog.tgo.Link_Technology_<TECHNOLOGY NAME>_ToolTip: link technology tooltip

For the predefined link technology, you can edit this value directly in the JViews TGO resource
bundle file.

For newly created technology values, the tooltip information will also be retrieved from this
resource bundle. As you declare new technologies, register the corresponding entry into
the resource bundle file so that tooltips can be automatically displayed.

Supposing that you have created the link technology PacketSwitching, you should declare
the entry in the resource bundle file as follows:

S T Y L I N G226

ilog.tgo.Link_Technology_PacketSwitching_ToolTip=Packet Switching

S T Y L I N G 227

Customizing various aspects of links

Customizing link names
You can customize the display of link names through the following CSS properties:

♦ label

♦ labelVisible

♦ labelFont

♦ labelForeground

♦ labelBackground

♦ labelPosition

♦ labelAntialiasing

♦ labelSpacing

♦ labelWrappingMode

♦ labelWrappingWidth

♦ labelWrappingHeight

♦ labelMargin

♦ labelAlignment

♦ labelBorderColor

♦ labelDirection

♦ lineSpacing

♦ minLabelZoom

♦ maxLabelZoom

♦ labelScaleFactor

Refer to Customizing the label of a business object for details on these properties and how
to use them.

Customizing link tooltips
You can customize the display of link tooltips through the following CSS properties:

♦ toolTipGraphic

♦ toolTipText

S T Y L I N G228

For details on these properties and how to use them, refer to Changing the font of all labels
.

Adding new decorations to links
You can add new decorations to the predefined business objects representation.

For details, refer to How to add new decorations to network and equipment nodes.

Customizing link port configuration
You can customize the way links connect to nodes through the following CSS properties:

♦ linkPorts

♦ fromPort

♦ toPort

Refer to Customizing node and link layouts for details on these properties and how to use
them.

Customizing link label layout
You can fine-tune the layout of link labels in a network through the CSS properties described
in Customizing link label layout.

For details about the label layout, refer to Label layout.

S T Y L I N G 229

Customizing link tiny types

In the tree and table components, link objects are represented as tiny objects. Each link tiny
type can be associated with a tiny base renderer that draws the tiny graphic representation.

JViews TGO allows you to customize the tiny type representation by using one of the
predefined base renderer factories, such as IltTinyImageBaseRendererFactory or
IltTinySVGBaseRendererFactory, or by creating your own implementation of
IltTinyBaseRenderer. The principle to create a new IltTinyBaseRenderer is the same as
to create a new IltNEBaseRenderer. For details, refer to Extending the class
IltNEBaseRenderer.

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

How to create and register a link tiny type (using the API)

IltObject.TinyType MyTinyType = new IltObject.TinyType("MyTinyType");
IltSettings.SetValue("Link.TinyType.MyTinyType.Renderer",
new IltTinyImageBaseRendererFactory(YOUR_IMAGE, YOUR_IMAGE_PARAMETERS));

How to create and register a link tiny type (using CSS)
You can also create new tiny types by using global CSS settings (:

setting."ilog.tgo.model.IltObject"{
tinyTypes[0]: @+tinyType0;

}
Subobject#tinyType0 {
class: 'ilog.tgo.model.IltObject.TinyType';
name: "MyTinyType";

}

For more information, see Using global settings in Using Cascading Style Sheets.

How to customize a link tiny type (using CSS)
You can customize the renderer using global CSS settings. The CSS property to customize
here is linkTinyRenderer. In the following example, the name of the renderer factory class
that is included in the search path is MyLinkTinyRendererFactory.

setting."ilog.tgo.model.IltLink.TinyType"[name="MyTinyType"] {
tinyRenderer: @+linkTinyRendererFactory;

}
Subobject#linkTinyRendererFactory {

class: 'MyLinkTinyRendererFactory';
}

S T Y L I N G230

Customizing link sets

Link sets do not have a graphic representation in the network and equipment components.
Instead, they are used to group together multiple links that may exist between two nodes,
so that the graph layout cannot insert a link that is not in the link set or have the links follow
different paths.

You can customize a link set through the CSS property listed in the following table.

CSS property for link sets
DescriptionDefault ValueTypeProperty Name

Defines the distance between the links that are part of
the link set

2floatlinkDistance

How to set the link distance in a link set

object."ilog.tgo.model.IltLinkSet" {
linkDistance: 4;

}

S T Y L I N G 231

Customizing link bundles

Representing link bundles and customizing different
representations
A link bundle has two graphic representations. The collapsed representation shows the
bundle as a single link (overview link) connecting two end points. In this representation, all
CSS properties described for links also apply to link bundles (see Representing links).

When the link bundle is expanded, the overview link is replaced by the child links, which
are then represented as a link set. In the expanded representation, the link bundle can be
customized through the property shown in the following table.

CSS properties for link bundles
DescriptionDefault ValueTypeProperty Name

Defines the distance between the links that are part of
the link bundle.

2floatlinkDistance

How to customize a link bundle representation through CSS
The following application is provided as part of the ILOG JTGO demonstration software:
<installdir> /samples/network/links/index.html

It shows how to customize a link bundle representation in its collapsed and expanded forms.

The following CSS extract customizes the width of all link bundles to be larger than the
standard links. It also customizes the link bundle identified as linkBundle78 to display a
distance of 5 pixels between its inner links:

object."ilog.tgo.model.IltLinkBundle" {
forcedWidth: 10;

}

#linkBundle78 {
linkDistance: 5;

}

Customizing the container icon of a link bundle
You can also customize the visibility of the container icon that is automatically displayed
and allows you to expand/collapse the link bundle. You can customize the container icon
using the CSS properties listed in the following table.

S T Y L I N G232

CSS properties for link bundle container icons
DescriptionDefault

Value
TypeProperty Name

Indicates whether the container icon
collapses or expands and whether it
should be visible or not in an object

truebooleancontainerStatusVisible

Indicates whether the in-place
expansion icon is added to the

truebooleancontainerExpansionIconVisible

overview object of a container. (The
value of containerStatusVisible
must be set to true.)

Indicates whether the collapse icon is
added to the child objects of a link

truebooleancontainerCollapseIconVisible

bundle. (The value of
containerStatusVisible must be
set to true.)

S T Y L I N G 233

Customizing link set and link bundle tiny types

Link set and link bundle tiny types are customized in a similar way to the link tiny type (see
Customizing link tiny types.

How to customize a link set and a link bundle tiny type (using the
API)

IltSettings.SetValue("LinkSet.TinyType.Standard.Renderer",
new IltTinyImageBaseRendererFactory(YOUR_IMAGE, YOUR_IMAGE_PARAMETERS));

IltSettings.SetValue("LinkBundle.TinyType.Standard.Renderer",
new IltTinyImageBaseRendererFactory(YOUR_IMAGE, YOUR_IMAGE_PARAMETERS));

How to customize a link set and a link bundle tiny type (using CSS)
The CSS property to use for customizing is tinyRenderer.

setting."ilog.tgo.model.IltLinkSet.TinyType"[name="Standard"] {
tinyRenderer: @+linkSetTinyRendererFactory;

}
Subobject#linkSetTinyRendererFactory {

class: 'MyLinkSetTinyRendererFactory';
}

setting."ilog.tgo.model.IltLinkBundle.TinyType"[name="Standard"] {
tinyRenderer: @+linkBundleTinyRendererFactory;

}
Subobject#linkBundleTinyRendererFactory {

class: 'MyLinkBundleTinyRendererFactory';
}

S T Y L I N G234

Customizing groups

Describes what groups are and how to customize groups and each attribute/decoration of
a group representation.

In this section

Groups
Describes what groups are and lists the predefined groups.

Representing groups and attributes
Describes how groups with attributes are represented.

Customizing group representations
Provides details about the CSS properties that you can use to customize the representation
of groups.

Customizing various aspects of groups
Lists the properties for customizing various aspects of groups.

© Copyright IBM Corp. 1987, 2009 235

Groups

Groups are predefined business objects that are used to represent a set of network resources
grouped logically or geographically.

ILOG JViews TGO provides the following predefined groups:

Polygonal groups
Polygonal groups are defined by the class IltPolyGroup. Polygonal groups are very
useful for dividing a network into regions and associating those regions with topographic
zones visible on a map.

The shape of a polygonal group is defined by the class IlpPolygon. This class describes
a closed polyline made up of an array of points. This polyline can have any number of
sides.

Polygonal groups have a semitransparent background (through which a background
map can be seen) and a thick outline. When alarms or statuses are displayed, they are
grouped in an information cluster that is positioned at the center of the polygon, as
shown in Polygonal group with information cluster.

Polygonal group with information cluster

Rectangular groups
Rectangular groups are defined by the class IltRectGroup. Rectangular groups are
generally used to hold network elements located in the same place such as a site, a
building, or a city.

The shape of a rectangular group is defined by the class IlpRect, which describes a
rectangle. Rectangular groups can be resized to create any kind of rectangular container.

Rectangular groups are represented by opaque relief rectangles as shown in Rectangular
group with information cluster. When alarms are displayed, they are grouped in an
information cluster that is positioned at the center of the rectangle.

Rectangular group with information cluster

Linear groups
Linear groups are defined by the class IltLinearGroup. Linear groups represent a linear
collection of objects and can be used to display, for example, all the repeaters between
two line termination network elements.

S T Y L I N G236

The shape of a linear group is defined by the class IlpPolyline. This class describes an
open polyline made up of an array of points.

When alarms or secondary states are displayed on a linear group, an information cluster
appears at the center of its median segment. The median segment is the segment
containing the midpoint of the shape.

Linear group with information cluster

S T Y L I N G 237

Representing groups and attributes

The graphical representation of a group is based on the infomation that is available in the
business model. Each decoration that is created depends on an attribute and on properties
that can be customized through CSS.

The following figure shows a polygonal group with the following attribute set:

♦ Name: Region

♦ Icon: ilogic.png

♦ Object State: OSI object state

Group with attributes

The graphic rendering of a group object is optimized for performance using an offscreen
buffered image technique that minimizes the complex polygon computations by pre-rendering
the graphic object in memory. The extra memory required is proportional to the size and
number of visible objects in the Network view.

To disable the offscreen optimizations for the group representation:

♦ Set the ilog.tgo.polygon.offscreenCache system property to false at initialization
time.

♦ Use the following API call:

IltSettings.SetValue("OffscreenCache.Polygon", Boolean.FALSE);

For more information on how to declare system properties for Java™ applications and applets,
refer to the Java Runtime documentation.

S T Y L I N G238

Customizing group representations

Some properties are mapped, which means that they are computed on the basis of the state
and alarm information set in the object (column Set).

The properties can be divided into three categories:

♦ Polygonal group properties

♦ Rectangular group properties

♦ Linear group properties

Polygonal group properties
The following properties are used to draw the interior of a polygonal group:

CSS properties for the interior of polygonal groups
DescriptionDefault ValueSetTypeProperty

Name

Denotes the foreground
color of the base of an
object.

28% greyYes, if
baseStyleEnabled
is true

Colorforeground

No, otherwise

Denotes the background
color of the base of an
object.

nullYes, if
baseStyleEnabled
is true

Colorbackground

No, otherwise

Denotes the style used to fill
the base.

IlFillStyle.
PATTERN

Noilog.util.
IlFillStyle

fillStyle

Possible values are:

IlFillStyle.NO_FILL

IlFillStyle.
SOLID_COLOR

IlFillStyle.
LINEAR_GRADIENT

IlFillStyle.
RADIAL_GRADIENT

IlFillStyle.TEXTURE

IlFillStyle.PATTERN

Denotes the pattern used to
fill the base of an object.

DotsYes, if
baseStyleEnabled
is true

IlPatternfillPattern

This property is only used if

S T Y L I N G 239

DescriptionDefault ValueSetTypeProperty
Name

fillStyle is set to
IlFillStyle.PATTERN.

No, otherwise

Possible values are:

Dots

GroupFilling

ThinHatching

Denotes the texture used to
fill the base of an object.

nullNoImagefillTexture

This property is only used if
fillStyle is set to
IlFillStyle.TEXTURE.

Denotes the angle (in
degrees) of the gradient

0NofloatfillAngle

used to fill the base of an
object. This property is only
used if fillStyle is set to
IlFillStyle.
RADIAL_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

Denotes the position where
the gradient of an object

0NofloatfillStart

starts, that is, where the
color is the one defined by
the property foreground.
This property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

Denotes the position where
the gradient of an object

100NofloatfillEnd

ends, that is, where the color
is the one defined by the
property background. This
property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

The following properties are used to draw the outline of a polygonal group. A border is
displayed around the outline of the group.

S T Y L I N G240

CSS properties for the outline of polygonal groups
DescriptionDefault

Value
SetTypeProperty Name

Denotes the line style used to
display the outline of a
polygonal group.

null
(Solid)

Yes, if
baseStyleEnabled
is true

float[]lineStyle

No, otherwise

Denotes whether the outline is
visible or not.

trueNobooleanoutlineVisible

Denotes the color of the outline.grey, or the
alarm color,
if any.

YesColoroutlineColor

Denotes whether the outline of
the polygon is drawn inside the

falseNobooleanoutlineInside

shape or symetrically on either
side of the shape edge.

Denotes the distance between
the edge of the shape and the

nullNoIlpPointoutlineOffset

outline of the polygon, when

S T Y L I N G 241

DescriptionDefault
Value

SetTypeProperty Name

outlineInside is set to
true.

Denotes the width of the
polygon outline.

8NofloatoutlineWidth

Denotes the width of the relief
on the polygon outline.

1NofloatreliefThickness

Denotes the primary color of the
base border.

10% greyYes, if
baseStyleEnabled
is true

ColorborderColor

No, otherwise

Denotes the secondary color of
the base border.

60% greyYes, if
baseStyleEnabled
is true

ColorborderColor2

No, otherwise

Denotes the width of the base
border.

1Yes, if
baseStyleEnabled
is true

floatborderWidth

No, otherwise

Denotes whether the base
border is drawn in relief or not.

trueYes, if
baseStyleEnabled
is true

booleanreliefBorders

No, otherwise

Denotes the line style used to
draw the base border.

null
(Solid)

Yes, if
baseStyleEnabled
is true

float[]borderLineStyle

No, otherwise

How to customize the representation of polygonal groups
The following CSS extract shows how to customize the graphic representation of a polygonal
group to display an empty group with a thinner outline:

object."ilog.tgo.model.IltPolyGroup" {
fillStyle: NO_FILL;
outlineWidth: 4.0;
outlineInside: false;

}

Rectangular group properties
The following properties are used to draw the interior of a rectangular group:

S T Y L I N G242

CSS properties for the interior of rectangular groups
DescriptionDefault ValueSetTypeProperty

Name

Denotes the foreground
color of the base of an
object.

28% greyYes, if
baseStyleEnabled
is true

Colorforeground

No, otherwise

Denotes the background
color of the base of an
object.

nullYes, if
baseStyleEnabled
is true

Colorbackground

No, otherwise

Denotes the style used to fill
the base of an object.

IlFillStyle.
PATTERN

Noilog.util.
IlFillStyle

fillStyle

Possible values are:

IlFillStyle.NO_FILL

IlFillStyle.
SOLID_COLOR

IlFillStyle.
LINEAR_GRADIENT

IlFillStyle.
RADIAL_GRADIENT

IlFillStyle.TEXTURE

IlFillStyle.PATTERN

Denotes the pattern used to
fill the base of an object.

null (Solid)Yes, if
baseStyleEnabled
is true

IlPatternfillPattern

This property is only used if
fillStyle is set to
IlFillStyle.PATTERN.No, otherwise

Denotes the texture used to
fill the base of an object.

nullNoImagefillTexture

This property is only used if
fillStyle is set to
IlFillStyle.TEXTURE.

Denotes the angle (in
degrees) of the gradient

0NofloatfillAngle

used to fill the base of an
object. This property is only
used if fillStyle is set to
IlFillStyle.
RADIAL_GRADIENT or

S T Y L I N G 243

DescriptionDefault ValueSetTypeProperty
Name

IlFillStyle.
LINEAR_GRADIENT.

Denotes the position where
the gradient of an object

0NofloatfillStart

starts, that is, where the
color is the one defined by
the property foreground.
This property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

Denotes the position where
the gradient of an object

100NofloatfillEnd

ends, that is, where the color
is the one defined by the
property background. This
property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

The following properties are used to draw the border of a rectangular group.

S T Y L I N G244

CSS properties for the border of rectangular groups
DescriptionDefault

Value
SetTypeProperty Name

Denotes the width of the base
border when the property
reliefBorders is true.

2NofloatreliefThickness

Denotes the primary color of the
base border.

10% greyYes, if
baseStyleEnabled is
true

ColorborderColor

No, otherwise

Denotes the secondary color of
the base border.

60% greyYes, if
baseStyleEnabled is
true

ColorborderColor2

No, otherwise

Denotes the width of the base
border when reliefBorders
is set to false.

1Yes, if
baseStyleEnabled is
true

floatborderWidth

No, otherwise

Denotes whether the base
border is drawn in relief or not.

trueYes, if
baseStyleEnabled is
true

booleanreliefBorders

No, otherwise

Denotes the line style used to
draw the base border.

null
(Solid)

Yes, if
baseStyleEnabled is
true

float[]borderLineStyle

No, otherwise

Denotes the pattern used to
draw the base border when the
group is in the OOS state.

nullYes, if
baseStyleEnabled is
true

IlPatternborderPattern

No, otherwise

How to customize the representation of rectangular groups
The following CSS extract shows how to customize a rectangular group so that its graphic
representation is filled with a gradient.

object."ilog.tgo.model.IltRectGroup" {
fillStyle: LINEAR_GRADIENT;
background: yellow;
foreground: blue;

}

S T Y L I N G 245

Linear group properties
The following properties are used to draw the interior of a linear group:

CSS properties for the interior of linear groups
DescriptionDefault

Value
SetTypeProperty

Name

Denotes the width of the linear
base.

8NofloatlineWidth

Denotes the foreground color
of the base.

28% greyYes, if
baseStyleEnabled is
true

Colorforeground

No, otherwise

Denotes the background color
of the base.

nullYes, if
baseStyleEnabled is
true

Colorbackground

No, otherwise

Denotes the line style used to
display a linear group.

null (Solid)Yes, if
baseStyleEnabled is
true

float[]lineStyle

No, otherwise

The following properties are used to draw the border of a linear group.

S T Y L I N G246

CSS properties for the border of linear groups
DescriptionDefault

Value
SetTypeProperty Name

Denotes the width of the relief
around the linear group.

2NofloatreliefThickness

Denotes the primary color of
the base border.

10% greyYes, if
baseStyleEnabled is
true

ColorborderColor

No, otherwise

Denotes the secondary color
of the base border.

60% greyYes, if
baseStyleEnabled is
true

ColorborderColor2

No, otherwise

Denotes the width of the base
border when reliefBorders
is set to false.

1Yes, if
baseStyleEnabled is
true

floatborderWidth

No, otherwise

Denotes whether the base
border is drawn in relief or not.

trueYes, if
baseStyleEnabled is
true

booleanreliefBorders

No, otherwise

Denotes the line style used to
draw the base border.

null
(Solid)

Yes, if
baseStyleEnabled is
true

float[]borderLineStyle

No, otherwise

How to customize the representation of linear groups
The following CSS extract shows how to customize a linear group so that its graphic
representation shows a link with a width of 4 pixels in an alternate line style. The linear
group is also configured so that it does not display a border around its base.

object."ilog.tgo.model.IltLinearGroup" {
lineWidth: 4;
lineStyle: "5,2";
foreground: blue;
background: yellow;
reliefBorders: false;
borderWidth: 0;

}

S T Y L I N G 247

Customizing various aspects of groups

Customizing group names
You can customize the display of group names through the following CSS properties:

♦ label

♦ labelVisible

♦ labelFont

♦ labelForeground

♦ labelBackground

♦ labelPosition

♦ labelAntialiasing

♦ labelSpacing

♦ labelWrappingMode

♦ labelWrappingWidth

♦ labelWrappingHeight

♦ labelMargin

♦ labelAlignment

♦ labelBorderColor

♦ labelDirection

♦ lineSpacing

♦ minLabelZoom

♦ maxLabelZoom

♦ labelScaleFactor

Refer to Customizing the label of a business object for details on these properties and how
to use them.

Customizing group icons
The following table lists the CSS properties that can be used to customize the group icon.

S T Y L I N G248

CSS properties for group icons
DescriptionDefault ValueTypeProperty Name

Defines the icon to be displayed in the group.nullImageicon

Defines whether the icon is visible or not in the group.truebooleaniconVisible

How to customize a group icon
The following example adds a test icon to all groups present in the graphic component.

object."ilog.tgo.model.IltGroup" {
iconVisible: true;
icon: '@|image("test.png")';

}

Customizing group shortcuts
The shortcut representation is displayed according to the business object CSS configuration.
The following properties can be used to customize the shortcut representation.

CSS properties for group shortcuts
DescriptionDefault ValueTypeProperty Name

Defines the icon to be used in
the shortcut representation.

ilt_shortcut.png for the
standard representation

ImageshortcutIcon

ilt_dangling_shortcut.
png for the dangling
representation

Defines whether the shortcut
icon is displayed or not.

truebooleanshortcutIconVisible

The result is shown in the following images:

Standard shortcuts

Dangling shortcuts

S T Y L I N G 249

Customizing group states and alarms
By default, groups do not graphically represent the primary state information. This behavior
can be changed through the following CSS property:

CSS property for group primary states
DescriptionDefault ValueTypeProperty Name

Denotes whether the object base representation
is affected by states and alarms present in the
object.

falsebooleanbaseStyleEnabled

You can also customize the visibility and characteristics of secondary states, alarm balloons
and alarm counts, as in the other predefined business objects.

For more information, refer to Customizing object and alarm states of predefined business
objects.

Customizing the group information cluster
All the structural and state information on a group—that is, its label, icon, plinth, secondary
state modifiers, and alarm balloon—are gathered into what is called the information cluster
of the group.

This cluster is positioned by placing a reference decoration at the center of the group. The
reference decoration is listed below and is applied in the given order:

♦ The plinth, if there is one; otherwise the secondary state modifiers serve as this reference
decoration, if there are any.

♦ If there are no secondary state modifiers, the reference decoration is the label, or the
icon if there is no label.

The center of the group is the center of the rectangle for a rectangular group, the gravity
center for polygonal groups, and the midpoint of the middle segment for linear groups.

You can modify the default positioning of the group information cluster by setting its relative
position as an offset.

When a transformer is applied to the group, that is, when it is moved or scaled, the same
transformer is applied to the offset of the group information cluster. In other words, the
cluster follows the group. This is true regardless of whether the cluster position was specified
with absolute or relative coordinates.

However, when the shape of the group is changed or the group is moved, the transformation
of the group shape is not guaranteed to be affine. As a result, this change in the group shape
is likely to change the default position of the group information cluster. You can specify
whether such a shape change will affect the cluster position or whether the cluster will keep
the same absolute coordinates. The property pinDecorations determines whether the
position of the group information cluster is considered relative to the default position and
will thus change if the default value changes.

You can define the above characteristics using CSS, with the following properties:

S T Y L I N G250

CSS properties for the group information cluster
DescriptionDefault

Value
TypeProperty Name

Denotes the offset used to attach the
group information cluster to the group
base.

nullIlpPointdecorationsOffset

Denotes whether the offset used to
attach the group information cluster to
the base can be zoomed or not.

falsebooleandecorationsOffsetZoomable

Denotes whether the group information
cluster remains unchanged even if the
group has its shape changed.

falsebooleanpinDecorations

The characteristics of the plinth decoration that is added to the group graphic representation
can also be customized, using the following properties.

CSS properties for the plinth decoration
DescriptionDefault

Value
SetTypeProperty Name

Denotes the color of the plinth.67% greyYesColorplinthColor

Denotes the brighter color of the
plinth.

87% greyYesColorplinthBrightColor

Denotes the darker color of the plinth.33% greyYesColorplinthDarkColor

Denotes whether the plinth is visible
or not.

trueNobooleanplinthVisible

Defines the vertical margin between
the plinth and its contents.

1NointplinthVerticalMargin

Defines the horizontal margin
between the plinth and its contents.

4NointplinthHorizontalMargin

Customizing group connection ports
The default behavior of links attached to groups is that they connect to the gravity decoration.
If a group does not have a label, an icon, a secondary state or any other gravity decoration,
the link connects to the base of the group. If the group has a label, the link connects to the
label so that you can only edit the link ports around the label. The same is true for other
decorations as well as for the plinth.

You can change this behavior through the property linksConnectToBase to make sure that
the links always connect to the base:

S T Y L I N G 251

CSS property for connecting links to the group base
DescriptionDefault

Value
TypeProperty Name

Denotes whether links always end at the group
base. If this property is set to true, links connect

falsebooleanlinksConnectToBase

to the bounding box of the base. Otherwise, they
connect to the group information cluster, if one
is present.

See also Customizing node and link layouts.

Customizing group tooltips
You can customize the display of group tooltips through the following CSS properties:

♦ toolTipGraphic

♦ toolTipText

For details on these properties and how to use them, refer to Changing the font of all labels.

Adding new decorations to groups
You can add new decorations to the predefined business objects representation.

For details, refer to How to add new decorations to network and equipment nodes.

S T Y L I N G252

Customizing subnetworks

Describes how subnetworks are represented and how to customize them.

In this section

Representing subnetworks
Describes how subnetworks are represented.

Customizing the representation of subnetworks
Describes how to customize the way subnetworks are represented.

© Copyright IBM Corp. 1987, 2009 253

Representing subnetworks

Subnetworks allow you to create applications that display a network inside another network.
They are created automatically by the ILOG JViews TGO network component when you
define a containment relationship between objects in the data source.

A subnetwork can be defined as any business object with child objects in the network
component. You can display it either collapsed or expanded in the network component.

♦ In the collapsed state, the subnetwork is represented as a single object.

♦ In the expanded state, the subnetwork is displayed with all the objects contained in it.

S T Y L I N G254

Customizing the representation of subnetworks

How to customize the overview object of a subnetwork
In the collapsed representation, the subnetwork is displayed using an overview object, which
is the graphic representation of the parent object as defined in the business model.

The following application is provided as part of the product_name demonstration software.
It shows how to define a subnetwork with specific properties: <installdir>
/samples/network/basic.

The properties are as follows:

♦ Business class: IltNetworkElement

♦ Identifier: SubNetwork1

♦ Name: SubNetwork

♦ Type: IltNetworkElement.Type.NMW

The graphical representation of the subnetwork in its collapsed state is provided by the
same attributes and properties defined for network element objects. When customizing your
subnetwork objects, you should use the CSS properties that apply to the business class used
as the overview object.

#SubNetwork1 {
functionVisible: false;
detailLevel: MaximumDetails;

}

How to customize the expanded representation of a subnetwork
The following example illustrates the use of CSS to customize the graphical representation
of an expanded subnetwork:

object."test.MyObject" {
subnetworkTitle: @name;
subnetworkTitleJustification: CENTER;
subnetworkFrame: TITLEBAR_FRAME;
subnetworkTitleColor: white;
subnetworkRightMargin: 3;
subnetworkLeftMargin: 3;

}

The following table lists all properties that can be used to customize subnetworks in their
expanded representation.

S T Y L I N G 255

CSS properties for expanded subnetworks
DescriptionDefault ValueTypeProperty Name

Denotes the background color
of a subnetwork.

Color(128,128,128,128)ColorsubnetworkBackground

Denotes the bottom margin of
the frame of a subnetwork.

5floatsubnetworkBottomMargin

Denotes whether the collapse
icon is added to the detail
objects of a subnetwork.

truebooleansubnetworkCollapseIconVisible

Denotes whether the in-place
expansion icon is added to the

truebooleansubnetworkExpansionIconVisible

overview object of a
subnetwork.

Denotes the color of the frame
around the subnetwork.

Color.blackColorsubnetworkForeground

Denotes the type of frame used
by the subnetwork. The
possible values are:

FILLED_RECTANGLE_FRAMEIlpObjectFrameTypesubnetworkFrame

TITLEBAR_FRAME

FILLED_RECTANGLE_FRAME

NO_FRAME

Denotes the left margin of the
frame of a subnetwork.

5floatsubnetworkLeftMargin

Defines whether the
subnetwork is opaque or not.

falsebooleansubnetworkOpaque

The value of this property is
taken into account only if
property subnetworkFrame
is set to TITLEBAR_FRAME. If
subnetworkFrame is set to
NO_FRAME,
subnetworkOpaque is
automatically set to false. If
subnetworkFrame is set to
FILLED_RECTANGLE_FRAME,

S T Y L I N G256

DescriptionDefault ValueTypeProperty Name

subnetworkOpaque is
automatically set to true.

Denotes the right margin of the
frame of a subnetwork.

5floatsubnetworkRightMargin

Defines whether the
subnetwork shows the title or
not.

falsebooleansubnetworkShowingTitle

Defines the title of the
subnetwork.

Empty stringStringsubnetworkTitle

Defines the color used in the
title of the subnetwork.

Color.whiteColorsubnetworkTitleColor

Defines the justification of the
title of the subnetwork. The
possiblle values are:

Left|TopintsubnetworkTitleJustification

Left|Top

Right|Top

Center|Top

Left|Bottom

Right|Bottom

Center|Bottom

Left|Top|Wrapped

Right|Top|Wrapped

Center|Top|Wrapped

Left|Bottom|Wrapped

Right|Bottom|Wrapped

Center|Bottom|Wrapped

Examples of values:

Left|Top|Wrapped, or
Right|Bottom

Denotes the top margin of the
frame of a subnetwork.

5floatsubnetworkTopMargin

How to use subnetwork properties in a user-defined class

object."mypackage.MyType" {
subnetworkTitle: @name;

S T Y L I N G 257

subnetworkTitleJustification: Center;
subnetworkFrame: TITLEBAR_FRAME;
subnetworkTitleColor: blue;
subnetworkRightMargin: 3;
subnetworkLeftMargin: 3;

}

How to customize subnetwork interactors
You can use the IlpGraphController methods setCollapsionBackgroundInteractor and
setExpandInteractor to customize subnetwork interactors to replace the default behavior
of expand/collapse when double-clicking a subnetwork.

IlpDefaultObjectInteractor objInteractor = new IlpDefaultObjectInteractor();
Action myAction = new TestAction();
objInteractor.setGestureAction(IlpGesture.BUTTON1_DOUBLE_CLICKED, myAction);
objInteractor.setPopupMenuFactory(new TestPopupMenuFactory());
networkComponent.getController().
setCollapsionBackgroundInteractor(objInteractor);

networkComponent.getController().setExpansionInteractor(objInteractor);

S T Y L I N G258

Customizing shelves and cards

Describes how shelves and cards are represented and how to customize the representations.

In this section

Representing physical telecommunication equipment
Describes the predefined business objects that represent items of telecommunications
equipment.

Representing shelves
Describes how a shelf is represented graphically.

Customizing shelf representations
Provides details about the CSS properties that you can use to customize the representation
of shelves.

Customizing various aspects of shelves
Describes how to customize shelf names, shelf states and alarms, shelf types, and shelf tiny
types.

Representing and customizing card carriers
Describes how card carriers are represented and customized.

Customizing various aspects of card carriers
Describes how to customize card carrier names, card carrier states and alarms, card carrier
types, and card carrier tiny types.

Representing and customizing cards
Describes how cards are represented and customized.

© Copyright IBM Corp. 1987, 2009 259

Customizing various aspects of card carriers
Describes how to customize card carrier names, card carrier states and alarms, card carrier
types, and card carrier tiny types.

Representing and customizing ports
Describes how ports are represented and customized.

Customizing various aspects of ports
Describes how to customize port names, port states and alarms, port types, and port tiny
types.

Representing and customizing LEDs
Describes how LEDs are represented and how to customize the representation.

Customizing various aspects of LEDs
Describes how to customize LED names, LED states and alarms, LED types, and LED tiny
types.

S T Y L I N G260

Representing physical telecommunication equipment

ILOG JViews TGO provides a set of predefined business objects that are targeted to create
physical views of telecommunication equipment.

The following business classes are available:

Shelves
A shelf is a rectangular frame made up of slots placed side by side. Each slot can hold
one card object.

Card carriers
A card carrier represents a piece of telecommunication equipment placed in a slot. A
card carrier differs from a basic card in the sense that it is a card container. A card
carrier contains slots; all cards placed inside a card carrier have the same size, which
is determined by the size of the card carrier. Shelf objects and card carrier objects can
contain card carriers.

Cards
A card represents a piece of telecommunication equipment placed in a slot inside a shelf.
Shelf objects and card carrier objects can contain cards.

Ports
A port represents a physical interface to connect a card to other sets of equipment. Card
objects can contain ports.

LEDs
A LED (Light Emitting Diode) is an object used to represent a state through a color. Most
types of equipment use LEDs as an interface to provide information to the user about
hardware and software conditions. Card objects can contain LEDs.

S T Y L I N G 261

Representing shelves

The graphical representation of a shelf is based on the information that is available in the
business model.

Although states and alarms may be associated with a shelf, you cannot display them in the
shelf graphic representation because a shelf is only a container for cards.

A shelf representation

S T Y L I N G262

Customizing shelf representations

Some properties are mapped, which means that they are computed on the basis of the state
and alarm information set in the object (column Set).

CSS properties for the representation of shelves, card carriers, cards and ports
DescriptionDefault ValueSetTypeProperty Name

Denotes the foreground color of
the object base.

28% gray in the
IltObject class
style

YesColorforeground

Denotes the background color of
the object base.

Transparent (null)YesColorbackground

Denotes the style used to fill the
base of an object.

IlFillStyle.
SOLID_COLOR for
user-defined
business objects

Network
node

ilog.util.
IlFillStyle

fillStyle

Possible values are:

IlFillStyle.NO_FILLIlFillStyle.
PATTERN for IlFillStyle.SOLID_COLOR
predefined
business objects IlFillStyle.

LINEAR_GRADIENT

IlFillStyle.
RADIAL_GRADIENT

IlFillStyle.TEXTURE

IlFillStyle.PATTERN

Denotes the texture used to fill the
base of an object. This property

nullNetwork
node

ImagefillTexture

is only used if fillStyle is set
to IlFillStyle.TEXTURE.

Returns the position where the
gradient of an object starts, that

0fNetwork
node

FloatfillStart

is, where the color is the one
defined by property foreground.
This property is only used if
fillStyle is set to
IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT.

Returns the position where the
gradient of an object ends, that is,

1fNetwork
node

FloatfillEnd

where the color is the one defined
by property background. This
property is only used if
fillStyle is set to

S T Y L I N G 263

DescriptionDefault ValueSetTypeProperty Name

IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT

Returns the angle (in degrees) of
the gradient used to fill the base

0Network
node

FloatfillAngle

of an object. This property is only
used if fillStyle is set to
IlFillStyle.
RADIAL_GRADIENT or
IlFillStyle.
LINEAR_GRADIENT

Denotes the pattern used to fill the
base of an object. This property

null (Solid)YesPatternfillPattern

is only used if fillStyle is set
to IlFillStyle.PATTERN.

Defines the level of detail to be
used to draw the base.

MaximumDetailsYesenumdetailLevel

Denotes the primary color of the
base border.

10% grayYesColorborderColor

Denotes the secondary color of
the base border.

60% grayYesColorborderColor2

Denotes the width of the base
border.

1 pixelYesfloatborderWidth

Denotes the line style used to
draw the base border.

null (Solid)Yesfloat[]borderLineStyle

Denotes the pattern used to draw
the base border.

nullYesPatternborderPattern

Denotes whether the base border
is drawn in relief or not.

trueYesbooleanreliefBorders

The above table of properties also applies to card carriers, cards and ports.Note:

A shelf also displays an outline around the slots and an alarm border in case of alarms. This
representation can be customized through the following additional property.

CSS property for the shelf outline
DescriptionDefault ValueTypeProperty Name

Denotes the outline color of a shelf.blackColorframeColor

S T Y L I N G264

Customizing various aspects of shelves

Customizing shelf names
In the network and equipment components, shelves do not display their names. Instead of
the shelf name, you see the slot labels, which are customized by using the property
XSlotLabels, or by setting the attribute xSlotIndex. The properties listed in the following
table can be used to customize slot labels.

CSS properties for slot labels
DescriptionDefault ValueTypeProperty Name

Denotes whether the slot numbers
along the x axis are displayed on top
of the shelf or not.

truebooleanXSlotNumbersOnTop

Denotes the distance between the slot
numbers and the shelf along the x axis.

1intXSlotNumbersOffset

Denotes the labels used on each slot
along the x axis.

nullString[]XSlotLabels

Controls whether the label is shown or
not.

truebooleanlabelVisible

Controls whether the label is drawn
using antialiasing or not.

truebooleanlabelAntialiasing

Specifies the font to use to draw the
label.

Helvetica 12, except:

- in IltShelf: Helvetica
10

FontlabelFont

- in IltShelfItem:
Helvetica 11 (Courier New
11 on Windows®)

Gives the color of the label text.black, except:ColorlabelForeground

- in IltEmptySlot: 50%
gray

How to customize shelf slot labels

object."ilog.tgo.model.IltShelf" {
labelVisible: true;
labelForeground: blue;
XSlotNumbersOffset: 3;

}

In the table and tree components, the shelf name displays with a tiny representation of the
shelf. Instead of the slot labels, the shelf name is represented using the same CSS properties
as for all the other predefined business objects. For a complete list of shelf name properties,
refer to Customizing the label of a business object.

S T Y L I N G 265

Customizing shelf states and alarms
Although states and alarms can be associated with a shelf, they cannot be displayed in the
graphical representation of the shelf in the network and equipment components because a
shelf is only a container for cards.

However, in the case of alarms, an alarm border is displayed around the shelf to indicate
the presence of outstanding alarms (but no alarm balloon or alarm count), as illustrated
below.

The following CSS properties are available to customize this representation.

CSS properties for the shelf alarm
DescriptionDefault ValueTypeProperty Name

Indicates whether the alarm border is visible or
not around the object base.

truebooleanalarmBorderVisible

Defines the width of the alarm border2 pixelsintalarmBorderWidth

Defines the color used to represent the alarm
border around the base. Setting the value to

null
(transparent)

ColoralarmBorderColor

null resets the alarm border color to its default
value

Determines whether the alarm color is visible
or not in the object value.

falsebooleanalarmColorVisible

How to customize shelf states and alarms
The following CSS extract shows how you can customize a shelf object to not display alarm
information.

object."ilog.tgo.model.IltShelf" {
alarmBorderVisible: false;
alarmColorVisible: false;

}

The predefined shelf type has a label and a tooltip specified in the JViews TGO resource
bundle. For details, see About internationalization.

The resources that apply to shelf types are identified as:

♦ ilog.tgo.Shelf_Type_<TYPE NAME>: shelf type labels

♦ ilog.tgo.Shelf_Type_<TYPE NAME>_ToolTip: shelf type tooltips

S T Y L I N G266

You can edit the values directly in the JViews TGO resource bundle file.

When you create new shelf types, the label and tooltip information will also be retrieved
from this resource bundle to be displayed, for example, in a table cell. As you declare new
shelf types, register the corresponding entries into the resource bundle file, as follows:

Considering that you have created the following new shelf type:

IltShelf.Type MyType = new IltShelf.Type("MyType");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.Shelf_Type_MyType=My Type

♦ ilog.tgo.Shelf_Type_MyType_ToolTip=My New Shelf Type

Customizing shelf types
In JViews TGO, the shelf type defines how the object base will be represented. Each shelf
type is associated with a specific base renderer that is in charge of drawing the object
according to its type and state information.

In JViews TGO, you can customize the base representation of a shelf object by defining a
new implementation of IltShelfBaseRenderer. The principle is the same as to create a new
IltNEBaseRenderer. For details, refer to Extending the class IltNEBaseRenderer.

How to create and register a shelf type (using the API)

IltShelf.Type MyType = new IltShelf.Type("MyType");

IltSettings.SetValue("Shelf.Type.MyType.Renderer",
new IltBaseRendererFactory() {
public IltBaseRenderer createValue() {
return new MyTypeBaseRenderer();

}
});

How to create and register a shelf type (using CSS)
You can create new shelf types by using global CSS settings as shown in the following code
sample.

setting."ilog.tgo.model.IltShelf"{
types[0]: @+shelfType0;

}
Subobject#shelfType0 {
class: 'ilog.tgo.model.IltShelf.Type';
name: "MyType";

}

For more information, see Using global settings.

S T Y L I N G 267

How to customize a shelf type (using CSS)
You can customize the shelf renderer using global CSS settings. To do so, you need to specify
the full path to the object to be customized, as well as the value of its name attribute in
order to match the right type of object in the system. The CSS property to customize is
renderer.

setting."ilog.tgo.model.IltShelf.Type"[name="MyType"] {
renderer: @+shelfRendererFactory;

}
Subobject#shelfRendererFactory {

class: 'MyShelfRendererFactory';
}

In this code sample, the name of the renderer factory class that is included in the search
path is MyShelfRendererFactory.

Customizing shelf tiny types
The shelf object can be represented as tiny objects in the tree and table components. Each
shelf type can be associated with a tiny base renderer that is responsible for drawing the
tiny graphic representation.

JViews TGO allows you to customize the tiny type representation by using one of the
predefined base renderer factories, such as IltTinyImageBaseRendererFactory or
IltTinySVGBaseRendererFactory, or by creating your own implementation of
IltTinyBaseRenderer. The principle to create a new IltTinyBaseRenderer is the same as
to create a new IltNEBaseRenderer.

For details, refer to Extending the class IltNEBaseRenderer.

How to modify a shelf tiny representation (using the API)

IltShelf.Type MyType = new IltShelf.Type("MyType");

IltSettings.SetValue("Shelf.TinyType.MyType.Renderer",
new IltTinyImageBaseRendererFactory(YOUR_IMAGE,

YOUR_IMAGE_PARAMETERS));

How to modify a shelf tiny representation (using CSS)
You can customize the renderer using global CSS settings. The CSS property to customize
here is tinyRenderer.

In the following example, the name of the renderer factory class that is included in the
search path is MyShelfTinyRendererFactory.

setting."ilog.tgo.model.IltShelf.Type"[name="MyType"] {
tinyRenderer: @+shelfTinyRendererFactory0;

}
Subobject#shelfTinyRendererFactory0 {

S T Y L I N G268

class: 'MyShelfTinyRendererFactory';
}

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

S T Y L I N G 269

Representing and customizing card carriers

The graphic representation of a card carrier is based on the information that is available in
the business model. Each decoration that is created depends on an attribute and on properties
that can be customized through CSS.

Card carrier representation
The following figure shows a card carrier with the following attribute set:

♦ Slot count: 2

♦ Object State: OSI with new critical alarms

♦ Name: CC0

♦ Bottom spacing: 20

A card carrier representation

Customizing card carrier representations
You can customize the graphic representation of card carriers using the CSS properties
detailed in CSS properties for the representation of shelves, card carriers, cards and ports .

S T Y L I N G270

Customizing various aspects of card carriers

Customizing card carrier names
By default, card carriers do not display their names when represented in the network and
equipment components.

In the table and tree components, the card carrier label is displayed with a tiny representation
of the card carrier. In this case, the card carrier name itself is represented using the same
CSS properties as for all the other predefined business objects. For a complete list of
name-related properties, refer to Customizing the label of a business object.

Customizing card carrier states and alarms
Card carriers display state and alarm information in the same way as other predefined
business objects. For a complete list of the relevant properties, refer to Customizing object
and alarm states of predefined business objects.

Customizing card carrier types
In JViews TGO, the card carrier type attribute defines how the object base is represented.
Each card carrier type is associated with a specific base renderer that is in charge of drawing
the object according to its type and state information.

In JViews TGO, you can customize the base representation of card carrier objects by defining
a new implementation of IltCardCarrierBaseRenderer. The principle is the same as to
create a new IltNEBaseRenderer. For details, refer to Extending the class
IltNEBaseRenderer.

How to create and register a card carrier type (using the API)

IltCardCarrier.Type MyType = new IltCardCarrier.Type("CCType");
IltSettings.SetValue("CardCarrier.Type.CCType.Renderer",

new IltBaseRendererFactory() {
public IltBaseRenderer createValue() {
return new MyCCTypeBaseRenderer();

}
});

The predefined card carrier type has a label and a tooltip specified in the JViews TGO
resource bundle, see About internationalization.

The resources that apply to card carrier types are identified as:

♦ ilog.tgo.CardCarrier_Type_<TYPE NAME>: card carrier type labels

♦ ilog.tgo.CardCarrier_Type_<TYPE NAME>_ToolTip: card carrier type tooltips

You can edit the values directly in the JViews TGO resource bundle files.

When you create new card carrier types, the label and tooltip information will also be
retrieved from this resource bundle to be displayed, for example, in a table cell. As you

S T Y L I N G 271

declare new card carrier types, register the corresponding entries into the resource bundle
file, as follows:

Considering that you have created the following new card carrier type:

IltCardCarrier.Type MyType = new IltCardCarrier.Type("CCType");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.CardCarrier_Type_CCType=CC Type

♦ ilog.tgo.CardCarrier_Type_CCType_ToolTip=My New Card Carrier Type

How to create and register a card carrier type (using CSS)
You can create new card carrier types by using global CSS settings as shown in the following
code sample.

setting."ilog.tgo.model.IltCardCarrier"{
types[0]: @+cardCarrierType0;

}
Subobject#cardCarrierType0 {
class: 'ilog.tgo.model.IltCardCarrier.Type';
name: "CCType";

}

For more information, see Using global settings .

You can also customize the renderer using global CSS settings. To do so, you need to specify
the full path to the object to be customized, as well as the value of its name attribute in
order to match the right type of object in the system. The CSS property to customize is
renderer.

setting."ilog.tgo.model.IltCardCarrier.Type"[name="CCType"] {
renderer: @+cardCarrierRendererFactory;

}
Subobject#cardCarrierRendererFactory {

class: 'MyCardCarrierRendererFactory';
}

In this code sample, the name of the renderer factory class that is included in the search
path is MyCardCarrierRendererFactory

Customizing card carrier tiny types
Besides the graphic representation in the network and equipment components, the card
carrier objects can be represented as tiny objects in the tree and table components.

Each card carrier type can be associated with a tiny base renderer that is responsible for
drawing the tiny graphic representation. JViews TGO allows you to customize the tiny type
representation by using one of the predefined base renderer factories, such as
IltTinyImageBaseRendererFactory or IltTinySVGBaseRendererFactory, or by creating
your own implementation of IltTinyBaseRenderer. The principle to create a new

S T Y L I N G272

IltTinyBaseRenderer is the same as to create a new IltNEBaseRenderer. For details, refer
to Extending the class IltNEBaseRenderer.

How to modify a card carrier tiny representation (using the API)

IltCardCarrier.Type MyType = new IltCardCarrier.Type("CCType");
IltSettings.SetValue("CardCarrier.TinyType.MyType.Renderer",

new IltTinyImageBaseRendererFactory(YOUR_IMAGE,
YOUR_IMAGE_PARAMETERS));

How to modify a card carrier tiny representation (using CSS)
You can customize the renderer using global CSS settings. The CSS property to customize
here is tinyRenderer. In the example below, the name of the renderer factory class that is
included in the search path is MyCardCarrierTinyRendererFactory.

setting."ilog.tgo.model.IltCardCarrier.Type"[name="CCType"] {
tinyRenderer: @+cardCarrierTinyRendererFactory0;

}
Subobject#CardCarrierTinyRendererFactory0 {

class: 'MyCardCarrierTinyRendererFactory';
}

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

S T Y L I N G 273

Representing and customizing cards

Representing cards
The graphical representation of a card is based on the information that is available in the
business model. Each decoration that is created depends on an attribute and on properties
that can be customized through CSS.

The following figure shows a shelf with a card that has the following attributes set:

♦ Type: Standard

♦ Name: C1

♦ Object State: OSI Object State with Alarms

A card representation

Customizing card representations
You can customize the graphic representation of cards using the CSS properties detailed in
CSS properties for the representation of shelves, card carriers, cards and ports .

S T Y L I N G274

Customizing various aspects of card carriers

Customizing card types
In JViews TGO, the card type attribute defines how the object base is represented. Each
card type is associated with a specific base renderer that is in charge of drawing the object
according to its type and state information.

In JViews TGO, you can customize the base representation of card objects either by using
an implementation of a predefined base renderer, such as IltCardImageBaseRendererFactory
or IltCardSVGBaseRendererFactory, or by defining a new implementation of
IltCardBaseRenderer. The principle to create a new IltCardBaseRenderer is the same as
to create a new IltNEBaseRenderer. For details, refer to Extending the class
IltNEBaseRenderer.

How to create and register a card type (using the API)

IltCard.Type MyType = new IltCard.Type("CType");
IltSettings.SetValue("Card.Type.CType.Renderer",

new IltBaseRendererFactory() {
public IltBaseRenderer createValue() {
return new MyCardTypeBaseRenderer();

}
});

How to create and register a card type (using CSS)
You can create new card types by using global CSS settings as shown in the following code
sample.

setting."ilog.tgo.model.IltCard"{
types[0]: @+cardType0;

}
Subobject#cardType0 {
class: 'ilog.tgo.model.IltCard.Type';
name: "CType";

}

For more information, see Using global settings.

How to customize a card type (using CSS)
You can also customize the renderer using global CSS settings. To do so, you need to specify
the full path to the object to be customized, as well as the value of its name attribute in
order to match the right type of object in the system. The CSS property to customize is
renderer.

S T Y L I N G 275

setting."ilog.tgo.model.IltCard.Type"[name="CType"] {
renderer: @+cardRendererFactory;

}
Subobject#cardRendererFactory {

class: 'MyCardRendererFactory';
}

In this code sample, the name of the renderer factory class that is included in the search
path is MyCardRendererFactory.

How to create a new card type using an image
The following code sample shows how to create a new card type and associate it with an
image.

The full application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/equipment/imageRenderer.

String fileName = "rj45.png";
// create the new type that will be associated with the GIF image
IltCard.Type cardType = new IltCard.Type("RJ45");
try {
// Retrieve the image using the Image Repository
Image img =

IltSystem.GetDefaultContext().getImageRepository().getImage(fileName);
// then map the drawer factory created using the GIF with the new type
IltCardImageBaseRendererFactory factory =
new IltCardImageBaseRendererFactory(img, 255, 1, 255);

IltSettings.SetValue("Card.Type.RJ45.Label", "RJ45");
IltSettings.SetValue("Card.Type.RJ45.Renderer", factory);
// Note: the numerical values above have been adjusted using the
// Image Color Tuner application provided with JTGO.

} catch (Exception e) {
e.printStackTrace();

}

How to create a new card type using one image per base style
Another way to represent a type with an image is to specify a source image and an alarm
color level parameter for every required base style, directly in CSS. No other base style
property or renderer parameter is needed, as a complete image is provided for every needed
base style.

To create a new type of card using one image per base style:

♦ Create a new type of card

Using the API:

IltCard.Type cardType = new IltCard.Type("RJ45");

or, using global CSS settings:

S T Y L I N G276

setting."ilog.tgo.model.IltCard"{
types[0]: @+cardType0;

}

Subobject#cardType0 {
class: 'ilog.tgo.model.IltCard.Type';
name: "RJ45";

}

♦ Map an IltCardDirectImageBaseRendererFactory to the new type

Using the API SetValue(java.lang.Object, java.lang.Object):

IltSettings.SetValue("Card.Type.RJ45.Label", "RJ45");
IltSettings.SetValue("Card.Type.RJ45.Renderer",

new IltCardDirectImageBaseRendererFactory());

or, using global CSS settings:

setting."ilog.tgo.model.IltCard.Type"[name=RJ45] {
renderer: @+cardRendererFactory;

}

Subobject#cardRendererFactory {
class: 'ilog.tgo.graphic.renderer.IltCardDirectImageBaseRendererFactory';

}

♦ Define an image and an alarm color or gray-level parameter in CSS for each required
base style

object."ilog.tgo.model.IltCard"["type"=RJ45]["objectState.Bellcore.State"=En
abledIdle] {
sourceImage: '@|image("CardRJ45_EnabledIdle.png")';
alarmColorLevel: 128;

}
object."ilog.tgo.model.IltCard"["type"=RJ45]["objectState.Bellcore.State"=Di
sabledIdle] {
sourceImage: '@|image("CardRJ45_DisabledIdle.png")';
alarmColorLevel: 140;

}

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

The predefined card types have a label and a tooltip specified in the JViews TGO resource
bundle. For details, see About internationalization.

The resources that apply to card types are identified as:

♦ ilog.tgo.Card_Type_<TYPE NAME>: card type labels

♦ ilog.tgo.Card_Type_<TYPE NAME>_ToolTip: card type tooltips

S T Y L I N G 277

You can edit the values directly in the JViews TGO resource bundle files.

When you create new card types, the label and tooltip information will also be retrieved
from this resource bundle to be displayed, for example, in a table cell. As you declare new
card types, register the corresponding entries into the resource bundle file, as follows:

Considering that you have created the following new card type:

IltCard.Type MyType = new IltCard.Type("CType");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.Card_Type_CType=C Type

♦ ilog.tgo.Card_Type_CType_ToolTip=My New Card Type

Customizing card tiny types
In the tree and table components, you can represent card objects as tiny objects. Each card
type can be associated with a tiny base renderer that is responsible for drawing the tiny
graphic representation.

JViews TGO allows you to customize the tiny type representation by using one of the
predefined base renderer factories, such as IltTinyImageBaseRendererFactory or
IltTinySVGBaseRendererFactory, or by creating your own implementation of
IltTinyBaseRenderer. The principle to create a new IltTinyBaseRenderer is the same as
to create a new IltNEBaseRenderer. For details, refer to Extending the class
IltNEBaseRenderer.

How to modify a card tiny representation (using the API)

IltCard.Type MyType = new IltCard.Type("CType");
IltSettings.SetValue("Card.TinyType.CType.Renderer",

new IltTinyImageBaseRendererFactory(YOUR_IMAGE,
YOUR_IMAGE_PARAMETERS));

How to modify a card tiny representation (using CSS)
You can customize the renderer using global CSS settings. The CSS property to customize
here is tinyRenderer. In the example below, the name of the renderer factory class that is
included in the search path is MyCardTinyRendererFactory.

setting."ilog.tgo.model.IltCard.Type"[name="CType"] {
tinyRenderer: @+cardTinyRendererFactory0;

}
Subobject#CardTinyRendererFactory0 {

class: 'MyCardTinyRendererFactory';
}

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

S T Y L I N G278

Customizing card names
Card names can be customized using the same properties as for the other predefined business
objects. For a complete list of properties that apply to the card name representation, refer
to Customizing the label of a business object.

In addition to these properties, card objects have the following specific property.

CSS property for card names
DescriptionDefault

Value
TypeProperty Name

Denotes the way a vertical label is built. If
this property is set to true, the vertical

falsebooleanverticalLabelStacksGlyphs

label is build by stacking the characters.
In this case, the properties
labelWrappingMode,
labelWrappingWidth, and
labelWrappingHeight are ignored.

How to customize card names
While most of the predefined business objects display their label at the bottom of the base,
cards display their label in its center. The following example shows how you can adjust the
position of the label:

object."ilog.tgo.model.IltCard" {
labelPosition: Bottom;
labelSpacing: 25;

}

Customizing card states and alarms
Cards display state and alarm information in the same way as other predefined business
objects. For a complete list of the relevant properties, refer to Customizing object and alarm
states of predefined business objects.

S T Y L I N G 279

Representing and customizing ports

Representing ports
The graphic representation of a port is based on the information that is available in the
business model. Each decoration that is created depends on an attribute and on properties
that can be customized through CSS.

The following figure shows a shelf with a card and a port that has the following attributes
set:

♦ Type: BNC_m

♦ Name: P0

♦ Object State: OSI Object State

A port representation

Customizing port representations
You can customize the graphic representation of ports using the CSS properties detailed in
CSS properties for the representation of shelves, card carriers, cards and ports .

S T Y L I N G280

Customizing various aspects of ports

Customizing port types
In JViews TGO, the port type attribute determines how the object base is represented. Each
port type is associated with a specific base renderer that is in charge of drawing the object
according to its type and state information.

In JViews TGO, you can customize the base representation of port objects either by using
an implementation of a predefined base renderer, such as IltPortImageBaseRendererFactory
or IltPortSVGBaseRendererFactory, or by defining a new implementation of
IltPortBaseRenderer. The principle to create a new IltPortBaseRenderer is the same as
to create a new IltNEBaseRenderer..

For details, refer to Extending the class IltNEBaseRenderer.

How to create and register a port type (using the API)

IltPort.Type MyType = new IltPort.Type("MyType");
IltSettings.SetValue("Port.Type.MyType.Renderer",

new IltBaseRendererFactory() {
public IltBaseRenderer createValue() {
return new MyPortTypeBaseRenderer();

}
});

How to create and register a port type (using CSS)
You can also create new port types by using global CSS settings as shown in the following
example.

setting."ilog.tgo.model.IltPort"{
types[0]: @+portType0;

}
Subobject#portType0 {
class: 'ilog.tgo.model.IltPort.Type';
name: "MyType";

}

For more information, see Using global settings.

How to customize and register a port type (using CSS)
You can customize the renderer using global CSS settings. To do so, you need to specify the
full path to the object to be customized, as well as the value of its name attribute in order
to match the right type of object in the system. The CSS property to customize here is
renderer. In the example below, the name of the renderer factory class that is included in
the search path is MyPortRendererFactory.

setting."ilog.tgo.model.IltPort.Type"[name="MyType"] {

S T Y L I N G 281

renderer: @+portRendererFactory;
}
Subobject#portRendererFactory {

class: 'MyPortRendererFactory';
}

How to create a new port type with an image (using the API)
The following code sample shows how to create a new port type and associate it with an
image.

The full application is provided as part of the JViews TGO demonstration software at
<installdir> /samples/equipment/imageRenderer.

String fileName = "plug.png";
// create the new type that will be associated with an image
IltPort.Type portType = new IltPort.Type("Plug");

try {
// Retrieve the image using the Image Repository
Image img =

IltSystem.GetDefaultContext().getImageRepository().getImage(fileName);
// then map the renderer factory created using the image with the new

type
IltPortImageBaseRendererFactory factory =
new IltPortImageBaseRendererFactory(img, 255, 32, 165);

IltSettings.SetValue("Port.Type.Plug.Label", "Plug");
IltSettings.SetValue("Port.Type.Plug.Renderer", factory);
// Note: the numerical values above have been adjusted using the
// Image Color Tuner application provided with JTGO.

} catch (Exception e) {
e.printStackTrace();

}

How to create a new port type with one image per base style
You can represent a type with images by specifying a source image and an alarm color level
parameter for every required base style, directly in CSS. No other base style property or
renderer parameter is needed, as a complete image is provided for every needed base style.

To create a new type of port using one image per base style:

♦ Create a new type of port

Using the API:

IltPort.Type portType = new IltPort.Type("Plug");

or, using global CSS settings:

setting."ilog.tgo.model.IltPort"{

S T Y L I N G282

types[0]: @+portType0;
}

Subobject#portType0 {
class: 'ilog.tgo.model.IltPort.Type';
name: "Plug";

}

♦ Map an IltPortDirectImageBaseRendererFactory to the new type

Using the API SetValue(java.lang.Object, java.lang.Object):

IltSettings.SetValue("Port.Type.Plug.Label", "Plug");
IltSettings.SetValue("Port.Type.Plug.Renderer",

new IltPortDirectImageBaseRendererFactory());

or, using global CSS settings:

setting."ilog.tgo.model.IltPort.Type"[name="Plug"] {
renderer: @+portRendererFactory;
label: Plug;

}

Subobject#portRendererFactory {
class: 'ilog.tgo.graphic.renderer.IltPortDirectImageRendererFactory';

}

♦ Define an image and an alarm color or gray-level parameter in CSS for each required
base style

object."ilog.tgo.model.IltPort"["type"=Plug]["objectState.Bellcore.State"=En
abledIdle] {
sourceImage: '@|image("PortPlug_EnabledIdle.png")';
alarmColorLevel: 128;

}
object."ilog.tgo.model.IltPort"["type"=Plug]["objectState.Bellcore.State"=Di
sabledIdle] {
sourceImage: '@|image("PortPlug_DisabledIdle.png")';
alarmColorLevel: 140;

}

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

Customizing port names
By default, port names are not visible in the network and equipment components. You can
modify this behavior by setting the property labelVisible. All other label properties are
also applicable to IltPort instances.

S T Y L I N G 283

For a complete list of properties that apply to the port name representation, refer to
Customizing the label of a business object .

Label and tooltip for port types
The predefined port types have a label and a tooltip specified in the JViews TGO resource
bundle. For details, see About internationalization.

The resources that apply to port types are identified as:

♦ ilog.tgo.Port_Type_<TYPE NAME>: port type labels

♦ ilog.tgo.Port_Type_<TYPE NAME>_ToolTip: port type tooltips

You can edit the values directly in the JViews TGO resource bundle files.

When you create new port types, the label and tooltip information will also be retrieved from
this resource bundle to be displayed, for example, in a table cell. As you declare new port
types, register the corresponding entries in the resource bundle file, as follows.

Considering that you have created the following new port type:

IltPort.Type portType = new IltPort.Type("Plug");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.Port_Type_Plug=Plug

♦ ilog.tgo.Port_Type_Plug_ToolTip=Plug Port

How to make a port label visible

object."ilog.tgo.model.IltPort" {
labelVisible: true;

}

Customizing port tiny types
As with network elements, the tiny representation of ports is a reduced form of the symbolic
representation. Therefore, it is not possible to create a tiny representation that is different
from the symbolic representation of the object.

Customizing port states and alarms
Ports display state and alarm information in the same way as other predefined business
objects. For a complete list of the relevant properties, refer to Customizing object and alarm
states of predefined business objects.

S T Y L I N G284

Representing and customizing LEDs

Representing LEDs
The graphic representation of LEDs is intended to be simple and reduced. Therefore it is
only based on the attributes type and name, and on the alarms set in the object state, but
not on any other state information.

♦ Type: Circular

♦ Name: L0

♦ Object State: OSI Object State with Alarms

A LED representation

Customizing LED representations
LEDs are meant to be simple objects with a reduced graphical representation. In this
representation, the only property used to customize the LED representation is the property
foreground, which defines the color of the graphic object.

By default, this color is mapped from the alarm information set in the object.

CSS property for LED representations
DescriptionDefault ValueSetTypeProperty Name

Denotes the color of the LED.lightGrayYesColorforeground

Label and tooltip for port types
The predefined LED types have a label and a tooltip specified in the JViews TGO resource
bundle.

The resources that apply to LED types are identified as:

♦ ilog.tgo.LED_Type_<TYPE NAME>: LED type labels

♦ ilog.tgo.LED_Type_<TYPE NAME>_ToolTip: LED type tooltips

You can edit the values directly in the JViews TGO resource bundle files.

S T Y L I N G 285

When you create new LED types, the label and tooltip information will also be retrieved
from this resource bundle to be displayed, for example, in a table cell. As you declare new
LED types, register the corresponding entries in the resource bundle file.

Suppose that you have created the following new LED type:

IltLed.Type batteryType = new IltLed.Type("Battery");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.LED_Type_Battery=Battery

♦ ilog.tgo.LED_Type_Battery_ToolTip=Battery Indicator

S T Y L I N G286

Customizing various aspects of LEDs

Customizing LED types
In JViews TGO, the LED type attribute determines how the object base is represented. Each
LED type is associated with a specific base renderer that is in charge of drawing the object
according to its type and state information.

In JViews TGO, you can customize the base representation of LED objects either by using
an implementation of a predefined base renderer, such as IltLedImageBaseRendererFactory
or IltLedSVGBaseRendererFactory, or by defining a new implementation of
IltLedBaseRenderer. The principle to create a new IltLedBaseRenderer is the same as to
create a new IltNEBaseRenderer.

For details, refer to Extending the class IltNEBaseRenderer.

How to create and register an LED type (using the API)

IltLed.Type MyType = new IltLed.Type("MyType");
IltSettings.SetValue("Led.Type.MyType.Renderer",

new IltBaseRendererFactory() {
public IltBaseRenderer createValue() {
return new MyLedTypeBaseRenderer();

}
});

How to create and register an LED type (using CSS)
You can create new LED types by using global CSS settings as shown in the following code
sample.

setting."ilog.tgo.model.IltLed"{
types[0]: @+ledType0;

}
Subobject#ledType0 {
class: 'ilog.tgo.model.IltLed.Type';
name: "MyType";

}

For more information, see Using global settings.

How to create a new LED type using only one image
To create a new LED type using a single image:

1. Create a new type of LED with the following code:

S T Y L I N G 287

IltLed.Type myNewType = new IltLed.Type("MyType");

2. Create the image base renderer factory corresponding to the new LED type.

IltLedImageBaseRendererFactory factory = new
IltLedImageBaseRendererFactory(image);

3. You must indicate to JViews TGO that this factory should be used to draw this type of
LED. This is done through the mapping method SetValue(java.lang.Object, java.
lang.Object), as follows:

IltSettings.SetValue("Led.Type.MyType.Renderer", factory);

To illustrate the creation of a new LED type from a single image, suppose you want to create
an LED type based on the following image, which is a GIF image with transparency:

The following code illustrates a static method that creates a new LED type. It also shows
the mapping between the type and the factory.

// Create the new LED type
IltLed.Type batteryType = new IltLed.Type("Battery");

// Retrieve the image and create the base renderer factory
Image img =
IltSystem.GetDefaultContext().getImageRepository().getImage("battery.png");
IltLedImageBaseRendererFactory factor = new
IltLedImageBaseRendererFactory(img);

// Associate the new LED type with the image base renderer factory
IltSettings.SetValue("Led.Type.Battery.Renderer", factory);

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

Once the LED type has been created, you can start to instantiate LED objects as follows:

IltLed led = new IltLed("new", batteryType);

How to create a new LED type using two images
JViews TGO offers a way of creating new LED types based on two images. This process,
known as TwoImagesBaseRenderer, allows you to create very detailed LEDs, where a specific
image area “glows”, while the other areas remain unchanged.

S T Y L I N G288

The image base renderer gets two images and compares them pixel by pixel, identifying the
differences between them. The difference defines the “glowing” area of the LED, or the area
where the color changes.

To use the TwoImagesBaseRenderer process, the images must have the same size
and they should differ by at least one pixel.

Note:

Although the processes of creating a new LED type based on one image or on two images
are similar, the concepts behind the two processes are quite different. In the case of a
one-image LED type, a color filter is applied to the whole image when the LED color is set;
in the case of a two-image LED type, the filter is applied only to the region that differs when
the two images are compared.

To create a new LED type using two images:

1. Create a new type of LED with the following code:

IltLed.Type myNewType = new IltLed.Type("MyType");

2. Create the image base renderer factory corresponding to the new LED type.

IltLedImageBaseRendererFactory factory = new
IltLedImageBaseRendererFactory(image_off, image_on);

3. You must indicate to JViews TGO that this factory should be used to draw this type of
LED. This is done through the mapping method SetValue(java.lang.Object, java.
lang.Object), as follows:

IltSettings.SetValue("Led.Type.MyType.Renderer", factory);

To illustrate the TwoImagesBaseRenderer process, imagine you want to create an LED
representing a black area with a glowing trashcan. Only the trashcan and its frame are
supposed to glow, the rest of the image must remain unchanged.

Two-image LED

The following code defines a static method to create the new LED type from two images.

/**
* Creates the new led type using the
* "trash_on.png" and "trash_off.png"
* png images.
*/
String fileOn = "trash_on.png";

S T Y L I N G 289

String fileOff = "trash_off.png";

// create the new type that will be associated with the
// given images
IltLed.Type theType = new IltLed.Type("TrashCan");

try {
IlpImageRepository repository =

IltSystem.GetDefaultContext().getImageRepository();
Image imgOn = repository.getImage(fileOn);
Image imgOff = repository.getImage(fileOff);

// then map the factory created using the images with the new type
IltLedImageBaseRendererFactory factory =
new IltLedImageBaseRendererFactory(imgOff, imgOn);

IltSettings.SetValue("Led.Type.TrashCan.Renderer", factory);
// Note: the numerical values above have been adjusted
// using the imagecolortuner application provided with
// JTGO

} catch (Exception ex) {
logger.log("Error while creating TrashCan LED type.");

}

With the method defined above, you can instantiate an LED of the new type by coding:

IltLed newLedType = new IltLed("new", theType);

How to customize an LED type (using CSS)
You can customize the renderer using global CSS settings. To do so, you need to specify the
full path to the object to be customized, as well as the value of its name attribute in order
to match the right type of object in the system. The CSS property to customize here is
renderer. In the following example, the name of the renderer factory class that is included
in the search path is MyLedRendererFactory.

setting."ilog.tgo.model.IltLed.Type"[name="MyType"] {
renderer: @+ledRendererFactory;

}
Subobject#ledRendererFactory {

class: 'MyLedRendererFactory';
}

Customizing LED names
By default, LED names are not visible in the network and equipment components. You can
modify this behavior by setting the property labelVisible. All other label properties are
also applicable to IltLED instances.

S T Y L I N G290

For a complete list of properties that apply to the LED name representation, refer to
Customizing the label of a business object for a complete list of properties that apply to the
LED name representation.

How to make a LED label visible

object."ilog.tgo.model.IltLed" {
labelVisible: true;

}

Customizing LED tiny types
As with network elements, the tiny representation of LEDs is a reduced form of the symbolic
representation. Therefore, it is not possible to create a tiny representation that is different
from the symbolic representation of the object.

Customizing LED states and alarms
LEDs do NOT display state information. The only pieces of information that can affect their
appearance are alarms, which are by default mapped to the foreground color of the object
base.

The properties listed in the following table are available to customize the representation of
LEDs based on alarm information.

CSS properties for LED alarms
DescriptionDefault

Value
TypeProperty Name

Denotes whether the alarm border is displayed
or not around the object base.

falsebooleanalarmBorderVisible

Denotes whether the alarm color is displayed or
not in the object base. If this value is set to

truebooleanalarmColorVisible

false, the foreground color of the object base
does not change when new alarms are set in the
object.

How to customize LED states and alarms
The following CSS code shows how you can change the predefined LED representation to
hide the alarm border when alarms are displayed.

object."ilog.tgo.model.IltLed" {
alarmBorderVisible: false;

}

You can customize the foreground color of the LED based on your own model attributes or
using other state information present in the LED.

The following CSS code is part of an application is provided as part of the JViews TGO
demonstration software at <installdir> /samples/equipment/imageRenderer.

S T Y L I N G 291

In this code, the color of the LED is defined by the SNMP primary state.

object."ilog.tgo.model.IltLed" {
foreground: lightGrey;

}
object."ilog.tgo.model.IltLed"["objectState.SNMP.State"=Up] {
foreground: green;

}

object."ilog.tgo.model.IltLed"["objectState.SNMP.State"=Failed] {
foreground: yellow;

}

S T Y L I N G292

Customizing BTS

Describes how to customize BTS objects and the BTS antennas they contain.

In this section

Representing and customizing BTS
Describes what BTS objects are and how they are represented.

Customizing BTS antennas
Lists the properties for customizing BTS antennas.

Customizing various aspects of BTS antennas
Describes how to customize BTS antenna names, BTS antenna states and alarms, BTS tiny
types, and BTS antenna tiny types.

© Copyright IBM Corp. 1987, 2009 293

Representing and customizing BTS

Base Transceiver Stations (BTS) are base stations composed of antennas that relay (receive
and transmit) radio messages within cells of a cellular phone system. Each antenna has an
orientation and a beam width that are graphically represented. Each antenna can have its
own state and graphical characteristics.

Representing BTS
A BTS object does not have a graphic representation in the network and equipment
components. In these components, it works as a container that groups a BTS equipment and
BTS antennas.

The following figure shows a BTS object composed of six BTS antennas.

A BTS representation

The graphic rendering of a BTS antenna object is optimized for performance using an
offscreen buffered image technique that minimizes the complex shape computations by
pre-rendering the graphic object in memory. The extra memory required is proportional to
the size and number of visible objects in the network view. To disable the offscreen
optimizations for the BTS antenna representation you should:

♦ Set the ilog.tgo.bts.offscreenCache system property to false at initialization time.

♦ Use the IltSettings.SetValue("OffscreenCache.BTS", Boolean.FALSE); API call.

For information on how to declare system properties for Java™ applications and applets,
refer to your Java Runtime documentation.

Customizing the representation of a BTS equipment
A BTS equipment is a network element object. As such, it follows the same customization
as network elements.

For a complete list of the properties used to customize this kind of network element, refer
to Customizing network element types.

S T Y L I N G294

How to change the BTS equipment representation

object."ilog.tgo.model.IltNetworkElement"[type=BTSEquipment] {
btsEquipmentRadius: 15;

}

S T Y L I N G 295

Customizing BTS antennas

The properties listed in the following table allow you to customize the graphic representation
of BTS antennas. They can be set for the BTS object directly if you want them to be applied
to all antennas inside the BTS object. Or, if necessary, you can set properties for a specific
antenna.

CSS properties for BTS antennas
DescriptionDefault

Value
TypeProperty Name

Denotes the orientation of the BTS antenna,
measured in degrees.

0introtation

Denotes the size of the antenna when the
power value is highest.

100intantennaRadius

Denotes the highest possible power value for
antennas.

0intpowerMaxValue

Denotes whether the graphic representation
of the antenna is visible or not.

truebooleanantennaVisible

Denotes whether antialiasing is used or not for
the drawing ot the BTS antenna.

truebooleanantialiasing

Denotes the alpha value used to achieve
transparency effects when drawing the antenna
beam width.

1.0ffloatalphaBeamWidth

Denotes the beam width radius of the antennas
when the power value is highest.

100intbeamWidthRadius

Denotes whether the graphic representation
of the antenna beam width is visible or not.

truebooleanbeamWidthVisible

Denotes whether the beam width is drawn with
a border or not.

truebooleanbeamWidthBorderVisible

How to customize the representation of any BTS antenna

object."ilog.tgo.model.IltBTSAntenna" {
alphaBeamWidth: 0.5;
beamWidthBorderVisible: true;

}

How to customize the representation of the antennas of a specific
BTS object
The following CSS extract defines specific antenna properties which are set for a given BTS
object. All the antennas that are part of this BTS object will be customized accordingly.

S T Y L I N G296

#bts1 {
alphaBeamWidth: 0.5;
beamWidthBorderVisible: true;

}

How to customize the representation of a single BTS antenna
The following CSS extract shows how to customize the representation of a single BTS
antenna. In this case, the CSS selector used is based on the BTS antenna identifier.

#antenna1 {
alphaBeamWidth: 0.8;
beamWidthVisible: false;

}

S T Y L I N G 297

Customizing various aspects of BTS antennas

Customizing BTS antenna names
For a list of properties that can be used to customize the display of BTS antenna names,
refer to Customizing the label of a business object.

How to Make BTS Antenna Names Visible
By default, the names of BTS antennas are not displayed in the object graphic representation.
The following CSS extract shows how you can make them visible:

object."ilog.tgo.model.IltBTSAntenna" {
labelVisible: true;

}

Customizing BTS antenna states and alarms
The graphic representation of BTS antennas is affected by the presence of states and alarms.

For the complete list of properties that allow you to customize the representation of states
and alarms in BTS Antennas, refer to Customizing object and alarm states of predefined
business objects.

Customizing BTS tiny types and BTS antenna tiny types
BTS and BTS antenna tiny types are customized in a similar way to the link tiny type (see
Customizing link tiny types).

How to Customize a BTS and a BTS Antenna Tiny Type (using the
API)

IltSettings.SetValue("BTS.TinyType.Standard.Renderer",
new IltTinyImageBaseRendererFactory(YOUR_IMAGE, YOUR_IMAGE_PARAMETERS));

IltSettings.SetValue("BTSAntenna.TinyType.Standard.Renderer",
new IltTinyImageBaseRendererFactory(YOUR_IMAGE, YOUR_IMAGE_PARAMETERS));

How to Customize a BTS and a BTS Antenna Tiny Type (using
CSS)
The CSS property to customize is tinyRenderer.

setting."ilog.tgo.model.IltBTS.TinyType"[name="Standard"] {

S T Y L I N G298

tinyRenderer: @+btsTinyRendererFactory;
}
#btsTinyRendererFactory {

class: 'MyBtsTinyRendererFactory';
}

setting."ilog.tgo.model.IltBTSAntenna.TinyType"[name="Standard"] {
tinyRenderer: @+btsAntennaTinyRendererFactory;

}
Subobject#btsAntennaTinyRendererFactory {

class: 'MyBtsAntennaTinyRendererFactory';
}

S T Y L I N G 299

S T Y L I N G300

Customizing alarms

Describes how alarms are represented and how this representation is customized.

In this section

Representing alarms
Describes what alarms are and how alarms are represented.

Customizing various aspects of alarms
Describes how to customize severities, probable causes, alarm types, and trend indications.

© Copyright IBM Corp. 1987, 2009 301

Representing alarms

Alarms are predefined business objects used to represent alarm conditions that occur in
managed objects.

By default, alarm business objects are not represented in the network and equipment
components. Instead, the alarm state is represented. The alarm state provides an aggregated
view of the alarms that affect a managed object. For details on how to customize the alarm
state information, refer to Customizing object states.

Alarm business objects have a representation in the table component and in the tree
component.

Representation of alarms in a table
Like any business object, an alarm is represented as a row in a table. Each column of the
table corresponds to an attribute of the alarm.

Representation of alarms in a table

For information on how to customize a table row, see Customizing table cells.

Representation of alarms in a tree
Like any business object, an alarm is represented as a tree node in a tree.

Representation of alarms in a tree

For information on how to customize a tree node, see Customizing tree nodes.

S T Y L I N G302

Customizing various aspects of alarms

Customizing severities
For information on how to customize the colors and labels associated with alarm severities,
refer to Customizing alarm severities .

Customizing probable causes
The predefined probable causes provided in ILOG JViews TGO are those defined in the OSS/J
Quality of Service APIs.

Probable causes may be created using the Java™ API, or dynamically while feeding an XML
stream into a data source.

How to create a new probable cause using the Java API
In the following code, a new probable cause is created for the numeric value 600.

IltAlarm.ProbableCause probableCause = new IltAlarm.ProbableCause(600);

To see how to set a representation for the new probable cause, refer to How to change the
representation of a probable cause.

How to create a new probable cause dynamically from an XML
stream
The following XML stream extract sets the probable cause for an alarm to 600. If the probable
cause did not exist previously in the data source, it is created dynamically.

<addObject id="alarm 1">
<class>ilog.tgo.model.IltAlarm</class>
<attribute name="probableCause">600</attribute>
<!-- ... -->

</addObject>

To see how to set a representation for the new probable cause, refer to How to change the
representation of a probable cause.

How to change the representation of a probable cause
In the following CSS code, the label for the probable cause with the numeric value 600 is
set to “my new probable cause”.

object."ilog.tgo.model.IltAlarm/probableCause"[probableCause=600] {
label: "my new probable cause";

}

S T Y L I N G 303

Customizing alarm types
The predefined alarm types provided in JViews TGO are those defined in ITU-T X.721.

How to change the representation of an alarm type
In the following CSS extract, the label for the alarm type IntegrityViolation is set to
“Violation of integrity”.

object."ilog.tgo.model.IltAlarm/alarmType"[alarmType=IntegrityViolation] {
label: "Violation of integrity";

}

Customizing trend indications
The predefined trend indications provided in JViews TGO are those defined in ITU-T X.721.

How to change the representation of a trend indication
In the following CSS extract, the label for the trend indication NoChange is set to
“Unchanged”.

object."ilog.tgo.model.IltAlarm/trendIndication"[trendIndication=NoChange] {
label: "Unchanged";

}

S T Y L I N G304

Customizing off-page connectors

Describes how to customize off-page connectors.

In this section

Representing off-page connectors
Describes what an off-page connector is and how it is represented.

Customizing existing off-page connector types
Lists the predefined connector types and describes how to customize them.

Customizing new off-page connector types
Describes how to create and customize new connector types.

Customizing other aspects of off-page connectors
Describes how to customize connector names and connector states and alarms.

© Copyright IBM Corp. 1987, 2009 305

Representing off-page connectors

You can insert off-page connectors in a network to replace nodes. They indicate that a link
continues in part of the network that is outside the current view.

An off-page connector can have associated information for:

♦ Displaying the corresponding view

♦ Indicating visually on which neighbor view the object represented by the off-page
connector is located

The graphic representation of an off-page connector is based on the information that is
available in the business model. Each decoration that is created depends on an attribute
and on properties that can be customized through CSS.

Although an off-page connector can have states and alarms set like any other predefined
business object, its graphic representation is intended to be simple and to highlight only
the most important information about the object that it replaces.

Off-page connectors do not represent states, alarm counts or alarm balloons. The alarm
information is represented in the object base, as in the following illustration.

The following image shows an off-page connector with the following attribute set:

♦ Type: Standard

♦ Name: Region A

♦ Object state: OSI Object State with Alarms

An off-page connector representation

S T Y L I N G306

Customizing existing off-page connector types

Predefined connector types
JViews TGO provides IltOffPageConnector types that you can use directly in your
applications, as listed in the following table.

Off_page connector types and their graphical representation
DescriptionRepresentationType

Standard off-page connectorStandard

The off-page connector represents a generic managed entity.Managed

The off-page connector represents a single entity currently
managed by the system.

SingleManaged

The off-page connector represents multiple entities currently
managed by the system.

MultipleManaged

The off-page connector represents a generic entity not
managed by the system.

Unmanaged

The off-page connector represents a single entity currently
not managed by the system.

SingleUnmanaged

The off-page connector represents multiple entities currently
not managed by the system.

MultipleUnmanaged

Properties of predefined connector types
The properties listed in the following table apply to all the predefined off-page connector
types.

S T Y L I N G 307

CSS properties for the predefined off-page connector types
DescriptionDefault ValueTypeProperty

Name

Denotes the width of an off-page connector.19floatshapeWidth

Denotes the height of an off-page connector.19floatshapeHeight

Denotes whether the graphic representation of
the off-page connector is displayed depressed
or not.

falsebooleandepressed

Sets the off-page connector base to the tiny
representation. The tiny representation is used
mainly in the tree and table components.

false in the network
and equipment
components

booleantiny

true in the table and
tree components

Sets the off-page connector base to the logical
representation. In the logical representation, all

falsebooleanlogical

off-page connector types have the same look,
that is a rectangular shape.

Mapped properties of predefined connector types
The properties listed in the following table are mapped, that is, their value is computed
automatically from the alarms set in the object (column Set). You can override the mapped
values or customize their graphic representation even when the object does not carry states
and alarms.

Mapped CSS properties for off-page connectors
DescriptionDefault ValueSetTypeProperty Name

Denotes the foreground color of the
object base.

28% gray in the
IltObject
class style

YesColorforeground

Denotes the background color of the
object base.

Transparent
(null)

YesColorbackground

Denotes the style used to fill the
base of an object.

IlFillStyle.
SOLID_COLOR
for user-defined
business objects

Network
node

ilog.util.
IlFillStyle

fillStyle

Possible values are:

IlFillStyle.NO_FILLIlFillStyle.
PATTERN for IlFillStyle.SOLID_COLOR
predefined
business objects IlFillStyle.LINEAR_GRADIENT

IlFillStyle.RADIAL_GRADIENT

IlFillStyle.TEXTURE

S T Y L I N G308

DescriptionDefault ValueSetTypeProperty Name

IlFillStyle.PATTERN

Denotes the texture used to fill the
base of an object. This property is

nullNetwork
node

ImagefillTexture

only used if fillStyle is set to
IlFillStyle.TEXTURE.

Denotes the pattern used to fill the
base of an object. This property is

null (Solid)YesPatternfillPattern

only used if fillStyle is set to
IlFillStyle.PATTERN.

Returns the position where the
gradient of an object starts, that is,

0fNetwork
node

floatfillStart

where the color is the one defined
by property foreground. This
property is only used if fillStyle
is set to IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.LINEAR_GRADIENT.

Returns the position where the
gradient of an object ends, that is,

1fNetwork
node

floatfillEnd

where the color is the one defined
by property background. This
property is only used if fillStyle
is set to IlFillStyle.
RADIA_GRADIENT or
IlFillStyle.LINEAR_GRADIENT

Returns the angle (in degrees) of the
gradient used to fill the base of an

0Network
node

floatfillAngle

object. This property is only used if
fillStyle is set to IlFillStyle.
RADIAL_GRADIENT or
IlFillStyle.LINEAR_GRADIENT

Denotes the primary color of the
base border.

10% grayYesColorborderColor

Denotes the secondary color of the
base border.

60% grayYesColorborderColor2

Denotes the width of the relief on the
base border.

1NofloatreliefThickness

Property for the standard predefined connector type
The property listed in the following table is specific to the type IltOffPageConnector.
Standard. This type determines the graphic representation of an off-page connector in the
form of two nested relief diamonds.

S T Y L I N G 309

CSS property specific to the IltOffPageConnector.standard type
DescriptionDefault ValueTypeProperty Name

Denotes the distance between two nested reliefs
diamonds.

4intreliefDistance

How to customize standard off-page connectors
The following CSS extract shows how you can customize the graphic representation of
standard off-page connectors. In this example, the size of the off-page connector is set to
21x21:

object."ilog.tgo.model.IltOffPageConnector"[type=Standard] {
shapeWidth: 21;
shapeHeight: 21;

}

S T Y L I N G310

Customizing new off-page connector types

The principle to create new types of off-page connectors is the same as to create new types
of network elements. For details, refer to Customizing network element types.

Customizing the base renderer of a connector type
In ILOG JViews TGO, the off-page connector type determines how the object base is
represented. Each off-page connector type is associated with a specific base renderer that
is in charge of drawing the object according to its type and alarm information.

In JViews TGO, you can extend the base representation of off-page connectors by using one
of the predefined base renderer factory classes (IltOPCImageBaseRendererFactory or
IltOPCSVGBaseRendererFactory), or by implementing your own subclass of
IltOPCBaseRenderer for each new type of off-page connector that you want to create.

How to create a new off-page connector type from an image (using
the API)
The following code extract shows how to create a new IltOffPageConnector type and
associate it with an image so that it can be displayed in the JViews TGO graphic components.

// Create the new OPC type
IltOffPageConnector.Type opcType = new IltOffPageConnector.Type("MyType");

// Retrieve the image and create the base renderer factory
Image img =
IltSystem.GetDefaultContext().getImageRepository().getImage("type.png");
IltOPCImageBaseRendererFactory factory = new
IltOPCImageBaseRendererFactory(img);

// Associate the new OPC type withthe image base renderer factory
IltSettings.SetValue("OffPageConnector.Type.MyType.Renderer", factory);

How to create a new off-page connector type from an image (using
CSS)
You can create new off-page connector types by using global CSS settings (for more
information, see Using global settings).

setting."ilog.tgo.model.IltOffPageConnector"{
types[0]: @+opcType0;

}
Subobject#opcType0 {
class: 'ilog.tgo.model.IltOffPageConnector$Type';
name: "MyType";

}

S T Y L I N G 311

How to customize an off-page connector renderer (using CSS)
You can customize the renderer using global CSS settings. To do so, you need to specify the
full path to the object to be customized, as well as the value of its name attribute in order
to match the right type of object in the system. The CSS property to customize here is
renderer. In the example below, the name of the renderer factory class that is included in
the search path is MyOPCRendererFactory.

setting."ilog.tgo.model.IltOffPageConnector.Type"[name="MyType"] {
renderer: @+opcRendererFactory1;

}
Subobject#opcRendererFactory1 {

class: 'MyOPCRendererFactory';
}

How to create a new off-page connector type using one image per
base style
Another way to represent a type with an image is to specify a source image and an alarm
color level parameter for every required base style, directly in CSS. No other base style
property or renderer parameter is needed, as a complete image is provided for every needed
base style.

To create a new type of off-page connector using an image per base style:

1. Create a new type of off-page connector

Using the API:

IltOffPageConnector.Type opcType = new IltOffPageConnector.Type("MyType")
;

or, using global CSS settings:

setting."ilog.tgo.model.IltOffPageConnector"{
types[0]: @+opcType0;

}

Subobject#opcType0 {
class: 'ilog.tgo.model.IltOffPageConnector.Type';
name: "MyType";

}

2. Map an IltOPCDirectImageBaseRendererFactory to the new type

Using the API SetValue(java.lang.Object, java.lang.Object):

IltSettings.SetValue("OffPageConnector.Type.MyType.Renderer",
new IltOPCDirectImageBaseRendererFactory());

S T Y L I N G312

or, using global CSS settings:

setting."ilog.tgo.model.IltOffPageConnector.Type"[name="MyType"] {
renderer: @+opcRendererFactory1;

}

Subobject#opcRendererFactory1 {
class: 'ilog.tgo.graphic.renderer.IltOPCDirectImageRendererFactory';

}

3. Define an image and an alarm color or gray-level parameter in CSS for each required
base style

object."ilog.tgo.model.IltOffPageConnector"["type"=MyType]["objectState.
Bell
core.State"=EnabledIdle] {
sourceImage: '@|image("OPCMyType_EnabledIdle.png")';
alarmColorLevel: 128;

}
object."ilog.tgo.model.IltOffPageConnector"["type"=MyType]["objectState.
Bell
core.State"=DisabledIdle] {
sourceImage: '@|image("OPCMyType_DisabledIdle.png")';
alarmColorLevel: 140;

}

For details about how to create image base renderers, refer to Creating network element
types from images and customizing them.

Labels and tooltips for connector types
The predefined off-page connector types have a label and a tooltip specified in the JViews
TGO resource bundle.

The resources that apply to off-page connector types are identified as:

♦ ilog.tgo.OPC_Type_<TYPE NAME>: off-page connector type labels

♦ ilog.tgo.OPC_Type_<TYPE NAME>_ToolTip: off-page connector type tooltips

You can edit the values directly in the JViews TGO resource bundle files.

When you create new off-page connector types, the label and tooltip information will also
be retrieved from the same resource bundle to be displayed, for example, in a table cell. As
you declare new types, register the corresponding entries in the resource bundle file.

Suppose that you have created the following new off-page connector type:

IltOffPageConnector.Type opcType = new IltOffPageConnector.Type("MyType");

You should declare the following properties in the JTGOMessages.properties file:

♦ ilog.tgo.OPC_Type_MyType=My Type

S T Y L I N G 313

♦ ilog.tgo.OPC_Type_MyType_ToolTip=My Off-Page Connector Type

S T Y L I N G314

Customizing other aspects of off-page connectors

Customizing off-page connector names
Off-page connector names are graphically represented like in the other predefined business
objects. For a list of properties that apply to the off-page connector name representation,
refer to Customizing the label of a business object.

Customizing off-page connector states and alarms
The graphical representation of off-page connectors does not take into account the states
set in the business objects. It is only affected by the object type and the alarms, if any (but
alarm counts and alarm balloons are not represented).

The properties listed in the following table allow you to customize the graphic representation
of alarms in off-page connectors.

CSS properties for off-page connector alarm representatio
DescriptionDefaultTypeProperty Name

Determines whether the raw alarms
or the impact alarms are displayed

IltAlarmStateEnum.RawIltAlarmStateEnumprimaryAlarmState

as the primary alarm state. Possible
values are: ltAlarmStateEnum.Raw
or ltAlarmStateEnum.Impact

Defines the color used to represent
the alarm border around the base.

null (transparent)ColoralarmBorderColor

Setting the value to null resets the
alarm border color to its default
value

Defines the width of the alarm
border.

2 pixelsintalarmBorderWidth

Indicates whether the alarm border
is visible or not around the object
base.

truebooleanalarmBorderVisible

Determines whether the alarm color
is visible or not in the object value.

truebooleanalarmColorVisible

How to customize the alarm representation in off-page connectors
The following CSS extract shows how you can customize the graphic representation of
off-page connectors so that they do not display alarm information.

object."ilog.tgo.model.IltOffPageConnector" {
alarmColorVisible: false;

S T Y L I N G 315

alarmBorderVisible: false;
}

S T Y L I N G316

Customizing object states

Explains how object states are represented in the predefined business objects and how to
customize the representations.

In this section

Customizing the object representation based on states
Describes how object states affect representation and gives more specific descriptions of
object states from different telecommuncations standards.

Customizing passive devices
Describes what passive devices are and how to customize them.

Customizing the OSI state system
Describes the OSI states and how to customize them.

Customizing the Bellcore state system
Describes the Bellcore states and how to customize them.

Customizing the SNMP state system
Describes the SNMP states and how to customize them.

Customizing the SONET state system
Describes the SONET states and how to customize them.

Customizing the Miscellaneous state system
Describes the Miscellaneous secondary states and how to create and customize them.

Customizing the Performance State System
Describes the Performance secondary states and how to create and customize them.

© Copyright IBM Corp. 1987, 2009 317

Customizing the SAN state system
Describes the SAN secondary states and how to create and customize them.

Customizing alarm severities
Lists the properties of the primary and secondary alarm states, describes how to customize
them to represent raw and impact alarms, and describes how to customize alarm severities.

Customizing alarm count attributes
Describes how alarm count attributes are represented in the table component and how to
customize the representations.

Customizing trap types
Describes how to customize existing trap types and how to create and customize new trap
types.

Customizing the secondary state icons
Describes how to change the positions where secondary state icons usually appear.

S T Y L I N G318

Customizing the object representation based
on states

Describes how object states affect representation and gives more specific descriptions of
object states from different telecommuncations standards.

In this section

Representing and customizing state information
Describes how primary and secondary states affect representation and discusses
customization in general.

OSI states
Describes how to customize states based on the OSI state dictionary.

Bellcore states
Describes how to customize states based on the Bellcore state dictionary.

SNMP states
Describes how to customize states based on the SNMP state dictionary.

SONET states
Describes how to customize states based on the SONET state dictionary.

Miscellaneous states
Describes how to customize the predefined miscellaneous states.

Performance states
Describes how to customize the predefined performance states.

S T Y L I N G 319

SAN states
Describes how to customize the predefined SAN states.

Alarms
Describes how to customize the predefined alarms.

Traps
Describes how to customize the predefined traps.

S T Y L I N G320

Representing and customizing state information

Representing primary and secondary states
ILOG JViews TGO predefined business objects are graphically represented with properties
that change according to the states and alarms set on the objects.

In general, the primary state information is used to define the representation characteristics
of the object base, while secondary states are added as new decorations. This predefined
mapping can be modified through cascading style sheets (CSS). For information on how to
create and use CSS files, see Introducing cascading style sheets.

JViews TGO provides a set of visual dictionaries that are used for displaying alarm and state
changes in predefined telecom business objects. These dictionaries are based on the following
worldwide telecommunication standards: OSI, Bellcore, SNMP, SONET, Performance, SAN,
Alarm, Trap, and Miscellaneous state dictionaries. Each state dictionary provides visual
representations of the states.

For information about each state dictionary and its graphical representation, see States.

Customizing states and alarms with CSS selectors
You can customize the object representation according to its states and alarms using CSS
attribute selectors. An attribute selector is based on the IltObject attribute "objectState"
(see ilog.tgo.model.IltObject#ObjectStateAttribute) and is composed of the attribute
name and the state name information.

The selectors can be used to customize the object graphic representation according to the
different state and alarm dictionaries.

It is recommended that, when you specify a graphic property in an attribute selector, you
provide an object selector that sets a default value to the property. This value will be used
when the attribute is not defined. In other words, you can customize your objects according
to the attribute values, but keep in mind that a consistent graphic representation should
also be available when the attribute is not set in a specific object. Observe this policy
whenever you create CSS attribute selectors to customize the object graphic representation
based on states and alarms.

The following example illustrates this policy in a scenario that creates a graphic
representation based on the presence of the state IltMisc.SecState.
HighTemperatureWarning:

object."ilog.tgo.model.IltObject"["objectState.Misc.SecState.HighTemperatureWar
ning"] {
labelForeground: red;

}

object."ilog.tgo.model.IltObject" {
labelForeground: '';

}

S T Y L I N G 321

In this scenario, when the state IltMisc.SecState.HighTemperatureWarning is present in
the object, the label of the object changes to red. When the state is no longer present, the
label color is set to its default value.

S T Y L I N G322

OSI states

The OSI state dictionary is based on the OSI SMF 10164-2 standard defining the primary
state of a telecom object as a combination of three states, as well as a number of secondary
states. See The OSI state dictionary visuals for more information.

Using cascading style sheets, you can define specific selectors based on OSI primary and
secondary states.

OSI primary states
The following selector matches all objects that have the OSI primary state
Administrative=Locked defined.

object."ilog.tgo.model.IltObject"["objectState.OSI.State.Administrative"=Locked
] {
...
}

In CSS selectors, primary states are identified by the attribute name ("objectState") and
the primary state information ("OSI.State.Administrative", "OSI.State.Operational",
or "OSI.State.Usage").

You can also create selectors which are based on more than one state, as illustrated below:

object."ilog.tgo.model.IltObject"["objectState.OSI.State.Administrative"=Locked
]["objectState.OSI.State.Operational"=Enabled] {
...
}

OSI secondary states
You can create selectors based on secondary state information. Secondary states are identified
by the attribute name ("objectState") and the state information.

In the OSI state dictionary, secondary states are identified by the group to which they belong
(for example, Procedural, Availability, Control, Standby and Repair) and by their name.

The following selectors match all objects that contain the state OSI.Procedural.
Initializing or OSI.Availability.NotInstalled.

object."ilog.tgo.model.IltObject"["objectState.OSI.Procedural.Initializing"]
{
...
}

object."ilog.tgo.model.IltObject"["objectState.OSI.Availability.NotInstalled"]

{

S T Y L I N G 323

...
}

How to change the object representation based on OSI states
The following CSS extract customizes the graphic representation of all telecom business
objects according to the value of the OSI Administrative State. This example does not take
into account the possible presence of alarms in the objects.

object."ilog.tgo.model.IltObject" {
foreground: '';

}
object."ilog.tgo.model.IltObject"["objectState.OSI.State.Administrative"=Locked
] {
foreground: orange;

}
object."ilog.tgo.model.IltObject"["objectState.OSI.State.Administrative"=Unlock
ed] {
foreground: green;

}
object."ilog.tgo.model.IltObject"["objectState.OSI.State.Administrative"=Shutti
ngDown] {
foreground: red;

}

OSI state styling example illustrates this configuration on network elements:

OSI state styling example

S T Y L I N G324

Bellcore states

The Bellcore state dictionary defines a primary state and several secondary states, which
are used to define the graphic representation of predefined business objects through
cascading style sheets. See The Bellcore state dictionary visuals for more information.

Bellcore primary states
The following selector matches all objects that have the Bellcore primary state EnabledActive
defined.

object."ilog.tgo.model.IltObject"["objectState.Bellcore.State"=EnabledActive]
{
...
}

Bellcore secondary states
You can also use secondary states in your attribute selectors. In CSS selectors, secondary
states are identified by the attribute name ("objectState") and the secondary state
information (Blocked, Combined, and so on). See The Bellcore state dictionary visuals for a
complete list of available secondary states.

The following selectors match all objects that contain the secondary state Blocked or
Combined:

object."ilog.tgo.model.IltObject"["objectState.Bellcore.SecState.Blocked"] {
...
}

object."ilog.tgo.model.IltObject"["objectState.Bellcore.SecState.Combined"] {
...
}

How to change the object representation based on Bellcore states
The following CSS extract customizes the graphical representation of all telecom business
objects according to the value of the Bellcore primary state. This example does not take into
account the possible presence of alarms in the objects.

object."ilog.tgo.model.IltObject" {
foreground: '';

}
object."ilog.tgo.model.IltObject"["objectState.Bellcore.State"=DisabledIdle]
{
foreground: lightGray;

}

S T Y L I N G 325

object."ilog.tgo.model.IltObject"["objectState.Bellcore.State"=EnabledIdle] {

foreground: green;
}
object."ilog.tgo.model.IltObject"["objectState.Bellcore.State"=EnabledActive]
{
foreground: yellow;

}

Bellcore state styling example illustrates this configuration on network elements.

Bellcore state styling example

S T Y L I N G326

SNMP states

The SNMP state dictionary defines a primary state and several secondary states, which are
used to define the graphic representation of predefined business objects through cascading
style sheets. See The SNMP state dictionary visuals for more information.

SNMP primary states
The following selector matches all objects that have the SNMP primary state Up defined:

object."ilog.tgo.model.IltObject"["objectState.SNMP.State"=Up] {
...
}

In CSS selectors, primary states are identified by the attribute name ("objectState") and
the primary state information ("SNMP.State").

SNMP secondary states
You can also use secondary states in the attribute selectors. Secondary states are identified
by the attribute name ("objectState") and the secondary state information. This information
is based on the State Dictionary (SNMP) and the group to which the state belongs within
this dictionary (Interface, IP, SNMP, EGP, TCP or UDP), as well as on the state name. See
The SNMP state dictionary visuals for a complete list of available secondary states.

The following selector matches all objects that contain the secondary state Interface.
InErrors:

object."ilog.tgo.model.IltObject"["objectState.SNMP.Interface.InErrors"] {
...
}

The following selector matches all objects that contain the secondary state IP.InDiscards:

object."ilog.tgo.model.IltObject"["objectState.SNMP.IP.InDiscards"] {
...
}

How to change the object representation based on SNMP states
The following CSS extract customizes the graphical representation of all telecom business
objects according to the value of the SNMP secondary state InErrors. This example changes
the foreground color of the object when the value of the secondary state exceeds the given
thresholds.

object."ilog.tgo.model.IltObject" {
foreground: lightGray;

S T Y L I N G 327

}
object."ilog.tgo.model.IltObject"["objectState.SNMP.Interface.InErrors"] {
foreground: green;

}
object."ilog.tgo.model.IltObject"["objectState.SNMP.Interface.InErrors">40] {

foreground: yellow;
}
object."ilog.tgo.model.IltObject"["objectState.SNMP.Interface.InErrors">70] {

foreground: red;
}

SNMP state styling example illustrates this configuration on network elements.

SNMP state styling example

S T Y L I N G328

SONET states

The SONET state dictionary defines a primary state, as well as protections, which are used
to define the graphical representation of predefined business objects through cascading
style sheets. See The SONET state dictionary visuals for a complete list of available states
and protections.

SONET primary states
The following selector matches all objects that have the SONET primary state Active defined:

object."ilog.tgo.model.IltObject"["objectState.SONET.State"=Active] {
...
}

In CSS selectors, primary states are identified by the attribute name ("objectState") and
the primary state information ("SONET.State").

SONET protections
You can also use SONET protections in CSS selectors. Protections are identified by the
attribute name ("objectState"), the position of the protection ("SONET.FromProtections"
or "SONET.ToProtections"), and the protection name as in the following example:

object."ilog.tgo.model.IltLink"["objectState.SONET.FromProtections.Locked"] {
...
}

object."ilog.tgo.model.IltLink"["objectState.SONET.ToProtections.Pending"] {
...
}

SONET reverse primary state
The SONET state dictionary contains an extension that allows you to define a reverse primary
state. This extension is mainly designed for link objects, so that you can define state
information for both directions of the link connection.

In CSS selectors, reverse primary states are identified by the attribute name ("objectState")
and the primary reverse state information ("SONET.ReverseState") as in the following
example:

object."ilog.tgo.model.IltLink"["objectState.SONET.ReverseState"=Active] {
...
}

S T Y L I N G 329

How to change the object representation based on SONET states
The following CSS extract customizes the graphic representation of links according to the
value of the SONET primary state. This example changes the foreground color of the object
according to the value of the primary state.

object."ilog.tgo.model.IltAbstractLink" {
foreground: '';

}
object."ilog.tgo.model.IltAbstractLink"["objectState.SONET.State"=Active] {

foreground: green;
}
object."ilog.tgo.model.IltAbstractLink"["objectState.SONET.State"=ActiveProtect
ing] {
foreground: orange;

}

SONET state styling example illustrates this configuration.

SONET state styling example

S T Y L I N G330

Miscellaneous states

JViews TGO provides a set of miscellaneous states to complement the OSI, Bellcore, SONET,
and SNMP standards. See The Misc state dictionary visuals for a complete list of available
states.

Secondary miscellaneous states
You can use the secondary states of the Misc State Dictionary to specify cascading style
sheet selectors.

Misc states are identified by the attribute name ("objectState"), the state information
("Misc.SecState"), and the state name as in the following example:

object."ilog.tgo.model.IltObject"["objectState.Misc.SecState.DoorAjar"] {
...
}

How to change the object representation based on miscellaneous
states
The following CSS extract customizes the graphic representation of links according to the
presence of the Miscellaneous State: High Temperature Warning.

object."ilog.tgo.model.IltNetworkElement" {
foreground: '';

}
object."ilog.tgo.model.IltNetworkElement"["objectState.Misc.SecState.HighTemper
atureWarning"] {
foreground: red;

}

Miscellaneous state styling example illustrates this configuration.

Miscellaneous state styling example

S T Y L I N G 331

Performance states

JViews TGO provides a set of performance states to complement the OSI, Bellcore, SONET,
and SNMP standards. See The Performance state dictionary visuals for a complete list of
available states.

Secondary performance states
You can use the secondary states of the Performance State Dictionary to specify cascading
style sheet selectors.

Performance states are identified by the attribute name ("objectState"), the state information
("Performance.SecState"), and the state name as in the following example:

object."ilog.tgo.model.IltObject"["objectState.Performance.SecState.Output"]
{
...
}

How to change the object representation based on performance
states
The following CSS extract customizes the graphical representation of links according to the
value of the performance Bandwidth state. In this configuration, the width of the link is
based on the current value of the state. When the value of the line width is set to a negative
value, the link retrieves the default value.

object."ilog.tgo.model.IltAbstractLink" {
lineWidth: -1;

}
object."ilog.tgo.model.IltAbstractLink"["objectState.Performance.SecState.Bandw
idth"] {
lineWidth: @|@"objectState.Performance.SecState.Bandwidth"/10;

}

Performance state styling example illustrates this configuration.

S T Y L I N G332

Performance state styling example

S T Y L I N G 333

SAN states

JViews TGO provides a set of SAN states to complement the OSI, Bellcore, SONET, and
SNMP standards. See The SAN state dictionary visuals for a complete list of available states.

SAN secondary states
You can use the secondary states of the SAN State Dictionary to specify cascading style
sheet selectors.

SAN states are identified by the attribute name ("objectState"), the state information
("SAN.SecState"), and the state name as in the following example:

object."ilog.tgo.model.IltObject"["objectState.SAN.SecState.Allocated"] {
...
}

How to change the object representation based on SAN states
The following CSS extract customizes the graphic representation of network elements
according to the value of the SAN Available secondary state. In this configuration, the color
of the network element is based on the current value of the state. When the value of the
foreground color is set to null, the network element retrieves the default configuration.

object."ilog.tgo.model.IltNetworkElement" {
foreground: '';

}
object."ilog.tgo.model.IltNetworkElement"["objectState.SAN.SecState.Available"]

{
foreground: green;

}
object."ilog.tgo.model.IltNetworkElement"["objectState.SAN.SecState.Available"<
20] {
foreground: red;

}
object."ilog.tgo.model.IltNetworkElement"["objectState.SAN.SecState.Available"<
50] {
foreground: orange;

}

SAN state styling example illustrates this configuration:

S T Y L I N G334

SAN state styling example

S T Y L I N G 335

Alarms

JViews TGO provides a predefined alarm system, whichmodifies the graphical representation
of telecom objects according to the alarm conditions. The Alarm dictionary can be used to
complement the information of OSI, SONET and Bellcore state dictionaries. See Alarm states
in the Business Objects and Data Sources documentation for more information.

Alarm conditions
You can use alarm conditions to customize the graphical representation of your objects
through cascading style sheets.

In CSS selectors, new and acknowledged alarms are identified by the attribute name
("objectState"), the type of alarm (raw or impact), the alarm severity, and the information
indicating whether it is a new or an acknowledged alarm.

The following selector matches all objects that have new critical alarms.

object."ilog.tgo.model.IltObject"["objectState.Alarm.Raw.Critical.New"] {
...
}

The following selector matches all objects that have critical acknowledged alarms.

object."ilog.tgo.model.IltObject"["objectState.Alarm.Raw.Critical.Acknowledged"

{
...
}

You can also customize the representation of objects based on impact alarms.

object."ilog.tgo.model.IltObject"["objectState.Alarm.Impact.CriticalHigh.New"
{
...
}

How to change the object representation based on alarms
The following CSS extract customizes the graphical representation of business objects
according to the value of alarms set in the objects. In this configuration, the alarm balloon
decoration is only displayed if there are new critical alarms.

object."ilog.tgo.model.IltObject" {
alarmBalloonVisible: false;

}
object."ilog.tgo.model.IltObject"["objectState.Alarm.Raw.Critical.New"] {
alarmBalloonVisible: true;

S T Y L I N G336

}
object."ilog.tgo.model.IltObject"["objectState.Alarm.Impact.CriticalLow.New"]
{
alarmBalloonVisible: true;

}
object."ilog.tgo.model.IltObject"["objectState.Alarm.Impact.CriticalHigh.New"]

{
alarmBalloonVisible: true;

}

Alarm state styling example illustrates this configuration.

Alarm state styling example

S T Y L I N G 337

Traps

JViews TGO provides a predefined trap system, which modifies the graphical representation
of telecom objects according to the traps present in the objects. The Trap dictionary can be
used to complement the information of the SNMP state dictionary. See Trap states in the
Business Objects and Data Sources documentation for more information.

Trap conditions
You can use trap conditions to customize the graphic representation of your objects through
cascading styles sheets.

In CSS selectors, new and acknowledged traps are identified by the attribute name
("objectState"), the trap type, and the information indicating whether it is a new or an
acknowledged trap.

The following selector matches all objects that have new link failure traps.

object."ilog.tgo.model.IltObject"["objectState.Trap.LinkFailure.New"] {
...
}

The following selector matches all objects that have acknowledged link failure traps.

object."ilog.tgo.model.IltObject"["objectState.Trap.LinkFailure.Acknowledged"
{
...
}

How to change the object representation based on traps
The following CSS extract customizes the graphic representation of business objects
according to the value of traps set in the object. In this configuration, the alarm balloon
decoration is hidden for all business objects that use the SNMP object state, except those
that have new traps of type LinkFailure.

object."ilog.tgo.model.IltObject"["objectState.SNMP.State"] {
alarmBalloonVisible: false;

}
object."ilog.tgo.model.IltObject"["objectState.Trap.LinkFailure.New"] {
alarmBalloonVisible: true;

}

Trap state styling example illustrates this configuration.

S T Y L I N G338

Trap state styling example

S T Y L I N G 339

Customizing passive devices

Passive devices are business objects without an object state. The passive information is
graphically represented with an icon as illustrated in following image:

Properties for passive devices
You can customize a passive representation using the CSS properties listed in the following
table.

CSS properties for passive devices
DescriptionDefault ValueTypeProperty Name

Denotes the icon that is used in the
passive representation.

ilog/tgo/
ilt_passive.png

ImagepassiveIcon

Denotes whether the passive icon is
displayed or not.

falsebooleanpassiveIconVisible

How to represent passive devices
Predefined business objects can have states and alarms. When these objects do not have an
object state set, they are considered to be passive devices. This information can be graphically
represented by the passive icon. The following CSS extract shows how you can customize
the predefined business objects to show this icon when the object does not have an object
state:

object."ilog.tgo.model.IltObject" {
passiveIconVisible: true;

}

object."ilog.tgo.model.IltObject"[objectState] {
passiveIconVisible: false;

}

S T Y L I N G340

Customizing the OSI state system

The OSI state dictionary is based on the OSI SMF 10164-2 standard, which defines the
primary state of a telecom object as a combination of three values, and also introduces a
number of status values.

JViews TGO provides a visual representation of OSI states by using the object base to
represent the primary state information, and secondary state icons to represent OSI status
values. For information on the OSI state system and its graphic representation, refer to

OSI states explains how to customize the object representation according to the OSI state
information. You can also customize the icons that are displayed when a given OSI status
value is set in the object.

OSI states
Whether or not a given status applies to an object depends on whether the object is Out Of
Service, In Service and Carrying Traffic, or In Service and Carrying No Traffic.

The OSI states corresponding to each status value are as follows:

♦ Out Of Service (OOS):

● Operational: Disabled, Usage: Idle, Administrative: Unlocked

● Operational: Disabled, Usage: Idle, Administrative: Locked

♦ In Service, Carrying No Traffic (NT):

● Operational: Enabled, Usage: Idle, Administrative: Unlocked

● Operational: Enabled, Usage: Idle, Administrative: Locked

♦ In Service, Carrying Traffic (CT):

● Operational: Enabled, Usage: Active, Administrative: Unlocked

● Operational: Enabled, Usage: Active, Administrative: Shutting down

● Operational: Enabled, Usage: Busy, Administrative: Unlocked

● Operational: Enabled, Usage: Busy, Administrative: Shutting down

You can customize the icon used to represent a status value by setting the image associated
with the secondary state and the primary state combination.

How to customize an OSI status icon (using the API)

Image img =
IltSystem.GetDefaultContext().getImageRepository().getImage("logfull.png");
IltSettings.SetValue("OSI.Availability.LogFull.OOS.Icon", img);

S T Y L I N G 341

IltSettings.SetValue("OSI.Availability.LogFull.NT.Icon", img);
IltSettings.SetValue("OSI.Availability.LogFull.CT.Icon", img);

In this example, the graphic representation of status IltOSI.Availability.LogFull has
been replaced in all valid primary state combinations.

You can also set different images to different primary state combinations by using the state
name, for example, “OSI.Availability.LogFull” or “OSI.Procedural.Initializing”, followed by
the primary state combination (OOS, NT or CT) and the property name (Icon). For example:

IltSettings.SetValue("OSI.Availability.LogFull.OOS.Icon", img);

or

IltSettings.SetValue("OSI.Procedural.Initializing.NT.Icon", img);

How to customize an OSI status icon (using CSS)
You can also customize an OSI status icon by using global CSS settings (see Using global
settings in for more information):

You must specify the full state name, for example "OSI.Availability.LogFull", when
matching the "name" attribute. The CSS properties to be customized are ctIcon, ntIcon,
oosIcon.

setting."ilog.tgo.model.IltState"[name="OSI.Availability.LogFull"] {
ctIcon: '@|image("logfull.png")';
ntIcon: '@|image("logfull.png")';
oosIcon: '@|image("logfull.png")';

}

S T Y L I N G342

Customizing the Bellcore state system

In the Bellcore state dictionary, a primary state is defined as holding one of the following
values:

♦ Disabled/Idle

♦ Enabled/Idle

♦ Enabled/Active

The Bellcore dictionary also includes numerous secondary states.

JViews TGO provides a visual representation for the Bellcore primary state by changing the
object base graphic representation. Bellcore secondary states are represented using
secondary state icons. For information on the Bellcore state system and its graphic
representation, refer to

Bellcore states explains how to customize the object representation according to the Bellcore
state information. You can also customize the icons that are displayed when a given Bellcore
secondary state is set in the object.

Bellcore states
Whether or not a secondary state can be applied meaningfully to a telecom object depends
on whether the object is in the Out of Service, No Traffic, or Carrying Traffic condition.

The corresponding Bellcore primary states are the following:

♦ OOS--Disabled/Idle

♦ NT--Enabled/Idle

♦ CT--Enabled/Active

You can customize the icon used to represent a secondary state by setting the image
associated with the secondary state and the primary state combination, as follows:

How to customize a Bellcore secondary state icon (using the API)

Image img =
IltSystem.GetDefaultContext().getImageRepository().getImage("blocked.png");
IltSettings.SetValue("Bellcore.SecState.Blocked.CT.Icon", img);

In this example, the graphic representation of status IltBellcore.SecState.Blocked has
been replaced in the Carrying Traffic representation.

You can also set different images for different combinations by using the state name, for
example, “Bellcore.SecState.Busy” or “Bellcore.SecState.Transferred”, followed by the
primary state combination (OOS, NT or CT) and the property name (Icon).

S T Y L I N G 343

IltSettings.SetValue("Bellcore.SecState.Transferred.OOS.Icon", img);

How to customize a Bellcore secondary state icon (using CSS)
You can customize a Bellcore secondary state icon using global CSS settings.

Youmust specify the full state name, for example "Bellcore.SecState.Busy", whenmatching
the "name" attribute. The CSS properties to be customized are ctIcon, ntIcon, oosIcon.

setting."ilog.tgo.model.IltState"[name="Bellcore.SecState.Blocked"] {
ctIcon: '@|image("blocked.png")';

}
setting."ilog.tgo.model.IltState"[name="Bellcore.SecState.Diagnostic"] {

ntIcon: '@|image("diagnostic.png")';
}
setting."ilog.tgo.model.IltState"[name="Bellcore.SecState.Transferred"] {

oosIcon: '@|image("transferred.png")';
}

For more information on global CSS settings, see .

S T Y L I N G344

Customizing the SNMP state system

Describes the SNMP states and how to customize them.

In this section

SNMP primary and secondary states
Describes the SNMP states, discusses customization of primary and secondary states and
describes how to create an SNMP primary state.

Customizing SNMP secondary states
Describes how to customize each graphical representation of SNMP secondary states.

Creating a new attribute in the System group
Describes how to create a new attribute in the group used for SNMP System attributes.

S T Y L I N G 345

SNMP primary and secondary states

The SNMP state dictionary is based on RFC 1213 - Management Information Base for
Network Management of TCP/IP-based internets - MIB-II.

JViews TGO provides a visual representation of the SNMP primary state by changing the
object base graphic representation. SNMP secondary states are represented using icons,
gauges, charts or counters. For information on the SNMP state system and its graphic
representation, refer to

SNMP states explains how to customize the object representation according to the SNMP
state information. You can also customize the decoration that is displayed when a given
SNMP secondary state is set in the object.

In the SNMP state dictionary, most of the secondary states are numeric and by default they
are represented by a gauge. There are also two other possible representations for these
states. The IltDecorationType class defines the possible graphical representations. The
possible values of this class are:

♦ Gauge

♦ Chart

♦ Counter

How to create an SNMP primary state
Each primary state in the SNMP state dictionary is associated with a different base style.

To create a new primary state:

♦ Create a new SNMP state using the method NewState(java.lang.String, java.lang.
String).

IltSNMP.State state = IltSNMP.NewState ("Pending", "Indicates if the object

is waiting for validation");

This method takes two arguments: a name and a description. The name is used to identify
the state in the application. The description is used to provide information about the
semantics of the state.

The new state can be used in XML in the following way.

<state>Pending</state>

♦ Create a CSS file that configures the representation of the objects according to the new
state.

object."ilog.tgo.model.IltObject"["objectState.SNMP.State"=Pending] {
foreground: red;
background: yellow;

S T Y L I N G346

pattern: '@|pattern("SkewGrid", 8, 2)';
lineStyle: "1.000001, 7.000001";

}

Formore information on CSS, see Introducing cascading style sheets. For more information
on how to customize the object representation based on states, see Customizing the object
representation based on states.

♦ Create a selector that resets the values defined by the state selector, so that the normal
configuration is still applied to the objects when the state changes.

object."ilog.tgo.model.IltObject" {
foreground: '';
background: '';
pattern: '';
lineStyle: '';

}

S T Y L I N G 347

Customizing SNMP secondary states

How to customize an SNMP secondary state decoration (using the
API)
SNMP secondary states can be displayed as charts, gauges or counters. By default, the
gauge decoration is used. If you want to indicate that you are going to use another type of
representation, without changing the default configuration for each representation, modify
the secondary state information as follows.

IltSettings.SetValue("SNMP.Interface.InOctets.Type", IltDecorationType.Chart)
;

The property to be set is based on the SNMP state name followed by “.Type”, for example,
SNMP.ICMP.InMsgs.Type or SNMP.TCP.OutSegs.Type.

How to customize an SNMP secondary state decoration (using
CSS)
You can customize an SNMP secondary state decoration using global CSS settings.

You must specify the full state name, for example "SNMP.Interface.InOctets", when
matching the "name" attribute. The CSS property to be customized is type.

setting."ilog.tgo.model.IltState"[name="SNMP.Interface.InOctets"] {
type: Counter;

}

For more information on global CSS settings, see

How to modify the gauge graphical representation of an SNMP
secondary state (using the API)
When an SNMP secondary state is graphically represented by a gauge decoration, the
configuration of this decoration has to be previously defined. All SNMP secondary states
have a predefined gauge representation. For information on how each secondary state is
graphically represented, refer to

Suppose you have a secondary state that is configured with a gauge decoration as follows.

IltSettings.SetValue("SNMP.ICMP.OutErrors.Type", IltDecorationType.Gauge);

You can modify this decoration in the following way.

IltColorModifier modifier1 = new IltColorModifier.Shade(0.5f);
IltColorModifier modifier2 = new

S T Y L I N G348

IltColorModifier.MultiColor(IltColorModifier.MultiColor.USE_LAST_VALUE);
IltColorModifier modifier = modifier1.compose(modifier2);

IltGaugeMapping mapping = (IltGaugeMapping)
IltSettings.GetValue("SNMP.ICMP.OutErrors.Gauge");

mapping.setColorModifier(modifier);

You can also create a new gauge mapping, and set the new value in the following way.

IltGaugeMapping mapping = new IltGaugeMapping(minImg, maxImg);
IltSettings.SetValue("SNMP.ICMP.OutErrors.Gauge", mapping);

How to modify the gauge graphical representation of an SNMP
secondary state (using CSS)
You can customize the gauge graphical representation using global CSS settings. You must
specify the full state name, for example "SNMP.Interface.InOctets", when matching the
"name" attribute. The CSS property to be customized is gauge.

When defining a new gauge mapping class, the following CSS properties are used: minImage,
maxImage, direction, colorModifier. They match corresponding set methods of the
IltGaugeMapping class (and its super class).

setting."ilog.tgo.model.IltState"[name="SNMP.ICMP.OutErrors"] {
gauge: @+gaugeSnmp;

}
Subobject#gaugeSnmp {
class: 'ilog.tgo.graphic.IltGaugeMapping';
minImage: '@|image("icon1.png")';
maxImage:'@|image("icon2.png")';
direction: Bottom;
colorModifier: @+myColorModifier;

}
Subobject#myColorModifier {
class: "MyColorModifier";

}

In this example, the color modifier class named MyColorModifier has been created and
included in the search path.

For information on how to customize the gauge decorations, refer to ilog.tgo.graphic.
IltGaugeMapping.

How to modify the chart graphical representation of an SNMP
secondary state (using the API)
When an SNMP secondary state is graphically represented by a chart decoration, the
configuration of this decoration has to be previously defined. All SNMP secondary states
have a predefined chart representation. Refer to The SNMP state dictionary in the Business
Objects and Data Sources documentation for information on how each secondary state is
graphically represented.

S T Y L I N G 349

Suppose you have a secondary state that is configured with a chart decoration as follows:

IltSettings.SetValue("SNMP.ICMP.OutErrors.Type", IltDecorationType.Chart);

You can modify this decoration in the following way:

IltColorModifier modifier1 = new IltColorModifier.Shade(0.5f);
IltColorModifier modifier2 =
new IltColorModifier.MultiColor(IltColorModifier.MultiColor.USE_LAST_VALUE)

;
IltColorModifier modifier = modifier1.compose(modifier2);

IltChartMapping mapping = (IltChartMapping)
IltSettings.GetValue("SNMP.ICMP.OutErrors.Chart");

mapping.setColorModifier(modifier);

You can also create a new chart mapping, and set the new value in the following way:

IltChartMapping mapping = new IltChartMapping(minImg, maxImg);
IltSettings.SetValue("SNMP.ICMP.OutErrors.Chart", mapping);

How to modify the chart graphical representation of an SNMP
secondary state (using CSS)
You can also customize the chart graphic representation by using global CSS settings. You
must specify the full state name, for example "SNMP.ICMP.OutErrors", when matching the
"name" attribute. The CSS property to be customized is chart.

When defining a new chart mapping class, the following CSS properties are used: minImage,
maxImage, xAxisDirection, yAxisDirection, colorModifier. They match corresponding
setmethods of the IltChartMapping class (and its super class). Refer to ilog.tgo.graphic.
IltChartMapping for information on how to customize the chart decorations.

In the example below, the color modifier class named MyColorModifier has been created
and included in the search path.

setting."ilog.tgo.model.IltState"[name="SNMP.ICMP.OutErrors"] {
chart: @+chartSnmp;

}
Subobject#chartSnmp {
class: 'ilog.tgo.graphic.IltChartMapping';
minImage: '@|image("icon1.png")';
maxImage:'@|image("icon2.png")';
xAxisDirection: Right;
yAxisDirection: Bottom;
colorModifier: @+myColorModifier;

}
Subobject#myColorModifier {

S T Y L I N G350

class: "MyColorModifier";
}

How to modify the counter graphical representation of an SNMP
secondary state (using the API)
When an SNMP secondary state is graphically represented by a counter decoration, the
configuration of this decoration has to be previously defined. All SNMP secondary states
have a predefined counter representation. Refer to The SNMP state dictionary in the Business
Objects and Data Sources documentation for information on how each secondary state is
graphically represented.

Suppose you have a secondary state that is configured with a counter decoration as follows:

IltSettings.SetValue("SNMP.ICMP.OutErrors.Type", IltDecorationType.Counter);

You can modify this decoration in the following way:

IltCounterMapping cm = new IltCounterMapping(new DecimalFormat("#Mbs"),
IltrFont.CounterText,
true, Color.black,
Color.white, Color.black,
3, 1, IlvDirection.Right, false)

;
IltSettings.SetValue("SNMP.ICMP.OutErrors.Counter", cm);

How to modify the counter graphical representation of an SNMP
secondary state (using CSS)
You can also customize the counter graphic representation by using global CSS settings.
You must specify the full state name, for example "SNMP.ICMP.OutErrors", when matching
the "name" attribute. The CSS property to be customized is counter.

When defining a new counter mapping class, the following CSS properties are used: format,
font, antialiasing, foregroundColor, backgroundColor, borderColor, xPadding, yPadding.
They match corresponding set methods of the IltCounterMapping class (and its super
class). Refer to ilog.tgo.graphic.IltCounterMapping for information on how to customize
the counter decorations.

setting."ilog.tgo.model.IltState"[name="SNMP.ICMP.OutErrors"] {
counter: @+counterSnmp;

}
Subobject#counterSnmp {
class: 'ilog.tgo.graphic.IltCounterMapping';
format: @+myNumberFormat;
font: "Helvetica-Bold-12";
antialiasing: false;
foregroundColor: red;
backgroundColor: blue;

S T Y L I N G 351

borderColor: red;
xPadding: 100;
yPadding: 100;

}
Subobject#myNumberFormat{
class: 'MyNumberFormat';

}

S T Y L I N G352

Creating a new attribute in the System group

JViews TGO defines a specific attribute group to store SNMP System attributes. You can
retrieve this attribute group with the method GetSystemAttributeGroup(). The attributes
present in this group are business object attributes, as defined in IlpAttribute.

JViews TGO provides an attribute class IltAttribute), which you can use directly when
customizing the SNMP System group.

To extend the attributes in the SNMP System group:

♦ Create a new attribute with its type and attribute group.

IltAttribyte myAttribute = new IltAttribute("address",
String.class,
IltSNMP.GetSystemAttributeGroup());

♦ Register the attribute in the SNMP System Group.

To do so, use the method SetAttributeMapping(ilog.cpl.model.IlpAttribute, java.
lang.Object, ilog.cpl.style.key.IlpStringKey). This method allows the attribute
to be automatically represented in the object System Window.

IltSNMP.SetAttributeMapping(myAttribute, defaultValue, "Address");

♦ Customize the representation of this attribute through cascading style sheets.

When adding a new attribute to the System Window, create a selector for the object and
attribute (object."ilog.tgo.model.IltObject/address"). This selector contains the
following properties:

● visibleInSystemWindow: indicates that the attribute is an entry in the Systemwindow

● captionLabelVisible: indicates that a label prefixes the attribute value

● captionLabel: indicates the value of the label

● label: indicates the value of the attribute to be displayed in the System window

The following example illustrates the way to customize an attribute inside the System
Window.

object."ilog.tgo.model.IltObject/address" {
visibleInSystemWindow: true;
captionLabel: Address;
captionLabelVisible: true;
label: @address;

}

S T Y L I N G 353

S T Y L I N G354

Customizing the SONET state system

Describes the SONET states and how to customize them.

In this section

Customizing SONET states
Describes how to create a new SONET primary state and how to configure it for use as a
BiSONET state.

Customizing SONET protection states
Describes how to create a new SONET protection state and how to customize the associated
icon.

S T Y L I N G 355

Customizing SONET states

The SONET State Dictionary groups states and indicators that are used most often to display
transport links with the protection process. Such link state graphics are useful only in
applications in which the end user must be informed about link states and protection
switching information (as in a fiber transport network, for example).

For a description of the state system and its graphical representation, refer to

SONET states explains how to customize the object representation according to the SONET
state information.

How to customize the SONET state system
To create a new SONET primary state:

♦ Create the new state using themethod NewState(java.lang.String, java.lang.String).

This method takes two arguments: a name and a description. The name is used to identify
the state in the application. The description is used to provide information about the
semantics of the state.

IltState inErrorState = IltSONET.NewState("InError", "In error state");

The state defined above can be used in XML in the following way:

<state>InError</state>

♦ Customize the primary state representation using an attribute-based CSS selector. For
more information on CSS, see section Introducing cascading style sheets in this
documentation. For more information on how to customize the object representation
based on states, see Customizing the object representation based on states.

The following CSS selector modifies the configuration of all IltObject instances that
have the primary state SONET InError.

object."ilog.tgo.model.IltObject"["objectState.SONET.State"=InError] {
foreground: red;
centerWidth: 6;
reliefBorders: true;

}

The following example illustrates how the new SONET state is represented.

IltLink link = new IltLink(new IltSONETObjectState(), null);
link.setState(InErrorState);

The graphical results can be seen in Customizing the SONET state system.

S T Y L I N G356

Customizing the SONET state system

How to use the new SONET state as a BiSONET state
A new state can also be used as a BiSONET state. In this case, you should define how the
state will be represented as a state and as a reverse state.

♦ Customize the link representation when it uses the BiSONET object state and its primary
state is set to the newly created state. This configuration is illustrated by the following
selector which indicates all objects that have the primary state InError and contain a
reverse state.

object."ilog.tgo.model.IltLink"["objectState.SONET.State"=InError]["objectSt
ate.SONET.ReverseState"] {
foreground:'';
innerCenterWidth: 2;
innerForeground: red;
toArrowColor: red;
toArrowReliefBorders: true;
toArrowBorderColor: red;
toArrowBorderColor2: red;

}

♦ Customize the link representation when the new state is set to the reverse state. Use the
following selector.

object."ilog.tgo.model.IltLink"["objectState.SONET.ReverseState"=InError]
{
fromArrowColor: red;
fromArrowReliefBorders: true;
fromArrowBorderColor: red;
fromArrowBorderColor2: red;
foreground: red;
centerWidth: 6;

}

♦ Define a generic rule to be matched when the new state is not set. This generic rule
specifies that, for the states that are not defined in the cascading style sheets, the default
configuration will be applied. The corresponding selector simply sets all properties set

S T Y L I N G 357

by the other selectors to their default value, so that the configuration of the other SONET
states is appropriately applied to the objects.

object."ilog.tgo.model.IltLink" {
foreground: '';
centerWidth: -1;
reliefBorders: '';
innerCenterWidth: -1;
innerForeground:'';
toArrowColor:'';
toArrowBorderColor:'';
toArrowBorderColor2:'';
toArrowReliefBorders: '';
fromArrowColor:'';
fromArrowBorderColor:'';
fromArrowBorderColor2:'';
fromArrowReliefBorders: '';

}

The created state can be set on the object in the following way.

IltBiSONETObjectState ostate = new IltBiSONETObjectState();
ostate.setState(IltSONET.State.ActiveProtecting);
ostate.setReverseState(inErrorState);
IltLink link = new IltLink(ostate, null);

S T Y L I N G358

Customizing SONET protection states

The SONET state system defines a set of protections that can be associated with link objects.
You can create new SONET protections, as well as configure how new and existing protections
are graphically represented in your objects.

How to create a new SONET protection state (using the API)
Create a new protection state using the method NewProtection(java.lang.String, java.
lang.String). This method takes two arguments: a name and a description.

IltSONET.Protection protection = IltSONET.NewProtection("InTest",
"Indicates that the communication channel is currently under test");

The name is used to identify the state in the application. When a new protection state is
created with the name InTest, it is referred to in XML in the following way:

<protection>InTest</protection>

The description is used to provide information about the semantics of the state. It can be
used as a tooltip to display more information about the protection state represented in a
business object. To activate the tooltip support for secondary states, see Customizing tooltips.

How to create a new SONET protection state (using CSS)
You can create new protection states using global CSS settings.

Settings {
sonet: true;

}
SONET {

protections[0]: @+prot0;
}
Subobject#prot0 {
class: 'ilog.tgo.model.IltSONET.Protection';
name: "InTest";

}

How to customize SONET protection states (using the API)
Each SONET protection state is associated with an icon that can be customized using
SetValue(java.lang.Object, java.lang.Object). This method requires two arguments,
the first argument being the property key name. SONET Protection state property names
are formed by: “SONET.Protection.<YOUR STATE NAME>.Icon”

IlpImageRepository imageRep =
IltSystem.GetDefaultContext().getImageRepository();

S T Y L I N G 359

Image problemImage = imageRep.getImage("problem.png");
IltSettings.SetValue("SONET.Protection.Problem.Icon", problemImage);

or

IltSettings.SetValue("SONET.Protection.Exercisor.Icon", img);

How to customize SONET protection states (using CSS)
You can customize SONET protection states using global CSS settings. For more information,
see Using global settings. You must specify the full state name, for example "SONET.
Protection.Problem", when matching the "name" attribute. The CSS property to be
customized is icon.

setting."ilog.tgo.model.IltState"[name="SONET.Protection.Problem"] {
icon: '@|image("problem.png")';

}

S T Y L I N G360

Customizing the Miscellaneous state system

The Miscellaneous State Dictionary provides secondary state values that can be used to
complement OSI, Bellcore or SNMP standards. The secondary states included in this
dictionary are often used in telecommunication network supervision applications. For
information on the dictionary and its graphical representation, refer to

You can create your ownmiscellaneous secondary state, and configure how new and existing
secondary states are graphically represented in your objects.

How to create new Miscellaneous states (using the API)

IltMisc.SecState state = IltMisc.NewSecState("Misc.SecState.Problem", "Severe

Problem");

NewSecState(java.lang.String, java.lang.String) takes two arguments. The first one
is a name that identifies the new miscellaneous state in the application. The name must
comply with the rule Misc.SecState.<value>. For example, when a new state is created
with name Misc.SecState.Problem, it is referred to in XML files in the following way:

<misc>Problem</misc>

The second argument is a description. This description is used as a tooltip to display more
information about the miscellaneous state represented in a business object. To activate the
tooltip support for secondary states, see Customizing tooltips.

NewSecState(java.lang.String, java.lang.String) returns an instance of IltMisc.
SecState that can be used in exactly the sameway as the predefinedMiscellaneous secondary
states.

How to create new Miscellaneous states (using CSS)
You can also create new miscellaneous states by using global CSS settings:

Settings {
misc: true;

}
Misc {

states[0]: @+misc0;
}
Subobject#misc0 {
class: 'ilog.tgo.model.IltMisc.SecState';
name: "Misc.SecState.Problem";

}

S T Y L I N G 361

How to customize Miscellaneous states (using the API)
Each Miscellaneous secondary state is associated with an icon that can be customized using
IltSettings.SetValue. This method requires two arguments, the first argument being the
property key name. Miscellaneous secondary state property names are formed by: “<YOUR
STATE NAME>.Icon”.

IlpImageRepository imageRep =
IltSystem.GetDefaultContext().getImageRepository();
Image problemImage = imageRep.getImage("problem.png");
IltSettings.SetValue("Misc.SecState.Problem.Icon", problemImage);

or

IltSettings.SetValue("Misc.SecState.HighTemperatureWarning.Icon", img);

How to customize Miscellaneous states (using CSS)
You can also customize miscellaneous states by using global CSS settings. For more
information, see Using global settings. You must specify the full state name, for example
"Misc.SecState.Problem", when matching the "name" attribute. The CSS property to be
customized is icon.

setting."ilog.tgo.model.IltState"[name="Misc.SecState.Problem"] {
icon: '@|image("problem.png")';

}

S T Y L I N G362

Customizing the Performance State System

Describes the Performance secondary states and how to create and customize them.

In this section

Creating new Performance secondary states
Describes how to create a new Performance secondary state.

Customizing Performance secondary states
TO BE DEFINED

S T Y L I N G 363

Creating new Performance secondary states

The Performance State Dictionary provides secondary state values that can be used to
complement OSI, Bellcore, SNMP, or SONET standards. The secondary states included in
this dictionary can be used to model and represent any state with a numeric value. For
information on the dictionary and its graphical representation, refer to

You can create your own performance secondary state, and configure how new and existing
secondary states are graphically represented in your objects.

How to create new Performance secondary states (using the API)
Performance secondary states are created using IltPerformance.NewSecState, as follows.

IltPerformance.SecState state =
IltPerformance.NewSecState("Performance.SecState.ResponseTime",

"Measures the ellapsed time between a request and response operations.
");

NewSecState(java.lang.String, java.lang.String) takes two arguments. The first one
is a name that identifies the new performance state in the application. The namemust comply
with the rule Performance.SecState.<value>. For example, when a new state is created
with name Performance.SecState.ResponseTime, it is referred to in XML files in the
following way:

<performance state="ResponseTime">33.2</performance>

The second argument is a description. This description is used as a tooltip to display more
information about the performance state represented in a business object. To activate the
tooltip support for secondary states, see Customizing tooltips.

NewSecState(java.lang.String, java.lang.String) returns an instance of
IltPerformance.SecState, that you can use in exactly the same way as the predefined
Performance secondary states.

Once a new performance secondary state has been created, you need to configure its
graphical representation. See Customizing Performance secondary states for more
information.

How to create new Performance secondary states (using CSS)
You can create new Performance secondary states using global CSS settings:

Settings {
performance: true;

}
Performance {

states[0]: @+perf0;
}

S T Y L I N G364

Subobject#perf0 {
class: 'ilog.tgo.model.IltPerformance$SecState';
name: "Performance.SecState.ResponseTime";

}

S T Y L I N G 365

Customizing Performance secondary states

Describes how to configure each representation of Performance secondary states.

Performance states explains how to customize the object representation according to the
Performance state information. You can also customize the decoration that is displayed when
a given Performance secondary state is set in the object.

In the Performance state dictionary, the secondary states are numeric and by default they
are represented by a gauge. There are also two other possible representations for these
states. The IltDecorationType class defines the possible graphical representations. The
possible values of this class are:

♦ Gauge

♦ Chart

♦ Counter

How to customize a Performance secondary state decoration
(using the API)
Performance secondary states can be displayed as charts, gauges or counters. By default,
the gauge decoration is used. If you want to indicate that you are going to use another type
of representation, without changing the default configuration for each representation, modify
the secondary state information as follows:

IltSettings.SetValue("Performance.SecState.Imput.Type",
IltDecorationType.Chart);

The property to be set is built in the following way: “<STATE NAME>.Type”. For example,
Performance.SecState.In.Type or Performance.SecState.Voltage.Type.

How to customize a Performance secondary state decoration
(using CSS)
You can also customize a performance secondary state decoration by using global CSS
settings (see Using global settings in Using Cascading Style Sheets for more information):

You must specify the full state name, for example "Performance.SecState.Input", when
matching the "name" attribute. The CSS property to be customized is type.

setting."ilog.tgo.model.IltState"[name="Performance.SecState.Input"] {
type: Chart;

}

S T Y L I N G366

How to modify the Gauge graphical representation of a
Performance secondary state (using the API)
When a Performance secondary state is graphically represented by a gauge decoration, the
configuration of this decoration has to be previously defined. All Performance secondary
states have a predefined gauge representation.

For information on how each secondary state is graphically represented, refer to

Suppose you have a secondary state that is configured with a gauge decoration as follows.

IltSettings.SetValue("Performance.SecState.Input.Type",
IltDecorationType.Gauge);

You can modify this decoration in the following way.

IltColorModifier modifier1 = new IltColorModifier.Shade(0.5f);
IltColorModifier modifier2 = new

IltColorModifier.MultiColor(IltColorModifier.MultiColor.USE_LAST_VALUE);
IltColorModifier modifier = modifier1.compose(modifier2);

IltGaugeMapping mapping = (IltGaugeMapping)
IltSettings.GetValue("Performance.SecState.Input.Gauge");

mapping.setColorModifier(modifier);

You can also create a new gauge mapping, and set the new value in the following way.

IltGaugeMapping mapping = new IltGaugeMapping(minImg, maxImg);
IltSettings.SetValue("Performance.SecState.Input.Gauge", mapping);

How to modify the Gauge graphical representation of a
Performance secondary state (using CSS)
You can also customize the gauge graphic representation by using global CSS settings. You
must specify the full state name, for example "Performance.SecState.Input", whenmatching
the "name" attribute. The CSS property to be customized is gauge.

When defining a new gauge mapping class, the following CSS properties are used: minImage,
maxImage, direction, colorModifier. They match corresponding set methods of the
IltGaugeMapping class (and its super class). Refer to ilog.tgo.graphic.IltGaugeMapping
for information on how to customize the gauge decorations.

In the following example, the color modifier class named MyColorModifier has been created
and included in the search path.

setting."ilog.tgo.model.IltState"[name="Performance.SecState.Input"] {
gauge: @+gaugePerf;

}
Subobject#gaugePerf {

S T Y L I N G 367

class: 'ilog.tgo.graphic.IltGaugeMapping';
minImage: '@|image("icon1.png")';
maxImage:'@|image("icon2.png")';
direction: Bottom;
colorModifier: @+myColorModifier;

}
Subobject#myColorModifier {
class: "MyColorModifier";

}

How to modify the Chart graphical representation of a Performance
secondary state (using the API)
When a Performance secondary state is graphically represented by a chart decoration, the
configuration of this decoration has to be previously defined. All Performance secondary
states have a predefined chart representation. Refer to Performance states: the Performance
state dictionary in the Business Objects and Data Sources documentation for information
on how each secondary state is graphically represented.

Suppose you have a secondary state that is configured with a chart decoration as follows.

IltSettings.SetValue("Performance.SecState.Input.Type",
IltDecorationType.Chart);

You can modify this decoration in the following way.

IltColorModifier modifier1 = new IltColorModifier.Shade(0.5f);
IltColorModifier modifier2 =
new IltColorModifier.MultiColor(IltColorModifier.MultiColor.USE_LAST_VALUE)

;
IltColorModifier modifier = modifier1.compose(modifier2);

IltChartMapping mapping = (IltChartMapping)
IltSettings.GetValue("Performance.SecState.Input.Chart");

mapping.setColorModifier(modifier);

You can also create a new chart mapping, and set the new value in the following way:

IltChartMapping mapping = new IltChartMapping(minImg, maxImg);
IltSettings.SetValue("Performance.SecState.Input.Chart", mapping);

How to modify the Chart graphical representation of a Performance
secondary state (using CSS)
You can customize the chart graphic representation using global CSS settings. You must
specify the full state name, for example "Performance.SecState.Input", when matching
the "name" attribute. The CSS property to be customized is chart.

S T Y L I N G368

When defining a new chart mapping class, the following CSS properties are used: minImage,
maxImage, xAxisDirection, yAxisDirection, colorModifier. They match corresponding
setmethods of the IltChartMapping class (and its super class). Refer to ilog.tgo.graphic.
IltChartMapping for information on how to customize the chart decorations.

In the following example, the color modifier class named MyColorModifier has been created
and included in the search path.

setting."ilog.tgo.model.IltState"[name="Performance.SecState.Input"] {
chart: @+chartPerf;

}
Subobject#chartPerf {
class: 'ilog.tgo.graphic.IltChartMapping';
minImage: '@|image("icon1.png")';
maxImage:'@|image("icon2.png")';
xAxisDirection: Right;
yAxisDirection: Bottom;
colorModifier: @+myColorModifier;

}
Subobject#myColorModifier {
class: "MyColorModifier";

}

How to modify the Counter graphical representation of a
Performance secondary state (using the API)
When a Performance secondary state is graphically represented by a counter decoration,
the configuration of this decoration has to be previously defined. All Performance secondary
states have a predefined counter representation. For information on how each secondary
state is graphically represented, refer to

Suppose you have a secondary state that is configured with a counter decoration as follows.

IltSettings.SetValue("Performance.SecState.Input.Type",
IltDecorationType.Counter);

You can modify this decoration in the following way.

IltCounterMapping cm = new IltCounterMapping(new DecimalFormat("#Mbs"),
IltrFont.CounterText,
true, Color.black,
Color.white, Color.black,
3, 1, IlvDirection.Right, false)

;
IltSettings.SetValue("Performance.SecState.Input.Counter", cm);

S T Y L I N G 369

How to modify the Counter graphical representation of a
Performance secondary state (using CSS)
You can customize the counter graphical representation by using global CSS settings. You
must specify the full state name, for example "Performance.SecState.Input", whenmatching
the "name" attribute. The CSS property to be customized is counter.

When defining a new counter mapping class, the following CSS properties are used: format,
font, antialiasing, foregroundColor, backgroundColor, borderColor, xPadding, yPadding.
They match corresponding set methods of the IltCounterMapping class (and its super
class). Refer to ilog.tgo.graphic.IltCounterMapping for information on how to customize
the counter decorations.

setting."ilog.tgo.model.IltState"[name="Performance.SecState.Input"] {
counter: @+counterPerf;

}
Subobject#counterPerf {
class: 'ilog.tgo.graphic.IltCounterMapping';
format: @+myNumberFormat;
font: "Helvetica-Bold-12";
antialiasing: false;
foregroundColor: red;
backgroundColor: blue;
borderColor: red;
xPadding: 100;
yPadding: 100;

}
Subobject#myNumberFormat{
class: 'MyNumberFormat';

}

S T Y L I N G370

Customizing the SAN state system

Describes the SAN secondary states and how to create and customize them.

In this section

Creating new SAN secondary states
Describes how to create a new SAN secondary state.

Customizing SAN Secondary States
Describes how to configure each representation of SAN secondary states.

S T Y L I N G 371

Creating new SAN secondary states

The SAN (Storage Area Network) State Dictionary provides secondary state values that can
be used to complement OSI, Bellcore, SNMP, or SONET standards. The secondary states
included in this dictionary can be used to model and represent any state with a numeric
value. For information on the dictionary and its graphical representation,

Make cross-ref to SAN States: the SAN State Dictionary

refer to SAN states: the SAN state dictionary in the Business Objects and Data Sources
documentation .

You can create your own SAN secondary state, and configure how new and existing secondary
states are graphically represented in your objects.

How to create new SAN states (using the API)
SAN secondary states are created using IltSAN.NewSecState, as follows:

IltSAN.SecState state =
IltSAN.NewSecState("SAN.SecState.CPUUtilization","Measures the CPU use

rate");

NewSecState(java.lang.String, java.lang.String) takes two arguments. The first one
is a name that identifies the new SAN state in the application. The name must comply with
the rule SAN.SecState.<value>. For example, when a new state is created with name SAN.
SecState.CPUUtilization, it is referred to in XML files in the following way:

<SAN state="CPUUtilization">78</SAN>

The second argument is a description. This description is used as a tooltip to display more
information about the SAN state represented in a business object. To activate the tooltip
support for secondary states, see Customizing tooltips.

NewSecState(java.lang.String, java.lang.String) returns an instance of IltSAN.
SecState, that you can use in exactly the same way as the predefined SAN secondary states.

Once a new SAN secondary state has been created, you need to configure its graphic
representation. See Customizing SAN Secondary States for more information.

How to create new SAN states (using CSS)
You can also create new SAN secondary states by using global CSS settings:

Settings {
san: true;

}
SAN {

states[0]: @+san0;
}

S T Y L I N G372

Subobject#san0 {
class: 'ilog.tgo.model.IltSAN.SecState';
name: "SAN.SecState.CPUUtilization";

}

S T Y L I N G 373

Customizing SAN Secondary States

SAN states explains how to customize the object representation according to the SAN state
information. You can also customize the decoration that is displayed when a given SAN
secondary state is set in the object.

In the SAN state dictionary, the secondary states are numeric and by default they are
represented by a gauge. There are also two other possible representations for these states.
The IltDecorationType class defines the possible graphical representations. The possible
values of this class are:

♦ Gauge

♦ Chart

♦ Counter

How to customize a SAN secondary state decoration (using the
API)
SAN secondary states can be displayed as charts, gauges or counters. By default, the gauge
decoration is used. If you want to indicate that you are going to use another type of
representation, without changing the default configuration for each representation, modify
the secondary state information as follows:

IltSettings.SetValue("SAN.SecState.IO.Type", IltDecorationType.Chart);

The property to be set is built in the following way: “<STATE NAME>.Type”. For example,
SAN.SecState.Available.Type or SAN.SecState.CPUUtilization.Type.

How to customize a SAN secondary state decoration (using CSS)
You can also customize a SAN secondary state decoration by using global CSS settings. For
more information, see Using global settings.

You must specify the full state name, for example "SAN.SecState.CPUUtilization", when
matching the "name" attribute. The CSS property to be customized is type.

setting."ilog.tgo.model.IltState"[name="SAN.SecState.CPUUtilization"] {
type: Counter;

}

How to modify the gauge graphical representation of a SAN
secondary state (using the API)
When a SAN secondary state is graphically represented by a gauge decoration, the
configuration of this decoration has to be previously defined. All SAN secondary states have
a predefined gauge representation. Refer to SAN states: the SAN state dictionary in the

S T Y L I N G374

Business Objects and Data Sources documentation for information on how each secondary
state is graphically represented.

Suppose you have a secondary state that is configured with a gauge decoration as follows:

IltSettings.SetValue("SAN.SecState.CPUUtilization.Type",
IltDecorationType.Gauge);

You can modify this decoration in the following way:

IltColorModifier modifier1 = new IltColorModifier.Shade(0.5f);
IltColorModifier modifier2 = new

IltColorModifier.MultiColor(IltColorModifier.MultiColor.USE_LAST_VALUE);
IltColorModifier modifier = modifier1.compose(modifier2);

IltGaugeMapping mapping = (IltGaugeMapping)
IltSettings.GetValue("SAN.SecState.CPUUtilization.Gauge");

mapping.setColorModifier(modifier);

You can also create a new gauge mapping, and set the new value in the following way:

IltGaugeMapping mapping = new IltGaugeMapping(minImg, maxImg);
IltSettings.SetValue("SAN.SecState.CPUUtilization.Gauge", mapping);

How to modify the gauge graphical representation of a SAN
secondary state (using CSS)
You can also customize the gauge graphic representation by using global CSS settings. You
must specify the full state name, for example "SAN.SecState.CPUUtilization", when
matching the "name" attribute. The CSS property to be customized is gauge.

When defining a new gauge mapping class, the following CSS properties are used: minImage,
maxImage, direction, colorModifier. They match corresponding set methods of the
IltGaugeMapping class (and its super class). Refer to ilog.tgo.graphic.IltGaugeMapping
for information on how to customize the gauge decorations.

In the example below, the color modifier class named MyColorModifier has been created
and included in the search path.

setting."ilog.tgo.model.IltState"[name="SAN.SecState.CPUUtilization"] {
gauge: @+gaugeSan;

}
Subobject#gaugeSan {
class: 'ilog.tgo.graphic.IltGaugeMapping';
minImage: '@|image("icon1.png")';
maxImage:'@|image("icon2.png")';
direction: Bottom;
colorModifier: @+myColorModifier;

}
Subobject#myColorModifier {

S T Y L I N G 375

class: "MyColorModifier";
}

How to modify the chart graphical representation of a SAN
secondary state (using the API)
When a SAN secondary state is graphically represented by a chart decoration, the
configuration of this decoration has to be previously defined. All SAN secondary states have
a predefined chart representation. Refer to SAN states: the SAN state dictionary in the
Business Objects and Data Sources documentation for information on how each secondary
state is graphically represented.

Suppose you have a secondary state that is configured with a chart decoration as follows:

IltSettings.SetValue("SAN.SecState.CPUUtilization.Type",
IltDecorationType.Chart);

You can modify this decoration in the following way:

IltColorModifier modifier1 = new IltColorModifier.Shade(0.5f);
IltColorModifier modifier2 =
new IltColorModifier.MultiColor(IltColorModifier.MultiColor.USE_LAST_VALUE)

;
IltColorModifier modifier = modifier1.compose(modifier2);

IltChartMapping mapping = (IltChartMapping)
IltSettings.GetValue("SAN.SecState.CPUUtilization.Chart");

mapping.setColorModifier(modifier);

You can also create a new chart mapping, and set the new value in the following way:

IltChartMapping mapping = new IltChartMapping(minImg, maxImg);
IltSettings.SetValue("SAN.SecState.CPUUtilization.Chart", mapping);

How to modify the chart graphical representation of a SAN
secondary state (using CSS)
You can also customize the chart graphic representation by using global CSS settings. You
must specify the full state name, for example "SAN.SecState.CPUUtilization", when
matching the "name" attribute. The CSS property to be customized is chart.

When defining a new chart mapping class, the following CSS properties are used: minImage,
maxImage, xAxisDirection, yAxisDirection, colorModifier. They match corresponding
setmethods of the IltChartMapping class (and its super class). Refer to ilog.tgo.graphic.
IltChartMapping for information on how to customize the chart decorations.

In the example below, the color modifier class named MyColorModifier has been created
and included in the search path.

S T Y L I N G376

setting."ilog.tgo.model.IltState"[name="SAN.SecState.CPUUtilization"] {
chart: @+chartSan;

}
Subobject#chartSan {
class: 'ilog.tgo.graphic.IltChartMapping';
minImage: '@|image("icon1.png")';
maxImage:'@|image("icon2.png")';
xAxisDirection: Right;
yAxisDirection: Bottom;
colorModifier: @+myColorModifier;

}
Subobject#myColorModifier {
class: "MyColorModifier";

}

How to modify the counter graphical representation of a SAN
secondary state (using the API)
When a SAN secondary state is graphically represented by a counter decoration, the
configuration of this decoration has to be previously defined. All SAN secondary states have
a predefined counter representation. Refer to SAN states: the SAN state dictionary in the
Business Objects and Data Sources documentation for information on how each secondary
state is graphically represented.

Suppose you have a secondary state that is configured with a counter decoration as follows:

IltSettings.SetValue("SAN.SecState.CPUUtilization.Type",
IltDecorationType.Counter);

You can modify this decoration in the following way:

IltCounterMapping cm = new IltCounterMapping(new DecimalFormat("#Mbs"),
IltrFont.CounterText,
true, Color.black,
Color.white, Color.black,
3, 1, IlvDirection.Right, false)

;
IltSettings.SetValue("SAN.SecState.CPUUtilization.Counter", cm);

How to modify the counter graphical representation of a SAN
secondary state (using CSS)
You can also customize the counter graphic representation by using global CSS settings.
You must specify the full state name, for example "SAN.SecState.CPUUtilization", when
matching the "name" attribute. The CSS property to be customized is counter.

When defining a new counter mapping class, the following CSS properties are used: format,
font, antialiasing, foregroundColor, backgroundColor, borderColor, xPadding, yPadding.
They match corresponding set methods of the IltCounterMapping class (and its super

S T Y L I N G 377

class). Refer to ilog.tgo.graphic.IltCounterMapping for information on how to customize
the counter decorations.

setting."ilog.tgo.model.IltState"[name="SAN.SecState.CPUUtilization"] {
counter: @+counterSan;

}
Subobject#counterSan {
class: 'ilog.tgo.graphic.IltCounterMapping';
format: @+myNumberFormat;
font: "Helvetica-Bold-12";
antialiasing: false;
foregroundColor: red;
backgroundColor: blue;
borderColor: red;
xPadding: 100;
yPadding: 100;

}
Subobject#myNumberFormat{
class: 'MyNumberFormat';

}

S T Y L I N G378

Customizing alarm severities

JViews TGO provides the concept of alarm to represent specific conditions in a managed
object.

Alarms are represented graphically using alarm balloon and alarm count decorations. JViews
TGO distinguishes raw alarms (generated and carried by an object) from impact alarms
(propagated to an object). A telecom object can have raw and impact alarms at the same
time, which introduces the concepts of primary and secondary alarm states. The primary
alarm state has a more detailed representation than the secondary alarm state. By default,
the primary alarm state is the raw alarm state. The choice of the primary alarm state can
be customized by the CSS properties listed in the following table.

CSS properties for the primary and secondary alarm states
DescriptionUsed by

IltObject
in

Default
Value

TypeProperty Name

Determines
whether the

networkRawilog.tgo.model.
IltAlarmStateEnum

primaryAlarmState

primary alarm
state is carried
by the raw
alarms or by the
impact alarms.
The secondary
alarm state is
represented as
a secondary
icon.

Possible values
are:

-Raw

-Impact

Determines
whether the

networkfalseBooleanlistPrimaryAlarmState

object primary
alarm state is
displayed in the
information
window.

Determines
whether the

networktrueBooleanlistSecondaryAlarmState

object secondary
alarm state is
displayed in the

S T Y L I N G 379

DescriptionUsed by
IltObject
in

Default
Value

TypeProperty Name

information
window.

Determines
whether the

networkfalseBooleanlistAlarmStateAbbreviated

alarm state
information listed
in the
information
window displays
alarm severities
using their
abbreviation or
their description.

For more information, refer to

How to create new alarm severities (using the API)
In the following example, a new raw alarm severity named “Informational” is created with
the following properties:

♦ A unique name, used to identify the alarm severity in the Alarm system.

♦ A short description used by the alarm count.

♦ A severity index, used to define the priority of the new alarm severity in the Alarm severity
enumeration.

The new alarm severity is positioned before the Unknown severity in the IltAlarm.Severity
enumeration.

IltAlarm.Severity infoSeverity =
new IltAlarm.Severity("Informational",

IltAlarm.Severity.Unknown.getSeverity()/2);

To create a new impact alarm severity use the IltAlarm.ImpactSeverity enumeration
instead of IltAlarm.Severity.

How to create new alarm severities (using CSS)
You can also create new raw and impact alarm severities by using global CSS settings:

Settings {
alarm: true;

}
Alarm {

S T Y L I N G380

severities[0]: @+severity0;
impactSeverities[0]: @+impactSeverity0;

}
Subobject#severity0 {
class: 'ilog.tgo.model.IltAlarm.Severity';
name: "Informational";
severity: 210;

}
Subobject#impactSeverity0 {
class: 'ilog.tgo.model.IltAlarm.ImpactSeverity';
name: "InformationalLow";
severity: 220;

}

How to customize alarm severities
Alarms are represented in the business objects using the following graphical cues:

♦ A color associated with the object base.

♦ An alarm count displayed on the object base.

♦ A colored alarm balloon displaying another alarm count.

♦ A colored outline displayed around the object base.

For information on how these graphical cues are used in JViews TGO, refer to

When a new alarm severity is created, the properties used to customize the graphical cues
need to be defined. These properties are:

♦ A short description used by the alarm count.

♦ An expanded description used in the alarm balloon when the CSS property
alarmBalloonCollapsed is false.

♦ A set of colors used when representing alarm conditions.

These properties are set as part of the JViews TGO look and feel, which can be customized
using SetValue(java.lang.Object, java.lang.Object) or global CSS settings.

The properties that affect the alarm severities are:

♦ <severity category>.<severity name>.Color

♦ <severity category>.<severity name>.BrightColor

♦ <severity category>.<severity name>.DarkColor

♦ <severity category>.<severity name>.Abbreviation

♦ <severity category>.<severity name>.Description

♦ <severity category>.<severity name>.Icon

For the raw alarm severity created in How to create new alarm severities (using the API),
the following properties will have to be defined:

S T Y L I N G 381

♦ Alarm.Raw.Informational.Color

♦ Alarm.Raw.Informational.BrightColor

♦ Alarm.Raw.Informational.DarkColor

♦ Alarm.Raw.Informational.Abbreviation

♦ Alarm.Raw.Informational.Description

♦ Alarm.Raw.Informational.Icon (This property is optional.)

The following example shows how you should customize the new alarm severity using the
API.

// Define the colors
Color myAlarmColor = new Color(127, 255, 212);
// aquamarine
Color myAlarmBrightColor = myAlarmColor.brighter();
Color myAlarmDarkColor = myAlarmColor.darker();

IltSettings.SetValue("Alarm.Raw.Informational.Color", myAlarmColor);
IltSettings.SetValue("Alarm.Raw.Informational.BrightColor",
myAlarmBrightColor);
IltSettings.SetValue("Alarm.Raw.Informational.DarkColor", myAlarmDarkColor);
IltSettings.SetValue("Alarm.Raw.Informational.Abbreviation", "i");
IltSettings.SetValue("Alarm.Raw.Informational.Description", "Informational");

You can then retrieve these values using GetValue(java.lang.Object).

The following example shows how to customize the new alarm severity using global CSS
settings (you must specify the full alarm name, for example "Alarm.Raw.Informational" or
"Alarm.Impact.InformationalLow" whenmatching the "name" attribute). The CSS properties
to be customized are color, darkColor, brightColor, abbreviation, description, icon.

setting."ilog.tgo.model.IltAlarm.Severity"[name="Alarm.Raw.Informational"] {
color: orange;
darkColor: blue;
brightColor: yellow;
abbreviation: "i";
description: "Informational";
icon: '@|image("icon1.png")';

}
setting."ilog.tgo.model.IltAlarm.ImpactSeverity"[name="Alarm.Impact.Information
alLow"] {
color: orange;
darkColor: blue;
brightColor: yellow;
abbreviation: "IL";
description: "InformationalLow";
icon: '@|image("icon1.png")';

}

S T Y L I N G382

How to customize existing alarm severities
You can customize the representation of the existing alarm severities, for example, Raw.
Critical or Impact.CriticalHigh. To do so, you use the same properties as listed in How
to customize alarm severities:

♦ <severity category>.<severity name>.Color

♦ <severity category>.<severity name>.BrightColor

♦ <severity category>.<severity name>.DarkColor

♦ <severity category>.<severity name>.Abbreviation

♦ <severity category>.<severity name>.Description

♦ <severity category>.<severity name>.Icon (This property is optional.)

The following example shows how to customize the severity Impact.CriticalHigh using
the API.

// Define the colors
Color myAlarmColor = Color.magenta;
Color myAlarmBrightColor = myAlarmColor.brighter();
Color myAlarmDarkColor = myAlarmColor.darker();

IltSettings.SetValue("Alarm.Impact.CriticalHigh.Color", myAlarmColor);
IltSettings.SetValue("Alarm.Impact.CriticalHigh.BrightColor",
myAlarmBrightColor);
IltSettings.SetValue("Alarm.Impact.CriticalHigh.DarkColor", myAlarmDarkColor)
;
IltSettings.SetValue("Alarm.Impact.CriticalHigh.Abbreviation", "CH");
IltSettings.SetValue("Alarm.Impact.CriticalHigh.Description", "Critical High")
;

The following example shows how to customize the severity Impact.CriticalHigh using
global CSS settings (youmust specify the full alarm name, for example "Alarm.Raw.Critical"
or "Alarm.Impact.CriticalHigh" when matching the "name" attribute. The CSS properties
to be customized are color, darkColor, brightColor, abbreviation, description, icon):

setting."ilog.tgo.model.IltAlarm.Severity"[name="Alarm.Raw.Critical"] {
color: orange;
darkColor: blue;
brightColor: yellow;
abbreviation: "c";
description: "Critical";
icon: '@|image("icon1.png")';

}
setting."ilog.tgo.model.IltAlarm.ImpactSeverity"[name="Alarm.Impact.CriticalHig
h"] {
color: orange;
darkColor: blue;

S T Y L I N G 383

brightColor: yellow;
abbreviation: "CH";
description: "CriticalHigh";
icon: '@|image("icon1.png")';

}

How to customize the Loss Of Connectivity representation
You can define the following settings to customize the representation of objects that have
the state Loss of Connectivity set.

♦ Alarm.LossOfConnectivity.Color

♦ Alarm.LossOfConnectivity.BrighColor

♦ Alarm.LossOfConnectivity.DarkColor

♦ Alarm.LossOfConnectivity.Abbreviation

The following code extract shows you how to proceed using the API:

IltSettings.SetValue("Alarm.LossOfConnectivity.Color", Color.blue);
IltSettings.SetValue("Alarm.LossOfConnectivity.Abbreviation", "??");

The following example shows how to proceed using global CSS settings (you must specify
the full alarm loss of connectivity name, for example "Alarm.LossOfConnectivity" when
matching the "name" attribute. The CSS properties to be customized are color, darkColor,
brightColor, abbreviation):

setting."ilog.tgo.model.IltState"[name="Alarm.LossOfConnectivity"] {
color: orange;
darkColor: green;
brightColor: yellow;
abbreviation: "LOC1";

}

How to customize the Not Reporting representation
By default, objects in the Not Reporting state do not show any alarm information. They
display the value "NR" instead of the current alarm count.

You can customize this representation using the setting Alarm.NotReporting.Abbreviation.

The following code extract shows you how to proceed using the API:

IltSettings.SetValue("Alarm.NotReporting.Abbreviation", "NR?");

The following example shows how to proceed using global CSS settings (you must specify
the full alarm Not Reporting name, "Alarm.NotReporting" when matching the "name"
attribute. The CSS property to be customized is abbreviation):

S T Y L I N G384

setting."ilog.tgo.model.IltState"[name="Alarm.NotReporting"] {
abbreviation: "NR1";

}

S T Y L I N G 385

Customizing alarm count attributes

Representing alarm counts
The alarm count attributes of IltObject are represented in the table component using:

♦ IltDefaultAlarmCountGraphic for raw alarms and traps

♦ IltImpactAlarmCountGraphic for impact alarms.

The following table interprets some graphical representations of alarm counts.

Examples of alarm count representations
DescriptionRepresentation

99500 (+/- 0.5%) outstanding alarms of severity Minor, some outstanding alarms of
lower severity, and some new alarms of severity Warning

4 new alarms of severity Warning

1 Critical acknowledged alarm

5 new impact alarms of severity Critical High, some outstanding alarms of lower
severity

77500 (+/- 0.5%) outstanding alarms of severity Major High, some outstanding
alarms of lower severity, and some new alarms of severity Minor High

Alarm count representation details

Customizing alarm count representations
The alarm count representation can be customized using the CSS properties listed in the
following table.

S T Y L I N G386

CSS properties for alarm count representations
DescriptionDefault ValueTypeProperty Name

Color of the inner border.nullColorinnerBorderColor

Use true to show the inner border. The
inner border should be displayed when the

falseBooleaninnerBorderVisible

alarm count has both new and
acknowledged alarms.

Width of the inner border.1intinnerBorderWidth

Label used to display the alarm count. This
text is parsed and laid out to conform to the
format.

nullStringlabel

Color of the label background. The color
corresponds to the severity of the most
severe new alarm.

nullColorlabelBackgroundColor

Color of the outer border. The color
corresponds to the severity of the most
severe outstanding alarm.

nullColorouterBorderColor

Width of the outer border.2intouterBorderWidth

Icon used to compose the alarm count.nullImageicon

Determines whether the icon is visible or
not.

trueBooleaniconVisible

Position of the icon relative to the label. If
the label follows the alarm count pattern,

IlvConstants.
TRAILING

inticonPosition

the icon is placed before or after the alarm
severity text. Possible values:
IlvConstants.LEADING or
IlvConstants.TRAILING

The CSS functions listed in the following table are useful to provide values for the alarm
count representation.

CSS functions for alarm count attributes
UsageDescriptionFunction Name

Parameters:The outstanding alarm
count label

alarmCount

Alarm type or severity. The alarm type
can have one of the following values:

Default for raw alarms or traps

Impact for impact alarms

Specifying no parameter is equivalent
to Default.

S T Y L I N G 387

UsageDescriptionFunction Name

The severity is the String
representation of a severity or an
IltAlarmSeverity.

Examples:

@|alarmCount();

@|alarmCount("Default");

@|alarmCount("Impact");

@|alarmCount("Raw.Major");

@|alarmCount("Impact.
CriticalHigh");

See alarmCountThe new alarm count
label

newAlarmCount

See alarmCountThe acknowledged alarm
count label

acknowledgedAlarmCount

See alarmCountThe severity of the most
severe outstanding alarm

highestSeverity

See alarmCountThe severity of the most
severe new alarm

highestNewSeverity

See alarmCountThe severity of the most
severe acknowledged
alarm

highestAcknowledgedSeverity

See alarmCountThe total amount of new
and outstanding alarms

alarmSummary

See alarmCountThe total amount of new
alarms

newAlarmSummary

See alarmCountThe total amount of
acknowledged alarms

acknowledgedAlarmSummary

Parameters:The color corresponding
to a severity

severityColor

IltAlarmSeverity or the String
representation of an
IltAlarmSeverity.

Examples:

@|severityColor("Raw.Major")
;

@|severityColor
(@|highestSeverity());

S T Y L I N G388

UsageDescriptionFunction Name

@|severityColor
(@|highestSeverity("Impact")
);

Parameters:The icon corresponding
to a severity

severityIcon

IltAlarmSeverity or the String
representation of an
IltAlarmSeverity.

Examples:

@|severityIcon("Raw.Major");

@|severityIcon
(@|highestSeverity());

@|severityIcon
(@|highestSeverity("Impact")
);

How to reproduce the JViews TGO 4.0 styling for alarm count
attributes
The following style sheet extract reproduces the JViews TGO 4.0 styling for alarm count
attributes.

// IltObject alarmCount attribute
object."ilog.tgo.model.IltObject/alarmCount" {
class: ilog.tgo.graphic.IltDefaultAlarmCountGraphic;
label: '@|alarmCount()';
toolTipText: '@|alarmSummary()';
labelBackgroundColor: '@|severityColor(@|highestNewSeverity())';
outerBorderColor: '@|severityColor(@|highestSeverity())';
innerBorderColor: white;
innerBorderVisible: '@|highestNewSeverity()!=null &&

@|highestAcknowledgedSeverity()!=null';
}

// IltObject newAlarmCount attribute
object."ilog.tgo.model.IltObject/newAlarmCount" {
class: ilog.tgo.graphic.IltDefaultAlarmCountGraphic;
label: '@|newAlarmCount()';
toolTipText: '@|newAlarmSummary()';
labelBackgroundColor: '@|severityColor(@|highestNewSeverity())';
outerBorderColor: '@|severityColor(@|highestNewSeverity())';
innerBorderColor: white;
innerBorderVisible: false;

}

// IltObject impactAlarmCount attribute

S T Y L I N G 389

object."ilog.tgo.model.IltObject/impactAlarmCount" {
class: ilog.tgo.graphic.IltImpactAlarmCountGraphic;
label: '@|alarmCount("Impact")';
toolTipText: '@|alarmSummary("Impact")';
labelBackgroundColor: '@|severityColor(@|highestNewSeverity("Impact"))';
outerBorderColor: '@|severityColor(@|highestSeverity("Impact"))';
innerBorderColor: white;
innerBorderVisible: '@|highestNewSeverity("Impact")!=null &&

@|highestAcknowledgedSeverity("Impact")!=null';
}

// IltObject newImpactAlarmCount attribute
object."ilog.tgo.model.IltObject/newImpactAlarmCount" {
class: ilog.tgo.graphic.IltImpactAlarmCountGraphic;
label: '@|newAlarmCount("Impact")';
toolTipText: '@|alarmSummary("Impact")';
labelBackgroundColor: '@|severityColor(@|highestNewSeverity("Impact"))';
outerBorderColor: '@|severityColor(@|highestNewSeverity("Impact"))';
innerBorderColor: white;
innerBorderVisible: false;

}

How to reproduce the JViews TGO 3.5 styling for alarm count
attributes
The following style sheet extract reproduces the styling obtained in JViews TGO 3.5 for the
IltObject alarm count attributes. You may want to use it to improve performance or to
ensure compatibility with previous versions of JViews TGO.

// IltObject alarmCount attribute
object."ilog.tgo.model.IltObject/alarmCount" {
class: javax.swing.JLabel;
text: @|alarmCount();
toolTipText: @|alarmCount();
labelFont: sansserif-plain-12;
labelBackground: '@|severityColor(@|highestSeverity())';

}

// IltObject newAlarmCount attribute
object."ilog.tgo.model.IltObject/newAlarmCount" {
class: javax.swing.JLabel;
text: @|alarmCount();
toolTipText: @|alarmCount();
labelFont: sansserif-plain-12;
labelBackground: '@|severityColor(@|highestNewSeverity())';

}

// IltObject impactAlarmCount attribute
object."ilog.tgo.model.IltObject/impactAlarmCount" {
class: javax.swing.JLabel;
text: @|alarmCount("Impact");
toolTipText: @|alarmCount("Impact");

S T Y L I N G390

labelFont: sansserif-plain-12;
labelBackground: '@|severityColor(@|highestSeverity("Impact"))';

}

// IltObject newImpactAlarmCount attribute
object."ilog.tgo.model.IltObject/newImpactAlarmCount" {
class: javax.swing.JLabel;
text: @|newAlarmCount("Impact");
toolTipText: @|newAlarmCount("Impact");
labelFont: sansserif-plain-12;
labelBackground: '@|severityColor(@|highestNewSeverity("Impact"))';

}

How to display the alarm count for a specific alarm severity
Provided there is a MyObject business class, with super-class IltObject and a
rawMajorAlarmCount attribute, the following style sheet produces an alarm count
representation specific to raw alarms of severity Major.

// IltObject alarmCount attribute
object."MyObject/rawMajorAlarmCount" {
class: ilog.tgo.graphic.IltDefaultAlarmCountGraphic;
label: '@|newAlarmCount("Raw.Major")';
toolTipText: '@|newAlarmSummary("Raw.Major")';
labelBackgroundColor: '@|severityColor(@|highestNewSeverity("Raw.Major"))';

outerBorderColor: '@|severityColor(@|highestNewSeverity("Raw.Major"))';
innerBorderColor: white;
innerBorderVisible: false;

}

S T Y L I N G 391

Customizing trap types

JViews TGO provides a concept of alarm based on RFC 1157 - A Simple NetworkManagement
Protocol (SNMP) called a trap. A trap represents something unusual that occurs in an object.
Traps, like alarms, are represented graphically using the alarm balloon and alarm count
decorations. For more information, refer to

How to create new trap types (using the API)
In the following example, a new trap named “Alert”, based on RFC 2455 C Definitions of
Managed Objects for APPN, is created with the following properties:

♦ A unique name, used to identify the trap type in the Trap alarm system.

♦ A severity, used to define the priority of the new trap type in the Trap type enumeration.

The new trap type is positioned before the ColdStart type in the IltTrap.Type enumeration.

IltTrap.Type alertType = new IltTrap.Type("Alert",
IltTrap.Type.ColdStart.getSeverity() / 2);

How to create new trap types (using CSS)
You can also create new trap types by using global CSS settings.

Settings {
alarm: true;

}
Alarm{

traps[0]: @+trap0;
}
Subobject#trap0 {
class: 'ilog.tgo.model.IltTrap.Type';
name: "Alert";
severity: 230;

}

How to customize trap types
Traps, like alarms, are represented in the business objects using the following graphical
cues:

♦ A color associated with the object base.

♦ An alarm count displayed on the object base.

♦ A colored alarm balloon displaying another alarm count.

♦ A colored outline displayed around the object base.

S T Y L I N G392

For information on how these graphical cues are used in JViews TGO, refer to

When a new trap type is created, the properties used to customize the graphical cues need
to be defined. These properties are:

♦ A short description used by the alarm count.

♦ An expanded description used in the alarm balloon when the CSS property
alarmBalloonCollapsed is false.

♦ A set of colors to be defined subsequently.

These properties are set as part of the JViews TGO look and feel, which can be customized
using SetValue(java.lang.Object, java.lang.Object) or global CSS settings.

The properties that affect the trap types are:

♦ Trap.Type.<type name>.Color

♦ Trap.Type.<type name>.BrightColor

♦ Trap.Type.<type name>.DarkColor

♦ Trap.Type.<type name>.Abbreviation

♦ Trap.Type.<type name>.Description

♦ Trap.Type.<type name>.Icon

For the trap type created in How to create new trap types (using the API), the following
properties will have to be defined:

♦ Trap.Type.Alert.Color

♦ Trap.Type.Alert.BrightColor

♦ Trap.Type.Alert.DarkColor

♦ Trap.Type.Alert.Abbreviation

♦ Trap.Type.Alert.Description

♦ Trap.Type.Alert.Icon (This property is optional.)

The following example shows how to customize the new trap type using the API.

// Define the colors
Color myAlarmColor = new Color(127, 255, 212);
// aquamarine
Color myAlarmBrightColor = myAlarmColor.brighter();
Color myAlarmDarkColor = myAlarmColor.darker();

IltSettings.SetValue("Trap.Type.Alert.Color", myAlarmColor);
IltSettings.SetValue("Trap.Type.Alert.BrightColor", myAlarmBrightColor);
IltSettings.SetValue("Trap.Type.Alert.DarkColor", myAlarmDarkColor);

S T Y L I N G 393

IltSettings.SetValue("Trap.Type.Alert.Abbreviation", "i");
IltSettings.SetValue("Trap.Type.Alert.Description", "Informational");

You can then retrieve these values using GetValue(java.lang.Object).

The following example shows how to customize the new trap type using global CSS settings.
You must specify the full trap type name, for example "Trap.Type.Alert" when matching
the "name" attribute. The CSS properties to be customized are color, darkColor,
brightColor, abbreviation, description, icon):

setting."ilog.tgo.model.IltTrap.Type"[name="Trap.Type.Alert"] {
color: orange;
darkColor: green;
brightColor: yellow;
abbreviation: "a";
description: "Alert";
icon: '@|image("icon1.png")';

}

How to customize existing trap types
You can customize the representation of the existing trap types, for example, Trap.Type.
LinkFailure or Trap.Type.ColdStart.

To do so, you use the same properties as listed in How to customize trap types:

♦ Trap.Type.<type name>.Color

♦ Trap.Type.<type name>.BrightColor

♦ Trap.Type.<type name>.DarkColor

♦ Trap.Type.<type name>.Abbreviation

♦ Trap.Type.<type name>.Description

♦ Trap.Type.<type name>.Icon (This property is optional.)

The following example shows how to customize the trap type Trap.Type.ColdStart using
the API.

// Define the colors
Color myAlarmColor = Color.magenta;
Color myAlarmBrightColor = myAlarmColor.brighter();
Color myAlarmDarkColor = myAlarmColor.darker();

IltSettings.SetValue("Trap.Type.ColdStart.Color", myAlarmColor);
IltSettings.SetValue("Trap.Type.ColdStart.BrightColor", myAlarmBrightColor);
IltSettings.SetValue("Trap.Type.ColdStart.DarkColor", myAlarmDarkColor);
IltSettings.SetValue("Trap.Type.ColdStart.Abbreviation", "CH");
IltSettings.SetValue("Trap.Type.ColdStart.Description", "Critical High");

S T Y L I N G394

The following example shows how to customize the trap type Trap.Type.ColdStart using
global CSS settings (you must specify the full trap type name, "Trap.Type.ColdStart", when
matching the "name" attribute. The CSS properties to be customized are color, darkColor,
brightColor, abbreviation, description, icon):

setting."ilog.tgo.model.IltTrap.Type"[name="Trap.Type.ColdStart"] {
color: yellow;
darkColor: blue;
brightColor: green;
abbreviation: CS;
description: "ColdStart";
icon: '@|image("icon1.png")';

}

S T Y L I N G 395

Customizing the secondary state icons

Secondary states are normally represented by icons, gauges, charts, or counters, which are
displayed in a row (called stacker) on the top or at the bottom of an IltObject. By default,
the position of the secondary states is defined by the insertion order in the object state.
Depending on your application, you may be interested in defining specific positions for some
states. This can be accomplished by configuring the secondary state positioner.

The position of the icons in the stacker is defined globally inside the static instance of
IltSecondaryStatePositioner.

The following fragment of code illustrates how you should proceed to force the Degraded to
be constantly in the first position of the stacker.

IltSecondaryStatePositioner positioner =
IltSecondaryStatePositioner.GetInstance();

positioner.setPosition (IltOSI.Availability.Degraded, 0);

If you have decided to remove this constraint, you just need to set the new position to -1, to
indicate that it will no longer be handled by the IltSecondaryStatePositioner.

positioner.setPosition (IltOSI.Availability.Degraded, -1);

Secondary states can also be located in two specific positions, called InState and OutState.
By default, the SNMP states Interface.InOctets and Interface.OutOctets are displayed
in these positions, as illustrated in Positions of SNMP states Interface.InOctets and
Interface.OutOctets.

Positions of SNMP states Interface.InOctets and Interface.OutOctets

To place a state in the InState or OutState position, use the methods setInState(ilog.
tgo.graphic.IltDecorationSource) or setOutState(ilog.tgo.graphic.
IltDecorationSource), as illustrated in the code extracts below:

positioner.setInState (IltSNMP.Interface.InDiscards);

or

positioner.setOutState (IltSNMP.Interface.OutDiscards);

S T Y L I N G396

A
acknowledgedAlarmCount

CSS function 28
acknowledgedAlarmSummary

CSS function 28
alarmBalloonTextFont

CSS property 100
alarmCount

CSS function 28
alarmCountFont

CSS property 100
alarms

customizing 379
alarmSummary

CSS function 28
alternateColor

CSS property 196
animateSpeed

CSS property 196
animation

general link 208
arrow

general link 206
arrowColor

CSS property 196
arrowMode

CSS property 196
arrowPosition

CSS property 196
arrowRatio

CSS property 196
attribute matching

CSS 38
attribute value

CSS input model 21
attribute value change

CSS input model 21

attributes
properties 44

B
background

CSS property 14
background color

setting in tree component 12
background property 89
Bezier curve 203
blinkingcolor

CSS function 28
border

adding in general link 201
of general node shape 191

borderColor
CSS property 196

borderColor2
CSS property 196

borderLineStyle
CSS property 196

borderLineStylePhase
CSS property 196

borderWidth
CSS property 196

BTS antenna tiny type
customizing 298

business classes
predefined 42
user-defined 42

C
captionLabel

CSS property 126, 127
captionLabelVisible

CSS property 126, 127
cascading

sources of style 20

© Copyright IBM Corp. 1987, 2009 397

I N D E X

Index

style sheets 38
cascading mechanism 101
changes

in CSS properties 18
class

CSS 127
CSS input model 21
CSS property 14, 23
values of CSS property 23

class name
value of CSS class property 23

color
alternate in general link 205

conversion
to String in CSS 38

CSS
attribute matching 38
attribute properties 44
attribute property inheritance 44
attribute value changing property value 21
attribute value matching selector attribute
21
class 21, 127
conversion to String 38
declaration 15, 17, 18, 20, 21, 23, 24, 26
declaration inheritance 20
dynamic behavior 21
dynamic interpretation 12
empty string 39
engine 21
graphic object 21
hash sign (#) 15
ID pattern matching 15
Java objects 21
matching attribute values 15
matching object identifiers 15
model indirection 24
null value 39
object ID 21
object identifier 125
object type 21
predefined business classes 42
properties for System window 126
property identifier syntax error 18
pseudoclass 128
pseudoclasses 38
pseudoelements 38
resolving URLs 24
rule 12, 15, 17, 18, 20, 128
rule priority 17, 20, 128
selector 15, 17, 20, 100, 125, 131, 132
serialized JavaBean 23
serialized object 23
specificity 17, 20, 38, 128
subobject 25

SVG and XML 10
syntax enhancement 39
syntax errors 18
syntax for matching attributes 15
tree structure of objects 21
use of quotes 39
user-defined business classes 42
W3C 10
wildcards 84, 91
XML 10, 21

CSS functions
acknowledgedAlarmCount 28
acknowledgedAlarmSummary 28
alarmCount 28
alarmSummary 28
blinkingcolor 28
format 28
highestAcknowledgedSeverity 28
highestNewSeverity 28
highestSeverity 28
image 28
newAlarmCount 28
newAlarmSummary 28
pattern 28
primaryStateSummary 28
resource 28
secondaryStateSummary 28
settings 28
severityBrightColor 28
severityColor 28
severityDarkColor 28
severityIcon 28
valuemap 28

CSS properties
alarmBalloonTextFont 100
alarmCountFont 100
alternateColor 196
animateSpeed 196
arrowColor 196
arrowMode 196
arrowPosition 196
arrowRatio 196
background 14, 89
borderColor 196
borderColor2 196
borderLineStyle 196
borderLineStylePhase 196
borderWidth 196
CAP_SQUARE 203
captionLabel 126, 127
captionLabelVisible 126, 127
changes 18
class 14, 23
curved 196

S T Y L I N G398

endCap 196
expansion 70
fillAngle 184
fillEnd 184
fillStart 184
fillStyle 184, 189
fillTexture 184
focusBorderColor 70, 81
focusBorderWidth 70, 81
foreground 14, 89, 123, 184
functionList 36
functions 36
horizontalAlignment 81, 89
horizontalAutoResizeMargin 184
horizontalAutoResizeMode 184, 194
icon 70, 81, 89, 125, 184
iconPosition 184
iconVisible 70, 81, 89, 125
in graphic components 12
index 89
infoWindowTextFont 100
internalZoom 196
keepingAspectRatio 184
label 70, 81, 89, 98, 126, 127
labelBackground 70, 81, 98, 128
labelFont 70, 81, 89, 98
labelForeground 70, 81, 98
labelInsets 81, 89
labelPosition 70, 81, 89
labelSpacing 70, 81, 89
labelVisible 70, 81, 89, 98
lineJoin 196
lineStyle 196
lineStylePhase 196
lineWidth 196
linkPorts 133
minLineWidth 196
mode 196
oriented 196
overlapIcon 70
overlapIconVisible 70
predefined 10
preferredWidth 89
qualityLevel 196
selectionFocusMode 70
shapeAspectRatio 184
shapeHeight 184
shapeType 184, 187
shapeWidth 184
sortingMode 89
sortingPriority 89
styleSheetDebugMask 18
syntax error in identifier 18
tableColumnOrder 91

tableRowHeight 92
text 14
toolTipBackground 102
toolTipFont 102
toolTipForeground 102
toolTipGraphic 70, 81, 102
toolTipText 25, 70, 81, 89, 102
tree nodes 46
useDefaultCellRenderer 88
verticalAlignment 81, 89
verticalAutoResizeMargin 184
verticalAutoResizeMode 184
visible 89
visibleInSystemWindow 126, 127
wave 196

CSS settings
global 52

CSS2 Recommendation 10, 24, 38
curved

CSS property 196
curves

general link 203
customizing

alarm severities 379
BTS tiny types 298
link bundle tiny types 234
link set tiny types 234
link tiny types 230
network element families 174
network element functions 174
network element types 147
network element types using images 157

D
dashes

general link 204
declaration

CSS 15, 17, 18, 20, 21, 23, 24, 26
declarations

CSS 14
dynamic behavior

CSS 21

E
empty string

in CSS 39
endCap

CSS property 196
engine

CSS 21
enhancing syntax

in CSS 39
expansion property 70

F
fillAngle

S T Y L I N G 399

CSS property 184
fillEnd

CSS property 184
fillStart

CSS property 184
fillStyle

CSS property 184
fillStyle property 189
fillTexture

CSS property 184
focusBorderColor property 70, 81
focusBorderWidth property 70, 81
foreground

CSS property 14, 123, 184
foreground property 89
format

CSS function 28
functionList

CSS property 36
functions

CSS property 36

G
general link

adding border 201
alternate colors 205
animation 208
arrows 206
curves 203
dashes 204
modes 200
other effects 209
stroke 203
wave effect 208
zoom 209

general node
automatic resizing 194
controlling icon 192
shape paint styles 189
shape stroke 191
shape type 187

getBrightPalette method 167
getDarkPalette method 167
getPalette method 167
getPreferredSize method 166
global CSS settings 52
graphic components

CSS properties 12
graphic objects

in CSS 21
groups

positioning information cluster 250

H
hash sign (#)

CSS 15

highestAcknowledgedSeverity
CSS function 28

highestNewSeverity
CSS function 28

highestSeverity
CSS function 28

horizontalAlignment property 81, 89
horizontalAutoResizeMargin

CSS property 184
horizontalAutoResizeMode

CSS property 184
horizontalAutoResizeMode property 194

I
icon

CSS property 184
general node 192

icon property 70, 81, 89, 125
iconPosition

CSS property 184
iconVisible property 70, 81, 89, 125
ID pattern matching

CSS 15
IlpCSSFunction interface 36
IlpGraphicRendererContext class 45
IlpPolyline class 236
IlpRect class 236
IlpReferenceAttribute class 131
IlpSimpleDateFormat class 25
IltBaseStyle class 166
IltLinearGroup class 236
IltNetworkElement class 167
IltNetworkElement.Family class 176
IltNetworkElement.Function class 174
IltNetworkElement.Type class 166
IltPolygon class 236
IltPolyGroup class 236
IltRectGroup class 236
IlvGeneralLink class

ARROW_DECORATION mode 206
ARROW_FILL mode 206
ARROW_GRADIENT mode 206
ARROW_OPEN mode 206
MODE_GRADIENT mode 209
MODE_NEON mode 209
TEXTURE mode 200

IlvGraphic class 21
IlvStroke class

CAP_SQUARE property 203
JOIN_MITER property 203

IlvStylable interface 18
image

CSS function 28
importing style sheets

S T Y L I N G400

CSS 101
index property 89
infoWindowTextFont

CSS property 100
inheritance

attribute properties in CSS 44
CSS declarations 20
in style sheets 42

internalZoom
CSS property 196

J
Java objects

styled by CSS 21
JButton

instances in CSS 14
JComponent

instances in CSS 21

K
keepingAspectRatio

CSS property 184

L
label

CSS property 98, 126, 127
label property 70, 81, 89, 98
labelBackground

CSS property 128
labelBackground property 70, 81, 98
labelFont

CSS property 100
labelFont property 70, 81, 89, 98
labelForeground property 70, 81, 98
labelInsets property 81, 89
labelPosition property 70, 81, 89
labelSpacing property 70, 81, 89
labelVisible property 70, 81, 89, 98
LINEAR_GRADIENT mode 189
lineJoin

CSS property 196
lineStyle

CSS property 196
lineStylePhase

CSS property 196
lineWidth

CSS property 196
link bundle tiny type

customizing 234
link set tiny type

customizing 234
link tiny types

customizing 230
linkPorts

CSS property 133
links

customizing 217

M
matching attribute values

CSS 15
matching object identifiers

CSS 15
minLineWidth

CSS property 196
mode

CSS property 196
model indirection

CSS 24
modes

general link 200

N
network elements

customizing families 176
customizing functions 174
customizing types 147
customizing types using images 157
graphical representations 144
partial 144
shortcuts 145

newAlarmCount
CSS function 28

newAlarmSummary
CSS function 28

null value
in CSS 39

O
object ID

CSS input model 21
object identifier

CSS 125
object type

CSS input model 21
oriented

CSS property 196
other effects

general link 209
overlapIcon

CSS property 70
overlapIconVisible

CSS property 70

P
palettes

standard 167
pathname

value of CSS class property 23
pattern

CSS function 28
predefined business classes

CSS 42

S T Y L I N G 401

predefined business objects
subnetworks 254

preferredWidth property 89
primaryStateSummary

CSS function 28
priority

CSS rules 17, 20, 128
pseudoclass

CSS 128
pseudoclasses

in CSS 38
pseudoelements

in CSS 38

Q
qualityLevel

CSS property 196
quotes

in CSS 39

R
RADIAL_GRADIENT mode 189
resolving URLs

CSS 24
resource

CSS function 28
rule

CSS 12, 15, 17, 18, 20, 128

S
secondaryStateSummary

CSS function 28
selectionFocusMode property 70
selector

CSS 15, 17, 20
selectors

CSS 100, 125, 131, 132
serialized JavaBean

CSS 23
serialized object

CSS 23
settings

CSS function 28
severityBrightColor

CSS function 28
severityColor

CSS function 28
severityDarkColor

CSS function 28
severityIcon

CSS function 28
shape paint style

of general node 189
shape stroke

of general node 191
shape type

of general node 187

shapeAspectRatio
CSS property 184

shapeHeight
CSS property 184

shapeType
CSS property 184

shapeType property 187
shapeWidth

CSS property 184
SNMP

extending 345
SOLID_COLOR mode 189
SONET

extending 355
Main State 356

sortingMode property 89
sortingPriority property 89
specificity

CSS 17, 20, 38, 128
stroke

general link 203
style sheets 10, 12, 15, 24, 38, 42

cascading 38
inheritance mechanism 42

styleSheetDebugMask
CSS property 18

styling sources
cascading 20

subnetworks 254
subobject 25
SVG

XML in CSS 10
syntax errors

CSS 18
syntax for matching attributes

CSS 15
System window

properties for adding attributes 126

T
table component

column header and cell rendering 89
tableColumnOrder property 91
tableRowHeight property 92
text

CSS property 14
TEXTURE mode 189
toolTipBackground property 102
toolTipFont property 102
toolTipForeground property 102
toolTipGraphic property 70, 81
toolTipGraphicproperty 102
toolTipText

CSS property 25
toolTipText property 70, 81, 89, 102

S T Y L I N G402

trap
types 392

tree component
setting background color 12

tree nodes
properties 46

tree structure of objects
CSS input model 21

U
useDefaultCellRenderer property 88
user-defined business classes

CSS 42

V
valuemap

CSS function 28
values

of CSS class property 23
verticalAlignment property 81, 89
verticalAutoResizeMargin

CSS property 184
verticalAutoResizeMode 194

CSS property 184
visible property 89
visibleInSystemWindow

CSS property 126, 127

W
W3C

CSS 10
wave

CSS property 196
in general link 208

wildcards 84, 91

X
X Window System

.Xdefault 10
Xdefault

X Window System 10
XML

in CSS 10, 21

Z
zoom

general link 209

S T Y L I N G 403

	Table of contents
	Introducing cascading style sheets
	Cascading style sheets
	Getting started with JViews TGO style sheets
	Writing a style sheet
	Declarations
	Specializing CSS rules
	The priority of CSS rules
	Debugging a style sheet

	The CSS specification
	CSS Syntax
	Applying CSS to Java objects
	The CSS engine in JViews TGO
	JViews TGO Functions
	Divergences from CSS2

	How to represent a business object
	Business class properties
	Attribute properties

	Retrieving the value of a property
	Using custom pseudo-classes

	Using Cascading Style Sheets
	Using global settings
	Customizing network and equipment nodes
	Representing nodes as business objects
	Adding new decorations to predefined business objects

	Advanced customization of nodes
	Customizing network and equipment links
	Customizing tree nodes
	Representing tree nodes as graphic objects or icons with labels
	Advanced customization of tree nodes
	Improving the performance of predefined business objects (tree component)

	Customizing table cells
	Representing table cells as business objects or labels with optional icons
	Advanced customization of table cells
	Improving the performance of table cell rendering

	Customizing table column headers and rows
	Customizing the label of a business object
	Customizing the label in table cells
	Changing the font of all labels
	Customizing tooltips
	Customizing object and alarm states of predefined business objects
	Overview of customizing the states of predefined business objects
	Secondary states and information window properties
	Alarm configuration properties
	Alarm balloon configuration properties
	Alarm count configuration properties
	SNMP system info configuration properties
	Changing the icon color of predefined business objects

	Customizing the icon of business objects
	Adding a user-defined business attribute to the system window
	Changing the background color of all columns in a table
	Displaying the same attribute with different representations
	Customizing node and link layouts
	Customizing link label layout
	Customizing the selection border in the network and equipment
	Customizing selection in a table or a tree
	Customizing the expansion of business objects

	Customizing network elements
	Representing network elements
	Customizing network element types
	Representing a network element type
	Customizing existing network element types
	Creating network element types from images and customizing them
	Using the imagecolortuner application to configure the renderer factory
	Customizing network element types from SVG graphics
	Extending the class IltNEBaseRenderer
	Localizing network element types

	Customizing network element functions
	Customizing network element families
	Customizing different aspects of network elements

	Customizing user-defined business objects
	Representing business objects
	Customizing user-defined network nodes
	Customizing a node shape
	Customizing the color of a node shape with paint styles
	Customizing the border of a node shape
	Customizing a node icon
	Customizing a node label
	Automatic resizing for a node shape with an icon in it

	Customizing user-defined network links
	Customizing a link
	Customizing various aspects of links
	Customizing a link label

	Customizing tooltips of user-defined business objects

	Customizing links
	Links
	Representing links
	Customizing link representations
	Changing the representation of individual links
	Customizing the link information cluster
	Customizing link media
	Customizing link technology
	Customizing various aspects of links
	Customizing link tiny types
	Customizing link sets
	Customizing link bundles
	Customizing link set and link bundle tiny types

	Customizing groups
	Groups
	Representing groups and attributes
	Customizing group representations
	Customizing various aspects of groups

	Customizing subnetworks
	Representing subnetworks
	Customizing the representation of subnetworks

	Customizing shelves and cards
	Representing physical telecommunication equipment
	Representing shelves
	Customizing shelf representations
	Customizing various aspects of shelves
	Representing and customizing card carriers
	Customizing various aspects of card carriers
	Representing and customizing cards
	Customizing various aspects of card carriers
	Representing and customizing ports
	Customizing various aspects of ports
	Representing and customizing LEDs
	Customizing various aspects of LEDs

	Customizing BTS
	Representing and customizing BTS
	Customizing BTS antennas
	Customizing various aspects of BTS antennas

	Customizing alarms
	Representing alarms
	Customizing various aspects of alarms

	Customizing off-page connectors
	Representing off-page connectors
	Customizing existing off-page connector types
	Customizing new off-page connector types
	Customizing other aspects of off-page connectors

	Customizing object states
	Customizing the object representation based on states
	Representing and customizing state information
	OSI states
	Bellcore states
	SNMP states
	SONET states
	Miscellaneous states
	Performance states
	SAN states
	Alarms
	Traps

	Customizing passive devices
	Customizing the OSI state system
	Customizing the Bellcore state system
	Customizing the SNMP state system
	SNMP primary and secondary states
	Customizing SNMP secondary states
	Creating a new attribute in the System group

	Customizing the SONET state system
	Customizing SONET states
	Customizing SONET protection states

	Customizing the Miscellaneous state system
	Customizing the Performance State System
	Creating new Performance secondary states
	Customizing Performance secondary states

	Customizing the SAN state system
	Creating new SAN secondary states
	Customizing SAN Secondary States

	Customizing alarm severities
	Customizing alarm count attributes
	Customizing trap types
	Customizing the secondary state icons

	Index

