
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Application Framework V5.3

User’s Manual

June 2009

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

C O N T E N T S
Table of Contents

IBM ILOG Views Application Framework V5.3

Preface About This Manual . 7

What You Need to Know .7

Manual Organization .7

Notation. .8

Typographic Conventions .8

Naming Conventions .8

Chapter 1 Introducing IBM ILOG Views Application Framework. 9

What is Application Framework .9

The Document/View Architecture. .10

Chapter 2 Using the Application Framework Editor . 13

Starting Up the Application Framework Editor .13

Application Framework Editor Main Window .14

Components Palette .15

Workspace .16

Creating a New Application .17

Selecting a Document Type .18

Creating and Configuring an Options File (.odv file) .19

Setting Application Parameters .19
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 3

Adding Menu Items .20

Adding Toolbar Items .21

Setting Document Parameters .21

Setting General Document Parameters .22

Setting Parameters for a Selected Document .24

Setting Window Parameters .25

Setting Toolbar Parameters for a Document Type .28

Setting Action Parameters .28

Action Definition .29

Creating an Action .32

Setting Popup Menu Parameters .32

Popup Definition. .33

Creating a Popup Menu .34

Adding a Popup Item .35

Adding a New Popup Submenu .35

Setting Dialog Parameters .35

Dialog Definition .36

Creating a Dialog Box .38

Setting Data Parameters .39

Data Definition .40

Generating Parameters .40

Parameters Command .40

GUI Action Summary .44

Chapter 3 Implementing an Application. 47

How Application Framework Functions. .47

Option Files .49

Main File .50

Implementation of a Document Class .50

New Document. .51

Serialization .51

Commands .53
4 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Undo / Redo / Repeat Actions .54

Reflecting Changes Made In the Data to Associated Views .55

Implementation of a Document View Class. .56

Interactions. .57

Chapter 4 Application Framework Interfaces . 61

The Interface Mechanism .61

Declaring an Interface .62

Naming Convention for Macros .62

Chapter 5 Actions. 65

Activating an Action Event .65

Processing an Action Event .66

Index . 67
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 5

6 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

P R E F A C E
About This Manual

This User’s Manual describes the Application Framework package of
IBM® ILOG® Views. Application Framework is a library designed to simplify the task of
developing your graphical user interface (GUI) for applications based on the
IBM ILOG Views Component Suite of C++ libraries for graphics creation and control.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM ILOG Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual Organization

This manual contains the following chapters:

◆ Chapter 1, Introducing IBM ILOG Views Application Framework provides an overview
of the document/view architecture and other features of the Application Framework
package of IBM® ILOG® Views.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 7

◆ Chapter 2, Using the Application Framework Editor describes the Application
Framework Editor, itself an easy-to-use GUI.

◆ Chapter 3, Implementing an Application provides the steps and classes necessary to
incorporate the document/view architecture of Application Framework.

◆ Chapter 4, Application Framework Interfaces describes how to incorporate the interface
mechanism of Application Frameowrk.

◆ Chapter 5, Actions describes how to activate and process actions under Application
Framework.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier italics.

◆ Some words in italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the ILOG Views
Foundation library begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
8 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

C H A P T E R
1

Introducing IBM ILOG Views Application
Framework

The IBM® ILOG® Views Application Framework provides an easy-to-use graphics user
interface (GUI) for defining the user interface for an application. This chapter provides an
overview of the IBM ILOG Views Application Framework package. It includes the sections:

◆ What is Application Framework

◆ The Document/View Architecture

What is Application Framework

Application Framework is a library that lets you develop complete applications, such as the
one shown in Figure 1.1:
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 9

Figure 1.1

Figure 1.1 Application Developed with Application Framework

It provides a tool called the Application Framework Editor, which allows you to edit the
application graphically: all menus, bars, actions, dynamic menus, and so on, are specified
using this tool. Chapter 2 describes in detail how to start up and use the Application
Framework Editor.

Application Framework also provides a mechanism that allows its objects to track and
process GUI events. This mechanism will be looked at in Chapter 4, Application Framework
Interfaces.

The Document/View Architecture

Application Framework is built on a Document/View architecture, common to most
Windows applications. In this type of architecture, the application is a frame window holding
toolbars and menus, that allows you to edit several documents at the same time. This frame
window manipulates documents (data that is opened using menu items such as File > Open,
File > New, and so on) that the user can edit inside views, which are usually created in a
frame window.
10 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

The Document/View Architecture
For example, a document in Microsoft Excel is a table in memory loaded from an .xls file,
and the views that can display and modify this document are sheets or charts.

Chapter 3, Implementing an Application describes the document/view architecture in more
detail.

Warning: In Microsoft applications, the term document is used for both the data in
memory and the view that lets the user edit the data.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 11

12 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

C H A P T E R
2

Using the Application Framework Editor

The IBM® ILOG® Views Application Framework provides an easy-to-use graphics user
interface (GUI) for defining the user interface for an application.

Starting Up the Application Framework Editor

On initial startup, the Application Framework Editor shows this dialog box:
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 13

Figure 2.1

Figure 2.1 The Application Framework Editor Wizard

This dialog box has the following options:

◆ New application wizard - to begin creating a new application. See Creating a New
Application.

◆ Open an existing application - to display the browse dialog box for selecting an existing
application to open. See Creating and Configuring an Options File (.odv file).

◆ Open a recently opened application - to quickly select an application from the drop-down
list. See Application Framework Editor Main Window.

You can choose to bypass this screen by deselecting the “Show this dialog next time” option.
In this case, you are taken directly to the Application Editor main window.

Application Framework Editor Main Window

The Application Framework Editor main window displays a menu bar, action toolbar, status
bar, an Application Components palette, and a multidocument workspace. The startup
window is shown in Figure 2.2.
14 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Application Framework Editor Main Window
Figure 2.2

Figure 2.2 Application Editor Main Window

Components Palette

The Application Components palette on the left allows you to select the application entity
you are editing:

◆ Application

◆ Document types

◆ Actions

◆ Popup menus

◆ Dialogs - for dialog boxes and windows

◆ Data
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 15

Workspace

The workspace on the right displays and allows you to set the parameters of the selected
entry for each of the application entities.

◆ A hierarchical tree in the middle area of the workspace allows you to select the item
location to be edited or added to. For example:

◆ Selecting an item in the tree activates other possible parameter entry fields in the
workspace. The fields are tailored to the specific operation. For example:

◆ The workspace toolbar at the bottom of the workspace allows you to easily select the
operations tailored to the current workspace. For example:
16 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Creating a New Application
The workspace toolbar changes appropriately, and items are grayed/activated, with the
type of application entity. Possible toolbar icons are shown in Table 2.1

Creating a New Application

To develop an application with Application Framework, follow these basic steps:

1. Launch the Application Framework Editor and edit all the application options. Edit the
different menus and toolbars that will appear in the application, describe all the
document types that the application will be able to open, and so on. These items are
saved in an options file that is read by the generated application, when initializing.

2. Generate the application code, using the Application Framework Editor.

3. Complete the generated code:

● To manage the data (the document):

- serialize the data,

Table 2.1 Workspace Toolbar

Toolbar Icon Description

Insert a new action, popup, or dialog item below the currently selected tree
or item; or a new category, accelerator, or other item to a list.

Insert a new popup menu.

Insert a new separator

Remove the currently selected item.

Move the selected item up in the tree.

Move the selected item down in the tree.

Insert a new toolbar.

Remove the selected toolbar.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 17

- add accessors.

● To display and edit the data (the view):

- initialize the view according to the data (an example of this is filling a tree gadget),

- manage commands generated by the user events on views.

The remainder of this chapter describes the general navigation and operational features of
the Application Framework Editor. For step-by-step instructions refer to the tutorial sample
for Application Framework.

Selecting a Document Type

The first step in creating a new application is to select the document type. When you begin a
New application, the Select a document type dialog box appears:

Figure 2.3

Figure 2.3 Select a Document Type

Several predefined types of documents are made available. Each type of document defines
convenient methods for manipulating its data and is preassociated with a specific view.

The document types are described further in Table 2.2.

Note: You can modify the application options described in Step 1 at any time during the
development of the application. You are not required to regenerate the code when you
modify these options.
18 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Application Parameters
After you select a document type, the Application Framework Editor main window appears.
See Application Framework Editor Main Window.

Creating and Configuring an Options File (.odv file)

Application Framework stores all parameters that describe an application in an options file
(.odv extension).

The Application Framework Editor opens a new .odv file whenever you create a new
application (New from the File menu, toolbar, or initial wizard) and select a document type.

Setting Application Parameters

The Application Framework Editor is used to set your application parameters when
Application is selected from the Application Framework Editor Palette.

Table 2.2 Selection of Document Type

Document
Type

Use To: Description

Create a generic application The Generic document type does not make any
assumptions about the typeof document. This is
the choice for most applications.

Create a manager
application

The Manager document type deals with
IlvGraphic objects inserted in an
IlvManager object.

Create a grapher application The Grapher document type deals with
IlvGraphic objects inserted in an
IlvGrapher as nodes or links.

Create a project application The Project document type is an organization of
files in folders and subfolders.

Create a text application The Text document type is any text document.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 19

Figure 2.4

Figure 2.4 Application Selected from Palette

In the Application Data workspace of the Application Framework Editor you set:

◆ The application name in the Application name field. By default, this name is used to
create the directory and the project name. The default name shown in Figure 2.2 is
ODVDoc1.

◆ The main window title in the Main window title field. This is the name that will appear as
the title in your application.

Adding Menu Items

You add menu items in the Main Menu & Toolbars section of the workspace when
Application is selected from the Application Framework Editor Palette.

1. Select an item in the "Main menu" tree where you want to insert a new item. The item
will be inserted after this item.

2. Click the "Insert a new action" button .

3. Modify the inserted item by choosing the associated action in the "Categories" combo
box and "Commands" list.
20 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Document Parameters
If you want to modify a menu item, select the item and modify it by selecting the new action
in the "Commands" list.

If you want to insert new commands, refer to Creating an Action.

To remove an item in the main menu bar, select the item to remove and click the delete
button .

Adding Toolbar Items

You add toolbar items in the Main Menu & Toolbars section of the workspace when
Application is selected from the Application Framework Editor Palette.

1. Select an item in the "Standard" tree where you want to insert a new button in the toolbar.
The item will be inserted after this item.

2. Click the "Insert a new action" button .

3. Modify the inserted item by choosing the associated action in the "Categories" combo
box and "Commands" list.

If you want to modify a menu item, select the item and modify it by selecting the new action
in the "Commands" list

If you want to insert new commands, refer to Creating an Action.

To remove an item from the toolbar, select the item to remove and click the delete button
.

Setting Document Parameters

The Application Framework Editor is used to set your document parameters when
Document types is selected from the Application Framework Editor Palette.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 21

Figure 2.5

Figure 2.5 ‘Document Types’ Selected from Palette

The middle column shows the document tree, headed by the document type (GenDoc in
Figure 2.5; or Grapher, Project, Text, or Manager depending on the chosen type). This
column shows the document types that the application can handle. You can add many
document types with the "New Document Type" button .

The right column allows you to change parameters of the selected items in the middle
columns as described below.

Setting General Document Parameters

When GenDoc is selected in the tree, the workspace has the following tabs:
22 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Document Parameters
◆ Description tab contains basic information about the document type.

Figure 2.6

Figure 2.6 ‘Description’ Tab (Document Type Description)

● Name: This name is used when you want to retrieve the document template that can
create this type of document.

● Description: The description of the document type.

● Default Document Name: This name is used when a document of this type is created.
When created, the document has this name.

● Bitmap: This bitmap associated to the document type.

● Filters section: This section allows you to define the elements that will appear in the
open document dialog box of your application. These elements will be used in the
"Files of types" section in the open document dialog box .

● Filter: The extension of the document files. The form of this field should be *.xxx
where xxx is the extension.

● Description: Description of the filter.

● Filters appears in open dialog: If the check box is checked, these filters will appear in
the open dialog box of your final application.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 23

◆ Specific menu template tab sets the menu visibility feature for a document.

Figure 2.7

Figure 2.7 ‘Specific Menu Template’ Tab

◆ Always show menu: When the toggle is checked, the specific menu and toolbar are
added even if a document of this type is not active.

Setting Parameters for a Selected Document

When the Document item for a document type is selected in the tree, the workspace has the
following fields:
24 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Document Parameters
Figure 2.8

Figure 2.8 ‘Document Description’

◆ The Document class specifies the name of the class used during the code generation.

◆ You can specify the parent class by choosing one item in the "Derived from" string list
which is filled by a predefined class.

◆ The "Allow multiple documents" check box specifies if your application can handle
many document of this type or only one.

Setting Window Parameters

When the Window item for a document type is selected in the tree, the workspace has the
following tabs:
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 25

◆ View tab allows you to define the class of the views on the document.

Figure 2.9

Figure 2.9 ‘Views’ Tab

● In the Class text field, you specify the class name that will be used during the code
generation.

● In the "Derived from" list, you select the class from which the selected view class is to
be derived.
26 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Document Parameters
◆ View(s) container tab provides additional parameters for the container that will contain
the view.

Figure 2.10

Figure 2.10 ‘View(s) Container’ Tab

● "Allow duplication of window" specifies if your application can handle only one or
many views on the same document.

● In the "Type" combo box, you can choose the initialize configuration of your window.
You can choose between:

- View in MDI child frame

- View in MDI maximized child frame

- Docked at left

- Docked at right

- Docked at top

- Docked at bottom

- Docked in a float window
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 27

● For all docked configurations, you can specify a method in the "Show/hide action"
text field which will be called when this window appears or disappears. This text field
is displayed only for docked configurations.

Setting Toolbar Parameters for a Document Type

When the Toolbars item is selected in the tree, the workspace allows you to define or
change a specific toolbar that is to be displayed only when a document of this type is active.
For editing this toolbar see Adding Toolbar Items.

Figure 2.11

Figure 2.11 ‘Document Type Menu & Toolbars’

Setting Action Parameters

The Application Framework Editor is used to set your action parameters when Actions is
selected from the Application Framework Editor Palette.
28 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Action Parameters
Figure 2.12

Figure 2.12 ‘Actions’ Selected from Palette

The middle column shows the Actions tree. By clicking either of the RecentProjects in
the tree, you display the Action Definition.

Action Definition

The Action Definition workspace has the following tabs:
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 29

◆ Description tab contains basic information about the action.

Figure 2.13

Figure 2.13 ‘Description’ Tab of Action Definition

● Command Name: This name is created by the user to identify the action.

● Description: The user can enter a description of the action.

● Menu: The name of the item appearing in the menu (for example New, Open, Save,
and so forth).

● Tooltip: The name of the item appearing in the tooltip text (for example “New
(Ctrl+N)”).

● Categories list: shows the category of the action.

● Selected Category: lists the current categories that can be selected (Application, File,
Project, and so forth).

The Description, Menu, and Tooltip items can be text, or they can be a message identifier
of the form &identifier for text contained in a .dbm file. (For information on the
.dbm file type see the IBM ILOG Views Foundation User’s Manual.)
30 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Action Parameters
◆ Bitmaps tab shows characteristics of the bitmap icon associated with the action. This
icon appears in the menu, toolbar, and tree lists with the action name.

Figure 2.14

Figure 2.14 ‘Bitmaps’ Tab of Action Definition

● Bitmap Type: You can define a set of bitmaps for each different type in the string list.
These bitmaps will be used depending on the status of the action.

● Selected bitmap path: The path where the icon is found for the selected bitmap type.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 31

◆ Keyboard tab shows the keyboard shortcut for the action.

Figure 2.15

Figure 2.15 ‘Keyboard’ Tab of Action Definition

● Accelerators list: To add an accelerator click the Add button and use the ‘Selected
accelerator’ field, for example ‘Ctrl+W’ is added as a default first accelerator.

● Selected Accelerator: The current accelerator or keyboard shortcut. To change the
shortcut, click in the field, and then type the sequence of the sortcut on your keyboard.

Creating an Action

For complete details on implementing actions, see Chapter 5, Actions.

Setting Popup Menu Parameters

The Application Framework Editor is used to set your popup menu parameters when Popup
menus is selected from the Application Framework Editor Palette.
32 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Popup Menu Parameters
Figure 2.16

Figure 2.16 ‘Popup Menus’ Selected from Palette

The Popup Definition workspace becomes active when you begin adding a popup menu.

Popup Definition

The Popup Definition workspace allows you to define popups that will be accessible from
your application.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 33

Figure 2.17

Figure 2.17 Popup Definition

◆ The tree shows the layout of the popup menu. When an item of the popup is selected, the
remaining fields become activated.

◆ Categories: A list showing the possible categories. You can select a category of action to
retrieve an action more easily. When the All category is selected (as shown), all
commands are displayed alphabetically in the Commands list.

◆ Commands: The possible commands in the selected category.

Creating a Popup Menu

To begin defining a new popup menu, click the New Popup button below the main tree.
This column shows a new item in the tree which is the new popup menu created (see
Figure 2.16). The created popup has a default layout with two items (separator and
Properties items), but you can change this layout.

The default name of the popup menu is Popupxx where xx is an incremental number when
you insert more than one popup menu. You can change the name of this popup by selecting
the root item in the Popup Definition window, pressing the F2 key, and then typing the new
name.
34 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Dialog Parameters
In your code, you can retrieve this popup by using the
IlvDvApplication::readPopup(const IlvSymbol*) function.

In the Popup Definition window, you can define the layout of the popup by adding or
removing items. For adding items to the popup menu see Adding a Popup Item.

Adding a Popup Item

1. Select an item in the popup layout where you want to insert a new item. The item will be
inserted after this item.

2. Click the "Insert a new action" button .

3. Modify the inserted item by choosing the associated action in the "Commands" list.

If you want to modify a popup item, select the item and modify it by selecting the new action
in the "Commands" list.

If you want to insert new commands, refer to Creating an Action.

To remove an item in the popup, select the item to remove and click the delete button .

Adding a New Popup Submenu

The Popup Definition workspace allows you to submenus in the popup.

◆ In the Popup Definition tree, select the item where you want to insert the submenu. The
submenu will be inserted after this item.

◆ Click the "New” popup menu button in the Popup Definition toolbar.

◆ Modify the label of the popup item (use the F2 accelerator) and then enter the new label.

◆ Modify the submenu by adding or editing the items of the submenu (see Adding a Popup
Item).

Setting Dialog Parameters

The Application Framework Editor is used to set your dialog box parameters when Dialogs
is selected from the Application Framework Editor Palette.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 35

Figure 2.18

Figure 2.18 ‘Dialogs’ Selected from Palette

The Dialog Definition workspace becomes active when you begin adding a dialog.

Dialog Definition

The Dialog Definition workspace allows you to define dialog box properties. The dialog box
must first be defined in IBM ILOG Views Studio.

The Dialog Definition workspace has the following tabs:
36 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Dialog Parameters
◆ Description tab contains basic information about the dialog box.

Figure 2.19

Figure 2.19 ‘Description’ Tab of Dialog Definition

● Name: This name is by default the name of the .ilv file, for example Question
when the file loaded is question.ilv.

● Classname: This name is by default the Name and the word Dialog, for example
QuestionDialog. This name will be used during the code generation.

● Derived From: The IBM ILOG Views class from which the dialog is derived. Select
from the list.

● Resource Key: The name of the resource used to reread this file, by default the .ilv
file name.

● ILV Filename: The full path name of the .ilv file that was loaded.

● Title: The title that appears in the Windows title bar. By default it is the Classname.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 37

◆ Subclass tab contains the name of the dialog’s subclass. This entry is optional.

Figure 2.20

Figure 2.20 ‘SubClass’ Tab of Dialog Definition

◆ Properties tab allows you to specify standard properties of the dialog box. Choose any or
all of these properties.

Figure 2.21

Figure 2.21 ‘Properties’ Tab of Dialog Definition

Creating a Dialog Box

To begin a definition, click the New Dialog button . You are requested to open the
predefined .ilv file.

Note: To create a dialog box in the Application Framework Editor, you must define a dialog
box in IBM ILOG Views Studio and save it (.ilv file). This name is requested when
creating a dialog box in the Application Framework Editor.
38 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Setting Data Parameters
The middle column shows the Dialog tree, with the Dialog Definition on the right. Complete
the information for the Dialog Definition tabs (for details see Dialog Definition).

Setting Data Parameters

The Application Framework Editor is used to set your data parameters when Data is selected
from the Application Framework Editor Palette.

Figure 2.22

Figure 2.22 ‘Data’ Selected from Palette

You can use this feature to add data files to the application executable. They can be any data
files:.dbm, bitmaps, .ilv, or user data files that are not otherwise included.

The Data Definition workspace becomes active when you begin adding a data file by
clicking the New Data button .
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 39

Data Definition

The Data Definition workspace (see Figure 2.22) allows you to define the data properties
needed to include the file.

◆ Name: The name to be used to reread the file for retrieving the data. The default is the
name of the file that was loaded. You can change this name by editing the text field.

◆ ILV Filename: The full path name of the file. This path name can be changed by clicking
 and selecting a new path.

Generating Parameters

After you have defined the application parameters in the Application Framework Editor, you
must generate it.

The Generation menu provides commands to generate the application.

Parameters Command

For initial generation, when you select Generation -> Parameters, it displays the Project
Generation window.
40 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Generating Parameters
Figure 2.23

Figure 2.23 Project Generation window, Project Path tab

This window has three tabs:

◆ Project Path tab (see Figure 2.23) contains the fields:

● Project Root Path: The root path where the project is saved. The following paths can
be relative to this root path.

● Platform: The platform for the makefile.

● Makefile Path: The path for the makefile, based on the Platform selection.

● Directories for: Data, Source, Header files, and Help files. These are all given defaults
but can be changed.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 41

◆ General tab allows you to set general information fields.

Figure 2.24

Figure 2.24 ‘General’ tab (Project Generation)
42 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Generating Parameters
◆ Generation tab provides information about the project generation.

Figure 2.25

Figure 2.25 ‘Generation’ tab (Project Generation)

Generate All

Use Generate All to generate all files of your application.

Custom Generation

Use Custom Generation to generate just one or selected portions of the application. This can
be done when adding a new dialog box, for example.

Generate Data

Use Generate Data for updates that do not require changing the source code or makefiles
after the initial generation of the application. For example, it can be used to add an action, a
document type, a popup, or a new data file.

Important: This operation replaces all existing generated files of your application. A
dialog asks you for confirmation before proceeding.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 43

GUI Action Summary

Table 2.3 Menu and Toolbar Operations

Action
Toolbar
Icon

Menu Operation Comments

File Operations

Create a new project File>New

Load an .odv file File>Open

Close the current .odv
file

File>Close

Save an .odv file File>Save
File>Save As

For Save As, type a new name including file
extension.

Save all open .odv files File>Save All

Generation Operations

Set project generation
parameters

Generation>Parameterst

Generate the entire
application.

Generation>Generate all
the application

Generate specific files in
the current application.

Generation>Generate
specific files...

Opens the Custom Generation dialog box.

Generate data. Generation>Generate data Displays the generation report log.

Tools

Customize application Tools>Customize Opens the Customize window.

Insert and remove
modules

Tools>Modules Opens the Insert/Remove modules dialog box.

Script a project Tools>Script project Creates or opens a script project file (.spj).

Window Operations
44 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

GUI Action Summary
Start a new window Window>New window

Display the next window Window>Next Window

Display the previous
window

Window>Previous Window

Cascade all document
views

Window>Cascade
Windows

Tile all document views
horizontally

Window>Tile Horizontally

Tile all document views
vertically

Window>Tile Vertically

Quit the Application
Framework Editor

File>Exit Asks about unsaved files before exiting.

Table 2.3 Menu and Toolbar Operations (Continued)

Action
Toolbar
Icon

Menu Operation Comments
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 45

46 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

C H A P T E R
3

Implementing an Application

This chapter discusses how to implement an application under Application Framework,
including a description of the classes and files required. It is divided as follows:

◆ How Application Framework Functions

◆ Option Files

◆ Main File

◆ Implementation of a Document Class

◆ Commands

◆ Implementation of a Document View Class

How Application Framework Functions

Application Framework is built on a Document/View architecture (see The Document/View
Architecture). Figure 3.1 illustrates the different classes that the Document/View mechanism
relies upon.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 47

Figure 3.1

Figure 3.1 Document/View Classes

All the classes shown in the figure, except the IlvDvApplication class, the
IlvDvDocument hierarchy, and the IlvDvDocViewInterface hierarchy, are hidden from
the developer. Instances of these classes are automatically created according to the
application options that are read while the application is initializing.

The code of an Application Framework application consists of:

◆ Option Files: At least one option file, which is edited using the Application Framework
Editor.

◆ Main File: A main file containing the main entry point of the program, which must
instantiate an IlvDvApplication (or a derived class) object. This file is generated by
the Application Framework Editor and must only be completed in very specific cases, as
shown in the Text sample.

◆ Implementation of a Document Class: Files implementing a document class, which is a
subclass of IlvDvDocument.

◆ Implementation of a Document View Class: Files implementing a document view class,
which is a subclass of IlvDvDocViewInterface class.
48 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Option Files
Option Files

While initializing, an Application Framework application reads three option files that
contain data. This data can be the contents of menus and toolbars, the recently used file list,
document templates, and so on.

The option files are the following:

◆ The Application Framework option file. Its path is <ILVHOME>/data/ilviews/
appframe/docview.odv and it is contained by the <ILVHOME>/data/res/
appframe.rc file.

This file contains the descriptions of the default actions (OpenDocument,
SaveDocument, Cut, Copy, and so on), the default menus, and the description of the
default toolbars.

◆ The application option file. The file path is given to the IlvDvApplication object
using the IlvDvApplication::setAppOptionsFilename method.

This file is edited using the Application Framework Editor and contains the following
information:

● Application name and title of the main window.

● Description of different document templates.

● The main menu and the toolbars, if different from the default ones stored in the
Application Framework option file.

● Description of actions.

● User application data.

◆ User profile options file. Its default path is given as follows:

● Windows:

<Windows directory>/Profiles/<Username>/Application Data/
<Application name>.odv

● UNIX:

$(HOME)/<Application name>.odv

To specify a different path, use the method:

IlvDvApplication::setUserOptionsFilename

This file contains the application data modified by the user the last time the application
was run. It is mainly composed of:

● Most Recently Used file list.

● Position and size of the application main window.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 49

● Positions and state (hidden or not) of all dockable toolbars.

● Customizing of toolbar contents.

● Customizing of actions.

Main File

When you create an Application Framework application, you must first create an
IlvDvApplication object in the main procedure, the same way you create an
IlvApplication object in a simple IBM® ILOG® Views application:

int
main(int argc, char* argv[])
{
 IlvDvApplication* app = new IlvDvApplication("", 0, argc, argv);
 IlvDisplay* display = app->getDisplay();
 if (!display || display->isBad()) {
 IlvFatalError("Couldn't create display");
 delete display;
 return -1;
 }
 // Adding the options file
 app ->setAppOptionsFilename((const char*)"myapp.odv");

 // Adding the data base file
 display->getDatabase()->read((const char*)"myapp.dbm", display);

 // Continue...
 application->run();
 return 0;
}

IlvDvApplication is a subclass of IlvApplication and features management of
options data and the handling of menu and toolbar items, as well as actions and their states.

Most of all, this IlvDvApplication object is aware of all objects involved in the
Document/View mechanism (see Figure 3.1). Similarly, all these objects are aware of the
application object. The application object is useful, for example, when changing the state of
an action from a document or from a document view.

Implementation of a Document Class

A document class is derived from the IlvDvDocument class.

Note: The main file is automatically generated using the Application Framework Editor.
50 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Implementation of a Document Class
The document is the user data. The document class loads and saves data and also provides
accessors that are used by document views to modify data.

Application Framework provides document classes that manage specific data, such as
IBM ILOG Views managers, text buffers, or projects, as shown in the following inheritance
tree:

Figure 3.2

New Document

A derived document class must override the IlvDvDocument::initializeDocument
method.

It is called when the File > New command is executed to create a document.

The method must first call IlvDvDocument::initializeDocument. Then, it must
initialize specific data.

Serialization

The IlvDvDocument::serialize method:

void IlvDvDocument::serialize(IlvDvStream& stream);

is called when a file is opened to create the document, if a call to stream.isSaving()
returns false. Otherwise, the document must be saved.

Typically, the body of the method has the following form:

IlvDvDocument::serialize(stream);
if (stream.isSaving()) {
 // Here, write your persistent data
}
else {

Note: The user data is similar to the Model View Controller (MVC) approach.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 51

 // Here, read data from stream
}

There are two ways of loading and saving data when using the parameter called stream.

One way is to use istream or ostream objects. These objects are given by a call to the
istream* getInStream() const and ostream* getOutStream() const methods
directly.

The other way, which is usually easier, is to use specific serialization methods, provided by
the IlvDvStream class. Here are these methods:

◆ Operators

// Storing operators
IlvDvStream& operator<<(IlvInt i);
IlvDvStream& operator<<(IlvUShort w);
IlvDvStream& operator<<(IlvShort ch);
IlvDvStream& operator<<(IlvUInt u);
IlvDvStream& operator<<(IlvBoolean b);
IlvDvStream& operator<<(IlvFloat f);
IlvDvStream& operator<<(IlvDouble d);
IlvDvStream& operator<<(const IlvString& s); //’s’ must not contain blanks

// Reading operators
IlvDvStream& operator>>(IlvInt& i);
IlvDvStream& operator>>(IlvUShort& w);
IlvDvStream& operator>>(IlvShort& ch);
IlvDvStream& operator>>(IlvUInt& u);
IlvDvStream& operator>>(IlvBoolean& b);
IlvDvStream& operator>>(IlvFloat& f);
IlvDvStream& operator>>(IlvDouble& d);
IlvDvStream& operator>>(IlvString& s);

◆ void serialize(IlvString&, IlvBoolean betweenQuotes = IlvTrue);

This method is a safe way of loading and saving strings. If the betweenQuotes
parameter is set to true, the string is saved between quotation marks. This way it can
contain blank spaces.

◆ void serializeBitmap(IlvBitmap*&, IlvBoolean lock = IlvTrue);

Serializes a bitmap path.

◆ Serialization of objects

When implementing user classes, it is recommended to derive from the
IlvDvSerializable class. This class is an abstract interface that provides both a
mechanism for safe downcasting and a serialization method:

virtual void serialize(IlvDvStream& stream);

● void serializeObjects(IlvArray&);

Load and save an array of IlvDvSerializable objects:

● void writeObject(const IlvDvSerializable*);
52 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Commands
● IlvDvSerializable* readObject();

◆ virtual void clean();

This method is called to clean up the document data. It is only used for documents whose
corresponding document type does not allow opening more than one document (SDI
document types, typically project documents). When a user tries to create a new
document while a document of the same type is already open, Application Framework
does not delete the currently opened document to create another one. Instead, it cleans
the open document (by calling this method) and reinitializes the document.

Commands

To modify the data of a document, it is recommended to use the Application Framework
command mechanism, which provides the following advantages:

◆ Undo/Redo mechanism - The Undo, Redo, and Repeat actions are automatically
processed, as well as their state.

◆ The modification state of a document is automatically managed. Adding a command to
an unmodified document will mark the document as modified (a star will appear in the
title of the frames that contain views associated with this document). Similarly, undoing
this command will restore the unmodified state of the document (and will remove the star
from the title of the same frames).

◆ Keeps a log of all modifications made to the document.

Consider the following document class:

class MyDocument
: public IlvDvDocument
{
...
 void setX(int x) { _x = x; }
 int getX() const { return _x; }
 protected:
 int _x;
};

To modify the X property of the document while processing either a document view event/
action or a document action, it is not recommended to call directly the setX method of the
document. It is more appropriate to implement a command class (called
ChangeXPropertyCommand in this example) that will modify this property:

class ChangeXPropertyCommand
: public IlvDvCommand
{
 ChangeXPropertyCommand(MyDocument* document, int newX)
 : _document(document),
 _newX(newX)
 {
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 53

 _oldX = document->getX();
 }
 virtual void doIt() { setX(_newX); }
 virtual void undo() { setX(_oldX); }
 void setX(int x) { _document->setX(x); }
 protected:
 MyDocument* _document;
 int _newX;
 int _oldX;
};

Therefore, the implementation of a view or the document itself should invoke the following
code to change the X property (instead of calling directly the setX method of the
document):

document->doCommand(new ChangeXPropertyCommand(document, newX));

This code will execute the ChangeXPropertyCommand command by calling its doIt
method, and will store it within a command history internally managed by the document.

Use the following method of the IlvDvDocument class to manage commands:

void doCommand(IlvDvCommand* cmd,
 IlvBoolean updateUI = IlvTrue,
 IlvBoolean bSetModified = IlvTrue);

This method is called to add the command object cmd to the history of internal commands.
Then, the command is executed by calling its IlvDvCommand::doIt method. The
updateUI parameter specifies that the UI of the Undo, Redo, and Repeat commands must
be updated. The bSetModified parameter specifies whether the modification flag of the
document must be set to true.

Undo / Redo / Repeat Actions

The Undo, Redo, and Repeat actions are automatically managed by the document. To
process these actions, the document invokes the following methods (which can be
overridden for specific uses):

◆ virtual IlvBoolean canUndo() const;

This method returns true if the command that has just been executed can be undone. If
there is no command that can be undone, for example if the document has not been
modified, this method returns false.

◆ virtual void undo(IlvBoolean bUpdateUI = IlvTrue);

This method calls the undo method of the last command executed. The bUpdateUI
parameter specifies that the UI of the Undo, Redo, and Repeat commands must be
updated.

◆ virtual IlvBoolean canRedo() const;
54 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Commands
This method returns true if the command that has just been undone can be redone by
calling the IlvDvCommand::doIt method. If there is no command that can be done, for
example if the document has not been modified, this method returns false.

◆ virtual void redo(IlvBoolean bUpdateUI = IlvTrue);

This method calls the doIt method of the last undone command. The bUpdateUI
parameter specifies that the UI of the Undo, Redo, and Repeat commands must be
updated.

◆ virtual void repeat(IlvBoolean bUpdateUI = IlvTrue);

This method repeats the last command executed. This command is copied by calling its
IlvDvCommand::copy method. The copy is added to the commands history and then
executed. The bUpdateUI parameter specifies that the UI of the Undo, Redo, and
Repeat commands must be updated.

Reflecting Changes Made In the Data to Associated Views

You have seen how to modify the data of a document by using commands. However, you
still need to see how to notify the views associated with the document to reflect these
changes.

A document can have several views of different types. Therefore, to communicate with its
views, a document sends generic messages that are interpreted by each view depending on
their type. To send generic messages to its views, a document uses the following method:

void notifyViews(const char* messageName,
 IlvDvDocViewInterface* exceptView, ...);

◆ The name of the message is messageName. It must not be the name of an action (such as
Copy, OpenDocument, and so on).

◆ The exceptView parameter specifies a view that must not be notified. The value of this
parameter is usually 0. It can also be the view returned by the call to
getCurrentCallerView() (this method returns the view that is currently notifying
the document of an event). In this case, you may want this view not to be notified
because it may have already modified its contents before it notified the document.

◆ The variable list of parameters that follows depends on the message name. For example,
if a document contains information on an employee and that a command has just
changed the name of that employee, the document notifies its views of this change as
follows:

void EmployeeDocument::changeName(const char* name)
{
 _employeeName = name;
 notifyViews("NameChanged", 0 /* Notify all views */, name);
}

I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 55

To receive a message, a view (or any other class that implements the IlvDvInterface
interface) must specify an entry in its interface declaration. This entry makes a message
name and its parameters correspond with a method of the class. This is explained in more
detail in Chapter 4, Application Framework Interfaces.

The sample can now be completed so that the view of an employee document can receive the
message NameChanged:

IlvDvBeginInterface(EmployeeView)
/* The message "NameChanged" with one parameter const char* name
 is processed by the method:
 EmployeeView::nameChanged with one parameter const char* name */

 Method1(NameChanged, nameChanged, const char*, name)
IlvDvEndInterface1(IlvDvFormView)

/* The nameChanged method is automatically called when an EmployeeDocument
 notifies its views giving the message name "NameChanged" */

void EmployeeView::nameChanged(const char* name)
{
 IlvTextField* nameField = getEmployeeNameField();
 nameField->setLabel(name, IlvTrue);
}

Implementation of a Document View Class

A document view class is derived from the IlvDvDocViewInterface class. It shows the
contents of its associated document and allows the end user to edit it. Here is the inheritance
tree of the IlvDvDocViewInterface class:
56 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Implementation of a Document View Class
Figure 3.3

When deriving from this class, only the IlvDvDocViewInterface::initializeView
method needs to be overridden.

virtual void initializeView();

This method is called to initialize the document view object according to the document data.
For example, a list view can be filled according to a data set stored in the document. A
sample of the body of this method is shown here:

void
ListView::initializeView()
{
 IlvDvListView::initializeView();
 ListDocument* document = getListDocument();
 IlvUInt count;
 Element* const* elements = document->getElements(count);
 for(IlvUInt iElement = 0; iElement < count; iElement++)
 addString(elements[iElement]->getName());
}

Interactions

You have seen how a document view can show the contents of its document.

However, you will also need to edit the contents of a document by interacting with a view.
You will want interactions made on the view to be translated into changes in the document
data.

Reminder: It is recommended to use Application Framework commands to do this.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 57

Consider a list view that lets the user edit a list of names stored within the document
associated with the view. You want the user to be able to remove a name (the selected name
in the view) by pressing the Del key. To do so, proceed as follows:

// The list view tracks the event and makes the changes to the document
// through a command
void ListView::handleGadgetEvent(IlvEvent& event)
{
 if (event.type() == IlvKeyDown) {
 IlvUShort c = event.data();
 if (c == IlvDeleteKey) {
 getNamesDocument()->doCommand(new RemoveNameCommand(getNamesDocument(),
 getSelectedName());
 return IlvTrue;
 }
 }
 return IlvStringList::handleGadgetEvent(event);
}

// Here is the implementation of the command class
class RemoveNameCommand
: public IlvDvCommand
{
public:
 RemoveNameCommand(NamesDocument* document, const char* name):
 _document(document), _name(name) {}
 virtual void doIt() { _document->removeName((const char*)_name); }
 virtual void undo() { _document->insertName((const char*)_name); }
protected:
 NamesDocument* _document;
 IlString _name;
};

This showed how events that occur on a view can be reflected to a view through the use of
commands. However, the view still has to be refreshed to reflect this change.

In this sample, the selected name item still has to be removed from the list when the user
presses the Del key. To do this, the document notifies its associated views when it removes a
name from its list of names. To communicate with its views, the document sends generic
messages to its associated views, as shown in section Commands.

The sample will now be completed:

// The document notifies its views when it removes a name from its
// list of names
void NamesDocument::removeName(const char* name)
{
 _namesArray.removeName(name);
 notifyViews("RemoveName", 0, name);
}

// The list view updates its list when the document notifies it that it
// has removed a name from its list. First, the list view class associates
// the RemoveName message with its removeName method. Thus, this method will
// be called when the user notifies its views with the RemoveName message.

58 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Implementation of a Document View Class
IlvDvBeginInterface(ListView)
Method1(RemoveName, removeName, const char*, name);
IlvDvEndInterface1(IlvDvListView)
void ListView::removeName(const char* name)
{
 IlShort index = getPosition(name);
 if (index != (IlShort)-1) {
 remove(index);
 reDraw();
 }
}

For more information on managing events in document views, see samples manager and
synedit, both provided in the samples directory.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 59

60 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

C H A P T E R
4

Application Framework Interfaces

This chapter describes how to use the Application Framework interface. It is divided as
follows:

◆ The Interface Mechanism

◆ Declaring an Interface

◆ Naming Convention for Macros

The Interface Mechanism

Application Framework provides an interface mechanism that allows you to:

◆ Track and process GUI actions (see the chapter on Actions).

◆ Perform introspection on your classes.

◆ Script your classes.

This interface mechanism associates a name with a method or field of a class. The name of
this method or field depends on how the interface mechanism is used. For introspection and
scripting, the name is a key that identifies the method.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 61

Declaring an Interface

Here is a small sample showing how to declare an interface to a class (called ‘A’):

// Declaration of class A
class A
: public IlvDvInterface
{
public:
 void setX(int x) { _x = x; } < /FONT >
 int getX() const { return _x; }

protected:
 int _x;
};

// Implementation file of A. Use the following macros to
// introspect methods setX, getX, and field _x:

IlvDvBeginInterface(A)
 Method1(SetX, setX)
 TypedMethod (GetX, getX)
 Field(X, _x)
IlvDvEndInterface()

....
// Using an instance of A as an interface, it is possible
// to invoke its methods and to modify its field
// without being aware of class A !!!
A* a = new A;
IlvDvInterface* interf = a;

// First we invoke its methods:
IlvDvValue returnedValue;
interf->callMethod(IlvGetSymbol("SetX"), &returnedValue, 100);
interf->callMethod(IlvGetSymbol("GetX"), &returnedValue);
assert((IlvInt) returnedValue == 100);

// Then, we modify its field directly:
interf->setFieldValue(IlvGetSymbol("X"), 200);
assert((IlvInt)interf->getFieldValue(IlvGetSymbol("X"),
 &returnedValue) == 200);

Naming Convention for Macros

This section discusses the naming conventions for macros used for scipting and
introspection.

For methods:

◆ The root of the macro name must be Method.
62 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

Naming Convention for Macros
◆ If the declared method returns a value, the macro must begin with the prefix Typed.

◆ If the declared method contains arguments, the macro must end with the suffix [Number
of Parameters].

For fields:

◆ The macro name is Field.

Examples are included in Table 4.1:

For scripting and introspection, the first macro parameter is used to identify the method or
the field given as the second parameter.

For more information on introspection, see the sample dealing with introspection provided
in the samples directory.

Table 4.1 Macro samples

Methods to “export” Macro declarations

Violate getPosition() const; TypedMethod (GetPosition, getPosition,
IlvFloat)

const char* set(int); TypedMethod1 (Set, set, int,
ExportedFirstParameterName, const char*)

void setPosition(int x, int y); Method2 (SetPosition, setPosition, int, X, int,
Y)
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 63

64 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

C H A P T E R
5

Actions

This chapter describes how to use the action events provided with Application Framework. It
has the sections:

◆ Activating an Action Event

◆ Processing an Action Event

Activating an Action Event

Using interfaces, Application Framework provides a mechanism that makes it easy to
process actions. The application processes the activation of a menu item in a menu or in a
toolbar by generating an action event. This action event is generated according to the action
associated with the activated menu item.

Then, the action event is sent to the following targets in this order:

◆ The active document view, which is the active view inside the active view frame.

◆ The document associated with the active document view.

◆ The active view frame.

◆ The views and their associated documents, which are inserted into dockable bars.

◆ The main window.
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 65

◆ The action processors declared to the application.

◆ The application itself.

Processing an Action Event

To process an action event, a class must insert an Action macro in its interface. The first
parameter of the Action macro is the name of the action, and the second parameter is the
name of the method that will process this action.

For example, here is a text view that manages the Cut action event:

IlvDvBeginInterface(MyTextView)
 Action(Cut, myCut)
IlvDvEndInterface1(IlvDvTextView)

void
MyTextView::myCut()
{
 ...
}

A document or a view can manage the action state the same way as it processes an action
event. It does this using the macro RefreshAction([ActionName], [MethodName]).

For example, here is a text view that manages the Cut action state:

IlvDvBeginInterface(MyTextView)
 RefreshAction(Cut, refreshCut)
IlvDvEndInterface1(IlvDvTextView)

void
MyTextView::refreshCut(IlvDvActionDescriptor* desc)
{
 desc->setValid(isRelevantSelection());
}

The refreshCut method will be called each time the document (and its associated
document views) becomes active. Since this may not be sufficient, it is possible to force the
checking of the action state by calling the application method refreshAction([Action
Name]). In the previous sample, refreshAction(IlvGetSymbol("Cut")) can be
invoked, for example, each time the selection changes in the text view.
66 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

I N D E X
Index

Symbols

.odv files 19

.spj files 44

A

action
creating 32

action event
processing 66

action parameters
setting 28

action state
forcing 66

actions
description 65

adding
menu item 20
popup menu item 35
popup submenus 35
toolbar item 21

Application Framework
code 48
inheritance tree 51
overview 9, 65

Application Framework Editor
creating an application 17
description 10
develop an application 17

document type 18
main window 14
menu 44
startup 13
toolbar 16, 44
using 13
workspace 16

application name 20
application parameters

setting 19
applications

generating 44
generating data 44
generating specific files 44
opening 14

B

betweenQuotes 52

C

C++
prerequisites 7

cascade document views 45
closing

Application Framework Editor 45
ODV file 44

components palette 15
creating
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 67

action 32
application 17
menu items 20
options file 19
popup menu 34
popup menu items 35
popup submenu 35
toolbar items 21

custom generation 43
customize tool 44

D

data
generating 44

data parameters
setting 39

developing
application 17

dialog parameters
setting 35

display next window 45
display previous window 45
document

description 11
general parameters 22
setting selected parameters 24
toolbar parameters 28

document parameters
setting 21

document type 18
Document/View architecture

classes 48
description 10

E

exiting 45

F

file
new 44
operations menu 44

forcing

action state 66
frame window 10

G

generate all 43, 44
generate data 43
generating

all 43
application 44
custom 43, 44
data 43, 44
parameters 40
specific files 44

generation
all 43
custom 43
data 43
operations menu 44
setting project parameters 40, 44

generic document 19
grapher application 19
GUI events

track and process 10, 61

H

handling menu and toolbar items 50

I

IlvApplication class 50
IlvDvApplication class 48, 50

description 48
setAppOptionsFilename member function 49
setUserOptionsFilename member function 49

IlvDvDocument class 48
description 48
initializeDocument member function 51

IlvDvDocViewInterface class 56
description 48
initializeView member function 57

IlvDvSerializable class 52
IlvDvStream class 52
implementation
68 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

new document 51
serialization 51

inheritance tree 51
document view class 57

initializeDocument member function
IlvDvDocument class 51

initializeView member function
IlvDvDocViewInterface class 57

interactions 57
interface declaration

sample 62
interface mechanism 61
introspection 61
istream 52

L

loading
ODV file 44

loading data 52

M

macros
action 66
naming conventions 62
RefreshAction 66

main file
description 50
sample code 50

Main window title 20
manager application 19
managing options data 50
manual

naming conventions 8
notation 8

menu items
adding 20

menus
creating popup 34
creating popup submenus 35

modules
insert and remove 44

N

naming conventions 8
examples 63
fields 63
macros 62
methods 62

new application 14
new project 44
notation 8

O

ODV file
closing 44
loading 44
saving 44

opening
application 14
ODV file 44

option files
application 49
Application Framework 49
description 49
user 49

options file 19
ostream 52

P

palette 15
parameters

action 28
application 19
data 39
dialog 35
document 21
general document 22
generating 40
popup 32
selected document 24
toolbar for a document 28
window 25

popup
creating menu 34
I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K 69

creating submenu 35
setting parameters 32

popup menu items
adding 35

processing
GUI events 61

profile options file
Unix 49
Windows 49

project application 19

Q

quitting
Application Framework Editor 45

quotation marks 52

S

saving
ODV file 44

saving as
ODV file 44

saving data 52
script project 44
script project file 44
setAppOptionsFilename member function

IlvDvApplication class 49
setting

action parameters 28
application parameters 19
data parameters 39
dialog parameters 35
document parameters 21
document toolbar parameters 28
general document parameters 22
popup parameters 32
project generation parameters 40, 44
selected document parameters 24
window parameters 25

setUserOptionsFilename member function
IlvDvApplication class 49

starting
Application Framework Editor 13
new window 45

strings
blank spaces 52

T

text application 19
tiling

windows horizontally 45
windows vertically 45

toolbar
Application Framework Editor 16

toolbar items
adding 21

tools
menu 44

tracking
GUI events 61

W

window
display next 45
display previous 45
menu 44

window parameters
setting 25

windows
cascade 45
starting new 45
tiling horizontally 45
tiling vertically 45

workspace 16
70 I B M I L O G V I E W S V 5 . 3 — A P P L I C A T I O N F R A M E W O R K

	IBM ILOG Views Application Framework V5.3 User’s Manual
	About This Manual
	Introducing IBM ILOG Views Application Framework
	What is Application Framework
	The Document/View Architecture

	Using the Application Framework Editor
	Starting Up the Application Framework Editor
	Application Framework Editor Main Window
	Components Palette
	Workspace

	Creating a New Application
	Selecting a Document Type
	Creating and Configuring an Options File (.odv file)

	Setting Application Parameters
	Adding Menu Items
	Adding Toolbar Items

	Setting Document Parameters
	Setting General Document Parameters
	Setting Parameters for a Selected Document
	Setting Window Parameters
	Setting Toolbar Parameters for a Document Type

	Setting Action Parameters
	Action Definition
	Creating an Action

	Setting Popup Menu Parameters
	Popup Definition
	Creating a Popup Menu
	Adding a Popup Item
	Adding a New Popup Submenu

	Setting Dialog Parameters
	Dialog Definition
	Creating a Dialog Box

	Setting Data Parameters
	Data Definition

	Generating Parameters
	Parameters Command

	GUI Action Summary

	Implementing an Application
	How Application Framework Functions
	Option Files
	Main File
	Implementation of a Document Class
	New Document
	Serialization

	Commands
	Undo / Redo / Repeat Actions
	Reflecting Changes Made In the Data to Associated Views

	Implementation of a Document View Class
	Interactions

	Application Framework Interfaces
	The Interface Mechanism
	Declaring an Interface
	Naming Convention for Macros

	Actions
	Activating an Action Event
	Processing an Action Event

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	S
	T
	W

