
Patterns for REST Services with
WebSphere DataPower SOA Appliances

Daniel Colonnese
codaniel@us.ibm.com
WebSphere Technical Specialist
IBM, Cambridge MA

Alex Klevitsky
aklevitsky@mib.com
Director of Architecture and Enterprise Software
MIB, Inc. Westwood, MA

Abstract:

This article discusses service patterns using IBM WebSphere DataPower® SOA
Appliances for Representational State Transfer (REST) style software systems. A reader
is expected to have a familiarity with service-oriented software design and software
design patterns fundamentals.

Patterns for REST Services with DataPower
Appliances

 This is a discussion of the role that IBM’s WebSphere DataPower SOA appliances

can play as an infrastructure component to implement SOA solutions based on the

Representational State Transfer (REST) architecture. This is not a position paper about

IBM’s view of Service-Oriented Architecture (SOA) or the Enterprise Service Bus (ESB)

portfolio. This vision is complimentary, rather than contradictory, to IBM’s family of

ESB solutions which includes WebSphere ESB, WebSphere Message Broker and

WebSphere DataPower Integration Appliance XI50. While simplicity is the key feature

of the proposed solution we would like to stress that business needs, rather than

technology preferences, drive architectural decisions.

SOA Patterns and REST

 “SOA is flexible architecture of business capabilities being supported by loosely

coupled IT elements” as defined by the IBM SOA Center of Excellence. It is our opinion

Patterns for REST Services with WebSphere DataPower SOA Appliances Page 1

mailto:codaniel@us.ibm.com
mailto:aklevitsky@mib.com

that this and other definitions present SOA as a set of architecture guiding principles,

rather than reference architecture. Many definitions of SOA exist today attempting to

formulate guiding principles for this new architecture. These principles alone are not new,

but have been exposed as one cohesive unit. These guiding principles provide a

foundation for the SOA reference model.

The Exposed Router variation of the Exposed Broker application pattern [1] provides the

foundation for the SOA environment. According to L. Bass [2] a software system reflects

not only requirements (both in terms of functionality and system qualities) but also the

background and knowledge of the architects. Architects select the most common and

familiar style that satisfies system requirements. The dominant style in large software

systems for the past 30 years has been call-and-return architectures. The client-server is

the most popular among them where programs are components and calls or RPC are

connectors [2]. The client-dispatcher-server style “introduces an intermediate layer

between clients and servers, the dispatcher component. It provides location transparency

by means of a name service, and hides the details of the establishment of the

communication connection between clients and servers.” [3] The client-dispatcher-server

pattern describes a direct variant of the Broker pattern, indicating that servers and clients

use and understand the same protocol. This paper further outlines exposing the

DataPower appliance as a Dispatcher variant.

The benefits of SOA can be garnered by heterogeneous architectural styles which are

created from SOA architectural patterns and REST [4]. REST is the predominant

architectural style of distributed hypermedia systems including the modern Web. The

DataPower SOA appliance expedites the implementation of software systems based on

this style. The major driving factor in the rising interest of REST is attributed to the

success of the World Wide Web – as of today the largest software system built by

humanity. Roy Fielding’s seminal dissertation illustrates REST data elements,

components, connectors, and presents the following process view (Figure 1) in order to

show the interaction between components [4].

Patterns for REST Services with WebSphere DataPower SOA Appliances Page 2

Figure 1. Courtesy Roy Fielding PhD Dissertation, 2000

In his description of this process view, Fielding points out that “REST provides a set of

architectural constraints that, when applied as a whole, emphasizes scalability of

component interactions, generality of interfaces, independent deployment of components

and intermediary components to reduce interaction latency, enforce security, and

encapsulate legacy system” (highlights in this quote are ours). Later he adds - “layered

system constraints allow intermediaries – proxies, gateways and firewalls – to be

introduced at various points in the communication without changing the interfaces

between components, thus allowing them to assist in communication translation or

improve performance via large-scale, shared caching”. In particular, “a gateway (a.k.a.,

reverse proxy) component is an intermediary imposed by the network or origin server to

provide an interface encapsulation of other services, for data translation, security

enforcement and acceleration. Note that the difference between a proxy and a gateway is

that a client determines when it will use a proxy” [4]. The DataPower SOA appliance

provides Multi-Protocol Gateway (MPGW) application component. This component is a

Patterns for REST Services with WebSphere DataPower SOA Appliances Page 3

good fit as REST gateway component implementations. It also represents variants of the

“server-side proxies” – the participating components of the Exposed Broker pattern [3].

The recent popularity of SOA and REST fits the use of DataPower appliances in a

Dispatcher or Gateway pattern thus leading to innovative software system designs and

implementations.

DataPower- Gateway Design Patterns

This article is not concerned with specific implementation details; rather it is a position

paper dealing with design alternatives. In a recently published book “RESTful Web

Services” [5] the authors address design and implementation of Web Services based on the

REST architectural style, taking into account functional requirements (including, but not

limited to, security enforcement, protocol translation, data transformation and routing) as

well as non-functional requirements (including, but not limited to, performance and

consumability).

The introduction of the IBM DataPower appliance as a gateway offers flexibility in

design choices which may otherwise be prohibitive or more complex in a software-only

design. We offer three hierarchical variants of the gateway pattern based on the

capabilities of the appliance: Secure Gateway, Secure-Accelerator Gateway and Secure-

Decorator Gateway (Figure 2). Each lower level pattern helps to complete higher level

pattern(s).

Figure 2. DataPower appliance as REST-Service Gateway

Patterns for REST Services with WebSphere DataPower SOA Appliances Page 4

The Secure Gateway pattern utilizes DataPower to provide security services and protocol

mediation. The DataPower Multi-Protocol Gateway Service (MPGW) utilizes DataPower

security capabilities, such as AAA, CRL verification, traffic shaping, as well as XML

threat protection. DataPower’s integration capabilities include support for various

messaging protocols (e.g. MQ, JMS) and FTP transports in addition to front-side

HTTP(s). Multi-transport support is not violating REST according to the REST process

view. The stateless nature of REST requires that a Secure Gateway assumes that all client

side traffic is suspect and all back-end messages are authorized and valid.

The Secure- Accelerator Gateway completed by the Secure Gateway pattern adds data

transformations and validation of XML messages. DataPower XML acceleration

capabilities substantially increase performance of XML processing and provide highly

efficient solutions for transforming programmable representations (e.g. XML) accepted

from the client to the common internal XML message format (or business local XML

vocabulary). We recommend including XML Schema compliance verification that is

more expensive to perform utilizing other infrastructure components. We have found ISO

Schematron [6] to be useful in implementing constraints and complex business rules

validations in addition to basic XSD schema validation. With REST-AJAX web

applications DataPower could be utilized to perform client-side validations via ISO

Schematron or XPATH which can further reduce latency while decreasing load on the

application server. The content-based routing capabilities of the appliance may be used to

support versioning of the common internal XML message format.

The Secure-Decorator Gateway is completed by the Secure- Accelerator Gateway pattern

which adds representation construction for human-readable (e.g. XHTML) and

programmable (e.g. XML) interfaces from the common internal XML message format. It

is a variant of a Proxy-Decorator pattern that was envisioned by the authors of “Design

Patterns” as a combination of the well known Proxy and Decorator patterns [7].

 Web 2.0 and beyond

Consumability (or connectedness) has been an important focus of Web 2.0 mashups.

Many architects have stressed that REST services offer this consumability quality.

Patterns for REST Services with WebSphere DataPower SOA Appliances Page 5

DataPower WS-Proxy and MPGW application components provide features to amplify

this quality even further by potentially providing alternative support for non-REST Web

Services. These patterns may be extended to add SOAP wrapper, WSDL, and WS-*

capabilities to existing REST services.

Other new heterogeneous architectural styles may be built upon REST and selected SOA

architectural patterns. A good resource is the IBM SOA Patterns Redbook [1].

In conclusion we would like to recommend that pattern based architectural styles and in

fact software design patterns in general be used in the way Christopher Alexander

advocated pattern usage in the field of civil architecture – to build better systems rather

than simply solve recurring problems in a given context.

Resources

1. Patterns: SOA with an Enterprise Service Bus. IBM Redbook. May, 2005.

2. Len Bass, et al. Software Architecture in Practice. Software Engineering Institute

(SEI). Addison-Wesley, 1998

3. Frank Buschmann, et al. A System of Patterns. John Wiley & Sons, 1996

4. Roy Fielding. Architectural Styles and the Design of Network-based Software

Architectures. PhD Dissertation, 2000

5. Leonard Richardson, et al. RESTful Web Services. O’Reilly, 2007.

6. ISO Schematron: A language for making assertions about patterns found in XML

documents. http://www.schematron.com/spec.html

7. Erich Gamma, et al. Design Patterns. Addison-Wesley, 1995.

About the authors
Daniel Colonnese is a WebSphere specialist specializing in helping Insurance and
Financial Services clients design and build service-based applications.

Alex Klevitsky is the Director of Architecture and Enterprise Software at MIB, Inc. He
has over twenty years of experience in design, development and implementation of
Business and Engineering applications as well as Software tools.

Patterns for REST Services with WebSphere DataPower SOA Appliances Page 6

	Resources
	About the authors

