
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views Charts V5.3

User’s Manual

June 2009

usrcharts.book Page 1 Thursday, July 23, 2009 5:01 PM

usrcharts.book Page 2 Thursday, July 23, 2009 5:01 PM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

usrcharts.book Page 3 Thursday, July 23, 2009 5:01 PM

C O N T E N T S

usrcharts.book Page 4 Thursday, July 23, 2009 5:01 PM
Table of Contents

IBM ILOG Views Charts V5.3

Preface About This Manual . 10

What You Need to Know .10

Manual Organization .10

Notation. .11

Typographic Conventions .11

Naming Conventions .11

Related Documentation. .12

Part I Using Charts with IBM ILOG Views Studio 14

Chapter 1 Introducing Charts in IBM ILOG Views Studio. 16

Launching IBM ILOG Views Studio with the Charts Extension .16

A Quick Look at the Interface .17

Creating a Chart Object .20

Using the Chart Inspector .20

Chart Inspector Icons .22

General Page .22

Data Sets Page .23

Displayers Page. .24
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 4

usrcharts.book Page 5 Thursday, July 23, 2009 5:01 PM
Projection Page .26

Scales Page. .27

Layout Page. .29

Miscellaneous Page. .31

Callbacks Page .34

Using the Chart Legend Inspector .34

Chapter 2 Customizing Charts . 38

Example 1: Charting Temperatures and Pressures of the Week. .38

Defining Several Independent Ordinate Scales .39

Defining a Grid Associated with a Scale .52

Defining a Related Ordinate Scale. .52

Creating a Stacked or a Side-by-Side Representation .56

Example 2: Charting Analytic Functions .60

Using a Data Set Defined by a Script Function .60

Using Logarithmic Scales. .66

Connecting a Legend to a Chart .68

Chapter 3 Using Polar Charts . 72

Example 1: Representing Values Expressed in Radians .73

Case 1: Applying a Transformation .73

Case 2: Setting a Starting Angle and a Range .79

Example 2: Representing Time Values .81

Creating the Polar Chart .82

Defining the Data Set .82

Defining the Displayer .84

Customizing the Projection .85

Customizing the Abscissa Scale .85

Customizing the Ordinate Scale. .86

Part II Using the Charts Library . 88

Chapter 4 Introducing the Charts Library . 90
5 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 6 Thursday, July 23, 2009 5:01 PM
Main Features of the Charts Library. .90

Global Chart Characteristics .90

Data Features .91

Graphical Representations of Data .91

Scale Features. .92

Decorations .92

Interactors .93

Feature Illustrations. .94

Chapter 5 Chart Basics . 96

What is a Chart? .96

General Architecture of the Charts Library .99

Data Classes .100

Chart Classes .101

Basic Steps for Creating a Chart .102

Creating a Simple Cartesian Chart .103

Creating a Simple Polar Chart .109

Additional Ways to Customize a Chart .112

How Charts Work in IBM ILOG Views .115

Components of a Chart Object .115

Component Classes of the Charts Library .117

Using the Component Classes in an IlvChartGraphic Object .120

How Displayer Objects Draw the Graphical Display .123

Chapter 6 Data Handling . 126

Handling Data Storage .126

Types of Data Sets .127

Adding Data Sets to Be Displayed by a Chart .131

Sharing Data Among Charts .132

Modifying Data and Updating Charts .134

Types of Modifications .134

Updating Charts Automatically .135
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 6

usrcharts.book Page 7 Thursday, July 23, 2009 5:01 PM
Using Listeners to Catch Data Changes .138

Chapter 7 Chart Layout . 144

Computing the Chart Layout .144

Setting General Properties of a Chart Layout Object. .146

Getting and Setting the Chart Layout Object of a Chart .148

Chapter 8 Data Display . 150

Drawing the Graphical Representations of Data .150

Using Single Displayers .154

Scatter Displayer .155

Polyline Displayer. .156

Polygon Displayer .159

Step Displayer .160

Stair Displayer .161

Bar Displayer .162

3D Bar Displayer .163

High-Low Displayer .164

High-Low Bar Displayer .166

Pie Displayer .167

Using Composite Displayers .171

Marked Polyline Displayer .173

High-Low Open-Close Displayer .175

Stacked Displayers .177

Side-by-Side Displayers. .181

Adding a Displayer to a Chart .183

Examples .184

Customizing Data Display .184

Adding Graphic Information to a Data Point. .185

Defining How the Palettes are Applied for the Data Display .190

Projecting Out-of-Bounds Data Points .191

Chapter 9 Scales Display . 194
7 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 8 Thursday, July 23, 2009 5:01 PM
Drawing the Scales of a Chart .194

Setting General Properties. .195

Using Single Scale Displayers .197

Setting General Properties. .198

Predefined Single Scale Displayers .203

Using Scale Steps Updaters to Compute Scales Graduations .206

Adding a Scale Displayer in a Chart .208

Advanced Features for Customizing Scales .210

Changing the Orientation of the Scales .210

Defining the Minimum and Maximum Data Values Represented by a Scale 212

Applying a Transformation to the Data Values Represented by a Scale 213

Chapter 10 Decorations Display . 216

Displaying a Legend .216

Setting General Properties. .218

Adding a Legend to a Chart .219

Displaying a Grid .219

Setting General Properties. .220

Adding a Grid Displayer to a Scale .221

Displaying a Cursor .224

Setting General Properties. .225

Adding a Cursor to a Scale .226

Chapter 11 Interacting with Charts. 230

Using the Chart Interactors .230

Zoom Interactor .232

Scroll Interactor .232

Pan Interactor. .233

Crosshair Interactor .233

Drag-Point Interactor .233

Highlight-Data-Point Interactor. .234

Information-View Interactor .234
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 8

usrcharts.book Page 9 Thursday, July 23, 2009 5:01 PM
Select-Data-Points Interactor .235

Setting an Interactor on a Chart Object .236

Example .236

Chapter 12 Using Charts to Display Real-Time Data . 238

Automatic Scroll Modes .238

Using Automatic Scroll Modes to Display Real-Time Data .239

Scroll Example .240

Improving Performance When Adding Data Points to a Chart .243

Releasing the Automatic Update .246

Appendix A The IlvXMLChartData Class. 248

Introducing the IlvXMLChartData Class. .249

Tags Definition .250

data .250

series .251

valuesList .251

valueOperator .251

property .251

Customizing Value and Date List Processing .252

Index . 254
9 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

P R E F A C E

usrcharts.book Page 10 Thursday, July 23, 2009 5:01 PM
About This Manual

This User’s Manual explains how to use the Charts Library of IBM® ILOG® Views and the
Charts extension of IBM ILOG Views Studio.

What You Need to Know

This manual assumes that you are familiar with the Microsoft® Windows® or UNIX®
environment in which you are going to use IBM ILOG Views, including its particular
windowing system. Since IBM ILOG Views is written for C++ developers, the
documentation also assumes that you can write C++ code and that you are familiar with your
C++ development environment so as to manipulate files and directories, use a text editor,
and compile and run C++ programs.

Manual Organization

This manual is divided into two parts that describe how to use the IBM® ILOG® Views
Charts Package, and one Appendix.

Part I, Using Charts with IBM ILOG Views Studio provides an introduction to the
IBM ILOG Views Charts package by presenting several examples of the types of charts and
the customizing that can be performed with this package. You will learn how to use the
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 10

usrcharts.book Page 11 Thursday, July 23, 2009 5:01 PM
Charts extension of IBM ILOG Views Studio, which is dedicated to the IBM ILOG Views
Charts package. It contains the following chapters:

◆ Chapter 1, Introducing Charts in IBM ILOG Views Studio

◆ Chapter 2, Customizing Charts

◆ Chapter 3, Using Polar Charts

Part II, Using the Charts Library gives information on the Charts Library of
IBM ILOG Views. It contains the following chapters:

◆ Chapter 4, Introducing the Charts Library

◆ Chapter 5, Chart Basics

◆ Chapter 6, Data Handling

◆ Chapter 7, Chart Layout

◆ Chapter 8, Data Display

◆ Chapter 9, Scales Display

◆ Chapter 10, Decorations Display

◆ Chapter 11, Interacting with Charts

◆ Chapter 12, Using Charts to Display Real-Time Data

Appendix A, The IlvXMLChartData Class

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier typeface.

◆ Some words appear in italics when seen for the first time.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the IBM® ILOG® Views
Charts library begin with Ilv.
11 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 12 Thursday, July 23, 2009 5:01 PM
◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;
static IlvClassInfo* ClassInfo*() const;

Related Documentation

For a description of the IBM® ILOG® Views Charts C++ classes, global functions, type
definitions, macros, and error messages, see the online version of the IBM ILOG Views
Charts Reference Manual.

For information on graphics objects in general, see the IBM ILOG Views Foundation User
Manual.

For information on using IBM ILOG Views Studio, see the IBM ILOG Views Studio User’s
Manual.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 12

usrcharts.book Page 13 Thursday, July 23, 2009 5:01 PM
13 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 14 Thursday, July 23, 2009 5:01 PM
Part I
Using Charts with IBM ILOG Views Studio

This part consists of the following chapters:

◆ Chapter 1, Introducing Charts in IBM ILOG Views Studio describes the
IBM® ILOG® Views Studio with Charts interface.

◆ Chapter 2, Customizing Charts teaches you how to customize charts by working with
Cartesian charts.

◆ Chapter 3, Using Polar Charts guides you through the process of creating and
customizing polar charts.

usrcharts.book Page 15 Thursday, July 23, 2009 5:01 PM

C H A P T E R

usrcharts.book Page 16 Thursday, July 23, 2009 5:01 PM
1

Introducing Charts in IBM ILOG Views
Studio

In this chapter, you will find some basic information to get you started using charts in
Studio. You will find information on the following topics:

◆ Launching IBM ILOG Views Studio with the Charts Extension explains how to access the
Charts extension of IBM® ILOG® Views Studio.

◆ A Quick Look at the Interface briefly describes the Main window and Palettes panel that
are displayed at start-up time.

◆ Creating a Chart Object explains how to create a chart object.

◆ Using the Chart Inspector shows each notebook page of the Chart inspector and briefly
explains what you can do in each of them.

◆ Using the Chart Legend Inspector shows and describes the inspector that enables you to
customize legend objects.

Launching IBM ILOG Views Studio with the Charts Extension

To launch IBM® ILOG® Views Studio with the Charts extension, do the following:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 16

usrcharts.book Page 17 Thursday, July 23, 2009 5:01 PM
1. Go to the directory $ILVHOME/studio/<system> of the IBM® ILOG® Views
distribution.

2. Type ivfstudio -selectPlugins.

3. A window appears listing the available plug-ins.

4. Check Charts and any other plug-ins you may want to use.

5. Click OK to validate and launch IBM ILOG Views Studio with the plug-ins you have
selected.

A Quick Look at the Interface

When you launch IBM® ILOG® Views Studio with the Charts extension, the Main window
with the Palettes panel appears on your screen.

◆ The work space on the right of the Main window contains the buffer window(s) created
by default. You will use these buffer windows to drag and drop chart objects from the
Charts palette. You can use the buffer window on top (the Gadgets buffer window), or
create another buffer window by selecting New from the File menu.

◆ The Palettes panel on the left displays the palettes of predefined graphic objects available
in IBM ILOG Views. The upper pane displays a tree gadget with various items, each
corresponding to a particular graphic palette. The lower pane displays the objects
contained in the palette selected from the tree.

Note: If you want to construct an application with IBM ILOG Views Studio and, in
particular, have access to the Test mode, you also need to check the GUI Application plug-
in.
17 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

A Quick Look at the Interface

usrcharts.book Page 18 Thursday, July 23, 2009 5:01 PM
Figure 1.1

Figure 1.1 Main Window at Start Up

Scrolling down the tree in the upper pane of the Palettes Panel, you see Charts, a subitem of
Graphics. When you click Charts, you display the Charts palette in the lower pane.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 18

usrcharts.book Page 19 Thursday, July 23, 2009 5:01 PM
Figure 1.2

Figure 1.2 Charts Palette

The Charts palette contains the following objects:

◆ A chart legend object, which is an instance of the IlvChartLegend class. You will use
this object to add legends to your charts. The legend object that appears in the palette
displays only the name of the class. Legend items will be displayed when the legend
object is connected to a chart.

◆ Several chart objects, which are all instances of the IlvChartGraphic class. These
chart objects differ only in the way that they have been customized. Three examples of
charts are provided in the palette:

● Cartesian chart: this is a chart object that has been customized to display data
expressed in Cartesian coordinates in a standard way.

● Polar chart: this is a chart object that has been customized to display data expressed
in polar coordinates in a circular way.

● Pie chart: this is a chart object that has been customized to display a pie.
19 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Creating a Chart Object

usrcharts.book Page 20 Thursday, July 23, 2009 5:01 PM
Creating a Chart Object

To create a chart object, do the following:

1. Click Charts in the upper pane of the Palettes Panel to display the contents of the Charts
palette.

2. Select the chart you want from the lower pane of the Palettes panel and drag it to your
working buffer window.

Your working buffer window can be the buffer window that is created by default or any
other window you have created in the work space. You can create a new buffer window
by selecting File > New from the menu bar at the top of the Main window, and then the
buffer type you want (2D Graphics, and so on).

When you drag a chart object from the Charts palette to the buffer window, the
corresponding IlvChartGraphic object surrounded by selection handles appears in the
window.

3. Double-click the chart object to open its specific inspector.

The Chart inspector enables you to customize the chart object. The number of parameters
you will have to change depends on how different you want your chart to be from the
initial chart.

Two dedicated inspectors have been implemented for the IBM® ILOG® Views Charts
package:

◆ A Chart inspector for chart objects

◆ A Chart Legend inspector for chart legend objects

Using the Chart Inspector

You will use the Chart inspector to customize the predefined chart objects to fit your
particular needs. The same generic inspector is used for all the chart types: Cartesian, polar,
pie, or other.

Once you have launched IBM® ILOG® Views Studio with the Charts Extension and
dragged a chart object to your working buffer window, you open the Chart inspector by
double-clicking this object. The following window appears:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 20

usrcharts.book Page 21 Thursday, July 23, 2009 5:01 PM
Figure 1.3

Figure 1.3 Chart Inspector: General Page

The Chart inspector contains the following notebook pages:

◆ General Page

◆ Data Sets Page

◆ Displayers Page

◆ Projection Page

◆ Scales Page

◆ Layout Page

◆ Miscellaneous Page

◆ Callbacks Page

The first and the last pages (General and Callbacks) apply to all graphic objects in general
while the others are specific to the chart objects. You will use these pages to define the
various elements of a chart.

To scroll to the hidden pages, use the arrows at the right end of the tab bar.
21 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Inspector

usrcharts.book Page 22 Thursday, July 23, 2009 5:01 PM
As you will notice in the illustrations, a number of general-purpose icons are available on
some of the Chart inspector pages. These icons are described in the next section and each of
the notebook pages is presented in the sections that follow.

Chart Inspector Icons

The name of each icon in the Chart inspector appears as a tooltip when you hold the mouse
pointer on the icon.

Add icon Creates a new item after the selected item. Depending on the notebook
page where you are working, clicking this icon adds a data set in the Data sets list, a
row in a data table, a displayer in the Displayers list, an ordinate scale in the Scales
list, or a label on the Scales/Steps page when “Labels” is selected in the Step
definition list.

Insert icon Creates a new item before the selected item. Depending on the
notebook page where you are working, clicking this icon inserts a new data set
before the selected data set in the Data sets list, a new row before the selected row in
a data table, a new displayer before the selected displayer in the Displayers list, a
new ordinate scale before the selected ordinate scale in the Scales list, or a new label
before the selected label on the Scales/Steps page when “Labels” is selected in the
Step definition list.

Clean icon This icon has the same name and effect in all the Chart inspector pages.
Clicking this icon clears the contents of the field above. For example, it allows you
to clear a data table. All the rows of the data table are erased at one time when you
click this icon.

Move up/Move down icons Move the selected item up or down in a list.

Remove icon Erases the selected item. Depending on the notebook page where you
are working, clicking this icon erases the selected data set, data row, displayer,
ordinate scale, or step label from the corresponding list.

General Page

The General page allows the setting of parameters that are common to all graphic objects.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 22

usrcharts.book Page 23 Thursday, July 23, 2009 5:01 PM
Figure 1.4

Figure 1.4 Chart Inspector: General Page

Data Sets Page

The Data Sets page lets you define and handle the data sets that will be represented by the
current chart.
23 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Inspector

usrcharts.book Page 24 Thursday, July 23, 2009 5:01 PM
Figure 1.5

Figure 1.5 Chart Inspector: Data Sets Page

On this page, you can do the following:

◆ Add or remove data sets.

◆ Select or change the type of a given data set and enter the corresponding data into the
data set.

◆ Set a name for a given data set.

◆ Check or uncheck the displayer(s) that will display a given data set.

To access the information related to a given data set (that is, the type of the data set, the
corresponding data, the name and the displayer(s) that will display the data set), the data set
must be selected in the Data sets list that shows the defined data sets (top left of the page).

Displayers Page

The Displayers page lets you define and handle the displayers (that is, the graphical
representations) that will be used to represent data in the current chart.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 24

usrcharts.book Page 25 Thursday, July 23, 2009 5:01 PM
Figure 1.6

Figure 1.6 Chart Inspector: Displayers Page

On this page, you can do the following:

◆ Add or remove displayers.

◆ Select or change the type of a given displayer and enter or change its corresponding
parameters.

◆ Check or uncheck the data set(s) that will be displayed by a given displayer.

To access the information related to a given displayer (that is, the type of the displayer, the
corresponding parameters, and the data set(s) that will be displayed by the displayer), the
displayer must be selected in the Displayers list that shows the defined displayers (top left of
the page).

Note: All the displayer types can be used no matter whether the type of the coordinate
system in which the data are expressed is Cartesian or polar (except for the pie displayer
that can only be used with a polar coordinate system). The type of the coordinate system
appears on the Projection page since the type of the projection that is specified depends
on the type of the coordinate system in which the data are expressed.
25 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Inspector

usrcharts.book Page 26 Thursday, July 23, 2009 5:01 PM
Projection Page

The Projection page lets you define the type of projection to map the data into screen
coordinates.

◆ Cartesian is used for data expressed in Cartesian coordinates (x, y). The data are
represented in a standard manner: the abscissa and ordinate scales representing the x-
and y-coordinates, respectively, are orthogonal.

Figure 1.7

Figure 1.7 Example of a Cartesian Chart

◆ Polar is used for data expressed in polar coordinates (θ, ρ). The data are represented in a
circular way: the θ values are mapped along a circular abscissa scale, while the ρ values
are represented along a radial ordinate scale.

Figure 1.8

Figure 1.8 Example of a Polar Chart

The Projection page appears as follows:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 26

usrcharts.book Page 27 Thursday, July 23, 2009 5:01 PM
Figure 1.9

Figure 1.9 Chart Inspector: Projection Page

Once you have selected the type of the projection to be applied, you can define:

◆ The orientation of the scales for a Cartesian projection.

◆ The orientation of the abscissa scale (clockwise or counterclockwise) for a polar
projection.

Scales Page

The Scales page lets you define the scales used in the current chart. A chart can have one
abscissa scale and as many ordinate scales as you want.
27 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Inspector

usrcharts.book Page 28 Thursday, July 23, 2009 5:01 PM
Figure 1.10

Figure 1.10 Chart Inspector: Scales Page

The Scales page is divided into several subpages that allow you to set various parameters for
the selected scale.

◆ On the General subpage, you can set:

● the position of the scale. The scale can be fixed to a data value or to a relative position
expressed in pixels.

● the minimum and maximum data values represented by the scale.

◆ On the Transformation subpage, you can set the transformation applied.

The transformations that can be applied are composed of an elementary transformation,
optionally followed by a logarithmic transformation. If you want to apply a
transformation to the data, you must first select a defined elementary transformation
from the drop-down list. Optionally, you can then set a logarithmic transformation. If
you want to apply a logarithmic transformation but you do not want to apply a particular
elementary transformation before, just select Identity in the drop-down list showing the
defined elementary transformations.

◆ On the Steps subpage, you specify how the steps of the chart are defined. The steps can
be defined automatically or by specifying the number of steps, the step unit, or the labels
that will be drawn next to the major ticks.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 28

usrcharts.book Page 29 Thursday, July 23, 2009 5:01 PM
The term “step” refers to the main graduations of a scale and the term “substep” refers to
the secondary graduations of the scale. The term “tick” refers to the marks that are drawn
on a scale axis at each step and substep. Major ticks are drawn at each step and minor
ticks are drawn at each substep. Labels indicating data values are drawn only for the
steps of a scale.

◆ On the Ticks display subpage, you specify all the parameters related to displaying ticks.
You can specify the size of the ticks, the color, the visibility, the position (outside, inside,
or centered on the axis) of the ticks and the step labels, whether step labels are drawn at
the axes crossings, and whether overlapping step labels are drawn.

◆ On the Axis display subpage, you can specify all the parameters related to displaying an
axis. You can specify the visibility, whether an arrow is drawn at the end of the axis, the
color of the axis, the label drawn at the end of the axis, and so on.

◆ On the Grid subpage, you can specify the parameters for displaying a grid that is
associated with the selected scale. You can specify the color of the grid, its visibility,
whether only major lines are drawn or whether both major and minor lines are drawn.

Layout Page

The Layout page lets you define the global layout of the chart (that is, the position of the
different areas of the chart within its bounding box). There are three areas within the
bounding box of the chart.

◆ The drawing area is the area where the drawing is performed. All the graphical elements
that make up a chart (that is, the graphical representations of data, scales, grids and
cursors) are drawn within this area. The drawing area is defined by margins relative to
the bounding box of the chart.

◆ The data display area is the area where the data are displayed: no data points can be
displayed outside of this area. This area lies inside the drawing area.

◆ The graph area that represents the extent of all the graphical elements that make up a
chart (that is, all the graphical representations of data, scales, grids and cursors of the
chart). This area lies inside the drawing area and contains the data display area.

For more details on the chart layout, see Chapter 7, Chart Layout.

Figure 1.11 and Figure 1.12 show examples of these areas for a Cartesian chart and a polar
chart.
29 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Inspector

usrcharts.book Page 30 Thursday, July 23, 2009 5:01 PM
Figure 1.11

Figure 1.11 Areas within the Bounding Box of a Cartesian Chart

Figure 1.12

Figure 1.12 Areas within the Bounding Box of a Polar Chart

The Layout page appears as follows:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 30

usrcharts.book Page 31 Thursday, July 23, 2009 5:01 PM
Figure 1.13

Figure 1.13 Chart Inspector: Layout Page

On this page, you can do the following:

◆ Define the drawing area. The drawing area is defined by specifying the margins from the
left, right, top, and bottom sides of the bounding box.

◆ Define the graph area and the data display area. The graph area and the data display area
can be either automatically computed or fixed to a given position.

If “Automatic” is selected, the graph area and the data display area are automatically
computed from the drawing area so that the graph area takes up the maximum amount of
available space.

If “Fixed graph area” is selected, the graph area is positioned with relative margins from
the drawing area and the data display area is automatically computed from the graph
area.

If “Fixed data display area” is selected, the data display area is positioned with relative
margins from the drawing area and the graph area is automatically computed from the
data display area.

Miscellaneous Page

The Miscellaneous page lets you define several parameters that affect the whole chart. The
Miscellaneous page appears as follows:
31 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Inspector

usrcharts.book Page 32 Thursday, July 23, 2009 5:01 PM
Figure 1.14

Figure 1.14 Chart Inspector: Miscellaneous Page

On this page, you can do the following:

◆ Set the filling mode of the chart and the color used to fill the data display area.

◆ Set scroll parameters: the scroll mode, and the scroll ratio. These parameter define the
behavior of a chart when new data to display are added “on the fly.”

Three scroll modes are available:

● Stop mode The new data points that are added are displayed only if they belong to
the current data display area.

● Shift mode When new data points that do not belong to the current data display area
are added, the chart shifts towards the minimum values in order to have enough space
to display the new data points.

● Cyclic mode When new data points that do not belong to the current data display
area are added, the chart scrolls in a cyclic way. The display is not shifted as in the
shift scroll mode, but the new data points are simply drawn at the location of the
minimum values, thus erasing them.

Note: If the filling mode is set to “Filled data and graph areas”, the graph area will be
filled with the background color of the chart palette.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 32

usrcharts.book Page 33 Thursday, July 23, 2009 5:01 PM
◆ Specify how out-of-bounds data points should be projected on the chart. Out-of-bounds
data points are data points that fall outside the area where the data are displayed.

If you specify a vertical or horizontal projection, the out-of-bounds data points are
projected on the limits of the data display area. This feature is available for continuous
data representations, such as polylines. The effect of the projection is to fill the parts of
the polyline that are not drawn because they are outside the data display area. You can
also associate a specific palette to represent the projected data points.

◆ Specify how the palette that is defined for a given data point is applied: before or after
the data point.

The IBM ILOG Views Charts package allows you to define a specific palette that will be
applied to a given data point. This palette is independent of the palette that is applied to
the whole graphical representation of the data set to which the data point belongs. This
specific palette can only be defined by code. (See Adding Graphic Information to a Data
Point on page 185 for more details.)

The parameter specifying whether the specific palette is applied before or after the data
point can be used only for those displayers for which there is a continuous graphical
representation linking several data points (such as polyline displayers, step displayers,
and so on). For displayers for which there is a graphical representation by data point
(such as scatter displayers, bar displayers, and so on), the specific palette is simply
applied to the graphical representation of the data point.

◆ Specify the legend that is connected to the chart.

◆ Specify the interactors defined for the chart.

Several interactors can be set on the same chart. The different interactors that are set are
considered in the order they appear in the list showing the interactors set for the current
chart. The order in which the interactors appear in the list indicate the priority for event
dispatching.

Notes:
1. For the defined interactors to work, the Chart interactor must be set on the General

Page of the Chart inspector.

2. You must be in Test mode, and for this the GUI Application plug-in must have been

loaded. To go into Test mode, click the Test icon in the Action toolbar of the

Main window. To leave Test mode, just close the Test window that was opened when
you entered Test mode.

3. The ChartInfoView interactor works only if the buffer that contains the chart is a
Gadgets or Prototype Instances (Gadgets) buffer. To see the types of buffers that can
be created, choose New from the File menu at the top of the Main window.
33 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Legend Inspector

usrcharts.book Page 34 Thursday, July 23, 2009 5:01 PM
Callbacks Page

The Callbacks page lets you set the callbacks for the chart objects. The Callbacks page
appears as follows:

Figure 1.15

Figure 1.15 Chart Inspector: Callbacks Page

The Callbacks page allows you to set the following:

◆ Name: The function name of the callback.

◆ Value: The value for the callback.

◆ Script: Check this box if you want to use IBM ILOG Script. The button to the right
becomes active when the box is selected. Clicking the button show you the callback
source code in the Script Editor of the Main window.

Using the Chart Legend Inspector

You will use the Chart Legend Inspector to customize the legend you add to your chart.

Once you have launched IBM® ILOG® Views Studio with the Charts extension and
dragged a chart legend object to your working buffer, you can open the Chart Legend
inspector by double-clicking this object. Clicking the Specific tab displays the following
page:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 34

usrcharts.book Page 35 Thursday, July 23, 2009 5:01 PM
Figure 1.16

Figure 1.16 Chart Legend Inspector: Specific Page

The Chart Legend Inspector contains the following notebook pages:

◆ General

◆ Specific

◆ Callbacks

The General and Callbacks pages pertain to graphic objects in general while the Specific
page contains specific settings for the chart legend object. You will use the Specific page to
customize the layout of a given chart legend.

On the Specific page, you can set the following parameters:

◆ Shadow thickness and Shadow position: the thickness and position of the shadow of
the frame surrounding the legend.

◆ Dimensions and spacing for the graphical part of the legend items:

● Width of graphic part and Height of graphic part: the width and height of the area
where the graphical part of the legend items are drawn. The graphical part of a given
legend item is a small drawing whose shape depends on the associated graphical
representation of data.

● Label Spacing: the space between the area where the graphical part is displayed and
the text of a legend item.

● Item Spacing: the space between two legend items.

◆ Show frame: specifies whether the frame surrounding the legend appears or not.
35 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Legend Inspector

usrcharts.book Page 36 Thursday, July 23, 2009 5:01 PM
◆ Transparent: specifies whether the legend is transparent or not. A legend is transparent
when it is displayed without a background and a shadow.

◆ Automatically fit to contents: specifies if the legend is automatically resized to fit the
legend items it contains.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 36

usrcharts.book Page 37 Thursday, July 23, 2009 5:01 PM
37 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 38 Thursday, July 23, 2009 5:01 PM
2

Customizing Charts

In this chapter, you will be working with Cartesian charts to learn how to customize charts
using IBM® ILOG® Views Studio. You will see two examples.

◆ In Example 1: Charting Temperatures and Pressures of the Week, you will see how to:

● Use several independent ordinate scales.

● Define a grid associated with a scale.

● Define a related ordinate scale.

● Create a stacked or a side-by-side representation.

◆ In Example 2: Charting Analytic Functions, you will see how to:

● Use a data set defined by a script function.

● Use logarithmic scales.

● Connect a legend to a chart.

Example 1: Charting Temperatures and Pressures of the Week

The data you are going to represent in your chart are the mean morning and afternoon
temperatures, as well as the mean pressure recorded for each day of a week. The
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 38

usrcharts.book Page 39 Thursday, July 23, 2009 5:01 PM
temperatures are expressed in degrees Celsius and the pressures in millibars. These data are
listed in the following table:

Defining Several Independent Ordinate Scales

Let’s assume that you want to represent all the data in Table 2.1 on the same chart. Since the
data are expressed in two different units (degrees Celsius and millibars), you need to define
two independent ordinate scales, one representing degrees Celsius and the other representing
millibars.

Figure 2.1 shows the chart you will be creating. The morning and afternoon temperatures are
represented by markers of different colors while the pressures are represented by a marked
polyline.

Figure 2.1

Figure 2.1 Cartesian Chart with Two Ordinate Scales

Table 2.1 Temperature and Pressure Values

Day
Morning
Temperature (° C)

Afternoon
Temperature (° C)

Mean Pressure
(millibars)

0 10 16 1012

1 8 12 995

2 12 20 1015

3 15 25 1020

4 14 22 1022

5 14 24 1025

6 13 26 1025
39 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 40 Thursday, July 23, 2009 5:01 PM
You will find the step-by-step instructions to show you how to build this chart. The
procedure is broken down into several tasks, which are themselves divided into several
steps.

In this part of the example, you will see how to do the following tasks:

◆ Creating a Cartesian Chart

◆ Defining the Data Sets

◆ Defining the Displayers

◆ Customizing the Abscissa Scale

◆ Customizing the First Ordinate Scale

◆ Creating and Customizing the Second Ordinate Scale

◆ Specifying the Ordinate Scale Used by the Displayers

Creating a Cartesian Chart

Because our example chart is based on a Cartesian chart, the first thing you must do is create
the chart.

1. If you have not already done so, launch IBM ILOG Views Studio and display the Charts
palette as described in Launching IBM ILOG Views Studio with the Charts Extension on
page 16.

2. Drag a Cartesian chart object to your working buffer window.

Your working buffer window can be the buffer window that is created by default or any
other window you have created in the work space. You can create a new buffer window
by selecting File > New in the menu bar at the top of the Main window and then the
buffer type you want (2D Graphics, and so on).

3. Double-click the Cartesian chart object in the buffer window.

The corresponding inspector appears with the General page in front by default.

See Using the Chart Inspector on page 20 for an overview of the Chart inspector. This
section contains an explanation of each notebook page you may need to use when
working with charts.

4. At this stage, it is a good idea to save the buffer containing your chart.

Make sure you select a directory for which you have write access. Also remember to
save periodically as you work.

Note: It is recommended that you load both Charts and the GUI application plug-ins in
order to be able to use the Test mode with Charts.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 40

usrcharts.book Page 41 Thursday, July 23, 2009 5:01 PM
Defining the Data Sets

Because you want to represent morning temperatures, afternoon temperatures, and
pressures, you must define three data sets.

Defining the Morning Temperatures Data Set

1. Click the Data sets tab in the Chart inspector to bring this page to the front.

The top of this page shows the list of data sets and the list of displayers created for the
current chart. At this stage, you can either use a data set that is already defined for the
current chart or create another data set by simply clicking the Insert icon below the
Data sets list.

Just remember to delete the data sets that you will not use since you only need three data
sets for our example. To delete a data set, select the data set and click the Remove icon

 below the Data sets list.

2. Make sure the first data set is selected in the Data sets list.

You are going to use this data set to represent the morning temperatures. The days of the
week will be displayed along the abscissa scale and the mean temperatures along the
ordinate scale. Since the days are referenced by indexes ranging from 0 to 6, you can use
a data set of type “Y values” to represent the morning temperatures. By doing this, you
only need to enter the temperature values. By default, the values represented on the
abscissa scale will be the indexes of the specified Y values.

3. Make sure the selected data set is of type “Y values” in the Data set type list. If not,
select “Y values” in the Data set type list.

4. Make sure the Y list in the scrolling list next to the Data set type list is empty. If not,
click the Clean icon below the list to empty it.

You are now going to fill it in with the morning temperatures from Table 2.1.

5. Click the Add icon below the empty Y list as many times as necessary to create the
required number of empty cells.

6. Select the first cell and enter the first temperature value.

7. Repeat step 6 for each cell.

8. In the Name field, change the default name of the data set to Morning temperatures.

The Data sets list is updated accordingly.
41 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 42 Thursday, July 23, 2009 5:01 PM
9. Click Apply to validate the change.

Defining the Afternoon Temperatures Data Set
Following the same procedure, you are now going to enter the values for the second data set,
the afternoon temperatures. You can either use a data set that is already defined for the
current chart or create another data set by simply clicking the Add icon below the Data
sets list once the first data set is selected.

1. Select the second data set in the Data sets list.

2. Make sure this data set is already of type “Y values.” If not, select “Y values” in the Data
set type list.

3. Repeat steps 4 to 7 in the previous section to enter the afternoon temperatures.

4. In the Name field, change the default name of the data set to Afternoon
temperatures.

The Data sets list is updated accordingly.

5. Click Apply to validate the change.

Defining the Pressure Data Set
Finally, you are going to enter the values for the third data set that represents the pressures.
You can either use a data set that is already defined for the current chart or create another
data set by simply clicking the Add icon below the Data sets list, once the second data
set is selected.

1. Select the third data set in the Data sets list.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 42

usrcharts.book Page 43 Thursday, July 23, 2009 5:01 PM
2. Make sure “Y values” is selected in the Data set type list. If not, select “Y values” in the
Data set type list.

3. Enter the pressure values by repeating steps 4 to 7 of the morning temperatures data set
section.

4. In the Name field, change the default name of the data set to Pressures.

The Data sets list is updated accordingly.

5. Click Apply to validate the change.

You have now defined all the data sets for the chart.

Defining the Displayers

You are now going to define the corresponding displayers to display the data sets you
defined in the previous section.

1. Click the Displayers tab in the Chart inspector to bring this page to the front.

The top of this page shows the list of displayers and the list of data sets created for the
current chart. At this stage, you can either use a displayer that is already defined for the
current chart or create another displayer by simply clicking the Insert icon below the
Displayers list.

Just remember to delete the displayers that you will not use since you only need three
displayers for our example. To delete a displayer, select the displayer and click the
Remove icon below the Displayers list.

2. Make sure the first displayer is selected in the Displayers list.

This displayer will be used to display the Morning temperatures data set.

3. For the displayer to display the Morning temperatures data set, the toggle in front of
the Morning Temperatures data set must be checked. If it is not checked, click the
toggle.

Next, you must specify the type of displayer for the data set. Because you want to
represent the morning temperatures with markers, you must specify a scatter displayer.

4. Make sure “Scatter” is selected in the Displayer type list. If it is not selected, select
“Scatter.”

5. Click Apply to validate the changes.

Following the same procedure, you are now going to define the displayer for the
Afternoon Temperatures data set. You can either use a displayer that is already defined
for the current chart or create another displayer by simply clicking the Add icon below
the Displayers list once the first displayer is selected.

1. Select the second displayer from the Displayers list.
43 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 44 Thursday, July 23, 2009 5:01 PM
2. For the displayer to display the Afternoon temperatures data set, the toggle in front
of the Afternoon Temperatures data set must be checked. If it is not checked, click
the toggle.

Next, you must specify the type of displayer for the data set. Because you want to
represent the afternoon temperatures with markers, you must specify a scatter displayer.

3. Make sure “Scatter” is selected in the Displayer type list. If it is not selected, select
“Scatter.”

4. Click Apply to validate the changes.

Following the same procedure, you are also going to define the displayer displaying the
Pressures data set. You can either use a displayer that is already defined for the current
chart or create another displayer by simply clicking the Add icon below the Displayers
list once the second displayer is selected.

1. Select the third displayer from the Displayers list.

2. For the displayer to display the Pressures data set, the toggle in front of the
Pressures data set must be checked. If not, check this toggle by clicking it.

Next, you must specify the type of displayer for the data set. Because you want to
represent the pressures with a marked polyline, you must specify a marked polyline
displayer.

3. Make sure “Marked polyline” is selected in the Displayer type list. If not, select “Marked
polyline” in the Displayer type list.

4. Click Apply to validate the changes.

You have now defined the displayers for the three data sets to be displayed in your chart.

Customizing the Abscissa Scale

For this example, you want to define labels that will be displayed next to the steps of the
scale instead of the indexes of the days. To customize the abscissa scale in this way, do the
following:

1. Click the Scales tab in the Chart inspector to bring this page to the front.

2. Make sure Abscissa is selected in the Scales list.

The right side of the Scales page is divided into several subpages that describe the
properties of the selected scale.

3. Display the General page of the Chart Inspector and make sure that the minimum and
maximum data values represented on the current scale are automatically computed. If
not, select “Automatic” in the Min/Max drop-down list.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 44

usrcharts.book Page 45 Thursday, July 23, 2009 5:01 PM

4. Click the Steps tab to bring this page to the front.

By default, the steps are labeled with floating values that correspond to the data. In this
example, they are labeled with the indexes of the days (from 0 to 6). However, for better
understanding, we prefer to display the names of the days.

5. Choose Labels in the Step definition list.

A rectangular area and the “Selected label” text field appear below this drop-down list.
The rectangular area is empty because you have not created any labels yet.

6. To create a label, click the “Add a label” icon below the empty rectangular area.

A selected X appears at the top of the rectangular area and the string
&DefaultStepLabel appears in the “Selected label” field.

7. Select &DefaultStepLabel and type the name of the first day of the week, Monday.

The label you are currently editing is selected in the rectangular area.

8. Repeat steps 6 and 7 to create a label for each day of the week. Make sure the last label
you created is selected before you click the “Add a label” icon.
45 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 46 Thursday, July 23, 2009 5:01 PM
9. Click Apply to validate the new labels.

In the buffer window, the labels on the abscissa scale may overlap. To see each label
completely, you may need to resize the chart:

Customizing the First Ordinate Scale

The first ordinate scale of the chart will be graduated in degrees Celsius. To customize the
scale in this way, you need to perform the following tasks:

◆ Setting the Minimum and Maximum Values

◆ Setting the Scale Graduations

◆ Labeling the Axis
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 46

usrcharts.book Page 47 Thursday, July 23, 2009 5:01 PM
The Scales page should already be selected in the Charts inspector, so you can continue with
these tasks.

Setting the Minimum and Maximum Values

1. Select Ordinate 1 in the Scales list.

The notebook pages on the right side of the page describe the properties of the selected
scale.

2. Make sure the General tab is displayed in front.

The scale must be attached to a position that is defined with respect to the minimum data
value. If not, select “a position” from the “Scale fixed to” drop-down list, set 0 in the
position box, and select “From minimum value” in the drop-down list that appears
below. These settings are used to attach Ordinate 1 to the position of the minimum data
value represented on the abscissa scale.

The scale Ordinate 1 will be used to represent the temperatures in degrees Celsius. The
minimum and maximum data values of the scale must therefore include at least all the
temperatures listed in Table 2.1 on page 39. Otherwise, some temperatures will not be
displayed.

3. On the Scales/General notebook page, make sure “User-defined” is selected from the
Min/max drop-down list. Then enter 0 in the Min field and 30 in the Max field.

4. Click Apply to validate the changes.

Setting the Scale Graduations

1. Click the Steps tab to bring this page to the front.

For scale Ordinate 1, you want to define the steps by specifying a step unit.

2. Make sure “Step unit” is selected in the Steps definition list.

3. Enter 5 in the “Step unit” field.

This means that the scale will display one major tick for every five degrees Celsius. (You
can either type the value or use the down and up arrows to select the value).

4. Enter 4 as the number of substeps between two steps.

5. Click Apply to validate.
47 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 48 Thursday, July 23, 2009 5:01 PM
Labeling the Axis

1. Click the Axis display tab to bring this page to the front.

2. In the Axis label box, type Celsius in the Label text field.

3. Click Apply to validate the change.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 48

usrcharts.book Page 49 Thursday, July 23, 2009 5:01 PM
Creating and Customizing the Second Ordinate Scale

Because it will be used to display the pressure values, the second ordinate scale must be
graduated in millibars. Unlike the first ordinate scale, which already existed by default, the
second one needs to be created before you can customize it.

The Scales page should already be selected in the Charts inspector, so you can continue with
these tasks.

Creating Ordinate 2 Scale

1. Select the last created scale (Ordinate 1 at this stage) in the Scales list and click the “Add
an ordinate scale” icon below the Scales list.

A new scale, named Ordinate 2, is added to the list and highlighted. The notebook pages
on the right describe the properties of the selected scale.

2. Click the General tab to bring this page to the front.

Customizing Ordinate 2 Scale
To customize the Ordinate 2 scale, you need to perform the following tasks:

◆ Setting the Position and Min/Max Values of the Scale

◆ Setting the Scale Graduations

◆ Indicating that Labels Must Be Drawn at the Axes Crossings
49 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 50 Thursday, July 23, 2009 5:01 PM
◆ Labeling the Axis

Setting the Position and Min/Max Values of the Scale

The General page should be displayed on the Scales page. On the General page, you will
specify the position on the abscissa scale to which Ordinate 2 is attached, as well as the
minimum and maximum values that will be represented by the scale Ordinate 2. The new
scale is attached by default to the position of the minimum data value represented on the
abscissa scale (as is Ordinate 1). The minimum and maximum values are computed
automatically by default. Therefore, your first task is to change the scale positioning and the
way the minimum and maximum values are defined.

1. In the Position box, select 0 as the position.

2. Select “From maximum value” in the drop-down list below.

This specifies that the position of the second ordinate scale is relative to the position of
the maximum data value represented on the abscissa scale.

3. Select “User-defined” in the Min/max drop-down list so that you can specify the
minimum and maximum values that will be represented by the scale.

Ordinate 2 will represent pressures in millibars. Therefore, the minimum and maximum
data values used for the scale must include at least all the pressures given in Table 2.1 on
page 39. Otherwise, some pressures will not be displayed.

4. Type 990 in the Min field and 1030 in the Max field.

5. Click Apply to validate the changes.

Setting the Scale Graduations

1. Click the Steps tab to bring this page to the front.

2. Make sure the “Step unit” option is selected.

3. Enter 10 as the step unit.

This means that there will be one major tick displayed for every ten millibars.

4. Enter 4 as the number of substeps between two steps.

5. Click Apply to validate.

Indicating that Labels Must Be Drawn at the Axes Crossings

1. Click the Ticks display tab to bring this page to the front.

2. Click the “Draw labels on axes crossings” toggle button.

3. Click Apply to validate.

Labeling the Axis
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 50

usrcharts.book Page 51 Thursday, July 23, 2009 5:01 PM
1. Click the Axis display tab to bring this page to the front.

2. In the Axis label box, type Millibars in the Label text field.

3. Click Apply to validate.

You have now defined the second ordinate scale. At this stage, your chart should look like
this:

Specifying the Ordinate Scale Used by the Displayers

You must specify the ordinate scale that is used by each displayer to display the data. This is
done on the General page of each displayer.

Currently, the default setting (Ordinate 1) is true for the Morning temperatures and
Afternoon temperatures data sets, but false for the Pressures data set. The
Pressures data set must be represented on Ordinate 2 since this scale was created for this
purpose.

1. Click the Displayers tab of the Chart inspector to bring this page to the front.

2. Select Displayer 3 in the Displayers list.

This displayer is associated with the Pressures data set, as shown by the checked
toggle button in the Data sets box.

3. On the General subpage, select Ordinate 2 from the “Ordinate scale” drop-down list.

4. Click Apply to validate.
51 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 52 Thursday, July 23, 2009 5:01 PM
The chart you obtain at this stage should be similar to Figure 2.1 on page 39.

Defining a Grid Associated with a Scale

To customize our chart further, we can define a grid and associate it with a given scale.

1. Click the Scales tab in the Chart inspector to bring this page to the front.

2. Select the scale with which you want to associate a grid in the Scales list.

3. Click the Grid tab to bring this page to the front.

4. Check the toggle “Use a grid” by clicking it to create a grid and associate it with the
selected scale.

Once the toggle is checked, the frame “Grid display” appears that allows you to
customize the created grid.

Defining a Related Ordinate Scale

Let’s assume that now you want to add another ordinate scale to represent the temperatures
so that you can show the correspondence between degrees Celsius and degrees Fahrenheit.
This second temperatures scale will represent the same data as Ordinate 1, but will be
graduated in degrees Fahrenheit instead of degrees Celsius.

Figure 2.2 shows the chart you will obtain when you add the Fahrenheit scale:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 52

usrcharts.book Page 53 Thursday, July 23, 2009 5:01 PM
Figure 2.2

Figure 2.2 Defining a Related Ordinate Scale

In this part of the example, you will see how to define a transformation to be applied to the
data values represented by a scale.

To define this related ordinate scale, you need to perform the following tasks:

◆ Creating Ordinate 3 Scale

◆ Customizing Ordinate 3 Scale

Creating Ordinate 3 Scale

To create the Fahrenheit scale, follow the same procedure as you did to create the second
ordinate scale (see Creating Ordinate 2 Scale on page 49).

Customizing Ordinate 3 Scale

To customize the Ordinate 3 scale, you need to perform the following tasks:

◆ Setting the Position and Min/Max Values of the Scale

◆ Applying a Transformation

◆ Setting the Scale Graduations

◆ Indicating that the Labels Must Be Drawn at the Axes Crossings

◆ Labeling the Axis

Setting the Position and Min/Max Values of the Scale
On the General subpage of the Scales page, you are going to specify the position to which
Ordinate 3 is attached, as well as the minimum and maximum values that will be represented
on this scale.

1. In the “Scale fixed to” drop-down list, make sure that “a position” is selected. Then
select or type -60 in the field next to this option.
53 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 54 Thursday, July 23, 2009 5:01 PM
This position is specified relative to the position of the minimum data value represented
on the abscissa scale as indicated by the option “From minimum value.” Make sure this
option is selected.

By default, the minimum and maximum values are computed automatically. You must
therefore change the way the minimum and maximum values are defined before you can
set these values.

2. Select “User-defined” in the Min/max drop-down list.

Ordinate 3 will represent the temperatures in degrees Fahrenheit. The minimum and
maximum values must be the same as those set for Ordinate 1 since Ordinate 3 will
represent the same data values as Ordinate 1. Ordinate 1 displays graduations in degrees
Celsius while Ordinate 3 will display the corresponding values in degrees Fahrenheit.

3. Enter 0 in the Min field and 30 in the Max field, just as you did for scale Ordinate 1.

4. Click Apply to validate the changes.

Applying a Transformation
We want to represent the same data values on scale Ordinate 3 as we represented on scale
Ordinate 1. However, on scale Ordinate 3, the values should be expressed in degrees
Fahrenheit rather than degrees Celsius. To do this, we have to specify a transformation from
degrees Celsius to degrees Fahrenheit for Ordinate Scale 3. Follow these steps:

1. Click the Transformation tab on the Scales page to bring this page to the front.

This is where you will set the transformation that will convert degrees Celsius to degrees
Fahrenheit.

Converting degrees Celsius to degrees Fahrenheit is done by the following formula:

where C is a data value expressed in degrees Celsius and F is the equivalent temperature
in degrees Fahrenheit.

2. Select Affine from the Elementary transformation list.

3. Enter 1.8 in the Multiplicative coefficient field and 32 in the Constant coefficient field.

4. Click Apply to validate the changes.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 54

usrcharts.book Page 55 Thursday, July 23, 2009 5:01 PM
Setting the Scale Graduations

1. Select the Steps tab.

2. Make sure “Step number” is selected in the Step definition list.

3. Set 10 as the number of steps and 3 as the number of substeps between steps.

4. Click Apply to validate the changes.

Indicating that the Labels Must Be Drawn at the Axes Crossings

1. Click the Ticks display tab to bring this page to the front.

2. Check the toggle “Draw labels on axes crossings” by clicking it.

3. Click Apply to validate the changes.

Labeling the Axis

1. Select the Axis display page.

2. In the Axis label box, type Fahrenheit in the Label text field.

3. Click Apply to validate the changes.

At this point, your chart should look like the following figure. Now, you can read a given
temperature value either in degrees Celsius or in degrees Fahrenheit.
55 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 56 Thursday, July 23, 2009 5:01 PM
Creating a Stacked or a Side-by-Side Representation

This section explains how to create a stacked representation. The same procedure can be
used to create a side-by-side representation.

We will continue to use our example chart, which shows the temperatures and pressures (see
Table 2.1 on page 39). To better highlight the day of the week with the highest mean
temperature, you are going to stack the morning and afternoon temperatures.

Figure 2.3 shows how your chart will appear.

Figure 2.3

Figure 2.3 Final Stacked-Bar Chart

To create the stacked-bar representation, you will perform the following tasks:

◆ Creating the Stacked-Bar Displayer

◆ Changing the Color of the Bars

◆ Changing the Maximum Value of the Ordinate Scales
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 56

usrcharts.book Page 57 Thursday, July 23, 2009 5:01 PM
Creating the Stacked-Bar Displayer

Starting from the chart you obtain once you have created and customized the third ordinate
scale (see the previous section Defining a Related Ordinate Scale on page 52), follow the
steps below to create a stacked-bar displayer.

1. Select the Displayers page of the Chart inspector.

2. Make sure Displayer 1 is selected.

3. Click the “Insert a displayer before” icon below the Displayers list.

A new displayer called “Displayer 1” is inserted before the others. (Displayers are
displayed in the order in which they are listed.) The new displayer is automatically
highlighted.

4. Select Stacked bar from the Displayer type list.

In the Displayers list, an indented tree item also named Displayer 1 is added under
Displayer 1.

Notice that at this stage, the stacked-bar displayer Displayer 1 only represents the
Morning temperatures data set, as indicated by the state of the toggle button in the
Data sets box. You want Displayer 1 to display the Afternoon temperatures data set
as well.

5. In the Data sets list, check the toggle box in front of the Afternoon temperatures
data set.

Now the stacked-bar displayer Displayer 1 will display both the Morning
temperatures and Afternoon temperatures data sets.

This creates the Displayer 2 subitem.

6. Click Apply to validate the changes.

The chart now looks like this.
57 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Charting Temperatures and Pressures of the Week

usrcharts.book Page 58 Thursday, July 23, 2009 5:01 PM
Seemingly, at this stage, only one bar is visible. However, if you look at the Displayers
list on the Displayers page, you can see that the root Displayer 1 is composed of two
child displayers that are associated with the morning temperatures and the afternoon
temperatures, respectively. These two displayers have the same foreground and
background colors. This is why their graphical representations seem to merge into one
single bar. To differentiate the morning from the afternoon temperatures within the
stacked bars, you must change the colors.

Changing the Color of the Bars

1. In the Displayers list, select the subitem Displayer 1 under the main Displayer 1.

The General page in the right lower corner of the Displayers page shows information on
the selected displayer.

2. At the right end of the Palette field, click the small icon.

The Resources panel showing the settings of the palette associated with the displayer
opens.

You will keep the default foreground color used to draw the borders of the bars, but you
are going to change the background color used to fill the bars.

3. In the Resources panel, click the Select button next to the Background box.

The Background panel that opens lists the available colors.

4. Scroll down the color list to select Yellow. Click Apply in the Background panel to
validate this change. Then click Close to close this window.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 58

usrcharts.book Page 59 Thursday, July 23, 2009 5:01 PM
5. Click Apply in the Resources panel and then Close to close the Resources panel.

6. In the Chart inspector, click Apply to validate this change.

7. To change the color of the second displayer, select the subitem Displayer 2 of the main
Displayer 1 in the Displayers list. Repeat steps 2 to 6 to set the background color to
Orange.

At this stage, you can see that the stacked bars appear in two different colors. However,
some of the bars are truncated. This is because the sum of the morning and afternoon
temperatures is sometimes greater than 30, the upper limit set to the scale Ordinate 1. In
order to see all of the bars that are truncated, you will need to change this upper value.

Changing the Maximum Value of the Ordinate Scales

1. In the Chart inspector, select the Scales page.

2. Select Ordinate 1 in the Scales list.

3. On the General subpage, change the value in the Max field from 30 to 40, which is the
maximum sum of the morning and afternoon temperatures in our example.

4. Click Apply to validate the change.

Now that you have changed the maximum value of Ordinate 1, you must also change the
maximum value represented on Ordinate 3, which converts degrees Celsius to degrees
Fahrenheit. Otherwise, the two scales will no longer match.

5. To change the maximum value of Ordinate 3, select Ordinate 3 in the Scales list. Repeat
steps 3 and 4.

Your chart should now look like this:
59 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Charting Analytic Functions

usrcharts.book Page 60 Thursday, July 23, 2009 5:01 PM
You have now completed the Cartesian chart example representing temperatures (cumulated
or not) both on a Celsius scale and on a Fahrenheit scale, as well as pressures on a millibars
scale. In working through this example, you have learned how to do the following:

◆ Define data sets and their displayers.

◆ Create and customize scales.

◆ Create and customize a grid associated with a scale.

◆ Define a transformation to be applied to the data values represented by a scale.

◆ Create a stacked representation.

You can now go on to the second example. In the second example, you are going to
represent analytic functions in a chart. In addition to learning more about how to define data
sets and displayers and customize scales, you will also learn how to use logarithmic scales
and how to connect a legend to a chart.

Example 2: Charting Analytic Functions

The example in this section is based on charting analytic functions of type y = f(x). This
section is divided as follows:

◆ Using a Data Set Defined by a Script Function

◆ Using Logarithmic Scales

◆ Connecting a Legend to a Chart

Using a Data Set Defined by a Script Function

Let’s suppose you want to represent both the square and the square root functions on the
same chart. To do this, you must define specific data sets.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 60

usrcharts.book Page 61 Thursday, July 23, 2009 5:01 PM
Figure 2.4 shows a chart representing these curves. The two functions are represented by
different-colored polylines.

Figure 2.4

Figure 2.4 Charting the Square and Square Root Functions

This section contains the step-by-step instructions to show you how to build this chart. The
procedure is broken down into several tasks, which are themselves divided into several
steps.

In this part of the example, you will do the following tasks:

◆ Creating a Cartesian Chart

◆ Defining the Data Sets

◆ Defining the Displayers

If you are not sure how to launch the Chart Studio or how to create a chart, read sections
Launching IBM ILOG Views Studio with the Charts Extension on page 16 and Creating a
Chart Object on page 20.

Creating a Cartesian Chart

Again, the chart in this example is based on a Cartesian chart. The first thing to do is to
create the chart object.

1. Drag a Cartesian chart object to your working buffer window.

2. Double-click this object.

The corresponding Chart inspector appears.

See the section Using the Chart Inspector on page 20 for an overview of the Chart
inspector. This section contains an explanation of each notebook page you may need to
use when working with charts.

3. At this stage, it is a good idea to save the buffer containing your chart.

Make sure you select a directory to which you have write access. Also remember to save
periodically as you work.
61 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Charting Analytic Functions

usrcharts.book Page 62 Thursday, July 23, 2009 5:01 PM
Defining the Data Sets

You must define two data sets: one representing the square function and one representing the
square root function.

Defining the Square Function Data Set

1. Click the Data sets tab in the Chart inspector to bring this page to the front.

The top of this page shows the list of data sets and the list of displayers created for the
current chart. At this stage, you can either use a data set that is already defined for the
current chart or create another data set by simply clicking the Insert icon below the
Data sets list.

Just remember to delete the data sets that you will not use since you only need two data
sets for our example. To delete a data set, select the data set and click the Remove icon

 below the Data sets list.

2. Make sure the first data set is selected in the Data sets list.

If you want to define a data set using a script function, the type of the data set must be set
to the type Function. This data set type has been designed to represent analytic functions
of type y = f(x). The function f is represented by a function written in the script language.
This function takes a value x as its parameter and returns a computed value y. The
number of data points used to represent the corresponding curve is specified by the user.
These data points are computed between the interval [xmin, xmax], also specified by the
user.

3. Make sure Function is selected in the Data set type list.

In the right-hand part of the “Selected data set” box, you will see several fields where
you are going to enter information to define the selected data set.

4. Enter 10 in the Data count field.

This is the number of data points that will be considered for the data set.

5. Enter 0 in the “X minimum” field and 4 in the “X maximum” field.

6. Type square in the Script function field to specify the name of the script function used
to define the data set.

7. Type Square Function in the Name field to change the data set name.

Before clicking Apply to validate the entries, you must define the script function.

8. Open the Script Editor by clicking the Script Editor icon in the toolbar of the
IBM ILOG Views Studio Main window.

A separate panel appears at the bottom of the Main window. This is the Script Editor.

9. Enter the following function in the Script Editor:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 62

usrcharts.book Page 63 Thursday, July 23, 2009 5:01 PM
function square(x)
{
 return x*x;
}

10. Click Apply in the Chart inspector.

The curve is represented as a straight line that is positioned at y = 0. This indicates that
the function you have just written in the Script Editor has not been evaluated yet. To
force evaluation just switch to Test Mode

Switching to Test Mode

To force an evaluation by switching to Test Mode, do the following:

1. Click the Test icon in the toolbar of the IBM ILOG Views Studio Main window.

A test panel opens containing your chart. In that panel, the curve of the square function is
drawn correctly, which shows that the function written in the Script Editor has been
evaluated.

2. Close the Test panel and return to your current working buffer window.

3. To force the redrawing of the chart, just click the chart.

You can now see the square function displayed as a curve in your regular chart.

Note: To have access to Test Mode, you must have loaded the GUI application plug-in.
63 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Charting Analytic Functions

usrcharts.book Page 64 Thursday, July 23, 2009 5:01 PM
Defining the Square-Root Function Data Set
You are going to repeat the same procedure to define the second data set and its script
function. You can either use a data set that is already defined for the current chart or create
another data set by simply clicking the Add icon below the Data Sets list once the first
data set is selected.

1. Select the second data set in the Data sets list.

2. Make sure Function is selected as the data set type.

The values you set for Data count, X minimum, and X maximum are the same as those
you specified for the square function data set. The Data count should be 10. The
X minimum should be 0. The X maximum should be 4.

3. Type squareRoot in the Script function field.

4. Type Square Root Function in the Name field to change the data set name.

5. Add the following function in the Script Editor below the previous one:

function squareRoot(x)
{
 return Math.sqrt(x);
}

6. Click Apply in the Chart inspector.

7. Follow the steps described in the Switching to Test Mode on page 63 section to force an
evaluation of the squareRoot script function.

The chart should look like this:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 64

usrcharts.book Page 65 Thursday, July 23, 2009 5:01 PM
8. You can now choose to close the Script Editor by clicking the icon.

Defining the Displayers

After you have defined the data sets to be represented, you need to define the displayers.

1. Click the Displayers tab in the Chart inspector to bring this page to the front.

The top of this page shows the list of displayers and the list of data sets created for the
current chart. At this stage, you can either use a displayer that is already defined for the
current chart or create another displayer by simply clicking the Insert icon below the
Displayers list.

Just remember to delete the displayers that you will not use since you only need two
displayers for our example. To delete a displayer, select the displayer and click the
Remove icon below the Displayers list.

2. Make sure the first displayer is selected in the Displayers list.

This displayer will be used to display the Square Function data set.

3. For the displayer to display the Square Function data set, the toggle in front of the
Square Function data set must be checked. If it is not checked, click the toggle.

Next, you must specify the type of displayer for the data set. Because you want to
represent the square function with a polyline, you must specify a polyline displayer.

4. Make sure “Polyline” is selected in the Displayer type list. If it is not selected, select
“Polyline.”

5. Click Apply to validate the change.

Following the same procedure, you are now going to define the displayer for the Square
Root Function data set. You can either use a displayer that is already defined for the
current chart or create another displayer by simply clicking the Add icon below the
Displayers list once the first displayer is selected.

1. Select the second displayer from the Displayers list.
65 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Charting Analytic Functions

usrcharts.book Page 66 Thursday, July 23, 2009 5:01 PM
2. For the displayer to display the Square Root Function data set, the toggle in front of
the Square Root Function data set must be checked. If it is not checked, click the
toggle.

Next, you must specify the type of displayer for the data set. Because you want to
represent the square root function with a polyline, you must specify a polyline displayer.

3. Make sure “Polyline” is selected in the Displayer type list. If it is not selected, select
“Polyline.”

4. Click Apply to validate the change.

You can now check the resulting chart. It should look like this.

Using Logarithmic Scales

This section explains how to use logarithmic scales. The procedure is based on the previous
example where you created a Cartesian chart to represent the square and square root
functions. Starting from that chart, you are going to customize the abscissa scale and the
ordinate scale to obtain the following chart:

Figure 2.5

Figure 2.5 Using Logarithmic Scales

In this part of the example, you will see how to do the following tasks:

◆ Define a logarithmic transformation to be applied to the data values represented by a
scale.

◆ Customize a grid associated with a scale.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 66

usrcharts.book Page 67 Thursday, July 23, 2009 5:01 PM
Customizing the Abscissa Scale

To customize the abscissa scale for this example, you are going to apply a transformation to
the data values represented by the scale. You are also going to customize the associated grid.

Applying a Transformation

1. Click the Scales tab in the Chart inspector to bring this page to the front.

Abscissa should be selected by default in the Scales list. The right part of the window is
divided into several subpages that describe the properties of the selected scale.

2. Click the Transformation tab of the Scales page.

By default, no transformation is defined. Defining a transformation consists of applying
an elementary transformation first, optionally followed by a logarithmic transformation.
For this example, we want to apply only a logarithmic transformation so we are going to
set the identity as the elementary transformation.

3. Select Identity in the Elementary transformation drop-down list.

4. Click “Logarithmic transformation” and enter 10 as the logarithmic base.

5. Click Apply to validate the changes.

Customizing the Grid
To customize the grid associated with the selected scale, do the following:

1. On the Scales page, click the Grid tab to bring this subpage to the front.

The Grid subpage is where you can customize the grid associated with the current scale.

2. Make sure the “Use a grid” toggle is checked.

3. To specify grid lines for both the major and the minor ticks, make sure the option “Draw
major lines only” is deselected.

4. Click Apply to validate the changes.

Customizing the Ordinate Scale

To customize the ordinate scale for this example, you are going to apply a transformation to
the data values represented by the scale. You are also going to customize the associated grid.

The Scales page of the Chart inspector should already be selected so you can continue with
the following steps.

Applying a Transformation

1. Select Ordinate 1 in the Scales list of the Scales page.

2. Select the Transformation subpage.

This is where you are going to define the transformation you want to apply to the data.
67 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Charting Analytic Functions

usrcharts.book Page 68 Thursday, July 23, 2009 5:01 PM
3. Select Identity in the Elementary transformation drop-down list.

4. Click “Logarithmic transformation” and enter 10 as the logarithmic base.

5. Click Apply to validate the changes.

Customizing the Grid
To customize the grid associated with the selected scale, do the following:

1. Select the Grid page on the Scales page.

This page lets you customize the grid associated with the current scale.

2. Make sure the “Use a grid” toggle is checked.

3. To specify grid lines for both the major and the minor ticks, make sure the option “Draw
major lines only” is deselected.

4. Click the colored icon at the right end of the Minor palette field.

The Resources panel opens.

5. Choose “alternate” from the Line Style drop-down list.

6. Click Apply to validate the changes in the Resources panel and then Close to close the
Resources panel.

7. Click Apply in the Chart inspector to validate the changes to the chart.

You can now check your resulting chart. It should look like this:

Connecting a Legend to a Chart

In this part of the example, you will see how to connect a legend to the chart that you have
just created to represent the square and the square root functions (see Using a Data Set
Defined by a Script Function on page 60). You would use this same procedure for any other
legend and chart you might create.

To connect a legend to a given chart, do the following:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 68

usrcharts.book Page 69 Thursday, July 23, 2009 5:01 PM
1. Drag the legend (instance of IlvChartLegend) from the Charts palette to your working
buffer window.

2. In the Name field of the Generic Inspector displayed at the bottom of the Main window,
type myChartLegend to associate a name with the legend.

3. Double-click the chart to open the Chart inspector.

4. Click the Miscellaneous tab to bring this page to the front.

5. Select myChartLegend from the Legend drop-down list.

6. Click Apply to validate the change.

The legend is now connected to the chart. It shows two curve segments followed by the
name of the data sets they represent. The name of the data sets appear because no
specific text has been defined to illustrate the curves in the legend.
69 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Charting Analytic Functions

usrcharts.book Page 70 Thursday, July 23, 2009 5:01 PM
If you want to specify a legend text that is different from the name of the represented
data set for a given curve, continue with the following steps:

7. Select the Displayers page of the Chart inspector.

8. Select each displayer and enter the text you want in the Legend field of the General
subpage.

9. Click Apply to validate the changes.

This completes the example for charting analytic functions. In working through this
example, you have learned how to do the following:

◆ Use data sets defined by Script functions in your charts.

◆ Use logarithmic scales in your charts.

◆ Connect a legend to a chart.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 70

usrcharts.book Page 71 Thursday, July 23, 2009 5:01 PM
71 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 72 Thursday, July 23, 2009 5:01 PM
3

Using Polar Charts

In this chapter, you will learn how to use polar charts to represent in a circular way both
angle values and non-angle values.

By default, a polar chart represents data expressed in polar coordinates (θ, ρ) in a circular
way. The abscissa values θ are expressed in degrees and are mapped along a circular scale
graduated in degrees by default. Therefore, you will use a polar chart to represent data
whose abscissa values are expressed in degrees. However, a polar chart can also be used to
get a circular representation of any data you want, even if the abscissa values are not
expressed in degrees. To do this, you can do one of the following:

◆ Apply a transformation to the abscissa scale to convert the abscissa values into degrees.
In this case, the abscissa scale will be graduated in degrees, no matter what the initial
data may be.

◆ Indicate to the projector that the values to be projected are not expressed in degrees and
then set a starting angle and a range to tell the projector how the abscissa values are
mapped along the abscissa scale. In this case, the abscissa scale will bear the original
abscissa values instead of being graduated in degrees.

In this chapter, you will see two examples that show how to represent data that are not
expressed in degrees on a polar chart.

◆ Example 1: Representing Values Expressed in Radians shows how to represent values
expressed in radians.

◆ Example 2: Representing Time Values shows how to represent time values.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 72

usrcharts.book Page 73 Thursday, July 23, 2009 5:01 PM
Example 1: Representing Values Expressed in Radians

In this example, you will represent data in the form (θ, ρ), where θ is expressed in radians,
on a polar chart.

◆ In Case 1, you will apply a transformation to the abscissa scale to convert radians to
degrees.

◆ In Case 2, you will set a starting angle and a range to map the radians along the abscissa
scale.

Case 1: Applying a Transformation

In this example, you will perform the following tasks:

◆ Creating a Polar Chart

◆ Defining Data with Abscissa Values in Radians

◆ Defining the Displayers

◆ Specifying the Transformation on the Abscissa

Figure 3.1 shows the chart you are going to create.

Figure 3.1

Figure 3.1 Polar Chart with Data in Radians on a Scale in Degrees

Creating a Polar Chart

Because our example chart is based on a polar chart, the first thing you must do is create the
chart.

1. If you have not already done so, launch IBM ILOG Views Studio and display the Charts
palette as described in Launching IBM ILOG Views Studio with the Charts Extension on
page 16.

2. Drag a polar chart from the Charts palette to your working buffer.

3. Double-click this object to open its inspector.
73 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Representing Values Expressed in Radians

usrcharts.book Page 74 Thursday, July 23, 2009 5:01 PM
See Using the Chart Inspector on page 20 for an overview of the Chart inspector. This
section contains an explanation of each notebook page you may need to use when
working with charts.

4. At this stage, it is a good idea to save the buffer containing your chart.

Make sure you select a directory to which you have write access. Also remember to save
periodically as you work.

Defining Data with Abscissa Values in Radians

You are going to define two data sets, each consisting of three data points with two
coordinates. The x-coordinate will be expressed in radians.

1. Click the Data sets tab in the Chart inspector to bring this page to the front.

To simplify the exercise, we are going to keep the data sets that are already defined.
These data sets are of the type “Points (X,Y)” for the current chart. You can see that the
abscissa values are expressed in degrees by default. For this exercise, you must therefore
set the abscissa of the data points to radians in order to have data with abscissa values
expressed in radians.

2. Select the first data set in the Data sets list.

3. Keep only the first three data points and delete the others. To delete a data point, just
select it and click the Remove icon below the table.

4. Click Apply to validate the changes.

5. Select the second data set and repeat step 3 and 4.

You have now two data sets with three data points each.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 74

usrcharts.book Page 75 Thursday, July 23, 2009 5:01 PM
You are now going to select the abscissa value of each data point and replace the value in
degrees by a value in radians.

6. Select the first data set again. Replace the first X value with 0, the second X value with
0.78, and the third X value with 1.57.

7. Click Apply to validate the changes.

8. Select the second data set. Replace the first X value with 0, the second X value with
1.57, and the third X value with 3.14.

9. Click Apply to validate the changes.
75 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Representing Values Expressed in Radians

usrcharts.book Page 76 Thursday, July 23, 2009 5:01 PM
Defining the Displayers

We want the two data sets to be represented by markers. To do so, the displayers displaying
the data sets must be of the scatter type.

1. Click the Displayers tab to bring this page to the front.

2. Select the first displayer from the Displayers list.

3. Make sure “Scatter” is selected in the Displayer type list. If not, select “Scatter”.

4. Click Apply to validate the changes.

5. Repeat steps 2 to 4 for the second displayer.

Specifying the Transformation on the Abscissa

Next you are going to apply a transformation to the abscissa scale.

The abscissa values of your data points are now expressed in radians. To represent these data
points on an abscissa scale graduated in degrees, you have to do the following:

◆ Specify the minimum and maximum values that will be represented by the scale.

◆ Apply a transformation to the scale to convert radians to degrees.

Do the following:

1. Select the Scales page of the Chart inspector.

2. Make sure Abscissa is selected in the Scales list.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 76

usrcharts.book Page 77 Thursday, July 23, 2009 5:01 PM
3. Make sure the General page is displayed in front.

On this page, you are going to change the minimum and maximum data values
represented on the scale because these values must be expressed in the same coordinate
system as the data.

4. Enter 0 in the Min field and 4.71 in the Max field.

5. Click Apply to validate the changes.

6. Click the Transformation tab on the Scales page.

The initial abscissa values of the data are expressed in radians while the abscissa scale of
a polar chart is graduated in degrees by default. You will use the transformation page to
set the transformation that will convert the abscissa values from radians to degrees. This
transformation is given by the following formula:

where r is the value expressed in radians and d the corresponding value expressed in
degrees.

7. Select Affine in the “Elementary transformation” drop-down list.

8. Enter 57.3 as the multiplicative coefficient and 0 as the constant coefficient.

9. Click Apply to validate the changes.
77 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Representing Values Expressed in Radians

usrcharts.book Page 78 Thursday, July 23, 2009 5:01 PM

Your polar chart now represents your data expressed in radians on an abscissa scale
graduated in degrees.

However, you may want to have an abscissa scale that is graduated in the same coordinate
system as your data — in radians in this example. This case is detailed in the next section.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 78

usrcharts.book Page 79 Thursday, July 23, 2009 5:01 PM
Case 2: Setting a Starting Angle and a Range

Case 2 assumes that you have already completed all the steps described in Case 1. From now
on, you are going to work on a copy of the chart you obtained at the end of Case 1 so that
you can compare the two charts at the end of the exercise. The two charts will appear as
shown in Figure 3.2.

Figure 3.2

Figure 3.2 Abscissa Scale in Degrees vs. Abscissa Scale in Radians

Before beginning the tasks in this section, copy the chart you created in Case 1 and paste it
either to the same buffer or to another buffer. (Click in the buffer before you choose Paste.)

To continue with this part of the example, you first need to remove the transformation
previously set on the abscissa scale.

Disabling the Transformation

1. Double-click the polar chart to open its inspector.

2. Select the Scales page.

3. Make sure Abscissa is selected in the Scales list.

4. Select the Transformation page.

5. Choose None from the “Elementary transformation” drop-down list to disable the
transformation.

6. Click Apply to validate the change.

All you have to do now is specify a starting angle and a range to tell the projector how to
map the radians values along the abscissa scale.

Mapping Radians Values Along the Abscissa Scale

1. Select the Projection page of the Chart inspector.

2. Make sure the option “Projected values expressed in degrees” is deselected.

3. Make sure the Starting angle is set to 0.
79 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 1: Representing Values Expressed in Radians

usrcharts.book Page 80 Thursday, July 23, 2009 5:01 PM
This means that you want the minimum value considered for the data values of the
abscissa to be drawn at 0 degree.

4. Enter 270 in the Range field.

This means that you want the maximum value considered for the data values of the
abscissa to be drawn at a 270-degree angle (= starting angle + range). You previously set
0 and 4.71 radians as the minimum and maximum data values considered for the
abscissa scale. These values are equivalent to 0 and 270 degrees, respectively. (See step 4
of Specifying the Transformation on the Abscissa on page 76.)

5. Click Apply to validate the changes.

You should now have the same chart as in Case 1, except that the abscissa scale is graduated
in radians.

Notice, however, that the scale labels are formatted as integers. To format them as floating
values, do the following:

1. Select the Scales page of the Chart inspector.

2. Make sure Abscissa is selected in the Scales list.

3. Click the Steps tab of the Scales page.

4. Change the label format to “%.2f”.

5. Click Apply to validate the change.

The resulting chart should now look like this. You can compare it with the chart you created
in Case 1.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 80

usrcharts.book Page 81 Thursday, July 23, 2009 5:01 PM
Summary

You have now completed the first example that shows how to use a polar chart to represent
data whose abscissa values are not expressed in degrees. Although you changed the abscissa
scale unit from degrees to radians, this example still displays data whose abscissa expresses
angle values.

You can also use a polar chart to represent any data you want on a circular scale, even if the
abscissa values are not directly related to angles. For example, a pie chart is based on a polar
chart. For this reason, we are now going to show you another simple example that shows
how to use a polar chart to represent time values in a circular way.

Example 2: Representing Time Values

You are now going to represent temperatures that have been recorded every two hours in the
morning. The temperatures are in degrees Celsius and are represented by a marked polyline.
Let’s suppose you want to represent the time on a circular scale as on a clock. The following
table lists the temperatures you are going to display in the chart:

Figure 3.3 shows the chart that you will obtain.

Table 3.1 Temperatures Recorded Every Two Hours

Hour Temperature

2 8

4 9

6 11

8 12

10 14

12 15
81 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Representing Time Values

usrcharts.book Page 82 Thursday, July 23, 2009 5:01 PM
Figure 3.3

Figure 3.3 Polar Chart Representing Time Values

To build this chart, you will perform the following tasks:

◆ Creating the Polar Chart

◆ Defining the Data Set

◆ Defining the Displayer

◆ Customizing the Projection

◆ Customizing the Abscissa Scale

◆ Customizing the Ordinate Scale

Creating the Polar Chart

1. If you have not already done so, launch IBM® ILOG® Views Studio and display the
Charts palette as described in Launching IBM ILOG Views Studio with the Charts
Extension on page 16.

2. Drag a polar chart from the Charts palette to your working buffer.

3. Double-click this object to open its inspector.

See Using the Chart Inspector on page 20 for an overview of the Chart inspector. This
section contains an explanation of each notebook page you may need to use when
working with charts.

4. At this stage, it is a good idea to save the buffer containing your chart.

Make sure you select a directory to which you have write access. Also remember to save
periodically as you work.

Defining the Data Set

You are now going to define a data set and enter the time and temperature values listed in
Table 3.1.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 82

usrcharts.book Page 83 Thursday, July 23, 2009 5:01 PM
1. Select the Data sets page of the Chart inspector.

The top of this page shows the list of data sets and the list of displayers created for the
current chart. At this stage, you can either use a data set that is already defined for the
current chart or create another data set by simply clicking the Insert icon below the
Data sets list.

Just remember to delete the data sets that you will not use since we only need one data
set for our example. To delete a data set, select the data set and click the Remove
icon below the Data sets list.

2. Make sure the first data set is selected in the Data sets list.

You are going to use this data set to represent the recorded temperatures. The time values
will be displayed along the abscissa scale and the temperature values along the ordinate
scale.

3. Make sure “Points (X,Y)” is selected in the Data set type list. If not, select “Points
(X,Y)” in the Data set type list.

4. Make sure the (X,Y) list in the scrolling list next to the Data set type list is empty. If not,
click the Clean icon below the list to empty it.

You are now going to fill in the data set with the hours and the temperatures from
Table 3.1.

5. Click the Add icon below the empty (X,Y) list as many times as necessary to create
the required number of empty rows.

6. Select the first cell (X cell) of the first row and enter the first time value.

7. Select the second cell (Y cell) of the first row and enter the first temperature value.

8. Repeat steps 6 and 7 for each row.

9. Click Apply to validate the changes.
83 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Representing Time Values

usrcharts.book Page 84 Thursday, July 23, 2009 5:01 PM
10. Change the default name of the data set to Morning Temperatures in the Name field.

The Data sets list is updated accordingly.

11. Click Apply to validate the change.

Defining the Displayer

You are now going to set the type of the displayer used to display the data set representing
the morning temperatures.

1. Select the Displayers page of the Chart inspector.

The top of this page displays the list of data sets and the list of displayers created for the
current chart. At this stage, you can either use a displayer that is already defined for the
current chart or create another displayer by simply clicking the Insert icon below the
Displayers list.

Just remember to delete the displayers that you will not use since we only need one
displayer for our example. To delete a displayer, select the displayer and click the
Remove icon below the Displayers list.

2. Make sure the first displayer is selected in the Displayers list.

This displayer will be used to display the Morning Temperatures data set.

3. For the displayer to display the Morning Temperatures data set, the toggle in front of
the Morning Temperatures data set must be checked. If it is not checked, click the
toggle.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 84

usrcharts.book Page 85 Thursday, July 23, 2009 5:01 PM
Next, you must specify the type of displayer for the data set. Because you want to
represent the morning temperatures with a marked polyline, you must specify a marked
polyline displayer.

4. Make sure “Marked polyline” is selected in the Displayer type list. If it is not selected,
select “Marked polyline” in the Displayer type list.

5. Click Apply to validate the changes.

Now that you have defined the data set and the displayer you need, you are going to
customize the projection.

Customizing the Projection

1. Select the Projection page of the Chart inspector.

This is where you specify a starting angle and a range that tells the projector how to map
the hours along the abscissa scale.

2. Make sure the option “Projected values expressed in degrees” is deselected.

3. Enter 90 in the Starting angle field.

This means that you want the minimum value considered for the data abscissa values to
be drawn at a 90-degree angle.

4. Enter 360 in the Range field.

This means that you want the maximum value considered for the data abscissa values to
be drawn at a 450-degree angle (= starting angle + range). In other words, the abscissa
values will be drawn along a full circle.

5. Make sure the option “Oriented clockwise” is selected.

The values will be displayed clockwise.

6. Click Apply to validate the changes.

To complete your polar chart, you need to customize both scales.

Customizing the Abscissa Scale

To customize the abscissa scale for this example, you need to perform the following tasks:

◆ Specifying the Minimum and Maximum Data Values

◆ Setting the Graduations

Specifying the Minimum and Maximum Data Values

1. Select the Scales page of the Chart inspector.
85 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Example 2: Representing Time Values

usrcharts.book Page 86 Thursday, July 23, 2009 5:01 PM
2. Make sure Abscissa is selected in the Scales list.

The right part of the Scales page displays several subpages that describe the properties of
the selected scale.

3. Make sure the General subpage is displayed in front.

This is where you specify the minimum and maximum data values that will be
represented by this scale.

4. Enter 0 in the Min field and 12 in the Max field.

These values are chosen because the minimum and maximum values must be expressed
in the same coordinate system as the data and the abscissa scale should represent the
hours as on a clock.

5. Click Apply to validate the changes.

Setting the Graduations

1. Click the Steps tab of the Scales page.

2. Make sure “Step number” is selected in the Step definition list.

3. Set 13 as the number of steps and 4 as the number of substeps between steps so that the
abscissa scale resembles a clock.

4. Click Apply to validate the changes.

Customizing the Ordinate Scale

The last task of this exercise consists of customizing the ordinate scale. The Scales page
should already be selected in the Chart inspector, so you can continue with this task.

1. Select Ordinate 1 in the Scales list.

2. Click the General tab of the Scales page.

This is where you set the minimum and maximum data values that will be represented on
this scale.

The minimum and maximum values must include all the data ordinate values, that is, all
the recorded temperatures. These temperatures range from 8 to 15 degrees. The
minimum value of the scale must therefore be no more than 8 and the maximum value no
less than 15, if you want to make sure that all the temperature values in Table 3.1 are
displayed. Moreover, it is common practice to use round values.

3. Enter 0 in the Min field and 20 in the Max field.

4. Click Apply to validate the changes.

The resulting chart should now appear as follows:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 86

usrcharts.book Page 87 Thursday, July 23, 2009 5:01 PM
You have now completed all the examples to help you get started using
IBM® ILOG® Views Studio with the Charts extension. You have learned the basic
procedures for creating and customizing Cartesian and polar charts. You should be able to
begin creating your own charts using IBM ILOG Views Studio.

In Part 2 of this manual, you will find detailed information on using the Charts Library.
87 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 88 Thursday, July 23, 2009 5:01 PM
Part II
Using the Charts Library

This part consists of the following chapters:

◆ Chapter 4, Introducing the Charts Library describes the main features of the Charts
Library of IBM® ILOG® Views.

◆ Chapter 5, Chart Basics provides background information and describes the basic
concepts upon which the Charts Library is based.

◆ Chapter 6, Data Handling describes the data handling features of the Charts Library.

◆ Chapter 7, Chart Layout describes how the layout of the charts is computed.

◆ Chapter 8, Data Display describes how data are displayed using the chart displayers of
the Charts Library.

◆ Chapter 9, Scales Display describes how scales are displayed using the scale displayers
of the Charts Library.

◆ Chapter 10, Decorations Display describes how to add legends, grids, and annotations to
your charts.

usrcharts.book Page 89 Thursday, July 23, 2009 5:01 PM
◆ Chapter 11, Interacting with Charts describes how to use the interactors of the Charts
Library.

◆ Chapter 12, Using Charts to Display Real-Time Data tells you how to use charts to
display real-time data.

C H A P T E R

usrcharts.book Page 90 Thursday, July 23, 2009 5:01 PM
4

Introducing the Charts Library

The Charts Library of IBM® ILOG® Views is composed of dedicated classes that allow you
to display your data in charts. Using the Charts Library of IBM ILOG Views, you will be
able to produce many types of charts very easily, from the very simple to the very complex.

In this chapter, you will find information on the following topics:

◆ Main Features of the Charts Library

◆ Feature Illustrations

Main Features of the Charts Library

The Charts Library allows you to display data in charts that can be customized in various
ways and to interact with these charts in different manners.

Global Chart Characteristics

The following are the global characteristics of the Charts Library of IBM® ILOG® Views:

◆ The Charts Library has been designed with a clear separation between the data and the
graphical representations of the data.

◆ A chart can display as many graphical representations of data as you want.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 90

usrcharts.book Page 91 Thursday, July 23, 2009 5:01 PM
◆ A chart uses one abscissa scale and as many ordinate scales as you want.

◆ Two types of charts are available:

● Cartesian charts displaying data expressed in a Cartesian system of coordinates in a
standard way.

● Polar charts displaying data expressed in a polar system of coordinates in a circular
way.

◆ The orientation of the scales can be customized.

● In Cartesian charts, the abscissa and ordinate scales can be oriented either horizontally
or vertically.

● In polar charts, the circular abscissa scale can be oriented clockwise or
counterclockwise and the radial ordinate scales can be oriented at any angle.

◆ The charts are data-aware. Changes made to data are automatically reflected in the
charts that display these data. The possible modifications made by interacting with a
chart are also automatically reflected on the data.

◆ Three automatic scroll modes (stop, shift, cyclic) are available. These modes allow you
to define the behavior of a chart when new data that must be displayed are added to the
chart.

◆ Charts can be created and customized without having to code using IBM ILOG Views
Studio.

Data Features

The data to be represented in a chart can have different forms:

◆ Sets of data points with two coordinates

◆ Sets of data values

◆ Functions of the type y = f(x) that can be described by a script or a C++ callback

The data can be expressed in:

◆ A Cartesian system of coordinates (x, y)

◆ A polar system of coordinates (θ, ρ)

The abscissa values (x or θ) are plotted along the abscissa scale and the ordinate values
(y or ρ) are plotted along the ordinate scale(s).

Graphical Representations of Data

The following predefined graphical representations of data are available:
91 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Main Features of the Charts Library

usrcharts.book Page 92 Thursday, July 23, 2009 5:01 PM
◆ Scatter (data displayed with markers)

◆ Polyline, polygon, and marked polyline (polyline with markers)

◆ Bar and 3D bar

◆ Step (data displayed with only the steps of the stairs) and stair (data displayed with the
entire stairs)

◆ Fixed step (data displayed with fixed steps centered on the data)

◆ Stock representations including high-low representation made of lines, high-low
representations made of bars, high-low open-close representations

◆ Bubble (data displayed with bubbles)

◆ Pie charts

◆ Side-by-side bars

◆ Stacked representations (100% stacked or not) including stacked bars, stacked 3D bars,
stacked polygons

Scale Features

The following types of scales are available in the library:

◆ Rectangular scales (that is, scales with straight-line axes).

◆ Circular scales (can be used only in polar charts)

The scales can be graduated with:

◆ Linear graduations

◆ Logarithmic graduations

Decorations

The following kinds of decorations can be added to a chart to improve its appearance or to
help in understanding the data:

◆ Legends that explain the displayed data

◆ Grids to help you locate the data points on a chart

◆ Cursors that show the values of a given data point on the scales of a chart

◆ Annotations linked to given data points

Grids, cursors, and annotations are all part of the chart. A legend is a separate graphic object
that can be positioned independently of the chart.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 92

usrcharts.book Page 93 Thursday, July 23, 2009 5:01 PM
Interactors

The following interactors are available that allow the user to interact with a chart.

◆ A zoom interactor to zoom and unzoom within the displayed data

◆ A scroll interactor to scroll the displayed data with the arrow keys

◆ A pan interactor to scroll the displayed data with the mouse

◆ A crosshair interactor that displays a crosshair at the location of the mouse pointer

◆ Data interactors that allow the user to do the following:

● Drag a data point.

● Highlight or display information related to a data point.

● Select data points (either all the data points of a data set or only a single data point).
93 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Feature Illustrations

usrcharts.book Page 94 Thursday, July 23, 2009 5:01 PM
Feature Illustrations

I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 94

usrcharts.book Page 95 Thursday, July 23, 2009 5:01 PM

95 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 96 Thursday, July 23, 2009 5:01 PM
5

Chart Basics

This chapter presents the basic concepts that you will need to begin to display your data in
charts and to understand how charts work. You will find information on the following topics:

◆ What is a Chart?

◆ General Architecture of the Charts Library

◆ Basic Steps for Creating a Chart

◆ How Charts Work in IBM ILOG Views

What is a Chart?

A chart represents data graphically in different forms (markers, lines, bars, and so on) with
scales that are added to indicate the values of the displayed data. We distinguish two kinds of
charts:

◆ Cartesian charts represent data in a standard way. The data is expressed using a
Cartesian system of coordinates (x, y). The x- and y-coordinates are plotted along the
abscissa and ordinate scales, respectively. The scales are rectangular and are displayed
orthogonally.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 96

usrcharts.book Page 97 Thursday, July 23, 2009 5:01 PM
Figure 5.1

Figure 5.1 A Cartesian Chart

◆ Polar charts represent data in a circular way. The data is expressed using a polar system
of coordinates (θ, ρ). The abscissa values θ are plotted along a circular scale. The
ordinate scale, along which the ρ-coordinates are plotted, is rectangular and is displayed
radially.

Figure 5.2

Figure 5.2 A Polar Chart

In addition, other elements can be added to a chart to aid in the understanding of the
displayed data:

◆ Legends that explain the displayed data (see Figure 5.3)

◆ Grids to help you locate the data points on a chart (see Figure 5.3)

◆ Cursors that show the values of a given data point on the scales (see Figure 5.4)

◆ Annotation linked to a given data point (see Figure 5.5)
97 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

What is a Chart?

usrcharts.book Page 98 Thursday, July 23, 2009 5:01 PM
Figure 5.3

Figure 5.3 A Grid and a Legend in a Cartesian Chart

Figure 5.4

Figure 5.4 Cursors in a Cartesian Chart

Figure 5.5

Figure 5.5 Annotations on a Pie Chart
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 98

usrcharts.book Page 99 Thursday, July 23, 2009 5:01 PM
General Architecture of the Charts Library

The general architecture of the Charts Library in IBM® ILOG® Views is based on the
model-view separation concept. The Charts Library has been designed with a clear
separation between the data and the graphical representations of the data. There is a clear
distinction between:

◆ the chart data objects that manage the sets of data (or data sets) to be displayed by the
charts and

◆ the chart objects that display chart data objects.

Listeners are set on data so that the chart objects can be updated automatically when
modifications are made to the data they display.

Basic Rules

The following basic rules apply to chart data objects and chart objects:

◆ The same chart data object can be displayed by several chart objects.

◆ A given chart object can display only one chart data object.

◆ A given data set managed by a chart data object can be displayed with several different
graphical representations in a chart object.

Example Charts

The two charts shown in Figure 5.6 will help you understand these basic rules. Each chart
displays a set of mean temperatures for the morning and a set of mean temperatures for the
afternoon recorded for each day of a week. However, the charts use a different type of
graphical representation to display the same data. These two charts display the same chart
data object that manages the two sets of temperatures.

◆ Chart 1 displays the morning and afternoon mean temperatures with two polylines. The
two sets of temperatures are also displayed on the chart with high-low bars to illustrate
the variation of the temperatures between the morning and the afternoon of each day of
the week.

◆ Chart 2 displays the two sets of temperatures with stacked bars in order to illustrate the
mean temperature for each day of the week.

In both charts, the abscissa scale indicates the days of the week and the ordinate scale the
temperatures in degrees Celsius.

The drawing of the graphical representations of data (polylines, high-low bars, and so on) is
performed within a chart by dedicated objects called displayers. Figure 5.6 shows the
displayers used by the two charts to represent the morning and afternoon mean temperatures
data sets. The solid-line arrows indicate the data set(s) that each displayer displays. The
dotted-line arrows indicate the graphical representation that is displayed by each displayer.
99 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

General Architecture of the Charts Library

usrcharts.book Page 100 Thursday, July 23, 2009 5:01 PM
Figure 5.6

Figure 5.6 Two Charts using the Same Chart Data Object

Data Classes

The base class used to represent a chart data object is the IlvAbstractChartData class. A
subclass called IlvMemoryChartData that stores the data sets it manages in memory is
provided in the library.

The data sets managed by a chart data object are all instances of subclasses of the
IlvChartDataSet class. Several subclasses of the IlvChartDataSet class are provided
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 100

usrcharts.book Page 101 Thursday, July 23, 2009 5:01 PM
to allow you to define a set of data to be displayed by a chart in different ways. A data set
can be defined as:

◆ A set of points with two coordinates

This kind of data set is represented by an instance of the IlvChartPointSet class. The
data points managed by this data set are instances of the IlvDoublePoint class that
allows you to represent a point with two coordinates of the IlvDouble type.

◆ A set of values

This kind of data set is represented by an instance of the IlvChartYValueSet class.
The data values managed by this data set are of the IlvDouble type. These values
correspond to the ordinates of the data points that will be displayed. The abscissa of the
data points are by definition the indexes of the stored values.

◆ A function

This kind of data set is represented by an instance of a subclass of the
IlvAbstractChartFunction class. Two subclasses are available in the library:
IlvCallbackChartFunction for which the function is defined by a C++ callback and
IlvScriptChartFunction for which the function is defined by a script.

Chart Classes

The base class used to display a chart is the IlvChartGraphic class. This class defines a
chart object as a graphic object that can be used in the same way as all the other graphic
objects defined in IBM® ILOG® Views.

When you create a chart object, an IlvMemoryChartData object (inherited from
IlvAbstractChartData) is created by default and is set on the created chart to handle the
storage of the data sets it is going to display. You can either use this chart data object created
by default or set your own chart data object.

The way the data are projected into screen coordinates is not specified at the level of the
IlvChartGraphic class since it depends on the system of coordinates in which the data to
be displayed are expressed. No object is defined by default to display the scales since the
type depends on the way the data are projected into screen coordinates. Two subclasses of
the IlvChartGraphic class are provided. These subclasses predefine the way the data are
projected and the objects to be used to display the scales.

◆ The IlvCartesianChart class is instantiated to represent data in a standard way. The
data are expressed in a Cartesian system of coordinates (x, y). Two rectangular scales are
created by default: one representing the abscissa values x and one representing the
ordinate values y.
101 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 102 Thursday, July 23, 2009 5:01 PM
◆ The IlvPolarChart class is instantiated to represent data in a circular way. The data
are expressed in a polar system of coordinates (θ, ρ). A circular scale is created by
default to represent the abscissa values θ. A rectangular scale is created by default to
represent the ordinate values ρ.

By using one of these subclasses instead of the IlvChartGraphic class, you only need to
set the following objects when you create a chart:

◆ The data sets to be displayed with the considered chart.

◆ The displayers used to draw the graphical representations of the data sets in the
considered chart.

Basic Steps for Creating a Chart

The basic steps for creating a chart are the same whether you are creating a Cartesian chart
or a polar chart. To create a chart, do the following:

1. Create the data sets.

● Create the objects representing the data sets you want to display. These objects are
instances of subclasses of the IlvChartDataSet class (See Data Classes on
page 100).

● Put the data to be displayed into the created data sets.

2. Create the chart.

The created chart object is an instance of the IlvCartesianChart or the
IlvPolarChart class, depending on the type of chart you want to display (See Chart
Classes on page 101).

3. Add the data sets to the chart data object.

The chart data object can be the IlvMemoryChartData object that is created by default
or whatever chart data object you have set on the created chart.

4. Create and add the displayers that will be used to draw the graphical representations of
the data sets.

This section provides two examples to show you how to create a Cartesian chart and a polar
chart. These examples follow our basic steps for creating a chart.

◆ Creating a Simple Cartesian Chart

◆ Creating a Simple Polar Chart
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 102

usrcharts.book Page 103 Thursday, July 23, 2009 5:01 PM
Creating a Simple Cartesian Chart

You are going to see how to create a simple Cartesian chart that is similar to Chart 1 in
Figure 5.6. The data to be represented are the morning and afternoon mean temperatures
recorded for each day of a week. The temperatures are expressed in degrees Celsius. The
days of the week are referenced by indexes from 0 to 6. The data for the chart are listed in
Table 5.1. You will see the steps required to display these data in a Cartesian chart.

Figure 5.7 shows the Temperatures Chart that will be created to display our data. The
morning mean temperatures will be displayed with a blue polyline (the bottom line of the
chart) and the afternoon mean temperatures with a red polyline (the top line of the chart). In
the chart, we also want to display the two sets of temperatures with high-low bars in order to
illustrate the variation between the morning and afternoon temperatures for each day of the
week. After the chart is constructed, we will show you how to add the legend that appears at
the bottom of the chart.

Table 5.1 Data for the Example Chart

Day Morning Mean
Temperature (° C)

Afternoon Mean
Temperature (° C)

0 10 16

1 8 12

2 12 20

3 15 25

4 14 22

5 14 24

6 13 26
103 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 104 Thursday, July 23, 2009 5:01 PM
Figure 5.7

Figure 5.7 Example Cartesian Chart

The complete source code of this example can be found in the cartesian.cpp file located
in the $ILVHOME/samples/charts/userman/src directory.

Creating the Data Sets

1. Create the objects representing the data sets we want to display.

We want to display two data sets on the same chart: the morning mean temperatures and
the afternoon mean temperatures for each day of a week. The days will be plotted along
the abscissa scale and the temperatures along the ordinate scale. To define each data set,
we create a data set that stores data points with two coordinates (x, y).

2. Put the data to be displayed into the created data sets.

//== Create two data sets.
IlvChartDataSet* dataSets[2];
//== Create one data set to store the morning temperatures.
dataSets[0] = new IlvChartPointSet("Morning Temperatures");

//== Create one data set to store the afternoon temperatures.
dataSets[1] = new IlvChartPointSet("Afternoon Temperatures");
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 104

usrcharts.book Page 105 Thursday, July 23, 2009 5:01 PM
The day is set as the abscissa and the temperature as the ordinate of the stored data
points.

Creating a Cartesian Chart

To create a Cartesian chart, use the following code:

The IlvRect object passed as a parameter specifies the bounding box of the created chart.

Adding the Data Sets to the Chart Data Object

The data sets are added to the chart data object set on the chart object. The chart data object
is obtained for a given chart using the IlvChartGraphic::getData method.

Creating and Adding the Displayers

1. Create and add the objects used to display the graphical representations of the data.

We want to display the two sets of temperatures with two polylines and also with a high-
low bar representation. The first polyline represents the morning mean temperatures data
set and corresponds to dataSets[0]. The second polyline represents the afternoon

//== Put the data into the morning temperatures data set.
dataSets[0]->addPoint(IlvDoublePoint(0, 10));
dataSets[0]->addPoint(IlvDoublePoint(1, 8));
dataSets[0]->addPoint(IlvDoublePoint(2, 12));
dataSets[0]->addPoint(IlvDoublePoint(3, 15));
dataSets[0]->addPoint(IlvDoublePoint(4, 14));
dataSets[0]->addPoint(IlvDoublePoint(5, 14));
dataSets[0]->addPoint(IlvDoublePoint(6, 13));

//== Put the data into the afternoon temperatures data set.
dataSets[1]->addPoint(IlvDoublePoint(0, 16));
dataSets[1]->addPoint(IlvDoublePoint(1, 12));
dataSets[1]->addPoint(IlvDoublePoint(2, 20));
dataSets[1]->addPoint(IlvDoublePoint(3, 25));
dataSets[1]->addPoint(IlvDoublePoint(4, 22));
dataSets[1]->addPoint(IlvDoublePoint(5, 24));
dataSets[1]->addPoint(IlvDoublePoint(6, 26));

IlvChartGraphic* chart = new IlvCartesianChart(display,
 IlvRect(10, 10, 450, 300));

IlUInt dataSetsCount = 2;
chart->getData()->setDataSets(dataSetsCount, dataSets);
105 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 106 Thursday, July 23, 2009 5:01 PM
mean temperatures data set which corresponds to dataSets[1]. The high-low bar
representation represents both the morning and afternoon mean temperatures data sets.

The first parameter of the constructor of the IlvHiLoBarChartDisplayer object, that
is, 12 is the width of the bars. The risePalette is used to draw the high-low items for
which the corresponding low value (that is, the morning mean temperature) is smaller
than the high value (that is, the afternoon mean temperature). The fallPalette is used
to draw the high-low items for which the corresponding low value is greater than the
high value.

2. Set the colors for the polyline displayers.

We want the morning mean temperatures to be displayed in blue and the afternoon mean
temperatures in red.

We have now completed the basic steps for creating a chart. Additional steps can be
performed to enhance the appearance of a chart. You are now going to see how to customize
the abscissa and ordinate scales and how to add a legend to a chart.

Customizing the Abscissa Scale

We are now going to set the number of steps and substeps displayed on the abscissa scale.
The steps are marked by major tick marks on the scale and the substeps are marked by minor
tick marks that are drawn between the major tick marks.

The abscissa scale represents the days of the week. Since the number of days in a week is
seven, the number of steps should be set to 7 so that one major tick mark appears for each
day of the week. We do not want any minor tick marks between the major tick marks so we
will set the number of substeps between two steps to 0.

//== Create and add the displayers.
chart->addDisplayer(new IlvPolylineChartDisplayer(),dataSets[0]);
chart->addDisplayer(new IlvPolylineChartDisplayer(),dataSets[1]);

IlvPalette* risePalette = display->getPalette(display->getColor("red"),
 display->getColor("white"));
IlvPalette* fallPalette = display->getPalette(display->getColor("blue"),
 display->getColor("white"));

chart->addDisplayer(new IlvHiLoBarChartDisplayer(12,
 risePalette,
 fallPalette),
 dataSetsCount,
 dataSets);

chart->getDisplayer(0)->setForeground(display->getColor("blue"));
chart->getDisplayer(1)->setForeground(display->getColor("red"));

Note: The corresponding palettes could have been passed directly as a parameter to the
constructors of the polyline displayers as has been done for the high-low bar displayer.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 106

usrcharts.book Page 107 Thursday, July 23, 2009 5:01 PM
The computation of the steps and substeps for a given scale is performed by a dedicated
object called scale steps updater that is set on the scale. Since we want steps and substeps
with a constant spacing, we first set a constant scale steps updater on the scale.

Then we set on the scale steps updater the number of steps and substeps between two steps.

Customizing the Ordinate Scale

We are now going to set the step and the substep units for the ordinate scale. Again, the steps
will be marked with a major tick mark and the substeps with a minor tick mark.

The ordinate scale represents the temperature in degrees Celsius. We want a major tick mark
to appear every five degrees, and a minor tick mark every degree. To do this, we specify 5 as
the step unit and 1 as the substep unit.

Since we want steps and substeps with a constant spacing, we first set a constant scale steps
updater on the scale.

Then we set on the scale steps updater the step and the substep units.

The Temperatures Chart now appears as shown in Figure 5.8.

IlvSingleScaleDisplayer* abscissaScale = chart->getAbscissaScale();

IlvConstantScaleStepsUpdater* updater =
 new IlvConstantScaleStepsUpdater(abscissaScale);
delete IlvScaleStepsUpdater::Set(abscissaScale, updater);

updater->fixStepsCount(7, 0);

IlvSingleScaleDisplayer* ordinateScale = chart->getOrdinateSingleScale();

updater = new IlvConstantScaleStepsUpdater(ordinateScale);
delete IlvScaleStepsUpdater::Set(ordinateScale, updater);

updater->fixStepUnit(5, 1);
107 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 108 Thursday, July 23, 2009 5:01 PM
Figure 5.8

Figure 5.8 The Temperatures Chart

Adding a Legend

To add a legend to a chart, perform the following steps:

1. Create a chart legend object.

The chart legend object is a graphic object that is positioned independently of the chart.
The IlvRect object passed as a parameter to the constructor gives the position and the
default size of the legend. The created legend does not contain any legend items since it
is not yet connected to a chart. A legend must be connected to a chart to have the legend
items appear.

2. Connect the legend to the chart.

When the legend is set on the chart, the legend items corresponding to the displayers that
are defined in the chart are automatically computed and the size of the legend is
recomputed to fit these legend items.

IlvChartLegend* legend = new IlvChartLegend(display,
 IlvRect(10, 330, 450, 50));

chart->setLegend(legend);

Note: The chart legend object is a graphic object like the chart object and is positioned
independently of the chart object. Just as you add the chart object to a container or
manager, you must also add the chart legend object to the container or manager.
Otherwise, the chart legend object will not appear on the screen.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 108

usrcharts.book Page 109 Thursday, July 23, 2009 5:01 PM
Now, with the legend added, the Temperatures Chart appears as follows:

Figure 5.9

Figure 5.9 The Temperatures Chart with a Legend

Creating a Simple Polar Chart

You are now going to see how to create a polar chart. We will use the same data that we used
for creating the Temperatures Chart in the previous section. Instead of representing the
morning and afternoon mean temperatures in a Cartesian chart, we are going to represent
them in a polar chart. We will follow the same basic steps to create a polar chart as we did to
create our Cartesian chart.

For our polar chart, the data sets are the same, since we want to represent the same data as in
the Cartesian chart. The days of the week will still be represented along the abscissa and the
temperatures along the ordinate. The data will simply be displayed differently since the
abscissa values will be mapped along a circular scale and the ordinate values will be
displayed radially. The displayers are also the same since we want to represent the data with
the same graphical representations. We will customize the scales in the same way as we did
for the Cartesian chart. However, we will show you some additional ways to customize the
abscissa scale. Finally, we will also add a legend to the chart.

Figure 5.10 shows the polar chart that we will create.
109 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 110 Thursday, July 23, 2009 5:01 PM
Figure 5.10

Figure 5.10 Example Polar Chart

The complete source code of this example can be found in the polar.cpp file located in the
$ILVHOME/samples/charts/userman/src directory.

Creating the Data Set

Once again, the first step is to create the data sets and put the data to be displayed into the
data sets. Use the same data and procedures as for the Cartesian chart example. See Creating
the Data Sets on page 104.

Creating a Polar Chart

To create our polar chart, we use the following code:

The IlvRect object passed as a parameter corresponds to the bounding box of the created
chart. The Boolean value IlvTrue that follows the IlvRect parameter indicates that grids
should be added to the scales created by default. The next parameter is set to 90 degrees and
indicates the starting angle at which the minimum data value will be displayed. This means
that the first day of the week referenced by the index 0 will be displayed at 90 degrees on the
abscissa scale. The next parameter is set to 270 degrees and indicates the angle range within
which the data will be projected on the screen. The last Boolean value indicates whether the

IlvChartGraphic* chart = new IlvPolarChart(display,
 IlvRect(10, 10, 450, 300),
 IlTrue,
 90,
 270,
 IlTrue);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 110

usrcharts.book Page 111 Thursday, July 23, 2009 5:01 PM
polar system of coordinates is oriented clockwise. It is set to IlvTrue, which means that the
abscissa values will be displayed clockwise.

Adding the Data Sets to the Chart Data Object

To add the data sets to the chart data object, use the same data and procedures as for the
Cartesian chart example. See Adding the Data Sets to the Chart Data Object on page 105.

Creating and Adding the Displayers

Because we want to use the same graphical representations for our data, we will use the
same displayers as we used for the Cartesian chart. See Creating and Adding the Displayers
on page 105.

We have now completed the basic steps for creating a chart. We will continue with the
additional steps to customize the ordinate and abscissa scales and to add a legend to the
chart.

Customizing the Ordinate Scale

For the ordinate scale, we want to customize the scale as we did for the Cartesian chart. See
Customizing the Ordinate Scale on page 107.

Customizing the Abscissa Scale

We want to customize the abscissa scale as we did for the Cartesian chart. In addition, we
want to change the format of the step labels along the abscissa scale and specify that the step
labels should be drawn at the axes crossings for the abscissa scale.

1. First, we want to customize the scale so that a major tick mark appears for each day of
the week. See Customizing the Abscissa Scale on page 106.

2. Change the format of the step labels.

The format used to display the labels at the major tick marks of the abscissa scale of a
polar chart is set by default to "%.2f". This displays the labels as floating values with
two digits after the decimal point. Since the abscissa values are integers corresponding to
the indexes of the days of the week, we want to set the step label format to "%.0f". This
will display the indexes of the days in the form of integers.

3. Display the step labels at the intersection of the axes.

By default, the flag indicating whether the step labels must be drawn where the axes
intersect is set to IlvFalse for the abscissa scale of a polar chart. The label "0" for the

Note: The range parameter of the constructor of a polar chart must be set to the angle
range within which you want the data to be projected on the screen if the abscissa values
of the data are not expressed in degrees. Otherwise, the range parameter must be set
to 0.

abscissaScale->setStepLabelFormat("%.0f");
111 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 112 Thursday, July 23, 2009 5:01 PM
first day of the week will not be drawn by default since the corresponding tick mark is
located on the abscissa scale at the intersection of the ordinate scale. To make this label
appear, the flag must be set to IlvTrue.

Adding the Legend

Again, we want to add a legend to our chart. Use the same procedures as for the Cartesian
chart example. See Adding a Legend on page 108.

Figure 5.11 shows our finished polar chart.

Figure 5.11

Figure 5.11 The Temperatures Chart Displayed as a Polar Chart

Additional Ways to Customize a Chart

The example charts in Figure 5.9 and Figure 5.11 are quite basic. At this point, we can
customize the charts in several other ways to improve their appearance. The same
improvements can be made to both of our charts. For example, we can do the following:

◆ Replace the values (0, 1, 2, and so on) displayed along the abscissa scale with text labels.

◆ Add a label at the end of the ordinate scale.

◆ Add an arrow at the end of each axis.

abscissaScale->drawLabelOnCrossings(IlTrue);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 112

usrcharts.book Page 113 Thursday, July 23, 2009 5:01 PM
The complete source code of the examples can be found in the cartesian_custom.cpp
file for the Cartesian chart and in the polar_custom.cpp file for the polar chart. These
files are located in the $ILVHOME/samples/charts/userman/src directory.

Replacing the Values Displayed along the Abscissa Scale

By default, the labels displayed at the major tick marks of the scales are floating values
corresponding to the data values represented by the scales. The labels displayed along the
abscissa scale are the indexes from 0 to 6 referencing the days of the week. To make these
values more understandable, we can display the names of the days instead of the indexes. To
do this, use the following code:

Adding a Label at the End of the Ordinate Scale Axis

The ordinate scale represents the temperatures expressed in degrees Celsius. To indicate the
unit of the values represented by this scale, we can add the label “Celsius” at the end of
the axis. To do this, use the following code:

Adding an Arrow at the End of the Scale Axes

To add an arrow at the end of each scale axis, use the following code:

Figure 5.12 and Figure 5.13 now show the new charts that we obtain. The names of the days
of the week appear at the major tick marks along the abscissa. The label “Celsius” appears at
the end of the ordinate scale and arrows appear at the end of each axis.

const char* labels[7] = {"Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday",
 "Sunday"};
IlUInt labelsCount = 7;
abscissaScale->setStepLabels(labelsCount, labels);

ordinateScale->setAxisLabel("Celsius");

abscissaScale->setAxisOriented(IlTrue);
ordinateScale->setAxisOriented(IlTrue);
113 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Basic Steps for Creating a Chart

usrcharts.book Page 114 Thursday, July 23, 2009 5:01 PM
Figure 5.12

Figure 5.12 The Temperatures Cartesian Chart with Additional Customization

Figure 5.13

Figure 5.13 The Temperatures Polar Charts with Additional Customization
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 114

usrcharts.book Page 115 Thursday, July 23, 2009 5:01 PM
The Charts package of IBM ILOG Views provides many ways for you to customize your
charts. For example, you can also add grids, cursors, and so on. For more details about all the
possible ways to customize a chart, take a look at the remaining chapters of this user’s
manual.

How Charts Work in IBM ILOG Views

A chart object needs several different kinds of objects to display a chart. All these different
objects work together in the process of converting data into a graphical display.

Components of a Chart Object

Through the examples in the section Basic Steps for Creating a Chart on page 102, you saw
that a chart object uses:

◆ A chart data object to manage the data sets it displays.

◆ Displayer objects to display the graphical representations of the data (polylines, high-low
bars, and so on).

◆ An optional legend object to represent the legend of the chart.

In addition, a chart object uses the following objects:

◆ Scale displayer objects to display the scales.

◆ A layout object to compute the layout of the chart. More specifically, this object
computes the position of the area where the data are displayed within the bounding box
of the chart object.

◆ A projector object to perform the projection of data into screen coordinates.

◆ A coordinate information object to store specific information for each coordinate of the
data that is represented by a scale in the chart object.

To see how all these various components work together within a chart object, let’s take a
look at the Temperatures chart that we created as an example in Creating a Simple Cartesian
Chart on page 103 (Figure 5.14).

Note: In step 3 of the section Customizing the Abscissa Scale on page 111, we added an
instruction for the polar chart to display the step label of the abscissa scale at the
intersection point with the ordinate scale. This instruction has been removed to obtain the
chart in Figure 5.11. If you keep this instruction, the “Monday” label will be drawn and it
will be partially covered by the ordinate axis.
115 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

How Charts Work in IBM ILOG Views

usrcharts.book Page 116 Thursday, July 23, 2009 5:01 PM
Figure 5.14

Figure 5.14 Example of the Temperatures Chart

Figure 5.15 shows the objects used by the chart object to display the Temperatures Chart.

Figure 5.15

Figure 5.15 Components of the Temperatures Chart

The chart object uses the following objects to display the Temperatures Chart:
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 116

usrcharts.book Page 117 Thursday, July 23, 2009 5:01 PM
◆ A chart data object that manages the two data sets: the morning mean temperatures and
the afternoon mean temperatures data sets.

◆ Three displayer objects: two polyline displayers and one high-low bar displayer.

◆ Two coordinate information objects: one associated with the coordinate of the data
represented by the abscissa scale and one associated with the coordinate of the data
represented by the ordinate scale.

◆ Two scale displayer objects: one to display the abscissa scale and one to display the
ordinate scale.

◆ A layout object that computes the layout of the chart.

◆ A projector object that transforms the data points into screen coordinates.

◆ A legend object that is used to display information describing the data displayed by the
chart.

The arrows in the figure show the relationship between some of these objects. For each of
the displayers (the two polylines and the high-low bar), the data set(s) it displays is indicated
as well as the coordinate information object associated with the ordinate scale considered by
the displayer. The coordinate information is necessary since a chart can use several ordinate
scales (this means that several coordinate systems can be displayed on the same chart) and a
displayer object must know which coordinate system it must use to display the data. For
each of the scale displayers, the arrows indicate the coordinate information object that is
associated with the coordinate represented by the scale displayer.

Component Classes of the Charts Library

A chart object is an instance of the IlvChartGraphic class or one of its derived classes in
the Charts Library. (See Chart Classes on page 101 for more details.)

Each component object used by a chart object to convert data into a graphical display
corresponds to a dedicated object in the Charts Library as well.

Chart Data and Data Set Objects

A chart data object is an instance of a subclass of the IlvAbstractChartData class. The
data sets managed by the chart data object are instances of subclasses of the
IlvChartDataSet class. (See Data Classes on page 100 for more details.)

Default Instantiation
When you create a chart object, an IlvMemoryChartData object is created by default as
the chart data object used to manage the data sets for the chart.

Displayer Objects

Displayer objects are instances of subclasses of the IlvAbstractChartDisplayer class.
They are used to draw the graphical representations of the data.
117 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

How Charts Work in IBM ILOG Views

usrcharts.book Page 118 Thursday, July 23, 2009 5:01 PM
Default Instantiation
No displayer objects are created by default when you create a chart object. You have to
create the displayers that you want to use to display your data and set them on the created
chart.

A displayer object stores:

◆ Pointers to the data sets it displays.

◆ A pointer to the coordinate information associated with the ordinate scale it considers to
display the data.

Scale Displayer Objects

Scale displayer objects are instances of subclasses of the IlvAbstractScaleDisplayer
class. They are used to draw the scales of a chart. The computation of the steps and substeps
of a scale is performed by means of a scale steps updater object that is set on the scale. This
object is an instance of a subclass of the IlvScaleStepsUpdater class.

Default Instantiation
No scale displayer objects are created by default in an IlvChartGraphic object since the
type of the scales depends on the type of the object used to project the data into screen
coordinates.

However, when you create:

◆ an IlvCartesianChart object, two IlvRectangularScaleDisplayer objects are
created by default: one to display the rectangular abscissa scale and one to display the
rectangular ordinate scale.

◆ an IlvPolarChart object, an IlvCircularScaleDisplayer object is created by
default to display the circular abscissa scale and an
IlvRectangularScaleDisplayer object is created by default to display the
rectangular ordinate scale.

When a scale displayer object is created, an automatic scale steps updater object (instance of
the IlvAutoScaleStepsUpdater class) is created by default and set on the scale.

Layout Object

The layout object must be an instance of the IlvChartLayout class or one of its derived
classes. The layout object handles the computation of the chart layout and the computation
of the data display area within the bounding box of the chart.

Default Instantiation
When you create a chart object, an IlvChartLayout object is created by default to
compute the layout.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 118

usrcharts.book Page 119 Thursday, July 23, 2009 5:01 PM
Projector Object

A projector object is an instance of a subclass of the IlvAbstractProjector class. It is
used to project the data into screen coordinates.

Default Instantiation
No projector object is created by default in an IlvChartGraphic object since the type of
projector used to project the data depends on the type of the coordinate system in which the
displayed data are expressed.

However, when you create:

◆ an IlvCartesianChart object, an IlvCartesianProjector object that projects
data expressed in a Cartesian system of coordinates is created by default.

◆ an IlvPolarChart object, an IlvPolarProjector object that projects data
expressed in a polar system of coordinates is created by default.

Coordinate Information Objects

The coordinate information objects must be instances of the IlvCoordinateInfo class or
one of its derived classes. They are used to store specific information for each coordinate of
the data that is represented by a scale.

Default Instantiation
No coordinate information objects are created by default in an IlvChartGraphic object
because the scale displayers are not created at that level and a coordinate information object
must be created for each coordinate that is represented by a scale.

However, two IlvCoordinateInfo objects are created by default in the
IlvCartesianChart and IlvPolarChart objects: one associated with the abscissa scale
and one associated with the ordinate scale that are created by default.

A coordinate information object stores:

◆ The minimum and maximum values considered for the coordinate with which the
coordinate information object is associated. These values are used to select the data to
display and to specify the minimum and maximum values for the scale that represents
this coordinate.

◆ Optionally, a transformer object that specifies the transformation that will be applied to
the coordinate. The transformer object must be an instance of a subclass of the
IlvCoordinateTransformer class.

Legend Object

A legend object must be an instance of the IlvChartLegend class or one of its derived
classes. It is used to display the legend corresponding to the chart displayed.
119 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

How Charts Work in IBM ILOG Views

usrcharts.book Page 120 Thursday, July 23, 2009 5:01 PM
Default Instantiation
No legend object is created by default when you create a chart object. You have to create the
legend object you want to be used and to set it on the created chart. (For information on how
to create and set a legend object, see Adding the Legend on page 112.)

Using the Component Classes in an IlvChartGraphic Object

To see how the component objects are used in a chart object, let’s take another look at our
Temperatures Chart (see Figure 5.14). Instead of constructing this chart from an
IlvCartesianChart object (see Creating a Simple Cartesian Chart on page 103), we are
going to construct it from an IlvChartGraphic object, the base object that allows us to
display a chart.

Figure 5.15 shows the component objects that are needed to display this chart. When we
created the chart using an IlvCartesianChart object, we set the following objects by
hand:

◆ The data sets

◆ The displayers

◆ The legend

If we use an IlvChartGraphic object instead of an IlvCartesianChart object, we
must set the following objects as well:

◆ The projector object

◆ The coordinate information objects

◆ The scale displayer objects

The layout object does not need to be set since an instance is created by default when you
create an IlvChartGraphic object.

To create our Temperatures Chart from an IlvChartGraphic object, we will again follow
the basic steps presented in Creating a Simple Cartesian Chart on page 103. However, we
must replace the step Creating a Cartesian Chart with the following series of tasks:

◆ Creating a Chart Graphic Object

◆ Creating and Setting the Projector

◆ Creating the Coordinate Information for the Abscissa

◆ Creating and Setting the Abscissa Scale Displayer

◆ Creating the Coordinate Information for the Ordinate

◆ Creating and Setting the Ordinate Scale Displayer
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 120

usrcharts.book Page 121 Thursday, July 23, 2009 5:01 PM
All the other tasks that are described in the paragraph Creating a Simple Cartesian Chart on
page 103 remain the same.

The complete source code of the example can be found in the chartgraphic.cpp file
located in the $ILVHOME/samples/charts/userman/src directory.

Creating a Chart Graphic Object

To create a chart graphic object, use the following code:

The IlvRect object passed as a parameter corresponds to the bounding box of the created
chart.

Creating and Setting the Projector

Since the data to be displayed with our chart are expressed in Cartesian coordinates, the
projector that is set is an instance of the IlvCartesianProjector class.

We indicate the orientation of the scales as a parameter: the abscissa scale is oriented toward
the right of the screen and the ordinate scale is oriented toward the top. All orientations that
keep the abscissa and the ordinate scale(s) orthogonal are possible.

Creating the Coordinate Information for the Abscissa

Use the following code to create the coordinate information for the abscissa:

The created coordinate information is associated with a coordinate. The type of this
coordinate is passed as a parameter to the constructor used to create this coordinate
information. By default, the minimum and maximum values that will be considered for the
scale that represents this coordinate are automatically computed from the abscissa values of
the data that have to be displayed by the created chart. This is done so that all the defined
data can be displayed.

Creating and Setting the Abscissa Scale Displayer

To define the abscissa scale displayer, perform the following steps:

1. Create the displayer for the abscissa scale.

IlvChartGraphic* chart = new IlvChartGraphic(display,
 IlvRect(10, 10, 450, 300));

chart->setProjector(new
IlvCartesianProjector(IlvCartesianProjector::IlvXRightYTop));

IlvCoordinateInfo* abscissaCoordInfo
 = new IlvCoordinateInfo(IlvAbscissaCoordinate);
121 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

How Charts Work in IBM ILOG Views

usrcharts.book Page 122 Thursday, July 23, 2009 5:01 PM
Since the data to be displayed with our chart are expressed in Cartesian coordinates, the
object that is set to display the scale representing the abscissa values is an instance of the
IlvRectangularScaleDisplayer class.

The coordinate information object associated with the coordinate that is represented by
the abscissa scale is passed as a parameter to the constructor that creates the displayer for
the abscissa scale. The palette that will be used to display the abscissa scale is set to the
default palette of the created chart.

2. Set the displayer for the abscissa scale.

3. Customize the abscissa scale.

The format used for the values that are displayed next to the main graduations of a scale
is set by default to "%.2f". Since the abscissa scale is used to represent integer values
corresponding to the indexes of the days of the week (from 0 to 6), the format must be set
to "%.0f" to avoid having the indexes of the days represented by floating values.

The flag indicating whether the step labels must be drawn where the axes intersect is set
by default to IlvFalse for a scale. Thus the label "0" for the first day of the week will
not be drawn since the corresponding graduation is located on the abscissa scale at its
intersection with the ordinate scale. To make this label appear, the flag must be set to
IlvTrue.

Creating the Coordinate Information for the Ordinate

To create the coordinate information for the ordinate, use the following code:

The created coordinate information is associated with a coordinate. The type of this
coordinate is passed as a parameter to the constructor used to create this coordinate
information. By default, the minimum and maximum values that will be considered for the
scale that represents this coordinate are automatically computed from the ordinate values of
the data that have to be displayed along this scale. This is done so that all the defined data
that have to be displayed along this scale can be displayed.

Creating and Setting the Ordinate Scale Displayer

To define the ordinate scale displayer, perform the following steps:

IlvRectangularScaleDisplayer* abscissaScale
 = new IlvRectangularScaleDisplayer(abscissaCoordInfo,
 chart->getPalette());

chart->setAbscissaScale(abscissaScale);

abscissaScale->setStepLabelFormat("%.0f");

abscissaScale->drawLabelOnCrossings(IlTrue);

IlvCoordinateInfo* ordinateCoordInfo
 = new IlvCoordinateInfo(IlvOrdinateCoordinate);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 122

usrcharts.book Page 123 Thursday, July 23, 2009 5:01 PM
1. Create the displayer for the ordinate scale.

Just as with the abscissa scale, the coordinate information object associated with the
coordinate that is represented by the ordinate scale is passed as a parameter to the
constructor that creates the displayer for the ordinate scale. The palette that will be used
to display the ordinate scale is set to the default palette of the created chart.

2. Set the displayer for the ordinate scale.

3. Customize the ordinate scale.

The flag indicating whether the step labels must be drawn where the axes intersect is set
by default to IlvFalse for a scale. Thus the label "8" for the minimum temperature
value that is displayed will not be drawn since the corresponding graduation is located on
the ordinate scale at its intersection with the abscissa scale. To make this label appear, the
flag must be set to IlvTrue.

At this point, we have now completed creating our Cartesian chart from an
IlvChartGraphic object. The chart we obtain is the same as the one shown in Figure 5.7.
You can readily see the difference in using an IlvChartGraphic object instead of using an
IlvCartesianChart object. Many more lines of code were required to instantiate the
same chart object that we obtained by using a single line of code:

How Displayer Objects Draw the Graphical Display

The drawing of the graphical representations of data is performed by the displayer objects.
In order to draw a graphical representation of the data, a displayer needs to have the data
points of the data set(s) it is going to display expressed in screen coordinates.

Transforming Data Points into Screen Coordinates

Figure 5.16 illustrates how the data points represented by a given data set are transformed
into screen coordinates.

1. From a given data set, we get the data points in the form P(C0, C1) that are represented
by the data set. C0 is the abscissa value and C1 the ordinate value of the data point.

2. Each data point P is transformed into P' by applying the transformer defined for the
abscissa coordinate to its abscissa value C0 and the transformer defined for the ordinate
coordinate to its ordinate value C1. These transformers are stored in the coordinate

IlvRectangularScaleDisplayer* ordinateScale
 = new IlvRectangularScaleDisplayer(ordinateCoordInfo,
 chart->getPalette());

chart->addOrdinateScale(ordinateScale);

ordinateScale->drawLabelOnCrossings(IlTrue);

IlvChartGraphic* chart = new IlvCartesianChart(display,
 IlvRect(10, 10, 450, 300));
123 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

How Charts Work in IBM ILOG Views

usrcharts.book Page 124 Thursday, July 23, 2009 5:01 PM
information objects associated with the abscissa and the ordinate scales considered by
the displayer to display the data set. The same abscissa coordinate information object is
used by all the displayers since the chart uses only one abscissa scale. The ordinate
coordinate information object that must be used by a given displayer is stored in this
displayer (in the form of a pointer).

3. The transformed point P' is passed to the projector that finally projects the point into the
point p(x, y) expressed in screen coordinates. (For details about this step, see Projecting
Transformed Data Points into Screen Coordinates on page 124.)

Figure 5.16

Figure 5.16 Transforming Data Points into Screen Coordinates

Projecting Transformed Data Points into Screen Coordinates

To project the transformed data points into screen coordinates (see step 3 on page 124), the
projector needs the following information:

◆ The area on the screen where the data points are to be displayed. This is called the data
display area and is specified by the layout object.

◆ The minimum and maximum data values represented by the abscissa and the ordinate
scales that are considered by the displayer to display the data. The minimum and
maximum data values are the lower and upper bounds of the data points that will be
projected into screen coordinates. These values are stored in the coordinate information
objects associated with the abscissa and ordinate scales.

Using this information, the projector then maps the transformed data points into screen
coordinates so that the data points occupy the largest amount of space within the data display
area.

Figure 5.17 illustrates these concepts. (Once again, we are using our Temperatures Chart as
an example.) Our chart uses one abscissa scale and one ordinate scale. Therefore, all of the
displayers consider the same ordinate scale when displaying the data. By default, the
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 124

usrcharts.book Page 125 Thursday, July 23, 2009 5:01 PM
minimum and maximum data values that are considered for the abscissa and ordinate scales
of the chart are automatically computed so that all the data points can be displayed. For the
abscissa scale, these values correspond to the minimum and maximum abscissa values in the
lists of data points of the morning and afternoon mean temperatures data sets. For the
ordinate scale, these values correspond to the minimum and maximum ordinate values in the
lists of data points of the morning and afternoon mean temperatures data sets.

Figure 5.17

Figure 5.17 Mapping the Temperatures Data into Screen Coordinates
125 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 126 Thursday, July 23, 2009 5:01 PM
6

Data Handling

This chapter provides detailed information on data handling for the charts. You will find
information on the following topics:

◆ Handling Data Storage

◆ Sharing Data Among Charts

◆ Modifying Data and Updating Charts

Handling Data Storage

The Charts Library has been designed with a clear separation between the data to be
displayed and the graphical representation of the data. The storage of the data sets that have
to be displayed by a given chart object is handled by a dedicated object referred to as the
chart data object.

The base class used to represent a chart data object is the IlvAbstractChartData class. A
subclass called IlvMemoryChartData class is provided in the library. The
IlvMemoryChartData class stores the data sets it manages in memory. When you create a
chart object, an instance of the IlvMemoryChartData class is created by default and is set
on the created chart object to handle the data sets it is going to display.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 126

usrcharts.book Page 127 Thursday, July 23, 2009 5:01 PM
The data sets managed by a chart data object are all instances of subclasses of the
IlvChartDataSet class. The subclasses of the IlvChartDataSet class that are provided
in the library define the different types of data sets that can be displayed in a chart.

Types of Data Sets

A data set to be displayed by a given chart can be defined as:

◆ A set of points with two coordinates (set-of-points data set)

◆ A set of values (set-of-values data set)

◆ A function of the type y = f(x) (function data set)

◆ A cyclic set of points (cyclic set-of-points data set)

Set-of-Points Data Set

A set-of-points data set is represented by an instance of the IlvChartPointSet class. The
data points managed by this data set are instances of the IlvDoublePoint class. The
IlvDoublePoint class allows you to represent a point with two coordinates of the
IlvDouble type.

The following table shows an example of some data that can be represented by an
IlvChartPointSet object. Each point (x, y) is stored by using an IlvDoublePoint
instance within the IlvChartPointSet object.

This data set can be created by using the following code:

Set-of-Values Data Set

A set-of-values data set is represented by an instance of the IlvChartYValueSet class.
The data values managed by this data set are of the IlvDouble type. The values correspond
to the ordinates of the data points that will be displayed. The abscissas of the data points are
by definition the indexes of the stored values.

X Y

0.5 1.0

1.2 2.3

1.6 3.1

IlvChartPointSet* dataSet = new IlvChartPointSet();
dataSet->addPoint(IlvDoublePoint(0.5, 1.0));
dataSet->addPoint(IlvDoublePoint(1.2, 2.3));
dataSet->addPoint(IlvDoublePoint(1.6, 3.1));
127 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Handling Data Storage

usrcharts.book Page 128 Thursday, July 23, 2009 5:01 PM
The following table shows an example of data that can be represented by an
IlvChartYValueSet object.

Each y-value is stored using an IlvDouble instance within the IlvChartYValueSet
object. The x-values are not stored because they correspond to the indexes of the stored y-
values.

A set-of-values data set can be created by using the following code:

This code is equivalent to the following:

Function Data Set

A function data set is defined with a function of the type y=f(x). It is represented by an
instance of a subclass of the IlvAbstractChartFunction class.

The abscissa values of the data points are computed from the minimum and maximum
values considered for the abscissa and from the number of data points. The ordinate values
of the data points are then obtained by applying the function to the computed abscissa
values. The abscissa and the ordinate values of the ith data point that is represented by a data
set defined with a function f are obtained by using the following formula:

x = ((_xMax - _xMin) / (_dataCount -1)) * i + _xMin;
y = f(x);

where _xMin and _xMax are the minimum and the maximum values considered for the
abscissa and _dataCount is the number of considered data points. The values _xMin,
_xMax, _dataCount, and the function f have to be defined by the user.

Two subclasses of the IlvAbstractChartFunction class are available in the library:

◆ IlvCallbackChartFunction for which the function to be represented is defined by a
callback. This callback must be of the IlvDoubleFunction type:

typedef IlvDouble (* IlvDoubleFunction)(IlvDouble);

X Y

0 1.2

1 3.1

2 4.6

IlvChartYValueSet* dataSet = new IlvChartYValueSet();
dataSet->addValue(1.2);
dataSet->addValue(3.1);
dataSet->addValue(4.6);

IlvChartYValueSet* dataSet = new IlvChartYValueSet();
dataSet->addPoint(IlvDoublePoint(0.0, 1.2));
dataSet->addPoint(IlvDoublePoint(1.0, 3.1));
dataSet->addPoint(IlvDoublePoint(2.0, 4.6));
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 128

usrcharts.book Page 129 Thursday, July 23, 2009 5:01 PM
◆ IlvScriptChartFunction for which the function to be represented is defined by a
script.

Either one of these two subclasses can be used to represent any function of the type y = f(x).
The following examples show how to use each of the subclasses. We will create an
IlvCallbackChartFunction object and an IlvScriptChartFunction object, each
representing the square function y = x2. Both data sets are initialized with 0 and 5 as the
minimum and maximum values for the abscissa and 9 as the number of considered data
points.

Using an IlvCallbackChartFunction Data Set Object
To create an IlvCallbackChartFunction object, perform the following steps:

1. Define the callback function for computing the square function.

2. Create the IlvCallbackChartFunction data set representing the square function.

The minimum and maximum values considered for the abscissa are set to 0 and 5,
respectively. The number of data points considered is set to 9 and the callback function is set
to square.

Using an IlvScriptChartFunction Data Set Object
This example shows you how to create an IlvScriptChartFunction object directly in
your code. However, you can easily create an IlvScriptChartFunction data set by
using the Chart Inspector in IBM ILOG Views Studio (see Using the Chart Inspector on
page 20).

To create an IlvScriptChartFunction object, perform the following steps:

1. Set a script context on the holder of the container or manager that contains the chart, if a
script context is not defined for the holder.

The script function used in an IlvScriptChartFunction object is assumed to be
stored in a script context associated with the holder of the container or manager that
contains the chart. If a script context is not defined for the holder, a script context must
be created and set on the holder. To do this, use the following code:

First, create a script context using the JavaScript™ scripting language:

IlDouble
square(IlDouble x)
{
 return x*x;
}

IlvCallbackChartFunction* function =
 new IlvCallbackChartFunction(IlvCoordInterval(0.,5.), 9, square);

const IlvSymbol* scriptLanguageName = IlvGetSymbol("JvScript");
IlvScriptLanguage* jvscript = IlvScriptLanguage::Get(scriptLanguageName);
IlvJvScriptContext* jvscriptContext = new IlvJvScriptContext(jvscript, 0);
129 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Handling Data Storage

usrcharts.book Page 130 Thursday, July 23, 2009 5:01 PM
Then, set the created script context on the holder of the container or manager that
contains the chart:

2. Load the script function for computing the square function into the created script context.

Since several script contexts may be associated with the holder, the name of the scripting
language (JavaScript in this example) is passed as a parameter to the
getScriptContext method in order to retrieve the script context using this scripting
language. The file scriptfile contains the implementation of the script function in
JavaScript:

3. Create the IlvScriptChartFunction data set representing the square function.

The minimum and maximum values considered for the abscissa are set to 0 and 5,
respectively. The number of data points considered is set to 9. The name of the script
function is set to "square". The holder in which the script function will be retrieved is
set to the holder of the container or manager that contains the chart. The name of the
scripting language used to write the script function is set to scriptLanguageName.

Cyclic Set-of-Points Data Set

A cyclic set-of-points data set is represented by an instance of the
IlvChartCyclicPointSet. It is similar to the normal set-of-points data set described
above, except that when the number of added points reaches a fixed maximum number, the
“old” points are discarded so that the actual number of points kept in memory remains
constant. As shown by the chart, the count will grow until it reaches the limit and then it
remains constant. Each time a new point is added, it will be at the last index, while the old
ones are shifted back by one.

The maximum number of points can be set with setMaxCount() and is infinite by default.

For example:

cont->getHolder()->setScriptContext(jvscriptContext);

IlvScriptContext* context =
 (cont->getHolder())->getScriptContext(scriptLanguageName);
context->loadScript("../data/scriptfile");

function square(x)
{
 return x*x;
}

IlvScriptChartFunction* function =
 new IlvScriptChartFunction(IlvCoordInterval(0.,5.),
 9,
 "square",
 cont->getHolder(),
 scriptLanguageName);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 130

usrcharts.book Page 131 Thursday, July 23, 2009 5:01 PM
IlvChartDataSet* dataSet;
dataSet = new ilvChartCyclicPointSet(“Cyclic point set”);
dataSet->setMaxCount(100);

For an example of how to use IlvChartCyclicPointSet, see in the shiftcar sample in
samples/charts/scrolling directory.

Adding Data Sets to Be Displayed by a Chart

To display a data set within a given chart, the data set must be added to the chart data object
that is set on the chart. You can do this in two ways:

◆ Set the data sets for the chart data object that is created by default and set on the chart.

◆ Create your own chart data object, set the data sets for this chart data object, and then set
the chart data object for the chart.

Examples

In the following examples, we will show you how to add two data sets, an
IlvChartPointSet data set and an IlvChartYValueSet data set, to a chart object.

The first example will show you how to add the data sets to the default chart data object. The
second example will show you how to add the data sets to your own chart data object.

Adding the Data Sets to the Default Chart Data Object
The chart data object that is set on a given chart object to manage the data sets it displays is
obtained by using the IlvChartGraphic::getData method.

You can use the following code to add the data sets directly to the chart data object that has
been created by default and set for the chart object:

Or more simply, you can add the two data sets at the same time:

IlvChartDataSet* dataSets[2];
//== Creating the IlvChartPointSet data set and fill it with data.
dataSets[0] = new IlvChartPointSet();
dataSets[0]->addPoint(IlvDoublePoint(0.5, 1.0));
dataSets[0]->addPoint(IlvDoublePoint(1.2, 2.3));
dataSets[0]->addPoint(IlvDoublePoint(1.6, 3.1));

//== Creating the IlvChartYValueSet data set and fill it with data.
dataSets[1] = new IlvChartYValueSet();
dataSets[1]->addPoint(IlvDoublePoint(0, 1.2));
dataSets[1]->addPoint(IlvDoublePoint(1, 3.1));
dataSets[1]->addPoint(IlvDoublePoint(2, 4.6));

chart->getData()->addDataSet(dataSets[0]);
chart->getData()->addDataSet(dataSets[1]);

IlUInt dataSetsCount = 2;
chart->getData()->setDataSets(dataSetsCount, dataSets);
131 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Sharing Data Among Charts

usrcharts.book Page 132 Thursday, July 23, 2009 5:01 PM
Adding Data Sets to Your Own Chart Data Object
To use your own chart data object to manage the data sets to be displayed by a given chart
object, do the following:

1. Set the data sets directly for your chart data object.

2. Set this chart data object for the chart object.

Sharing Data Among Charts

With the Charts Library, data can be shared among different charts. The same data set can be
set for several chart data objects and the same chart data object can be set on several chart
objects. Figure 6.1 illustrates these basic rules.

IlvAbstractChartData* myChartData = new IlvMemoryChartData();
myChartData->addDataSet(dataSets[0]);
myChartData->addDataSet(dataSets[1]);

chart->setData(myChartData);

Note: You can use whatever chart data object you want as long as it is a derived object of
the IlvAbstractChartData class.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 132

usrcharts.book Page 133 Thursday, July 23, 2009 5:01 PM
Figure 6.1

Figure 6.1 Sharing Data

In this figure, Data set 2 is used by both the Chart data 0 and the Chart data 1 chart data
objects. The chart data object Chart data 1 is set on both the Chart 1 and the Chart 2 chart
objects to manage the data sets they display. This means that Chart 1 and Chart 2 will
display the same data.

Data sharing is possible due to a lock/unlock system that has been implemented for data sets
and for chart data objects. Each time you add a data set to a chart data object, the data set
will be automatically locked by a call to the IlvChartDataSet::lock method. In the
same way, each time you set a chart data object on a chart object, the chart data object will
be automatically locked by a call to the IlvAbstractChartData::lock method.

Similarly, each time you remove a data set from a chart data object, the data set will be
automatically unlocked by a call to the IlvChartDataSet::unLock method. Each time
you remove a chart data object from a chart object, the chart data object will be
automatically unlocked by a call to the IlvAbstractChartData::unLock method.

(See the lock and unLock methods of the IlvChartDataSet and
IlvAbstractChartData class in the reference manual for more information.)
133 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Modifying Data and Updating Charts

usrcharts.book Page 134 Thursday, July 23, 2009 5:01 PM
Modifying Data and Updating Charts

The charts created in IBM® ILOG® Views are data-aware. Data can be changed “on the
fly” and all charts that display the data will be automatically updated to reflect the changes.
The charts are automatically updated using listeners that are set on the data. The listeners
catch data changes and can then be used to perform specific tasks according to the types of
modifications that are made to the data.

Types of Modifications

The data displayed in a chart can be modified in different ways depending on whether the
change is made at the level of the data set or at the level of the chart data object.

Modifications Made at the Data Set Level

The following types of modifications can be made to a data set:

◆ A new data item can be added to the data set.

This can be done by using one of the following methods:

IlvChartDataSet::setPoint

IlvChartDataSet::addPoint

IlvChartDataSet::insertPoint

◆ An existing data item in the data set can be replaced by another data item.

This can be done by using the IlvChartDataSet::setPoint method. This method
sets the data item stored at a given index in a data set. If a data item already exists at the
index, it is replaced by the new one.

◆ A data item can be removed from the data set.

This can be done by using the IlvChartDataSet::removePointAndInfo method.
This method also removes the point information object (if any) that is associated with the
data item.

Modifications Made at the Chart Data Object Level

The following types of modifications can be made to a chart data object:

◆ A new data set can be added to a chart data object.

This can be done by using one of the following methods:

IlvAbstractChartData::setDataSet

Note: A method is also available to remove all the data items from a given data set at the
same time: IlvChartDataSet::removePointsAndInfo.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 134

usrcharts.book Page 135 Thursday, July 23, 2009 5:01 PM
IlvAbstractChartData::addDataSet

IlvAbstractChartData::insertDataSet

◆ An existing data set in a chart data object can be replaced by another data set.

This can be done by using one of the following methods:

IlvAbstractChartData::setDataSet sets the data set stored at a given index in a
chart data object. If a data set already exists at this index, it is replaced by the new one.

IlvAbstractChartData::replaceDataSet replaces a given data set by a new one.

◆ A data set can be removed from a chart data object.

This can be done by using the IlvAbstractChartData::removeDataSet method.

Updating Charts Automatically

Charts are automatically updated when modifications are made to the data they display. This
automatic update is performed by listeners that are set on the data.

Notification Mechanism Based on Listeners

A mechanism based on the use of listeners has been implemented to propagate automatically
all modifications made to the data to the objects using these data. A listener is a dedicated
object that catches the modifications made to the object on which the listener is set and then
notifies other objects about these modifications.

Modifications can be made to data at the level of the data sets and at the level of the chart
data objects (see Types of Modifications on page 134). Therefore, listeners are also set at the
level of the data sets and at the level of the chart data objects. Figure 6.2 illustrates how
listeners are set at the data set level and the chart data object level.

Note: A method is also available to set several data sets on a given chart data object at
the same time: IlvAbstractChartData::setDataSets.

Note: A method is also available to remove all the data sets from a given chart data object
at the same time: IlvAbstractChartData::removeDataSets.
135 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Modifying Data and Updating Charts

usrcharts.book Page 136 Thursday, July 23, 2009 5:01 PM
Figure 6.2

Figure 6.2 Listeners at the Data-Set Level and at the Chart-Data-Object Level

Listeners are set on each data set to notify the chart data objects that use the data set about
the modifications made to the data set. Notice that two listeners are set on the data set
Data set 2 since this data set is used by two chart data objects, Chart data 0 and
Chart data 1. These listeners are automatically set on the data sets when the data sets are set
on the chart data objects.

In the same way, listeners are set on each chart data object to notify the chart objects that use
the chart data object about the modifications made to the chart data object. Notice that two
listeners are set on the chart data object Chart data 1 since this chart data object is used by
two chart objects, Chart 1 and Chart 2. These listeners are automatically set on the chart
data objects when the chart data objects are set on the chart objects.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 136

usrcharts.book Page 137 Thursday, July 23, 2009 5:01 PM
How the Update is Performed

By default, the listeners are enabled for all data sets. This means that listeners will be used to
propagate the modifications made to the data sets. If the listeners are not enabled, they will
not be considered and thus the modifications will not be transmitted to the listeners.

The method IlvChartDataSet::areListenersEnabled indicates whether the listeners
are enabled for a given data set. The method IlvChartDataSet::enableListeners is
used to specify whether the listeners should be enabled for a given data set.

Figure 6.3 shows how the listeners propagate a modification made to a data set to all the
objects using the data set, thus allowing these objects to be updated. This figure uses the data
set Data set 2 from Figure 6.2 as an example.

Figure 6.3

Figure 6.3 Propagation of a Modification Made to a Data Set
137 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Modifying Data and Updating Charts

usrcharts.book Page 138 Thursday, July 23, 2009 5:01 PM
If the listeners are enabled, the following events occur as soon as a modification is made to a
data set:

1. First, the modification is propagated to all the listeners set on the data set.

2. Each data set listener then notifies each chart data object with which it is associated
about the modification.

3. The modification is then propagated to all the listeners set on the chart data objects.

4. Each chart data listener then notifies each chart object with which it is associated about
the modification.

5. The charts are finally updated to reflect the modification.

If the listeners are not enabled, the updates needed because of a modification made to a data
set will not be performed automatically since the modifications will not be transmitted to the
listeners. The updates will have to be made by hand.

Batching the Modifications

By default, the notification of a modification and the update to the chart resulting from the
modification is made as soon as the modification occurs. However, if it is not necessary to
see the updates one by one as they occur, you can batch modifications when adding new data
items to a data set. Using a batch operation when adding new data items increases
performance and can be very useful, especially when adding real-time data.

To trigger the batch operations for adding new data items on a given data set, you have to
call the IlvChartDataSet::startBatch method on the data set. Once the
IlvChartDataSet::startBatch method has been called, the updates resulting from the
addition of new data items are no longer performed. You have to call the
IlvChartDataSet::endBatch method on the data set to specify that you want to stop the
batch operations and perform the global update one time.

The IlvChartDataSet::startBatch method can be called several times in succession
on a given data set. When this is done, the IlvChartDataSet::endBatch method has to
be called as many times as the IlvChartDataSet::startBatch method. When the last
call to the IlvChartDataSet::endBatch method is performed, all the data items that
have been added since the first call of the IlvChartDataSet::startBatch method will
be considered all at one time. The update resulting from the addition of all these data items
will be performed at one time. The added data items will be drawn all at one time, instead of
being drawn one by one as is done when the modifications are not batched.

Using Listeners to Catch Data Changes

The listeners set on data catch modifications made to the data. Listeners are set at the level
of the data sets and at the level of the chart data objects. For both types of listeners, a method
is defined for each type of modification that can be made to the object on which the listener
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 138

usrcharts.book Page 139 Thursday, July 23, 2009 5:01 PM
is set. The method corresponding to a given modification is called when the modification
that has occurred is propagated to the listener (see Figure 6.3).

Listeners on Data Sets

Listeners set on data sets are instances of subclasses of the IlvChartDataSetListener
class. The IlvChartDataSetListener class is used to watch for all the modifications that
can be made to a given data set. If you remember, these modifications include adding new
data items, replacing existing data items, and removing data items (see Modifications Made
at the Data Set Level on page 134). Methods corresponding to these types of modifications
are defined in the IlvChartDataSetListener class:

◆ IlvChartDataSetListener::dataPointAdded is called when a new data item is
added to the data set.

◆ IlvChartDataSetListener::dataPointChanged is called when an existing data
item is changed in the data set.

◆ IlvChartDataSetListener::dataPointRemoved is called when a data item is
removed from the data set.

Listeners on Chart Data Objects

Listeners set on chart data objects are instances of subclasses of the
IlvChartDataListener class. The IlvChartDataListener class is used to listen to all
the modifications that can be made to a given chart data object. These modifications include
adding new data sets, changing existing data sets, and removing data sets (see Modifications
Made at the Chart Data Object Level on page 134). Methods corresponding to these types of
modifications are defined in the IlvChartDataListener class:

◆ IlvChartDataListener::dataSetAdded is called when a new data set is added.

◆ IlvChartDataListener::dataSetChanged is called when an existing data set is
changed.

◆ IlvChartDataListener::dataSetRemoved is called when a data set is removed.

Since a chart data object handles data sets, the modifications made at the level of a data set
are also reported at the level of the chart data object. The corresponding methods that are
defined in the IlvChartDataListener class are:

◆ IlvChartDataListener::dataPointAdded is called when a new data item is added
to a data set.

◆ IlvChartDataListener::dataPointChanged is called when an existing data item
is changed in a data set.

◆ IlvChartDataListener::dataPointRemoved is called when a data point is
removed from a data set.
139 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Modifying Data and Updating Charts

usrcharts.book Page 140 Thursday, July 23, 2009 5:01 PM
Defining Your Own Listeners

You can define your own data listeners to perform specific tasks when certain types of
modifications are made to a data set or to a chart data object. To do so, you need to perform
these steps:

1. Create a subclass of the IlvChartDataSetListener class (or the
IlvChartDataListener class).

2. Implement the specific tasks you want to be performed when some types of
modifications are made by subclassing the corresponding methods. The methods
corresponding to a given type of modification for the IlvChartDataSetListener
class can be found in Listeners on Data Sets on page 139 and for the
IlvChartDataListener class in Listeners on Chart Data Objects on page 139.

3. Add an instance of the created subclass to the data set (or to the chart data object).

Example of a User-Defined Listener

We are now going to show you how to define a listener that performs specific tasks when
new data items are added to a data set. We will use the Temperatures Chart again (see
Creating a Simple Cartesian Chart on page 103).

In this example, we want the chart to indicate when temperatures for each data set fall
outside of a given interval. We are going to add two cursors to the Temperatures Chart that
indicate the minimum and maximum values of the interval. When a new temperature that is
added to a data set is outside of this interval, a message will be printed on the standard
output. To do this, we can define a specific listener (inherited from
IlvChartDataSetListener) to be set on each temperatures data set.

The complete source code of this example can be found in the listener.cpp file located
in the $ILVHOME/samples/charts/userman/src directory. The example shows only
the part of the code that is specific to creating the dedicated listener.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 140

usrcharts.book Page 141 Thursday, July 23, 2009 5:01 PM
Defining the TemperatureDataSetListener Class
The following code is used to declare the TemperatureDataSetListener class:

Only the dataPointAdded method is subclassed since we want to perform a specific task
when a new data item is added, and nothing special when other types of modifications are
made to the data set.

The constructor is implemented as follows:

The constructor takes the minimum and maximum values of the considered interval as
parameters. When a temperature that is outside of this interval is added, a message is
printed. If a chart is specified as a parameter, cursors will be drawn in the chart at the
minimum and maximum values of the interval.

class TemperatureDataSetListener
 : public IlvChartDataSetListener
{
public:
 TemperatureDataSetListener(IlDouble min,
 IlDouble max,
 IlvChartGraphic* chart = 0,
 IlvPalette* cursorPalette = 0);

 virtual void dataPointAdded(const IlvChartDataSet* dataSet,
 IlUInt position);

protected:
 IlDouble _min;
 IlDouble _max;
 IlvChartGraphic* _chart;
};

TemperatureDataSetListener::
TemperatureDataSetListener(IlDouble min,
 IlDouble max,
 IlvChartGraphic* chart,
 IlvPalette* cursorPalette)
 : IlvChartDataSetListener(),
 _min(min),
 _max(max)
{
 if (chart) {
 IlvDisplay* dpy = chart->getDisplay();
 IlvPalette* palette = cursorPalette ? cursorPalette
 : dpy->getPalette(dpy->getColor("white"), 0);
 chart->addOrdinateCursor(_min, palette);
 chart->addOrdinateCursor(_max, palette);
 }
}

141 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Modifying Data and Updating Charts

usrcharts.book Page 142 Thursday, July 23, 2009 5:01 PM
The implementation of the dataPointAdded method is the following:

The method compares the new temperature value that is added to the data set with the
minimum and the maximum values defined. A specific message is printed on the standard
output when the temperature value is smaller than the minimum and when the temperature
value is greater than the maximum.

Adding a TemperatureDataSetListener Object to the Temperatures Data Sets
The listener to be added to the temperatures data sets is created by the following code:

The created listener is set on all the temperatures data sets that are defined. It is set on
dataSets[0] that corresponds to the morning mean temperatures data set and on
dataSets[1] that corresponds to the afternoon mean temperatures data set.

Now that the listener has been added, the Temperatures Chart appears as shown in
Figure 6.4:

void
TemperatureDataSetListener::dataPointAdded(const IlvChartDataSet* dataSet,
 IlUInt position)
{
 IlvDoublePoint dataPoint;
 dataSet->getPoint(position, dataPoint);
 if (dataPoint.y() < _min)
 cout << dataSet->getName() << ": Temperature at the index "
 << position << " = " << dataPoint.y() << " degrees (< "
 << _min << ")" << endl;
 if (dataPoint.y() > _max)
 cout << dataSet->getName() << ": Temperature at the index "
 << position << " = " << dataPoint.y() << " degrees (> "
 << _max << ")" << endl;
}

TemperatureDataSetListener* listener =
 new TemperatureDataSetListener(10, 22, chart);

dataSets[0]->addListener(listener);
dataSets[1]->addListener(listener);

Note: The listener must be set on the temperatures data sets before putting the data into
the data sets. Otherwise, the message indicating whether a temperature is outside of the
defined interval will not be printed when the temperature is added to a data set.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 142

usrcharts.book Page 143 Thursday, July 23, 2009 5:01 PM
Figure 6.4

Figure 6.4 The Temperatures Chart with a Listener Set On the Temperatures Data Sets

Notice that a cursor has been added at the minimum value (10) and at the maximum value
(22) which are passed as parameters to the constructor of the listener.

The messages that are printed to the standard output are the following:

Morning Temperatures: Temperature at the index 1 = 8 degrees (< 10)
Afternoon Temperatures: Temperature at the index 3 = 25 degrees (> 22)
Afternoon Temperatures: Temperature at the index 5 = 24 degrees (> 22)
Afternoon Temperatures: Temperature at the index 6 = 26 degrees (> 22)
143 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 144 Thursday, July 23, 2009 5:01 PM
7

Chart Layout

This chapter provides detailed information on the chart layout. You can find information on
the following topics:

◆ Computing the Chart Layout

◆ Setting General Properties of a Chart Layout Object

◆ Getting and Setting the Chart Layout Object of a Chart

Computing the Chart Layout

The global layout of a chart is computed by a dedicated object called the layout object.
When we speak about the global layout of the chart, we are referring to the position of the
different areas of the chart within its bounding box. We distinguish three areas within the
bounding box of a chart:

◆ The drawing area is the area where the drawing is performed. All the graphical elements
that make up a chart (that is, the graphical representations of data, scales, grids, and
cursors) are drawn within this area. The drawing area is defined by margins relative to
the bounding box of the chart.

◆ The data display area is the area where the data are displayed. No data points can be
displayed outside of this area. The data display area lies inside the drawing area.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 144

usrcharts.book Page 145 Thursday, July 23, 2009 5:01 PM
◆ The graph area represents the extent of all the graphical elements that make up a chart
(that is, all the graphical representations of data, scales, grids, and cursors of the chart).
This area lies inside the drawing area and contains the data display area.

By default, the graph area and the data display area are automatically computed from the
drawing area so that the graph area takes up the maximum amount of available space within
the drawing area. For Cartesian charts, the graph area will be equal to the drawing area. For
polar charts, the data display area must be a square. In this case, the data display area will be
the largest square possible so that the corresponding graph area lies within the drawing area.

Figure 7.1 shows an example of these areas for a Cartesian chart. The bounding box of the
chart is the largest rectangle. The drawing area, graph area, and data display area are
positioned within the bounding box. The drawing area and the graph area are equivalent so
they appear as the same rectangle (the second largest rectangle in the figure). You can see
that the graphical representations of data and the scales are all contained within the graph
area. The smallest rectangle shown in the figure is the data display area. This area contains
the ranges of data represented by all the scales of the chart.

Figure 7.1

Figure 7.1 Areas within the Bounding Box of a Cartesian Chart

Figure 7.2 shows an example of these areas for a polar chart. You can notice that the drawing
area is not equivalent to the graph area and that the data display area is a square.
145 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Computing the Chart Layout

usrcharts.book Page 146 Thursday, July 23, 2009 5:01 PM
Figure 7.2

Figure 7.2 Areas within the Bounding Box of a Polar Char

The base class used to represent a layout object is the IlvChartLayout class. No subclass
is defined in the Charts Library.

Setting General Properties of a Chart Layout Object

The following properties are defined for a layout object:

Property Methods
Default
Value

Areas Computation Properties

Graph and Data Display Areas
Automatically Computed

isAutoLayout
setAutoLayout

IlvTrue

Graph Area
Automatically Computed

isAutoGraphArea
setAutoGraphArea

IlvTrue

Data Display Area
Automatically Computed

isAutoDataDisplayArea
setAutoDataDisplayArea

IlvTrue

Areas Positioning Properties
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 146

usrcharts.book Page 147 Thursday, July 23, 2009 5:01 PM
By default, the graph area and the data display area are automatically computed from the
drawing area. However, the graph area or the data display area can be fixed by hand. If the
graph area is fixed by hand, the data display area will be computed automatically from the
fixed graph area. Similarly, if the data display area is fixed by hand, the graph area will be
automatically computed from the fixed data display area.

Drawing Area Defined by:

Margins Between the
Chart Bounding Box and the
Drawing Area

getLeftMargin
setLeftMargin

getRightMargin
setRightMargin

getTopMargin
setTopMargin

getBottomMargin
setBottomMargin

0

0

0

0

Graph Area Defined
by Hand Using:

Margins Between the
Drawing Area and the
Graph Area

A Rectangle Corresponding
to the Graph Area

getGraphAreaRelatively
setGraphAreaRelatively

getGraphArea
setGraphArea

Data Display Area Defined
by Hand Using:

Margins Between the
Drawing Area and the
Data Display Area

A Rectangle Corresponding
to the Data Display Area

getDataDisplayAreaRelatively
setDataDisplayAreaRelatively

getDataDisplayArea
setDataDisplayArea

Note: Be careful when you fix the data display area by hand. If the specified data display
area is not small enough, the computed graph area can be larger than the drawing area
and thus a part of the drawing of the chart may be not visible on the screen.

Property Methods
Default
Value
147 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Computing the Chart Layout

usrcharts.book Page 148 Thursday, July 23, 2009 5:01 PM
You can fix the graph area or the data display area by hand in two ways:

◆ By specifying margins relative to the drawing area

This can be done by means of the IlvChartLayout::setGraphAreaRelatively or
IlvChartLayout::setDataDisplayAreaRelatively methods. In this case, the
area that is fixed will be updated if the drawing area is modified (for example when the
margins between the drawing area and the chart bounding box are changed).

◆ By setting the rectangle corresponding to the area to be fixed directly

This can be done by means of the IlvChartLayout::setGraphArea or
IlvChartLayout::setDataDisplayArea methods. In this case, the area that is fixed
does not depend on the drawing area and is not updated when the drawing area is
modified.

Getting and Setting the Chart Layout Object of a Chart

When you create a chart object, an IlvChartLayout object is created by default to handle
the computation of the layout of the chart.

This layout object can be accessed by means of the getLayout method. You can change the
layout object that is used by default by means of the setLayout method.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 148

usrcharts.book Page 149 Thursday, July 23, 2009 5:01 PM
149 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 150 Thursday, July 23, 2009 5:01 PM
8

Data Display

This chapter provides detailed information on data display for the charts. You can find
information on the following topics:

◆ Drawing the Graphical Representations of Data

◆ Using Single Displayers

◆ Using Composite Displayers

◆ Adding a Displayer to a Chart

◆ Customizing Data Display

Drawing the Graphical Representations of Data

Each graphical representation of data is displayed within a chart by a dedicated object called
a displayer.

The base class used to represent a displayer is the IlvAbstractChartDisplayer class.

The displayers are divided into two categories:

◆ Single displayers display data with a single, basic rendering shape. Examples of such
displayers are the displayers representing data with markers, polylines, bars, and so on.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 150

usrcharts.book Page 151 Thursday, July 23, 2009 5:01 PM
◆ Composite displayers display data using a combination of several rendering shapes.
These displayers can display more complex graphical representations of data. Examples
of such displayers are the displayers representing data with a marked polyline, stacked
bars, and so on.

Composite displayers are defined as a combination of other displayers, which can be
either single displayers or other composite displayers. For example, a marked polyline
displayer is composed of two single displayers (one representing data with a polyline and
one representing data with markers). A stacked bar displayer is composed of several
single displayers representing data with bars.

Figure 8.1 shows the hierarchy of all the displayers defined in the Charts Library. On the left
are the single displayers and on the right are the composite displayers.
151 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Drawing the Graphical Representations of Data

usrcharts.book Page 152 Thursday, July 23, 2009 5:01 PM
Figure 8.1

Figure 8.1 Hierarchy of Displayers in the Charts Library

A displayer can be used to display one or more data sets, depending on the type of the
displayer. For example, a displayer that represents data with bars displays a unique data set,

IlvAbstractChartDisplayer

IlvSingleChartDisplayer IlvCompositeChartDisplayer

IlvScatterChartDisplayer

IlvPolylineChartDisplayer

IlvPolygonChartDisplayer

IlvStepChartDisplayer

IlvStairChartDisplayer

IlvBarChartDisplayer

Ilv3dBarChartDisplayer

IlvHiLoChartDisplayer

IlvHiLoBarChartDisplayer

IlvPieChartDisplayer

IlvMarkedPolylineChartDisplayer

IlvHiLoOpenCloseChartDisplayer

IlvStackedChartDisplayer

IlvStackedBarChartDisplayer

IlvStacked3dBarChartDisplayer

IlvStackedPolygonChartDisplayer

IlvSideBySideChartDisplayer

IlvSideBySideBarChartDisplayer
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 152

usrcharts.book Page 153 Thursday, July 23, 2009 5:01 PM
and a displayer that represents data with a high-low representation displays two data sets.
For a given displayer, it is important to distinguish between two kinds of data sets:

◆ Real data sets are the data sets that are to be displayed by the displayer and that you set
on the displayer. These data sets should be stored in the chart data object that is set on the
chart object using the displayer.

◆ Virtual data sets are the data sets that are constructed just when needed for drawing the
graphical representation of the real data sets that you want to display with the displayer.
Virtual data sets are constructed only in displayers that cannot directly display the real
data sets and need to put the data into another format before displaying them. For
example, a pie displayer needs a specific virtual data set to internally transform the real
data set into a set of angle values that can be then displayed.

Setting General Properties

The following properties are defined for all the displayers:

Note: If virtual data sets are defined for a given displayer, it is these data sets,
constructed from the real data sets that are set on the displayer, that will actually be
displayed by the displayer. Otherwise, the displayer will directly display the real data sets
that are set on the displayer.

Property Methods Default Value

Drawing Properties

Visibility isVisible
setVisible

IlvTrue

Palette getPalette
setPalette

0

Palette Foreground getForeground
setForeground

0

Palette Background getBackground
setBackground

0

Miscellaneous

Name getName
setName

0

Flags getFlags
setFlags

0

153 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 154 Thursday, July 23, 2009 5:01 PM
If the considered displayer is a single displayer, a unique palette will be set by means of the
IlvAbstractChartDisplayer::setPalette method. Otherwise, if the displayer is a
composite displayer, a palette can be set for each child displayer that makes up the
composite displayer.

If no palette has been specifically defined for a given displayer, the displayer will use the
palette set on the chart object that uses the displayer.

The Legend Text property is used to define the text of a legend for the displayer. If no legend
text is defined, the name of the real data set(s) displayed by the displayer will be used.

If a displayer is one of the displayers that make up a composite displayer, the method
IlvAbstractChartDisplayer::getParentDisplayer returns the composite
displayer.

Using Single Displayers

The base class used to represent a single displayer is the IlvSingleChartDisplayer
class.

Setting General Properties

The following property is defined for all the single displayers:

If the Drawn Filled property is set to IlvTrue, the shape that is rendered is filled with the
background color of the palette. Otherwise, the shape is simply outlined with the foreground
color of the palette.

Predefined Single Displayers

The following sections describe the single displayers of the Charts Library. For each
displayer, you will find a table that describes the conditions for using the displayer,
including the number of real data sets that are displayed with the displayer and whether the
displayer can be used no matter what the type of the projection is.

Legend Text getLegendText
setLegendText

0

Parent Displayer getParentDisplayer
setParentDisplayer

0

Property Methods Default Value

Drawn Filled isDrawingFilled
drawFilled

IlvTrue

Property Methods Default Value
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 154

usrcharts.book Page 155 Thursday, July 23, 2009 5:01 PM
You can find information on the following single displayers:

◆ Scatter Displayer

◆ Polyline Displayer

◆ Polygon Displayer

◆ Step Displayer

◆ Stair Displayer

◆ Bar Displayer

◆ 3D Bar Displayer

◆ High-Low Displayer

◆ High-Low Bar Displayer

◆ Pie Displayer

Scatter Displayer

A scatter displayer has the following basic characteristics:

The following properties are specific to a scatter displayer:

Figure 8.2 illustrates the fact that a scatter displayer can be used with all types of
projections. Data sets are represented by scatter displayers in a Cartesian chart (using a
Cartesian projection) and in a polar chart (using a polar projection).

Class IlvScatterChartDisplayer

Category Single

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

Markers

Property Methods Default Value

Marker Type getMarker
setMarker

IlvMarkerFilledSquare

Marker Size getMarkerSize
setMarkerSize

IlvDefaultMarkerSize
155 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 156 Thursday, July 23, 2009 5:01 PM
Figure 8.2

Figure 8.2 Scatter Displayers in a Cartesian Chart and in a Polar Chart

We can use the scatter displayer displaying the blue triangles as an example. We can create
this displayer by using the following code:

Polyline Displayer

A polyline displayer has the following basic characteristics:

IlvScatterChartDisplayer* displayer =
 new IlvScatterChartDisplayer(IlvMarkerFilledTriangle,
 IlvDefaultMarkerSize);
displayer->setForeground(dpy->getColor("blue"));

Note: The Drawn Filled property has no meaning for a scatter displayer. The markers are
simply drawn with the foreground color of the defined palette.

Class IlvPolylineChartDisplayer

Category Single

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

Polyline
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 156

usrcharts.book Page 157 Thursday, July 23, 2009 5:01 PM
The following property is specific to a polyline displayer:

By default, any data points that should appear outside of the data display area (if such data
points exist) are not drawn. The parts of the polyline extending outside of the data display
area are simply clipped by the data display area. The drawing on the left in Figure 8.3 shows
how a polyline can be clipped. The screen points corresponding to the data points to be
displayed are represented by black squares. Only the parts of the polyline displayed in bold
will appear on the screen.

The data points that should appear outside of the data display area can be projected onto the
limits of the data display area if desired. Data points that are outside of the data display area
(out-of-bounds data points) are projected only if a horizontal projection and/or a vertical
projection of out-of-bounds data points are requested at the level of the chart object that uses
the displayer. A horizontal projection can be requested on a chart by the method
IlvChartGraphic::setProjectHorizontally. A vertical projection can be requested
on a chart by the method IlvChartGraphic::setProjectVertically.

The drawing on the right in Figure 8.3 shows how out-of-bounds data points are handled.
The parts of the polyline extending outside of the data display area are projected. Points are
added (those shown by white circles) in order to close the polyline that was truncated in the
drawing on the left. The polyline then appears to be continuous with the projected parts
following the limits of the data display area.

These projected parts are displayed with the palette returned by the
IlvPolylineChartDisplayer::getProjectedPointsPalette method.This method
returns a pointer to the palette object that has been set to display out-of-bounds data points
for the current polyline displayer, if such a palette has been set. Otherwise, it returns a
pointer to the palette object that has been set to display out-of-bounds data points in the chart
object that uses the current polyline displayer.

Property Methods Default Value

Projected Points Palette getProjectedPointsPalette
setProjectedPointsPalette

0

157 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 158 Thursday, July 23, 2009 5:01 PM
Figure 8.3

Figure 8.3 Out-of-Bounds Data Point Projection

Figure 8.4 illustrates the fact that a polyline displayer can be used with all types of
projections. Data sets are represented by polyline displayers in a Cartesian chart (using a
Cartesian projection) and in a polar chart (using a polar projection).

Figure 8.4

Figure 8.4 Polyline Displayers in a Cartesian Chart and in a Polar Chart

We can use the polyline displayer displaying the blue polyline as an example. We can create
this displayer by using the following code:

IlvPolylineChartDisplayer* displayer = new IlvPolylineChartDisplayer();
displayer->setForeground(dpy->getColor("blue"));
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 158

usrcharts.book Page 159 Thursday, July 23, 2009 5:01 PM
Polygon Displayer

A polygon displayer has the following basic characteristics:

Figure 8.5 illustrates the fact that a polygon displayer can be used with all types of
projections. Data sets are represented by polygon displayers in a Cartesian chart (using a
Cartesian projection) and in a polar chart (using a polar projection).

Figure 8.5

Figure 8.5 Polygon Displayers in a Cartesian Chart and in a Polar Chart

We can use the polygon displayer displaying the cyan polygon as an example. We can create
this displayer by using the following code:

Note: The Drawn Filled property has no meaning for the polyline displayer. The polyline
is simply drawn with the foreground color of the defined palette.

Class IlvPolygonChartDisplayer

Category Single

Inherits from IlvPolylineChartDisplayer

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

Polygon

IlvPolygonChartDisplayer* displayer = new IlvPolygonChartDisplayer();
displayer->setForeground(dpy->getColor("blue"));
displayer->setBackground(dpy->getColor("cyan"));
159 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 160 Thursday, July 23, 2009 5:01 PM
Step Displayer

A step displayer has the following basic characteristics:

Figure 8.6 illustrates the fact that a step displayer can be used with all types of projections.
Data sets are represented by step displayers in a Cartesian chart (using a Cartesian
projection) and in a polar chart (using a polar projection).

Figure 8.6

Figure 8.6 Step Displayers in a Cartesian Chart and in a Polar Chart

We can use the step displayer displaying the red steps as an example. We can create this
displayer by using the following code:

Note: By default, the polygon is outlined with the foreground color and filled with the
background color of the defined palette. It will be displayed only with the outline if the
Drawn Filled property is set to IlvFalse.

Class IlvStepChartDisplayer

Category Single

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

Steps

IlvStepChartDisplayer* displayer = new IlvStepChartDisplayer();
displayer->setForeground(dpy->getColor("red"));

Note: The Drawn Filled property has no meaning for the step displayer. The steps are
simply drawn with the foreground color of the defined palette.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 160

usrcharts.book Page 161 Thursday, July 23, 2009 5:01 PM
Stair Displayer

A stair displayer has the following basic characteristics:

Figure 8.7 illustrates the fact that a stair displayer can be used with all types of projections.
Data sets are represented by stair displayers in a Cartesian chart (using a Cartesian
projection) and in a polar chart (using a polar projection).

Figure 8.7

Figure 8.7 Stair Displayers in a Cartesian Chart and in a Polar Chart

We can use the stair displayer displaying the gold stairs as an example. We can create this
displayer by using the following code:

Class IlvStairChartDisplayer

Category Single

Inherits from IlvStepChartDisplayer

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

Stairs

IlvPalette* palette = dpy->getPalette(dpy->getColor("gold"),
 dpy->getColor("red"),
 0,0,0,0,2);
IlvStairChartDisplayer* displayer = new IlvStairChartDisplayer(palette);

Note: By default, the stairs are outlined with the foreground color and filled with the
background color of the defined palette. They will be displayed only with the outline if the
Drawn Filled property is set to IlvFalse.
161 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 162 Thursday, July 23, 2009 5:01 PM
Bar Displayer

A bar displayer has the following basic characteristics:

The following property is specific to a bar displayer:

If a width percentage is set, the width of the bars is no longer constant but proportional to the
zoom level of the chart.

Figure 8.8 illustrates the fact that a bar displayer can be used with all types of projections.
Data sets are represented by bar displayers in a Cartesian chart (using a Cartesian projection)
and in a polar chart (using a polar projection).

Figure 8.8

Figure 8.8 Bar Displayers in a Cartesian Chart and in a Polar Chart

Class IlvBarChartDisplayer

Category Single

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

Bars

Property Methods Default Value

Width of a Bar getWidth
setWidth

IlvChartDisplayerWidth

Width Percentage of a
Bar

getWidthPercent
setWidthPercent

100
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 162

usrcharts.book Page 163 Thursday, July 23, 2009 5:01 PM
We can use the bar displayer displaying the gold bars as an example. We can create this
displayer by using the following code:

3D Bar Displayer

A 3D bar displayer has the following basic characteristics:

The following property is specific to a 3D bar displayer:

Figure 8.9 illustrates the fact that a 3D bar displayer can be used with all types of
projections. Data sets are represented by 3D bar displayers in a Cartesian chart (using a
Cartesian projection) and in a polar chart (using a polar projection).

IlvBarChartDisplayer* displayer =
 new IlvBarChartDisplayer(IlvChartDisplayerWidth);
displayer->setForeground(dpy->getColor("red"));
displayer->setBackground(dpy->getColor("gold"));

Note: By default, the bars are outlined with the foreground color and filled with the
background color the defined palette. They will be displayed only with the outline if the
Drawn Filled property is set to IlvFalse.

Class Ilv3dBarChartDisplayer

Category Single

Inherits from IlvBarChartDisplayer

Number of real data sets displayed 1

Can be used with all types of projections Yes

Items drawn

3D bars

Property Methods Default Value

Depth of a 3D Bar getDepth
setDepth

IlvChartDisplayerDepth
163 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 164 Thursday, July 23, 2009 5:01 PM
Figure 8.9

Figure 8.9 3D Bar Displayers in a Cartesian Chart and in a Polar Chart

We can use the 3D bar displayer displaying the gold 3D bars as an example. We can create
this displayer by using the following code:

High-Low Displayer

A high-low displayer has the following basic characteristics:

IlvPalette* palette = dpy->getPalette(dpy->getColor("gold"),
 dpy->getColor("red"));
Ilv3dBarChartDisplayer* displayer =
 new Ilv3dBarChartDisplayer(IlvChartDisplayerWidth,
 IlvChartDisplayerDepth,
 palette);

Note: By default, the 3D bars are outlined with the foreground color, the front face is
filled with the background color, and the top and the side faces are filled with shadow
colors computed from the background color. The 3D bars will be displayed only with the
outline if the Drawn Filled property is set to IlvFalse.

Class IlvHiLoChartDisplayer

Category Single

Number of real data sets displayed 2

Can be used with all types of projections Yes

Items drawn

High-low items
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 164

usrcharts.book Page 165 Thursday, July 23, 2009 5:01 PM
The high-low displayer displays two data sets. The first data set is composed of the low
values and the second data set is composed of the high values. A high-low item is drawn
between each pair of low-high values, the low values being taken in order from the first data
set and the high values being taken in order from the second data set.

The following properties are specific to a high-low displayer:

If a width percentage is set, the width of the items is no longer constant but proportional to
the zoom level of the chart.

Two palettes are defined: a rise palette and a fall palette. The rise palette is used to draw the
high-low items for which the corresponding low value is less than the high value. The fall
palette is used to draw the high-low items for which the corresponding low value is greater
than the high value.

Figure 8.10 illustrates the fact that a high-low displayer can be used with all types of
projections. Data sets are represented by a high-low displayer in a Cartesian chart (using a
Cartesian projection) and in a polar chart (using a polar projection).

Figure 8.10

Figure 8.10 High-Low Displayers in a Cartesian Chart and in a Polar Chart

Property Methods Default Value

Width of a High-low Item getWidth
setWidth

IlvChartDisplayerWidth

Width percentage of a
High-low Item

getWidthPercent
setWidthPercent

100

Rise Palette getRisePalette
setRisePalette

0

Fall Palette getFallPalette
setFallPalette

0
165 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 166 Thursday, July 23, 2009 5:01 PM
We can use the high-low displayer displaying the green and red high-low items as an
example. We can create this displayer by using the following code:

High-Low Bar Displayer

A high-low bar displayer has the following basic characteristics:

As with the high-low displayer, the high-low bar displayer displays two data sets. The first
data set is composed of the low values and the second data set is composed of the high
values. A high-low bar item is drawn between each pair of low-high values, the low values
being taken in order from the first data set and the high values being taken in order from the
second data set.

Figure 8.11 illustrates the fact that a high-low bar displayer can be used with all types of
projections. Data sets are represented by a high-low bar displayer in a Cartesian chart (using
a Cartesian projection) and in a polar chart (using a polar projection).

IlvPalette* risePal = dpy->getPalette(dpy->getColor("white"),
 dpy->getColor("green"),0,0,0,0,2);
IlvPalette* fallPal = dpy->getPalette(dpy->getColor("white"),
 dpy->getColor("red"),0,0,0,0,2);
IlvHiLoChartDisplayer* displayer =
 new IlvHiLoChartDisplayer(IlvChartDisplayerWidth,
 risePal,
 fallPal);

Note: The Drawn Filled property has no meaning for the high-low displayer. The high-
low items are simply drawn with the foreground color of the rise and fall palettes defined.

Class IlvHiLoBarChartDisplayer

Category Single

Inherits from IlvHiLoChartDisplayer

Number of real data sets displayed 2

Can be used with all types of projections Yes

Items drawn

High-low bar items
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 166

usrcharts.book Page 167 Thursday, July 23, 2009 5:01 PM
Figure 8.11

Figure 8.11 High-Low Bar Displayers in a Cartesian Chart and in a Polar Chart

We can use the high-low bar displayer displaying the white high-low bar items outlined in
green and red as an example. We can create this displayer by using the following code:

Pie Displayer

A pie displayer has the following basic characteristics:

IlvPalette* risePal = dpy->getPalette(dpy->getColor("white"),
 dpy->getColor("green"),0,0,0,0,2);
IlvPalette* fallPal = dpy->getPalette(dpy->getColor("white"),
 dpy->getColor("red"),0,0,0,0,2);
IlvHiLoBarChartDisplayer* displayer =
 new IlvHiLoBarChartDisplayer(IlvChartDisplayerWidth,
 risePal,
 fallPal);

Note: By default, the high-low bar items are outlined with the foreground color of the
defined rise and fall palettes and are filled with the background color of these palettes.
The high-low bar items will be displayed only with the outline if the Drawn Filled
property is set to IlvFalse.

Class IlvPieChartDisplayer

Category Single

Number of real data sets visualized 1

Can be used with all types of projections No (Use only with a polar projection)

Items drawn

Slices
167 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 168 Thursday, July 23, 2009 5:01 PM
The pie displayer displays a unique data set. Only the y-values of the data points represented
by the data set are considered. It is these values that will be represented as slices of the pie.
For this reason, it is better to use a data set defined as a set of values (an instance of the
IlvChartYValueSet class) to store the data you want to display with a pie. However, it is
also possible to use another type of data set (a set-of-points data set or a function data set).
Just remember that the values that will be represented as slices of the pie are the y-values of
the data points represented by your data set.

The y-values of the data points cannot be displayed directly by the pie displayer, since angle
values are needed to draw these values as slices. Internally, the pie displayer uses a specific
virtual data set that is composed of data points expressed in polar coordinates (θ, ρ)
computed from the initial data points of the real data set. The computed data points lie on the
extremities of the arcs of the slices. It is this virtual data set that will actually be displayed by
the pie displayer.

Since the data points that will be displayed by the pie displayer are expressed in polar
coordinates, the pie displayer can only be used with a polar projection. This means that a pie
displayer should only be added to a chart object using a polar projector. A dedicated subclass
of IlvPolarChart has been implemented to facilitate the use of pie displayers. The
IlvPieChartGraphic class is used to create a chart object directly instantiated to display
pies. This class encapsulates the creation of the pie displayers.

The following properties are specific to a pie displayer:

Property Methods Default Value

General Properties

Radius of the Pie getRadius
setRadius

0

Angle at Which the
First Slice is Drawn

getStartingAngle
setStartingAngle

0

Angle Range of the Pie getRange
setRange

360

Offset Applied to
Torn Off Slices

getTearOffDelta
setTearOffDelta

20

Offset Between the
Slices and the Graphic
Objects Added to the
Slices

getOffset
setOffset

(0,0)

Slice Properties

Palette of a Slice getSlicePalette
setSlicePalette

0

I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 168

usrcharts.book Page 169 Thursday, July 23, 2009 5:01 PM
The properties related to a given slice are stored in a dedicated object called a slice
information object. The slice information objects added to the slices are instances of the
IlvPieSliceInfo class by default. A graphic object can be added to a given slice to
display information related to the slice (for example, an annotation).

Example

Figure 8.12 shows a data set represented by a pie displayer in a pie chart object. A slice
information object storing a label (an instance of the IlvLabel class) has been added to
each slice of the pie.

Figure 8.12

Figure 8.12 Pie Displayer in a Pie Chart (Using a Polar Projection)

This section contains a description of all the steps required to display this pie chart. We use
an IlvPieChartGraphic object to create the chart object that displays the pie chart. Since
the IlvPieChartGraphic object is already instantiated to display pie charts, it is easier to
use this class instead of an IlvChartGraphic object. However, if you want to, you can
create a pie displayer by hand and add it to the chart object you want, provided the chart
object uses a polar projection.

The complete source code of this example can be found in the pie.cpp file located in the
$ILVHOME/samples/charts/userman/src directory.

Slice Torn Off isSliceTornOff
tearOffSlice

IlvFalse

Graphic Object Drawn
in Addition to a Slice

getSliceGraphic
setSliceGraphic

0

Legend Text for a Slice getSliceLegendText
setSliceLegendText

0

Property Methods Default Value
169 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Single Displayers

usrcharts.book Page 170 Thursday, July 23, 2009 5:01 PM
Creating the Data Set
We can create the data set for this chart by using the following code:

Creating the Pie Chart
We can create the chart object by using the following code:

The IlvRect object passed as a parameter corresponds to the bounding box of the created
chart.

Adding the Data Set to the Chart Data Object
The data set is added to the chart data object set on the chart object by using the following
code:

Creating and Adding the Pie Displayer
The pie displayer is created and added to the chart object using the following code:

The data set that will be displayed by the pie displayer is passed as a parameter.

Customizing the Display of the Pie Slices

1. Define a different palette for each slice.

We want to display each slice with a different color. To do so, we set a different palette
for each slice by using the following code:

IlvChartYValueSet* dataSet = new IlvChartYValueSet();
dataSet->addValue(1.);
dataSet->addValue(2.);
dataSet->addValue(2.);
dataSet->addValue(3.);
dataSet->addValue(4.);

IlvPieChartGraphic* chart = new IlvPieChartGraphic(display,
 IlvRect(10, 10, 450, 300));

chart->getData()->addDataSet(dataSet);

chart->addPieDisplayer(dataSet);

IlvPalette* bluePal = display->getPalette(0, display->getColor("lightblue"));
IlvPalette* redPal = display->getPalette(0, display->getColor("red"));
IlvPalette* darkBluePal = display->getPalette(0, display->getColor("blue"));
IlvPalette* greenPal = display->getPalette(0, display->getColor("green"));
IlvPalette* goldPal = display->getPalette(0, display->getColor("gold"));

chart->getPieDisplayer(0)->setSlicePalette(0, bluePal);
chart->getPieDisplayer(0)->setSlicePalette(1, redPal);
chart->getPieDisplayer(0)->setSlicePalette(2, darkBluePal);
chart->getPieDisplayer(0)->setSlicePalette(3, greenPal);
chart->getPieDisplayer(0)->setSlicePalette(4, goldPal);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 170

usrcharts.book Page 171 Thursday, July 23, 2009 5:01 PM
2. Define a graphic object storing a specific label for each slice:

3. Define the offset between the slices and the added graphic objects.

The added graphic object is drawn next to a point located on the middle of the arc of the
slice. The offset is defined by an angle value expressed in degrees and by a radial value
expressed in pixels. The angle value is set as the abscissa of the IlvDoublePoint
object passed as a parameter and the radial value is set as the ordinate.

4. Tear off the slice at the index 3.

When these steps have been completed, we obtain the chart in Figure 8.12.

Using Composite Displayers

The base class used to represent a composite displayer is the
IlvCompositeChartDisplayer class. All composite displayers are defined as a
combination of other displayers, which can be single displayers or composite displayers.
The child displayers that make up a composite displayer are automatically created by the
composite displayer. The type of the child displayers to be created by default is not defined
at the level of the IlvCompositeChartDisplayer class, but is defined only in the
subclasses. However, at the level of the IlvCompositeChartDisplayer class, you can:

◆ Specify a displayer model to define the child displayers that will be created by default.

A displayer model is an instance of a subclass of the IlvAbstractChartDisplayer
class. If a displayer model is specified, the child displayers that are created by default are
copies of the displayer model. A displayer model can be set on a given composite

Note: By default, a slice is outlined with the foreground color of the palette set on the pie
displayer and is filled with the foreground color of the palette set for the slice. If no palette
is set for a given slice, the slice will be filled with the background color of the palette set
on the pie displayer. The slices will be displayed only with the outline if the Drawn Filled
property is set to IlvFalse.

chart->getPieDisplayer(0)->setSliceGraphic(0, new IlvLabel(display,0,0,"A"));
chart->getPieDisplayer(0)->setSliceGraphic(1, new IlvLabel(display,0,0,"B"));
chart->getPieDisplayer(0)->setSliceGraphic(2, new IlvLabel(display,0,0,"C"));
chart->getPieDisplayer(0)->setSliceGraphic(3, new IlvLabel(display,0,0,"D"));
chart->getPieDisplayer(0)->setSliceGraphic(4, new IlvLabel(display,0,0,"E"));

chart->getPieDisplayer(0)->setOffset(IlvDoublePoint(0, 5));

 chart->getPieDisplayer(0)->tearOffSlice(3);
171 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Composite Displayers

usrcharts.book Page 172 Thursday, July 23, 2009 5:01 PM
displayer by using the IlvCompositeChartDisplayer::setDisplayerModel
method.

◆ Specify a displayer factory that will be used to replace the child displayers created by
default by the displayers you want.

A displayer factory is an instance of a subclass of the IlvChartDisplayerFactory
class. If a displayer factory is specified, the child displayers that are defined in the
displayer factory will be created instead of the default child displayers. A displayer
factory can be set on a given composite displayer by using the
IlvCompositeChartDisplayer::setDisplayerFactory method.

Once the child displayers are created, they can be accessed by using the
IlvCompositeChartDisplayer::getDisplayer method and can then be customized
individually.

Predefined Composite Displayers

The following sections describe the composite displayers of the Charts Library. For each
displayer, you will find a table that describes the conditions for using the displayer,
including the number of real data sets that are displayed with the displayer and whether the
displayer can be used no matter what the type of the projection is.

You can find information on the following composite displayers:

◆ Marked Polyline Displayer

◆ High-Low Open-Close Displayer

◆ Stacked Displayers

◆ Side-by-Side Displayers

Note: The displayer model is considered only if the type of the child displayers to be
created by default is not specified for a given composite displayer. For example, if you
set a displayer model on a stacked bar displayer (an instance of the
IlvStackedBarChartDisplayer class), the displayer model will not be considered.
It will be considered if you set it on a stacked displayer (an instance of the
IlvStackedChartDisplayer class).

Note: A displayer factory can be used with all types of composite displayers whether or
not the type of the child displayers to be created by default is specified for the composite
displayer.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 172

usrcharts.book Page 173 Thursday, July 23, 2009 5:01 PM
Marked Polyline Displayer

A marked polyline displayer has the following basic characteristics:

The marked polyline displayer is composed of a scatter displayer (an instance of the
IlvScatterChartDisplayer class) and a polyline displayer (an instance of the
IlvPolylineChartDisplayer class). Each child displayer can be customized
individually. You can specify the palette, the marker type, and the marker size directly for
the scatter displayer. You can specify the palette directly for the polyline displayer. Use the
following methods to access the child displayers:

◆ IlvMarkedPolylineChartDisplayer::getMarkerDisplayer for the scatter
displayer

◆ IlvMarkedPolylineChartDisplayer::getLineDisplayer for the polyline
displayer

The Charts Library also provides some methods at the level of the
IlvMarkedPolylineChartDisplayer class that allow you to set properties defined for
child displayers more quickly. The following table lists all the properties that can be set at
the level of the IlvMarkedPolylineChartDisplayer class. (For details on all the
properties that can be set on a scatter displayer, see Scatter Displayer on page 155. For
details on all the properties that can be set on a polyline displayer, see Polyline Displayer on
page 156.)

Class IlvMarkedPolylineChartDisplayer

Category Composite

Number of real data sets displayed 1

Can be used with all types of projections Yes

Number of child displayers 2 (1 scatter displayer + 1 polyline displayer)

Items drawn

Markers and/or Polyline

Property Methods Default Value

General Properties

Markers Displayed isMarkerVisible
setMarkerVisible

IlvTrue

Polyline Displayed isLineVisible
setLineVisible

IlvTrue
173 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Composite Displayers

usrcharts.book Page 174 Thursday, July 23, 2009 5:01 PM
By default, a marked polyline displayer displays a data set with both markers and a polyline.
However, you can specify that only markers are to be displayed by setting the property
Polyline Displayed to IlvFalse. You can specify that only a polyline is to be displayed by
setting the property Markers Displayed to IlvFalse.

Figure 8.13 illustrates the fact that a marked polyline displayer can be used with all types of
projections. Data sets are represented by marked polyline displayers in a Cartesian chart
(using a Cartesian projection) and in a polar chart (using a polar projection).

Figure 8.13

Figure 8.13 Marked Polyline Displayers in a Cartesian Chart and in a Polar Chart

Scatter Displayer Properties

Palette getMarkerPalette
setMarkerPalette

0

Palette Foreground getMarkerForeground
setMarkerForeground

0

Palette Background getMarkerBackground
setMarkerBackground

0

Polyline Displayer Properties

Palette getLinePalette
setLinePalette

0

Palette Foreground getLineForeground
setLineForeground

0

Palette Background getLineBackground
setLineBackground

0

Property Methods Default Value
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 174

usrcharts.book Page 175 Thursday, July 23, 2009 5:01 PM
We can use the marked polyline displayer displaying the red lines and gold markers as an
example. To create this displayer, we can use the following code:

High-Low Open-Close Displayer

A high-low open-close displayer has the following basic characteristics:

The high-low open-close displayer displays four data sets. The first data set is composed of
the low values. The second data set is composed of the high values. The third data set is
composed of the open values. The fourth data set is composed of the close values.

The first child displayer, which is a high-low displayer by default (an instance of the
IlvHiLoChartDisplayer class), displays the first two data sets.

The second child displayer, which is a high-low bar displayer by default (an instance of the
IlvHiLoBarChartDisplayer class), displays the next two data sets.

The default child displayers that display the two pairs of data sets can be changed by
specifying a displayer factory (For details on the displayer factory, see Using Composite
Displayers on page 171). Any type of displayer can be used provided that it inherits from the
IlvHiLoChartDisplayer class. The following methods are used to return the two child
displayers created in the high-low open-close displayer:

◆ IlvHiLoOpenCloseChartDisplayer::getHiLoDisplayer returns the displayer
displaying the low-values and high-values data sets.

◆ IlvHiLoOpenCloseChartDisplayer::getOpenCloseDisplayer for the displayer
displaying the open-values and close-values data sets.

IlvMarkedPolylineChartDisplayer* displayer =
 new IlvMarkedPolylineChartDisplayer();
displayer->setMarkerForeground(dpy->getColor("gold"));
displayer->setLineForeground(dpy->getColor("red"));

Class IlvHiLoOpenCloseChartDisplayer

Category Composite

Number of real data sets displayed 4

Can be used with all types of projections Yes

Number of child displayers 2 (1 high-low displayer + 1 high-low bar
displayer)

Items drawn

High-low and High-low bar items
175 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Composite Displayers

usrcharts.book Page 176 Thursday, July 23, 2009 5:01 PM
Each of these two child displayers can be customized individually. For example, you can set
the item width directly on each child displayer.

The Charts Library also provides some methods at the level of the
IlvHiLoOpenCloseChartDisplayer class that allow you to set properties defined for
the child displayers more quickly. The following table lists all the properties that can be set
at the level of the IlvHiLoOpenCloseChartDisplayer class. (For details on all the
properties that can be set on a high-low displayer, see High-Low Displayer on page 164. For
details on all the properties that can be set on a high-low bar displayer, see High-Low Bar
Displayer on page 166.)

Figure 8.14 illustrates the fact that a high-low open-close displayer can be used with all
types of projections. Data sets are represented by a high-low open-close displayer in a
Cartesian chart (using a Cartesian projection) and in a polar chart (using a polar projection).

Figure 8.14

Figure 8.14 High-Low Open-Close Displayers in a Cartesian Chart and in a Polar Chart

Property Methods Default Value

Properties of the Displayer Displaying the Low-Values/High-Values Data Sets

Rise Palette setHiLoRisePalette 0

Fall Palette setHiLoFallPalette 0

Properties of the Displayer Displaying the Open-Values/Close-Values Data Sets

Rise Palette setOpenCloseRisePalette 0

Fall Palette setOpenCloseFallPalette 0
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 176

usrcharts.book Page 177 Thursday, July 23, 2009 5:01 PM
We can use the high-low open-close displayer displaying the green and red high-low items
and the white high-low bar items outlined in green and red as an example. To create this
object, we can use the following code:

Stacked Displayers

The base class used to represent data with a stacked graphical representation is the
IlvStackedChartDisplayer class. This type of graphical representation enables you to
compare the contribution of a given data value to a total across several data sets. The type of
the child displayers that are created by default is not specified at that level of the class
hierarchy. However, you can define the child displayers that will be created by setting one of
the following:

◆ A displayer model

◆ A displayer factory

See Using Composite Displayers on page 171 for details on these two objects.

The Charts Library also provides several subclasses of the IlvStackedChartDisplayer
class that define the child displayers created by default to be stacked: bar displayers, 3D-bar
displayers, and polygon displayers.

A stacked displayer has the following basic characteristics:

IlvPalette* hiLoRisePal = dpy->getPalette(dpy->getColor("white"),
 dpy->getColor("green"),
 0,0,0,0,2);
IlvPalette* openCloseRisePal = hiLoRisePal;
IlvPalette* hiLoFallPal = dpy->getPalette(dpy->getColor("white"),
 dpy->getColor("red"),
 0,0,0,0,2);
IlvPalette* openCloseFallPal = hiLoFallPal;
IlvHiLoOpenCloseChartDisplayer* displayer =
 new IlvHiLoOpenCloseChartDisplayer(IlvChartDisplayerWidth,
 hiLoRisePal,
 openCloseRisePal,
 hiLoFallPal,
 openCloseFallPal);

Class IlvStackedChartDisplayer

Category Composite

Number of real data sets displayed As many as you want

Can be used with all types of projections Yes
177 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Composite Displayers

usrcharts.book Page 178 Thursday, July 23, 2009 5:01 PM
A stacked displayer displays as many data sets as you want. Within a stacked graphical
representation, the first data set is represented at the bottom. The second data set is stacked
on top of the first one. The third data set is stacked on the top of the second one, and so on.

The following property is specific to a stacked displayer:

Figure 8.15 illustrates the fact that a stacked displayer can be used with all types of
projections. Data sets are represented by a stacked bar displayer, a stacked 3D bar displayer,
and a stacked polygon displayer in Cartesian charts (using a Cartesian projection) and in
polar charts (using a polar projection).

Number of child displayers As many as the number of real data sets

Subclasses

IlvStackedBarChartDisplayer

IlvStacked3dBarChartDisplayer

IlvStackedPolygonChartDisplayer

Property Methods Default Value

100% Stacked isStacked100PerCent
setStacked100PerCent

IlvFalse
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 178

usrcharts.book Page 179 Thursday, July 23, 2009 5:01 PM
Figure 8.15

Figure 8.15 Stacked Displayers in Cartesian Charts and in Polar Charts

We can use the stacked displayer displaying data with polygons as an example. This
displayer can be created in one of the following ways:

◆ By using the IlvStackedPolygonChartDisplayer class.

◆ Directly from the IlvStackedChartDisplayer class by specifying a displayer model.

Stacked Bar Displayer

Stacked 3D Bar Displayer

Stacked Polygon Displayer
179 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Composite Displayers

usrcharts.book Page 180 Thursday, July 23, 2009 5:01 PM
◆ Directly from the IlvStackedChartDisplayer class by specifying a displayer
factory.

The complete source code for creating the Cartesian chart displaying stacked data with
stacked polygons can be found in the stackedpolygon.cpp file located in the $ILVHOME/
samples/charts/userman/src directory. This file contains the code for each of the
three ways of creating a stacked displayer.

Using a Subclass of the llvStackedChartDisplayer Class
To create the stacked displayer by using a subclass of the IlvStackedChartDisplayer
class, we can use the following code:

Using a Displayer Model
To create the stacked displayer by specifying a displayer model, we can use the following
code:

Using a Displayer Factory
To create the stacked displayer by specifying a displayer factory, we can use the following
code:

IlvStackedChartDisplayer* stackedDisplayer =
 new IlvStackedPolygonChartDisplayer(2, palettes);

IlvAbstractChartDisplayer* model = new IlvPolygonChartDisplayer();
IlvStackedChartDisplayer* stackedDisplayer =
 new IlvStackedChartDisplayer(model, 2, palettes);

PolygonDisplayerFactory* factory = new PolygonDisplayerFactory();
stackedDisplayer = new IlvStackedChartDisplayer(factory, 2, palettes);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 180

usrcharts.book Page 181 Thursday, July 23, 2009 5:01 PM
The following code defines the displayer factory:

Side-by-Side Displayers

The base class used to represent data side by side is the IlvSideBySideChartDisplayer
class. The type of the child displayers that are created by default to be displayed is not
specified at that level of the class hierarchy. However, it is possible to define the child
displayers that will be created by setting one of the following:

◆ A displayer model

◆ A displayer factory

See Using Composite Displayers on page 171 for details on these two objects.

The Charts Library provides one subclass of the IlvSideBySideChartDisplayer class
that defines the child displayers that are created by default:
IlvSideBySideBarChartDisplayer that displays the data as side-by-side bars.

class PolygonDisplayerFactory
 : public IlvChartDisplayerFactory
{
public:

 PolygonDisplayerFactory()
 : IlvChartDisplayerFactory() {}

 virtual IlvChartDisplayerFactory* copy() const;

 virtual IlvAbstractChartDisplayer*
 createDisplayer(IlvCompositeChartDisplayer* parent,
 IlvUInt idx,
 IlvPalette *palette);
};

IlvChartDisplayerFactory*
PolygonDisplayerFactory::copy() const
{
 return new PolygonDisplayerFactory();
}

IlvAbstractChartDisplayer*
PolygonDisplayerFactory::
createDisplayer(IlvCompositeChartDisplayer* /* parent */,
 IlvUInt /* idx */,
 IlvPalette * palette)
{
 return new IlvPolygonChartDisplayer(palette);
}

181 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Composite Displayers

usrcharts.book Page 182 Thursday, July 23, 2009 5:01 PM
A side-by-side displayer has the following basic characteristics:

A side-by-side displayer displays as many data sets as you want. Within the graphical
representation, the data items of the first data set appear first. The data items of the second
data set then appear next to the data items of the first data set. The data items of the third
data set then appear next to the second data set, and so on.

Figure 8.16 illustrates the fact that a side-by-side displayer can be used with all types of
projections. Data sets are represented by a side-by-side bar displayer in a Cartesian chart
(using a Cartesian projection) and in a polar chart (using a polar projection).

Figure 8.16

Figure 8.16 Side-by-Side Bar Displayers in a Cartesian Chart and in a Polar Chart

Class IlvSideBySideChartDisplayer

Category Composite

Number of real data sets visualized As many as you want

Can be used with all types of projections Yes

Number of child displayers As many as the number of real data sets

Subclasses

IlvSideBySideBarChartDisplayer
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 182

usrcharts.book Page 183 Thursday, July 23, 2009 5:01 PM
We can use the side-by-side bar displayer as an example. We can easily create this displayer
by using the IlvSideBySideBarChartDisplayer class.

You can also create a side-by-side displayer directly from the
IlvSideBySideChartDisplayer class by specifying a displayer model or a displayer
factory. See Stacked Displayers on page 177 to see how to create a displayer by specifying a
displayer model or a displayer factory.

Adding a Displayer to a Chart

Once a displayer has been created, it should be added to the chart that needs to use it to
display data.

The following methods are available to add a displayer:

IlvBoolean addDisplayer(IlvAbstractChartDisplayer* displayer,
 IlvChartDataSet* dataSet = 0,
 IlvChartCoordinateInfo* ordinateInfo = 0,
 IlvUInt position = IlvLastPositionIndex)

and

virtual IlvBoolean addDisplayer(IlvAbstractChartDisplayer* displayer,
 IlvUInt count,
 IlvChartDataSet* const* dataSets,
 IlvChartCoordinateInfo* ordinateInfo = 0,
 IlvUInt position = IlvLastPositionIndex)

The first method is used for adding displayers that display only one data set, such as the
scatter displayer, the polyline displayer, the marked polyline displayer, and so on. The
second method is used for adding displayers that display several data sets, such as the high-
low displayer, the high-low open-close displayer, and so on.

The data set(s) that will be displayed by the added displayer should be passed as a parameter.
Otherwise, the displayer will be added but the corresponding graphical representation will
not be displayed since no data to be represented are specified.

IlvPalette* palettes[2];
palettes[0] = dpy->getPalette(dpy->getColor("palegreen"),
 dpy->getColor("blue"));
palettes[1] = dpy->getPalette(dpy->getColor("gold"),
 dpy->getColor("red"));
IlvSideBySideChartDisplayer* sideBySideDisplayer =
 new IlvSideBySideBarChartDisplayer(2, palettes);

Note: The data sets that are passed as parameters must be managed by the chart data
object set on the chart.
183 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Customizing Data Display

usrcharts.book Page 184 Thursday, July 23, 2009 5:01 PM
It is also possible to specify the ordinate scale that will be considered by the displayer to
display the data. This is done by passing the coordinate information object associated with
the ordinate scale as a parameter. If no coordinate information object is passed as a
parameter, the ordinate scale that will be considered is the main ordinate scale. If several
ordinate scales are displayed, the main ordinate scale corresponds to the ordinate scale
displayed by the first ordinate scale displayer object that is defined (that is, the ordinate scale
displayer at the index 0).

You can also specify the position at which the displayer is added. This allows you to indicate
the order in which you want the graphical representations of data to be displayed since the
displayers are considered in the order of the indexes.

Examples

We can use a scatter displayer that displays a single data set as an example. We can add this
displayer to a chart by using the following code:

See Scatter Displayer on page 155 to see how to create a scatter displayer.

Another example is a high-low open-close displayer that displays four data sets. We can add
this displayer to a chart by using the following code:

See High-Low Open-Close Displayer on page 175 to see how to create a high-low open-
close displayer.

Customizing Data Display

By default, data are simply displayed by the defined displayers using the palette(s) set on the
displayers. However, you can customize your data display as follows:

◆ Display an annotation linked to a given data point.

◆ Display a given data point using a specific palette.

◆ Projecting out-of-bounds data points onto the limits of the data display area (available for
only a few displayers).

chart->addDisplayer(scatterDisplayer, dataSet);

IlvChartDataSet* dataSets[4];
dataSets[0] = lowValuesDataSet;
dataSets[1] = highValuesDataSet;
dataSets[2] = openValuesDataSet;
dataSets[3] = closeValuesDataSet;

chart->addDisplayer(hiLoDisplayer, 4, dataSets);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 184

usrcharts.book Page 185 Thursday, July 23, 2009 5:01 PM
Adding Graphic Information to a Data Point

You can add specific graphic information to a data point of a given data set. This information
is stored in a dedicated object called a point information object. The information will be
treated at the time the chart is drawn.

A point information object is an instance of the IlvChartDataPointInfo class or one of
its derived classes.

◆ The IlvChartDataPointInfo class allows you to draw the data point with a specific
palette.

◆ The IlvChartDataGraphicInfo class allows you to draw any kind of graphic object
next to the graphic representation of the data point. This graphic object can be used to
define an annotation, put a marker on a given data point, and so on.

◆ The IlvChartGradientPointInfo class allows you to define a color gradient
according to which data points will be drawn. The color of the point will be according to
its value.

The point information objects defined for the data points of a given data set are managed by
a dedicated object called a point information collection object. A point information object
can be shared among different data points and a point information collection object can be
shared among several data sets.

A point information collection object is represented by an instance of a subclass of the
IlvPointInfoCollection class. Three subclasses are predefined:

◆ IlvPointInfoMap

This class stores in arrays both the point information objects defined for the data points
of a given data set and the indexes of the data points with which the point information
objects are associated. The stored indexes are used to retrieve the point information
object associated with a given data point.

◆ IlvPointInfoArray

This class stores in an array the point information objects defined for the data points of a
given data set. The point information object associated with the data point at a given
index in a data set is stored at the same index in the IlvPointInfoArray object that is
associated with the data set.

◆ IlvPointInfoSingleton

Note: It is better to use an IlvPointInfoMap object rather than an
IlvPointInfoArray object if you do not want to associate a point information object
with each data point of a given data set.
185 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Customizing Data Display

usrcharts.book Page 186 Thursday, July 23, 2009 5:01 PM
This class stores a unique point information object. It allows to associate the same point
information object to all the data points of a data set.

A point information object can be associated with a data point at the level of a data set or at
the level of a displayer. If the point information object is associated at the level of the data
set, the point information object will be taken into account for each graphical representation
of the data set that is performed in a chart. If the point information object is associated at the
level of a displayer, it will be taken into account only in the graphical representation
displayed by the displayer.

Example

We can use the Temperatures Chart that was introduced in General Architecture of the
Charts Library on page 99 as an example. Two sets of data representing the morning and
afternoon mean temperatures are represented in different ways on the two charts.
Figure 8.17 shows these two charts.

Notes:
1. Before adding a point information object to a data point at the level of a data set, you

should set a point information collection object on the data set.
2. Before adding a point information object to a data point at the level of a displayer, you

should set a point information collection object on the displayer.
3. If two point information objects are associated with a given data point (one at the level

of the data set and one at the level of a displayer displaying the data set), only the point
information object associated at the level of the displayer will be displayed by this
displayer.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 186

usrcharts.book Page 187 Thursday, July 23, 2009 5:01 PM
Figure 8.17

Figure 8.17 Two Versions of the Temperatures Chart

We want to customize how the data point corresponding to the highest afternoon
temperature is displayed. We are going to add an annotation to the data point and display the
data point with a specific palette. To do this, we need to add a point information object of the
IlvChartDataGraphicInfo class to this data point.

The complete source code for this example can be found in the pointinfo.cpp file located
in the $ILVHOME/samples/charts/userman/src directory. The following sections
describe how to create and add the point information object to the data point.

Creating the Point Information Object
We want to display the text “Highest Afternoon Temperature” next to the data point
corresponding to the highest afternoon temperature. We also want to display this data point
with a specific palette. To do this, we create a point information object that stores an
IlvLabel object and the specific palette for displaying the data point.

The defined label will be drawn with its top right corner located at the offset (0, 0) from
the data point with which the point information object will be associated.

IlvChartDataPointInfo* pointInfo =
 new IlvChartDataGraphicInfo(new IlvLabel(display, 0, 0,
 "Highest afternoon temperature"),
 0, 0, IlvTopRight,
 display->getPalette(display->getColor("green"),
 display-
>getColor("white")));
187 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Customizing Data Display

usrcharts.book Page 188 Thursday, July 23, 2009 5:01 PM
Adding the Point Information Object to the Data Point
Next, we need to associate the point information object with the data point corresponding to
the highest afternoon temperature. This data point is at the index 6 in the afternoon mean
temperatures data set. We can add the point information object either at the level of the data
set or at the level of the displayer.

◆ To add the point information object at the level of the data set, use the following code:

where dataSets[1] corresponds to the afternoon mean temperatures data set.

The last line of code is equivalent to:

◆ To add the point information object at the level of a displayer displaying the data set, use
the following code:

where chart1->getDisplayer(2) corresponds to the high-low bar displayer
representing the afternoon mean temperatures data set in the first chart.

The two charts obtained once the point information has been added from these examples are
shown in the following figures. Figure 8.18 shows the charts obtained when the point
information object is added at the level of the data set. Figure 8.19 shows the charts obtained
when the point information object is added at the level of the displayer.

// Set the point information collection object.
dataSets[1]->setPointInfoCollection(new IlvPointInfoMap());

// Set the point information object.
dataSets[1]->setPointInfo(6, pointInfo);

dataSets[1]->getPointInfoCollection()->setPointInfo(6, pointInfo);

// Set the point information collection object.
chart1->getDisplayer(2)->setPointInfoCollection(dataSets[1],
 new IlvPointInfoMap());

// Set the point information object.
chart1->getDisplayer(2)->getPointInfoCollection(dataSets[1])
 ->setPointInfo(6, pointInfo);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 188

usrcharts.book Page 189 Thursday, July 23, 2009 5:01 PM
Figure 8.18

Figure 8.18 Point Information Object Associated with a Data Point at the Level of a Data Set
189 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Customizing Data Display

usrcharts.book Page 190 Thursday, July 23, 2009 5:01 PM
Figure 8.19

Figure 8.19 Point Information Object Associated with a Data Point at the Level of a Displayer

You can see that when the point information object is associated at the level of the data set
(Figure 8.18), the stored label is displayed for all the graphical representations of the data
set. Similarly, the stored specific palette is used to display the data point by all the displayers
displaying the data set.

On the other hand, when the point information object is associated at the level of a displayer
(Figure 8.19), the stored label is displayed only by the displayer. Similarly, the stored
specific palette is used to display the data point only by the displayer.

Defining How the Palettes are Applied for the Data Display

By default, the palette used by a displayer to display a data point of a data set is determined
in the following order:

◆ The palette stored in the point information object associated with the data point at the
level of the displayer is used if such a palette is defined.

◆ Otherwise, the palette stored in the point information object associated with the data
point at the level of the data set is used if such a palette is defined.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 190

usrcharts.book Page 191 Thursday, July 23, 2009 5:01 PM
◆ Otherwise, the palette defined for the displayer is used if such a palette is defined.

◆ Otherwise, the palette defined for the chart using the displayer is used if such a palette is
defined.

◆ Otherwise, the default palette of the display is used.

If a graphical representation by data point for the considered displayer exists, the palette is
directly used to draw the graphical representation associated with the data point. This is the
case for the displayers displaying markers, bars, and so on. The Boolean value indicating
whether there is a graphical representation by data point for a given displayer is returned by
the method
IlvAbstractChartDisplayer::graphicalRepresentationByDataPoint.

For some displayers (such as polyline displayers, step displayers, and so on) no graphical
representation by data point exists. These displayers display a continuous graphical
representation linking several data points. For such displayers, the palette is applied by
default after the data point. However, it is possible to apply the palette before the data point
by calling the method IlvChartGraphic::setApplyPaletteAfterPoint of the chart
with IlvFalse as a parameter.

Using the Predefined IlvChartGradientPointInfo Class

You can get the data points to be displayed in color gradations which are computed
according to the point value. To do this, you need to build an
IlvChartGradientPointInfo with an IlArray of colors and an array of double values.
There must be the same number of colors and values. The first value should be the minimum
data range and the last one should be the maximum data range.

Example:

IlDouble values[] = {0, 50, 100};
IlArray colors;
IlvColor *col = display->getColor(“blue”);
colors.add(col);
col = display->getColor(“white”);
colors.add(col);
col = display->getColor(“red”);
colors.add(col);

gradientInfo = new IlvChartGradientPointInfo(values, colors);

The color of each data point which is between 0 and 100 will be computed according to the
passed colors. 0 is pure blue, 50 is pure white, 100 is pure red. intermediate values will be
displayed in a computed gradient of these colors.

Projecting Out-of-Bounds Data Points

By default, the data points that should appear outside of the data display area (if such data
points exist) are not drawn. The graphical representations of such data points are simply
191 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Customizing Data Display

usrcharts.book Page 192 Thursday, July 23, 2009 5:01 PM
clipped by the data display area. However, for the displayers that are instances of the
IlvPolylineChartDisplayer class or one of its subclasses, it is possible to display the
out-of-bounds data points projected on the limits of the data display area. For details, see
Polyline Displayer on page 156.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 192

usrcharts.book Page 193 Thursday, July 23, 2009 5:01 PM
193 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 194 Thursday, July 23, 2009 5:01 PM
9

Scales Display

This chapter provides detailed information on displaying the scales of charts. You can find
information on the following topics:

◆ Drawing the Scales of a Chart

◆ Using Single Scale Displayers

◆ Using Scale Steps Updaters to Compute Scales Graduations

◆ Adding a Scale Displayer in a Chart

◆ Advanced Features for Customizing Scales

Drawing the Scales of a Chart

A scale is displayed within a chart by a dedicated object called a scale displayer.

The base class used to represent a scale displayer is the IlvAbstractScaleDisplayer
class.

A subclass is provided called IlvSingleScaleDisplayer. This class represents a single
coordinate on an axis.

The single scales representing several ordinate coordinates can be stacked in order to
represent them on the same axis.
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 194

usrcharts.book Page 195 Thursday, July 23, 2009 5:01 PM
Figure 9.1 shows the hierarchy of all the scale displayers defined in the Charts Library.

Figure 9.1

Figure 9.1 Hierarchy of Scale Displayers in the Charts Library

Setting General Properties

The following properties are defined for all the scale displayers:

Property Methods Default Value

Scale Positioning Properties

Fixed to a Position

Fixed to a Data Value

isFixedToPosition
getRelativePosition
setRelativePosition

getCrossingValue
setCrossingValue

IlvTrue
IlvMinDataPosition

0

Scale Display Properties

Visibility isVisible
setVisible

IlvTrue

Drawing Order Relative
to the Drawing of the
Graphical Representations
of Data

getDrawOrder
setDrawOrder

IlvDrawAbove

Must Always Appear in
the Data Display Area

isAlwaysVisible
setAlwaysVisible

IlvFalse

IlvAbstractScaleDisplayer

IlvSingleScaleDisplayer

IlvRectangularScaleDisplayer

IlvCircularScaleDisplayer

0 1 2

0

2
1

195 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Drawing the Scales of a Chart

usrcharts.book Page 196 Thursday, July 23, 2009 5:01 PM
Defining the Position of a Scale

A scale can be fixed either to a position or to a data value:

◆ Fixing a scale to a position

This can be done by means of the
IlvAbstractScaleDisplayer::setRelativePosition method. The position at
which a scale is fixed is defined by an offset from the position at which the minimum or
the maximum data value is displayed.

For example, the following code line fixes the position of the scale to an offset of -10
pixels from the position at which the minimum data value is displayed:

The following code line fixes the position of the scale to the position at which the
maximum data value is displayed:

◆ Fixing a scale to a data value of another scale

This can be done by means of the
IlvAbstractScaleDisplayer::setCrossingValue method. You have to specify
the scale and the data value of this scale to which you want to fix the position of the
current scale. If the current scale is the abscissa scale, the other scale must be an ordinate
scale. If the current scale is an ordinate scale, the other scale must be the abscissa scale.

The following code line fixes the position of the scale displayed by the scale displayer
scaleDisplayer to the data value 2.0 on the scale displayed by the scale displayer
otherScaleDisplayer.

If a scale is fixed to a data value that does not belong to the range of visible data, the
scale will not appear on the screen. However, if the property “Must Always Appear in

Miscellaneous

Name getName
setName

0

Flags getFlags
setFlags

0

scaleDisplayer->setRelativePosition(IlvMinDataPosition, -10);

scaleDisplayer->setRelativePosition(IlvMaxDataPosition);

scaleDisplayer->setCrossingValue(2.0, otherScaleDisplayer);

Property Methods Default Value
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 196

usrcharts.book Page 197 Thursday, July 23, 2009 5:01 PM
the Data Display Area” is set to IlvTrue, the range of visible data will be automatically
modified so that the scale can appear on the screen.

Defining the Drawing Order Relative to the Drawing of the Graphical Repre-
sentations of Data

A scale can be displayed on top of (IlvDrawAbove) or underneath (IlvDrawBelow) the
graphical representations of data in a chart. By default, a scale will be displayed on top of
the graphical representations. However, the drawing order can be changed for a given scale
by means of the IlvAbstractScaleDisplayer::setDrawOrder method.

Using Single Scale Displayers

The base class used to represent a single scale is the IlvSingleScaleDisplayer class.

A single scale is composed of:

◆ An axis, which can have an optional arrow and an optional label at the end

◆ Major ticks, the marks drawn on the axis at each step of the scale

◆ Step labels drawn next to the major ticks. These labels indicate the values of the
coordinate represented by the scale.

◆ Minor ticks, the marks drawn on the axis at each substep of the scale

Figure 9.2 shows the different elements of a single scale.

Note: By default, a scale is fixed to the position at which the minimum data value is
displayed.
197 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Using Single Scale Displayers

usrcharts.book Page 198 Thursday, July 23, 2009 5:01 PM
Figure 9.2

Figure 9.2 Elements of a Single Scale

Setting General Properties

The following properties are defined for all the single scale displayers. The methods
followed by an asterisk (*) are defined as pure virtual at the level of the
IlvAbstractScaleDisplayer class and are redefined at the level of the
IlvSingleScaleDisplayer class.

Table 9.1

Property Methods Default Value

Step and Label Definition Properties

Scale Steps Updater getStepsUpdater IlvAutoScaleStepsUpdater

Step and Substep Numbers getStepsCount
getSubStepsCount
getTotalSubStepsCount

0
0
0

Step and Substep Units getStepUnit
getSubStepUnit

0
0

Definition of Text Labels by
Hand

getStepLabelsCount
getStepLabel
getStepLabels
setStepLabel *
setStepLabels *

0
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 198

usrcharts.book Page 199 Thursday, July 23, 2009 5:01 PM
Step Labels Computation:
 By Applying a Format

By Applying a Callback
Converting Data Values
into Step Labels

getStepLabelFormat
setStepLabelFormat *

getValueToLabelCB
getValueToLabelCBData
setValueToLabelCB *

IlvDefaultStepLabelFormat

0
0

Ticks and Labels Display Properties

Layout Properties:
Position of Ticks

Position of Labels

Offset Between Ticks
 and Step Labels

getTickLayout
setTickLayout *

getLabelLayout
setLabelLayout *

getOffset
setOffset *

TickOutside

LabelOutside

IlvDefaultScaleOffset

Size Properties:
Major Ticks

Minor Ticks

Step Labels

getMajorTickSize
setMajorTickSize *

getMinorTickSize
setMinorTickSize *

getStepLabelSizes

IlvDefaultScaleMajorTickSize

IlvDefaultScaleMinorTickSize

Step Label Properties:
Angle

Palette

Drawn at Axes Crossings

Drawn When Overlapping

getStepLabelAngle
setStepLabelAngle *

getStepLabelsPalette
setStepLabelsPalette *

isDrawingLabelOnCrossings
drawLabelOnCrossings *

isDrawingOverlappingLabels
drawOverlappingLabels *

0

0

IlvFalse

IlvTrue

Table 9.1

Property Methods Default Value
199 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Using Single Scale Displayers

usrcharts.book Page 200 Thursday, July 23, 2009 5:01 PM
Defining the Steps and Substeps

The computation of the steps and substeps for a given scale is performed by a dedicated
object called scale steps updater that is set on the scale. This object is returned by the
IlvSingleScaleDisplayer::getStepsUpdater method.

Visibility:
Major Ticks

Minor Ticks

Step Labels

areMajorTicksVisible
setMajorTicksVisible

areMinorTicksVisible
setMinorTicksVisible

areStepLabelsVisible
setStepLabelsVisible

IlvTrue

IlvTrue

IlvTrue

Axis Display Properties

Arrow at the End:
Arrow Drawn

Arrow Width

Arrow Length

isAxisOriented
setAxisOriented *

getArrowWidth
setArrowWidth *

getArrowLength
setArrowLength *

IlvFalse

IlvDefaultScaleArrowWidth

IlvDefaultScaleArrowLength

Axis Label:
Label

Offset Between
Axis and Label

Size

getAxisLabel
setAxisLabel

getAxisLabelOffset
setAxisLabelOffset *

getAxisLabelSizes

0

2*IlvDefaultScaleOffset

Palettes:
Axis

Axis Label

getAxisPalette
setAxisPalette *

getAxisLabelPalette
setAxisLabelPalette *

0

0

Visibility isAxisVisible
setAxisVisible

IlvTrue

Table 9.1

Property Methods Default Value
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 200

usrcharts.book Page 201 Thursday, July 23, 2009 5:01 PM
For more details on the scale steps updaters, see the section Using Scale Steps Updaters to
Compute Scales Graduations.

Defining the Step Labels to be Displayed

By default, the step labels that are displayed are simply numerical labels corresponding to
the data values represented by the scale. These labels are formatted by applying the format
returned by the IlvSingleScaleDisplayer::getStepLabelFormat method.

However, you can change the step labels to be displayed by default by doing one of the
following:

◆ By specifying text labels by hand

This can be done by means of the IlvAbstractScaleDisplayer::setStepLabels
method. The labels that will be displayed are then the text labels set by hand..

◆ By defining a callback indicating how to convert a given data value into a step label

This callback must be of the IlvValueToLabelCB type:

typedef char* (* IlvValueToLabelCB)(IlDouble, IlAny);

This kind of callback can be set by means of the
IlvAbstractScaleDisplayer::setValueToLabelCB method. The labels that will
be displayed are those returned by the callback that is set.

Example: Callback Converting Data Values into Step Labels
The following example shows how to define a callback that displays data values expressed
in seconds in the form “hours-minutes-seconds.”

Note: In this case, the number of steps will be equal to the number of text labels that are
set by hand.
201 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Using Single Scale Displayers

usrcharts.book Page 202 Thursday, July 23, 2009 5:01 PM
1. To define the callback, use the following code:

2. To set the callback on the scale displayer, use the following code:

Defining the Position of the Ticks Relative to the Axis

The position of the ticks relative to the axis is defined by the enumeration type
TickLayout. The following positions are possible:

◆ TickInside

The ticks extend inside of the data display area.

◆ TickOutside

The ticks extend outside of the data display area.

◆ TickCross

The ticks cross the axis and extend both inside and outside of the data display area.

By default, the position of the ticks of a scale is set to TickOutside. This setting can be
changed by means of the IlvAbstractScaleDisplayer::setTickLayout method.

char*
hours_minutes_seconds(IlDouble value, IlAny cbData)
{
 char buffer[126];
 IlvUInt modulo;
 IlvUInt hours;
 IlvUInt minutes;
 IlvUInt seconds;
 if (value >= 3600) {
 hours = (IlvUInt)value / 3600;
 modulo = (IlvUInt)value % 3600;
 }
 else {
 modulo = value;
 hours = 0;
 }
 if (modulo >= 60) {
 minutes = modulo / 60;
 seconds = modulo % 60;
 }
 else {
 minutes = 0;
 seconds = modulo;
 }
 sprintf(buffer, "%d-%d-%d", hours, minutes, seconds);
 return IlvCopyString(buffer);
}

scaleDisplayer->setValueToLabelCB(hours_minutes_seconds);
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 202

usrcharts.book Page 203 Thursday, July 23, 2009 5:01 PM
Defining the Position of the Labels Relative to the Axis

The position of the labels relative to the axis is defined by the enumeration type
LabelLayout. The following positions are possible:

◆ LabelInside

The labels extend inside of the data display area.

◆ LabelOutside

The labels extend outside of the data display area.

By default, the position of the labels of a scale are set to LabelOutside. This position
applies both to the step labels and to the axis label. The setting can be changed by means of
the IlvAbstractScaleDisplayer::setLabelLayout method.

Defining Whether the Step Labels are Drawn at Axes Crossings

By default, step labels are not drawn at the axes crossings. However, you can specify that the
step labels should be drawn at the axes crossings for a given scale by calling the
IlvAbstractScaleDisplayer::drawLabelOnCrossings method with IlvTrue as a
parameter.

Defining Whether Overlapping Step Labels are Drawn

By default, step labels are drawn even if they overlap. However, you can specify that
overlapping step labels should not be drawn for a given scale by calling the
IlvAbstractScaleDisplayer::drawOverlappingLabels method with IlvFalse as
a parameter.

Predefined Single Scale Displayers

The following sections describe the single scale displayers of the Charts Library. For each
scale displayer, you will find a table that describes the conditions for using the scale
displayer, including whether the scale displayer can be used whatever the type of the
projection is and for which coordinate the scale displayer can be used.

You can find information on the following single scale displayers:

◆ Rectangular Scale Displayer

◆ Circular Scale Displayer
203 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Using Single Scale Displayers

usrcharts.book Page 204 Thursday, July 23, 2009 5:01 PM
Rectangular Scale Displayer

A rectangular scale is a scale that has a straight line as an axis. A rectangular scale displayer
allows you to display a rectangular scale. This type of scale displayer has the following basic
characteristics:

The way the rectangular scales are positioned depends on the type of the projection. In
Cartesian charts (using a Cartesian projection), they will be displayed orthogonally. In polar
charts (using a polar projection), they will be displayed radially.

Figure 9.3 shows rectangular scales displayed by rectangular scale displayers in a Cartesian
chart (using a Cartesian projection) and in a polar chart (using a polar projection).

Figure 9.3

Figure 9.3 Rectangular Scales Displayed by Rectangular Scale Displayers

Class IlvRectangularScaleDisplayer

Category Single

Can be used with all types of projections Yes

Use Used to display the scale representing:
- The abscissa and ordinate coordinates

in Cartesian charts.
- The ordinate coordinates in polar charts.

Shape

Rectangular
0 1 2
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 204

usrcharts.book Page 205 Thursday, July 23, 2009 5:01 PM
We can use the rectangular scale that represents the ordinate coordinate in both charts as an
example. We can create the scale displayer displaying this scale by using the following code:

The coordinate information object associated with the coordinate that is represented by the
scale is passed as a parameter to the constructor of the scale displayer. The palette that will
be used to display the scale is set to the default palette of the chart.

The Boolean value indicating whether the step labels are drawn at the axes crossings is set to
IlvTrue.

Then a constant scale steps updater is set on the scale, since we want steps and substeps with
constant spacing, and finally we set a step unit of 1 and a substep unit of 0.1 on the scale
steps updater.

Circular Scale Displayer

A circular scale is a scale that has a portion of a circle as an axis. A circular scale displayer
allows you to display a circular scale. This type of scale displayer has the following basic
characteristics:

A circular scale can be used only to represent the abscissa coordinate in polar charts.
Figure 9.4 shows a circular scale displayed by a circular scale displayer in a polar chart
(using a polar projection).

IlvCoordinateInfo* coordInfo =
 new IlvCoordinateInfo(IlvOrdinateCoordinate);
IlvRectangularScaleDisplayer* ordinateScaleDisplayer =
 new IlvRectangularScaleDisplayer(coordInfo,
 chart->getPalette());
ordinateScaleDisplayer->drawLabelOnCrossings(IlvTrue);
IlvConstantScaleStepsUpdater* updater =
 new IlvConstantScaleStepsUpdater(ordinateScaleDisplayer);
delete IlvScaleStepsUpdater::Set(ordinateScaleDisplayer, updater);
updater->fixStepsCount(1, 0.1);

Class IlvCircularScaleDisplayer

Category Single

Can be used with all types of projections No (Use only with a polar projection)

Use Used to display the scale representing:
- The abscissa coordinate in polar charts

Shape

Circular

0

1
2

205 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Using Scale Steps Updaters to Compute Scales Graduations

usrcharts.book Page 206 Thursday, July 23, 2009 5:01 PM
Figure 9.4

Figure 9.4 Circular Scale Displayed by a Circular Scale Displayer

We can use the circular scale representing the abscissa coordinate in the above chart as an
example. We can create the scale displayer displaying this scale by using the following code:

The coordinate information object associated with the coordinate that is represented by the
scale is passed as a parameter to the constructor of the scale displayer. The palette that will
be used to display the scale is set to the default palette of the chart.

The size of the steps is set to 12 and the size of the substeps is set to 6. The format of the
step labels is set to "%.0f". This means that the step labels will be drawn in the form of
integer values.

Then a constant scale steps updater is set on the scale, since we want steps and substeps with
constant spacing, and finally we set a step unit of 45 and a substep unit of 5 on the scale
steps updater.

Using Scale Steps Updaters to Compute Scales Graduations

The computation of the steps and substeps is performed by a dedicated object called scale
steps updater that is set on the scale.

IlvCoordinateInfo* coordInfo =
 new IlvCoordinateInfo(IlvAbscissaCoordinate);
IlvCircularScaleDisplayer* abscissaScaleDisplayer =
 new IlvCircularScaleDisplayer(coordInfo,
 chart->getPalette());
abscissaScaleDisplayer->setMajorTickSize(12);
abscissaScaleDisplayer->setMinorTickSize(6);
abscissaScaleDisplayer->setStepLabelFormat("%.0f");
IlvConstantScaleStepsUpdater* updater =
 new IlvConstantScaleStepsUpdater(abscissaScaleDisplayer);
delete IlvScaleStepsUpdater::Set(abscissaScaleDisplayer, updater);
updater->fixStepUnit(45.,5.);
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 206

usrcharts.book Page 207 Thursday, July 23, 2009 5:01 PM
The base class used to represent a scale steps updater is the IlvScaleStepsUpdater class.
Several subclasses are provided in the Charts Library:

◆ IlvConstantScaleStepsUpdater

This class allows you to define graduations with constant spacing.

The steps and the substeps can be defined by:

● Fixing the number of steps and substeps. This can be done by means of the
IlvConstantScaleStepsUpdater::fixStepsCount method.

● Fixing the step and substep units. This can be done by means of the
IlvConstantScaleStepsUpdater::fixStepsCount method.

In the case of a fixed number of steps and substeps, the first major tick of the scale is
drawn for the minimum value of the data interval represented by the scale and the last
major tick is drawn for the maximum value of the dat interval represented by the scale.
However, the data values associated with the first and the last steps can also be set by
hand by means of the IlvConstantScaleStepsUpdater::setFirstStepData and
the IlvConstantScaleStepsUpdater::setLastStepData methods respectively.

◆ IlvAutoScaleStepsUpdater

This class is a subclass of IlvConstantScaleStepsUpdater which enables
automatic computation of the step and substeps.

This automatic computation can be customized in several ways:

● The precision can be automatic or it can be set by hand by means of the
IlvAutoScaleStepsUpdater::setPrecision method.

● The precision base is set to 10 by default. It can be modified by means of the
IlvAutoScaleStepsUpdater::setPrecision method.

● The step label format can be automatic or not.

● The substeps computing can be automatic or the number of substeps between two
steps can be set by hand by means of the
IlvAutoScaleStepsUpdater::setAutoSubSteps method.

● The steps spacing is set to 10 by default. It can be modified by means of the
IlvAutoScaleStepsUpdater::setStepsSpacing method.

◆ IlvLogScaleStepsUpdater

This class allows you to compute logarithmic graduations.

◆ IlvZoomScaleStepsUpdater

Warning: This class can be used to compute the steps for a given scale only when a
logarithmic transformation is set on the coordinate represented by the scale.
207 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Adding a Scale Displayer in a Chart

usrcharts.book Page 208 Thursday, July 23, 2009 5:01 PM
This class allows you to display graduations that are zoomed locally on part of the scale,
while the steps and substeps are displayed normally on the rest of the scale.

You can look at the lens.cpp file located in the $ILVHOME/samples/charts/lens/
src directory for an example of how to use both the IlvZoomScaleStepsUpdater
and IlvZoomCoordinateTransformer classes.

◆ IlvTimeScaleStepsUpdater

This class allows you to compute graduations based on time units (seconds, minutes,
hour, calendar dates, and so on).

You can either manually set which time unit to use (with setTimeUnit(), passing one
of the predefined units in charts/date.h), or, like with
IlvAutoScaleStepsUpdater, you can let it choose the "best" unit automatically,
which is the default behavior. You can change this behavior with
IlvTimeScaleStepsUpdater::setAutoUnit().

Look at the stock.cpp file located in $ILVHOME/samples/chart/interactors/
src directory for an example of how to use the IlvTimeScaleStepsUpdater.

Adding a Scale Displayer in a Chart

A chart uses one abscissa scale and as many ordinate scales as you want. The type of scales
that can be used for a given chart depends on the type of the projection used in the chart.

The following table shows the scales that can be used with a Cartesian chart:

Warning: This class can be used to compute the steps for a given scale only if a
transformer of the IlvZoomCoordinateTransformer type is also set on the
coordinate represented by the scale.

Chart type Cartesian

Projection used Cartesian
-> IlvCartesianProjector

Scale Displayers:

Abscissa Coordinate

Ordinate Coordinate(s)

Rectangular
-> IlvRectangularScaleDisplayer

Rectangular
-> IlvRectangularScaleDisplayer
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 208

usrcharts.book Page 209 Thursday, July 23, 2009 5:01 PM
The following table shows the scales that can be used with a polar chart:

If the chart that you have created is an instance of the IlvChartGraphic class, no scale
displayers are created by default.

If the chart that you have created is an instance of a subclass of the IlvChartGraphic class
(that is, IlvCartesianChart or IlvPolarChart), two scale displayers are already
created by default (one for the abscissa coordinate and one for the main ordinate coordinate):

◆ Two IlvRectangularScaleDisplayer objects are created by default for an
IlvCartesianChart object.

◆ One IlvCircularScaleDisplayer object and one
IlvRectangularScaleDisplayer object are created by default for an
IlvPolarChart object.

The following method is available to set by hand the abscissa scale displayer of a given
chart:

virtual void setAbscissaScale(IlvSingleScaleDisplayer* scale)

Similarly, several methods are available to set by hand the ordinate scale displayer(s) that
you want to be used by a given chart.

◆ To add an ordinate scale displayer, use the following method:

void addOrdinateScale(IlvAbstractScaleDisplayer* scale)

The ordinate scale displayer is added at the end of the list of the ordinate scale displayers
that are already defined, if any.

◆ To insert an ordinate scale at a given index in the list of ordinate scale displayers that are
already defined, use the following method:

virtual void insertOrdinateScale(IlvAbstractScaleDisplayer* scale,
 IlvUInt index = 0)

◆ To set the ordinate scale displayer at a given index in the list of ordinate scale displayers,
use the following method:

Chart type Polar

Projection used Polar
-> IlvPolarProjector

Scale Displayers:

Abscissa Coordinate

Ordinate Coordinate(s)

Circular
-> IlvCircularScaleDisplayer

Rectangular
-> IlvRectangularScaleDisplayer
209 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Advanced Features for Customizing Scales

usrcharts.book Page 210 Thursday, July 23, 2009 5:01 PM
virtual void setOrdinateScale(IlvUInt index,
 IlvAbstractScaleDisplayer* scale)

If a scale displayer is already defined at this index, this scale displayer is replaced by the
new one.

Advanced Features for Customizing Scales

Several of the features for customizing scales cannot be made by simply setting properties
on scales. These advanced features require you to specify certain settings on other objects of
the chart. These advanced features are the following:

◆ Changing the Orientation of the Scales

◆ Defining the Minimum and Maximum Data Values Represented by a Scale

◆ Applying a Transformation to the Data Values Represented by a Scale

Changing the Orientation of the Scales

The scales of a chart can have different orientations depending on the type of the projection
used for the chart. You specify the orientation of the scales by means of the projector object,
which is responsible for the projection of the data points into screen coordinates. This object
is an instance of the IlvCartesianProjector class for Cartesian charts and an instance
of the IlvPolarProjector class for polar charts.

Changing the Scale Orientation for Cartesian Charts

The orientation of the scales for Cartesian charts is defined by a value of the type
IlvCartesianProjector::Orientation that is set on the Cartesian projector. Any
orientation that keeps the abscissa and the ordinate scales orthogonal can be used. Figure 9.5
shows these possible orientations.

Note: When several ordinate scale displayers are defined for a given chart, the
corresponding scales are drawn in the order of the indexes.
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 210

usrcharts.book Page 211 Thursday, July 23, 2009 5:01 PM
Figure 9.5

Figure 9.5 Scale Orientation in a Cartesian Chart

By default, the scales orientation is set to IlvCartesianProjector::IlvXRightYTop.
This means that the abscissa scale is oriented towards the right of the screen and the ordinate
211 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Advanced Features for Customizing Scales

usrcharts.book Page 212 Thursday, July 23, 2009 5:01 PM
scales are oriented towards the top. To change the scales orientation, just call the
IlvCartesianProjector::setOrientation method of the Cartesian projector used in
your Cartesian chart. For example, to change the scales orientation so that the abscissa scale
is oriented towards the right of the screen and the ordinate scale is oriented towards the
bottom, you can use the following code:

Changing the Scale Orientation for Polar Charts

The orientation of the abscissa scale for polar charts is determined by a flag at the level of
the polar projector. This flag indicates whether the polar system of coordinates is oriented
clockwise. The value of this flag is returned by the
IlvPolarProjector::getOrientedClockwise method. By default, this flag is set to
IlvFalse. This means that the abscissa scale will be oriented counterclockwise. You can
change the orientation by means of the IlvPolarProjector::setOrientedClockwise
method of the polar projector used in your polar chart. For example, to have the abscissa
scale oriented clockwise, use the following code:

The orientation of the ordinate scale(s) for polar charts is not determined at the level of the
projector. The orientation simply depends on the position of the ordinate scale(s) since they
are displayed radially. For more information on how to position a scale, see Defining the
Position of a Scale on page 196.

Defining the Minimum and Maximum Data Values Represented by a Scale

The minimum and maximum data values that are represented by a scale are stored in the
coordinate information object associated with the coordinate represented by the scale.

This coordinate information object can be obtained by means of the
IlvAbstractScaleDisplayer::getCoordinateInfo method of the scale displayer. It
can also be accessed directly at the level of the chart without passing through the scale
displayer. You can use the following methods to access the object at the level of the chart:

IlvChartGraphic::getAbscissaInfo for the abscissa coordinate

IlvChartGraphic::getOrdinateInfo for the ordinate coordinate(s)

By default, the minimum and maximum data values represented by a scale are computed
automatically so that all the data points that are displayed by considering this scale can
appear within the interval defined by the minimum and maximum data values. However, the
minimum and maximum data values that are represented by a scale can be defined by using
one of the following methods on the coordinate information object associated with the scale:

IlvCartesianProjector* projector
 = (IlvCartesianProjector*)(chart->getProjector());
projector->setOrientation(IlvCartesianProjector::IlvXRightYBottom);

IlvPolarProjector* projector = (IlvPolarProjector*)(chart->getProjector());
projector->setOrientedClockwise(IlvTrue);
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 212

usrcharts.book Page 213 Thursday, July 23, 2009 5:01 PM
IlvCoordinateInfo::setUserDataMin

IlvCoordinateInfo::setUserDataMax

IlvCoordinateInfo::setUserDataRange

The minimum and maximum data values that are actually represented by a given scale,
whether they are computed automatically or set by hand, are obtained by means of the
following methods on the coordinate information object associated with the scale:

IlvCoordinateInfo::getDataMin

IlvCoordinateInfo::getDataMax

IlvCoordinateInfo::getDataRange

For example, the following code lines set 1 and 4 as the minimum and maximum data values
represented by the main ordinate scale of a chart. This means that the data points that have to
be displayed by considering this scale and that are outside of the interval defined by these
minimum and maximum data values will not be displayed.

Applying a Transformation to the Data Values Represented by a Scale

Different types of transformations can be applied to the data values that are represented by a
given scale. These transformations are defined by means of transformer objects that are all
instances of subclasses of the IlvChartCoordinateTransformer class. Several
subclasses are provided in the Charts Library:

◆ IlvChartCoordinateTransformer

This class is the base class permitting you to define transformations that consist of an
elementary transformation, possibly followed by a logarithmic transformation.

The following subclasses are defined:

● IlvSimpleChartTransformer has an identity transformation as the elementary
transformation. This means that no transformation will be applied before the
logarithmic transformation (if a logarithmic transformation is defined).

● IlvAffineChartTransformer has an affine transformation as the elementary
transformation. This means that an affine transformation will be applied before the
logarithmic transformation (if a logarithmic transformation is defined).

The logarithmic transformation that is applied to the data values depends on the defined
logarithmic base. If the logarithmic base is equal to 0 or 1, no logarithmic transformation
is applied. Otherwise, the following transformation is applied:

c_transformed = log(c) / log(base)

IlvAbstractScaleDisplayer* ordinateScale = chart->getOrdinateScale();
IlvChartCoordinateInfo* ordinateInfo = ordinateScale->getCoordinateInfo();
ordinateInfo->setUserDataRange(IlvCoordInterval(1, 4));
213 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Advanced Features for Customizing Scales

usrcharts.book Page 214 Thursday, July 23, 2009 5:01 PM
where c is the initial coordinate, base is the logarithmic base, log is the natural logarithm,
and c_transformed is the coordinate transformed using the logarithmic transformation.

The transformer object defining the transformation to be applied to a given coordinate is
stored in the coordinate information object associated with the coordinate.

The following code lines show how to apply a logarithmic transformation to the data
values represented along the abscissa of a chart.

The base of the logarithmic transformation that will be applied is set to 10.

To set a logarithmic scale steps updater on the abscissa scale use the following code:

◆ IlvZoomCoordinateTransformer

This class allows you to define a transformation that is applied locally on a part of the
data to display that data as zoomed.

You can look at the lens.cpp file located in the $ILVHOME/samples/charts/lens/
src directory for an example of how to use the IlvZoomCoordinateTransformer
and IlvZoomScaleStepsUpdater classes.

IlvSingleScaleDisplayer* abscissaScale = chart->getAbscissaScale();
IlvChartCoordinateInfo* abscissaInfo = abscissaScale->getCoordinateInfo();
abscissaInfo->setTransformer(new IlvSimpleChartTransformer(10));

Warning: If you want the abscissa scale to be graduated with logarithmic graduations,
you must also set a logarithmic scale steps updater on the scale.

IlvLogScaleStepsUpdater* logUpdater =
 new IlvLogScaleStepsUpdater(abscissaScale);
delete IlvScaleStepsUpdater::Set(abscissaScale, logUpdater);

Warning: If such a transformer is set on a given coordinate a zoom scale steps updater
must also be set on the scale representing this coordinate in order to compute the
corresponding graduations for the scale.
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 214

usrcharts.book Page 215 Thursday, July 23, 2009 5:01 PM
215 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

C H A P T E R

usrcharts.book Page 216 Thursday, July 23, 2009 5:01 PM
10

Decorations Display

The Charts Library provides the capability to add decorations to a chart that will improve its
appearance or help in understanding the data. This chapter provides information on
displaying these decorations in a chart. You will find information on the following topics:

◆ Displaying a Legend

◆ Displaying a Grid

◆ Displaying a Cursor

Displaying a Legend

The base class used to define a legend to be added to a given chart is the IlvChartLegend
class. This class inherits from the IlvShadowRectangle class. Thus, the chart legend
object is a graphic object just like the chart object and is positioned independently of the
chart object.

Figure 10.1 shows an example of a legend that has been added to a chart. This legend is
composed of three legend items and is surrounded by a filled rectangle with a shadow.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 216

usrcharts.book Page 217 Thursday, July 23, 2009 5:01 PM
Figure 10.1

Figure 10.1 A Legend Added to a Chart

The legend items that make up the legend are represented by instances of the
IlvChartLegendItem class. Each legend item is composed of two elements (see
Figure 10.2):

◆ The graphic part illustrates the graphical representation of data with which the legend
item is associated. For example, for data displayed by markers, the graphic part will
show the marker with the same color and shape.

◆ The text part displays a description or a label for the represented data.

Figure 10.2

Figure 10.2 Elements of a Legend Item
217 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Displaying a Legend

usrcharts.book Page 218 Thursday, July 23, 2009 5:01 PM
Setting General Properties

The following table shows the properties defined for a chart legend object.

By default, a legend is drawn surrounded by a filled rectangle with a shadow. This means
that the flag indicating whether the legend is surrounded by a frame is set to IlvTrue and
the flag indicating whether the legend is drawn without a background and a shadow is set to
IlvFalse.

When a legend object is created, it does not contain any legend items. Since the property
“Automatically Recomputed” is set to IlvTrue by default, the legend items corresponding
to the displayers defined in a chart will be computed automatically and added to the legend
when the legend is set on the chart. Also, the legend items are rearranged when the legend is

Property Methods Default Value

General Properties

Surrounded by a Frame isShowingFrame
showFrame

IlvTrue

Drawn without a
Background and a Shadow

isTransparent
setTransparent

IlvFalse

Automatically Recomputed isAutoRecomputing
setAutoRecompute

IlvTrue

Automatically Fit to Contents isAutoFitting
setAutoFit

IlvTrue

Properties Related to the Legend Items

Palette Used to Display the
Legend Items

getItemPalette
setItemPalette

0

Space Between the Area
where the Graphic Part is
Displayed and the Label of a
Legend Item

getLabelSpacing
setLabelSpacing

4

Space between the
Legend Items

getItemSpacing
setItemSpacing

4

Width of the Area where the
Graphic Part of the Legend
Items is Displayed

getBoxWidth
setBoxWidth

20

Height of the Area where the
Graphic Part of the Legend
Items is Displayed

getBoxHeight
setBoxHeight

10
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 218

usrcharts.book Page 219 Thursday, July 23, 2009 5:01 PM
resized, when the inner spacing of the legend is modified, and so on. New legend items are
also added automatically and arranged when new displayers are added to the chart.

By default, the legend is resized automatically to fit the legend items that it contains because
the property “Automatically Fit to Contents” is set to IlvTrue. If you do not want the size
of the legend to be systematically recomputed from the legend items, you have to set the
property “Automatically Fit to Contents” to IlvFalse.

Adding a Legend to a Chart

A chart legend object is added to a chart by means of the IlvChartGraphic::setLegend
method. When the legend is set on the chart, the legend items corresponding to the
displayers that are defined in the chart are computed automatically and added to the legend
(if the property “Automatically Recomputed” has its default value IlvTrue) and the size of
the legend is recomputed to fit these legend items (if the property “Automatically Fit to
Contents” has its default value IlvTrue).

For an example of how to create and add a legend to a chart, see Adding a Legend on
page 108 in the chapter “Chart Basics.”

Displaying a Grid

A grid is a graphical indicator of data values. A grid is attached to a scale and is composed of
the following:

◆ Major lines drawn at the positions of the major ticks of the scale

◆ Minor lines drawn at the positions of the minor ticks of the scale

A grid is displayed within a chart by a dedicated object called a grid displayer.

The base class used to represent a grid displayer is the IlvAbstractGridDisplayer
class.

Figure 10.3 shows all the grid displayers defined in the Charts Library.

Note: The chart legend object is a graphic object just like the chart object and is
positioned independently of the chart object. Therefore, when you add the chart object to
the container or manager that contains it, do not forget to add the chart legend object to
this container or manager as well. Otherwise, the chart legend object will not appear on
the screen.
219 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Displaying a Grid

usrcharts.book Page 220 Thursday, July 23, 2009 5:01 PM
Figure 10.3

Figure 10.3 Hierarchy of Grid Displayers in the Charts Library

Setting General Properties

The following table shows the properties defined for all the grid displayers.

Property Methods Default Value

Visibility isVisible
setVisible

IlvTrue

Drawing Order Relative to
the Drawing of the
Graphical Representations
of Data

getDrawOrder
setDrawOrder

IlvDrawAbove

IlvAbstractGridDisplayer

IlvRectangularGridDisplayer

IlvCircularGridDisplayer

0 1 2

0

2

1

0 1 2

IlvRadialGridDisplayer
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 220

usrcharts.book Page 221 Thursday, July 23, 2009 5:01 PM
A grid (like a scale) can be displayed on top of (IlvDrawAbove) or underneath
(IlvDrawBelow) the graphical representations of data in a chart. By default, a grid will be
displayed on top of the graphical representations. However, the drawing order can be
changed for a given grid by means of the
IlvAbstractGridDisplayer::setDrawOrder method.

If no palettes are defined to draw the major and/or the minor grid lines, the palette that will
be used by default is the palette defined for the axis of the scale to which the grid is attached.

By default, a grid is drawn with only the major lines. To specify that the minor lines should
also be drawn, you have to call the method
IlvAbstractGridDisplayer::drawMinorLines with IlvTrue as a parameter.

Adding a Grid Displayer to a Scale

Since a grid is attached to a scale, the type of the grid used for a given scale depends on the
type of the scale. The type of the scales that can be used for a given chart depends on the
type of the projection used in the chart.

The following table lists the type of scale displayers and grid displayers that can be used for
a Cartesian chart, which uses a Cartesian projection.

Palette Used to Draw the
Major Lines

getMajorPalette
setMajorPalette

0

Palette Used to Draw the
Minor Lines

getMinorPalette
setMinorPalette

0

Minor Lines Drawn isDrawingMinorLines
drawMinorLines

IlvFalse

Chart type Cartesian

Projection used Cartesian
-> IlvCartesianProjector

Property Methods Default Value
221 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Displaying a Grid

usrcharts.book Page 222 Thursday, July 23, 2009 5:01 PM
The following table lists the type of scale displayers and grid displayers that can be used for
a polar chart, which uses a polar projection.

Figure 10.4 shows examples of grids that are set on the scales of two charts. Grids are set on
scales in a Cartesian chart (using a Cartesian projection) and in a polar chart (using a polar
projection).

Scale Displayers

Abscissa Coordinate

Ordinate Coordinate(s)

Rectangular
-> IlvRectangularScaleDisplayer

Rectangular
-> IlvRectangularScaleDisplayer

Grid Displayers

Abscissa Coordinate

Ordinate Coordinate(s)

Rectangular
-> IlvRectangularGridDisplayer

Rectangular
-> IlvRectangularGridDisplayer

Chart type Polar

Projection used Polar
-> IlvPolarProjector

Scale Displayers

Abscissa Coordinate

Ordinate Coordinate(s)

Circular
-> IlvCircularScaleDisplayer

Rectangular
-> IlvRectangularScaleDisplayer

Grid Displayer(s)

Abscissa Coordinate

Ordinate Coordinate(s)

Radial
-> IlvRadialGridDisplayer

Circular
-> IlvCircularGridDisplayer
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 222

usrcharts.book Page 223 Thursday, July 23, 2009 5:01 PM
Figure 10.4

Figure 10.4 Grids in a Cartesian Chart and in a Polar Chart

To create and set a grid attached to a given scale, perform the following steps:

1. Create the grid displayer to display the grid that will be attached to the scale.

Do one of the following:

● Look at the tables at the beginning of this section to determine which grid can be used
with the scale and create the corresponding grid displayer by hand.

or

● Use the IlvSingleScaleDisplayer::createGridDisplayer method of the
scale displayer. This method will create the correct grid displayer to be used with the
scale for you.

The scale displayer passed as a parameter is the displayer of the scale that must be used
as a reference to know where the lines of the grid must stop. If the grid is attached to the
scale representing the abscissa coordinate, the scale displayer that is passed as a
parameter is the displayer of a scale representing an ordinate coordinate. If the grid is
attached to a scale representing the ordinate coordinate, the scale displayer that is passed
as a parameter is the displayer of the scale representing the abscissa coordinate.

2. Set the created grid displayer on the displayer of the scale to which you want to attach
the grid.

The Charts Library also provides some methods at the level of a chart object that directly
encapsulate the creation and setting of a grid on a scale of the chart object. The following
methods are available:

◆ IlvChartGraphic::addAbscissaGrid to add a grid on the abscissa scale.

◆ IlvChartGraphic::addOrdinateGrid to add a grid on an ordinate scale.

IlvAbstractGridDisplayer* gridDisplayer =
 scaleDisplayer->createGridDisplayer(referenceScaleDisplayer);

scaleDisplayer->setGridDisplayer(gridDisplayer);
223 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Displaying a Cursor

usrcharts.book Page 224 Thursday, July 23, 2009 5:01 PM
Displaying a Cursor

A cursor is a graphical indicator of a data value. A cursor is associated with a given scale
and indicates the value corresponding to a given data point on this scale. It is composed of
two distinct elements:

◆ A delimiter that crosses the data display area at the position of the data value

◆ An axis mark located on the scale. This axis mark indicates the data value at the level of
the scale. It is made of a filled rectangle with a label.

The base class used to display a cursor is the IlvAbstractChartCursor class.

Figure 10.5 shows all the classes displaying cursors that are defined in the Charts Library.

Figure 10.5

Figure 10.5 Hierarchy of Classes Displaying Cursors in the Charts Library

IlvAbstractChartCursor

IlvRectangularChartCursor

IlvCircularChartCursor

0 1 2

0

2

1

0 1 2

IlvRadialChartCursor

1.4

0.6

1.4

delimiter

axis mark
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 224

usrcharts.book Page 225 Thursday, July 23, 2009 5:01 PM
Setting General Properties

The following table shows the properties defined for all the classes displaying cursors.

A cursor (like a grid or a scale) can be displayed on top of (IlvDrawAbove) or underneath
(IlvDrawBelow) the graphical representations of data in a chart. By default, a cursor will
be displayed on top of the graphical representations. However, the drawing order can be
changed for a given cursor by means of the IlvAbstractChartCursor::setDrawOrder
method.

If no palette is defined to draw the cursor, the palette that will be used by default is the one
defined for the axis of the scale with which the cursor is associated.

The axis mark displays the defined cursor label, if it exists. This label is returned by the
IlvAbstractChartCursor::getLabel method. However, the axis mark directly
displays the data value for which the cursor is drawn. This data value is returned by the
IlvAbstractChartCursor::getValue method.

To speed up the drawing process when the cursor is used as a dynamic mark (for example,
when using it in a crosshair), you can specify that the delimiter is to be drawn in XOR mode
by using the IlvAbstractChartCursor::drawGhost method.

Property Methods Default Value

Visibility isVisible
setVisible

IlvTrue

Drawing Order Relative to
the Drawing of the
Graphical Representations
of Data

getDrawOrder
setDrawOrder

IlvDrawAbove

Palette Used to
Draw the Cursor

getPalette
setPalette

0

Axis Mark Drawn isDrawingAxisMark
drawAxisMark

IlvTrue

Delimiter Drawn isDrawingDelimiter
drawDelimiter

IlvTrue

Delimiter Drawn in
XOR Mode

isDrawingGhost
drawGhost

IlvFalse

Data Value for which the
Cursor is Drawn

getValue
setValue

0

Label Displayed in the
Axis Mark

getLabel
setLabel

0
225 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Displaying a Cursor

usrcharts.book Page 226 Thursday, July 23, 2009 5:01 PM
Adding a Cursor to a Scale

You can set as many cursors as you want on a given scale. Since a cursor is associated with a
scale, the type of the cursor used for a given scale depends on the type of the scale. The type
of the scales that can be used for a given chart depends on the type of the projection used in
the chart.

The following table lists the type of scale displayers and cursor displayers that can be used
for a Cartesian chart, which uses a Cartesian projection.

The following table lists the type of scale displayers and cursor displayers that can be used
for a polar chart, which uses a polar projection.

Chart type Cartesian

Projection used Cartesian
-> IlvCartesianProjector

Scale Displayers

Abscissa Coordinates

Ordinate Coordinate(s)

Rectangular
-> IlvRectangularScaleDisplayer

Rectangular
-> IlvRectangularScaleDisplayer

Cursor Displayer(s)

Abscissa Coordinates

Ordinate Coordinate(s)

Rectangular
-> IlvRectangularChartCursor

Rectangular
-> IlvRectangularChartCursor

Chart type Polar

Projection used Polar
-> IlvPolarProjector
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 226

usrcharts.book Page 227 Thursday, July 23, 2009 5:01 PM
Figure 10.6 shows examples of cursors that are set on the scales of two charts. Cursors are
set on scales in a Cartesian chart (using a Cartesian projection) and in a polar chart (using a
polar projection).

Figure 10.6

Figure 10.6 Cursors in a Cartesian Chart and in a Polar Chart

To create and set a cursor associated with a given scale, perform the following steps:

1. Create the object that will display the cursor associated with the scale.

Do one of the following:

● Look at the tables at the beginning of this section to determine which cursor can be
used with the scale and create the corresponding cursor displayer by hand.

or

Scale Displayers

Abscissa Coordinate

Ordinate Coordinate(s)

Circular
-> IlvCircularScaleDisplayer

Rectangular
-> IlvRectangularScaleDisplayer

Cursor Displayers

Abscissa Coordinate

Ordinate Coordinate(s)

Radial
-> IlvRadialChartCursor

Circular
-> IlvCircularChartCursor
227 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Displaying a Cursor

usrcharts.book Page 228 Thursday, July 23, 2009 5:01 PM
● Use the IlvSingleScaleDisplayer::createCursor method of the scale
displayer. This method will create the correct cursor displayer to be used with the
scale for you.

The scale displayer passed as a parameter is the displayer of the scale that must be used
as a reference to know where the delimiter of the cursor must stop. If the cursor is
associated with the scale representing the abscissa coordinate, the scale displayer that is
passed as a parameter is the displayer of a scale representing an ordinate coordinate. If
the cursor is associated with a scale representing the ordinate coordinate, the scale
displayer that is passed as a parameter is the displayer of the scale representing the
abscissa coordinate.

2. Set the data value for which the cursor will be drawn.

3. Set the object created to display a cursor on the displayer of the scale with which you
want to associate the cursor.

The Charts Library also provides some methods at the level of a chart object that directly
encapsulate the creation and setting of a cursor on a scale of the chart object. The following
methods are available:

◆ IlvChartGraphic::addAbscissaCursor to add a cursor on the abscissa scale.

◆ IlvChartGraphic::addOrdinateCursor to add a cursor on an ordinate scale.

IlvAbstractChartCursor* cursorDisplayer =
 scaleDisplayer->createCursor(referenceScaleDisplayer);

cursorDisplayer->setValue(dataValue);

scaleDisplayer->addCursor(cursorDisplayer);
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 228

usrcharts.book Page 229 Thursday, July 23, 2009 5:01 PM
229 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 230 Thursday, July 23, 2009 5:01 PM
11

Interacting with Charts

The Charts Library provides interactors that allow the user to interact with a chart. This
chapter provides detailed information on the chart interactors. You can find information on
the following topics:

◆ Using the Chart Interactors

◆ Setting an Interactor on a Chart Object

Using the Chart Interactors

The base class used to define the behavior of a chart in response to a given action by the user
is the IlvChartInteractor class.

Several subclasses are predefined in the Charts Library. Some of these subclasses inherit
directly from the IlvChartInteractor class:

◆ IlvChartZoomInteractor allows the user to zoom in and zoom out on the data
display area.

◆ IlvChartScrollInteractor allows the user to scroll the displayed data by using the
arrow keys.

◆ IlvChartPanInteractor allows the user to scroll the displayed data by using the
mouse.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 230

usrcharts.book Page 231 Thursday, July 23, 2009 5:01 PM
◆ IlvChartCrossHairInteractor displays a crosshair at the location of the mouse
pointer.

Other subclasses inherit from the IlvChartDataInteractor class, a subclass of
IlvChartInteractor that specifically deals with interactions on the data points of the
chart:

◆ IlvChartDragPointInteractor allows the user to drag a data point.

◆ IlvChartHighlightPointInteractor allows the user to trigger an action whenever
the mouse moves over a data point in the data display area.

◆ IlvChartInfoViewInteractor inherits from the
IlvChartHighlightPointInteractor class and displays information about a data
point whenever the mouse moves over the data point in the data display area.

◆ IlvChartSelectInteractor allows the user to select data points (either all the data
points of a data set or only a single data point) and then to trigger an action on the
selected data point(s).

Instances of the chart interactors can be either shared or individually instantiated. Shared
instances are stored in a register and can be accessed by their registered name.

Predefined Chart Interactors

The following sections describe the chart interactors of the Charts Library. For each chart
interactor, you will find a table that includes the registered name of the shared instance of the
interactor, the key or button used for the interaction, and the action that is performed when
using the interactor.

The following interactors are defined in the Charts Library:

◆ Zoom Interactor

◆ Scroll Interactor

◆ Pan Interactor

◆ Crosshair Interactor

◆ Drag-Point Interactor

Note: The precision that is currently used to find the data point corresponding to a given
screen point is returned by the IlvChartDataInteractor::GetPrecision method.
This precision can be changed by means of the
IlvChartDataInteractor::SetPrecision method.

Note: Only shared chart interactor instances are persistent. The nonshared instances that
you have instantiated individually are saved as if they were the shared instance of the
same chart interactor class.
231 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Interactors

usrcharts.book Page 232 Thursday, July 23, 2009 5:01 PM
◆ Highlight-Data-Point Interactor

◆ Information-View Interactor

◆ Select-Data-Points Interactor

Zoom Interactor

A zoom interactor has the following basic characteristics:

The mouse button used to perform the zoom-in and zoom-out operations is the left mouse
button by default. However, this button can be changed by passing another button as a
parameter to the constructor of the zoom interactor.

Each zoom-in/zoom-out operation can be broken down into several steps to render a smooth
transition between the original and the final visual state of the displayed data. When a zoom
interactor instance is created, the default number of steps is set to 0. You can specify the
number of steps by means of the IlvChartZoomInteractor::setZoomSteps method.

Scroll Interactor

A scroll interactor has the following basic characteristics:

Class IlvChartZoomInteractor

Registered name “ChartZoom”

Key or Button - Left mouse button to zoom in
- Shift + Left mouse button to zoom out

Action Lets the user trigger a zoom-in or a zoom-out
command by dragging a box within the data
display area of a chart. This box indicates the
area to be zoomed in or zoomed out.

Class IlvChartScrollInteractor

Registered name “ChartScroll”

Key or Button Arrow keys

Action Lets the user scroll through the
displayed data.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 232

usrcharts.book Page 233 Thursday, July 23, 2009 5:01 PM
Pan Interactor

A pan interactor has the following basic characteristics:

The mouse button used to scroll through the displayed data is the right mouse button by
default. However, this button can be changed by passing another button as a parameter to the
constructor of the pan interactor.

Crosshair Interactor

A crosshair interactor has the following basic characteristics:

Drag-Point Interactor

A drag-point interactor allows the user to drag a data point. It has the following basic
characteristics:

Class IlvChartPanInteractor

Registered name “ChartPan”

Key or Button Right mouse button

Action Lets the user scroll through the displayed
data by dragging the mouse in any direction.

Class IlvChartCrossHairInteractor

Registered name “ChartCrossHair”

Key or Button “C”

Action Allows the user to trigger the visibility of a
crosshair that will follow the movement of the
mouse. The global visibility of the cursors
that make up the crosshair is turned on or off
when the "C" key is pressed.

Class IlvChartDragPointInteractor

Registered name “ChartDragPoint”

Inherits from IlvChartDataInteractor

Key or Button Left mouse button

Action Lets the user modify a data point by dragging
its graphical representation within the data
display area.
233 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using the Chart Interactors

usrcharts.book Page 234 Thursday, July 23, 2009 5:01 PM
The mouse button used to perform the drag operation is the left mouse button by default.
However, this button can be changed by passing another button as a parameter to the
constructor of the drag-point interactor.

You can use two modes for the drag operation:

◆ With the opaque mode, the data point is modified each time the mouse is dragged.

◆ With the ghost mode, the data point is modified only when the mouse button is released.

When a drag-point interactor is created, the default mode that is used for the drag operation
is the ghost mode. You can specify that the opaque mode should be used by calling the
method IlvChartDragPointInteractor::setOpaque with IlvTrue as a parameter.

Highlight-Data-Point Interactor

A highlight-data-point interactor allows the user to trigger an action whenever the mouse
moves over a data point in the data display area. It has the following basic characteristics:

No action is specified by default. The user has to specify by hand the action that should be
triggered whenever the mouse moves over a data point in the data display area. This action is
set by means of the IlvChartHighlightPointInteractor::setAction method. The
action should be of the type IlvChartHighlightPointInteractor::Action:

typedef void (* Action)(IlvChartGraphic* chart,
 IlvAbstractChartDisplayer* disp,
 IlvChartDataSet* dataSet,
 IlvUInt pointIndex,
 IlvBoolean highlight);

Information-View Interactor

A information-view interactor displays information about a data point whenever the user
moves the mouse over the data point. It has the following basic characteristics:

Class IlvChartHighlightPointInteractor

Registered name “ChartHighlightPoint”

Inherits from IlvChartDataInteractor

Key or Button None

Action Allows the user to trigger an action whenever
the mouse moves over a data point in the
data display area.

Class IlvChartInfoViewInteractor

Registered name "ChartInfoView"
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 234

usrcharts.book Page 235 Thursday, July 23, 2009 5:01 PM
The information is displayed in a small window. The text that is displayed by default is the
name of the data set to which the data point belongs and the abscissa and ordinate values of
the data point. This text can be redefined in a subclass.

Select-Data-Points Interactor

A select-data-points interactor allows the user to select data points in the data display area. It
has the following basic characteristics:

The mouse button used to perform the selection is the left mouse button by default.
However, this button can be changed by passing another button as a parameter to the
constructor of the selection interactor.

When the user clicks a projected data point for the first time, all the data points of the data
set to which the projected point belongs are selected. These data points are marked as
selected with markers by default. When the user clicks one of the selected data points in this
data set again, only the corresponding data point is then selected. This data point is marked
as selected with a marker by default. The graphic objects drawn to mark data points as
selected can be redefined in a subclass.

No action is specified by default. The user has to specify by hand the action to be triggered
whenever data are selected or deselected. This action is set by means of the
IlvChartSelectInteractor::setAction method. The action should be of the type
IlvChartSelectInteractor::Action:

typedef void (* Action)(IlvChartGraphic* chart,
 IlvAbstractChartDisplayer* disp,
 IlvChartDataSet* dataSet,

Inherits from IlvChartHighlightPointInteractor

Key or Button None

Action Displays information about a data point
whenever the user moves the mouse over
the data point in the data display area.

Class IlvChartSelectInteractor

Registered name “ChartSelect”

Inherits from IlvChartDataInteractor

Key or Button Left mouse button

Action Allows the user to select data by clicking a
projected point in the data display area and
then to trigger an action on the selected data
point(s).
235 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Setting an Interactor on a Chart Object

usrcharts.book Page 236 Thursday, July 23, 2009 5:01 PM
 IlvUInt pointIndex,
 IlvBoolean select);

Setting an Interactor on a Chart Object

Several interactors can be used at the same time to interact with a given chart object. These
interactors are managed by a dedicated object called a chart interactor manager.

The base class used to represent a chart interactor manager is the
IlvChartInteractorManager class. Two methods are available to add an interactor to be
managed by a chart interactor manager:

void addInteractor(IlvChartInteractor* interactor,
 IlvUInt position=IlvLastPositionIndex)

and

void addInteractor(const char* name,
 IlvUInt position=IlvLastPositionIndex)

The first method is used to add a nonshared interactor and the second method to add a shared
interactor. The position at which the interactor is added can be specified. This allows you to
indicate the priority for dispatching events since interactors are considered in the order of
their indexes.

The basic steps to set interactors on a given chart object are the following:

1. Create a chart interactor manager to handle the interactors that will be used to interact
with the chart object.

2. Add the interactors to be used with the chart to the created chart interactor manager.

3. Attach the chart interactor manager to the chart object.

Example

The stock sample demonstrates the use of interactors. The source code of this sample can
be found in the stock.cpp file in the $ILVHOME/samples/charts/interactors/src
directory. This section describes only the steps required to set interactors on the chart.

Creating a Chart Interactor Manager to Manage the Interactors

To create a chart interactor manager to manage the interactors, we use the following code:

Adding Interactors to the Chart Interactor Manager

For this example, we are going to add a zoom interactor, a pan interactor, and a scroll
interactor to the chart interactor manager.

IlvChartInteractorManager* interMgr = new IlvChartInteractorManager();
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 236

usrcharts.book Page 237 Thursday, July 23, 2009 5:01 PM
1. First, we add the zoom interactor. We are going to create our own instance of the
interactor because we want to set a particular number of intermediate steps for the zoom-
in/zoom-out operation.

2. Next, we add the pan interactor. We are going to use the shared instance because the
default settings of this instance correspond to what we want.

3. Finally, we add the scroll interactor. We also use the shared instance.

Attaching the Chart Interactor Manager to the Chart Object

To attach the chart interactor manager to the chart object, we use the following code:

IlvChartZoomInteractor* zinter = new IlvChartZoomInteractor(); // not
shared
zinter->setZoomSteps(4);
interMgr->addInteractor(zinter);

interMgr->addInteractor("ChartPan");

interMgr->addInteractor("ChartScroll");

IlvChartInteractorManager::Set(chart, interMgr);
237 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrcharts.book Page 238 Thursday, July 23, 2009 5:01 PM
12

Using Charts to Display Real-Time Data

The Charts Library provides the capability to display real-time data in your charts. This
chapter gives detailed information on how to use the scroll modes to do this.

You will find information on the following topics:

◆ Automatic Scroll Modes

◆ Using Automatic Scroll Modes to Display Real-Time Data

◆ Improving Performance When Adding Data Points to a Chart

Automatic Scroll Modes

A chart object can display either predefined data or real-time data (data arriving “on the
fly”). The way a given chart object reacts when new data are added is defined by a value of
type IlvChartGraphic::ScrollMode. Three scroll modes have been predefined:

◆ IlvScrollModeStop

When new data items are added, the chart does not scroll. The new data items that are
added are displayed only if they belong to the data display area.

◆ IlvScrollModeShift
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 238

usrcharts.book Page 239 Thursday, July 23, 2009 5:01 PM
When a new data item is added, the chart scrolls if the data item is out of the displayed
range of the abscissa coordinate. The scrolling operation is performed along the abscissa
scale in the direction of the decreasing values. When the chart scrolls, it shifts by the
number of scroll ratios necessary to display the new data item in the data display area.
(Figure 12.1 and Figure 12.2 show examples of a chart that uses shift scroll mode.)

◆ IlvScrollModeCycle

When a new data item is added, the chart scrolls if the data item is out of the displayed
range of the abscissa coordinate. In the case of cycle mode, when a new data item is
added that is out of the displayed range of the abscissa coordinate, this data item is
simply displayed in the area where the minimum values are displayed, thus erasing these
values. So the data is displayed cyclically as it arrives. When the chart scrolls, it scrolls
by the number of scroll ratios necessary to display the data item in the data display area.

When you create a chart object, the scroll mode that is set by default is
IlvScrollModeStop. You can change the scroll mode with the
IlvChartGraphic::setScrollMode method. If the new scroll mode is set to
IlvScrollModeCycle, you can also specify that a scrolling cursor that marks the
beginning of the cycle should be displayed as well. Do this by setting the parameter
createCursor of the IlvChartGraphic::setScrollMode method to IlvTrue.

When you create a chart object, the scroll ratio is set to 0.25 by default. This means that the
portion of the chart that is scrolled corresponds to a quarter of the range of the abscissa
coordinate. You can change the scroll ratio by means of the
IlvChartGraphic::setScrollRatio method. The scroll ratio should be between
0 and 1.

Using Automatic Scroll Modes to Display Real-Time Data

To use automatic scroll modes to display data arriving on the fly (real-time data), do the
following:

1. Define the range of the abscissa coordinate that will be displayed.

This is required because the scrolling operation is performed along the abscissa
coordinate.

2. Define the range of the ordinate coordinate that will be displayed.

Although this step is not required, it is useful because it prevents the range of values
represented by the ordinate scale from being constantly updated to fit the displayed data.

3. Set the scroll mode (shift mode or cycle mode) to be used.

4. Set the scroll ratio to be used.

The next section contains an example that illustrates these basic steps.
239 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Automatic Scroll Modes to Display Real-Time Data

usrcharts.book Page 240 Thursday, July 23, 2009 5:01 PM
Scroll Example

The following example shows you how to display three sets of data arriving on the fly. The
data sets are empty when created and are set on three polyline displayers. A data point is
added to each data set at each period of a timer. The shift scroll mode is used in this
example.

The following images show the example chart at two different periods of the timer.
Figure 12.1 shows the chart before the scrolling operation. Figure 12.2 shows the chart after
it has been scrolled. The chart shifts according to the value defined by the scroll ratio.

Figure 12.1

Figure 12.1 Chart before the Scrolling Operation in Shift Scroll Mode
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 240

usrcharts.book Page 241 Thursday, July 23, 2009 5:01 PM
Figure 12.2

Figure 12.2 Chart after Scrolling by the Scroll Ratio in Shift Scroll Mode

The complete source code for this example can be found in the scroll1.cpp file located in
the $ILVHOME/samples/charts/userman/src directory. This section describes only the
steps required to use the scroll modes to display data coming on the fly.

Defining the Range of the Abscissa Coordinate

The range of values that will be displayed for a given coordinate is set on the coordinate
information object associated with this coordinate. To define the range of the abscissa
coordinate, we can use the following code:

This specified interval is the one that is displayed for the abscissa coordinate at the
beginning of the data display (see Figure 12.1). This interval will change when the chart
scrolls. However, the difference between the maximum and minimum values of the
displayed interval will remain the same (see Figure 12.2).

Defining the Range of the Ordinate Coordinate

To define the range of the ordinate coordinate, we can use the following code:

chart->getAbscissaInfo()->setUserDataRange(IlvCoordInterval(0,8));

chart->getOrdinateInfo()->setUserDataRange(IlvCoordInterval(MinOrd,MaxOrd));
241 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Using Automatic Scroll Modes to Display Real-Time Data

usrcharts.book Page 242 Thursday, July 23, 2009 5:01 PM
Setting the Scroll Mode

For this example, we want to use the shift scroll mode. To set the scroll mode, we can use the
following code:

Setting the Scroll Ratio

We want to set the scroll ratio to 0.5. This means that half of the displayed range of the
abscissa coordinate will be shifted when necessary. To set the scroll ratio, we can use the
following code:

Adding the Data on the Fly

Data is added on the fly by using a method that is called at each period of a timer. This
method simply adds a new data point to each defined data set. The chart will be
automatically updated to reflect the addition of data points without doing anything more.

For more information on how data is automatically updated, see Modifying Data and
Updating Charts on page 134.

The method that is called at each period of the timer is the following:

chart->setScrollMode(IlvChartGraphic::IlvScrollModeShift);

chart->setScrollRatio(.5);

static void
AddPoints(IlvTimer* timer, IlAny arg)
 // Timer callback to add points.
{
 IlvChartGraphic* chart = (IlvChartGraphic*)arg;
 IlvDisplay* display = timer->getDisplay();
 IlUInt count;
 IlvDoublePoint previousPoint;
 IlvDoublePoint nextPoint;
 IlvChartDataSet* dataSet;
 // Add one point on each dataSet.
 for (IlUInt i = 0; i < chart->getDataSetsCount(); i++) {
 dataSet = chart->getDataSet(i);
 count = dataSet->getDataCount();
 // Get the previous data point to have a smooth random creation.
 if (count != 0) {
 dataSet->getPoint(count-1, previousPoint);

 // Create a new data point.
 GeneratePoint(previousPoint, nextPoint);
 }
 else {
 nextPoint.x(0);
 nextPoint.y(i+0.5);
 }

 // Add the data point to the data set.
 dataSet->addPoint(nextPoint);
 }
}

I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 242

usrcharts.book Page 243 Thursday, July 23, 2009 5:01 PM
Improving Performance When Adding Data Points to a Chart

By default, each time a data point is added to a data set, the chart is updated immediately.
The area of the chart where the graphical representation of the new data point should be
displayed is first invalidated and then redrawn by the holder of the chart. The holder is an
instance of the IlvGraphicHolder class and can be retrieved for a given graphic object by
the getHolder method.

If you look at our example, the redrawing of the chart that is required by adding the data
points will be performed three times (one time for each data set that is modified) since we
add a data point to three data sets at each period of the timer.

There are several methods that you can use to improve performance when adding data points
to a chart:

◆ Use the initReDraws and reDrawViews methods of the holder of the chart.

This allows you to perform the redraw operation for all the data sets at one time instead
of performing the redraw operation for each data set to which a data point is added.

◆ Use the fast scroll mode of the chart.

This allows you to draw the graphical representation of the newly added data point
directly in the drawing port without going through the holder of the chart.

◆ Batch the modifications when adding new data points to a data set.

◆ Use an IlvChartCyclicPointSet data set.

Using initReDraws and reDrawViews Methods

The initReDraws and reDrawViews methods allow you to specify that the redraw
operation required by adding data points should be performed only one time. To use these
methods, you need to do the following:

1. Add a call to the initReDraws method of the chart holder before the loop that adds a
data point to each data set.

2. Add a call to the reDrawViews method of the chart holder after the loop that adds a data
point to each data set.

In our scrolling example, each time a data point is added to a data set, the area of the chart
that must be redrawn is simply invalidated and the redrawing required for the newly added
data points for a given period of the timer will be performed one time when the
reDrawViews method is called.

Note: Batching modifications can be used alone or can be used in conjunction with the
use of the fast scroll mode.
243 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Improving Performance When Adding Data Points to a Chart

usrcharts.book Page 244 Thursday, July 23, 2009 5:01 PM
In our example, the method that is called at each period of the timer is now:

The complete source code can be found in the scroll2.cpp file located in the $ILVHOME/
samples/charts/userman/src directory.

Using the Fast Scroll Mode

Using the fast scroll mode is another way to improve performance. This is done by calling
the method IlvChartGraphic::enableFastScroll with IlvTrue as a parameter. Each
time a data point is added to a data set, the graphical representation of the newly added data
point is drawn directly in the drawing port without going through the holder of the chart.

Although fast scroll mode speeds the drawing operations, it has several limitations:

◆ There must be no other graphic objects underneath the chart object.

static void
AddPoints(IlvTimer* timer, IlAny arg)
 // Timer callback to add points.
{
 IlvChartGraphic* chart = (IlvChartGraphic*)arg;
 chart->getHolder()->initReDraws();

 IlvDisplay* display = timer->getDisplay();
 IlUInt count;
 IlvDoublePoint previousPoint;
 IlvDoublePoint nextPoint;
 IlvChartDataSet* dataSet;
 // Add one point on each dataSet.
 for (IlvUInt i = 0; i < chart->getDataSetsCount(); i++) {
 dataSet = chart->getDataSet(i);
 count = dataSet->getDataCount();
 // Get the previous data point to have a smooth random creation.
 if (count != 0) {
 dataSet->getPoint(count-1, previousPoint);

 // Create a new data point.
 GeneratePoint(previousPoint, nextPoint);
 }
 else {
 nextPoint.x(0);
 nextPoint.y(i+0.5);
 }

 // Add the data point to the data set.
 dataSet->addPoint(nextPoint);
 }

 chart->getHolder()->reDrawViews();
}

I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 244

usrcharts.book Page 245 Thursday, July 23, 2009 5:01 PM
◆ Using displayers that display filled polygonal representations, such as polygon and stair
displayers, should be avoided since an additional vertical line is drawn for each
polygonal representation of an added data point.

Batching Modifications

You can drastically improve performance by using a batch operation when adding new data
points to a data set. This is especially useful when it is not necessary to see the updates
resulting from adding the new data points one by one as they occur. To batch the
modifications, do the following:

1. Add a call to the IlvChartDataSet::startBatch method on the data set before a set
of additions of data points is performed on the data set.

Once the IlvChartDataSet::startBatch method has been called, the updates
resulting from adding new data points are no longer performed.

2. Add a call to the IlvChartDataSet::endBatch method on the data set after a set of
additions of data points has been performed on the data set.

When the IlvChartDataSet::endBatch method is called, all the data points that
have been added since the call to the IlvChartDataSet::startBatch method are
processed at one time. The update resulting from the addition of all these data points is
performed at one time. The newly added data points are drawn all at one time, instead of
being drawn one by one as is the case when the modifications are not batched.

Note: The fast scroll mode can be used only with the IlvScrollModeShift scroll mode.
245 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Improving Performance When Adding Data Points to a Chart

usrcharts.book Page 246 Thursday, July 23, 2009 5:01 PM
In our example, the method that is called at each period of the timer is now:

The complete source code can be found in the scroll3.cpp file located in the $ILVHOME/
samples/charts/userman/src directory. In this source code, we use both the fast scroll
mode and the batching modifications method when adding new data points.

Releasing the Automatic Update

The automatic update of the charts that is performed when data are modified can be released
by calling the method IlvChartGraphic::reDrawWhenNotified with IlvFalse as a
parameter. In this a case, the redrawing will have to be performed manually by calling the
IlvChartGraphic::updateAndReDraw method.

static void
AddPoints(IlvTimer* timer, IlAny arg)
 // Timer callback to add points.
{
 IlvChartGraphic* chart = (IlvChartGraphic*)arg;

 IlvDisplay* display = timer->getDisplay();
 IlUInt count;
 IlvDoublePoint previousPoint;
 IlvDoublePoint nextPoint;
 IlvChartDataSet* dataSet;
 // Add one point on each dataSet.
 for (IlUInt i = 0; i < chart->getDataSetsCount(); i++) {
 dataSet = chart->getDataSet(i);

 dataSet->startBatch();

 count = dataSet->getDataCount();
 for (IlUInt k = 0; k < NbAddedPts; k++, count++) {
 // Get the previous data point to have a smooth random creation.
 if (count != 0) {
 dataSet->getPoint(count-1, previousPoint);

 // Create a new data point.
 GeneratePoint(previousPoint, nextPoint);
 }
 else {
 nextPoint.x(0);
 nextPoint.y(i+0.5);
 }

 // Add the data point to the data set.
 dataSet->addPoint(nextPoint);
 }

 dataSet->endBatch();
 }
}

I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 246

usrcharts.book Page 247 Thursday, July 23, 2009 5:01 PM
247 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrcharts.book Page 248 Thursday, July 23, 2009 5:01 PM
A

The IlvXMLChartData Class

In this Appendix you will find a detailed description of the IlvXMLChartData class.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 248

A. The IlvXMLChartData Class

usrcharts.book Page 249 Thursday, July 23, 2009 5:01 PM
Introducing the IlvXMLChartData Class

The class IlvXMLChartData derives from IlvAbstractChartData and reads one or
several data sets from an XML file. The XML file should conform to the following DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT chartData (data+)>
<!ATTLIST chartData xmlns:ilvchart CDATA #FIXED
"http://www.ilog.com/products/jviews/chart"
 version CDATA #REQUIRED>

<!ELEMENT data (series+)>
<!ATTLIST data xSeries IDREF #IMPLIED>

<!ELEMENT series ((value | valuesList)*, property*)>
<!ATTLIST series dateFormat CDATA #IMPLIED
 type (double | date) #REQUIRED
 id ID #REQUIRED>

<!ELEMENT value (#PCDATA)>

<!ELEMENT valuesList (#PCDATA)>
<!ATTLIST valuesList delimiter CDATA #IMPLIED>
<!ENTITY % propertyExt "">
<!ELEMENT property (#PCDATA %propertyExt;)*>
<!ATTLIST property name CDATA #REQUIRED
 value CDATA #IMPLIED>

<!ELEMENT seriesRef EMPTY>
<!ATTLIST seriesRef ref IDREF #REQUIRED>
249 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Tags Definition

usrcharts.book Page 250 Thursday, July 23, 2009 5:01 PM
For example, assuming that a chart contains three data sets: two (DS_A and DS_B) which
do not use xvalues series, and one (DS_C) which uses a specific series for its abscissa, the
resulting XML file is:

Tags Definition

In the next paragraphs, you will find the definition of the following tags:

◆ data

◆ series

◆ valuesList

◆ valueOperator

◆ property

data

The <data> tag defines a data set, that is, a set of series. It is possible to define one of the
series as being the abscissa values, using the xSeries attribute:

<pre>
<?xml version="1.0" encoding="UTF-8"?>
<chartData version="0.3">
 <data>
 <series id="DS_A" type="double">
 <valuesList>0.0,8.0,6.0,13.0,22.0,21.0,19.0,28.0,27.0,23.0</valuesList>
 </series>
 <series id="DS_B" type="double">
 <valuesList>0.0,9.0,11.0,14.0,11.0,16.0,19.0,21.0,12.0,12.0</valuesList>
 </series>
 </data>
 <data xSeries="X_DS_C">
 <series id="X_DS_C" type="double">
 <valuesList>0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0</valuesList>
 </series>
 <series id="DS_C" type="double">
 <valuesList>0.0,0.0,6.0,3.0,0.0,2.0,9.0,18.0,9.0,5.0</valuesList>
 </series>
 </data>
</chartData>
</pre>

<data xSeries="X_DS_C">
 ...
 <series id="X_DS_C">
 <valuesList>...</valuesList>
 </series>
</data>
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 250

A. The IlvXMLChartData Class

usrcharts.book Page 251 Thursday, July 23, 2009 5:01 PM
series

The <series>...</series> tag has the following attributes:

◆ id: the identifier of the series, can be any string formed with alphanumeric characters
and the underscore (’_’).

◆ type: can be double or date.

If double, the values will be read as floating point numbers, using the dot (’.’) as
decimal separator.

If date, the values will be read as calendar dates, in dd/mm/yy format (31/12/2001). It
is possible to use other formats if needed (see the IlvXMLValueListProcessor class).

valuesList

The <valuesList>...</valuesList> tag can hold either floating point values, or
calendar dates (in dd/mm/yy format). It accepts only the attribute delimiter which
defines the value delimiter in the list. The default is ’,’.

For example:

<valuesList>0.0,9.0,11.0,14.0,11.0,16.0,19.0,21.0,12.0,12.0</valuesList>
<valuesList delimiter="|">0.0|0.0|6.0|3.0|0.0|2.0|9.0|18.0|9.0|5.0</valuesList>

valueOperator

The <valueOperator> tag is only used to define a list of properties which can be
processed separately through custom classes (see the IlvXMLPropertyReader class) and
will be applied to the series for which the properties are defined.

For example:

<valueOperator>
 <property name="period">5</property>
</valueOperator>

property

Example:

<series id=”X_DS_C”>
<valuesList>...</valuesList>
<property name=”period”>5</property>
</series>

The <property> tag is used to declare properties which are processed by a property reader
object (see the IlvXMLPropertyReader class). The object should be registered to the
251 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

Tags Definition

usrcharts.book Page 252 Thursday, July 23, 2009 5:01 PM
IlvXMLChartData object through the registerPropertyReader() method prior for
the specified property name to parsing the XML file (see IlvXMLChartData::parse()).

When the IlvXMLChartData object encounters a property, it checks if a property reader
object was registered for the specified property name. If this is the case, it will call the reader
readProperty() virtual method and store the returned IlvXMLProperty object. Once
the parsing is completed, the IlvXMLChartData object will invoke the reader
setProperty() virtual method, passing it the IlvChartDataSet which is being built.

It is up to the user to create his own property reader classes by deriving from
IlvXMLPropertyReader and overriding the readProperty() and setProperty()
methods according to his needs.

◆ readProperty()

turns an IlXmlElement into an IlvXMLProperty

◆ setProperty()

performs an operation on an IlvChartDataSet being given a property name and its
value.

Note that the IlvXMLProperty class is also extensible.

Customizing Value and Date List Processing

If you need a specific treatment of any value lists, it is possible to give your own value list
processor to the IlvXMLChartData class. To do this, derive
IlvXMLValueListProcessor and override the processValueList() method. Then
use IlvXMLChartData::registerValueListProcessor() to get it used by the
IlvXMLChartData object.

For example:

<series id="X_DS_C" type="my_type">
 <valuesList>a,d,e,f,i,l</valuesList>
</series>

would be parsed with a MyValueListProcessor object, which would be registered as
follows:

xmlChartData->registerValueListProcessor(IlString("my_type"),
 new MyValueListProcessor);

This is particularly useful if you need to parse date values written in a different format than
the default one (dd/mm/yy). This is slightly easier using the IlvXMLDateListProcessor

Note: You can specify any kind of type name to be processed. The ones that are already
defined are double or date, but you can create your own type if you need to.
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 252

A. The IlvXMLChartData Class

usrcharts.book Page 253 Thursday, July 23, 2009 5:01 PM
class, which has a specific method to override,
IlvXMLDateListProcessor::parseDate().

So, supposing you need to parse:

<series id="X_DS_C" type="date">
 <valuesList>01dec90,12jan91,14jul91,25sep91,15aug92</valuesList>
</series>

You would then have your own MyDateListProcessor class with its own parseDate()
method, and register it by using:

xmlChartData->registerValueListProcessor(IlString("my_type"),
 new MyDateListProcessor);

It will then replace the default date list processor and be used instead.

Some examples of IlvXMLChartData can be found in the samples/xml directory.
253 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

I N D E X

usrcharts.book Page 254 Thursday, July 23, 2009 5:01 PM
Index

Numerics

3D bar displayer 163

A

abscissa scale, customizing
Cartesian charts 44, 67
polar charts 85

abscissa scales
customizing 106, 111

abscissa values
setting to radians 74

Add icon 22
addAbscissaCursor method

IlvChartGraphic class 228
addAbscissaGrid method

IlvChartGraphic class 223
addDataSet method

IlvAbstractChartData class 135
adding

cursors to scales 226
data on the fly 242
displayers to charts 183
graphic information to a data point 185
grid displayers to scales 221
interactors to interactor managers 236
real-time data 242
scale displayers to a chart 208

addOrdinateCursor method

IlvChartGraphic class 228
addOrdinateGrid method

IlvChartGraphic class 223
addPoint method

IlvChartDataSet class 134
analytic functions, charting 60
annotations

descriptions of 97
applying

transformations 213
areListenersEnabled method

IlvChartDataSet class 137, 139
automatic scroll modes 91
automatic updates released 246
Axis display, Scales subpage 51, 55

definition 29

B

Background window 58
bar displayer 162
batch operations for adding data items 138
batch operations for modifying data 245

C

callback function
creating a data set object 129

Callbacks, Chart Inspector page 34
Callbacks, Legend inspector page 35
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 254

usrcharts.book Page 255 Thursday, July 23, 2009 5:01 PM
Cartesian charts
adding legends to 108
creating 40, 103, 105
customizing

abscissa scale 44
ordinate scale 46, 49, 52

defining
data sets 41
displayers 43

definition of 91, 96
example of chart layout 145
representing analytic functions 60
scales orientation 210
simple example 103
Temperatures Chart example 103
types of grid displayers 221
types of scale displayers 221

changing
orientation of scales 210

chart classes
Cartesian 101
description of 101
polar chart 102

chart data objects
adding data sets to 105, 111, 131
basic rules for 99
default instantiation 117
description of 99, 115, 117
user-defined 132

Chart inspector
icons 22
overview 20

chart interactor managers
adding interactors 236
attaching to chart objects 237

chart interactors
description of 230
list of 230

chart layout
Cartesian chart example 145
computing 144
data display area defined 144
drawing area defined 144
general properties 146
getting the chart layout object 148

graph area defined 145
polar chart example 145
setting the chart layout object 148

chart objects
attaching chart interactor managers 237
basic rules for 99
components of 115
description of 99, 116
diagram of components 116
setting interactors 236
using with component classes 120

chart updates
as handled by chart data objects 135
description of update process 137

charts
adding a legend 108, 112
adding legends 219
adding scale displayers 208
additional decorations 97
applying transformations to data values 213
basic steps for creating 102
creating a Cartesian 103
creating a polar 109
creating from a chart graphic object 120
customizing 112
definition of 96
description of listener mechanism 137
displaying legends 216
displaying real-time data 239
function in IBM ILOG Views 115
how updates are performed 137
listener mechanism 135
setting interactors 236
updating 135

Charts Library
component classes 117
data features 91
data modifications 134
decoration features 92
example images of charts 94
features of the scales 92
general architecture of 99
global chart characteristics 90, 92
handling data storage 126
interactor features 93
255 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 256 Thursday, July 23, 2009 5:01 PM
list of graphic representations of data 91
list of interactors 230
model-view separation concept 99
sharing data 132
updating charts 135

Charts palette 18
circular displayer 205
Clean icon 22
component classes

in IlvChartGraphic objects 120
coordinate information objects

creating for abscissa 121
creating for ordinate 122
default instantiation 119
description of 115, 119

creating
chart interactor managers 236
cursors 227
grids 223
pie chart example 169
point information object 187

creating a chart 20
cursor displayers

general properties 225
hierarchy of classes 224
types for Cartesian charts 226
types for polar charts 226

cursors
adding to a scale 226
creating and setting 227
description of 97, 224
displaying 224
example of 97

customizing
scales 210

D

data classes
description of 100

data display
adding graphic information to a data point 185
customizing 185
drawing graphical representations 150

data display area 144

definition of 124
data modifications

as handled by chart data objects 134
at chart data object level 134
at data set level 134
description of 134
description of propagation process 138
using batch operations 138
using listeners to catch data 138

data point
adding graphic information 185
adding point information objects 188
out-of-bounds 157

data points
diagram of mapping into screen coordinates 124
improving performance when adding to charts 243
projected into screen coordinates 124
projecting out-of-bounds points 191
transformed into screen coordinates 123

data sets
adding a data set listener object 142
adding to a chart data object 131
adding to chart data objects 105, 111
adding to default chart data object 131
adding to user-defined chart data objects 132
creating 104, 110
definition of real 153
definition of virtual 153
function 101, 128
putting data into 104
set-of-points 101, 127
set-of-values 101, 127
types of 100, 127
using a callback function 129
using a script function 129

Data sets, Chart inspector page 23, 41
data sets, defining

by a script function 60
Cartesian charts 41, 62
polar charts 82

data sharing
as handled by chart data objects 132
description of 132
lock/unlock system 133

data storage
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 256

usrcharts.book Page 257 Thursday, July 23, 2009 5:01 PM
as handled by chart data objects 126
description of 126

data values
applying transformations 213

dataPointAdded method
IlvChartDataListener class 139
IlvChartDataSetListener class 139

dataPointChanged method
IlvChartDataListener class 139
IlvChartDataSetListener class 139

dataPointRemoved method
IlvChartDataListener class 139
IlvChartDataSetListener class 139

dataSetAdded method
IlvChartDataListener class 139

dataSetChanged method
IlvChartDataListener class 139

dataSetRemoved method
IlvChartDataListener class 139

defining
drawing order of scales 197
minimum and maximum values for scales 212
palettes 190
position of labels 203
scale steps and substeps 200
tick position 202

defining step labels 201
description of 243
displayer factory 172

code example 180
displayer model 171

code example 180
displayers

adding to chart objects 105, 111
adding to charts 183
and ordinate scale 51
composite 151

description of 171
high-low open-close 175
marked polyline 173
side-by-side 181
stacked 177
stacked 3D bar chart 177
stacked bar chart 177
stacked polygon 177

creating 105, 111
customizing 184
default instantiation 117
defining

Cartesian charts 43, 65
polar charts 84

description of 99, 115, 117, 150
general properties 153
hierarchy diagram 151
polyline 105
setting colors 106
single 150

3D bar 163
bar 162
general properties 154
high-low 164
high-low bar 166
pie 167
polygon 159
polyline 156
scatter 155
stair 161
step 160

transforming data points 123
Displayers, Chart inspector page 24, 43, 57, 65
display-information interactor 234
displaying

grids 219
legends 216
real-time data 239

drag-point interactor 233
drawGhost method

IlvAbstractChartCursor class 225
drawing

overlapping step labels 203
scales 194

drawing area 144
drawLabelOnCrossings method

IlvAbstractScaleDisplayer class 203
drawMinorLines method

IlvAbstractGridDisplayer class 221
drawOverlappingLabels method

IlvAbstractScaleDisplayer class 203
257 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 258 Thursday, July 23, 2009 5:01 PM
E

enableFastScroll method
IlvChartGraphic class 244

enableListeners method
IlvChartDataSet class 137

endBatch method
IlvChartDataSet class 138, 245

F

fast scroll mode 243
using to improve performance 244

function data set
description of 128

functions
evaluation 63

G

General, Chart inspector page 21
General, Legend inspector page 35
General, Scales subpage

definition 28
getAbscissaInfo method

IlvChartGraphic class 212
getCoordinateInfo method

IlvAbstractScaleDisplayer class 212
getData method

IlvChartGraphic class 105, 131
getDisplayer method

IlvCompositeChartDisplayer class 172
getHiLoDisplayer method

IlvHiLoOpenCloseChartDisplayer class 175
getHolder method

IlvGraphic class 243
getLabel method

IlvAbstractChartCursor class 225
getLayout method

IlvChartLayout class 148
getLineDisplayer method

IlvMarkedPolylineDisplayer class 173
getMarkerDisplayer method

IlvMarkedPolylineDisplayer class 173
getOpenCloseDisplayer method

IlvHiLoOpenCloseChartDisplayer class 175
getOrdinateInfo method

IlvChartGraphic class 212
getOrientedClockwise method

IlvPolarProjector class 212
getParentDisplayer method

IlvAbstractChartDisplayer class 154
getProjectedPointsPalette method

IlvPolylineChartDisplayer class 157
getStepLabelFormat method

IlvSingleScaleDisplayer class 201
getUserDataMax method

IlvCoordinateInfo class 213
getUserDataMin method

IlvCoordinateInfo class 213
getValue method

IlvAbstractChartCursor class 225
graph area 145
grid displayers 219

adding to a scale 221
general properties of 220
hierarchy of classes 219
types for Cartesian charts 221
types for polar charts 222

Grid, Scales subpage 67, 68
definition 29

grids
components of 219
creating and setting to a scale 223
description of 97
displaying 219

H

high-low bar displayer 166
high-low displayer 164
high-low open-close displayer 175

I

IBM ILOG Views Studio
creating charts with 91

icons, in the Chart inspector 22
IfvCircularScaleDisplayer class 222
Ilv3dBarChartDisplayer class 163
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 258

usrcharts.book Page 259 Thursday, July 23, 2009 5:01 PM
IlvAbstractChartCursor class 224
drawGhost method 225
getLabel method 225
getValue method 225

IlvAbstractChartData class 100, 101, 117, 126
addDataSet method 135
lock method 133
removeDataSet method 135
replaceDataSet method 135
setDataSet method 134, 135

IlvAbstractChartDisplayer class 117, 150
getParentDisplayer method 154
setPalette method 154

IlvAbstractChartFunction class 101, 128
IlvAbstractGridDisplayer class 219

drawMinorLines method 221
setDrawOrder method 221, 225

IlvAbstractProjector class 119
IlvAbstractScaleDisplayer class 118, 194

drawLabelOnCrossings method 203
drawOverlappingLabels method 203
getCoordinateInfo method 212
setCrossingValue method 196
setDrawOrder method 197
setLabelLayout method 203
setRelativePosition method 196
setStepLabels method 201
setTickLayout method 202
setValueToLabelCB method 201

IlvAffineChartTransformer class 213
IlvBarChartDisplayer class 162
IlvCallbackChartFunction class 101, 128, 129
IlvCartesianChart class 101, 102, 118, 120
IlvCartesianProjector class 119, 121, 221, 226

Orientation type 210
setOrientation method 212

IlvChartCoordinateTransformer class 213
IlvChartCrossHairInteractor class 231, 233
IlvChartDataInteractor class 231
IlvChartDataListener class 139

dataPointAdded method 139
dataPointChanged method 139
dataPointRemoved method 139
dataSetAdded method 139
dataSetChanged method 139

dataSetRemoved method 139
IlvChartDataPointInfo class 185
IlvChartDataSet class 100, 102, 117, 127

addPoint method 134
areListenersEnabled method 137, 139
enableListeners method 137
endBatch method 138, 245
insertPoint method 134
lock method 133
removePointAndInfo method 134
setPoint method 134
startBatch method 138, 245
unlock method 133

IlvChartDataSetListener class
dataPointAdded method 139
dataPointChanged method 139
dataPointRemoved method 139

IlvChartDragPointInteractor class 231, 233
IlvChartGraphic class 19, 101, 102, 117, 120

addAbscissaCursor method 228
addAbscissaGrid method 223
addOrdinateCursor method 228
addOrdinateGrid method 223
enableFastScroll method 244
getAbscissaInfo method 212
getData method 105, 131
getOrdinateInfo method 212
reDrawWhenNotified method 246
setLegend method 219
setProjectHorizontally 157
setProjectVertically 157
setScrollMode method 239
setScrollRatio method 239
updateAndReDraw method 246

IlvChartHighlightPointInteractor class 231,
234

IlvChartInfoViewInteractor class 231, 234
IlvChartInteractor class 230
IlvChartInteractorManager class 236
IlvChartLayout class 118, 146

getLayout method 148
setDataDisplayArea method 148
setDataDisplayAreaRelatively method 148
setGraphArea method 148
setGraphAreaRelatively method 148
259 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 260 Thursday, July 23, 2009 5:01 PM
setLayout method 148
IlvChartLegend class 19, 69, 216
IlvChartLegendItem class 217
IlvChartPanInteractor class 230, 233
IlvChartPointSet class 101, 127, 131
IlvChartScrollInteractor class 230, 232
IlvChartSelectInteractor class 231, 235
IlvChartYValueSet class 101, 127, 131, 168
IlvChartZoomInteractor class 230, 232
IlvCircularChartCursor class 226
IlvCircularGridDisplayer class 222
IlvCircularScaleDisplayer class 118, 226
IlvCirculartScaleDisplayer class 205
IlvCompositeChartDisplayer class 171

getDisplayer method 172
setDisplayerFactory method 172
setDisplayerModel method 172

IlvCoordinateInfo class 119
getUserDataMax method 213
getUserDataMin method 213
setUserDataMax method 213
setUserDataMin method 213
setUserDataRange method 213

IlvCoordinateTransformer class 119
IlvDouble type 127
IlvDoublePoint class 101, 127
IlvGraphic class

getHolder method 243
IlvGraphicHolder class 243

initReDraws method 243
reDrawViews method 243

IlvGridDisplayer class 221
IlvHiLoBarChartDisplayer class 106, 166
IlvHiLoChartDisplayer class 164
IlvHiLoOpenCloseChartDisplayer class 175

getHiLoDisplayer method 175
getOpenCloseDisplayer method 175

IlvLabel class 169
IlvMarkedPolylineChartDisplayer class 173
IlvMarkedPolylineDisplayer class

getLineDisplayer method 173
getMarkerDisplayer method 173

IlvMemoryChartData class 100, 101, 102, 117, 126
IlvMultiRectangularScaleDisplayer class 221,

222, 226

IlvPieChartDisplayer class 167
IlvPieChartGraphic class 168, 169
IlvPieSliceInfo class 169
IlvPointInfoArray class 185
IlvPointInfoCollection class 185
IlvPointInfoMap class 185
IlvPointInfoSingleton class 186
IlvPolarChart class 102, 118
IlvPolarProjection class 222
IlvPolarProjector class 119, 226

getOrientedClockwise method 212
setOrientedClockwise method 212

IlvPolygonChartDisplayer class 159
IlvPolylineChartDisplayer class 156, 192

getProjectedPointsPalette method 157
IlvRadialChartCursor class 226
IlvRadialGridDisplayer class 222
IlvRectangularChartCursor class 226
IlvRectangularGridDisplayer class 221
IlvRectangularScaleDisplayer class 118, 122,

204, 221, 222, 226
IlvScatterChartDisplayer class 155
IlvScriptChartFunction class 101, 129
IlvShadowRectangle class 216
IlvSideBySideChartDisplayer class 181
IlvSimpleChartTransformer class 213
IlvSingleChartDisplayer class 154
IlvSingleScaleDisplayer class 197

getStepLabelFormat method 201
IlvStackedChartDisplayer class 177
IlvStairChartDisplayer class 161
IlvStepChartDisplayer class 160
IlvXMLChartData class 248
IlvXMLPropertyReader class 251
IlvXMLValueListProcessor class 251
initReDraws method

IlvGraphicHolder class 243
Insert icon 22
insertPoint method

IlvChartDataSet class 134
interactors

adding to chart interactor managers 236
crosshair 233
display-information 234
drag-point 233
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 260

usrcharts.book Page 261 Thursday, July 23, 2009 5:01 PM
pan 233
scroll 232
select-data-points 235
select-data-points interactor 235
trigger-action 234
zoom 232

L

LabelLayout type 203
launching IBM ILOG Views Studio with Charts 16
layout object

description of 144
general properties 146
getting 148
setting 148

layout objects
default instantiation 118
description of 115, 118

Layout, Chart inspector page 29
legend

connecting to a chart 68
parameters 35

Legend Inspector 34
legend items 217
legend objects

general properties 218
legends

adding 108, 112
adding to a chart 219
default instantiation 119
description of 97, 115, 119, 217
displaying 216

listeners
adding a data set listener object to a data set 142
catching modifications 138
description of 99, 135
diagram of listener mechanism 136
diagram of propagation process 138
example of user-defined listener 140
on chart data objects 139
on data sets 139
performing the updates 137
propagation of modifications 138
subclassing IlvChartDataSetListener 141

user-defined 140
lock method

IlvAbstractChartData class 133
IlvChartDataSet class 133

lock/unlock system 133
logarithmic scales 66
logarithmic transformations 213

M

Main window 17, 62
major ticks 197
marked polyline displayer 173
marked polyline, displayer type 44
minor ticks 197
Miscellaneous, Chart Inspector page 31
modifying data

using batch operations 245
Move item up/Move item down icons 22

O

ordinate scales
and displayers 51
customizing 49, 67, 107, 111

Cartesian charts 46, 49
polar charts 86

related 52
using several independent 39

orientation of scales 210
Orientation type

IlvCartesianProjector class 210
out-of-bounds data points 157
out-of-bounds points 191

P

palettes
defining 190

Palettes panel 17
pan interactor 233
performance when adding data points to charts 243
pie chart 20, 81

creating 169
pie displayers 167
261 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 262 Thursday, July 23, 2009 5:01 PM
point information object
adding to a data point 188
creating 187

polar charts
adding legends to 112
creating 73, 109, 110
customizing projection 85
definition 72
definition of 91, 97
example of chart layout 145
representing time values 81
representing values expressed in radians

by applying a transformation 73
by setting a starting angle and a range 79

scales orientation 212
simple example 109
Temperatures Chart example 109
types of grid displayers 222
types of scale displayers 222

polygon displayer 159
polyline displayer 156
Polyline, displayer type 65, 66
polyline, displayer type 85
projecting

out-of-bounds data points 191
projection

customizing in polar charts 85
types 26

Projection, Chart inspector page 26
projectors

creating 121
default instantiation 119
description of 115, 119
diagram of mapping data points into screen coordinates

124
projecting transformed data points 124
setting 121

R

radians
converting to degrees 76
representing on a polar chart 73

range
defining in a polar chart 79, 85

real-time data
displaying in charts 239

rectangular scale displayer 204
reDrawViews method

IlvGraphicHolder class 243
reDrawWhenNotified method

IlvChartGraphic class 246
Remove icon 22
removeDataSet method

IlvAbstractChartData class 135
removePointandInfo method

IlvChartDataSet class 134
replaceDataSet method

IlvAbstractChartData class 135
Resources panel 58, 68

S

scale displayers
adding to a chart 208
class hierarchy 195
default instantiation 118
description of 115, 118
general properties 195
single

circular 205
general properties 198
rectangular 204

types for Cartesian 221
types for polar charts 222

scales
adding cursors 226
adding grid displayers 221
changing orientation 210
circular scales 92
converting data values to step labels 201
customizing 106, 107, 111, 210
customizing abscissa 113
customizing ordinate 113
defining drawing order 197
defining minimum and maximum values 212
defining position of labels 203
defining step labels 201
defining steps and substeps 200
defining the abscissa 121
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 262

usrcharts.book Page 263 Thursday, July 23, 2009 5:01 PM
defining the ordinate 122
defining the position of 196
defining the position of ticks 202
drawing overlapping step labels 203
drawing scales 194
fixing to a data value 196
fixing to a position 196
single

description of 197
diagram of components 197

step labels drawn at axes crossing 203
types of graduation 92

Scales, Chart inspector page 27, 44, 67
scatter displayer 155
Scatter, displayer type 43, 44
screen coordinates

as projected by projectors 124
description of 123

Script Editor 62
script function

creating a data set object 129
scroll interactor 232
scroll mode

fast 243
stop 238

scroll modes
cyclic 239
description of 238
example of using 240
setting 241
shift 239

scroll ratio
setting 242

setCrossingValue method
IlvAbstractScaleDisplayer class 196

setDataDisplayArea method
IlvChartLayout class 148

setDataDisplayAreaRelatively method
IlvChartLayout class 148

setDataSet method
IlvAbstractChartData class 134, 135

setDisplayerFactory method
IlvCompositeChartDisplayer class 172

setDisplayerModel method
IlvCompositeChartDisplayer class 172

setDrawOrder method
IlvAbstractGridDisplayer class 221, 225
IlvAbstractScaleDisplayer class 197

setGraphArea method
IlvChartLayout class 148

setGraphAreaRelatively method
IlvChartLayout class 148

setLabelLayout method
IlvAbstractScaleDisplayer class 203

setLayout method
IlvChartLayout class 148

setLegend method
IlvChartGraphic class 219

set-of-points data set
description of 127

set-of-values data set
description of 127

setOrientation method
IlvCartesianProjector class 212

setOrientedClockwise method
IlvPolarProjector class 212

setPalette method
IlvAbstractChartDisplayer class 154

setPoint method
IlvChartDataSet class 134

setProjectHorizontally method
IlvChartGraphic class 157

setProjectVertically method
IlvChartGraphic class 157

setRelativePosition method
IlvAbstractScaleDisplayer class 196

setScrollMode method
IlvChartGraphic class 239

setScrollRatio method
IlvChartGraphic class 239

setStepLabels method
IlvAbstractScaleDisplayer class 201

setTickLayout method
IlvAbstractScaleDisplayer class 202

setting
interactors 236
scroll mode 241
scroll ratio 242

setUserDataMax method
IlvCoordinateInfo class 213
263 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

usrcharts.book Page 264 Thursday, July 23, 2009 5:01 PM
setUserDataMin method
IlvCoordinateInfo class 213

setUserDataRange method
IlvCoordinateInfo class 213

setValueToLabelCB method
IlvAbstractScaleDisplayer class 201

side-by-side displayer 181
Specific, Legend inspector page 35
stacked 3D bar chart displayer 177
stacked bar chart displayer 177
Stacked bars, displayer type 57
stacked displayer 177
stacked polygon chart displayer 177
stacked/side-by-side chart, creating 56
stair displayer 161
startBatch method

IlvChartDataSet class 138, 245
starting angle

defining in a polar chart 79, 85
step displayer 160
step labels 197

defining 201
defining position 203
drawing at axes crossing 203
drawing overlapping labels 203

T

TickLayout type 202
ticks

defining 202
Ticks display, Scales subpage 29
Ticks, Scales subpage 28, 50, 55
time values

representing on a polar chart 81
transformation, radians to degrees 76
Transformation, Scales subpage 54, 67

definition 28
transformations

applying to data values 213
transformers

affine 213
simple 213

trigger-action interactor 234

U

unlock method
IlvChartDataSet class 133

updateAndReDraw method
IlvChartGraphic class 246

updating charts
description of 135
releasing automatic updates 246

Z

zoom interactor 232
I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L 264

usrcharts.book Page 265 Thursday, July 23, 2009 5:01 PM
265 I B M I L O G V I E W S C H A R T S V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG Views Charts V5.3 User’s Manual
	About This Manual
	Part I Using Charts with IBM ILOG Views Studio
	Introducing Charts in IBM ILOG Views Studio
	Launching IBM ILOG Views Studio with the Charts Extension
	A Quick Look at the Interface
	Creating a Chart Object
	Using the Chart Inspector
	Chart Inspector Icons
	General Page
	Data Sets Page
	Displayers Page
	Projection Page
	Scales Page
	Layout Page
	Miscellaneous Page
	Callbacks Page

	Using the Chart Legend Inspector

	Customizing Charts
	Example 1: Charting Temperatures and Pressures of the Week
	Defining Several Independent Ordinate Scales
	Defining a Grid Associated with a Scale
	Defining a Related Ordinate Scale
	Creating a Stacked or a Side-by-Side Representation

	Example 2: Charting Analytic Functions
	Using a Data Set Defined by a Script Function
	Using Logarithmic Scales
	Connecting a Legend to a Chart

	Using Polar Charts
	Example 1: Representing Values Expressed in Radians
	Case 1: Applying a Transformation
	Case 2: Setting a Starting Angle and a Range

	Example 2: Representing Time Values
	Creating the Polar Chart
	Defining the Data Set
	Defining the Displayer
	Customizing the Projection
	Customizing the Abscissa Scale
	Customizing the Ordinate Scale

	Part II Using the Charts Library
	Introducing the Charts Library
	Main Features of the Charts Library
	Global Chart Characteristics
	Data Features
	Graphical Representations of Data
	Scale Features
	Decorations
	Interactors

	Feature Illustrations

	Chart Basics
	What is a Chart?
	General Architecture of the Charts Library
	Data Classes
	Chart Classes

	Basic Steps for Creating a Chart
	Creating a Simple Cartesian Chart
	Creating a Simple Polar Chart
	Additional Ways to Customize a Chart

	How Charts Work in IBM ILOG Views
	Components of a Chart Object
	Component Classes of the Charts Library
	Using the Component Classes in an IlvChartGraphic Object
	How Displayer Objects Draw the Graphical Display

	Data Handling
	Handling Data Storage
	Types of Data Sets
	Adding Data Sets to Be Displayed by a Chart

	Sharing Data Among Charts
	Modifying Data and Updating Charts
	Types of Modifications
	Updating Charts Automatically
	Using Listeners to Catch Data Changes

	Chart Layout
	Computing the Chart Layout
	Setting General Properties of a Chart Layout Object
	Getting and Setting the Chart Layout Object of a Chart

	Data Display
	Drawing the Graphical Representations of Data
	Using Single Displayers
	Scatter Displayer
	Polyline Displayer
	Polygon Displayer
	Step Displayer
	Stair Displayer
	Bar Displayer
	3D Bar Displayer
	High-Low Displayer
	High-Low Bar Displayer
	Pie Displayer

	Using Composite Displayers
	Marked Polyline Displayer
	High-Low Open-Close Displayer
	Stacked Displayers
	Side-by-Side Displayers

	Adding a Displayer to a Chart
	Examples

	Customizing Data Display
	Adding Graphic Information to a Data Point
	Defining How the Palettes are Applied for the Data Display
	Projecting Out-of-Bounds Data Points

	Scales Display
	Drawing the Scales of a Chart
	Setting General Properties

	Using Single Scale Displayers
	Setting General Properties
	Predefined Single Scale Displayers

	Using Scale Steps Updaters to Compute Scales Graduations
	Adding a Scale Displayer in a Chart
	Advanced Features for Customizing Scales
	Changing the Orientation of the Scales
	Defining the Minimum and Maximum Data Values Represented by a Scale
	Applying a Transformation to the Data Values Represented by a Scale

	Decorations Display
	Displaying a Legend
	Setting General Properties
	Adding a Legend to a Chart

	Displaying a Grid
	Setting General Properties
	Adding a Grid Displayer to a Scale

	Displaying a Cursor
	Setting General Properties
	Adding a Cursor to a Scale

	Interacting with Charts
	Using the Chart Interactors
	Zoom Interactor
	Scroll Interactor
	Pan Interactor
	Crosshair Interactor
	Drag-Point Interactor
	Highlight-Data-Point Interactor
	Information-View Interactor
	Select-Data-Points Interactor

	Setting an Interactor on a Chart Object
	Example

	Using Charts to Display Real-Time Data
	Automatic Scroll Modes
	Using Automatic Scroll Modes to Display Real-Time Data
	Scroll Example

	Improving Performance When Adding Data Points to a Chart
	Releasing the Automatic Update

	Appendix A The IlvXMLChartData Class
	Introducing the IlvXMLChartData Class
	Tags Definition
	data
	series
	valuesList
	valueOperator
	property
	Customizing Value and Date List Processing

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	Z

