
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Data Access V5.3

User’s Manual

June 2009

usrdataccess.book Page 1 Tuesday, July 28, 2009 9:07 AM

usrdataccess.book Page 2 Tuesday, July 28, 2009 9:07 AM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

usrdataccess.book Page 2 Tuesday, July 28, 2009 9:07 AM

C O N T E N T S

usrdataccess.book Page 3 Tuesday, July 28, 2009 9:07 AM
Table of Contents

IBM ILOG Views Data Access V5.3

Preface About This Manual . 11

What You Need To Know. .11

Manual Organization .12

Notation. .13

Typographic Conventions .13

Naming Conventions .13

Related Documentation and Bibliography. .13

IBM ILOG Manuals. .13

C++ Programming Language Publications .14

Database Publications .14

Part I IBM ILOG Views Data Access Common Framework. . . 15

Chapter 1 Introducing Data Access . 17

What is Data Access? .17

Supported Databases .18

Distribution Structure .19

Chapter 2 Data Access Basics . 21
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 3

usrdataccess.book Page 4 Tuesday, July 28, 2009 9:07 AM
Overview .21

IBM ILOG Views Interface .22

IlvApplication .22

Containers .23

Gadgets .24

Callbacks .24

Data Access Concepts .25

Values .26

Tables .26

Data Sources .27

Data-Source-Aware Gadgets .27

Integrating with IBM ILOG Views Advanced Graphics. .28

Chapter 3 Tables . 31

Introduction to Tables .32

One-Tier and Two-Tier Tables. .33

The Role of a Table Object .34

Schemas .35

Schema Properties. .35

Defining the Schema of a Table Object .37

Managing Rows in a Table .38

Basic Techniques. .38

Techniques for Two-Tier Tables .40

Error Catching .41

Changing Error Messages .43

Table Hook .43

Copying and Serializing Table Objects .44

Specialized Table Subclasses .44

IliSQLTable .45

IliMemoryTable. .45

IliStringsTable .45

IliMapTable. .46
4 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 5 Tuesday, July 28, 2009 9:07 AM
Subclassing IliTable. .46

Guidelines .46

Subclassing Example. .49

Directory Class Example .51

Persistence .52

Table Properties .53

Scoped Properties .53

Property-Aware Gadgets .54

Chapter 4 Data Sources and Gadgets . 57

Data Sources .57

Creating a Data Source Gadget. .58

Connecting Data-Source-Aware Gadgets .59

The Scope of a Data Source .59

Managing Rows in a Data Source .60

Customizing a Data Source .62

Error Handling .66

The Repository. .67

Data-Source-Aware Gadgets. .69

Interface to Data-Source-Aware Gadgets .69

IliTableGadget .72

IliDbField .76

IliEntryField .76

IliTableComboBox .77

IliDbText .77

IliDbToggle. .78

IliToggleSelector .78

IliDbNavigator. .78

IliDbTimer. .80

IliHTMLReporter. .80

IliXML .80

IliDbPicture. .81
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 5

usrdataccess.book Page 6 Tuesday, July 28, 2009 9:07 AM
IliDbOptionMenu .81

IliDbStringList .82

IliDbTreeGadget. .82

IliChartGraphic .83

IliDbGrapher. .85

IliDbGantt .86

Global Callbacks .88

Chapter 5 Handling Values in Data Access . 91

The IliValue Class. .91

Constructing a Value Object .92

Null Value. .92

Data Types .92

Checking the Data Type of an Object .93

Converting a Data Access Data Type to a C++ Type .93

Formatting an IliValue Object. .95

Structured Types .96

Chapter 6 Hints and Tips for Using Data Access . 99

Working with DbFields in Data Access .99

The Style of a DbField .100

Creating a Form Using the Forms Assistant .103

Foreign Tables .105

Specifying a Foreign Table in IBM ILOG Views Studio .105

Using a Foreign Table to Convert Values .107

Using a Foreign Table to Constrain Values .109

Using the Forms Assistant with Foreign Tables. .109

Setting the Table Look. .110

Column Geometry .110

Read-Only Settings .111

Fixed Columns .112

Troubleshooting. .112
6 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 7 Tuesday, July 28, 2009 9:07 AM
Avoiding Common Names in Foreign Tables. .112

Matching Types with a Foreign Table .113

Part II Data Access and SQL . 115

Chapter 7 SQL Tables . 117

Introduction .118

Structural Definition. .118

Creating the Definition Using IBM ILOG Views Studio. .119

Creating the Definition in C++ .120

A Shortcut C++ Definition. .122

The SQL Session of an SQL Table .122

Run-Time Options .123

Concurrency Control .123

Auto-Commit Mode .124

Fetch Policy .125

Auto-Refresh Mode .125

Inserting-Nulls Mode .126

Dynamic-SQL Mode. .126

Bound Variables Mode. .126

Cursor Buffering .127

Auto-Row Locking Mode .127

Parameters .128

Transaction Manager .128

Structured Types .131

Asynchronous Mode .134

Chapter 8 SQL Data Sources . 137

Query Mode .137

Parameters .139

Defining a Parameter .139

Defining a Parameter That Accepts User Input .139
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 7

usrdataccess.book Page 8 Tuesday, July 28, 2009 9:07 AM
Working with an SQL Data Source .144

Defining Columns. .144

Forcing the Name of a Column .145

The Table Primary Key .147

Chapter 9 Connecting to a Database . 149

SQL Sessions and Cursor Objects. .149

Connecting to a Database System. .150

Cursors. .151

Database Drivers .153

The Connect Dialog Box .154

Registered Sessions .154

Part III IBM ILOG Views Data Access Gadgets 157

Chapter 10 IBM ILOG Views Studio Data Access Gadgets . 159

The Palettes Panel .159

 Data Access and SQL Gadgets .160

Charts, Grapher and Gantt Chart Gadgets .162

SQL Tables .163

Notebook Pages Common to Data Access Gadgets Inspectors .165

Callbacks Notebook Page .167

Dialog Boxes Common to Data Access Gadgets Inspectors .168

Font Chooser Dialog Box. .168

Color Chooser Dialog Box .169

File Chooser Dialog Box .170

Chapter 11 Data Source Gadgets Reference. 171

IliSQLDataSource. .171

IliSQLDataSource Inspector Panel .172

IliSQLDataSource Menus. .172

General Elements .174

SELECT Section Notebook Pages. .174
8 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 9 Tuesday, July 28, 2009 9:07 AM
Dialog Boxes .184

IliMemoryDataSource .192

Chapter 12 Display Gadgets Reference . 201

IliTableGadget .202

Table Gadget Inspector Panel .202

IliDbField .209

DbField Inspector Panel .209

IliEntryField .213

Entry Field Inspector Panel .213

IliTableComboBox .216

Table Combo Box Inspector Panel .216

IliDbText .223

DbText Inspector Panel .224

IliDbToggle .226

DbToggle Inspector Panel .227

IliToggleSelector .231

ToggleSelector Inspector Panel .231

IliDbNavigator. .234

DbNavigator Inspector Panel .234

IliDbTimer .237

DbTimer Inspector Panel .237

IliHTMLReporter .238

HTMLReporter Inspector Panel .238

IliXML. .243

XML Inspector Panel .243

IliDbPicture .245

DbPicture Inspector Panel .245

IliDbOptionMenu .247

DbOptionMenu Inspector Panel .247

IliDbStringList. .250

DbStringList Inspector Panel .250
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 9

usrdataccess.book Page 10 Tuesday, July 28, 2009 9:07 AM
IliDbTreeGadget .256

DbTreeGadget Inspector Panel .257

IliChartGraphic .265

ChartGraphic Inspector Panel .265

IliDbGrapher .269

DbGrapher Inspector Panel .270

IliDbGantt .276

DbGantt Inspector Panel .276

Appendix A Utility Classes . 291

The IliString Class .291

The IliDecimal Class .292

The IliDate Class .292

The IliFormat Class .293

The IliInputMask Class .295

Appendix B Format Syntax. 297

String Formats .297

Number Formats .298

Date Formats .300

Literal Characters. .302

Appendix C Mask Syntax . 303

Placeholders. .304

Predefined Masks. .305

Appendix D Error Messages. 307

Index . 309
10 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

P R E F A C E

usrdataccess.book Page 11 Tuesday, July 28, 2009 9:07 AM
About This Manual

Welcome to IBM® ILOG® Views Data Access, referred to as Data Access, a library
dedicated to the development of client-server database applications. Data Access is fully
integrated with IBM ILOG Views, therefore allowing you to build graphical user interfaces
and to link them to data sources to provide intuitive data.

What You Need To Know

The guide assumes that you are familiar with the UNIX® or PC environment in which you
are going to use Data Access, including its specific windowing system. Since Data Access is
written for C++ developers, this guide also assumes that you can write C++ code and that
you are familiar with your C++ development environment so as to manipulate files and
directories, use a text editor, and compile and run C++ programs.

Finally, as this product is an add-on to IBM® ILOG® Views Controls, you must be familiar
with how to use IBM ILOG Views Controls, and its graphical editor IBM ILOG Views
Studio.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 11

usrdataccess.book Page 12 Tuesday, July 28, 2009 9:07 AM
Manual Organization

This manual consists of a table of contents, preface, 12 chapters, 4 appendixes and a
glossary.

Part I, IBM ILOG Views Data Access Common Framework

◆ Chapter 1, Introducing Data Access contains a brief introduction of the product.

◆ Chapter 2, Data Access Basics describes the basic objects in IBM ILOG Views that are
necessary to build an application with Data Access. The second part of this chapter is an
overview of Data Access and the main objects that are available in the API.

◆ Chapter 3, Tables describes one of the most important objects in Data Access, the table
object (IliTable class and its subclasses).

◆ Chapter 4, Data Sources and Gadgets describes the data source object (IliDataSource
and its subclasses) and data source aware gadgets.

◆ Chapter 5, Handling Values in Data Access contains information on how values are
handled in Data Access, without having to take into account their actual type until run
time. This feature is implemented by the IliValue class.

◆ Chapter 6, Hints and Tips for Using Data Access contains some examples of the types of
situations that you may encounter when using Data Access (and IBM ILOG Views
Studio), and provides you with some useful tips on how to handle them.

Part II, Data Access and SQL

◆ Chapter 7, SQL Tables contains more detailed information on one of the most important
table subclasses in Data Access, IliSQLTable. This is the class used to connect with a
relational database management system.

◆ Chapter 8, SQL Data Sources tells you how to define parameters in an SQL table and
provides hints on using the SQL data source.

◆ Chapter 9, Connecting to a Database contains information on how Data Access objects
are used to implement a connection to a database.

Part III, IBM ILOG Views Data Access Gadgets

◆ Chapter 10, IBM ILOG Views Studio Data Access Gadgets introduces the Data Access
gadgets found on the Palettes panel.

◆ Chapter 11, Data Source Gadgets Reference describes the two data source creation
gadgets: IliSQLDataSource and IliMemoryDataSource.

◆ Chapter 12, Display Gadgets Reference describes the display gadgets listed in the Data
Access menu in the Palettes Panel.
12 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 13 Tuesday, July 28, 2009 9:07 AM
◆ Appendix A, Utility Classes provides information on a few of the useful additional
classes in Data Access, IliString, IliDate, IliFormat, and IliInputMask.

◆ Appendix B, Format Syntax, describes the syntax used to specify the data format.

◆ Appendix C, Mask Syntax, describes the syntax used to specify the mask format.

◆ Appendix D, Error Messages, describes the error messages.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier typeface.

◆ Some words appear in italics when seen for the first time.

Naming Conventions

Throughout the documentation, the following naming conventions apply to the API.

◆ The names of classes defined in the IBM ILOG Views library begin with Ilv, for
example IlvDisplay.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized, for example IlvGadgetContainer.

Related Documentation and Bibliography

Certain IBM ILOG manuals can help you get started with Data Access, while various books
found in the marketplace can be a good source of information to create SQL database
applications.

IBM ILOG Manuals

These IBM ILOG manuals can help you use Data Access:

◆ To get started with Data Access, see the IBM ILOG Views Data Access Getting Started
manual.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 13

usrdataccess.book Page 14 Tuesday, July 28, 2009 9:07 AM
◆ The IBM ILOG Views Data Access Reference Manual describes the C++ classes for
Data Access.

◆ For more help in using the graphical user interface, see the manual IBM ILOG Views
Studio User’s Manual provided with IBM ILOG Views.

◆ The IBM ILOG Views Foundation User’s Manual provides helpful information and
numerous examples to help you quickly get proficient in the use of IBM ILOG Views.

◆ For information on C++ classes of other packages of IBM ILOG Views, refer to the
appropriate reference manuals.

◆ For information on IBM ILOG Views DB Link, see the IBM ILOG Views DB Link
Reference Manual.

C++ Programming Language Publications

The following books provide information on the C++ programming language:

◆ Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Wesley, 1989.

◆ Stroustrup, Bjarne. The C++ Programming Language. Reading, MA: Addison-Wesley,
1986.

◆ Stroustrup, Bjarne. The Design and Evolution of C++. Reading, MA: Addison-Wesley,
1994.

Database Publications

The following books contain some helpful, general information on databases:

◆ Date, C.J. A Guide to the SQL Standard. Reading, Mass.:Addison Wesley Publishing
Company.

◆ Date, C.J. An Introduction to Database Systems. Reading, Mass.:Addison Wesley
Publishing Company.
14 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 15 Tuesday, July 28, 2009 9:07 AM
Part I
IBM ILOG Views Data Access Common

Framework

This part describes how to use the common features of Data Access, including the Data
Access basics, the use of table objects in Data Access, data sources and gadgets, and the
handling of values in Data Access. It also provides some hints and tips for using Data
Access.

usrdataccess.book Page 16 Tuesday, July 28, 2009 9:07 AM
16 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 17 Tuesday, July 28, 2009 9:07 AM
1

Introducing Data Access

This chapter introduces you to the Data Access package of IBM® ILOG® Views Studio.
You can find information on the following topics:

◆ What is Data Access?

◆ Supported Databases

◆ Distribution Structure

What is Data Access?

Data Access is a visual environment for graphic-intensive database applications. Using
IBM® ILOG® Views, it lets you create graphical business objects and link them to data
sources to provide intuitive data access.

Data Access is organized as a set of C++ class libraries. These classes are to be used in
conjunction with the IBM ILOG Views C++ class libraries. Data Access is also
accompanied by a schema editor (SQL Schema Editor).

Libraries

The IBM ILOG Views libraries provide the API needed to implement the graphical part of
your application. IBM ILOG Views handles the drawing and management of gadgets and
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 17

usrdataccess.book Page 18 Tuesday, July 28, 2009 9:07 AM
graphics. The Data Access libraries provide the additional functionality required to handle
data from an external data source.

For more information on the IBM ILOG Views class libraries, refer to the appropriate
IBM ILOG Views Reference Manual.

Editors

The graphical editor provided with IBM ILOG Views, called IBM ILOG Views Studio, is a
powerful editor that enables you to build a portable graphical user interface.
IBM ILOG Views Studio allows you to construct your interface from predefined
“gadgets”—that is, buttons, scroll bars, menus, and other interface objects—using simple
drag-and-drop operations, while generating C++ code for you to program your application.
IBM ILOG Views Studio is fully documented in the IBM ILOG Views Studio User’s
Manual.

The graphical editor provided with Data Access is based on IBM ILOG Views Studio, but
has been adapted to be used with Data Access. This editor is referred to as
IBM ILOG Views Studio and contains an additional “Data Access” palette, which contains
all those predefined gadgets that may interact with an external source of data. There is also a
special interface that allows you to set up the connection with the external data source, in a
simple graphical way.

Also included with Data Access is the SQL Schema Editor. This editor is provided should
you need a simple editor to create tables in a database.

The schema is the table-form structure in which the data is stored. The schema editor is
therefore used to edit the table definitions and the data. The schema editor is also used to
drop a table in a database. This editor is located into the SQL Tables palette from the Data
Access palette.

Supported Databases

You can use Data Access with the following databases:

◆ Oracle

◆ Informix

◆ Sybase

◆ OLE DB (only for Windows)

◆ ODBC (only for Windows)

◆ Microsoft SQL Server (only for Windows)

◆ DB2
18 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Distribution Structure

usrdataccess.book Page 19 Tuesday, July 28, 2009 9:07 AM
Distribution Structure

When Data Access is installed on your machine, several directories are created, some of
them accompanied with a dedicated README file that you are advised to read. The
following main directories are created:

◆ bin and its subdirectories, provide some basic tools (IBM ILOG Views Studio with
static Data Access libraries, IBM ILOG Views Prototype Studio with static Data Access
libraries and other tools). In the directory of each tool you will find <systems> and
<database> directories for your specific target systems.

◆ data and its subdirectories provide panel description files (suffixed .ilv) used by the
delivered Data Access samples and editors, as well as the message description files. You
should avoid modifying them.

◆ include and its subdirectories provide all Data Access class header files.

◆ inform30 and its subdirectories provide the compatibility with InForm 3.0.

◆ lib and its subdirectories contain the Data Access libraries.

◆ samples and its subdirectories provide sample coding to let you see particular aspects of
the classes provided by Data Access.

◆ studio and its subdirectories contain the Data Access libraries for Studio.

Note: Check the compatibility of your particular database version directly with IBM
support.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 19

usrdataccess.book Page 20 Tuesday, July 28, 2009 9:07 AM
20 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 21 Tuesday, July 28, 2009 9:07 AM
2

Data Access Basics

This chapter briefly describes the IBM® ILOG® Views objects that are required to create a
basic Data Access application. It then continues with an overview of the basic concepts of
Data Access and the C++ classes that are provided in the Data Access API.

You can find information on the following topics:

◆ Overview

◆ IBM ILOG Views Interface

◆ Data Access Concepts

Overview

Data Access is a library dedicated primarily to the development of client-server database
applications. These applications generally consist of forms, which contain a set of fields
(text fields, check boxes, and so on). The values shown in these fields are the result of a
mapping between the fields and the data from an external data system.

The mapping between the fields in the graphical user interface and the external data system
is bidirectional: data can be retrieved from the database and displayed in the fields, and can
be modified by the user and updated in the external data source for long term storage.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 21

usrdataccess.book Page 22 Tuesday, July 28, 2009 9:07 AM
The gadgets that enable you to build the user interface for your application in Data Access
are provided by IBM® ILOG® Views. Some of these gadgets are the same as in
IBM ILOG Views, whereas others have been slightly modified to enable them to connect to
an external data source.

Data Access applications can be programmed either in C++ or in IBM ILOG Script, an IBM
ILOG implementation of the JavaScript language. This user's manual shows how things can
be done in C++.

IBM ILOG Views Interface

Data Access is an add-on to IBM® ILOG® Views so, therefore, the complete functionality
of the IBM ILOG Views API is available to users of Data Access. Some IBM ILOG Views
classes are essential to an application created in Data Access. These are briefly described in
this section. For more information, refer to the IBM ILOG Views documentation.

IlvDisplay

Any application that is constructed using Data Access must have an IlvDisplay object
before anything else can be created. This object manages all aspects of the communication
with the display system (such as drawing primitives, event handling, and so on).

The following code sample shows how a display object can be created:

// --- Display ---
int main (int argc, char* argv[]) {
 ...
 IlvDisplay* display = new IlvDisplay(“sample”, ““, argc, argv);
 ...
}

Note that when IBM ILOG Views Studio generates source code for your application it will
create an IlvApplication object, instead of creating a display object in this way. This
application object then creates the display.

IlvApplication

Applications built with IBM ILOG Views Studio contain an instance of a subclass of the
IlvApplication class. This class manages the creation of the IlvDisplay object along
with the creation of the application panels (that is, containers). Assuming the name of the
22 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IBM ILOG Views Interface

usrdataccess.book Page 23 Tuesday, July 28, 2009 9:07 AM
application is “MyApp”, the following is a sample of the code that IBM ILOG Views Studio
would generate:

Containers

Applications interact with the end user through windows that appear on the computer screen.
A container is a window that may hold a given number of graphic objects (such as charts,
gauges, buttons, and so on). Most of the interaction between an application and the end user
takes place through containers and the graphic objects they contain.

Data Access typically uses the IBM ILOG Views IlvGadgetContainer class as a base
class for the panels of the application.

Three different techniques can be used to set up a container. You can:

1. Code completely in C++.

● Create the container.

● Create the graphic objects.

● Put the graphic objects into the container.

● Set their positions and any other properties as required (font, color, and so on).

Since this technique requires the most coding, it is seldom used except in situations
where a great deal of flexibility is required (such as creating graphic objects that depend
on run-time information).

2. Design the panel using IBM ILOG Views Studio and save it in an .ilv data file. Then
create the container by coding in C++ and initialize it by reading the .ilv data file.
Although this technique is more convenient than the previous one, it still has one

 class MyApp: public IlvApplication {
 ...
 virtual void makePanels();
 ...
 };
 void MyApp::makePanels() {
 // Create all the panels defined in the Application.
 ...
 }
 int main (int argc, char* argv[]) {
 ...
 MyApp* appli = new MyApp(“myapp”, 0, argc, argv);
 ...
 }

Note: In IBM ILOG Views Studio, containers are referred to as panels.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 23

usrdataccess.book Page 24 Tuesday, July 28, 2009 9:07 AM
shortcoming: in order to manipulate a graphic object in a container through coding, you
need to call the IlvContainer::getObject member function and cast its result into
the appropriate type.

3. Design the panel using IBM ILOG Views Studio and generate the source code for the
corresponding panel class. This technique combines the benefits of the previous
technique with those gained from the fact that IBM ILOG Views Studio generates a
custom subclass of the IlvGadgetContainer class that corresponds to the panel being
generated. This panel class will have appropriate member functions to retrieve the
objects contained in the panel and will define virtual member functions to handle
callbacks.

Note that these techniques can be combined. For example, it is possible to design a panel
with IBM ILOG Views Studio, generate its source code, and then, at run time, create
additional objects and put them into the container.

For more information regarding the code generated by IBM ILOG Views Studio, refer to the
IBM ILOG Views Gadgets - User’s Manual.

Gadgets

Among the graphic objects that can be used in containers, one category of graphic objects is
especially relevant for Data Access, namely gadgets.

All gadget classes inherit from the IlvGadget class, which is a subclass of the
IlvGraphic class. Gadgets are specially designed graphic objects that are used to build
data entry forms.

IBM® ILOG® Views provides a variety of gadgets (text fields, buttons, menu bars, and so
on) for creating objects in your graphical user interface. These gadgets can be accessed in
the IBM ILOG Views Studio Palettes panel. See Chapter 1 of the IBM ILOG Views Data
Access Getting Started.

Data Access provides a certain number of additional gadgets that are designed to facilitate
the seamless integration of different types of data sources with graphical user interfaces.
These gadgets are generally referred to as data-source-aware gadgets. Data-source-aware
gadgets are described in more detail later. See Data-Source-Aware Gadgets on page 69.

Callbacks

The behavior of a gadget can be customized by defining a callback function and attaching
this function to one of the callback types that the gadget is able to trigger.

At the bottom of the IBM ILOG Views Studio main window, you will find a callback field
that lets you define the primary callback of the selected gadget. There are, however, other
callback types available with certain gadget classes. These other callback types can
generally be defined through the last page of the various gadget inspectors. (The only
24 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Access Concepts

usrdataccess.book Page 25 Tuesday, July 28, 2009 9:07 AM
exception is the SQL Data Source inspector where the callbacks panel is accessed through
the Callbacks item in the Tools menu.)

Note that a check box lets you choose whether the callback is coded in IBM ILOG Script or
C++.

The callback types that are supported by each gadget class are described in the
IBM ILOG Views and Data Access Reference Manuals. Additional information for classes
specific to Data Access can be found in the rest of this manual.

Data Access Concepts

This section summarizes the fundamental concepts of Data Access. The information in this
introduction is brief. Each section, however, contains a reference to a later chapter where
you will find more detailed information.

You can find information on the following topics:

◆ Values

◆ Database Connection

◆ Tables

◆ Data Sources

◆ Data-Source-Aware Gadgets

◆ Formats
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 25

usrdataccess.book Page 26 Tuesday, July 28, 2009 9:07 AM
◆ Masks

◆ Integrating with IBM ILOG Views Advanced Graphics

Values

The C++ language provides different types that can be used to represent values (for example,
int, double, char*, and so on). Data Access can deal with data in a uniform way,
independently of its type. It uses the IliValue class to represent data whose real type is not
known at compile time. See Chapter 5, Handling Values in Data Access.

The IliDatatype class defines objects that are used to represent the dynamic type of an
IliValue object.

Database Connection

All communication between a Data Access program and a remote database system goes
through the IliSQLSession and IliSQLCursor classes. These classes provide a high-
level interface to all the database access functions needed by Data Access. They are
themselves implemented with the IBM ILOG Views DB Link library. See Chapter 9,
Connecting to a Database.

Tables

The IliTable abstract class defines an object that resembles a table. See Chapter 3, Tables.

A table is a data structure that is defined by an ordered collection of columns. Each column
has a name, a data type, and other properties that define the way values in the column should
be handled in Data Access. The ordered collection of columns of a table is known as the
table schema.

Once the schema of a table is defined, the table can manage a set of rows, each row being an
ordered collection of values. The values in a row conform to the data types of the
corresponding columns in the schema.

The IliTable is abstract in the sense that although it provides the interface needed to
manipulate the rows in a table, it does not, itself, provide any useful implementation for this
interface.

Instead, more specialized subclasses of IliTable provide implementations that are specific
to different types of data stores. For instance, the IliSQLTable class manages rows that are
located in a remote relational database server. See Chapter 7, SQL Tables. The
IliMemoryTable class manages rows that are located in the process memory space.

The Data Access API also enables you to define new types of table objects that can deal with
other types of data stores or data feeds.
26 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Access Concepts

usrdataccess.book Page 27 Tuesday, July 28, 2009 9:07 AM
The IliSQLTable class (and its instances) should not be confused with the tables that are
located in a remote database server. These two entities are referred to as table objects and
database tables, respectively. The IliSQLTable class represents Data Access objects that
are located in the process address space and that serve as a bridge to tables (or SQL queries)
that are located (and executed) remotely in a database system.

Data Sources

Generally speaking, a data source indicates a particular source of information, such as a data
feed or a database system.

Data Access provides an IliDataSource gadget class. This class serves as a bridge
between the IliTable class and the data-source-aware gadget classes. Data-source-aware
gadgets are dedicated to handling user input and displaying data in different styles. They are
described in the next section.

From now on in this manual, the term “data source” is used to refer to instances of the
IliDataSource class (or one of its subclasses). This should not be confused with the
general meaning of this term.

Although the IliDataSource class is a gadget class, its instances are not visible to the user
of an Data Access application. They are, however, visible in IBM ILOG Views Studio so
that they can be edited.

Like other gadgets, a data source has a name and supports a set of callback types through
which it is possible to customize its behavior for specific needs, such as business rules, and
so on. See Chapter 4, Data Sources and Gadgets.

Data-Source-Aware Gadgets

In Data Access, you will find a set of gadget classes that can be seamlessly integrated with
the data sources described in the previous section. These gadgets are known as data-source-
aware gadgets.

A data-source-aware gadget class is a class that inherits through multiple inheritance paths
from both the IlvGadget class (or one of its subclasses) and the IliFieldItf class.

The IliFieldItf class defines the interface common to all data-source-aware gadgets. It
has member functions that deal with such operations as connecting to a data source,
querying or changing the value of the gadget, and so on.

For instance, the IliEntryField class is the data-source-aware version of the
IBM ILOG Views IlvTextField class. It has two superclasses, IlvTextField and
IliFieldItf. See Chapter 4, Data Sources and Gadgets.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 27

usrdataccess.book Page 28 Tuesday, July 28, 2009 9:07 AM
Formats

The IliFormat class is used to format values according to different rules. For instance, it is
possible to define a format that specifies that floating-point numbers should be displayed
with three digits after the decimal point. See the description of the IliFormat class in
Appendix A, Utility Classes.

Once a format has been defined, it can be used in C++ code to convert an IliValue object
into a character-string representation. Alternatively, it can be used to configure a data-
source-aware gadget so that the values displayed in the gadget are formatted according to a
predefined format.

Formats are defined using the format specification language described in Appendix B,
Format Syntax.

Masks

The IliInputMask class is similar to the IliFormat class except that it also manages user
input in addition to the format. Masks can be used to:

◆ Check application-defined constraints on the values entered by the end user.

◆ Permit the end user to enter values according to customized syntax.

A specification language lets you specify masks from within IBM ILOG Views Studio. This
format specification language for masks is described in Appendix C.

It is possible to specify a mask in C++ instead of using the specification language. The
IliInputMaskIpl class needs to be subclassed for this purpose.

Integrating with IBM ILOG Views Advanced Graphics

One of the interesting features of Data Access is that its complete integration with
IBM ILOG Views enables the creation of customized graphic objects that are linked to data
originating from an Data Access data source. The way in which this can be set up is shown
in the following figure:
28 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Access Concepts

usrdataccess.book Page 29 Tuesday, July 28, 2009 9:07 AM
Figure 2.1

Figure 2.1 Data Access with IBM ILOG Views Advanced Graphics
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 29

usrdataccess.book Page 30 Tuesday, July 28, 2009 9:07 AM
30 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 31 Tuesday, July 28, 2009 9:07 AM
3

Tables

This chapter describes the most important object in Data Access, the table object. The table
is created and manipulated via the IliTable class and its subclasses. This chapter also
discusses the IliSchema class and its relationship to table objects.

You can find information on the following topics:

◆ Introduction to Tables

◆ One-Tier and Two-Tier Tables

◆ The Role of a Table Object

◆ Schemas

◆ Managing Rows in a Table

◆ Table Hook

◆ Copying and Serializing Table Objects

◆ Specialized Table Subclasses

◆ Subclassing IliTable

◆ Table Properties
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 31

usrdataccess.book Page 32 Tuesday, July 28, 2009 9:07 AM
Introduction to Tables

The IliTable class plays a central role within Data Access since it serves two fundamental
purposes:

◆ Modelling

Tables are used as a structuring tool for user interface intensive applications. Before
tables, user interfaces were designed as a set of unrelated entry fields and the relationship
between these fields and the application data was coded in a programming language.
Now, the data model of the application can be graphically defined in terms of tables, with
gadgets in the panels being connected to table columns.

◆ Connectivity

Data can be seamlessly exchanged with external data stores using specialized subclasses
of the IliTable class. For instance, the IliSQLTable class is dedicated to data
exchange with a relational database system.

A table is implemented by the IliTable class in Data Access. This class is an abstract class
that defines objects capable of managing a collection of rows. Each table has a schema that
is defined by the IliSchema class, from which the IliTable class inherits. The rows that a
table manages must conform to its schema.

As explained in Chapter 2, Data Access Basics, the IliTable class defines an interface for
managing rows in a table but it does not provide any useful implementation for this interface.
Instead, Data Access provides a set of subclasses of the IliTable class that implement this
interface with a specific storage policy.

The IliTable class defines a protocol for creating, editing, and inspecting a table object,
and is designed to be subclassed. The subclasses of IliTable (that is, IliSQLTable,
IliMemoryTable, IliStringsTable, and IliMapTable) implement this protocol for
the different types of data sources with which they are associated.

Note: In database terminology, the term “table” designates a data structure that is stored
in and managed by a database system. From the graphical user interface point of view, the
term “table” designates a graphic object (or gadget). In this document, the terms
“database table” and “table gadget” are used to refer to these two different table types.
The term “table” or “table object” will be used to designate an instance of a subclass of
the IliTable class.
32 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

One-Tier and Two-Tier Tables

usrdataccess.book Page 33 Tuesday, July 28, 2009 9:07 AM
Figure 3.1

Figure 3.1 The IliSchema Hierarchy

One-Tier and Two-Tier Tables

The subclasses of IliTable manage tables in different ways. IliMemoryTable and
IliStringsTable manage rows in the process memory space. These tables are called one-
tier tables. Only the local process is involved to manage these types of tables.

Other classes such as IliSQLTable, however, manage rows that are located in a remote
database. These types of tables are referred to as two-tier tables since they interact with
another process (in this case, the database server).

In the case of two-tier tables, a local row cache is implemented, which stores copies of some
of the remote rows which the table is tied to, at any particular time. This cache reduces the
communication overhead with the remote database engine. It also provides random access to
the rows, even if the database system lacks this capability.

Figure 3.2

Figure 3.2 One-Tier and Two-Tier Tables
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 33

usrdataccess.book Page 34 Tuesday, July 28, 2009 9:07 AM
The Role of a Table Object

The primary role of a table object is to manage data. The data is managed in the form of
rows of values. But before a table can manage rows, it needs to be properly defined.

The way in which a table object is defined depends on its class. For instance, an
IliSQLTable object needs to know its own schema and how this schema relates to the
schema of the associated relational database. This contrasts with IliMemoryTable objects
that do not need any information other than their own schema.

A table object can be defined either by coding in C++ through the API or interactively by
using an appropriate inspector in IBM® ILOG® Views Studio.

Once defined, a table object can be used directly by coding its member functions in C++ to
inspect, add to, or modify its rows. However, it is mainly used by being attached to a data
source gadget that will manage it on behalf of the end user. A data source gadget will usually
have one or more gadgets (such as table gadgets, entry fields, combo boxes, and so on)
connected to it.

Figure 3.3

Figure 3.3 The Links Between a Data Source and Data-Source-Aware Gadgets and a Table Object

Note: In IBM ILOG Views Studio, inspectors are only available for the IliSQLTable
and IliMemoryTable classes.

PANEL

TABLE OBJECT

Data Source

DbToggle

DbFields

Table Gadget

Rows
34 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Schemas

usrdataccess.book Page 35 Tuesday, July 28, 2009 9:07 AM
Schemas

This section describes the properties of a table that relate to its columns. These properties are
defined by the IliSchema and the IliTable objects.

You can find information on the following topics:

◆ Schema Properties

◆ Defining the Schema of a Table Object

Schema Properties

The schema of a table is an ordered collection of columns. Most of the properties relating to
the schema of a table are defined by the IliSchema class, from which the IliTable class
inherits. However, the “mapping” properties are defined by the IliTable class. Each
column in a schema has the following properties:

Identification

◆ Index — Indicates the position of the column within the schema (starting from 0). Note
that the index of a column may change when other columns are inserted or removed from
the schema.

◆ Name — Allows other components of the Data Access library (such as data-source-
aware gadgets) to refer to a column by its name.

◆ Token — Is a “magic cookie” (an IlInt) that is assigned to the column at creation time.
It is guaranteed to remain constant even across program executions and is unique among
all the columns that belong to a given schema. It is used mostly by subclasses of the
IliTable class that need to identify columns independently of name or index changes.
This property is not accessible from within IBM ILOG Views Studio.

Column Type

◆ Datatype — Specifies the data type of all values in this column.

◆ Maximum Length — Applies only when the data type of the column assumes values of
varying size (typically, the IliStringType data type).

◆ Nullable — Specifies whether a column allows null values or not.

◆ Part Of Key — Specifies whether the column belongs to the primary key of the table or
not. The primary key of a schema is a subset of the columns such that the table will reject
any update or insertion that would result in the table having two rows whose values are
equal over the columns belonging to the primary key. In other words, the primary key is a
set of columns that can serve to identify rows in the table uniquely.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 35

usrdataccess.book Page 36 Tuesday, July 28, 2009 9:07 AM
◆ Default Value — Indicates a value that will be displayed when the user inserts a new row
in the table.

Look

◆ Format — Specifies the format that will be used to display values. See the IliFormat
class.

◆ Mask — Specifies the mask used to enter values. See the IliInputMask class.

◆ Alignment — Specifies how values in this column will be displayed. Usually, character
string values are left-aligned and date and numeric values are right-aligned.

◆ Display Width — Indicates the width in pixels of the column when it is displayed.

◆ Visibility — Indicates whether a column is visible to the end users. Note that in this case
the column and the values it contains can still be accessed by the API.

◆ Title — Specifies the caption of the column when it is displayed in a table gadget. By
default, the name of the column is used.

◆ Label — Is the caption of the column when it is displayed in a DbField gadget. By
default, the name of the column is used.

◆ Read Only — Specifies whether the column is read-only.

For more information on how the look of a column applies to gadgets that are connected to
it, see Setting the Table Look on page 110.

Mapping

A column can be mapped onto a column that belongs to another table. This table is referred
to as the foreign table. See Foreign Tables on page 105. In this situation, when the column is
displayed, the value shown is not the original column value. Instead, a value from the foreign
table is displayed. The foreign table is therefore used as if it were a dictionary. In addition,
the user can modify the column value by selecting a value from a pull-down menu that
contains a list of possible values. The foreign table provides the domain of values for the
column.

The properties relating to the mapping of a column are defined by the IliTable class.

There are two ways in which a foreign table can be defined: either the name of a data source
or the name of a table object can be specified. The latter is an API-only option.

◆ Foreign Data Source Name — Specifies the name of the data source from which the
foreign table is obtained.

◆ Foreign Table — Indicates the foreign table (this property is not accessible from within
IBM ILOG Views Studio).

◆ Value Column — Indicates the name of the column in the foreign table that defines the
domain.
36 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Schemas

usrdataccess.book Page 37 Tuesday, July 28, 2009 9:07 AM
◆ Display Column — Indicates the name of the column in the foreign table that will be
displayed in place of the original column value.

◆ Constrained — Indicates whether the column rejects any values that do not belong to the
value column of the foreign table.

◆ Completion — Indicates whether any incomplete user input will be automatically
completed by the gadget on validation, when the column is being edited in a table combo
box.

Defining the Schema of a Table Object

This section shows how a table can be created and its schema defined. Since the IliTable
class is abstract and therefore cannot be instantiated, the IliMemoryTable class is used in
the example below.

The IliMemoryTable class implements the table interface by storing rows in the process
memory space. Therefore, this class is suitable for transient tables that do not retain their
states across program executions.

A number of member functions let you access or modify the schema of a table. Most of these
can be found in the description of the IliSchema class. See IBM ILOG Views Data Access
Reference Manual. The IliTable class defines those member functions that deal
specifically with the mapping of columns.

Here is a list of some of the schema member functions :

class IliSchema {
 ...
 IlInt getColumnsCount() const;
 const char* getColumnName(IlInt colno) const;
 const IliDatatype* getColumnType(IlInt colno) const;
 IlBoolean isColumnPartOfKey(IlInt colno) const;
 void setColumnPartOfKey (IlInt colno, IlBoolean partOfKey);
 IlBoolean isColumnNullable(IlInt colno) const;
 void setColumnNullable(IlInt colno, IlBoolean nullable);
 IlBoolean insertColumn(IlInt colno,
 const char* colname,
 const IliDatatype* type,
 IlInt maxlen = -1);
};
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 37

usrdataccess.book Page 38 Tuesday, July 28, 2009 9:07 AM
The following code shows how a memory table can be defined:

In this example, a memory table is created and its schema is defined. The schema has three
columns, one of which serves as a key for the table. The IliSchema::insertColumn and
IliSchema::setColumnPartOfKey member functions are used.

Note that the IliMemoryTable class like all classes derived from the IliSchema class is
reference counted. This means that it is necessary to lock instances of these classes when
they are used. An instance of these classes is implicitly deleted when its reference count
reaches 0.

The next section contains information on how to access or edit the rows of a table. The
IliTableBuffer class is the main class required to carry out these actions.

Managing Rows in a Table

The IliTable class provides a set of virtual member functions that can be used to manage
the rows of a table. Basic row management techniques that apply to all table types are
described first. Then, the special case of two-tier tables is described.

You can find information on the following topics:

◆ Basic Techniques

◆ Techniques for Two-Tier Tables

◆ Error Catching

◆ Changing Error Messages

Basic Techniques

The main operations that can be performed on a row are:

◆ Insert a row (see IliTable::insertRow)

◆ Modify a row (see IliTable::updateRow)

◆ Delete a row (see IliTable::deleteRow)

enum ColumnTag { IdColumn, NameColumn, SalaryColumn };
 IlvDisplay* display;
 ...
 IliMemoryTable* tbl = new IliMemoryTable(display);
 tbl->lock();
 tbl->insertColumn(IdColumn, “Id”, IliIntegerType);
 tbl->insertColumn(NameColumn, “Name”, IliStringType);
 tbl->insertColumn(SalaryColumn, “Salary”, IliDoubleType);
 tbl->setColumnPartOfKey(IdColumn, IlvTrue);
 tbl->unLock();
38 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Managing Rows in a Table

usrdataccess.book Page 39 Tuesday, July 28, 2009 9:07 AM
◆ Inspect a row (see IliTable::getValue and IliTableBuffer::rowToBuffer)

These member functions do not give access to the actual row implementation. Instead, they
make use of the IliTableBuffer class that can store a copy of the values in a row.

This means that any updates to a table are always carried out on a complete row. The user
edits one complete row at a time, therefore avoiding — in the case of IliSQLTable objects
— time consuming network activity by validating changes in a complete row.

In addition, it avoids any problems with data coherency that the end user may have. The data
in individual columns in a row may apply constraints to each other. For example, having a
particular value in one column may limit the values allowed in another column. If the end
user must validate a row one column at a time, this problem may occur. When a whole row is
validated at one time, the problem is avoided.

A table buffer is created using the IliTable::getBuffer method. The table buffer must
be released using the IliTable::releaseBuffer method when it is no longer needed.

Note that rows are identified by their position within the table object. This is represented by
an integer, starting with zero for the first row.

The following code sample shows how to insert a new row into the memory table created in
the previous example:

The IliTableBuffer::at member function returns a reference to an IliValue object
that stores the value of the column, whose index is given. The
IliValue::importInteger and IliValue::importString member functions are
then used to assign the id and name to the buffer values. Finally, IliTable::appendRow
is called to insert a new row into the table.

The following code sample shows how a row in a table can be modified:

IliTableBuffer* buf = tbl->getBuffer();
buf->at(IdColumn).importInteger(1);
buf->at(NameColumn).importString(“Smith”);
buf->at(SalaryColumn).importDouble(255.00);
if (tbl->appendRow(buf) < 0) {
 IlvPrint(“Append row failed”);
}
tbl->releaseBuffer(buf);

IliTableBuffer* buf = tbl->getBuffer();
IlInt rowno = 10;
if (!buf->rowToBuffer(rowno)) {
 IlvPrint(“Invalid row number : %ld”, (long)rowno);
}
IlDouble salary = buf->at(SalaryColumn).asDouble();
buf->at(SalaryColumn).importDouble(salary * 1.1);
if (!tbl->updateRow(rowno, buf)) {
 IlvPrint(“Update row failed”);
}
tbl->releaseBuffer(buf);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 39

usrdataccess.book Page 40 Tuesday, July 28, 2009 9:07 AM
The IliTableBuffer::rowToBuffer member function copies the row at the specified
index into the buffer.

The following code sample shows how a row can be removed from a table by calling the
IliTable::deleteRow member function:

IlInt rowno = 15;
tbl->deleteRow(rowno);

Additional member functions are provided in the IliTable class that allow you to move a
row in a table, sort a table, or search for a given value in a table. For more information, refer
to the moveRow, findRow, findFirstRow, and sortRows member functions in the
IliTable class documented in the IBM ILOG Views Data Access Reference Manual.

Techniques for Two-Tier Tables

The IliTable class also provides a set of member functions dedicated to managing two-
tier tables. A two-tier table is tied to rows that are managed by some external process or
system; therefore serving as a bridge between Data Access and this external system. For
instance, the IliSQLTable class (described in Chapter 6, Hints and Tips for Using Data
Access) serves as a bridge to relational database systems. The DirectoryTable sample
class serves as a bridge to the file system. See Subclassing Example on page 49.

A two-tier table is usually defined by specifying some sort of criteria that will be used to
identify a result set extracted from the remote or external system. Precisely how this is done
depends on the subclass of IliTable being used. For an IliSQLTable, for example, an
SQL SELECT statement has to be specified.

The IliTable::select member function retrieves the data from the external system
identified by the above mentioned criteria. This data is then copied into a local row cache
managed by the table object.

With a two-tier table, the basic row management member functions (described in section
Managing Rows in a Table on page 38) perform specific actions, the details of which depend
on the specific subclass being used. For more information, refer to the appropriate class in
the IBM ILOG Views Data Access Reference Manual.

A two-tier table can retrieve rows in one of the following ways:

◆ The select member function immediately retrieves all rows identified by the selection
criteria and stores them in the local row cache.

◆ The select member function locates the rows identified by the selection criteria in the
external system, but delays their retrieval until they are required.

The IliTable::getRowsCount member function returns the number of rows that are
located in the local row cache. However, when a two-tier table implements the delayed row
retrieval, the value returned by IliTable::getRowsCount corresponds to the number of
40 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Managing Rows in a Table

usrdataccess.book Page 41 Tuesday, July 28, 2009 9:07 AM
rows that have been retrieved to date. It does not take into account those rows that have not
been retrieved yet.

The IliTable::fetchCompleted member function returns true when all rows have
been retrieved and stored in the local row cache. This member function can therefore be used
to check that the row count (as returned by getRowsCount) is definitive.

The IliTable::fetchNext and IliTable::fetchAll functions are used to retrieve
explicitly a fixed number of rows or all remaining rows from the result set. However, when
any of the insertRow, updateRow, deleteRow, and getValue member functions are
called and given a row number outside of the rows in the local row cache, all missing rows
up to this row are retrieved. In this way, the delayed retrieval feature is transparent except for
the rows count.

The insertRowInCache, updateRowInCache, and deleteRowInCache member
functions are similar to their non-inCache counterparts except that they simply act on the
local row cache, leaving the remote data store unaffected.

The IliTable::clearRows clears the row cache. For two-tier tables, the external system
to which the IliTable object is tied is not affected by the clearRows member function. A
subsequent select would retrieve the same rows again.

In a one-tier table, however, the IliTable::clearRows effectively deletes all rows in the
IliTable object.

Error Catching

All operations that are carried out on the rows of a table can fail for a variety of reasons. If an
operation fails, an IliErrorMessage object that describes the error is created. The
member function that triggered the error returns an error status.

An instance of the IliErrorMessage class contains the following information:

◆ Origin — an enumeration tag that identifies the library from which the error originates. It
can be any of the following libraries: DbmsServer, DbmsClientApi, DbLink,
Data Access or Application.

◆ Code — an integer whose interpretation depends on the origin.

◆ Message — a character string that contains a description of the error.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 41

usrdataccess.book Page 42 Tuesday, July 28, 2009 9:07 AM
Error messages are caught by IliErrorSink objects. An error sink is an object to which
errors can be forwarded.

Alternatively, the IliErrorList class can be used. This class inherits from
IliErrorSink, overloading the addError member function so that all errors caught are
recorded and made available for inspection.

Once a particular type of error sink has been chosen, the IliTable::addErrorSink
member function can be used to indicate that all subsequent error messages be forwarded to
it.

Here is an example of how the addErrorSink member function can be used:

Note that when table objects are acted upon through the default Data Access interaction
mechanisms (such as the DbNavigator or the table gadget), any errors that occur are
automatically reported to the end user.

However, when table objects are acted upon by custom C++ or IBM ILOG Script code that
executes on behalf of user interface callbacks, it is the custom code that bears the
responsibility to catch any errors that may occur (in an error list object, for example) and to
explicitly report these errors to the end user.

The distinction should be made between user interface callbacks (such as the callback of a
button gadget or of a menu item) and other more specialized callbacks (such as the data
source ValidateRow callback).

class IliErrorSink {
public:
 ...
 virtual void addError(const IliErrorMessage&) {}
};
//The IliErrorSink class is intended to be subclassed. Here is an example:
class MyErrorSink : public IliErrorSink {
public:
 virtual void addError(const IliErrorMessage& msg) {
 IlvPrint(“Error: code=%ld, message=’%s’”,
 (long)msg.getCode(),
 msg.getMessage());
 }
};

IliErrorList errors;
IliTable* tbl;
...
tbl->addErrorSink(&errors);
if (!tbl->deleteRow(10)) {
 for(IlInt i = 0; i < errors.getErrorsCount(); ++i) {
 IlvPrint(“Error: %s”,
 errors.getErrorAt(i).getMessage());
}
tbl->removeErrorSink(&errors);
42 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Table Hook

usrdataccess.book Page 43 Tuesday, July 28, 2009 9:07 AM
Catching and reporting errors has to be done by user interface callbacks. It does not need to
be done by the more specialized callbacks because the latter callbacks always execute in the
context of a user interface callback.

Errors are reported by the IliErrorReporter class, which has a virtual reportErrors
member function. It is possible to provide a custom error reporter on a data source or table
gadget basis, or, more globally, the default error reporter may be overridden.

Changing Error Messages

Data Access and IBM® ILOG® Views DB Link error messages are translated in message
database files.

◆ Data Access error messages are located in:

$ILVHOME/data/dataccess/dataccess.dbm

◆ IBM ILOG Views DB Link error messages are located in:

$ILVHOME/data/dataccess/dblink.dbm

The following code sequence is necessary to ensure that error messages are correctly
translated:

Table Hook

The IliTableHook class can be used to monitor the changes that a table object undergoes.
The IliTableHook class has a number of virtual member functions that can be overloaded
in subclasses to monitor different events that occur within a table object.

In the following example, a table hook is used to print a message each time a row is inserted
in a table object:

class CustomHook: public IliTableHook {
 virtual void rowInserted (IlInt rowno) {
 IlvPrint(“A rows has been inserted at position %d”,
 (int)rowno);
 }
};
int main () {
 IliTable* tbl;
 ...
 CustomHook* hook = new CustomHook;
 tbl->addHook(hook);
 ...

IliFormat::ReadMessageDatabase(display, "dataccess/dataccess.dbm");
IliErrorMessage::ReadMessageDatabase(display);

IliFormat::ReadMessageDatabase(display, "dataccess/dblink.dbm");
IliSQLSession::ReadMessageDatabase(display);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 43

usrdataccess.book Page 44 Tuesday, July 28, 2009 9:07 AM
 tbl->removeHook(hook);
 delete hook;
 return 0;
}

Copying and Serializing Table Objects

A table object can be copied with the IliTable::copyTable member function.

IliTable* origTable;
...
IliTable* cloneTable = origTable->copyTable();

Note that, in the case of two-tier tables, the row cache is not copied.

A table object can be written to a stream with the IliTable::writeTable member
function:

IliTable* tbl;
ostream& os;
...
tbl->writeTable(os);

At a later date, the table object can be rebuilt by reading from a stream:

istream& is;
...
IliTable* tbl = IliTable::ReadTable(is);

Note that, in the case of two-tier tables, the row cache is not written to the stream.

Specialized Table Subclasses

The Data Access library provides subclasses of the IliTable class. Each one is dedicated
to a specific row management policy.

You can find information on the following topics:

◆ IliSQLTable

◆ IliMemoryTable

◆ IliStringsTable

◆ IliMapTable
44 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Specialized Table Subclasses

usrdataccess.book Page 45 Tuesday, July 28, 2009 9:07 AM
IliSQLTable

The IliSQLTable class implements the table interface by managing rows that are located
in a remote relational database system. It handles all communication aspects with the
database system, such as the generation of SQL statements, error checking, and so on.

The IliSQLTable class defines two-tier tables.

Instances of this class can be defined and used either through the C++ API or interactively in
IBM ILOG Views Studio through an IliSQLDataSource object.

See Chapter 7, SQL Tables for more information on the IliSQLTable class.

IliMemoryTable

A memory table is a table that is managed locally in memory. You would use this type of
table for data that is required only temporarily and therefore is not stored in a database. The
SQL query language cannot be used with memory tables.

The IliMemoryTable class defines one-tier tables.

Objects of this class can be defined and used either through the C++ API or interactively in
IBM ILOG Views Studio through an IliMemoryDataSource object.

Examples of how a memory table is defined and used can be found in Managing Rows in a
Table on page 38.

IliStringsTable

The IliStringsTable class defines a one-tier table with a single column of type string.
It is similar to the IliMemoryTable class, with the following exceptions:

◆ Its schema is fixed and cannot be changed.

◆ It provides a custom interface to manage rows. This interface uses the const char*
C++ type instead of the IliValue and IliTableBuffer classes.

Here is an example of how it is used:

 IlvDisplay* dpy;
 IliDataSource* ds;
 ...
 IliStringsTable* tbl = new IliStringsTable(dpy);
 // No need to define the schema.
 tbl->lock();
 tbl->appendString(“One”);
 tbl->appendString(“Two”);
 tbl->appendString(“Three”);
 ds->setTable(tbl);
 tbl->unLock();
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 45

usrdataccess.book Page 46 Tuesday, July 28, 2009 9:07 AM
Objects of this class can be defined only through the C++ API.

IliMapTable

The IliMapTable class defines one-tier tables with two columns, the first column being of
type integer and the second of type string. It is similar to the IliMemoryTable class,
with the following exceptions:

◆ Its schema is fixed and cannot be changed.

◆ It is read-only. Its rows are given at construction time and cannot be changed afterwards.

◆ It supports IBM ILOG Views messages so that the values in the second column can be
automatically translated before being displayed. See the
IliMapTable::setLanguageSensitive member function.

Here is an example of how the IliMapTable class can be used:

 IlvDisplay* dpy;
 IliDataSource* ds;
 static IliMapEntry entries[] = {
 1, “red”,
 2, “green”,
 3, “blue”,
 0, NULL
 };
 ...
 IliMapTable* tbl = new IliMapTable(dpy, entries);
 ds->setTable(tbl, IlTrue);

Objects of this class can be defined only through the C++ API.

Subclassing IliTable

This section describes how to subclass the IliTable class to create your own custom table
classes.

You can find information on the following topics:

◆ Guidelines

◆ Subclassing Example

◆ Directory Class Example

◆ Persistence

Guidelines

When subclassing IliTable, the following guidelines should be respected:
46 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Subclassing IliTable

usrdataccess.book Page 47 Tuesday, July 28, 2009 9:07 AM
◆ The following virtual member functions may be overloaded for both one- and two-tier
tables:

◆ The following virtual member functions may be overloaded for two-tier tables:

◆ The subclass should be designed to notify the Data Access library when certain events
occur. Notification is performed by calling the appropriate function from the following:

Member Function Overload

getRowsCount mandatory

getValue mandatory

updateRow optional

insertRow optional

deleteRow optional

moveRow optional

allowRowMove optional

updateRowInCache optional

insertRowInCache optional

deleteRowInCache optional

Member Function Overload

clearRows mandatory

select mandatory

isSelectDone mandatory

fetchCompleted optional

fetchNext optional

fetchAll optional

Member Function When Called

allRowsDeleted Called when the clearRows member function
is called.

tableChanged Called when the IliTable object has undergone
a significant number of changes.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 47

usrdataccess.book Page 48 Tuesday, July 28, 2009 9:07 AM
Note that in many instances, the implementor of an IliTable object can choose to notify
certain events by calling one or another member function.

For instance, if two cells in a given row are changed, the IliTable object implementor can
choose to do one of the following:

◆ Call cellChanged twice.

rowInserted Called just after a new row has been inserted
 in the table.

rowsInserted Called just after a sequence of rows has been inserted.
Note that instead of calling this member function,
the rowInserted member function may be
called repeatedly, once for each row.

rowToBeChanged Called just before a row is changed.

rowChanged Called just after a row has changed.

rowToBeDeleted Called just before a row is removed.

rowDeleted Called just after a row has been removed.

rowMoved Called just after a row has moved
to another position.

rowsExchanged Called just after two rows have exchanged positions.

rowFetched Called just after a new row has been fetched
from a remote database and inserted into
the local row cache (the rowInserted
member function must also be called).

rowsFetched Called just after a sequence of rows
has been fetched. Note that instead of calling
this member function, the rowFetched
member function may be called repeatedly,
once for each row.

cellChanged Called just after a cell has changed.
If more than one cell has changed in a row,
it is preferable to call the rowChanged
member function once, instead of
calling cellChanged many times.

raiseError Called each time an error occurs.
The error is described by
an IliErrorMessage object.

Member Function When Called
48 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Subclassing IliTable

usrdataccess.book Page 49 Tuesday, July 28, 2009 9:07 AM
or

◆ Call rowChanged once.

Similarly, the insertion of two or more consecutive rows in the table, can be notified in one
of the following ways:

◆ By repeatedly calling rowInserted, once for each row.

or

◆ By calling rowsInserted once.

As a consequence, when a given event can be notified either by calling one member function
or another, an IliTable object using a table hook to monitor changes undergone by the
table should overload both member functions, otherwise some events may be missed.

Subclassing Example

Here is an example that defines a DirectoryTable class. This class manages files in a
directory. Within this example, the member functions that are used to notify the Data Access
library when certain events occur appear in bold type.

#include <dirent.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <ilviews/dataccess/table.h>

class DirectoryTable : public IliTable {
public:
 enum ColumnTags { FileName = 0 };
 DirectoryTable(IlvDisplay* dpy, const char* directory)
 : IliTable(dpy)
 {
 _rowsCount = 0;
 _files = NULL;
 _directory = dupString(directory);
 insertColumn(FileName, “FileName”, IliStringType);
 }
 ~DirectoryTable() {
 tidy();
 delete [] _directory;
 }
 void clearRows() {
 tidy();
 allRowsDeleted();
 tableChanged();
 }
 IlvBoolean select() {
 readDir();
 }
 IlvBoolean isSelectDone() const {
 return _files != NULL;
 }
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 49

usrdataccess.book Page 50 Tuesday, July 28, 2009 9:07 AM
 IlvInt getRowsCount() const {
 return _rowsCount;
 }
 IlvBoolean getValue(IlInt rowno, IlvInt colno,
 IliValue& value) const {
 if (rowno >= 0 && rowno < _rowsCount && colno == 0) {
 value = _files[rowno];
 return IlTrue;
 }
 return IlFalse;
 }
 IlvBoolean updateRow(IlInt rowno,
 IliTableBuffer* buf) {
 const IliValue& value = buf->at(FileName);
 if (rowno >= 0 && rowno < _rowsCount
 && !value.isNull() && value.getType() == IliStringType) {
 const char* newname = value.asString();
 char oldpath[_POSIX_MAX_PATH];
 char newpath[_POSIX_MAX_PATH];
 sprintf(oldpath, “%s/%s”, _directory, _files[rowno]);
 sprintf(newpath, “%s/%s”, _directory, newname);
 if (rename(oldpath, newpath) == 0) {
 delete _files[rowno];
 _files[rowno] = dupString(newname);
 rowChanged(rowno);
 return IlTrue;
 } else {

 IliErrorMessage msg;
 msg.setApplicationError(strerror(errno));
 raiseError(msg);
 }
 }
 return IlFalse;
 }
 IlvBoolean insertRow(IlInt rowno,
 IliTableBuffer* buf) {
 IliErrorMessage msg;
 msg.setApplicationError(“Insertion not supported in “
 “DirectoryTables”);
 raiseError(msg);
 return IlFalse;
 }
 IlvBoolean deleteRow (IlInt rowno) {
 IliErrorMessage msg;
 msg.setApplicationError(“Deletion not supported in “
 “DirectoryTables”);
 raiseError(msg);
 return IlFalse;
 }

private:
 IlInt _rowsCount;
 char* _directory;
 char** _files;

 char* dupString(const char* str) const {
 char* d = new char[strlen(str) + 1];
50 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Subclassing IliTable

usrdataccess.book Page 51 Tuesday, July 28, 2009 9:07 AM
 strcpy(d, str);
 return d;
 }
 void tidy() {
 for (IlInt i = 0; i < _rowsCount; ++i)
 delete [] _files[i];
 delete [] _files;
 _files = NULL;
 _rowsCount = 0;
 }
 IlBoolean readDir() {
 DIR *dir = opendir(_directory);
 if (dir != NULL) {
 tidy();
 struct dirent* entry;
 while ((entry = readdir(dir)) != NULL)
 _rowsCount++;
 _files = new char*[_rowsCount];
 rewinddir(dir);
 _rowsCount = 0;
 while ((entry = readdir(dir)) != NULL)
 _files[_rowsCount++] = dupString(entry->d_name);
 closedir(dir);
 tableChanged();
 return IlTrue;
 }
 IliErrorMessage msg;
 msg.setApplicationError(strerror(errno));
 raiseError(msg);
 IlFalse;
 }
};

Directory Class Example

The directory class could be used in the following way:

 IlvDisplay* dpy;
 IliDataSource* ds;
 ...
 DirectoryTable* tbl = new DirectoryTable(dpy, “/usr/home/me”);
 ds->setTable(tbl, IlTrue);

In this example, the directory table is created and attached to an existing data source.

Note: This example applies only to systems where the opendir, readdir, and closedir
functions are defined. For other systems, you may have to make some changes in order to
call the appropriate functions.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 51

usrdataccess.book Page 52 Tuesday, July 28, 2009 9:07 AM
Persistence

Having created a custom table class, you may want to make it persistent. Making it
persistent means that it is integrated in IBM® ILOG® Views Studio. It can appear in the
Data Access palette of the Palettes panel and can be used in the same way as other Data
Access classes. For example, you may want to make a custom data source that uses your
persistent custom table.

To make your custom table class persistent, you should ensure that the following items are
declared in the header file for the class:

◆ a copy constructor

◆ a stream based constructor

◆ the IliDeclareDTypeInfo macro in the class declaration

◆ a write virtual member function

◆ an operator==

◆ the IliDeclareTypeInit macro is used in the header file

#include <ilviews/dataccess/table.h>

class DirectoryTable : public IliTable {
public:
 ...
 DirectoryTable(const DirectoryTable&);
 DirectoryTable(IlvDisplay*, istream&);

 IliDeclareDTypeInfo(DirectoryTable);
 virtual void write (ostream&) const;
 int operator == (const DirectoryTable&) const;
 ...
};
IliDeclareTypeInit(DirectoryTable);

In the source file, the implementation should do the following:

◆ Use the IliRegisterDClass macro.

◆ Implement all the constructors and member functions mentioned above.

Here is an outline of what the implementation may look like. The details have been left for
you to fill in:

DirectoryTable::DirectoryTable(const DirectoryTable& o)
 : IliTable(o)
{
 ...
}

DirectoryTable::DirectoryTable(IlvDisplay* dpy, istream& is)
 : IliTable(dpy, is)
52 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Table Properties

usrdataccess.book Page 53 Tuesday, July 28, 2009 9:07 AM
{
 ...
}

void DirectoryTable::write (ostream& os) const {
 IliTable::write(os);
 ...
}

int DirectoryTable::operator == (const DirectoryTable& o) const {
 if (!IliTable::operator == (o))
 return 0;
 ...
}

IliRegisterDClass(DirectoryTable,IliTable);

Table Properties

The IliTable class supports annotating parts of a table with properties. In contrast to the
primary content of the table (the table's rows), the properties are not constrained by the table
schema.

A property has a name (an IlSymbol* object) and a value (an IliValue object).

The parts of an IliTable object that can have properties are:

◆ The whole table

◆ Any column

◆ Any row

◆ Any cell

Each part can have any number of properties attached to it as long as the property names are
unique for each part. Two different parts (two cells or a cell and a row) can have properties
with the same name.

The IliTable class does not manage properties itself, instead it delegates property
management to the IliTablePropertyManager class.

An IliTable object has a default property manager, but it can manage additional property
managers if needed. The requirement that a given part of a table cannot have two properties
with the same name applies to each property-manager. Among different property managers,
a given IliTable part can have properties with the same name, one for each property
manager.

Scoped Properties

There is a containment relationship between the different types of parts of a table:
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 53

usrdataccess.book Page 54 Tuesday, July 28, 2009 9:07 AM
◆ A given row may contain a given cell.

◆ A given column may contain a given cell.

◆ The whole table contains all columns, all rows, and all cells.

Consequently, in addition to the properties that are attached to a given part, there may be
properties attached to containing parts.

A given part is said to have a given scoped property if it has this property or if one of the
parts in which it is contained has a scoped property with this name.

Note that the scoped property value of a part is the value of the property closest to the part.
In the case of a conflict, if a given cell does not have a property but both the row and the
column of the cell have a property with that name, the property of the row takes precedence.

The order of precedence for scoped properties lookup is as follows:

◆ Cell

◆ Row

◆ Column

◆ The whole table

Property-Aware Gadgets

Data-source-aware gadgets can be sensitive to given properties. Each gadget specifies the
property names to which it is sensitive and what values are expected for these properties. It
is then possible to change the behavior or look of the gadget by changing the property value
of the table part to which the gadget is connected.

As a consequence, if a given table part is simultaneously displayed through different
gadgets, some of its graphical attributes (for example, the font or the color) will
automatically be identical in all gadgets. The application code that decides of the color needs
only assign the “font” property to that part. It does not need to know in which gadgets that
part is displayed nor does it need to access these gadgets and call member functions specific
to them.

In addition, a property-aware gadget can use a different property manager than the default
property manager of the table on demand.

Currently, the following gadgets are property-aware:

◆ IliTableGadget

◆ IliDbField

◆ IliEntryField

◆ IliDbText

◆ IliTableComboBox
54 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Table Properties

usrdataccess.book Page 55 Tuesday, July 28, 2009 9:07 AM
◆ IliDbStringList

◆ IliToggleSelector

◆ IliDbToggle

◆ IliDbOptionMenu

These gadgets support the following properties (when applicable):

The following code example shows how table properties are used:

void MakePrimaryColumnsReadOnly(IliTable* table) {
 IlvInt count = table->getColumnsCount();
 const IlInt allRows = -1;
 const IlInt allColumns = -1;
 const IlInt insertRow = -2;
 const IlvSymbol* readOnlyName = IlvGetSymbol("readOnly");
 IliValue trueVal = (IlInt)1;
 IliValue falseVal = (IlInt)0;

 for (IlInt colno = 0; colno < count; ++colno) {
 if (table->isColumnPartOfKey(colno)) {
 table->setProperty(allRows,
 colno,
 readOnlyName,
 trueVal);
 }
 }
 table->setProperty(insertRow,
 allColumns,
 readOnlyName,
 falseVal);
}

Note that a value of -2 can be used for the row index to designate the insertion row.

The MakePrimaryColumnsReadOnly function in the previous example works for the
following reason. Since rows have precedence over columns, the readOnly property will be
false for all cells contained in the insertion row (whatever the column), whereas it will be
true for all primary key column cells contained in other rows.

Property Name Property Value Type Property Value

font String font name

background String color name

foreground String color name

readOnly Boolean 1 or 0

format String format name or specification

mask String mask name or specification
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 55

usrdataccess.book Page 56 Tuesday, July 28, 2009 9:07 AM
56 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 57 Tuesday, July 28, 2009 9:07 AM
4

Data Sources and Gadgets

This chapter describes data sources and the gadgets, called data-source-aware gadgets, that
can be connected to data sources.

You can find information on the following topics:

◆ Data Sources

◆ Data-Source-Aware Gadgets

Data Sources

Data Access provides an IliDataSource class that “glues” table objects (the IliTable
class and its subclasses) and gadgets used for data entry.

A data source is a gadget. Like other gadgets, it can have defined callbacks. The data source
appears in the Data Access palette of the IBM ILOG Views Studio Palettes panel and can be
inspected in IBM ILOG Views Studio.

Each data source manages an IliTable object and a current row.

Data Access provides other types of gadgets, such as data-source-aware gadgets, that are
connected to a data source. These gadgets connect to a particular column and display the
value of the current row in this column. Data-source-aware gadgets are discussed later in this
chapter. See Data-Source-Aware Gadgets on page 69.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 57

usrdataccess.book Page 58 Tuesday, July 28, 2009 9:07 AM
The IliDataSource class inherits from the IliDataGem class. IliDataGem is a special
class that defines gadgets that are only visible during the design phase. Data source gadgets
can be moved and inspected using the Selection mode of IBM ILOG Views Studio.
However, when the panel is being tested during panel construction or when the application is
being run, the data source gadget is no longer visible.

You can find information on the following topics:

◆ Creating a Data Source Gadget

◆ Connecting Data-Source-Aware Gadgets

◆ The Scope of a Data Source

◆ Managing Rows in a Data Source

◆ Customizing a Data Source

◆ Error Handling

◆ The Repository

Creating a Data Source Gadget

A data source is a gadget that manages an IliTable object. The following code sample
shows how a data source can be created and set up to manage a memory table:

IlvDisplay* display;
IlvGadgetContainer* panel;
...
// Create a data source gadget.
IliDataSource* ds = new IliDataSource(display,
 IlvPoint(10, 10));

// Create and define a memory-table.
IliMemoryTable* tbl = new IliMemoryTable(display);
tbl->lock();
tbl->appendColumn(“Id”, IliIntegerType);
tbl->appendColumn(“Name”, IliStringType);

// Assign the memory-table to the data source.
ds->setTable(tbl);
tbl->unLock();

// Put the data source in a panel.
panel->addObject(ds);
panel->setObjectName(ds, “EMP”);

Data Access provides the following subclasses of the IliDataSource class:

◆ IliMemoryDataSource—this class instantiates an IliMemoryTable.

◆ IliSQLDataSource—this class instantiates an IliSQLTable.
58 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Sources

usrdataccess.book Page 59 Tuesday, July 28, 2009 9:07 AM
The only difference between these two classes and their base class is that they automatically
instantiate the corresponding type of table. These two subclasses are provided for
convenience, however, the IliDataSource class can manage any type of IliTable
object.

Connecting Data-Source-Aware Gadgets

A data-source-aware gadget is a gadget that can be connected to a data source. The
following code sample shows how an IliEntryField gadget is created.

// Create an entry-field and put it in the panel.
IliEntryField* ef = new IliEntryField(display,
 IlvRect(25, 50, 55, 22));
panel->addObject(ef);

// Connect the entry field to the data source.
ef->f_setDataSourceName(“EMP”);
ef->f_setDataSourceColumnName(“Id”);

The newly created entry field is connected to the “Id” column of the “EMP” data source.

Similarly, the next example shows how to create another entry field gadget and connect it to
the “Name” column.

// Create an entry-field and put it in the panel.
ef = new IliEntryField(display, IlvRect(25, 80, 155, 22));
panel->addObject(ef);

// Connect the entry-field to the data source.
ef->f_setDataSourceName(“EMP”);
ef->f_setDataSourceColumnName(“Name”);

The Scope of a Data Source

A data source can be accessed either by the gadgets in its own panel or by gadgets in other
panels. A data source can be accessed by gadgets located in other unrelated panels only if it
has global scope. The IliDataGem class has two member functions, hasGlobalScope and
setGlobalScope, that let you determine and set the scope of a data source. See the
IliDataGem class in the IBM ILOG Views Data Access Reference Manual.

The precise rules by which a data source is accessed are found in the section The Repository
on page 67.

Note: Another slight difference between these subclasses and their base classes is that
each subclass has a specific bitmap that appears in IBM ILOG Views Studio.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 59

usrdataccess.book Page 60 Tuesday, July 28, 2009 9:07 AM
Managing Rows in a Data Source

Once a data source gadget has been defined and gadgets have been connected to it, the row
management member functions of the data source can be used. These row management
functions differ from the IliTable row management functions in that they are based on the
concept of a current row. Changing the current row of a data source has a direct result on the
user interface. The IliTable row management functions should be used when you want to
manage rows without changing the current row in the user interface. Changing the current
row means moving to another row. With regard to editing the values in a row (current or not),
the user interface is updated in both cases. See Managing Rows in a Table on page 38.

From the end user’s point of view, Data Access provides an IliDbNavigator gadget that
connects to a data source. With this gadget, the end user can perform actions on the data
source.

Figure 4.1

Figure 4.1 An IliDbNavigator Gadget and the API Member Functions that It Calls

Each button in the IliDbNavigator calls the corresponding member functions in
IliDataSource directly.

If the table object managed by the data source is a two-tier table (for example, an
IliSQLTable), the select member function can be used to re-evaluate the SQL table
query.

The “goto” set of member functions enable you to move the current row of the data source.
You can move to any row using the gotoPrevious, gotoNext, gotoFirst, gotoLast,
gotoRow. The gotoRow member function takes a row index parameter.

When the current row of a data source changes, the value displayed by any gadget connected
to the data source (for example, entry fields), is automatically adjusted.
60 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Sources

usrdataccess.book Page 61 Tuesday, July 28, 2009 9:07 AM
If you want to modify a row in the underlying table of a data source, you can proceed in the
following way:

IliDataSource* ds;
...
// We want to modify the 2nd row.
ds->gotoRow(1);
// Make any changes to the columns of the data source.
ds->setValue(“Name”, IliValue(“Smith”));
...
// Validate changes.
if(!ds->validate())
 IlvPrint(“Update failed”);

The setValue member function is used to modify a value contained in the data source
buffer. The data source buffer retains the changes until the validate member function is
called. When there are changes pending in a validation, the isInputModified member
function returns true.

During the period of time that it takes for the isInputModified member function to return
true on a data source, any pending changes can be canceled using the cancel member
function.

In all situations, the underlying table is modified only when validate is called, not each
time the setValue member function is called.

The following code sample shows how a new row can be inserted:

IliDataSource* ds;
...
// We want to insert a new row.
ds->startInsert();
// Assign values to the columns of the data source.
ds->setValue(“Id”, IliValue(32));
ds->setValue(“Name”, IliValue(“Jones”));
...
// Validate insertion.
if(!ds->validate())
 IlvPrint(“Insert failed”);

The main difference between this example and the previous one is that the startInsert
member function is used instead of using the gotoRow member function to move to an
existing row.

The deleteCurrentRow member function can be used to remove the current row.

Note: You can disable the insertion through a data source by calling the enableInsert
member function with the parameter set to false.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 61

usrdataccess.book Page 62 Tuesday, July 28, 2009 9:07 AM
Customizing a Data Source

The behavior of a data source can be customized using callbacks. A callback is a C++
function that will be called when a given event occurs. A callback can be defined by calling
one of the IlvGraphic::setCallback or IlvGraphic::addCallback member
functions.

Here is an example:

void ILVCALLBACK MyEnterRow(IlvGraphic* g, IlAny) {
 IliDataSource* ds = (IliDataSource*)g;
 IlvPrint(“Enter Row %ld in data source ‘%s’”,
 (long)ds->getCurrentRow(),
 ds->getName());
}

int main(int argc, char** argv) {
 IliDataSource* ds;
 ...
 ds->setCallback(IliDataSource::EnterRowSymbol(),
 MyEnterRow);
 ...
}

This example defines the EnterRow callback of a data source. This callback will be called
each time a new row becomes the current row of the data source.

For each callback type (such as EnterRow), the IliDataSource class provides:

◆ A static member function that returns the name of the callback type in the form of an
IlSymbol* (for example, EnterRowSymbol).

◆ A virtual member function (such as onEnterRow) that is called by the data source when
the corresponding event occurs. This virtual member function calls in turn the
corresponding callback (if any).

Monitoring the Selected Row

The following callback types can be used to monitor the selected row:

◆ EnterRow

◆ QuitRow

Update Validation

The following callback types can be used to customize the way rows are updated:

◆ EnterUpdateMode

◆ ValidateRow

◆ PrepareUpdate

◆ QuitUpdateMode
62 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Sources

usrdataccess.book Page 63 Tuesday, July 28, 2009 9:07 AM
◆ CancelEdits

These callbacks are called in a particular order.

The first time the end user starts to modify a row (by typing a key on the keyboard), the
EnterUpdateMode callback is called. At this point, the
IliDataSource::isInputModified member function returns true.

When the end user has finished editing the row, validation will usually be triggered.
Validation proceeds as follows:

◆ The ValidateRow callback is called.

◆ The PrepareUpdate callback is called.

These two callbacks are designed to allow you to code custom checks that depend on the
application logic, and make on-the-fly adjustments to the row being updated.

Both of these callbacks have the same purpose. However, the ValidateRow callback is also
called when a row is inserted (as you will see in the next section), therefore enabling you to
specify a single function that is called in both cases.

The following example shows how custom checks can be coded:

void ILVCALLBACK MyValidateRowCallback(IlvGraphic* g, IlAny) {
 IliDataSource* ds = (IliDataSource*)g;
 if (ds->getValue(“Qty”).asInteger() > 15) {
 ds->dontValidateRow();
 ds->addErrorMessage(“Invalid quantity”);
 }
}
...
IliDataSource* ds = ...;
ds->setCallback(IliDataSource::ValidateRowSymbol(),
 MyValidateRowCallback);

If the check criterion is not satisfied, the callback calls the dontValidateRow member
function to stop validation and it calls the addErrorMessage member function to provide
an appropriate error message.

If both of these callbacks agree on validation (that is, they do not call the
dontValidateRow member function), the row updates are transmitted to the underlying
table through the IliTable::updateRow member function. If this call succeeds, the
QuitUpdateMode callback is called.

The CancelEdits callback is called if the end user cancels the modifications instead of
validating.

Insert Validation

The following callback types can be used to customize the way rows are inserted:

◆ EnterInsertMode

◆ ValidateRow
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 63

usrdataccess.book Page 64 Tuesday, July 28, 2009 9:07 AM
◆ PrepareInsert

◆ QuitInsertMode

◆ CancelEdits

These callbacks work in the same way as the update callbacks (see the previous section).

The following example shows how a PrepareInsert callback can be defined to compute a
unique identifier:

void ILVCALLBACK MyInsertRowCallback(IlvGraphic* g, IlAny) {
 IliSQLDataSource* ds = (IliSQLDataSource*)g;
 IliSQLTable* tbl = ds->getSQLTable();
 if (ds->getValue(“ID”).isNull()) {
 IliSQLSession* session = tbl->getEffectiveSQLSession();
 IliSQLCursor* curs = session->newCursor();
 if (curs->execute(“SELECT NEXTID FROM COUNTER FOR UPDATE”)
 && curs->fetchNext()) {
 IlInt id = curs->getIntegerValue(0);
 curs->execute(“UPDATE COUNTER SET NEXTID = NEXTID + 1”));
 ds->setValue(“ID”, IliValue(id));
 }
 else {
 ds->dontValidateRow();
 ds->addErrorMessage(curs->getErrorMessage());
 }
 session->releaseCursor(curs);
 }
}
...
IliSQLDataSource* ds = ...;
ds->setCallback(IliDataSource::PrepareInsertSymbol(),
 MyInsertRowCallback);

This example assumes that the data source is tied to a table with an “ID” column. When the
end user inserts a row through the data source, the value of the “ID” column is computed by
incrementing a value found in the COUNTER database table.

Computed Columns

The FetchRow callback can be used to compute the value of one or more columns. This
callback, which applies only to two-tier tables, is called each time a row is retrieved from the
remote system and stored in the local row cache.

The following example illustrates the use of the FetchRow callback. Assume you have a
database table, named HEATER, with a MAXTEMP column that describes the maximum
temperature in degrees Celsius.

To display this table and show the MAXTEMP column in degrees Fahrenheit, do the
following:
64 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Sources

usrdataccess.book Page 65 Tuesday, July 28, 2009 9:07 AM
◆ Ensure that the SQL data source has, at least, the following two columns:

◆ Define a FetchRow callback in the following way:

Note that the updateRowInCache member function is called instead of updateRow
because only the local row cache needs to be changed.

Deleted Rows

The following callback types can be used to customize the way rows are deleted:

◆ PrepareDeleteRow

◆ DeleteRow

void ILVCALLBACK MyFetchRowCallback(IlvGraphic* g, IlAny) {
 IliSQLDataSource* ds = (IliSQLDataSource*)g;
 IliSQLTable* tbl = ds->getSQLTable();
 IlInt rowno = ds->getFetchedRow();
 IliTableBuffer* buf = tbl->getBuffer();
 buf->rowToBuffer(rowno);
 IlDouble celsius = buf->at(“MAXTEMP”).asInteger();
 IlDouble fahrenheit = CelsiusToFahrenheit(celsius);
 buf->at(“FAHRENHEIT”) = IliValue(fahrenheit);
 tbl->updateRowInCache(rowno, buf);
 tbl->releaseBuffer(buf);
}
...
IliSQLDataSource* ds = ...;
ds->setCallback(IliDataSource::FetchRowSymbol(),
 MyFetchRowCallback);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 65

usrdataccess.book Page 66 Tuesday, July 28, 2009 9:07 AM
The PrepareDeleteRow callback can be used to prohibit row deletions through a given
data source. If the callback calls dontDeleteRow, the user will not be able to delete the
current row. As with the ValidateRow callback, the addErrorMessage member function
may be called to provide an error message.

The DeleteRow callback can be used to monitor row deletion events. Here is an example:

void ILVCALLBACK MyRowDeleted(IlvGraphic* g, IlAny) {
 IliDataSource* ds = (IliDataSource*)g;
 IlvPrint(“Row %ld in data source ‘%s’ has been deleted”,
 (long)ds->getDeletedRow(),
 ds->getName());
}

int main(int argc, char** argv) {
 IliDataSource* ds;
 ...
 ds->setCallback(IliDataSource::DeleteRowSymbol(),
 MyRowDeleted);
 ...
}

Error Handling

This section provides information on three topics concerning the handling of errors for a
data source: error catching, error reporting, and error raising.

Error Catching

Errors can be caught through error sink objects using a similar technique to the one
described for IliTable objects. See the addErrorSink and removeErrorSink member
functions. Note that all errors raised by the underlying table object are forwarded to the data
source error sinks. In addition, the data source itself can raise specific errors.

The following example shows how a data source should be set up in order to catch and report
errors:

IliDataSource* ds;
...
// Set up an error sink.
IliErrorList errors;
ds->addErrorSink(&errors);
// Act on the data source.
ds->gotoRow(10);
ds->setValue(“NAME”, IliValue(“Smith”));
ds->validate();
...
ds->removeErrorSink(&errors);
// Check for errors.
if (errors.getErrorsCount() > 0) {
 ds->reportErrors(errors);
}

66 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Sources

usrdataccess.book Page 67 Tuesday, July 28, 2009 9:07 AM
Error Reporting

Errors are reported through an instance of the IliErrorReporter class. The
setErrorReporter member function can be used to provide a custom error reporter.

The following example shows how the error reporter of a data source can be redefined:

class MyErrorReporter: public IliErrorReporter {
public:
 virtual void reportErrors (IlvDisplay* dpy,
 IlvAbstractView* anchor,
 const IliErrorList& errors) const {
 for (IlInt i = 0; i < errors.getErrorsCount(); ++i) {
 IlvPrint(“Error: %s”, errors.at(i).getMessage());
 }
 }
};

int main(int argc, char** argv) {
 IliDataSource* ds;
 ...
 MyErrorReporter* rep = new MyErrorReporter;
 ds->setErrorReporter(rep);
 ...
}

Error Raising

Errors can be raised within a validation callback such as ValidateRow, PrepareUpdate or
PrepareInsert. In such cases, the dontValidateRow member function should be called
to stop the validation process and errors can be raised by calling the addErrorMessage
member function. For more information on Error Messages, see Appendix D, Error
Messages.

The Repository

There are two ways in which a data source can be retrieved when its name is known:

◆ If the container in which it is located is known, the IlvContainer::getObject
member function can be used as follows:

◆ Alternatively, the IliRepository class provides static member functions that allow
you to determine the data sources that are registered in the repository.

Each data source gadget is automatically registered in the repository when it is added to a
container or manager. When it is removed from its holder, it is unregistered from the
repository.

Here are the IliRepository rules by which a gadget can connect to a data source based on
the data source name and on the location of the gadget:

IlvContainer* container;
...
IliDataSource* ds = (IliDataSource*)container->getObject(“EMP”);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 67

usrdataccess.book Page 68 Tuesday, July 28, 2009 9:07 AM
◆ Same holder

If a data source is found in the same container as the gadget, it is chosen.

◆ Same scope class

Otherwise, if a data source is found in another container that belongs to the same scope
class as the gadget container, it is chosen.

◆ Same container hierarchy

Otherwise, if a data source is found in another container that belongs to the same
container hierarchy as the gadget container, it is chosen.

◆ Global scope

Otherwise, if a global data source is found, it is chosen.

◆ Otherwise, the look-up operation fails and the gadget does not connect to any data
source.

Enumerating All Data Sources Accessible from the Repository

The following code fragment iterates through all the data source gadgets that are registered
in a repository.

IlvInt count = IliRepository::GetDataSourcesCount();
for (IlInt i = 0; i < count; ++i) {
 IliDataSource* ds = IliRepository::GetDataSource(i);
 ...
}

Finding a Data Source Using Its Name

The IliRepository::FindDataSource static member function can be used to retrieve a
data source gadget using its name.

IlvGadget* g;
...
IliDataSource* ds;
ds = IliRepository::FindDataSource(“EMP”, g->getHolder());

Subscribing to a Given Data Source

The IliRepository supports a “subscription” mechanism. This mechanism allows you to
specify a C++ function that should be called whenever a data source with a given name
becomes available.

For more information, see the IliRepository::SubscribeToDataSource member
function in the IBM ILOG Views Data Access Reference Manual.
68 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 69 Tuesday, July 28, 2009 9:07 AM
Data-Source-Aware Gadgets

This section describes the gadgets that can connect to a data source. These gadgets inherit
from both the IlvGadget and the IliFieldItf classes.

You can find information on the following topics:

◆ Interface to Data-Source-Aware Gadgets

◆ IliTableGadget

◆ IliDbField

◆ IliEntryField

◆ IliTableComboBox

◆ IliDbText

◆ IliDbToggle

◆ IliToggleSelector

◆ IliDbNavigator

◆ IliDbTimer

◆ IliHTMLReporter

◆ IliXML

◆ IliDbPicture

◆ IliDbOptionMenu

◆ IliDbStringList

◆ IliDbTreeGadget

◆ IliChartGraphic

◆ IliDbGrapher

◆ IliDbGantt

◆ Global Callbacks

Interface to Data-Source-Aware Gadgets

Data-source-aware gadgets have a common interface that is defined by the IliFieldItf
class.

For example, the IliEntryField class has the following hierarchy:
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 69

usrdataccess.book Page 70 Tuesday, July 28, 2009 9:07 AM
Figure 4.2

Figure 4.2 The IliEntryField Hierarchy and Example Gadget

As you can see, IliEntryField inherits from both the IliFieldItf and IlvTextField
classes. IlvTextField is an IBM ILOG Views gadget class.

The IliIsAField global function can be used to test whether a graphic object is a data-
source-aware gadget. The IliGraphicToField global function can be used to convert a
pointer to a graphic object into a pointer to an IliFieldItf.

IlvGraphic* g;
...
if (IliIsAField(g)) {
 IliFieldItf* fld = IliGraphicToField(g);
 ...
}

Objects can be converted in the opposite direction using the f_getGraphic member
function.

IliFieldItf* fld;
...
IlvGraphic* g = fld->f_getGraphic();

Connecting to a Data Source

The main feature of data-source-aware gadgets is their ability to connect to a data source and
stay “tuned” with the value in the current row of a given column.

Staying tuned involves the following:

◆ When the current row of the data source changes, the data-source-aware gadget is
assigned the new current row value for the given column.

◆ When the end user edits the value in the data-source-aware gadget, this value is sent to
the data source.

Here is an example that shows how a data-source-aware gadget is connected to a data
source:

IliEntryField* ef;
...
ef->f_setDataSourceName(“EMP”);
ef->f_setDataSourceColumnName(“DEPTNO”);

The data source is specified by name. However, if a data source with this name does not exist
when f_setDataSourceName is called, the gadget remains unconnected, but remembers
70 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 71 Tuesday, July 28, 2009 9:07 AM
the name of the data source it must connect to. The f_isConnectedToDataSource
member function can be used to check whether a gadget is connected to a data source.

The actual connection takes place whenever a data source with the given name enters into
the gadget scope. A data source is in gadget scope when it is either in the same panel as the
gadget or in another panel and with global scope (see IliDataGem::setGlobalScope).

Managing Gadget Values

The value of a data-source-aware gadget can be managed with the f_getValue and
f_setValue member functions.

The f_getValue member function can be used to retrieve the value of the gadget:

IliFieldItf* fld;
...
const IliValue& val = fld->f_getValue();
IlvPrint(“Current value is : %s”, val.getFormatted());

The f_setValue member function can be used to assign a new value to a gadget:
IliValue newval = “A New val”;
fld->f_setValue(newval);

Gadget Look

Some aspects of the look of a gadget can be accessed and set with the following member
functions:

The effect of these functions depends on the actual gadget class being used and sometimes
there is no effect at all. For example, calling f_setFormat for an IliDbToggle has no
effect.

Foreign Table

A gadget can have a mapping associated with it. See Mapping on page 36. To specify a
mapping, you must provide the following information:

◆ Foreign table

◆ Value column

◆ Display column

Accessor Mutator

f_isReadOnly f_setReadOnly

f_getFormat f_setFormat

f_getAlignment f_setAlignment

f_getLabel f_setLabel

f_getMask f_setMask
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 71

usrdataccess.book Page 72 Tuesday, July 28, 2009 9:07 AM
A mapping is used to convert the value of the gadget (its internal value) to another value that
is substituted in the display.

IliFieldItf* fld;
...
fld->f_setForeignDataSourceName(“DEPT”);
fld->f_setForeignValueColumnName(“DEPTNO”);
fld->f_setForeignDisplayColumnName(“NAME”);

For more information on foreign tables, see Foreign Tables on page 105.

Subclassing IliFieldItf

New data-source-aware gadget classes can be defined. This typically involves defining a new
subclass of both IliFieldItf and some other existing gadget class. For an example of
such a subclass, see the IliFieldItf class in the IBM ILOG Views Data Access Reference
Manual.

IliTableGadget

Figure 4.3

Figure 4.3 The IliTableGadget Hierarchy and Example Gadget

The IliTableGadget class enables you to display an entire table. It also lets the end user
edit table values, and add or delete rows.

A table gadget can be connected to a data source by calling f_setDataSourceName.

IliTableGadget* tg = new IliTableGadget(display,
 IlvRect(20, 30, 300, 450));
panel->addObject(tg);
tg->f_setDataSourceName(“EMP”);

The IliTableGadget class provides many member functions that allow you to control the
look of the gadget.

Selection

The IliTableSelection class is used to describe the highlighted area in a table gadget at
a given point in time. This area can be any of the following:
72 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 73 Tuesday, July 28, 2009 9:07 AM
◆ a cell (identified by column and row indices)

◆ one or more rows (identified by their indices)

◆ one or more columns (identified by their indices)

◆ the complete table gadget

◆ empty

The getSelection member function returns the current selection in a table gadget and the
setSelection changes this selection.

By default, a table gadget is bound to its data source. This means that the row of the
selection in the table gadget remains synchronized with the current row of the data source.
The bindToDataSource member function controls this.

The pointToSelection member function can be used to identify which part of a table
gadget contains a given geometrical point.

Column Geometry

The table gadget event handler lets the end user resize the columns and change their order. If
there is more than one table gadget connected to the same data source, resizing a column in
one of them will also resize the column in the others (by default). This is because the size
and order of columns are stored in the table object of the data source and the data source is
shared by the table gadgets.

The table gadget supports a special mode in which column size, visibility, and order are local
to the table gadget itself and independent of other table gadgets connected to the same data
source. The setColumnsGeometryLocal member function can be used to activate this
mode. See Setting the Table Look on page 110.

Note that when column geometry is local, the index of a column can be different in the table
gadget and the underlying table. The getRealColno and getVisualColno member
functions can be used to convert a column index between the table gadget order and the
underlying table object order.

Cell Editor

Table gadget cells can be edited with editors that are managed by the table gadget. Each
column in a table gadget has an editor. By default, a table gadget creates the editor for each
column depending on the column data type and mapping.

For columns with a foreign column, the table gadget creates an IliTableComboBox. For
other columns, it creates an IliEntryField.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 73

usrdataccess.book Page 74 Tuesday, July 28, 2009 9:07 AM
Figure 4.4

Figure 4.4 Different Types of Editors within a Table Gadget

The setColumnEditor can be used to define a custom editor for a given column.

Customizing a Table Gadget

Table gadgets can be customized with callbacks.

The GetCellPalette callback can be used to change the foreground and background
colors, and the font, cell by cell.

Here is an example:

void ILVCALLBACK MyGetCellPalette(IlvGraphic* g, IlAny) {
 IliTableGadget* tg = (IliTableGadget*)g;
 IliCellPaletteStruct* cell = tg->getCellPaletteStruct();
 if (cell->getRowno() == 3 && cell->getTableColno() == 2) {
 // Change the background color of cell(3,2).
 cell->setFillPalette(tg->getDisplay()->getPalette("Highlight"));
}

int main() {
 IliTableGadget* tg;
 ...
 tg->setCallback(IliTableGadget::GetCellPaletteSymbol(),
 MyGetCellPalette);
 ...
}

Note that colors defined through a GetCellPalette callback are dynamic. The table
gadget does not keep a record of the colors for a cell. Instead, it calls the GetCellPalette
callback each time it needs to draw the cell.

Note that another technique is available to define colors on a row, a column, or a cell basis.
See Table Properties on page 53 for more information.

The DrawCell callback can be used to provide a custom draw procedure for some of the
cells in a table gadget. Here is an example:

void ILVCALLBACK MyDrawCell(IlvGraphic* g, IlAny) {
 IliTableGadget* tg = (IliTableGadget*)g;
 IliDrawCellStruct* cell = tg->getDrawCellStruct();

A table cell with an
IliTableComboBox as
editor

A table cell with an
IliEntryField as
editor
74 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 75 Tuesday, July 28, 2009 9:07 AM
 if (cell->tblColno == 2) {
 // Draw cells in column 2.
 IlvDisplay* dpy = tg->getDisplay();
 IlvPalette* pal = dpy->defaultPalette();
 IlvInt value;

 //---- compute the position gauge ----
 value = tg->at(cell->rowno, cell->tblColno).asInteger();
 value = (value > 100L) ? 100L : value;
 value = (value < 0L) ? 0L : value;
 value = (cell->bbox.w() * value) / 100L;

 // Draw the cell.
 IlvRect rect;
 rect.x(cell->bbox.x());
 rect.w((IlvDim)value);
 rect.y(cell->bbox.y()+2);
 rect.h(cell->bbox.h()-4);
 dpy->fillRectangle(cell->dst, pal, rect);
 }
 else
 tg->defaultDrawCell();
}

int main() {
 IliTableGadget* tg;
 ...
 tg->setCallback(IliTableGadget::DrawCellSymbol(),
 MyDrawCell);
 ...
}

Customizing the Column Editor of a Table Gadget with a Toggle

You can change the column editor of a table gadget. For example, columns with a data type
like Boolean, can replace the Yes/No combo box by a toggle without a label (class
IliSimpleToggle).

// In the header file:
#include <inform/gadgets/dbsimtog.h>

class MyPanel:
public IlvGadgetContainer {
...
protected:
IliSimpleToggle* _toggle;
...
};
// In the source file:
MyPanel::MyPanel(...):IlvGadgetContainer(...) {
 ...
 _toggle = new IliSimpleToggle(getDisplay(), IlvPoint(0,0));
 IliTableGadget*
 tbl=(IliTableGadget*)getObject(“tableGadgetName”);
 tbl->setColumnEditor(_toggle);
...

}

I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 75

usrdataccess.book Page 76 Tuesday, July 28, 2009 9:07 AM
IliDbField

Figure 4.5

Figure 4.5 The IliDbField Hierarchy and Different Gadget Looks

The IliDbField gadget is very flexible. It has different styles that can determine its look
and feel. The style can be changed using the setStyle member function. For more
information on the DbField gadgets, see Working with DbFields in Data Access on page 99.

A form created using the Forms Assistant (IBM ILOG Views Studio) is made up of a set of
DbField, each of which is connected to a column of the underlying table object. Initially,
each DbField has a default style that can subsequently be changed, if required.

The flexibility of the DbField look and feel lets you modify the styles of each of the
DbField contained in the form to suit your requirements. Without this flexibility, you would
have to replace a DbField object with the appropriate object to change its style.

IliEntryField

Figure 4.6

Figure 4.6 The IliEntryField Hierarchy and Example Gadget

The IliEntryField class defines a text field gadget that can be connected to a data source.

Note: If you work under Windows 95, Windows NT 4, or Motif, you should change the
column background color (do not keep white) to see the toggle relief.
76 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 77 Tuesday, July 28, 2009 9:07 AM
Note that this gadget does not take the foreign table into account.

IliTableComboBox

Figure 4.7

Figure 4.7 The IliTableComboBox Hierarchy and Example Gadget

The IliTableComboBox defines a combo box gadget that opens a pull-down menu when
the user clicks on the combo button. The pull-down menu displays a column of the foreign
table of the field.

IliTableComboBox* combo;
combo = new IliTableComboBox(display, IlvRect(20, 30, 150, 21));
panel->addObject(combo);

// Connect the combo to EMP(DEPTNO).
combo->f_setDataSourceName(“EMP”);
combo->f_setDataSourceColumnName(“DEPTNO”);

// Specify the mapping as DEPT(ID -> NAME).
combo->f_setForeignDataSourceName(“DEPT”);
combo->f_setForeignValueColumnName(“ID”);
combo->f_setForeignDisplayColumnName(“NAME”);

IliDbText

Figure 4.8

Figure 4.8 The IliDbText Hierarchy and Example Gadget

The IliDbText class defines a gadget that edits multi-line character strings. This gadget is
not designed to be used with a foreign table.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 77

usrdataccess.book Page 78 Tuesday, July 28, 2009 9:07 AM
IliDbToggle

Figure 4.9

Figure 4.9 The IliDbToggle Hierarchy and Example Gadget

The IliDbToggle class defines a gadget that manages Boolean values. A Boolean value
can be either 0, 1, or null. Note that it is possible to specify another set of values through
the use of a foreign table. For example, the set of values could be the three strings “on”,
“off”, and “out Of Order”.

IliToggleSelector

Figure 4.10

Figure 4.10 The IliToggleSelector Hierarchy and Example Gadget

The IliToggleSelector class defines a gadget that contains a set of toggle gadgets. Each
toggle gadget corresponds to a row of the foreign table. Within these toggle gadgets, only
one gadget can be checked at any particular time. See IliToggleSelectorStyle on page 102.

IliDbNavigator

IliDbNavigator is a gadget that lets the end user carry out certain actions on the data
source. When a table is being edited via a form or table, the current row (record) is stored in
a buffer (specified by IliTableBuffer). The end user is free to edit any of the values
shown in the current record.
78 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 79 Tuesday, July 28, 2009 9:07 AM
Figure 4.11

Figure 4.11 The IliDbNavigator Hierarchy and Example Gadget

Using the DbNavigator gadget, you can do the following:

◆ Change the current record (back to the first record in the table, back to the
previous record, forward to the next record, or forward to the last record in the table).

◆ Display the current row position in the data source or, if in query mode, display the
current row position of the query .

◆ Display the number of rows in the data source or, if in query mode, display the number of
rows of the query .

◆ Validate any entries that have changed in the current record (create in database) or
apply query mode.

◆ Cancel any entries that have been made in the current record (create in database) or
cancels query mode.

◆ Insert a new record , provided Allow Insert is activated.

◆ Delete current record .

◆ Clear the data source cache, update it by querying the database, and refresh the display
.

◆ Clear the data source cache .

◆ Put the data source in query mode .

Adding a User Button to the Navigator

The following sample code shows how to add buttons to your DbNavigator to customize it
for your needs. The new buttons here are called Print and Quit.

MyPanel::initialize()
{
 IliDbNavigator* navig = ...;

Note: Until you validate the changes that you have made in the current record, the values
will not be updated in the database. The new values are actually stored at the data source
in the table buffer. This leaves you the possibility of editing the complete record.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 79

usrdataccess.book Page 80 Tuesday, July 28, 2009 9:07 AM
 // Add the buttons.
 Navig->addButton(“P”, MyPrintCallback, “Print”, 2);
 Navig->addButton(“Q”, MyQuitCallback, “Quit”, 1);

 // Compute the position and width of the buttons.
 Navig->adjustButtonsSize();
}

IliDbTimer

Figure 4.12

Figure 4.12 The IliDbTimer Hierarchy and Example Gadget

The IliDbTimer gadget lets you specify a time interval and a callback that will be called
repeatedly.

IliHTMLReporter

Figure 4.13

Figure 4.13 The IliHTMLReporter Hierarchy and Example Gadget

The IliHTMLReporter gadget generates an HTML document from the contents of a data
source.

IliXML

Figure 4.14

Figure 4.14 The IliXML Hierarchy and Example Gadget

The IliXML gadget manages the communication between a data source and an XML stream.
It manages the import and export of notification and modification.
80 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 81 Tuesday, July 28, 2009 9:07 AM
IliDbPicture

Figure 4.15

Figure 4.15 The IliDbPicture Hierarchy and Example Gadget

The IliDbPicture class defines a gadget that displays bitmaps. The column to which it is
connected must contain bitmap names. This gadget is not designed to be used with a foreign
table.

IliDbOptionMenu

Figure 4.16

Figure 4.16 The IliDbOptionMenu Hierarchy and Example Gadget

The IliDbOptionMenu class defines an option menu gadget that can be connected to a data
source. This gadget opens a pull-down menu when the user clicks the gadget. The pull-down
menu displays a column of foreign tables of the field.

IliDbOptionMenu* opt;
opt = new IliDbOptionMenu(display, IlvRect(20, 30, 150, 21));
panel->addObject(opt);

// Connect the Option Menu to EMP(DEPTNO)
opt->f_setDataSourceName(“EMP”);
opt->f_setDataSourceColumnName(“DEPTNO”);

// Specify the mapping as DEPT(ID -> NAME)
opt->f_setForeignDataSourceName(“DEPT”);
opt->setForeignValueColumnName(“ID”);
opt->setForeignDisplayColumnName(“NAME”);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 81

usrdataccess.book Page 82 Tuesday, July 28, 2009 9:07 AM
IliDbStringList

Figure 4.17

Figure 4.17 The IliDbStringList Hierarchy and Example Gadget

The IliDbStringList class defines a string list gadget that can be connected to a data
source. This gadget displays a list of strings and/or pictures that come from the field of a
foreign table column.

IliDbStringList* lst;
lst = new IliDbStringList*(display, IlvRect(20, 30, 150, 150));
panel->addObject(lst);
// Connect the string list to EMP(DEPTNO)
lst->f_setDataSourceName(“EMP”);
lst->f_setDataSourceColumnName(“DEPTNO”);

// Specify the mapping as DEPT(ID -> NAME
lst->f_setForeignDataSourceName(“DEPT”);
lst->setForeignValueColumnName(“ID”);
lst->setForeignDisplayColumnName(“NAME”);
lst->setForeignBitmapColumnName(“PICTURE”);

IliDbTreeGadget

Figure 4.18

Figure 4.18 The IliDbTreeGadget Hierarchy and Example Gadget

The IliDbTreeGadget class defines a tree gadget that works with a data source or several
data sources (depending on the model). This gadget displays the links between the children
and their parents. Each data source row defines a tree gadget item.

To provide the data to the tree gadget, you can use the following models:

◆ Recursive: All items of the tree gadget are defined by only one data source.

◆ Structural: Each tree gadget level has its own data source with its columns.
82 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 83 Tuesday, July 28, 2009 9:07 AM
The Parent column is not used for the first level.

IliChartGraphic

Figure 4.19

Figure 4.19 The IliChartGraphic Hierarchy and Example Gadget

The IliChartGraphic class defines a chart graphic that works with a data source or
several data sources (depending on the data model). With an IliChartGraphic it is also
possible to display a pie chart.

Here is an example:

Let’s take a data source, named DATA_MS, with the following schema:

◆ two columns

NAME and VALUE(double)

◆ data

Beer 150.0

Soda 300.0

Water 600.0

Wine 350.0

To connect an IliChartGraphic to this data source, you must go through the following
steps:

1. Drag and drop an IliChartGraphic

2. Inspect the IliChartGraphic

3. Go to Specific page

4. In the Data model field, select “By data sources”

5. Go to Data Source page

6. Select DATA_MS for data source
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 83

usrdataccess.book Page 84 Tuesday, July 28, 2009 9:07 AM
7. Select VALUE for X axis

8. Select VALUE for Value

9. Go to Data sets page

10. In the Data sets field, select the first data set

11. In the Displayers field, uncheck Displayer 1

12. In the data set type, select Data Access

13. In the series identifier field, enter DATA_MS

14. Go back to Data sets field and select the second data set

15. Uncheck Displayer 3

16. Check Displayer 1

17. Go to Displayers page

18. In the Displayers field, select Displayer 1

19. On the General tab, uncheck the Visible option

20. Select Displayer 2 in the Displayers field

21. Uncheck the Visible option

22. Select Displayer 3

23. In the Displayer type field, select “Pie”

24. Select the Specific tab and enter 360 in the Range field

25. Select the Slices tab and enter 5 in the Rho value

26. Add at least one slice by clicking the button

27. Go to Projection page

28. In the Type of projection, select Polar

29. Go to Scales page

30. In the Scales field select the first scale

31. Uncheck the Scale visible option on the General tab

32. Click Apply

If you want to change the slice color, you must add some slices to change the color and label.
84 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 85 Tuesday, July 28, 2009 9:07 AM
IliDbGrapher

Figure 4.20

Figure 4.20 The IliDbGrapher Hierarchy and Example Gadget

The IliDbGrapher gadget lets you specify a nodes data source and a links data source. It
displays the information contained in these data sources in the form of a graph.

Customizing a DbGrapher

The DbGrapher can be customized with callbacks.

The setDefineObject member function lets you specify a callback that is called when the
end user attempts to create a new node. The callback is expected to fill in a table buffer with
the values for the node to be created. It can open a dialog box to obtain information from the
end user if needed. A similar callback for defining links can also be specified.

Here is an example:

static IlvBoolean
MyDefineNodeCallback(IliTableBuffer* buf, IlvGraphic*, IlAny any) {
 static int stId = 1000;

 if (buf->at("IDENTIFIER").isNull()) {
 buf->at("IDENTIFIER").importInteger(stId);
 stId++;
 }
 return IlvTrue;
}

int main() {
 IliDbGrapher* gr;
 ...
 gr->setDefineObjectCallback(MyDefineNodeCallback, NULL, IlvTrue);
 ...
}

The setCreateObject member function lets you specify a callback that is called when a
new row has been inserted in the nodes data source. This callback is needed to create and
configure the graphic object that will represent this row. A similar callback for defining links
can also be specified.

Here is an example:

static IlvGraphic*
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 85

usrdataccess.book Page 86 Tuesday, July 28, 2009 9:07 AM
MyCreateNodeCallback(IliTableBuffer* buf, IlAny any) {
 IliDbGrapher* gr = (IliDbGrapher*)any;
 const char* picture;
 switch (buff->at("TYPE").asInteger()) {
 case TypeNodeCenter : picture = "center.xpm"; break;
 case TypeNodeParabol : picture = "parabol.xpm"; break;
 default : picture = "terminal.xpm"; break;
 }
 gr->setBitmapName((const char*)picture);
 IlvGraphic* obj = gr->createDefaultObjectNode(buf);
 if (obj->isSubtypeOf(IliLabeledBitmap::ClassInfo())) {
 IliLabeledBitmap* node = (IliLabeledBitmap*)obj;
 node->setLabelName(buff->at("NAME").getFormatted());
 }
 return node;
}

int main() {
 IliDbGrapher* gr;
 ...
 gr->setCreateObjectCallback(MyCreateNodeCallback, gr,IlvTrue);
 ...
}

There are also a NodeDoubleClicked callback and a LinkDoubleClicked callback.

Here is an example of using the NodeDoubleClicked callback:

static void
MyDoubleClickNodeCallback(IlvGraphic* g, IlAny any) {
 IliDbGrapher* gr = (IliDbGrapher*)g;
 const char* s = gr->getObjectNameDoubleClicked();
 IlvPrint ("Node %s double clicked", (const char*)s);
}

int main() {
 IliDbGrapher* gr;
 ...
 gr->addCallback(IliDbGrapher::NodeDoubleClickedSymbol(),
 MyDoubleClickNodeCallback,myPanel)
 ...
}

IliDbGantt

Figure 4.21

Figure 4.21 The IliDbGantt Hierarchy and Example Gadget
86 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 87 Tuesday, July 28, 2009 9:07 AM
The IliDbGantt gadget lets you specify data sources for resources, activities, constraints,
precedences, breaks and work load curve. It displays the information contained in these data
sources in the form of a Gantt chart.

Customizing a DbGantt Gadget

A DbGantt gadget can be customized with callbacks (or corresponding virtual functions).

The getScaleNumericLabel member function lets you specify a callback that is called
when the end user needs to compute a label for a numeric scale label.

Here is an example:

static void
MyComputeLabel(IlvGraphic* g,IlAny any) {
 IliDbGantt* dbg = (IliDbGantt*)g;
 IliString s;

 s << dbg->getScaleNumericValue();
 s << "$";
 dbg->setScaleNumericLabel(s);
}

int main() {
 IliDbGantt* dbg;
 ...

 dbg->addCallback(IliDbGantt::ScaleNumericLabelSymbol,
 MyComputeLabel,0);
 ...
}

The isActivePeriod member function lets you specify a callback that is called when the
end user needs to determinate if a period is active or not. By default, a period is active. This
is why this callback is used to indicate the periods which are not active.

Here is an example:

static void
MyComputePeriod(IlvGraphic* g,IlvAny any) {
 IliDbGantt* dbg = (IliDbGantt*)g;

 if (dbg->getActivePeriodInfo(IliScaleDateWeekDay) == IliDbGanttSunday)
 dbg->setInactivePeriod();
}

int main() {
 IliDbGantt* dbg;
 ...
 dbg->addCallback(IliDbGantt::IsActivePeriodSymbol,
 MyComputePeriod,0);
 ...
}

I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 87

usrdataccess.book Page 88 Tuesday, July 28, 2009 9:07 AM
Global Callbacks

Gadget behavior can be customized using callbacks. Data Access supports four ways of
defining callbacks.

◆ Callback function—The callback is a C++ function directly attached to the gadget. The
following example shows how a callback function can be attached directly to a gadget.

◆ Named callback—The IlvContainer::registerCallback member function is
used to associate a name with a C++ function. This name can then be used as a callback
for any gadgets in the container. The following example shows how this can be done:

◆ IBM ILOG Script callback—The callback is an IBM ILOG Script function. These
callbacks are usually defined from within the IBM ILOG Views Studio environment.

void CustomCallback(IlvGraphic*g, IlvAny userdata) {
 ...
}

int main(int argc, char* argv[]) {
 ...
 IlvSymbol* callbackType;
 IlvGadget* g;
 IlvAny userData;
 ...
 g->setCallback(callbackType,
 CustomCallback,
 userData);
 ...
}

void CustomCallback(IlvGraphic*g, IlvAny userdata) {
 ...
 }

 int main() {
 ...
 // Register the callback.
 IlvContainer* cont;
 ...
 cont->registerCallback(“MyCallbackName”,
 CustomCallback);
 ...

 // Use this callback.
 IlvGadget* g;
 IlvSymbol* callbackType;
 ...
 g->setCallback(callbackType,
 “MyCallbackName”);
 ...
 }
88 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data-Source-Aware Gadgets

usrdataccess.book Page 89 Tuesday, July 28, 2009 9:07 AM
◆ Global callback— Data Access adds a way to define and use callbacks globally. The
IliCallbackManager class can be used to register callbacks that are globally available
and that can have parameters. The callback manager is the unique instance of the
IliCallbackManager class and it can be retrieved by calling the
IliGetCallbackManager function. For the callback manager to be active, the file
<ilviews/dataccess/gcallbak.h> must be included in at least one of the
application modules. If this is not the case, the global callbacks will not be available. The
following example shows how a callback can be set up as global:

Once a global callback has been registered as shown above, it can be used by prefixing its
name with the “@” character.

Figure 4.22

Figure 4.22 Using a Global Callback in IBM ILOG Views Studio

Guidelines for Defining Global Callbacks

Some general guidelines can help you determine which method to use for defining global
callbacks:

◆ For C++ programmers:

● In a pure C++ application where IBM ILOG Views Studio is not used, the callback
function approach is the most convenient as it results in less coding.

#include <ilviews/dataccess/gcallbak.h>
 // Define the callback function.
 void MessageBoxCallbak(IlvGraphic* g,
 IlAny arg,
 IlInt paramsCount,
 const char* const* params) {
 IlvContainer* view = IlvContainer::getContainer(g);
 if (paramsCount == 1 && views != NULL) {
 IlvIMessageDialog msgBox(view->getDisplay(),
 params[0],
 NULL,
 IlvDialogOk,
 view->getSystemView());
 msgBox.show();
 }
 }
 int main() {
 ...
 // Register the global callback.
 IlvSymbol* callbackName = IlvGetSymbol(“MsgBox”);
 IliGetCallbackManager().registerCallback(callbackName,
 MessageBoxCallback);
 ...
 }
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 89

usrdataccess.book Page 90 Tuesday, July 28, 2009 9:07 AM
● When IBM ILOG Views Studio is used to design the panels of the application, the
named callback and the global callback approaches are recommended since they
enable you to enter the callback name directly in the required inspector in
IBM ILOG Views Studio.

● If a callback is needed in only one panel, the named callback approach is the most
suitable. However, if the same callback is required in many panels, the global callback
approach is the most appropriate.

◆ For IBM ILOG Script programmers:

● Global callbacks are of little help to IBM ILOG Script programmers since it is as
convenient and straightforward to define an IBM ILOG Script function and use it as a
callback as it would be to use a global callback. In effect, we consider that global
callbacks have been superseded by the capability to program in IBM ILOG Script.

Predefined Global Callbacks

The following is a list of the predefined global callbacks that are available in Data Access:

◆ @Quit()

◆ @ShowPanel(panelName)

◆ @HidePanel(panelName)

◆ @Validate(dataSourceName)

◆ @Cancel(dataSourceName)

◆ @Clear(dataSourceName)

◆ @Select(dataSourceName)

◆ @StartInsert(dataSourceName)

◆ @Commit(sessionName)

◆ @Rollback(sessionName)

◆ @Connect(sessionName)

◆ @QueryConnect(sessionName)

◆ @Disconnect(sessionName)
90 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 91 Tuesday, July 28, 2009 9:07 AM
5

Handling Values in Data Access

This chapter describes how Data Access handles values. They are implemented by the
IliValue class and the following sections describe how to use an IliValue object.

You can find information on the following topics:

◆ The IliValue Class

◆ Data Types

◆ Structured Types

The IliValue Class

The IliValue class supports polymorphism for the most primitive data types, such as
character strings, integers, and float values. An IliValue object can hold a value belonging
to any of these primitive types. Moreover, the type of a value can be changed dynamically.
This class works in conjunction with the IliDatatype class, which is used to represent the
dynamic type of an IliValue object.

The IliValue class is essential to Data Access. It enables values to be handled in a
completely transparent way, so that table objects and data-source-aware gadgets can deal
with values without having to take into account their type.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 91

usrdataccess.book Page 92 Tuesday, July 28, 2009 9:07 AM
Each of the data-source-aware gadgets has an f_getValue member function that returns
the gadget value in the form of an IliValue object.

Constructing a Value Object

There are two ways to construct a value. It can be specified with an initial value:

IliValue initVal = 3;
IliValue stringVal = “Good morning.”

Also, it can be constructed by specifying the data type explicitly:

IliValue boolVal(IliBooleanType);

In this case, the value has an initial value of null.

Null Value

The null value is a special value that can be used to denote an unspecified value. You can
check for the null value with the IliValue::isNull method.

IliValue value;
...
if (value.isNull()) {
 ...
}

An object can have a null value in two situations: either it has been constructed with no
initial value just by specifying its data type (shown above) or it has been set as null using the
IliValue::setNull method.

The IliValue::setNull method also allows you to change the object data type. This can
be seen in the following code sample:

IliValue value = “aString”;
value.setNull(); // value set to null,
 // datatype remains IliStringType
value.setNull(IliIntegerType); //datatype is now IliIntegerType

Data Types

The IliValue class works in close conjunction with the IliDatatype class. This class
specifies the type of an IliValue object. An instance of the IliDatatype class exists for
each supported type. The possible data types are:

◆ IliNullType

◆ IliStringType

◆ IliBooleanType
92 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Types

usrdataccess.book Page 93 Tuesday, July 28, 2009 9:07 AM
◆ IliByteType

◆ IliIntegerType

◆ IliFloatType

◆ IliDoubleType

◆ IliDecimalType

◆ IliDateType

◆ IliTimeType

◆ IliBinaryType

◆ IliAnyType

The data type of an IliValue object constrains the set of values that it can hold. For
example, an IliBooleanType object can hold three values: IlvTrue, IlvFalse, and
null.

In addition to these predefined types, the Data Access library can dynamically synthesize
new types. For a description of when this can occur, see Parameters on page 128. These
types are collectively called structured types and fall in two categories: object types and
table types. The section Structured Types at the end of this chapter explains how these types
are used.

Checking the Data Type of an Object

The data type of an object can be checked using the IliValue::getType method in the
following way:

IliValue value;
...
if (value.getType() == IliDateType) {
 ...
}

Converting a Data Access Data Type to a C++ Type

To manipulate the data in an application, you will need to work with values in the standard
C++ types:

◆ const char*

◆ IliByte

◆ IlvInt

◆ IlvFloat

◆ IlvDouble

◆ IliDecimal

◆ IliDate
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 93

usrdataccess.book Page 94 Tuesday, July 28, 2009 9:07 AM
◆ IliBinary

◆ IliTable*

◆ IlvAny

Any IliValue object can be easily converted into one of the standard C++ types. However,
a conversion of this type will only return a meaningful value if the data type of the
IliValue object is compatible with the target C++ standard type.

IliValue objects can be converted in one of two ways:

◆ Using a C++ cast operator (implicit or explicit).

◆ By calling one of the as<Type>() methods available in the IliValue class.

This is demonstrated in the next example:

IliValue stringValue = “Hello world!”;
const char* str1 = stringValue; // implicit cast
const char* str2 = stringValue.asString(“Null”);

The main difference between these two conversions is that the as<Type> method accepts an
extra parameter. In the following example, the asString method returns the string value of
the object for which it is called unless the object is null or its data type is not
IliStringDataType. In this case, it returns the value of the nv1 parameter.

class IliValue {

Table 5.1 Type Conversions That Return a Meaningful Value

Data Type
C++ Cast
Operator

as<Type>() Method

IliStringType const char* asString(const char* nv1)

IliStringType
IliBooleanType
IliByteType
IliIntegerType
IliFloatType
IliDoubleType
IliDecimalType

IliByte
IlvInt
IlvFloat
IlvDouble
IliDecimal

asBoolean(IlvBoolean nv1)
asByte(IliByte nv1)
asInteger(IlvInt nv1)
asFloat(IlvFloat nv1)
asDouble(IlvDouble nv1)
asDecimal(const IliDecimal& nv1)

IliStringType
IliDateType
IliTimeType

IliDate
IliTime

asDate(const IliDate& nv1)
asTime(const IliTime& nv1)

IliBinaryType IliBinary asBinary(const IliBinary& nv1)

Object type
Table type

IliTable* asTable(const IliTable* nvl)

IliAnyType IlAny asAny(IlAny nv1)
94 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Data Types

usrdataccess.book Page 95 Tuesday, July 28, 2009 9:07 AM
public:
 operator const char*() const;
 const char* asString(const char* nv1 = 0) const;
};

The cast operator returns 0 if the object is null or its type is not IliStringDataType.

IliValue stringValue(IliStringType); //initial value is null
IliValue integerValue = 6;

const char* str1 = stringValue; //str1 == 0
const char* str2 = integerValue; //str2 == 0
const char* str3 = integerValue.asString(“Undefined”); //str3 != 0

You should remember to use the character string returned by the const char* operator or
the asString() method as soon as possible. If not, the character string can become invalid
the next time the IliValue object is modified.

Numeric data types can be converted to any of the numeric C++ types. However, the
conversion can cause a loss of precision and numbers can even be truncated.

IliValue integerValue = 5;
IliValue doubleValue = 9.8;
IlInt anInt = doubleValue; //loss of precision
IlDouble aDouble = integerValue;

The IliStringType data type can also be converted to any of the numeric types as shown
in the following example:

IliValue stringValue = “3.14”;
IlInt i = stringValue; // i set to 3
IlDouble d = stringValue; // d set to 3.14

IliValue stringValue = “Not A Number”;
IlInt i = stringValue; // i set to 0
IlDouble d = stringValue; // d set to 0.0
i = stringValue.asInt(-1); // i set to -1
d = stringValue.asDouble(-2.0); // i set to -2.0

An IliValue object can also be changed using one of the = operators:

IliValue value = “One”;
value = “Two”;
value = 3; //Data type changed to IliIntegerType
value = 4.0; //Data type changed to IliDoubleType

Formatting an IliValue Object

An IliValue object can be formatted using the IliValue::format member function.
This is shown in the following example:

IliString stringBuf;
IliFormat fmt(“#,##0.00 Yens”);
IliValue value = 5.677;
value.format(stringBuf, fmt);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 95

usrdataccess.book Page 96 Tuesday, July 28, 2009 9:07 AM
IlvPrint(“Price: %s”, (const char*)stringBuf);

You can also use the IliValue::getFormatted member function, which does not require
an IliString parameter to store the result. An example is shown in the following code:

IliFormat fmt(“#,##0.00 Yens”);
IliValue value = 5.677;
const char* result = value.getFormatted(fmt);
IlvPrint(“Price: %s, result);

Note that the getFormatted member function returns its result in a static character buffer.
This result must therefore be used immediately after the call.

Structured Types

The Data Access type system can be extended beyond the basic data types described in the
previous sections. This occurs automatically when structured values are obtained from a
database system such as Oracle 9i (or later) or Informix 9.x.

Each structured type has an associated schema that can be obtained as follows:

void DescribeStructuredType(const IliDatatype* type) {
 if (type->isStructuredType()) {
 const IliSchema* schema = type->getNestedSchema();
 IlvPrint("Type %s manages tables with %ld columns",
 schema->getName(),
 (long)schema->getColumnsCount());
 }
 else
 IlvPrint("Not a structured type !");
}

A structured type manages IliValue objects that contain a pointer to an IliTable object.

The following code sample shows how an IliValue object can be initialized with an
IliTable object:

IliValue MakeStructuredValue(const IliDatatype* type) {
 if (type->isStructuredType()) {
 IliValue value(type);
 IliTable* table = type->makeTable();
 table->lock();
 value.importTable(table);
 table->unLock();
 return value;
 }
 else {
 IlvPrint("Not a structured type !");
 return IliValue();
 }
}

96 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Structured Types

usrdataccess.book Page 97 Tuesday, July 28, 2009 9:07 AM
This example uses the IliDatatype::makeTable member function to create an
IliTable object whose schema is identical to the schema returned by the
IliDatatype::getNestedSchema member function.

The table returned by IliDatatype::makeTable is really an IliMemoryTable object.
Consequently, all row management member functions (insertRow, updateRow, and so on)
can be called to fill this table. Note, however, that structured types fall into two categories:
object types and table types. They differ in that an object types expects to manage a table
that contains at most one row, whereas table types manage tables with many rows. The
isObjectType and isTableType member functions can be used to distinguish between
object and table types.

It is important to understand how the IliValue class manages IliTable objects. When an
IliValue object is copied into another, the nested IliTable object is shared between both
IliValue objects as shown by the following code excerpt:

const IliDatatype* type = ...;
IliValue firstVal = MakeStructuredValue(type);
IliValue secondVal = firstVal;
assert(firstVal.asTable() == secondVal.asTable());

As a consequence, you should not directly alter the table contained in an IliValue object.
Instead, a copy of the table should be made, altered, and then assigned back to the
IliValue objects in the following code excerpt:

IliValue value = ...;
const IliTable* table = value.asTable();
if (table != NULL) {
 IliTable* tempTable = table->copyTable();
 tempTable->lock();
 // alter tempTable in some way ...
 tempTable->sortRows();
 value.importTable(tempTable);
 tempTable->unLock();

}

I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 97

usrdataccess.book Page 98 Tuesday, July 28, 2009 9:07 AM
98 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 99 Tuesday, July 28, 2009 9:07 AM
6

Hints and Tips for Using Data Access

This chapter contains some useful hints for using Data Access. The most common user
requirements are described, along with tips on how to use the features of Data Access to
satisfy these requirements. The chapter primarily discusses the way to set up your
application using IBM ILOG Views Studio, rather than using the Data Access API.

You can find information on the following topics:

◆ Working with DbFields in Data Access

◆ Foreign Tables

◆ Setting the Table Look

◆ Fixed Columns

◆ Troubleshooting

Working with DbFields in Data Access

This section describes the IliDbField class and the different forms that it can take. A
DbField gadget is an entry field that can be connected to the column of a table object. The
DbField gadget then displays the value of this column for the current record. A form is
made up of DbField objects with different styles.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 99

usrdataccess.book Page 100 Tuesday, July 28, 2009 9:07 AM
The Style of a DbField

A IliDbField object can dynamically change its look and feel. Its style can be any of the
following:

◆ IliEntryFieldStyle

◆ IliTextStyle

◆ IliOptionMenuStyle

◆ IliTableComboBoxStyle

◆ IliToggleStyle

◆ IliToggleSelectorStyle

◆ IliStringListStyle

To change the style of an IliDbField gadget in IBM ILOG Views Studio, you must select
the required style from the Style field in the corresponding DbField inspector.

Figure 6.1

Figure 6.1 Changing the DbField Style in the DbField Inspector

The following sections describe the different styles of a DbField gadget, giving you the best
situations to use them in.

IliEntryFieldStyle

This style can be used to display or edit a value of any type. It is not designed to be used with
a column that accepts a Boolean value or with a column that has a foreign table. Other styles
are better adapted to these two situations.
100 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Working with DbFields in Data Access

usrdataccess.book Page 101 Tuesday, July 28, 2009 9:07 AM
IliTextStyle

This style is a scrolling text area that can be used to display or edit multiple lines of data. It
is not designed to be used with a column that accepts a Boolean value or with a column that
has a foreign table. Other styles are better adapted to these two situations.

IliOptionMenuStyle

This style is designed to be used with a column that has a foreign table or with a column that
accepts a Boolean value (see Foreign Tables on page 105). It consists of a label and a button.
The button accesses a menu that contains values to be selected and displayed in the label.

If the DbField is linked to a Boolean value column, the menu contains the options Yes and
No, and will not accept any other input.

However, if the column has a foreign table, only the values contained in the menu can be
selected in the field.

IliTableComboBoxStyle

This style is designed to be used with a column that has a foreign table or a column that
accepts a Boolean value (see Foreign Tables on page 105). It consists of an entry field and a
button. The button accesses a menu that contains values that can be entered in the field.

Figure 6.2

Figure 6.2 A DbField with the IliTableComboBoxStyle

If the DbField is linked to a Boolean value column, the menu contains the options Yes and
No, and will not accept any other input.

However, if the column has a foreign table and if the Constrained property in the DbField
inspector is set to Yes, only the values contained in the menu can be entered in the field.

However, if the Constrained property in the DbField inspector is set to No, values other
than those in the menu can be entered directly into the field.

Finally, if the Completion property in the DbField inspector is set to Yes, when one or more
characters are entered in the DbField, the option is completed by the appropriate menu
entry (provided the characters uniquely define a menu entry).

IliToggleStyle

This style is very similar to the IliDbToggle object. It is a graphical object that enables
you to display a state. A toggle usually includes a state marker and a label. The state marker
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 101

usrdataccess.book Page 102 Tuesday, July 28, 2009 9:07 AM
is to the left of the label and indicates whether the state is on or off (according to its Boolean
value).

The look of the button depends on the look that has been selected in
IBM ILOG Views Studio (Windows, Windows XP, or Motif).

Figure 6.3

Figure 6.3 A Toggle in Windows95 Look and Feel and a Toggle in Motif Look and Feel

This style is specifically designed to be connected to a table column that has a Boolean
value. In this way it can be used to turn the value on or off in the column as required. It
should not be used with columns that contain values of other types or with a column that has
a foreign table.

There are two ways to create a toggle that is linked to a table object column: either the style
of an IliDbField instance can be changed or an instance of IliDbToggle can be created
directly.

The IliDbToggle class provides more flexibility regarding the look of the toggle state
marker. However, changing the style of an existing IliDbField enables you to create a
form using the Forms Assistant and to customize the style of each of the DbField contained
in the form.

IliToggleSelectorStyle

This style is specifically designed to be used with a column that has a foreign table mapping.
It is a set of toggles that are contained in a frame. Only one of the toggles can be turned on at
a time.

Figure 6.4

Figure 6.4 A DbField with the IliToggleSelectorStyle

IliStringListStyle

This style is designed to be used with a column that has a foreign table. It consists of a string
list and a string in the list can be selected using the mouse or the keyboard. The strings in the
list are read from the foreign table. See Foreign Tables on page 105.

Note: This IliToggleSelectorStyle should not be used when the list of values is
long since the style becomes difficult to manage.
102 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Working with DbFields in Data Access

usrdataccess.book Page 103 Tuesday, July 28, 2009 9:07 AM
Creating a Form Using the Forms Assistant

A form in Data Access is a set of gadgets that lets you display all the values in a table object
row, thus providing easier access than with a table gadget. An instant form can be obtained
from the Forms Assistant command in the Data Access menu in IBM® ILOG® Views
Studio.

If you create a form using the Forms Assistant command, a set of fields (IliDbField
objects) are displayed. Each field is connected to one of the columns of the data source table
object and has a label that is the title of its associated column. There is an IliDbNavigator
across the top of the panel to help you navigate through the table object records.

The Forms Assistant can also create a form based on a table gadget instead of on a set of
DbField gadgets.

You may notice that the DbField gadget automatically adopts the
IliTableComboBoxStyle for columns that either contain a Boolean value or have a
foreign table mapping (see Foreign Tables on page 105). In the case of a Boolean, the pop-
up menu has two entries, Yes and No.

Figure 6.5

Figure 6.5 A Form Showing the Automatic Combo Box for Columns with a Limited Value Domain

It can be useful to change the style of the DbField with a Boolean value to a toggle gadget.
See The Style of a DbField on page 100 for information on how to change the style.

Forms Assistant Pages

The Forms Assistant has four notebook pages that let you change various presentations.

DbField with
combo box style
connected to a

DbField with
combo box style
connected to a
column with a

Boolean column

foreign table
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 103

usrdataccess.book Page 104 Tuesday, July 28, 2009 9:07 AM
Figure 6.6

Figure 6.6 The Data Page of the Forms Assistant

The Data page is used to select the data source using the data source combo box. In the table
column, you can specify which data source columns will have a DbField and choose the
type of DbField used to display the information (text, toggle, combo box, and so on). The
Table gadget style check box is used to create a form with a table gadget. You can also
choose the presentation of the DbField in the panel (Arrange top to bottom or left to right)
using the combo box at the bottom of the page.

The Title page is used to change the title name and its presentation (color and font).

The Fields page lets you change the Labels and Fields presentation.

The Navigator page lets you activate or de-activate various navigator and the position of the
navigator.

To apply changes and display information in the Main window, click OK.

Columns with a Foreign Table

As shown in Figure 6.6, the DbField that is linked to a column with a foreign table is set
automatically to the IliTableComboBoxStyle. In addition, it automatically has the same
foreign table as the table column (this can be seen in its inspector). This occurs only when
the forms assistant is activated on a data source that already has a foreign table mapping.

If you create a DbField and link it to a data source column yourself, the foreign table will
not automatically be set for the DbField gadget.

For more information on foreign tables and how they can be linked to table objects and data-
source-aware gadgets, see Foreign Tables on page 105.
104 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Foreign Tables

usrdataccess.book Page 105 Tuesday, July 28, 2009 9:07 AM
Foreign Tables

Any table object in Data Access can be used as a foreign table; that is, the IliTable
subclasses, IliSQLTable, IliMemoryTable, and so on. A foreign table is identified as
such from another object. Each column of a table object or of the IliDbField,
IliTableComboBox, and IliToggleSelector gadgets can have a foreign table.

A foreign table has two main purposes. It can be used to map the values in a column to
another set of values or it can be used to define the domain of values for the column.

There are two approaches for applying a foreign table to a table column.

◆ A foreign table can be applied to the column of a table object using the data source
inspector in IBM ILOG Views Studio. The foreign table then applies directly to any table
gadget, or form created with the Forms Assistant that is subsequently connected to the
data source.

◆ A foreign table can be applied to a particular data-source-aware gadget. In this case, the
foreign table applies only to the gadget.

Foreign tables are specified in the appropriate inspector in IBM ILOG Views Studio. In the
Data Access API, the methods found in the IliTable (see Schema Properties on page 35)
and IliFieldItf classes (see Foreign Table on page 71) can be used to specify the foreign
table.

Specifying a Foreign Table in IBM ILOG Views Studio

A foreign table can be set up for the data source or for an individual gadget. The
IliDbField, IliTableComboBox, and IliToggleSelector gadgets can have a foreign
table. The foreign table is set up for a particular column in the appropriate inspector.

To specify a foreign table for a particular table column, you must select the required column
and specify the following characteristics of the foreign table:

◆ the data source with which the foreign table is associated

◆ the column in the foreign table that corresponds to the value column

◆ the column in the foreign table that corresponds to the display column

The value column is a column in the foreign table in which values will be located. A value
from the table column is matched with a value in the foreign table value column. The display
column is the column from which a value will be extracted to be displayed in place of the
original value.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 105

usrdataccess.book Page 106 Tuesday, July 28, 2009 9:07 AM
Figure 6.7

Figure 6.7 Specifying a Foreign Table for a Column of an SQL Table

Figure 6.8

Figure 6.8 Specifying a Foreign Table for the “Frame” Column of a Memory Table

Specifying
the foreign table
for the DEPTNO
column
106 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Foreign Tables

usrdataccess.book Page 107 Tuesday, July 28, 2009 9:07 AM
Figure 6.9

Figure 6.9 Specifying a Foreign Table for an IliTableComboBox

Using a Foreign Table to Convert Values

If you are using the foreign table to convert values, the value and display columns will be
different columns in the foreign table. The values in a table object column are converted in
the following way.

For each value in the column:

1. The value is searched for in the foreign table value column.

2. The row in which it is found is identified.

3. The foreign table value that is in the display column and the identified row is returned
and displayed in place of the original column value.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 107

usrdataccess.book Page 108 Tuesday, July 28, 2009 9:07 AM
Figure 6.10

Figure 6.10 Using a Foreign Table to Convert Values

In addition, a combo box is automatically displayed on a cell in a column that is connected
to a foreign table. The combo box menu contains all the possible values that the cell can
accept, that is, all the values that are contained in the foreign table display column.

This mechanism is completely reversed if the user edits a value in the display gadget.

1. The new value is searched for in the foreign table display column.

2. The row in which it is found is identified.

3. The value in the value column and the identified row, of the foreign table is returned to
the table object (replacing the display value).

Using the Toggle Selector

When a DbField has a foreign table, it is possible to display the value domain. This can be
done by selecting a particular style for the IliDbField.

Note: A table column that uses a foreign table to convert values is automatically set as
Constrained. This prevents any inconsistency that can arise from the user entering a new
value that is not in the foreign table display column.

Column mapped
to a foreign table

Foreign TableTable Object

2

Value column Display column

2 Fibre glass
1 Carbon

...

Table Gadget
108 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Foreign Tables

usrdataccess.book Page 109 Tuesday, July 28, 2009 9:07 AM
You can use table combo box style to show the value domain in a pop-up menu. Another
useful style, however, is the IliToggleSelectorStyle. This style enables you to display
a set of toggle gadgets that show the domain of values.

Each toggle in the toggle selector corresponds to a foreign table row. Only one toggle can be
checked at a time.

Figure 6.11

Figure 6.11 A Toggle Selector Connected to a Column with a Foreign Table

Using a Foreign Table to Constrain Values

A foreign table can also be used to constrain values. To use a foreign table in this way,
specify a value and a display column that are the same column. In addition, set the
Constrained option in the appropriate inspector to Yes.

This ensures that only the values contained in the foreign table display (value) column can
be entered by the user.

Using the Forms Assistant with Foreign Tables

When you create an automatic form using the Forms Assistant option in the Data Access
menu of IBM ILOG Views Studio, a column that already has a foreign table will
automatically have a combo box for a field.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 109

usrdataccess.book Page 110 Tuesday, July 28, 2009 9:07 AM
Figure 6.12

Figure 6.12 A Form Showing a Field Connected to a Column with a Foreign Table

This happens only when the foreign table has been tied to a column via the data source.

Setting the Table Look

The SQL Data Source and the Memory Data Source inspectors provide a Look page that
allows you to set several properties. These properties are special in that they apply to any
table gadgets or forms (created using the Forms Assistant) that are connected to the data
source. They include the text alignment in columns, the column width, the column read/
write permissions, and the column visibility.

Column Geometry

When a number of table gadgets are connected to the same data source, column geometry is
controlled globally via the data source. This means that if you manually change the column
width in one table gadget, the change will automatically be reflected in any other table
gadget that is connected to the same data source.

If you want two table gadgets that are connected to the same data source to have different
column geometry, you can disconnect them from each other via the Columns Geometry
property of the table gadget inspector.

Column with
a foreign table
110 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Setting the Table Look

usrdataccess.book Page 111 Tuesday, July 28, 2009 9:07 AM
Figure 6.13

Figure 6.13 Setting Columns Geometry in the Table Gadget Inspector

By default, this property is set to Global, which means that the table gadget inherits the
properties of the data source table. If you want to work on a table gadget without your
changes affecting other table gadgets, you must set the Column Geometry to Local. You can
work on this table gadget locally.

If, at any time, you reset Column Geometry to Global, the table gadget is immediately set to
the geometry specified for the data source table.

The column geometry properties that can be controlled on a global or local level are column
width, column visibility, and column position.

If a table gadget has local column geometry, a column can be picked up and dragged to a
new horizontal position in the table gadget. However, if it has a global column geometry, this
same procedure can only be carried out in the SQL Data Source inspector. In this case, it
applies to all table gadgets with a global column geometry.

Read-Only Settings

A table object column can be set as read-only. This means that the values in the column can
only be consulted and not modified. If you set up a column as being read-only in the data
source inspector, this will apply to any connected table gadget or form that is subsequently

Note: If you want two table gadgets that are connected to the same data source to have a
different set of visible columns, set up the SQL data source so that the appropriate
columns for one of the table gadgets are visible. Then disconnect one of the table gadgets
by setting it with a local column geometry. You can then set up the columns just for the
second table gadget.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 111

usrdataccess.book Page 112 Tuesday, July 28, 2009 9:07 AM
created with the Forms Assistant. However, in the DbField that make up the form, the read-
only property of a column can be changed locally.

Fixed Columns

A table gadget can be set so that when you horizontally scroll the table a set number of the
columns on the far left side of the table always stay in position. This is useful for columns
that contain key information, such as the record name.

To set the columns that will be fixed, you must access the Table Gadget inspector and use the
Fixed Column field of the inspector panel to set the number of columns that you require.
These are counted from the column the farthest to the left in the table schema. Therefore,
you should make sure that the columns that you want fixed are on the left of the data source
table.

For example, if you enter 2 in the Fixed Columns field, the two columns farthest to the left in
the data source table will always be displayed in the table gadget.

The methods in the API that implement this feature are getFixedColumnsCount and
setFixedColumnsCount in the IliTableGadget class. Because this is a direct property
of the IliTableGadget class, any other table gadget that is linked to the same data source
can have a different number of fixed columns (or no fixed columns at all).

Troubleshooting

This section describes some of situations that you should be careful to avoid as they can
cause unexpected results in your application.

You can find information on the following topics:

◆ Avoiding Common Names in Foreign Tables

◆ Matching Types with a Foreign Table

Avoiding Common Names in Foreign Tables

When a gadget is tied to a table column and has a foreign table, you must ensure that the
Data Source and Column gadget values are never the same as its Foreign Data Source and
Foreign Value Column/Foreign Display Column.
112 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Troubleshooting

usrdataccess.book Page 113 Tuesday, July 28, 2009 9:07 AM
Figure 6.14

Figure 6.14 A DbField with the Same Data Source and Foreign Data Source

You can be tempted to set up a combo box this way so that you can select the current row
based on values in one of the columns. This step has a more disturbing result.

Data Source and Column are used to specify the data source column to which the gadget is
tied. This means that values from this column can be displayed and edited via the gadget.
Foreign Data Source and Foreign Value Column/Foreign Display Column specify the
foreign table of a gadget.

Take the case of a gadget that is tied to a column displaying values from that column and that
also has a combo box. The combo box menu will contain the set of possible values that the
column can take, which will be the same set of values. If you then select a new value for a
row, you will end up with a column that starts to have repeating values.

To successfully set up a combo box that enables you to select the current row in a form, you
must use a parameter. See Parameters on page 139.

Matching Types with a Foreign Table

When a gadget has a foreign table, the actual value of the column to which it is tied is
compared with a value column in the foreign table to identify a value to be displayed from
the foreign table display column. It is therefore important to ensure that the type of gadget
column and the foreign table value column are the same.

The Data Source
and Column
should never be
the same as the
Foreign Data
Source and
columns.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 113

usrdataccess.book Page 114 Tuesday, July 28, 2009 9:07 AM
Figure 6.15

Figure 6.15 A DbField Inspector with a Foreign Table

If the type is not the same, the comparison between the actual value and the value column is
not possible. Values must be of the same type for a comparison to produce a useful result.

The types
must be the
114 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 115 Tuesday, July 28, 2009 9:07 AM
Part II
Data Access and SQL

This part describes how to use Data Access when connected to an SQL database. It describes
SQL tables and data sources, and how to connect to a database.

usrdataccess.book Page 116 Tuesday, July 28, 2009 9:07 AM

C H A P T E R

usrdataccess.book Page 117 Tuesday, July 28, 2009 9:07 AM
7

SQL Tables

You were given an overview of table objects in Chapter 3, Tables. An SQL table is a table
object that is used when Data Access is connected to an SQL database. This chapter
describes the SQL table object in more detail.

You can find information on the following topics:

◆ Introduction

◆ Structural Definition

◆ The SQL Session of an SQL Table

◆ Run-Time Options

◆ Parameters

◆ Transaction Manager

◆ Structured Types

◆ Asynchronous Mode
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 117

usrdataccess.book Page 118 Tuesday, July 28, 2009 9:07 AM
Introduction

The IliSQLTable class defines an object that manages rows on a remote relational
database management system. It is created automatically when an IliSQLDataSource is
created. Each IliSQLDataSource object has an associated IliSQLTable.

This chapter explains how IliSQLTable objects are defined and subsequently used.

Structural Definition

Each IliSQLTable object must have an associated SQL SELECT statement that is
submitted to the database system whenever the rows of the SQL table object need to be
recomputed.

The following shows an example of an SQL SELECT statement:

SELECT EMP.ID, EMP.NAME, EMP.DEPTNO
FROM EMP
WHERE EMP.DEPTNO = 3
ORDER BY 2

When you submit this statement, the result is an ordered collection of rows, each of which
has three values (EMP.ID, EMP.NAME and EMP.DEPTNO). These rows are extracted from
the database table named EMP and they are sorted by NAME (ORDER BY 2). Not all rows
are extracted from table EMP: only the rows whose EMP.DEPTNO is equal to 3. In other
words, this SQL statement returns the ID, NAME, and DEPTNO of all employees working
in department number 3.

An SQL SELECT statement can have more than one database table referenced in the FROM
clause. Here is an example:

SELECT EMP.ID, EMP.NAME, DEPT.NAME
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.ID

The rows produced by this query are obtained by combining rows from the database tables
EMP and DEPT through a join operation.

An IliSQLTable object can be defined so that its SQL query resembles one of the
statements shown above. Two different techniques can be used to achieve this. The following
sections describe these techniques: creating the definition interactively using
IBM ILOG Views Studio and creating the definition in pure C++.
118 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Structural Definition

usrdataccess.book Page 119 Tuesday, July 28, 2009 9:07 AM
Creating the Definition Using IBM ILOG Views Studio

The IliSQLTable can be defined interactively in IBM ILOG Views Studio through the
IliSQLDataSource object inspector.

Figure 7.1

Figure 7.1 The SQL Data Source Inspector

Within SQL Data Source inspector, you can:

◆ Specify the database tables to be referenced by the FROM clause (the Add Tables menu
item).

◆ Specify the joins between tables when multiple database tables are added. These joins
can be specified by dragging a column from one table to a column in another table. This
results in a condition of the form Table1.Column1 = Table2.Column2 being added
to the WHERE clause of the SQL SELECT statement.

◆ Specify the columns of the IliSQLTable object. These columns are derived from the
columns of the database tables in the following way: drag a column belonging to a
database table and drop it over the SELECT area in the inspector. This will create a new
column in the schema of the IliSQLTable object.

Alternatively, the SELECT area in the inspector contains an undefined column that
allows you to type in the definition of a new column. The rows labeled Select and From
are used to specify how the IliSQLTable column relates to the database table. In the
From row, enter the name of the database table from which the column is derived. In the
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 119

usrdataccess.book Page 120 Tuesday, July 28, 2009 9:07 AM
Select row, enter the name of the database table column from which the column is
derived.

If you want to define an IliSQLTable column that is derived from multiple database
columns, leave the From row empty and, in the Select row, enter an SQL expression that
computes the column value (for example, PRICE * QTY).

◆ Specify the WHERE clause by typing the selection criteria in the Where row. If you enter
conditions for multiple columns, these conditions will be combined with an AND logical
operator in the SELECT statement. Once you enter a condition in the Where row, a new
row labeled Or appears. In the Or row, you can type a new set of conditions that will be
combined, via an OR logical operator, with the Where row conditions. There can be any
number of Or rows.

◆ If the SELECT statement contains a GROUP BY clause or if it contains aggregate
functions such as COUNT or SUM, enter the appropriate operations in the Operation row.
Note that in this case, all columns must have a specified operation and that conditions
should be entered in the Having row instead of the Where row.

● Specify the ORDER BY clause in the “Order By” row.

● Specify other column properties in the Datatype, Look, and Mapping notebook pages.

● Specify the parameters used in the WHERE clause in the Parameters page.

● If duplicate rows should be removed from the result produced by the SELECT
statement, the Distinct property should be set to Yes.

● In addition to performing an SQL SELECT statement, an IliSQLTable object is
able to forward user updates to the database. This involves generating SQL UPDATE,
INSERT, and DELETE statements on-the-fly. Note that when more than one database
table is added to a data source, only one of the database tables can be updated in this
way. Ensure that the updatable Table property contains the database table name that
will be changed through the IliSQLTable object.

At this point, the IliSQLTable is structurally defined. This means that its schema is
defined and the process that it should use to compute its rows from the tables in the database
is also defined.

Creating the Definition in C++

All of the steps described in the previous section can also be carried out by coding in C++.
This following example shows how this can be done:

◆ Create the IliSQLTable object

IlvDisplay* display;
...
IliSQLTable* sqlTbl = new IliSQLTable(display);
sqlTbl->lock();
120 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Structural Definition

usrdataccess.book Page 121 Tuesday, July 28, 2009 9:07 AM
◆ Specify the database tables

◆ Specify the joins

◆ Specify the columns

A computed column could be defined in the following way (note that the following code
excerpt is not part of the example).

IlInt cTOTAL = sqlTbl->appendColumn(“TOTAL”, IliIntegerType);
sqlTbl->setColumnSQLText(cTOTAL, “PRICE * QTY”);

◆ Specify the criteria

◆ Specify the sort

sqlTbl->setColumnOrderBy(cNAME, IliSQLAscending);

◆ Specify the updatable table

sqlTbl->setTableUpdatable(tblEMP, IlTrue);

◆ Generate the SQL SELECT statement

sqlTbl->makeQuery();

At this point, the IliSQLTable object is defined and ready for use. Calling the
IliSQLTable::getQuery member function generates the following SQL statement:

SELECT EMP.ID, EMP.NAME, DEPT.NAME
FROM SCOTT.EMP, SCOTT.DEPT
WHERE EMP.DEPTNO = DEPT.ID

IliSQLTableRef refEMP(“EMP”, “SCOTT”);
IliSQLTableRef refDEPT(“DEPT”, “SCOTT”);
IlInt tblEMP = sqlTbl->addTable(refEMP);
IlInt tblDEPT = sqlTbl->addTable(refDEPT);

sqlTbl->addJoin(tblEMP, “DEPTNO”, tblDEPT, “ID”);

IlInt cID = sqlTbl->appendColumn(“ID”, IliIntegerType);
sqlTbl->setColumnPartOfKey(cID, IlvTrue);
sqlTbl->setColumnSQLText(cID, “ID”);
sqlTbl->setColumnTable(cID, tblEMP);

IlInt cNAME = sqlTbl->appendColumn(“NAME”, IliStringType);
sqlTbl->setColumnSQLText(cNAME, “NAME”);
sqlTbl->setColumnTable(cNAME, tblEMP);

IlInt cDEPT = sqlTbl->appendColumn(“DEPT”, IliStringType);
sqlTbl->setColumnSQLText(cDEPT, “NAME”);
sqlTbl->setColumnTable(cDEPT, tblDEPT);

IlInt where = 0;
sqlTbl->insertConjunct(where,IlvTrue);
sqlTbl->setColumnPredicat(cNAME, where, “<> ‘Smith’”, IlvTrue);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 121

usrdataccess.book Page 122 Tuesday, July 28, 2009 9:07 AM
 AND EMP.NAME <> ‘Smith’
ORDER BY 2

A Shortcut C++ Definition

The IliSQLTable::setQueryFrom member function allows you to define an
IliSQLTable that has only one database table. Here is an example:

IlvDisplay* display;
...
// Create the IliSQLTable object.
IliSQLTable* sqlTbl = new IliSQLTable(display);
sqlTbl->lock();

// Define its session.
IliSQLSession* session;
session = new IliSQLSession(“oracle”, “scott/tiger@orasrv”);
sqlTbl->setSQLSession(session);

// Define the IliSQLTable object.
IliSQLTableRef tblRef(“EMP”, “SCOTT”);
sqlTbl->setQueryFrom(tblRef);

The setQueryFrom member function reads the schema of the given database table and
defines the IliSQLTable object accordingly.

The SQL Session of an SQL Table

An IliSQLTable object must have a properly defined SQL session before any real work
can be done. The SQL session handles all requests sent to a database server. See SQL
Sessions and Cursor Objects on page 149.

When defining an IliSQLDataSource gadget in IBM ILOG Views Studio through the
inspector, the SQL session can be edited through the Connection property. Editing this
property causes a connection dialog box to be displayed in which the user can choose one of
the following options:

◆ Creating a custom session by entering all required connection parameters.

◆ Selecting the name of an application-wide session.

An SQL session can be shared among several IliSQLTable objects by selecting the same
application-wide session for each of them.

The rest of this section describes how these actions can be carried out in C++.

A custom session can be defined as follows:

IliSQLTable* sqlTbl;
...
IliSQLSession* session;
122 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Run-Time Options

usrdataccess.book Page 123 Tuesday, July 28, 2009 9:07 AM
session = new IliSQLSession(“oracle”, “scott/tiger@orasrv”);
sqlTbl->setSQLSession(session);

An application-wide session can be selected as follows:

IliSQLTable* sqlTbl;
...
IliSQLSession* session;
session = IliSQLSession::GetRegisteredSession(“Main”);
sqlTbl->setSQLSession(session);

The SQL session that an IliSQLTable object uses to communicate with the database server
can be retrieved in the following way:

IliSQLSession* session = sqlTbl->getEffectiveSQLSession();

Run-Time Options

This section contains information on the options that affect the way an IliSQLTable object
behaves. These options can be set through the API using the appropriate member functions
in the IliSQLTable class.

You can find information on the following topics:

◆ Concurrency Control

◆ Auto-Commit Mode

◆ Fetch Policy

◆ Auto-Refresh Mode

◆ Inserting-Nulls Mode

◆ Dynamic-SQL Mode

◆ Bound Variables Mode

◆ Cursor Buffering

◆ Auto-Row Locking Mode

Concurrency Control

In a client-server environment, there can be multiple client programs simultaneously
accessing the same data in the database server. When concurrency control is enabled, any
row updates or deletions in an SQL table will succeed only if the rows concerned have not
changed in the database since the last time they were fetched and stored in the local memory
cache. In other words, concurrency control obliges the SQL table to protect the work carried
out through it from any changes made by other database users.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 123

usrdataccess.book Page 124 Tuesday, July 28, 2009 9:07 AM
This is achieved by adding extra conditions in the SQL statements that are generated when a
row is updated or deleted.

For example, assume that the SQL SELECT statement of an IliSQLTable object is the
following and that ID is the primary key of the EMP table:

SELECT ID, NAME
FROM EMP

If the name of an employee whose ID is 6 is changed from “Smith” to “Jones”, the resulting
SQL UDPATE statements will be as follows:

◆ Without concurrency control

◆ With concurrency control enabled

The latter statement will fail if the name of the employee has been changed by another user.

Auto-Commit Mode

When the auto-commit mode is enabled, the IliSQLTable object commits the transaction
immediately after an INSERT, UPDATE or DELETE operation. When auto-commit is
disabled, the transaction must be committed (through the effective SQL session) as required.

Here is an example:

IliSQLTable* sqlTbl;
...
// Delete two rows and then commit.
sqlTbl->setAutoCommit(IlvFalse);
sqlTbl->deleteRow(10);
sqlTbl->deleteRow(9);
sqlTbl->getEffectiveSQLSession()->commit();

UPDATE EMP
SET NAME = ‘Jones’
WHERE ID = 6

UPDATE EMP
SET NAME = ‘Jones’
WHERE ID = 6
 AND NAME = ‘Smith’

Note: The technique used to deal with concurrency control is referred to as optimistic
concurrency control. It does not explicitly lock rows at read time. For more information on
how rows can be locked at read time using a technique known as pessimistic concurrency
control, see Auto-Row Locking Mode on page 127.
124 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Run-Time Options

usrdataccess.book Page 125 Tuesday, July 28, 2009 9:07 AM
Fetch Policy

Data Access supports two ways of fetching rows from the database after a successful
SELECT operation: either all rows are fetched at once at select time or the retrieval of rows
is delayed until required. The fetch policy of an SQL table can be set using the
IliSQLTable::setFetchPolicy member function.

Here is an example where the fetch policy is immediate:

IliSQLTable* sqlTbl;
...
sqlTbl->setFetchPolicy(IliFP_Immediate);
sqlTbl->select();
// All rows have been fetched and are now available locally.
IlInt rowsCount = sqlTbl->getRowsCount();
// The rows count is accurate.

The advantage of the immediate fetch policy is that the row count is accurate, since the
IliTable::select member function retrieves all the database rows at once. However, the
disadvantage is that if the SQL SELECT statement retrieves ten thousand rows, the
IliTable::select function will incur serious overhead.

Alternatively, the IliSQLTable object can delay the retrieval of rows until necessary. Here
is an example:

IliSQLTable* sqlTbl;
...
sqlTbl->setFetchPolicy(IliFP_AsNeeded);
// Auto-commit must be disabled.
sqlTbl->setAutoCommit(IlFalse);
sqlTbl->select();
// Rows have not yet been fetched.
IlInt initialRowsCount = sqlTbl->getRowsCount();
// The initial rows count equals 0.
sqlTbl->fetchNext(10);
IlInt halfWayRowsCount = sqlTbl->getRowsCount();
// Now, 10 rows are available locally.
sqlTbl->fetchAll();
IlInt totalRowsCount = sqlTbl->getRowsCount();
// All rows have been fetched and are now available locally.

Note that the auto-commit mode must be disabled for this way of retrieving rows to be
effective.

Auto-Refresh Mode

When auto-refresh mode is enabled, an INSERT or UPDATE operation on the database is
followed immediately by a request to the database for the inserted or updated row. The row
obtained via this request replaces the inserted or updated row in the IliSQLTable object.

This is useful in either of the following situations:
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 125

usrdataccess.book Page 126 Tuesday, July 28, 2009 9:07 AM
◆ The database contains triggers that can alter inserted or modified rows.

◆ The selected list of the SQL SELECT statement contains formulas (for example, PRICE
* QTY) that need to be recalculated each time the row changes.

Inserting-Nulls Mode

When inserting a row in a database table, the row can contain one or more NULL values.

Here is an example of the SQL statement when the ADDRESS of employee Williams is
NULL and the insert-nulls property is enabled:

INSERT INTO EMP(ID, NAME, ADDRESS) VALUES(7, ‘Williams’, NULL)

Alternatively, the following example shows the SQL statement when the insert-nulls
property is disabled:

INSERT INTO EMP(ID, NAME) VALUES(7, ‘Williams’)

Dynamic-SQL Mode

When a row is edited, it can contain some modified values and some values that remain
unchanged. For instance, assuming the address of employee Williams is modified, the
following example shows the SQL statement that would be generated if dynamic-SQL is
enabled:

UPDATE EMP
SET ADDRESS = ‘16, Chocolate Street’
WHERE ID = 7

Here is the SQL statement if dynamic-SQL is disabled:

UPDATE EMP
SET ID = 7,
 NAME = ‘Williams’,
 ADDRESS = ‘16, Chocolate Street’
WHERE ID = 7

In the latter case, the values for all the columns are sent back to the database each time an
update takes place.

Bound Variables Mode

Most database systems support the use of bound variables in SQL statements. When bound
variables are used, the SQL statements contain variable markers. Here is an example:

UPDATE EMP
SET NAME = ?
WHERE ID = ?
126 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Run-Time Options

usrdataccess.book Page 127 Tuesday, July 28, 2009 9:07 AM
The question marks represent variables. The value for a variable is provided separately. The
advantage of using bound variables is that the same SQL statement can be reused even
though the values involved change each time. Using the same SQL statement each time
instead of having many SQL statements can offer a serious boost in performance. This is
because the time spent in parsing an SQL statement and selecting an access plan on the
database server can be significant.

Cursor Buffering

Cursor buffering is a way to obtain better throughput when fetching a large number of rows.
It consists of having the lower layers of the database library fetch more than one row at a
time from the database server.

By default, rows are obtained one at a time from the database server. This can seriously slow
down the application when many rows have to be fetched since a network round-trip will be
required for each row.

The IliSQLTable::setCursorBufferedRowsCount member function lets you specify
how many rows can be fetched at one time.

IliSQLTable* sqlTbl;
...
sqlTbl->setCursorBufferedRowsCount(15);

Note that this will result in better throughput only with database servers that support this
feature, which currently are Oracle and Sybase.

Auto-Row Locking Mode

The IliSQLTable class has a refreshAndLockRow member function that rereads a given
row and attempts to acquire a lock on this row in the database. This is useful if you want to
implement the “pessimistic concurrency control policy”.

The IliDataSource class has “auto-row locking” mode in which it automatically calls the
refreshAndLockRow member function of the underlying table whenever the end user
starts modifying the current row.

Here is how the “auto-row locking” mode can be enabled:

IliSQLDataSource* sqlDs;

...

sqlDs->enableAutoRowLocking(IlvTrue);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 127

usrdataccess.book Page 128 Tuesday, July 28, 2009 9:07 AM
Parameters

The SQL SELECT statement of an IliSQLTable object can contain references to
parameters. See Parameters on page 139. Here is an example:

SELECT ID, NAME, ADDRESS
FROM EMP
WHERE NAME = :name_p

In this example name_p is the name of a parameter and as such it must be preceded by a
colon “:” in the SQL statement.

In addition, the parameter must be declared in the IliSQLTable object. This can be done
either interactively through the SQL Data Source inspector in IBM ILOG Views Studio or in
C++ as follows:

IliSQLTable* sqlTbl;
...
sqlTbl->appendParameter(“name_p”, IliStringType);

A value should be assigned to this parameter before the IliTable::select member
function is called. This code extract only shows how the parameter is defined in C++. For a
complete description of the code required to generate this SQL statement, see Creating the
Definition in C++ on page 120.

IliValue v(“Smith”);
sqlTbl->setParameterValue(“name_p”, v);
sqlTbl->select();

The parameter can subsequently be assigned other values as required.

Transaction Manager

The IliTransactionManager class manages so-called local transactions in which the
propagation of changes of one or more IliTable objects is deferred. This is especially
useful when using IliSQLTable objects. In effect, each time a row is inserted, updated, or

Note: When using an Oracle database system, it is possible to request that the
IliSQLTable::refreshAndLockRow member function includes the “NOWAIT”
clause in the SQL SELECT statement it uses to lock the row. By doing this, the end user
will not wait when locks are held by other database users. See the
IliSQLTable::enableNoWaitOnLockRow member function for more information.
128 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Transaction Manager

usrdataccess.book Page 129 Tuesday, July 28, 2009 9:07 AM
deleted in an IliSQLTable object, one or more corresponding SQL statements are
submitted to the database server to which the SQL table object is connected.

Although it is necessary to send SQL statements immediately when the IliSQLTable
object is in auto-commit mode, it can be useful to retain these statements when not in auto-
commit mode. Instead, the user could be allowed to make a number of changes to one or
more IliSQLTable objects. The changes would be effective in local row cache so that they
are reflected in all connected gadgets, but the corresponding SQL statements are retained.
Later, when the user validates the changes, all SQL statements are submitted to the database
server.

If all statements are accepted by the server, the transaction has succeeded and the user can
issue a database commit. However, if at least one of the statements fails, the user should
issue a database rollback to cancel any statement that would have succeeded before it. The
user can then either make some additional changes and retry the validation process or cancel
all changes locally so that the local row cache(s) of the IliSQLTable object(s) revert their
state(s) to what they were before the first change.

The set of changes that have been effected in the local row cache(s) of the IliSQLTable
object(s) and the corresponding SQL statements that have been retained are called a local
transaction.

To participate in a local transaction, an IliTable object must be managed by an instance of
the IliTransactionManager class.

A transaction manager is anonymous or named. The name space for a transaction manager is
global. There can be at most one transaction manager with a given name.

The simplest way to assign a transaction manager to an IliTable object is to assign its
transactionManagerName property. If a name is assigned to the property and there is no
transaction manager with that name, a transaction manager is automatically created and is
assigned to the IliTable object. Other table objects can then be made to share this
transaction manager by assigning the same name to their transactionManagerName
property. The transaction manager can then be obtained by accessing the
transactionManager property of one of the table objects.

The IliSQLTable and IliMemoryTable classes are currently transaction-manager-aware
classes.

Note that the following restrictions apply to the use of a transaction manager:

◆ The IliTable::select and IliTable::clearRows member functions should not
be called on table objects involved in a pending local transaction.

◆ Nested tables should not be managed by a transaction manager. See the Parameters on
page 128 for more information.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 129

usrdataccess.book Page 130 Tuesday, July 28, 2009 9:07 AM
The following code sample shows how a transaction manager is used:

class MyPanel: public IlvGadgetContainer {
public:
 IliSQLTable* getTableEMP() const { ... }
 IliSQLTable* getTableDEPT() const { ... }

 MyPanel(IlvDisplay* dpy)
 : IlvGadgetContainer(dpy, ...)
 { ... }

void initPanel() {
 // Could be done in IBM ILOG Views Studio without coding,
 // shown here for exposition.
 // Ensure both tables are using the same transaction manager.
 getTableEMP()->setTransactionManagerName("TRANS_MGR");
 getTableDEPT()->setTransactionManagerName("TRANS_MGR");

 // And the same session.
 IliSQLSession* session = getTableEMP()->getSQLSession();
 getTableDEPT()->setSQLSession(session);

 // Do not auto-commit.
 getTableEMP()->setAutoCommit(IlvFalse);
 getTableDEPT()->setAutoCommit(IlvFalse);
 }

 IliTransactionManager* getTransMgr() const
 { return getTableEMP()->getTransactionManager(); }

 IliSQLSession* getSQLSession() const
 { return getTableEMP()->getEffectiveSQLSession(); }

 IlBoolean isTransactionStarted() const
 { return getTransMgr()->isStarted(); }

 void startTransaction()
 { getTransMgr()->start(); }

 IlBoolean acceptTransaction() {
 if (getTransMgr()->accept()) {
 getTransMgr()->stop();
 getSQLSession()->commit();
 return IlTrue;
 }
 else {
 getSQLSession()->rollback();
 return IlFalse;
 }
 }

 void cancelTransaction() {
 getTransMgr()->cancel();
 getTransMgr()->stop();
 }
};
130 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Structured Types

usrdataccess.book Page 131 Tuesday, July 28, 2009 9:07 AM
Structured Types

Some database systems (for example, Oracle 9i or later, Informix 9.x) support extensible
type systems in which the type of a database table column is not limited to the traditional
scalar data types. It can also be either a structured type or a collection type.

Data Access represents values of the structured types as IliMemoryTable objects.

For example, a database table called PRODUCT can be defined in an Oracle 8.x database
system as follows:

CREATE TYPE PART_T AS OBJECT(
 PARTNO INTEGER NOT NULL,
 PARTNAME VARCHAR(20) NOT NULL);

CREATE TYPE PART_TABLE_T AS TABLE OF PART_T;

CREATE TABLE PRODUCT(
 PRODNO INTEGER NOT NULL PRIMARY KEY,
 PRODNAME VARCHAR2(50) NOT NULL,
 PARTS PART_TABLE_T);

An SQL data source named PRODUCT_DS based on the PRODUCT table can then be
created. All three columns of the PRODUCT table should be included in the PRODUCT_DS
data source.

The following code extract shows how the contents of the PARTS column can be used in
IBM ILOG Script.

IliSQLDataSource prodDS = ...;
IliSQLTable* prodTable = prodDS->getSQLTable();
for (IlInt prodIdx = 0; prodIdx < prodTable->getRowsCount(); ++prodIdx) {
 const IliTable* partsTable = prodTable->at(prodIdx, "PARTS").asTable();
 const char* prodName = prodTable->at(prodIdx, "PRODNAME");
 if (partsTable != NULL) {
 IlvPrint("Product %s parts:", prodName);
 IlInt partCount = partsTable->getRowsCount();
 for (IlInt partIdx = 0; partIdx < partCount; ++partIdx) {
 const char* partName = partsTable->at(partIdx, "PARTNAME");
 IlvPrint(" %s", partName);
 }
 }
 else
 IlvPrint("Product %s does not have parts", prodName);
}

I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 131

usrdataccess.book Page 132 Tuesday, July 28, 2009 9:07 AM
The following code extract shows how a new row can be inserted in the PRODUCT table.

In both examples shown above, prodTable designates an IliSQLTable whereas
partsTable designates a nested IliMemoryTable. Care must be taken not to modify the
nested memory table. Doing so would inevitably lead to inconsistencies between the Data
Access application and the database. Instead, a PARTS_DS SQL data source based on the
PRODUCTS.PARTS nested table can be created. This data source is defined as follows
through the SQL Data Source inspector:

1. Set the data source name to PARTS_DS.

2. Add the PRODUCT database table by selecting Add Tables... from the Query menu of
the inspector panel.

3. In the PRODUCT table, open the PARTS column by clicking on the + sign that appears
to the left of the column name.

4. Drag the PARTNO and PARTNAME columns and drop them in the SELECT section.

IliSQLDataSource prodDS = ...;
IliSQLTable* prodTable = prodDS->getSQLTable();

// Create the nested PARTS table.
IlInt partsColno = prodTable->getColumnIndex("PARTS");
const IliDatatype* type = prodTable->getColumnType(partsColno);
IliTable* partsTable = type->makeTable();
partsTable->lock();

IliTableBuffer* partsBuf = partsTable->getBuffer();

// Insert the first part.
partsBuf->at("PARTNO") = (IlInt)610;
partsBuf->at("PARTNAME") = "Drawer";
partsTable->appendRow(partsBuf);

// Insert the second part.
partsBuf->at("PARTNO") = (IlInt)611;
partsBuf->at("PARTNAME") = "Handle";
partsTable->appendRow(partsBuf);

partsTable->releaseBuffer(partsBuf);

// Insert the new product.
IliTableBuffer* prodBuf = prodTable->getBuffer();
prodBuf->at("PRODNO") = (IlInt)61;
prodBuf->at("PRODNAME") = "Dresser";
prodBuf->at("PRODNAME") = partsTable;
prodTable->appendRow(prodBuf);
prodTable->releaseBuffer(prodBuf);

partsTable->unLock();
132 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Structured Types

usrdataccess.book Page 133 Tuesday, July 28, 2009 9:07 AM
5. To edit the definition of the PRODUCT table, double-click on the PRODUCT table. In
the Table definition dialog box that appears, make sure that the following items are
defined:

Parent: PRODUCT_DS

Alias: PRODUCT

The PARTS_DS data source can be used in two different settings:

◆ The PRODUCT_DS data source does not include the PARTS column. Instead, the
PARTS_DS data source retrieves the contents of the nested PARTS table each time its
select method is called. Note that in this case, there are no nested IliMemoryTable
objects involved. Instead there are two IliSQLTable objects, one of them belongs to
PRODUCT_DS and the second one belongs to PARTS_DS.

◆ The PRODUCT_DS data source does include the PARTS column. Consequently, there
are many nested IliMemoryTable available, one for each row in the PRODUCT_DS
data source. The PARTS_DS data source can be used in this setting to edit any nested
partsTable IliMemoryTable objects contained in the PRODUCT_DS data source as
shown in the following code extract:

Once the nested memory table has been assigned to the cache property of the PARTS_DS
table, it can be edited as any SQL table through PARTS_DS.

Note that the PARTS_DS data source assumes that the nested table it is editing belongs to
the current row of the PRODUCT_DS data source. As a consequence, it is necessary to
adjust the value of the cache property when the PRODUCT_DS data source moves to
another row.

partsMemoryTable->Lock();
IliSQLDataSource* prodDS = ...;
IliSQLTable* prodTable = prodDS->getSQLTable();
IlInt prodIdx = prodDS->getCurrentRow();

const IliTable* partsMemoryTable = prodTable->at(prodIdx,
 "PARTS").asTable();
if (partsMemoryTable == NULL) {
 IlInt partsColno = prodTable->getColumnIndex(""PARTS");
 const IliDatatype* type = prodTable->getColumnType(partsColno);
 partsMemoryTable = type->makeTable();
 prodTable->set(prodIdx, "PARTS", IliValue(partsMemoryTable);
 partsMemoryTable = prodTable->at(prodIdx, "PARTS").asTable();
}

IliSQLDataSource* partsDS = ...;
IliSQLTable* partsSQLTable = partsDS->getSQLTable();
partsSQLTable->setCache(partsMemoryTable);
partsMemoryTable->unLock();
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 133

usrdataccess.book Page 134 Tuesday, July 28, 2009 9:07 AM
Asynchronous Mode

Normally, calls made by a client application to a database server are blocking. This means
that the client application has to wait for server replies each time it submits an SQL
statement or when it attempts to fetch rows. The effect of this is that the end user may feel
that the application is not sufficiently responsive.

Asynchronous mode, which is supported by some database systems, can be used to increase
application responsiveness. Instead of blocking until the server responds, asynchronous calls
return quickly and the caller must check whether the call has completed (that is, whether the
server has responded). If not, the caller is expected to repeat the call until completion. In the
meantime, the caller can proceed with other tasks (such as giving the main loop a chance to
handle other events).

The advantages of asynchronous mode are that the application can become more responsive
to user input and, in addition, the user may be given the opportunity to cancel a long-running
task that has taken too much time. The disadvantage is that programming applications with
asynchronous calls is more difficult than programming with synchronous calls.

The IliSQLTable class supports selecting and fetching rows asynchronously from a
database server. It does not, however, support asynchronous insert, update, or delete
operations.

A typical way of using asynchronous calls is to set up a timer in the application (see the
IliDbTimer class) and to proceed as follows. Assume that an SQL data source needs to
perform its select call in asynchronous mode.

◆ Put the data source session in asynchronous mode:

◆ Ensure that the fetch policy is “Immediate” so that a call to the select member function
will also fetch all rows:

sqlTable->setFetchPolicy(IliFP_Immediate);

◆ Call the select member function:

sqlTable->select();

IliSQLDataSource* ds = ...;
 IliSQLTable* sqlTable = ds->getSQLTable();
 IliSQLSession session = ds->getEffectiveSQLSession();
 session->enterAsyncMode();
134 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Asynchronous Mode

usrdataccess.book Page 135 Tuesday, July 28, 2009 9:07 AM
◆ In the timer callback, call continueAsyncCall as long as the call to select has not
completed:

Note that asynchronous mode is not supported by all database systems. Moreover, when it is
supported by a database system, support may depend on the database server release number.
You should dynamically test whether asynchronous mode is supported as shown in the
following code:

IliSQLSession* session = sqlTable->getEffectiveSQLSession();
if (session->supportsAsyncMode()) {
...
}

Another important issue to consider is that there can be at most one non-completed
asynchronous call among all cursors that belong to the same session. This means that you
cannot execute asynchronously in parallel two SQL statements through two cursors that
belong to the same session. Consequently, it is recommended that an SQL table have a
private SQL session (that is, not an application-defined session) when used in asynchronous
mode.

void ILVCALLBACK OnTimer(IlvGraphic*, IlAny) {
 IliSQLDataSource* ds = ...;
 IliSQLTable* sqlTable = ds->getSQLTable();
 if (!sqlTable->isAsyncCallCompleted())
 sqlTable->continueAsyncCall();
 }
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 135

usrdataccess.book Page 136 Tuesday, July 28, 2009 9:07 AM
136 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 137 Tuesday, July 28, 2009 9:07 AM
8

SQL Data Sources

This chapter provides information on SQL data sources, including how to define parameters
in an SQL table and SQL data sources.

You can find information on the following topics:

◆ Query Mode

◆ Parameters

◆ Working with an SQL Data Source

Query Mode

The IliDataSource and IliSQLTable classes support query mode.

When query mode is entered, the data source substitutes a memory table for the SQL table
(see IliDataSource::switchToQueryMode). This memory table has the same number
of columns as the SQL table, but it differs in that all columns in the memory table have a
String type. The user can then edit the contents of the memory table through the same set of
gadgets that are used to edit the SQL table in regular (nonquery) mode.

Each column of a memory table can contain:

◆ A literal value (implying the = relational operator)
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 137

usrdataccess.book Page 138 Tuesday, July 28, 2009 9:07 AM
◆ A value containing the SQL wildcard character % or the underscore character “_”
(implying the LIKE SQL operator)

◆ An SQL condition such as:

● NULL or IS NULL

● NOT NULL or IS NOT NULL

● LIKE ‘a pattern’

● NOT LIKE ‘a pattern’

● BETWEEN _literal_value AND another_literal_value

● = a_literal_value

● <> a_literal_value

● < _literal_value

A memory table can contain more than one row. All conditions that appear on the same line
will be combined with an AND operator when the query is applied. Conditions that appear
on different lines will be combined with an OR operator.

Then, the user can apply the query (see IliDataSource::applyQueryMode), which will
synthesize a portion of the WHERE clause based on the contents of the memory table. This
WHERE clause will then be assigned to the SQL table by calling the
IliSQLTable::setQueryConjunct member function. The IliTable::select
member function will be called and the data source will revert to using the SQL table instead
of the memory table so that all connected gadgets show the contents of the SQL table.

Alternatively, the user can cancel the query (see IliDataSource::cancelQueryMode),
which simply reverts to using the SQL table instead of the memory table so that all
connected gadgets show the contents of the SQL table.

The IliDbNavigator gadget has been upgraded to optionally contain a QueryMode
button.

The QueryMode button is labelled with a question mark (?). When the QueryMode button is
clicked, the SQL data source switches to query mode. When in query mode, the Validate (V)
and Cancel (X) buttons of the navigator behave differently than when in regular mode.
Clicking on the Validate navigator button applies query mode and clicking on the Cancel
navigator button cancels query mode.
138 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Parameters

usrdataccess.book Page 139 Tuesday, July 28, 2009 9:07 AM
Parameters

Parameters can be defined in the SQL table via the data source in IBM® ILOG® Views
Studio. These parameters can be used to filter the data that is displayed in a form.

Parameters are defined in terms of a column of a data source table. This means that the
content of the data source column is taken to be the value of the parameter at any particular
time.

Defining a Parameter

A parameter is defined in the SQL Data Source inspector on the Parameters page. In the
table on the Parameters page, you can enter as many parameters as you need.

A parameter is defined by four characteristics:

◆ Name

◆ Type

◆ Name of the data source that it is attached to

◆ Column of the data source table that defines the parameter

Figure 8.1

Figure 8.1 Defining a Parameter in the SQL Data Source Inspector

Defining a Parameter That Accepts User Input

In the IBM ILOG Views Data Access Getting Started Manual, you saw how to filter data
according to the values in a column of another data source table. It is possible to adapt this
behavior to accept user input as a parameter. This can be done using a memory data source.

The following example shows how to filter an employee table to show only those employees
that work in a particular department. The example also uses a foreign table. The tables used

Note: When a parameter is defined, the parameter name is used. However, when the
parameter is used, its name must be prefixed by a colon “:”.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 139

usrdataccess.book Page 140 Tuesday, July 28, 2009 9:07 AM
in this example are the same as those used in the example described in the IBM ILOG Views
Data Access Getting Started Manual.

You need to set up a panel containing an SQL data source, a gadget table that is connected to
it, and a DbField gadget to control record display.

You will start with a table resembling the one shown in the following figure, that is, an SQL
data source connected to a table gadget that shows the I_EMP database table:

Figure 8.2

Figure 8.2 A Table Gadget Linked to an SQL Table

The DEPTNO column has a foreign table that is connected to it and that converts a
department number to the appropriate department name (See Foreign Tables on page 105).
The foreign table is a memory table like the one shown in the following figure:

Figure 8.3

Figure 8.3 The Foreign Table for the DEPTNO Column

A new DbField gadget and a memory data source should then be created. The DbField
gadget will be connected to the single column of the memory data source. The memory table
must be set up as a single column table that accepts an integer type.

The memory data source that acts as a “go-between” for the parameter value.

Note: Ensure that when you connect to the database you click on the “Keep Password”
button. This avoids having to reconnect later.
140 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Parameters

usrdataccess.book Page 141 Tuesday, July 28, 2009 9:07 AM
Figure 8.4

Figure 8.4 The DEPT_NAME Memory Data Source

Note that it is important to set up the column type as an integer even though the user will be
entering a string value. This is because the foreign table will convert the string to an integer
before entering the value into the memory table.

The DbField should be connected to this memory data source and configured in the
following way:
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 141

usrdataccess.book Page 142 Tuesday, July 28, 2009 9:07 AM
Figure 8.5

Figure 8.5 The Data Source and Mapping pages of the DbField Inspector that Accepts the
Parameter Input

You will now define a parameter in the original SQL table that accepts its input from the
contents of the only column in the memory data source. This column in turn accepts its input
from the DbField. A parameter must be defined in the SQL Data Source inspector:

Figure 8.6

Figure 8.6 Defining a Parameter via a Memory Data Source with a Single Column

In addition to this, you must set Auto Select to Yes in the SQL Data Source Properties
dialog box. This enables a data source that uses data from another data source table to
automatically select the required value.

To specify that the data shown in the table gadget is to be filtered according to the
department parameter, you need to enter the following into the Select page of the SQL Data
Source inspector:

Foreign Table

Memory Table with
One Column

Style Set as
IliTableComboBoxStyle
142 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Parameters

usrdataccess.book Page 143 Tuesday, July 28, 2009 9:07 AM
Figure 8.7

Figure 8.7 Specifying the Selection Criterion for a SQL Table

You are now able to enter a department in the DbField that will be entered into the memory
table column and taken as the “department” parameter value. It will then be used to make a
selection in the SQL table.

One thing remains to be done. The validation of the user input in the memory table can be
done by setting a predefined callback on the DbField.

Figure 8.8

Figure 8.8 Setting a Callback on the DbField

This callback validates the user input in the memory table. Now, when you test this panel,
the SQL table automatically selects according to the value that you enter in the DbField.

You should now have a panel that allows you to select the required department from a combo
box and display only the employees that work in the department.

Note: When a parameter is used, its name must be prefixed by a colon
(for example, = :department).

The Selection Criterion
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 143

usrdataccess.book Page 144 Tuesday, July 28, 2009 9:07 AM
Figure 8.9

Figure 8.9 Completed Panel Allowing Department Selection and Table Contents Filtering

Working with an SQL Data Source

This section contains some hints for using the SQL data source.

You can find information on the following topics:

◆ Defining Columns

◆ Forcing the Name of a Column

◆ The Table Primary Key

Defining Columns

When you add a database table to a data source, you can tie the columns of the table to the
columns of the data source table. This can either be done graphically or manually in the data
source inspector.

The graphical method is described in the IBM ILOG Views Data Access Getting Started
Manual. To specify the column that should be selected from a database manually, you can
type directly in the Select and From cells in the appropriate column in the SQL Data Source
inspector.

If you just want to select a particular column from a database, enter the name of the column
in the Select field and the name of the database table in the From field. If you have entered
144 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Working with an SQL Data Source

usrdataccess.book Page 145 Tuesday, July 28, 2009 9:07 AM
the column and database table name correctly, the data source table will then be updated
accordingly.

It is also possible to specify a column in the data source table that is the result of a
calculation carried out on data from other table columns. This is possible within the limits of
the formulas that are accepted by the database. See your database documentation for more
information on the formulas that can be used.

Figure 8.10

Figure 8.10 Specifying a Computed Column

To set up a column like this, click in the Select cell and enter the formula that you require.
The From cell must remain empty. If there is a database table name in the From cell, Data
Access tries to locate a column that has the name specified in the Select cell.

Forcing the Name of a Column

When a table is added to an SQL data source and the columns of the underlying table object
are specified, you will notice that the name of the column is automatically set. It is
automatically set to the name of the database table column. In most situations, this behavior
is acceptable. However, there are certain situations when it can be useful to be able to change
this name.

You may have noticed in the IBM ILOG Views Data Access Getting Started Manual that
when an additional table is added to the data source, any columns that are not uniquely
named are prefixed by the table name they originate from.

SQL Data Source Inspector Resulting Table Columns
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 145

usrdataccess.book Page 146 Tuesday, July 28, 2009 9:07 AM
Figure 8.11

Figure 8.11 An SQL Data Source with Two Database Tables Showing Automatic Column Naming

If you have already set up a number of gadgets that are linked to columns and then add
another table to the data source, certain table column names can change. This will have an
effect on any gadgets tied to these columns. The gadget will fail to locate the column it is
tied to because the column name has changed.

To work around this problem, specify a specific column name in the Datatype page of the
SQL Data Source inspector. Providing you do not create any ambiguities, you can type the
original column name here. Any gadgets connected to the column will then be updated to
show the values in the column.

The two NAME columns
are uniquely identified by
prefixing their name with
the database table that
they originate from
146 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Working with an SQL Data Source

usrdataccess.book Page 147 Tuesday, July 28, 2009 9:07 AM
Figure 8.12

Figure 8.12 Forcing the Name of a Column Using the Datatype Page

If you leave the Name field empty, the column name will change automatically to avoid any
ambiguity whenever a new table is added.

The Table Primary Key

When you set up an SQL data source and its table object, you must include each of the
primary key columns in the table object. If you do not do this, you can find that two of the
rows in your table appear to be the same, even though they are uniquely identified by the
primary key column(s).

If you try to update one of these rows, Data Access will not be able to identify uniquely the
row in the database and the update will fail. An error message from the database will be
displayed indicating that if the update were to continue, more than one row would be edited.
This also applies to a deletion of a row that appears to be exactly the same as another row.

If you do not want to display the primary key columns of the table in the user interface, you
should change column visibility in the SQL Data Source inspector.

Note: The table gadget is the only gadget whose column names change dynamically with
the data source.

The column
EMPLOY.NAME has
been forced to NAME
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 147

usrdataccess.book Page 148 Tuesday, July 28, 2009 9:07 AM
148 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 149 Tuesday, July 28, 2009 9:07 AM
9

Connecting to a Database

This chapter describes the Data Access classes and functions required for communicating
with a relational database system.

You can find information on the following topics:

◆ SQL Sessions and Cursor Objects

◆ Database Drivers

◆ The Connect Dialog Box

◆ Registered Sessions

SQL Sessions and Cursor Objects

The IliSQLSession class establishes a communication channel with a remote database
engine. An instance of this class is created whenever you connect to a relational database
using the Connect panel in IBM® ILOG® Views Studio.

Each SQL data source in Data Access has an IliSQLTable object which in turn has an
IliSQLSession object. These session objects are usually associated with one and only one
SQL data source. However, if you create an application-wide SQL session, it can be
associated with more than one SQL data source. See Registered Sessions on page 154.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 149

usrdataccess.book Page 150 Tuesday, July 28, 2009 9:07 AM
Creating a Session

An IliSQLSession object is automatically created when you connect to the database using
the connect panel in IBM ILOG Views Studio. An example of how the IliSQLSession
object is created is shown in the following code:

IliSQLSession* session;
session = new IliSQLSession(“oracle10”, “scott/tiger@options”);
session->lock();
...
session->unLock();

The first parameter in the IliSQLSession constructor is the name of the database driver.
This can be any of the following names: “oracle”,“oracle9”,“oracle10”, “oracle11”,
“sybase”, “informix”, “informix72”,“informix9”,“oledb”, “mssql” or “odbc” (for the set of
databases that are currently supported).

The second parameter designates the user, password, and other connection parameters
required to establish the communication with the remote database engine. Its format depends
on the database driver used. See IliSQLSession::getConnectionParams in the
IBM ILOG Views Data Access Reference Manual.

After obtaining an IliSQLSession object you should lock it and keep it locked until you
have finished using it. When you have finished with the session, the
IliRefCounted::unLock member function should be called to unlock the session.

Connecting to a Database System

Once you have created a session object, you can connect to the database system using the
IliSQLSession::connect member function. This is done in the following way:

if (session->connect()) {
 ...
}
else
 IlvPrint(“Error: %s”, session->getErrorMessage().getMessage());

During the session, you can check whether the session is still connected using the
IliSQLSession::isConnected member function. An example of this is shown in the
following code:

if (!session->isConnected())
 IlvPrint(“Not connected”);

To end a session, use the IliSQLSession::disconnect member function. This method
rolls back any (uncommitted) work in progress and breaks the communication channel with
the database system.

session->disconnect();
150 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

SQL Sessions and Cursor Objects

usrdataccess.book Page 151 Tuesday, July 28, 2009 9:07 AM
Cursors

Before you can do anything useful with your session object, you must obtain an
IliSQLCursor object. The cursor allows you to submit SQL statements to a database and
to retrieve any result sets produced by these statements. A cursor can be created in the
following way:

IliSQLCursor* cursor = session->newCursor();
if (cursor != 0) {
 ...

 session->releaseCursor(cursor);
}
else
 IlvPrint(“Out of cursors.”);

Once a cursor object has been created, any SQL statements (except SELECT statements) can
be submitted to the database using the IliSQLCursor::execute member function. An
example of this is shown in the following code:

if (cursor->execute(“UPDATE EMP SET SALARY = SALARY * 1.1”)) {
 IlvPrint(“Happy days!”);
}
else
 IlvPrint(“Error: %s”, cursor->getErrorMessage().getMessage());

The SQL SELECT Statement and Its Result Set

To submit an SQL SELECT statement you can use the IliSQLCursor::select member
function as follows:

if (cursor->select(“SELECT NAME, SALARY FROM EMP”)) {
 while (cursor->fetchNext() && cursor->hasTuple()) {
 IlvPrint(“Employee %s : %ld”,
 cursor->getStringValue(0),
 cursor->getIntegerValue(1));
 }
}
else
 IlvPrint(“Error: %s”, cursor->getErrorMessage().getMessage());

At the beginning of the inspection process just after the select member function has been
called, the cursor is positioned before the first row. Each call to the fetchNext member
function moves the cursor to the next row. When all rows have been seen, a call to
fetchNext positions the cursor after the last row.

The IliSQLCursor::hasTuple member function can be called to determine if the cursor
is positioned on a row (as opposed to being positioned before the first row or after the last
row). If the cursor is positioned after the last row, the result set has been exhausted.

Once an SQL SELECT statement has been successfully executed it leaves a result set
available for inspection through the cursor. A result set is an ordered collection of rows.
Each of these rows conforms to the same schema.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 151

usrdataccess.book Page 152 Tuesday, July 28, 2009 9:07 AM
You can retrieve the value of a column using the IliSQLCursor::getValue method. An
example of this is shown in the following code:

IliValue value;
if (cursor->getValue(colno, value)) {
 ...
}

The columns of the result set are identified by their position, starting from 0. If you know the
type of a given column in the result set, you can use one of the following methods:

const char* IliSQLCursor::getStringValue(Ilnt colno) const;
IlInt IliSQLCursor::getIntegerValue(IlInt colno) const;
IlFloat IliSQLCursor::getFloatValue(IlInt colno) const;
IlDouble IliSQLCursor::getDoubleValue(IlInt colno) const;
IliDate IliSQLCursor::getDateValue(IlInt colno) const;
IliBinary IliSQLCursor::getBinaryValue(IlInt colno) const;

The character string returned by the getStringValue member function and the byte array
returned by the getBinaryValue member function (it is part of the IliBinary structure)
belong to the cursor. Therefore, they will be overwritten the next time one of the
fetchNext, select, or execute member functions is called.

Note that the getStringValue member function will return NULL if the column is not of
type character string. If you want to convert a value into a string, use the getValue
member function as shown in the following example:

IliValue value;
if (cursor->getValue(colno, value)) {
 IlvPrint(“%s”, value.getFormatted());
}

The member function isNull tests whether a given column is null. The testing of a column
is shown in the following example:

if (cursor->isNull(colno))
 IlvPrint(“NULL”);
else
 IlvPrint(“%s”, cursor->getStringValue(colno));

All work done on a session object through its cursors belongs to a transaction. Because of
transaction management, any work done needs to be committed or canceled (rolled back) at
some point in time.

To commit or roll back the work done on a session object, use the
IliSQLSession::commit and IliSQLSession::rollback member functions. An
example of their usage is shown in the following code:

if (session->commit())
 IlvPrint(“Work done”);
else
 IlvPrint(“Error: %s”, session->getErrorMessage().getMessage());
152 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Database Drivers

usrdataccess.book Page 153 Tuesday, July 28, 2009 9:07 AM
If you forget to commit your work, it will eventually be canceled (rolled back) when the
session is freed.

To obtain information on the structure of your result set after a successful call to the select
member function, you can use the IliSQLCursor::getSchema member function.

const IliSchema* schema = cursor->getSchema();

This member function returns a schema object that belongs to the cursor. (See the
IliSchema class in the IBM ILOG Views Data Access Reference Manual.) Note that this
schema object can be modified the next time you call the select or execute member
functions on that cursor, so it should be used as soon as possible.

When you are finished with the cursor object you should release it using the
IliSQLSession::releaseCursor member function.

Database Drivers

The IliSQLSession class can be used to communicate with different database servers. To
connect a session object to a given database server, the corresponding database driver must
be included in the application executable file.

The database driver is included in the application at compile time. This can be done by
adding the following code to the source file that contains the main() function:

#define ILDORACLE
#define ILDINFORMIX

#include <ildblink/dblink.h>
#include <ilviews/dataccess/dbms/session.h>

static IldDbms* ILVCALLBACK
CustomNewDbms(const char* dbms, const char* params) {
 return IldNewDbms(dbms, params);
}

main(int argc, char* argv[])
{
 IliSQLSession::SetNewDbmsFunction(CustomNewDbms);
}

This code extract specifies that the Oracle and Informix drivers are included in the
application executable file.

The following list contains the macro symbols that must be defined in order to include the
corresponding database driver.

◆ ILDDB2

◆ ILDORACLE
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 153

usrdataccess.book Page 154 Tuesday, July 28, 2009 9:07 AM
◆ ILDINFORMIX

◆ ILDSYBASE

◆ ILDOLEDB

◆ ILDMSSQL

◆ ILDODBC

The Connect Dialog Box

In the section Creating a Session on page 150, you saw how a session object is created with
the connection parameters (user name, password, and so on) hard-coded in the source code.
The IliSQLSession::queryConnect member function can be used to obtain some or all
of these parameters from the end user.

The following code extract initializes a session object with a connection string from which
the password is missing. A dialog box is then automatically displayed in which the user can
enter his password.

IlvDisplay* dpy;
IlvAbstractView* view;
...
IliSQLSession* session;
session = new IliSQLSession(“oracle”, “scott/@options”);
session->lock();

if (session->queryConnect(dpy, view, IliQueryPassword)) {
 ...
}

session->unLock();

Registered Sessions

When you use the IBM® ILOG® Views Studio editor to create the panels of an application,
you can define application-wide sessions and then specify one or more SQL data sources
that share the same session. An application-wide session is, in fact, a registered session
object.

The IliSQLSession::RegisterSession member function registers a session object.
This is shown in the following code excerpt:

Note: The Microsoft SQL Server , OLE DB and ODBC driver are only supported on
Windows platforms.
154 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Registered Sessions

usrdataccess.book Page 155 Tuesday, July 28, 2009 9:07 AM
IliSQLSession* session;
session = new IliSQLSession(“oracle10”, “scott/@options”);
session->setSessionName(“MainSession”);
IliSQLSession::RegisterSession(session);

Alternatively, a session can be registered using the following code:

IliSQLSession::RegisterSession(“MainSession”,
 “oracle10”,
 “scott/@options”)

The IliSQLSession::GetRegisteredSession member function can be used to retrieve
a registered session:

IliSQLSession* session =
 IliSQLSession::GetRegisteredSession(“MainSession”);
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 155

usrdataccess.book Page 156 Tuesday, July 28, 2009 9:07 AM
156 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 157 Tuesday, July 28, 2009 9:07 AM
Part III
IBM ILOG Views Data Access Gadgets

This part describes how to use Data Access gadgets when connected to an SQL database.
This part serves a reference to all the gadgets provided with Data Access.

The gadgets described in the following chapters can be divided into two groups:

◆ Data Source Gadgets Reference

◆ Display Gadgets Reference

usrdataccess.book Page 158 Tuesday, July 28, 2009 9:07 AM
158 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 159 Tuesday, July 28, 2009 9:07 AM
10

 IBM ILOG Views Studio Data Access
Gadgets

This chapter introduces the Data Access gadgets found on the Palettes panel.

You can find information on the following topics:

◆ The Palettes Panel

◆ Notebook Pages Common to Data Access Gadgets Inspectors

◆ Dialog Boxes Common to Data Access Gadgets Inspectors

The Palettes Panel

The Palettes panel appears when Data Access is launched. If it has been closed and you want
to open it, choose Palettes from the Tools menu in the IBM ILOG Views Studio Main
window.

The Palettes panel is divided into two panes. The top pane displays a tree with various items,
each corresponding to a particular gadget or graphic palette. The topmost items are for the
Data Access palettes. They are:

◆ a gadgets palette, which appears when you highlight Data Access

◆ SQL gadgets
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 159

usrdataccess.book Page 160 Tuesday, July 28, 2009 9:07 AM
◆ SQL tables, which is not a gadget, lists all user-created data tables and contains an SQL
schema editor.

◆ Charts, which presents a graphic chart connected to various data sources.

◆ Grapher, which presents contents of a nodes and links data source in a grapher

◆ Gantt Chart, for defining a Gantt chart connected to various data sources

To use a gadget, drag it from the Palette and drop it in the work space in the Main window.

 Data Access and SQL Gadgets

The gadgets illustrated below appear when you select Data Access or SQL Gadgets on the
Palettes panel.
160 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

The Palettes Panel

usrdataccess.book Page 161 Tuesday, July 28, 2009 9:07 AM

Use the above gadgets for the following purposes:

IliTableGadget — For editing tables.

IliDbField — For displaying data with a data source aware gadget whose appearance can be
dynamically changed (to an entry field, toggle switch, and so on).

IliEntryField — For displaying text in a data source aware text field.

IliTableComboBox — For listing items in a data source aware popup menu and displaying
the item chosen.

IliDbText — For displaying text in a data source aware multi-line scrollable text field.

IliTableGadget

IliDbField

IliEntryField
IliTableComboBox

IliDbText

IliDbToggle

IliToggleSelector

IliDbNavigator
IliMemoryDataSource

IliDbTimer

IliDbPicture

IliDbOptionMenu

IliDbStringList

IliDbTreeGadget

IliXML
IliHTMLReporter

 IliSQLDataSource
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 161

usrdataccess.book Page 162 Tuesday, July 28, 2009 9:07 AM
IliDbToggle — For choosing between three states (True, False and null) with a data source
aware toggle button.

IliToggleSelector — For selecting among any number of items using data source aware
selector buttons.

IliDbNavigator — For creating a tool bar with buttons to navigate through rows and edit
data in a data source table.

IliMemoryDataSource — For defining a local memory data source.

IliDbTimer — For calling a callback periodically

IliHTMLReporter — For generating an HTML document from a data source.

IliXML — For managing the communication between a datasource and an XML stream.

IliDbPicture — For displaying a picture in a data source aware gadget.

IliDbOptionMenu — For listing items in a data source aware popup menu and displaying
the item chosen.

IliDbStringList — For displaying a list of labels in a data source aware multi-line string list.

IliDbTreeGadget — For displaying the contents of a data source in a tree gadget based on a
parent/child relationship.

IliSQLDataSource — For providing a link to an SQL database from which a table is
defined and displayed.

Charts, Grapher and Gantt Chart Gadgets

The gadgets illustrated below appear when you select Charts, Grapher and Gantt Chart under
Data Access on the Palettes panel.
162 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

The Palettes Panel

usrdataccess.book Page 163 Tuesday, July 28, 2009 9:07 AM

Use the above gadgets for the following purposes:

IliChartGraphic — For defining a chart graphic connected to various data sources.

IliDbGrapher — For displaying contents of a nodes and links data source in a grapher.

IliDbGantt — For defining a Gantt chart connected to various data sources.

SQL Tables

When you select SQL Tables under Data Access on the Palettes panel, the lower pane is
empty.

IliDbGrapher IliDbGanttIliChartGraphic
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 163

usrdataccess.book Page 164 Tuesday, July 28, 2009 9:07 AM
Click the button to open the Connect dialog box. After you type your name, password,
and the connection options, the user-created SQL database tables appear in the lower pane.
You can drag the tables from the pane, drop them in the Gadgets buffer window, then
double-click a SQL data source gadget to open the SQL Data Source inspector with the table
already in place.

The SQL Tables palette has also an SQL Schema Editor toolbar with the following buttons:

 Create table.

 Drop selected table.
164 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Notebook Pages Common to Data Access Gadgets Inspectors

usrdataccess.book Page 165 Tuesday, July 28, 2009 9:07 AM
 Edit schema of the selected table.

 Edit data of the selected table.

 Enable / disable SQL trace.

 Export selected table.

 Import selected table.

Notebook Pages Common to Data Access Gadgets Inspectors

Most Data Access gadgets inspectors have a General and a Callbacks notebook page.

General Notebook Page

The General page text fields and check boxes are the same for all the inspectors, however,
the availability of each selection depends on the inspector.

Figure 10.1
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 165

usrdataccess.book Page 166 Tuesday, July 28, 2009 9:07 AM
Label Description

Name Menu: None.
Default: No default.
Explanation: Name of the gadget.

Tooltip Menu: None.
Default: No default.
Explanation: Text to appear in the tooltip.

Thickness Menu: Grayed if this option is not available.
Default: 2.
Explanation: Increases the width of the border
surrounding the gadget.

Layer Menu: Layer 1, Layer 2.
Default: Layer 2
Explanation: Manager layer in which the gadget
will be placed.

Interactor Menu: Names of the available interactors.
Default: None.
Explanation: Allows you to select the kind of interactor you want
for this gadget.

State Menu: Active, Inactive, Grayed out.
Default: Active.
Explanation: Specifies the gadget activity status.

Transparent Check box.
Default: Not checked.
Explanation: When this box is checked,
the gadget appears transparent.

Focusable Check box.
Default: Checked.
Explanation: When this box is checked,
the gadget can receive the mouse pointer or keyboard focus.

Show Frame Check box.
Default: Checked.
Explanation: When this box is checked, the gadget frame is
displayed.
166 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Notebook Pages Common to Data Access Gadgets Inspectors

usrdataccess.book Page 167 Tuesday, July 28, 2009 9:07 AM
Callbacks Notebook Page

The first six callbacks are common to most inspectors. However, the IliDbChart,
IliDbGrapher, and IliDbGantt inspectors have only the first two callbacks.

Some Data Access gadgets have additional callbacks, which are listed in this manual.
Descriptions of the callbacks are located in the IBM ILOG Views Data Access Reference
Manual.

All callbacks have the following fields:

◆ Name: Function name of the callback.

◆ Value: Type the callback value.

◆ Script: Check this box if you want to use IBM ILOG Script. The button to the right of
the check box becomes active when the box is selected. Clicking the button shows you
the callback source code in the Script Editor.

Callback Description

Generic Used to perform the main action of the gadget,
for example, when a button is activated or
when you double-click an item in a string list.

Secondary Called when a change is made in the gadget,
for example, when you type text in a field,
highlight an item in a menu, or select a value in a list.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 167

usrdataccess.book Page 168 Tuesday, July 28, 2009 9:07 AM
Dialog Boxes Common to Data Access Gadgets Inspectors

The dialog boxes that can be called from various Data Access gadgets inspectors are
described in this section.

You can find information on the following topics:

◆ Font Chooser Dialog Box

◆ Color Chooser Dialog Box

◆ File Chooser Dialog Box

Font Chooser Dialog Box

The Font Chooser dialog box is used to choose the font style for text.

To use the Font Chooser dialog box, do the following:

Focus In Called when the gadget receives the keyboard focus.

Focus Out Called when the gadget loses the keyboard focus.

Enter Gadget Called when the mouse pointer enters the gadget.

Leave Gadget Called when the mouse pointer leaves the gadget.

Callback Description
168 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Dialog Boxes Common to Data Access Gadgets Inspectors

usrdataccess.book Page 169 Tuesday, July 28, 2009 9:07 AM
1. Select the foundry, font, font size, and font style.

The characters in the text field at the bottom change to match the selection.

2. Click Apply.

The name of the font selected appears in the inspector panel field from which the Font
Chooser dialog box was called.

Color Chooser Dialog Box

Use the Color Chooser dialog box for choosing the background and text colors. You can
select the colors by name or by using the color disk.

To use the Color Chooser dialog box:

1. At the top of the dialog box, choose the color system and/or selection method, then select
the color you want. Use the RGB/HSV values and/or the color wheel to define your own
colors or use the Color Names option to use predefined colors.

RGB = Red, Green, Blue

HSV = Hue, Saturation, Value

The color selected appears in the lower-right rectangle of the Color Chooser dialog box.

2. Click Apply.

Choose the
color system

Choose the
selection method
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 169

usrdataccess.book Page 170 Tuesday, July 28, 2009 9:07 AM
The name of the color selected appears in the inspector panel field from which the Color
Chooser dialog box was called.

File Chooser Dialog Box

Data Access gadgets inspectors use a file chooser dialog box to select:

◆ an image file

◆ a text file

To use the File Chooser dialog box, do the following:

1. Select the file you want.

2. Click Open (Windows) or Apply (Unix).

The name of the file selected appears in the inspector panel field from which the File
Chooser dialog box was called.

Note: On Unix, this dialog box is called a File Selector. In Windows, it is called Open, as
illustrated below.
170 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 171 Tuesday, July 28, 2009 9:07 AM
11

Data Source Gadgets Reference

This chapter describes the two data source creation gadgets:

◆ IliSQLDataSource

◆ IliMemoryDataSource

To access IliMemoryDataSource gadget, click Data Access in the Palettes panel. The
gadgets appear in the lower pane.

To access the IliSQLDataSource gadget, click SQL Gadgets in the Palettes Panel.

To use one of the above gadgets, drag and drop its gadget-icon in the Gadgets buffer
window.

IliSQLDataSource

The IliSQLDataSource gadget is used for creating a data source by:

◆ connecting to a database,

◆ defining data source tables through the specification of selection criteria,

◆ defining how data is to be displayed in gadgets connected to the data source through the
specification of format criteria.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 171

usrdataccess.book Page 172 Tuesday, July 28, 2009 9:07 AM
IliSQLDataSource Inspector Panel

This panel appears by double-clicking the gadget-icon after having placed it in the Gadgets
buffer window.

IliSQLDataSource Menus

The SQL Data Source inspector panel has two menus:

◆ File

◆ Query

Menus

General Elements

FROM Section

Pages

Commands

SELECT Section
172 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 173 Tuesday, July 28, 2009 9:07 AM
File Menu

Query Menu

Menu Items Description

Properties... Displays the SQL Data Source Properties dialog box.

View Source... Displays the Source dialog box.

Close Closes the SQL Data Source inspector panel.

Menu Items Description

Add Tables... If not connected to a database, displays the Connect dialog box. If
connected, displays the Select Tables dialog box.

Edit Table... Displays a Table Definition dialog box that lets you
change the table title and the owner name.

Remove Table... Removes selected table in FROM section.
You can also use the Delete key.

Synchronize Table
with Database...

Updates the selected database table representation
in the FROM section to the data source.
Optionally, updates the data source columns
in the SELECT section. The information updates
are structural. Displays the Differences dialog box
if the data source table has changed.

Synchronize All
Tables
With Database...

Updates all database table representations in the
FROM section to the data source. Optionally, updates
the data source columns in the SELECT section.
The information updates are structural.
Displays the Differences dialog box if the
data source table has changed.

Append Column Adds a column to the right of the existing columns.

Insert Column Inserts a column to the left of the selected column.

Delete Column... Removes the selected column.
You can also use the Delete key.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 173

usrdataccess.book Page 174 Tuesday, July 28, 2009 9:07 AM
General Elements

These elements apply to the SQL data source as a whole.

SELECT Section Notebook Pages

The SELECT section of the SQL Data Source inspector panel has six notebook pages:

◆ Select Page

◆ Having Page

◆ Datatype Page

◆ Look Page

◆ Mapping Page

◆ Parameters Page

Edit Join... Displays an Edit Join Table dialog box
to select the type of join. A join operation
only concerns lines selected in the FROM section.
Inactive if no join line is selected.

Delete Join... Displays a Question dialog box to confirm
the deletion of a join operation whose line is selected
in the FROM section. Inactive if no join line is selected.
You can also use the Delete key.

Element Description

Name field The SQL data source name that appears
under the SQL data source gadget in the work space
when Apply is clicked in the
SQL Data Source inspector panel.

Global checkbox Default: Not checked. When checked, allows more than one user
panel to use the current SQL data source.

Allow insert
checkbox

Default: Checked. When not checked, prevents the user from
inserting a new row into the SQL data source tables, but does not
prevent the user from editing existing rows.

Menu Items Description
174 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 175 Tuesday, July 28, 2009 9:07 AM
These pages define the criteria for selecting data from the database and for formatting the
data in display gadgets.

Select Page

The Select page is used for:

◆ defining the data source columns in terms of the columns in the FROM section (Select
and From rows),

◆ specifying operations to compute results (Operation row),

◆ defining the sort order in which the data is to be displayed (Order row),

◆ establishing selection criteria by which data is retrieved from the database (Where row).

Note: “Default” in the pages described below refers to what appears when a column is
created in the SELECT section by dragging a line from the FROM section.

Note: If the Operation row is used for a column, any entries in the Where row for that
column must be made on the Having page.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 175

usrdataccess.book Page 176 Tuesday, July 28, 2009 9:07 AM
Having Page

The Having page is used for establishing the selection criteria of the data extracted from the
database to which the data source is connected, and when the current column has an
Operation defined. Use the Select page when no Operation is defined for the column.

Label Description

Select Menu: The columns of the data source table in the From row.
Default: No default.
Explanation: Defines a data source column taken from
the table displayed in the From row, or an SQL expression
that may include one or more columns.

From Menu: Tables defined for the current data source.
Default: No default.
Explanation: Specifies the table from which the column
in the Select row is taken. Mandatory if a column exists
in the Select row.

Operation Menu: None, Group By, Count, Sum, Avg, Min, Max.
Default: No default.
Explanation: Performs operations by which rows are
grouped and their aggregate values computed.
If “Group By” is used in a column, all the other columns
must have an operation.

Order Menu: No, Asc, Desc (No=random order, Asc=ascending,
Desc=descending).
Default: No default.
Explanation: Determines the order of the rows in the
display table. If more than one column is entered,
the leftmost column has priority.

Where Menu: None.
Default: No default.
Explanation: Selection criteria applied to the column in the Select
row.
The selection criteria is used with a logical AND operator
and added to criteria in other columns to further restrict the
selection of data to be retrieved from the database.
Only applies when the Operation row is empty.
176 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 177 Tuesday, July 28, 2009 9:07 AM
Datatype Page

The Datatype page is used for defining the type of data that can be entered in the column.

Label Description

Select Menu: The columns of the data source table in the From row.
Default: No default.
Explanation: Defines a data source column taken
from the table displayed in the From row or an
SQL expression that may include one or more columns.

From Menu: Tables defined for the current data source.
Default: No default.
Explanation: Specifies the table from which the
column in the Select row is taken. Mandatory if a column
exists in the Select row.

Operation Menu: None, Group By, Count, Sum, Avg, Min, Max.
Default: No default.
Explanation: Performs operations by which rows
are grouped and their aggregate values computed.
 If “Group By” is used in a column, all the other
columns must have an operation. If an operation is used
without “Group By” the entire table is used to compute
the value.

Having Menu: None.
Default: No default.
Explanation: Selection criteria applied to the column
in the Select row. The selection criteria is used with a
logical AND operator and added to criteria in other
columns to further restrict the selection of data to be
retrieved from the database. Only applies when there
is a value in the Operation row.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 177

usrdataccess.book Page 178 Tuesday, July 28, 2009 9:07 AM
Label Description

Name Menu: None.
Default: No default.
Explanation: Each column must have a name
by which it can be attached to a gadget. This name
is automatically taken from the database and appears
at the top of the column. This row is used to change
this name. While the name given by the system
 can be automatically changed by adding a prefix
to distinguish it from other columns having
the same name in other tables, the name entered here
will not change. The title at the top of the column
in the SELECT section is replaced by the one
entered here.

Type Menu: String, Long string, Boolean, Byte, Integer,
Float, Double, Decimal, Date, Time.
Default: As defined in the database schema.
Explanation: The type of data that can be entered
in the cells of the column.

Length Menu: None.
Default: As defined in the database schema.
Explanation: The number of characters that can be
entered in the cells of the column.

Null Menu: Yes, No.
Default: As defined in the database schema.
Explanation:
Yes = The cell can remain empty.
No = The cell cannot remain empty.
178 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 179 Tuesday, July 28, 2009 9:07 AM
Look Page

The Look page is used to define how data entered in the column will appear.

Default Menu: None.
Default: No default.
Explanation: The data that appears in a cell when
it is added to the table.

Retrieve Menu: Yes, No.
Default: No default.
Explanation:
Yes = Column is an element of the data source.
No = Column is not an element of the data source
and will not appear in the result. Is used only with
selection criteria.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 179

usrdataccess.book Page 180 Tuesday, July 28, 2009 9:07 AM
Label Description

Header Menu: None.
Default: No default.
Explanation: Title that will appear at the top of
the column when displayed in a table gadget.
If left empty, the table gadget uses the Name row
on the Datatype page, or, if also empty, the name given
by the system from the database schema.

Label Menu: None.
Default: No default.
Explanation: Applies only when the Data Source Assistant
is used to create a form. The caption that appears
 next to the form gadget containing the data for the column.
If empty, the label is taken from the Name row
on the Datatype page, or, if also empty, the name given
by the system from the database schema.
(The Header row on the Look page is not used.)

Format Menu: Formats corresponding to what is entered
in the Type cell on the Datatype page.
Default: No default.
Explanation: Predefined system and user formats
from the menu or a format entered by the user by which
data in the column cells will be formatted.

Mask Menu: Masks corresponding to how and what data
is entered in the Type cell on the Datatype page.
Default: No default.
Explanation: Predefined by the user for data input
in the column cells. There are predefined system masks
for date and time.

Alignment Menu: Left, Center, Right.
Default: Depends on the entry in the Type row on the
Datatype page.
Explanation: How data in the column cells will be
aligned within the cell.

Width Menu: None.
Default: No default.
Explanation: Display width in pixels of the
column cells.
Can be changed in the table gadget.
180 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 181 Tuesday, July 28, 2009 9:07 AM
Mapping Page

The Mapping page is used for displaying data in a column by referring to data in a column in
another table.

Read only Menu: Yes, No.
Default: No default.
Explanation:
Yes = Prevents the column cells from being edited.
No = Allows the column cells to be edited.

Visible Menu: Yes, No.
Default: No default.
Explanation:
Yes = The column is visible.
No = The column exists but does not appear.

Label Description

Data source Menu: Current data sources.
Default: No default.
Explanation: The foreign data source containing
the columns to which the values for the current column
are to be mapped. If a foreign data source is specified here,
creates a combo box pull-down menu in the cell
showing the values in the foreign data source.

Value column Menu: Columns of data source selected in
data source row.
Default: No default.
Explanation: The column containing the value
to which the current column is to be mapped.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 181

usrdataccess.book Page 182 Tuesday, July 28, 2009 9:07 AM
Parameters Page

The Parameters page is used for defining a parameter in terms of data located in a column
from any other data source. This parameter can then be used as selection criteria in the
Where row of the Select page.

Display column Menu: Columns of the data source selected in the
data source cell.
Default: No default.
Explanation: The column associated with the
Value column containing the data to be displayed.

Constrained Menu: Yes, No.
Default: No default.
Explanation: Applies only when the value entered
in the Value Column and Display column rows
is the same.
Yes = Can only enter a value that belongs to
a foreign data source.
No = Can enter any value.

Completion Menu: Yes, No.
Default: No default.
Explanation:
Is only in effect when constrained = Yes.
Yes = Can enter a combo box list item by typing
enough of its initial characters to make it unique,
then leaving the cell.
No = Cannot enter a combo box list item by typing
its initial characters.

Label Description
182 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 183 Tuesday, July 28, 2009 9:07 AM

Callbacks

The SQL Data Source inspector has no Callbacks page. To access this gadget callbacks,
open the Callbacks panel by selecting Callbacks from the Tools menu.

Buttons

The SQL Data Source inspector panel has two buttons at the bottom:

◆ Apply

◆ Close

Column Description

Parameter Menu: None.
Default: No default.
Explanation: The name of the parameter that
represents the column from which data is to be retrieved.
This name can then be used as selection criteria in a
Where row on the Select page.

Type Menu: String, Long string, Boolean, Byte, Integer,
Float, Double, Decimal, Date, Time.
Default: No default.
Explanation: Type of the parameter.

Data Source Menu: Current data sources.
Default: No default.
Explanation: Data source from which the parameter
will take its value.

Column Menu: Columns of data source selected in
Data Source column.
Default: No default.
Explanation: Column from which the parameter
will take its value. The column must exist in the
data source shown in the Data Source column.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 183

usrdataccess.book Page 184 Tuesday, July 28, 2009 9:07 AM

Dialog Boxes

Various elements in the SQL Data Source inspector panel can call different dialog boxes:

◆ SQL Data Source Properties Dialog Box

◆ Connect Dialog Box

◆ Source Dialog Box

◆ Select Tables Dialog Box

◆ Question Dialog Box

◆ Differences Dialog Box

SQL Data Source Properties Dialog Box

The SQL Data Source Properties dialog box is used for defining various properties of the
data source. It is called by the Properties... menu item in the File menu of the SQL Data
Source inspector panel.

Figure 11.1

Button Description

Apply Applies changes made in the SQL Data Source panel
to the data source. This does not submit a query
 to the database, which is done by pressing the F9 key
when the gadget has the focus or by pressing the “@” button
in the navigation tool bar.

Close Closes the SQL Data Source inspector panel.
184 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 185 Tuesday, July 28, 2009 9:07 AM
Label Description

Read only Menu: Yes, No.
Default: No.
Explanation:
Yes = The data source cannot be edited.
No = The data source can be edited.

Distinct Menu: Yes, No.
Default: No.
Explanation:
Yes = Duplicate rows are merged.
No = Duplicate rows are left intact.

Updatable tables Menu: List of tables in FROM section.
Default: First table that has been added to the
data source.
Explanation: The table that the data source updates.
A data source can only update one table.

Concurr. control
(concurrency
control)

Menu: On, Off.
Default: Off.
Explanation:
On = The data source takes extra steps to ensure
that a row has not been updated by another user from
the time the row was retrieved from the database and
when it was resubmitted to the database.
Off = The data source does not take such extra steps.

Fetch policy Menu: As Needed, Immediate.
Default: As Needed.
Explanation:
As Needed = Selected data is retrieved from the
database and stored in data cache only as data is needed.
For As Needed to be effective, Auto Commit (see below)
must be No. When Auto Commit is Yes,
Immediate is implied.
Immediate = All selected data is retrieved at once
and stored in data cache.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 185

usrdataccess.book Page 186 Tuesday, July 28, 2009 9:07 AM
Auto commit Menu: Yes, No.
Default: Yes.
Explanation:
Yes = After each operation, a COMMIT command
is automatically sent to the database.
No = COMMIT command is not sent to database,
and must be done by other means
(for example, programming).

Auto refresh Menu: Yes, No.
Default: No.
Explanation:
Yes = Each time a row is inserted or updated,
it is sent to the database and retrieved for verification
in the data source.
No = Row is not retrieved.

Auto select Menu: Yes, No.
Default: No.
Explanation:
Yes = Data source recomputes its data by submitting
a query to the database each time a foreign data source,
to which the data source is connected by parameters,
changes.
No = Data source does not recompute its data.

Insert nulls Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Null columns are inserted in the database table
when a row is inserted. Database schema default values
are not taken into account since a null value is
explicitly specified, but performance may be increased.
No = Null columns are not inserted.

Dynamic SQL Menu: Yes, No.
Default: Yes.
Explanation:
Yes = When a row is updated in the database,
only those values of columns in remote tables
whose values have changed in current table are set.
No = All values of columns in remote tables are set.

Label Description
186 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 187 Tuesday, July 28, 2009 9:07 AM
Connect Dialog Box

The Connect dialog box is used for connecting the data source to a database, that is, for
establishing an SQL session. It is called by the following menu items in the SQL Data
Source inspector panel when the data source is not connected to a database:

◆ Properties... —> Connection button in the SQL Data Source Properties panel that
appears. See Properties... menu item and Connection field.

◆ View Source... menu item in the File menu. See View Source... menu item.

◆ Add Tables... menu item in the Query menu. See Add Tables... menu item.

Use bound vars Menu: Yes, No.
Default: Yes.
Explanation:
Yes = When column values are sent to the database,
are packaged in bound variables of the native database
call interface, instead of being part of the SQL statements.
When combined with Dynamic SQL = No
and Insert Nulls = Yes, can greatly increase performance.
No = Column values are not packaged in bound variables.

Rows count limit Menu: None.
Default: No default.
Explanation: Maximum number of rows that can be retrieved.
If empty, unlimited number of rows can be retrieved.

Connection Menu: None. Click button to open the Connect dialog box.
Default: No default.
Explanation: Specifies the SQL session by which the
data source will communicate with the database.

Query conjunct Menu: None.
Default: No default.
Explanation: Additional SQL selection criteria that
will be added to criteria in Where and/or Having rows.

Transaction
manager

Menu: List of available transaction managers.
Default: No default.
Explanation: Name of the transaction manager used
by this data source.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The data source uses a property manager.
No = The data source does not use a property manager.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 187

usrdataccess.book Page 188 Tuesday, July 28, 2009 9:07 AM
The Connect dialog box that appears depends on the type of DBMS being used. Below is a
Connect dialog box for an odbc DBMS.

Source Dialog Box

The Source dialog box is used for reading the SQL statements automatically created by the
user’s screen operations. The Source dialog box is called by the View Source... menu item of
the File menu in the SQL Data Source inspector panel if the data source is connected to a
database. If not already connected to a database, this menu item calls the Connect dialog box
. After connecting to the database through the Connect dialog box, the Source dialog box
then appears.

The Source dialog box shows the SQL statements corresponding to the current data source.
It is read-only.

Element Description

Name field The name of the SQL session or (Custom). If (Custom),
must fill in other fields to create a new SQL session.

User field The system database user name.

Password field The user password.

Database field The name of the database.

Options field The data necessary to connect to the database.

Keep Password
checkbox

When not checked, forces the user to enter a password
each time a connection to the database is requested.

OK button Validates the entries and creates an SQL session having
the name entered in the Name field.

Cancel button Closes the Connect dialog box without validating
 the entries. No SQL session is created.

The Connect dialog box changes to this
version on the right after an SQL
session is chosen from the combo box
menu in the Name field
188 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 189 Tuesday, July 28, 2009 9:07 AM
Select Tables Dialog Box

The Select Tables dialog box is used for selecting tables to be added to the data source from
the currently connected database. A representation of the table is placed in the FROM
section of the SQL Data Source inspector panel. See the picture of the IliSQLDataSource
Inspector Panel on page 172.

The Select Tables dialog box is called by the Add Tables... menu item of the Query menu in
the SQL Data Source inspector panel (if the data source is connected to a database). If not
already connected to a database, this menu item calls the Connect dialog box. After
connecting to the database through the Connect dialog box, the Select Tables dialog box
then appears.

The Select Tables dialog box consists of:

◆ A list on the left side of the box containing all the tables owned by the selected user.

◆ A list on the right side of the box, initially empty, to which the end user can add tables.

◆ Two buttons for moving selected database tables:

● -> Adds the table selected in the left list to the right list.

● <- Removes the selected table from the right list.

Button Description

Close Closes the Source dialog box.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 189

usrdataccess.book Page 190 Tuesday, July 28, 2009 9:07 AM

Question Dialog Box

The Question dialog box is used for confirming a command by the user. It is called by the
following menu items of the Query menu in the SQL Data Source inspector panel when an
item corresponding to the command is selected in the panel:

◆ Remove Table... See Remove Table... menu item.

◆ Delete Column... See Delete Column... menu item.

◆ Delete Join... See Delete Join... menu item.

The Question dialog box allows you to confirm one of the above three commands.

Note: To display the columns of a table in the left list, double-click on its name or on the
'+' to the left of its name.

Button Description

OK Adds the selected database tables to the
data source.

Cancel Closes the Select Table dialog box without adding
any table to the data source.

Database tables
190 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliSQLDataSource

usrdataccess.book Page 191 Tuesday, July 28, 2009 9:07 AM

Differences Dialog Box

This dialog box is used to show the differences between the data source tables and the
database tables—in the event that a table has been modified in the database by another user.
When you synchronize a data source with a table (or all tables) the structural information in
the FROM data source table changes. (These operations are on the Query menu. If there are
differences between the tables, the above window is displayed.) To update the table(s) in the
FROM section press Validate. To update the table(s) in the SELECT section as well, check
the Update data source columns box and Validate.

Button Description

OK Deletes the selected item.

Cancel Closes the Question dialog box and no item
is deleted.

Column Description

State Indicates whether something has been added to,
removed from, or changed in the database.

Table Shows the table name being synchronized.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 191

usrdataccess.book Page 192 Tuesday, July 28, 2009 9:07 AM
IliMemoryDataSource

The IliMemoryDataSource gadget is used for:

◆ defining temporary tables in local memory by entering data.

◆ defining how the data is to be displayed by specifying format criteria for display gadgets
connected to the memory data source.

IliMemoryDataSource Inspector Panel

This panel appears by double-clicking its gadget-icon (seen above) in the Gadgets buffer
window. The IliMemoryDataSource inspector has five notebook pages:

◆ Data Source Page

◆ General Page

◆ Specific Page

◆ Data Page

◆ Callbacks Page

Column Shows the column being synchronized.

Attributes The four possible types are: Max length, PartofKey,
Datatype, Nullable.

Column Description
192 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliMemoryDataSource

usrdataccess.book Page 193 Tuesday, July 28, 2009 9:07 AM
Data Source Page

Data Source Page Table Columns

Data Source Page Notebook Pages

The Data Source page has three notebook pages. The rows on these pages define the criteria
for mapping data to other data source columns and for formatting the data in display
gadgets.

◆ Datatype Page

The Datatype page is used to define the type of data that can be entered in the column.

Column Description

Column Menu: None.
Default: No default.
Explanation: The name of the column.

Type Menu: String, Boolean, Byte, Integer, Float,
Double, Date
Default: No default.
Explanation: The type of data that can be
entered in the column.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 193

usrdataccess.book Page 194 Tuesday, July 28, 2009 9:07 AM
◆ Look Page

The Look page is used for defining how data entered in the column will appear.

Label Description

Length Menu: None.
Default: No default.
Explanation: Number of characters that can be
entered in the cells of the column.

Part of key Menu: Yes, No.
Default: No
Explanation:
Yes = The column is included in the key for the table.
No = The column is not included in the key.

Null Menu: Yes, No.
Default: No
Explanation:
Yes = The cell can remain empty.
No = The cell cannot remain empty.

Default Menu: None.
Default: No default.
Explanation: Data that appears in a cell when
it is added to the table.
194 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliMemoryDataSource

usrdataccess.book Page 195 Tuesday, July 28, 2009 9:07 AM
Label Description

Format Menu: Formats corresponding to what is entered
in the column Type cell in the Memory
Data Source inspector panel.
Default: No default.
Explanation: Predefined system and user formats
 from the menu or a format entered by the user,
by which data in the column cells will be formatted.

Mask Menu: Masks corresponding to how and what data
is entered in the column Type cell in the
Memory Data Source inspector panel.
Default: No default.
Explanation: Predefined by the user for data input
in the column cells. There are predefined system
masks for date and time.

Alignment Menu: Left, Center, Right.
Default: Depends on the entry in the Type cell in the
Memory Data Source inspector panel.
Explanation: How data in the column cells will be
aligned within the cell.

Width Menu: None.
Default: No default.
Explanation: The display width in pixels
of the column cells. Can be changed in the table gadget.

Read only Menu: Yes, No.
Default: No default.
Explanation:
Yes = Prevents the column cells from being edited.
No = Allows the column cells to be edited.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 195

usrdataccess.book Page 196 Tuesday, July 28, 2009 9:07 AM
◆ Mapping Page

The Mapping page is used to display data in a column by referring to data in a column in
another table.

Visible Menu: Yes, No.
Default: No default.
Explanation:
Yes = The column is visible.
No = The column exists but does not appear.

Header Menu: None.
Default: No default.
Explanation: The title that will appear at the top
of the column when displayed in a table gadget.
If left empty, the table gadget uses the column name.

Label Menu: None.
Default: No default.
Explanation: Applies only when the Data Source Assistant
is used to create a form. The caption that appears
next to the form gadget containing the data for the column.
If empty, the column name is used.
(The Header row on the Look page is not used.)

Label Description
196 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliMemoryDataSource

usrdataccess.book Page 197 Tuesday, July 28, 2009 9:07 AM

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Label Description

Data Source Menu: Current data sources.
Default: No default.
Explanation: The foreign data source containing
the columns to which the values for the current column
are to be mapped. If a foreign data source is specified here,
creates a combo box pull-down menu in the cell
showing the values in foreign data source.

Value column Menu: Columns of the data source selected in the
Data source row.
Default: No default.
Explanation: Column containing the value to which
the current column is to be mapped.

Display column Menu: Columns of the data source selected in the
 Data source row.
Default: No default.
Explanation: Column associated with the Value column
containing the data to be displayed.

Constrained Menu: Yes, No.
Default: No default.
Explanation: Applies only when the value entered in the
Value column and Display column rows is the same.
Yes = Can only enter a value that belongs to the
foreign data source.
No = Can enter any value.

Completion Menu: Yes, No.
Default: No default.
Explanation: Is only in effect when Constrained = Yes.
Yes = Can enter a combo box list item by typing
enough of its initial characters to make it unique,
then validating it or leaving the cell.
No = Cannot enter a combo box list item by typing
its initial characters.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 197

usrdataccess.book Page 198 Tuesday, July 28, 2009 9:07 AM
Specific Page

Column Description

Read only Menu: Yes, No.
Default: No default.
Explanation:
Yes = Prevents the column cells from being edited.
No = Allows the column cells to be edited.

Global Menu: Yes, No.
Default: No.
Explanation:
Yes = Allows more than one user panel to use the
current memory data source.
No = Only one user panel can use the current
memory data source.

Allow insert Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Allows a new row to be inserted into the
data source table.
No = Prevents the user from inserting a new row
into the data source tables, but does not prevent
the user from editing existing rows.
198 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliMemoryDataSource

usrdataccess.book Page 199 Tuesday, July 28, 2009 9:07 AM
Data Page

The Data page is used to edit the data source data. But the data source schema must be
defined and validated.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below.

◆ ValidateRow

◆ FetchRow

◆ EnterRow

◆ QuitRow

Transaction
manager

Menu: List of available transaction managers.
Default: No default.
Explanation: Name of the transaction manager
used by this data source.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The data source uses a property manager.
No = The data source does not use a property
manager.

Column Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 199

usrdataccess.book Page 200 Tuesday, July 28, 2009 9:07 AM
◆ EnterUpdate Mode

◆ PrepareUpdate

◆ QuitUpdateMode

◆ EnterInsertMode

◆ PrepareInsert

◆ QuitInsertMode

◆ PrepareDeleteMode

◆ CancelEdits

◆ DeleteRow

◆ EnterModifiedState

Buttons

The Memory Data Source inspector panel has two buttons at the bottom:

◆ Apply

◆ Close

Button Description

Apply Applies changes made in the Memory Data Source
inspector panel to the data source table(s).

Close Closes the Memory Data Source inspector panel.
200 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdataccess.book Page 201 Tuesday, July 28, 2009 9:07 AM
12

Display Gadgets Reference

This chapter describes the display gadgets listed below. To access these gadgets, click Data
Access or Grapher or Gantt Chart in the Palettes panel. The gadgets appear in the lower
pane. To use a gadget, drag-and-drop it in the Gadgets buffer window.

You can find information on the following topics:

◆ IliTableGadget

◆ IliDbField

◆ IliEntryField

◆ IliTableComboBox

◆ IliDbText

◆ IliDbToggle

◆ IliToggleSelector

◆ IliDbNavigator

◆ IliDbTimer

◆ IliHTMLReporter

◆ IliXML

◆ IliDbPicture
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 201

usrdataccess.book Page 202 Tuesday, July 28, 2009 9:07 AM
◆ IliDbOptionMenu

◆ IliDbStringList

◆ IliDbTreeGadget

◆ IliChartGraphic

◆ IliDbGrapher

◆ IliDbGantt

IliTableGadget

The IliTableGadget is used for editing and displaying tables.

Figure 12.1

Table Gadget Inspector Panel

The IliTableGadget inspector has four notebook pages:

◆ Data Source Page

◆ General Page

◆ Specific Page

◆ Callbacks Page
202 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliTableGadget

usrdataccess.book Page 203 Tuesday, July 28, 2009 9:07 AM
Data Source Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the source to which the
table gadget is to be connected.

Read only Menu: Yes, No.
Default: No.
Explanation:
Yes = The gadget cannot be edited.
No = The gadget can be edited.

Column geometry Menu: Local, Global.
Default: Global.
Explanation:
Local = The table gadget manages column widths,
visibility and ordering independently of the underlying
data source table.
Global = The table gadget manages column widths,
visibility, and ordering in conjunction with the
underlying data source table.
If there are many table gadgets using the same
underlying data source, Local is recommended.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 203

usrdataccess.book Page 204 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Show insert row Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Shows insert row.
No = Hides insert row.

Bound to
data source

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Current row of the table gadget is synchronized
with the current row of the data source.
No = Current row of the table gadget is independent of
the current row of the data source.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The table gadget uses a property manager.
No = The table gadget does not use a
property manager.

Auto fit Menu: None, Proportional, Last.
Default: None.
Explanation: Sets how visible column widths change as table
gadget is resized.
None = Column widths do not change.
Proportional = Column widths change proportionally,
leaving no empty space.
Last = Only width of last column changes to fill
all empty space.

Column sort Menu: Yes, No.
Default: No.
Explanation:
Yes = Sorts columns of the table gadget columns
by alphabetical or numeric order.
No = Does not sort columns of the table gadget

Label Description
204 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliTableGadget

usrdataccess.book Page 205 Tuesday, July 28, 2009 9:07 AM
Specific Page

Label Description

Delete key Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The Delete key can be used to delete
the current row.
No = The Delete key cannot be used to delete
the current row.

Confirm deletes Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The user is prompted to confirm
the deletion of a row.
No = The user is not prompted to confirm
the deletion of a row.

Refresh key Menu: Yes, No.
Default: Yes.
Explanation:
Yes = User can use the Refresh key (F9 by default)
to refresh the data source table.
No = Refresh key is disabled.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 205

usrdataccess.book Page 206 Tuesday, July 28, 2009 9:07 AM
Fixed columns Menu: None.
Default: 0.
Explanation: The number of columns on the left side
of the table that do not scroll.

Header height Menu: None.
Default: Height of the font used for drawing headers.
Explanation: Height of the header row in pixels.

Row height Menu: None.
Default: Height of the font used for drawing cells.
Explanation: Height of the rows, other than the header,
in pixels.

Show headers Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Header row is displayed.
No = Header row is not displayed.

Show markers Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Row markers are displayed.
No = Row markers are not displayed.

Show grid Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Grid is displayed in the table gadget.
No = Grid is not displayed in the table gadget.

Use relief Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Table gadget has a relief border.
No = Table gadget does not have a relief border.

Show cell editor Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Cell editor is shown in cells when table gadget
is read only.
No = Cell editor is not shown when table gadget is
read only.

Label Description
206 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliTableGadget

usrdataccess.book Page 207 Tuesday, July 28, 2009 9:07 AM
Row select Menu: Yes, No.
Default: No.
Explanation:
Yes = When an attempt is made to select a cell,
the entire row containing the cell is selected instead.
No = A cell can be selected independently of its row.

Always show
selection

Menu: Yes, No.
Default: No.
Explanation:
Yes = Selection in the table gadget is always
highlighted.
No = Selection in the table gadget is highlighted
only when table gadget has the focus.

Vertical scroll Menu: Never, AsNeeded, Always.
Default: AsNeeded.
Explanation:
Never = Vertical scroll bar is never displayed.
AsNeeded = Vertical scroll bar is displayed
when needed.
Always = Vertical scroll bar is always displayed.

Horizontal scroll Menu: Never, AsNeeded, Always.
Default: AsNeeded.
Explanation:
Never = Horizontal scroll bar is never displayed.
AsNeeded = Horizontal scroll bar is displayed
when needed.
Always = Horizontal scroll bar is always displayed.

Header font Menu: None. Click the button to open the
Font Chooser Dialog Box.
Default: Font of table gadget palette.
Explanation: Sets the font used in the
header row of the table gadget.

Cell font Menu: None.
Button: Click to open the Font Chooser Dialog Box.
Default: Font of table gadget palette.
Explanation: Sets the font used for cells in
the table gadget.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 207

usrdataccess.book Page 208 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below, which are described in the IliTableGadget
section of the IBM ILOG Views Data Access Reference Manual.

◆ DoubleClick

◆ ValidateCell

◆ ValidateRow

◆ EnterCell

◆ QuitCell

◆ EnterRow

◆ QuitRow

◆ SelectionChange

◆ EnterUpdateMode

◆ PrepareUpdate

◆ QuitUpdateMode

◆ EnterInsertMode

◆ PrepareInsert

◆ QuitInsertMode

Cell background Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: Background color of table gadget palette.
Explanation: Sets background color for cells in
the table gadget.

Cell foreground Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: Foreground color of the table gadget palette.
Explanation: Sets foreground color for cells in
the table gadget.

Multi selection Menu: Yes, No.
Default: Yes.
Explanation:
Yes = More than one table gadget row can be selected
at the same time.
No = Table gadget rows cannot be selected
at the same time.

Label Description
208 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbField

usrdataccess.book Page 209 Tuesday, July 28, 2009 9:07 AM
◆ PrepareDeleteRow

◆ CancelEdits

◆ DeleteRow

◆ FetchRow

◆ DrawCell

◆ GetCellPalette

IliDbField

The IliDbField gadget is used for displaying data with a data-source-aware gadget whose
appearance can be dynamically changed (see the Style field below).

DbField Inspector Panel

The IliDbField inspector has four notebook pages:

◆ Data Source Page

◆ Mapping Page

◆ General Page

◆ Callbacks Page
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 209

usrdataccess.book Page 210 Tuesday, July 28, 2009 9:07 AM
Data Source Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source to which
the DbField gadget is to be connected.

Column Menu: Column names of the data source selected in
the Data source field.
Default: No default.
Explanation: Column of the data source table to which
the DbField gadget is to be connected.

Alignment Menu: Left, Center, Right.
Default: Left.
Explanation: Alignment of the value in
the DbField gadget.

Format Menu: List of predefined system and user formats.
Default: No default.
Explanation: Format to be applied to the value in
the DbField gadget.

Mask Menu: List of predefined system and user input formats.
Default: No default.
Explanation: Input format to be entered in
the DbField gadget.
210 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbField

usrdataccess.book Page 211 Tuesday, July 28, 2009 9:07 AM
Max length Menu: None.
Default: No default.
Explanation: Maximum number of characters that
can be entered in the DbField gadget.

Read only Menu: Yes, No.
Default: No.
Explanation:
Yes = The field can be edited.
No = The field cannot be edited.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The DbField gadget uses a property manager.
No = The DbField gadget does not use
a property manager.

Style Menu: List of possible styles the DbField gadget
can assume.
Default: EntryField.
Explanation: Sets the style for the DbField gadget.

Label Menu: None.
Default: DbField
Explanation: The text for the label placed next
to the gadget.

Label font Menu: None.
Button: Click to open the Font Chooser Dialog Box.
Default: Font of DbField gadget palette.
Explanation: Font used for the label entered in
the Label field.

Label color Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: Foreground color of the DbField gadget
palette.
Explanation: Color used for the label entered in
the Label field.

Label position Menu: Top, Left.
Default: Top.
Explanation: The position of the label relative to the gadget.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 211

usrdataccess.book Page 212 Tuesday, July 28, 2009 9:07 AM
Mapping Page

Label Description

Foreign data
source

Menu: Names of foreign data sources.
Default: No default.
Explanation: Data source containing the columns
to which the values for the current column
are to be mapped so as to convert the value
 to another value and display it.

Foreign value
column

Menu: Column names of the data source selected
in the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to which the current column is
to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign Value Column row is referred to.
212 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliEntryField

usrdataccess.book Page 213 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliEntryField

The IliEntryField gadget is used for entering and displaying data in a data-source-
aware, one-line text field.

Figure 12.2

Entry Field Inspector Panel

The IliEntryField inspector has four notebook pages:

◆ Data Source Page

◆ General Page

Constrained Menu: Yes, No.
Default: No.
Explanation: Applies only when the value entered in
the Foreign value column and Foreign display
column rows is the same.
Yes = Can only enter a value that belongs to
the foreign data source.
No = Can enter any value.

Completion Menu: Yes, No.
Default: Yes.
Explanation: Is in effect only when constrained = Yes.
Yes = Can enter a DbField item by typing enough of
its initial characters to make it unique, then validating it
or leaving the cell.
No = Cannot enter a DbField item by typing its
unique initial characters.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 213

usrdataccess.book Page 214 Tuesday, July 28, 2009 9:07 AM
◆ Specific Page

◆ Callbacks Page

Data Source Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the source to which the
entry field gadget is to be connected.

Column Menu: Column names of the data source selected in
the Data source field.
Default: No default.
Explanation: Column of the data source table to which
the gadget is to be connected.

Format Menu: List of predefined system and user formats.
Default: No default.
Explanation: Format to be applied to the value in
the entry field gadget.
214 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliEntryField

usrdataccess.book Page 215 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Specific Page

Mask Menu: List of predefined system and user input formats.
Default: No default.
Explanation: Input format to be applied to the value in
the entry field gadget.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The entry field gadget uses a property manager.
No = The entry field gadget does not use
a property manager.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 215

usrdataccess.book Page 216 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliTableComboBox

The IliTableComboBox gadget is used for displaying a list of items in a data-source-aware
menu and then displaying the item selected from the list.

Table Combo Box Inspector Panel

The IliTableComboBox inspector has five notebook pages:

Label Description

Label Not available.

Alignment Menu: Left, Center, Right.
Default: Left.
Explanation: The alignment of the value in
the Entry Field gadget.

No. Chars Menu: None.
Default: -1.
Explanation: The maximum number of characters that
can be entered in the Entry Field gadget.

Editable Check box.
Default: Checked.
Explanation:
Checked = The field in the gadget can be edited.
Not checked = The field in the gadget cannot be edited.

Change focus on
validation

Check box.
Default: Checked.
Explanation:
Checked = Focus moves to the next gadget
after validation.
Not checked = Focus remains on this gadget.
216 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliTableComboBox

usrdataccess.book Page 217 Tuesday, July 28, 2009 9:07 AM
◆ Data Source Page

◆ Mapping Page

◆ General Page

◆ Specific Page

◆ Callbacks Page

Data Source Page
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 217

usrdataccess.book Page 218 Tuesday, July 28, 2009 9:07 AM
Mapping Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the source to which
the table combo box gadget is to be connected.

Column Menu: Column names of the data source
selected in the Data source field.
Default: No default.
Explanation: Column of the data source table
 to which the gadget is to be connected.

Format Menu: List of predefined system and user formats.
Default: No default.
Explanation: Format to be applied to the values
in the table combo box gadget.

Mask Menu: List of predefined system and user input
formats.
Default: No default.
Explanation: Input format to be applied to the values
in the table combo box gadget.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The table combo box uses a property manager.
No = The table combo box does not use
a property manager.
218 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliTableComboBox

usrdataccess.book Page 219 Tuesday, July 28, 2009 9:07 AM
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 219

usrdataccess.book Page 220 Tuesday, July 28, 2009 9:07 AM
Label Description

Foreign data
source

Menu: Names of foreign data sources.
Default: No default.
Explanation: A data source containing the columns
to which the values for the current column are
to be mapped so that the value can be converted to another value
and displayed. Creates a combo box pull-down menu in the table
combo box field showing the values in the foreign data source.

Foreign value
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source containing the
value to which the current column is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: The column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.

Constrained Menu: Yes, No.
Default: No.
Explanation: Applies only when the value entered in
the Foreign value column and
Foreign display column rows is the same.
Yes = Can only enter a value that belongs to
foreign data source.
No = Can enter any value.

Completion Menu: Yes, No.
Default: Yes.
Explanation: Is only in effect when constrained = Yes.
Yes = Can enter a combo box list item by typing
enough of its initial characters to make it unique,
then validating it or leaving the cell.
No = Cannot enter a combo box list item by typing its initial
characters.

Table columns Menu: None.
Button: Click to have the Table Columns Dialog Box
appear.
Default: No default.
Explanation: The column(s) in the foreign data source
to be displayed in the pull-down menu.
220 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliTableComboBox

usrdataccess.book Page 221 Tuesday, July 28, 2009 9:07 AM
Table Columns Dialog Box

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Label Description

Display Check box.
Default: Not checked.
Explanation: If checked, the column name appears
in the pull-down menu.

Columns Column names.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 221

usrdataccess.book Page 222 Tuesday, July 28, 2009 9:07 AM
Specific Page
222 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbText

usrdataccess.book Page 223 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below, which are described in the
IliAbstractComboBox section of the IBM ILOG Views Data Access Reference Manual.

◆ Open

◆ Close

IliDbText

The IliDbText gadget is used for entering and displaying multi-line data in a scrollable
data-source-aware text field.

Label Description

Label Not available.

Alignment Menu: Left, Center, Right.
Default: Left.
Explanation: Alignment of the values in
the table combo box gadget.

No. Chars Menu: None.
Default: -1.
Explanation: The maximum number of characters
that can be entered in the Table Combo Box gadget.

Editable Check box.
Default: Checked.
Explanation:
Checked = The field in the gadget can be edited.
Not checked = The field in the gadget cannot be edited.

Change focus on
validation

Check box.
Default: Checked.
Explanation:
Checked = Focus moves to the next gadget.
Not checked = Focus remains on this gadget.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 223

usrdataccess.book Page 224 Tuesday, July 28, 2009 9:07 AM
DbText Inspector Panel

The IliDbText inspector has four notebook pages:

◆ Data Source Page

◆ General Page

◆ Scrollbars Page

◆ Callbacks Page

Data Source Page
Figure 12.3

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source to which
the DbText gadget is to be connected.

Column Menu: Column names of the data source selected in
the Data source field.
Default: No default.
Explanation: Column of the data source table to which
the gadget is to be connected.
224 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbText

usrdataccess.book Page 225 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Scrollbars Page

Read only Menu: Yes, No.
Default: No.
Explanation:
Yes = The field can be edited.
No = The field cannot be edited.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The DbText gadget uses a property manager.
No = The DbText gadget does not use
a property manager.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 225

usrdataccess.book Page 226 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below.

◆ ScrollBar Moved

◆ ScrollBar Visibility Changed

◆ Cursor Move

◆ Selection Changed

◆ Value Changed

IliDbToggle

The IliDbToggle gadget is used for selecting between two or sometimes three states.

Label Description

Vertical scroll Menu: Show, Hide
Default: Show.
Explanation:
Show = The field has a vertical scroll bar.
Hide = The field does not have a vertical scroll bar.

Horizontal scroll Menu: Show, Hide
Default: Hide.
Explanation:
Show = The field has a horizontal scroll bar.
Hide = The field does not have a horizontal scroll bar.

Margins Menu: None.
Default: 1.
Explanation: Allows you to type the value of the left, right, top,
and bottom margins.

Show frame Check Box.
Default: Checked.
Explanation: If the check box is checked, a frame appears around
the DbText gadget.
226 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbToggle

usrdataccess.book Page 227 Tuesday, July 28, 2009 9:07 AM
DbToggle Inspector Panel

The IliDbToggle inspector has five notebook pages:

◆ Data Source Page

◆ Mapping Page

◆ General Page

◆ Specific Page

◆ Callbacks Page

Data Source Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source to which
the DbToggle is to be connected.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 227

usrdataccess.book Page 228 Tuesday, July 28, 2009 9:07 AM
Mapping Page

Column Menu: Column names of the data source selected in
the Data source field.
Default: No default.
Explanation: Column of the data source table to which
the gadget is to be connected.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The DbToggle gadget uses a property manager.
No = The DbToggle gadget does not use
a property manager.

Label Description
228 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbToggle

usrdataccess.book Page 229 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Specific Page

Label Description

Foreign data
source

Menu: Names of foreign data sources.
Default: No default.
Explanation: Data source containing the columns
to which the values for the current column are to be mapped
so as to convert the value to another value and display it.

Foreign value
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to which the current column is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to be displayed when
the column specified in the Foreign value column row
is referred to.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 229

usrdataccess.book Page 230 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

Label Description

Label Menu: None.
Default: DbToggle.
Explanation: The text for the label placed next to
the toggle gadget.

Bitmap Menu: None.
Button: Click to open the Open dialog box.
Default: No default.
Explanation: The bitmap image to be placed as
the label next to the toggle gadget.

Position Menu: Left, Right.
Default: Right.
Explanation: Position of the label relative to
the toggle gadget.

Size Menu: None.
Default: 13.
Explanation: The width or height of the state marker.

Shape Menu: Radio, CheckBox.
Default: Radio.
Explanation: The type of toggle gadget to be used.

Alignment Menu: Left, Center, Right.
Default: Left.
Explanation: Alignment of the label within
the bounding box of the toggle gadget.

3 States Mode Check box: Available if Shape = CheckBox
(see Shape above).
Default: Unchecked.
Explanation: The toggle can have three states
(True, False, Null) when the toggle is a check box and
if this field is true.
230 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliToggleSelector

usrdataccess.book Page 231 Tuesday, July 28, 2009 9:07 AM
IliToggleSelector

The IliToggleSelector gadget is used to select a gadget among any number of items
having data-source-aware selector buttons.

ToggleSelector Inspector Panel

The IliToggleSelector inspector has four notebook pages:

◆ Data Source Page

◆ Mapping Page

◆ General Page

◆ Callbacks Page

Data Source Page
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 231

usrdataccess.book Page 232 Tuesday, July 28, 2009 9:07 AM
Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source to which
the toggle selector gadget is to be connected.

Column Menu: Column names of the data source selected in
the Data source field.
Default: No default.
Explanation: Column of the data source table to which
the gadget is to be connected.

Read Only Menu: Yes, No.
Default: No.
Explanation:
Yes = The toggle selector gadget can be edited.
No = The toggle selector gadget cannot be edited.

Use property
manager

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The toggle selector uses a property manager.
No = The toggle selector does not use
a property manager.

Label Menu: None.
Default: Selector.
Explanation: The text for the label placed next to
the toggle selector gadget.
232 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliToggleSelector

usrdataccess.book Page 233 Tuesday, July 28, 2009 9:07 AM
Mapping Page

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Label Description

Foreign data
source

Menu: Names of foreign data sources.
Default: No default.
Explanation: Data source containing the columns
to which the values for the current column are to be mapped so as
to convert the value to another value and display it.

Foreign value
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to which the current column is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign Data Source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 233

usrdataccess.book Page 234 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliDbNavigator

The IliDbNavigator gadget is a tool bar with buttons for navigating through rows and
editing data in a data source table.

DbNavigator Inspector Panel

The IliDbNavigator inspector has three notebook pages:

◆ Data Source Page

◆ General Page

◆ Callbacks Page

Data Source Page
234 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbNavigator

usrdataccess.book Page 235 Tuesday, July 28, 2009 9:07 AM
Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source to which
the DbNavigator gadget is to be connected.

Confirm deletes Menu: Yes, No.
Default: Yes.
Explanation:
Yes = The user is prompted to confirm the deletion
of a row.
No = The user is not prompted to confirm
the deletion of a row.

Navigation
buttons

Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Displays four navigation buttons (|<, <, >, >|).
No = Does not display four navigation buttons (|<, <, >, >|).
|< = go to first row,
< = previous row,
> = next row,
>| = last row.

Current
position

Menu: Yes, No.
Default: No.
Explanation:
Yes = Displays the current row position of the query if
in Query mode, of the Data source if in Normal mode.
No = Does not display the current row position.

Number of lines Menu: Yes, No.
Default: No.
Explanation:
Yes = Displays the number of lines of the query if
in Query mode, of the Data source if in Normal mode.
No = Does not display the number of lines.

Insert button Menu: Yes, No.
Default: Yes.
Explanation: The insert button gives the focus to (makes current)
the insert row.
Yes = Displays the insert button (+).
No = Does not display the insert button (+).
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 235

usrdataccess.book Page 236 Tuesday, July 28, 2009 9:07 AM
Delete button Menu: Yes, No.
Default: Yes.
Explanation: Applies when a row is selected for deletion.
It displays a confirmation dialog box before deleting
the row if Confirm Deletes = Yes (see above).
If Confirm Deletes = No, row is immediately deleted.
Yes = Displays the delete button (-).
No = Do not display the delete button (-).

Validation
buttons

Menu: Yes, No.
Default: Yes.
Explanation: Applies when an edit has been made
in a row.
Yes = Displays the two validation buttons (v, x).
No = Do not display the two validation buttons (v, x).
In Normal mode:
v = validate the edit.
x = cancel the edit and return to original state.
In Query mode:
v = apply Query mode.
x = cancel Query mode.

Select button Menu: Yes, No.
Default: Yes.
Explanation: Clears the data source cache, queries the database,
retrieves the result from the data source, and displays the result in
the display gadget.
Yes = Displays the select button (@).
No = Do not display the select button (@).

Clear button Menu: Yes, No.
Default: Yes.
Explanation: Empties the data source cache, thus clearing the
display gadget.
Yes = Display the clear button (c).
No = Do not display the clear button (c).

Query mode
button

Menu: Yes, No.
Default: No.
Explanation: Puts the data source in Query mode, allowing you to
use other buttons on this notebook page. Query mode remains
active until one of the other validation buttons is used to return to
normal mode.
Yes = Query mode is active.
No = Query mode is not active.

Label Description
236 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbTimer

usrdataccess.book Page 237 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliDbTimer

The IliDbTimer gadget is used for calling a callback periodically.

DbTimer Inspector Panel

The IliDbTimer inspector has two notebook pages:

◆ Specific Page

◆ Callbacks Page

Specific Page
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 237

usrdataccess.book Page 238 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliHTMLReporter

The IliHTMLReporter gadget is used to generate an HTML document from data source
contents.

HTMLReporter Inspector Panel

The IliHTMLReporter inspector has five notebook pages:

◆ Document Page

◆ Table of contents Page

◆ First page Page

◆ General Page

◆ Callbacks Page

Label Description

Name Menu: None.
Default: None.
Explanation: The name of the gadget.

Period Menu: None.
Default: 0
Explanation: The period with which the callback
associated with the gadget will be called.
The value entered is multiplied by 0.05 to get seconds
(for example, the user needs to type 40
if a period of 2 seconds is desired).
If the value is 0, the callback is not called.
238 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliHTMLReporter

usrdataccess.book Page 239 Tuesday, July 28, 2009 9:07 AM
Document Page

Label Description

File name Menu: None.
Button: Click to open the File Chooser Dialog Box.
Default: None.
Explanation: Name of the file to be generated.

Data source Menu: Names of current data sources.
Default: None.
Explanation: Data source whose contents will be used to create
the HTML file.

Title Menu: None.
Default: None.
Explanation: Title of the HTML file.

Copyright Menu: None.
Default: None.
Explanation: The HTML document copyright.

Background Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: None.
Explanation: The HTML page background color.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 239

usrdataccess.book Page 240 Tuesday, July 28, 2009 9:07 AM
Table of contents Page

Model Menu: Classic table, Classic form, Table,
Form, Dynamic Form.
Default: Classic table.
Explanation: The model that will be used to create the HTML
document.

Table of contents Menu: Yes, No.
Default: No.
Explanation: If “Yes”, a table of contents will be present in the
HTML file.

HTML comments Menu: Yes, No.
Default: Yes.
Explanation: Enable or disable comments in the HTML file.

Label Description
240 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliHTMLReporter

usrdataccess.book Page 241 Tuesday, July 28, 2009 9:07 AM
First page Page

This page is used only if the value of Table of contents field on the Documents page is
“Yes”.

Label Description

Column Menu: Column names of the data source
selected in the Document page.
Default: None.
Explanation: The column that will be used to create the table of
contents.

Title Menu: None.
Default: Table of contents.
Explanation: The table of contents title.

At the beginning Menu: Yes, No.
Default: Yes
Explanation:
Yes = The table of contents appears
at the beginning of the document.
No = The table of contents appears
at the end of the document.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 241

usrdataccess.book Page 242 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below, which are described in the IliHTMLReporter
section of the IBM ILOG Views Data Access Reference Manual.

◆ Generic

◆ Secondary

◆ Focus In

◆ Focus Out

◆ Enter Gadget

◆ Leave Gadget

◆ ReportBeginDocument

◆ ReportEndDocument

◆ ReportFirstPageHeading

◆ ReportFirstPageContents

◆ ReportFirstPageFooting

◆ ReportTableHeading

◆ ReportTableTitle

◆ ReportTableBeginEntries

◆ ReportTableEndEntries

◆ ReportTableFooting

◆ ReportHeading

Label Description

Title Menu: None.
Default: Contents of the table.
Explanation: The first page title.

Picture Name Menu: None.
Button: Click to open the File Chooser dialog box.
Default: None.
Explanation: The picture to appear above the first page title.
242 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliXML

usrdataccess.book Page 243 Tuesday, July 28, 2009 9:07 AM
◆ ReportBeginRows

◆ ReportRowContent

◆ ReportEndrows

◆ ReportFooting

◆ ReportLastPageHeading

◆ ReportLastPageContents

◆ ReportLastPageFooting

IliXML

The IliXML gadget manages the communication between a datasource and an XML
document. It also manages the import and export of notification and definition.

XML Inspector Panel

The IliXML inspector has six notebook pages:

◆ Connection Page

◆ Import properties Page, Export properties Page, Stream properties Page

◆ General Page

◆ Callbacks Page
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 243

usrdataccess.book Page 244 Tuesday, July 28, 2009 9:07 AM
Connection Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source
to which the XML gadget is to be connected.

Import model Menu: Nothing, Dynamic, Default.
Default: Nothing.
Explanation: The model name that is used
to import the XML document.

Export model Menu: Nothing, Dynamic, Default.
Default: Nothing.
Explanation: The model name that is used
to export the XML document.

Stream model Menu: Nothing, File.
Default: Nothing.
Explanation: The model name that is used to connect to an XML
document.

Auto export Menu: Yes, No.
Default: No.
Explanation: Enable or disable the automatic export of
notification.
244 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbPicture

usrdataccess.book Page 245 Tuesday, July 28, 2009 9:07 AM
Import properties Page, Export properties Page, Stream properties Page

These pages contain the properties list of the selected model.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callback listed below which is described in the IliXML section of the
IBM ILOG Views Data Access Reference Manual:

◆ XMLNotificationExported

IliDbPicture

The IliDbPicture gadget is used for displaying a picture. The picture file name comes
from a data source column.

DbPicture Inspector Panel

The IliDbPicture inspector has three notebook pages:

◆ Data Source Page

◆ General Page

◆ Callbacks Page
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 245

usrdataccess.book Page 246 Tuesday, July 28, 2009 9:07 AM
Data Source Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source
to which the DbPicture gadget is to be connected.

Column Menu: Column names of the data source
to which the file name of the picture is attached.
Default: No default.
Explanation: Column of the data source table
to which the gadget is to be connected.

Alignment Menu: Left, Center, Right.
Default: Center.
Explanation: Alignment of the picture within
the picture gadget bounding box.
246 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbOptionMenu

usrdataccess.book Page 247 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliDbOptionMenu

The IliDbOptionMenu gadget is used to display a data source list of items.

DbOptionMenu Inspector Panel

The IliDbOptionMenu inspector has four notebook pages:

◆ Data Source Page

◆ Mapping Page

◆ General Page

◆ Callbacks Page

Stretched bitmap Menu: Yes, No.
Default: No.
Explanation:
Yes = The image is stretched in the gadget rectangle.
No = The image is not stretched in the gadget rectangle.

Type Menu: String, Bitmap (later).
Default: String.
Explanation: Type of data that can be entered in the column. For
the time being you can only use the type string for a file name.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 247

usrdataccess.book Page 248 Tuesday, July 28, 2009 9:07 AM
Data Source Page

Label Description

Data source Menu: Name of current data sources.
Default: No default.
Explanation: Name of the data source
to which the option menu gadget is to be connected.

Column Menu: Column name of the data source
selected in the Data source field.
Default: No default.
Explanation: Column of the data source table
to which the gadget is to be connected.

Use property
manager

Menu: Yes, No.
Default: No.
Explanation:
Yes = The DbOptionMenu uses a property manager.
No = The DbOptionMenu does not use
a property manager.
248 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbOptionMenu

usrdataccess.book Page 249 Tuesday, July 28, 2009 9:07 AM
Mapping Page

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Label Description

Foreign data
source

Menu: Name of current data sources.
Default: No default.
Explanation: Data source containing
the columns to which the values for the current column
are to be mapped so as to convert the value
to another value and display it.

Foreign value
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to which the current column
is to be mapped.

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: The column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 249

usrdataccess.book Page 250 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliDbStringList

The IliDbStringList gadget is used to display a data source list of items.

DbStringList Inspector Panel

The IliDbStringList inspector has six notebook pages:

◆ Data Source Page

◆ Mapping Page

◆ General Page

◆ Specific Page

◆ Scrollbars Page

◆ Callbacks Page
250 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbStringList

usrdataccess.book Page 251 Tuesday, July 28, 2009 9:07 AM
Data Source Page

Label Description

Data source Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source
to which the string list gadget is to be connected.

Column Menu: Column names of the data source
selected in the Data source field.
Default: No default.
Explanation: Column of the data source table
to which the gadget is to be connected.

Read only Menu: Yes, No.
Default: No.
Explanation:
Yes = The field cannot be edited.
No = The field can be edited.

Use property
manager

Menu: Yes, No.
Default: No.
Explanation:
Yes = The DbStringList uses a property manager.
No = The DbStringList does not use
a property manager.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 251

usrdataccess.book Page 252 Tuesday, July 28, 2009 9:07 AM
Mapping Page

Label Description

Foreign data
source

Menu: Name of current data sources.
Default: No default.
Explanation: Data source containing the columns
to which the values for the current column
are to be mapped so as to convert the value
to another value and display it.

Foreign value
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: The column in the foreign data source
containing the value to which the current column
is to be mapped.
252 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbStringList

usrdataccess.book Page 253 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Specific Page

Foreign display
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the foreign data source
containing the value to be displayed when the column
specified in the Foreign value column row is referred to.

Foreign bitmap
column

Menu: Column names of the data source selected in
the Foreign data source field.
Default: No default.
Explanation: Column in the Foreign data source
containing the bitmap to be displayed.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 253

usrdataccess.book Page 254 Tuesday, July 28, 2009 9:07 AM
Label Description

Selection Menu: Single selection, Single browse selection,
Multiple selection, Extended selection, Browse selection.
Default: Single browse selection.
Explanation: Type of selection to be used
by the gadget.

Full selection Check box.
Default: Checked.
Explanation:
Checked = Selects the entire line.
Not checked = Selects only the item length.

Editable Not available.

Tooltips on items Not available.

Drag and drop Check box.
Default: Not checked.
Explanation: Determines whether items
can be dragged and dropped.

Fixed item height Check box.
Default: Not checked.
Explanation: When checked, 20 appears as the default.

Automatic label
alignment

Check box.
Default: Checked.
Explanation: When not checked, 28 appears as
the default if a foreign data source is used. 0 appears
as the default if a foreign data source is not used.

Visible label Check box.
Default: Checked.
Explanation: Determines whether labels are visible
in the gadget.

Image Check box.
Default: Checked.
Explanation: Determines whether images
are visible in the gadget.

Alignment Menu: None. Available positions are indicated by graphic.
Default: Right center.
Explanation: When Image and Visible label
are selected, gives the position of the label relative
to the image.
254 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbStringList

usrdataccess.book Page 255 Tuesday, July 28, 2009 9:07 AM
Scrollbars Page

Label Description

Vertical scroll bar Menu: Show, Hide, As Needed.
Default: As Needed.
Explanation:
Show = The field has a vertical scroll bar.
Hide = The field does not have a vertical scroll bar.
As Needed = Vertical scroll bar if needed.

Left Check box.
Default: Not checked.
Explanation:
Checked = The vertical scroll bar is on the left side
of the gadget.
Not checked = The vertical scroll bar is on
the right side of the gadget.

Horizontal
scrollbar

Menu: Show, Hide, As Needed.
Default: As Needed.
Explanation:
Show = The field has a horizontal scroll bar.
Hide = The field does not have a horizontal scroll bar.
As Needed = Horizontal scroll bar if needed.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 255

usrdataccess.book Page 256 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below.

◆ ScrollBar Moved

◆ ScrollBar Visibility Changed

◆ Start Edit Item

◆ End Edit Item

◆ Start Drag Item

◆ Item Dragged

◆ End Dragged Item

IliDbTreeGadget

The IliDbTreeGadget gadget is used to display the data source contents as a tree
structure.

Top Check box.
Default: Not checked.
Explanation:
Checked = The horizontal scroll bar
is above the gadget.
Not checked = The horizontal scroll bar
is below the gadget.

Margins Menu: None.
Default: 0.
Explanation: Allows you to type the value of the left, right, top,
and bottom margins.

Show Frame Check box.
Default: Checked.
Explanation: Determines whether frames are visible.

Label Description
256 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbTreeGadget

usrdataccess.book Page 257 Tuesday, July 28, 2009 9:07 AM
DbTreeGadget Inspector Panel

The IliDbTreeGadget inspector has six notebook pages:

◆ Data Source Page

◆ Properties Page

◆ General Page

◆ Specific Page

◆ Scrollbars Page

◆ Callbacks Page

Data Source Page

Label Description

Model Menu: Structural, Recursive.
Default: Structural.
Explanation: Model of the tree gadget.

Data Source
column

Menu: Names of current data sources.
Default: No default.
Explanation: Name of the data source to which
the tree gadget is to be connected.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 257

usrdataccess.book Page 258 Tuesday, July 28, 2009 9:07 AM
Identifier column Menu: Column names of the data source
selected in the DataSource field.
Default: No default.
Explanation: Column in the data source
containing the child identifier.

Label column Menu: Column names of the data source
selected in the DataSource field.
Default: No default.
Explanation: Column in the data source
containing the child label.

Parent column Menu: Column names of the data source
selected in the Data Source field.
Default: No default.
Explanation: Column in the data source
containing the value for parents.

Bitmap column Menu: Column names of the data source
selected in the Data Source field.
Default: No default.
Explanation: Column containing the file name of the picture.

Format column Menu: List of predefined system and user formats.
Default: No default.
Explanation: Format to be applied to the label in
the tree gadget, if a label exists, or to the value
if no label exists.

Label Description
258 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbTreeGadget

usrdataccess.book Page 259 Tuesday, July 28, 2009 9:07 AM
Properties Page

Label Description

Enable items
deletion

Menu: Yes, No.
Default: No.
Explanation: Enable or disable items deletion.

Enable recursive
deletion

Menu: Yes, No.
Default: No.
Explanation: Enable or disable recursive deletion.
Yes: When a parent is deleted, its child
is also deleted.
No: A parent will not be deleted if it has
one or more children.

Confirm deletes Menu: Yes, No.
Default: No.
Explanation: Enable or disable message
to ask confirmation of a deletion.

Enable items
insertion

Menu: Yes, No.
Default: No.
Explanation: Enable or disable items insertion.

Enable items
edition

Menu: Yes, No.
Default: No.
Explanation: Enable or disable items edition.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 259

usrdataccess.book Page 260 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Specific Page

Use item dialog Menu: Yes, No.
Default: Yes
Explanation: Enable or disable item dialog box.

Dialog Model Menu: Data Access.
Default: Data Access.
Explanation: Model of the dialog box.

Use item popup
menu

Menu: Yes, No.
Default: No.
Explanation: Enable or disable item popup menu
which appears when clicking the desired item
and then the mouse right button.

Popup menu
Model

Menu: Data Access.
Default: Data Access.
Explanation: Model of the popup menu.

Sort items Menu: Yes, No.
Default: Yes.
Explanation: Enable or disable items sorting.

Label Description
260 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbTreeGadget

usrdataccess.book Page 261 Tuesday, July 28, 2009 9:07 AM
Label Description

Show lines Check box.
Default: Checked.
Explanation:
Checked = Lines connecting elements in
the tree are shown.
Not checked = Lines are not shown.

Lines as root Check box.
Default: Checked.
Explanation:
Checked = Lines connect roots.
Not checked = Lines do not connect roots.

Show button Check box.
Default: Checked.
Explanation:
Checked = Shows the buttons that indicate
whether the tree is expanded.
Not checked = The button is not shown.

Link roots Check box.
Default: Checked.
Explanation:
Checked = A line links the roots.
Not checked = The roots are not visibly linked.

Tool tips Check box.
Default: Checked.
Explanation:
Checked = Displays tooltips if the item length is
larger than the gadget width.
Not checked = There are no tooltips.

Visible label Check box.
Default: Checked.
Explanation:
Checked = The labels are visible.
Not checked = The labels are not visible.

Image Check box.
Default: Checked.
Explanation:
Checked = The images showing roots and nodes
are visible.
Not checked = The images are not visible.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 261

usrdataccess.book Page 262 Tuesday, July 28, 2009 9:07 AM
Indentation Menu: None.
Default: 20.
Explanation: Distance of roots and nodes from
the left of the tree.

Alignment Menu: None. Available positions are indicated
by graphic.
Default: Right.
Explanation: Gives the position of the label
relative to the image.

Sample Shows how the tree looks as you change the options
in the Appearance column.

Selection mode Menu: Single selection, Extended selection.
Default: Single selection.
Explanation:
Single = Only one item in the tree can be selected.
Extended = More than one item can be selected.

Items editable Not available.

Drag and drop Check box.
Default: Checked.
Explanation: Determines whether items can be dragged and
dropped.

Label Description
262 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbTreeGadget

usrdataccess.book Page 263 Tuesday, July 28, 2009 9:07 AM
Scrollbars Page

Label Description

Vertical
scroll bar

Menu: Show, Hide, As Needed.
Default: As Needed.
Explanation:
Show = The field has a vertical scroll bar.
Hide = The field does not have a vertical scroll bar.
As Needed = Vertical scroll bar if needed.

Left Check box.
Default: Not checked.
Explanation:
Checked = The vertical scroll bar is on the left side
of the gadget.
Not checked = The vertical scroll bar is on
the right side of the gadget.

Horizontal scroll
bar

Menu: Show, Hide, As Needed.
Default: As Needed.
Explanation:
Show = The field has a horizontal scroll bar.
Hide = The field does not have a horizontal scroll bar.
As Needed = Horizontal scroll bar if needed.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 263

usrdataccess.book Page 264 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the Generic and Secondary callbacks described in the section Callbacks
Notebook Page on page 167, this inspector uses the callbacks listed below. The callbacks
IncoherentTreeData, DeleteItem, InsertChildItem, InsertSiblingItem and
EditItem are described in the IBM ILOG Views Data Access Reference Manual
IliTreeGadget section.

◆ ScrollBar Moved

◆ ScrollBar Visibility Changed

◆ Item Selected

◆ Item Expanded

◆ Item Shrinked

◆ Start Edit Item

◆ Abort Edit Item

◆ End Edit Item

◆ Start Drag Item

◆ Item Dragged

◆ End Drag Item

◆ Abort Drag Item

◆ IncoherentTreeData

◆ DeleteItem

◆ InsertChildItem

Top Check box.
Default: Not checked.
Explanation:
Checked = The horizontal scroll bar
is above the gadget.
Not checked = The horizontal scroll bar
is below the gadget.

Margins Menu: None.
Default: 0.
Explanation: Allows you to type the value of the left, right, top,
and bottom margins.

Show Frame Check box.
Default: Checked.
Explanation: Determines whether frames are visible.

Label Description
264 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliChartGraphic

usrdataccess.book Page 265 Tuesday, July 28, 2009 9:07 AM
◆ InsertSiblingItem

◆ EditItem

IliChartGraphic

The IliChartGraphic dadget is used to display the data source as a chart graphic.

ChartGraphic Inspector Panel

The IliChartGraphic inspector has twelve notebook pages:

◆ Specific Page

◆ Data Source Page

◆ Data Model Properties Page

◆ Series Model Properties Page

◆ General Page

◆ Callbacks Page

For a description of the Data Sets, Displayers, Projection, Scales, Layout, and
Miscellaneous pages, refer to the section Using the Chart Inspector in the Charts User’s
Manual.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 265

usrdataccess.book Page 266 Tuesday, July 28, 2009 9:07 AM
Specific Page

Label Description

Data model Menu: The current data model name.
Default: By row.
Explanation: Name of the data model which is used to extract the
data from the data source.

Series model Menu: The current series model name.
Default: Default model.
Explanation: Name of the series model which is used to manage
the new series.
266 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliChartGraphic

usrdataccess.book Page 267 Tuesday, July 28, 2009 9:07 AM
Data Source Page

This page is used to define the data sources and the columns of the data model. The contents
of this page depends on the data model.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 267

usrdataccess.book Page 268 Tuesday, July 28, 2009 9:07 AM
Data Model Properties Page

This page is used to edit the porperties of the current data model. If this page is empty, the
model has no property.
268 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGrapher

usrdataccess.book Page 269 Tuesday, July 28, 2009 9:07 AM
Series Model Properties Page

This page is used to edit the properties of the current series model. if this page is empty, the
model has no property.

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Callbacks Page

For a description of this notebook page, refer to the section Callbacks Notebook Page on
page 167.

IliDbGrapher

The IliDbGrapher gadget is used to display the data source contents as nodes and links.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 269

usrdataccess.book Page 270 Tuesday, July 28, 2009 9:07 AM
DbGrapher Inspector Panel

The IliDbGrapher inspector has six notebook pages:

◆ Nodes Page

◆ Links Page

◆ Properties Page

◆ Events Page

◆ General Page

◆ Callbacks Page

Nodes Page
270 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGrapher

usrdataccess.book Page 271 Tuesday, July 28, 2009 9:07 AM
Label Description

Data source Menu: The names of current data sources.
Default: None.
Explanation: Name of the node data source to which the grapher
is to be connected.

X position Menu: Numeric column names of the selected
data source.
Default: None.
Explanation: The column name contains the values
for the x axis.

Y position Menu: Numeric column names of the selected
data source.
Default: None.
Explanation: The column name contains the values
 for the y axis.

Identifier Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the nodes identifier.

Label Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the nodes label.

Bitmap Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the nodes bitmap.

Foreground Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the nodes foreground
color.

Background Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the nodes background
color.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 271

usrdataccess.book Page 272 Tuesday, July 28, 2009 9:07 AM
Links Page

Label Description

Data source Menu: The names of current data sources.
Default: None.
Explanation: Name of the data source to which
the grapher is to be connected.

From Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains the node
from which the links start.

To Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains the node
to which the links go.

Color Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the links color.
272 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGrapher

usrdataccess.book Page 273 Tuesday, July 28, 2009 9:07 AM
Properties Page

Type Menu: Numeric column names of the
selected data source.
Default: None.
Explanation: The column name contains
the links type (from 0 through 6).

Oriented Menu: Boolean column names of the selected
data source.
Default: None.
Explanation: The column name indicates
whether the links are oriented.

Label Description

Background
picture

Menu: None.
Button: Click to open the File Chooser Dialog Box.
Default: None.
Explanation: The picture to be placed as the grapher background.

Default node
bitmap

Menu: None.
Button: Click to open the File Chooser Dialog Box.
Default: None.
Explanation: The default bitmap used for
the nodes if not specified in the nodes data source.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 273

usrdataccess.book Page 274 Tuesday, July 28, 2009 9:07 AM
Default node
foreground

Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: black.
Explanation: The default foreground color used
for the nodes if not specified in the nodes data source.

Default node
background

Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: white.
Explanation: The default background color used
for the nodes if not specified in the nodes data source.

Show node name Menu: Yes, No.
Default: Yes.
Explanation: Enable or disable node name displaying.

Default link type Menu: List of available link types.
Default: Straight line.
Explanation: The default link type used if not specified
in the links data source.

Default link color Menu: None.
Button: Click to open the Color Chooser Dialog Box.
Default: blue.
Explanation: The default link color used if not specified
in the links data source.

Default link
orientation

Menu: Yes, No.
Default: No.
Explanation: Enable or disable the default link orientation.
Yes: The links are oriented if not specified in
the links data source. No: The links are oriented or not
as specified in the links data source.

Label Description
274 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGrapher

usrdataccess.book Page 275 Tuesday, July 28, 2009 9:07 AM
Events Page

General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Label Description

Propagate node
deletion

Menu: Yes, No.
Default: Yes.
Explanation: When a node is deleted, all its links are also deleted.

Propagate node
rename

Menu: Yes, No.
Default: Yes.
Explanation: When a node is renamed, the links data source is
updated with the new name.

Supports out of
order events

Menu: Yes, No.
Default: No.
Explanation: If a link is created before its node(s), it will be
displayed on the grapher as soon as the node(s) is (are) created.

Read only Menu: Yes, No.
Default: No.
Explanation:
No = The grapher can be edited: the nodes can be moved.
Yes = The grapher cannot be edited:
the nodes cannot be moved.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 275

usrdataccess.book Page 276 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the Generic and Secondary callbacks described in the section Callbacks
Notebook Page on page 167, this inspector uses the callbacks listed below, which are
described in the IliDbGrapher section of the IBM ILOG Views Data Access Reference
Manual.

◆ NodeMoved

◆ NodeDoubleClicked

◆ LinkDoubleClicked

◆ PrepareDeleteObject

IliDbGantt

The IliDbGantt gadget is used for defining a Gantt chart connected to various data
sources.

DbGantt Inspector Panel

The IliDbGantt inspector has eleven notebook pages:

◆ Resources Page

◆ Model Page

◆ Scales Page

◆ Periods Page

◆ Properties Page

◆ General Page

◆ Callbacks Page
276 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 277 Tuesday, July 28, 2009 9:07 AM
Resources Page

Label Description

Data source Menu: The names of current data sources.
Default: None.
Explanation: Name of the resources data source file to which the
gantt is connected.

Identifier column Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains the resource identifier.

Height column Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains the resource height.

Name displayed
column

Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains the first name to be
displayed.

Others displayed
column

Menu: Column names of the selected data source.
Default: None.
Explanation: Lets you specify other column names
to be displayed.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 277

usrdataccess.book Page 278 Tuesday, July 28, 2009 9:07 AM
Model Page

Activities Data Source Properties

Label Description

Model Menu: Full, light.
Default: Full.
Explanation: The model name of the data model.

Data source Menu: Activities, Constraints, Precedences,
Breaks, Load. Activities is only available if
the selected model is Full.
Default: Activities.
Explanation: The datasource usages.

Label Description

Data source name Menu: The name of the current data sources.
Default: None.
Explanation: Name of the activities data source
 to which the gantt is to be connected.

Start min Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity start minimum value.
278 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 279 Tuesday, July 28, 2009 9:07 AM
Constraints Data Source Properties

Start max Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity start maximum value.

End min Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity end minimum value.

End max Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity end maximum value.

Identifier Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity identifier.

Label Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity label.

Label Description

Full Model Light Model
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 279

usrdataccess.book Page 280 Tuesday, July 28, 2009 9:07 AM
Label Description

Data source name Menu: The name of the current data sources.
Default: None.
Explanation: Name of the constraints data source
to which the gantt is to be connected.

Identifier Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the constraint.

Resource
identifier

Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the resource identifier to which the constraint is linked.

Label Only available if the selected mode is Light.
Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the constraint label.

Activity identifier Only available if the selected model is Full.
Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the activity identifier to which the constraint is linked.

Capacity Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the constraint capacity.

Foreground Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains
the foreground color for the costraint.

Background Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains
the background color for the costraint.
280 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 281 Tuesday, July 28, 2009 9:07 AM
Precedences Data Source Properties

Start Only available if the selected model is Light.
Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the constraint start value.

End Only available is the selected model is Light.
Menu: Integer column names of the selected data source.
Default: None.
Explanation: Name of the precedences data source
to which the gantt is to be connected.

Label Description

Data source name Menu: The names of the current data sources.
Default: None.
Explanation: Name of the precedences data source
to which the gantt is to be connected.

Source constraint Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the constraint identifier from which the precedences start.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 281

usrdataccess.book Page 282 Tuesday, July 28, 2009 9:07 AM
Breaks Data Source Properties

Destination
constraint

Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the constraint identifier to which the precedences go.

Type Menu: Integer column names of the selected data source.
Default: None
Explanation: The column name contains
the precedence type.

Delay Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the precedence delay.

Color Menu: String column names of the selected data source.
Default: None.
Explanation: The column name contains the color of the
precedence.

Label Description
282 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 283 Tuesday, July 28, 2009 9:07 AM
Label Description

Data source name Menu: The names of the current data sources.
Default: None.
Explanation: Name of the breaks data source
to which the gantt is to be connected.

Identifier Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the break identifier.

Resource
identifier

Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the resource identifier to which the break is linked.

From Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the value where the break starts, in relation to
the horizontal scale.

To Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the value where the break stops, in relation to
the horizontal scale.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 283

usrdataccess.book Page 284 Tuesday, July 28, 2009 9:07 AM
Load Data Source Properties

Label Description

Data source name Menu: The names of the current data sources.
Default: None.
Explanation: Name of the load data source
to which the gantt is to be connected.

Resource
identifier

Menu: Column names of the selected data source.
Default: None.
Explanation: The column name contains
the resource identifier to which the work load curve
is linked.

From Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the value where the work load curve starts.

To Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the value where the work load curve stops.

Capacity Menu: Integer column names of the selected data source.
Default: None.
Explanation: The column name contains
the work load curve capacity.
284 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 285 Tuesday, July 28, 2009 9:07 AM
Scales Page

Label Description

Reference year Menu: None.
Default: 1998.
Explanation: Reference year for the Gantt chart.

Reference month Menu: The months of the year.
Default: January.
Explanation: Reference month for the Gantt chart.

Display full name Menu: Yes, No.
Default: Yes.
Explanation:
Yes = Full display of the selected reference time period.
No = Short display of the selected reference time period.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 285

usrdataccess.book Page 286 Tuesday, July 28, 2009 9:07 AM
Periods Page

Type Menu: Various date formats, for example:
Date with week days
Date by hour
Week days by 30 minutes
Hours and minutes
Numeric.
Default: Date.
Explanation: Type of scale.

Time unit Menu: Various units of time in seconds, minutes,
hours, day or numeric.
Default: Day.
Explanation: Unit of the time scale.

Label Description

Unit column Menu: Month, Day, Weekday, Hour, Minute, Second,
Month and day, Hour and minute.
Default: None.
Explanation: Time unit for inactive period.

Test column Menu: Equal, Not equal, Less, Greater, Include, Exclude.
Default: None.
Explanation: Test for inactive period.

Label Description
286 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 287 Tuesday, July 28, 2009 9:07 AM
Properties Page

Value 1 column Menu: Depends on the selected unit. For example, if the selected
unit is Day, the menu is Monday to Sunday; if the unit is Hour, the
menu is 0 to 23.
Default: None.
Explanation: Value of the inactive period.

Value 2, Value 3,
Value 4 columns

Menu: Depends on the selected unit and test.
Default: None.
Explanation: Value of the inactive period.
Ignore = There is no use for the test.

Label Description

Propagate
deletion event

Menu: Yes, No.
Default: Yes
Explanation: A deletion event in a data source deletes
corresponding events in other data sources.

Propagate update
event

Menu: Yes, No.
Default: Yes.
Explanation: An update event in a data source updates
corresponding events in other data sources.

Label Description
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 287

usrdataccess.book Page 288 Tuesday, July 28, 2009 9:07 AM
General Page

For a description of this notebook page, refer to the section General Notebook Page on
page 165.

Read only Menu: Yes, No.
Default: No.
Explanation: Yes: the Gantt chart cannot be edited: the
constraints cannot be moved.
No: The Gantt chart can be edited:
the constraints can be moved.

Interaction data
source to gantt

Menu: Yes, No.
Default: Yes.
Explanation: Gantt chart is updated or not when the data source
is updated or modified.

Delimiter color Menu: None. Click the button to open the Color Selector Dialog
Box.
Default: red.
Explanation: Delimiter color of the constraint.

Default
precedence color

Menu: None. Click the button to open the Color Selector Dialog
Box.
Default: darkgreen.
Explanation: Default color used for precedences if not specified in
the precedences data source.

Break color Menu: None. Click the button to open the Color Selector Dialog
Box.
Default: green.
Explanation: The color used for the breaks.

Work load curve
color

Menu: None. Click the button to open the Color Selector Dialog
Box.
Default: red.
Explanation: The color used for the work load curves.

Inactive period
color

Menu: None. Click the button to open the Color Selector Dialog
Box.
Default: gray.
Explanation: Color for the inactive periods in the Gantt chart.

Active period
color

Menu: None. Click the button to open the Color Selector Dialog
Box.
Default: white.
Explanation: Color for the active periods in the Gantt chart.

Label Description
288 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

IliDbGantt

usrdataccess.book Page 289 Tuesday, July 28, 2009 9:07 AM
Callbacks Page

In addition to the callbacks described in the section Callbacks Notebook Page on page 167,
this inspector uses the callbacks listed below, which are described in the IBM ILOG Views
Data Access Reference Manual IliDbGantt section.

◆ IsActivePeriod

◆ ConstraintDoubleClicked

◆ PrecedenceDoubleClicked

◆ ScaleNumericLabel
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 289

usrdataccess.book Page 290 Tuesday, July 28, 2009 9:07 AM
290 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrdataccess.book Page 291 Tuesday, July 28, 2009 9:07 AM
A

 Utility Classes

This appendix describes the following utility classes of Data Access: IliString,
IliDecimal, IliDate, IliFormat, and IliInputMask.

You can find information on the following topics:

◆ The IliString Class

◆ The IliDecimal Class

◆ The IliDate Class

◆ The IliFormat Class

◆ The IliInputMask Class

The IliString Class

The IliString class defines objects that manage a character string.

IliString str;
// Assign a new value to the string.
str = "Hello ";

// Append to it.
str << "World !";
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 291

A. Utility Classes

usrdataccess.book Page 292 Tuesday, July 28, 2009 9:07 AM
// Convert it to a pointer to characters.
const char* ptr = str;

// Query its length.
IlUInt len = str.length();

This class manages transparently the memory required to store its character string value. It
is, therefore, used when buffering is required.

The following member function makes use of the IliString class:

void IliValue::format(IliString& dest,
 const IliFormat& fmt) const;

The IliDecimal Class

The IliDecimal class is used to hold floating point numbers with up to 38 digits of
precision represented internally in base 10. This contrasts with the C++ double type that
represents floating point numbers in base 2 and has a machine-dependent precision.

The following code extract shows how this class is used:

IliDecimal dec = someField->f_getValue().asDecimal();
someField->f_setValue(dec + IliDecimal(0.5));

The IliDate Class

The IliDate class is used to hold date and time information.

IliDate dt;

// Initialize a date object.
dt.setYear(1998);
dt.setMonth(6);
dt.setMonthDay(10);

// Convert the date into an IliValue object.
IliValue val = dt;

// Assign it to a data source aware gadget.
someField->f_setValue(val);

In this example, the date is created, converted in an IlvValue object, assigned to a data-
source-aware gadget and displayed.
292 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

The IliFormat Class

usrdataccess.book Page 293 Tuesday, July 28, 2009 9:07 AM
The IliFormat Class

The IliFormat class is used to format values into character strings using specific rules. A
format can be user-defined or predefined. Once an IliFormat has been created, it can be
named and referenced whenever required. This can be done using the aliasing mechanism
provided in the IliFormat class.

You can specify formats for numbers, dates, or character strings.

// Create a predefined format named "MyFormat".
IliFormat::AddAlias(“MyFormat”,
 “#,##0.00 FF.”,
 IliNumberFormatType);

IliFormat fmt(“MyFormat”);
IliValue val = someField->f_getValue();
const char* txt = val.getFormatted(fmt);
IlvPrint("Here is the formatted value : %s", txt);

The IliFormat class controls the format specification and uses some global settings. These
settings include properties such as the character that is used to represent a decimal point.
Consequently, the IliFormat class contains a set of static member functions that can be
used to query and set the global settings.

IliFormat::SetDecimalPoint(’,’);
IliFormat::SetThousandsSeparator(’ ’);
IliFormat::SetCurrencySymbol("F.");
...

For more information on the syntax used to specify a format, see Appendix B, Format
Syntax.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 293

A. Utility Classes

usrdataccess.book Page 294 Tuesday, July 28, 2009 9:07 AM
It is also possible to code formats in C++ by subclassing the IliFormatIpl class as the
following code extract shows:

#include <ctype.h>
#include <ilviews/dataccess/format.h>

const char* MyFormatAlias = "FancyFormat";
const char* MyFormatName = "FancyFormat";

// This format reverses the case of alphabetic
// characters: lowercase are displayed uppercase and
// vice-versa.

class FancyFormat
 : public IliFormatIpl
{
public:
 FancyFormat()
 : IliFormatIpl(MyFormatName)
 {}

 virtual IliFormatType getType() const {
 return IliStringFormatType;
 }

 virtual void formatString(IliString& dest,
 const char* src) const {
 if (src) {
 if (isEditModeOn())
 dest << src;
 else
 while (*src) {
 if (isalpha(*src)) {
 if (isupper(*src))
 dest << (char)tolower(*src);
 else
 dest << (char)toupper(*src);
 }
 else
 dest << *src;
 ++src;
 }
 }
 }
};

int main() {
 ...
 IliFormatIpl::AddCustomFormat(new FancyFormat());
 IliFormat::AddAlias(MyFormatAlias,
 MyFormatName,
 IliStringFormatType);
 ...
}

294 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

The IliInputMask Class

usrdataccess.book Page 295 Tuesday, July 28, 2009 9:07 AM
The IliInputMask Class

An input mask is similar to a format except that it allows you to control how values are
entered by the end user in addition to the formatting.

The following is an example of an input mask:

00"-"00"-"00

This input mask lets the end user type six digits and nothing else. It also separates each pair
of digits from the next by displaying a '-' character between them. This character is only used
for display and is not part of the value.

See Appendix C, Mask Syntax for more information on how masks can be specified.

There can be cases where the mask specification language described in Appendix C is not
sufficient for a given task. Fortunately, it is possible to define input masks in C++ by
subclassing class IliInputMaskIpl.

Data Access provides the IliDateType (manages date and time) and the IliTimeType
(manages time only) data types. In some circumstances, it may be necessary to use the
IliDateType data type when only the time part needs to be managed. This happens, for
instance, when using a database system that exclusively supports a date-time type. Since
such a database system does not support a time-only type, it is necessary to use
IliDateType instead of IliTimeType, even thought it is expected that the date part of
values will be constrained to be some constant date.

The following code samples create an input mask that allows editing of the time part of a
date-time value. The date part is constrained to be some constant date.

First, a subclass of IliInputMaskIpl must be defined:

#include <wctype.h>
#include <ilviews/dataccess/inpmask.h>

const char* MyMaskName = "MyMask";

// Use "30 Dec 1899" with an Access database.
const char* DatePart = "1-1-1901 ";

class MyMask : public IliInputMaskIpl
{
public:
 MyMask()
 : IliInputMaskIpl(MyMaskName),
 _format("Time")
 {
 setMaxCharMask(8);
 }

 virtual IlvBoolean unFormat(IliString& dest,
 const char* src) const {
 if (src && *src)
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 295

A. Utility Classes

usrdataccess.book Page 296 Tuesday, July 28, 2009 9:07 AM
 dest << DatePart << src;
 return IlvTrue;
 }

 IlvBoolean isValidChar(IlInt pos,
 wchar_t c,
 IlvBoolean editMode = IlTrue) const {
 if (isFixChar(pos))
 return (c == L':');
 return iswdigit(c);
 }

 virtual IlBoolean isFixChar(IlInt pos) const {
 return (pos == 2 || pos == 5);
 }

 virtual wchar_t filterChar(IlInt pos, wchar_t c) {
 return (isFixChar(pos) ? L':' : c);
 }

 virtual const IliFormat& getValueFormat() const {
 return _format;
 }

 IliFormat _format;
};

Then, at initialization time, the following code should be executed:

// Register the mask.
IliInputMaskIpl::AddCustomMask(new MyMask);
IliInputMask::AddAlias("MyMask", "MyMask");

Here is how the mask could be used:

//Use the mask.
IliDbField* fld;
...
IliInputMask m("MyMask");
fld->f_setMask(m);
296 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrdataccess.book Page 297 Tuesday, July 28, 2009 9:07 AM
B

Format Syntax

This appendix contains the symbols and formats you can use to create application-wide
named formats and local formats for a particular field. A format specification controls the
way a value will be formatted for display. There are three types of formats:

◆ String formats

◆ Number formats

◆ Date formats

This appendix describes the syntax of the format specifications in Data Access. For each
type of format specification, there is a set of special symbols, each having a specific
meaning. You can find information on the following topics:

◆ String Formats

◆ Number Formats

◆ Date Formats

◆ Literal Characters

String Formats

String formats apply to the formatting of text.
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 297

B. Format Syntax

usrdataccess.book Page 298 Tuesday, July 28, 2009 9:07 AM
Symbols

You can use the following symbols to specify a string format:

Normally, character string formatting proceeds by scanning the character string value and
the format specification from left to right. However, if the format specification contains a
“!” symbol, then scanning of both the character string value and the format specification
proceeds from right to left.

Examples

@ symbols are replaced by spaces when there is no corresponding character in the string
value.

Number Formats

Number formats apply to the formatting of numbers, including currency amounts.

! Formatting must proceed from right to left.

< Characters following the symbol will be converted to
lowercase.

> Characters following the symbol will be converted to
uppercase.

@ Placeholder for a mandatory character.

& Placeholder for an optional character.

Value Format Result

forms > FORMS

FormS < forms

forms <@> fORMS

forms <@@> foRMS

forms !>@< FORMs

forms !>@<@@@> FoRMS

forms &&&&&&“data” formsdata

forms @@@@@@“data” forms data
298 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Number Formats

usrdataccess.book Page 299 Tuesday, July 28, 2009 9:07 AM
Symbols

You can use the following symbols to specify a number format:

The exponent symbols “E” and “e” can be followed by a “+” or “-” sign. A “-” sign means
that the exponent sign must be displayed only if it is negative. A “+” sign or no sign means
that the sign of the exponent is always displayed.

When a “%” symbol appears in the format specification, the numeric value to be formatted is
multiplied by 100 before formatting and a “%” symbol appears in the result.

“0” symbols are replaced by zeros when there is no corresponding digit in the number value.

Examples

The characters used to represent the decimal point and the thousands separator in the
formatted result depend on application settings that can be changed. Typically, they depend
on the country where the application is used. These settings do not affect the symbols used
as placeholders for the decimal point and for the thousands separator in format
specifications. You should thus always use the placeholders listed above for these values as
only the output depends on the application settings.

0 Placeholder for a mandatory digit.

Placeholder for an optional digit.

. Placeholder for the decimal point.

, Placeholder for the thousands separator.

% Formats the value as a percentage.

E Placeholder for the exponent displayed in uppercase.

e Placeholder for the exponent displayed in lowercase.

Value Format Result

1234.567 #,##0.00 1 234.57

1234.567 #,##0.0# 1 234.57

1234.5 #,##0.00 1 234.50

1234.5 #,##0.0 1 234.5

1.5 0,000.00 0 001.50

1234 0.00 E+00 1.23 E+03

1234 0.00 E-00 1.23 E03

1234 0.00 E-## 1.23 E3

0.5432 #.# % 54.3 %
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 299

B. Format Syntax

usrdataccess.book Page 300 Tuesday, July 28, 2009 9:07 AM
Note that the maximum precision is 15 digits for double values and 7 for float values.

Date Formats

Date formats refer to the formatting of days, dates, and times.

Symbols

You can use the following symbols to specify a date format:

/ Placeholder for date separator.

: Placeholder for time separator.

< Characters following the symbol will be converted to
lowercase.

> Characters following the symbol will be converted to
uppercase.

d Placeholder for day of month (1-31).

dd Placeholder for day of month (01-31).

ddd Placeholder for day of week (Sun-Sat). Depends on the
language that has been set for the application.
See the IlvDisplay class.

dddd Placeholder for day of week (Sunday-Saturday). Depends on
the language that has been set for the application.
See the IlvDisplay class.

ddddd Placeholder for full date (ex: 8/3/96. Depends on the global
settings of your application.
See the IliFormat class.

dddddd Placeholder for full date (ex: 03 August 1996).
Depends on the language and the global settings
that have been set for the application.
See the IlvDisplay and IliFormat classes.

w Placeholder for day of week (1-7).

ww Placeholder for week of year (1-53).

m Placeholder for month (1-12).

mm Placeholder for month (01-12).

mmm Placeholder for month (Jan-Dec).
Depends on the language that has been set
for the application. See the IlvDisplay class.

mmmm Placeholder for month (January-December).
Depends on the language that has been
set for the application. See the IlvDisplay class.
300 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Date Formats

usrdataccess.book Page 301 Tuesday, July 28, 2009 9:07 AM
Examples

The placeholders for the date and time separators are formatted according to application
settings that can vary (typically, depending on the country).

Also, two of the format specifications depend on application settings that control if the date
should be displayed before or after the month. For example:

q Placeholder for quarter (1-4).

y Placeholder for year day (1-366).

yy Placeholder for year (00-99).

yyyy Placeholder for year (1970-2099).

h Placeholder for hour (0-23).

hh Placeholder for hour (00-23).

H Placeholder for hour (0-11).

HH Placeholder for hour (00-11).

p Placeholder for AM or PM.

n Placeholder for minutes (0-59).

nn Placeholder for minutes (00-59).

s Placeholder for seconds (0-59).

ss Placeholder for seconds (00-59).

ttttt Placeholder for full time (ex: 05:32:12).
Depends on the global settings of your application.
See the IliFormat class.

Value Format Result

12 jan 96 d/m/yy 12/1/96

12 jan 96 d mmmm yyyy 12 January 1996

12 jan 96 q 1

Value Format
Application
Properties

Result

12 jan 96 dddddd MDY,
English language

January 12 1996

12 jan 96 dddddd DMY,
French language

12 janvier 1996
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 301

B. Format Syntax

usrdataccess.book Page 302 Tuesday, July 28, 2009 9:07 AM
Literal Characters

In any format specification, you can include literal characters. They will be output “as is”
when formatting a value.

Symbols

A literal character is specified by one of the following methods:

◆ \c Prefix the character with a back slash.

◆ “abc” Enclose a string of characters in double quotes.

◆ Any character that is not a special symbol or cannot be part of one, is considered as being
a literal character.

Examples

Value Format Result

1234.5 #,##0.0# Frs 1 234.5 Frs

1234.5 #,##0.0# “Frs” 1 234.5 Frs

1234.5 #,##0.0# \F\r\s 1 234.5 Frs

12 jul 96 “Quarter” q Quarter 3

forms ILOG >@< ILOG Forms
302 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrdataccess.book Page 303 Tuesday, July 28, 2009 9:07 AM
C

Mask Syntax

This appendix contains the symbols and formats that you can use to create application-wide
named masks called input masks and local input masks for a particular field. Masks control
user input. Format specification controls how a value is formatted for display and a mask
sets a style to input values. This appendix talks about the different types of masks used to
input data.

Masks are used to provide a format to input data. A mask is defined by a character string and
uses two principles. First, there is no format and the mask automatically formats the data
displayed. Second, missing characters are replaced by default characters. There are
predefined masks for date and time.

This appendix describes the syntax of format specifications and their specific meaning.

You can find information on the following topics:

◆ Placeholders

◆ Predefined Masks
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 303

C. Mask Syntax

usrdataccess.book Page 304 Tuesday, July 28, 2009 9:07 AM
Placeholders

Used in the Edit mode, placeholders replace all missing characters by default characters.
There are predefined masks for the date and time. The following symbols are the
placeholders that you can use for alphanumeric formatting.

0 Placeholder for a mandatory digit.

Placeholder for an optional digit.

S Placeholder for a mandatory digit or sign.

s Placeholder for an optional digit or sign.

L Placeholder for a mandatory letter.

l Placeholder for an optional letter.

U Placeholder for a mandatory uppercase letter.

u Placeholder for an optional uppercase letter.

M Placeholder for a mandatory lowercase letter.

m Placeholder for an optional lowercase letter.

A Placeholder for a mandatory digit or letter.

a Placeholder for an optional digit or letter.

P Placeholder for a mandatory digit or uppercase letter.

p Placeholder for an optional digit or uppercase letter.

W Placeholder for a mandatory digit or lowercase letter.

w Placeholder for an optional digit or lowercase letter.

X Placeholder for a mandatory digit or letter from a to f (or A to F)

x Placeholder for an optional digit or letter from a to f (or A to F)

C Placeholder for a mandatory any character.

c Placeholder for an optional any character.

. Placeholder for the decimal point.

, Placeholder for the thousands separator.

E,e Placeholder for the exponent separator.

[xy Placeholder for a mandatory digit from x to y included.

{xxxx} Placeholder for a mandatory character from a set of characters.
The list of characters is placed between two braces { and }.
If you put “a” in the list and if you enter “A”, there is
an automatic conversion to “a”.

&xxxx& Placeholder for an optional character from a set of characters. The list
is placed between two “&”.
304 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

Predefined Masks

usrdataccess.book Page 305 Tuesday, July 28, 2009 9:07 AM
“all characters between” are only displayed (not present in the value).

If a format has an exponent, digits, and number separators with a decimal separator (and
only one) then the format is a float format. The float format ignores placeholder <!>. The
integer part reads from right to left while the decimal part reads from left to right. The other
characters which are not between double-quotes, are displayed and included in the value.

Default Value

The default value is space for characters that are not mandatory characters.

Predefined Masks

Predefined masks are used to set format specifications for date and time. You can define
your predefined masks in the Masks section of the Application Properties panel of
IBM® ILOG® Views Studio. The following table defines and names the format showing
how they are displayed. In the mask format, characters representing the decimal point
depend on application settings. The first column shows the decimal formats, the second
shows the value, and the final column shows the format applied to the values.

(@# Placeholder for a mandatory letter from @ to # included.
If, the case of @ and # is different so the case is ignored
or else the case is active.

/ Placeholder for date separator.

: Placeholder for time separator.

\ The next character included in the mask
for display and value.

! Formatting must proceed from right to left.

Mask Value Display

000.0 123.8 123.8

“(“00”)”000.0## 12345.789 (12)345.789

“(“00”)”000.0## 12345.78 (12)345.78

“(“00”)”000.0## 12345 12345

“(“00”)”000.0## 12345.9999 12345.9999
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 305

C. Mask Syntax

usrdataccess.book Page 306 Tuesday, July 28, 2009 9:07 AM
The following table provides the name of the date mask in the first column and shows how
the dates will be displayed in the second column.

Name Display

Date, mmm/dd/yyyy mmm/dd/yyyy

Date, mmm/dd/yy mmm/dd/yy

Date, mm/dd/yy mm/dd/yy

Date, mm/dd/yyyy mm/dd/yyyy

Time
(This mask works
only if the data type
is time.)

hh:mm:ss
306 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrdataccess.book Page 307 Tuesday, July 28, 2009 9:07 AM
D

Error Messages

This appendix contains a list of error messages that Data Access generates. In the following
table, you will find the code error, the names of the arguments, and their type.

Code Error Argument 1(Type) Argument 2 (Type)

Ili_UndefinedError none none

Ili_UnexpectedError none none

Ili_IncorrectValueError none none

Ili_TableIsReadOnlyError none none

Ili_DuplicateRowError none none

Ili_NullColumnError column name (s) none

Ili_ColumnLengthError column name (s) length max (i)

Ili_InvalidRowNumber row number (i) none

Ili_InvalidTableBuffer none none

Ili_IncorrectTableAlias none none

Ili_InvalidParameterType none none
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 307

D. Error Messages

usrdataccess.book Page 308 Tuesday, July 28, 2009 9:07 AM
To understand the error message contained in Arguments 1 and/or 2, the user must type %s
(“s” for string type) or %ld (i for an integer type) in the message text.

Ili_UndefinedQuery none none

Ili_RowsCountLimitExceeded limit (i) none

Ili_ColumnTypeMismatch column name (s) none

Ili_ColumnNotInQuery column name (s) none

Ili_FetchPendingError insert or delete (s) none

Ili_SQLRowNotFoundError none none

Ili_SQLRowChangedSinceFetch none none

Ili_UndefinedSQLSessionError none none

Ili_CannotAllocateSQLCursorError none none

Ili_GroupedQueryIsReadOnlyError none none

Ili_NotAllColumnsAreUpdatableError table name (s) column name (s)

Ili_DatabaseRowIsNotUniqueUpdateEr
ror

none none

Ili_DatabaseRowIsNotUniqueSelectEr
ror

none none

Ili_AlreadyConnectedError none none

Ili_NotConnectedError none none

Ili_TableWithoutColumnsError none none

Ili_TableWithoutNameError none none

Ili_ColumnWithoutNameError none none

Ili_ColumnWithoutTypeError column name (s) none

Code Error Argument 1(Type) Argument 2 (Type)
308 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

I N D E X

usrdataccess.book Page 309 Tuesday, July 28, 2009 9:07 AM
Index

A

Activities page
DbGantt inspector panel 278

addCallback member function
IlvGraphic class 62

addErrorMessage member function
IliDataSource class 63, 67

addErrorSink member function
IliDataSource class 66
IliTable class 42

Allow insert checkbox
SQL Data Source inspector panel 174

applyQueryMode member function
IliDataSource class 138

asString member function
IliValue class 94

asynchronous mode 134

B

bindToDataSource member function
IliTableGadget class 73

buttons
Memory Data Source inspector panel 200
SQL Data Source inspector panel 183

C

callbacks

overview 24
CancelEdits 63, 64
DeleteRow 66
DrawCell 74
EnterInsertMode 63
EnterRow 62
EnterUpdateMode 62
getCellPalette 74
global 88
predefined 90, 143
PrepareDeleteRow 66
PrepareInsert 64
PrepareUpdate 62
primary callback 24
QuitInsertMode 64
QuitRow 62
QuitUpdateMode 62
SQL Data Source inspector panel 183
Validate 62
ValidateRow 63
validation callbacks 67

Callbacks notebook page 167
Callbacks page

DbField inspector panel 213
DbGantt inspector panel 289
DbGrapher inspector panel 276
DbNavigator inspector panel 237
DbOptionMenu inspector panel 250
DbPicture inspector panel 247
DbStringList inspector panel 256
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 309

usrdataccess.book Page 310 Tuesday, July 28, 2009 9:07 AM
DbText inspector panel 226
DbTimer inspector panel 238
DbToggle inspector panel 230
DbTreeGadget inspector panel 264
EntryField inspector panel 216
HTMLReporter inspector panel 242
Memory Data Source inspector panel 199
TableComboBox inspector panel 223
TableGadget inspector panel 208
ToggleSelector inspector panel 234

cancelQueryMode member function
IliDataSource class 138

clearRows member function
IliTable class 41

Color Selector dialog box 169
column properties

alignment 36
completion 37
constrained 37
datatype 35
default value 36
display column 37
display width 36
foreign data source name 36
foreign table 36
format 36
index 35
label 36
maximum length 35
name 35
nullable 35
part of key 35
read only 36
title 36
token 35
value column 36
visibility 36

commit member function
IliSQLCursor class 152

connect member function
IliSQLSession class 150

containers 23
copyTable member function

IliTable class 44
cursors

obtaining the schema of 153
see IliSQLCursor class

D

data formats 300
dates 300
literal characters 302
numbers 298
string 297

Data Source page
DbField inspector panel 210
DbNavigator inspector panel 234
DbOptionMenu inspector panel 248
DbPicture inspector panel 246
DbStringList inspector panel 251
DbText inspector panel 224
DbToggle inspector panel 227
DbTreeGadget inspector panel 257
EntryField inspector panel 214
Memory Data Source inspector panel 193
TableComboBox inspector panel 217
TableGadget inspector panel 203
ToggleSelector inspector panel 231

data sources 57 to 68
overview 27
callbacks 62
connecting gadgets 70
creating 58
defining parameters 139
error handling 66
managing rows 60
retrieving 67
scope 59
table objects 34

data types
checking the type of an object 93
converting IBM ILOG InForm type 93
list of supported types 92
structured types 96

database drivers 150
including at compile time 153
macro symbols 153

database fields 209
database systems
310 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 311 Tuesday, July 28, 2009 9:07 AM
connecting 150
database tables 32
data-source-aware gadgets 69 to 90

connecting to a data source 70
creating 59
DbField 99
DbGantt 87
DbGrapher 85
DbNavigator 78, 103
DbOptionMenu 81
DbPicture 81
DbStringList 82
DbText 77
DbTimer 80
DbToggle 78
DbTreeGadget 82
description of 24, 27
entry field 76
foreign table 71
HTMLReporter 80
interface 69
managing values 71
setting the look 71
table combo box 77
table gadget 72
toggle selector 78, 108

Datatype page
Memory Data Source inspector panel 193
SQL Data Source inspector panel 177

DbField inspector panel 209
Callbacks page 213
Data Source page 210
General page 213
Mapping page 212

DbField styles
IliEntryFieldStyle 100
IliOptionMenuStyle 101
IliStringListStyle 102
IliTableComboBoxStyle 101, 103
IliTextStyle 101
IliToggleSelectorStyle 102
IliToggleStyle 101

DbFields 99 to 104
read-only columns 112
style 100

DbGantt inspector panel
Activities page 278
Callbacks page 289
Events page 287
General page 288
notebook pages 276
Periods page 286
Resources page 277
Scales page 285

DbGrapher inspector panel 270
Callbacks page 276
Events page 275
General page 275
Links page 272
Look page 273
Nodes page 270

DbNavigator inspector panel 234
Callbacks page 237
Data Source page 234
General page 237

DbOptionMenu inspector panel 247
Callbacks page 250
Data Source page 248
General page 249
Mapping page 249

DbPicture inspector panel 245
Callbacks page 247
Data Source page 246
General page 247

DbStringList inspector panel 250
Callbacks page 256
Data Source page 251
General page 253
Mapping page 252
Scrollbars page 255
Specific page 253

DbText inspector panel 224
Callbacks page 226
Data Source page 224
General page 225
Scrollbars page 225

DbTimer inspector panel 237
Callbacks page 238
Specific page 237

DbToggle inspector panel 227
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 311

usrdataccess.book Page 312 Tuesday, July 28, 2009 9:07 AM
Callbacks page 230
Data Source page 227
General page 229
Mapping page 228
Specific page 229

DbTreeGadget inspector panel 257
Callbacks page 264
Data Source page 257
General page 260
Scrollbars page 263
Specific page 260

deleteCurrentRow member function
IliDataSource class 61

deleteRow member function
IliTable class 38

dialog boxes
Color Selector 169
File Selector 170
Font Chooser 168
SQL Data Source inspector panel

Connect 187
Differences 191
Question 190
Select Table 189
Source 188
SQL Data Source Properties 184

Table columns 221
Directory class example 51
disconnect member function

IliSQLSession class 150
Document page

HTMLReporter inspector panel 239
dontValidateRow member function

IliDataSource class 63, 67

E

editors 18
enableInsert member function

IliDataSource class 61
EntryField inspector panel 213

Callbacks page 216
Data Source page 214
General page 215
Specific page 215

error messages generated by IBM ILOG InForm 307
errors

data sources 66
tables 41

Events page
DbGantt inspector panel 287
DbGrapher inspector panel 275

execute member function
IliSQLCursor class 151

F

f_getGraphic member function
IliFieldItf class 70

f_getValue member function
IliFieldItf class 71, 92

f_setDataSourceName member function
IliFieldItf class 70, 71, 72

f_setValue member function
IliFieldItf class 71

fetchAll member function
IliTable class 41

fetchCompleted member function
IliTable class 41

fetchNext member function
IliSQLCursor class 151
IliTable class 41

File menu
SQL Data Source inspector panel 173

File Selector dialog box 170
First page page

HTMLReporter inspector panel 241
Font Chooser dialog box 168
foreign tables 105 to 110

column properties 36
constrained 109
DbField styles 101, 102
setting up 105
table combo box 77
toggle selector 108
troubleshooting 112
types 113

format member function
IliValue class 95

Forms Assistant
312 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 313 Tuesday, July 28, 2009 9:07 AM
creating forms 103
read-only columns 112
using with foreign table 109

G

gadgets
IliDbField 209
IliDbGantt 276
IliDbGrapher 269
IliDbNavigator 234
IliDbOptionMenu 247
IliDbPicture 245
IliDbStringList 250
IliDbText 223
IliDbTimer 237
IliDbToggle 226
IliDbTreeGadget 256
IliEntryField 213
IliHTMLReporter 238
IliMemoryDataSource 192
IliSQLDataSource 171
IliTableComboBox 216
IliTableGadget 202
IliToggleSelector 231

General notebook page 165
General page

DbField inspector panel 213
DbGantt inspector panel 288
DbGrapher inspector panel 275
DbNavigator inspector panel 237
DbOptionMenu inspector panel 249
DbPicture inspector panel 247
DbStringList inspector panel 253
DbText inspector panel 225
DbToggle inspector panel 229
DbTreeGadget inspector panel 260
EntryField inspector panel 215
HTMLReporter inspector panel 242
Memory Data Source inspector panel 197
TableComboBox inspector panel 221
TableGadget inspector panel 204
ToggleSelector inspector panel 233

getBinaryValue member function
IliSQLCursor class 152

getBuffer member function
IliTable class 39

getDateValue member function
IliSQLCursor class 152

getDoubleValue member function
IliSQLCursor class 152

getFloatValue member function
IliSQLCursor class 152

getFormatted member function
IliValue class 96

getIntegerValue member function
IliSQLCursor class 152

getNestedSchema member function
IliDatatype class 97

getRealColno member function
IliTableGadget class 73

GetRegisteredSession member function
IliSQLSession class 155

getRowsCount member function
IliTable class 40

getSchema member function
IliSQLCursor class 153

getSelection member function
IliTableGadget class 73

getStringValue member function
IliSQLCursor class 152

getType member function
IliValue class 93

getValue member function
IliSQLCursor class 152
IliTable class 39

getVisualColno member function
IliTableGadget class 73

Global checkbox
SQL Data Source inspector panel 174

gotoFirst member function
IliDataSource class 60

gotoLast member function
IliDataSource class 60

gotoNext member function
IliDataSource class 60

gotoPrevious member function
IliDataSource class 60

gotoRow member function
IliDataSource class 60
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 313

usrdataccess.book Page 314 Tuesday, July 28, 2009 9:07 AM
H

hasGlobalScope member function
IliDataGem class 59

hasTuple member function
IliSQLCursor class 151

Having page
SQL Data Source inspector panel 176

HTMLReporter inspector panel 238
Callbacks page 242
Document page 239
First page page 241
General page 242
Table of contents page 240

I

IBM ILOG DB Link 26
IBM ILOG InForm

editors 18
IBM ILOG Views classes

IlvApplication 22
IlvContainer 88
IlvDisplay 22
IlvGadget 24, 27, 69
IlvGadgetContainer 23
IlvGraphic 24, 62
IlvTextField 27, 70

IliCallbackManager class 89
IliChartGraphic class 83
IliDataGem class 58, 59
IliDataSource class 27, 57, 137
IliDatatype class 26, 91, 92, 97
IliDate class 292
IliDbField class 76, 99, 105
IliDbField gadget 209
IliDbGantt class 87
IliDbGantt gadget 276
IliDbGrapher class 85
IliDbGrapher gadget 269
IliDbNavigator class 60, 103
IliDbNavigator class 78
IliDbNavigator gadget 234
IliDbOptionMenu class 81
IliDbOptionMenu gadget 247

IliDbPicture class 81
IliDbPicture gadget 245
IliDbStringList class 82
IliDbStringList gadget 250
IliDbText class 77
IliDbText gadget 223
IliDbTimer class 80
IliDbTimer gadget 237
IliDbToggle class 78
IliDbToggle gadget 226
IliDbTreeGadget class 82
IliDbTreeGadget gadget 256
IliDecimal class 292
IliEntryField 76
IliEntryField class 27, 69, 73
IliEntryField gadget 213
IliErrorList class 42
IliErrorMessage class 41
IliErrorReporter class 67
IliErrorSink class 42
IliFieldItf class 27, 69, 72
IliFormat class 28, 293
IliGraphicToField global function 70
IliHTMLReporter class 80
IliHTMLReporter gadget 238
IliInputMask class 28, 295
IliInputMaskIpl class 28
IliIsAField global function 70
IliMapTable class 32, 46
IliMemoryDataSource class 58
IliMemoryDataSource gadget 192
IliMemoryTable class 26, 32, 37, 38, 45, 58, 105
IliRepository class 67
IliSchema class

member functions 37
IliSQLCursor class 26, 151
IliSQLDataSource class 58, 118
IliSQLDataSource gadget 171
IliSQLSession class 26, 149, 150
IliSQLTable class

as an object of a data source 149
asynchronous mode 134
auto-commit mode 124
auto-refresh mode 125
auto-row locking mode 127
314 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 315 Tuesday, July 28, 2009 9:07 AM
bound variables mode 126
concurrency control 123
cursor buffering 127
defining in C++ 120
defining interactively 119
description of 45, 118
dynamic SQL mode 126
fetch policy 125
inserting-nulls mode 126
instantiated by IliSQLDataSource 58
managing rows 26
query mode 137
subclass of IliTable 32
transaction managers 128
used as a foreign table 105

IliString class 291
IliStringsTable class 32, 45
IliTable class

description of 26, 32, 57
foreign table 105
managing rows 38
subclassing 46
transaction managers 128
used with structured types 96

IliTableBuffer class 38, 78
IliTableComboBox class 73, 77, 105
IliTableComboBox gadget 216
IliTableGadget class 72
IliTableGadget gadget 202
IliTableHook class 43
IliTableSelection class 72
IliToggleSelector class 78

foreign tables 105
IliToggleSelector gadget 231
IliTransactionManager class 128
IliValue class 91 to 96

checking the data type 93
constructing 92
converting to a C++ type 94
formatting 95
formatting a value 95
null values 92
representing values 26
used with structured types 96

IlvGadgetContainer class 23

InForm palette
opening 159

insertColumn member function
IliSchema class 38

insertRow member function
IliTable class 38

inspector panels
DbField 209
DbGantt 276
DbGrapher 270
DbNavigator 234
DbOptionMenu 247
DbPicture 245
DbStringList 250
DbText 224
DbTimer 237
DbToggle 227
DbTreeGadget 257
EntryField 213
HTMLReporter 238
Memory Data Source 192
SQL Data Source 172
TableComboBox 216
TableGadget 202
ToggleSelector 231

isConnected member function
IliSQLSession class 150

isInputModified member function
IliDataSource class 61

isNull member function
IliValue class 92

L

libraries
IBM ILOG InForm 17
IBM ILOG Views 17

Links page
DbGrapher inspector panel 272

Look page
DbGrapher inspector panel 273
Memory Data Source inspector panel 194
SQL Data Source inspector panel 179
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 315

usrdataccess.book Page 316 Tuesday, July 28, 2009 9:07 AM
M

makeTable member function
IliDatatype class 97

Mapping page
DbField inspector panel 212
DbOptionMenu inspector panel 249
DbStringList inspector panel 252
DbToggle inspector panel 228
Memory Data Source inspector panel 196
SQL Data Source inspector panel 181
TableComboBox inspector panel 218
ToggleSelector inspector panel 233

masks 28
default value 305
placeholders 304
predefined 305

Memory Data Source inspector panel
buttons 200
Callbacks page 199
Data Source page 193
Datatype page 193
General page 197
Look page 194
Mapping page 196
notebook pages 192
Specific page 198

N

Name field
SQL Data Source inspector panel 174

Naming Conventions 13
navigation buttons 234
Nodes page

DbGrapher inspector panel 270
notebook pages

Callbacks page 167
General page 165

number data formats 298

O

one-tier tables
IliMapTable class 46

IliMemoryTable class 45
IliStringsTable class 45

P

Palettes panel
Charts gadgets 160, 163
InForm gadgets 160

panels
see Containers

parameters 139 to 144
Parameters page

SQL Data Source inspector panel 182
Periods page

DbGantt inspector panel 286
pointToSelection member function

IliTableGadget class 73
primary keys

table object 147

Q

Query menu
SQL Data Source inspector panel 173

query mode 137
queryConnect member function

IliSQLSession class 154
Question dialog box 190

R

registerCallback member function
IlvContainer class 88

registered sessions
see SQL sessions (application-wide)

RegisterSession member function
IliSQLSession class 154

releaseBuffer member function
IliTable class 39

releaseCursor member function
IliSQLCursor class 153

removeErrorSink member function
IliDataSource class 66

Repository
retrieving a data source 67
316 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 317 Tuesday, July 28, 2009 9:07 AM
Resources page
DbGantt inspector panel 277

result sets 40, 151
rollback member function

IliSQLCursor class 152
rowToBuffer member function

IliTable class 39
run-time options for SQL sessions 123

S

Scales page
DbGantt inspector panel 285

Scrollbars page
DbStringList inspector panel 255
DbText inspector panel 225
DbTreeGadget inspector panel 263

select member function
IliSQLCursor class 151
IliTable class 40

Select page
SQL Data Source inspector panel 175

SELECT section
SQL Data Source inspector panel 174

Select Tables dialog box 189
setCallback member function

IlvGraphic class 62
setColumnEditor member function

IliTableGadget class 74
setColumnGeometryLocal member function

IliTableGadget class 73
setColumnPartOfKey member function

IliSchema class 38
setErrorReporter member function

IliDataSource class 67
setGlobalScope member function

IliDataGem class 59
setLanguageSensitive member function

IliMapTable class 46
setNull member function

IliValue class 92
setQueryConjunct member function

IliSQLTable class 138
setQueryFrom member function

IliSQLTable class 122

setSelection member function
IliTableGadget class 73

setStyle member function
IliDbField class 76

setValue member function
IliDataSource class 61

Source dialog box 188
Specific page

DbStringList inspector panel 253
DbTimer inspector panel 237
DbToggle inspector panel 229
DbTreeGadget inspector panel 260
EntryField inspector panel 215
Memory Data Source inspector panel 198
TableComboBox inspector panel 222
TableGadget inspector panel 205

SQL Data Source inspector
creating a data source definition 119
specifying columns 144

SQL Data Source inspector panel 172
Allow insert checkbox 174
buttons 183
callbacks 183
Connect dialog box 187
Datatype page 177
Differences dialog box 191
File menu 173
FROM section 189
Global checkbox 174
Having page 176
Look page 179
Mapping page 181
menus 172
Name field 174
Parameters page 182
Query menu 173
Question dialog box 190
Select page 175
SELECT section 174
Select Table dialog box 189
Source dialog box 188

SQL Data Source Properties dialog box 184
SQL data sources 144 to 147

Auto Select property 142
defining table columns 144
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 317

usrdataccess.book Page 318 Tuesday, July 28, 2009 9:07 AM
forcing column name 145
query mode 137

SQL sessions
application-wide 122, 149, 154
committing or rolling back 152
Connect dialog box 154
connection parameters 150
creating 150
custom session 122
locking and unlocking 150
retrieving 123

SQL statements
DELETE 120
INSERT 120
SELECT 40, 118, 120, 151, 151 to 153
submitting to database 151
UPDATE 120

SQL tables 118 to 135
asynchronous mode 134
defining in C++ 120
defining SQL session 122
joining columns 118, 119, 121
structured types 131
transaction managers 128
using parameters 128

startInsert member function
IliDataSource class 61

string data formats 297
structured types 96

SQL table 131
subclassing

directory table example 49
IliFieldItf class 72

T

table
create 164
drop 164
edit data 165
edit schema 165
enable/disable SQL trace 165
export 165
import 165

Table columns dialog box 221

table combo boxes 77
table gadgets 32, 72

callbacks 74
column geometry 73
columns geometry 110
customizing 74
editors 73
fixed columns 112
read-only columns 111

table objects 32, 103
copying 44
defining an instance 38
defining the key 38
defining the schema 37
error catching 41
foreign tables 105
inserting a row 39
local row cache 40
look 110
managing rows 38
modifying a row 39
primary key 147
reading from a stream 44
read-only columns 111
removing a row 40
subclasses 44
subclassing guidelines 46
writing to a stream 44

Table of contents page
HTMLReporter inspector panel 240

TableComboBox inspector panel 216
Callbacks page 223
Data Source page 217
General page 221
Mapping page 218
Specific page 222

TableGadget inspector panel
Callbacks page 208
Data Source page 203
General page 204
notebook pages 202
Specific page 205

tables
one-tier 33
two-tier 33
318 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

usrdataccess.book Page 319 Tuesday, July 28, 2009 9:07 AM
see also table objects
tables, synchronizing with database 191
text fields 223
toggles 226
ToggleSelector inspector panel 231

Callbacks page 234
Data Source page 231
General page 233
Mapping page 233

transaction managers 128
transactions 152
two-tier tables 60

callbacks 64
extra row management techniques 40
IliSQLTable class 45
row retrieval 40

U

updateRow member function
IliTable class 38, 63

V

validate member function
IliDataSource class 61

values
see IliValue class

W

writeTable member function
IliTable class 44
I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L 319

usrdataccess.book Page 320 Tuesday, July 28, 2009 9:07 AM
320 I B M I L O G V I E W S D A T A A C C E S S V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG Views Data Access V5.3 User’s Manual
	About This Manual
	Part I IBM ILOG Views Data Access Common Framework
	Introducing Data Access
	What is Data Access?
	Libraries
	Editors

	Supported Databases
	Distribution Structure

	Data Access Basics
	Overview
	IBM ILOG Views Interface
	IlvDisplay
	IlvApplication
	Containers
	Gadgets
	Callbacks

	Data Access Concepts
	Values
	Database Connection
	Tables
	Data Sources
	Data-Source-Aware Gadgets
	Formats
	Masks
	Integrating with IBM ILOG Views Advanced Graphics

	Tables
	Introduction to Tables
	One-Tier and Two-Tier Tables
	The Role of a Table Object
	Schemas
	Schema Properties
	Defining the Schema of a Table Object

	Managing Rows in a Table
	Basic Techniques
	Techniques for Two-Tier Tables
	Error Catching
	Changing Error Messages

	Table Hook
	Copying and Serializing Table Objects
	Specialized Table Subclasses
	IliSQLTable
	IliMemoryTable
	IliStringsTable
	IliMapTable

	Subclassing IliTable
	Guidelines
	Subclassing Example
	Directory Class Example
	Persistence

	Table Properties
	Scoped Properties
	Property-Aware Gadgets

	Data Sources and Gadgets
	Data Sources
	Creating a Data Source Gadget
	Connecting Data-Source-Aware Gadgets
	The Scope of a Data Source
	Managing Rows in a Data Source
	Customizing a Data Source
	Error Handling
	The Repository

	Data-Source-Aware Gadgets
	Interface to Data-Source-Aware Gadgets
	IliTableGadget
	IliDbField
	IliEntryField
	IliTableComboBox
	IliDbText
	IliDbToggle
	IliToggleSelector
	IliDbNavigator
	IliDbTimer
	IliHTMLReporter
	IliXML
	IliDbPicture
	IliDbOptionMenu
	IliDbStringList
	IliDbTreeGadget
	IliChartGraphic
	IliDbGrapher
	IliDbGantt
	Global Callbacks

	Handling Values in Data Access
	The IliValue Class
	Constructing a Value Object
	Null Value

	Data Types
	Checking the Data Type of an Object
	Converting a Data Access Data Type to a C++ Type
	Formatting an IliValue Object

	Structured Types

	Hints and Tips for Using Data Access
	Working with DbFields in Data Access
	The Style of a DbField
	Creating a Form Using the Forms Assistant

	Foreign Tables
	Specifying a Foreign Table in IBM ILOG Views Studio
	Using a Foreign Table to Convert Values
	Using a Foreign Table to Constrain Values
	Using the Forms Assistant with Foreign Tables

	Setting the Table Look
	Column Geometry
	Read-Only Settings

	Fixed Columns
	Troubleshooting
	Avoiding Common Names in Foreign Tables
	Matching Types with a Foreign Table

	Part II Data Access and SQL
	SQL Tables
	Introduction
	Structural Definition
	Creating the Definition Using IBM ILOG Views Studio
	Creating the Definition in C++
	A Shortcut C++ Definition

	The SQL Session of an SQL Table
	Run-Time Options
	Concurrency Control
	Auto-Commit Mode
	Fetch Policy
	Auto-Refresh Mode
	Inserting-Nulls Mode
	Dynamic-SQL Mode
	Bound Variables Mode
	Cursor Buffering
	Auto-Row Locking Mode

	Parameters
	Transaction Manager
	Structured Types
	Asynchronous Mode

	SQL Data Sources
	Query Mode
	Parameters
	Defining a Parameter
	Defining a Parameter That Accepts User Input

	Working with an SQL Data Source
	Defining Columns
	Forcing the Name of a Column
	The Table Primary Key

	Connecting to a Database
	SQL Sessions and Cursor Objects
	Creating a Session
	Connecting to a Database System
	Cursors

	Database Drivers
	The Connect Dialog Box
	Registered Sessions

	Part III IBM ILOG Views Data Access Gadgets
	IBM ILOG Views Studio Data Access Gadgets
	The Palettes Panel
	Data Access and SQL Gadgets
	Charts, Grapher and Gantt Chart Gadgets
	SQL Tables

	Notebook Pages Common to Data Access Gadgets Inspectors
	General Notebook Page
	Callbacks Notebook Page

	Dialog Boxes Common to Data Access Gadgets Inspectors
	Font Chooser Dialog Box
	Color Chooser Dialog Box
	File Chooser Dialog Box

	Data Source Gadgets Reference
	IliSQLDataSource
	IliSQLDataSource Inspector Panel
	IliSQLDataSource Menus
	General Elements
	SELECT Section Notebook Pages
	Dialog Boxes

	IliMemoryDataSource
	IliMemoryDataSource Inspector Panel

	Display Gadgets Reference
	IliTableGadget
	Table Gadget Inspector Panel

	IliDbField
	DbField Inspector Panel

	IliEntryField
	Entry Field Inspector Panel

	IliTableComboBox
	Table Combo Box Inspector Panel

	IliDbText
	DbText Inspector Panel

	IliDbToggle
	DbToggle Inspector Panel

	IliToggleSelector
	ToggleSelector Inspector Panel

	IliDbNavigator
	DbNavigator Inspector Panel

	IliDbTimer
	DbTimer Inspector Panel

	IliHTMLReporter
	HTMLReporter Inspector Panel

	IliXML
	XML Inspector Panel

	IliDbPicture
	DbPicture Inspector Panel

	IliDbOptionMenu
	DbOptionMenu Inspector Panel

	IliDbStringList
	DbStringList Inspector Panel

	IliDbTreeGadget
	DbTreeGadget Inspector Panel

	IliChartGraphic
	ChartGraphic Inspector Panel

	IliDbGrapher
	DbGrapher Inspector Panel

	IliDbGantt
	DbGantt Inspector Panel

	Appendix A Utility Classes
	The IliString Class
	The IliDecimal Class
	The IliDate Class
	The IliFormat Class
	The IliInputMask Class

	Appendix B Format Syntax
	String Formats
	Number Formats
	Date Formats
	Literal Characters

	Appendix C Mask Syntax
	Placeholders
	Predefined Masks

	Appendix D Error Messages
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

