
IBM ILOG JViews TGO V8.6

Building Web applications

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> /license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Introducing JViews TGO faces components..5

The network view faces component...7
Declaring a network view faces component...8

Configuring a network view faces component...9
Configuring the client and server side of the networkView component..11
Connecting a business data source...15
Customizing the underlying IlpNetwork component...20
Combining faces components..23
Interacting with the network view component...26
Zoom constraints..40
Controlling the displayed area..41
Adding pop-up menus..42
Tiling...48
Managing the session expiration..50

Network view component services..51

The equipment view faces component...53
Declaring an equipment view faces component..54

Configuring an equipment view faces component..55
Configuring the client and server side of the equipmentView component..57
Connecting a business data source...62
Combining faces components..68

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Interacting with the equipment view component...71
Zoom constraints..85
Controlling the displayed area..86
Adding pop-up menus..87
Tiling...93
Managing the session expiration..95

Equipment view component services...96

Deploying a JViews TGO Faces application..97
Overview..99

JViews TGO Faces dependencies..100

JViews Faces configuration at JViews Framework level...101

Web server configuration...103

Using JViews components with ICEfaces...106

Web application server support...109

Supporting Facelets and Trinidad..110

IBM® ILOG® JViews TGO Faces technical overview..111
The graph architecture..112

The network faces component architecture...113

The equipment faces component architecture...114

Processing requests...116

Interactions..118

Index..119

B U I L D I N G W E B A P P L I C A T I O N S4

Introducing JViews TGO faces components

Core JViews Faces
The IBM® ILOG® JViews TGO JavaServer™ Faces (JSF) solution is a set of faces components
that allow you to build JavaServer™ Pages (JSP™) in order to display and interact with
network and equipment views in a web application. It is composed of a JSF tag library, the
corresponding Java™ classes, and JavaScript™ objects for rendering the business data in
the web application.

The IBM® ILOG® JViews TGO Faces extend the JViews Framework Faces, which are
themselves based on the core JViews Faces.

The core JViews Faces constitute the lower-level library that depends only on JSF. They
define some basic faces components and provide the infrastructure for the other JViews JSF
libraries. These components are the following:

♦ debugDependencies

♦ messageBox

♦ imageButton

♦ menu

♦ menuItem

♦ menuSeparator

JViews Framework Faces
The JViews Framework Faces constitute the mid-level library that is based on the core JViews
Faces. They add framework capabilities that allow you to implement a view, an overview,
interactors, among others. These components are the following:

♦ view

♦ overview

♦ zoomTool

♦ panTool

♦ zoomInteractor

♦ panInteractor

♦ mapInteractor

♦ mapRectInteractor

♦ objectSelectInteractor

♦ objectSelectRectInteractor

© Copyright IBM Corp. 1987, 2009 5

♦ contextualMenu

JViews TGO Faces
The JViews TGO Faces constitute the top-level library that extends the JViews Framework
Faces. They allow you to customize the view and interactor for JViews TGO and add data
source support. These components are the following:

♦ networkView

♦ equipmentView

♦ dataSource

♦ selectInteractor

♦ clientSelectInteractor

♦ selectionManager

B U I L D I N G W E B A P P L I C A T I O N S6

The network view faces component

Explains how to build and interact with a network faces component.

In this section

Declaring a network view faces component
Describes how to declare a network view faces component.

Configuring a network view faces component
Explains how to configure the rendering of a network faces component.

Network view component services
Presents the services that are fully compatible.

© Copyright IBM Corp. 1987, 2009 7

Declaring a network view faces component

The network view faces component displays the contents of an IlpNetwork in a JavaServer™
Page (JSP™) compliant with the JavaServer Faces (JSF) technology. It is implemented by
the class IltFacesNetworkView and acts as a facade to an IlpNetwork component. It provides
a convenient API for the most common uses of the network component, such as setting or
retrieving the associated data source, accessing the underlying network component, or
accessing the network view directly.

JViews TGO faces components are declared in a tag library descriptor (.tld) file named
jviews-tgo-faces.tld that is included in the jviews-tgo-all.jar. The JViews TGO faces
tag library must be declared in the JSP page before any of its components are used.

How to define the JViews TGO faces tag library and prefix in a JSP
page
The declaration is done at the beginning of the JSP file as follows:

<%@ taglib uri="http://www.ilog.com/jviews/tlds/jviews-tgo-faces.tld"
prefix="jvtf" %>

This statement declares the jviews-tgo-faces.tld tag library within a JSP page, and binds
all its components to the jvtf prefix. Once this is done, you can declare the network view
component as follows:

How to declare a network view faces component

<jvtf:networkView id="myNetwork"
context="#{myContext}"

The networkView component requires two mandatory tag attributes:

♦ id (component unique identifier): Can be any given string that uniquely identifies this
component within a server session.

♦ context (the IlpContext to be used): Should be a value binding to an instance of
IlpContext declared as a managed bean. A default implementation is available for
convenience (ilog.tgo.faces.service. IltFacesDefaultContext).

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example1.jsp .

You will find more information about the sample web application in <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S8

http://localhost:8080/jsf-network-step-by-step/faces/example1.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example1.jsp

Configuring a network view faces
component

Explains how to configure the rendering of a network faces component.

In this section

Configuring the client and server side of the networkView component
Describes the tag attributes defined for the networkView component.

Connecting a business data source
Explains the different ways to configure a data source within the network faces component.

Customizing the underlying IlpNetwork component
Describes how to customize the way the underlying IlpNetwork component is created.

Combining faces components
Describes how to connect components from the core JViews Faces and JViews Framework
Faces libraries to the network view.

Interacting with the network view component
Describes how to declare predefined interactors and connect them to the networkView
component.

Zoom constraints
Describes how to specify zoom levels.

Controlling the displayed area
Describes how to control the area displayed on the client.

B U I L D I N G W E B A P P L I C A T I O N S 9

Adding pop-up menus
Explains how to define pop-up menus by means of the contextualMenu tag.

Tiling
Describes the tiling support provided by the Network Faces component.

Managing the session expiration
Explains how to manage the user session expiration.

B U I L D I N G W E B A P P L I C A T I O N S10

Configuring the client and server side of the networkView component

To display a network view in the client application, you need business data and rendering
information that defines how to display these data.

The configuration for the rendering is split into two distinct groups:

♦ client-side configuration: HTML configuration stored in the DHTML page and the
JavaScript™ objects

♦ server-side configuration: stored in the network faces implementation or in the image
servlet

Client-side configuration relates to the behavior and look of the faces component itself.
Server-side configuration relates to the network model and the way the representation
objects are displayed and laid out.

There are many ways to configure the client and server sides of the networkView component.
In general, the client-side configuration is passed as tag attributes to the networkView. It
is also through tag attributes that you connect auxiliary faces components to enhance the
networkView, like the dataSource, overview, selectInteractor, and others

Server-side configuration can be set through a CSS configuration file or through the
IlpNetwork API, the easiest and preferred way being the CSS configuration. The tag attribute
styleSheets is used to pass a list of Cascading Style Sheets (CSS) files to configure the
network adapter (filters, node and link factories, for example), the network view (background
and zoom policies, for example) and the network objects themselves.

The following table lists all the tag attributes defined for the networkView component.

Tag Attributes of the networkView Faces Component
DescriptionTag Attributes

Defines the unique identifier for the component. Every component should
have a unique identifier. Mandatory.

id

Defines the JViews TGO context to be used by the underlying
IlpNetwork component. Mandatory.

context

Allows the user to bind the component to a backing bean.binding

Defines the width, in pixels, of the view component. This attribute is
inherited from the view faces component.

width

Defines the height, in pixels, of the view component. This attribute is
inherited from the view faces component.

height

Provides CSS customization. This attribute is inherited from the JViews
Framework faces.

style

Defines the style classes for the component. This attribute is inherited
from the JViews Framework faces.

styleClass

Binds the text output of the networkView component to a messageBox
component. (A messageBox component is defined by the core JViews

messageBox

B U I L D I N G W E B A P P L I C A T I O N S 11

DescriptionTag Attributes

faces library and displays text messages in a JSP™ page.) This attribute
is inherited from the JViews Framework faces.

Similar to messageBox but binds the messageBox component by its
unique identifier. This attribute is inherited from the JViews Framework
faces.

messageBoxId

Specifies the default (initial) interactor set to the networkView
component. It has no correspondance with a view interactor. It should

interactor

be a faces component (like the selectInteractor component). This
attribute is inherited from the JViews Framework faces.

Similar to interactor but binds to the unique identifier of the interactor.
This attribute is inherited from the JViews Framework faces.

interactorId

Configures the zoom factor applied when zooming in or out.This attribute
is inherited from the JViews Framework faces.

zoomFactor

Configures the pan factor (how much the image is moved). It is mainly
used when the networkView component is connected with the panTool
component.This attribute is inherited from the JViews Framework faces.

panFactor

Defines the interval between automatic updates. The networkView
component will then send an update request to the server on a regular
basis. This attribute is inherited from the JViews Framework faces.

updateInterval

The image encoding format, for example "JPG" or "PNG". This attribute
is inherited from the JViews Framework faces.

imageFormat

Defines the image to be displayed by the network faces component while
waiting for the image servlet to generate the response image. This
attribute is inherited from the JViews Framework faces.

waitingImage

Indicates whether an image map should be generated for the network
faces component. This attribute is inherited from the JViews Framework

generateImageMap

faces. See Adding an Image Map in the Advanced Features of
JViews Framework documentation.

Indicates whether the image map should be made visible or not. This
attribute is inherited from the JViews Framework faces. See Adding an

imageMapVisible

Image Map in the Advanced Features of JViews Framework
documentation.

Binds to a bean that subclasses the ilog.views.servlet.
IlvImageMapAreaGenerator class and is responsible for generating

imageMapGenerator

the image map. This attribute is inherited from the JViews Framework
faces. See Adding an Image Map in the Advanced Features of
JViews Framework documentation.

The name of a bean class that subclasses the ilog.views.servlet.
IlvImageMapAreaGenerator class and is responsible for generating

imageMapGeneratorClass

the image map. This attribute is inherited from the JViews Framework

B U I L D I N G W E B A P P L I C A T I O N S12

DescriptionTag Attributes

faces. See Adding an Image Map in the Advanced Features of
JViews Framework documentation.

Specifies the background color to be displayed by the network faces
component when there is no background image.This attribute is inherited
from the JViews Framework faces.

backgroundColor

Specifies the JavaScript code to be executed right after a refreshed
image is loaded from the server.This attribute is inherited from the JViews
Framework faces.

onImageLoaded

Similar to onImageLoaded, but this is executed right after a request for
capabilities has been answered by the server. This attribute is inherited
from the JViews Framework faces.

onCapabilitiesLoaded

The error message to be displayed in case of faulty client-server
communication. This attribute is inherited from the JViews Framework
faces.

errorMessage

Overrides the default image servlet used to generate images. This
attribute is inherited from the JViews Framework faces.

servlet

Sets a JViews TGO project to the underlying IlpNetwork component.project

Binds the networkView component with a dataSource component.
The data source component wraps an IlpAbstractDataSource
component internally.

dataSource

Similar to dataSource, but binding is done through the data source’s
unique identifier.

dataSourceId

Specifies a custom IlpNetwork which replaces the default automatically
instantiated network component.

network

Specifies a JViews TGO CSS configuration file for the underlying
IlpNetwork component. It is different from the styles tag attribute

styleSheets

as it provides server-side configuration, which is specific to JViews TGO.
This CSS file may contain component and business data configuration.

Enables or disables the resizing of the network faces component. This
attribute is inherited from the JViews Framework faces.

resizable

Defines the width and height of the network view component. This
attribute is inherited from the JViews Framework faces.

boundingBox

Defines the data to be displayed, which can be a JViews TGO project,
a binding to an IlpAbstractDataSource instance, or the unique
identifier of a dataSource component.

data

Comma-separated list of fixed zoom levels used by the view.zoomLevels

If the zoom levels are not specified, the zoom is bound only by the
maxZoomLevel property.

The maximum zoom level. This property is used if, and only if, the
zoomLevels property is not used.

maxZoomLevel

B U I L D I N G W E B A P P L I C A T I O N S 13

DescriptionTag Attributes

The default value is 10.

The size of a tile. If the tile size is greater than or equal to 0, the view
will be set in tiled mode.

tileSize

The tile size must be carefully chosen for performance reasons.

The tile manager is responsible for retrieving and/or storing image tiles
on the server side.

tileManager

The tile manager is used when the view is tiled, that is, if tileSize is
strictly positive.

B U I L D I N G W E B A P P L I C A T I O N S14

Connecting a business data source

To be able to display network objects, the network faces component must be connected to
a data source. This can be done in different ways:

♦ using a JViews TGO project

(See How to set a JViews TGO project to a networkView faces component)

♦ using the dataSource faces component

(See How to declare a dataSource faces component for the network view and How to
connect the dataSource faces component to the networkView faces component)

♦ directly setting an IlpAbstractDataSource

(See How to set a data source Bean to a networkView faces component)

The easiest way to provide server-side customization and business data to a network faces
component is through the project tag attribute. It allows you to specify a JViews TGO project
that will be set to the underlying IlpNetwork on the server side. For more information, see
Loading a project file. Keep in mind that not all CSS view customizations are supported by
the network faces component. For details, see Network view component services.

How to set a JViews TGO project to a networkView faces
component
The following example shows how to pass a JViews TGO project to the networkView
component, and to configure the component dimensions (width and height) using the style
tag attribute:

<jvtf:networkView id="aNetwork"
context="#{contextBean}"
style="width:740;height:550"
project="data/myProject.itpr" />

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example2.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

The id tag attribute defines a unique identifier for the networkView component. The context
tag attribute is a binding to a bean defined in the faces_config.xml file. The style tag
attribute defines two CSS properties (width and height) for the dimensions, in pixels, of
the network component. The project tag attribute is a relative path to a JViews TGO project
within the web application. This file should be accessible by the web application.

The following example shows how to declare the context bean in the faces_config.xml
file:

B U I L D I N G W E B A P P L I C A T I O N S 15

http://localhost:8080/jsf-network-step-by-step/faces/example2.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example2.jsp

<managed-bean>
<managed-bean-name>contextBean</managed-bean-name>
<managed-bean-class>
ilog.tgo.faces.service.IltFacesDefaultContext
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

The context should implement the IlpContext interface and must use the synchronization
strategy IlSynchronizeOnLockStrategy in order to address the particular threading issues
of a web server.

How to declare a dataSource faces component for the network
view
Another way to connect business data to the network view is through the dataSource faces
component. This component represents a wrapper for an IlpAbstractDataSource object
that can be connected to a network component. Many different data source components can
be declared in a given JSP™ page, but only one can be connected to the network view at a
time. It is possible to switch data sources dynamically.

The following example shows how to declare a data source in a JSP page:

<jvtf:dataSource id="myDataSource" value="#{dataSourceBean}" />

The id tag attribute defines a unique identifier for the data source component. The value
tag attribute gets a value binding to a bean previously declared in the faces_config.xml
file that extends IlpAbstractDataSource.

How to connect the dataSource faces component to the
networkView faces component
Once the data source has been declared, you can connect it to the network view as follows:

<jvtf:networkView id="aNetwork"
context="#{contextBean}"
style="width:740;height:550"
dataSourceId="myDataSource" />

The dataSourceId tag attribute gets the unique identifier of the data source component
that will connect it to the network view.

The following example shows how to declare the dataSource bean in the faces_config.xml
file:

<managed-bean>
<managed-bean-name>dataSourceBean</managed-bean-name>
<managed-bean-class>ilog.cpl.datasource.IlpDefaultDataSource</managed-bean

-class>

B U I L D I N G W E B A P P L I C A T I O N S16

<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>context</property-name>
<property-class>ilog.cpl.service.IlpContext</property-class>
<value>#{contextBean}</value>

</managed-property>
<managed-property>
<property-name>fileName</property-name>
<property-class>java.lang.String</property-class>
<value>data/myNetwork.xml</value>

</managed-property>
</managed-bean>

The dataSource bean is declared and two properties are set: context and fileName. The
context property is set with a value binding to a context bean. It is mandatory, so that the
JViews TGO context is consistent across components. The fileName property gets a relative
path to an XML file compatible with the data source and accessible from the web application.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example3.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

How to set a data source Bean to a networkView faces component
It is also possible to set a data source bean directly to the network view component, without
requiring the data source component.

For example:

<jvtf:networkView id="aNetwork"
context="#{contextBean}"
style="width:740;height:550"
dataSource="#{dataSourceBean}" />

The dataSource tag attribute gets a value binding to a bean that extends
IlpAbstractDataSource. It will connect the network component to this data source bean.

How to use the data tag attribute of the networkView faces
component
The network view faces component has a multipurpose data tag attribute, which can be
used to connect business data sources using:

♦ a JViews TGO XML project file

♦ the unique identifier of a data source faces component

♦ the binding to an instance of IlpAbstractDataSource

B U I L D I N G W E B A P P L I C A T I O N S 17

http://localhost:8080/jsf-network-step-by-step/faces/example3.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example3.jsp

You must not use any combination of the following tag attributes, which allow you to
connect the network view to any form of data source:

Note:

♦ data

♦ dataSourceId

♦ dataSource

♦ project

When used with JViews TGO projects, the data tag attribute behaves exactly like the project
attribute, getting the relative path to a JViews TGO project, as in the following example:

<jvtf:networkView id="aNetwork"
context="#{myContext}"
style="width:740;height:550"
data="data/myProject.itpr" />

Here myProject.itpr is the project file within the web application.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example4.jsp.

When used with the unique identifier of a data source faces component, the data tag attribute
behaves exactly like the dataSourceId attribute, getting the unique identifier of a data
source component, as in the following example:

<jvtf:networkView id="aNetwork"
context="#{myContext}"
style="width:740;height:550"
data="myDataSource" />

Here myDataSource uniquely identifies a data source faces component in the current session.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example5.jsp .

When used with an IlpAbstractDataSource instance, the data tag attribute behaves exactly
like the dataSource attribute, getting a value binding to a bean that extends
IlpAbstractDataSource, as in the following example:

<jvtf:networkView id="aNetwork"
context="#{myContext}"
style="width:740;height:550"
data="#{dataSourceBean}" />

B U I L D I N G W E B A P P L I C A T I O N S18

http://localhost:8080/jsf-network-step-by-step/faces/example4.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example4.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example5.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example5.jsp

Here #{dataSourceBean} is a value binding to the corresponding bean declared in the
faces_config.xml file.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example6.jsp.

B U I L D I N G W E B A P P L I C A T I O N S 19

http://localhost:8080/jsf-network-step-by-step/faces/example6.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example6.jsp

Customizing the underlying IlpNetwork component

The network view faces component is a facade to an IlpNetwork component which manages
the integration between business data and display data, server-side configuration and
interactions. By default, an instance of IlpNetwork is instantiated. However, you can
customize the way this underlying component is created, in two different ways:

♦ Using the binding tag attribute

♦ Using the network tag attribute

Using the binding tag attribute
The binding tag attribute allows you to replace the default network view faces component
with a customized backing bean that controls how the IlpNetwork is created through the
createNetworkComponent method, as illustrated below:

protected IlpNetwork createNetworkComponent(IlpContext context,
String config) {

IlpNetwork myNetwork = new IlpNetwork(config, context);
IlpDefaultDataSource dataSource = new IlpDefaultDataSource(context);
try {
myNetwork.setStyleSheets(new String[] { "myStyles.css" });
dataSource.parse("myData.xml");

} catch(Exception x) {
System.err.println("Could not configure custom component");

}

myNetwork.setDataSource(dataSource);

return myNetwork;
}

How to use the binding tag attribute of the networkView faces
component
Faces components allow you to set a backing bean to replace the default component
implementation. So, for the network view faces component, the binding attribute can be
set with a value binding to a backing bean that extends IltFacesDHTMLNetworkView (the
DHTML implementation of the network view faces component). The following example
illustrates this:

<jvtf:networkView id="aNetwork"
context="#{contextBean}"
style="width:740;height:550"
binding="#{myJSFNetwork}" />

Here #{myJSFNetwork} is a value binding to a backing bean declared in the faces_config.
xml like this:

B U I L D I N G W E B A P P L I C A T I O N S20

<managed-bean>
<description>A bean extending IltFacesDHTMLNetworkView</description>
<managed-bean-name>myJSFNetwork</managed-bean-name>
<managed-bean-class>example.MyNetworkView</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

The backing bean provides more flexibility to the user by giving access to the component
API and its instantiation.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example7.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

Using the network tag attribute
The network tag attribute allows you to define the customized instance of an IlpNetwork
component through method binding. You should declare a bean with a method that returns
your instance of IlpNetwork and bind this method with the network tag attribute, as
illustrated below:

public IlpNetwork getCustomNetwork() {
if (null == network) {
// Get the default configuration file name
String config = IltFacesNetworkView.DefaultConfigurationFileName;
network = new IlpNetwork(config, context);
IlpDefaultDataSource dataSource = new IlpDefaultDataSource(context);
try {
network.setStyleSheets(new String[] { "myStyles.css" });
dataSource.parse("myData.xml");

} catch(Exception x) {
System.err.println("Could not configure custom component");

}

network.setDataSource(dataSource);
}
return network;

}

The configuration file is mandatory. The sample uses the default faces configuration
file which is accessible from the property IltFacesNetworkView.
DefaultConfigurationFileName.

Note:

B U I L D I N G W E B A P P L I C A T I O N S 21

http://localhost:8080/jsf-network-step-by-step/faces/example7.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example7.jsp

How to use the network tag attribute of the networkView faces
component
It is possible to replace the automatically created IlpNetwork object with a customized
network object. This is done with the network attribute of the network view faces component,
as follows:

<jvtf:networkView id="aNetwork"
context="#{contextBean}"
width="740"
height="550"
network="#{myIlpNetwork.network}" />

Here the tag attributes width and height are used to specify the size of the network view.
Other examples produce the same results using the style tag attribute with the CSS
properties "width" and "height".

In this example, the network attribute is set with a method that binds to a bean defined in
the faces_config.xml. The correspondingmethod (getNetwork in this case) will be invoked
when the JSP™ page is parsed. It allows the user to have access to the IlpNetwork API as
well as to its instantiation. Using the network attribute and keeping the IlpNetwork in a
bean is a good way to provide quick access to the underlying IlpNetwork API within the
web application. Note that the context is not passed to the myIlpNetwork.getNetwork
method, which means that this bean must be configured with the appropriate context in the
faces_config.xml file. For example:

<managed-bean>
<description>A bean with read access to the 'network' property</description>

<managed-bean-name>myIlpNetwork</managed-bean-name>
<managed-bean-class>example.MyNetwork</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>context</property-name>
<property-class>ilog.cpl.service.IlpContext</property-class>
<value>#{contextBean}</value>

</managed-property>
</managed-bean>

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example8.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S22

http://localhost:8080/jsf-network-step-by-step/faces/example8.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example8.jsp

Combining faces components

You can connect components from the core JViews Faces and JViews Framework Faces
libraries to the network view to combine features and improve user interaction. This is the
case with the overview, zoomTool, panTool and imageButton components.

How to set up an overview for the network view
The overview component must be manually set up within the HTML page. Its dimensions
and location are important criteria to be considered when designing the HTML page. The
following example shows how to declare an overview and connect it to the network view:

<h:panelGrid columns="2">
<jvtf:networkView id="aNetwork"

context="#{contextBean}"
style="width:740;height:550"
project="data/myProject.itpr" />

<jvf:overview id="anOverview"
viewId="aNetwork"
style="width:123;height:91" />

</h:panelGrid>

In the example, a network view component is declared with the unique identifier "aNetwork"
within a two-column panelGrid. Then, an overview component is declared so that it is layered
after the network component. The viewId tag attribute is used to connect the network view
to the overview, through the unique identifier of the main view component. Note that the
dimensions of both components are defined in a similar way by the tag attribute style.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example9.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to connect a zoom tool and a pan tool to a network view
See section The JViews Framework Faces Component Set in the Advanced Features of JViews
Framework part of the JViews Diagrammer documentation for details about the zoomTool
and panTool.

The following example shows how to attach zoomTool and panTool components to a network
view:

<h:panelGrid columns="2">
<jvtf:networkView id="aNetwork"

context="#{contextBean}"
style="width:740;height:550"
project="data/myProject.itpr" />

B U I L D I N G W E B A P P L I C A T I O N S 23

http://localhost:8080/jsf-network-step-by-step/faces/example9.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example9.jsp

<h:panelGrid columns="1">
<jvf:panTool id="aPanTool"

viewId="aNetwork"
style="width:123;height:123" />

<jvf:zoomTool id="aZoomTool"
viewId="aNetwork"
style="width:123;height:322" />

</h:panelGrid>
</h:panelGrid>

In this example, a network view component is declared with the unique identifier "aNetwork"
within a two-column panelGrid. Then, a new one-column panelGrid is declared to
accommodate the panTool and zoomTool components. The viewId tag attribute is used to
connect the network view to the other components. Note that the style tag attribute is used
to set the dimensions for all the declared components.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example10.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

How to add image buttons and set client-side actions for the
network view component
Although zoomTool and panTool components provide basic user interaction, you can also
set client actions to image buttons to achieve similar results. The advantage is that image
buttons are more customizable, as the user can define the action to be set. The following
example shows how to declare image buttons and associate them with client-side actions.

<!-- Create a 2 columns grid -->
<h:panelGrid columns="2">

<!-- Declare a button for zooming in -->
<jv:imageButton onclick="aNetwork.zoomIn(true)"

image="images/zoom.gif"
rolloverImage="images/zoomh.gif"
selectedImage="images/zoomd.gif"
title="Zoom In"
message="Zoom In" />

<!-- Declare a button for zooming out -->
<jv:imageButton onclick="aNetwork.zoomOut(true)"

image="images/unzoom.gif"
rolloverImage="images/unzoomh.gif"
selectedImage="images/unzoomd.gif"
title="Zoom Out"
message="Zoom Out" />

</h:panelGrid>
<jvtf:networkView id="aNetwork"

context="#{contextBean}"

B U I L D I N G W E B A P P L I C A T I O N S24

http://localhost:8080/jsf-network-step-by-step/faces/example10.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example10.jsp

style="width:740;height:550"
project="data/myProject.itpr" />

This example declares two image buttons:

♦ one for zooming in

♦ one for zooming out

Each button declaration defines the following attributes:

♦ onclick: The JavaScript™ action to be triggered when the button is pressed.

♦ image: The main button image.

♦ rolloverImage: The image to be displayed when the mouse pointer rolls over the button.

♦ selectedImage: The image to be displayed when the button is pressed.

♦ title: The tooltip message displayed when the mouse pointer stays over the button.

♦ message: The message displayed in the messageBox component when the mouse pointer
stays over the button.

The onclick tag attribute is the most important as it defines the action associated with the
button. Note that it uses the JavaScript API of the networkView component to perform the
desired action:

♦ onclick="aNetwork.zoomIn(true)": This uses the zoomIn JavaScript call to zoom in the
network view component.

♦ onclick="aNetwork.zoomOut(true)": This uses the zoomOut JavaScript call to zoom out
the network view component.

The onclick attribute can be set with any valid JavaScript code, which will be executed
when the button is pressed. The other tag attributes define the look and feel of the button,
with corresponding images and tooltip text.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example11.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S 25

http://localhost:8080/jsf-network-step-by-step/faces/example11.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example11.jsp

Interacting with the network view component

JViews Framework Faces and core JViews Faces libraries declare predefined interactors
that can be connected to the networkView component to add extra user interaction.
Interactors are faces components that execute client- or server-side actions. Most of them
can be extended and configured to suit the user needs.

How to declare an interactor and connect it to the network view
component
The following example shows how to declare a predefined interactor (the pan interactor) in
the JSP™ page and connect it to the networkView component so that it is always available.

<!-- Declare the predefined 'pan' interactor -->
<jvf:panInteractor id="pan" />

<jvtf:networkView id="aNetwork"
context="#{contextBean}"
style="width:740;height:550"
interactorId="pan"
project="data/myProject.itpr" />

In this example, the predefined panInteractor is declared. A unique identifier is associated
with it ("pan"). Then, the interactorId tag attribute of the networkView component specifies
the interactor to be connected to the network view.

How to associate interactors with image buttons in the network
view component
Usually many interactors are made available in a web application. The following example
shows how to declare multiple predefined interactors and how to use image buttons to make
them active. Note that only one interactor can be set in the network view component at a
time. Whenever a new interactor is set, the previous one is removed.

<!-- Declare the predefined 'select' interactor -->
<jvtf:selectInteractor id="select" />

<!-- Declare the predefined 'pan' interactor -->
<jvf:panInteractor id="pan" />

<!-- Create a 4 columns grid -->
<h:panelGrid columns="4">

<!-- Declare a button for selection -->
<jv:imageButton onclick="aNetwork.setInteractor(select)"

buttonGroupId="interactors"
image="images/arrow.gif"
rolloverImage="images/arrowh.gif"

B U I L D I N G W E B A P P L I C A T I O N S26

selectedImage="images/arrowd.gif"
title="Select Interactor"
message="Select Interactor" />

<!-- Declare a button for panning -->
<jv:imageButton onclick="aNetwork.setInteractor(pan)"

buttonGroupId="interactors"
selected="true"
image="images/pan.gif"
rolloverImage="images/panh.gif"
selectedImage="images/pand.gif"
title="Pan Interactor"
message="Pan Interactor" />

<!-- Declare a button for zooming in -->
<jv:imageButton onclick="aNetwork.zoomIn(true)"

image="images/zoom.gif"
rolloverImage="images/zoomh.gif"
selectedImage="images/zoomd.gif"
title="Zoom In"
message="Zoom In" />

<!-- Declare a button for zooming out -->
<jv:imageButton onclick="aNetwork.zoomOut(true)"

image="images/unzoom.gif"
rolloverImage="images/unzoomh.gif"
selectedImage="images/unzoomd.gif"
title="Zoom Out"
message="Zoom Out" />

</h:panelGrid>
<jvtf:networkView id="aNetwork"

context="#{contextBean}"
style="width:740;height:550"
interactorId="pan"
project="data/myProject.itpr" />

This example defines two predefined interactors:

♦ selectInteractor: This is a server-side interactor that processes object selection by
default. (See The selectInteractor faces component for details).

♦ panInteractor: This is a client-side interactor that enables panning of the image displayed
by the network view component.

Two buttons are declared to connect the interactor to the network view component. The
buttonGroupId tag attribute is used to group image buttons so that only one button of the
group is selected at a time. The selected attribute is used to specify which button should
be made selected when the page is loaded. This should correspond to the interactor initially
connected to the network view with the interactorId tag attribute. In this case, the pan
button is selected (select="true") and the pan interactor is connected to the network view
(interactorId="pan").

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example13.jsp .

B U I L D I N G W E B A P P L I C A T I O N S 27

http://localhost:8080/jsf-network-step-by-step/faces/example13.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example13.jsp

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

The selectInteractor faces component
The selectInteractor faces component has been defined as an interactor that maps
client-side mouse clicks to server-side events dispatched to the underlying view interactor.
It extends the JavaServer™ Faces UICommand component, which means that it will fire
ActionEvents to registered ActionListeners.

This component allows you to create customized IlvManagerViewInteractor instances that
will process themouse actions on the client side. By default, it uses the IltSelectInteractor,
which allows selecting, dragging and expanding graphic objects.

This interactor has the following limitations in terms of handling events:

♦ Only BUTTON1 and BUTTON3 mouse buttons are supported (left and middle).

♦ Pop-up menus are supported in a different way from the Swing network component. See
Adding pop-up menus.

♦ Double-click events are not supported.

♦ There is no visual feedback when dragging an object (the graphic representation of the
object does not follow the mouse pointer).

♦ No keyboard actions are supported except the following modifiers:

● Shift key

● Control key

● Alt key

● Meta key

Client-side interactions are converted into the following mouse events, dispatched to the
appropriate interactor:

♦ MOUSE_PRESSED

♦ MOUSE_DRAGGED

♦ MOUSE_RELEASED

How to declare the selectinteractor faces component for the
network view
The selectInteractor is declared like any other faces component defined in the JViews
TGO faces tag library:

<jvtf:selectInteractor id="select" />

B U I L D I N G W E B A P P L I C A T I O N S28

Configuring the selectInteractor
The selectInteractor faces component is configured through the following tag attributes.

Tag Attributes of the selectInteractor Faces Component
DescriptionTag Attributes

Defines the mouse cursor to be used when the interactor is active; it should be
one of the cursors supported by the web browser.

cursor

Defines the width of the interaction area drawn by the interactor.lineWidth

Defines the color of the interaction area drawn by the interactor.lineColor

Defines the name of the action event triggered by this interactor; it is used to
identify events coming from this interactor.

actionName

Defines whether the request will be submitted by a mouse click or not; this tag
is used to control when the actions are submitted.

autoSubmit

When this tag attribute is set to false, the selectInteractor will not submit
any request after the user interaction, but wait until some other component does
it.

Defines an action listener that is called when this interactor is used.actionListener

Action listeners should implement the ActionListener interface (from JSF
library), but JViews TGO faces provide the
IltFacesGraphInteractorActionListener abstract implementation that
decodes the user interactions into events dispatched to a given view interactor.
Subclasses should implement the method getViewInteractor in order to
return the appropriate view interactor to process the events. The default
implementation (IltFacesSelectInteractorListener) dispatches all
events to the IltSelectInteractor view interactor.

Therefore, the actionListener tag attribute may be used to register any
ActionListener that will be notified whenever a user interaction has been
performed, or a subclass of IltFacesGraphInteractorActionListener
can be registered to decode the user interaction into events dispatched to view
interactions (IlpViewInteractor).

Defines whether the server-side processing is performed in the JSF lifecycle
or directly by the image servlet. The possible values are:

invocationContext

♦ JSF_CONTEXT: Processing is done in the JSF lifecycle (the default value)

♦ IMAGE_SERVLET_CONTEXT: Processing is done by the image servlet,
bypassing the JSF lifecycle

The selectInteractor submits requests to be processed on the server side.
By default, the request is addressed to the JavaServer Faces controller servlet
which processes all requests according to the well-defined JSF lifecycle. This
means that all component dependencies will be verified, any registered listener
will be notified.The result is a full page refresh with an update of all components
involved. If your interaction triggers updates of components other than the
networkView, then the JSF_CONTEXT should be used.

B U I L D I N G W E B A P P L I C A T I O N S 29

DescriptionTag Attributes

If, on the other hand, your requests are supposed to only update the image
displayed by the networkView component, then you may want to benefit from
the faster IMAGE_SERVLET_CONTEXT. In this case, the interactor requests will
be addressed to the image servlet responsible for generating the image displayed
by the networkView component. Note that the image servlet has no access
to any faces component other than networkView, which means that your
request cannot rely on other faces components, and that any registered listener
for changes on the selectInteractor and networkView will not be updated.

There is one exception to this rule. As the overview faces component is largely
used with the networkView faces component, and as its displayed image is
also generated by the image servlet, you can force the overview to be refreshed
whenever the main view (networkView) is updated, at the cost of an extra
client-server-client roundtrip. To do so, you must set the autoRefresh tag
attribute of the overview faces component to true.

Defines a binding expression to a backing bean.binding

The cursor, lineWidth and lineColor tag attributes control the look of the interactor when
it is activated, they do not affect its functionality.

If you have started the bundled Tomcat web server, the following links will take you to the
small samples illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example12.jsp and http://localhost:8080/jsf-network-step-by-step/faces/example13.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

Configuring action listeners for the select interactor component
Action listeners are responsible for processing the interactions performed with the select
interactor component. Their default behavior is to convert the interactions into server events
dispatched to the IltSelectInteractor. It is possible to override this behavior by adding
action listeners to the component.

Unlike in the regular network Swing component, it is not possible to declare view interactors
through a CSS file. Instead, in the network faces component, the view interactors are declared
within customized action listeners added to the selectInteractor faces component.

As the selectInteractor extends the JavaServer Faces UICommand, it allows one or more
action listeners (implementing javax.faces.event.ActionListener) to be registered to
receive events (javax.faces.event.ActionEvent) whenever a user interaction is performed.
For the ActionEvent API there are the following methods:

♦ getComponent() or getSource(): Return a reference to the interactor faces component
that is currently active (for example, IltFacesGraphInteractor).

A predefined abstract implementation of the ActionListener interface named
IltFacesGraphInteractorActionListener is provided to translate client-side interactions
into server-side events that are dispatched to a given view interactor. When notified, this
class translates user interactions into mouse events that are automatically dispatched to
the IlpViewInteractor returned by the abstract method getViewInteractor(actionName).

B U I L D I N G W E B A P P L I C A T I O N S30

http://localhost:8080/jsf-network-step-by-step/faces/example12.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example12.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example13.jsp

The following example illustrates how to override the default selectInteractor behavior
with a customized one:

<jvtf:selectInteractor id="select"
actionListener="#{MyListenerBean}"
invocationContext="JSF_CONTEXT" />

Here the actionListener tag attribute gets a binding to a bean implementing the javax.
faces.event.ActionListener interface. Note that actionListenerwill override the default
behavior of the selectInteractor. It is possible to add more than one action listener,
combining customized action listeners with the default behavior as shown in the next example:

<jvtf:selectInteractor id="select"
invocationContext="JSF_CONTEXT">

<f:actionListener
type="ilog.tgo.faces.graph.dhtml.event.IltFacesSelectInteractorListener"/

>
<f:actionListener type="demo.MyInteractionListener"/>

</jvtf:selectInteractor>

Here IltFacesSelectInteractorListener is the action listener (extends
IltFacesGraphInteractorActionListener) that implements the default behavior of the
selectInteractor faces component, and MyInteractionListener is a customized
implementation of the javax.faces.event.ActionListener interface. The actionListener
tag is used to add several action listeners to the selectInteractor, which are invoked in
the order in which they have been declared. Note that action listeners may conflict with
each other, especially multiple implementations of
IltFacesGraphInteractorActionListener, as the first one invokedmay change the business
model and invalidate the next action listener.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to customize action listeners: http://localhost:8080/
jsf-network-step-by-step/faces/example14.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

The clientSelectInteractor faces component
The clientSelectInteractor faces component is an interactor designed to minimize the
number of image requests and image updates between the graph view on the client and the
image servlet on the server by dynamically rendering and managing the selection borders
in the client side.

Instead of requesting a new graph view image every time the user selects an object, the
clientSelectInteractor dynamically renders an HTML rectangular selection around the
object. The server is notified so that the selection model is kept synchronized with the user
interactions. A new graph view image is requested only when the user drags objects or
interacts with specific decorations (such as information icons, and expansion icons).

B U I L D I N G W E B A P P L I C A T I O N S 31

http://localhost:8080/jsf-network-step-by-step/faces/example14.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example14.jsp

The performance and responsiveness is greatly improved as lesser images are generated
and dispatched by the server. However, the selection graphic feedback is impacted, as the
client is limited to only displaying a rectangular border around the selected object.

The interactor can be configured to work in imagemode. In this mode, it will ask the server
to process the selection and get a new image on every user interaction. The dynamic selection
border will only be displayed while objects are being dragged, as when objects are in their
resting position the new image sent by the server already represents the selection.

It is possible to customize the interaction with object decorations, controlling when a click
on a particular object decoration should trigger a new image request or not.

Unlike the selectInteractor, the clientSelectInteractor always
communicates with the image servlet directly. Therefore, it does not follow the JSF

Note:

lifecycle, which means that only the view faces component and a possibly attached
overview are updated and not all the other components in the page.

How to declare the clientSelectInteractor faces component for the
network view
The clientSelectInteractor is declared like any other faces component defined in the
JViews TGO faces library:

<jvtf:clientSelectInteractor is="clientSelect" />

Configuring the clientSelectInteractor
The clientSelectInteractor faces component is configured through the following tag
attributes:

B U I L D I N G W E B A P P L I C A T I O N S32

Tag Attributes of the clientSelectInteractor Faces Component
DescriptionTag Attributes

Defines a binding expression to a backing bean, allowing the user
to customize the clientSelectInteractor faces component.

binding

Defines the message displayed by the view when the interactor is
set.

message

Defines the mouse cursor to be used when the interactor is active.
It should be one of the cursors supported by the web browser.

cursor

The identifier passed to dynamically generated popup menus.menuModeId

Specifies whether this interactor allows mouse dragging.moveAllowed

Defines a method binding to process actions on the object or on
specific decorations attached to it.

objectActionMethodBinding

Specifies a JavaScript handler to be called whenever the selection
changes. Deprecated in JViews TGO 8.0. See The selectionManager
faces component for an alternative.

onSelectionChanged

Sets the interactor to image mode. A new image will be requested
every time the user interacts with the view. Deprecated in JViews

imageMode

TGO 8.0. See The selectionManager faces component for an
alternative.

The width of the selection border dynamically rendered by the
interactor. Deprecated in JViews TGO 8.0. See The selectionManager
faces component for an alternative.

lineWidth

The color of the selection border dynamically rendered by the
interactor. Deprecated in JViews TGO 8.0. See The selectionManager
faces component for an alternative.

lineColor

Forces the request of additional information when the interactor is
in image mode. Used in conjunction with the

forceUpdateProperties

infoProviderMethodBinding. Deprecated in JViews TGO 8.0.
See The selectionManager faces component for an alternative.

Defines the information provider method binding to return additional
information about the selected object. Deprecated in JViews TGO
8.0. See The selectionManager faces component for an alternative.

infoProviderMethodBinding

If you have started the bundled Tomcat web server, the following link will take you to a
small sample illustrating this: http://localhost:8080/jsf-network-step-by-step/faces/
example19.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

Configuring an object action for the clientSelectInteractor
By default, the clientSelectInteractor supports interactions with the following object
decorations:

♦ The information icon

B U I L D I N G W E B A P P L I C A T I O N S 33

http://localhost:8080/jsf-network-step-by-step/faces/example19.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example19.jsp

♦ The system icon

♦ The expand and collapse icons

If the user clicks on any of these decorations, the interactor triggers a default object action
instead of selecting the object. These actions change the look of the objects, which means
that a new image is generated.

It is possible to override or even extend this behavior through the
objectActionMethodBinding tag attribute, as follows:

<jvtf:clientSelectInteractor id="clientSelect"

objectActionMethodBinding="#{interactorBean.objectAction}" />

Here, the objectActionMethodBinding tag attribute is bound to the objectActionmethod
declared in the interactorBean. Themethod bindingmust conform to the following signature:

boolean methodName(IlpGraphView, int, int)

The IlpGraphView is a reference to the graph view containing all the objects. The two integer
parameters are the x and y components of the view position where the user has clicked.
Returning true indicates that a new image has to be generated, while false indicates that
nothing has been processed and the clicked object will be selected.

In the example above, the objectAction method will override the default object action
behavior (which is to react on expand, collapse, information and system icons). It is possible
to extend this default behavior by overriding the method processObjectAction in class
IltFacesDefaultObjectAction.

The selectionManager faces component
You can customize the way the selection is performed and displayed by using a selection
manager.

This selection manager is defined in a facet on the networkView tag, as follows:

<jvtf:networkView id="tgoViewId" interactorId="select">
<f:facet name="selectionManager">

<jvtf:selectionManager imageMode="false" [...] />
</f:facet>

</jvtf: networkView >

The selection manager has two display modes:

♦ image (default)

The image is refreshed after each selection. A new image is requested to the server at
each selection which allows the client to get nice selection graphics.

♦ regular

B U I L D I N G W E B A P P L I C A T I O N S34

Rectangles representing the selection are displayed on top of the view. The roundtrip to
the server is minimal: the generation of a new image is not required and the response
time is faster but the selection feedback is limited to a selection rectangle.

Image Mode versus Regular ModeTip:

Using one mode rather than the other depends on your criteria: performance or graphic
feedback. Image mode provides a better graphic feedback but is slower because of the
image generation and the need for an extra request to get additional information about
the selection on the client. Regular mode offers basic graphic feedback but better
performance.

Other parameters can be configured on the selectionManager, like for example the line
width or the color of the selection rectangle used in regular selection mode:

<jvtf:selectionManager lineWidth="2" lineColor="red"/>

The selection manager currently supports integration with the following TGO Faces
interactor: clientSelectInteractor.

Note:

Configuring the selectionManager
The selectionManager faces component is configured through the following tag attributes:

Tag Attributes of the selectionManager Faces Component
DescriptionTag Attributes

A method binding that respects the signature List
methodName(IlpGraphView, IlpRepresentationObject).The returned

infoProviderMethodBinding

value of this method is a list of additional properties associated with
the selected object. A valid item of this list is a String or a list itself.
As of JViews TGO 8.0, the preferred way to transfer object properties
to client is via the propertyAccessor tag of the
selectionManager.

The value binding expression linking this component to a property
in a backing bean. If this attribute is set, the tag does not create the

binding

B U I L D I N G W E B A P P L I C A T I O N S 35

DescriptionTag Attributes

component itself but retrieves it from the Bean property.This attribute
must be a value binding.

The color of selection rectangles lines.lineColor

Force to make additional request to query the current selection and
additional properties in image mode to enable client-side selection
listener.

forceUpdateProperties

The ID of this component.id

The image mode. In image mode, the image is refreshed on each
selection. In regular mode, only the selected object(s) bounding box

imageMode

is queried and rectangles are dynamically displayed on top of the
view. Note that the client-side listeners on selection and additional
information on selected objects are available in image mode if and
only if the forceUpdateProperties property is set to true. In
regular mode no special configuration is needed. By default the
manager is in image mode.

The width of selection rectangle lines.lineWidth

A JavaScript handler called when the selection has changed. The
handler can use the predefined variable 'selection' which is the

onSelectionChanged

list of current selected items. To use this handler the
selectionManager must be in regular mode or the
forceUpdateProperties must be set if in image mode. Refer to
the user's documentation for further information.

The reference to the value binding expression to an
IltFacesPropertyAccessor instance that will be used to access
model properties of the selected objects.

propertyAccessor

true to display filled selection rectangles.The fill color is the line color
with a transparency of 50%.

fillOn

Exposing selection details
You can expose details on the current selection by taking advantage of the property accessor
of the selection manager.

The IltFacesPropertyAccessor contains several methods that can be overridden to configure
or specialize the way it gives access to model properties. In particular, you can filter the
properties that are exposed to clients by overriding the following method:

List getPropertyNames(IlpGraphicView view, IlpRepresentationObject object)

The following code illustrates how to provide your property accessor:

<jvtf:selectionManager propertyAccessor="{#serverBean.propertyAccessor}" [...
]
/>

B U I L D I N G W E B A P P L I C A T I O N S36

The following code illustrates how to implement your custom requirements in a new property
accessor:

public class ServerBean {

private IltFacesPropertyAccessor accessor = new MyPropertyAccessor();

public IltFacesPropertyAccessor getPropertyAccessor() {
return accessor;

}

class MyPropertyAccessor extends IltFacesPropertyAccessor {

protected List getPropertyNames(IlpGraphicView view, IlpRepresentationObject
object) {

[…]
}

}
}

Then you can register a JavaScript listener that will be called when the selection changes:

<jvtf:selectionManager onSelectionChanged="displayProperties(selection)"/>

The JavaScript function can be as follows:

// Alert the ID and bounds of all the selected objects
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++)
alert(selection[i].getID()+"+selection[i].getBounds());

}

In addition to the ID and bounds properties of the selected object, you can also expose the
properties of the selected object in the TGO model as follows:

// Alert all the properties of all the selected objects
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++) {
var propertiesNames = selection[i].getObjectPropertyNames();
for (var j = 0; j < propertiesNames.length; j++)

alert(selection[i].getObjectProperty(propertiesNames[j]));
}

}

To obtain selected object properties information on the client side while you are running
the selection in image mode, you need to force an additional request by setting the

Note:

property forceUpdateProperties to true. In regular mode this feature is available
without any overhead.

B U I L D I N G W E B A P P L I C A T I O N S 37

If you have started the bundled Tomcat Web server, the following link will take you to the
small sample illustrating how to use the selection manager with the property accessor: http:/
/localhost:8080/jsf-network-step-by-step/faces/example20.jsp.

You can find more information about the sample Web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> is the directory
in which IBM® ILOG® JViews TGO is installed.

Managing object selection
The selectionManager also allows for changing the selection state of objects
programmatically via its client side by means of JavaScript. This can be accomplished by
using the following API:

♦ IlvAbstractSelectionManager.selectById(id, extend)

♦ IlvAbstractSelectionManager.selectAll()

♦ IlvAbstractSelectionManager.deselectAll()

Selecting and deselecting an object

The selectById function allows you to select or deselect an object by providing the object's
identifier:

networkView.getSelectionManager().selectById("tgoObjectId");

This method call will select the object with the identifier tgoObjectId and deselect the
object currently selected.

You can extend/reduce the current selection by selecting/deselecting a node as follows:

networkView.getSelectionManager().selectById("tgoObjectId", true);

This method call keeps the existing selection and selects the object with the identifier
tgoObjectId, if it's not already selected; or it will deselect it, if it is already selected.

Selecting all objects

The selectAll function allows you to select all objects:

networkView.getSelectionManager().selectAll();

This method call will select all visible objects.

Deselecting all objects

The deselectAll function allows you to deselect all objects:

networkView.getSelectionManager().deselectAll();

This method call will clear the selection of all visible objects.

B U I L D I N G W E B A P P L I C A T I O N S38

http://localhost:8080/jsf-network-step-by-step/faces/example20.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example20.jsp

In all cases, the object must be selectable in order to get selected.Note:

If you have started the bundled Tomcat Web server, the following link will take you to the
small sample illustrating how to use the selection manager API: http://localhost:8080/
jsf-network-step-by-step/faces/example22.jsp.

You can find more information about the sample Web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> is the directory
in which IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S 39

http://localhost:8080/jsf-network-step-by-step/faces/example22.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example22.jsp

Zoom constraints

When the zoom level is equal to 1, the manager content is adjusted to the bounds of the JSF
view so as to be displayed entirely. Consequently, a zoom level of n means that the content
is scaled by a factor of n. For example, a zoom factor of 2 means that the manager content
is displayed double its size.

By default, the view is constrained by the manager content bounds. The direct consequences
are that:

♦ Pan actions or zoom interactions cannot go out of the manager content bounds.

♦ The view zoom level cannot be lower than 1.

This constraint can be removed by setting the constrainedOnContents property to false,
as follows:

<jvtf:networkView constrainedOnContents="false" [...] />

The zoom level applied to the view by using the zoom interactor of JavaScript™ zoom actions
can be free or constrained to specified zoom levels. In the free zoom mode, the only
constraints are the minimum and maximum zoom levels. The default value of the minimum
zoom level is set to 1 and the default value of the maximum zoom level is set to 10. These
constraints can be customized with the minZoomLevel and the maxZoomLevel properties
respectively.

<jvtf:networkView minZoomLevel="2" maxZoomLevel="20" [...] />

By default, the minimum zoom level cannot be lower than 1.Note:

To specify fixed zoom levels, use the zoomLevels property, as follows:

<jvtf:networkView zoomLevels="1.0, 2.0, 5.0, 10.0" [...] />

When this property is set:

♦ The minZoomLevel and maxZoomLevel properties are ignored.

♦ The minZoomLevel becomes the first zoom level and the maxZoomLevel the last zoom level
in the list.

♦ The zoom interactor will fit to the nearest zoom level.

♦ The built-in zoom actions on the JavaScript view proxy use these fixed zoom levels.

Fixed zoom levels must be used in order for a tiled view to be cached on the client-side.

For more details on setting up zooming in the network view seeHow to associate interactors
with image buttons in the network view component.

B U I L D I N G W E B A P P L I C A T I O N S40

Controlling the displayed area

The Network Faces component allows developers to specify the area that will be displayed
on the client. For example, this enables developers to set the initial visible area or possibly
to change at runtime the clipping rectangle so that it centers or focuses on a given network
element.

This can be done by means of the boundingBox property as follows:

<jvtf:networkView [...] boundingBox="0,0,100,200"/>

The value provided corresponds to the x, y, height and width of the area of interest in
manager coordinates separated by commas.

Programmatically, this property can be used during a JSF action to reset or modify the visible
area by providing an instance of IlvRect as illustrated below.

public class ActionProvider {
[...]

public void changeAreaDisplayed() {
IltFacesNetworkView facesNetworkView = …;
facesNetworkView.setBoundingBox(new IlvRect(0,0,100,100));

}
}

B U I L D I N G W E B A P P L I C A T I O N S 41

Adding pop-up menus

Unlike the network Swing component, the network faces component does not rely on the
IlpPopupMenuFactory interface to declare contextual menus. Instead, it is based on the
contextualMenu tag defined in the jviews-framework-faces.tld tag library descriptor.
This means that pop-up menus in network faces cannot be declared in CSS files.

The contextualMenu tag allows you to define two distinct types of pop-up menu:

♦ Static pop-up menus: The menu structure is hard coded in the JSP™ file, it applies to all
objects and cannot be changed dynamically.

♦ Dynamic pop-up menus: The menu structure is defined by the IlvMenuFactory interface
and can be created dynamically where the pop-up was activated

In JViews TGO Faces, the pop-up menu does not trigger any object selection, that is,
the object right below the mouse pointer is not automatically included in the selection
model.

Note:

How to add a static pop-up menu to a network faces component
The static pop-up menu is fully declared within the JSP file, using the following tags:

♦ contextualMenu (jviews-framework-faces.tld library)

♦ menu (jviews-faces.tld library)

♦ menuItem (jviews-faces.tld library)

♦ menuSeparator (jviews-framework-faces.tld library)

The following example illustrates how to declare a static pop-up menu within a network
faces component:

<!-- Declare the Network Faces component -->
<jvtf:networkView id="aNetwork"

context="#{contextBean}"
style="width:740;height:550"
project="data/default_project.xml">

<!-- Declare the contextual menu -->
<jvf:contextualMenu>
<!-- Declare the root popup menu -->
<jv:menu label="root">
<jv:menuItem label="Zoom In"

image="images/zoom.png"
onclick="aNetwork.zoomIn()" />

<jv:menuItem label="Zoom Out"
image="images/unzoom.png"
onclick="aNetwork.zoomOut()" />

B U I L D I N G W E B A P P L I C A T I O N S42

<jv:menuSeparator />
<jv:menuItem label="Fit To Contents"

image="images/zoomfit.png"
onclick="aNetwork.showAll()" />

<jv:menuItem label="Alert!"
image="images/alert.png"
onclick="alert('Alert menu item!')" />

</jv:menu>
</jvf:contextualMenu>

</jvtf:networkView>

In this example, the contextualMenu tag is declared within the network faces component
declaration (networkView tag). It is structured as a root menu (menu tag) with multiple menu
items (menuItem tags).

The onclick attribute in the menuItem tag is the most important. It defines the JavaScript™
code to be executed when the menu item is selected. See index for details on the available
tag attributes.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to declare a static pop-up menu: http://localhost:8080/
jsf-network-step-by-step/faces/example15.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to add and customize a dynamic pop-up menu for a network
faces component
Like the static pop-up menu, the dynamic pop-up menu is declared in a JSP page using the
contextualMenu tag inside the network faces declaration (networkView tag). However,
instead of declaring the menu structure, it declares a menu factory (implementing the
IlvMenuFactory interface) that is invoked whenever the pop-up menu is activated. The
following exampe illustrates how the dynamic pop-up menu is declared:

<head>
<!-- Specify a CSS file -->
<link href="data/style.css" rel="stylesheet" type="text/css"/>

</head>

<!-- Declares a select interactor, which will be attached to the view -->

<jvtf:selectInteractor id="select"
menuModelId="selectInteractor"
invocationContext="IMAGE_SERVLET_CONTEXT" />

<!-- Declare the Network Faces component -->
<jvtf:networkView id="aNetwork"

context="#{contextBean}"
interactorId="select"
backgroundColor="#F5F5F5"

B U I L D I N G W E B A P P L I C A T I O N S 43

http://localhost:8080/jsf-network-step-by-step/faces/example15.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example15.jsp

style="width:740;height:550"
project="data/default_project.xml">

<!-- Declare the contextual menu with given popup menu factory -->
<jvf:contextualMenu factory="#{popupMenuFactory}"

itemStyleClass="menuItem"
itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

</jvtf:networkView>

As shown above, the contextualMenu tag is used within the networkView declaration to add
a pop-up menu to the network faces component. In addition, the following tag attributes are
noteworthy:

The factory tag attribute
This attribute of the contextualMenu tag is bound to a bean implementing the
IlvMenuFactory interface, which defines one single method:

public IlvMenu createMenu(Object graphicComponent, Object selectedObject,
String menuModelId);

When this method is automatically called, the graphicComponent attribute refers to the
underlying graphic view (IlpGraphView, superclass of IlpNetworkView). It allows full access
to the IlpNetworkView API, including selection model, controller, and so on.

The selectedObject attribute refers to the representation object (IlpRepresentationObject)
located immediately below the mouse pointer when the pop-up menu was activated, if any.
Note that this object may or may not be selected. It is independent of the selection model.

The menuModelId corresponds to the value set in the menuModelId tag attribute of the
selectInteractor tag. It allows you to create custom pop-up menus based on the active
interactor.

The following IlvMenuFactory example creates a basic pop-up menu:

public IlvMenu createMenu(Object graphicComponent,
Object selectedObject,
String menuModelId) {

// Create the root menu
IlvMenu root = new IlvMenu("Root");

// Create 3 JavaScript actions
ActionListener jsAction = new

JavaScriptActionListener("aNetwork.zoomIn()");
root.addChild(new IlvMenuItem("Zoom in", jsAction,

"images/zoom.png", true));

jsAction = new JavaScriptActionListener("aNetwork.zoomOut());
root.addChild(new IlvMenuItem("Zoom out", jsAction,

"images/unzoom.png", true));

jsAction = new JavaScriptActionListener("alert('Alert menu item!')");
root.addChild(new IlvMenuItem("Alert!", jsAction,

B U I L D I N G W E B A P P L I C A T I O N S44

"images/alert.png", true));

return root;
}

In this example, IlvMenu is the root menu that contains menu items (IlvMenuItem). Each
menu item has an ActionListener associated with it. In this case, the predefined
JavaScriptActionListener class is used to trigger JavaScript code executed on the client
when the corresponding menu item is activated. Note that aNetwork in aNetwork.zoomOut
() refers to the identifier of the networkView faces component. zoomOut() is the JavaScript
method that performs zooming out on the client side.

The itemStyleClass, itemHighlightedStyleClass and
itemDisabledStyleClass tag attributes
These attributes of the contextualMenu tag are used to customize the look of the pop-up
menu. They declare the CSS classes that contain styling definitions for items, highlighted
items and disabled items, respectively as follows (from the style.css file):

.menuItem {
background: #E5E5E5;
font-family: sans-serif;
font-size: 14px;
font-style: normal;
color: black;

}

.menuItemHighlighted {
background: #FFE5A5;
font-style: normal;
color: black;

}

.menuItemDisabled {
font-style: italic;
color: #A5A5A5;

}

The menuModelId tag attribute
This attribute of the selectInteractor tag is used by the menu factory to identify which
pop-up menu to create based on the interactor that is currently active.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to customize pop-up menus: http://localhost:8080/
jsf-network-step-by-step/faces/example16.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S 45

http://localhost:8080/jsf-network-step-by-step/faces/example16.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example16.jsp

How to trigger server actions from a dynamic pop-up menu of a
network faces component
The dynamic pop-up menu can trigger two types of action:

♦ client actions: JavaScript actions executed on the client

♦ server actions: Java™ actions executed on the server

When building the dynamic menu, the pop-up menu factory (IlvMenuFactory) creates a root
menu (IlvMenu) with menu items (IlvMenuItem) and each menu item has an action listener
(ActionListener) associated with it.

Client actions are defined by the predefined JavaScriptActionListener.

Server actions, like interactions, can be processed either by the JavaServer Faces lifecycle
or directly by the image servlet. This is defined by an invocation context that can be either
one of the following:

♦ JSF_CONTEXT: Processing takes place in the JSF lifecycle (default value)

♦ IMAGE_SERVLET_CONTEXT: Processing is performed by the image servlet, bypassing the
JSF lifecycle.

Server actions are defined by subclassing the FacesViewActionListener abstract class.
The subclass should define the desired invocation context and implement the public void
actionPerformed(EventObject event)method. The event parameter is in fact an instance
of the ServletActionListener class that has the following convenient methods in its API:

♦ getGraphicComponent(): This method returns the underlying view (instance of
IlpNetworkView)

♦ getObject(): This method returns the representation object (IlpRepresentationObject)
located right below the mouse pointer when the pop-up menu was activated)

This allows full access to the IlpNetworkView API, including selection model, controller,
and so on.

The following example shows a basic subclass of FacesViewActionListener:

public class MyActionListener extends FacesViewActionListener {
/**
* Constructor. Sets the invocation context.
*/
public AddAlarmActionListener() {
super(IlvDHTMLConstants.IMAGE_SERVLET_CONTEXT);

}

/**
* Access the network view and the active object.
*
* @param event An instance of ServletActionListener.
*/
public void actionPerformed(EventObject event) throws Exception {
ServletActionEvent saEvt = (ServletActionEvent)event;

B U I L D I N G W E B A P P L I C A T I O N S46

// access the network view
IlpNetworkView view = (IlpNetworkView)saEvt.getGraphicComponent();

// access the active object
IlpObject obj = (IlpObject)saEvt.getObject();

// implement your action with 'view' and 'obj'
}

}

Once the action listener has been defined, it can be used within the pop-up menu factory
(IlvMenuFactory) as follows:

public IlvMenu createMenu(Object graphicComponent, Object selectedObject,
String menuModelId) {

// Create the root menu
IlvMenu root = new IlvMenu("Root");

// Create one server action
ActionListener srvAction = new MyActionListener();
root.addChild(new IlvMenuItem("My action", srvAction,

"images/action.png", true));

return root;
}

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to handle server actions: http://localhost:8080/
jsf-network-step-by-step/faces/example17.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-network-step-by-step/index.htmlwhere <installdir> stands for the
directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S 47

http://localhost:8080/jsf-network-step-by-step/faces/example17.jsp
http://localhost:8080/jsf-network-step-by-step/faces/example17.jsp

Tiling

The Network Faces component provides support for tiling. The tiling support consists of
providing developers with the ability of configuring the Network Faces component to compute,
cache and provide on demand only the areas of its graphical representation that are visible
to the client at one given time, instead of computing and providing the entire area of the
graphical representation that may not be visible to the client.

The tiling support provided by the JViews TGO Network Faces component is based
on the tiling support by the underlying JViews Faces Framework. Any difference in the

Note:

default behavior as defined in the JViews Faces Framework documentation is
documented in this section.

Configuration

Tiled view
See Concepts in Advanced Features of JViews Framework for an introduction to the use of
tiling for building Web applications.

To make tiling available in the view, you must specify a tile size. The tile size is a critical
parameter and must be chosen with care. See Tile Size in Advanced Features of JViews
Framework.

<jvtf:networkView [...] tileSize="256"/>

Server-side caching
When the view is tiled, a server-side caching mechanism for tiles of static layers can be
installed by using the tileManager property. No server-side caching mechanism is installed
by default.

<jvtf:networkView tileManager="#{tgoBean.tileManager}" [...]/>

See The Tile Manager in Advanced Features of JViews Framework for more information.

Client-side caching
In order to enable the client-side caching mechanism, the zoomLevels attribute must be set.
When this attribute is set, the client caches the tiles for the predefined zoom levels. See
Zoom constraints for details on how to set the predefined zoom levels.

B U I L D I N G W E B A P P L I C A T I O N S48

The API

IltFacesGraphServletSupport
The IltFacesGraphServletSupport determines the JViews TGO specific tiling behavior at
the server-side level. By default, it uses as the static layers all the IlvManagerLayer instances
that compose the background of your Network Faces component. For more information on
backgrounds, see Background support.

If a custom strategy is needed for computing the tiled layers, see Developing server-side
tiling which gives more information on the relevant server-side API that is need to customize
the default behavior.

B U I L D I N G W E B A P P L I C A T I O N S 49

Managing the session expiration

The user session expires after a certain period of inactivity, usually defined in the Web
deployment descriptor.

JViews objects are stored in the HTTP user session. For example, after the user session
expiration, queries to update the image will fail.

The beforeSessionExpirationHandler property allows you to add a JavaScript™ handler
that will be invoked when the user session is about to expire.

For example, to keep the session alive as long as the browser page is open, use the following
code:

<jvtf:networkView [...]
beforeSessionExpirationHandler="view.updateImage();" />

This example shows how to query an image and keep the user session alive.

Note the use of view, the implicit object that represents the view JavaScript proxy. The
internal timer is reset only by requests issued by JViews objects. If the application implements
other requests that do not refresh the image, this timer could be inaccurate. To reset the
timer manually, use the following JavaScript code:

viewID.getObject().resetSessionExpirationTimer();

where viewID is the value of the id property of your view component.

The beforeSessionExpirationHandler is called two minutes before the actual
session expiration time.

Note:

B U I L D I N G W E B A P P L I C A T I O N S50

Network view component services

Most of the JViews TGO network services can be used in the network faces context, with no
modifications.

♦ Interacting with the network objects

♦ Positioning

♦ Node layout

♦ Link layout

♦ Label layout

♦ Layers

♦ Background support

♦ Filtering

♦ Accepted and excluded classes

♦ Setting the list of origins

♦ Node factory

♦ Link factory

♦ Expansion strategy

For more information on these services, refer to the Network component services.

The following services show some differences in the network faces component:

♦ Interacting with the network view

♦ Zooming

Interacting with the network view
JViews TGO network faces interactors are declared in the JSP™ file. This is required to
specify how the web browser will react to user input; some interactions being executed
directly on the client side while others are submitted to and executed on the server.

View interactors cannot be purely declared in the CSS file (as is the case for the Swing
network component). Instead, they have to be declared together with the selectInteractor
tag. For details on how to set a specific view interactor as the listener of a selectInteractor,
refer to Configuring the selectInteractor.

Zooming
Although all three zooming modes (physical zoom, logical zoom and mixed zoom) are
supported in the Faces Network component, some thresholds are affected by some of the

B U I L D I N G W E B A P P L I C A T I O N S 51

IBM® ILOG® JViews Network Faces specific settings, like zoomFactor, zoomLevels,
minZoomLevel, or maxZoomLevel.

B U I L D I N G W E B A P P L I C A T I O N S52

The equipment view faces component

Explains how to build and interact with an equipment faces component.

In this section

Declaring an equipment view faces component
Describes how to declare an equipment view faces component.

Configuring an equipment view faces component
Explains how to configure the rendering of an equipment faces component.

Equipment view component services
Presents the services that are fully compatible.

© Copyright IBM Corp. 1987, 2009 53

Declaring an equipment view faces component

The equipment view faces component displays the contents of an IlpEquipment in a
JavaServer™ Page (JSP™) compliant with the JavaServer Faces (JSF) technology. It is
implemented by the class IltFacesEquipmentView and acts as a facade to an IlpEquipment
component. It provides a convenient API for the most common uses of the equipment
component, such as setting or retrieving the associated data source, accessing the underlying
equipment component, or accessing the equipment view directly.

JViews TGO faces components are declared in a tag library descriptor (.tld) file named
jviews-tgo-faces.tld that is included in the jview-tgo-all.jar. The JViews TGO faces
tag library must be declared in the JSP page before any of its components are used.

How to define the JViews TGO faces tag library and prefix in a JSP
page
The declaration is done at the beginning of the JSP file as follows:

<%@ taglib uri="http://www.ilog.com/jviews/tlds/jviews-tgo-faces.tld"
prefix="jvtf" %>

This statement declares the jviews-tgo-faces.tld tag library within a JSP page, and binds
all its components to the jvtf prefix. Once this is done, you can declare the equipment view
component as follows:

How to declare an equipment view faces component

<jvtf:equipmentView id="myEquipment"
context="#{myContext}"

The equipmentView component requires two mandatory tag attributes:

♦ id (component unique identifier): Can be any given string that uniquely identifies this
component within a server session.

♦ context (the IlpContext to be used): Should be a value binding to an instance of
IlpContext declared as a managed bean. A default implementation is available for
convenience (ilog.tgo.faces.service.IltFacesDefaultContext).

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example1.jsp.

You will find more information about the sample web application in <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S54

http://localhost:8080/jsf-equipment-step-by-step/faces/example1.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example1.jsp

Configuring an equipment view faces
component

Explains how to configure the rendering of an equipment faces component.

In this section

Configuring the client and server side of the equipmentView component
Describes the tag attributes defined for the equipmentView component.

Connecting a business data source
Explains the different ways to configure a data source within the equipment faces component.

Combining faces components
Describes how to connect components from the core JViews Faces and JViews Framework
Faces libraries to the network view.

Interacting with the equipment view component
Describes how to declare predefined interactors and connect them to the equipmentView
component.

Zoom constraints
Describes how to specify zoom levels.

Controlling the displayed area
Describes how to control the area displayed on the client.

Adding pop-up menus
Explains how to define pop-up menus by means of the contextualMenu tag.

B U I L D I N G W E B A P P L I C A T I O N S 55

Tiling
Describes the tiling support provided by the Equipment Faces component.

Managing the session expiration
Explains how to manage the user session expiration.

B U I L D I N G W E B A P P L I C A T I O N S56

Configuring the client and server side of the equipmentView
component

To display an equipment view in the client application, you need business data and rendering
information that defines how to display these data. This section explains how to connect to
a source of business data and configure their rendering in the equipment faces component.

The configuration for the rendering is split into two distinct groups:

♦ client-side configuration: HTML configuration stored in the DHTML page and the
JavaScript™ objects

♦ server-side configuration: stored in the equipment faces implementation or in the image
servlet

Client-side configuration relates to the behavior and look of the faces component itself.
Server-side configuration relates to the equipment model and the way the representation
objects are displayed and laid out.

There are many ways to configure the client and server sides of the equipmentView
component. In general, the client-side configuration is passed as tag attributes to the
equipmentView. It is also through tag attributes that you connect auxiliary faces components
to enhance the equipmentView, like the dataSource, overview, selectInteractor, and
others

Server-side configuration can be set through a CSS configuration file or through the
IlpEquipment API, the easiest and preferred way being the CSS configuration. The tag
attribute styleSheets is used to pass a list of Cascading Style Sheets (CSS) files to configure
the equipment adapter (filters, node and link factories, for example), the equipment view
(background and zoom policies, for example) and the equipment objects themselves.

The following table lists all the tag attributes defined for the equipmentView component.

B U I L D I N G W E B A P P L I C A T I O N S 57

Tag Attributes of the equipmentView Faces Component
DescriptionTag Attributes

Defines the unique identifier for the component. Every component should
have a unique identifier. Mandatory.

id

Defines the JViews TGO context to be used by the underlying
IlpEquipment component. Mandatory.

context

Allows the user to bind the component to a backing bean.binding

Defines the width, in pixels, of the view component. This attribute is
inherited from the view faces component.

width

Defines the height, in pixels, of the view component. This attribute is
inherited from the view faces component.

height

Provides CSS customization. This attribute is inherited from the JViews
Framework faces.

style

Defines the style classes for the component. This attribute is inherited
from the JViews Framework faces.

styleClass

Binds the text output of the equipmentView component to a
messageBox component. (A messageBox component is defined by the

messageBox

core JViews faces library and displays text messages in a JSP™ page.)
This attribute is inherited from the JViews Framework faces.

Similar to messageBox but binds the messageBox component by its
unique identifier. This attribute is inherited from the JViews Framework
faces.

messageBoxId

Specifies the default (initial) interactor set to the equipmentView
component. It has no correspondance with a view interactor. It should

interactor

be a faces component (like the selectInteractor component). This
attribute is inherited from the JViews Framework faces.

Similar to interactor but binds to the unique identifier of the interactor.
This attribute is inherited from the JViews Framework faces.

interactorId

Configures the zoom factor applied when zooming in or out.This attribute
is inherited from the JViews Framework faces.

zoomFactor

Configures the pan factor (how much the image is moved). It is mainly
used when the equipmentView component is connected with the

panFactor

B U I L D I N G W E B A P P L I C A T I O N S58

DescriptionTag Attributes

panTool component. This attribute is inherited from the JViews
Framework faces.

Defines the interval between automatic updates. The equipmentView
component will then send an update request to the server on a regular
basis. This attribute is inherited from the JViews Framework faces.

updateInterval

The image encoding format, for example "JPG" or "PNG". This attribute
is inherited from the JViews Framework faces.

imageFormat

Defines the image to be displayed by the equipment faces component
while waiting for the image servlet to generate the response image.This
attribute is inherited from the JViews Framework faces.

waitingImage

Indicates whether an image map should be generated for the equipment
faces component. This attribute is inherited from the JViews Framework

generateImageMap

faces. See Adding an Image Map in the Advanced Features of
JViews Framework documentation.

Indicates whether the image map should be made visible or not. This
attribute is inherited from the JViews Framework faces. See Adding an

imageMapVisible

Image Map in the Advanced Features of JViews Framework
documentation.

Binds to a bean that subclasses the ilog.views.servlet.
IlvImageMapAreaGenerator class and is responsible for generating

imageMapGenerator

the image map. This attribute is inherited from the JViews Framework
faces. See Adding an Image Map in the Advanced Features of
JViews Framework documentation.

The name of a bean class that subclasses the ilog.views.servlet.
IlvImageMapAreaGenerator class and is responsible for generating

imageMapGeneratorClass

the image map. This attribute is inherited from the JViews Framework

B U I L D I N G W E B A P P L I C A T I O N S 59

DescriptionTag Attributes

faces. See Adding an Image Map in the Advanced Features of
JViews Framework documentation.

Specifies the background color to be displayed by the equipment faces
component when there is no background image.This attribute is inherited
from the JViews Framework faces.

backgroundColor

Specifies the JavaScript code to be executed right after a refreshed
image is loaded from the server.This attribute is inherited from the JViews
Framework faces.

onImageLoaded

Similar to onImageLoaded, but this is executed right after a request for
capabilities has been answered by the server. This attribute is inherited
from the JViews Framework faces.

onCapabilitiesLoaded

The error message to be displayed in case of faulty client-server
communication. This attribute is inherited from the JViews Framework
faces.

errorMessage

Overrides the default image servlet used to generate images. This
attribute is inherited from the JViews Framework faces.

servlet

Sets a JViews TGO project to the underlying IlpEquipment component.project

Binds the equipmentView component with a dataSource component.
The data source component wraps an IlpAbstractDataSource
component internally.

dataSource

Similar to dataSource, but binding is done through the data source’s
unique identifier.

dataSourceId

Specifies a custom IlpEquipment which replaces the default
automatically instantiated equipment component.

equipment

Specifies a JViews TGO CSS configuration file for the underlying
IlpEquipment component. It is different from the styles tag attribute

styleSheets

as it provides server-side configuration, which is specific to JViews TGO.
This CSS file may contain component and business data configuration.

Enables or disables the resizing of the equipment faces component.This
attribute is inherited from the JViews Framework faces.

resizable

Defines the width and height of the equipment view component. This
attribute is inherited from the JViews Framework faces.

boundingBox

Defines the data to be displayed, which can be a JViews TGO project,
a binding to an IlpAbstractDataSource instance, or the unique
identifier of a dataSource component.

data

Comma-separated list of fixed zoom levels used by the view.zoomLevels

If the zoom levels are not specified, the zoom is bound only by the
maxZoomLevel property.

The maximum zoom level. This property is used if, and only if, the
zoomLevels property is not used.

maxZoomLevel

B U I L D I N G W E B A P P L I C A T I O N S60

DescriptionTag Attributes

The default value is 10.

The size of a tile. If the tile size is greater than or equal to 0, the view
will be set in tiled mode.

tileSize

The tile size must be carefully chosen for performance reasons.

The tile manager is responsible for retrieving and/or storing image tiles
on the server side.

tileManager

The tile manager is used when the view is tiled, that is, if tileSize is
strictly positive.

B U I L D I N G W E B A P P L I C A T I O N S 61

Connecting a business data source

To be able to display equipment objects, the equipment faces component must be connected
to a data source. This can be done in different ways:

♦ using a JViews TGO project

(See How to set a JViews TGO project to an equipmentView faces component)

♦ using the dataSource faces component

(See How to declare a dataSource faces component for the equipment view and How to
connect the dataSource faces component to the equipmentView faces component)

♦ directly setting an IlpAbstractDataSource

(See How to set a data source Bean to an equipmentView faces component)

The easiest way to provide server-side customization and business data to an equipment
faces component is through the project tag attribute. It allows you to specify a JViews TGO
project that will be set to the underlying IlpEquipment on the server side. For more
information, see Loading a project file . Keep in mind that not all CSS view customizations
are supported by the equipment faces component For details, see Equipment view component
services .

How to set a JViews TGO project to an equipmentView faces
component
The following example shows how to pass a JViews TGO project to the equipmentView
component, and to configure the component dimensions (width and height) using the style
tag attribute:

<jvtf:equipmentView id="myEquipment"
context="#{contextBean}"
style="width:740;height:550"
project="data/myProject.itpr" />

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example2.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

The id tag attribute defines a unique identifier for the equipmentView component. The
context tag attribute is a binding to a bean defined in the faces_config.xml file. The style
tag attribute defines two CSS properties (width and height) for the dimensions, in pixels,
of the equipment component. The project tag attribute is a relative path to a JViews TGO
project within the web application. This file should be accessible by the web application.

The following example shows how to declare the context bean in the faces_config.xml
file:

B U I L D I N G W E B A P P L I C A T I O N S62

http://localhost:8080/jsf-equipment-step-by-step/faces/example2.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example2.jsp

<managed-bean>
<managed-bean-name>contextBean</managed-bean-name>
<managed-bean-class>
ilog.tgo.faces.service.IltFacesDefaultContext
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

The context should implement the IlpContext interface and must use the synchronization
strategy IlSynchronizeOnLockStrategy in order to address the particular threading issues
of a web server.

How to declare a dataSource faces component for the equipment
view
Another way to connect business data to the equipment view is through the dataSource
faces component. This component represents a wrapper for an IlpAbstractDataSource
object that can be connected to an equipment component. Many different data source
components can be declared in a given JSP™ page, but only one can be connected to the
equipment view at a time. It is possible to switch data sources dynamically.

The following example shows how to declare a data source in a JSP page:

<jvtf:dataSource id="myDataSource" value="#{dataSourceBean}" />

The id tag attribute defines a unique identifier for the data source component. The value
tag attribute gets a value binding to a bean previously declared in the faces_config.xml
file that extends IlpAbstractDataSource.

How to connect the dataSource faces component to the
equipmentView faces component
Once the data source has been declared, you can connect it to the equipment view as follows:

<jvtf:equipmentView id="myEquipment"
context="#{contextBean}"
style="width:740;height:550"
dataSourceId="myDataSource" />

The dataSourceId tag attribute gets the unique identifier of the data source component
that will connect it to the equipment view.

The following example shows how to declare the dataSource bean in the faces_config.xml
file:

<managed-bean>
<managed-bean-name>dataSourceBean</managed-bean-name>
<managed-bean-class>ilog.cpl.datasource.IlpDefaultDataSource</managed-bean

-class>

B U I L D I N G W E B A P P L I C A T I O N S 63

<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>context</property-name>
<property-class>ilog.cpl.service.IlpContext</property-class>
<value>#{contextBean}</value>

</managed-property>
<managed-property>
<property-name>fileName</property-name>
<property-class>java.lang.String</property-class>
<value>data/myEquipment.xml</value>

</managed-property>
</managed-bean>

The dataSource bean is declared and two properties are set: context and fileName. The
context property is set with a value binding to a context bean. It is mandatory, so that the
JViews TGO context is consistent across components. The fileName property gets a relative
path to an XML file compatible with the data source and accessible from the web application.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example3.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to set a data source Bean to an equipmentView faces
component
It is also possible to set a data source bean directly to the equipment view component,
without requiring the data source component.

For example:

<jvtf:equipmentView id="myEquipment"
context="#{contextBean}"
style="width:740;height:550"
dataSource="#{dataSourceBean}" />

The dataSource tag attribute gets a value binding to a bean that extends
IlpAbstractDataSource. It will connect the equipment component to this data source bean.

How to use the data tag attribute of the equipmentView faces
component
The equipment view faces component has a multipurpose data tag attribute, which can be
used to connect business data sources using:

♦ a JViews TGO XML project file

♦ the unique identifier of a data source faces component

♦ the binding to an instance of IlpAbstractDataSource

B U I L D I N G W E B A P P L I C A T I O N S64

http://localhost:8080/jsf-equipment-step-by-step/faces/example3.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example3.jsp

You must not use any combination of the following tag attributes, which allow you to
connect the equipment view to any form of data source:

Note:

♦ data

♦ dataSourceId

♦ dataSource

♦ project

When used with JViews TGO projects, the data tag attribute behaves exactly like the project
attribute, getting the relative path to a JViews TGO project, as in the following example:

<jvtf:equipmentView id="myEquipment"
context="#{myContext}"
style="width:740;height:550"
data="data/myProject.itpr" />

Here myProject.itpr is the project file within the web application.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example4.jsp.

When used with the unique identifier of a data source faces component, the data tag attribute
behaves exactly like the dataSourceId attribute, getting the unique identifier of a data
source component, as in the following example:

<jvtf:equipmentView id="myEquipment"
context="#{myContext}"
style="width:740;height:550"
data="myDataSource" />

Here myDataSource uniquely identifies a data source faces component in the current session.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example5.jsp .

When used with an IlpAbstractDataSource instance, the data tag attribute behaves exactly
like the dataSource attribute, getting a value binding to a bean that extends
IlpAbstractDataSource, as in the following example:

<jvtf:equipmentView id="myEquipment"
context="#{myContext}"
style="width:740;height:550"
data="#{dataSourceBean}" />

B U I L D I N G W E B A P P L I C A T I O N S 65

http://localhost:8080/jsf-equipment-step-by-step/faces/example4.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example4.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example5.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example5.jsp

Here #{dataSourceBean} is a value binding to the corresponding bean declared in the
faces_config.xml file.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example6.jsp.

How to use the binding tag attribute of the equipmentView faces
component
Faces components allow you to set a backing bean to replace the default component
implementation. So, for the equipment view faces component, the binding attribute can be
set with a value binding to a backing bean that extends IltFacesDHTMLEquipmentView (the
DHTML implementation of the equipment view faces component). The following example
illustrates this:

<jvtf:equipmentView id="myEquipment"
context="#{contextBean}"
style="width:740;height:550"
binding="#{myJSFEquipment}" />

Here #{myJSFEquipment} is a value binding to a backing bean declared in the faces_config.
xml like this:

<managed-bean>
<description>A bean extending IltFacesDHTMLEquipmentView</description>
<managed-bean-name>myJSFEquipment</managed-bean-name>
<managed-bean-class>example.MyEquipmentView</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

The backing bean provides more flexibility to the user by giving access to the component
API and its instantiation.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example7.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to use the equipment tag attribute of the equipmentView faces
component
It is possible to replace the automatically created IlpEquipment object with a customized
equipment object. This is done with the equipment attribute of the equipment view faces
component, as follows:

<jvtf:equipmentView id="myEquipment"

B U I L D I N G W E B A P P L I C A T I O N S66

http://localhost:8080/jsf-equipment-step-by-step/faces/example6.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example6.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example7.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example7.jsp

context="#{contextBean}"
width="740"
height="550"
equipment="#{myIlpEquipment.equipment}" />

Here the tag attributes width and height are used to specify the size of the equipment view.
Other examples produce the same results using the style tag attribute with the CSS
properties "width" and "height".

In this example, the equipment attribute is set with a method that binds to a bean defined
in the faces_config.xml. The corresponding method (getEquipment in this case) will be
invoked when the JSP page is parsed. It allows the user to have access to the IlpEquipment
API as well as to its instantiation. Using the equipment attribute and keeping the
IlpEquipment in a bean is a good way to provide quick access to the underlying IlpEquipment
API within the web application. Note that the context is not passed to the myIlpEquipment.
getEquipmentmethod, which means that this bean must be configured with the appropriate
context in the faces_config.xml file. For example:

<managed-bean>
<description>A bean with read access to the 'equipment' property
</description>
<managed-bean-name>myIlpEquipment</managed-bean-name>
<managed-bean-class>example.MyEquipment</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>context</property-name>
<property-class>ilog.cpl.service.IlpContext</property-class>
<value>#{contextBean}</value>

</managed-property>
</managed-bean>

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example8.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S 67

http://localhost:8080/jsf-equipment-step-by-step/faces/example8.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example8.jsp

Combining faces components

You can connect components from the core JViews Faces and JViews Framework Faces
libraries to the equipment view to combine features and improve user interaction. This is
the case with the overview, zoomTool, panTool and imageButton components.

How to set up an overview for the equipment view
The overview component must be manually set up within the HTML page. Its dimensions
and location are important criteria to be considered when designing the HTML page. The
following example shows how to declare an overview and connect it to the equipment view:

<h:panelGrid columns="2">
<jvtf:equipmentView id="myEquipment"

context="#{contextBean}"
style="width:740;height:550"
project="data/myProject.itpr" />

<jvf:overview id="anOverview"
viewId="myEquipment"
style="width:123;height:91" />

</h:panelGrid>

In the example, an equipment view component is declared with the unique identifier
"myEquipment" within a two-column panelGrid. Then, an overview component is declared
so that it is layered after the equipment component. The viewId tag attribute is used to
connect the equipment view to the overview, through the unique identifier of the main view
component. Note that the dimensions of both components are defined in a similar way by
the tag attribute style.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example9.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to connect a zoom tool and a pan tool to an equipment view
See section The JViews Framework Faces Component Set in the Advanced Features of JViews
Framework part of the JViews Diagrammer documentation for details about the zoomTool
and panTool.

The following example shows how to attach zoomTool and panTool components to an
equipment view:

<h:panelGrid columns="2">
<jvtf:equipmentView id="myEquipment"

context="#{contextBean}"
style="width:740;height:550"

B U I L D I N G W E B A P P L I C A T I O N S68

http://localhost:8080/jsf-equipment-step-by-step/faces/example9.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example9.jsp

project="data/myProject.itpr" />
<h:panelGrid columns="1">
<jvf:panTool id="aPanTool"

viewId="anEquipment"
style="width:123;height:123" />

<jvf:zoomTool id="aZoomTool"
viewId="anEquipment"
style="width:123;height:322" />

</h:panelGrid>
</h:panelGrid>

In this example, an equipment view component is declared with the unique identifier
"myEquipment" within a two-column panelGrid. Then, a new one-column panelGrid is
declared to accommodate the panTool and zoomTool components. The viewId tag attribute
is used to connect the equipment view to the other components. Note that the style tag
attribute is used to set the dimensions for all the declared components.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example10.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to add image buttons and set client-side actions for the
equipment view component
Although zoomTool and panTool components provide basic user interaction, you can also
set client actions to image buttons to achieve similar results. The advantage is that image
buttons are more customizable, as the user can define the action to be set. The following
example shows how to declare image buttons and associate them with client-side actions.

<!-- Create a 2 columns grid -->
<h:panelGrid columns="2">

<!-- Declare a button for zooming in -->
<jv:imageButton onclick="myEquipment.zoomIn(true)"

image="images/zoom.gif"
rolloverImage="images/zoomh.gif"
selectedImage="images/zoomd.gif"
title="Zoom In"
message="Zoom In" />

<!-- Declare a button for zooming out -->
<jv:imageButton onclick="myEquipment.zoomOut(true)"

image="images/unzoom.gif"
rolloverImage="images/unzoomh.gif"
selectedImage="images/unzoomd.gif"
title="Zoom Out"
message="Zoom Out" />

</h:panelGrid>
<jvtf:equipmentView id="myEquipment"

B U I L D I N G W E B A P P L I C A T I O N S 69

http://localhost:8080/jsf-equipment-step-by-step/faces/example10.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example10.jsp

context="#{contextBean}"
style="width:740;height:550"
project="data/myProject.itpr" />

This example declares two image buttons:

♦ one for zooming in

♦ one for zooming out

Each button declaration defines the following attributes:

♦ onclick: The JavaScript™ action to be triggered when the button is pressed.

♦ image: The main button image.

♦ rolloverImage: The image to be displayed when the mouse pointer rolls over the button.

♦ selectedImage: The image to be displayed when the button is pressed.

♦ title: The tooltip message displayed when the mouse pointer stays over the button.

♦ message: The message displayed in the messageBox component when the mouse pointer
stays over the button.

The onclick tag attribute is the most important as it defines the action associated with the
button. Note that it uses the JavaScript API of the equipmentView component to perform
the desired action:

♦ onclick="myEquipment.zoomIn(true)": This uses the zoomIn JavaScript call to zoom in
the equipment view component.

♦ onclick="myEquipment.zoomOut(true)": This uses the zoomOut JavaScript call to zoom
out the equipment view component.

The onclick attribute can be set with any valid JavaScript code, which will be executed
when the button is pressed. The other tag attributes define the look and feel of the button,
with corresponding images and tooltip text.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example11.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S70

http://localhost:8080/jsf-equipment-step-by-step/faces/example11.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example11.jsp

Interacting with the equipment view component

JViews Framework Faces and core JViews Faces libraries declare predefined interactors
that can be connected to the equipmentView component to add extra user interaction.
Interactors are faces components that execute client- or server-side actions. Most of them
can be extended and configured to suit the user needs.

How to declare an interactor and connect it to the equipment view
component
The following example shows how to declare a predefined interactor (the pan interactor) in
the JSP™ page and connect it to the equipmentView component so that it is always available.

<!-- Declare the predefined 'pan' interactor -->
<jvf:panInteractor id="pan" />

<jvtf:equipmentView id="myEquipment"
context="#{contextBean}"
style="width:740;height:550"
interactorId="pan"
project="data/myProject.itpr" />

In this example, the predefined panInteractor is declared. A unique identifier is associated
with it ("pan"). Then, the interactorId tag attribute of the equipmentView component
specifies the interactor to be connected to the equipment view.

How to associate interactors with image buttons in the equipment
view component
Usually many interactors are made available in a web application. The following example
shows how to declare multiple predefined interactors and how to use image buttons to make
them active. Note that only one interactor can be set in the equipment view component at
a time. Whenever a new interactor is set, the previous one is removed.

<!-- Declare the predefined 'select' interactor -->
<jvtf:selectInteractor id="select" />

<!-- Declare the predefined 'pan' interactor -->
<jvf:panInteractor id="pan" />

<!-- Create a 4 columns grid -->
<h:panelGrid columns="4">

<!-- Declare a button for selection -->
<jv:imageButton onclick="myEquipment.setInteractor(select)"

buttonGroupId="interactors"
image="images/arrow.gif"
rolloverImage="images/arrowh.gif"

B U I L D I N G W E B A P P L I C A T I O N S 71

selectedImage="images/arrowd.gif"
title="Select Interactor"
message="Select Interactor" />

<!-- Declare a button for panning -->
<jv:imageButton onclick="myEquipment.setInteractor(pan)"

buttonGroupId="interactors"
selected="true"
image="images/pan.gif"
rolloverImage="images/panh.gif"
selectedImage="images/pand.gif"
title="Pan Interactor"
message="Pan Interactor" />

<!-- Declare a button for zooming in -->
<jv:imageButton onclick="myEquipment.zoomIn(true)"

image="images/zoom.gif"
rolloverImage="images/zoomh.gif"
selectedImage="images/zoomd.gif"
title="Zoom In"
message="Zoom In" />

<!-- Declare a button for zooming out -->
<jv:imageButton onclick="myEquipment.zoomOut(true)"

image="images/unzoom.gif"
rolloverImage="images/unzoomh.gif"
selectedImage="images/unzoomd.gif"
title="Zoom Out"
message="Zoom Out" />

</h:panelGrid>
<jvtf:equipmentView id="myEquipment"

context="#{contextBean}"
style="width:740;height:550"
interactorId="pan"
project="data/myProject.itpr" />

This example defines two predefined interactors:

♦ selectInteractor: This is a server-side interactor that processes object selection by
default. (See The selectInteractor faces component for details.)

♦ panInteractor: This is a client-side interactor that enables panning of the image displayed
by the equipment view component.

Two buttons are declared to connect the interactor to the equipment view component. The
buttonGroupId tag attribute is used to group image buttons so that only one button of the
group is selected at a time. The selected attribute is used to specify which button should
be made selected when the page is loaded. This should correspond to the interactor initially
connected to the equipment view with the interactorId tag attribute. In this case, the pan
button is selected (select="true") and the pan interactor is connected to the equipment
view (interactorId="pan").

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example13.jsp.

B U I L D I N G W E B A P P L I C A T I O N S72

http://localhost:8080/jsf-equipment-step-by-step/faces/example13.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example13.jsp

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

The selectInteractor faces component
The selectInteractor faces component has been defined as an interactor that maps
client-side mouse clicks to server-side events dispatched to the underlying view interactor.
It extends the JavaServer™ Faces UICommand component, which means that it will fire
ActionEvents to registered ActionListeners.

This component allows you to create customized IlvManagerViewInteractor instances that
will process themouse actions on the client side. By default, it uses the IltSelectInteractor,
which allows selecting, dragging and expanding graphic objects.

This interactor has the following limitations in terms of handling events:

♦ Only BUTTON1 and BUTTON3 mouse buttons are supported (left and middle).

♦ Pop-up menus are supported in a different way from the Swing equipment component.
See Adding pop-up menus.

♦ Double-click events are not supported.

♦ There is no visual feedback when dragging an object (the graphic representation of the
object does not follow the mouse pointer).

♦ No keyboard actions are supported except the following modifiers:

● Shift key

● Control key

● Alt key

● Meta key

Client-side interactions are converted into the following mouse events, dispatched to the
appropriate interactor:

♦ MOUSE_PRESSED

♦ MOUSE_DRAGGED

♦ MOUSE_RELEASED

How to declare the selectinteractor faces component for the
equipment view
The selectInteractor is declared like any other faces component defined in the JViews
TGO faces tag library:

<jvtf:selectInteractor id="select" />

B U I L D I N G W E B A P P L I C A T I O N S 73

Configuring the selectInteractor
The selectInteractor faces component is configured through the following tag attributes:

Tag Attributes of the selectInteractor Faces Component
DescriptionTag Attributes

Defines the mouse cursor to be used when the interactor is active; it should be
one of the cursors supported by the web browser.

cursor

Defines the width of the interaction area drawn by the interactor.lineWidth

Defines the color of the interaction area drawn by the interactor.lineColor

Defines the name of the action event triggered by this interactor; it is used to
identify events coming from this interactor.

actionName

Defines whether the request will be submitted by a mouse click or not; this tag
is used to control when the actions are submitted.

autoSubmit

When this tag attribute is set to false, the selectInteractor will not submit
any request after the user interaction, but wait until some other component does
it.

Defines an action listener that is called when this interactor is used.actionListener

Action listeners should implement the ActionListener interface (from JSF
library), but JViews TGO faces provide the
IltFacesGraphInteractorActionListener abstract implementation that
decodes the user interactions into events dispatched to a given view interactor.
Subclasses should implement the method getViewInteractor in order to
return the appropriate view interactor to process the events. The default
implementation (IltFacesSelectInteractorListener) dispatches all
events to the IltSelectInteractor view interactor.

Therefore, the actionListener tag attribute may be used to register any
ActionListener that will be notified whenever a user interaction has been
performed, or a subclass of IltFacesGraphInteractorActionListener
can be registered to decode the user interaction into events dispatched to view
interactions (IlpViewInteractor).

Defines whether the server-side processing is performed in the JSF lifecycle
or directly by the image servlet. The possible values are:

invocationContext

♦ JSF_CONTEXT: Processing is done in the JSF lifecycle (the default value)

♦ IMAGE_SERVLET_CONTEXT: Processing is done by the image servlet,
bypassing the JSF lifecycle

The selectInteractor submits requests to be processed on the server side.
By default, the request is addressed to the JavaServer™ Faces controller servlet
which processes all requests according to the well-defined JSF lifecycle. This
means that all component dependencies will be verified, any registered listener
will be notified.The result is a full page refresh with an update of all components
involved. If your interaction triggers updates of components other than the
equipmentView, then the JSF_CONTEXT should be used.

B U I L D I N G W E B A P P L I C A T I O N S74

DescriptionTag Attributes

If, on the other hand, your requests are supposed to only update the image
displayed by the equipmentView component, then you may want to benefit
from the faster IMAGE_SERVLET_CONTEXT. In this case, the interactor requests
will be addressed to the image servlet responsible for generating the image
displayed by the equipmentView component. Note that the image servlet has
no access to any faces component other than equipmentView, which means
that your request cannot rely on other faces components, and that any registered
listener for changes on the selectInteractor and equipmentView will not
be updated.

There is one exception to this rule. As the overview faces component is largely
used with the equipmentView faces component, and as its displayed image
is also generated by the image servlet, you can force the overview to be
refreshed whenever the main view (equipmentView) is updated, at the cost
of an extra client-server-client roundtrip. To do so, you must set the
autoRefresh tag attribute of the overview faces component to true.

Defines a binding expression to a backing bean.binding

The cursor, lineWidth and lineColor tag attributes control the look of the interactor when
it is activated, they do not affect its functionality.

If you have started the bundled Tomcat web server, the following links will take you to the
small samples illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example12.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html.

where <installdir> stands for the directory where IBM® ILOG® JViews TGO is installed.

Configuring action listeners for the select interactor component
Action listeners are responsible for processing the interactions performed with the select
interactor component. Their default behavior is to convert the interactions into server events
dispatched to the IltSelectInteractor. It is possible to override this behavior by adding
action listeners to the component.

Unlike in the regular equipment Swing component, it is not possible to declare view
interactors through a CSS file. Instead, in the equipment faces component, the view
interactors are declared within customized action listeners added to the selectInteractor
faces component.

As the selectInteractor extends the JavaServer™ Faces UICommand, it allows one or more
action listeners (implementing javax.faces.event.ActionListener) to be registered to
receive events (javax.faces.event.ActionEvent) whenever a user interaction is performed.
For the ActionEvent API there are the following methods:

♦ getComponent() or getSource(): Return a reference to the interactor faces component
that is currently active (for example, IltFacesGraphInteractor).

A predefined abstract implementation of the ActionListener interface named
IltFacesGraphInteractorActionListener is provided to translate client-side interactions
into server-side events that are dispatched to a given view interactor. When notified, this

B U I L D I N G W E B A P P L I C A T I O N S 75

http://localhost:8080/jsf-equipment-step-by-step/faces/example12.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example12.jsp

class translates user interactions into mouse events that are automatically dispatched to
the IlpViewInteractor returned by the abstract method getViewInteractor(actionName).

The following example illustrates how to override the default selectInteractor behavior
with a customized one:

<jvtf:selectInteractor id="select"
actionListener="#{MyListenerBean}"
invocationContext="JSF_CONTEXT" />

Here the actionListener tag attribute gets a binding to a bean implementing the javax.
faces.event.ActionListener interface. Note that actionListenerwill override the default
behavior of the selectInteractor. It is possible to add more than one action listener,
combining customized action listeners with the default behavior as shown in the next example:

<jvtf:selectInteractor id="select"
invocationContext="JSF_CONTEXT">

<f:actionListener
type="ilog.tgo.faces.graph.dhtml.event.IltFacesSelectInteractorListener"/

>
<f:actionListener type="demo.MyInteractionListener"/>

</jvtf:selectInteractor>

Here IltFacesSelectInteractorListener is the action listener (extends
IltFacesGraphInteractorActionListener) that implements the default behavior of the
selectInteractor faces component, and MyInteractionListener is a customized
implementation of the javax.faces.event.ActionListener interface. The actionListener
tag is used to add several action listeners to the selectInteractor, which are invoked in
the order in which they have been declared. Note that action listeners may conflict with
each other, especially multiple implementations of
IltFacesGraphInteractorActionListener, as the first one invokedmay change the business
model and invalidate the next action listener.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to customize action listeners: http://localhost:8080/
jsf-equipment-step-by-step/faces/example14.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

The clientSelectInteractor faces component
The clientSelectInteractor faces component is an interactor designed to minimize the
number of image requests and image updates between the graph view on the client and the
image servlet on the server by dynamically rendering and managing the selection borders
in the client side.

Instead of requesting a new graph view image every time the user selects an object, the
clientSelectInteractor dynamically renders an HTML rectangular selection around the
object. The server is notified so that the selection model is kept synchronized with the user
interactions. A new graph view image is requested only when the user drags objects or
interacts with specific decorations (such as information icons, and expansion icons).

B U I L D I N G W E B A P P L I C A T I O N S76

http://localhost:8080/jsf-equipment-step-by-step/faces/example14.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example14.jsp

The performance and responsiveness is greatly improved as lesser images are generated
and dispatched by the server. However, the selection graphic feedback is impacted, as the
client is limited to only displaying a rectangular border around the selected object.

The interactor can be configured to work in imagemode. In this mode, it will ask the server
to process the selection and get a new image on every user interaction. The dynamic selection
border will only be displayed while objects are being dragged, as when objects are in their
resting position the new image sent by the server already represents the selection.

It is possible to customize the interaction with object decorations, controlling when a click
on a particular object decoration should trigger a new image request or not.

Unlike the selectInteractor, the clientSelectInteractor always
communicates with the image servlet directly. Therefore, it does not follow the JSF

Note:

lifecycle, which means that only the view faces component and a possibly attached
overview are updated and not all the other components in the page.

How to declare the clientSelectInteractor faces component for the
equipment view
The clientSelectInteractor is declared like any other faces component defined in the
JViews TGO faces library:

<jvtf:clientSelectInteractor is="clientSelect" />

Configuring the clientSelectInteractor
The clientSelectInteractor faces component is configured through the following tag
attributes:

B U I L D I N G W E B A P P L I C A T I O N S 77

Tag Attributes of the clientSelectInteractor Faces Component
DescriptionTag Attributes

Defines a binding expression to a backing bean, allowing the user
to customize the clientSelectInteractor faces component.

binding

Defines the message displayed by the view when the interactor is
set.

message

Defines the mouse cursor to be used when the interactor is active.
It should be one of the cursors supported by the web browser.

cursor

The identifier passed to dynamically generated popup menus.menuModeId

Specifies whether this interactor allows mouse dragging.moveAllowed

Defines a method binding to process actions on the object or on
specific decorations attached to it.

objectActionMethodBinding

Specifies a JavaScript handler to be called whenever the selection
changes. Deprecated in JViews TGO 8.0. See The selectionManager
faces component for an alternative.

onSelectionChanged

Sets the interactor to image mode. A new image will be requested
every time the user interacts with the view. Deprecated in JViews

imageMode

TGO 8.0. See The selectionManager faces component for an
alternative.

The width of the selection border dynamically rendered by the
interactor. Deprecated in JViews TGO 8.0. See The selectionManager
faces component for an alternative.

lineWidth

The color of the selection border dynamically rendered by the
interactor. Deprecated in JViews TGO 8.0. See The selectionManager
faces component for an alternative.

lineColor

Forces the request of additional information when the interactor is
in image mode. Used in conjunction with the

forceUpdateProperties

infoProviderMethodBinding. Deprecated in JViews TGO 8.0.
See The selectionManager faces component for an alternative.

Defines the information provider method binding to return additional
information about the selected object. Deprecated in JViews TGO
8.0. See The selectionManager faces component for an alternative.

infoProviderMethodBinding

If you have started the bundled Tomcat web server, the following link will take you to a
small sample illustrating this: http://localhost:8080/jsf-equipment-step-by-step/faces/
example19.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

Configuring an object action for the clientSelectInteractor
By default, the clientSelectInteractor supports interactions with the following object
decorations:

♦ The information icon

B U I L D I N G W E B A P P L I C A T I O N S78

http://localhost:8080/jsf-equipment-step-by-step/faces/example19.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example19.jsp

♦ The system icon

♦ The expand and collapse icons

If the user clicks on any of these decorations, the interactor triggers a default object action
instead of selecting the object. These actions change the look of the objects, which means
that a new image is generated.

It is possible to override or even extend this behavior through the
objectActionMethodBinding tag attribute, as follows:

<jvtf:clientSelectInteractor id="clientSelect"

objectActionMethodBinding="#{interactorBean.objectAction}" />

Here, the objectActionMethodBinding tag attribute is bound to the objectActionmethod
declared in the interactorBean. Themethod bindingmust conform to the following signature:

boolean methodName(IlpGraphView, int, int)

The IlpGraphView is a reference to the graph view containing all the objects. The two integer
parameters are the x and y components of the view position where the user has clicked.
Returning true indicates that a new image has to be generated, while false indicates that
nothing has been processed and the clicked object will be selected.

In the example above, the objectAction method will override the default object action
behavior (which is to react on expand, collapse, information and system icons). It is possible
to extend this default behavior by overriding the method processObjectAction in class
IltFacesDefaultObjectAction.

The selectionManager faces component
You can customize the way the selection is performed and displayed by using a selection
manager.

This selection manager is defined in a facet on the equipmentView tag, as follows:

<jvtf:equipmentView id="tgoViewId" interactorId="select">
<f:facet name="selectionManager">

<jvtf:selectionManager imageMode="false" [...] />
</f:facet>

</jvtf: equipmentView >

The selection manager has two display modes:

♦ image (default)

The image is refreshed after each selection. A new image is requested to the server at
each selection which allows the client to get nice selection graphics.

♦ regular

B U I L D I N G W E B A P P L I C A T I O N S 79

Rectangles representing the selection are displayed on top of the view. The roundtrip to
the server is minimal: the generation of a new image is not required and the response
time is faster but the selection feedback is limited to a selection rectangle.

Image Mode versus Regular ModeTip:

Using one mode rather than the other depends on your criteria: performance or graphic
feedback. Image mode provides a better graphic feedback but is slower because of the
image generation and the need for an extra request to get additional information about
the selection on the client. Regular mode offers basic graphic feedback but better
performance.

Other parameters can be configured on the selectionManager, like for example the line
width or the color of the selection rectangle used in regular selection mode:

<jvtf:selectionManager lineWidth="2" lineColor="red"/>

The selection manager currently supports integration with the following TGO Faces
interactor: clientSelectInteractor.

Note:

Configuring the selectionManager
The selectionManager faces component is configured through the following tag attributes:

Tag Attributes of the selectionManager Faces Component
DescriptionTag Attributes

A method binding that respects the signature List
methodName(IlpGraphView, IlpRepresentationObject).The returned

infoProviderMethodBinding

value of this method is a list of additional properties associated with
the selected object. A valid item of this list is a String or a list itself.
As of JViews TGO 8.0, the preferred way to transfer object properties
to client is via the propertyAccessor tag of the
selectionManager.

The value binding expression linking this component to a property
in a backing bean. If this attribute is set, the tag does not create the

binding

B U I L D I N G W E B A P P L I C A T I O N S80

DescriptionTag Attributes

component itself but retrieves it from the Bean property.This attribute
must be a value binding.

The color of selection rectangles lines.lineColor

Force to make additional request to query the current selection and
additional properties in image mode to enable client-side selection
listener.

forceUpdateProperties

The ID of this component.id

The image mode. In image mode, the image is refreshed on each
selection. In regular mode, only the selected object(s) bounding box

imageMode

is queried and rectangles are dynamically displayed on top of the
view. Note that the client-side listeners on selection and additional
information on selected objects are available in image mode if and
only if the forceUpdateProperties property is set to true. In
regular mode no special configuration is needed. By default the
manager is in image mode.

The width of selection rectangle lines.lineWidth

A JavaScript handler called when the selection has changed. The
handler can use the predefined variable 'selection' which is the

onSelectionChanged

list of current selected items. To use this handler the
selectionManager must be in regular mode or the
forceUpdateProperties must be set if in image mode. Refer to
the user's documentation for further information.

The reference to the value binding expression to an
IltFacesPropertyAccessor instance that will be used to access
model properties of the selected objects.

propertyAccessor

true to display filled selection rectangles.The fill color is the line color
with a transparency of 50%.

fillOn

Exposing selection details
You can expose details on the current selection by taking advantage of the property accessor
of the selection manager.

The IltFacesPropertyAccessor contains several methods that can be overridden to configure
or specialize the way it gives access to model properties. In particular, you can filter the
properties that are exposed to clients by overriding the following method:

List getPropertyNames(IlpGraphicView view, IlpRepresentationObject object)

The following code illustrates how to provide your property accessor:

<jvtf:selectionManager propertyAccessor="{#serverBean.propertyAccessor}" [...
]
/>

B U I L D I N G W E B A P P L I C A T I O N S 81

The following code illustrates how to implement your custom requirements in a new property
accessor:

public class ServerBean {

private IltFacesPropertyAccessor accessor = new MyPropertyAccessor();

public IltFacesPropertyAccessor getPropertyAccessor() {
return accessor;

}

class MyPropertyAccessor extends IltFacesPropertyAccessor {

protected List getPropertyNames(IlpGraphicView view, IlpRepresentationObject
object) {

[…]
}

}
}

Then you can register a JavaScript listener that will be called when the selection changes:

<jvtf:selectionManager onSelectionChanged="displayProperties(selection)"/>

The JavaScript function can be as follows:

// Alert the ID and bounds of all the selected objects
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++)
alert(selection[i].getID()+"+selection[i].getBounds());

}

In addition to the ID and bounds properties of the selected object, you can also expose the
properties of the selected object in the TGO model as follows:

// Alert all the properties of all the selected objects
function displayProperties(selection) {
for (var i = 0; i < selection.length; i++) {
var propertiesNames = selection[i].getObjectPropertyNames();
for (var j = 0; j < propertiesNames.length; j++)

alert(selection[i].getObjectProperty(propertiesNames[j]));
}

}

To obtain selected object properties information on the client side while you are running
the selection in image mode, you need to force an additional request by setting the

Note:

property forceUpdateProperties to true. In regular mode this feature is available
without any overhead.

B U I L D I N G W E B A P P L I C A T I O N S82

If you have started the bundled Tomcat Web server, the following link will take you to the
small sample illustrating how to use the selection manager with property accessors: http://
localhost:8080/jsf-equipment-step-by-step/faces/example20.jsp.

You can find more information about the sample Web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

Managing object selection
The selectionManager also allows for changing the selection state of objects
programmatically on the client side by means of JavaScript.

This can be accomplished by using the following API:

♦ selectById(id, extend)

♦ selectAll()

♦ deselectAll()

In all cases, the object must be selectable in order to get selected.Note:

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to use the selection manager API: http://localhost:8080/
jsf-equipment-step-by-step/faces/example22.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.html where <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

Selecting and deselecting an object
The selectById function allows you to select or deselect an object by providing the object's
identifier:

equipmentView.getSelectionManager().selectById("tgoObjectId");

This method call will select the object with the identifier tgoObjectId and deselect the
object currently selected.

You can extend/reduce the current selection by selecting/deselecting a node as follows:

equipmentView.getSelectionManager().selectById("tgoObjectId", true);

This method call keeps the existing selection and selects the object with the identifier
tgoObjectId if it is not already selected, or deselects it if it is already selected.

Selecting all objects
The selectAll function allows you to select all objects:

equipmentView.getSelectionManager().selectAll();

B U I L D I N G W E B A P P L I C A T I O N S 83

http://localhost:8080/jsf-equipment-step-by-step/faces/example20.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example20.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example22.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example22.jsp

This method call selects all visible objects.

Deselecting all objects
The deselectAll function allows you to deselect all objects:

equipmentView.getSelectionManager().deselectAll();

This method call clears the selection of all visible objects.

B U I L D I N G W E B A P P L I C A T I O N S84

Zoom constraints

When the zoom level is equal to 1, the manager content is adjusted to the bounds of the JSF
view so as to be displayed entirely. Consequently, a zoom level of n means that the content
is scaled by a factor of n. For example, a zoom factor of 2 means that the manager content
is displayed double its size.

By default, the view is constrained by the manager content bounds. The direct consequences
are that:

♦ Pan actions or zoom interactions cannot go out of the manager content bounds.

♦ The view zoom level cannot be lower than 1.

This constraint can be removed by setting the constrainedOnContents property to false,
as follows:

<jvtf:equipmentView constrainedOnContents="false" [...] />

The zoom level applied to the view by using the zoom interactor of JavaScript™ zoom actions
can be free or constrained to specified zoom levels. In the free zoom mode, the only
constraints are the minimum and maximum zoom levels. The default value of the minimum
zoom level is set to 1 and the default value of the maximum zoom level is set to 10. These
constraints can be customized with the minZoomLevel and the maxZoomLevel properties
respectively.

<jvtf:equipmentView minZoomLevel="2" maxZoomLevel="20" [...] />

By default, the minimum zoom level cannot be lower than 1.Note:

To specify fixed zoom levels, use the zoomLevels property, as follows:

<jvtf:equipmentView zoomLevels="1.0, 2.0, 5.0, 10.0" [...] />

When this property is set:

♦ The minZoomLevel and maxZoomLevel properties are ignored.

♦ The minZoomLevel becomes the first zoom level and the maxZoomLevel the last zoom level
in the list.

♦ The zoom interactor will fit to the nearest zoom level.

♦ The built-in zoom actions on the JavaScript view proxy use these fixed zoom levels.

Fixed zoom levels must be used in order for a tiled view to be cached on the client-side.

For more details on setting up zooming in the equipment view, see How to associate
interactors with image buttons in the equipment view component.

B U I L D I N G W E B A P P L I C A T I O N S 85

Controlling the displayed area

The Equipment Faces component allows developers to specify the area that will be displayed
on the client. For example, this enables developers to set the initial visible area or possibly
to change at runtime the clipping rectangle so that it centers or focuses on a given equipment
element.

This can be done by means of the boundingBox property as follows:

<jvtf:equipmentView [...] boundingBox="0,0,100,200"/>

The value provided corresponds to the x, y, height and width of the area of interest in
manager coordinates separated by commas.

Programmatically, this property can be used during a JSF action to reset or modify the visible
area by providing an instance of IlvRect as illustrated below.

public class ActionProvider {
[...]

public void changeAreaDisplayed() {
IltFacesEquipmentView facesEquipmentView = …;
facesEquipmentView.setBoundingBox(new IlvRect(0,0,100,100));

}
}

B U I L D I N G W E B A P P L I C A T I O N S86

Adding pop-up menus

Unlike the equipment Swing component, the equipment faces component does not rely on
the IlpPopupMenuFactory interface to declare contextual menus. Instead, it is based on the
contextualMenu tag defined in the jviews-framework-faces.tld tag library descriptor.
This means that pop-up menus in equipment faces cannot be declared in CSS files.

The contextualMenu tag allows you to define two distinct types of pop-up menu:

♦ Static pop-up menus: The menu structure is hard coded in the JSP™ file, it applies to all
objects and cannot be changed dynamically.

♦ Dynamic pop-up menus: The menu structure is defined by the IlvMenuFactory interface
and can be created dynamically where the pop-up was activated

In JViews TGO Faces, the pop-up menu does not trigger any object selection, that is,
the object right below the mouse pointer is not automatically included in the selection
model.

Note:

How to add a static pop-up menu to an equipment faces component
The static pop-up menu is fully declared within the JSP file, using the following tags:

♦ contextualMenu (jviews-framework-faces.tld library)

♦ menu (jviews-faces.tld library)

♦ menuItem (jviews-faces.tld library)

♦ menuSeparator (jviews-framework-faces.tld library)

The following example illustrates how to declare a static pop-up menu within an equipment
faces component:

<!-- Declare the Equipment Faces component -->
<jvtf:equipmentView id="myEquipment"

context="#{contextBean}"
style="width:740;height:550"
project="data/default_project.xml">

<!-- Declare the contextual menu -->
<jvf:contextualMenu>
<!-- Declare the root popup menu -->
<jv:menu label="root">
<jv:menuItem label="Zoom In"

image="images/zoom.png"
onclick="myEquipment.zoomIn()" />

<jv:menuItem label="Zoom Out"
image="images/unzoom.png"
onclick="myEquipment.zoomOut()" />

B U I L D I N G W E B A P P L I C A T I O N S 87

<jv:menuSeparator />
<jv:menuItem label="Fit To Contents"

image="images/zoomfit.png"
onclick="myEquipment.showAll()" />

<jv:menuItem label="Alert!"
image="images/alert.png"
onclick="alert('Alert menu item!')" />

</jv:menu>
</jvf:contextualMenu>

</jvtf:equipmentView>

In this example, the contextualMenu tag is declared within the equipment faces component
declaration (equipmentView tag). It is structured as a root menu (menu tag) with multiple
menu items (menuItem tags).

The onclick attribute in the menuItem tag is the most important. It defines the JavaScript™
code to be executed when the menu item is selected. See index for details on the available
tag attributes.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to declare a static pop-up menu: http://localhost:8080/
jsf-equipment-step-by-step/faces/example15.jsp .

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

How to add and customize a dynamic pop-up menu for an
equipment faces component
Like the static pop-up menu, the dynamic pop-up menu is declared in a JSP page using the
contextualMenu tag inside the equipment faces declaration (equipmentView tag). However,
instead of declaring the menu structure, it declares a menu factory (implementing the
IlvMenuFactory interface) that is invoked whenever the pop-up menu is activated. The
following exampe illustrates how the dynamic pop-up menu is declared:

<head>
<!-- Specify a CSS file -->
<link href="data/style.css" rel="stylesheet" type="text/css"/>

</head>

<!-- Declares a select interactor, which will be attached to the view -->

<jvtf:selectInteractor id="select"
menuModelId="selectInteractor"
invocationContext="IMAGE_SERVLET_CONTEXT" />

<!-- Declare the Equipment Faces component -->
<jvtf:equipmentView id="myEquipment"

context="#{contextBean}"
interactorId="select"
backgroundColor="#F5F5F5"

B U I L D I N G W E B A P P L I C A T I O N S88

http://localhost:8080/jsf-equipment-step-by-step/faces/example15.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example15.jsp

style="width:740;height:550"
project="data/default_project.xml">

<!-- Declare the contextual menu with given popup menu factory -->
<jvf:contextualMenu factory="#{popupMenuFactory}"

itemStyleClass="menuItem"
itemHighlightedStyleClass="menuItemHighlighted"
itemDisabledStyleClass="menuItemDisabled" />

</jvtf:equipmentView>

As shown above, the contextualMenu tag is used within the equipmentView declaration to
add a pop-upmenu to the equipment faces component. In addition, the following tag attributes
are noteworthy:

The factory tag attribute
This attribute of the contextualMenu tag is bound to a bean implementing the
IlvMenuFactory interface, which defines one single method:

public IlvMenu createMenu(Object graphicComponent, Object selectedObject,
String menuModelId);

When this method is automatically called, the graphicComponent attribute refers to the
underlying graphic view (IlpGraphView, superclass of IlpEquipmentView). It allows full
access to the IlpEquipmentView API, including selection model, controller, and so on.

The selectedObject attribute refers to the representation object (
IlpRepresentationObject) located immediately below the mouse pointer when the pop-up
menu was activated, if any. Note that this object may or may not be selected. It is independent
of the selection model.

The menuModelId corresponds to the value set in the menuModelId tag attribute of the
selectInteractor tag. It allows you to create custom pop-up menus based on the active
interactor.

The following IlvMenuFactory example creates a basic pop-up menu:

public IlvMenu createMenu(Object graphicComponent,
Object selectedObject,
String menuModelId) {

// Create the root menu
IlvMenu root = new IlvMenu("Root");

// Create 3 JavaScript actions
ActionListener jsAction = new

JavaScriptActionListener("myEquipment.zoomIn()");
root.addChild(new IlvMenuItem("Zoom in", jsAction,

"images/zoom.png", true));

jsAction = new JavaScriptActionListener("myEquipment.zoomOut());
root.addChild(new IlvMenuItem("Zoom out", jsAction,

"images/unzoom.png", true));

jsAction = new JavaScriptActionListener("alert('Alert menu item!')");

B U I L D I N G W E B A P P L I C A T I O N S 89

root.addChild(new IlvMenuItem("Alert!", jsAction,
"images/alert.png", true));

return root;
}

In this example, IlvMenu is the root menu that contains menu items (IlvMenuItem). Each
menu item has an ActionListener associated with it. In this case, the predefined
JavaScriptActionListener class is used to trigger JavaScript code executed on the client
when the corresponding menu item is activated. Note that myEquipment in myEquipment.
zoomOut() refers to the identifier of the equipmentView faces component from the previous
example. zoomOut() is the JavaScript method that performs zooming out on the client side.

The itemStyleClass, itemHighlightedStyleClass and
itemDisabledStyleClass tag attributes
These attributes of the contextualMenu tag are used to customize the look of the pop-up
menu. They declare the CSS classes that contain styling definitions for items, highlighted
items and disabled items, respectively as follows (from the style.css file):

.menuItem {
background: #E5E5E5;
font-family: sans-serif;
font-size: 14px;
font-style: normal;
color: black;

}

.menuItemHighlighted {
background: #FFE5A5;
font-style: normal;
color: black;

}

.menuItemDisabled {
font-style: italic;
color: #A5A5A5;

}

The menuModelId tag attribute
This attribute of the selectInteractor tag is used by the menu factory to identify which
pop-up menu to create based on the interactor that is currently active.

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to customize pop-up menus: http://localhost:8080/
jsf-equipment-step-by-step/faces/example16.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S90

http://localhost:8080/jsf-equipment-step-by-step/faces/example16.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example16.jsp

How to trigger server actions from a dynamic pop-up menu of an
equipment faces component
The dynamic pop-up menu can trigger two types of action:

♦ client actions: JavaScript actions executed on the client

♦ server actions: Java™ actions executed on the server

When building the dynamic menu, the pop-up menu factory (IlvMenuFactory) creates a root
menu (IlvMenu) with menu items (IlvMenuItem) and each menu item has an action listener
(ActionListener) associated with it.

Client actions are defined by the predefined JavaScriptActionListener, which has been
described in the previous example.

Server actions, like interactions, can be processed either by the JavaServer™ Faces lifecycle
or directly by the image servlet. This is defined by an invocation context that can be either
one of the following:

♦ JSF_CONTEXT: Processing takes place in the JSF lifecycle (default value)

♦ IMAGE_SERVLET_CONTEXT: Processing is performed by the image servlet, bypassing the
JSF lifecycle.

Server actions are defined by subclassing the FacesViewActionListener abstract class.
The subclass should define the desired invocation context and implement the public void
actionPerformed(EventObject event)method. The event parameter is in fact an instance
of the ServletActionListener class that has the following convenient methods in its API:

♦ getGraphicComponent(): This method returns the underlying view (instance of
IlpEquipmentView)

♦ getObject(): This method returns the representation object (IlpRepresentationObject)
located right below the mouse pointer when the pop-up menu was activated)

This allows full access to the IlpEquipmentView API, including selection model, controller,
and so on.

The following example shows a basic subclass of FacesViewActionListener:

public class MyActionListener extends FacesViewActionListener {
/**
* Constructor. Sets the invocation context.
*/
public AddAlarmActionListener() {
super(IlvDHTMLConstants.IMAGE_SERVLET_CONTEXT);

}

/**
* Access the equipment view and the active object.
*
* @param event An instance of ServletActionListener.
*/
public void actionPerformed(EventObject event) throws Exception {
ServletActionEvent saEvt = (ServletActionEvent)event;

B U I L D I N G W E B A P P L I C A T I O N S 91

// access the equipment view
IlpEquipmentView view = (IlpEquipmentView)saEvt.getGraphicComponent();

// access the active object
IlpObject obj = (IlpObject)saEvt.getObject();

// implement your action with 'view' and 'obj'
}

}

Once the action listener has been defined, it can be used within the pop-up menu factory
(IlvMenuFactory) as follows:

public IlvMenu createMenu(Object graphicComponent, Object selectedObject,
String menuModelId) {

// Create the root menu
IlvMenu root = new IlvMenu("Root");

// Create one server action
ActionListener srvAction = new MyActionListener();
root.addChild(new IlvMenuItem("My action", srvAction,

"images/action.png", true));

return root;
}

If you have started the bundled Tomcat web server, the following link will take you to the
small sample illustrating how to handle server actions: http://localhost:8080/
jsf-equipment-step-by-step/faces/example17.jsp.

You will find more information about the sample web application in: <installdir>
/samples/faces/jsf-equipment-step-by-step/index.htmlwhere <installdir> stands for
the directory where IBM® ILOG® JViews TGO is installed.

B U I L D I N G W E B A P P L I C A T I O N S92

http://localhost:8080/jsf-equipment-step-by-step/faces/example17.jsp
http://localhost:8080/jsf-equipment-step-by-step/faces/example17.jsp

Tiling

The Equipment Faces component provides support for tiling. The tiling support consists of
providing developers with the ability of configuring the Equipment Faces component to
compute, cache and provide on demand only the areas of its graphical representation that
are visible to the client at one given time, instead of computing and providing the entire
area of the graphical representation that may not be visible to the client.

The tiling support provided by the JViews TGO Equipment Faces component is based
on the tiling support by the underlying JViews Faces Framework. Any difference in the

Note:

default behavior as defined in the JViews Faces Framework documentation is
documented in this section.

Configuration

Tiled view
See Concepts in Advanced Features of JViews Framework for an introduction to the use of
tiling for building Web applications.

To make tiling available in the view, you must specify a tile size. The tile size is a critical
parameter and must be chosen with care. See Tile Size in Advanced Features of JViews
Framework.

<jvtf:equipmentView [...] tileSize="256"/>

Server-side caching
When the view is tiled, a server-side caching mechanism for tiles of static layers can be
installed by using the tileManager property. No server-side caching mechanism is installed
by default.

<jvtf:equipmentView tileManager="#{tgoBean.tileManager}" [...]/>

See The Tile Manager in Advanced Features of JViews Framework for more information.

Client-side caching
In order to enable the client-side caching mechanism, the zoomLevels attribute must be set.
When this attribute is set, the client caches the tiles for the predefined zoom levels. See
Zoom constraints for details on how to set the predefined zoom levels.

B U I L D I N G W E B A P P L I C A T I O N S 93

The API

IltFacesGraphServletSupport
The IltFacesGraphServletSupport determines the JViews TGO specific tiling behavior at
the server-side level. By default, it uses as the static layers all the IlvManagerLayer instances
that compose the background of your Equipment Faces component. For more information
on backgrounds, see Background support.

If a custom strategy is needed for computing the tiled layers, see Developing server-side
tiling which gives more information on the relevant server-side API that is need to customize
the default behavior.

B U I L D I N G W E B A P P L I C A T I O N S94

Managing the session expiration

The user session expires after a certain period of inactivity, usually defined in the Web
deployment descriptor.

JViews objects are stored in the HTTP user session. For example, after the user session
expiration, queries to update the image will fail.

The beforeSessionExpirationHandler property allows you to add a JavaScript™ handler
that will be invoked when the user session is about to expire.

For example, to keep the session alive as long as the browser page is open, use the following
code:

<jvtf:equipmentView [...]
beforeSessionExpirationHandler="view.updateImage();" />

This example shows how to query an image and keep the user session alive.

Note the use of view, the implicit object that represents the view JavaScript proxy. The
internal timer is reset only by requests issued by JViews objects. If the application implements
other requests that do not refresh the image, this timer could be inaccurate. To reset the
timer manually, use the following JavaScript code:

viewID.getObject().resetSessionExpirationTimer();

where viewID is the value of the id property of your view component.

The beforeSessionExpirationHandler is called two minutes before the actual
session expiration time.

Note:

B U I L D I N G W E B A P P L I C A T I O N S 95

Equipment view component services

Most of the JViews TGO equipment services can be used in the equipment faces context,
with no modifications. The services that are fully compatible are:

♦ Interacting with the equipment objects

♦ Node layout

♦ Link layout

♦ Label layout

♦ Layers

♦ Background support

♦ Filtering

♦ Accepted and excluded classes

♦ Setting the list of origins

♦ Node factory

♦ Link factory

♦ Expansion strategy

For more information on these services, refer to the Equipment component services.

The following services show some differences in the equipment faces component:

♦ Interacting with the equipment view

♦ Zooming

Interacting with the equipment view
JViews TGO equipment faces interactors are declared in the JSP™ file. This is required to
specify how the web browser will react to user input; some interactions being executed
directly on the client side while others are submitted to and executed on the server.

View interactors cannot be purely declared in the CSS file (as is the case for the Swing
equipment component). Instead, they have to be declared together with the
selectInteractor tag. For details on how to set a specific view interactor as the listener
of a selectInteractor, refer to Configuring the selectInteractor.

Zooming
Although all three zooming modes (physical zoom, logical zoom and mixed zoom) are
supported in the Faces Equipment component, some thresholds are affected by some of
JViews TGO Equipment Faces specific settings, like zoomFactor, zoomLevels, minZoomLevel,
or maxZoomLevel.

B U I L D I N G W E B A P P L I C A T I O N S96

Deploying a JViews TGO Faces application

Explains how to deploy a JViews TGO Faces web application to a Tomcat 6.0.14 servlet
container, with the JavaServer™ Faces 1.2 reference implementation.

In this section

Overview
Provides basic information on how to deploy a JViews TGO Faces application based on a
Tomcat 6.0 server.

JViews TGO Faces dependencies
Lists the jars required to deploy a JViews TGO Faces web application.

JViews Faces configuration at JViews Framework level
Describes the settings that are available for the JViews Faces Framework. It contains the
following topics:

Web server configuration
Describes the Web server settings that users may want to take into account when deploying
JViews Faces based applications.

Using JViews components with ICEfaces
Describes how to use JViews JSF components as ICEfaces components in an ICEfaces
development environment.

Web application server support
Provides information on the servers to which JViews Web applications can be deployed.

© Copyright IBM Corp. 1987, 2009 97

Supporting Facelets and Trinidad
Explains how to make JViews Framework Faces components compatible with Facelets and
Trinidad.

B U I L D I N G W E B A P P L I C A T I O N S98

Overview

Like any JSF application, a JViews TGO Faces application can be deployed to any servlet
container that supports the Servlet 2.3 and JSP™ 2.1 specifications. If you want to deploy
web applications on a server other than Apache® Tomcat 6.0, follow the server’s standard
procedure.

B U I L D I N G W E B A P P L I C A T I O N S 99

JViews TGO Faces dependencies

The JViews TGO Faces components are a set of faces components declared in the tag library
descriptor (.tld) file jviews-tgo-faces.tld, and implemented by Java™ and JavaScript™
objects. Everything is packed into the jviews-tgo-all.jar file. However, in order to deploy
a JViews TGO Faces web application, you also need to include the following required jars
in the WEB_INF/lib directory of the web application:

♦ jviews-tgo-all.jar

♦ jviews-diagrammer-all.jar

♦ jviews-maps-all.jar

♦ jviews-framework-all.jar

♦ jviews-framework-thin.jar

♦ jsf-api-1.2_04-b07.jar

♦ jsf-impl-1.2_04-b07.jar

♦ jstl-1.2.jar

♦ xercesImpl-2.9.1.jar

♦ svgdom-1.0.jar

♦ commons-beanutils-1.6.jar

♦ commons-collections-2.1.jar

♦ commons-digester-1.5.jar

♦ commons-logging-1.0.4.jar

Depending on the version of the technologies used, you may need a different set of
jar files. This list of files is targeted at the software configuration provided by default
in the installer.

Note:

There are specific cases in which JViews TGO requires additional jar files (see JAR files for
special cases). In such cases, you also need to include the required jar files in your web
application.

B U I L D I N G W E B A P P L I C A T I O N S100

JViews Faces configuration at JViews Framework level

Required settings
The standard configuration needed by a JSF application in the web.xml of your application
server is shown in the following code:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The JViews Faces Framework needs two additional settings in order to execute correctly,
namely:

♦ JViews Controller Servlet

The JViews Controller Servlet is in charge of loading the various resources used by the
JViews Faces Framework implementation like JavaScript™ libraries, images and the like.
But more importantly it provides clients with the latest state of their views capabilities as
well as their dynamically generated images.

You must declare and map the JViews Controller Servlet. To do this, use the following code:

<servlet>
<servlet-name>Controller</servlet-name>
<servlet-class>ilog.views.faces.IlvFacesController</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Controller</servlet-name>
<url-pattern>/_contr/*</url-pattern>

</servlet-mapping>

♦ ilog.views.faces.CONTROLLER_PATH

This setting provides the users with the flexibility of defining a custom <url-pattern> for
the JViews Controller Servlet that will be appropriately communicated to the JViews Faces
Framework so that proper execution takes place.

Youmust set the ilog.views.faces.CONTROLLER_PATH context parameter which must match
the content of the <url-pattern> of the JViews Controller Servlet without the wildcard part.

B U I L D I N G W E B A P P L I C A T I O N S 101

For example, the following code would appear after the code for the JViews Controller
Servlet.

<context-param>
<param-name>ilog.views.faces.CONTROLLER_PATH</param-name>
<param-value>/_contr</param-value>

</context-param>

Optional settings
The following optional setting is available in the JViews Faces Framework: ilog.views.
faces.CONTENT_LENGTH_ENABLED.

The ilog.views.faces.CONTENT_LENGTH_ENABLED setting allows users to specify whether
the underling servlet that is used to generate the client-side representation of the JViews
Faces Components is interacting with the client in a buffered mode or not. More specifically,
it enables the communication of the content length when the server responds to client
requests. This provides more optimal interaction between the client and the server.

For more insights see javax.servlet.ServletResponse.setContentLength and related
material on the Internet.

This setting is exposed through the context parameter facility and can be set as shown in
the following code:

<context-param>
<param-name>ilog.views.faces.CONTENT_LENGTH_ENABLED</param-name>
<param-value>true</param-value>

</context-param>

Although ilog.views.faces.CONTENT_LENGTH_ENABLED is optional, you are
recommended always to set this setting to true.

Note:

B U I L D I N G W E B A P P L I C A T I O N S102

Web server configuration

Session persistence
Web servers often implement a session persistence mechanism used typically for traditional
server clustering and fail-over techniques.

Often, the JViews Faces components are not serializable as they pertain to view related
abstractions, which are typically not persistable and are stored in the HTTP session.

In order to prevent the typical serialization warnings derived from this mismatch, you can
disable the session serialization mechanism for the JViews Faces based application.

How to disable session persistence in TOMCAT at web application
level
1. Create a file context.xml and place it on the META-INF directory of your .war file.

2. Use the Apache™ TOMCAT configuration setting shown in the following code to disable
the session serialization mechanism:

<Context path="/your-application-path">
<Manager className="org.apache.catalina.session.StandardManager"
pathname=""/>

</Context>

Note: 1. All the JViews Faces samples already have this session serialization setting
disabled for TOMCAT at this level.

2. These settings apply to TOMCAT 6.0.14 and later.

How to disable session persistence in TOMCAT at web server level
1. Modify the TOMCAT/conf/context.xml to use this as the Session Manager definition:

<Manager pathname=""/>

These settings apply to TOMCAT 6.0.14 and later.Note:

For more details on these settings see the TOMCAT configuration documentation.

For details on how to disable session serialization with your Web server, refer to its
configuration documentation.

B U I L D I N G W E B A P P L I C A T I O N S 103

Running JViews faces components in JSR 168 portlets

See the Release Notes for supported JSF implementations and JSF Portlet bridge
combinations.

Note:

If you want to use JViews Framework Faces components in a JSR 168 portlet environment,
you first need to check with your portal vendor whether JavaServer™ Faces components
are supported.

Your Web application must be correctly configured. This section describes each of the steps
required to make JViews Framework Faces components compatible with portlets.

JViews Framework Faces components are automatically switched to portlet mode if
the classes of the portlet API are detected in the class path.

Note:

To avoid naming clashes between portlets, the JSR 168 specification requires content to be
generated that is unique to each portlet. Therefore, the generated variables used by JViews
Framework Faces components must be prefixed by the portlet namespace.

Scripts prefixed by a namespace
From JViews 8.5, the servlet filter ilog.views.faces.servlet.IlvJSNamespaceFilter is
no longer needed and must not be set on the controller servlet.

JavaScript variables prefixed by a namespace
In portlet mode, the generated JavaScript™ variables are prefixed by the portlet namespace.
Thus, their usage in the JSP™ page is quite different.

A JavaScript action is built on a managed bean by using the IlvFacesUtil.
encodeJavaScriptVariables(String) static method.

The parameter is the desired JavaScript action where the variables are declared with the $
{id} notation. For example:

IlvFacesUtil.encodeJavaScriptVariables("${view}.setInteractor(${inte
ractor})");

where view and interactor represent JavaScript variables.

The JViews Faces components that have JavaScript handlers need only to reference these
bean properties.

The following code shows a more complete use of JavaScript actions in the JSP page and
the managed bean.

B U I L D I N G W E B A P P L I C A T I O N S104

Example 1:

[...]
<jvf:zoomInteractor id="zoom" />
<jv:imageButton onclick="#{frameworkBean.setZoomAction}"/>
<jvf:view id="view" />
[...]

Example 2:

public class FrameworkBean {
[...]
private String setZoomAction;
public FrameworkBean(){
setZoomAction =
IlvFacesUtil.encodeJavaScriptVariables("${view}.setInteractor(${zoom})");
}
public String getSetZoomAction(){
return setZoomAction;
}
[...]
}

Declaring the image servlet
In portlet mode, the servlet used to render the image must be declared:

<jvf view [...] servlet=
"ilog.views.faces.dhtml.servlet.IlvFacesManagerServlet />"

Integrating JSF components into the portal
Depending on your portal implementation, integrating JSF components may require special
configuration that is conditioned by the application server, the JSF implementation, the
portlet-JSF bridge, and so on. Check with your portal vendor for what you need to do in this
configuration step.

B U I L D I N G W E B A P P L I C A T I O N S 105

Using JViews components with ICEfaces

Settings for using JViews components in ICEfaces
This section describes the settings you need to use JViews JSF components with ICEfaces.You
are assumed to be familiar with Web application development using JSF technologies. You
need to have JViews 8.5 or above and ICEfaces 1.7.2 or above installed. You can go to http:/
/www.icefaces.org to download a more recent version of ICEfaces. If you use Eclipse® ,
ICEfaces also has a plug-in for this environment.

Since JViews 8.5, JViews JSF components support ICEfaces completely. JViews requires the
standard request mode of ICEfaces. This is the mode in which ICEfaces interoperates with
third-party components. To set this mode, you need to add the following element to the web.
xml file of your Web application.

<context-param>
<param-name>com.icesoft.faces.standardRequestScope</param-name>
<param-value>true</param-value>

</context-param>

For other settings required by JViews JSF components, see Required settings.

For more settings and concrete examples, look at the sample installed in <installdir>
/samples/faces/jsf-tgo-ice.

Interoperability between JViews components and ICEfaces
components
This section describes the interoperability between JViews components and ICEfaces
components. JViews components and ICEfaces components are both JSF components. They
can work together both on the client side and on the server side.

On the client side, JViews JSF components are high-level Ajax-enabled JavaScript™ objects.
You can direct the behavior of JViews components by invoking their JavaScript methods.
For example, when you click an ICEfaces button you can update the contents of a JViews
view by calling its JavaScript method: updateImage().

On the server side, both JViews components and ICEfaces components can be bound to
backing beans. This allows you to exchange parameters and data between the backing beans
of JViews components and ICEfaces components.

The interoperability between JViews and ICEfaces components can involve both the server
side and the client side.

Suppose that you have a diagram view showing a number of nodes and links. You want to
display a particular node and center it on the screen when you click an ICEfaces button.
This use case is shown in the code example at <installdir>
/../jviews-diagrammer86/codefragments/jsf-diagrammer-ice/srchtml/diagrammer.jsp.html

Run this sample now to understand the situation better.

The action is initiated on the client side by clicking a button. However, the task cannot be
performed completely on the client side because there is not enough information on the

B U I L D I N G W E B A P P L I C A T I O N S106

http://www.icefaces.org
http://www.icefaces.org

selected node. Therefore you have to submit the request to the server and ask the server to
perform more computation.

Once the backing bean on the server side has computed the offset to be applied to center
the selected node on the screen, you need to find a way to tell the client-side JViews
components to apply that offset. For this purpose, ICEfaces provides a way for you to send
JavaScript code from the server to the client. The code is as follows.

com.icesoft.faces.context.effects.JavascriptContext
.addJavascriptCall(FacesContext.getCurrentInstance(),
"diagrammer.moveTo(300, 500);");

The ICEfaces Ajax agent on the client will evaluate the received JavaScript code in order to
scroll the diagram to the expected position.

For more details, see the DiagrammerBean.java file in the same sample.

Push updates to JViews components
This section describes the techniques for push updates (server-initiated rendering) with
JViews components. One of the interesting features of ICEfaces is its server-initiated
rendering. This technique allows push updates to components rendered by Web browsers.
This topic explains how to make push updates to JViews components.

JViews components are Ajax-enabled components and their contents are generally GIF or
PNG images generated by JViews server-side servlet supports. There is no way to push
images directly to JViews components.

ICEfaces is able to push things such as HTML fragments and JavaScript code but not images.
However, you can use the ICEfaces push mechanism to notify client-side JViews components
that updates are available on the server. Then the JViews components can use the Ajax
mechanism to get the updated images. This approach is quite efficient in terms of network
traffic.

To notify client-side JViews components, you can use the ICEfaces server-initiated rendering
technique to push JavaScript code. The ICEfaces Ajax agent will receive and evaluate the
code. For example, you can put something like the following in JavaScript code:

<script type="text/javascript">diagrammer.updateImage();</script>

This code tells a JViews diagram component to update its contents.

For tips and tricks on how to push JViews components, look at the push example installed
with JViews TGO in <installdir>
/../jviews-diagrammer86/codefragments/jsf-diagrammer-ice.

ICEfaces software in JViews
This section describes the ICEfaces binary files provided with JViews and lists the known
issues.

B U I L D I N G W E B A P P L I C A T I O N S 107

ICEfaces binary files provided with JViews
ICEfaces binary files are included in the JViews distribution so that the integration code
samples can run out-of-the-box. ICEfaces jar files can be found under /lib/external.
However, the full ICEfaces distribution is not included.

To get a complete or more updated distribution, you can get ICEfaces under the Mozilla®
Open Source License 1.1. ICEfaces source code is available at http://www.icefaces.org. A
copy of the Mozilla Open Source License 1.1 is available there or at http://www.mozilla.org/
MPL/MPL-1.1.htm.

Known ICEfaces issues
The following issue exists when using ICEfaces components with JViews components:

♦ ICEfaces is not able to parse JViews component <jvf:view> in JSPmode probably because
it confuses this tag with <f:view>, although they are in different namespaces. A
workaround has been found. See the Graphic Framework example and the iview.tld
file in the code example installed in <installdir>
/../jviews-diagrammer86/codefragments/jsf-diagrammer-ice.

B U I L D I N G W E B A P P L I C A T I O N S108

http://www.icefaces.org
http://www.mozilla.org/MPL/MPL-1.1.htm
http://www.mozilla.org/MPL/MPL-1.1.htm

Web application server support

Apache® Tomcat 6.0.14 is the referenceWeb application server shipped with product_name.
Other Web application servers such as JBoss AS 4.2.3.GA, IBM® WebSphere® 7.0, and
Oracle® Weblogic Server 10.3 have also been tested.

You may need related infomation when deploying JViews Web applications to servers as
follows:

JBoss Application Server 4.2.3.GA
JBoss AS 4.2.3.GA has a JSF implementation included. To avoid conflicts, you should not
include JSF jars in your war file when deploying JViews Web applications.

When deploying JViews Facelets Web applications, you may need to exclude dom-3.0.
jar from the war file to avoid XML parsing exceptions.

JBoss AS 4.2.3.GA does not support multi-pattern <servlet-mapping> elements in web.
xml. You must use multi <servlet-mapping> elements with separated patterns.

IBM WebSphere 7.0
WebSphere 7.0 has a JSF implementation included. To avoid conflicts, you should not
include JSF jars in your war file when deploying JViews Web applications.

When deploying JViews Facelets Web applications, you may need to exclude dom-3.0.
jar from the war file to avoid XML parsing exceptions.

There is a known issue when deploying ICEfaces applications to WebSphere, see http:/
/jira.icefaces.org/browse/ICE-2330.

Oracle WebLogic Server 10.3
You need to change the schema of your web.xml file to 2.5.

For the exception that the deferred EL expression is not allowed since
deferredSyntaxAllowedAsLiteral is false, you need to add <%@ page
deferredSyntaxAllowedAsLiteral="true" %> in the JSP page.

In the Trinidad and Facelets samples, the TGO network view might not be shown. You
need to move the interactors out of the tr:panelTabbed component.

For Trinidad samples with invalid PPR responses, the problem is caused by an invalid
XML response, which has been reported in https://issues.apache.org/jira/browse/
TRINIDAD-1170.

B U I L D I N G W E B A P P L I C A T I O N S 109

http://jira.icefaces.org/browse/ICE-2330
http://jira.icefaces.org/browse/ICE-2330
https://issues.apache.org/jira/browse/TRINIDAD-1170
https://issues.apache.org/jira/browse/TRINIDAD-1170

Supporting Facelets and Trinidad

If you want to use JViews Framework Faces components in a Facelets context, your Web
application must be correctly configured.

Compatibility with Facelets and Trinidad
To make JViews Framework Faces components compatible with Facelets and Trinidad:

♦ Edit the configuration files.

For complete application samples configured for use with Facelets or Trinidad, see
<install-dir> /samples/faces/jsf-tgo-facelets.

To see examples of correct settings for Facelets with Trinidad, look at the faces-config.
xml and web.xml files. If you want to use Facelets without Trinidad, look at faces-config
-std.xml and web-std.xml instead.

♦ Develop XHTML-based pages according to the tag library documentation.

All attributes and all tags except the menu tags listed in Contextual menus are supported
in Facelets.

If you are using custom tags, make sure you provide a custom.taglib.xml file that
describes your custom library and declare its XML namespace in the page.

♦ Make sure that your .war files (or your server default libraries) include the necessary
Facelets (and possibly Trinidad) jar files.

Contextual menus
In a Facelets context, you will be able to provide dynamic menus through the factory or
factoryClass attribute of a contextual menu object but you will not be able to use menu,
menuItem, or menuSeparator tag components directly in the page.

<... contextualMenu ...
factoryClass="mydemo.somepackage.MenuFactory" />

Static menu
You will be able to bind a static menu (running the code of the factory only once), in addition
to dynamic menus, using the value attribute of the contextual menu element.

<... contextualMenu ... value="#{chartBean.menu}" />

See also Guide to using JViews components with ICEfaces.

B U I L D I N G W E B A P P L I C A T I O N S110

IBM® ILOG® JViews TGO Faces technical
overview

Describes the architecture of the Faces library, how requests are processed by the equipment
and network faces components, and which types of interaction these components offer.

In this section

The graph architecture
Describes the graph faces architecture.

The network faces component architecture
Describes the network faces component architecture.

The equipment faces component architecture
Describes the equipment faces component architecture.

Processing requests
Explains how requests are processed by the IlpNetwork and IlpEquipment components.

Interactions
Describes the different types of interaction.

© Copyright IBM Corp. 1987, 2009 111

The graph architecture

The IBM® ILOG® JViews TGO Faces library is a set of JavaServer™ Faces components that
allow you to display and interact with business objects and data in the following formats:

♦ A network of nodes: the network faces component.

♦ Items of equipment composed of cards, ports and LEDs: the equipment faces component.

Like the IlpNetwork and IlpEquipment Swing components, the network and equipment
faces components share the same architectural design. In a high-level abstraction, the
network and equipment faces components play the role of the view (IlpNetworkView and
IlpEquipmentView) as they are responsible for displaying the graphic representation of the
model on the client screen.

Like the IlpNetworkView and IlpEquipmentView, which are based on IlpGraphView, the
network and equipment faces components are based on an abstract Graph faces component
which cannot be directly used in a JSP™ file. This Graph component is defined by a
component abstract implementation, IltFacesGraphView, an abstract renderer,
IltFacesGraphViewRenderer, and an abstract tag implementation, IltFacesGraphViewTag.

The Graph component is based on the view faces component declared in the
JViews Framework Faces library. It inherits all the features and characteristics of the view
faces component. In addition, it extends its functionality to display the specific JViews TGO
business objects by using an underlying IlpGraphView instead of a generic IlvManagerView.
The following class diagram shows these dependencies:

Graph Faces Architecture

B U I L D I N G W E B A P P L I C A T I O N S112

The network faces component architecture

The network faces component is designed to display snapshot images of the visible area of
an underlying IlpNetwork component. It works in conjunction with a dedicated servlet
responsible for rendering static images of an IlpNetworkView. The component by itself is
not able to process any user interaction; it must be connected to other faces components,
like the select interactor (selectInteractor), in order to convert client-side interactions
into server-side events.

Class overview
The network faces component is declared in the tag library descriptor (.tld) file as
networkView. Like any faces component, it has a tag implementation, a component
implementation, and a DHTML renderer; in addition, the network faces component has a
dedicated servlet to handle image requests. The classes are as follows:

♦ IltFacesNetworkViewTag: The tag implementation

♦ IltFacesNetworkView: The faces component implementation

♦ IltFacesNetworkViewRenderer: The renderer for the component

♦ IltFacesNetworkServlet: A dedicated servlet to produce images

The tag implementation handles the various tag attributes declared in the tag library
descriptor file for the networkView component. The component implementation handles all
this information so that the renderer can create a DHTML representation of it while the
image servlet processes the client requests, directly interacting with the underlying
IlpNetwork component and modules through its API. The following class diagram shows
these dependencies:

Network Faces Architecture

B U I L D I N G W E B A P P L I C A T I O N S 113

The equipment faces component architecture

The equipment faces component is designed to display snapshot images of the visible area
of an underlying IlpEquipment component. It works in conjunction with a dedicated servlet
responsible for rendering static images of an IlpEquipmentView. The component by itself
is not able to process any user interaction; it must be connected to other faces components,
like the select interactor (selectInteractor), in order to convert client-side interactions
into server-side events.

Class overview
The equipment faces component is declared in the tag library descriptor (.tld) file as
equipmentView. Like any faces component, it has a tag implementation, a component
implementation, and a DHTML renderer; in addition, the equipment faces component has
a dedicated servlet to handle image requests. The classes are as follows:

♦ IltFacesEquipmentViewTag: The tag implementation

♦ IltFacesEquipmentView: The faces component implementation

♦ IltFacesEquipmentViewRenderer: The renderer for the component

♦ IltFacesEquipmentServlet: A dedicated servlet to produce images

The tag implementation handles the various tag attributes declared in the tag library
descriptor file for the equipmentView component. The component implementation handles
all this information so that the renderer can create a DHTML representation of it while the
image servlet processes the client requests, directly interacting with the underlying
IlpEquipment component and modules through its API. The following class diagram shows
these dependencies:

B U I L D I N G W E B A P P L I C A T I O N S114

Equipment Faces Architecture

B U I L D I N G W E B A P P L I C A T I O N S 115

Processing requests

The IltFacesNetworkView and IltFacesEquipmentView faces components internally
instantiate IlpNetwork and IlpEquipment components, respectively, that are responsible
for handling all business data and their graphic aspects.

When a JSP™ page containing a networkView or an equipmentView component is first
processed, the tag implementation, IltFacesNetworkViewTag or IltFacesEquipmentViewTag,
interprets all the tag attributes and stores this information in the UIComponent
(IltFacesNetworkView or IltFacesEquipmentView). The following diagram illustrates this:

Processing of a JSP Page

The JSF lifecycle calls the component renderer (IltFacesNetworkViewRenderer or
IltFacesEquipmentViewRenderer) to encode the page into HTML. This is done by adding
DHTML code into the response. Back to the client, the DHTML code is executed and a new
request is sent to the server. This time the request is directed to the image servlet (
IltFacesNetworkServlet or IltFacesEquipmentServlet). The image servlet generates a
static snapshot of the visible area of the underlying IlpNetworkView or IlpEquipmentView
and sends it back to the client to be displayed. The following diagram illustrates this:

B U I L D I N G W E B A P P L I C A T I O N S116

Rendering of the Faces Components

B U I L D I N G W E B A P P L I C A T I O N S 117

Interactions

There are three types of interaction:

♦ Client-side: no roundtrip to the server

♦ JSF lifecycle: the interaction is processed by the JSF lifecycle, and another roundtrip is
necessary to update the image from the image servlet

♦ Image servlet: the interaction is processed by the image servlet and the image is updated
in one single roundtrip.

Basic interactions like panning the view are processed locally on the client side. They are
fast and no requests are sent to the servlets.

When using advanced interactors like the select interactor (selectInteractor), you can
choose the invocation context, or how the submitted request will be processed. There are
two options:

♦ JSF_CONTEXT: interaction is processed by the JSF lifecycle

♦ IMAGE_SERVLET_CONTEXT: interaction is processed directly by the image servlet

When the JSF lifecycle processes a request, it follows well-defined phases, respecting
listeners, triggering actions and notifying components. The response forces all the pages to
be updated at the end, and the network or equipment component executes the DHTML code
to request a new image from the image servlet. At least two roundtrips to the server take
place.

When the request goes straight to the image servlet (IMAGE_SERVLET_CONTEXT), the processing
is faster, as only the networkView or equipmentView component is updated. The response
carries the new image in one single roundtrip to the server. The drawbacks are that no other
faces component is updated, and that the results may be inconsistent.

Unlike the other faces components, the overview faces component is always updated
to appropriately display the latest state of the view, regardless of which option is used
by the interactor (JSF_CONTEXT or IMAGE_SERVLET_CONTEXT).

Note:

B U I L D I N G W E B A P P L I C A T I O N S118

A
action listeners

equipment view faces component 75

B
backing beans 106
binary ICEfaces files 108
boundingBox property 41, 86

C
client select interactor faces component

tag attributes 6, 51
clientSelectInteractor faces component

configuring 32, 77
configuring an object action 33, 78
tag attributes 6, 51

compatibility
Facelets 110
Trinidad 110

component
interoperability 106
JSF 106
push updates 106
settings for ICEfaces 106

configuration
of Web server 103

constrainedOnContents
JViews Faces component property 40

contextual menu 110
core JViews Faces 5

D
data source faces component

declaring 63
deploying faces components 99
deselectAll method

IlvAbstractSelectionManager class 38, 83
displayed area

controlling 41, 86

dynamic menu 110

E
equipment view faces component

action listeners 75
combining components 68
configuring 57
connecting a data source 62
image buttons 68
interacting 96
interactors 71
pan tool 68
pop-up menus 87
services 96
setting up an overview 68
tag attributes 51
zoom tool 68

F
Facelets compatibility 110
facelets support 110
faces components

combining 23
ICE 106
running in JSR 168 portlets 103
setting up an overview 23

faces configuration
at JViews Framework level 101
optional settings 101
required settings 101

files, ICEfaces binary 108

I
ICEfaces known issues 108
IltFacesPropertyAccessor class 36, 81
IlvAbstractSelectionManager class

deselectAll method 38, 83
selectAll method 38, 83
selectById method 38, 83

© Copyright IBM Corp. 1987, 2009 119

I N D E X

Index

IlvFacesDefaultObjectAction class 33, 78
IlvFacesGraphServletSupport class 49, 94
image buttons

equipment view faces component 68
setting client actions 23

image servlet, declaring 105
interaction

network view faces component 51
interactors

connecting to network view 26
equipment view faces component 71

J
JSF components 106
JSF components, integrating into the portal 105
JViews Framework Faces 5
JViews TGO Faces 6
JViews TGO faces

deploying 99
technical overview 112

JViews TGO faces dependencies 100

L
layers

static in tiling 48, 93

M
maxZoomLevel

JViews Faces component property 40, 85
menu

contextual 110
dynamic 110
static 110

minZoomLevel
JViews Faces component property 40, 85

mode
image 34, 79
regular 34, 79

N
namespace

JavaScript variables prefixed by 104
scripts prefixed by 104

network faces component
interactors 26

network view faces component 8
architecture 113
connecting a data source 15
declaring 8
interacting 51
pop-up menus 42
services 51
tag attributes 6
zooming 51, 96

O
overview

faces components 23

P
pan tool

connecting 23
equipment view faces component 68

panInteractor faces component
network view faces 26

pop-up menu
equipment view faces component 87
network view faces component 42

processing requests 116
properties (JSF)

maxZoomLevel 40, 85
minZoomLevel 40, 85
tileManager 48, 93
zoomLevels 40, 85

S
select interactor faces component

tag attributes 6, 51
selectAll method

IlvAbstractSelectionManager class 38, 83
selectById method

IlvAbstractSelectionManager class 38, 83
selectInteractor faces component 28, 73

configuring 74
configuring action listeners 30
network view faces 26

selectionManager faces component 34, 79
configuring 35, 80
tag attributes 6, 51

server support
IBM Websphere 109
JBoss Application Server 109
Oracle WebLogic Server 109
Web application 109

static menu 110

T
tag attributes

equipment view faces component 51
tile size

JViews Faces view component 48, 93
tileManager

JViews Faces component property 48, 93
tiling 48, 93

in JViews Faces component view 48, 93
static layers 48, 93

Trinidad compatibility 110
Trinidad support 110

V
view

tiling with JViews Faces component 48, 93
view component (JSF)

fixed zoom level 40, 85
free zoom level 40, 85

B U I L D I N G W E B A P P L I C A T I O N S120

maximum free zoom level 40, 85
minimum free zoom level 40, 85
tile size 48, 93
zoom level constraints 85

W
Web server configuration

session persistence 103

X
XHTML-based pages 110

Z
zoom constraints

manager content 40, 85
zoom levels

constraints for JViews Faces view component
85
fixed for JViews Faces view component 40,
85
free for JViews Faces view component 40, 85
maximum free zoom level 40, 85
minimum free zoom level 40, 85

zoom tool
connecting 23
equipment view faces component 68

zooming
network view faces component 51, 96

zoomLevels
JViews Faces component property 40, 85

B U I L D I N G W E B A P P L I C A T I O N S 121

	Table of contents
	Introducing JViews TGO faces components
	The network view faces component
	Declaring a network view faces component
	Configuring a network view faces component
	Configuring the client and server side of the networkView component
	Connecting a business data source
	Customizing the underlying IlpNetwork component
	Combining faces components
	Interacting with the network view component
	Zoom constraints
	Controlling the displayed area
	Adding pop-up menus
	Tiling
	Managing the session expiration

	Network view component services

	The equipment view faces component
	Declaring an equipment view faces component
	Configuring an equipment view faces component
	Configuring the client and server side of the equipmentView component
	Connecting a business data source
	Combining faces components
	Interacting with the equipment view component
	Zoom constraints
	Controlling the displayed area
	Adding pop-up menus
	Tiling
	Managing the session expiration

	Equipment view component services

	Deploying a JViews TGO Faces application
	Overview
	JViews TGO Faces dependencies
	JViews Faces configuration at JViews Framework level
	Web server configuration
	Using JViews components with ICEfaces
	Web application server support
	Supporting Facelets and Trinidad

	IBM® ILOG® JViews TGO Faces technical overview
	The graph architecture
	The network faces component architecture
	The equipment faces component architecture
	Processing requests
	Interactions

	Index

