
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Prototypes V5.3

Tutorial

June 2009

tutprotos.book Page 1 Tuesday, July 28, 2009 7:04 PM

tutprotos.book Page 2 Tuesday, July 28, 2009 7:04 PM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

tutprotos.book Page 2 Tuesday, July 28, 2009 7:04 PM

C O N T E N T S

tutprotos.book Page 3 Tuesday, July 28, 2009 7:04 PM
Table of Contents

IBM ILOG Views Prototypes V5.3

Preface About This Tutorial. 5

What You Need to Know .5

Manual Organization .5

Notation. .6

Typographic Conventions .6

Naming Conventions .6

Tutorial 1 Creating Prototypes in IBM ILOG Views Studio . 7

Introduction .7

Creating a Prototype .9

Defining the Application Interface of the Prototype .11

Defining the Visual Representation of the Prototype .13

Defining the Graphic Behavior of the Prototype. .16

Changing a Prototype Value .18

Creating an Instance of a Prototype. .20

Modifying the Prototype .21

Defining an Interactive Behavior for a Prototype .24

Editing a Prototype .25

Connecting Two Prototype Instances .26
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 3

tutprotos.book Page 4 Tuesday, July 28, 2009 7:04 PM
Summary. .27

Predefined Libraries .29

Tutorial 2 Linking Your Prototype to Application Objects. 31

Introduction .31

Step 1: Reading a Panel Containing Prototype Instances .32

Step 2: Retrieving and Modifying the Prototype Instances .34

Step 3: Creating a Group Mediator to Handle User Feedback. .36

Summary. .39

Index . 41
4 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

P R E F A C E

tutprotos.book Page 5 Tuesday, July 28, 2009 7:04 PM
About This Tutorial

This tutorial introduces you to creating and using business graphic objects with the
Prototypes extension of IBM® ILOG® Views Studio.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX® environment in which you
are going to use IBM ILOG Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual Organization

The manual contains the following chapters:

◆ Creating Prototypes in IBM ILOG Views Studio

◆ Linking Your Prototype to Application Objects
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 5

tutprotos.book Page 6 Tuesday, July 28, 2009 7:04 PM
Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier italics.

◆ Some words in italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the IBM® ILOG® Views
libraries begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
6 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

C H A P T E R

tutprotos.book Page 7 Tuesday, July 28, 2009 7:04 PM
1

Creating Prototypes in IBM ILOG Views
Studio

This section provides a short tutorial on creating and using prototypes. The tutorial takes
approximately 20 minutes to complete and includes the following sections:

◆ Creating a Prototype.

◆ Defining the Application Interface of the Prototype.

◆ Defining the Visual Representation of the Prototype.

◆ Defining the Graphic Behavior of the Prototype.

◆ Creating an Instance of a Prototype.

◆ Defining an Interactive Behavior for a Prototype.

◆ Connecting Two Prototype Instances.

Introduction

In this tutorial, you are going to create the graphical interface of the following object, called
temperature. The temperature object resembles a thermometer, with a scale and a gauge that
indicates the level of the temperature. When the temperature exceeds 30, the gauge appears
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 7

tutprotos.book Page 8 Tuesday, July 28, 2009 7:04 PM
in red. When the temperature is below 30, the gauge appears in blue. Under the
thermometer, a text field displays the temperature in numerals.

The temperature object has two attributes: the temperature attribute and the threshold
attribute. The user should have visual feedback of whether the temperature is above or
below the threshold. You will define the application interface of the prototype by describing
these two attributes. Then you will create its graphical representation using the graphical
editor of IBM ILOG Views Studio . Finally, you will create the graphical and interactive
behaviors, that is, how the attribute values are shown to the user and how the user can edit
the temperature attribute.

The final step of application integration, connecting a prototype instance to a real
application written in C++ and providing data, is described in the next tutorial.

Launching Studio With the Prototypes Extension

To launch Studio with the Prototypes extension:

1. Go to the directory $ILVHOME/studio/<system> of the IBM ILOG Views
distribution.

2. Type ivfstudio or double-click the Studio icon to start the application.

The Studio Main window appears on your screen. When first opened, the Main window
displays an empty 2D Graphics buffer window. The Palettes panel contains the
predefined Prototypes libraries, as well as the other IBM ILOG Views Studio predefined
libraries.
8 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Creating a Prototype

tutprotos.book Page 9 Tuesday, July 28, 2009 7:04 PM

Creating a Prototype

You will create your prototype in a Prototype buffer window. Since you want to store the
prototype for later reuse from a library, you must first create the library to store it.

1. To create a new prototype library, choose New from the File menu. Then choose
Prototype Library from the submenu that is displayed.

The Save As dialog box appears.

2. Choose a directory where you have write permission. Type the file name myLib.ipl
and click Save.

A new tree item, called myLib, appears below the predefined Prototypes libraries in the
upper pane of the Palettes panel. You have created your prototype library.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 9

tutprotos.book Page 10 Tuesday, July 28, 2009 7:04 PM
3. To open a new Prototype buffer window, choose New from the File menu. Then choose
Prototype from the submenu that is displayed.

A Prototype buffer window, called “Prototype - unnamed”, is displayed in the Main
window.

The Group Inspector panel also appears:

By clicking the Help button, a contextual hypertext page opens, guiding you through the
process of creating your prototype:
10 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Defining the Application Interface of the Prototype

tutprotos.book Page 11 Tuesday, July 28, 2009 7:04 PM
Defining the Application Interface of the Prototype

The application interface is the set of attributes that you can set and retrieve from the
application. These attributes determine the external appearance of the prototype. You define
these by adding attributes in the Interface page of the Group Inspector panel.

1. Choose Edit > New Attribute. A new attribute “Unnamed” appears.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 11

tutprotos.book Page 12 Tuesday, July 28, 2009 7:04 PM
2. Click Unnamed and then type threshold, thereby renaming the attribute from
Unnamed to threshold.

3. In the Type column, click String twice, or press F2. A combo box appears, letting you
choose the type of the attribute. Select Value > Float to specify that your attribute will be
of type Float.

4. To set a default value of 30 in the Value column, click the 0 in the threshold attribute
row and type 30.

Leave the default settings in the last three columns: P is depressed indicating that your
attribute will be public; R is depressed indicating that your attribute will be persistent; N
is not depressed indicating that your attribute will not notify others of its changes.

5. To create another attribute named temperature, select Edit > New Attribute. Rename
Unnamed to temperature.

6. Set its type to Int by opening the combo box in the Type column and selecting Value >
Int.

7. Finally, this temperature attribute should notify others of its changes. Therefore, click
the N button in the last column to set it.
12 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Defining the Visual Representation of the Prototype

tutprotos.book Page 13 Tuesday, July 28, 2009 7:04 PM

Defining the Visual Representation of the Prototype

You will create the visual representation of your prototype.

1. First, select the next tab of the Group Inspector, to display the Graphics page.

2. Select the Prototype buffer window by clicking in “Prototype - unnamed” in the Main
window of IBM ILOG Views Studio.

3. In the upper pane of the Palettes panel, use the scroll bars on the right side of the screen
to move down through the list of palettes until the Graphics item appears. Choose
Gauges under the Graphics item to display the palette containing gauges and scales.

Note: It is important to define the threshold attribute before the temperature attribute,
because the behavior of temperature depends on the value of threshold.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 13

tutprotos.book Page 14 Tuesday, July 28, 2009 7:04 PM

4. Drag a vertical rectangular scale (IlvRectangularScale) from the palette to the
“Prototype - unnamed” window. Then drag a vertical rectangular gauge
(IlvRectangularGauge) and place it next to the scale. Stretch the gauge vertically so
that it matches the height of the scale:

14 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Defining the Visual Representation of the Prototype

tutprotos.book Page 15 Tuesday, July 28, 2009 7:04 PM
5. Choose Save As from the File menu to save the prototype to the prototype library.

6. A Message dialog box asks you if you want to save the prototype in a library. Click Yes.

7. A Prompt String dialog box appears to let you choose the library in which to save your
new prototype. Make sure myLib is selected in the list of libraries, or type myLib in the
text field. Click Apply.

8. A new Prompt String dialog box asks you to name the prototype. Type myproto and
click Apply.

In the Main window, the Prototype buffer window name changes to myproto.ivp and a
new prototype icon, labeled myproto, appears in the Prototypes palette on the myLib
page.

9. If necessary, bring the Graphics panel of the Group Inspector to the front by choosing
Group Inspector from the Tools menu of the Main window and clicking the Graphics tab.

A hierarchical sheet showing the prototype structure and the attributes of each node
appears on the page:
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 15

tutprotos.book Page 16 Tuesday, July 28, 2009 7:04 PM
10. Select the graphic node IlvRectangularScale. You may want to enlarge the window
to better view the names of the objects, or move the pointer over a name to see the tooltip
giving the full name of the object underneath the pointer.

Notice that the scale is selected in the Main window as well.

11. Click again to make the field editable, and type scale. Press the Enter key.

The IlvRectangularScale in the tree gadget changes to scale.

12. Repeat steps 8 and 9 to rename the IlvRectangularGauge node as gauge.

The Graphics notebook page of the Group Inspector should look like this:

13. Choose Save from the File menu of the Main window to save the prototype.

Defining the Graphic Behavior of the Prototype

Once you have defined the interface and the graphic objects that make up your prototypes,
you can start linking them together by adding behaviors. These determine how a graphic
object will change when an attribute of the prototype changes.

1. Move to the Graphic Behavior tab of the Group Inspector.

2. Select the temperature attribute in the attributes tree.
16 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Defining the Graphic Behavior of the Prototype

tutprotos.book Page 17 Tuesday, July 28, 2009 7:04 PM
3. Select Control > Assign.

A new behavior is added. You now have to specify the parameters of this behavior.

4. Click twice in the right hand column of the Attribute parameter of the new assigned
behavior to open the combo box.

5. Select the item gauge > value, or type gauge.value in the text field and press Enter.

6. Click twice in the right hand column of the Send parameter of the assigned behavior to
open the combo box.

7. Choose [All Types] to display all the parameters and select the item temperature, or
type temperature and press Enter.

This assigned behavior specifies that when the temperature is to be changed, it will set the
value attribute of the gauge to the current value of the temperature.

You are going to add a second action to the temperature accessor. This action will specify
that when the temperature rises above the threshold value, the gauge will appear red and
when the temperature is below the threshold value, the gauge will appear blue.

1. If not still selected, select the temperature attribute.

2. Select Control > Condition. This adds a new behavior below the previous assigned
behavior.

3. There are 5 parameters to set for this behavior. Using the same techniques as before,
clicking twice in the right hand column and selecting from the resultant combo box,
set the following values for each parameter:

● Operator: >

● Operand: [All Types] > threshold

● Attribute: gauge > foreground

● if True: [Immediate value], then type red in the text field. (You can also select the
item Choose... in the combo box and choose a color using the color selector.)

● if False: [Immediate value], then type blue in the field to enter the color.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 17

tutprotos.book Page 18 Tuesday, July 28, 2009 7:04 PM
Changing the value of temperature is associated with two actions. First, the actual level of
the gauge changes. Second, the condition is tested and the color of the gauge is set
accordingly.

Changing a Prototype Value

Next, you are going to change the value of the temperature accessor to test the behavior
of your prototype.

1. Click the Interface tab in the Group Inspector panel to bring the notebook page to the
foreground. The list of attributes appears showing a temperature value of 0.

2. Click in the value column and change 0 to 50. Press the Enter key.

In the Prototype buffer window, you will notice that the level of the gauge changes to
show a value of 50 and the gauge turns to red.
18 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Changing a Prototype Value

tutprotos.book Page 19 Tuesday, July 28, 2009 7:04 PM
3. Change the value from 50 to 20 and press the Enter key.

You will notice that the gauge shows a value of 20 and turns to blue.

4. Choose Save from the File menu to save your latest changes.

You have completed creating the first version of your prototype. Next, you will learn how to
instantiate a prototype in an Application buffer window.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 19

tutprotos.book Page 20 Tuesday, July 28, 2009 7:04 PM
Creating an Instance of a Prototype

Once a prototype has been created, it can be instantiated in an application buffer window.
The application will have access to its attributes when it loads the panel or it can
dynamically add instances representing application objects.

You are going to create an instance of your prototype in an application buffer window.

1. To open a buffer window, choose New from the File menu and then 2D Graphics from
the submenu that is displayed.

The buffer window is opened in the Main window. This buffer window can hold
prototypes or other graphic objects.

2. Drag the myproto prototype icon from the myLib Prototypes palette to the Main
window.

The prototype instance is created and is selected.

20 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Modifying the Prototype

tutprotos.book Page 21 Tuesday, July 28, 2009 7:04 PM
3. Go to the Group Inspector panel.

Notice that only the Interface and Graphics notebook pages are active. The other
notebook pages are not active, so you cannot add behaviors or change the nodes of a
prototype instance. You can, however, change the temperature and threshold values. You
can also change some global properties of the nodes, such as the capability to zoom in
and out. (The instance must remain selected in the Main window.) You can also create
several instances of your prototype and give them different values.

In order to access your prototype instance, you will most likely want to give a
meaningful name to the instance you have just created.

4. If not still selected, select the instance.

5. In the name field of the Graphics page of the Group Inspector, type myThermometer.

You will be able to retrieve it in your C++ program with the method
getGroup(“myThermometer”) of the IlvGroupHolder class.

6. Choose Save As from the File menu and save this window with the file name
myPanel.ilv.

Modifying the Prototype

You are going to modify your prototype to make it look more like a thermometer.

1. Choose myproto from the Window menu in the Main window to bring the Prototype
buffer window to the foreground.

2. In the upper pane of the Palettes panel, use the scroll bar to move down the tree gadget
and click Graphics.

3. From the Graphics palette displayed in the lower pane, drag a filled ellipse
(IlvFilledEllipse) over to the myproto.ivp window.

4. Reshape and resize the ellipse. Place it under the gauge so that the combination of the
two graphic objects looks like a thermometer:
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 21

tutprotos.book Page 22 Tuesday, July 28, 2009 7:04 PM

5. Click on the Graphic Behavior tab in the Group Inspector panel to bring the
corresponding notebook page to the foreground.

6. Ensure that no attributes are currently selected. If necessary, choose Edit > Deselect, or
deselect the selected item by clicking on it using the middle mouse button.

7. Select Control > Multiple. This has the effect of creating a new intermediate attribute,
named “Action”.

8. Click on the Action label and type color to set the name of this attribute. Press Enter.

9. In the right hand column of the first Attribute parameter, click twice and choose [All
Types]. Select gauge > foreground from the combo box menu. Alternatively you can
directly type gauge.foreground and press Enter.

10. Click twice on the second parameter, labeled “<<click to add item>>”. Choose [All
Types], and then select IlvFilledEllipse > foreground from the combo box menu.

You have added an intermediate attribute, color, that will address both the gauge and the
ellipse foreground when set.
22 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Modifying the Prototype

tutprotos.book Page 23 Tuesday, July 28, 2009 7:04 PM

You need to edit the temperature.Condition accessor to use the color accessor instead
of the gauge.foreground attribute.

1. In the behaviors tree, expand the temperature > Condition accessor by clicking the
[+] button at the left of the line > threshold ? gauge.foreground =...

The gauge.foreground parameter appears in the matrix on the right side of the page,
ready to be edited.

2. Click twice on that parameter, open the combo box and select color.

3. This replaces the former definition of the accessor with the new one which changes the
foreground color of both the ellipse and the gauge when the temperature is modified.

4. Choose Save from the File menu of the Main window to save your prototype.

You can move back to the Interface page if you wish, and test the new behavior of the
prototype by changing the temperature value and seeing that both the ellipse and the gauge
are affected by the condition behavior.

Finally, simplify the temperature attributes. Because this temperature will always be equal to
the internal gauge.value attribute, you can change its type. Instead of being a simple Int
value, you can make the temperature attribute directly reference the gauge.value. To do
this:

1. Go to the Graphic Behavior page of the Group Inspector.

2. In the right hand side of the temperature attribute, click twice on the Int label that
indicates its type. A combo box appears.

3. Choose Reference > gauge > value in the combo box menu.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 23

tutprotos.book Page 24 Tuesday, July 28, 2009 7:04 PM
The Int type is replaced by ^gauge.value indicating that changing the temperature is
equivalent to directly setting the gauge.value subattribute.

4. Select the gauge.value=temperature line in the tree. Then choose Edit > Delete.

This has the effect of removing the redundant assignment.

Defining an Interactive Behavior for a Prototype

You are going to define an interactive behavior for your prototype. This is done by adding
Event behaviors, defined in the Interactive Behavior page, the remaining page of the Group
Inspector.

1. Choose myproto from the Window menu in the Main window to bring the Prototype
buffer window to the foreground.

2. Click the Interactive Behavior tab in the Group Inspector panel.

3. Choose Events > Callback in the menu.

A new attribute named “Action” is created, as well as a Callback behavior and a “Watch”
behavior.

4. In the matrix on the right side of the page, set the Graphic Object parameter to gauge.
Leave the Callback Name and Input parameters on their default settings of Generic
and 0 respectively.

The Callback accessor specifies that when the Generic callback of the gauge is called
(through user input), the temperature value will be queried and sent to whatever object
listens to the changes of the Action value. These “listeners” can be other accessors of
the same prototype, other prototypes, or application objects. By default, adding the
Callback behavior has added to itself a “Watch” behavior.

5. Choose Control > Assign from the menu bar.

A new assigned behavior is added at the bottom of the Action behavior.

6. In the matrix on the right side, select the parameter values as follow:

● Attribute: temperature

● Send: gauge > value
24 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Editing a Prototype

tutprotos.book Page 25 Tuesday, July 28, 2009 7:04 PM

This means that when the callback is triggered through user action, the temperature
attribute is adjusted to match the gauge value.

7. Choose Save from the File menu of the Main window to save the prototype.

You can test the interactive behavior of your prototype:

1. In the Prototype buffer window, select the Active mode, either by issuing a marking
menu command (right, then left), or by choosing the Active icon in the Editing
Modes toolbar.

2. Click within the gauge object, or drag the level up or down. You will see the gauge
update itself, as well as change color when you cross the threshold value. In the Group
Inspector Interface page, you will see the temperature update itself each time you end the
interaction.

Editing a Prototype

Once you have created and saved a prototype, you can edit it again by selecting the
prototype in the palette, and choosing View > Edit Group (Ctrl+E).

All the changes you make will be propagated to the instances you have created when you
save it.

For instance, you can select the “bulb” prototype in the “samples” palette, and double click
on its icon: the Prototype edition buffer is opened, and the group inspector allows you to edit
its interface and behaviors.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 25

tutprotos.book Page 26 Tuesday, July 28, 2009 7:04 PM
Connecting Two Prototype Instances

You will learn how to connect two different prototype instances.

1. Choose myPanel from the Window menu in the Main window.

2. The 2D Graphics buffer window should contain the prototype instance that you created
in the tutorial. If it does not, drag the myproto icon from the Prototypes palette to the
buffer window to create a new instance of the prototype.

3. In the Palettes panel, choose samples in the Prototypes palette.

4. Drag the display icon to the buffer window.

This creates an instance of the display prototype in the same panel as the myproto
prototype instance:

5. Select the Group Connection interactor from the Editing Modes toolbar.

6. Click in the myproto prototype instance. Drag a line from the myproto instance to the
display instance. When you start dragging, be sure that you are dragging from a
graphic object and not from an empty space.

When you release the mouse button, the Connect two values dialog box appears asking
you to specify which output value from the myproto instance you wish to connect to
which input value of the display prototype:
26 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Summary

tutprotos.book Page 27 Tuesday, July 28, 2009 7:04 PM

7. In myproto, the triggering value is temperature. Select temperature in the left pane
and value in the right pane. Click the OK button.

A green arrow appears going from the myproto instance to the display instance,
indicating that a connection is made.

Each time the temperature is changed, either by the user or the application, the value
accessor of the display instance will be notified and will change its value accordingly.

8. To test this action, switch to Active mode by clicking the Active icon in the Editing
Modes toolbar.

Change the level of the gauge by dragging it with the mouse. The label in the display
instance changes as you change the level of the gauge.

You have completed the first prototypes tutorial.

Summary

The prototype that you have created in this tutorial is a simplified version of the thermo
prototype, one of the predefined prototypes of the sample library. The thermo prototype
(and also the myproto prototype that you created) has three components:

◆ Application interface: this is composed of its public values and defines how the
application is to manipulate the prototype.

Threshold: Float, the alert temperature you want to draw the user’s attention to.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 27

tutprotos.book Page 28 Tuesday, July 28, 2009 7:04 PM
Temperature: Int, the main value.

◆ Graphical representation: this is how the user perceives the application interface
values. It is composed of three objects: a scale, a gauge, and an ellipse:

◆ Behavior (Graphic and Interactive): this is represented using the following dataflow
graph showing the relationships between accessors:

This dataflow graph is meant to provide an overview of the dependencies among the
accessors that define the prototype behavior. At this point, you do not need to understand
the conventions used in the graph to represent accessors.

The behavior of the prototype is defined by the following four attributes:

● threshold - holds a float value that is used when setting the temperature value. It
is important that this attribute be defined before temperature, as temperature is
dependent on it. When the prototype is read back, threshold is set to its value
before temperature is evaluated, so that the condition accessor tests a correct value
when it is evaluated for the first time. An alternate way to ensure that the behaviors
are executed in a workable order would be to add an Assigned behavior
28 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Summary

tutprotos.book Page 29 Tuesday, July 28, 2009 7:04 PM
temperature=temperature to the threshold behavior, to force a reevaluation of
temperature when threshold is modified.

● temperature - holds the following behaviors:

(1) A Reference accessor: it references the gauge.value internal attribute.
gauge.value can also be called a subattribute of the prototype.

(2) A Condition accessor: when the temperature is above the threshold, the value
“red” is sent to the color attribute. Otherwise, “blue” is sent.

(3) A Notify accessor: this indicates that when the value is changed, this attribute can
notify others of its changes.

● color - is a Multiple accessor that sends its value to the Ellipse and Gauge
foreground colors.

● Action - holds the following accessors:

(1) A Callback accessor: whenever the user triggers the Generic callback of the gauge
(by clicking and dragging), a value is sent to whatever other accessor needs to be kept
aware of changes in the gauge value.

(2) A Watch accessor: it indicates that it wants to be kept aware of changes to the
Action attribute (which is itself).

(3) An Assign accessor: it indicates that whenever the Action attribute is changed,
the gauge.value subattribute should be assigned to the temperature value. This is
slightly redundant given that temperature is a reference to gauge.value itself, but
is necessary to interpret the other behaviors of the temperature attribute (condition
and notify).

Finally, you may want to connect a prototype instance to a real application providing data.
This is the topic of the next tutorial.

You may also want to examine in more detail the resources of the behaviors mechanism, and
how to create more complex behaviors. The samples libraries that come with
IBM ILOG Views Studio are a good starting point to further examine the various effects that
can be created with prototypes.

Predefined Libraries

You can look at the predefined prototypes contained in the IBM ILOG Views distribution.
Prototype Studio loads these libraries at start-up time.

Library Name Description

samples Sample library loaded at start-up.

sources Prototypes containing value sources.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 29

tutprotos.book Page 30 Tuesday, July 28, 2009 7:04 PM
To open one of these prototype libraries, go to the upper pane of the Palettes panel and click
the name in the Prototypes palette.

You can look at any prototype definition by double-clicking the prototype icon. This will
load the prototype into a Prototype buffer window and open a Group Inspector panel. When
you load a panel file that contains prototype instances, the required prototype libraries are
automatically loaded in the Prototypes palette.

Samples closer to real applications are available in the directory
$ILVHOME/samples/protos of the distribution. Each of these samples comes packaged in
a subdirectory with an example program that uses a prototype library (usually held in the
data subsubdirectory of the sample).

See the index.html file in the $ILVHOME/samples/protos in the library for a complete
description.

output Prototypes containing gadgets and defining output values.

lcd LCD displays (one digit and four digits).

operations Prototypes that can be used to connect prototypes and execute
operations on their values.

script Prototypes that use script accessors.

Library Name Description
30 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

C H A P T E R

tutprotos.book Page 31 Tuesday, July 28, 2009 7:04 PM
2

Linking Your Prototype to Application
Objects

This tutorial introduces the procedures available for linking prototypes to application
objects. It takes approximately 40 minutes to complete. You will learn how to perform the
following basic tasks:

◆ Load a panel containing Prototype instances.

◆ Retrieve the instances you want to drive from your application data.

◆ Create a Group Mediator to handle user events and feed them into your application.

◆ Link the Group Mediator to your application objects.

Introduction

This tutorial is organized into three steps, as follows:

◆ Step 1: Reading a Panel Containing Prototype Instances

◆ Step 2: Retrieving and Modifying the Prototype Instances

◆ Step 3: Creating a Group Mediator to Handle User Feedback
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 31

tutprotos.book Page 32 Tuesday, July 28, 2009 7:04 PM
To start the tutorial, copy the files located in $ILVHOME/doc/tutorials/protos/
tutorial2 into a directory where you have write permission. These files form the basic
template from which you can proceed through this tutorial. For each step X, you will find
files in the stepX directory that correspond to this step and build instructions that depend on
your environment.

First, start IBM ILOG Views Studio with the Prototypes extension and open the file
myPanel.ilv to examine its contents: it holds a prototype instance similar to the one built
in the first tutorial (see Creating Prototypes in IBM ILOG Views Studio). The prototype for
this instance is held in the myLib.ipl file, which opens automatically when you open the
file.

Step 1: Reading a Panel Containing Prototype Instances

The file step1/program.cpp contains the basic canvas of an IBM® ILOG® Views
program, with which you should already be familiar.

In order to have the prototypes library working, it is necessary to include the following files,
specific to the prototypes modules:

#include <ilviews/protos/proto.h>
#include <ilviews/protos/protogr.h>
#include <ilviews/protos/groupholder.h>
#include <ilviews/protos/allaccs.h>

While not mandatory, it is often convenient to include all default graphic objects in the main
file. This enables you to edit a prototype in IBM ILOG Views Studio without having to
ensure that all the individual graphic objects have been included. Once you have finished
modifying or extending your prototypes, you may wish to include only the necessary objects
in order to optimize the runtime footprint.

#include <ilviews/graphics/all.h>

For this particular example, you will also need to include the following file in order to read
the display prototype that uses the IlvMessageLabel class:

#include <ilviews/gadgets/msglabel.h>

If you have IBM ILOG Views Controls, including all predefined gadgets will let you use the
gadgets in your prototypes:

#include <ilviews/gadgets/gadgets.h>

Note: Other includes would be needed to use other features of IBM ILOG Views, such as
Managers.
32 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Step 1: Reading a Panel Containing Prototype Instances

tutprotos.book Page 33 Tuesday, July 28, 2009 7:04 PM
To run a program that contains calls to the Prototype package, you have to link the program
with (at least) these libraries: ilvproto, ilvgrapher, ilvmgr, views, ilog, and with the
specific libraries for your platform. Only the library ilvproto is specific to the Prototype
package.

The program opens a display. You then add “..” to the display path to locate the prototype
library myLib.ipl which holds the prototypes already defined. Next, the program creates a
container and loads the file myPanel.ilv, containing prototype instances. These instances
are automatically loaded. Finally, the program shows the container and starts the main loop,
like all regular IBM ILOG Views programs:

int
main(int argc, char* argv[])
{
 // Connect to the display system.
 IlvDisplay* display = new IlvDisplay("ViewsBGO", 0, argc, argv);
 if (!display || display->isBad()) {
 IlvFatalError("Couldn’t open display");
 return -1;
 }
 // Prepare a window and a manager to display a scene.
 IlvManager* manager = new IlvManager(display);
 IlvView* view = new IlvView(display, "BGO tutorial 1",
 "BGO tutorial 1", IlvRect(0, 0, 400, 300));
 manager->addView(view);
 // Load a data file into the manager
 // Add the samples data directory to the display path
 // to be sure to find the proper file.
 IlString buf (getenv("ILVHOME"));
 buf+="/doc/tutorial2/step1";
 display->appendToPath(buf);
 display->appendToPath("..");
 manager->read("myPanel.ilv");
 // The prototype instances are automatically read.
 // Then run the main loop.
 manager->setDoubleBuffering(view, IlvTrue);
 view->show();
 IlvMainLoop();
 return 0;
}

You can compile and link this program (step1/program.cpp) to see that your panel has
been read, which will operate as indicated here:

Note: The makefiles and project files provided have already specified all the libraries
needed to compile, link, and execute this program.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 33

tutprotos.book Page 34 Tuesday, July 28, 2009 7:04 PM

In the next section you will add some code to retrieve the prototype instance
myThermometer, which you created in the panel in the first tutorial (see Creating
Prototypes in IBM ILOG Views Studio).

Step 2: Retrieving and Modifying the Prototype Instances

All operations done on prototype instances within a panel, be it a container or a manager,
(and on IlvGroups, which are the superclass of prototype instances) are done using an
IlvGroupHolder. This class allows you to add, remove, and retrieve objects of class
IlvGroup from a panel.

After having read the file, retrieve the group holder associated with the manager. From the
group holder, retrieve the prototype instance myThermometer, and initialize its temperature
attribute to 0.0:

// Insert the following code after the line:
// "the prototype instances are automatically read."
 IlvGroupHolder* holder=IlvGroupHolder::Get(manager);
 IlvGroup* myThermometer = holder->getGroup("myThermometer");
 if (!myThermometer) {
 IlvFatalError("This program expects to find an IlvGroup "
 "of name 'myThermometer' in the file 'myPanel.ilv'");
 return -1;
 }
 myThermometer->changeValue(IlvValue("temperature", 0.0));

Next, you need to periodically update the temperature value from values provided by the
application. For this, create a timer routine by inserting the following lines before the main
function in the program (after the include directives):

// Insert the following code before the main() body.
const IlUInt angleincrement = 4;
34 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Step 2: Retrieving and Modifying the Prototype Instances

tutprotos.book Page 35 Tuesday, July 28, 2009 7:04 PM
static void
TimerProc(IlvTimer*, IlvAny arg)
{
static IlUInt angle=0;
 IlvGroup* thermometer=(IlvGroup*) arg;
 IlDouble temperature=50.0+40.0*sin(degreesToRadians(angle));
 // Feed in temperature values.
 thermometer->changeValue(IlvValue("temperature", temperature));
 angle = (angle + angleincrement) % 360;
}

This function makes the temperature rise and fall according to a sinusoidal function,
between the values of 10 and 90. Next, initialize this timer to wake up every 200 ms and
update the prototype instance “myThermometer”, which you retrieved from the panel. After
the line:

 myThermometer->changeValue(IlvValue("temperature", 0.0));

insert the following code:

 // start changing the values of the target group
 IlvTimer* timer = new IlvTimer(display, 0, 200, TimerProc,
 (IlvAny)myThermometer);
 timer->run();

This will periodically update the thermometer values. You can now compile and run your
program. You will see that the temperature rises and falls regularly, the thermometer
becoming red when the temperature is above the threshold previously set in
IBM ILOG Views Studio.

You can change the threshold value with a call to:

myThermometer->changeValue(IlvValue("threshold", 50.0));

You can retrieve the threshold value with the following call:
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 35

tutprotos.book Page 36 Tuesday, July 28, 2009 7:04 PM
IlvValue tval("threshold", (IlDouble)0.0);
IlDouble threshold = (IlDouble) myThermometer->queryValue(tval);

The complete source code is provided in the file step2/program.cpp, which serves as a
starting point for the next step of the tutorial.

Step 3: Creating a Group Mediator to Handle User Feedback

You want the application not only to drive the display, but also to handle some user input
that affects internal parameters. To do this, the prototype myproto in IBM® ILOG® Views
Studio has been slightly extended to add a slider-like object. The user will use this slider to
change the animation rate of the thermometer, making the temperature rise and fall faster or
slower depending on its value.

You may want to open the library myLib.ipl in IBM ILOG Views Studio to check the
attributes and behaviors that have been added in order to achieve this effect.

Linking an application object and a prototype instance is done using the Mediator design
pattern, implemented by the class IlvGroupMediator. To use this class, you should
include the following file:

#include <ilviews/protos/grouplin.h>

Defining a Token Application Object

In this tutorial, assume that there is one simple object, a thermometer, that you want to
display and control through a user interface implemented with BGOs:

#if defined(ILVSTD)
#include <cmath> // for sin() function
ILVSTDUSE
#else
#include <math.h>
#endif
struct Thermometer {
 IlFloat temperature;
 IlUInt acceleration;
 IlUInt curval;
 IlvTimer timer;
// The display argument is here to allow the use of a Views timer.
 Thermometer(IlvDisplay*);
 ~Thermometer() {}
 void adjust_temp();
static void TimerProc(IlvTimer*, IlAny);
};

Thermometer::Thermometer(IlvDisplay* dpy)
:temperature(20), acceleration(4), curval(0),
 timer(dpy, 0, 200, TimerProc, this) // see Note that follows
{
 timer.run();
36 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Step 3: Creating a Group Mediator to Handle User Feedback

tutprotos.book Page 37 Tuesday, July 28, 2009 7:04 PM
}

void Thermometer::adjust_temp()
{
 temperature = 50.0 + (40.0 *
 sin(degreesToRadians((IlDouble)curval)));
 curval = (curval + acceleration) % 360;
}
void Thermometer::TimerProc(IlvTimer*, IlAny arg)
{
 ((Thermometer*)arg)->adjust_temp();
}

The method adjust_temp is called periodically to implement the dynamics of the
application. You will notice that this class does not offer any user-interface specific
functionality. It is meant to function as a stand-alone piece of software that can work with
other application objects (in a plant simulator, for instance), but nothing has been done to
allow the interactive viewing or editing of its values. In this tutorial, you will create a user
interface for this object without modifying its definition at all.

In the main program, after creating the display, create an instance of this application object:

// create and initialize an application object.
Thermometer myThermometer(display);

Defining the GroupMediator of an Application’s Class

To create a user interface for an instance of Thermometer, you define a subclass of
GroupMediator that handles this Thermometer class:

struct TemperatureWatcher: public IlvGroupMediator
{
 TemperatureWatcher(IlvGroup* g, Thermometer* a)
 : IlvGroupMediator(g, a) {
 if(!tempSymbol) tempSymbol=IlvGetSymbol("temperature");
 if(!accSymbol) accSymbol=IlvGetSymbol("acceleration");
 }
 IlBoolean changeValues(const IlvValue*, IlvUShort);
 void queryValues(IlvValue*, IlvUShort) const;
inline Thermometer* getThermometer() const {
 return (Thermometer*) getObject(); }
static IlvSymbol* tempSymbol;
static IlvSymbol* accSymbol;
};
IlvSymbol* TemperatureWatcher::tempSymbol;
IlvSymbol* TemperatureWatcher::accSymbol;

Note: Some systems may raise a warning about the use of “this” in the construction above.
The construction is safe, however, and the warning may be ignored.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 37

tutprotos.book Page 38 Tuesday, July 28, 2009 7:04 PM
You need to define how to update the values of Thermometer when they are edited by the
user. The changeValues method establishes a one-to-one correspondence between
attribute values of the prototype instances and the Thermometer members:

// Method handling with user input and updating the application.
IlBoolean
TemperatureWatcher::changeValues(const IlvValue* v, IlvUShort n)
{
 if(locked()) return IlFalse;
 for (IlUInt i=0;i<n;i++) {
 if (v[i].getName() == accSymbol)
 getThermometer()->acceleration = (IlUInt) v[i];
// You do not want the temperature value to be editable by the user.
// If this was the case, the following code would simply be added:
// else if (v[i].getName() == tempSymbol)
// getThermometer()->temperature = (IlFloat) v[i];
 }
 return IlTrue;
}

You need to specify through which prototype attributes the values of Thermometer are to be
reflected in the user interface. The queryValues method establishes here a one-to-one
correspondence between the Thermometer attributes and the values of a prototype instance
representing it:

// Method that synchronizes the group to the application values.
void TemperatureWatcher::queryValues(IlvValue* v, IlvUShort n) const
{
 for (IlUInt i=0;i<n;i++) {
 if (v[i].getName() == tempSymbol)
 v[i] = getThermometer()->temperature;
 else if (v[i].getName() == accSymbol)
 v[i] = getThermometer()->acceleration;
 }
}

Linking an Application Object to its Representation

To instantiate the user interface for the Thermometer application, create an instance of
myThermometer that watches it. In the main function, add the following code after having
retrieved the group myThermometer from the group holder (but before showing the main
window):

 TemperatureWatcher watch(tempRep, &myThermometer);
 watch.update();
 IlvTimer timer(display, 0, 200, TimerProc, &watch);
 timer.run();

The timer will periodically check the state of the thermometer instance to update the
presentation if needed.
38 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

Summary

tutprotos.book Page 39 Tuesday, July 28, 2009 7:04 PM
Synchronizing the Application Object and its Display

Finally, you need to define the asynchronous update routine before the main function:

static void
TimerProc(IlvTimer*, IlvAny arg)
{
 TemperatureWatcher* watcher=(TemperatureWatcher*) arg;
 watcher->update();
}

The TemperatureWatcher will periodically update itself according to the current values
of the Thermometer objects.

Summary

You can now compile and run the program to test its behavior. If you wish, you can compile
and run the file step3/program.cpp. This file implements the tutorial as described, and
also adds a few extra hints and probable optimizations that you may want to perform. You

Note: Other mechanisms could be implemented, such as having the Thermometer class
behave according to the Observer/Observable design pattern and being able to notify other
objects of its changes. This method is slightly more efficient. The samples in $ILVHOME/
samples/protos implement this technique. However, the use of a triggered asynchronous
observer is a useful technique to implement applications that have real-time constraints: at
any time you can adjust the rate at which the user interface is refreshed, if needed to meet
severe time constraints.
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 39

tutprotos.book Page 40 Tuesday, July 28, 2009 7:04 PM
will notice that the temperature rises and falls as in the program at the end of step 2. In
addition however, you can adjust the acceleration rate with the slider-like object to the right
of the thermometer.

The mechanism described enables the easy implementation of user-interfaces while
preserving strong encapsulation of application objects. It becomes possible with this design
to completely separate the implementation of the functional core from the user interface and
have them evolve separately, once a common interface has been agreed upon and group
mediators have been defined. In the samples/protos directory several other mechanisms
to integrate BGOs in your application are shown to let you find the one that best suits your
needs.
40 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

I N D E X

tutprotos.book Page 41 Tuesday, July 28, 2009 7:04 PM
Index

C

C++
prerequisites 5

M

manual
naming conventions 6
notation 6
organization 5
typographic conventions 6

N

naming conventions 6
notation 6

P

prototypes
tutorial 1 7
tutorial 2 31

T

tutorials
prototypes tutorial 1 7
prototypes tutorial 2 31

typographic conventions 6
I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L 41

tutprotos.book Page 42 Tuesday, July 28, 2009 7:04 PM
42 I B M I L O G V I E W S P R O T O T Y P E S V 5 . 3 — T U T O R I A L

	IBM ILOG Views Prototypes V5.3 Tutorial
	About This Tutorial
	Tutorial 1 Creating Prototypes in IBM ILOG Views Studio
	Introduction
	Launching Studio With the Prototypes Extension

	Creating a Prototype
	Defining the Application Interface of the Prototype
	Defining the Visual Representation of the Prototype
	Defining the Graphic Behavior of the Prototype
	Changing a Prototype Value
	Creating an Instance of a Prototype
	Modifying the Prototype
	Defining an Interactive Behavior for a Prototype
	Editing a Prototype
	Connecting Two Prototype Instances
	Summary
	Predefined Libraries

	Tutorial 2 Linking Your Prototype to Application Objects
	Introduction
	Step 1: Reading a Panel Containing Prototype Instances
	Step 2: Retrieving and Modifying the Prototype Instances
	Step 3: Creating a Group Mediator to Handle User Feedback
	Defining a Token Application Object
	Defining the GroupMediator of an Application’s Class
	Linking an Application Object to its Representation
	Synchronizing the Application Object and its Display

	Summary

	Index
	C
	M
	N
	P
	T

