
CBDIJournal
Reprint from April 2006

ISSN 1745–1884

Best Practice Report
Applying ESB

The Enterprise Service Bus should be a device for ensuring policy
governance. This suggests that there is more to ESB design than
selecting the best product or finding the lowest cost approach
reusing existing technical infrastructure components. This report
looks at how the ESB can deliver varying benefits by use of layered

architecture and appropriate deployment patterns.
By Lawrence Wilkes

Independent Guidance for Service Architecture and Engineering

Best Practice Report

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 1

By Lawrence Wilkes

Applying ESB

This report looks at the use of the Enterprise Service Bus (ESB) to
support layered architecture and varying business requirements and
considers the benefits an ESB can deliver. It also looks at appropriate
ESB deployment patterns.

The role of SOA Middleware
SOA middleware may seem an oxymoron. SOA is meant to free organizations
from the tyranny of tightly coupled implementations, which in my mind includes
creating dependences on middleware, not just application and platform-level
dependencies.

With support for Web Service protocols embedded in the Application Servers,
and WS-STAR1 providing support for federated, secure, reliable, transactions
between endpoints, why should there be a need for additional middleware?

The reality is that existing benefits of a middleware approach still largely applies.
SOA middleware can be used to:

Separate concerns – remove middleware capability such as messaging
and mediation away from applications. Though a modern platform
can also assist in achieving this, such as Microsoft Windows
Communications Framework (WCF)

Support Heterogeneity – separate capability away from OS/Platform
specific functions

Provide a more agile environment where changes to infrastructure do not
impact applications, or vice versa

Form part of a shared enterprise SOA infrastructure, rather than
embedded in or specific to each application solution

Manage by policy, and manage centrally. It is easier to deploy and
enforce policies through a layer of SOA infrastructure designed for this
purpose.

Web Services are not the only protocol. Even when they do become
widely used, most organizations will continue to use the existing
middleware and other protocols already in use for some time. Hence
SOA middleware often provides support for other protocols.

A challenge for many organizations today, is that the capability required for
SOA middleware and SOA infrastructure in general is that it is spread, and often
duplicated across multiple products and technologies. In addition it is often
found in a mixture of point solutions and specialist SOA products plus existing
infrastructure that is typically upgraded to support SOA requirements. Whilst
Table 1 presents some good reasons to consider new infrastructure products

•

•

•

•

•

•

1STAR – Secure, Transacted, Asynchronous, Reliable. Term often used in reference to the collective use
of WS-RX, WS-TX, WS-Security protocols.

Applying ESB continued . . .

to support SOA, it also highlights a strong reason for many
organizations to look at how they upgrade their existing
infrastructure to support SOA – namely, that they already
have it, and the existing infrastructure must remain in place
to support existing requirements.

However, it is not as straightforward as depending on
existing infrastructure. Although not an immediate concern
for some organizations, SOA will place new demands on
infrastructure capability that the existing infrastructure
cannot so easily support. Longer term, the SOA infrastructure
must itself become Service-based and able to be virtualized
in the same way that is required of business capability.
Even in the near term, organizations can gain advantage
from using a networked approach to some SOA middleware
requirements rather than using a hub and spoke approach
that frequently exists today. Longer term, the federated SOA
will make this a requirement.

Consequently, it is important that organizations consider the
granularity of software components and the availability of
Service-oriented interfaces to support virtualized, federated
deployment of SOA infrastructure. This is more likely to
be found in new, purpose built SOA infrastructure. This is
explored later in SOA infrastructure deployment patterns.

The Enterprise Service Bus
We first considered the role of the Enterprise Service Bus
(ESB) in a previous report “Time to board the Enterprise

Service Bus”2. Since then end-user interest in ESB and
vendor hype has continued to grow. I sometimes think a
better expansion of the abbreviation might be “Everyone’s
Silver Bullet”, such is the perception that all you need to buy
is an ESB and all your SOA problems are solved.

In that report we identified that there was no commonly
agreed definition of an ESB, or a set list of functionality one
might expect to find. Consequently, so called ESB products
offer a spectrum of capability as shown in Table 2.

At one extreme, ESB products may be little more than a
broker, providing routing and transformation capabilities.
At the other, ESB products can provide most of the SOA
Infrastructure required. It is at this end of the spectrum that
the most overlap occurs with other infrastructure domains.
Ideally, the range of capabilities offered should be modular
enabling organizations to assemble their SOA infrastructure
from a range of best of breed capabilities. Unfortunately,
not all vendors share a similar goal.

A well formed ESB can help organizations by providing the
core mechanism to deliver SOA run-time agility. The role of
ESB includes

Providing the mediation layer between service
consumers and providers to enable loose coupling

Abstract hard coded transformation and routing
of messages away from service consumers and
providing resources – making the SOA easier to
maintain, manage

•

•

New Existing

Built for SOA Built for existing pre-SOA requirements

Based on Open Standards. Built from ground up to support open
standards

Support for Open Standards. Various open standards are supported
through an adaptor that extended internal proprietary platform

Built for WS-Protocols WS-protocols are an adaptor

Support for broad range of WS-Protocols Often only supports core SOAP, WSDL

Expose capability as Services. Using Web Services Capability more likely exposed through proprietary API.

Native XML processing. May include XML processing optimization XML is an adaptor

Componentized Monolithic

Emerging, but Maturing Mature. Optimized, high performance

Small vendor – may be acquired Large vendor

You have to buy it You already have the basis of it. Though requires upgrades or
adaptors for SOA and WS

Table 1: Contrasting New and Existing Infrastructure Products for SOA

2CBDI Report. Time to Board the Enterprise Service Bus? http://www.cbdiforum.com/secure/interact/2004 – 07/Enterprise_Service_Bus.php

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 2

Provide a central point of control for mediation and
integration policy enforcement

Host Services within the SOA itself (see Service
Endpoint Hosting below)

Depending on the ESB implementation, provide
declarative mediation, dynamic mediation or
mediation based on current and emerging open
standards such as WS-protocols, WSBPEL, JMS,
JBI

Provide on/off ramps for multiple transport and
message types

Orchestration of Services

•

•

•

•

•

Service Endpoint Hosting
CBDI has promoted a layered Service Architecture as a
mechanism to provide flexibility, as well as well as reuse
and consistency through the use of shared Services. This
is central to the Service Portfolio Planning (SPP) approach
that CBDI has formalized over the last year.

A key deployment question is where each layer of the SOA
should be hosted. The simple approach is to assume all
Service Endpoints are hosted on the Application Server
that also conveniently hosts the corresponding Service
Automation Unit3 (SAU).

Capability Not quite ESB? Lightweight ESB Extended ESB More than ESB?

Provision/Host Service Endpoints   

Messaging (MOM)  

Routing    

Message Transformation    

Rich palette of transformation
patterns

  

Protocol Transformation    

EAI Adaptors  

Database lookup 

Orchestration   

Security 

Service Management 

Policy Driven   

Desirable Characteristics Implement Open Standards
Componentized – enable distribution of components
Extensible
Service Based – Exposes capabilities as Services

Potential Product Overlap Orchestration Engine Orchestration Engine
MOM

Orchestration Engine
MOM
EAI
Security
Service Management
System Management

Table 2: The ESB Spectrum

3CCBDI Journal March 2005, SOA Reference Model http://www.cbdiforum.com/secure/interact/2004-03/SOA_Reference_Model.php

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 3

Applying ESB continued . . .

However, it is not necessary or even desirable to have such
a close physical, tightly coupled relationship between the
Service Endpoint and its SAU. The Service Endpoint should
be a first order concept that is independent of the SAU,
ideally with the two only linked dynamically at runtime based
on prevailing policies.

Most modern Application Servers can also act as a
Service Broker, with a configuration file maintaining the link
between the Service Endpoint and the SAU. However there
are limitations to this, namely that the configuration in the
Application Server is unlikely to recognize and link to SAU’s
that are hosted elsewhere, or broker Service Requests to
other Service Endpoints that are also hosted elsewhere.

Table 3 provides a comparison of typical Application Server
and ESB in terms of their ability to host Service Endpoints
and act as a Service Broker. With this in mind, Table 4
considers the role of the Application Server or ESB to host
each of the Service layers.

Figure 1 visualizes the possible roles of the ESB and the
Application Server in hosting Services. It shows

The ESB hosts the Process Service Endpoint. The
SAU for this is implemented using the process
orchestration capabilities of the ESB (typically
WSBPEL)

•

The ESB also hosts the Business Service Endpoint.

The Application Server hosts the SAU for the
Business Service Endpoint

The Application Server hosts the Underlying
Service that provides access to the SAU (via it’s
API)

The ESB provides the transformation and mediation
capability required to mediate between the
Business Service and the Underlying Service

Delivering SOA Benefit Patterns
As well as being suitable for hosting Service endpoints
for certain layers, the ESB is also particularly suitable for
delivering certain SOA benefits patterns that we looked in
the recent CBDI Journal report4. The advantage offered
by using an ESB to implement these patterns is shown in
Table 5.

•

•

•

•

4CBDI Journal March 2006, SOA Benefit Patterns: http://www.cbdiforum.com/secure/interact/2006 – 03/SOA_Service_Benefit_Patterns.php

Capability Application Server ESB

Host Service Endpoints  

Provide implementation of Service  

Bind/link Service to implementation API  On the same Server 

Automate mapping of native platform API used by SAU to WS-Protocols  

Enable developer to program implementation in familiar native languages
without learning XML and WS-Protocols

 

Provide a declarative approach to defining Services  

Provide declarative specification of rules, processes, mediation 

Broker Service requests to alternate Endpoints 

Bind/link Service to SAU hosted elsewhere 

Transform Service Requests to different Implementation Format 

Provide dynamic, content-based mediation 

Policy Driven Config file 

Table 3: Application Server and ESB Comparison

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 4

Service Layer Application Server ESB

Process Services Host Process Service

Host SAU as Process Component to implement logic,
rules

Process implemented as code.

Host Process Service

Host SAU as process logic, rules scripted (declaratively)
in ESB.

Use Orchestration capability to implement process

Business Services Host Business Services

Host SAU as Business Component to implement logic,
information access

Host Business Service

Host partial SAU – validation, some business rules.
Business rule driven mediation

Mediate messages to SAU in Application Server

Underlying Services Host Underlying Service

Host SAU in existing applications or packages

Mediate to Underlying Service

Provide transformation capability. Adaptors to existing
systems and packaged applications

Utility Services Host Utility Service

Host SAU as Utility Component

Mediate to Utility Service

Host some utilities where provided as capability of ESB
– e.g. Data Transformation Utility

Table 4: Hosting Service Layers

Figure 1: Role of ESB in Hosting Service Endpoints

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 5

Applying ESB continued . . .

Pattern/Strategy ESB
Advantage

Use of ESB

Façade  Extended ESB have adaptors to existing systems and packaged applications, with extensive
transformation capability

Single Service  The real ESB advantage is where the Single Service is also a façade, which is often the case

Standardized Service  An ESB implemented on a truly enterprise basis can ensure compliance with standardized
services across the enterprise

Standardized Semantics  An ESB implemented on a truly enterprise basis can help ensure compliance with
standardized semantics across the enterprise

Commodity Service None The ESB offers no specific advantage in delivering this pattern

Common Component
Service

None The ESB offers no specific advantage in delivering this pattern

Multi-Channel Service  ESB can offer an advantage where the multi-channel Service is a façade across existing
channel specific Services

Real Time Service Behavior  The ESB cannot itself transform existing systems to provide real-time behavior but
could play a useful role in supporting real-time interaction between Service Provide and
Consumer, and providing a real-time façade over the existing systems.
Support in the ESB for WS-STAR would be desirable where required for some real-time
messaging patterns.

Real Time Mediation  ESB’s excel of course in providing real-time mediation, with support for policy driven
mediation, and declarative approaches make it straightforward to configure

Differentiated Service
Behavior

 The ESB can again provide policy-driven mediation to provide differentiated services
behavior, and route requests to different service automation units where applicable

Table 5: SOA Benefit Patterns Supported by ESB

The goal should not be to have
a single physical ESB to ensure
consistency, but a single logical

ESB where policies and rules
can be distributed and executed

locally, but administered
centrally.

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 6

ESB and SOA Infrastructure Deployment
Patterns
The ESB is often depicted as in Figure 2. The bus mediates
messages between the various Services that “plug” into the
bus.

However, the notion of a “bus” is perhaps misleading when
considering the physical deployment of the ESB. Rather,
there are various patterns of deployment that are typically
used.

Hub and Spoke
Often the ESB is deployed in a hub and spoke style that
is reminiscent of Enterprise Application Integration (EAI)
tools. This is not surprising given the heritage of some ESB
products.

Here the core ESB and other components of the SOA
infrastructure are deployed centrally and all the messages
are routed to it for processing. This is a sensible approach
where the Services and Resources are themselves centrally

located. It is also useful where organizations are seeking
to connect large numbers of existing non-SOA systems
where the ESB is seen as an evolution of their existing
EAI approach, and hence implemented by extending their
existing EAI infrastructure.

Network
The opposite extreme is the network pattern, where each
node contains full range of ESB and SOA infrastructure
capability.

This is appropriate for an SOA that involves distributed,
federated scenarios such as in a large global organization,
joined up government across multiple departments
and agencies, or ecosystems of collaborating business
partners.

The key benefit of this is that Service Requests can flow
directly between participants in a federated scenario without
having to pass through a central hub which becomes a
potential bottleneck and single point of failure. Mediation
can be implemented locally which distributes processing, or

Figure 2: “Classic” ESB Diagram

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 7

Applying ESB continued . . .

can also be undertaken step by step as a Service Request
passes through multiple nodes on its journey from Service
Consumer to ultimate Service Provider, with each node
applying appropriate polices.

The downside is that every node needs a full set of SOA
infrastructure capability, which may be costly in terms of
both resources and product licenses, and configurations
and policies may require synchronization.

The network approach may appear to share many of the
problems inherent in point-to-point integrations. However
the ESB specifically overcomes these issues:

1.	 by implementing a standards based proxy layer
– creating loosely coupled connections

2.	 by enabling central definition and local deployment
of policy to ensure consistent response to events.

3.	 or by enabling sharing of policies and
configurations between relevant participants (if
there is no central authority)

Given the federated participation of some SOAs, there may
be little alternative to the network approach as there is no
shared infrastructure or obvious hub, or no desire by the
participants to nominate any one participant as the hub.

Combined
Many organizations may find that the ideal pattern is to
combine both the Hub & Spoke and the Network pattern,
for example with lightweight SOA Infrastructure nodes,
together with a heavyweight centralized core of capability.
For example, initial mediation processing may take locally
to format the Service Request and address it to the
appropriate endpoint, but it is still sent to the hub where
additional transformation takes place and the request is
re-routed to an alternative endpoint (based on policies that
were not apparent to the dispatching node). Or policies may
dictate that some Service Requests can be routed directly
to another node on the network, whereas others must to
dispatched to the hub for processing.

Business Service Network
A variation on these patterns is the Business Service
Network5 where the SOA Infrastructure hub is provided by
a 3rd party provider. This could be used as a purely hub &
spoke approach where all messages are sent to the hub for
processing, or with the combined approach where some
messages processed locally and sent directly to other
nodes.

This may be appropriate for example to centrally managed
ecosystems where participants are happy to delegate SOA
infrastructure responsibility to an independent provider.

Figure 3: ESB Deployment Profiles

5http://roadmap.cbdiforum.com/reports/ICT/

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 8

Figure 3 profiles these deployment options by considering
factors such as

The number of Nodes that might require local
capability

The number of different participants

The autonomy of participants

The diversity of the platforms in use (heterogeneity)

It also introduces other options for providing ESB and SOA
infrastructure capability such as

OP/OS – the operating platform or operating
system provides SOA infrastructure and ESB
capabilities. Small enterprises may find that the
Windows Server platform provides all the capability
they need internally. Then to complement this,
where they require interaction with external
participants they may decide to delegate this to a
BSN provider

ebXML – in some B2B scenarios the participants
might agree to standardize on infrastructure that
complies with the ebXML standard. However, this
would normally only apply to external B2B activity,
not the internal SOA infrastructure

Single vs multi-ESB deployments. It might seem
oxymoronic to talk about an enterprise having
several ESBs. However, it possible that in large
global enterprises where there is considerably
autonomy between divisions, it may be effective to
deploy multiple ESB’s (a Divisional Service Bus?)
and to treat other divisions as effectively external
participants each with their own ESB, rather than
to try to force the entire enterprise to share a single
infrastructure. The challenge would be in ensuring
compliance with truly enterprise-wide policies if
there was a diversity of ESB products in place.

•

•

•

•

•

•

•

Summary
The ESB can play a useful role not just in hosting Service
Endpoints but ensuring policies are enforced. An ESB
implemented on a truly enterprise basis can provide a single
point of consistency and policy execution for all Services,
both those provided and consumed by the organization.

However, organizations must be careful to ensure the ESB is
not a bottleneck or a barrier to delivering agile SOA. Hence
ESB deployment patterns are important. The goal should
not be to have a single physical ESB to ensure consistency,
but a single logical ESB where policies and rules can
be distributed and executed locally, but administered
centrally.

Reprint from CBDI Journal © CBDI Forum Limited, April 2006 9

Subscribe to the
CBDI Forum

The CBDI Journal is published
monthly with a combined

July/August edition. An annual
corporate subscription includes

access to all back numbers
plus access to Powerpoint

Libraries and the CBDI Hot Line
service.

For more details see:
www.cbdiforum.com

CBDI Objectives
CBDI Forum aims to provide independent, action oriented practice guidance on
Service Oriented Architecture and Component Based Development for architects,
business analysts, project managers, designers and others involved in creating and
delivering advanced architectures.

CBDI Delivery Channels
CBDI Forum provides:

•	 Subscription services – continuous practice guidance published in the
CBDI Journal every month (with July/August combined into one volume)

•	 Workshops and Seminars – providing indepth education on architecture,
process and practice. Public and In-house classes are available.

•	 Consulting – specific guidance on adoption roadmap including status
assessments, methodology customization, architectural guidance
including reference architecture development, governance reviews,
business design and strategy development.

CBDI Background
CBDI Forum is the Everware-CBDI research capability and portal providing
independent guidance on best practice in service oriented architecture and related
delivery processes. Working with F1000 enterprises and governments the CBDI
Forum research team is progressively developing structured methodology and
reference architectures for all aspects of service oriented architecture.

A CBDI Forum Subscription provides a corporation or government department with
access to a unique knowledgebase, ongoing continuous practice research guidance
materials and hotline access to CBDI Forum experts. The monthly CBDI Journal
provides in-depth treatment of key practice issues and guidance for architects,
business analysts and managers. Forum Meetings are held periodically in Europe
and North America allowing peers to engage and exchange experience and best
practices.

Contact Us
For further information on any of our services contact us at: info@cbdiforum.com or
1353 28 38073 (International)

IMPORTANT NOTICE: The information available in CBDI publications and services,
irrespective of delivery channel or media is given in good faith and is believed to
be reliable. CBDI Forum Limited expressly excludes any representation or warranty
(express or implied) about the suitability of materials for any particular purpose and
excludes to the fullest extent possible any liability in contract, tort or howsoever for
implementation of, or reliance upon, the information provided. All trademarks and
copyrights are recognised and acknowledged.

Independent Guidance for
Service Architecture and Engineering

CBDI Forum is the
Everware-CBDI

practice research
capability and portal

