
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

2D Graphics V5.3

User’s Manual

June 2009

usrtwodgraphics.book Page 1 Monday, July 27, 2009 4:56 PM

usrtwodgraphics.book Page 2 Monday, July 27, 2009 4:56 PM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

usrtwodgraphics.book Page 3 Monday, July 27, 2009 4:56 PM

C O N T E N T S

usrtwodgraphics.book Page 4 Monday, July 27, 2009 4:56 PM
Table of Contents

IBM ILOG Views 2D Graphics V5.3

Preface About This Manual . 12

What You Need to Know .12

Manual Organization .12

Notation. .13

Typographic Conventions .13

Naming Conventions .13

Part I Managers. 14

Chapter 1 Basic Manager Features . 16

Introducing Managers .16

Layers .17

Views .18

View Transformer. .18

Event Handling. .18

Main Features of IlvManager .19

Manager Views .20

View Transformations .22

Double-buffering. .22
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 4

usrtwodgraphics.book Page 5 Monday, July 27, 2009 4:56 PM
Manager Layers .23

Layer Index .24

Layer Selectability .25

Layer Visibility .25

Layer Rendering. .26

Managing Objects .27

Modifying the Geometry of Graphic Objects .27

Selecting Objects .28

Selection Procedures .29

Managing Selected Objects .29

Managing Object Properties. .30

Arranging Objects .30

Drawing and Redrawing .32

Optimizing Drawing Tasks .33

Saving and Reading. .34

Chapter 2 Manager Event Handling . 36

The Event Handling Mechanism. .36

Event Hooks .37

View Interactors .37

Predefined View Interactors .38

Example: Implementing the IlvDragRectangleInteractor Class .39

Example of an Extension: IlvMoveInteractor .45

Object Interactors .52

Accelerators .52

Example: Changing the Key Assigned to an Accelerator. .53

Predefined Manager Accelerators .53

Chapter 3 Advanced Manager Features. 56

Observers .56

General Notifications .57

Manager View Notifications .57
5 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 6 Monday, July 27, 2009 4:56 PM
Manager Layer Notifications .58

Manager Contents Notifications .59

Graphic Object Geometry Notifications .59

Example .59

View Hooks. .60

Manager View Hooks .61

Example: Monitoring the Number of Objects in a Manager .62

Example: Maintaining a Scale Displayed With No Transformation .62

Manager Grid .64

Example: Using a Grid .65

Undoing and Redoing Actions .66

Command Class. .66

Managing Undo .66

Example: Using the IlvManagerCommand Class to Undo/Redo .67

Managing Modifications .68

Part II Grapher . 70

Chapter 4 Introducing the Grapher Extension of IBM ILOG Views Studio 72

The Main Window. .72

Buffer Windows .73

The Menu Bar .74

The Action Toolbar. .75

The Editing Modes Toolbar .75

The Palettes Panel .75

The Grapher Palettes. .76

Grapher Extension Commands .79

MakeNode .79

NewGrapherBuffer .79

SelectArcLinkImageMode .79

SelectDoubleLinkImageMode .80

SelectDoubleSplineLinkImageMode .80
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 6

usrtwodgraphics.book Page 7 Monday, July 27, 2009 4:56 PM
SelectLinkImageMode .80

SelectOneLinkImageMode. .81

SelectOneSplineLinkImageMode. .81

SelectOrientedArcLinkImageMode .81

SelectOrientedDoubleLinkImageMode .81

SelectOrientedDoubleSplineLinkImageMode .82

SelectOrientedLinkImageMode .82

SelectOrientedOneLinkImageMode. .82

SelectOrientedOneSplineLinkImageMode. .83

SelectOrientedPolylineLinkImageMode .83

SelectPinEditorMode .83

SelectPolylineLinkImageMode. .83

Chapter 5 Features of the Grapher Package . 86

Graph Management .86

Description of the IlvGrapher Class .87

Loading and Saving Graph Descriptions .88

Grapher Links. .89

Base Class for Links .89

Predefined Grapher Links .91

Creating a Custom Grapher link. .96

Connection Pins. .98

Grapher Interactors .101

Selection Interactor .101

Creating Nodes .102

Creating Links .102

Editing Connection Pins .104

Editing Links. .104

Part III Prototypes. 106

Chapter 6 Introducing the Prototypes Package . 108
7 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 8 Monday, July 27, 2009 4:56 PM
An Overview of the Prototypes Package .108

Business Graphic Objects .109

Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio 110

Using Prototypes in Applications .110

When Should You Use Prototypes?. .111

The Prototype Design Pattern .111

Specifying Graphic and Interactive Behavior Using Accessors .112

Chapter 7 Using IBM ILOG Views Studio to Create BGOs . 114

Creating and Using Prototypes .115

Creating a Prototype Library .115

Creating a Prototype .115

Defining the Attributes .116

Drawing the Prototype .119

Defining Graphic Behaviors .122

Defining Interactive Behaviors .127

Editing a Prototype. .128

Testing Your Prototype .129

Saving a Prototype. .129

Loading and Saving Prototype Libraries .130

Creating and Editing Prototype Instances in Panels .131

Choosing a Buffer Type .131

Creating a Prototype Instance .131

Editing Prototype Instances .132

Loading and Saving Panels .132

Connecting Prototype Instances .132

Chapter 8 The User Interface and Commands . 134

Overview .134

Launching IBM ILOG Views Studio With the Prototypes Extension. .135

The Main Window. .135

Buffer Windows .136
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 8

usrtwodgraphics.book Page 9 Monday, July 27, 2009 4:56 PM
The Menu Bar .138

The Action Toolbar. .139

The Editing Modes Toolbar .140

The Palettes Panel .140

Group Inspector Panel. .142

 Prototypes Extension Commands. .143

CloseProtoLibrary .143

ConvertProtoManager .143

DeletePrototype .144

EditPrototype .144

GroupIntoGroup .144

NewProtoLibrary .145

NewPrototype. .145

NewPrototypeEditionBuffer .145

NewPrototypeGrapherBuffer .145

OpenProtoLibrary. .146

SaveProtoLibraryAs .146

SelectGroupConnectionMode .146

SelectGroupSelectionMode .147

SelectNodeSelectionMode. .147

ShowGroupEditor. .147

ToggleTimers .147

UngroupIlvGroups .148

Chapter 9 Using Prototypes in C++ Applications . 150

Architecture .150

Groups .151

Attributes and Accessor Objects .152

Accessor Parameters. .154

Prototypes and Instances .155

Displaying Groups and Instances in Managers and Containers .155

Connecting Attributes. .156
9 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 10 Monday, July 27, 2009 4:56 PM
Linking Application Objects to Prototypes .156

Writing C++ Applications Using Prototypes .157

Header Files. .158

Loading a Panel Containing Prototype Instances .158

Loading Prototypes .159

Creating Prototype Instances. .160

Deleting Prototype Instances .160

Retrieving Groups and Prototype Instances .161

Getting and Setting Attributes .161

User-Defined and Predefined Attributes .163

Linking Prototypes to Application Objects .165

Setting Values Directly .165

Using Group Mediators .166

Using Proto Mediators .168

Advanced Uses of Prototypes .169

Writing New Accessor Classes .169

Creating Prototypes by Coding .173

Customizing IBM ILOG Views Studio With the Prototypes Extension175

Chapter 10 Predefined Accessors . 178

Overview .178

Graphic Representation of the Behavior of a Prototype. .179

Data Accessors .180

Value .180

Reference .181

Group .181

Script .182

Control Accessors .184

Assign .184

Condition .185

Format .186

Increment .186
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 10

usrtwodgraphics.book Page 11 Monday, July 27, 2009 4:56 PM
Min/Max .187

Multiple. .188

Notify .189

Script .189

Switch. .189

Toggle .191

Display Accessors .191

Fill .192

MultiRep .192

Rotation .193

ScaleX .194

ScaleY .195

TranslateX .195

TranslateY .196

Animation Accessors .197

Blink .197

Invert .198

Rotate. .199

Trigger Accessors .200

Callback .200

Clock .201

Watch .201

Event .202

Miscellaneous Accessors .203

Debug. .203

Prototype .204

Index . 206
11 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

P R E F A C E

usrtwodgraphics.book Page 12 Monday, July 27, 2009 4:56 PM
About This Manual

This manual describes the IBM® ILOG® Views 2D Graphics 5.3 products.

IBM ILOG Views 2D Graphics is used to develop very efficient 2D vector graphic
representations with full interactive capabilities. It is composed of the Manager, Grapher,
Prototype, and Web Deployment packages.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual Organization

The manual contains four separate parts divided into chapters. Each of these parts describes
one of the packages that make up IBM® ILOG® Views 2D Graphics 5.3, as follows:
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 12

usrtwodgraphics.book Page 13 Monday, July 27, 2009 4:56 PM
◆ Part I, Managers, describes the IBM ILOG Views Managers package, dedicated to
coordinating large quantities of graphic objects.

◆ Part II, Grapher, describes the IBM ILOG Views Grapher package, dedicated to creating
graphic programs that include and represent hierarchical information.

◆ Part III, Prototypes, describes the IBM ILOG Views Prototypes package, dedicated to
creating custom domain-specific graphic objects.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts, file names, and entries to be made by the user are written in courier
typeface.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the IBM ILOG Views
libraries begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized:

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
13 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 14 Monday, July 27, 2009 4:56 PM
Part I
Managers

Part I describes a high-level IBM® ILOG® Views package called the manager, which is
dedicated to coordinating large quantities of graphic objects:

◆ Chapter 1, Basic Manager Features describes the classes, methods, and principles of
managers.

◆ Chapter 2, Manager Event Handling describes the event handling mechanism of
managers.

◆ Chapter 3, Advanced Manager Features describes the more advanced features of
managers.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 14

usrtwodgraphics.book Page 15 Monday, July 27, 2009 4:56 PM

C H A P T E R

usrtwodgraphics.book Page 16 Monday, July 27, 2009 4:56 PM
1

Basic Manager Features

This section describes how to coordinate a large quantity of graphic objects through the use
of a manager, that is, through the IlvManager class and its associated classes.

The basic features of managers are described, in the following order:

◆ Introducing Managers

◆ Manager Views

◆ Manager Layers

◆ Managing Objects

◆ Drawing and Redrawing

◆ Optimizing Drawing Tasks

◆ Saving and Reading

Introducing Managers

A manager coordinates the interactions between the display of graphic objects in multiple
views and the organization of graphic objects in multiple storage places. This is illustrated in
Figure 1.1:
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 16

usrtwodgraphics.book Page 17 Monday, July 27, 2009 4:56 PM
Figure 1.1

Figure 1.1 Manager Concept

To introduce some of the important concepts related to managers, the following items are
described:

◆ Layers

◆ Views

◆ View Transformer

◆ Event Handling

◆ Main Features of IlvManager

Layers

Instances of the IlvManager class handle a set of graphic objects derived from the
IBM® ILOG® Views class called IlvGraphic. When you organize graphic objects that the
manager coordinates, you create an unlimited number of graphic objects and place them in
multiple storage areas. These storage areas appear in superimposed layers. That is why they
are called manager layers.

View 1

View 2
View 3

Manager
17 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Introducing Managers

usrtwodgraphics.book Page 18 Monday, July 27, 2009 4:56 PM
A manager is therefore a tool designed to handle objects placed in different priority levels .
Priority level here means that objects stored in a higher screen layer are displayed in front of
objects in lower layers.

Each graphic object stored in a layer is unique to that layer and can be stored only in that
layer.

Graphic objects stored throughout the manager all share the same coordinate system.

Views

A manager uses one or multiple views to display its set of graphic objects. These views are
instances of the class IlvView and you can connect as many as you want to the manager.

View Transformer

A geometric transformation (class IlvTransformer) can be associated with each view
connected to a manager. When drawing its graphic objects in a view, the manager will use
the transformer of the view, thereby providing a different representation of the same objects
in each view (zoomed, unzoomed, translated, rotated, and so on).

Event Handling

All events are handled by means of event hooks, view interactors, object interactors, or
accelerators. These are described briefly here and in more detail in section Manager Event
Handling.

Event Hooks

The IlvManagerEventHook class is intended to monitor or filter events dispatched to the
manager.

Interactors

Interactors are classes designed to handle user interactions involving a single or a complex
combination of events.

◆ View interactors are classes derived from IlvManagerViewInteractor and handle
interactions in the context of a whole view.

◆ Object interactors are derived from IlvInteractor and handle user interactions
involving a single graphic object or a set of graphic objects.

Note: An object must never be stored in more than one holder such as IlvManager,
IlvContainer, or IlvGraphicSet.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 18

usrtwodgraphics.book Page 19 Monday, July 27, 2009 4:56 PM
Accelerators

An accelerator is an association of an event description with a user-defined action. In other
words, when the event occurs the manager calls the action. This very basic interaction
mechanism is limited to a single response to a single event, such as double-clicking with the
left mouse button or pressing Ctrl-F.

Main Features of IlvManager

The IlvContainer class already provides ways of handling graphic objects. However, you
may require more powerful features. Here is a list of circumstances under which you might
need to use a manager:

◆ You need to handle a large number of graphic objects (hundreds or thousands) and
encounter a performance problem using an IlvContainer.

◆ You wish to associate a specific behavior with a view, but not with a particular graphic
object.

◆ You want multiple views of the same graphic objects, but without duplicating them.
Remember that objects of the IlvGraphic class are not linked to any particular
IlvView.

◆ You want to display the graphic objects with differing priorities.

◆ You want to add extra properties to objects, either individually or within a group, which
would allow them to be visible or selectable.

◆ You want to save your graphic objects.

Managers provide a solution to these problems. They also offer advanced features that
complex graphic applications may need:

◆ Commands

◆ Input/Output

◆ Double-buffering

◆ Observers

◆ View Hooks

◆ Grid

Commands

Objects can be manipulated and views can be changed by means of instances of the
IlvManagerCommand class. This class has been designed to give IlvManager the ability
to undo and redo changes.
19 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Manager Views

usrtwodgraphics.book Page 20 Monday, July 27, 2009 4:56 PM
Input/Output

Instances of the IlvGraphic class can deal with input/output. Similarly, the IlvManager
class has a set of member functions to read and write object descriptions. Manager
properties, such as the layer or name of an object, can also be read and written.

Double-buffering

When manipulating thousands of overlapping objects, redrawing operations can be very
time-consuming. They can also be unattractive if each redrawn element reappears
sequentially on the screen. These problems can be avoided by using the double-buffering
technique implemented in IlvManager. When this feature is activated, all drawing
functions are performed in a hidden image; when the area has been completely updated, the
image is drawn at once in the working view.

Observers

This mechanism, based on the classes IlvManagerObserver and
IlvManagerObservable, allows the application to be notified when certain modifications
are done to the manager (adding or removing a view, setting a transformer on a view, adding
graphic objects, adding or removing a layer, and so on).

View Hooks

Specific actions can be triggered under predefined circumstances. The manager view hooks
let you connect events that occur in a manager with actions to be performed. This will be
described in more detail in section View Hooks. Some application tasks performed with view
hooks can be implemented with observers.

Grid

This tool allows you to force mouse events to occur only at locations defined by a snapping
grid.

Manager Views

Attaching multiple views to a manager allows your program to display graphic objects
simultaneously in various configurations. This is illustrated in Figure 1.2.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 20

usrtwodgraphics.book Page 21 Monday, July 27, 2009 4:56 PM
Figure 1.2

Figure 1.2 Multiple Views Bound To a Manager

The following IlvManager member functions handle the binding of views to a manager:

◆ IlvManager::addView - Attaches a view to the manager. All events are then handled
by the hierarchy of interactors in place in the manager.

◆ IlvManager::removeView - Removes a view from the manager view list. The view is
no longer handled by the manager.

◆ IlvManager::getViews - Returns an array of pointers to all the views currently
connected to the manager.

The following aspects of manager views are described in this section:

◆ View Transformations

◆ Double-buffering

View 1

View 2
View 3

Manager
21 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Manager Views

usrtwodgraphics.book Page 22 Monday, July 27, 2009 4:56 PM
View Transformations

Use the following IlvManager member functions to modify the transformer associated
with the view (except for IlvManager::fitToContents, which modifies the size of the
view):

◆ IlvManager::setTransformer

◆ IlvManager::addTransformer

◆ IlvManager::translateView

◆ IlvManager::zoomView

◆ IlvManager::rotateView

◆ IlvManager::fitToContents

◆ IlvManager::fitTransformerToContents

◆ IlvManager::ensureVisible

Example: Zooming a View

This accelerator zooms a view using a scaling factor of two:

The point given in the zoomView argument keeps its position after the zoom. The last
parameter forces the redrawing of the view.

Double-buffering

The double-buffering member functions can be used to prevent the screen from flickering
when many objects are manipulated. For each manager view, this feature requires the
allocation of a hidden bitmap the size of the view. Depending on the number of views and
the color model, double-buffering may consume a large amount of memory.

The member functions that handle double-buffering are:

◆ IlvManager::isDoubleBuffering

◆ IlvManager::setDoubleBuffering

static void
ZoomView(IlvManager* manager, IlvView* view, IlvEvent& event, IlvAny)
{
 IlvPoint pt(event.x(), event.y());
 manager->zoomView(view, pt, IlvFloat(2), IlvFloat(2), IlvTrue);
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 22

usrtwodgraphics.book Page 23 Monday, July 27, 2009 4:56 PM
◆ IlvManager::setBackground

Example

This function switches the double-buffering mode of the given view:

Manager Layers

Layers are storage places for graphic objects, as shown in Figure 1.3.

Figure 1.3

Figure 1.3 Layers

Once these objects have been stored they are controlled by and organized under the same
manager. Each layer is unique to and can be controlled by only one manager. Each graphic
object handled by a manager belongs to one and only one layer.

Note: You must use the setBackground member function to change the background color
of a view in double-buffering mode.

static void
ToggleDoubleBuffering(IlvManager* manager, IlvView* view)
{
 manager->setDoubleBuffering(view,
 !manager->isDoubleBuffering(view));
}

Note: For more member functions dealing with layers, see the IlvManager and
IlvManagerLayer classes.

Layer 2

Layer 1

Layer 3
23 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Manager Layers

usrtwodgraphics.book Page 24 Monday, July 27, 2009 4:56 PM
This section is divided as follows:

◆ Layer Index

◆ Layer Selectability

◆ Layer Visibility

◆ Layer Rendering

Layer Index

Layers are stored by the manager according to their index. The first layer has index 0 and
layer N has index N-1. Layers are represented by an instance of the IlvManagerLayer
class, but most of the time they are identified in member function signatures by their index
in the manager. Various member functions let you manipulate these layers or the objects that
they own.

The manager draws the layers one by one, starting at index 0. Consequently, the top-most
layer on the screen is the one with the highest index. This introduces a visual hierarchy
among graphic objects based on their layer index. In general, graphic objects of a more static
nature—for instance, objects used as background for your IBM ILOG Views programs—are
put in a lower layer of the manager. Graphic objects of a dynamic nature—objects with
which users interact—are typically put in a higher layer. The top-most layer (the one with
the highest index) is reserved for use by the manager; it contains the selection objects
displayed as square handles around selected objects. Since the manager increases the index
of this layer as new layers are added, it always remains on the top of the stack.

Setting-Up Layers

By default, a manager is created with two layers. You can change this number when creating
a manager by using the second parameter of the constructor. You can also change this
number once the manager has been created, by using the IlvManager::setNumLayers
member function.

Example
The following code adds an object to the second layer (specified by index 1) of the manager
and then moves the object to layer 0.

Reminder: You must refer to the layers by index numbers starting with 0. For example,
layer 3 is indexed as 2.

 manager->addObject(object, IlvTrue, 1);
 manager->setLayer(object, 0);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 24

usrtwodgraphics.book Page 25 Monday, July 27, 2009 4:56 PM
When adding a graphic object using a non-existing layer index, the number of layers is
increased automatically.

Layer Selectability

Layer selectability indicates whether the application end-user can select the objects within a
certain layer. Preventing your program user from selecting graphic objects in a layer means
that these objects are fixed and unchangeable. The following member functions are used for
layer selectability:

◆ IlvManager::setSelectable

◆ IlvManager::isSelectable

Layer Visibility

Layer visibility indicates whether the objects within a certain layer should be visible to the
user. This notion of layer visibility is not as simple as it seems because a layer can be hidden
in several different ways:

◆ Globally - Hidden in all the manager views.

◆ Locally - Hidden in one or several manager views.

◆ Contextually - Hidden by an application visibility filter.

A layer is displayed in a view if it is not hidden in any of these ways.

Global Visibility

If a layer is hidden globally, it will not be displayed in any of the manager views. The
following IlvManager member functions allow you to get or set the global visibility of a
layer:

◆ setVisible (int layer, IlBoolean val)

◆ isVisible (int layer)

Local Visibility

Use the following IlvManager member functions to get or set the visibility of a layer for a
given manager view:

◆ setVisible (const IlvView* view, int layer, IlBoolean visible)

◆ isVisible (const IlvView* view, int layer)

 IlvManager* manager = new IlvManager(display); // A manager with 2 layers
 IlvRectangle* rect = new IlvRectangle(display, IlvRect(0, 0, 100, 100));
 // Add the object in layer 7 and create intermediate layers
 manager->addObject(rect, IlFalse, 7);
25 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Manager Layers

usrtwodgraphics.book Page 26 Monday, July 27, 2009 4:56 PM
Visibility Filter

IlvLayerVisibilityFilter is an abstract class. Subclasses must redefine the virtual
member function IlvLayerVisibilityFilter::isVisible to return the visibility
status of the layer.

Each manager layer handles a list of visibility filters. When a layer must be drawn in a view,
the manager calls the member function IlvLayerVisibilityFilter::isVisible for
all the filters of the layer; if a visibility filter returns IlFalse, the layer is not displayed.
This mechanism only allows the application to hide layers that would be otherwise visible; it
does not allow you to show hidden layers.

To add a visibility filter to a layer, use IlvManagerLayer::addVisibilityFilter.

Layer Rendering

Layer rendering indicates how the layer is to be rendered onto the drawing device. Two
attributes of the layer can change its rendering:

◆ Alpha Value

◆ Anti-aliasing Mode

Alpha Value

The alpha value of a layer represents the opacity with which this layer will be drawn above
other layers. If the layer contains objects having transparent colors, the transparency of the
layer and the transparent objects will be composed.

The default value for this setting is IlvFullIntensity, which means that the layer is
completely opaque.

See the IlvManagerLayer::setAlpha method for details.

Anti-aliasing Mode

The anti-aliasing mode of a layer is a global setting that will be applied to all the objects of
this layer. It indicates the anti-aliasing mode with which objects are going to be rendered.

The default value for this setting is IlvDefaultAntialiasingMode, which means that
the anti-aliasing mode of the layer will be inherited from the drawing port itself. For
example, if the anti-aliasing mode of a manager view has been set to
IlvUseAntialiasingMode (see IlvPort::setAntialiasingMode), it means that all
the layers of this view will use anti-aliasing. You can override this setting for a specific layer
by indicating that you do not need anti-aliasing for this layer.

See the IlvManagerLayer::setAntialiasingMode method for details.

Note: These features are only supported on Microsoft Windows with GDI+ installed. See
Appendix B / GDI+ of the Foundation User’s Manual for details
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 26

usrtwodgraphics.book Page 27 Monday, July 27, 2009 4:56 PM
Managing Objects

This section explains how to manipulate the objects contained in a manager. It is divided as
follows:

◆ Modifying the Geometry of Graphic Objects

◆ Selecting Objects

◆ Selection Procedures

◆ Managing Selected Objects

◆ Managing Object Properties

◆ Arranging Objects

Modifying the Geometry of Graphic Objects

The IlvManager class has been designed to handle a large number of graphic objects. In
order to perform graphical operations efficiently (for example, redrawing part of a view,
locating the objects at a given position, and so on), the manager uses a complex internal data
structure where graphic objects are organized according to their geometry, that is, their
bounding box. To keep this data structure up to date, the manager needs to be aware of any
modification in the geometry of its graphic objects. This is why any such modification
should be carried out in the following manner:

1. Take the object out of the manager list.

2. Manipulate its geometric characteristics.

3. Put the object back into the manager list.

The easiest way to do this is to use the dedicated IlvManager member functions respecting
these requirements:

◆ IlvManager::applyToObject

◆ IlvManager::applyToObjects

◆ IlvManager::applyInside

◆ IlvManager::applyIntersects

◆ IlvManager::applyToTaggedObjects

◆ IlvManager::applyToSelections
27 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Managing Objects

usrtwodgraphics.book Page 28 Monday, July 27, 2009 4:56 PM
For simple geometric operations such as moving, translating, or reshaping, IlvManager
provides the following member functions that do not need to call
IlvManager::applyToObject:

◆ IlvManager::translateObject

◆ IlvManager::moveObject

◆ IlvManager::reshapeObject

Example: Translating an Object

The following code gets a pointer to an object named test from the manager. If this object
exists, it is translated 10 pixels right and 20 pixels down, and then redrawn (fourth
parameter set to IlTrue):

Applying Functions to Objects in a Region

In order to apply a user-defined function to objects that are located either partly or wholly
within a specific region, use the following IlvManager member functions:

◆ IlvManager::applyInside

◆ IlvManager::applyIntersects

Selecting Objects

Use the following two member functions of IlvManager to handle the selection state of
objects:

◆ IlvManager::isSelected

◆ IlvManager::setSelected

Note: Do not change the size of a managed object by calling its
IlvGraphic::translate or IlvGraphic::scale member functions. The manager
use sophisticated data structures and an intricate indexing system for tracking the position
of objects with respect to each other. You should not interfere with these mechanisms.

 object = manager->getObject(“test”);
 if (object)
 manager->translateObject(object, 10, 20, IlvTrue);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 28

usrtwodgraphics.book Page 29 Monday, July 27, 2009 4:56 PM
Example:

The following code gets a pointer to an object named test from the manager. If this object
exists, it is selected (second parameter is set to IlTrue) and redrawn (third parameter set to
IlTrue):

Selection Procedures

The IlvManager member functions involved in selection tasks are the following:

◆ IlvManager::applyToSelections

◆ IlvManager::numberOfSelections

◆ IlvManager::deSelectAll

◆ IlvManager::getSelections

◆ IlvManager::deleteSelections

◆ IlvManager::getSelection

◆ IlvManager::setMakeSelection

Example: Customizing Selection Handle Objects

This example shows how to attach new selection handle objects to line objects:

The following code changes the function called to create the selection object. If the selected
object is an IlvLine or an instance of a class derived from it, the manager uses the
IlvLineHandle object to draw the selection:

manager->setMakeSelection(MakeSelection);

Managing Selected Objects

Selecting is a basic process for managers and most manager functions should apply to a
selected list of objects. A manager selection can be thought of as a special set holding some
of the managed objects. To display selected objects within a manager, IBM® ILOG® Views

 object = manager->getObject(“test”);
 if (object)
 manager->setSelected(object, IlvTrue, IlvTrue);

static IlvDrawSelection*
MakeSelection(IlvManager* manager, IlvGraphic* graphic)
{
 if (graphic->isSubtypeOf(“IlvLine”))
 return new IlvLineHandle(manager->getDisplay(), graphic);
 else
 return new IlvDrawSelection(manager->getDisplay(), graphic);
}

29 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Managing Objects

usrtwodgraphics.book Page 30 Monday, July 27, 2009 4:56 PM
creates selection objects that are stored in the manager. The difference between these objects
and others is that they are internally managed and cannot be manipulated.

Example: Translating the Selected Objects

The following example shows an accelerator that translates all selected objects ten pixels
right and 20 pixels down. This accelerator uses the IlvManager::applyToSelections
member function to translate each of the objects. Redrawing of the objects is done once at
the end of the call to this method, as is done for all the apply functions, because its third
parameter is set to the default value IlTrue.

Managing Object Properties

Several member functions of the IlvManager class describe properties that are assigned to
an object when it is added to a manager (for example, IlvManager::isSelectable,
IlvManager::setSelectable, IlvManager::isResizeable, and so on).

You can also add specific properties to each object by means of the property-related member
functions of the IlvGraphic class. These properties are application-dependent and have no
effect on the manager.

IlvManager provides member functions to check whether an object has a property or to
change a property of an object.

Example: Setting an Object as Unmovable

This is an example of how to set an object in a manager as unmovable:

Arranging Objects

The IlvManager class provides member functions to help organize the layout of graphic
objects.

static void
TranslateSelectedObjects (IlvGraphic* object, IlvAny arg)
{
 IlvManager* manager = (IlvManager*) arg;
 manager->translateObject(object, 10, 20, IlvFalse);
}

static void
TranslateAccelerator(IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{
 manager->applyToSelections(TranslateSelectedObjects, manager);
}

 object = manager->getObject(“test”);
 if (object)
 manager->setMoveable(object, IlvFalse);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 30

usrtwodgraphics.book Page 31 Monday, July 27, 2009 4:56 PM
◆ Grouping

◆ Aligning and Duplicating

Grouping

The IlvManager::group member function lets you create an IlvGraphicSet from an
array of objects and put the objects from an IlvGraphicSet into the manager.

The IlvManager::unGroup member function lets you do the inverse of this.

Example: Grouping Objects

This is an example of an accelerator that groups selected objects:

The first line checks the number of objects and returns if no objects are selected. Then, a
pointer to the selected objects is obtained using the IlvManager::getSelections
member function. The next line creates the group. The new object is selected at the end of
this accelerator.

Aligning and Duplicating

Some IlvManager member functions are defined to automatically align objects with
respect to each other:

◆ IlvManager::align

◆ IlvManager::makeColumn

◆ IlvManager::makeRow

◆ IlvManager::sameWidth

◆ IlvManager::sameHeight

Another member function duplicates objects, that is, it creates a copy of the objects and
inserts them into the manager:

Note: Graphic objects grouped in a graphic set are no longer handled by the manager.
The manager only sees the graphic set.

static void
Group(IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{
 if (!manager->numberOfSelections()) return;
 IlvUInt n;
 IlvGraphic* const* objs = manager->getSelections(n);
 IlvGraphicSet* g = manager->group(n, (IlvGraphic* const*)objs);
 if (g) manager->setSelected((IlvGraphic*)g, IlvTrue, IlvTrue);
}

31 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Drawing and Redrawing

usrtwodgraphics.book Page 32 Monday, July 27, 2009 4:56 PM
◆ IlvManager::duplicate

Example: Make All Selected Objects the Same Width

This accelerator gives the width of the first selected object to all the selected objects:

The value IlTrue passed to IlvManager::sameWidth indicates that the objects are
automatically redrawn.

Drawing and Redrawing

Use the following IlvManager member functions to draw objects:

◆ IlvManager::draw

◆ IlvManager::reDraw

◆ IlvManager::bufferedDraw

The IlvManager::bufferedDraw method works in the same way as double-buffering
does, with the following differences:

◆ It is local to a view, a region, or an object.

◆ It only lasts for the duration of the drawing operation.

The next section, Optimizing Drawing Tasks, describes other IlvManager member
functions used to redraw graphic objects efficiently in a manager.

Redrawing All Views

In some cases, you may want to refresh all the views managed by an IlvManager. To do so,
call one of the IlvManager::reDraw member functions:

manager->reDraw();

Note: These modifications are always applied to the currently selected objects

static void
SameWidth(IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{
 manager->sameWidth(IlvTrue);
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 32

usrtwodgraphics.book Page 33 Monday, July 27, 2009 4:56 PM
Optimizing Drawing Tasks

A special manager feature lets you perform several geometric operations and redraw only
when all the modifications are done. This is implemented by the use of the update region,
which is a region made up of invalidated rectangles.

The update region stores the appropriate regions before any modifications are carried out on
objects. It also stores the relevant regions after these modifications have been carried out for
each view.

To successfully perform an application task, you must mark the regions where relevant
objects are located as invalid, apply the function, and then invalidate the regions where the
objects involved are now placed. This mechanism is simplified by means of a set of member
functions of the IlvManager class. Regions to be updated are refreshed only when
IlvManager::reDrawViews is called, which means that refreshing the views of a
manager is done by marking regions to be redrawn in a cycle of
IlvManager::initReDraws and IlvManager::reDrawViews.

These cycles can be nested so that only the last call to the IlvManager::reDrawViews
member function actually updates the display.

The IlvManager member functions that help you optimize drawing tasks are:

◆ IlvManager::initReDraws - Marks the beginning of the drawing optimization
operation by emptying the region to update for each managed view. Once this step is
completed, direct or indirect calls to a draw directive are deferred. For every
IlvManager::initReDraws, there should be one call to
IlvManager::reDrawViews, or else a warning is issued. Calls to
IlvManager::initReDraws can be embedded so that the actual refresh takes place
only when the last call to IlvManager::reDrawViews is reached.

◆ IlvManager::invalidateRegion - Marks a region as invalid. This region will be
redrawn later. Each call to IlvManager::invalidateRegion adds the region to the
update region in every view.

◆ IlvManager::reDrawViews - Sends the drawing commands for the whole update
region. All the objects involved in previous calls to
IlvManager::invalidateRegion are then updated.

◆ IlvManager::abortReDraws - Aborts the mechanism of deferred redraws (for
example, if you need to refresh the whole screen). This function resets the update region
to empty. If needed, you should start again with an IlvManager::initReDraws call.

◆ IlvManager::isInvalidating - Returns IlTrue when the manager is in an
IlvManager::initReDraws/IlvManager::reDrawViews state.
33 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Saving and Reading

usrtwodgraphics.book Page 34 Monday, July 27, 2009 4:56 PM
The successive use of these member functions is a mechanism used in the
IlvManager::applyToObject member function. In fact, the call:

is equivalent to:

The IlvManager::invalidateRegion member function works with the bounding box of
the object given in the parameter. When an operation applied to the object modifies its
bounding box, IlvManager::invalidateRegion must be called twice; once before and
once after the operation.

For example, when moving an object, you must invalidate the region where the object was
initially located and invalidate the final region so that the object can be redrawn. If the object
bounding box is not modified, only one call to IlvManager::invalidateRegion is
necessary.

Saving and Reading

Manager objects and their properties can be saved and read from particular streams. To
make it easy to save and restore a set of IlvGraphic objects, two classes are provided:

◆ IlvManagerOutputFile (a subtype of IlvOutputFile)

◆ IlvManagerInputFile (a subtype of IlvInputFile)

These two classes add only manager-specific information to the object description blocks.

The IlvManagerInputFile class reads the files that have been created using
IlvManagerOutputFile.

 manager->applyToObject(obj, func, userArg, IlvTrue);

 manager->initReDraws();
 manager->invalidateRegion(obj);
 manager->applyToObject(obj, func, userArg, IlvFalse);
 manager->invalidateRegion(obj);
 manager->reDrawViews();
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 34

usrtwodgraphics.book Page 35 Monday, July 27, 2009 4:56 PM
Example: Using the IlvManagerOutputFile Class

The following is an example of subtyping of the IlvOutputFile class, where the
IlvOutputFile::writeObject member function is implemented to add the manager-
specific information for each object:

New information is added before the object descriptor block is written. It indicates the layer
where the graphic object lies. If the object was not managed by the manager,
IBM ILOG Views writes the value -1 to getStream (which is not a valid layer index). The
value -1 indicates that the object should not be added to the manager object set.

The C++ code used to implement the IlvManagerInputFile::readObject member
function is shown here:

The object read is added to the manager only if its layer index is greater than or equal to 0.

void
IlvManagerOutputFile::writeObject(const IlvGraphic* object)
{
 if (getManager()->isManaged(object))
 getStream() << getManager()->getLayer(object) << IlvSpc();
 else
 getStream() << "-1 ";
 writeObjectBlock(object);
}

Note: Specialized IBM ILOG Views graphic objects called “gadgets” need the following
subclasses: IlvGadgetManagerInputFile (subclass of IlvInputFile) and
IlvGadgetManagerOutputFile (subclass of IlvOutputFile). These subclasses
handle the persistence of gadget-related properties. Subtyping these two classes is
allowed, but it is mandatory to insert the string “Gadget” in the subtyped C++ class
name.

IlvGraphic*
IlvManagerInputFile::readObject()
{
 IlvGraphic* object;
 int layer;
 getStream() >> layer;
 IlUInt dummyIndex;
 IlvGraphic* object = readObjectBlock(dummyIndex);
 if (object && (layer >= 0))
 getManager()->addObject(object, IlFalse, layer);
 return object;
}

35 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 36 Monday, July 27, 2009 4:56 PM
2

Manager Event Handling

This section describes how managers handle events.

An event can be handled by different types of manager components:

◆ Event Hooks

◆ View Interactors

◆ Object Interactors

◆ Accelerators

First, the mechanism for handling events is described. Then, the different manager
components that handle events are presented.

The Event Handling Mechanism

The mechanism used by a manager when it receives an event is as follows:

1. It sends the event to the list of event hooks.

2. If none of the event hooks consume the event, it is sent to the interactor associated with
the view that received the event.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 36

usrtwodgraphics.book Page 37 Monday, July 27, 2009 4:56 PM
3. If there is no view interactor, the manager looks for the top most graphic object at the
event position and sends the event to its object interactor.

4. If there is no object or no object interactor, or if the object interactor does not handle the
event, it is dispatched to the manager accelerators.

Event Hooks

Event hooks are instances of the IlvManagerEventHook class. They are used to monitor
or filter events occurring in all the views associated with the manager. Each manager has a
list of event hooks. They can be added or removed from the list using the following
IlvManager member functions:

◆ IlvManager::installEventHook

◆ IlvManager::removeEventHook

Event hooks are the first ones to get hold of the events occurring in a manager.

When it receives an event, the manager calls the handleEvent member function of each
event hook one after the other. If one of them returns IlTrue, the subsequent event hooks
are not called and the event is considered to be consumed. If none of the event hooks
consume the event, it is dispatched further to interactors or accelerators.

View Interactors

The role of the IlvManagerViewInteractor class is to handle complex sequences of user
events to be treated by a particular IlvView associated with a manager.

Setting or removing an interactor on a view can be done using the following IlvManager
member functions:

◆ IlvManager::getInteractor

◆ IlvManager::setInteractor

◆ IlvManager::removeInteractor

In this section, the predefined view interactors are first listed and then two examples
showing how to implement view interactors are presented, as follows:

◆ Predefined View Interactors

◆ Example: Implementing the IlvDragRectangleInteractor Class

◆ Example of an Extension: IlvMoveInteractor
37 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 38 Monday, July 27, 2009 4:56 PM
Predefined View Interactors

Predefined interactors obtained by instantiating subclasses derived from the
IlvDragRectangleInteractor class are listed here:

◆ IlvDragRectangleInteractor

Lets the user draw a rectangle that can be used for any purpose by subclasses (see section
Example: Implementing the IlvDragRectangleInteractor Class for an example showing
how to use this interactor).

Include <ilviews/manager/dragrin.h>

◆ IlvMakeRectangleInteractor

Allows you to create IlvRectangle objects.

Include <ilviews/manager/mkrectin.h>

◆ IlvMakeFilledRectangleInteractor

Allows you to create IlvFilledRectangle objects.

Include <ilviews/manager/mkrectin.h>

◆ IlvMakeReliefRectangleInteractor

Allows you to create IlvReliefRectangle objects.

Include <ilviews/manager/mkrelfin.h>

◆ IlvMakeReliefDiamondInteractor

Allows you to create IlvReliefDiamond objects.

Include <ilviews/manager/mkrelfin.h>

◆ IlvMakeRoundRectangleInteractor

Allows you to create IlvRoundRectangle objects.

Include <ilviews/manager/mkround.h>.

◆ IlvMakeFilledRoundRectangleInteractor

Allows you to create IlvFilledRoundRectangle objects.

Include <ilviews/manager/mkround.h>

◆ IlvMakeEllipseInteractor

Allows you to create IlvEllipse objects.

Include <ilviews/manager/mkarcin.h>

◆ IlvMakeFilledEllipseInteractor
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 38

usrtwodgraphics.book Page 39 Monday, July 27, 2009 4:56 PM
Allows you to create IlvFilledEllipse objects.

Include <ilviews/manager/mkarcin.h>

◆ IlvMakeZoomInteractor

Handles the zooming command. You draw a rectangular region into which you wish to
zoom.

Include <ilviews/manager/geointer.h>

◆ IlvMakeUnZoomInteractor

Handles the unzooming command. You draw a rectangular region into which the area
you are watching is unzoomed.

Include <ilviews/manager/geointer.h>

◆ IlvMakeBitmapInteractor

Allows you to create a bitmap from the view. You drag a rectangle and an IlvIcon
object is created from the contents of the rectangle selected.

Include <ilviews/manager/utilint.h>

◆ IlvSelectInteractor

Allows you to select, translate, and resize graphic objects.

Include <ilviews/manager/selinter.h>

◆ IlvMakeLineInteractor

Allows you to create IlvLine objects. Two derived classes are defined to create
different types of lines: IlvMakeArrowLineInteractor and
IlvMakeReliefLineInteractor.

Include <ilviews/manager/mklinein.h>

Example: Implementing the IlvDragRectangleInteractor Class

This example demonstrates how the IlvDragRectangleInteractor member functions
are implemented. The example can be used as a starting point to create your own interactor.

The IlvDragRectangleInteractor interactor allows the user to designate a rectangular
region in a view. This rectangle can then be used for various purposes in derived interactors;
for instance, a subclass dedicated to the creation of a graphic object can use the rectangle to
define the bounding box of the new object.
39 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 40 Monday, July 27, 2009 4:56 PM
Here is a slightly revised version of the synopsis of this class:

Three protected fields are defined:

◆ _xor_rectangle - Holds the coordinates of the rectangle being dragged by the user.

◆ _firstx and _firsty - The coordinates of the first button-down event received. This
point is used as the start of the selected rectangle. It can be any one of the 4 corners
depending on the direction in which the user drags the rectangle.

The constructor does nothing and the initialization is done by the doIt member function.

Also, four member functions of the IlvManagerViewInteractor class are overloaded:

◆ abort Member Function

◆ handleEvent Member Function

◆ drawGhost Member Function

◆ doIt Member Function

abort Member Function

This member function is called to cancel the interaction. The rectangle width is set to 0.

void
IlvDragRectangleInteractor::abort()
{
 _xor_rectangle.w(0);
}

handleEvent Member Function

The following shows a simplified version of the
IlvDragRectangleInteractor::handleEvent member function.

void

class IlvDragRectangleInteractor
: public IlvManagerViewInteractor
{
public:
 IlvDragRectangleInteractor(IlvManager* manager, IlvView* view)
 : IlvManagerViewInteractor(manager, view) {}

 virtual void handleEvent(IlvEvent& event);
 virtual void drawGhost();
 virtual void doIt(IlvRect&);
 virtual void abort();

 IlvRect& getRectangle();
protected:
 IlvRect _xor_rectangle;
 IlvPos _firstx;
 IlvPos _firsty;
};
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 40

usrtwodgraphics.book Page 41 Monday, July 27, 2009 4:56 PM
IlvDragRectangleInteractor::handleEvent(IlvEvent& event)
{
 switch(event.type()) {
 case IlvKeyUp:
 case IlvKeyDown:
 getManager()->shortCut(event, getView());
 break;
 case IlvButtonDown:
 if (event.button() != IlvLeftButton)
 getManager()->shortCut(event, getView());
 else {
 _xor_rectangle.w(0);
 IlvPoint p(event.x(), event.y());
 if (getTransformer()) getTransformer()->inverse(p);
 _firstx = p.x();
 _firsty = p.y();
 }
 break;
 case IlvButtonDragged:
 if ((event.button() != IlvLeftButton))
 getManager()->shortCut(event, getView());
 else {
 if (_xor_rectangle.w()) drawGhost();
 IlvPoint p(event.x(), event.y());
 if (getTransformer()) getTransformer()->inverse(p);
 _xor_rectangle.move(IlvMin(_firstx, p.x()),
 IlvMin(_firsty, p.y()));
 _xor_rectangle.resize((IlvDim)(IlvMax(_firstx, p.x())
 -_xor_rectangle.x()),
 (IlvDim)(IlvMax(_firsty, p.y())
 -_xor_rectangle.y()));
 ensureVisible(IlvPoint(event.x(), event.y()));
 drawGhost();
 }
 break;
 case IlvButtonUp:
 if (event.button() != IlvLeftButton)
 getManager()->shortCut(event, getView());
 else {
 if (!_xor_rectangle.w()) return;
 drawGhost();
 IlvRect rect(_xor_rectangle);
 _xor_rectangle.w(0);
 doIt(rect);
 }
 break;
 }

Here, only button events are managed. Other events are discarded or sent to the manager for
possible dispatch to accelerators by means of a call to the IlvManager::shortCut
member function.

The following types of events are handled by the handleEvent member function:

◆ Keyboard Events

◆ Button-Down Events
41 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 42 Monday, July 27, 2009 4:56 PM
◆ Button-Dragged Events

◆ Button-Up Events

Keyboard Events
You want to ignore these events. The best way to do this without losing the information
conveyed by the event is to bypass the natural view interactor process and send the event
back to the manager where it might match an accelerator:

Button-Down Events

The mouse position is stored in _firstx and _firsty and the rectangle is reset. This is
done by setting the width of the rectangle to 0. Then, the coordinates are stored in the object
coordinate system:

if (event.button() != IlvLeftButton)
 getManager()->shortCut(event, getView());
else {
 _xor_rectangle.w(0);
 IlvPoint p(event.x(), event.y());
 if (getTransformer()) getTransformer()->inverse(p);
 _firstx = p.x();
 _firsty = p.y();
}

Button-Dragged Events
case IlvButtonDragged:
...
break;

If _xor_rectangle is valid, the rectangle has been drawn with drawGhost and has to be
erased:

if (_xor_rectangle.w()) drawGhost();

The new rectangle is computed in the object coordinate system:

case IlvKeyUp:
case IlvKeyDown:
 getManager()->shortCut(event, getView());
 break;

case IlvButtonDown:
...
break;

IlvPoint p(event.x(), event.y());
if (getTransformer()) getTransformer()->inverse(p);
_xor_rectangle.move(IlvMin(_firstx, p.x()),
 IlvMin(_firsty, p.y()));
_xor_rectangle.resize((IlvDim)(IlvMax(_firstx, p.x())
 -_xor_rectangle.x()),
 (IlvDim)(IlvMax(_firsty, p.y())
 -_xor_rectangle.y()));
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 42

usrtwodgraphics.book Page 43 Monday, July 27, 2009 4:56 PM
The following ensures that the dragged point remains on the screen. When the view is in a
scrolled view, you can change the view coordinates to keep the mouse position visible:

ensureVisible(IlvPoint(event.x(), event.y()));

The new rectangle is drawn:

drawGhost();

Button-Up Events
A button-up event signifies the end of the interaction; the rectangle has been defined:

The previous ghost image is erased:

The current rectangle is saved and the interactor is reset:

The doIt virtual member function is called. Subclasses overload this method to perform
their final task using the rectangle provided as the parameter:

drawGhost Member Function

The IlvDragRectangleInteractor::drawGhost member function draws a ghost
image of _xor_rectangle:

Because _xor_rectangle is expressed in the object coordinate system, the transformer of
the view must be applied before drawing the rectangle.

doIt Member Function

The IlvDragRectangleInteractor::doIt member function does nothing; it is
designed to be overloaded to perform actions once the user has selected a rectangular region.

case IlvButtonUp:
...
break;

drawGhost();

IlvRect rect(_xor_rectangle);
_xor_rectangle.w(0);

doIt(rect);

void
IlvDragRectangleInteractor::drawGhost()
{
 IlvManager* mgr = getManager();
 if (_xor_rectangle.w()) {
 IlvRect rect = _xor_rectangle;
 if(getTransformer()) getTransformer()->apply(rect);

 getView()->drawRectangle(mgr->getPalette(),rect);
 }
}

43 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 44 Monday, July 27, 2009 4:56 PM
Two examples of how to overload this member function are presented:

◆ The first example shows how to create a new IlvRectangle object with the rectangular
region (the same way as the IlvMakeRectangleInteractor class does).

◆ The second example shows how to select all the objects located in the rectangular region.
This illustrates how to manipulate the selection within a manager without using the
select interactor.

Example 1: IlvMakeRectangleInteractor
Here is a simplified version of the IlvMakeRectangleInteractor::doIt member
function, derived from the IlvDragRectangleInteractor class. This member function
deselects all the objects of the manager, creates an IlvRectangle instance, adds it to the
manager, and sets the selection on it.

Example 2: Selector
This example shows how to implement a simple interactor to select graphic objects. The
IlvDragRectangleInteractor::doIt member function is overloaded in order to select
every object located within the region the user has created.

The SelectAnObject function is defined. This is called by an application member
function of the manager. The manager is available in the manager parameter:

The doIt member function calls SelectAnObject for each object located in the
designated rectangle. To find these objects, call the manager member function
applyInside:

void
IlvMakeRectangleInteractor::doIt(IlvRect& rect)
{
 IlvGraphic* obj = new IlvRectangle(getDisplay(), rect);
 getManager()->deSelect();
 getManager()->addObject(obj);
 getManager()->makeSelected(obj);
}
IlvGraphic* obj = new IlvRectangle(getDisplay(), rect);

static void
SelectAnObject(IlvGraphic* object, IlvAny manager)
{
 ((IlvManager*)manager)->setSelected(object, IlTrue);
}

void
MyRectangleSelector::doIt(IlvRect& rect)
{
 getManager()->applyInside(rect, SelectAnObject, (IlvAny)getManager());
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 44

usrtwodgraphics.book Page 45 Monday, July 27, 2009 4:56 PM
Example of an Extension: IlvMoveInteractor

This is a complete example of a direct subtype of the IlvManagerViewInteractor class.
It allows the user to move a graphic object to another location by dragging it with the mouse.
Here is the declaration of this class (it can also be found in the header file <ilviews/
manager/movinter.h>):

This interactor lets you select and deselect objects by clicking on them with the left mouse
button and the Shift key pressed. You can move an object or a set of selected objects but you
cannot resize them.

The following protected fields are used in this class:

◆ _deltax, _deltay - Stores the distance between the mouse and the top-left corner of
the objects being moved.

◆ _bbox - Stores the bounding box of the objects being moved.

◆ _move - Keeps a pointer to the object being moved.

◆ _xor_rectangle - Stores the rectangle dragged to mark a region.

◆ _wasSelected - Keeps a Boolean value indicating whether the designated object was
selected before it was moved. This information is required because the object is selected
when you start to move it. There are two different cases in this interactor, depending on

class IlvMoveInteractor
: public IlvManagerViewInteractor
{
public:
 IlvMoveInteractor(IlvManager* manager,
 IlvView* view)
 : IlvManagerViewInteractor(manager, view),

_move(0) {}

 virtual void handleEvent(IlvEvent& event);
 virtual void handleExpose(IlvRegion* clip = 0);
 virtual void drawGhost();
 void drawGhost(const IlvRect&,
 IlvRegion* clip = 0);
 void drawGhost(IlvGraphic*, IlvRegion* clip = 0);
 virtual void doIt(const IlvPoint&);
 const IlvRect& getRectangle() const {return _xor_rectangle;}
protected:
 IlvPos _deltax, _deltay;
 IlvRect _bbox;
 IlvGraphic* _move;
 IlvRect _xor_rectangle;
 IlBoolean _wasSelected;
 void handleButtonDown(const IlvPoint&);
 void handleButtonDragged(const IlvPoint&);
 void handleButtonUp(const IlvPoint&);
};
45 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 46 Monday, July 27, 2009 4:56 PM
whether one or more object is being moved. If more than one object is moved, a moving
rectangle that encloses the bounding boxes of these objects is displayed. Otherwise, the
moving objects themselves are displayed.

The following member function are described in this section:

◆ handleEvent Member Function

◆ drawGhost Member Function

◆ drawGhost for a Rectangle

◆ drawGhost for an Object

◆ doIt Member Function

◆ handleButtonDown Member Function

◆ handleButtonDragged Member Function

◆ handleButtonUp Member Function

handleEvent Member Function

The following code focuses on mouse events. All other events are dispatched to accelerators
by a call to IlvManager::shortCut, but only if an object is not being moved at this point.
This is because some accelerators might remove the object being worked on, which can be
dangerous:

void
IlvMoveInteractor::handleEvent(IlvEvent& event)
{
 switch (event.type()) {
 case IlvButtonDown:
 _xor_rectangle.w(0);
 _move = 0;
 if (event.modifiers() & (IlvLockModifier | IlvNumModifier)) {
 getManager()->getDisplay()->bell();
 return;
 }
 if (event.button() != IlvLeftButton) {
 getManager()->shortCut(event, getView());
 return;
 }
 if (!event.modifiers())
 handleButtonDown(IlvPoint(event.x(), event.y()));
 else {
 IlvManager* manager = getManager();
 if (event.modifiers() & IlvShiftModifier) {
 IlvPoint p(event.x(), event.y());
 IlvGraphic* obj = manager->lastContains (p,getView());
 IlvDrawSelection* sel = 0;
 if (obj) sel = getSelection(obj);
 if (!sel && obj && manager()->isSelectable(obj)) {
 manager->setSelected(!manager->isSelected(obj));
 }
 } else
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 46

usrtwodgraphics.book Page 47 Monday, July 27, 2009 4:56 PM
 manager->shortCut(event, getView());
 }
 break;
 case IlvButtonUp:
 if (event.button() == IlvLeftButton)
 handleButtonUp(IlvPoint(event.x(), event.y()));
 else getManager()->shortCut(event, getView());
 break;
 case IlvButtonDragged:
 if (event.modifiers() == IlvLeftButton){
 IlvPoint p(event.x(), event.y());
 handleButtonDragged(p);
 }
 break;
 default:
 if (!_move)
 getManager()->shortCut(event, getView());
 break;
 }

The following types of events are handled by the handleEvent member function:

◆ Button-Down Events

◆ Button-Up Events

◆ Button-Dragged Events

Button-Down Events
The interactor is initialized by setting _move and _xor_rectangle:

Only the left button is handled. If the event involves another mouse button, the event is
ignored and dispatched to manager accelerators:

The handleButtonDown member function is called if there is no event modifier:

_xor_rectangle.w(0);
_move = 0;

if (event.button() != IlvLeftButton) {
 getManager()->shortCut(event, getView());
 return;
}

if (!event.modifiers())
 handleButtonDown(IlvPoint(event.x(), event.y()));
47 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 48 Monday, July 27, 2009 4:56 PM
If the Shift modifier is set, the selection state of the object pointed to by the mouse is
toggled:

Button-Up Events
If the event comes from the left button, handleButtonUp is called. Otherwise, the event is
dispatched to accelerators.

Button-Dragged Events
The handleButtonDragged member function is called, but only if the event comes from
the left button.

drawGhost Member Function

This member function is split in three parts: the common part, which is the entry point from
the member function handleEvent, and two others, depending on the type of translation
being done.

If there is only one selected object, a specific drawGhost is called for this object.
Otherwise, another drawGhost function that handles a rectangle is called:

if (event.modifiers() & IlvShiftModifier) {
 IlvPoint p(event.x(), event.y());
 IlvGraphic* obj = manager->lastContains(p, getView());
 IlvDrawSelection* sel = 0;
 if (obj) sel = getSelection(obj);
 if (!sel && obj && manager()->isSelectable(obj)) {
 manager->setSelected(!manager->isSelected(obj));
 }
}

case IlvButtonUp:
 if (event.button() == IlvLeftButton)
 handleButtonUp(IlvPoint(event.x(), event.y()));
 else getManager()->shortCut(event, getView());
 break;

case IlvButtonDragged:
 if (event.modifiers() == IlvLeftButton){
 IlvPoint p(event.x(), event.y());
 handleButtonDragged(p);
 }
 break;

void
IlvMoveInteractor::drawGhost()
{
 if (!_xor_rectangle.w()) return;
 if (manager()->numberOfSelections() == 1)
 drawGhost(_move);
 else
 drawGhost(_xor_rectangle);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 48

usrtwodgraphics.book Page 49 Monday, July 27, 2009 4:56 PM
drawGhost for a Rectangle

This member function is called if there is more than one selected object. It displays the
bounding box of all the selected objects being moved in the view. The palette of the
IlvManager object is used:

drawGhost for an Object

This member function is called if there is only one selected object. It displays the object at
its new coordinates by calling the draw member function after its palette has been set to XOR
mode. The new coordinates are computed from the difference between the coordinates of the
rectangle being dragged and the coordinates of the original bounding box of the object:

doIt Member Function

The doIt member function must apply the translation to all selected objects. The delta
parameter gives the translation vector expressed in the view coordinate system so it must be
converted to the object coordinate system. Then the objects must be translated. This cannot
be done by calling the IlvGraphic member functions directly; it must be done by the

void
IlvMoveInteractor::drawGhost(const IlvRect& rect, IlvRegion* clip)
{
 if (!rect.w()) return;
 IlvManager* manager = getManager();
 if (clip) manager->getPalette()->setClip(clip);

 getView()->drawRectangle(manager->getPalette(),rect);
 if (clip) manager->getPalette()->setClip();
}

void
IlvMoveInteractor::drawGhost(IlvGraphic* obj, IlvRegion* clip)
{
 if (!getManager()->isMoveable(obj) || !_xor_rectangle.w())
 return;
 IlvPos tempdx, tempdy;
 if (getTransformer()) {
 IlvRect r1(_xor_rectangle);
 IlvRect r2(_bbox);
 getTransformer()->inverse(r1);
 getTransformer()->inverse(r2);
 tempdx = r1.x() - r2.x();
 tempdy = r1.y() - r2.y();
 } else {
 tempdx = _xor_rectangle.x() - _bbox.x();
 tempdy = _xor_rectangle.y() - _bbox.y();
 }
 obj->translate(tempdx, tempdy);
 obj->setMode(IlvModeXor);
 obj->draw(getView(), getTransformer(), clip);
 obj->setMode(IlvModeSet);
 obj->translate(-tempdx, -tempdy);
}

49 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Interactors

usrtwodgraphics.book Page 50 Monday, July 27, 2009 4:56 PM
manager. Here, IlvManager::applyToSelections calls TranslateObject for each
selected object:

handleButtonDown Member Function

The handleButtonDown member function selects the object to be moved, storing its
previous state in _wasSelected. Then, it computes the _bbox field by means of a call to
the ComputeBBoxSelections function. This function returns in _bbox the bounding box
of all the selected objects:

static void
ComputeBBoxSelections(IlvManager* manager, IlvRect& bbox, IlvView* view)
{
 bbox.resize(0, 0);
 IlUInt nbselections;
 IlvGraphic** objs = manager->getSelections(nbselections);
 IlvRect rect;
 IlvTransformer* t = manager->getTransformer(view);
 for (IlUInt i=0; i < nbselections; i++) {
 objs[i]->boundingBox(rect, t);
 bbox.add(rect);
 }
}
void
IlvMoveInteractor::handleButtonDown(const IlvPoint& p)
{
 IlvGraphic* obj = getManager()->lastContains(p, getView());
 if (!obj) return;
 IlvDrawSelection* sel = manager()->getSelection(obj);
 if (!sel && getManager()->isSelectable(obj)) {
 getManager()->deSelect();
 getManager()->makeSelected(obj);
 _wasSelected = IlFalse;
 sel = getManager()->getSelection(obj);
 } else
 _wasSelected = IlTrue;

void
TranslateObject(IlvGraphic* object, IlvAny argDelta)
{
 IlvPoint* delta = (IlvPoint*)argDelta;
 object->translate(delta.x(), delta.y());
}

void
IlvMoveInteractor::doIt(const IlvPoint& delta)
{
 IlvPoint origin(0, 0),
 tdelta(delta);
 if (getTransformer()) {
 getTransformer()->inverse(origin);
 getTransformer()->inverse(tdelta);
 }
 IlvPoint dp(tdelta.x()-origin.x(),
 tdelta.y()-origin.y());
 getManager->applyToSelections(TranslateObject, &dp);
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 50

usrtwodgraphics.book Page 51 Monday, July 27, 2009 4:56 PM
 if (sel) {
 ComputeBBoxSelections(getManager(), _bbox, getView());
 _move = obj;
 _deltax = _bbox.x() - p.x();
 _deltay = _bbox.y() - p.y();
 }
}

The ComputeBBoxSelections section is described in more detail.

The first part initializes the result to the empty rectangle, and then queries the manager for
all the selected objects. nbselections is the number of selected objects in the array objs:

The next part starts a loop to scan every object:

This next part reads the bounding box of each object, transformed in the view coordinate
system, and adds it to the result:

handleButtonDragged Member Function

If there is a moving object and if it is moveable, the dragging position is snapped to the
manager grid (if one exists) and a new _xor_rectangle is computed. Then, the member
function ensureVisible makes sure that the point the user drags will remain on the visible
part of the view:

void
IlvMoveInteractor::handleButtonDragged(const IlvPoint& point)
{
 if (!_move) return;
 IlvPoint p = point;
 IlvRect rect;
 if (getManager()->isMoveable(_move)) {
 if (_xor_rectangle.w()) drawGhost();
 p.translate(_deltax, _deltay);
 getManager()->snapToGrid(getView(), p);
 p.translate(-_deltax, -_deltay);
 _xor_rectangle.move(p.x() + _deltax, p.y() + _deltay);
 _xor_rectangle.resize(_bbox.w(), _bbox.h());
 ensureVisible(p);
 drawGhost();
 }
}

bbox.resize(0, 0);
IlUInt nbselections;
IlvGraphic** objs = manager->getSelections(nbselections);

IlvRect rect;
for (IlUInt i=0; i < nbselections; i++) {

objs[i]->boundingBox(rect, t);
for (IlUInt i=0; i < nbselections; i++) {
 objs[i]->boundingBox(rect, t);
 bbox.add(rect);
}

51 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Object Interactors

usrtwodgraphics.book Page 52 Monday, July 27, 2009 4:56 PM
handleButtonUp Member Function

If there are objects to move, they are translated by calling the member function doIt.
Otherwise, the last designated object is deselected:

Object Interactors

The IlvManagerObjectInteractor class is deprecated since IBM ILOG Views 4.0.

For a description of how to use object interactors, see section Managing Events: Object
Interactors in Chapter 8, IlvContainer: The Graphic Placeholder Class of the
IBM ILOG Views Foundation User’s Manual.

Accelerators

An accelerator is a simple binding of an event description with an application function called
the accelerator action. Accelerators provide a quick way of attaching a behavior to a
manager, but the interaction is basic; it only involves one event (for instance, a key press or
a mouse click).

An accelerator is not bound to a particular view or graphic object; it can be triggered in any
view or any object of the manager. However, accelerators come last in the manager event
dispatching mechanism. They can only be activated if event hooks, view interactors, and
object interactors have not intercepted the event.

The accelerator action must be defined as an IlvManagerAcceleratorAction:

typedef void (* IlvManagerAcceleratorAction)(IlvManager*, IlvView*,
 IlvEvent&, IlvAny);

void
IlvMoveInteractor::handleButtonUp(const IlvPoint&)
{
 if (!_move) return;
 IlvDrawSelection* sel = getManager()->getSelection(_move);
 if (_move && _xor_rectangle.w() && sel) {
 drawGhost();
 IlvDeltaPoint delta(_xor_rectangle.x() - _bbox.x(),
 _xor_rectangle.y() - _bbox.y());
 _xor_rectangle.w(0);
 _move = 0;
 doIt(delta);
 } else {
 _xor_rectangle.w(0);
 _move = 0;
 if (sel && _wasSelected) getManager()->deSelect();
 }
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 52

usrtwodgraphics.book Page 53 Monday, July 27, 2009 4:56 PM
The following IlvManager member functions allow you to manipulate manager
accelerators:

◆ IlvManager::addAccelerator

◆ IlvManager::getAccelerator

◆ IlvManager::removeAccelerator

◆ IlvManager::shortCut

The IlvManager::shortCut member function is called to dispatch an event to
accelerators. If an accelerator event description matches the event to dispatch, the
accelerator action is called.

Example: Changing the Key Assigned to an Accelerator

The code below assigns the Ctrl-F key instead of ‘f’ to the action
IlvManager::fitTransformerToContents.

Predefined Manager Accelerators

Managers have built-in accelerators, which are listed below. You can disconnect them by
setting the accelerators parameter of the manager constructor to IlFalse.

 IlvManagerAcceleratorAction action;
 IlvAny arg;
 if (manager->getAccelerator(&action, &arg, IlvKeyUp, ‘f’))
 {
 manager->addAccelerator(action,
 IlvKeyUp,
 IlvCtrlChar(‘f’),
 0,
 arg);
 manager->removeAccelerator(IlvKeyUp, ‘f’);
 }

Table 2.1 Predefined Manager Accelerators

Event Type Key or Button Action

IlvKeyUp f Modifies the zoom factor of the view so that all
objects can be seen (f for fit).

IlvKeyUp i Sets the transformer of this view to the identity
matrix.

IlvKeyUp p Moves selected objects to a higher layer.

IlvKeyUp P Moves selected objects to a lower layer.
53 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Accelerators

usrtwodgraphics.book Page 54 Monday, July 27, 2009 4:56 PM
IlvKeyUp Ctrl-D Duplicates all selected objects and moves the
copied objects slightly.

IlvKeyUp Ctrl-A Selects all objects.

IlvKeyUp Ctrl-S Selects the object designated by the pointing
device.

IlvKeyUp Del Deletes all selected objects.

IlvKeyDown r Re-executes the last command.

IlvKeyDown u Undoes the last command.

IlvKeyUp Ctrl-G Groups the selected objects into an
IlvGraphicSet.

IlvKeyUp Ctrl-U Ungroups an IlvGraphicSet.

IlvKeyDown Right Translates the view left.

IlvKeyDown Left Translates the view right.

IlvKeyDown Down Translates the view up.

IlvKeyDown Up Translates the view down.

IlvKeyUp Z Zooms into the view.

IlvKeyUp U Zooms out of the view.

IlvKeyUp Ctrl-B Deselects all objects.

IlvKeyUp Ctrl-T Inverts all selected objects.

IlvKeyUp Y Flips the selected objects horizontally.

IlvKeyUp y Flips the selected objects vertically.

IlvKeyUp . (dot) Flips the selected objects both horizontally and
vertically.

IlvKeyUp Ctrl-C Copies selected objects on the clipboard.

IlvKeyDown Ctrl-V Inserts objects from the clipboard.

IlvKeyUp Ctrl-X Deletes selected objects but saves them on the
clipboard.

Table 2.1 Predefined Manager Accelerators (Continued)

Event Type Key or Button Action
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 54

usrtwodgraphics.book Page 55 Monday, July 27, 2009 4:56 PM
By means of calls to IlvManager::getAccelerator, you can reassign these keys to fit
your own application needs. You can also add your own interactors to this primary list,
remove any of them, or overload them so they act differently.

IlvKeyDown R Rotates the view 90 degrees counter-clockwise.

IlvKeyDown C Centers the view on the indicated point.

IlvKeyUp T Encapsulates relevant object in
IlvTransformer graphic(s).

Table 2.1 Predefined Manager Accelerators (Continued)

Event Type Key or Button Action
55 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 56 Monday, July 27, 2009 4:56 PM
3

Advanced Manager Features

This section describes more advanced features of managers. These are as follows:

◆ Observers

◆ View Hooks

◆ Manager Grid

◆ Undoing and Redoing Actions

Observers

Applications can be notified when the state of a manager changes. This notification
mechanism is based on IlvManagerObserver, a subclass of IlvObserver. Observers are
created by the application and set on the manager. The manager is in charge of sending
messages to the observer under certain circumstances called reasons.

Notification messages are classified by their reason into different categories. An observer
can choose to receive messages of one or several categories by setting its interest mask. The
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 56

usrtwodgraphics.book Page 57 Monday, July 27, 2009 4:56 PM
manager will only send a message to the observer if the notification reason belongs to a
category of the observer interest mask. These categories are shown in Table 3.1:

An application wishing to get notification messages must define a subclass of
IlvManagerObserver and overload the virtual member function update. In this member
function, the observer receives an instance of IlvManagerMessage, or a subclass,
containing the reason and additional relevant information about the notification.

General Notifications

This category concerns general notifications on the managers.

Interest mask: IlvMgrMsgGeneralMask

◆ Delete the manager

Reason: IlvMgrMsgDelete

Message type: IlvManagerMessage

Manager View Notifications

This category concerns notifications on operations performed on manager views.

Interest mask: IlvMgrMsgViewMask

◆ Add a view to the manager

Reason: IlvMgrMsgAddView

Message type: IlvManagerAddViewMessage

◆ Remove a view from the manager

Reason: IlvMgrMsgRemoveView

Message type: IlvManagerRemoveViewMessage

◆ Set an interactor on a view

Table 3.1 Notification Categories

Category Description Mask

General IlvMgrMsgGeneralMask

Manager view IlvMgrMsgViewMask

Manager layer IlvMgrMsgLayerMask

Manager contents IlvMgrMsgContentsMask

Object geometry IlvMgrMsgObjectGeometryMask
57 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Observers

usrtwodgraphics.book Page 58 Monday, July 27, 2009 4:56 PM
Reason: IlvMgrMsgSetInteractor

Message type: IlvManagerSetInteractorMessage

◆ Set a transformer on a view

Reason: IlvMgrMsgSetTransformer

Message type: IlvManagerSetTransformerMessage

Manager Layer Notifications

This category concerns notifications on operations performed on manager layers.

Interest mask: IlvMgrMsgLayerMask

◆ Add a layer to the manager

Reason: IlvMgrMsgAddLayer

Message type: IlvManagerLayerMessage

◆ Remove a layer from the manager

Reason: IlvMgrMsgRemoveLayer

Message type: IlvManagerLayerMessage

◆ Change the index of a layer

Reason: IlvMgrMsgMoveLayer

Message type: IlvManagerMoveLayerMessage

◆ Swap indexes between two layers

Reason: IlvMgrMsgSwapLayer

Message type: IlvManagerSwapLayerMessage

◆ Set the name of a layer

Reason: IlvMgrMsgLayerName

Message type: IlvManagerLayerNameMessage

◆ Set the visibility of a layer

Reason: IlvMgrMsgLayerVisibility

Message type: IlvManagerLayerVisibilityMessage

◆ Set the selectabililty of a layer

Reason: IlvMgrMsgLayerSelectability

Message type: IlvManagerLayerMessage
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 58

usrtwodgraphics.book Page 59 Monday, July 27, 2009 4:56 PM
Manager Contents Notifications

This category concerns notifications on the changes in the contents of managers.

Interest mask: IlvMgrMsgContentsMask

◆ Add a graphic object to the manager

Reason: IlvMgrMsgAddObject

Message type: IlvManagerContentsMessage

◆ Remove a graphic object from the manager

Reason: IlvMgrMsgRemoveObject

Message type: IlvManagerContentsMessage

◆ Set the layer of a graphic object

Reason: IlvMgrMsgObjectLayer

Message type: IlvManagerObjectLayerMessage

Graphic Object Geometry Notifications

This category concerns notifications on a change of geometry of the objects (for example,
move, resize, and rotate).

Interest mask: IlvMgrMsgObjectGeometryMask

◆ Change the geometry of a graphic object

Reason: IlvMgrMsgObjectGeometry

Message type: IlvManagerObjectGeometryMessage

Example

Here is the implementation of an observer that receives notifications on adding or removing
layers and views.

class MyManagerObserver
: public IlvManagerObserver
{
public:
 MyManagerObserver(IlvManager* manager)
 : IlvManagerObserver(manager,
 IlvMgrMsgLayerMask | IlvMgrMsgViewMask)
 {}
 virtual void update(IlvObservable* o, IlvAny arg);
};
59 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Hooks

usrtwodgraphics.book Page 60 Monday, July 27, 2009 4:56 PM
The update member function:

To attach the observer to the manager:

MyManagerObserver* observer = new MyManagerObserver(manager);

View Hooks

Manager view hooks are part of a mechanism allowing the application to be notified when
certain actions are performed on or by the manager. This can be used for various reasons
such as monitoring the contents of a manager, performing additional drawings when the
manager redraws its graphic objects, or taking an action when the transformer of a manager
view changes.

This section is divided as follows:

◆ Manager View Hooks

◆ Example: Monitoring the Number of Objects in a Manager

◆ Example: Maintaining a Scale Displayed With No Transformation

void MyManagerObserver::update(IlvObservable* obs, IlvAny arg)
{
 IlvManager* manager = ((IlvManagerObservable*)obs)->getManager();
 switch(((IlvManagerMessage*) arg)->_reason) {
 // __ Notification on manager view
 case IlvMgrMsgAddView:
 IlvPrint("Add view notification");
 break;
 case IlvMgrMsgRemoveView:
 IlvPrint("Remove view notification");
 break;
 // __ Notification on manager layer
 case IlvMgrMsgAddLayer:
 IlvPrint("Add layer notification: %d",
 ((IlvManagerLayerMessage*)arg)->getLayer());
 break;
 case IlvMgrMsgRemoveLayer:
 IlvPrint("Remove layer notification: %d",
 ((IlvManagerLayerMessage*)arg)->getLayer());
 break;
 default:
 IlvPrint("Unhandled notification");
 break;
 }
}

Note: Another notification mechanism is described in section Observers.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 60

usrtwodgraphics.book Page 61 Monday, July 27, 2009 4:56 PM
Manager View Hooks

A manager view hook is an instance of the IlvManagerViewHook class. To be active, it
must be associated with a manager view. Each manager view handles a list of view hooks.
To connect and disconnect view hooks from a manager view, use the following
IlvManager member functions:

◆ IlvManager::installViewHook

◆ IlvManager::removeViewHook

The IlvManagerViewHook class has a number of virtual member functions that are
automatically called by the manager when certain predefined operations occur. Here is the
list of these member functions and the circumstances under which they are called:

◆ IlvManagerViewHook::beforeDraw

Called before the manager draws in the manager view. Applications often overload this
member function to perform additional drawings before the manager displays its graphic
objects.

◆ IlvManagerViewHook::afterDraw

Called after the manager has drawn in the manager view. Applications often overload
this member function to perform additional drawings on top of the graphic objects
displayed by the manager.

◆ IlvManagerViewHook::afterExpose

Called after the manager has received an Expose event in the view.

◆ IlvManagerViewHook::interactorChanged

Called when the interactor of the manager view changes.

◆ IlvManagerViewHook::transformerChanged

Called when the transformer of the manager view changes.

◆ IlvManagerViewHook::viewResized

Called when the manager view is resized.

◆ IlvManagerViewHook::viewRemoved

Called when the manager view is detached from the manager.

◆ IlvManagerViewHook::contentsChanged

Called when the contents of the manager change, that is, graphic objects have been
added, removed, or their geometry has changed.

When an event occurs in view, the manager calls the corresponding member functions of all
the hooks attached to this view.
61 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

View Hooks

usrtwodgraphics.book Page 62 Monday, July 27, 2009 4:56 PM
Example: Monitoring the Number of Objects in a Manager

The following code is a subclass of IlvManagerViewHook that displays in an
IlvTextField the number of objects contained in the manager:

Example: Maintaining a Scale Displayed With No Transformation

This part presents an example of subtyping an IlvManagerViewHook. At first there is a
map and a circular scale used as a compass card. Then, because of hooks, the manager
translates and zooms the view without affecting the compass card. The
IlvManagerViewHook::afterDraw and
IlvManagerViewHook::transformerChanged member functions are redefined to
redraw the scale to its original dimensions and location.

static void ILVCALLBACK
Quit(IlvView* view, IlvAny)
{
 delete view->getDisplay();
 IlvExit(0);
}

char* labels[] = {“N”, “O”, “S”, “E”, ““};

class ExHook
: public IlvManagerViewHook
{
public :
 ExHook(IlvManager* m, IlvView* v, const IlvRect* psize=0)
 : IlvManagerViewHook(m, v)
 {
 _cirscale = new IlvCircularScale(m->getDisplay(),

class DisplayObjectsHook
: public IlvManagerViewHook
{
public:
 DisplayObjectsHook(IlvManager* manager,
 IlvView* view,
 IlvTextField* textfield)
 : IlvManagerViewHook(manager, view),
 _textfield(textfield)
 {}
 virtual void contentsChanged();
protected:
 IlvTextField* _textfield;
};

void DisplayObjectsHook::contentsChanged()
{
 IlvUInt count = getManager()->getCardinal();
 _textfield->setValue((IlvInt)count, IlvTrue);
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 62

usrtwodgraphics.book Page 63 Monday, July 27, 2009 4:56 PM
 IlvRect(30, 30, 100, 100),
 “%.4f”,
 0, 100, 90., 360.);
 _cirscale->setLabels(5, (const char* const*)labels);
 }
 virtual void afterDraw(IlvPort*,
 const IlvTransformer* = 0,
 const IlvRegion* = 0,
 const IlvRegion* = 0);
 virtual void transformerChanged(const IlvTransformer*,
 const IlvTransformer*);
protected :
 IlvRect _size;
 IlvCircularScale* _cirscale;
};
void ExHook::afterDraw(IlvPort* dst,
 const IlvTransformer*,
 const IlvRegion*,
 const IlvRegion* clip)
{
 if (getManager()->isInvalidating())
 getManager()->reDrawViews();
 _cirscale->draw(dst, 0, 0 /*clip*/);
 if (dst->isABitmap())
 _cirscale->draw(getView(), 0, 0);
}
void ExHook::transformerChanged(const IlvTransformer* current,
 const IlvTransformer* old)
{
 IlvRect bbox;
 _cirscale->boundingBox(bbox);
 if (old) old->inverse(bbox);
 if (current) current->apply(bbox);
 if (!getManager()->isInvalidating())
 {
 getManager()->initReDraws();
 getManager()->invalidateRegion(getView(), bbox);
 }
}

static void
SetDoubleBuffering(IlvManager* m,
 IlvView* v,
 IlvEvent&,
 IlvAny)
{
 m->setDoubleBuffering(v, !m->isDoubleBuffering(v));
}

int
main(int argc, char* argv[])
{
 IlvDisplay* display = new IlvDisplay(“Example”, ““, argc, argv);
 if (!display || display->isBad())
 {
 IlvFatalError(“Can’t open display”);
 IlvExit(-1);
 }
63 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Manager Grid

usrtwodgraphics.book Page 64 Monday, July 27, 2009 4:56 PM
 IlvView* view = new IlvView(display, “ExMan”, “Manager”,
 IlvRect(0, 0, 400, 400));
 view->setDestroyCallback(Quit);
 IlvManager* manager = new IlvManager(display);
 manager->addView(view);
 manager->addAccelerator(SetDoubleBuffering, IlvKeyUp, ‘b’);

 // Description of a map
 manager->read(“../hook.ilv”);

 // Instantiation of the hook class
 ExHook* pHook = new ExHook(manager, view);

 // Connect the hook to the manager view
 manager->installViewHook(pHook);
 manager->setInteractor(new IlvSelectInteractor(manager, view));

 IlvMainLoop();
}

Manager Grid

Most editors provide a snapping grid that forces mouse events to occur at specified
locations. Usually, the coordinates where the user can move the pointing device are located
at grid points. If the manager is configured to allow standard mouse events, all event
locations can be automatically modified so they occur only at specific locations. Thus, the
effect of filtering user events by a manager grid is to modify their locations to the closest
grid point.

The IlvManagerGrid class is responsible for the conversion to a valid grid point of the
coordinates of an event that occurs in a view.

You can set or remove a snapping grid in each of the views handled by a manager. You can
configure these grids to make them:

◆ visible or not visible,

◆ active or inactive.

You can also make the grid take on different shapes by subtyping the IlvManagerGrid
class. The default implementation is a rectangular grid for which you can set the origin and
the horizontal and vertical spacing values.

When a grid is made visible, it draws dots with the color specified as the foreground color of
the palette parameter.

The grid can be made invisible when it is created by setting the visible parameter to
IlFalse. To make the grid initially inactive, set the active parameter to IlFalse.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 64

usrtwodgraphics.book Page 65 Monday, July 27, 2009 4:56 PM
To display only a subset of the grid points, use the last two IlvDim-typed parameters. These
indicate the nature of the subset, that is, one out of every quantity of dots along the
horizontal and vertical axes is displayed in the given direction. However, the event location
snapping takes place on each of the grid points, whether shown or not.

Example: Using a Grid

This code sets a new grid to the view view associated with the manager:

Usually, it is not necessary to delete a previous grid, since by default none is associated with
the view.

The following code shows how to create an IlvLine whose ends are on the grid:

All the standard interactors of IBM ILOG Views that create graphic objects use
IlvManager::snapToGrid.

 // Get the previous grid
 IlvManagerGrid* previousGrid = manager->getGrid(view);

 // Create a new instance of IlvManagerGrid
 IlvManagerGrid* newGrid = new IlvManagerGrid(display->getPalette(),
 IlvPoint(0, 0),
 10,
 10);

 // Set the new grid to the view
 manager->setGrid(view, newGrid);

 // If a previous grid existed then delete it
 if (previousGrid)
 delete previousGrid;

static void
AddSnappedLine(IlvManager* manager,
 const IlvView* view,
 const IlvPoint& start,
 const IlvPoint& end)
{
 IlvPoint p1 = start;
 IlvPoint p2 = end;

 // Compute the new coordinates
 manager->snapToGrid(view, p1);
 manager->snapToGrid(view, p2);

 // Create an object IlvLine
 IlvGraphic* object = new IlvLine(manager->getDisplay(), p1, p2);

 // Add the object to the manager
 manager->addObject(object);
}

65 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Undoing and Redoing Actions

usrtwodgraphics.book Page 66 Monday, July 27, 2009 4:56 PM
Undoing and Redoing Actions

This section describes how to implement the undo/redo process with the
IlvManagerCommand class.

In order to remember every action that your program user may apply to objects (and the
objects as well), the manager creates specific instances of the IlvManagerCommand class,
depending on what kind of action was required. The manager can then manipulate a stack of
these commands. A request for IlvManager::unDo pops an item off the stack, and applies
the inverse operation that created the popped item.

The IlvManager::reDo operation duplicates the topmost item of the command stack and
executes the operation again.

This section is divided as follows:

◆ Command Class

◆ Managing Undo

◆ Example: Using the IlvManagerCommand Class to Undo/Redo

◆ Managing Modifications

Command Class

Each ready-to-use command in IBM ILOG Views was implemented with the
IlvManagerCommand class. To carry out undo/redo operations, the subtypes of this class
merely store the arguments of commands. The actual command to be remembered is known
by the type of the IlvManagerCommand objects.

If you create a new operation for the manager and you want to undo and redo it, you have to
create a specific subtype of the IlvManagerCommand class. A complete example of this
subtyping is described in Example: Using the IlvManagerCommand Class to Undo/Redo.

Managing Undo

The following IlvManager member functions handle undo operations:

◆ IlvManager::addCommand

◆ IlvManager::isUndoEnabled

◆ IlvManager::setUndoEnabled

◆ IlvManager::forgetUndo

Note: All predefined interactors use the IlvManagerCommand class. Therefore, it is
possible to undo and redo their effect.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 66

usrtwodgraphics.book Page 67 Monday, July 27, 2009 4:56 PM
◆ IlvManager::reDo

◆ IlvManager::unDo

Each action applied to manager objects is inserted in a special queue maintained by each
IlvManager instance. The undo/redo process is based on this queue management.

Example: Using the IlvManagerCommand Class to Undo/Redo

This subsection shows the implementation of the IlvTranslateObjectCommand class,
subclass of IlvManagerCommand:

The constructor of this class stores the parameters of the translation operation:

doIt Member Function

The IlvTranslateObjectCommand::doIt member function is implemented as follows:

The operation to be performed is the translation of the object by _dx and _dy.

unDo Member Function

The IlvTranslateObjectCommand::unDo member function is as follows:

The inverse translation is applied and the regions are redrawn.

IlvTranslateObjectCommand::IlvTranslateObjectCommand(IlvManager* manager,
 IlvGraphic* object,
 const IlvPoint& dp)
: IlvManagerCommand(manager),
 _dx(dp.x()),
 _dy(dp.y()),
 _object(object)
{}

void
IlvTranslateObjectCommand::doIt()
{
 _manager->translateObject(_object, _dx, _dy, IlvTrue);
}

void
IlvTranslateObjectCommand::unDo()
{
 _manager->translateObject(_object, -_dx, -_dy, IlvTrue);
}

67 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Undoing and Redoing Actions

usrtwodgraphics.book Page 68 Monday, July 27, 2009 4:56 PM
copy Member Function

The IlvTranslateObjectCommand::copy member function creates a copy of the
command object and returns it.

Managing Modifications

The following IlvManager member functions let you manage the state of objects (modified
or not) handled by the manager:

◆ IlvManager::isModified

◆ IlvManager::setModified

◆ IlvManager::contentsChanged

Example: Setting the State of a Manager to Unmodified

manager->setModified(IlFalse);

There are also two global functions:

◆ IlvGetContentsChangedUpdate

◆ IlvSetContentsChangedUpdate

Example: Disallowing View Hook Calls in contentsChanged

The following code disallows the calls to the IlvManager::contentsChanged member
functions of the existing view hooks associated with the manager view:

IlvSetContentsChangedUpdate(IlTrue);

IlvManagerCommand*
IlvTranslateObjectCommand::copy() const
{
 return new IlvTranslateObjectCommand(_manager, _object, _dx, _dy);
}

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 68

usrtwodgraphics.book Page 69 Monday, July 27, 2009 4:56 PM
69 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 70 Monday, July 27, 2009 4:56 PM
Part II
Grapher

Part II describes a high-level IBM® ILOG® Views package called the grapher, which is
dedicated to the graphic representation of hierarchical and interconnected information. This
part consists of the following chapters:

◆ Chapter 1, Introducing the Grapher Extension of IBM ILOG Views Studio describes
how to use the Grapher extension of IBM ILOG Views Studio.

◆ Chapter 2, Features of the Grapher Package describes the classes, methods, and
principles that make the Grapher package work.

Note: The IBM ILOG Views Grapher package is available only if you have purchased the
IBM ILOG Views 2D Graphics Professional product.

usrtwodgraphics.book Page 71 Monday, July 27, 2009 4:56 PM

C H A P T E R

usrtwodgraphics.book Page 72 Monday, July 27, 2009 4:56 PM
1

Introducing the Grapher Extension of
IBM ILOG Views Studio

This chapter introduces you to the Grapher extension of IBM® ILOG® Views Studio. You
can find information on the following topics:

◆ The Main Window

◆ The Palettes Panel

◆ Grapher Extension Commands

The Main Window

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
as follows:

Note: The chapters concerning the use of the Grapher extension of IBM ILOG Views
assume that you are familiar with the information in the IBM ILOG Views Studio User’s
Manual.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 72

usrtwodgraphics.book Page 73 Monday, July 27, 2009 4:56 PM
Figure 1.1

Figure 1.1 IBM ILOG Views Studio Main Window with Grapher Extension at Start-up

The Main window appears much as it does when only the Foundations package is installed.
However, you will notice that with the Grapher package you have access to an additional
buffer window, additional palettes in the Palettes panel, and additional items in the menu bar
and toolbars of the interface.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.

With the Grapher extension of IBM® ILOG® Views Studio, you can edit the following
types of buffers:
73 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

The Main Window

usrtwodgraphics.book Page 74 Monday, July 27, 2009 4:56 PM
◆ Grapher

◆ 2D Graphics

An empty Graphics buffer is displayed by default when you launch IBM ILOG Views
Studio.

The Grapher Buffer Window

The Grapher buffer window lets you display and edit graphs. It uses an IlvGrapher to
load, edit, and save nodes and links.

To create a new Grapher buffer window:

1. Choose New from the File menu.

2. Then choose Grapher from the submenu that appears.

To open this window, you can also execute the NewGrapherBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvGrapher, a Grapher buffer
window is automatically opened.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundation package. It is still available with
the Grapher extension of IBM ILOG Views Studio. It allows you to edit the contents of an
IlvManager or an IlvContainer. It uses an IlvManager to load, edit, and save objects.

To create a new 2D Graphics buffer window:

1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

To open this window, you can also execute the NewGraphicBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvManager, a 2D Graphics buffer
window is automatically opened.

The Menu Bar

When the Grapher package is installed, an additional command is available through the
menu bar in the Main window:

Note: You will notice the following difference as you switch between the different types of
buffers in the Main window:

Each buffer type has its own set of editing modes. When you change the current buffer, the
editing modes available as icons in the toolbar change accordingly.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 74

usrtwodgraphics.book Page 75 Monday, July 27, 2009 4:56 PM
Figure 1.2

Figure 1.2 IBM ILOG Views Studio Grapher Extension Menu Bar

In the menu File > New, there is now the menu item Grapher, which creates a new Grapher
buffer. This is the command NewGrapherBuffer.

The Action Toolbar

The Action toolbar remains unchanged from the Foundation package:

The Editing Modes Toolbar

The Editing Modes toolbar appears as follows when the Grapher buffer is the active window
in the work space:

Figure 1.3

Figure 1.3 IBM ILOG Views Studio Grapher Extension Editing Modes Toolbar

Make Node - Use this button to make the selected objects into nodes. It
implements the MakeNode command.

Pin Editor Mode - Use this mode to interactively edit the connection pins defined
on grapher nodes. For more information on how you can use this mode, please
refer to Editing Connection Pins.

The Palettes Panel

When using the Grapher extension of IBM® ILOG® Views Studio, you have access to the
Grapher links through the Palettes panel.
75 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

The Palettes Panel

usrtwodgraphics.book Page 76 Monday, July 27, 2009 4:56 PM
You will notice in the upper pane of the Palettes panel two additional palettes that are
provided with the Grapher extension. Click the appropriate palette in the upper pane to
display the various Grapher links in the lower pane:

Figure 1.4

Figure 1.4 IBM ILOG Views Studio Grapher Extension Palettes Panel

The following section describes the objects provided with the Grapher extension. For a
description of the objects provided with the Foundation package, see the IBM ILOG Views
Studio User’s Manual.

The Grapher Palettes

The Grapher palettes contain the following objects that can be used to create Grapher links.
(Links can also be created by using link edit commands from the command panel.)
To select a linking mode, click on the link itself between the two IlvShadowRectangles,
and the link will appear bounded with an orange box.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 76

usrtwodgraphics.book Page 77 Monday, July 27, 2009 4:56 PM
These modes can only be used in a Grapher buffer.

ArcLinkImage

Use this mode to link two grapher nodes with an IlvArcLinkImage object. Press
the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

DoubleLinkImage

Use this mode to link two grapher nodes with an IlvDoubleLinkImage object.
Press the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

DoubleSplineLinkImage

Use this mode to link two grapher nodes with an IlvDoubleSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

LinkImage

Use this mode to link two grapher nodes with an IlvLinkImage object. Press the
left mouse button on the first node and drag the cursor to the second node. Release
the mouse button to finish the operation.

OneLinkImage

Use this mode to link two grapher nodes with an IlvOneLinkImage object. Press
the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

OneSplineLinkImage

Use this mode to link two grapher nodes with an IlvOneSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedArcLinkImage

Use this mode to link two grapher nodes with an oriented IlvArcLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

Note: A Grapher link can only be created between nodes, therefore the objects to be linked
must first be declared as nodes using the MakeNode command. First select the objects and
then click the Make Node button on the Editing Modes toolbar.
77 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

The Palettes Panel

usrtwodgraphics.book Page 78 Monday, July 27, 2009 4:56 PM
OrientedDoubleLinkImage

Use this mode to link grapher nodes with an oriented IlvDoubleLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedDoubleSplineLinkImage

Use this mode to link selected grapher nodes with an oriented
IlvDoubleSplineLinkImage object. Press the left mouse button on the first
node and drag the cursor to the second node. Release the mouse button to finish the
operation.

OrientedLinkImage

Use this mode to link two grapher nodes with an oriented IlvLinkImage object.
Press the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

OrientedOneLinkImage

Use this mode to link two grapher nodes with an oriented IlvOneLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedOneSplineLinkImage

Use this mode to link grapher nodes with an oriented IlvOneSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedPolylineLinkImage

Use this mode to link grapher nodes with an oriented IlvPolylineLinkImage
object. Click on the first node, then on intermediate points as required, and double-
click on the second node to finish the operation.

PolylineLinkImage

Use this mode to link grapher nodes with an IlvPolylineLinkImage object.
Click on the first node, then on intermediate points as required, and double-click on
the second node to finish the operation.

IlvSCGrapherRectangle

This creates an IlvSCGrapherRectangle object to display the
contents of an IlvGrapher. Use either the drag-and-drop operation
or the creation mode operation. (This command is found in the
Grapher Views palette.)
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 78

usrtwodgraphics.book Page 79 Monday, July 27, 2009 4:56 PM
Grapher Extension Commands

This section presents an alphabetical listing of the additional, predefined commands that are
available in the Grapher extension of IBM® ILOG® Views Studio. (All of the
IBM ILOG Views Studio Foundation commands are also available.) For each command, it
indicates its label, how to access it if it is accessible other than through the Commands
panel, the category to which it belongs, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commands icon in the Action toolbar.

MakeNode

NewGrapherBuffer

SelectArcLinkImageMode

Label Node

Path Main window: Editing Modes toolbar when editing Grapher buffers.

Category grapher, studio

Action If the current buffer is a Grapher buffer, this command makes the selected
objects into nodes.

Label Grapher

Path Main window: File menu > New

Category buffer, grapher

Action Creates a new Grapher buffer. This buffer becomes the current buffer.

Label Arc-shaped link

Path Palettes Panel: Grapher Links palette.
79 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Extension Commands

usrtwodgraphics.book Page 80 Monday, July 27, 2009 4:56 PM
SelectDoubleLinkImageMode

SelectDoubleSplineLinkImageMode

SelectLinkImageMode

Category mode, grapher

Action Creates an arc-shaped link between two nodes. See section
IlvArcLinkImage.

Label DoubleLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a two-bend link between two nodes. See section
IlvDoubleLinkImage.

Label DoubleSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a two-bend curved link between two nodes. See section
IlvDoubleSplineLinkImage.

Label LinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a direct link between two nodes. See section Base Class for Links.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 80

usrtwodgraphics.book Page 81 Monday, July 27, 2009 4:56 PM
SelectOneLinkImageMode

SelectOneSplineLinkImageMode

SelectOrientedArcLinkImageMode

SelectOrientedDoubleLinkImageMode

Label OneLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a one-bend link between two nodes. See section IlvOneLinkImage.

Label OneSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a one-bend curved link between two nodes. See section
IlvOneSplineLinkImage.

Label Oriented Arc-shaped link

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented arc-shaped link between two nodes. See section
IlvArcLinkImage.

Label Oriented DoubleLinkImage

Path Palettes Panel: Grapher Links palette.
81 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Extension Commands

usrtwodgraphics.book Page 82 Monday, July 27, 2009 4:56 PM
SelectOrientedDoubleSplineLinkImageMode

SelectOrientedLinkImageMode

SelectOrientedOneLinkImageMode

Category mode, grapher

Action Creates an oriented two-bend link between two nodes. See section
IlvDoubleLinkImage.

Label Oriented DoubleSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented two-bend curved link between two nodes. See section
IlvDoubleSplineLinkImage.

Label Oriented LinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented direct link between two nodes. See section Base Class
for Links.

Label Oriented OneLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented one-bend link between two nodes. See section
IlvOneLinkImage.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 82

usrtwodgraphics.book Page 83 Monday, July 27, 2009 4:56 PM
SelectOrientedOneSplineLinkImageMode

SelectOrientedPolylineLinkImageMode

SelectPinEditorMode

SelectPolylineLinkImageMode

Label Oriented OneSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented one-bend curved link between two nodes. See section
IlvOneSplineLinkImage.

Label Free-shape oriented link

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented free-shaped link between two nodes. See section
IlvPolylineLinkImage.

Label PinEditor

Path Main window: Editing Modes toolbar when editing Grapher buffers.

Category grapher

Action Sets the Pin editing mode on the current buffer. See section Editing
Connection Pins.

Label Free-shape link

Path Palettes Panel: Grapher Links palette.
83 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Extension Commands

usrtwodgraphics.book Page 84 Monday, July 27, 2009 4:56 PM
Category mode, grapher

Action Creates a free-shaped link between two nodes. See section
IlvPolylineLinkImage.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 84

usrtwodgraphics.book Page 85 Monday, July 27, 2009 4:56 PM
85 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 86 Monday, July 27, 2009 4:56 PM
2

Features of the Grapher Package

In this section, you will discover a high-level IBM® ILOG® Views package called the
Grapher. This package includes powerful features dedicated to the graphic representation of
hierarchical and interconnected information. This section contains information on the
following:

◆ Graph Management - The first section introduces you to the graph management class
IlvGrapher. This class is a natural extension of the manager concepts. It is based on the
IlvManager class, and adds built-in mechanisms to handle interconnected graphic
objects.

◆ Grapher Links - The second section explains the concept of grapher links and how these
entities are represented by a class hierarchy of customizable graphic objects.

◆ Grapher Interactors - The third section demonstrates how you can interact with a graph
representation through several families of interactors.

Graph Management

This section describes the management of graphs in IBM ILOG Views. It is divided into two
parts:

◆ Description of the IlvGrapher Class
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 86

usrtwodgraphics.book Page 87 Monday, July 27, 2009 4:56 PM
◆ Loading and Saving Graph Descriptions

Description of the IlvGrapher Class

Graphic objects representing graphs are stored in instances of the IlvGrapher class. This
class derives from the IlvManager class and inherits all its features. The constructors of
IlvManager (the base class) and IlvGrapher have the same parameters:

In addition to the IlvManager concepts, the IlvGrapher class introduces a distinction
between three types of graphic objects:

◆ Nodes - Nodes are the visual reference points in a hierarchy of information. A node is a
graphic object—a subtype of the IlvGraphic class—that takes on a particular
functionality when added to the grapher with the IlvGrapher::addNode method. This
functionality allows links and nodes to stay connected when a node is moved.

◆ Links - Links are the visual representation of connections between nodes. A link is an
instance of the IlvLinkImage class or one of its subclasses. It is added to the grapher
with the IlvGrapher::addLink method. Since links can only exist between two
existing nodes, you must create them with two graphic objects that are known as nodes
by the grapher. You can use ghost nodes (added with the
IlvGrapher::addGhostNode method) to create free-end links.

◆ Ordinary graphic objects - As is the case in a regular IlvManager instance, you can
incorporate in your graph any IlvGraphic objects that represent neither nodes nor
links.

The IlvGrapher class provides a set of member functions to manage links and nodes. You
can, for example, replace a link with another one through a call to the
IlvGrapher::changeLink method.

You can also transform a graphic object stored in the grapher into a node by calling the
IlvGrapher::makeNode method. You can apply this method to a grapher link. This
allows you to connect the link to other nodes. When dealing with a link that has a node
behavior, you must make sure that there is no cycle in the geometric dependencies that
govern the position of this link. Similarly, you can transform a graphic object into a grapher
link with the IlvGrapher::makeLink method. The created link will be an instance of the
IlvLinkHandle class, which is described in section Grapher Links.

Once objects are stored in an IlvGrapher, you can make a distinction between nodes,
links, and ordinary graphic instances by using the IlvGrapher::isNode and
IlvGrapher::isLink methods.

IlvGrapher(IlvDisplay* display,
 int layers = 2,
 IlBoolean useacc = IlTrue,
 IlvUShort maxInList = IlvMaxObjectsInList,
 IlvUShort maxInNode = IlvMaxObjectsInList);
87 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Graph Management

usrtwodgraphics.book Page 88 Monday, July 27, 2009 4:56 PM
The IlvGrapher API also provides several methods to query the topology of your graph.
For example, you can test whether two given nodes are connected by using the
IlvGrapher::isLinkBetween method. You can also retrieve all the outgoing or
incoming links of a node by using the IlvGrapher::getLinks method.

The sample code below shows how to use the IlvGrapher::mapLinks method to select
all the outgoing links of a node:

static void SelectLink(IlvGraphic* g, IlvAny arg)
{
ILVCAST(IlvGrapher*,arg)->setSelected(g,IlTrue);
}

{
...
IlvGrapher* graph =;
IlvGraphic* node =; // The node being considered
//== Call the SelectLink function on all outgoing links of <node>
graph->mapLinks(node,SelectLink,graph,IlvLinkFrom);
...
}

Finally, the IlvGrapher class provides two predefined layout methods to arrange nodes in
a vertical or horizontal tree structure. These layouts are implemented in the
IlvGrapher::nodeXPretty and IlvGrapher::nodeYPretty methods.

An example showing how to create a simple grapher is provided in the <ILVHOME>/
samples/grapher/simple directory. Also, you can refer to the IBM ILOG Views
Grapher Reference Manual for more information on the member functions of the
IlvGrapher class.

Loading and Saving Graph Descriptions

The IlvGrapher class reads graphs by using the IlvGraphInputFile class, and saves
graphs by using the IlvGraphOutputFile class.

IlvGraphOutputFile

The IlvGraphOutputFile class is a subclass of IlvManagerOutputFile. In this
subclass, the virtual method IlvGraphOutputFile::writeObject has been redefined to
add specific information about each object before its description block. In our case, this
information is the layer index, the type of the object (node, link, both, or an ordinary object),
as well as the connection pins. Connection pins are described in section Grapher Links.

IlvGraphInputFile

The IlvGraphInputFile class is a subclass of IlvManagerInputFile. In this subclass
the virtual method IlvGraphInputFile::readObject has been redefined to read the
specific information written by the IlvGraphOutputFile::writeObject method.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 88

usrtwodgraphics.book Page 89 Monday, July 27, 2009 4:56 PM
Grapher Links

This section introduces the C++ classes that implement links in a grapher. These classes
inherit the interface of the IlvGraphic class and add specific methods to handle the
relationship between a link and its connected nodes. The following items are described:

◆ Base Class for Links

◆ Predefined Grapher Links

◆ Creating a Custom Grapher link

◆ Connection Pins

Base Class for Links

Figure 2.1 illustrates a straight link connecting two nodes:

Figure 2.1

Figure 2.1 Direct Link Between Two Nodes

An IlvLinkImage instance is a graphic object that represents the connection between two
nodes. By default, it is drawn as a straight line joining the two nodes. The constructor of the
IlvLinkImage class is as follows:

The from parameter is an object of type IlvGraphic that represents the start node of the
link. The to parameter is an object of type IlvGraphic object that represents its end node.
The oriented parameter specifies whether the link ends with an arrow-head.

Several member functions, prefixed by set and get, let you access these properties. For
example, the end node can be accessed with the IlvLinkImage::getTo and
IlvLinkImage::setTo methods. Similarly, you can change the oriented mode of the link
with the IlvLinkImage::setOriented method.

Besides storing these properties, the purpose of the IlvLinkImage class is to:

IlvLinkImage(IlvDisplay* display,
 IlBoolean oriented,
 IlvGraphic* from,
 IlvGraphic* to,
 IlvPalette* palette=0);
89 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Links

usrtwodgraphics.book Page 90 Monday, July 27, 2009 4:56 PM
◆ Compute the shape of the link as a function of its associated nodes and define how the
link behaves when the geometry of the nodes changes. This task is carried out by the
IlvLinkImage::getLinkPoints virtual method.

◆ Define how the link is drawn. This is done using the computed shape and is implemented
in the virtual methods inherited from the IlvGraphic class.

Subclassing IlvLinkImage is useful when you want to create a link with a different
behavior and/or drawing aspect. To change the behavior, overload the
IlvLinkImage::getLinkPoints method:

The returned array should not be deleted by the caller. You need to allocate this array on a
common memory pool by using the IlvPointPool class. In this method, you can query the
geometry of the start and end nodes to determine the points defining the shape of the link.
There are two categories of such points:

◆ The end points of the link. These define where the link starts and ends.

◆ The intermediate points. These define the overall aspect of the link.

The IlvLinkImage class uses the IlvLinkImage::computePoints method to compute
the location of the end points of the link:

The default implementation first checks whether the link is associated with a connection pin
on the nodes. (See section Connection Pin Management Class for more information.) If no
connection pin is defined, the intersection of the link with the bounding boxes of the start
and end nodes is computed. This is illustrated in Figure 2.2:

Figure 2.2

Figure 2.2 End point Location When No Connection Pin is Defined

virtual IlvPoint* getLinkPoints(IlUInt& count,
 const IlvTransformer* t) const;

virtual void computePoints(IlvPoint& src,
 IlvPoint& dst,
 const IlvTransformer* t = 0) const;
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 90

usrtwodgraphics.book Page 91 Monday, July 27, 2009 4:56 PM
Predefined Grapher Links

Predefined link classes are available in the grapher library. Each of these classes adds a
specific behavior or drawing functionality to the IlvLinkImage base class. You can either
use these classes as they are or subclass them to create customized links. The following
classes are available:

◆ IlvLinkHandle

◆ IlvLinkLabel

◆ IlvOneLinkImage

◆ IlvOneSplineLinkImage

◆ IlvDoubleLinkImage

◆ IlvDoubleSplineLinkImage

◆ IlvArcLinkImage

◆ IlvPolylineLinkImage

IlvLinkHandle

The IlvLinkHandle class is an example of a link class where the shape and behavior of the
link are directly inherited from IlvLinkImage, and where only the drawing of the link has
been redefined.

This class lets you reference any type of graphic object to make it behave as a grapher link.
Also, a graphic object can be referenced by several IlvLinkHandle instances. This allows
you to create very lightweight links with complex shapes. Figure 2.3 illustrates an example
of an IlvLinkHandle instance referencing a polygon:

Figure 2.3

Figure 2.3 Graphic Objects Used as a Link
91 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Links

usrtwodgraphics.book Page 92 Monday, July 27, 2009 4:56 PM
The constructor of this class is as follows:

Once added to the grapher, this instance will draw the graphic object object as a link
between the nodes from and to, using the width width. The owner parameter describes the
relationship between the handle and its referenced object. When a handle owns its
referenced object, the handle is responsible for deleting this object. This means that you can
safely share a referenced object as long as it is not owned by any of its handles.

An example showing how to use the IlvLinkHandle class is provided in the <ILVHOME>/
samples/grapher/linkhand directory.

IlvLinkLabel

The IlvLinkLabel class also inherits the shape and behavior of the IlvLinkImage class.
Links of the IlvLinkLabel type can be labelled with a user-defined character string.

This string can be specified by means of the label parameter of the constructor. It can also
be specified once the link is created, by using the IlvLinkLabel::setLabel method.

Figure 2.4 shows two IlvLinkLabel objects:

Figure 2.4

Figure 2.4 Labelled Links

IlvOneLinkImage

The IlvOneLinkImage class derives from the IlvLinkImage class and defines a new
shape and a new behavior. Instances of this class are composed of two perpendicular lines,
as illustrated in Figure 2.5:

IlvLinkHandle(IlvDisplay* display,
 IlvGraphic* object,

 IlvGraphic* from,
 IlvGraphic* to,
 IlvDim width = 0,
 IlBoolean owner = IlTrue
 IlvPalette* palette=0);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 92

usrtwodgraphics.book Page 93 Monday, July 27, 2009 4:56 PM
Figure 2.5

Figure 2.5 IlvOneLinkImage

The shape of the link depends on its orientation property, which indicates whether the link
that leaves the from node starts out vertically (IlvVerticalLink) or
horizontally (IlvHorizontalLink). This property can be specified in the constructor or it
can be specified once the link is created, by using the
IlvOneLinkImage::setOrientation method.

IlvOneSplineLinkImage

This class is a subclass of IlvOneLinkImage that draws the link as a spline:

Figure 2.6

Figure 2.6 IlvOneSplineLinkImage

The position of the end points is similar to the one computed in the IlvOneLinkImage
class. The two control points of the drawn spline are both at the intersection of the start and
end tangents of the link. You can modify the position of the double-control point by using
the IlvOneSplineLinkImage::setControlPoint method.
93 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Links

usrtwodgraphics.book Page 94 Monday, July 27, 2009 4:56 PM
IlvDoubleLinkImage

The IlvDoubleLinkImage class derives from IlvLinkImage and defines a new shape
and a new behavior. Instances of this class are composed of three connected lines
intersecting at a 90° angle, as illustrated in Figure 2.7.

Figure 2.7

Figure 2.7 IlvDoubleLinkImage

The layout of the three segments follows two modes that are set with the
IlvDoubleLinkImage::setFixedOrientation method:

◆ Automatic - The orientation of the segments depends on the vertical and horizontal
separation between the two nodes. The middle segment takes the orientation of the
largest separation.

◆ Fixed - The orientation of the link is fixed and specifies the direction (horizontal or
vertical) the link takes upon leaving the starting node.

IlvDoubleSplineLinkImage

The IlvDoubleSplineLinkImage class is a subclass of IlvDoubleLinkImage that
draws the links with smooth curves instead of straight segments, as shown in Figure 2.8. The
behavior of these links is the same as in the IlvDoubleLinkImage class.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 94

usrtwodgraphics.book Page 95 Monday, July 27, 2009 4:56 PM
Figure 2.8

Figure 2.8 IlvDoubleSplineLinkImage

IlvArcLinkImage

The IlvArcLinkImage class is a subclass of IlvLinkImage that defines a new shape and
a new behavior. Links of this type are drawn as an arc joining the two nodes, as shown in
Figure 2.9:

Figure 2.9

Figure 2.9 IlvArcLinkImage Joining Three Nodes

The arc is drawn as a spline with two control points. The distance between these control
points and the segment joining the end points of the link (also called the arc offset) can be
specified with one of the following:

◆ A fixed value, using the IlvArcLinkImage::setFixedOffset method,

◆ A value proportional to the length of the segment, using the
IlvArcLinkImage::setOffsetRatio method.

This arc offset can take negative values, in which case the control points are located on the
right of the oriented segment joining the start and end points. You can therefore connect two
nodes with several links without any overlapping, by using different arc offsets.
95 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Links

usrtwodgraphics.book Page 96 Monday, July 27, 2009 4:56 PM
IlvPolylineLinkImage

This class lets you dynamically define the intermediate points of a link. These points are
stored in each IlvPolylineLinkImage instance and can be specified using several
methods:

◆ IlvPolylineLinkImage::setPoints

◆ IlvPolylineLinkImage::addPoints

◆ IlvPolylineLinkImage::removePoints

◆ IlvPolylineLinkImage::movePoint

As with all link classes, the resulting shape is computed in the
IlvPolylineLinkImage::getLinkPoints method. You can also specify whether the
link is to be drawn with straight segments or with curves by calling the
IlvPolylineLinkImage::drawSpline method. Figure 2.10 shows an example of the
free-form links created by IlvPolylineLinkImage instances:

Figure 2.10

Figure 2.10 IlvPolylineLinkImage

Creating a Custom Grapher link

In this section, IlvLinkImage is subclassed to create a grapher link that meets the
following specifications:

◆ The link is always drawn as a straight line between its two nodes.

◆ The start point is either defined by a connection pin or located at the center of the start
node.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 96

usrtwodgraphics.book Page 97 Monday, July 27, 2009 4:56 PM
◆ The end point is such that the link stays perpendicular to the face of the end node closest
to the start point. If this cannot be done, the end point is located on the closest corner of
the node bounding box.

The link is drawn the same way as in the base class IlvLinkImage. Therefore, the
corresponding methods inherited from IlvGraphic are left unchanged. Also, there are only
two points defining the shape of the link (the two end points, and no intermediate points).
There are two possibilities for defining the link: overloading the
IlvLinkImage::getLinkPoints method or the IlvLinkImage::computePoints
method. The second alternative has been chosen for this example:

void
MyLink::computePoints(IlvPoint& src,
 IlvPoint& dst,
 const IlvTransformer* t) const
{
 //== [1] ==
 IlvGrapherPin* pin = IlvGrapherPin::Get(getFrom());
 if (!pin || !pin->getLinkLocation(getFrom(),this,t,src)) {
 IlvRect bbox;
 getFrom()->boundingBox(bbox,t);
 src.move(bbox.centerx(),bbox.centery());
 }

 //== [2] ==
 IlvRect toBBox;
 getTo()->boundingBox(toBBox,t);
 if (src.x()<toBBox.x()) {
 if (src.y() < toBBox.y()) // Upper left quadrant
 dst.move(toBBox.x(),
 toBBox.y());
 else if (src.y() >= toBBox.bottom()) // Lower left quadrant
 dst.move(toBBox.x(),
 toBBox.y()+toBBox.h()-1);
 else // Left quadrant
 dst.move(toBBox.x(),
 src.y());
 } else if (src.x()>=toBBox.right()) {

 if (src.y() < toBBox.y()) // Upper right quadrant
 dst.move(toBBox.x()+toBBox.w()-1,
 toBBox.y());
 else if (src.y() >= toBBox.bottom()) // Lower right quadrant
 dst.move(toBBox.x()+toBBox.w()-1,
 toBBox.y()+toBBox.h()-1);
 else // Right quadrant
 dst.move(toBBox.x()+toBBox.w()-1,
 src.y());
 } else {
 if (src.y() < toBBox.y()) // Upper quadrant
 dst.move(src.x(),
 toBBox.y());
 else if (src.y() >= toBBox.bottom()) // Lower quadrant
 dst.move(src.x(),
 toBBox.y()+toBBox.h()-1);
 else // src inside toBBox
97 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Links

usrtwodgraphics.book Page 98 Monday, July 27, 2009 4:56 PM
 dst.move(toBBox.centerx(),toBBox.centery());
 }
}

In the first part ([1]) of the code, a verification is made to see whether the link is attached to
a connection pin defined on its start node. If this is not the case, the center of the bounding
box of this node is taken.

Once the location of the start point has been computed, the position of the start point with
respect to the bounding box of the end node is verified ([2]). There are nine possible cases
(the eight quadrants defined by toBBox, plus the case where the start point is inside
toBBox), each defining a unique location.

Connection Pins

Connection pins allow you to control the exact location of link end points on grapher nodes.
When a link is attached to a connection pin, the connecting point stays the same, regardless
of the relative position of its start and end nodes.

The following items are described in this section:

◆ Connection Pin Management Class

◆ An All-Purpose IlvGrapherPin Subclass

◆ Extending the IlvGrapherPin Class

Connection Pin Management Class

The IlvGrapherPin abstract class is designed to handle a collection of connection pins. Its
first purpose is to maintain the association between links and pins. To do so, pins are
referenced by indexes. You can connect a link to a given connection pin with the
IlvGrapherPin::setPinIndex method:

IlvLinkImage* link = …;
//== Recover the IlvGrapherPin instance associated with the starting node
IlvGrapherPin* pin = IlvGrapherPin::Get(link->getFrom());
//== Connect the link to the pin whose index is 0
pin->setPinIndex(link,0,IlTrue);

Likewise, you can recover the index of the connection pin to which a link is attached, by
using the IlvGrapherPin::getPinIndex method.

The second purpose of the IlvGrapherPin class is to provide an interface to query the
coordinates of the connecting points available for a given node. Each concrete subclass must
provide an implementation for the IlvGrapherPin::getCardinal and
IlvGrapherPin::getLocation methods:

virtual IlUInt getCardinal(const IlvGraphic* node,
 const IlvTransformer* t) const;
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 98

usrtwodgraphics.book Page 99 Monday, July 27, 2009 4:56 PM
This method returns the number of connection pins handled by the instance for the specified
node node when displayed with the transformer t.

This method returns, in the where parameter, the coordinates of the connection pin specified
by the index pinIndex on the node node, when displayed with the transformer t.

Other methods of this interface (IlvGrapherPin::getClosest,
IlvGrapherPin::getLinkLocation, and so on) have a default implementation that can
be overloaded. For example, the getClosest method considers all available connection
pins and uses the getLocation method. You can change this method to:

◆ provide a faster implementation (getLocation may contain computations that can be
done only once in getClosest),

◆ return the first unused pin instead of the closest one in terms of distance.

An All-Purpose IlvGrapherPin Subclass

The IlvGenericPin class is a predefined concrete subclass of IlvGrapherPin that
makes it possible to dynamically define the connection pins on a node. New connection pins
are specified by their desired location on the node when this node is displayed through a
given transformer. Once this position is stored, the IlvGenericPin class will use the shape
of the object to accurately locate the connecting point regardless of the applied transformer.

Here is an example of how to use this class to add connection pins on the four corners of a
node bounding box:

IlvGraphic* node = ...;
//== Create an empty instance of IlvGenericPin
IlvGenericPin* pin = new IlvGenericPin();
//== Add the four connecting points
IlvRect bbox;
node->boundingBox(bbox,0);
pin->addPin(node,IlvPoint(bbox.x(),bbox.y()),0);
pin->addPin(node,IlvPoint(bbox.x()+bbox.w()-1,bbox.y()),0);
pin->addPin(node,IlvPoint(bbox.x()+bbox.w()-1,bbox.y()+bbox.h()-1),0);
pin->addPin(node,IlvPoint(bbox.x(),bbox.y()+bbox.h()-1),0);
//== Attach the IlvGenericPin instance to the node
pin->set(node);

virtual IlBoolean getLocation(IlUInt pinIndex,
 const IlvGraphic* node,
 const IlvTransformer* t,
 IlvPoint& where) const;

Note: The points in this example are given in the object coordinate system when no
transformer is applied.
99 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Links

usrtwodgraphics.book Page 100 Monday, July 27, 2009 4:56 PM
Extending the IlvGrapherPin Class

An example of a concrete IlvGrapherPin subclass that handles a single connection pin
located at the center of a node bounding box is presented here. This class, called
CenterPin, is declared as follows:

#include <ilviews/grapher/pin.h>

class CenterPin
: public IlvGrapherPin
{
public:
 CenterPin() {}

 virtual IlUInt getCardinal(const IlvGraphic*,
 const IlvTransformer*) const;

 virtual IlBoolean getLocation(IlUInt,
 const IlvGraphic*,
 const IlvTransformer* t,
 IlvPoint&) const;
 DeclarePropertyInfoRO();
 DeclarePropertyIOConstructors(CenterPin);
};

The constructor of the CenterPin class does nothing since this class does not store any
information. The DeclarePropertyInfoRO and DeclarePropertyIOConstructors
macros are used to make the CenterPin class persistent. Only the getCardinal and
getLocation methods are overloaded since the implementation of the other
IlvGrapherPin methods does not need to be changed. The source file for the CenterPin
class defines the following methods:

#include <centerpin.h>

// ---
// - IO Constructors
CenterPin::CenterPin(IlvInputFile& input, IlvSymbol* s)
: IlvGrapherPin(input, s) {}

CenterPin::CenterPin(const CenterPin& src)
: IlvGrapherPin(src) {}
// ---
IlUInt
CenterPin::getCardinal(const IlvGraphic*,
 const IlvTransformer*) const
{
 return 1;
}

// ---
IlBoolean
CenterPin::getLocation(IlUInt,
 const IlvGraphic* node,
 const IlvTransformer* t,
 IlvPoint& where) const
{

I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 100

usrtwodgraphics.book Page 101 Monday, July 27, 2009 4:56 PM
 IlvRect bbox;
 node->boundingBox(bbox, t);
 where.move(bbox.centerx(), bbox.centery());
 return IlTrue;
}

// ---
// - Macros to register the class and make it persistent
IlvPredefinedPropertyIOMembers(CenterPin)
IlvRegisterPropertyClass(CenterPin, IlvGrapherPin);

The implementation of the getCardinal method is straightforward and returns 1 for any
node and transformer. The getLocation method simply queries the transformed bounding
box of the node and returns its center. (The index of the connection pin is not used since this
class defines only one connection pin.) The declaration of the CenterPin class is provided
in the file <ILVHOME>/samples/grapher/include/centerpin.h. Its implementation
can be found in the file <ILVHOME>/samples/grapher/src/centerpin.cpp.

Grapher Interactors

The IlvManager class provides a wide range of interactors that are used to create objects
and change their shape. The IlvGrapher class contains specific interactors designed to
create new nodes and links and change the way they are connected:

◆ Selection Interactor

◆ Creating Nodes

◆ Creating Links

◆ Editing Connection Pins

◆ Editing Links

Selection Interactor

The IlvGraphSelectInteractor class derives from the IlvSelectInteractor class.
It contains additional member functions used to manage the drawing of ghost images for
links attached to nodes that are moved or enlarged. This class has the following constructor:

IlvGraphSelectInteractor(IlvManager* manager, IlvView* view);

This constructor initializes a new instance of the IlvGraphSelectInteractor class that
lets you select individual objects or groups of objects in the view view connected to the
manager manager. This manager is assumed to be an instance of the IlvGrapher class.
101 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Interactors

usrtwodgraphics.book Page 102 Monday, July 27, 2009 4:56 PM
Creating Nodes

The IlvMakeNodeInteractor class is the base class for interactors that allow the user to
interactively create nodes in a grapher. Instances of this class must be attached to a grapher
and one of its connected views, as shown here:

IlvGrapher* graph = ...;
IlvView* view = ...;
IlvMakeNodeInteractor * inter = new IlvMakeNodeInteractor(graph, view);
graph->setInteractor(inter);

To create a node, drag a rectangular region in the working view. There are two ways to
specify what type of graphic object is created:

◆ Subtype the IlvMakeNodeInteractor class and overload its
IlvMakeNodeInteractor::createNode method.

◆ Subtype the IlvMakeNodeInteractorFactory class and overload its
IlvMakeNodeInteractorFactory::createNode method. You can associate a node
factory with an interactor by using the IlvMakeNodeInteractor::setFactory
method.

The grapher library provides predefined subclasses of IlvMakeNodeInteractor:

◆ IlvMakeShadowNodeInteractor - This interactor creates instances of the
IlvShadowLabel class and stores them as nodes in the grapher.

◆ IlvMakeReliefNodeInteractor - This interactor creates instances of the
IlvReliefLabel class and stores them as nodes in the grapher.

Creating Links

The IlvMakeLinkInteractor class is the base class for interactors that allow the user to
interactively connect nodes in a grapher. Its constructor is as follows:

The oriented parameter specifies whether created links are oriented. An example of how
to create an interactor of this type and connect it to a grapher and one of its view is presented
here:

IlvGrapher* graph = ...;
IlvView* view = graph->getFirstView();
IlvMakeLinkInteractor * inter = new IlvMakeLinkInteractor(graph, view);
graph->setInteractor(inter);

To connect two nodes, perform the following steps:

1. Click the starting node. This node is highlighted if it is considered valid by the interactor.

IlvMakeLinkInteractor(IlvManager* manager,
 IlvView* view,
 IlBoolean oriented = IlTrue);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 102

usrtwodgraphics.book Page 103 Monday, July 27, 2009 4:56 PM
2. Drag the mouse until it is positioned over the ending node. If this node is valid, it is also
highlighted.

3. Release the mouse button to create the link.

You can control which node is valid by overloading the
IlvMakeLinkInteractor::acceptFrom and IlvMakeLinkInteractor::acceptTo
methods. There are two ways of specifying what type of link should be created:

◆ Subtype the IlvMakeLinkInteractor class and overload its
IlvMakeLinkInteractor::createLink method.

◆ Subtype the IlvMakeLinkInteractorFactory class and overload its
IlvMakeLinkInteractorFactory::createLink method. You can associate a link
factory with an interactor by using the IlvMakeLinkInteractor::setFactory
method.

The Grapher library provides several predefined subclasses of IlvMakeLinkInteractor:

◆ IlvMakeLinkImageInteractor - This class is used to create a link of type
IlvLinkImage.

◆ IlvMakeLabelLinkImageInteractor - This class is used to create a link of type
IlvLinkLabel.

◆ IlvMakeOneLinkImageInteractor - This class is used to create a link of type
IlvOneLinkImage.

◆ IlvMakeOneSplineLinkImageInteractor - This class is used to create a link of
type IlvOneSplineLinkImage.

◆ IlvMakeDoubleLinkImageInteractor - This class is used to create a link of type
IlvDoubleLinkImage.

◆ IlvMakeDoubleSplineLinkImageInteractor - This class is used to create a link of
type IlvDoubleSplineLinkImage.

Creating Polyline Links

The IlvMakePolyLinkInteractor class is a special kind of interactor that does not
derive from IlvMakeLinkInteractor.

This interactor is used to create links whose intermediate points can be explicitly defined. It
lets you control the shape drawn by the user by means of the
IlvMakePolyLinkInteractor::accept method:

virtual IlBoolean accept(IlvPoint& point);

By overloading this method, you can add specific constraints on the position of the
intermediate points of the link. Once these points have been defined, the link is created with
the IlvMakePolyLinkInteractor::makeLink method, which must be defined in
subclasses to return the appropriate link instance. The grapher library provides one
103 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Grapher Interactors

usrtwodgraphics.book Page 104 Monday, July 27, 2009 4:56 PM
predefined subclass, IlvMakePolylineLinkInteractor, which is used to create links of
the IlvPolylineLinkImage type.

Editing Connection Pins

The IlvPinEditorInteractor class lets the user interactively edit the connection pins of
a grapher node. When this interactor is active, selecting a node will highlight its connection
pins, as shown in Figure 2.11:

Figure 2.11

Figure 2.11 Highlighted Connection Pins

Once a grapher node is selected, you can:

◆ Add a new connection pin by clicking inside the node.

◆ Remove a connection pin. To do this, select the pin with the mouse and press the Delete
key.

◆ Move an existing connection pin. To do this, select the pin with the mouse and drag it to
its desired location.

◆ Connect and disconnect links to or from a pin. To do this, first select a connection pin,
and then click the considered link.

Editing Links

When a link is selected, its selection object draws handles that you can use to change its
shape or edit the way it is connected. Figure 2.12 shows a link that has been selected:

Note: If the working node is already associated with a pin management object, this object
must be of the IlvGenericPin type. If the node does not define any connection pin, then
an IlvGenericPin instance is automatically created.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 104

usrtwodgraphics.book Page 105 Monday, July 27, 2009 4:56 PM
Figure 2.12

Figure 2.12 A Selected Link

An end point handle can be dragged to:

◆ Change the connection pin to which the link is attached. When the handle is dragged near
a connection pin, the pin is highlighted and the link uses its position to compute the
location of its end point.

◆ Connect the link to another node.

The intermediate point handles can be used to edit the shape of the link. The kind of
interaction allowed by these handles depends on the kind of link being edited.

Note: Link editing can be turned off by using the IlvGrapher::setLinksEditable
method. When an IlvGrapher instance is created, link editing is disabled by default.
105 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 106 Monday, July 27, 2009 4:56 PM
Part III
Prototypes

Part III explains the concepts behind Business Graphic Objects and shows how to create and
use prototypes with both containers and managers. This part consists of the following
chapters:

◆ Chapter 1, Introducing the Prototypes Package introduces the concepts of prototypes.

◆ Chapter 3, The User Interface and Commands describes the main parts of
IBM ILOG Views Studio with the Prototypes extension.

◆ Chapter 2, Using IBM ILOG Views Studio to Create BGOs explains how to use
IBM ILOG Views Studio to create your prototypes by composing graphic objects and
assigning behaviors to them.

◆ Chapter 4, Using Prototypes in C++ Applications describes the classes and methods
used to manipulate prototypes and shows how to structure your application to benefit
fully from BGOs. It then shows how to use prototypes created in IBM ILOG Views
Studio in your C++ applications.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 106

usrtwodgraphics.book Page 107 Monday, July 27, 2009 4:56 PM
◆ Chapter 5, Predefined Accessors lists the behaviors that are predefined in the Prototypes
library.

Note: The IBM ILOG Views Prototype package is available only if you have purchased the
IBM ILOG Views 2D Graphics Professional product.
107 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 108 Monday, July 27, 2009 4:56 PM
1

Introducing the Prototypes Package

The Prototypes package lets you create custom domain-specific graphic objects called
Business Graphic Objects (BGOs). These objects are created interactively, without writing
C++ code, using the Prototypes extension of IBM ILOG Views Studio.

This section introduces the concepts of BGOs and explains the classes and methods used to
manipulate the prototypes created with IBM ILOG Views Studio.

An Overview of the Prototypes Package

This section provides an overview of how to use the Prototypes package of
IBM® ILOG® Views to create BGOs. Because IBM ILOG Views BGOs are based on the
prototype design pattern, they are often referred to as prototypes.

The following items are described in this section as an introduction to the Prototypes
package:

◆ Business Graphic Objects

◆ Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio

◆ Using Prototypes in Applications

◆ When Should You Use Prototypes?
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 108

usrtwodgraphics.book Page 109 Monday, July 27, 2009 4:56 PM
◆ The Prototype Design Pattern

◆ Specifying Graphic and Interactive Behavior Using Accessors

Business Graphic Objects

Application developers often need to define custom graphic objects to represent domain-
specific application objects that the user is able to interact with. The IBM® ILOG® Views
Prototypes package provides a simple and efficient solution for building such business
graphic objects (BGOs). BGOs are created using the Prototypes extension of
IBM ILOG Views Studio. Creating a BGO requires no coding. It is created by performing
three basic steps:

1. Define the application interface of the BGO as a set of typed attributes that represent the
domain of your object. For example, a boiler object representing a power plant boiler can
have Temperature, Capacity, Level, Input valve, and Output valve attributes.

2. Define the look of your objects using basic IBM ILOG Views graphic objects, such as
lines, text, and images. You can also include other BGOs to build structured objects. For
example, the boiler object could be represented by a rectangle, the temperature and level
by gauges inside the rectangle, and input and output valves by toggle buttons inside the
rectangle.

3. Attach behaviors to your graphic objects to define how they should represent the state of
an application object and how they should react to user events. You can dynamically
change the attributes of a shape, animate the object, and connect BGOs together to
reflect the state of the objects in the user interface. For example, attaching a Fill behavior
to the Level attribute ensures that the level of the boiler is kept synchronized with its
graphic representation.

You can then create instances of your BGOs and use them in managers or containers just as
you would do with basic IBM ILOG Views graphic objects. You can link application objects
to their corresponding BGO. The display, synchronization, and user interaction is handled
by the Prototypes package. You can edit and modify a BGO at any time: its instances will be
automatically updated.

Creating a powerful, direct-manipulation interface for domain-specific objects becomes as
easy as creating a form-based interface for the same objects, but the resulting interface is
much more appealing and explicit to the user.

Figure 1.1 shows examples of application panels built with prototypes.
109 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

An Overview of the Prototypes Package

usrtwodgraphics.book Page 110 Monday, July 27, 2009 4:56 PM
Figure 1.1

Figure 1.1 Examples of Prototype Applications

Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio

When you use IBM ILOG Views Studio to create your BGOs, you can:

◆ Design the graphic appearance of your BGOs by assembling basic graphic objects.

◆ Define the graphic behavior and interactive aspects of your BGOs by attaching
predefined behaviors to them, or by writing scripts.

◆ Store the BGOs in libraries as prototype objects that can be reused, modified, and
instantiated in panels. Since BGOs are mostly used as prototypes, the terms prototype
and BGOs are used interchangeably.

◆ Add instances of your prototypes to managers or containers.

◆ Test the behavior of your prototypes and the panels that contain them.

All these operations are performed in WYSIWYG (what you see is what you get) mode
without coding in C++.

Using Prototypes in Applications

You can load IBM® ILOG® Views files containing instances of your prototypes into a
manager or a container the same way you load files containing basic IBM ILOG Views
graphic objects. You can also create instances of prototypes, attach them to application
objects, and place them in managers or containers.

Prototypes are not subclasses of IlvGraphic. They are groups of graphic objects contained
in an object of the IlvGroup class. The definition of a prototype is stored in a file so you do
not need to recompile your application if you modify a prototype.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 110

usrtwodgraphics.book Page 111 Monday, July 27, 2009 4:56 PM
To place prototype instances in an IlvManager or an IlvContainer you must embed
them in a specific subclass of IlvGraphic called IlvProtoGraphic. When you use
IBM ILOG Views Studio to place the prototypes in the manager or container,
IBM ILOG Views Studio creates the encapsulating IlvProtoGraphic for you. You can
manipulate IlvProtoGraphic the same way as an IlvGraphic. You can use the
IlvGroupHolder class to retrieve the prototype instances of a given view (container or
manager) and modify the properties of your prototype instances according to the application
values you want to display.

When Should You Use Prototypes?

To define a BGO, you can either use prototypes or write the C++ code for a subclass of
IlvGraphic using direct calls to the IBM ILOG Views methods to draw your object. The
use of prototypes is therefore an alternative to direct coding.

The prototype approach has the following advantages:

◆ Very short development time that permits an iterative GUI design process.

◆ Easy maintenance and debugging, since there is a clear separation between the
implementation of the application and the implementation of the user interface.

◆ Complete integration in ILOG Views Studio. The user interface designer draws instead
of programming.

◆ Few C++ programming skills required.

As a result, the task of designing the graphical appearance of your objects can be delegated
to non-programmers. For example, graphic designers may be more suited to the task and will
find in IBM ILOG Views Studio a drawing program comparable to the graphic tools they are
accustomed to.

Prototypes have been designed and implemented with a strong emphasis on efficiency.
Although prototypes may not always be as efficient as direct C++ coding (because they are
based on composition rather than derivation), applications can create thousands of prototype
instances without encountering performance problems.

The Prototype Design Pattern

The process of creating BGOs is based on the prototype design pattern. You can group basic
objects and use the group as a model (or prototype) from which you can create clones (or
instances). When the prototype is modified, all its instances are automatically updated with
this modification.

Using the prototype design pattern, it is possible to create complex graphic objects using a
WYSIWYG editor and to use the objects immediately to build application panels.
111 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

An Overview of the Prototypes Package

usrtwodgraphics.book Page 112 Monday, July 27, 2009 4:56 PM
Specifying Graphic and Interactive Behavior Using Accessors

BGOs define a set of public attributes. These attributes correspond to the application
programming interface of the BGO. You can change the appearance of the BGO by setting
its attributes to given values. You can also query any of these attributes at any time.

You can attach several behaviors to each of these attributes. A behavior defines a side effect
that is executed each time the attribute is changed or queried. For example, you can attach a
Condition behavior to a Temperature attribute. Each time the temperature is changed, the
condition is evaluated and the graphic appearance of the object changes. The Condition
behavior can set the color of an object to red if the temperature is above a predefined
threshold. You can also attach interactive behaviors to your BGO— for example, you can
specify that the temperature should be adjusted when the user clicks on the thermometer.

Attributes and behaviors are implemented by means of accessors (objects of the class
IlvAccessor). Accessors can be attached to graphic objects and can:

◆ Store attribute values

◆ Perform side effects

◆ Track user events

The accessor mechanism allows you to define complex behaviors. You can combine
accessors to re-create the logic of an entire application. However, it is strongly
recommended that you use the accessor mechanism only to specify the graphic and
interactive behaviors of your objects. Do not use the accessor mechanism to implement
features of the application domain. By doing this, you maintain the sound modular aspects of
your program.

Taken as a whole, the accessors of a BGO define a data flow graphic program. Data flow
programming is as powerful as the more classical control flow model used in programming
languages such as C++ or Java. However, data flow programming is better adapted to the
definition of small, graphic oriented programs.

To facilitate the definition of complex graphic behaviors, the Script accessor allows you to
define graphic or interactive behavior as an IBM ILOG Script program. This allows more
complex computations to be performed and gives access to the entire suite of
IBM ILOG Script features.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 112

usrtwodgraphics.book Page 113 Monday, July 27, 2009 4:56 PM
113 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 114 Monday, July 27, 2009 4:56 PM
2

Using IBM ILOG Views Studio to Create
BGOs

This chapter describes how the Prototypes extension lets you create composite graphic
objects and assign them an application interface, a graphic behavior, and an interactive
behavior through interactive, point-and-click editing. These graphic objects can then be
linked to domain-specific objects following the application interface, providing full
WYSIWYG, direct-manipulation editing of the domain objects.

You can find information on the following topics:

◆ Creating and Using Prototypes

◆ Loading and Saving Prototype Libraries

◆ Creating and Editing Prototype Instances in Panels

◆ Connecting Prototype Instances

Note: The chapters concerning the use of the Prototypes extension of IBM ILOG Views
Studio assume that you are familar with the information in the IBM ILOG Views Studio
User’s Manual.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 114

usrtwodgraphics.book Page 115 Monday, July 27, 2009 4:56 PM
Creating and Using Prototypes

The following topics related to creating and using prototypes are presented in this section:

◆ Creating a Prototype Library

◆ Creating a Prototype

◆ Defining the Attributes

◆ Drawing the Prototype

◆ Defining Graphic Behaviors

◆ Defining Interactive Behaviors

◆ Testing Your Prototype

◆ Saving a Prototype

Creating a Prototype Library

You will probably want to create your BGOs in libraries so that you can retrieve and
manipulate them all together.

To create a new prototype library, do the following:

1. From the File menu in the Main window, choose the command New > Prototype Library.

A file selector appears.

2. Select a directory for which you have write permission and enter the name of the new
library (it must have a .ipl extension). Click Save.

A new page, corresponding to the library you have just created, appears in the Palettes
panel.

Creating a Prototype

These are the tasks involved in creating a prototype:

◆ Defining the attributes of your prototype in the Interface page of the Group Inspector
panel.

◆ Drawing the graphic elements that make up the prototype in the Prototype buffer
window.

◆ Defining the graphic behavior of the prototype using the Group Inspector panel

◆ Defining the interactive behavior of the prototype using the Group Inspector panel.
115 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 116 Monday, July 27, 2009 4:56 PM
These tasks can be interleaved: at any point you can add, edit, or remove attributes, graphic
elements, or behaviors of the prototype.

Your prototype is created in a prototype buffer window. Before beginning these tasks:

1. Open a Prototype buffer window by selecting New > Prototype from the File menu.

2. Display the Group Inspector panel by selecting the Group Inspector from the Tools
menu.

Defining the Attributes

Use the following procedure to define and edit the external attributes (or “properties”) of
your prototype or group. (Properties determine how you will access your prototype or group
from your application or from other objects.)

1. Open the Interface page of the Group Inspector Panel. This page allows you to define a
set of attributes, giving each of them a type and a default value:

2. Choose Edit > New Attribute or Ctrl+N to add an attribute.

A new row "Unnamed" appears in the table.

3. To specify the name of the attribute, click the box Unnamed. Enter a name for this
attribute. This name must be unique to avoid ambiguities; it is used to access the
behavior of this attribute.

4. To specify the type of the attribute, click twice on the adjacent Type combo box (or press
F2 if using only the keyboard). Select the pull-down menu, which will let you specify a
type.

All attributes are typed: each type indicates the kind of values that can be assigned to the
attribute, which helps determine its meaning. The types available are:
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 116

usrtwodgraphics.book Page 117 Monday, July 27, 2009 4:56 PM
● Value - The attribute holds a value that can be set or queried directly (a string, a color,
an integer, and so on). When you set an attribute to a given value type, the combo box
will display this type directly.

● Reference - A reference to another internal attribute of the group. For instance,
creating an attribute named "temperature", and having it reference the "value"
attribute of a "slider" graphic object allows you to access the "value" internal attribute
of the slider under the more appropriate name of "temperature", which is helpful if the
group is to represent a thermometer. This is equivalent to a pointer or an alias in a
programming language. When you have set the type to reference, the referenced
attribute, prefixed with “^”, appears in the combo box that describes the attribute type.

● Grouping of attributes - All subattributes in the group bearing the name of the
attribute will be addressed collectively and assigned the same value. For instance,
creating an attribute named "foreground" and giving it the type "group" creates an
attribute that will set the foreground of all objects contained in the group to the same
value.

● Script - A script is executed. This script should return a value, which defines the
attribute. Use the Behavior page to change the name of the function that defines the
value. The name of the function, followed by “()”, appears when you choose this type
of attribute.

● NoType - Some attributes can be purely functional, and therefore untyped.

5. Enter a default value for the attribute in the Value column of the attribute.

6. To set other parameters of the attribute, use the buttons on the right side of the page.
When the button is released, the property is set:

● Public (button P in the inspector) - The attribute is visible by outside objects.
Attributes are public by default, but you can hide those attributes that are only used to
perform internal computations.

● Persistent (button R in the inspector) - The attribute value will be stored when the
group is saved, allowing the last value set by the user to be maintained. By default,
attributes are persistent. To optimize reading and writing, or to always restore the
attributes to the original state of the prototype when a file is read, you can set them to
non-persistent.

● Notifying (button N in the inspector) - When this is set, the attribute can notify other
attributes that it has changed its value and, therefore, enable other attributes to update
themselves. See section Notify.

Note: If an attribute has neither a type nor a behavior, it cannot exist. Therefore, setting
a type of "none" to an attribute after creating it is equivalent to deleting the attribute.
117 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 118 Monday, July 27, 2009 4:56 PM
7. Repeat steps 2 through 6 for each attribute you wish to add to provide a description of the
interface for your prototype.

Using the Edit Menu on the Interface Page

When specifying the interface of your prototype, you can also:

◆ Import the interface of another Prototype to add predefined attributes and behaviors from
that prototype:

Select Edit > Delegate To Prototype and choose from the available list the prototype
whose attributes you want to inherit.

A new attribute is created with the inherited attributes shown grayed-out in the table.
You cannot directly edit these inherited attributes, but you can reference them through
other attributes.

Some inherited attributes may already reference other attributes or graphic nodes, and
therefore you may find that not every prototype can be imported into another prototype.

◆ Order the attributes:

Select an attribute and choose Edit > Move Item Up or Edit > Move Item Down.

◆ Delete an attribute:

Select the attribute and choose Edit > Delete.

◆ Cut/Copy/Paste: You can copy or cut a whole attribute and its behavior by selecting the
first line of an attributes tree and selecting Edit > Copy or Edit > Cut. You can paste the
content of the attribute's clipboard by first selecting a line where you want the attribute to
be inserted, and then selecting Edit > Paste.

Using the View Menu on the Interface Page

This menu on the Interface page presents alternative views of the attributes of your group or
prototype, and allows you to select which types of attributes you want to edit for a given
group or prototype:

◆ Interface - Lets you access and edit all the attributes defined for the group or prototype.
This is the default presentation.

◆ Public Attributes - Shows only the public attributes of the prototype, those that can be
seen by other objects and by the application.

◆ Modified Values - Lists the values of a prototype instance that differ from its prototype.
These values will be saved together with the prototype instance.

◆ All Values - Lists all the prototype values and subvalues. These values can be modified,
but this does not mean that the modifications will be saved with the prototype if some
other behaviors override the new settings.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 118

usrtwodgraphics.book Page 119 Monday, July 27, 2009 4:56 PM
Drawing the Prototype

Define the graphic presentation of your prototype using the Prototype buffer window:

◆ You can drag and drop graphic objects into the buffer and use the editing modes to create
lines, polygons, and so on: a Prototype buffer window has all the properties of the
IBM ILOG Views Studio 2D Graphics buffer window.

◆ As you draw your prototype, you can see its structure in the Graphics page of the Group
Inspector panel, shown in addition to the Main window. Figure 2.1 shows an example of
this. The list of graphic nodes appears organized from bottom to top. As you add graphic
objects to the prototype, the tree structure is updated. You can select graphic nodes either
directly in the Prototypes buffer window (as you do in IBM ILOG Views Studio) or in
the tree that appears in the Group Inspector panel.

Figure 2.1

Figure 2.1 The Graphics Notebook Page of the Group Inspector Panel
119 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 120 Monday, July 27, 2009 4:56 PM
Editing Prototype Nodes

You can use the fields on the Graphics page of the Group Inspector (see Figure 2.2) to
change a number of properties associated with the elements (or nodes) in your prototypes:

Figure 2.2

Figure 2.2 The Graphics Notebook Page of the Group Inspector Panel

◆ If the selected node is a graphic node, the properties only apply to this particular node.

◆ If the selected node is a group node—that is, the root node of the prototype, a subgroup
of the prototype, or a prototype instance—the properties apply to all the child graphic
nodes of the selected group.

The following table describes the fields found on the Graphics notebook page:

Table 2.1 Fields of the Graphics Notebook Page of the Group Inspector Panel

Field Description

Node name This text field is used to change the name of the node. You
can also use the Name field of the Generic Inspector in the
IBM ILOG Views Studio Main window.
Note: Nodes should contain only alpha-numeric
characters (A-Z, a-z, 0-9).

(V) Visible This toggle controls the visibility of the graphic object in the
prototype.

(H) Hidden in application If this button is set, the selected graphic object is visible only
while editing the prototype or its instances in
IBM ILOG Views Studio. The object is hidden in the final
application. This property can be used to create
intermediate “computing” prototype instances such as those
of the “operations” prototype library.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 120

usrtwodgraphics.book Page 121 Monday, July 27, 2009 4:56 PM
Structuring Prototype Nodes

To structure your prototype, you can group graphic nodes into subgroups. This may be
useful when you define your prototype accessors; for example, when you want to rotate a
group of objects or change their color. To create a subgroup:

1. In the Prototype buffer window, select the graphic objects you want to group.

(N) Grapher node If this button is set, the graphic object is added as a grapher
node when the prototype is instantiated in a grapher. This
allows you to use prototype instances as grapher nodes.
(This button is deprecated and included for compatibility
reasons.)

(T) Transformed This button controls whether a transformer is associated
with the graphic node to ensure that the graphic object can
be transformed arbitrarily without distortions. Without a local
transformer, some IBM ILOG Views objects lose their
original geometry when they are resized. Using a local
transformer ensures that the geometry of objects is not
modified by geometric transformations. On the other hand,
using a local transformer consumes more memory.
If you select this button, remember that you must use the
standard Selection mode to inspect the graphic object of the
node. If you use the Group Selection mode, the selected
object is an instance of a subclass of
IlvTransformedGraphic and cannot be inspected.

(B) Bounded Size If set, this flag restricts the zoomability of the objects. Setting
this flag and leaving mZ and MZ to 0 is equivalent to setting
both of them to 1. It is, however, more efficient. If Bounded
Size is set, and mZ or MZ are not 0, this flag makes the
objects disappear if the zoom factor of the view of the
instance is greater than MZ or less than mZ.

(mZ) Min. Zoom If not zero, this attribute limits the minimum size an object
can have. When the scaling factor of the view holding the
object is below this value, the object does not get any larger.
If Min. Zoom and Max. Zoom are set to the same value, the
object never grows or shrinks in size. If they are set to 1,
they stay at the size at which they were created.

(MZ) Max. Zoom If not zero, this attribute limits the maximum size an object
can have. When the scaling factor of the view holding the
object is above this value, the object does not get any larger.

Table 2.1 Fields of the Graphics Notebook Page of the Group Inspector Panel (Continued)

Field Description
121 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 122 Monday, July 27, 2009 4:56 PM
2. From the Draw menu select Group.

The objects are grouped into an instance of the class IlvGroup and a subgroup node is
created in the prototype. The node tree shows the structure change.

Using the Group Selection mode, subgroups can be selected and moved as a whole. This
mode shows the selected group by drawing a dashed-line frame around the group. You are
still able to select individual graphic objects inside subgroups with the standard Selection
mode.

To include instances of other prototypes in the prototype you are editing:

1. If not already open, activate the Prototypes palette by choosing Palettes from the Tools
menu.

2. Select the desired prototype library.

3. Drag and drop the prototype into the Prototype buffer window. The Nodes page of the
Prototype Inspector will show a new node, similar to a subgroup node, for the prototype
instance.

Having added objects, you may return to the Interface page to define new attributes that
reference the internal nodes, or go to the Behavior page to define dynamic behaviors for the
prototype.

Defining Graphic Behaviors

Define the graphic behaviors of your prototype using the Behavior page of the Group
Inspector (see Figure 2.3). The graphic behaviors determine how the modification of an
attribute affects the visual aspect of your prototype. For each attribute, you can add
behaviors: these are instructions that will be performed each time the value is modified.

Figure 2.3

Figure 2.3 The Behavior Notebook Page of the Group Inspector

To add a behavior:

1. Select an attribute in the list.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 122

usrtwodgraphics.book Page 123 Monday, July 27, 2009 4:56 PM
2. From the Control, Display, or Misc menus, select a behavior to be added:

● Control behaviors enable the change of one attribute to trigger changes of other
attributes, conditionally or not. For instance, if you want a thermometer to appear red
when the temperature is above a given threshold, add a Condition accessor on the
temperature attribute that assigns red to the foreground value of the gauge.

● Display behaviors enable you to change graphic properties of objects, such as
rotation, zoom, and visibility, or perform animations of objects.

In addition, you can have attributes notify others of their changes, so that the graphic
appearance of the group or prototype can be fully adjusted when one attribute changes its
value. The Notify behavior, from the Control menu, can tell other attributes watching it that
they should execute their behavior, while the Watch behavior, from the Misc menu, allows
one attribute to indicate that it observes another attribute.

The exact effects of all predefined behaviors are described in Predefined Accessors.

Alternatively, you can access this page via online help. Select Help from the menu bar.
Select a behavior in the Control, Display, or Misc menus and a help page describing the
effect of the behavior will appear in the left-hand pane of the panel.

Using the Edit Menu of the Behavior Page

From the Behavior page, you can also:

◆ Add intermediate or hidden attributes that will be used in intermediate states of the
computation:

1. Select Edit > New Attribute to add an attribute.

A new unnamed attribute appears.

2. Set its name and type, as on the Interface page.

3. When the attribute is selected, one or more behaviors can be added to it.

◆ Cut/Copy/Paste behaviors. You can copy or cut a whole attribute and its behaviors by
selecting the first line of an attributes tree and selecting Edit > Copy or Edit > Cut, or
copy or cut a single behavior only by selecting the behavior's line and then Edit > Copy
or Edit > Cut. You can paste the content of the attribute's clipboard by first selecting a
line where you want the attribute to be inserted, and then selecting Edit > Paste.

◆ Delete selected attributes, behaviors, or parameters with Edit > Delete.

◆ Move behaviors up or down. Behaviors are triggered from the top to the bottom. You can
decide in which order they are to be triggered.

Setting Accessor Parameters

Depending on its class, a behavior may require additional parameters to be fully defined.
Behavior parameters are edited in the matrix to the right of the Attributes Tree:
123 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 124 Monday, July 27, 2009 4:56 PM

The Group Inspector is designed so that you can define complex behaviors for your
prototypes by simply selecting parameter values in combo boxes or dialog boxes.

Each matrix row corresponds to a parameter:

◆ The left column contains the parameter label.

◆ The right column contains the parameter values.

When a behavior is added, a parameter matrix is initialized with default or empty values that
may need to be filled with appropriate values.

To edit a parameter value, click twice on the corresponding item in the matrix. This creates
an editing field on top of the value item, which is either a combo box or a text field (see
Figure 2.4). The combo box is initialized with relevant values for this parameter.

Figure 2.4

Figure 2.4 A Combo Box With an Example of a Default Value
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 124

usrtwodgraphics.book Page 125 Monday, July 27, 2009 4:56 PM
There are four types of parameter, as shown in the following table:

For input parameters, the editing field is a combo box that contains a tree of accessors, as
well as two special items at the beginning of the tree:

Table 2.2 Behavior Parameters

Parameter Type Description Symbol

Literal/Explicit The value is a string or an enumerated type that must
be specified explicitly.

(e)

Input The value is queried when the accessor is evaluated.
These values can be a constant (a string or a
number), a reference to other attributes, or an
expression that is a combination of constants and
references.

Output The value is changed when the behavior is evaluated.
(A call to the changeValue method is made.) Hence,
the value must be a name that references either an
existing attribute of the prototype.

Object/Node The value of the parameter must be the name of an
existing node. Some accessors accept only certain
kinds of objects as a parameter. For instance, display
behaviors act only on graphic nodes.
125 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 126 Monday, July 27, 2009 4:56 PM
◆ [Immediate value] - When this item is selected, the editing field is set up to edit an
immediate parameter value. If the value type can be determined, a value selector (that is,
either a combo box or a resource selector) is created. You can also type the immediate
value directly. If the value is not a number or a Boolean value, the value can be in double
quotes (for example, you must enter a color as "red"). The value can also be an
expression.

◆ [All types / Matching types] - This item toggles between the two values. [All
types] lists all the accessors, even those whose type does not match the expected type.
[Matching types]lists only the accessors whose type matches the expected type for
the value. It is generally better to edit parameter values from top to bottom, because the
editing field is often initialized using information available from the preceding fields.

Input parameters expressions can contain:

◆ Constants: numeric or strings literals (to be placed between quotation marks)

◆ Variables: prototype values or node attributes

◆ Arithmetic operators and parentheses: (+, -, *, **, /, %, ==, !=, >, >=, <, <=, &&, ||)
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 126

usrtwodgraphics.book Page 127 Monday, July 27, 2009 4:56 PM
◆ Predefined functions: abs, acos, asin, atan, ceil, cos, exp, floor, log, rand, rint, round, sin,
sqrt, tan. (See your standard C/C++ library user’s manual to get the meaning of these
functions.)

Notifying behaviors have the side effect of propagating the value of the attributes to their
watching attributes instead of simply setting it. In this case, the behaviors of the watching
attributes are evaluated in sequence. Such behaviors (Trigger accessors) show an outward
arrow on top of their Output parameter, and the values they are connected to show an inward
arrow:

Some behaviors can have a variable number of parameters. These accessors are identified by
their last row of the parameters column, which indicates “<<Click to add item>>”. To create
a new row in the editing matrix of the Group Inspector for these behaviors, press the Enter
key in the value field of the last parameter or simply click in the indicated field.

Defining Interactive Behaviors

Add user behaviors using the Interaction page of the Group Inspector, to determine how user
actions affect the attributes of your prototype:

Note: Unlike its C / C++ equivalent, rand takes an integer argument. A non-zero
argument is used by the random number generator as a seed when producing a random
number. Otherwise, rand(0) returns the next integer in the random sequence started the
last time the random generator was initialized.
127 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Creating and Using Prototypes

usrtwodgraphics.book Page 128 Monday, July 27, 2009 4:56 PM
Figure 2.5

Figure 2.5 The Interaction Page of the Group Inspector.

This page works the same way as the Behaviors page and displays a list of behaviors. The
page starts blank, as only the behaviors that are triggered by user actions are displayed in
this page.

For each attribute, you can add behaviors, which are instructions to be performed each time
the value is modified:

1. Choose an item in the Events menu to add an interactive behavior:

● If the user action comes from a callback, select Events > Callback to add a behavior
that will be triggered by some object interactor and callback.

● Otherwise, to directly handle user events such as button clicks, select Events > Event
to add a behavior that will be triggered by simple user events.

2. Enter the parameters for each added behavior.

3. Once you have added the triggering accessor, you can add behaviors that will be
triggered by the user action by adding Control > item or Display > item behaviors, just as
you did for the graphic behaviors.

It is generally a good idea to have the interaction accessors modify only the public attributes
of your prototype, relying on that modification to update all the display behaviors.

Editing a Prototype

Once you have created and saved a prototype, you can edit it again by selecting the
prototype in the palette, and choosing View > Edit Group (Ctrl+E). All the changes you
make will be propagated to the instances you have created when you save it.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 128

usrtwodgraphics.book Page 129 Monday, July 27, 2009 4:56 PM
For instance, you can select the “bulb” prototype in the “samples” palette, and double click
on its icon: the Prototype edition buffer is opened, and the group inspector allows you to edit
its interface and behaviors.

Testing Your Prototype

Once you have defined behaviors for a prototype, you can test them by changing the
prototype attributes:

1. Select the Interface page in the Group Inspector.

2. To set an attribute value, click the matrix item.

3. Depending on the type of value, a combo box, a resource selector, or a simple text field is
created. Clicking with the right mouse button displays the list or the selector (if any) in a
single click.

4. The prototype value is changed through a call to the changeValue method when you
press the Enter key after editing the field, or when you move to another field after editing
the value.

This allows you to test how the graphic representation of your prototype changes as you set
its attributes to different values.

To test the interactive behavior of your prototype:

1. Switch to the active mode, as is possible for all panels.

2. By clicking and dragging on various items of your prototypes, you can see in the Group
Inspector panel how the attributes are affected by the interactions you define.

Saving a Prototype

To add a prototype to an existing library:

1. Choose the Save As command from the File menu.

2. If the prototype was not already part of a library, Prototypes Studio asks if you want to
add your prototype to a prototype library. Click Yes.

3. From the dialog box displayed, select the library to which you want to add the prototype.

4. In the subsequent dialog box enter the name of the prototype.

To save your prototype elsewhere than in a prototype library:

1. Choose the Save As command from the File menu.

2. Answer No to the question ‘Save the prototype in a library?’
129 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Loading and Saving Prototype Libraries

usrtwodgraphics.book Page 130 Monday, July 27, 2009 4:56 PM
3. A file selector dialog box appears and asks for a file name. Specify a name with a .ivp
extension.

If you make additional changes to your prototype, you can save it again in the same
prototype library or to the same file using the Save command from the File menu.

You can move the prototype to a different library, give it a different name, or remove it from
its library with the Save As command.

When a prototype is saved, all the panels containing instances of that prototype are updated
with the new prototype definition.

Loading and Saving Prototype Libraries

To load a prototype library:

1. Choose Open from the File menu.

2. Select Prototype libraries (*.ipl) in the box for file type.

3. Browse to find the name of the library file you want to load.

Once the library is loaded, it is added as a new palette in the Prototypes palette of the
Palettes panel.

You do not need to save a prototype library each time you create or edit a prototype. A
prototype library is saved automatically as necessary while you edit your prototypes.

To change the name of the current prototype library (that is, the library name that is
displayed in the visible page of the Prototypes Palette):

1. Use the command Save Prototype Library As... from the File menu.

2. Select the new directory and name of the prototype library file (with a .ipl extension).

The prototype library name changes accordingly and all the prototypes of the library are
saved in the new directory.

Note: A prototype which is not contained in a prototype library does not appear in the
Prototypes Palette, so you cannot create instances of this prototype in panels from within
IBM ILOG Views Studio. It is strongly suggested that you use prototype libraries instead of
saving each prototype in its own file.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 130

usrtwodgraphics.book Page 131 Monday, July 27, 2009 4:56 PM
You can close a prototype library that you no longer need by choosing Close Prototype
Library from the File menu. This command removes the library currently displayed in the
Prototypes palette.

Creating and Editing Prototype Instances in Panels

This section explains how to instantiate the prototypes that you have defined or loaded, in
order to create panels.

Choosing a Buffer Type

Prototypes Studio has 2 types of buffer windows that can be made into panels: 2D Graphics
and Grapher. When the Gadgets extension is installed, a Gadget buffer window is also
available.

◆ Use a 2D Graphics buffer window for graphics-intensive applications: that is, if your
prototypes contain 2D graphic objects such as lines, rectangles, and splines.

◆ Use a Grapher buffer window if you need Grapher features to connect graphic objects in
prototype instances, using Grapher links.

◆ If you have the IBM ILOG Views Controls package and your prototypes contain gadgets,
use a Gadget buffer window.

To create a panel in which to use prototype instances, choose the appropriate buffer type
from the menu File > New.

Creating a Prototype Instance

To create a prototype instance:

1. Select a prototype library in the upper pane of the Palettes panel.

2. Drag the icon of the desired prototype to the buffer window.

OR:

1. Click the icon representing a prototype to select it.

2. Click and drag a rectangle in a buffer window. An instance of the prototype whose
bounding box is defined by the rectangle you just drew will be created.

The prototype is instantiated in the form of an IlvProtoGraphic object encapsulating the
prototype instance.

Note: The prototypes contained in the library are not actually deleted in memory; they can
still be referenced in panels or in other prototypes.
131 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Connecting Prototype Instances

usrtwodgraphics.book Page 132 Monday, July 27, 2009 4:56 PM
Editing Prototype Instances

Prototype instances are edited using the Group Inspector. To display the Group Inspector,
choose Group Inspector from the Tools menu or double-click a prototype instance. When an
instance is selected, its attributes are displayed in the Attributes notebook page of the Group
Inspector.

Loading and Saving Panels

Panels containing prototype instances are loaded and saved as standard .ilv files using the
Open, Save, and Save As commands from the File menu.

Connecting Prototype Instances

Prototypes can define notifying attributes that can be connected to the attributes of instances
of other prototypes. This means that when a notifying attribute is modified, its value is
assigned to the attributes of the objects it is connected to.

To connect attributes of prototype instances:

1. Select the Group Connection mode from the Editing Modes toolbar:

2. Click in the prototype instance that defines the notifying attribute (the value that you
want to be sent).

3. Drag the connection line to the instance to which you want to connect this attribute (the
instance that you want to be notified of attribute modifications).

The Connect two values dialog box is displayed:

Note: The Behavior and Interaction pages are disabled for prototype instances. They can
only be used when editing prototypes. See Defining Graphic Behaviors for an explanation
on how to edit accessor values with the Group Inspector.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 132

usrtwodgraphics.book Page 133 Monday, July 27, 2009 4:56 PM

4. In the left hand pane, select the notifying attribute from the first instance.

5. In the right hand pane, select the input attribute for the second instance.

There can be several connections between the same two objects. When the Group
Connection mode is active, existing connections are displayed as green lines. If you click a
green line, the connection details (that is, the names of the output and input values) are
displayed.

To delete a connection:

1. Double-click the connection line.

A Delete Connection dialog box appears.

2. Select the connection you want to delete, and click Apply.

The next chapter will describe how to link protoypes to application objects, defined in C++
code.
133 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 134 Monday, July 27, 2009 4:56 PM
3

The User Interface and Commands

This chapter introduces you to the Prototypes extension of IBM® ILOG® Views Studio, an
extension designed to facilitate the development of fully interactive graphical user interfaces
of domain-specific application objects.

You can find information on the following topics:

◆ Overview

◆ The Main Window

◆ The Palettes Panel

◆ Group Inspector Panel

◆ Prototypes Extension Commands

Overview

The Prototypes extension of IBM® ILOG® Views Studio allows you to define complex
graphic objects, called prototypes, by interactively assembling IBM® ILOG® Views

Note: The chapters concerning the use of the Prototypes extension of IBM ILOG Views
Studio assume that you are familar with the information in the IBM ILOG Views Studio
User’s Manual.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 134

usrtwodgraphics.book Page 135 Monday, July 27, 2009 4:56 PM
graphic objects. Behaviors can be attached to these prototypes to define the whole graphical
and interactive part of your application.

The prototypes can be instantiated and used as basic building blocks for application
windows, object inspectors, or direct-manipulation interfaces, that is, when each application
object is directly tied to an interactive graphical representation.

IBM ILOG Views Studio with the Prototypes extension defines a new workflow to build
highly interactive user interfaces: you develop the interactive part of your application in a
graphical editor, store it in libraries, and then link it with your core functionality written in
C++.

Launching IBM ILOG Views Studio With the Prototypes Extension

If you have installed the 2D Graphics Pro package, the Prototypes extension is automatically
loaded when IBM ILOG Views Studio is launched. The extension is called smproto in the
configuration file. A compatibility extension enabling now deprecated features can also be
used: smoldpro. This manual describes only the features of the smproto extension. To
install or uninstall these extensions, see the section on Loading Plug-Ins in Introducing
IBM ILOG Views Studio.

The Main Window

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
as follows:
135 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

The Main Window

usrtwodgraphics.book Page 136 Monday, July 27, 2009 4:56 PM
Figure 3.1

Figure 3.1 IBM ILOG Views Studio Main Window with Prototypes Extension at Start-up

The Main window appears much as it does when only the IBM ILOG Views Studio
Foundation package is installed. However, you will notice that with the Protoypes package
you have access to additional buffer windows, additional palettes in the Palettes panel, and
additional items in the menu bar and toolbars of the interface. These are now briefly
presented.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 136

usrtwodgraphics.book Page 137 Monday, July 27, 2009 4:56 PM
With the Prototypes extension of IBM ILOG Views Studio, you can edit the following types
of buffers:

◆ 2D Graphics

◆ Grapher

◆ Prototypes

An empty 2D Graphics buffer is displayed by default when you launch IBM ILOG Views
Studio.

As you switch between the buffers currently loaded in the Main window, you will notice that
each buffer type has its own set of editing modes. When you change the current buffer, the
editing modes available as icons in the toolbar change accordingly.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundation package. It allows you to edit the
contents of an IlvManager or an IlvContainer. It uses an IlvManager to load, edit, and
save objects.

To create a new 2D Graphics buffer window:

1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

To open this window, you can also execute the NewGraphicBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvManager, a 2D Graphics buffer
window is automatically opened.

The Grapher Buffer Window

The Grapher buffer window lets you edit the contents of an IlvGrapher. It uses an
IlvGrapher to load, edit, and save nodes and links.

To create a new Grapher buffer window:

1. Choose New from the File menu.

2. Then choose Grapher from the submenu that appears.

To open this window, you can also execute the NewGrapherBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvGrapher, a Grapher buffer
window is automatically opened.
137 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

The Main Window

usrtwodgraphics.book Page 138 Monday, July 27, 2009 4:56 PM
The Prototypes Buffer Window

The Prototypes buffer window is used to create and manipulate your prototypes. Graphic
objects, and Prototypes, can be dragged from a Palettes panel to an active Prototypes buffer
window.

To open a new Prototypes buffer window:

1. Choose New from the File menu.

2. Then choose Prototype from the submenu that appears.

Alternatively, when you double-click a Prototype in a Prototypes palette, a Prototypes buffer
window is automatically opened to allow you to modify it or inspect its attributes and
behaviors.

The Menu Bar

When the Prototypes package is installed, additional commands are available through the
menu bar in the Main window.

Figure 3.2

Figure 3.2 IBM ILOG Views Studio Prototypes Extension Menu Bar

The following tables summarize the additional commands that you can execute through the
menu bar. For details on these commands, see Prototypes Extension Commands, where they
are listed in alphabetical order.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 138

usrtwodgraphics.book Page 139 Monday, July 27, 2009 4:56 PM
File Menu Commands

Draw Menu Commands

Tools Menu Command

View Menu Command

The Action Toolbar

The Action toolbar remains unchanged from the Foundation package.

Menu Item Command

New > Prototype NewPrototypeEditionBuffer

New > Prototype Library... NewProtoLibrary

New > Prototype Grapher NewPrototypeGrapherBuffer
Note: This is a deprecated command and is
provided purely for compatibility with earlier
versions.

Save Prototype Library as... SaveProtoLibraryAs

Close Prototype Library CloseProtoLibrary

Menu Item Command

Group GroupIntoGroup

Edit Prototype EditPrototype

Delete Prototype DeletePrototype

Menu Item Description

Group Inspector This opens the Group Inspector of the currently
selected prototype instance or IlvGroup object.

Menu Item Command

Toggle Animation Timers ToggleTimers
139 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

The Palettes Panel

usrtwodgraphics.book Page 140 Monday, July 27, 2009 4:56 PM
The Editing Modes Toolbar

The Prototypes extension of IBM ILOG Views Studio contains an editing mode in addition
to the regular IBM ILOG Views Studio editing modes:

Group Connection Mode

Use the Group Connection mode for connecting the values of prototype instances.
The Connection mode is used to define connections between prototype

instances.See Connecting Prototype Instances.

The Palettes Panel

The Prototypes palette is included in the Palettes panel, as shown in Figure 3.3. It shows the
various prototype libraries that you have defined or loaded, and allows you to instantiate
prototypes by dragging their icons to Prototype buffers. Prototypes are manipulated like
other graphic objects. Each library defines its own panel in the Palettes panel.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 140

usrtwodgraphics.book Page 141 Monday, July 27, 2009 4:56 PM
Figure 3.3

Figure 3.3 The Palettes Panel Showing the samples Prototype Library

When the Prototypes extension is installed, IBM ILOG Views Studio loads the following
libraries at start-up:

To open one of these prototype libraries, go to the upper pane of the Palettes panel and click
the name in the Prototypes palette.

Library Description

samples Sample library loaded at start-up.

sources Prototypes containing value sources.

output Prototypes containing gadgets and defining output values.

lcd LCD displays (one digit and four digits).

operations Prototypes that can be used to connect prototypes and execute
operations on their values.

script Prototypes that use script accessors.
141 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Group Inspector Panel

usrtwodgraphics.book Page 142 Monday, July 27, 2009 4:56 PM
You can look at any prototype definition by double-clicking the prototype icon. This will
load the prototype into a Prototype buffer window and open a Group Inspector panel.

The <ILVHOME>/samples/protos directory provides other samples of how to use
prototypes.

Group Inspector Panel

The Prototypes extension provides an additional panel to let you define the interface and the
graphic and interactive behaviors of your prototypes, as shown in Figure 3.4. It can also be
used to customize groups and prototype instances.

Figure 3.4

Figure 3.4 The Group Inspector Panel

Access to Panel

The panel is accessed by one of the following methods:

◆ Choosing Group Inspector from the Tools menu.

◆ Creating a new Prototype buffer window.

◆ Double-clicking a prototype in a Prototypes buffer window.

◆ Choosing Commands from the Tools menu, selecting the ShowGroupInspector
command in the list, and clicking Apply.

Group Inspector Elements

The Group Inspector panel has four notebook pages:

Note: When you load a panel file that contains prototype instances, the required prototype
libraries are automatically loaded in the Prototypes palette.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 142

usrtwodgraphics.book Page 143 Monday, July 27, 2009 4:56 PM
◆ The Attributes page is used to define the attributes of a prototype and to customize
prototype instances.

◆ The Graphics page is used to display and edit the graphic objects composing a prototype.

◆ The Behavior page is used to define the graphic behavior of a prototype.

◆ The Interaction page is used to define the interactive behaviors of a prototype.

Full context-sensitive hypertext help is available when you click Help on the inspector. This
help page can be hidden by clicking the Close Help button.

The features of the Group Inspector panel are detailed in Creating and Using Prototypes.

 Prototypes Extension Commands

This section presents an alphabetical listing of the additional, predefined commands that are
available in the Prototypes extension of IBM® ILOG® Views Studio. (All of the
IBM ILOG Views Studio Foundation commands are available as well.) For each command,
it indicates its label, how to access it if it is accessible other than through the Commands
panel, the category to which it belongs, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commands icon in the Action toolbar.

CloseProtoLibrary

ConvertProtoManager

Label Close Prototype Library

Path Main window: File menu

Category prototypes

Action Closes the prototype library currently displayed in the Palettes panel.

Label Convert ProtoManager

Path Convert ProtoManager: Edit menu
143 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Prototypes Extension Commands

usrtwodgraphics.book Page 144 Monday, July 27, 2009 4:56 PM
DeletePrototype

EditPrototype

GroupIntoGroup

Category prototypes

Action Creates a new regular Studio buffer that copies the content of the currently
active Prototype instance buffer. This command uses the
IlvPrConvertProtoManager function to perform the conversion. It is
meant to help in switching from Views 3.1 prototypes to the more recent API.

Label Delete Prototype

Path Main window: Edit menu

Category prototypes

Action Removes the selected prototype from its library.

Label Edit Prototype

Path Main window: Edit menu

Category prototypes

Action Edits the selected prototype in a new Prototype buffer window, and opens the
Group Inspector panel for the prototype instance.

Label IlvGroup

Path Main window: Draw menu > Group

Category prototypes

Action Groups the selected objects into an IlvGroup.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 144

usrtwodgraphics.book Page 145 Monday, July 27, 2009 4:56 PM
NewProtoLibrary

NewPrototype

NewPrototypeEditionBuffer

NewPrototypeGrapherBuffer

Label Prototype Library...

Path Main window: File menu > New

Category prototypes

Action Creates a new prototype library. This library is visible in the Palettes panel.
A file selector dialog box is opened to choose the library file (.ipl).

Label New Prototype

Path Main Window: File menu > New

Category prototypes

Action Creates a buffer window used to draw and edit prototypes.

Note: This is a deprecated command and is provided purely for compatibility with earlier
versions.

Label Prototype

Path Main window: File menu > New

Category prototypes

Action Creates a buffer window used to draw and edit prototypes.

Label Prototype Grapher

Path Main window: File menu > New
145 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Prototypes Extension Commands

usrtwodgraphics.book Page 146 Monday, July 27, 2009 4:56 PM
OpenProtoLibrary

SaveProtoLibraryAs

SelectGroupConnectionMode

Category prototypes

Action Allows you to create an instance of an IlvProtoGrapher class.

Note: This is a deprecated command and is provided purely for compatibility with earlier
versions.

Label Open Prototype Library...

Path Main window: File menu > Open

Category prototypes

Action Opens a prototype library file. A selection dialog box is opened to choose the
.ipl file to open.

Label Save Prototype Library As...

Path Main window: File menu

Category prototypes

Action Saves a copy of the currently selected prototype library to a different file.

Label Group Connection

Path Editing Modes toolbar

Category prototypes

Action Selects the Group Connection mode.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 146

usrtwodgraphics.book Page 147 Monday, July 27, 2009 4:56 PM
SelectGroupSelectionMode

SelectNodeSelectionMode

ShowGroupEditor

ToggleTimers

Label Group Selection

Path Editing Modes toolbar

Category prototypes

Action Selects the Group Selection mode.

Label Node Selection

Path Editing Modes toolbar

Category prototypes

Action Selects the Node Selection mode in a Prototype buffer. This mode lets users
select and inspect graphic nodes while editing a prototype.

Label Group Inspector

Path Tools menu

Category prototypes

Action Shows/hides the Group Inspector panel.

Label Toggle Animation Timers

Path View menu
147 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Prototypes Extension Commands

usrtwodgraphics.book Page 148 Monday, July 27, 2009 4:56 PM
UngroupIlvGroups

Category prototypes

Action Turns on or off the animation timers of the prototype's animation accessors,
thereby allowing you to edit the prototype and then test its behavior.

Label Ungroup

Path Main window: Draw menu

Category prototypes

Action This command replaces the generic Ungroup command to take into account
IlvGroup objects.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 148

usrtwodgraphics.book Page 149 Monday, July 27, 2009 4:56 PM
149 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 150 Monday, July 27, 2009 4:56 PM
4

Using Prototypes in C++ Applications

This chapter explains how to use prototypes in your C++ applications. It is divided as
follows:

◆ Architecture

◆ Writing C++ Applications Using Prototypes

◆ Linking Prototypes to Application Objects

◆ Advanced Uses of Prototypes

Architecture

The Prototypes package is defined on top of the IBM® ILOG® Views Foundation package
and allows you to perform the following tasks:

◆ Assemble elementary graphic objects into groups (class IlvGroup).

◆ Specify the behavior of your groups using predefined accessor objects or scripts.

◆ Define prototypes and create prototype instances in managers. Prototypes are instances
of a subclass of IlvGroup called IlvPrototype.

◆ Connect properties between prototype instances.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 150

usrtwodgraphics.book Page 151 Monday, July 27, 2009 4:56 PM
◆ Link application objects and prototype instances.

The architecture of the Prototypes package is shown in Figure 4.1:

Figure 4.1

Figure 4.1 Architecture of the Prototypes Package

Groups

Groups are the basic components of the Prototypes package.

To create a BGO with the Prototypes package, you must first assemble basic
IBM ILOG Views graphic objects to build a group. You can use any IBM ILOG Views
graphic object in a group. You can also create subgroups to build structured objects.

A group is represented in C++ by the IlvGroup class. An IlvGroup object contains a
hierarchy of nodes, represented by the following subclasses of the IlvGroupNode class:

◆ An IlvGraphicNode is a node that holds a graphic object (an instance of a subclass of
IlvGraphic). A group contains one graphic node for each of its graphic elements.
151 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Architecture

usrtwodgraphics.book Page 152 Monday, July 27, 2009 4:56 PM
◆ An IlvSubGroupNode holds a subgroup, that is, a group contained in another group.
This class is used to create object hierarchies.

Attributes and Accessor Objects

The Prototypes package lets you define not only the graphic appearance of your objects, but
also their behavior. The behavior of a group is controlled by its attributes (also called
properties). These attributes bear distinct names and represent the external interface of the
group, that is, how its appearance will be controlled from your application.

The attributes of a group and their behaviors are defined in accessor objects. Each accessor
object has a name and a type and implements the effect of setting and/or retrieving the value
for the group. Several accessor objects can have the same name, which means they belong to
the same attribute. This means that setting an attribute value can have several side effects.

Accessors can be linked to other attributes of objects or to application data. They define state
or appearance changes in response to user events or application instructions and, by
extension, specify the graphic and interactive behavior of objects. Accessor objects are
instances of subclasses of IlvAccessor.

In other words, the relationship between accessor objects and values is the following:

◆ You interact with a group through its attributes.

◆ A group has a set of accessor objects attached to it. Each accessor object is associated
with a name, which defines an attribute (or facet) of the BGO.

◆ The IlvGroup::changeValue method calls the changeValue methods of all the
accessor objects of a given name, thereby setting the attribute value.

◆ The IlvGroup::queryValue method calls the queryValue methods of all the
accessor objects of a given name, thereby getting the attribute value.

◆ The effect of each behavior class is defined by the implementation of its changeValue
and queryValue methods.

◆ Some accessors can be set through user interaction or by the application, thereby
triggering other behaviors in a chain.

Notes: IlvGroup objects are different from IlvGraphicSet objects. An IlvGroup is a
logical hierarchy of graphic objects that are contained in a manager. Unlike
IlvGraphicSet, IlvGroup is not a subclass of IlvGraphic. An IlvProtoGraphic is
a subclass of IlvGraphic intended to encapsulate an IlvGroup to place it in a manager
or container.

A third class of IlvGroupNode, called IlvValueSourceNode, is still present in the
package, but its use is deprecated.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 152

usrtwodgraphics.book Page 153 Monday, July 27, 2009 4:56 PM
The relationship between accessor objects and attributes/behaviors in a group is shown in
Figure 4.2:

Figure 4.2

Figure 4.2 Relationship Between Accessor Objects, Attributes, and Behaviors

This example shows a group representing a gauge. The gauge has two attributes: speed and
max.

◆ The speed attribute is implemented by two accessor objects, each having a graphic
behavior:

● A Rotation accessor object—when the speed attribute is changed, this accessor
object rotates the needle of the gauge.

● A Condition accessor object—when the speed attribute is changed, this accessor
object changes the color of the circle if the value is greater than 30.

◆ The max attribute is implemented by a Reference accessor object, which references a
property of a basic graphic object at the group level. When the max attribute is changed,
this accessor object changes the maximum speed of the scale graphic object.

The following types of accessors can be attached to an attribute:

◆ Data accessors - State how a data item is to be stored (locally or in a node) and what its
type is. They are comparable to variable declarations in a regular programming
language. Only one of these accessors should be present for each attribute.

◆ Control accessors - Perform conditional instructions, evaluations, and assignments
based on other attributes. They take input parameters and can have output effects on
other parameters. Typical examples are the Condition accessor, for the conditional
assignment, and the Toggle accessor.

◆ Notifying accessors - Define the entry points of evaluation cycles. Either the application
(when it does a pushValue) or the user (when a callback triggers a Callback accessor)
can “push” values, forcing the accessors to handle them. Connections between attributes
can be made to propagate the evaluation to other values by means of the Watch and
Notify accessors.
153 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Architecture

usrtwodgraphics.book Page 154 Monday, July 27, 2009 4:56 PM
◆ Display accessors - Define a side effect of the attribute on the visual presentation of the
nodes of the group. They correspond to calls to the drawing library in a programming
language. When they are set, they change graphic properties, such as rotating a node or
changing the visibility of a graphic component.

◆ Animation accessors - A special case of display accessors that periodically change a
graphic attribute.

◆ Miscellaneous accessors - Consist of two accessors that do not fit into the previous
categories: the Debug accessor and the Delegate to Prototype accessor.

You will find a full description of all the predefined accessor classes in the section
Predefined Accessors.

Accessor Parameters

Accessors define a side effect that is performed on another object or attribute when a given
attribute is set. This means that, as with a function in a programming language, an accessor
has to take parameters to customize its effects. A description of the four types of parameters
that accessors can have is presented in Table 4.1.

Input parameter expressions can contain:

Table 4.1 Accessor Parameters

Parameter Type Description

Direct parameters The value is a string or an enumerated type that
must be specified explicitly.

Input parameters The value is queried when the accessor is
evaluated. These values can be a constant (a
string or a number), a reference to other values
(attributes of nodes or prototype values), or an
expression that is a combination of constants and
references.

Output parameters The value is changed when the accessor is
evaluated (A call to the changeValue method is
made). Hence, the value must be a name that
references either an existing attribute of a node or
a prototype value.

Object/Node
parameters

The value of the parameter must be the name of
an existing node. Some accessors accept only
certain kinds of objects as a parameter. For
instance, display accessors act only on graphic
nodes.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 154

usrtwodgraphics.book Page 155 Monday, July 27, 2009 4:56 PM
◆ Constants: numeric or string literals

◆ Variables: prototype values or node attributes

◆ Arithmetic operators and parentheses: (+, -, *, **, /, %, ==, !=, >, >=, <, <=, &&, ||)

◆ Predefined functions: abs, acos, asin, atan, ceil, cos, exp, floor, log, rand, rint, round,
sin, sqrt, tan

Prototypes and Instances

Once you have defined the graphic contents and the behavior of a group, you can save it as a
prototype. A prototype is the model of a BGO. Usually, you create prototypes with
IBM ILOG Views Studio, although you can also create prototypes directly by coding. See
Creating Prototypes by Coding.

Prototypes are stored, loaded, and saved using prototype libraries, represented by the class
IlvProtoLibrary.You can create prototype instances from a prototype. A prototype
instance is a full copy of its prototype.

Prototypes are represented by the IlvPrototype class and prototype instances are
represented by the IlvProtoInstance class. Both of these classes are subclasses of
IlvGroup.

When a prototype instance is saved to a file, the manager writes only the values of the
properties that have been modified for that instance. The graphic objects that compose the
prototype instance are not saved to the file. This means that you can completely change the
definition of the prototype, add or remove graphic objects, and so on. Instances of the
modified prototype will be automatically updated with the new definition.

Displaying Groups and Instances in Managers and Containers

To display groups, prototypes, and instances in a panel of your application (an IlvManager
or IlvContainer), you need to place them in an IlvProtoGraphic object and add this
object to the manager or container. IlvProtoGraphic is a subclass of IlvGraphic
designed to encapsulate all the graphic objects of a group. You may also add group objects to
a manager using an IlvGroupHolder, which is a class that extends the properties of a
container or manager and lets you directly add or retrieve groups through convenience

Note: Contrary to its C/C++ equivalent, rand() takes an integer argument. If this argument
is non-zero, it is used as a seed for the random generator before a random number is
generated. Otherwise, rand(0) returns the next integer in the random sequence started the
last time the random generator was initialized.
155 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Architecture

usrtwodgraphics.book Page 156 Monday, July 27, 2009 4:56 PM
functions.This class will create the IlvProtoGraphic itself to wrap it around the
IlvGroup.

Connecting Attributes

A group has readable and writable attributes that are defined by the accessor objects attached
to it. It can also have notifying attributes, which are similar to events generated by the group
or by one of its elements.

A notifying attribute can be connected to an attribute of another group. When the attribute is
modified, the changes are propagated to the groups connected to it. This is referred to as the
value of the notifying attribute being pushed to its connected attributes.

Linking Application Objects to Prototypes

Once you have defined your prototypes and your panels, you may want to connect these to
real application data and processes defined in C++.

There are three methods available to link prototypes to application objects, depending on the
type of interface you want to produce:

◆ When the display is graphics-rich but represents only a few application objects and
values, you may want to link the application objects by directly feeding values to the
prototype instances of a given panel.

This is typically used in static synoptic displays composed of only predefined graphic
components. It is convenient to use feed values directly when the application is not
expecting user input to modify application values through a prototype instance. The
base_feed sample in <ILVHOME>/samples/protos shows how to use this approach
for a simple control panel.

◆ To build WYSIWYG, direct-manipulation application object editors, you may want to
use an IlvGroupMediator. With this class, you can link an application object to a
given IlvGroup (or prototype instance) in a panel, allowing interactive editing of its
attributes. A group mediator allows you to bind and unbind application objects
dynamically to a given prototype that serves as an editor for the object.

A typical application of this type is a WYSIWYG inspector such as the Guides inspector
in Prototypes Studio. The inspector sample in <ILVHOME>/samples/protos is an
example of this kind of editor. It shows how to build a 2D transformation matrix editor
controlling the viewpoint of a view interactively.

Note: Special manager and container classes IlvProtoManager,
IlvProtoContainer, and IlvProtoGrapher have been added to allow direct
handling of IlvGroup objects in a container or manager. These classes are provided for
compatibility reasons. Their use is obsolete and should be avoided.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 156

usrtwodgraphics.book Page 157 Monday, July 27, 2009 4:56 PM
◆ To create many instances of a prototype dynamically, with each instance linked to a
given application object, you should use an IlvProtoMediator. This class instantiates
the prototype and links it to an application object of a given class as it is created. This
allows clear separation of interface design from the application design, each being able
to evolve separately from a commonly agreed upon application interface.

A typical application of this type allows you to view panels where many objects of many
classes are represented and edited at the same time. Each application class is linked to a
prototype and each instance of the class to an instance of the prototype.

Cartographic displays and all graph displays are examples of applications that can
benefit from prototypes using IlvProtoMediators. <ILVHOME>/samples/protos/
interact_synoptic is an example of this type of application, showing a very simple
air-traffic simulator, where each flight and each airport are represented by prototype
instances. The simulator only deals with changing the attributes of the flight, whereas the
prototypes can be incrementally refined in the drawing editor to present the best display.

Writing C++ Applications Using Prototypes

As a general rule, you create your prototypes in IBM® ILOG® Views Studio and then use
them in your application. The following section explains the C++ API that you use to add
prototypes to your application and how to manipulate these prototypes.

The following items are described in this section:

◆ Header Files

◆ Loading a Panel Containing Prototype Instances

◆ Loading Prototypes

◆ Creating Prototype Instances

◆ Deleting Prototype Instances

◆ Retrieving Groups and Prototype Instances

◆ Getting and Setting Attributes

◆ User-Defined and Predefined Attributes

Note: Although it is not the general rule, it is possible to create prototypes through direct
coding. For these situations, see the section Creating Prototypes by Coding.
157 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Writing C++ Applications Using Prototypes

usrtwodgraphics.book Page 158 Monday, July 27, 2009 4:56 PM
Header Files

To make sure that your application is linked with the necessary library packages, you must
first include the header files corresponding to the graphic objects, the accessors (subclasses
of IlvUserAccessor), and the interactors used in the prototypes that you will load.

To include all the predefined accessor classes, use the header file <ILVHOME>/include/
ilviews/protos/allaccs.h.

Here is a typical set of header files to include in order to build an application that can load
prototypes containing any type of graphic object:

#include <ilviews/protos/protogr.h> // for IlvProtoGraphic.
#include <ilviews/protos/allaccs.h> // for all accessors.
#include <ilviews/graphics/all.h> // for all graphic objects.
#include <ilviews/gadgets/gadgets.h> // if you use gadgets in your prototypes.
#include <ilviews/graphics/inter.h> // for all object interactors.

You may also want to add the following header files:

#include <ilviews/protos/groupholder.h> // to get the groups attached
 // to a given container or manager.

#include <ilviews/protos/proto.h> // to manipulate prototypes and
 // their libraries.

#include <ilviews/protos/grouplin.h> // to attach prototypes to
 // application objects.

If you know in advance the Prototypes that you will use, you can reduce the size of your
application by including only the necessary header files instead of allaccs.h,
graphics.h, and gadgets.h.

To compile applications that use the prototypes package, you must compile them with the
library ilvproto. This library also requires the following libraries: ilvgrapher, ilvmgr,
and the usual IBM ILOG Views libraries for your platform. The ilvgdpro library may be
needed for applications that use old features of prototypes.

Loading a Panel Containing Prototype Instances

To load a.ilv file containing prototype instances, you simply use the read or readFile
methods of IlvManager or IlvContainer:

Container->readFile("protoSample.ilv");

All the prototypes used in the file will be loaded automatically from their prototype libraries.
Prototype libraries are searched for in the file system using the display path. For example, if
the panel contains prototypes from a prototype library called mylib located in /usr/home/
yourdir/protolibs/mylib.ipl, you should include /usr/home/yourdir/
protolibs/ in your ILVPATH environment variable.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 158

usrtwodgraphics.book Page 159 Monday, July 27, 2009 4:56 PM
To allow handling of groups in a container or manager, the IlvGroupHolder class provides
all the necessary interface. Instances of the IlvGroupHolder class are automatically
attached to containers or managers containing prototype instances. This class provides the
methods for adding, removing, and retrieving groups (and thus prototype instances). You
can retrieve the group holder attached to a container, manager, or graphic holder with the
global methods:

◆ IlvGroupHolder* groupHolder = IlvGroupHolder::Get(manager);

◆ IlvGroupHolder* groupHolder2 = IlvGroupHolder::Get(manager

 ->getHolder());

◆ IlvGroupHolder* groupHolder3 = IlvGroupHolder::Get(container);

Loading Prototypes

You may need to create instances of your prototypes by coding. To create instances of your
prototypes, you must first load them. You can load a whole prototype library and then load
one or more of the prototypes it contains. To do this, create an instance of the
IlvProtoLibrary class and call its load method:

IlvProtoLibrary* lib = new IlvProtoLibrary(display, "mylib");
if(!lib->load())
 IlvFatalError("Could not load prototype library");

If you want to load a prototype library that is not located in the display path, you can specify
the directory where the library is located in the call to the constructor:

IlvProtoLibrary* lib = new IlvProtoLibrary(display, "mylib",
 "/usr/somewhere/protos");
if(!lib->load())
 IlvFatalError("Could not load prototype library");

Once you have loaded a prototype library, you can retrieve all its prototypes or a particular
prototype with the following methods:

IlUInt count;
IlvPrototype** protos = lib->getPrototypes(count);

or:

IlvPrototype* proto = lib->getPrototype("myproto");

The array returned by the getPrototypes method is allocated with the new[] operator and
must be released with the delete[] operator when it is no longer needed.

Alternatively, you can load each prototype individually with the global function
IlvLoadPrototype:

IlvPrototype* proto = IlvLoadPrototype("mylib.myproto", display);
159 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Writing C++ Applications Using Prototypes

usrtwodgraphics.book Page 160 Monday, July 27, 2009 4:56 PM
The first argument specifies the name of the prototype library and the name of the prototype
(separated by a period). The second argument is the instance of IlvDisplay that your
application has created. The prototype library file and the prototype files are searched for in
the file system using the display path.

Creating Prototype Instances

To create an instance of a prototype, use the clone method:

IlvPrototypeInstance* instance = proto->clone("myinstance");

The argument of the clone method is the name of the new instance. You can pass 0, which
means that a name is generated automatically.

Instances of the IlvGroupHolder class are automatically attached to containers or
managers containing prototype instances. This class provides the methods for adding,
removing, and retrieving groups (and thus prototype instances).

To add the new prototype instance to a manager or a container, you can use the addGroup
methods of the IlvGroupHolder attached to manager/container classes:

IlvGroupHolder* groupHolder = IlvGroupHolder::Get(manager);
groupHolder->addGroup(instance);

Alternatively, you can create an IlvProtoGraphic object and directly place it in the
manager.

IlvPrototype* proto;
// Create an instance of the prototype proto and places it
IlvProtoGraphic* protoGraphic1 = new IlvProtoGraphic(proto);
// Create an instance of a prototype
IlvProtoInstance* protoInstance = proto->clone(“instance2”);
IlvProtoGraphic* protoGraphic2 = new IlvProtoGraphic(protoInstance);
manager->addObject(protoGraphic1);
manager->addObject(protoGraphic2);

Often, you will set the position of the prototype instance when you add it to a manager or
container. You can do this by either:

◆ Moving the IlvProtoGraphic:

manager->moveObject(protoGraphic1, 100, 100).

◆ Setting the x and y attributes of the prototype instance. See Getting and Setting Attributes
for an explanation on how to set several values in a single call.

Deleting Prototype Instances

To remove a prototype instance from its container or its manager, you can use the
removeGroup methods of the IlvGroupHolder class:

groupHolder->removeGroup(instance);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 160

usrtwodgraphics.book Page 161 Monday, July 27, 2009 4:56 PM
You can also remove its embedding IlvProtoGraphic from its container or manager:

manager->removeObject(protoGraphic);

To completely delete a prototype instance, simply call the delete operator. You can also
delete its encapsulating protoGraphic.

Retrieving Groups and Prototype Instances

To get all the groups contained in a manager or container, use the getGroups method of its
attached group holder:

IlUInt count;
IlvGroup** instances = groupHolder->getGroups(count);

To retrieve a group by its name, use the getGroup method:

IlvProtoInstance* pump = (IlvProtoInstance*)groupHolder->getGroup("pump");

This method returns 0 if the specified group does not exist.

Getting and Setting Attributes

Prototype instances are manipulated through a uniform API based on named attributes (also
called properties or accessors). This API is the same as the one provided by the class
IlvGraphic and basically consists of the IlvGraphic::changeValue and
IlvGraphic::queryValue methods.

A named attribute is represented by an instance of the IlvValue class and is defined by the
following:

◆ The attribute name, “label” for example, to access the label of a button.

◆ A value, which can be of different types (for example, a character string, an integer, or a
pointer).

◆ A type that corresponds to the type of the data.

The type of the value is set automatically by the IlvValue class. You use constructors to
initialize values of predefined types (such as IlInt, const char*, IlvColor*, and so
on). You can also change a value using the assignment operator = or by casting an
IlvValue to a predefined type. The IlvValue class handles all conversions automatically.
For more details, see the IlvValue class.

Note: The array of pointers returned by the getGroups method is allocated using the
new[] operator and must be deleted with the delete[] operator when it is no longer
needed.
161 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Writing C++ Applications Using Prototypes

usrtwodgraphics.book Page 162 Monday, July 27, 2009 4:56 PM
To set a value for a prototype instance, you must create an IlvValue and call the
IlvGraphic::changeValue method:

IlvValue xval("x", (IlInt)100);
instance->changeValue(xval);

You do not need to create a new IlvValue every time you want to change a value. You can
use an existing IlvValue and change its data with the assignment operator:

xval = (IlInt)200;
instance->changeValue(xval);

You can set several values in a single call. To do this, you must create and initialize an array
of IlvValue objects and call the changeValues method. The following example shows
how to set the position of an object in a single call:

IlvValue vals[] = {
 IlvValue("x", (IlInt)100),
 IlvValue("y", (IlInt)200)
};
instance->changeValues(vals, 2);

To retrieve a value, use the queryValue method:

IlvValue xval("x");
IlInt x = instance->queryValue(xval);

The queryValue method takes an IlvValue reference as parameter. The IlvValue must
be initialized with the name of the value to retrieve. The queryValue method stores the
retrieved value in its argument and returns a reference to it. In the example, assigning the
result of queryValue to the integer variable x calls the IlvValue to the IlInt cast
operator.

To retrieve several values in a single call, create an array of IlvValue objects and call the
queryValues method:

IlvValue vals[] = { "x", "y", "width", "height" };
instance->queryValues(vals, 4);
IlInt x = vals[0];
IlInt y = vals[1];
IlUInt width = vals[2];
IlUInt height = vals[3];

Note: The explicit cast of the value 100 to the type IlInt is necessary because an
ambiguity exists between the integer and Boolean types. Without the cast, the compiler
might (on some platforms) call the constructor that creates an IlvValue of type
IlBoolean. It is recommended that you always use explicit casts when using constants to
initialize an IlvValue.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 162

usrtwodgraphics.book Page 163 Monday, July 27, 2009 4:56 PM
The IlvValue class converts values automatically as required. This means that you do not
need to know the exact type of a value that you set or retrieve. For example, you could set
the position of an object using a string value as follows:

IlvValue xval("x", "100");
instance->changeValue(xval);

Conversely, when you retrieve a value, you can convert it to the type you need as follows:

IlvValue xval("x");
instance->queryValue(xval);
float x = xval;

User-Defined and Predefined Attributes

A prototype and its instances have three kinds or attributes: user-defined attributes,
predefined attributes, and sub-attributes.

User-Defined Attributes

The user-defined attributes are the attributes defined by the accessors that you attached to
the prototype when you designed it in IBM ILOG Views Studio. They vary from one
prototype to another. The effect of setting or retrieving a user-defined attribute is determined
by the accessor objects that compose it.

For example, suppose that you have created a prototype representing a thermometer. You
defined a temperature attribute by adding a reference accessor that maps the temperature
to the value attribute of a gauge. To change the temperature displayed by an instance of
your prototype, use the changeValue method as follows:

IlvValue tempVal("temperature");
tempVal = 22.5;
instance->changeValue(tempVal);

Predefined Attributes

The predefined attributes of a group let you modify or retrieve common properties that all
prototypes have, such as the position, the size, the visibility, and so on.

Most predefined attributes take effect only when a group is added to a manager or a
container, but they can be set before that. They are stored in the graphic node but only take
effect when the group is added.
163 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Writing C++ Applications Using Prototypes

usrtwodgraphics.book Page 164 Monday, July 27, 2009 4:56 PM
The predefined attributes are listed in Table 4.2.

Table 4.2 Predefined Attributes of Prototypes and Prototype Instances

Attribute Type Description

layer IlInt Set this attribute to move all the nodes of the group
to a given layer. Retrieving this attribute returns the
layer where the nodes of the group are contained. If
all nodes are not in the same layer, the result is
undefined.

visible IlBoolean Set this attribute to hide or show a group. Retrieving
this attribute returns IlTrue if all the graphic
nodes of the group are visible and IlFalse if they
are all invisible. The result is undefined if some
nodes are visible and other nodes are invisible.

x IlInt This attribute is the horizontal coordinate of the
upper-left corner (in manager coordinates) of the
group bounding box, without applying any view
transformers.

y IlInt This attribute is the vertical coordinate of the upper-
left corner (in manager coordinates) of the group
bounding box, without applying any view
transformers.

width IlUInt This attribute is the width of the group bounding box
(in manager coordinates), without applying any
view transformers.

height IlUInt This attribute is the height of the group bounding
box (in manager coordinates), without applying any
view transformers.

centerX IlInt This attribute is the horizontal coordinate of the
center of the group bounding box (in manager
coordinates), without applying any view
transformers.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 164

usrtwodgraphics.book Page 165 Monday, July 27, 2009 4:56 PM
Sub-attributes

The sub-attributes of prototypes let you directly access the attributes of the objects contained
in your prototypes. The names of sub-attributes are built by concatenating the path of the
object and the attribute name. The components of a sub-attribute name are separated by a
period. For example, if your prototype contains an IlvLabel named title, you can set or
retrieve its label using the attribute name title.label.

All the predefined properties listed in Table 4.2 can also be accessed for a particular graphic
node.

Linking Prototypes to Application Objects

This section describes the three methods that can be used to link prototypes to application
objects:

◆ Setting Values Directly: This is the easiest way if you simply want to feed values from
your application to the views.

◆ Using Group Mediators: This allows the application to both drive the interface and be
notified of value changes produced by the user.

◆ Using Proto Mediators: This enables you to build object factories that will link
application classes with prototypes, thereby creating the interface of a dynamic
application automatically.

Setting Values Directly

The sample base_feed (contained in the <ILVHOME>/samples/protos directory) shows
how to drive your interface from your application. Once you have downloaded a panel

centerY IlInt This attribute is the vertical coordinate of the center
of the group bounding box (in manager
coordinates), without applying any view
transformers.

interactor const char* Set this attribute to associate an interactor with all
the graphic nodes of the group. The value of the
attribute is the interactor name (for example,
“Button”). Retrieving this attribute returns the
name of the interactor associated with the graphic
nodes of the group. If all nodes do not have the
same interactor, the result is undefined.

Table 4.2 Predefined Attributes of Prototypes and Prototype Instances (Continued)

Attribute Type Description
165 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Linking Prototypes to Application Objects

usrtwodgraphics.book Page 166 Monday, July 27, 2009 4:56 PM
containing instances of prototypes, or created your instances in a manager or container, you
retrieve the instances that you want to edit:

IlvGroupHolder* groupHolder= IlvGroupHolder::Get(manager);
IlvGroup* myThermometer= groupHolder->getGroup(“thermometer”);

Then, you change its values with the IlvGroup::changeValue method:

if (myThermometer)
 myThermometer->changeValue(IlvValue(“temperature”,(IlUInt) 20)));

Using Group Mediators

A group mediator (class IlvGroupMediator) is used to connect an object of the
application to a prototype and serves as an interactive graphic editor for the object (also
called an object inspector). The samples inspector and synoptic (contained in the
<ILVHOME>/samples/protos directory) implement a group mediator and can be used as a
baseline.

The following code sample shows how to develop an application that cleanly separates the
user interface from the application code. Assume that you have an application that includes a
Machine base class and a Boiler specialization class:

class Machine { // The base class of most application objects.
protected:
 list<MachineObserver* > observers;
};
class MachineObserver { // A notification mechanism serving as a
 // generic communication means between objects.
public:
 void observe(Machine* m) { m->observers.append(this); }
 virtual void notify (Machine*);
};
class Boiler : public Machine { // The class for which you want
 // to create an object inspector.
public:
// Temperature is an attribute you want the user to have control of.
 void set_temperature(float) { ...
 for each observer in observers
 observer->notify(this);
 }
 float get_temperature();
};

These classes perform a simulation, a process control, or any computational activity
independent of any kind of interactive or graphic behavior. A group mediator allows you to
implement a graphical user interface for the Boiler without introducing any dependencies
in the application classes, which are assumed to be much more complex.

For this, you want to create a subclass of IlvGroupMediator that will handle the graphic
representation and the user interaction of a machine of class Boiler:

class BoilerUI : public IlvGroupMediator, public MachineObserver {
public:
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 166

usrtwodgraphics.book Page 167 Monday, July 27, 2009 4:56 PM
 BoilerUI(IlvGroup* ui, Boiler* b) : IlvGroupMediator(ui, b) {
 MachineObserver::observe(b);
 if (!temperatureSymbol)
 temperatureSymbol=IlvGetSymbol(“temperature”);
 }
 Boiler* boiler() { return (Boiler*) getObject(); }
 void queryValues(IlvValue* vals, IlUInt) const {
 if (vals[0].getName() == temperatureSymbol))
 vals[0] = boiler()->get_temperature();
 }
 void changeValues(const IlvValue* vals, IlUInt) {
 if (vals[0].getName() == temperatureSymbol))
 boiler->set_temperature(vals[0]);
 }
 void notify(Machine*) { update(); }
static IlvSymbol* temperatureSymbol;
};

This class serves as a bridge between a prototype instance and an application object. It
defines four methods:

◆ The constructor establishes a link and the observe(b) statement declares to the
application that it wants to be notified of internal changes occurring to the boiler.

◆ The changeValue() method, which is called whenever the user changes an attribute of
the object. It notifies the object that it should update its temperature value. It can handle
other attributes as well.

◆ The queryValue() method, which is called whenever the prototype needs to update its
values. It queries the internal values of the object and transfers them to the user interface.

◆ The notify() method, which must be called explicitly from within the application
whenever an internal attribute of the object changes in order for these changes to be
reflected in the user interface. Any call to Boiler::set_temperature()
automatically notifies all observers, which means that the notify() method does not
need to be called explicitly. Other applications that do not implement an observable/
observer design pattern such as this may want to call notify() from other parts of the
internal code.

Once the mediator class has been defined, you can dynamically link an object of the
application to a prototype instance that is used as a boiler inspector:

IlvGroup* myBoilerInspector = groupHolder->getGroup("BoilerInspector");
BoilerUI* myBoilerUI = new BoilerUI(myBoilerInspector, myBoiler);

You can change the application object being inspected by the prototype at any time:

myBoilerUI->setObject(myOtherBoiler);

Even though this mechanism requires some application-specific coding, it is very generic—
any application data structure can be adapted to use it. Once the mediator class has been
designed, the user interface and the application become completely independent entities.
Each can be developed and maintained separately. The user interface is developed using
167 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Linking Prototypes to Application Objects

usrtwodgraphics.book Page 168 Monday, July 27, 2009 4:56 PM
IBM ILOG Views Studio and the application using any application development
environment.

The group mediator also has a lock mechanism that can be used to prevent unnecessary
refreshes of the user interface. In the above example, the boiler set_temperature method
calls the notify() method of the BoilerUI to refresh the user interface. Since the change
of values comes from the UI, it may be unnecessary to perform this last refresh. Testing the
locked flag prevents such refreshes:

void BoilerUI::changeValues(const IlvValue* vals, IlUInt) {
 if (locked()) return;
 if (vals[0].getName() == temperatureSymbol))
 boiler->set_temperature(vals[0]);
}

Using Proto Mediators

A proto mediator (class IlvProtoMediator) is a subclass of IlvGroupMediator and is
used to dynamically create prototype instances of a given class and place them in a manager
or container. The idea is to design a specific prototype for each main application class. When
an object is created by the application, a corresponding prototype is instantiated and placed
in the manager. This allows you to create a graphical user interface for a complete
application, separating the user interface design from the functional core of the application.
The following samples from the <ILVHOME>/samples/protos directory implement this
design pattern: interact_synoptic to build an air-traffic control simulator, and
synoptic to build a simulator for a manufacturing plant.

For example, assuming the same base application (Machines and Boilers), you want each
Boiler instance to be represented and edited at the same time by the user. Create a subclass
of IlvProtoMediator:

class BoilerUI: public IlvProtoMediator, public MachineObserver {
public:
 BoilerUI(IlvManager*m,Boiler*b)
 :IlvProtoMediator(m,"BoilerPrototype",b)
 {
 observe(b);
 IlvSymbol* vals[2] = {
 IlvGetSymbol("x"), IlvGetSymbol("y") };
 update(vals); // Sets the position of the current instance.
 // The application must have a way of specifying where to place
 // the object. Alternatively, you can handle the placement by
 // explicitly setting the x and y values of the BGO.
 install(m); // Place the prototype in the manager
 }
// Other methods are the same as the BoilerUI using the GroupMediator.
};

Now, the application can have a global “user interface factory” responsible for generating
prototype instances as soon as it creates its internal objects. The code of this factory may
look like the following pseudo-code:
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 168

usrtwodgraphics.book Page 169 Monday, July 27, 2009 4:56 PM
class myApplication {
 list<Boiler*> boilers;
 void initUI (IlvManager* m) {
 for each machine in boilers
 new BoilerUI(m, machine);
 }
 void add_boiler(Boiler* b) {
 boilers.append(b);
 new BoilerUI(getManager(), b);
 }
};

Advanced Uses of Prototypes

This section describes the following advanced topics on using prototypes:

◆ Writing New Accessor Classes

◆ Creating Prototypes by Coding

◆ Customizing IBM ILOG Views Studio With the Prototypes Extension

Writing New Accessor Classes

The Prototypes package contains many predefined accessor classes that allow you to define
complex behaviors in your prototypes. You may, however, wish to implement specific
behaviors for your particular needs. This section explains how you can extend the set of
accessor classes you use to build your prototypes. It also explains how your new accessor
classes are integrated into IBM® ILOG® Views Studio.

To add a class of accessors, you simply have to write two classes:

◆ A subclass of IlvUserAccessor that defines the effect of your new accessor.

◆ A subclass of IlvAccessorDescriptor that defines the way your accessor will be
edited in IBM ILOG Views Studio.

The <ILVHOME>/samples directory of the IBM ILOG Views distribution contains an
example of a new accessor class (the gpacc.h and gpacc.cpp files). See the README file
in that directory for more information.

Subclassing IlvUserAccessor

To define a new accessor class, you can either write a direct subclass of IlvUserAccessor
or derive from an existing subclass that implements the features you want to extend. You
may also want to make this class persistent.

Defining the Subclass
The declaration of a subclass of IlvUserAccessor will typically appear as follows:

class MyAccessor: public IlvUserAccessor {
169 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Advanced Uses of Prototypes

usrtwodgraphics.book Page 170 Monday, July 27, 2009 4:56 PM
public:
 MyAccessor(const char* name,
 const IlvValueTypeClass* type,
 const char* param1,
 const char* param2);
 DeclareUserAccessorInfo();
 DeclareUserAccessorIOConstructors(MyAccessor);
protected:
 IlvSymbol* _param1;
 IlvSymbol* _param1;
 virtual IlBoolean changeValue(IlvAccessorHolder* object,
 const IlvValue& val);
 virtual IlvValue& queryValue(const IlvAccessorHolder* object,
 IlvValue& val) const;
}

The following methods must be redefined to create a new accessor class:

◆ MyAccessor

MyAccessor(const char* name,
 const IlvValueTypeClass* type,
 const char* param1,
 const char* param2);

This constructor is used to create an instance of your accessor by code. In
IBM ILOG Views Studio, only the input constructor will be used. The name parameter
defines the name of the attribute that will be handled by the accessor and the type
parameter defines the type of the attribute. Your constructor will probably have
additional parameters, such as param1. These parameters are often character strings that
correspond to the parameters that the user can input in IBM ILOG Views Studio and that
are evaluated at runtime.

◆ changeValue

virtual IlBoolean changeValue(IlvAccessorHolder* object,
 const IlvValue& val);

The changeValue method is called when the attribute handled by the accessor is
changed using a call to changeValue on the prototype or one of its instances. You use
this method to define the effect of changing the value of your accessor. If your accessor
uses parameters, you must evaluate these parameters. This can be done using the
getValue method that evaluates a string containing either an immediate value or the
name of another accessor.

The object parameter is the prototype or the prototype instance to which the accessor is
attached. The val parameter contains the new value. The changeValue method must
return IlTrue if the value was successfully changed, or IlFalse if an error occurred
(for example, if one of the parameters could not be evaluated).

◆ queryValue

virtual IlvValue& queryValue(const IlvAccessorHolder* object,
 IlvValue& val) const;
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 170

usrtwodgraphics.book Page 171 Monday, July 27, 2009 4:56 PM
The queryValue method is called when the attribute handled by the accessor is
retrieved using a call to queryValue on the prototype or one of its instances. This
method must store the “current” value of the accessor in its val parameter (if doing so is
appropriate). Some accessors store their current value, while others do not (for example,
Condition accessors do not store their value). The current value is stored in the val
parameter using the assignment operator of IlvValue. The method must return its val
parameter.

◆ initialize

virtual void initialize(const IlvAccessorHolder* object);

The initialize method is called when the accessor object is associated with its
prototype or prototype instance. You can redefine this method to perform any kind of
initialization.

Making the IlvUserAccessor Subclass Persistent
Like graphic objects, accessor objects need to be persistent, which means they are saved to
the prototype definition file and are read when the prototype is loaded. The persistence
mechanism for accessor objects is very similar to the mechanism used for graphic objects.

First, in the .h file of your accessor class, you must call the following macros in the public
section of the class declaration:

DeclareUserAccessorInfo();
DeclareUserAccessorIOConstructors(MyAccessor);

This automatically creates the IBM ILOG Views runtime type information for your subclass
and declares the persistence and copy methods.

In the .cpp file, you then have to write the following methods:

◆ MyAccessor(IlvDisplay* display, IlvGroupInputFile& f)

◆ MyAccessor::MyAccessor(const MyAccessor& source)

◆ MyAccessor::write(IlvGroupOututFile& f) const

This constructor reads the description of your accessor object from an input stream. The
IlvGroupInputFile class is similar to IlvInputFile. Typically, you use only its
getStream method. This returns a reference to an istream object from which you can
read the description of your accessor object. However, the convenience method readValue
can be used. The writeValue method puts quotation marks around strings containing
spaces, and the readValue method checks for these quotation marks and reads the string
correctly. Combined use of these methods avoids input/output errors. For example, the
implementation of the method could be as follows:

MyAccessor::MyAccessor(IlvDisplay* display, IlvGroupInputFile& f)
: IlvUserAccessor(display, f)
{
 _param1 = f.readValue();
 _param2 = f.readValue();
171 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Advanced Uses of Prototypes

usrtwodgraphics.book Page 172 Monday, July 27, 2009 4:56 PM
}

Next, you have to write a copy constructor that will be called when the prototype is copied
or when an instance of the prototype is created:

MyAccessor::MyAccessor(const MyAccessor& source)
: IlvUserAccessor(source)
{
 _param1 = source._param1;
 _param2 = source._param2;
}

The write method must be redefined to save the description of the accessor. The format
used to save the parameters must match the format defined by the input constructor:

MyAccessor::write(IlvGroupOututFile& f) const
{
 IlvUserAccessor::write(f);
 f.writeValue(_param1); f << IlvSpc();
 f.writeValue(_param2); f << endl;
}

Finally, the following macros must be called in the .cpp file:

IlvPredefinedUserAccessorIOMembers(MyAccessor)
IlvRegisterUserAccessorClass(MyAccessor,IlvUserAccessor);

Subclassing IlvAccessorDescriptor

Once you have written your subclass of IlvUserAccessor, you need to write another
class, a subclass of IlvAccessorDescriptor. This class provides the information needed
by the Group Inspector of IBM ILOG Views Studio to edit the parameters of your accessor
class.

The name of the IlvAccessorDescriptor subclass must match the name of the subclass
of IlvUserAccessor. For example, if your accessor class is MyAccessor, the descriptor
class must be called MyAccessorDescriptorClass.

You only need to declare the accessor descriptor class. An instance of it will be
automatically created and associated with your user accessor subclass by the
IlvRegisterUserAccessorClass macro.

Here is a typical example of a descriptor class:

class MyAccessorDescriptorClass :
public IlvAccessorDescriptor {
public:
 MyAccessorDescriptorClass()
 : IlvAccessorDescriptor("MyAccessor: an example",
 Miscellaneous,
 "example %s %s...",
 IlFalse,
 &IlvValueIntType,
 0,
 2,
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 172

usrtwodgraphics.book Page 173 Monday, July 27, 2009 4:56 PM
 "Parameter #1", &IlvValueParameterTypeString,
 "Parameter #2", &IlvNodeNameParameterType) {}
};

The accessor descriptor class only requires a constructor with no arguments. It must call the
IlvAccessorDescriptor constructor. For a detailed explanation of the parameters of this
constructor, see the description of the IlvAccessorDescriptor class.

Creating Prototypes by Coding

Prototypes are meant to be designed graphically using IBM® ILOG® Views Studio. In
some cases, however, you may need to create prototypes or to modify existing prototypes
from a C++ program. This section explains how you can create prototypes by coding in C++
instead of designing them with IBM ILOG Views Studio.

Creating a New Prototype

A prototype is represented by an instance of the IlvPrototype class. To create a new
prototype, use the following constructor:

IlvPrototype* proto = new IlvPrototype("myPrototype");

Adding Graphic Nodes

The first step is to define the graphic appearance of the prototype. This is done by adding
nodes containing graphic objects. For this, you create instances of the IlvGraphicNode
class and add them to the prototype using the addNode method.

IlvLabel* label = new IlvLabel(display, 100, 100, "Hello");
IlvGraphicNode* node = new IlvGraphicNode(label, "label", IlTrue);
proto->addNode(node);

The IlvGraphicNode constructor has three parameters:

◆ An IlvGraphic: the graphic object to include in the prototype.

◆ A string: the name of the node.

◆ A Boolean: specifies whether a local transformer should be associated with the graphic
node. (See the IlvGraphicNode class for details.)

You must give different names to the graphic nodes of your prototype if you need to
reference them in accessor parameters.

Adding Subgroups

You can create hierarchical objects by adding a subgroup to your prototype. To do this, you
must add a node that is an instance of the IlvSubGroupNode class. This subgroup can be
an IlvGroup that you build yourself by adding graphic nodes to it, or it can be an instance
of another prototype:

// Add a sub-group:
IlvGroup* subgroup = new IlvGroup("subgroup");
173 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Advanced Uses of Prototypes

usrtwodgraphics.book Page 174 Monday, July 27, 2009 4:56 PM
IlvLine* line1 = new IlvLine(display, IlvPoint(100, 100),
 IlvPoint(200, 200));
subgroup->addNode(new IlvGraphicNode(line1, "line1"));
IlvLine* line2 = new IlvLine(display, IlvPoint(100, 200),
 IlvPoint(200, 100));
subgroup->addNode(new IlvGraphicNode(line2, "line2"));
proto->addNode(new IlvSubGroupNode(subgroup));
// Add a prototype instance as a sub-group:
IlvPrototype* proto = IlvLoadPrototype("samples.pump", display);
IlvProtoInstance* instance = proto->clone();
proto->addNode(new IlvSubGroupNode(instance));

Adding Accessor Objects

Once you have “drawn” your prototype by adding graphic objects to it, you can define its
properties and specify the effect of changing these properties. To do this, you add accessor
objects to your prototype. Accessor objects are instances of subclasses of
IlvUserAccessor.

To add an accessor object to your prototype, create an instance of the appropriate subclass of
IlvUserAccessor and call the addAccessor method. For example, the following code
adds two accessor objects to a prototype: an IlvValueAccessor that stores a value and an
IlvConditionAccessor that tests a condition and changes a attribute according to the
result.

proto->addAccessor(new IlvValueAccessor("v", IlvValueFloatType));
proto->addAccessor(new IlvConditionAccessor("v", IlvValueFloatType,
 display,
 IlvConditionAccessor::IlvCondGreaterThan,
 "100",
 "label.label",
 "Greater than 100",
 "Smaller than 100"));

See the section Predefined Accessors and the IBM ILOG Views Prototypes Reference
Manual for a complete description of each accessor class.

Adding the Prototype to a Library

Prototypes must be stored in a prototype library so that they can be saved and reloaded later.

To create a new prototype library, use the IlvProtoLibrary class:

IlvProtoLibrary* protoLib = new IlvProtoLibrary(display,
 "myLib",
 "/usr/home/myhome/protos");

A prototype library stores its prototypes in a file system directory ("/usr/home/myhome/
protos" in the previous example). You can change this directory later using the setPath
method.

To add your prototype to the new library, call the addPrototype method:

protoLib->addPrototype(proto);
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 174

usrtwodgraphics.book Page 175 Monday, July 27, 2009 4:56 PM
Saving the Prototype

To save your prototype, call the IlvAbstractProtoLibrary::save method:

myLib->save(0, IlTrue);

The first parameter is an optional output stream where the library description file is saved.
Set it to 0 so that the description file is saved to its default location ("/usr/home/myhome/
protos/myLib.ipl" in the previous example). The second parameter is set to IlTrue to
specify that all the prototypes must be saved.

Customizing IBM ILOG Views Studio With the Prototypes Extension

This section describes the most important classes that you can derive to extend
IBM® ILOG® Views Studio with the Prototypes extension.

Extension Class

The IBM ILOG Views Studio extension is represented by the
IlvStPrototypeExtension class, which is declared in <ILVHOME>/studio/
ivstudio/protos/stproto.h:

class ILVSTPRCLASS IlvStPrototypeExtension
 : public IlvStExtension {
public:
 IlvStPrototypeExtension(IlvStudio* editor);
 static IlvStPrototypeExtension* Get(IlvStudio* editor);
};

An instance of this class (or a subclass) must be created after the IlvStudio object is
created and before the initialize method is called. The static Get method returns the
(unique) instance of IlvStPrototypeExtension.

Buffer Classes

IBM ILOG Views Studio defines four subclasses of IlvStBuffer. These classes are also
declared in <ILVHOME>/studio/ivstudio/protos/stproto.h.

IlvStPrototypeManagerBuffer

The IlvStPrototypeManagerBuffer class represents a buffer of the “Prototype
Instances (2D)” type. The NewPrototypeManagerBuffer command creates an instance of
this class. The manager controlled by an IlvStPrototypeManagerBuffer is an instance
of IlvManager:

class ILVSTPRCLASS IlvStPrototypeManagerBuffer
 : public IlvStBuffer
{
public:
 IlvStPrototypeManagerBuffer(IlvStudio*,
 const char* name,
 IlvManager* = 0);
};
175 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Advanced Uses of Prototypes

usrtwodgraphics.book Page 176 Monday, July 27, 2009 4:56 PM
IlvStPrototypeEditionBuffer

The IlvStPrototypeEditionBuffer class represents a buffer of the “Prototype” type,
that is, a buffer used to edit a prototype. The NewPrototypeEditionBuffer command
creates an instance of this class. The manager controlled by an
IlvStPrototypeEditionBuffer is an instance of IlvGadgetManager:

class ILVSTPRCLASS IlvStPrototypeEditionBuffer
 : public IlvStPrototypeManagerBuffer
{
public:
 IlvStPrototypeEditionBuffer(IlvStudio*,
 const char* name,
 IlvManager* = 0);
 void editPrototype(IlvPrototype* prototype,
 IlBoolean fromLib = IlTrue,
 const char* filename = 0);
 IlvPrototype* getPrototype();
 IlvPrototype* getEditedPrototype();
 };

The editPrototype method initializes the buffer so that it can edit the prototype specified
by prototype. A copy of the prototype is made and is stored in the associated manager.
The fromLib argument specifies whether the edited prototype is stored in a prototype
library contained in the Prototypes palette or if the prototype is a “standalone” prototype
loaded from a .ivp file. In the second case, the optional filename argument can contain
the full path name of the .ivp file.

The getPrototype() method returns the prototype contained in the buffer. The
getEditedPrototype() method returns the “original” prototype if the buffer is currently
editing a prototype from a library. Otherwise, it returns 0.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 176

usrtwodgraphics.book Page 177 Monday, July 27, 2009 4:56 PM
177 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

C H A P T E R

usrtwodgraphics.book Page 178 Monday, July 27, 2009 4:56 PM
5

Predefined Accessors

Accessors are basic building blocks that define the value and behaviors of a BGO
(IlvGroup or IlvPrototype). An attribute usually consists of a Data accessor and one or
more Control accessors that define its side effects when the attribute is set. This section lists
the accessor classes that are predefined in the Prototypes library, and is divided as follows:

◆ Overview

◆ Data Accessors

◆ Control Accessors

◆ Display Accessors

◆ Animation Accessors

◆ Trigger Accessors

◆ Miscellaneous Accessors

Overview

Each accessor class is illustrated by one or more sample prototypes. Most of these samples
are contained in one of the prototype libraries included in the IBM® ILOG® Views
distribution:
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 178

usrtwodgraphics.book Page 179 Monday, July 27, 2009 4:56 PM
◆ <ILVHOME>/data/ivprotos/libs

◆ <ILVHOME>/samples/protos/*/data/*.ipl subdirectories

To look at a sample prototype:

1. Launch IBM ILOG Views Studio with the Prototypes extension.

2. Open the .ipl file containing the corresponding prototype library.

3. Double-click on the prototype in the palette.

Graphic Representation of the Behavior of a Prototype

In the examples that illustrate each behavior class, the data flow defined by the accessors of
a prototype is represented using the following graphic vocabulary:

◆ A rectangle represents an accessor (elementary piece of behavior).

◆ An attribute is represented by a stack of accessors with a given name. In such a stack, the
accessors are evaluated from top to bottom when the value of the attribute is changed or
queried.

◆ The order of evaluation is represented by the relative position of an accessor in its stack.

◆ An inset rectangle is used to represent the type of the given attribute.

A graphic representing these items is shown here:

Also:

◆ Slots on the sides of accessors represent the parameters of the accessor.

◆ A round slot represents a value parameter.

◆ A square slot represents an object parameter.

◆ Slots at the top represent the input access to a value.

◆ Slots at the bottom represent its output.

◆ Slots on the left side represent input parameters of the accessors (the accessors will query
their value when they are evaluated).

◆ Slots on the right side represent output parameters (the accessors will change the values).

◆ Finally, slots with an arrow indicate that the value will be pushed instead of simply set.
The arrow is used to indicate Trigger accessors.
179 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Data Accessors

usrtwodgraphics.book Page 180 Monday, July 27, 2009 4:56 PM
A graphic representing these items is shown here:

To complete the model, links or direct values are used to connect the accessor output to other
input attributes. The following diagram shows a Condition accessor with these conditions. If
Temperature is set to above 30, the foreground of the Gauge object will be set to Red.
Otherwise, it will be set to Blue.

Data Accessors

Data accessors hold a value or a pointer to values. They define the type of a given attribute.
They are similar to variable declarations in a programming language such as C++. All
attributes should contain one of these accessors and no more.

The different Data accessors are described as follows:

◆ Value

◆ Reference

◆ Group

◆ Script

Value

The Value accessor (class IlvValueAccessor) lets you attach an attribute holding a value
to a prototype. When the value is modified, it is simply stored. When the value is queried,
the last value stored is returned.

Note: Some accessors also hold a value (Rotate for instance), which means values that
hold them do not need an extra Data accessor.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 180

usrtwodgraphics.book Page 181 Monday, July 27, 2009 4:56 PM
Parameters

◆ No parameters, but the type of the value must be specified since it cannot be deduced.

Example:
The invertedColor attribute in the pump prototype of the samples prototype library
stores a color name as a temporary variable.

Reference

The Reference accessor (class IlvNodeAccessor) is used to reference an attribute of one
of the prototype nodes (also called sub-attributes) at the prototype level. When the
corresponding attribute is changed, the new value is forwarded to the specified sub-accessor.
Conversely, when the attribute is queried, it is first queried from the node and forwarded to
the prototype. A Reference accessor is similar to a reference (a pointer or an alias) in a
programming language.

Parameters

◆ Accessor: Node attribute or prototype value that holds the value. The type of the value is
determined by what the accessor points to.

Example

The steps attribute in the thermo prototype of the samples library points directly to the
steps attribute of the scale object. When the attribute steps is set, it is assigned to the
scale.step attribute. If the scale.step attribute is changed by the program, any query
of the attribute returns the new value.

Group

The Group accessor (class IlvGroupUserAccessor) defines an attribute that will
collectively reference all the sub-attributes of the same name in all group nodes. For
example, you can use this accessor with the name foreground and the type Color to
change the foreground color of all the prototype elements in one single assignment.
181 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Data Accessors

usrtwodgraphics.book Page 182 Monday, July 27, 2009 4:56 PM
Parameters

◆ No parameters. The name of the attribute is used to determine the subattribute that will
be referenced by this accessor. The type of the accessor is implicitly determined.

Example

In the pump prototype of the samples prototype library, a lineWidth attribute can be
added. The attribute should be of type UInt. Changing this attribute from the Group
Inspector (using the Attributes notebook page) changes the line width of all the graphic
objects that have a lineWidth defined.

Script

The Script accessor (IlvJavaScriptAccessor) class lets you program the behavior of
your prototypes using the scripting language interpreter included in IBM ILOG Views
Studio.

A Script accessor has two parameters, which are the names of script functions:

◆ The set function is called when the value of the accessor is changed. It must be of the
form:

function SetX(obj, newval)
{
 ...
}

The obj argument is the prototype associated with the accessor. The newval argument
is the new value that has been assigned to the attribute.

◆ The get function is called when the value of the accessor is queried. It must be of the
form:

function GetX(obj)
{
 ...
 return(val);
}

The obj argument is the prototype associated with the accessor. The function must
return a value, which becomes the new value of the attribute.

In the functions associated with a Script accessor, you can access and modify any prototype
attribute or a prototype node. Either one of the two function names of the Script accessors
can be none, in which case no function is called.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 182

usrtwodgraphics.book Page 183 Monday, July 27, 2009 4:56 PM
The functions associated with a Script accessor can be edited using the IBM ILOG Views
Studio Script Editor. They will be saved in a file with a .ijs suffix in the same directory and
with the same file name as the prototype. Otherwise, they are saved in the prototype file or
its library file.

Parameters

◆ Script function (set): The name of the script function to execute when the attribute is
changed.

◆ Script function (get): The name of the script function to execute when the attribute is
queried.

◆ The type is determined by the value returned from the set function or taken as a
parameter by the get function. It can, therefore, change dynamically.

Examples

The following function can be used to perform an action similar to a Condition accessor:

function SetTemperature(obj, temperature)
{
 if(temperature > obj. threshold) {
 obj.gauge.foreground = "red";
 } else {
 obj.gauge.foreground = "blue";
 }
}

function GetTemperature(obj)
{
 return obj.gauge.foreground;
}

Note: Naming conflicts can occur if you load several prototype instances with the same
function names in the same panel. Therefore, it is a good idea to prefix the names of all
the prototype script functions with the prototype name they belong to. For instance, in the
samples.thermo prototype, if the Temp value has a Script accessor, its functions should
be called SamplesThermoTempGet() and SamplesThermoTempSet().
183 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Control Accessors

usrtwodgraphics.book Page 184 Monday, July 27, 2009 4:56 PM
Control Accessors

Control accessors perform side effects on other attributes when they are evaluated. They
represent the control structures and instructions of a programming language. In the Group
Inspector, you can view them from the “Behaviors” and “Interaction” notebook pages, under
the “do” clause attached to each attribute.

The different Control accessors are described as follows:

◆ Assign

◆ Condition

◆ Format

◆ Increment

◆ Min/Max

◆ Multiple

◆ Notify

◆ Script

◆ Switch

◆ Toggle

Assign

The Assign accessor (class IlvTriggerAccessor) is used to assign a value to another
attribute or sub-attribute. When the attribute is set, the target attribute specified by the
target parameter is assigned the specified value.

Parameters

◆ Attribute: Attribute that is modified when this accessor is evaluated.

◆ Send: Attribute or expression that is assigned to Attribute.

◆ The type of the accessor is undetermined and irrelevant.

Example

The lcd2 prototype of the lcd library uses the Assign accessor.

Note: These accessors are write-only. They do not record the last value tested. If you only
define a Control accessor for a value, you will not be able to read this value back. To store
the value associated with an accessor, you must define a Value accessor with the same
name.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 184

usrtwodgraphics.book Page 185 Monday, July 27, 2009 4:56 PM

Condition

The Condition accessor (class IlvConditionAccessor) is used to perform a conditional
assignment of another attribute when the attribute is changed.

The first parameter defines a condition operator that is applied to the new value of the
attribute. For example, if the value of the attribute is changed to 10, the operator parameter
is >, and the operand is 5, the condition tested is 10 > 5. If the operator is
[Operand_value], the condition tested is only the value of the operand parameter (that is,
the new value passed to changeValue is ignored).

Depending on the test result, the attribute specified by the Attribute parameter is set to one
of two values: Value if True or Value if False. The parameters Operand, Value if True, or
Value if False can be either immediate values (such as 1 or "red"), the names of other
attributes that will be queried to get the values used, or an expression containing these
immediate values or attribute names.

Parameters

◆ Operator: The operator used to test the conditions. It can be one of the following: ==,
!=, >=, <, <=, or [Operand_value].

◆ Operand: The operand value.

◆ Attribute: Prototype value or node attribute that will be set to true or false, depending on
the condition.

◆ Value if True: Value to which the output is set if the condition is true (or non 0).

◆ Value if False: Value to which the output is set if the condition is false (or 0).

◆ The type of the accessor is undetermined and irrelevant. However, it needs to be
compatible with the operand type.

Example

The following example shows the thermo prototype in the samples prototype library. If
the temperature attribute is above 30, the gauge is drawn in red. Otherwise, it is drawn in
blue.
185 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Control Accessors

usrtwodgraphics.book Page 186 Monday, July 27, 2009 4:56 PM

Format

The Format accessor (class IlvFormatAccessor) can be used to convert a numeric value
of type Double to a character string using a user-specified format. The formatted string is
then copied to another accessor. The format of the value is specified by the Format
parameter, which is defined in the C library function printf. The numeric value is passed
to the conversion function as an IlDouble, so the format should contain a %g specifier.

Parameters

◆ Format (printf-style): Format string as defined by the printf C library function and
must be a String value. This string must contain at least one %g, since this accessor can
only convert values of type Double.

◆ Max # of chars: Maximum length of the string after the conversion. If this length is
exceeded, the value is replaced by * characters. It must be an Integer value.

◆ Attribute: Attribute to which the formatted value is assigned.

Example

In the display prototype in the samples prototype library, the Format accessor allows you
to change in NumberField.label the way the value is displayed.

Increment

The Increment accessor (class IlvCounterAccessor) is used to increment another
attribute. Each time the attribute containing this attribute is set, another attribute, called a
counter, is increased by one until a specified maximum value is reached. When this value is
reached, the counter is reset to zero.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 186

usrtwodgraphics.book Page 187 Monday, July 27, 2009 4:56 PM
Parameters

◆ Maximum: Maximum value. The value to increase is reset to 0 if it is equal to the
maximum value.

◆ Attribute: Attribute to increment.

◆ The type of the accessor is undetermined and irrelevant.

Example

A three-state button can be implemented by using a Counter accessor linked to a MultiRep
accessor. The following accessor has been added to the symbol prototype of the samples
prototype library. Changing the state_incr value in the Attributes notebook page of the
Group Inspector increments the state and switches its representation.

Min/Max

The Min/Max accessor (class IlvMinMaxAccessor) is similar to the Condition accessor
but handles common cases when an attribute must be tested against a minimum and a
maximum threshold. When the attribute is changed, another attribute is set. The assigned
value depends on whether the value of the current attribute is less than the minimum,
between the minimum and the maximum, or greater than the maximum. In addition, an
exception condition can be specified: if the exception condition is true, no value is changed.

Parameters

◆ Minimum: Defines the minimum value.

◆ Maximum: Defines the maximum value.

◆ Except if: If this value is true, the value is ignored and the output value or attribute is not
set. The expression must result in a Boolean value.

◆ Attribute: Attribute that is set to one of the following three values.

◆ If x < min: Value to which the attribute is set if the value is less than the minimum.

◆ If min < x < max: Value to which the attribute is set if the value is between the minimum
and the maximum.

◆ If x > max: Value to which the attribute is set if the value is greater than the maximum.
187 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Control Accessors

usrtwodgraphics.book Page 188 Monday, July 27, 2009 4:56 PM
Example 1

This accessor is attached to a Temperature attribute. When Temperature is set, if
Nobody’s at Home is true, nothing is done. If the Temperature is below 15, HeatOn is
assigned to ClimateControl. If Temperature is above 25, CoolingOn is assigned to
ClimateControl. If the temperature is between 15 and 25, AllOff is assigned to
ClimateControl.

Example 2

This example shows the vertGauge prototype in the sample library.

Multiple

The Multiple accessor (class IlvCompositeAccessor) assigns the value of the attribute to
multiple other attributes or sub-attributes. It can be used, for example, to change the colors
of two graphic nodes using a single public value of the prototype.

Parameters

◆ This accessor has a variable number of parameters. Each of these parameters is an
attribute or subattribute, to which the value is assigned.

◆ All parameters must have compatible types.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 188

usrtwodgraphics.book Page 189 Monday, July 27, 2009 4:56 PM
Example

This example shows the Color accessor in the thermo prototype.

Notify

The Notify accessor (class IlvOutputAccessor) turns changeValue calls on the
attribute to which it is attached into pushValue calls. Values that are watching the given
attribute will execute all their behaviors.

This accessor triggers behaviors of other attributes that depend on the notifying value. For
example, you can make a change in the Threshold attribute to also re-evaluate the
Temperature attribute. This can be done by attaching a Notify accessor to the Threshold
attribute, and a Watch (Threshold) behavior to the Temperature attribute.

Parameters

◆ No parameters.

Example

The following example shows the X_Scale attributes of the transformer prototype in the
samples library.

Script

This accessor is described in Data accessors under Script.

Switch

The Switch accessor (class IlvSwitchAccessor) implements a switch statement.
189 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Control Accessors

usrtwodgraphics.book Page 190 Monday, July 27, 2009 4:56 PM
Parameters

◆ Switch: An expression that should return an integer. Depending on its result, the attribute
0...N will be assigned the value of the parameter.

◆ case 0: Must be an attribute of the prototype or the value "". If Switch evaluates to 0,
the behaviors of the attribute named in this parameter will be executed.

◆ case 1: If Switch evaluates to 1, the behaviors of the attribute named in this parameter
will be executed.

◆ ...

◆ case N: If Switch evaluates to a value equal to or greater than N, the behaviors of the
attribute named in this parameter will be executed.

Example

A traffic light with varying settings can be implemented like this:

Value Integer
do
 Switch Value
 case 0 doRed
 case 1 doOrange
 case 2 doGreen
 case 3 Anomaly

doRed
do
 greenEllipse.visible=False
 orangeellipse.visible=False
 redEllipse.visible=True
 doBlink=False

doOrange
do
 greenEllipse.visible=False
 orangeellipse.visible=True
 redEllipse.visible=False
 doBlink=False

doGreen
do
 greenEllipse.visible=True
 orangeellipse.visible=False
 redEllipse.visible=False
 doBlink=False

Anomaly
do
 greenEllipse.visible=False
 orangeellipse.visible=True
 redEllipse.visible=False
 doBlink=true

doBlink Boolean
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 190

usrtwodgraphics.book Page 191 Monday, July 27, 2009 4:56 PM
do
 blink orangeEllipse.visible 150

Toggle

The Toggle accessor (class IlvToggleAccessor) switches another attribute between true
and false each time the attribute is set. The value assigned to the attribute containing a toggle
behavior is ignored.

Parameters

◆ Boolean Attribute: Attribute that is switched when the behavior is evaluated. It must be
a Boolean type (for example, the visibility attribute of the object).

Example

The following example shows the random prototype in the sources prototype library with
the value toggle.

Display Accessors

Display accessors change the graphic appearance of a node. Ultimately, all accessor
networks end up modifying the appearance of the object and, thus, use some kind of Display
accessor. General Display accessors such as Rotation, Scale, or Translation change the size
and position of a graphic node. One accessor, MultiRep, controls the visibility of nodes, and
other accessors, such as Fill, control object-specific properties.

The different Display accessors are described as follows:

◆ Fill

◆ MultiRep

◆ Rotation

◆ ScaleX

◆ ScaleY

◆ TranslateX

◆ TranslateY
191 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Display Accessors

usrtwodgraphics.book Page 192 Monday, July 27, 2009 4:56 PM
Fill

The Fill accessor operates on two polygon objects contained in a prototype: a filled polygon
and a filler polygon. The value of the attribute represents a fill level. When the attribute is
changed, the points of the filler polygon are modified to fill the polygon to the specified
level. An angle can be specified to fill the polygon in any direction.

Parameters

◆ Filled Graphic Node: Must be an IlvPolygon graphic node.

◆ Filler Graphic Node: Must be an IlvPolygon graphic node.

◆ Angle: A float that indicates the angle at which the fill will be done.

Example

The following is a bottle prototype that contains two polygons: the glass and the wine. A
Fill accessor is used to define the level property. The filled polygon is the glass and the
filler polygon is the wine.

MultiRep

The MultiRep accessor (class IlvMultiRepAccessor) is used to switch between different
representations of a part of your prototype, depending on an integer value. The parameters
specify a list of nodes that define the different representations. When the value is changed to
n, the accessor shows the n-th node in the list and hides all the other nodes.

This accessor accepts a variable number of parameters. There are as many representation
states as you define rows in the parameter editing matrix. A new row is automatically
created in the matrix when you validate the value of the last parameter.

Parameters

◆ Graphic Node: Defines the node that is shown when the value is 0. Must be a graphic
node.

◆ Graphic Node: Defines the node that is shown when the value is 1. Must be a graphic
node.

◆ The type of this value is Int (Integer).
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 192

usrtwodgraphics.book Page 193 Monday, July 27, 2009 4:56 PM
Example

The symbol prototype of the samples prototype library uses two lines, open and closed, to
display a two-state switch.

Rotation

The Rotation accessor (class IlvRotationAccessor) lets you set the rotation angle of an
object to a given value. The value defined by this accessor is the angle (in degrees) to which
the rotation must be set. The angle is stored every time it is set so resetting the value rotates
the object by the angle corresponding to the delta between the old and new angles.

The Minimum Angle, Angle Range, Minimum Value, and Value Range parameters are used
to compute the new rotation angle given to the input value. The new rotation is computed
from the value assigned to the Rotation accessor using the following formula:

angle = minAngle + (value - minimum)* Anglerange / range

The initial value of the rotation angle is assumed to be the value of the Minimum Angle
parameter so the initial position of the rotating object must correspond to this value.

Parameters

◆ Graphic Node: Name of the node to rotate. It must be a graphic node.

◆ Center X: X-coordinate of the rotation center. You can use the centerX accessor for this
parameter (Float or Integer).

◆ Center Y: Y-coordinate of the rotation center. You can use the centerY accessor for this
parameter (Float or Integer).

◆ Minimum Angle: Minimum angle used to compute the rotation (Float or Integer).

◆ Angle Range: Angle range used to compute the rotation (Float or Integer).

◆ Minimum: Minimum value used to compute the rotation (Float or Integer).

◆ Range: Value range used to compute the rotation (Float or Integer).

Note: Not all graphic objects are sensitive to rotation. Rectangles, ellipses, and text
objects do not rotate. It is recommended to use polygons and splines instead.
193 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Display Accessors

usrtwodgraphics.book Page 194 Monday, July 27, 2009 4:56 PM
◆ Handle Interaction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value is updated accordingly.

◆ The type of this value is Float (the angle of rotation).

Example

The following example shows a Rotation accessor attached to the transformer prototype
in the samples library.

ScaleX

The ScaleX accessor (class IlvZoomXAccessor) lets you set the horizontal scaling factor
of an object. When the value of this accessor is changed, the object is scaled based on the
new value. The scaling factor is stored every time it is set so resetting the scale to a different
value scales the object by the delta of the old and new scaling factors.

Parameters

◆ Graphic Node: Name of the graphic node to scale. It must be a graphic node.

◆ Center X: X-coordinate of the center of the scale (Float or Integer).

◆ The type of this value is Float.

Example

This example shows a Scale accessor attached to a transformer object. The full prototype
using this accessor is the transformer prototype in the samples library.

Note: Not all graphic objects are sensitive to the scaling factor. For example, text objects
cannot be scaled.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 194

usrtwodgraphics.book Page 195 Monday, July 27, 2009 4:56 PM

ScaleY

The ScaleY accessor (class IlvZoomYAccessor) lets you set the vertical scaling factor of
an object. When the value of this is changed, the object is scaled based on the new value.
The scale is stored every time it is set, so resetting the scaling factor to a different value
changes the size of the object by the delta of the old and new scaling factors.

Parameters

◆ Graphic Node: Name of the graphic node to scale. It must be a graphic node.

◆ Center Y: Y-coordinate of the center of the scale.

◆ The type of this value is Float.

Example

This example shows a Scale accessor attached to a transformer object. The full prototype
using this accessor is the transformer prototype in the samples library.

TranslateX

The TranslateX accessor (class IlvSlideXAccessor) moves a node horizontally to a
position determined by a minimum position, a position range, a minimum value, and a value
range. The new position is computed from the value assigned to the TranslateX accessor
using the following formula:

x = xmin + (v - minimum) * xrange / range

Parameters

◆ Graphic Node: Name of the node to move. It must be a graphic node.

◆ Minimum X: Name of the minimum position (Float or Integer).
195 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Display Accessors

usrtwodgraphics.book Page 196 Monday, July 27, 2009 4:56 PM
◆ X range: Name of the position range (Float or Integer).

◆ Minimum: Name of the minimum value (Float or Integer).

◆ Range: Name of the value range (Float or Integer).

◆ Handle Interaction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value is updated accordingly.

◆ The type of the value is Float.

Example

The use of Translate accessors is similar to the use of Scale accessors, except that Translate
accessors change the position instead of the size of an object. See the transformer
prototype in the samples library.

TranslateY

The TranslateY accessor (class IlvSlideYAccessor) moves a node vertically to a position
determined by a minimum position, a position range, a minimum value, and a value range.
The new position is computed from the value assigned to the TranslateY accessor using the
following formula:

y = ymin + (v - minimum) * yrange / range

Parameters

◆ Graphic Node: Name of the node to move. It must be a graphic node.

◆ MinimumY: Minimum position (Float or Integer).

◆ Y range: Position range (Float or Integer).

◆ Minimum: Minimum value (Float or Integer).

◆ Range: Value range (Float or Integer).
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 196

usrtwodgraphics.book Page 197 Monday, July 27, 2009 4:56 PM
◆ Handle Interaction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value will be updated accordingly.

◆ The type of the value is Float (the distance of translation).

Example

The use of TranslateX and TranslateY is similar to the use of scaleX and scaleY accessors.

Animation Accessors

Animation accessors (class IlvAnimationAccessor) are a category of the Display
accessors that change the appearance of an object periodically. Animation accessors hold a
value of a Boolean type indicating whether the animation is on.

For efficiency reasons, the Animation accessors do not reevaluate their attributes at each
count of the timer. Thus, if you change one of the attributes of the accessor, you must
reassign the value to itself to force an update of the parameters, using the Assign accessor
for instance. See the pump prototype in the samples library for an example.

The different Animation accessors are described as follows:

◆ Blink

◆ Invert

◆ Rotate

Blink

The Blink accessor (class IlvBlinkAccessor) makes an object of your prototype blink,
that is, it causes the object to appear and disappear at brief, regular intervals. When the
attribute is set to IlTrue, the object starts blinking. When the attribute is set to IlFalse,
the blinking stops.
197 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Animation Accessors

usrtwodgraphics.book Page 198 Monday, July 27, 2009 4:56 PM
Parameters

◆ Boolean Attribute: Object attribute that controls the object visibility.

◆ Period (ms): The interval in milliseconds between two blinks (Float or Integer).

◆ The type of this value is Boolean.

Example

The following example shows the file prototype in the sources library with a blink value.

Invert

The Invert accessor (class IlvInvertAccessor) inverts the color of an element of your
prototype periodically. When the property is set to IlTrue, the color inversion begins.
When the attribute is set to IlFalse, the color inversion stops.

While the colors are designated as the foreground and background colors, any colors defined
by the prototype or one of its nodes can be used.

Parameters

◆ Fg Col. Attribute: Node attribute or prototype value that contains the foreground color.

◆ Bg Col. Attribute: Node attribute or prototype value that contains the background color.

◆ Period (ms): The interval, in milliseconds, between two inversions of the object colors
(Float or Integer).

◆ Type: Boolean (whether the accessors are exchanging their values).

Example

This example is presented in the pump prototype of the samples prototype library. When
invert is set to true, the values of rotorColor and invertedColor are exchanged
periodically. The period is defined by the invert attribute.

Note: The invertPeriod value has an Assign behavior: invert = invert. This forces
the accessors to be reevaluated and the internal timer to update its period whenever the
period is changed.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 198

usrtwodgraphics.book Page 199 Monday, July 27, 2009 4:56 PM

Rotate

The Rotate accessor (class IlvRotateAccessor) defines a behavior that, when set to
IlTrue, makes an object rotate periodically.

The Angle parameter specifies the number of degrees by which the object rotates at every
timer tick. The Center X and Center Y parameters define the rotation center. You should not
use the center of the rotating node itself for these parameters because the rounding problems
that occur while rotating an object might move it slightly. Instead, you should use the center
of another fixed object of the prototype. You can make this reference object invisible if
necessary.

Parameters

◆ Graphic Node: Name of the node to rotate. Can be a graphic node or a subgroup node.

◆ Angle: Angle in degrees by which the object is rotated at each step (Float or Integer).

◆ Center X: X-coordinate of the rotation center. You can use the centerX accessor for this
parameter (Float or Integer).

◆ Center Y: Y-coordinate of the rotation center. You can use the centerY accessor for this
parameter (Float or Integer).

◆ Period (ms): The interval in milliseconds at which the object rotates. It must be an
Integer.

Example

This example is presented in the pump prototype of the samples prototype library. When
the Rotate accessor is set to true, the nodes will turn by 20 degrees every 10 ms.
199 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Trigger Accessors

usrtwodgraphics.book Page 200 Monday, July 27, 2009 4:56 PM

Trigger Accessors

Trigger accessors define the entry points of evaluation sequences in the graph of accessors.
Triggers are accessors that can react to a user event (callback and event), a change in a node
by the application (by means of the pushValue method), or some other node change (a
combination of Trigger and Connect).

The different Trigger accessors are described as follows:

◆ Callback

◆ Clock

◆ Watch

◆ Event

Callback

This accessor (class IlvCallbackAccessor) attaches a trigger that is set when the given
callback is called from a user action on the specified graphic node. For a callback to be
called, the node must be either an IlvGadget or an IlvGraphic to which an interactor has
been attached.

Parameters

◆ Graphic Node: The name of the graphic node whose callback is triggered.

◆ Callback Name: The name of the callback.

◆ Input: The value that is sent when the callback is triggered.

Example

The following example shows the random prototype in the sources library with the
clicked value. The clicked value pushes 0 to its output when the button is pressed by the
user. This output is connected to the toggle value, which in turn switches the running
value.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 200

usrtwodgraphics.book Page 201 Monday, July 27, 2009 4:56 PM

Clock

The Clock accessor (class IlvAnimationAccessor) triggers its attribute periodically,
executing the attached behaviors. When set to 0, this accessor has no behavior. When set to
another value, this value is used as the period of an internal timer that triggers the behavior
periodically.

Parameters

◆ The type of this value is UInt. If non-zero, the attribute will not have any effect.
Otherwise, its value is interpreted as a timer period.

Watch

The Watch accessor (class IlvLoopbackAccessor) makes its attached attribute observe
another notifying attribute.

This accessor class is often used with the Callback accessor to change a value of the
prototype when a callback is triggered. The Watch accessor connects the triggering attribute
containing the callback to the watching attribute that must be changed.

Parameters

◆ Notifying Attribute: Attribute that is observed. This attribute must be one of the
attributes that has a Notify or a Callback accessor.

Example

The Watch clicked accessor links the clicked value to the toggle value, which allows the
running attribute to be switched whenever the user presses the button attached to the
clicked value.
201 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Trigger Accessors

usrtwodgraphics.book Page 202 Monday, July 27, 2009 4:56 PM

Event

The Event accessor (class IlvEventAccessor) is used to trigger a behavior in response to
user or other application events. When an event of a given type occurs while the mouse
pointer is over a node of the prototype, the attribute to which the accessor is attached is
evaluated, that is, all its behaviors are set.

While the callback pushes its value to another attribute of the prototype, the event notifies its
own attached attribute. The event is thus similar to attaching a Watch accessor to itself after
attaching a callback.

Parameters

◆ Graphic Node: The name of a graphic node. Events received from the input devices are
sent to the accessor over this graphic node to trigger a behavior. The special value
[All Nodes] indicates that this value is triggered when any event of the given type
reaches any of the graphic nodes of the prototype.

◆ Event Type: The event type that triggers the accessor. The type can be any of the
standard IBM ILOG Views event types: AnyEvent, KeyUp, KeyDown, ButtonDown,
ButtonUp, EnterWindow, LeaveWindow, PointerMoved, ButtonDragged,
Repaint, ModifyWindow, Visibility, MapWindow, UnMapWindow, Reparent,
KeyboardFocusIn, KeyboardFocusOut, DestroyWindow, ClientMessage, and
DoubleClick.

◆ Detail: The detail of the event. This parameter indicates additional filtering of the events
and depends on the event type. For example, for a ButtonDown event, the detail can be:
AnyButton, LeftButton, RightButton, MiddleButton, Button4, or Button5.
For a KeyDown event, the detail parameter indicates the key, or AnyKey that triggers the
accessor. See the IlvEvent class for a list of the valid keys.

◆ Modifiers: Indicates which modifiers should be pressed. Possible values are:
AnyModifier, NoModifier, Shift, Ctrl, Meta, Alt, Num, Lock, Alt+G, or any
combination of the previous modifiers such as Shift+Crtl, Ctrl+Shift+Alt, and so
on.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 202

usrtwodgraphics.book Page 203 Monday, July 27, 2009 4:56 PM
◆ Event data to send: The Event attribute that is pushed to the current value. It can be the
Type, Detail, X (the horizontal position of the mouse relative to the window), Y (the
vertical position of the mouse relative to the window), GlobalX, or GlobalY (the position
of the mouse relative to the screen).

Example

The following example shows the transformer prototype with an EventScaleY value in
the samples library:

Miscellaneous Accessors

These accessors do not fit current existing categories.

The different Miscellaneous accessors are described as follows:

◆ Debug

◆ Prototype

Debug

The Debug accessor (class IlvDebugAccessor) is used to debug prototypes. It prints a
message to the console or the output window when the corresponding value is modified or
queried.

Example

When the following doTranslateY accessor is queried or changed, a message is printed to the
output console, displaying the current value:
203 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

Miscellaneous Accessors

usrtwodgraphics.book Page 204 Monday, July 27, 2009 4:56 PM

Prototype

The Prototype accessor (class IlvPrototypeAccessor) allows a new prototype to inherit
from all the accessors of an existing prototype. The new prototype behaves as if all the
accessors of an existing prototype were added to it. This is useful when building libraries of
complex behaviors and in reusing them in other prototypes. The prototype library containing
the prototype must be open in order for any instance using this accessor to work properly.
From the Group Inspector in IBM ILOG Views Studio, you can add a Prototype accessor to
a prototype by selecting the Attributes tab and choosing the Edit>Delegate to Prototype
item.

Parameters

◆ Prototype name: Name of the prototype that you want to inherit accessors from.

Example

This accessor is represented as a subgraph showing all the values exported in the context of
the current accessor graph.

The diclock prototype of the sources library encapsulates and exports all the accessors of
the clock prototype. It behaves exactly like the clock prototype but has a different graphic
representation.
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 204

usrtwodgraphics.book Page 205 Monday, July 27, 2009 4:56 PM

205 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

I N D E X

usrtwodgraphics.book Page 206 Monday, July 27, 2009 4:56 PM
Index

Numerics

2D Graphics buffer window
description of 74, 137

A

abortReDraws member function
IlvManager class 33

accelerators
and managers 53, 57
example in managers 53
predefined in managers 53

accept member function
IlvMakePolyLinkInteractor class 103

acceptFrom member function
IlvMakeLinkInteractor class 103

acceptTo member function
IlvMakeLinkInteractor class 103

accessor objects 152
accessors 112

types 153
writing new classes 169

addAccelerator member function
IlvManager class 53

addCommand member function
IlvManager class 66

addGhostNode member function
IlvGrapher class 87

addLink member function

IlvGrapher class 87
addNode member function

IlvGrapher class 87
addPoints member function

IlvPolylineLinkImage class 96
addTransformer member function

IlvManager class 22
addView member function

IlvManager class 21
addVisibilityFilter member function

IlvManagerLayer class 26
afterDraw member function

IlvManagerViewHook class 61
afterExpose member function

IlvManagerViewHook class 61
align member function

IlvManager class 31
animation accessors

description 197
applyInside member function

IlvManager class 28
applyIntersects member function

IlvManager class 27, 28
applyToInside member function

IlvManager class 27
applyToObject member function

IlvManager class 27, 28, 34
applyToObjects member function

IlvManager class 27
applyToSelections member function
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 206

usrtwodgraphics.book Page 207 Monday, July 27, 2009 4:56 PM
IlvManager class 27, 50
applyToTaggedObjects member function

IlvManager class 27
arc offset

description 95
fixed value 95
proportional value 95

ArcLinkImage mode 77
arcs 95
attributes

connecting 156
predefined 163
sub-attribues 165
user-defined 163

B

beforeDraw member function
IlvManagerViewHook class 61

behaviors
attributes 152
graphic representation 179
input parameters 126
prototype graphic behaviors 122
prototype interactive behaviors 127

binding views 20
bufferedDraw member function

IlvManager class 32
business graphic objects

description of 109

C

C++
prerequisites 12

changeLink member function
IlvGrapher class 87

CloseProtoLibrary command 143
commands

and managers 20
computePoints member function

IlvLinkImage class 90, 97
connecting attributes 156
connection pins 75

coordinates 98

description 98
editing 104
managing 98
providing a faster implementation 99
recovering the index 98
returning the unused pin 99

containers
displaying groups and instances 155

contentsChanged member function
IlvManager class 68
IlvManagerViewHook class 61

control accessors
description 184

ConvertProtoManager command 143
copy member function

IlvTranslateObjectCommand class 68
createLink member function

IlvMakeLinkInteractor class 103
IlvMakeLinkInteractorFactory class 103

createNode member function
IlvMakeNodeInteractor class 102
IlvMakeNodeInteractorFactory class 102

creating
prototype instances 131
prototype library 115

D

data accessors
description 180

data flow programming 112
DeletePrototype command 144
deleteSelections member function

IlvManager class 29
deSelectAll member function

IlvManager class 29
display accessors

description 191
displaying groups and instances 155
displaying objects

and managers 30
drawing 32

doIt member function
IlvDragRectangleInteractor class 43
IlvMakeRectangleInteractor class 44
207 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 208 Monday, July 27, 2009 4:56 PM
IlvMoveInteractor class 49
IlvTranslateObjectCommand class 67

double-buffering
and managers 22
description 20

DoubleLinkImage mode 77
DoubleSplineLinkImage mode 77
draw member function

IlvManager class 32
drawGhost member function

IlvDragRectangleInteractor class 43
IlvMoveInteractor class 48

drawSpline member function
IlvPolylineLinkImage class 96

duplicate member function
IlvManager class 32

E

editing
prototype instances 132

editing modes
ArcLinkImage 77
DoubleLinkImage 77
DoubleSplineLinkImage 77
group connection 140
LinkImage 77
OneLinkImage 77
OneSplineLinkImage 77
OrientedArcLinkImage 77
OrientedDoubleLinkImage 78
OrientedDoubleSplineLinkImage 78
OrientedLinkImage 78
OrientedOneLinkImage 78
OrientedOneSplineLinkImage 78
OrientedPolylineLinkImage 78
PolylineLinkImage 78

editing modes toolbar 140
EditPrototype command 144
end node 89
end points

position 93
ensureVisible member function

IlvManager class 22
events

and accelerators 19
and interactors 18
and managers 18

F

File Menu Commands 139
fitToContents member function

IlvManager class 22
fitTransformerToContents member function

IlvManager class 22, 53
forgetUndo member function

IlvManager class 66

G

geometric transformations
and managers 18
and views 18

getAccelerator member function
IlvManager class 53

getCardinal member function
IlvGrapherPin class 98

getClosest member function
IlvGrapherPin class 99

getInteractor member function
IlvManager class 37

getLinkLocation member function
IlvGrapherPin class 99

getLinkPoints member function
IlvLinkImage class 90, 97
IlvPolylineLinkImage class 96

getLinks member function
IlvGrapher class 88

getPinIndex member function
IlvGrapherPin class 98

getSelections member function
IlvManager class 29

getTo member function
IlvLinkImage class 89

getViews member function
IlvManager class 21

ghost images
drawing 101

global functions
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 208

usrtwodgraphics.book Page 209 Monday, July 27, 2009 4:56 PM
IlvGetContentsChangedUpdate 68
IlvSetContentsChangedUpdate 68

grapher
overview 87

Grapher buffer window
description of 74, 137

graphic objects
and managers 28
selecting in manager 28
transforming 87

graphs
loading 88
managing 86
querying the topology 88
saving 88

grids
and managers 64
example 65
snapping 64

group connection mode 140
group inspector

description of 142
group member function

IlvManager class 31
grouping

and managers 31
GroupIntoGroup command 144

H

handleEvent member function
IlvDragRectangleInteractor class 40
IlvMoveInteractor class 46

handles
description 92

hooks 20, 60

I

icons
group connection 140

IlvAbstractProtoLIbrary class 175
IlvAccessor class 152
IlvAccessorDescriptor class 172
IlvAnimationAccessor class 197, 201

IlvArcLinkImage class
setFixedOffset member function 95
setOffsetRatio member function 95

IlvBlinkAccessor class 197
IlvCallbackAccessor class 200
IlvCompositeAccessor class 188
IlvConditionAccessor class 185
IlvContainer class 19, 74, 111, 137

read method 158
readFile method 158

IlvCounterAccessor class 186
IlvDebugAccessor class 203
IlvDoubleLinkImage

description 94
IlvDoubleLinkImage class

setFixedOrientation member function 94
IlvDoubleSplineLinkImage class 94, 97
IlvDragRectangleInteractor class 38

doIt member function 43
drawGhost member function 43
handleEvent member function 40

IlvEllipse class 38
IlvEvent class 202
IlvEventAccessor class 202
IlvFilledRectangle class 38
IlvFilledRoundRectangle class 38
IlvFormatAccessor class 186
IlvGadgetManagerInputFile class 35
IlvGadgetManagerOutputFile class 35
IlvGenericPin class

adding connection pins 99
description 99

IlvGetContentsChangedUpdate global function 68
IlvGrapher API 88
IlvGrapher class

addGhostNode member function 87
addLink member function 87
addNode member function 87
changeLink member function 87
constructor 87
description 101
getLinks member function 88
isLinkBetween member function 88
isNode member function 87
makeLink member function 87
209 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 210 Monday, July 27, 2009 4:56 PM
makeNode member function 87
mapLinks member function 88
nodeXPretty member function 88
nodeYPretty member function 88

IlvGrapherPin class
description 98
getCardinal member function 98
getClosest member function 99
getLinkLocation member function 99
getPinIndex member function 98
setPinIndex member function 98

IlvGraphic class 87
description 17
scale member function 28
translate member function 28

IlvGraphicNode class 151, 173
IlvGraphicSet class 31
IlvGraphInputFile class

description 88
readObject member function 88

IlvGraphOutputFile class 88
saving files 88
writeObject member function 88

IlvGraphOutputfile class
writeObject member function 88

IlvGraphSelectInteractor class
constructor 101
description 101

IlvGroup class 151
changeValue method 152
description 152
queryValue method 152

IlvGroupHolder class 111, 155
IlvGroupMediator class 166
IlvGroupNode class 151
IlvGroupUserAccessor class 181
IlvInputFile class 34
IlvInteractor class 18
IlvInvertAccessor class 198
IlvJavaScriptAccessor class 182
IlvLabel class 165
IlvLayerVisibilityFilter class

isVisible member function 26
IlvLine class 29
IlvLineHandle class 29

IlvLinkHandle class
constructor 92
description 91
reference to 87

IlvLinkImage class
accessing values 89
computePoints member function 90, 97
computing endpoints 90
constructor 89
creating custom 96
description 87, 89
getLinkPoints member function 90, 97
getTo member function 89
purpose 89
setOriented member function 89
setTo member function 89
subclassing 90

IlvLinkLabel class
description 92
setLabel member function 92

IlvLoadPrototype class 159
IlvLoopbackAccessor class 201
IlvMakeArrowInteractor class 39
IlvMakeBitmapInteractor class 39
IlvMakeDoubleLinkImageInteractor class 103
IlvMakeDoubleSplineLinkImageInteractor

class 103
IlvMakeEllipseInteractor class 38
IlvMakeFilledEllipse class 39
IlvMakeFilledEllipseInteractor class 38
IlvMakeFilledRectangleInteractor class 38
IlvMakeFilledRoundRectangleInteractor class

38
IlvMakeLabelLinkImageInteractor class 103
IlvMakeLineInteractor class 39
IlvMakeLinkImageInteractor class 103
IlvMakeLinkInteractor class

acceptFrom member function 103
acceptTo member function 103
createLink member function 103
description 102
predefined subclasses 103
setFactory member function 103

IlvMakeLinkInteractorFactory class
createLink member function 103
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 210

usrtwodgraphics.book Page 211 Monday, July 27, 2009 4:56 PM
subtyping 103
IlvMakeNodeInteractor class

createNode member function 102
description 102
setFactory member function 102

IlvMakeNodeInteractorFactory class
createNode member function 102
subtyping 102

IlvMakeOneLinkImageInteractor class 103
IlvMakeOneSplineLinkImageInteractor class

103
IlvMakePolylineLinkInteractor class 104
IlvMakePolyLinkInteractor class

accept member function 103
description 103
makeLink member function 103

IlvMakeRectangleInteractor class 38
description 38
doIt member function 44

IlvMakeReliefDiamondInteractor class 38
IlvMakeReliefLineInteractor class 39
IlvMakeReliefNodeInteractor class 102
IlvMakeReliefRectangleInteractor class 38
IlvMakeRoundRectangleInteractor class 38
IlvMakeShadowNodeInteractor class 102
IlvMakeUnZoomInteractor class 39
IlvMakeZoomInteractor class 39
IlvManager class 74, 111, 137

abortReDraws member function 33
addAccelerator member function 53
addCommand member function 66
addTransformer member function 22
addView member function 21
align member function 31
applyInside member function 27, 28
applyIntersects member function 27, 28
applyToObject member function 27, 28, 34
applyToObjects member function 27
applyToSelections member function 27, 50
applyToTaggedObjects member function 27
bufferedDraw member function 32
contentsChanged member function 68
deleteSelections member function 29
description 87
deSelectAll member function 29

draw member function 32
duplicate member function 32
ensureVisible member function 22
fitToContents member function 22
fitTransformerToContents member function 22,

53
forgetUndo member function 66
getAccelerator member function 53
getInteractor member function 37
getSelection member function 29
getSelections member function 29
getViews member function 21
group member function 31
initReDraws member function 33
installEventHook member function 37
installViewHook member function 61
interactors 101
invalidateRegion member function 33
isDoubleBuffering member function 22
isInvalidating member function 33
isModified member function 68
isSelected member function 28
isUndoEnabled member function 66
makeColumn member function 31
makeRow member function 31
moveObject member function 28
numberOfSelections member function 29
read method 158
readFile method 158
reDo member function 66
reDraw member function 32
reDrawViews member function 33
removeAccelerator member function 53
removeEventHook member function 37
removeInteractor member function 37
removeView member function 21
removeViewHook member function 61
reshapeObject member function 28
rotateView member function 22
sameHeight member function 31
sameWidth member function 31
setBackground member function 23
setDoubleBuffering member function 22
setInteractor member function 37
setMakeSelection member function 29
211 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 212 Monday, July 27, 2009 4:56 PM
setModified member function 68
setNumLayer member function 24
setSelected member function 28
setTransformer member function 22
setUndoEnabled member function 66
shortCut member function 41, 53
snapToGrid member function 65
translateObject member function 28
translateView member function 22
unDo member function 66
unGroup member function 31
view transformation member functions 22
zoomView member function 22

IlvManagerclass
aligning objects member functions 31
main features 19

IlvManagerCommand class
advanced features 66
example 67
instances 19

IlvManagerEventHook class 37
IlvManagerGrid class 64
IlvManagerInputFile class

description 34
readObject member function 35

IlvManagerLayer class
addVisibilityFilter member function 26
setAlpha member function 26

IlvManagerObjectInteractor class 52
IlvManagerOutputFile class

description 34
example 35
writeObject member function 35

IlvManagerViewHook class
afterDraw member function 61
afterExpose member function 61
beforeDraw member function 61
contentsChanged member function 61
description 61
interactorChanged member function 61
transformerChanged member function 61
viewRemoved member function 61
viewResized member function 61

IlvManagerViewInteractor class 18, 37, 45
IlvMinMaxAccessor class 187

IlvMoveInteractor class
doIt member function 49
drawGhost member function 48
example 45
handleEvent member function 46

IlvMultiRepAccessor class 192
IlvNodeAccessor class 181
IlvOneLinkImage

description 92, 95
IlvOneLinkImage class

reference to 93
setOrientation member function 93

IlvOneSplineLinkImage class
description 93
setControlPoint member function 93

IlvOutputAccessor class 189
IlvOutputFile class

description 34
IlvPinEditorInteractor class 104
IlvPointPool class 90
IlvPolylineLinkImage class

addPoints member function 96
description 96
drawSpline member function 96
getLinkPoints member function 96
movePoints member function 96
reference to 104
removePoints member function 96
setPoints member function 96

IlvProtoGraphic class 111, 155
IlvProtoInstance class 155
IlvProtoLibrary class 155, 159, 174
IlvProtoMediator class 168
IlvPrototype class 155, 173
IlvPrototypeAccesssor class 204
IlvPrototypeInstance class 160
IlvRectangle class 44
IlvReliefDiamond class 38
IlvReliefLabel class 102
IlvRotateAccessor class 199
IlvRotationAccessor class 193
IlvRoundRectangle class 38
IlvSCGrapherRectangle 78
IlvSelectInteractor class 39, 101
IlvSetContentsChangedUpdate global function 68
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 212

usrtwodgraphics.book Page 213 Monday, July 27, 2009 4:56 PM
IlvShadowLabel class 102
IlvSlideXAccessor class 195
IlvSlideYAccessor class 196
IlvStPrototypeEditionBuffer class 176
IlvStPrototypeExtension class 175
IlvStPrototypeManagerBuffer class 175
IlvSubGroupNode class 152, 173
IlvSwitchAccessor class 189
IlvTextField class 62
IlvToggleAccessor class 191
IlvTranslateObjectCommand class

copy member function 68
description 67
doIt member function 67
unDo member function 67

IlvTriggerAccessor class 184
IlvUserAccessor class 158, 169, 174
IlvValue class 161
IlvValueAccessor class 180
IlvZoomXAccessor class 194
IlvZoomYAccessor class 195
initReDraws member function

IlvManager class 33
inspectors

prototype 142
installEventHook member function

IlvManager class 37
installViewHook member function

IlvManager class 61
interactorChanged member function

IlvManagerViewHook class 61
interactors

description 101
drawing ghost images 101
view 37

invalidateRegion member function
IlvManager class 33

isDoubleBuffering member function
IlvManager class 22

isInvalidating member function
IlvManager class 33

isLinkBetween member function
IlvGrapher class 88

isModified member function
IlvManager class 68

isNode member function
IlvGrapher class 87

isSelected member function
IlvManager class 28

isUndoEnabled member function
IlvManager class 66

isVisible member function
IlvLayerVisibility class 26

L

layers
and managers 18, 23
default number 24
description 17
object selectability 25
object visibility 25
setting up 24

LinkImage mode 77
links

changing the behavior 90
computing the endpoints 90
computing the shape 90
creating 102
creating custom links 96
creating polyline links 103
description 87, 89
editing 104
end 89
how they are drawn 90
intermediate points 96
lightweight 91
managing 87
oriented mode 89
predefined classes 91

loading
prototype library 130

M

makeColumn member function
IlvManager class 31

makeLink member function
IlvGrapher class 87
IlvMakePolyLinkInteractor class 103
213 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 214 Monday, July 27, 2009 4:56 PM
MakeNode command 75
makeNode member function

IlvGrapher class 87
makeRow member function

IlvManager class 31
manager grid 64
manager view hooks

description 61
example 62

managers
and views 18
applying functions in a region 28
binding views 20
commands 19
displaying groups and instances 155
double-buffering 20, 22
hooks 20
input/output 20
modifying geometric properties of objects 27
optimizing drawing tasks 33
overview 16
reading 34
saving 34
selecting objects 28, 29
selection procedures 29
zooming 22

manual
naming conventions 13
notation 13
typographic conventions 13

mapLinks member function
IlvGrapher class 88

menu bar 138
miscellaneous accessors

description 203
modifying object states

and managers 68
moveObject member function

IlvManager class 28
movePoints member function

IlvPolylineLinkImage class 96
multiple views

and managers 20
description 18

N

naming conflicts 183
naming conventions 13
NewGrapherBuffer command 74, 79, 137
NewGraphicBuffer command 74, 137
NewProtoLibrary command 145
NewPrototype command 145
NewPrototypeEditionBuffer command 145
NewPrototypeGrapherBuffer command 145
nodes

arranging 88
connecting 102
creating 102
description 87
managing 87
retrieving links 88
testing connection 88

nodeXPretty member function
IlvGrapher class 88

nodeYPretty member function
IlvGrapher class 88

notation 13
numberOfSelections member function

IlvManager class 29

O

object interactors
and managers 52
description 52

object properties
and managers 30

objects
managing 27

OneLinkImage mode 77
OneSplineLinkImage mode 77
OpenProtoLibrary command 146
orientation 93
OrientedArcLinkImage mode 77
OrientedDoubleLinkImage mode 78
OrientedDoubleSplineLinkImage mode 78
OrientedLinkImage mode 78
OrientedOneLinkImage mode 78
OrientedOneSplineLinkImage mode 78
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 214

usrtwodgraphics.book Page 215 Monday, July 27, 2009 4:56 PM
OrientedPolylineLinkImage mode 78

P

palettes panel 140
parameters

direct 154
input 154
object/node 154
output 154

perpendicular lines 92
pin editor mode 75
PolylineLinkImage mode 78
prototype accessors

Assign 184
Blink 197
Callback 200
Clock 201
Condition 185
Debug 203
Event 202
Fill 192
Format 186
Group 181
Increment 186
Invert 198
Min/Max 187
Multiple 188
MultiRep 192
Notify 189
Prototype 204
Reference 181
Rotate 199
Rotation 193
ScaleX 194
ScaleY 195
Script 182, 189
Toggle 191
TranslateX 195
TranslateY 196
Value 180
Watch 201

prototype library
creating 115
loading 130

saving 130
Prototype Studio

buffer types 131
connecting prototype instances 132
creating

prototype instances 131
creating prototype library 115
creating prototypes 115
defining attributes of a prototype 116
drawing a prototype 119
editing

panels with prototype instances 131
prototype instances 132
prototype nodes 120

extending 175
loading

prototype libraries 130
prototype panels 132

saving
prototype libraries 130
prototype panels 132
prototypes 129

structuring prototype nodes 121
prototypes

accessor definition 152
accessor parameters 123, 154
advantages 111
architecture 150
compiling applications 158
connecting instances 132
creating 110

by coding 173
instances 131, 160
with IBM ILOG Views Studio 110

creating prototype library 115
deleting instances 160
design pattern 108
design pattern definition 111
drawing graphic elements 119
editing

instances 132
examples 109
extending 175
getting attributes 161
group mediators 166
215 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 216 Monday, July 27, 2009 4:56 PM
groups 151
header files 158
instances 131, 155
librairies 155
librairies for compiling 158
linking

application objects 156, 165
loading

prototype instances 158
overview 108
proto mediators 168
retrieving instances 161
saving 129
setting attributes 161
setting values directly 165
specifying

graphical behavior 112
interactive behavior 112

structuring nodes 121
sub-attributes 165
using in applications 110, 157
values 152

Prototypes buffer window
description of 138

prototypes extension 140

R

read method
IlvContainer class 158
IlvManager class 158

readFile method
IlvContainer class 158
IlvManager class 158

readObject member function
IlvGraphInputFile class 88
IlvManagerInputFile class 35

reDo member function
IlvManager class 66

reDraw member function
IlvManager class 32

reDrawViews member function
IlvManager class 33

removeAccelerator member function
IlvManager class 53

removeEventHook member function
IlvManager class 37

removeInteractor member function
IlvManager class 37

removePoints member function
IlvPolylineLinkImage class 96

removeView member function
IlvManager class 21

removeViewHook member function
IlvManager class 61

reshapeObject member function
IlvManager class 28

rotateView member function
IlvManager class 22

S

sameHeight member function
IlvManager class 31

sameWidth member function
IlvManager class 31

SaveProtoLibraryAs command 146
saving

prototype library 130
prototypes 129

segment layout
automatic 94
fixed 94

SelecArcLinkImageMode command 79
SelectDoubleLinkImageMode command 80
SelectDoubleSplineLinkImageMode command 80
SelectGroupConnectionMode command 146
SelectGroupSelectionMode command 147
selecting

objects 29
selection procedures

and managers 29
example 29

SelectLinkImageMode command 80
SelectNodeSelectionMode command 147
SelectOneLinkImageMode command 81
SelectOneSplineLinkImageMode command 81
SelectOrientedArcLinkImageMode command 81
SelectOrientedDoubleLinkImageMode command

81
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 216

usrtwodgraphics.book Page 217 Monday, July 27, 2009 4:56 PM
SelectOrientedDoubleSplineLinkImageMode
command 82

SelectOrientedLinkImageMode command 82
SelectOrientedOneLinkImageMode command 82
SelectOrientedOneSplineLinkImageMode

command 83
SelectOrientedPolylineLinkImageMode

command 83
SelectPinEditorMode command 83
SelectPolylineLinkImageMode command 83
setAlpha member function

IlvManagerLayer class 26
setBackground member function

IlvManager class 23
setControlPoint member function

IlvOneSplineLinkImage class 93
setDoubleBuffering member function

IlvManager class 22
setFactory member function

IlvMakeLinkInteractor class 103
IlvMakeNodeInteractor class 102

setFixedOffset member function
IlvArcLinkImage class 95

setFixedOrientation member function
IlvDoubleLinkImage class 94

setInteractor member function
IlvManager class 37

setLabel member function
IlvLinkLabel class 92

setMakeSelection member function
IlvManager class 29

setModified member function
IlvManager class 68

setNumLayer member function
IlvManager class 24

setOffsetRatio member function
IlvArcLinkImage class 95

setOrientation member function
IlvOneLinkImage class 93

setOriented member function
IlvLinkImage class 89

setPinIndex member function
IlvGrapherPin class 98

setPoints member function
IlvPolylineLinkImage class 96

setSelected member function
IlvManager class 28

setTo member function
IlvLinkImage class 89

setTransformer member function
IlvManager class 22

setUndoEnabled member function
IlvManager class 66

shortCut member function
IlvManager class 41, 53

ShowApplicationInspector command 142
ShowGroupEditor command 147
smooth curves 94
snapping grids 64
snapToGrid member function

IlvManager class 65
start node 89

T

three connected lines 94
ToggleTimers command 147
toolbar

editing modes 140
transformerChanged member function

IlvManagerViewHook class 61
translateObject member function

IlvManager class 28
translateView member function

IlvManager class 22
trigger accessors

description 200
typographic conventions 13

U

unDo member function
IlvManager class 66
IlvTranslateObjectCommand class 67

undo/redo actions 66
unGroup member function

IlvManager class 31
UngroupIlvGroups command 148
update region 33
217 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 218 Monday, July 27, 2009 4:56 PM
V

view hooks 60
view interactors

and managers 37
extending 45
manager example 39
predefined in managers 38

viewRemoved member function
IlvManagerViewHook class 61

viewResized member function
IlvManagerViewHook class 61

views
adding 21
and managers 18
getting 21
multiple 18, 20
removing 21

W

windows
2D Graphics 74, 137
Grapher 74, 137
Prototypes 138

writeObject member function
IlvGraphOutputFile class 88
IlvManagerOutputFile class 35

Z

zoomView member function
IlvManager class 22
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 218

usrtwodgraphics.book Page 219 Monday, July 27, 2009 4:56 PM
219 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 220 Monday, July 27, 2009 4:56 PM
I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S 220

usrtwodgraphics.book Page 221 Monday, July 27, 2009 4:56 PM
221 I B M I L O G V I E W S V 5 . 3 — 2 D G R A P H I C S

usrtwodgraphics.book Page 222 Monday, July 27, 2009 4:56 PM

usrtwodgraphics.book Page 223 Monday, July 27, 2009 4:56 PM

	IBM ILOG Views 2D Graphics V5.3 User’s Manual
	About This Manual
	Part I Managers
	Basic Manager Features
	Introducing Managers
	Layers
	Views
	View Transformer
	Event Handling
	Main Features of IlvManager

	Manager Views
	View Transformations
	Double-buffering

	Manager Layers
	Layer Index
	Layer Selectability
	Layer Visibility
	Layer Rendering

	Managing Objects
	Modifying the Geometry of Graphic Objects
	Selecting Objects
	Selection Procedures
	Managing Selected Objects
	Managing Object Properties
	Arranging Objects

	Drawing and Redrawing
	Optimizing Drawing Tasks
	Saving and Reading

	Manager Event Handling
	The Event Handling Mechanism
	Event Hooks
	View Interactors
	Predefined View Interactors
	Example: Implementing the IlvDragRectangleInteractor Class
	Example of an Extension: IlvMoveInteractor

	Object Interactors
	Accelerators
	Example: Changing the Key Assigned to an Accelerator
	Predefined Manager Accelerators

	Advanced Manager Features
	Observers
	General Notifications
	Manager View Notifications
	Manager Layer Notifications
	Manager Contents Notifications
	Graphic Object Geometry Notifications
	Example

	View Hooks
	Manager View Hooks
	Example: Monitoring the Number of Objects in a Manager
	Example: Maintaining a Scale Displayed With No Transformation

	Manager Grid
	Example: Using a Grid

	Undoing and Redoing Actions
	Command Class
	Managing Undo
	Example: Using the IlvManagerCommand Class to Undo/Redo
	Managing Modifications

	Part II Grapher
	Introducing the Grapher Extension of IBM ILOG Views Studio
	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	The Grapher Palettes

	Grapher Extension Commands
	MakeNode
	NewGrapherBuffer
	SelectArcLinkImageMode
	SelectDoubleLinkImageMode
	SelectDoubleSplineLinkImageMode
	SelectLinkImageMode
	SelectOneLinkImageMode
	SelectOneSplineLinkImageMode
	SelectOrientedArcLinkImageMode
	SelectOrientedDoubleLinkImageMode
	SelectOrientedDoubleSplineLinkImageMode
	SelectOrientedLinkImageMode
	SelectOrientedOneLinkImageMode
	SelectOrientedOneSplineLinkImageMode
	SelectOrientedPolylineLinkImageMode
	SelectPinEditorMode
	SelectPolylineLinkImageMode

	Features of the Grapher Package
	Graph Management
	Description of the IlvGrapher Class
	Loading and Saving Graph Descriptions

	Grapher Links
	Base Class for Links
	Predefined Grapher Links
	Creating a Custom Grapher link
	Connection Pins

	Grapher Interactors
	Selection Interactor
	Creating Nodes
	Creating Links
	Editing Connection Pins
	Editing Links

	Part III Prototypes
	Introducing the Prototypes Package
	An Overview of the Prototypes Package
	Business Graphic Objects
	Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio
	Using Prototypes in Applications
	When Should You Use Prototypes?
	The Prototype Design Pattern
	Specifying Graphic and Interactive Behavior Using Accessors

	Using IBM ILOG Views Studio to Create BGOs
	Creating and Using Prototypes
	Creating a Prototype Library
	Creating a Prototype
	Defining the Attributes
	Drawing the Prototype
	Defining Graphic Behaviors
	Defining Interactive Behaviors
	Editing a Prototype
	Testing Your Prototype
	Saving a Prototype

	Loading and Saving Prototype Libraries
	Creating and Editing Prototype Instances in Panels
	Choosing a Buffer Type
	Creating a Prototype Instance
	Editing Prototype Instances
	Loading and Saving Panels

	Connecting Prototype Instances

	The User Interface and Commands
	Overview
	Launching IBM ILOG Views Studio With the Prototypes Extension

	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	Group Inspector Panel
	Prototypes Extension Commands
	CloseProtoLibrary
	ConvertProtoManager
	DeletePrototype
	EditPrototype
	GroupIntoGroup
	NewProtoLibrary
	NewPrototype
	NewPrototypeEditionBuffer
	NewPrototypeGrapherBuffer
	OpenProtoLibrary
	SaveProtoLibraryAs
	SelectGroupConnectionMode
	SelectGroupSelectionMode
	SelectNodeSelectionMode
	ShowGroupEditor
	ToggleTimers
	UngroupIlvGroups

	Using Prototypes in C++ Applications
	Architecture
	Groups
	Attributes and Accessor Objects
	Accessor Parameters
	Prototypes and Instances
	Displaying Groups and Instances in Managers and Containers
	Connecting Attributes
	Linking Application Objects to Prototypes

	Writing C++ Applications Using Prototypes
	Header Files
	Loading a Panel Containing Prototype Instances
	Loading Prototypes
	Creating Prototype Instances
	Deleting Prototype Instances
	Retrieving Groups and Prototype Instances
	Getting and Setting Attributes
	User-Defined and Predefined Attributes

	Linking Prototypes to Application Objects
	Setting Values Directly
	Using Group Mediators
	Using Proto Mediators

	Advanced Uses of Prototypes
	Writing New Accessor Classes
	Creating Prototypes by Coding
	Customizing IBM ILOG Views Studio With the Prototypes Extension

	Predefined Accessors
	Overview
	Graphic Representation of the Behavior of a Prototype

	Data Accessors
	Value
	Reference
	Group
	Script

	Control Accessors
	Assign
	Condition
	Format
	Increment
	Min/Max
	Multiple
	Notify
	Script
	Switch
	Toggle

	Display Accessors
	Fill
	MultiRep
	Rotation
	ScaleX
	ScaleY
	TranslateX
	TranslateY

	Animation Accessors
	Blink
	Invert
	Rotate

	Trigger Accessors
	Callback
	Clock
	Watch
	Event

	Miscellaneous Accessors
	Debug
	Prototype

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

