
IBM WebSphere Transformation Extender

Type Designer

Version 8.1

���

Note

Before using this information, be sure to read the general information in “Notices” on page 155.

2006

This edition of this document applies to IBM WebSphere Transformation Extender Version 8.1; and to all subsequent

releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email DTX_doc_feedback@us.ibm.com. We look forward to

hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Introduction to the Type Designer . 1

About type trees . 1

Data composition . 1

Subtypes . 2

Type tree hierarchy . 2

Type Designer files . 2

Type Designer icons . 3

Chapter 2. Type Designer basics . 5

Type Designer startup . 5

To import a type tree . 5

To open an existing type tree . 5

To create a type tree . 5

To open a recently used type tree . 5

User interface . 5

Type tree window . 6

As work book option . 6

Splitting the type tree view . 6

Item window . 6

Group window . 7

Category window . 7

Properties Window . 7

Menu commands and tools . 8

File menu . 8

Edit menu . 9

Undo commands . 9

View menu . 10

Type menu . 10

Tree Menu . 11

Component menu . 11

Restriction menu . 12

Tools menu . 12

Window menu . 12

Help menu . 13

Status bar . 13

Configuring the Type Designer environment . 13

Options . 13

Chapter 3. Working with type trees . 17

Creating type trees . 17

Creating types . 17

Viewing types . 18

Expanding a Type . 18

Data content . 18

Data objects . 18

Types . 18

Classes . 18

Item . 18

Group . 19

Category . 19

Components . 19

Exporting a type tree . 19

Exporting a type as a schema . 20

Type to XML conversion . 20

Type tree differences . 20

© Copyright IBM Corp. 2006 iii

Creating a type tree exercise . 21

Opening an existing type tree . 23

Chapter 4. Type properties . 25

Defining type properties . 25

To access properties of a type . 25

To define the properties of a type . 25

Basic type properties . 26

Name . 26

Class . 27

Description . 27

Intent . 28

Partitioned . 29

Order subtypes . 29

Initiator . 29

Terminator . 30

Release characters . 30

Empty . 31

National language . 32

Document Type . 32

Where used . 33

XML properties in the type tree . 33

Support for XML constructs . 33

XML schema datatypes . 34

Identity constraints . 36

Namespaces . 36

Element type declarations . 37

Element and attribute wildcards . 37

Chapter 5. Item properties . 39

Item subclass . 39

Number item subclass properties . 39

Interpret as binary . 39

Length (bytes) . 40

Byte order . 41

Interpret as character . 41

Size (content) . 42

Separators . 43

Pad . 48

Restrictions . 52

National language . 52

None . 57

Places . 57

Text item subclass properties . 58

Date & time item subclass properties . 58

Date . 58

Time . 59

Format . 59

Time zones . 62

Time zone format string for XML . 63

Optional time segments of the time format string . 63

Date and time format examples . 63

Special . 64

Syntax item subclass properties . 65

Syntax objects with variable values . 65

Example of Variable Syntax Object as an Item Type . 65

Syntax objects as data . 66

Example of syntax objects as components of a type . 66

Delimiter > find . 66

iv IBM WebSphere Transformation Extender: Type Designer

Chapter 6. Item restrictions . 69

Defining item restrictions . 69

Inserting new rows . 70

Restrictions settings . 70

Value restrictions . 70

Character restrictions . 70

Range restrictions . 71

Value not in range . 71

Inserting symbols . 72

Ignoring restrictions . 72

Chapter 7. Group properties . 73

Group subclass . 73

Properties of group subclasses . 73

Choice group components . 73

Unordered group components . 74

Sequence group formats . 74

Explicit format . 75

Track . 75

Fixed syntax . 75

Explicit delimited syntax . 76

Implicit format . 76

Floating component . 76

Implicit whitespace syntax . 77

Implicit delimited syntax . 78

No syntax . 78

Distinguishable components of an implicit group . 79

Specifying a delimiter . 79

Literal . 79

Variable . 80

Location . 80

Delimiter value appears as data . 80

Chapter 8. Components . 81

Components are required for group types . 81

Components must be in the same type tree . 81

Importance of component order . 81

Component range . 81

Group windows . 82

Nested components . 82

Defining components . 83

Complete type name . 83

Relative type names . 83

Ambiguous type names . 84

Always drag components . 85

Viewing the component number . 85

Specifying minimum and maximum consecutive occurrences in the component list 85

Fixed and variable ranges . 85

Using the set range command . 85

Viewing the range column . 86

Types that can be components . 86

Variable component names . 87

Opening a component window . 87

Required and optional data . 87

Significance of required data . 88

Defining component rules . 88

Examples of component rules . 89

Component rule syntax . 89

Entering object names in component rules . 90

Shorthand notation . 90

Contents v

Component rules are context-sensitive . 90

Special characters in component rules . 91

Inserting functions into component rules . 91

Formatting a component rule . 91

Comments in component rules . 91

Syntax errors . 92

Searching for components . 92

Finding a component by number . 92

Managing components . 92

Component attributes . 92

Identifier attribute . 92

Restart attribute . 93

Sized attribute . 93

Chapter 9. Partitioning . 95

Determining when to partition . 95

Required partitioning . 95

Partitioning for convenience . 95

Benefits of partitioning . 96

Partitioning types . 96

Partitioning items . 96

Partitioning an item type using initiators . 97

Partitioning an item type using restrictions . 97

Example of using restrictions . 97

Partitioning an item type by format . 98

Partitioning groups . 98

Partitioning a group type using initiators . 98

Partitioning a group type using identifiers . 98

Partitioning a group type using component rules . 99

Chapter 10. Type inheritance . 101

Inheritance of item properties and restrictions . 101

Inheritance of category properties and components . 101

Organizing types under a category . 101

Using categories for inheritance . 101

When not to use categories . 102

Propagating properties . 102

Properties that can be propagated . 102

Propagating affects types in the subtree . 102

Chapter 11. Managing types . 103

Standard windows capabilities . 103

Object selection . 103

Drag-and-drop procedures . 103

Moving and copying objects . 103

Using the move command . 104

Using a copy command . 104

Type names . 104

Reordering objects . 104

Reordering existing subtypes . 105

Merging types . 105

Before using the merge command . 105

Supertypes . 106

Existing types . 106

Invalid types . 106

Renaming types . 106

Using find and replace . 106

Using the find command . 106

Using the replace command . 107

Printing in the Type Designer . 107

vi IBM WebSphere Transformation Extender: Type Designer

To print the Properties window . 107

Print preview . 107

Printing type definitions . 108

Printing type properties . 108

Chapter 12. Error detection and recovery . 109

Error detection . 109

How error detection works . 109

Existence indicators . 110

Existence versus presence of components . 110

Error recovery . 112

Restart attribute . 112

How the Restart Attribute works . 112

Mapping invalid data . 113

Chapter 13. Distinguishable objects . 115

Objects in a data stream . 115

Type tree analyzer and distinguishable objects . 115

Bound types . 115

Bound components . 116

Component of a fixed group . 116

Component of an explicit delimited group . 116

Component of an implicit group . 116

Component of a choice group . 117

Component of an unordered group . 117

Group starting set . 117

Group unbound set . 117

Unbound set of a sequence group . 118

Initiator-distinguishable types . 118

Determining if a component is initiator-distinguishable from its following set 118

Determining if a partition is initiator-distinguishable from its following set 118

Determining if two types are initiator-distinguishable . 119

Distinguishable objects of the same component . 120

Content-distinguishable components . 121

Content-distinguishable types . 121

Ending-distinguishable types . 127

Distinguishable data objects of an implicit group . 129

Guidelines for defining an implicit delimited sequence 129

Guidelines for defining an implicit sequence that has no delimiter 129

Guidelines for defining an implicit unordered group that is delimited 130

Guidelines for defining an implicit unordered group that has no delimiter 130

Distinguishable data objects of an explicit group . 130

Guidelines for defining an explicit fixed group . 130

Guidelines for defining an explicit delimited group . 130

Objects of a choice group . 131

Objects of a partitioned type . 131

Distinguishable syntax objects . 131

Chapter 14. Type Tree Analyzer . 133

Internal consistency . 133

Mapping effects . 134

When to Analyze Structure or Logic . 134

Logical analysis . 134

Structural analysis . 134

Error and warning messages . 134

Chapter 15. Utilities for XML . 137

XML Type Tree/Schema Synchronization utility . 137

XML type tree compatibility utility . 138

Modifying the target type tree . 139

Contents vii

To add a type to the target tree . 139

To add a component to the target tree . 139

Any-2-XML . 139

Using Any-2-XML from the Type Designer . 140

Chapter 16. Return codes and error messages 141

Type Tree Analyzer errors and warnings . 141

Type tree analysis logic error messages . 141

Logic error and warning messages . 151

Type tree analysis structure error messages . 152

Type tree analysis structure warning messages . 152

Notices . 155

Programming interface information . 157

Trademarks and service marks . 157

Index . 159

viii IBM WebSphere Transformation Extender: Type Designer

Chapter 1. Introduction to the Type Designer

Use the Type Designer to define, modify, and view type trees. A type tree describes

the syntax, structure, and semantics of your data. The syntax of data refers to its

format including tags, delimiters, terminators, and other characters that separate or

identify sections of data. The structure of data refers to its composition including

repeating substructures and nested groupings. The semantics of data refer to the

meaning of the data including rules for data values, relationships among parts of a

large data object, and error detection and recovery.

About type trees

A type tree (.mtt) defines the entire contents of at least one input that you intend

to map or one output you intend to map. A type tree is the mechanism for

defining each element of your data. Similar to a data dictionary, a type tree

contains a collection of type definitions.

Because data definitions are defined in a type tree, you should be familiar with the

specifications that define your data before attempting to create one. A data file is a

simple example. The file is made up of records and each record is made up of

fields. In this case, there are three kinds of data objects: a file, a record, and a field.

In a file of records, think of the data in terms of the three data objects. For

example, one type defines the entire file; another type defines the entire record

contained in that file. Other types in the same type tree define the data fields of

the record.

Each circular icon in the type tree identifies a datatype. The tree has a root type

and other types are connected to the tree through branches of the tree. The root

type is the base type from which all other types stem, representing the data objects

of all types in the tree. ″ROOT″ is the default name when creating a new type tree,

however, you can modify any type name.

Viewing the data in the type tree window shows the different kinds of data objects,

but does not show the layout or composition of the data. For example, by looking

at the tree, you cannot tell that a record consists of fields.

By default, the types are in alphabetical order (ascending) in the type tree window.

You can change the order of how new types appear in the type tree window by

modifying type properties of the root type.

To change the order of how types are added

1. Select the root type and click the Properties button on the toolbar.

2. Go to the Order subtypes property and make a selection from the drop-down

list.

3. Save changes.

Data composition

The type tree window does not display data composition. The group and category

windows do.

© Copyright IBM Corp. 2006 1

Data composition views are shown for group and category types only.

Subtypes

Subtypes are created for a number of reasons like identifying distinct data object.

Another reason is that specific types of an object may have different properties

such as different date formats.

Think of subtypes as different ″flavors″. Ice cream flavors can be chocolate,

strawberry, or vanilla. To create a type tree to represent ice cream as data, the

different flavors of ice cream could be subtypes of the type IceCream.

The type IceCream is generic and describes any kind of ice cream. The type

Chocolate, a subtype of IceCream, represents a certain kind of ice cream:

chocolate.

A file of purchase order data may have two different kinds of records: header and

detail. The type tree representing this data might have a Record type with Detail

and Header as subtypes of Record.

Type tree hierarchy

The types in a tree are arranged in a hierarchy. If a type is subordinate to another

type, it is called a subtype. The type on the branch stemming above a specific type

is called its supertype.

Subtypes have more specific properties. For example, two different kinds of fields,

Name and Date, may be defined as subtypes of Field.

The item type Field describes any field. The item types Date and Name are more

specific kinds of fields. In a classification hierarchy such as this, the deeper the

subtype is in the type tree, the more specific the data characteristics.

Example scenario

Imagine that a type tree represents your house. There is a type for the entire house

(House). A type for each room (Bath, Bed, and so on), and types for the different

furnishings in these rooms (Bed, Chair, and so on). Each type represents a

complete object. A house is made up of rooms. Inside these rooms are beds, chairs,

couches, and so on. You know this, but you cannot see it by looking at the

classification hierarchy view of the type tree. You must open one of the types in

the group window to see its components.

Type Designer files

Type trees have the .mtt file name extension. If the Backup on save option is

enabled, the backup type trees are automatically created when the type tree is

saved. The backup type trees have the .bak file name extension. The backup type

trees are automatically saved in the same directory as the type trees.

When a type tree is analyzed, a type tree analysis message file is automatically

created in the same directory as the type tree. The type tree analysis message files

have the .dbe file name extension.

The following are the Type Designer file name extensions.

2 IBM WebSphere Transformation Extender: Type Designer

Extension

File type

.mtt Type tree file

.dbe Type tree analysis message file

.bak Backup type tree file

Type Designer icons

Icon Description

 Item type

 Partitioned item type

 Sequence group type

 Choice group type

 Partitioned group

 Unordered group

 Category type

 Invalid object type

Chapter 1. Introduction to the Type Designer 3

4 IBM WebSphere Transformation Extender: Type Designer

Chapter 2. Type Designer basics

Type Designer startup

Select Type Designer from the WebSphere Transformation ExtenderDesign Studio

program menu.

When the Startup window is displayed, you can choose a startup option:

v Import a type tree.

v Open an existing type tree file and browse for the type tree file (.mtt) that you

want to open.

v Create a new type tree file.

v Open a recently used type tree file by selecting one or more files from the

displayed file list.

If you do not want the Startup window to appear when you open the Type

Designer, enable the Do not show this at startup option.

To import a type tree

1. In the Startup window, select Import a type tree.

2. Click OK.

See the Type Tree Importer documentationfor information on using the Importer

Wizard.

To open an existing type tree

1. In the Startup window, select Open an existing type tree file.

2. Click OK.

3. From your file structure, select the type tree file (.mtt) that you want to open.

To create a type tree

1. In the Startup window, select Create a new type tree file.

2. Enter a name for the root type in the Root type name field.

3. Click OK.

To open a recently used type tree

1. Select one or more files from the list of recently used files.

2. Click OK.

The Startup window is always accessible from the Help menu.

User interface

The Type Designer provides a graphical user interface (GUI) to define type trees.

The name of the active type tree file is displayed in the title bar.

© Copyright IBM Corp. 2006 5

Type tree window

Type Trees display in the type tree window. A type tree displays data types in a

hierarchy. When viewing the type tree in the type tree window you cannot see

certain things, such as the layout of the data or what data objects are inside of

other data objects. Also, you cannot see the kind of data that appears in each type

(for example, whether it is text or numeric). ″Properties Window″ , ″Item Window″

, ″Group Window″ , and ″Category Window″ sections display details of the data.

When comparing two type trees, the results are displayed in the type tree window.

As work book option

An open type trees may be viewed in a work book.

To enable the view As Work Book option:

From the View menu, select As Work Book.

Splitting the type tree view

The type tree window displays a single type tree. However, multiple type tree

windows may be open at the same time. You can split the type tree into two

separate views. This may be useful for copying and moving types, or for viewing

different parts of very large type trees.

Initially, the splitter is on the left border of a type tree.

To split the type tree into two views:

1. Move the mouse over the left border until you see the cursor turn into a

splitter.

2. Drag the splitter until two views are displayed.

3. Expand and collapse types as desired in each side of the type tree window.

Item window

From the item window you can enter restrictions for item types. The viewable

columns in the item window will differ depending on the item properties. Value,

Character, and Range are the restriction options available.

The restrictions of an item type are the values accepted as valid data objects or

rejected as invalid data objects. Defining restrictions for an item type limits the

valid values of that item to a specific set. For example, the item type Department

might have a limited set of valid values, which could be individual department

abbreviations. These valid departments (for example, Dev, Sal, and so on) are

restrictions for the Department item type that would be listed in the Include

column. Any invalid departments would be listed in the Exclude column.

Insert the restrictions in the appropriate column.

The columns in the item window can be resized by dragging the splitter at the top

of the grid.

6 IBM WebSphere Transformation Extender: Type Designer

Group window

The group window is used to define the components of the group type. Group

types represent objects composed of other objects. A component is an object that is

part of a larger object.

The components of the group are defined in the order in which they appear in the

data. A group’s components are the objects of that group.

For example, if Record consists of Name Field, Address Field, and Phone Field,

the group window for the Record group type would look like this:

Note: The components in the group window are in the order in which they appear

in the data, not in alphabetical order.

The group window has an individual rule bar that is used to enter and view

component ranges and component rules. Component rules specify a condition that

must be met for a particular component to be valid.

This rule bar can be resized to view the entire component rule. The group window

view is configurable to display the range column, the component number, and

whether to use ellipses for the type name display. For complete information on

configuring the group window, see ″Configuring the Type Designer Environment″ .

The group window is also used to enter component attributes for additional data

validation.

Drag data objects from the type tree window into the component rule column in

the group window. The group window displays components in a composition view

that provides visual cues for the types that are components of this group.

Category window

The category window is used to define the components of the category type. The

category window, like a group window, shows components of the category type

that are used for inheritance purposes, to make components available to other

types.

The difference between a category window and group window is that a group

window has a rule column for entering component rules. Components of a

category do not have component rules.

Properties Window

The Properties window is used to define and view the properties of the currently

selected type. Each type has properties that define the characteristics of that data

object.

To access the Properties window:

1. Select a type.

2. From the Type menu, choose Properties.

To dock or float the Properties window:

1. Right-click in any outer gray border of the Properties window.

2. From the content menu, select Allow Docking.

Chapter 2. Type Designer basics 7

A check mark is displayed next to Allow Docking in the content menu when

the window can be docked.

3. After selecting Allow Docking, toggle between a docked window and a

floating window by double-clicking the border of the Properties window.

Menu commands and tools

Actions are performed in the Type Designer using menu commands, tools, and

shortcut keys. Not all menu commands have corresponding tools and not all tools

are represented in the command menus. When working with type trees, you can

activate commands in several different ways:

v Choose the command from a menu.

v Right-click in any window in the Type Designer to display the context menu.

v Click the tools on the toolbar.

v Double-click any type in the type tree window to display its window (item,

group, or category).

v Press Insert to add types.

v Press Insert in the rule bar to display the Insert Function dialog box.

v Press Delete to delete types, rules, and restrictions.

The Type Designer commands are available as listed above; however, accessing

the command from the menu has been used throughout this document for

instruction purposes. Use the access method most convenient for you.

File menu

The File menu provides commands that are generally available in Windows

applications. To access the File menu using the keyboard, press Alt F.

 Command Key stroke Description

New Ctrl+N Creates a new type tree (.mtt)

Open Ctrl+O Opens an existing type tree

Close Alt+F, C Closes the selected type tree

Save Ctrl+S Saves the selected type tree

Save As Alt+F, A Saves the selected type tree under a new name

Source Control Alt+F, l

Create Project Alt+F, l+C Creates a new project

Open Project Alt+F, l+O Opens a project

Get Latest Version Alt+F, l+G Gets the latest version of the selected file

Check Out Alt+F, l+e Checks out the selected file

Check In Alt+F, l+I Checks in the selected file

Undo Check Out Alt+F, l+U Undoes the check out of the selected file

Add to Source

Control

Alt+F, l+A Adds selected file to source file

Remove from Source

Control

Alt+F, l+R Removes selected file form the source control

Show Workfiles Alt+F, l+f Shows all work files in the project

Add Workfiles Alt+F, l+W Adds selected files to source control

Show History Alt+F, l+H Shows the history for the selected files

8 IBM WebSphere Transformation Extender: Type Designer

Command Key stroke Description

Show Properties Alt+F, l+P Shows properties for the selected file

Refresh Status Alt+F, l+R Refreshes the status on all the files

Type Tree Differences Displays type tree differences

Print Ctrl+P Prints all or part of a type tree

Print Type Definition Ctrl+D Prints type definitions

Print Preview Alt+F, V Previews a print job

Print Setup Alt+F, R Specifies printer options

Recently Used File

List

Alt+F, 1 or Alt+F,

2 and so on

Opens the type file selected from this recently

used file list

Exit Alt+F, X Closes the Type Designer

Edit menu

The Edit menu provides editing commands that are generally available in

Windows applications. It also contains the Find command that is useful when

locating types.

To view the Edit menu by using the keyboard, press Alt E.

 Command Key stroke Description

Undo Alt+Backspace Allows the user to undo multiple operations

performed.

Cut Ctrl+X Cuts the selection and places a copy on the

clipboard.

Copy Ctrl+C Copies the selection to the clipboard.

Paste Ctrl+V Inserts the contents from the clipboard.

Find Ctrl+F Displays the Find dialog box in which you can

locate specified information in the active

window.

Replace Ctrl+H Displays the Replace dialog box in which you

can replace specified information in the active

window.

Undo commands

The Undo command allows the user to reverse multiple operations performed.

There is no limit for the number of actions that can be reversed.

The following operations can be reversed when using the Type Designer.

General

Group and Category

Windows Item Window

Delete Add Add

Add Delete Delete

Cut Cut Cut

Chapter 2. Type Designer basics 9

General

Group and Category

Windows Item Window

Paste Paste Paste

Rename Edit Edit

Edit

Moving

Reorder

Merging types

Move components Move restrictions

View menu

Use the View menu to control the display in your Type Designer environment.

Using the keyboard, you can view the View menu by pressing Alt V.

 Command Key stroke Description

Toolbars Alt+V, T Displays the Customize dialog box for toolbars

Status Bar Alt+V, S Shows or hides the status bar

As Work Book Alt+V, W Toggles the view of the open type trees as a

work book

Type menu

Use the Type menu for choices of commands that apply to types.

Using the keyboard, you can view the Type menu by pressing Alt T.

 Command Key stroke Description

Add Insert Adds a new type below the selected type

Delete Delete Deletes the selected type

Properties Alt+Enter Displays the Properties window or updates

the open Properties window for the selected

type

Copy Alt+T, C Copies the selected type

Move Alt+T, M Moves the selected type

Merge Alt+T, G Merges the selected type to another type

Reorder Subtypes Alt+T, R Reorders subtypes of the selected type

Open Alt+T, O Opens the window of the selected type (item,

group, or category)

Expand All Subtypes Alt+T, M or Alt+X Expands all subtypes of the selected type

Select All Subtypes Alt+T, S Selects all subtypes of the selected type

10 IBM WebSphere Transformation Extender: Type Designer

Tree Menu

The Tree menu includes choices of commands that apply to type trees.

Using the keyboard, you can view the Tree menu by pressing Alt R.

 Command Key stroke Description

Export Alt+R, E Exports the selected type tree.

Import Alt+R, I Displays the Importer Wizard dialog box, which

allows you to create type trees from metadata

source files.

Close Alt+R, C

All Windows Alt+R, C+W Closes all windows

All Group Windows Alt+R, C+G Closes all group windows

All Item Windows Alt+R, C+I Closes all item windows

All Category

Windows

Alt+R, C+C Closes all category windows

Analyze Alt+R, L

Structure Only Alt+R, L+S Analyzes the type tree structure only

Logic Only Alt+R, L+L Analyzes the type tree logic only

Logic and Structure Alt+R, L+A Analyzes the type tree logic and structure

View Results Alt+R, V Displays the analysis results for the selected type

tree.

Component menu

The Component menu includes choices of commands that apply to components.

Using the keyboard, you can view the Component menu by pressing Alt C.

 Command Key stroke Description

Insert Function Alt+C, F Displays the Insert Function dialog box in

which you can insert a function into a

component rule

Insert Symbols Alt+C, Y Displays the Symbols dialog box in which

you can insert a symbol

Identifier Alt+C, T Toggles the identifier attribute for the

selected component

Restart Alt+C, N Toggles the restart attribute for the selected

component

Sized Alt+C, Z Toggles the sized attribute for the selected

component

Include Self in Size Alt+C, E Specifies that the value of the component

with the sized attribute includes the size of

itself

Set Range Alt+C, R Displays the Set range dialog box in which

you can set the range(s) for the selected

component(s)

Insert Alt+C, I Inserts a component into the selected

window

Chapter 2. Type Designer basics 11

Command Key stroke Description

Delete Alt+C, D Deletes the selected component(s)

Delete All Alt+C, A Deletes all of the components from the

selected component list

Go To Alt+C, G or Ctrl+G Displays the Go to dialog box in which you

can specify the component number to

receive current focus

Save Alt+C, S Saves the selected window

Restriction menu

The Restriction menu includes choices of commands that apply to items.

Using the keyboard, you can view the Restriction menu by pressing Alt S.

 Command Key stroke Description

Insert Symbols Alt+S, Y Displays the Symbols dialog box in which you can

insert a symbol

Value NOT In Range Alt+S, V Identifies a value as not being included in the

range.

Insert Alt+S, I Inserts a restriction into the selected window

Delete Alt+S, D Deletes the selected restriction

Delete All Alt+S, A Deletes all restrictions in the selected window

Go To Alt+S, G Displays the Go To dialog box. Enter the restriction

number you want to go to.

Propagate Restrictions Alt+S, G Propagates restrictions with an option to overwrite

or append

Save Alt+S, S Saves the selected window

Tools menu

The Tools menu provides options to customize your Type Designer environment.

Using the keyboard, you can view the Tools menu by pressing Alt L.

 Command Key stroke Description

Shortcuts Alt+L, S Displays the Shortcut Keys dialog box in which you

can assign short cut keys or key combinations to

specific Type Designer operations.

Options Alt+L, O Displays the Options dialog box in which you can

configure your Type Designer environment.

Window menu

The Window menu contains commands to control open windows.

12 IBM WebSphere Transformation Extender: Type Designer

Using the keyboard, you can view the Window menu by pressing Alt W.

 Command Key stroke Description

Close All Alt+W, L Closes all open windows

Cascade Alt+W, C Arranges all open windows so that they

overlap in a descending pattern

Tile Horizontally Alt+W, H Arranges all open windows as horizontal,

non-overlapping tiles

Tile Vertically Alt+W, V Arranges all open trace windows as vertical,

non-overlapping tiles

Arrange Icons Alt+W, A Neatly arranges all minimized windows at the

bottom of the main window

Recently Used

Window List

Alt+W, 1 or

Alt+W, 2 and so

forth

Makes the selected file the active window. A

check mark is displayed next to the file that is

the active window

Help menu

The Help menu includes choices that display information about the Type Designer.

Using the keyboard, you can view the Help menu by pressing Alt+H.

Status bar

The status bar displays contextual information such as descriptive messages about

a selected menu command or tool or information about the current state of an

operation. The message Ready indicates that the Type Designer is waiting for your

next action.

Configuring the Type Designer environment

The Type Designer environment can be configured to accommodate your

preferences in your working environment. For example, you can:

v Specify various user interface options (font, line appearance, dialog box display,

and so on)

v Select the tools to display

v Change the look of the tools on the toolbar

v Assign shortcut keys

See the Design Studio Introduction documentation for details on customizing the

toolbar and creating shortcut keys.

Options

From the Tools menu, select Options. The Options dialog box is displayed and

you can select choices that represent various aspects of the Type Designer

environment and configure them as desired.

Chapter 2. Type Designer basics 13

General options

Similar to user preferences, the General options are general customization settings

for the Type Designer environment.

v Auto-Save Tree(s): Specify the time interval that you want to have your type

trees automatically saved.

v Show Banner: Show/hide the graphical banner across the top of the interface.

(This option is enabled by default.)

v Backup on save: Enable this option to create a backup copy of the type tree with

the file extension .bak when each type tree file is saved. (This option is enabled

by default.)

v Commit changes with: Use this option to select a key stroke combination for

committing changes made in the Type Designer. For example, if the Enter Key

option is enabled, when you press Enter after typing a restriction in an item

window, the text is entered and the next component cell is selected.

– Enter & Tab: When enabled, the Enter key and Tab key can be used to make

changes to components.

– Enter Key: When enabled, the Enter key can be used to commit changes to

components. You can create a hard return in any component rule or edit

window by pressing Ctrl Enter.

– Tab Key: When enabled, the Tab key can be used to commit any changes to

components. You can create a hard return in any rule or edit window by

pressing the Tab key.
v Rule Differences - Ignore white spaces and tabs: Use this option to specify

whether to ignore white spaces and tabs in component rules. (This option is

enabled by default.)

v Default Root Name: Sets a default type name for the root type when creating

new type trees in the Type Designer. (ROOT is the default name.)

Type tree

Use the Type Tree options to define the appearance of the type tree window.

v Font: Use this option to change the font attributes in the type tree. Click the

Font button to define the Font, Font style, Size, Effects, or Color. Arial 10-point is

the default setting.

v Lines: You can change the appearance of the lines in the type tree window.

– None: When enabled, lines do not appear in type trees.

– Solid: When enabled, lines appear solid in type trees.

– Dotted: When enabled, lines appear dotted in type trees.
v Show tool tips: When enabled, the full name of the type is displayed as a tool

tip. This is extremely helpful when the window is sized too small to see the

entire type name, type property, or interface label.

Group window options

The Group Window options define the appearance of the group window. There are

two tabs: General and Color Coding.

General Tab

The following group window options are located on the General tab:

14 IBM WebSphere Transformation Extender: Type Designer

v Font: The font for text in the group window can be changed. Click the Font

button to define the font attributes (font type, style, size, effects, and color).

v Show grid lines: When enabled, the grid lines are displayed in the group

window.

v Line color: Choose the color of the grid lines in the group window.

v Show range column: When enabled, a column is displayed in the window that

displays the range assigned to each component.

v Show component number: When enabled, a sequential number is displayed to

the left of each component in the window.

v Use ellipses: Use this option to control the appearance of object names in the

group window.

– When this option is enabled, the abbreviated short object name displays in

the component rule.

– When this option is disabled, the full name of the type is displayed in the

component rule.

Color Coding Tab

The following color-coding options are available for the group window:

v Use color coding: Enable option to use color coding for component rules.

v Show errors with background: Enable option to highlight invalid rules with a

background color.

v Color Specifications

– The first drop-down list contains a list of options for which you can specify a

color. For example, the default setting for map names is red.

– Use the color pallet to create custom colors.

Item and category window options

The Item Window and Category Window options define the appearance of the

item and category windows. The following options are available:

v Font: Select the font, font style, font size, effects, and color.

v Show grid lines: When enabled, grid lines are displayed.

v Line color: Select the grid line color for the applicable window.

v Show Component Number (Category Window Only): When enabled, the

component number displays next to a component in the Component column.

Analysis results

Use the Analysis Results option to specify the font used in the analysis results

window after a type tree is analyzed.

Confirmations

Use the Confirmations options to select the actions for which you want a

confirmation dialog box displayed before completing the action.

Type properties

Use the Type Properties option to define the appearance of the font in the

Properties window.

Chapter 2. Type Designer basics 15

16 IBM WebSphere Transformation Extender: Type Designer

Chapter 3. Working with type trees

Creating type trees

The following list outlines the process for creating type trees:

v Identify the data objects in your data and define each piece of data that you

intend to map.

v Create types for each data object in your data.

v Define the properties of each type.

v Create component lists.

v Define component rules, if needed.

v Define item restrictions, if needed.

v Analyze and save the tree.

To create a new type tree:

Before you actually create a type tree, you should be familiar with the

specifications that define your data.

From the File menu, choose New.

A new type tree appears with a root type named Root. The default name of each

new type tree file is TypeTree followed by a number.

Creating types

Types are always created as a subtype of the currently selected type. A new type

tree has a single root type. All types are added as subtypes of the root type and

then as subtypes of other types.

By default, types at the same level of the type tree are listed in alphabetical order

without regard to class or the order in which they were created. A level consists of

all of the types that have the same supertype.

To create a type:

1. Select the type under which you want to add a type.

2. From the Type menu, choose Add.

The default confirmation settings include adding types; therefore, you will be

asked if you want to add a new type.

3. Click Yes.

4. Enter the name of the type and press Enter or click outside of the type.

5. Define the properties of the type in the Properties window. From the Type

menu, choose Properties.

6. Define all type properties such as Name, Class, and Description.

7. After defining the properties, close the Properties window.

The type becomes a subtype of the type currently highlighted.

© Copyright IBM Corp. 2006 17

Viewing types

If a type has subtypes, the subtypes beneath it can be hidden or viewed.

Expanding a Type

In the type tree window, expand a type (when there is a plus sign next to it) to

view the contents.

To expand all types:

From the Type menu or by right-clicking on the type, select Expand all Subtypes.

Or, with the type selected, press Alt X.

Data content

The entire contents of your data must be defined. Define the input data so that

each data object of the source data is identified. Define the output data according

to your output specifications.

How specifically you define the data is up to you. For example, if there is a large

section of data that you want to process quickly, define it loosely as a chunk of

text.

In the Type Designer, the data content is not defined as the source data or target

data. Data input and output definitions are defined in the Map Designer. The Type

Designer simply contains the definition of your data.

Data objects

A data object is a complete unit that exists in your input or is built on output. A

data object may be simple (such as a date) or complex (such as a purchase order).

A data object is some portion of data in a data stream that can be recognized as

belonging to a specific type. When you create types, identify all the objects that

make up the data: input objects and output objects.

Types

A type defines a set of data objects that have the same characteristics. For example,

the type Date can be defined as representing data objects in the form MM-DD-YY.

The type CustomerRecord can be defined as representing data objects, each of

which consists of a Company, Address, and Phone data object.

Classes

A type is classified according to whether or not it consists of other objects. The

color of the type icon indicates the class of the type. Each type in a type tree must

be defined in one of three classes: item, group, or category.

Item

An item type represents a simple data object that does NOT consist of other

objects.

18 IBM WebSphere Transformation Extender: Type Designer

Group

A group type represents a complex data object that consists of other objects.

For example, FullName is a group type that contains the components: FirstName,

MiddleInitial, and LastName.

Category

A category type is used for inheritance and for organizing other types in a type

tree.

For example, you might have a category named OrderField to organize the

different kinds of order fields in your type tree.

Components

Group objects consist of other objects. An object that is part of another object is

called a component. Components are added and viewed in the group window.

Groups and categories may contain components.

For example, the item type Field is a component of the group type Record.

Exporting a type tree

You can export a type tree or a portion of a type tree to a document file containing

a script of commands in XML format (.mts file extension). The .mts file can then be

used as input to the Type Tree Maker, which creates a type tree or portion of a

type tree. For more information on the Type Tree Maker documentation, see the

Type Tree Maker documentation.

To export a type tree or portion of a type tree:

1. Select the type you want to export. (Select the root if you want to export the

entire type tree.)

2. From the Tree menu, choose Export.

The Save As dialog box is displayed.

3. Choose the directory in which you want the .mts file to be placed.

4. Enter the file name you want for the .mts file.

5. Click OK.

For example, suppose you want to produce a document file that generates all

of the InventoryData types in the tree Product Data.mtt. Select the type

InventoryData and then choose Export from the Tree menu.

a. Enter the name of the document file in the Save As dialog box.

The default name is the name of the tree followed by an .mts extension.

The subtree of the selected type is exported. If you select a type other than the

root, it is assumed that you are adding to an existing tree and the document file

will have a <OPENTREE> command. If you select the root type, it is assumed that

you are generating a new tree and the document file has a <NEWTREE>

command.

Chapter 3. Working with type trees 19

An example of a type tree of an export script and an example map that converts

an exported restriction list to a cross-reference table is included with the Design

Studio examples.

Exporting a type as a schema

You can export the components of a type as an XML Schema. The resulting schema

(.xsd) takes on the name of the type and is created in the type tree directory.

To export a type as a schema:

1. From the type tree window, select a type to convert.

2. Choose Tree → Export As Schema.

When the type converts successfully, you are prompted to view the schema file.

You can also view the schema (typetreename_typename.xsd) from the type tree

directory. For example, if you convert the Doc group type of the ipo.mtt type

tree, the name of the new schema file is ipo_Doc.xsd.

Type to XML conversion

An exported schema is designed according to XML Schema specification. Category

types are not exported to a schema. The types that have subcomponents become

″complexTypes″. Item types become ″elements″.

The names of the generated schema types have the corresponding type name plus

a unique identifier, which is a numerical suffix. Types that are declared more than

once within a type tree, such as unordered groups, have the numerical identifier

plus the ″type″ suffix. In the following schema excerpt, the Global group in the

type tree was converted to an element with the name of Global89. The AttrList

unordered group was converted to AttrList48Type.

<xs:element name="Global89">

 <xs:complexType>

 <xs:choice>

 <xs:element name="purchaseOrder86">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="AttrList48" type="AttrList48Type" />

 <xs:element name="Pair153" type="Pair153Type" />

 <xs:element name="Pair258" type="Pair258Type" />

 <xs:element name="Pair361" type="Pair361Type" />

 <xs:element name="Pair466" type="Pair466Type" />

 <xs:element name="Pair569" type="Pair569Type" />

 <xs:element ref="PCDATA7" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

<xs:complexType name="AttrList48Type">

 <xs:all>

 <xs:element name="orderDate" type="xs:dateTime" />

 </xs:all>

 </xs:complexType>

Type tree differences

The type tree differences feature allows you to compare two type tree files.

Two type trees are considered different when:

v Any of the types are different.

20 IBM WebSphere Transformation Extender: Type Designer

v Any of the types that exist in one type tree does not exist in the second type

tree.

v When the order of the subtypes within a subtype is different.

A type is different when:

v Any of the properties are different.

v Any of the components are different.

v Any of the restrictions are different.

A restriction is different when:

v The restriction value is different.

v The description is different.

To compare type tree files:

1. From the File menu select Type Tree Differences.

The Select First File dialog box is displayed.

2. Select the first type tree (.mtt) file and click Open.

The Select Second File dialog box is displayed.

3. Select the second type tree (.mtt) file and click Open.

The Type Tree Difference Analysis dialog box is displayed.

As an example, when the Properties tab is in red text, that indicates there is a

difference in the properties of the selected type. When you scroll through the

properties, you can see where the difference exists. When there are no differences

in the properties, components, and restrictions of the selected type, the text in the

window is black.

Creating a type tree exercise

The following sample data file represents orders from a store to an office supply

company. The data is organized in rows and columns.

pencil,#2,500

pencil,#3,467

pen,blue,1000

paper,8X11,525

pen,black,1000

paper,graph,400

The specifications reveal the following information:

v Each row contains a product column (text) followed by a style column (text) and

then by a quantity column (integer).

v The minimum size of each column is one byte. There is no maximum size.

v The number of rows in the order is infinite.

v A carriage return/line feed is displayed at the end of each row.

Chapter 3. Working with type trees 21

After reading the specifications, make a list of the types to be created. Your list

might look something like this:

Type Name

Description

Order The type that represents the entire input or output. In this example, a type

representing the entire order.

Row The type that represents the rows in the orders. The specifications show

that each Order contains rows.

Column

The type that represents the product columns. The specifications show that

each Row contains columns.

Column subtypes

The types that represent the different kind of columns. The specifications

show three kinds of columns: Product, Style, and Quantity. Create these

types as subtypes of the Column type.

 Create a new type tree and start creating the types listed above.

To create the Orders type tree:

1. From the File menu, choose New.

The new type tree is created.

2. From the File menu, choose Save.

3. For this example, save this type tree as Orders.

After the type tree is created and saved, start creating the types.

To create example types:

1. Select the Root type.

This is the type under which all other types are added.

2. From the Type menu, choose Add.

A new type confirmation dialog box is displayed.

3. Click Yes.

A new type is created with the default name NewType1.

4. Enter the name Order and either press Enter or click outside of the type.

5. Select the Order type to define its properties.

6. From the Type menu, choose Properties.

7. The Order type is a group type because it is a complex object consisting of

other data objects. For the Class property, choose Group.

The Order type you just created is displayed on a branch stemming down from

the root.

8. Create the Row type. Row is also a group because it represents a complex data

object consisting of other objects.

The Row group type should be on the same level as the Order type. Ensure the

Root type is selected when you create the Row type or move the type.

1. Create the Column type, which is an item type.

2. As subtypes of Column, create the different kinds of columns: Product,

Quantity, and Style.

Your type tree now has all of the types in your data.

22 IBM WebSphere Transformation Extender: Type Designer

Opening an existing type tree

To open an existing type tree, either double-click the type tree .mtt file in any

directory listing or choose the Open command on the File menu.

To open an existing type tree

1. From the File menu, choose Open.

2. Browse your file structure and select the type tree you want to open.

3. Click Open.

Chapter 3. Working with type trees 23

24 IBM WebSphere Transformation Extender: Type Designer

Chapter 4. Type properties

The properties of a type define the characteristics of the data objects of that type.

For item types, properties define whether that item is text, a number, a date and

time, or a syntax value. Properties include such characteristics as size, pad

characters, and justification.

For group types, the properties are related to the format of that group. The format

of a group may be explicit or implicit. In addition, type properties include syntax

objects that appear at the beginning or end of the object, as well as release

characters.

Defining type properties

You can individually define each type property. When you choose to view the

properties of a type, the associated Properties window is displayed. This window

contains the following:

v Definition of a type’s Class, Group or Item properties

v Type Initiator, Terminator, and Release character

v A list of where a type is used in the definitions of other types

From the Properties window you can also propagate (pass along properties) to

other types.

To access properties of a type

1. From the Navigator, select a type.

2. Do one of the following:

v From the Type menu, choose Properties.

v Right-click and select Properties from the context menu.

v Press Alt Enter.

v Click the Properties tool on the toolbar.

The Properties window is displayed.

The properties of a type are accessible from any of the methods listed above.

However, the menu method is used throughout this document for instruction

purposes.

Once the Properties window is open, click on any other type to view the associated

properties. For example, the image below displays the properties for type

Attribute.

To define the properties of a type

Right-click any type property in the Properties window and choose Help from the

context menu to view a description of that property.

1. Select the type in the type tree.

2. From the Type menu, choose Properties.

The Properties window is displayed.

© Copyright IBM Corp. 2006 25

3. Enter the type Name.

4. Select the type Class from the drop-down list.

5. Enter the type Description.

The description of a type is recommended but not required.

6. Define other properties as needed. To define a certain property for the selected

type, enter or select the property value in the Value column.

You might need to expand each property to view all associated values of that

property. For example, to define the type initiator as a literal value, for

Initiator, select Literal from the drop-down list and then expand the Initiator

property to define the literal initiator value.

7. After you have completely defined properties for this type, select another type

to define or close the Properties window.

8. Save changes.

Basic type properties

The following type properties are common to categories, groups, and items:

v Name

v Class

v Description

v Intent

v Partitioned

v Order Subtypes

v Initiator

v Terminator

v Release Characters

v Empty

v National Language

v Document Type

v Where Used

Item-specific properties are discussed in more detail in ″Item Properties″.

Group-specific properties are discussed in more detail in ″Group Properties″.

Name

The name of the type should be as descriptive as possible and reflect the

information that the type represents.

A type name must conform to the following guidelines:

v A type name cannot be more than 256 characters long.

v A type name cannot be a reserved word or contain a reserved symbol. For a list

of reserved words, refer to Design Studio Introduction documentation.

v A type name cannot contain only digits and/or periods.

v A type name may contain numbers and special characters.

v A type name cannot contain spaces. Use an underscore instead.

v A type name can contain the following:

– Letters

– Digits

26 IBM WebSphere Transformation Extender: Type Designer

– ASCII characters 128-255

– Special characters: #, ~, %, _, ? or \

– Double-byte characters (Japan edition only)
v A type name cannot have the same name as another type on the same level in

the same type tree.

A type name can be up to 256 characters in length, but use a short type name if

possible. The full path name of each type is used in map rules in the Map

Designer.

Class

The class of a type describes whether the type represents a simple data object

(item), a complex data object (group), or whether is used to organize types

(category). Define the class of the selected type by selecting the class from the

drop-down list in the Value column.

Property

Description

Category

Categories organize types that have common properties. Each category has

a set of item properties and a set of group properties. Subtypes of the

category inherit these properties.

 A category does not define data objects in detail and it does not represent

data to be used in a map. You never map a category type, so a category

type does have components. A category type may be a component of a

partitioned group, after a component with the identifier attribute. A

category cannot be a component of a non-partitioned group.

Item

 The item type represents a simple data object that does not consist of any

objects. An item does not have components.

Group

 The group type represents a complex data object that consists of

components.

To change a type’s class, select the type and choose the desired class for the Class

property in the Properties window.

If you change a type to an item, all the types in its subtree become items. If you

change a type to a group, all the types in its subtree become groups. This is

because the type tree has a classification hierarchy and all the nested subtypes of

an item must be items. Similarly, all the nested subtypes of a group must be

groups.

Description

Use this property to record a brief description of the type. The description entered

is for informational purposes only. It is not used for identifying data objects at

runtime.

It is good practice to add a meaningful description of the type when you are

defining it.

Chapter 4. Type properties 27

Intent

Indicates whether the type is a general type or an XML type.

The type can only be an XML type if the type tree was created using the XML

DTD Importer or the XML Schema Importer.

Refer to ″XML Properties in the Type Tree″ for more information about type

properties created from XML.

Validate as

The Validate As property contains a WebSphere Transformation Extender system

generated value with an ″XML_″ prefix. These values resemble a data definition

encountered in the XML Schema or DTD during the import process.

Some values are easily recognizable from the XML grammar structure, while others

might be unfamiliar. For example, XML_ATTRIBUTE is easily recognizable from an

XML grammar structure but XML_BODY is not. XML_BODY actually represents a

global element.

The following table lists possible values for the Validate As property:

Value Description

XML_ATTRIBUTE

An XML attribute, including <anyAttribute> items.

XML_ATTRIBUTEGROUP

A global (named) attribute group <attributeGroup>. (Not applicable for

DTD Importer.)

XML_ATTRIBUTELIST

Unordered groups of attributes.

XML_BODY

The global element choice when the user does not select a particular root

element.

XML_COMMENT

The XML comment, which is a single item per type tree.

XML_COMPLEXTYPE

A global (named) complex type that appears in the XML Schema as the

<complexType> construct. (Not applicable for DTD Importer.)

XML_CONTENT

Generic XML content types.

XML_DOCUMENT

The complete XML document.

XML_ELEMENT

An XML element, which includes <any> element items.

XML_GROUP

A global (named) group.

XML_PCDATA

Parsed character data (PCDATA) in mixed content, which is a single item

per type tree.

28 IBM WebSphere Transformation Extender: Type Designer

XML_PI

The XML processing instruction, which is a single item per type tree.

XML_SIMPLETYPE

A global (named) simple type <simpleType>. (Not applicable for DTD

Importer.)

XML_XMLDECL

Represents the prolog of the XML document (the group of version,

encoding, and standalone attributes).

Partitioned

If the data of this type can be divided into mutually exclusive subtypes, it can be

partitioned. For information about partitioning, see ″Partitioning″.

Property

Description

Yes Partitioning is enabled for this type.

No Partitioning is not enabled for this type.

Order subtypes

Choose the method in which the subtypes of this type will be added or viewed in

the type tree.

Property

Description

Ascending

Add and view subtypes of this type in alphabetic or numeric order.

Descending

Add and view subtypes of this type in reverse alphabetic or numeric order.

Add First

Add subtypes of this type to the top of the type list.

Add Last

Add subtypes to the bottom of the type list.

To manually reorder the subtypes in a type tree, the Order Subtypes property

must be either Add First or Add Last.

Initiator

An initiator is a syntax object that appears at the beginning of a data object.

Defining an initiator for a type specifies that when data of that type appears, the

initiator appears at the beginning of the data object. The initiator becomes part of

the data type definition.

Property

Description

None There is no initiator.

Literal The initiator is literal. Expand the Initiator property to enter the literal

initiator value and data language of the initiator value.

Chapter 4. Type properties 29

Variable

Allow for possible values. Expand the Initiator property to define the

variable terminator Default, Item, and Find properties.

If each record begins with an asterisk *, define the * as a literal initiator of the

record type.

The following data represents the classes in a college English department. An

asterisk * is displayed at the beginning of each ClassRecord.

For information about other symbols used in the Initiator Value field, refer to the

Type Tree Importer documentation.

Terminator

A terminator is a syntax object that appears at the end of a data object. The

terminator becomes part of the data type definition.

Property

Description

None There are no terminators.

Literal A constant value. Expand the Terminator property to define the literal

terminator Value.

Variable

Allow for possible values. Expand the Terminator property to define the

variable terminator Default, Item, and Find properties.

For example, a carriage return/linefeed (CR/LF) at the end of a record is the

record’s terminator.

Generally, if the data ends with a given syntax object, you should define a literal

terminator. For example, it is very common to define a CR/LF as a terminator of a

record when you know that the record always ends with a CR/LF, regardless of

where the record appears.

Release characters

A release character is a one-byte character in your data indicating that the

character(s) following it should be interpreted as data, not as a syntax object. The

release character is not treated as data, but the data that follows it is treated as

actual data.

Building release characters for output data

If a release character is defined for a type, a release character is inserted for each

occurrence of a syntax object in the data of any item contained in that type.

Guidelines for using release characters

Guidelines for using release characters include the following:

v Release characters apply to character data only, not binary data.

v Characters defined as pad characters are not released.

v The maximum size of an item does not include the release characters.

30 IBM WebSphere Transformation Extender: Type Designer

Release character example

The group type Record type has a literal delimiter of , and a release character of ?.

The group type Record has three item components. Data for the record looks like

the following:

Miller?, MD,Harkin Hospital,1996

The ? releases the comma after Miller.

In the first field, the actual data value is Miller, MD. Because the comma appears

as part of the data, it is necessary to have the release character ?, which indicates

that the , following it is data, not a delimiter. This data would be interpreted as the

following:

Data for component #1: Miller, MD

Data for component #2: Harkin Hospital

Data for component #3: 1996

A release character can apply to a delimiter, a terminator, or even the release

character itself.

If a release character appears in the data and it is not followed by a syntax item,

the release character is ignored.

Empty

The Empty property provides alternative type syntax for groups or items when

they have no data content.

When the Empty property is specified for a type and there is no data content, the

Empty syntax is displayed. For example, this can be used for XML data that

contains either start and end tags or an empty tag.

You can use the Empty type property instead of syntax object items to potentially

improve the type tree runtime processing time (during data validation).

The following options are available for the Empty property.

Value Description

None Default setting. Select None if you do not have an initiator, terminator, or

release character.

Literal A constant value. When Literal is selected, the Value, Ignore Case,

Required, and National language sub-fields become available. You can use

only one literal to indicate a zero-length data item.

Empty type property example

Consider an XML element called Comment. Presuming that this element has a

simple content of an arbitrary length, it can be represented in a type tree as a text

item, with the initiator value <Comment> and the terminator value </Comment>.

This item can then be used to validate the following data:

Chapter 4. Type properties 31

<Comment>Some comment...</Comment>

The resulting value for the item will be:

Some comment...

As another example, the following data is also successfully validated:

<Comment></Comment>

The resulting value for the item will be a zero-length string.

The problem occurs with the following data: <Comment/>

From the XML perspective, this data is equivalent to the <Comment></Comment> data

shown above, as it represents the Empty element Comment. However, from the type

tree perspective, this data is invalid because it does not start with <Comment> and

does not end with </Comment> as required by the initiator and terminator item

property values.

This is where the Empty property is useful. By defining the Empty property for

the item to have a value of <Comment/>, it will be possible to validate the data

<Comment/>.

Even if the data does not match the syntax described by the initiator and

terminator properties, it will be validated because it will match the Empty

property value. It will be treated as an empty item, that is, the resulting value for

the item will be a zero-length string, similar to the example shown previously.

National language

The National language default value is Western. For initiator, terminator, and

release character Literal values, you can optionally specify a ″Data language″.

National language options for WebSphere Transformation Extender include

Japanese, French, German, Italian, Spanish (Spain), Portuguese (Brazil), Korean,

Chinese (traditional and simplified).

For initiator, terminator, and release character literal values, you can optionally

specify a data language.

Document Type

The Document Type setting is a component of Document Verification. A

requirement of using Document Verification is to set the Document Type

properties of the associated type tree object.

To use the Document Verification option for XML documents, you must do the

following:

v Set the Document Type property to XML.

v Set the Document Type Metadata value to Schema or DTD.

v Specify the Location of the DTD or Schema file.

Property

Description

32 IBM WebSphere Transformation Extender: Type Designer

Default

This is the default value, which indicates a non-XML document type.

XML Indicates an XML document type. When this value is set to XML and

the appropriate DocumentVerification map settings are in place, the

XML document will be validated by an external program in addition to

the standard data validation process.

See the Map Designer documentation for information about using the Document

Verification option.

Where used

Where Used shows how and where the type is used within other types in the tree.

For example, the Where Used property shows if the type is used as a delimiter,

component, and so on.

XML properties in the type tree

When you open a type tree in the Type Designer after importing it from a DTD or

XML Schema, the XML-specific properties are displayed as read-only fields.

For each type in the resulting type tree, the Intent property is either General

(indicating non-XML) or XML. All category types created during the import

process are considered non-XML properties. All group and item types created

during the import process are considered XML properties.

Any types that you manually add to the XML type tree are considered non-XML

and have General intent. In such a case where there are both XML and non-XML

types present (such as EDI data), the appropriate method of validation is

determined automatically.

xsi:type

The xsi:type attribute is not supported in WebSphere Transformation

Extender. Only the XML Schema or DTD file stored as an attribute in the

Doc group is used for validation at runtime, overriding the value specified

with xsi:noNamespaceSchemaLocation or xsi:schemaLocation in the XML

instance document.

 See the Type Tree Maker documentation for information about creating type trees

by importing XML Schemas and DTDs.

See ″Utilities for XML″ for information about tools that can assist you with

upgrading your XML type trees and maps to WebSphere Transformation Extender

8.0.

Support for XML constructs

WebSphere Transformation Extender validation supports the XML constructs

discussed in this section.

Character Data

During validation, character data is mapped by the XML parser to

WebSphere Transformation Extender types. This includes both parsed

character data (PCDATA) and unparsed character data (CDATA).

Chapter 4. Type properties 33

Comments and Processor Instructions

XML comments and processing instructions (PI) are mapped to floating

components in type trees.

Namespaces

The XML Schema importer supports the specification of arbitrary prefixes

for namespaces declared in the input grammar.

XSDL Hints

The xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes

are collectively known as XML Schema Definition Language (XSDL) hints.

These attributes specify the location of the XML Schema(s) that the XML

parser uses for validation.

 An XML Schema allows either or both of these attributes to appear within

any element tag, but the XML parser only respects the location values

when the XSDL hint is specified in the root element of the schema.

 The Doc group type of type trees that are created with the XML Schema or XML

DTD importer contains the location of the DTD or XML Schema that is used for

XML validation. The Intent Validate As → Location property is a modifiable field.

If you remove the file location from this field, the validation process looks to the

XSDL hints specified in the XML document .

When XSDL hints are not present in either location (the Location field in the type

tree or the XML instance document), validation fails.

Empty Elements

Only one set of initiators and terminators for the Empty element is

required for validation.

Nillable Elements

A nillable element can have one of three states: absent, present with

content, or present with nil content. Both the DTD and XML Schema allow

the definition of optional elements in the instance document. Additionally,

the XML Schema permits nillable elements where the content can be empty

when it contains an xsi:nil attribute with a value of ″true″, despite the fact

the element’s content is mandatory.

 The XML Schema Importer can create the content of a nillable element

within a group with a range of (0:1), which makes the element content

optional.

Mixed Content

When parsing elements with a mixed content model (containing both

character data and child elements), the DTD and XML Schema importers

generate text items within the mixed content (instead of character

sequences).

Regular Expressions

An XML Schema allows the restriction of the values of simple types based

on regular expressions or pattern facets. During XML validation, the parser

enforces the pattern facet. The XML Schema Importer fills the appropriate

type properties with pattern facets encountered in the input schema, which

are viewable in the Type Designer.

XML schema datatypes

This section describes the type tree constructs that correspond to XML Schema

datatypes.

34 IBM WebSphere Transformation Extender: Type Designer

The following table lists some common XML Schema datatypes with their

corresponding type property values in the Type Designer.

For detailed information about XML attributes and elements as type properties in

the type tree, refer to the Type Tree Importer documentation.

 XML Schema Datatype Type Property Value

simpleType Intent > Validate As XML_SIMPLETYPE

complexType Intent > Validate As XML_COMPLEXTYPE

element Intent > Validate As XML_ELEMENT

attribute Intent > Validate As XML_ATTRIBUTE

group Intent > Validate As XML_GROUP

Simple types

Elements that have assigned simple types have character data content but not child

elements or attributes.

Simple type elements are represented in the Type Designer type properties with

the value XML_SIMPLETYPE.

Complex types

Elements that have assigned complex types can have both child elements and

attributes. The order and structure of the child elements of a complex type are

known as its content model. Content models are defined using a combination of

model groups, element declarations or references, and wild cards. There are three

kinds of model groups: all, choice and sequence.

Complex type elements, including the complex types using compositor elements,

are represented in the Type Designer type properties with the value

XML_COMPLEXTYPE.

Elements

Element declarations are either local or global. Local elements are represented in

the Type Designer type properties with the value: XML_ELEMENT.

When the schema defines several global elements, the generated type tree includes

a Global choice group that contains all of the global elements. A Global choice

group is represented in the Type Designer type properties with the value

XML_BODY.

Attributes

Attributes are another building block of XML. The import process uses attribute

declarations to name attributes and associate them to particular simple types.

Attribute declarations can be either local or global.

Attributes, including both local and global, are represented in the Type Designer

type properties with the value XML_ATTRIBUTE.

Chapter 4. Type properties 35

Groups and substitution groups

One way an XML Schema allows the creation of reusable content is by using

named model groups. These global groups can be referenced throughout a schema.

Substitution groups are a flexible way to designate element declarations as

substitutes for other element declarations in a content model. New element

declarations can easily be designated as substitutes from other schema documents

or namespaces without changing the original content model.

Groups and substitution groups are represented in the Type Designer type

properties with the value XML_GROUP.

Identity constraints

The XML parser in WebSphere Transformation Extender enforces declared identity

constraints. The XML Schema Importer sets these properties based on the XML

Schema. In general, the identity constraint definition serves in one of the roles

listed below:

Identity Constraint

Description

Unique

Enforces that a value (or combination of values) is unique within a given

scope. For example, all product numbers must be unique within a

catalogue.

Key Enforces uniqueness and requires that all values be present. For example,

every product must have a number and it must be unique within the

catalogue.

Key References

Enforces that a value (or combination of values) corresponds to a value

represented by a key or uniqueness constraint. For example, for every

product number that is displayed as an item in a purchase order there

must be a corresponding product number in the product description

section.

Namespaces

The XML Schema Importer supports namespace and prefix properties for all

elements and attributes. The importer assigns the values of these properties based

on the input grammar. For each namespace in the input grammar, the importer

allows you to specify the namespace prefix to be used for output documents.

During the import process, a Location value is specified in the type tree without a

fully qualified path. In this case, a map execution process would, by default, look

for the XML Schema at this location. However, if you need to change this path,

you can do so.

For example, if you refer to the proper location of the schema in the XML

document, then you can manually remove the path location from the type

properties. When the map execution process does not find a Location value

specified in the type tree, the process then looks to the ″XSDL Hints″ specified in

the XML document. When XSDL hints are not present, validation fails.

36 IBM WebSphere Transformation Extender: Type Designer

The value specified in the type tree takes precedence over the XML document.

Element type declarations

The XML DTD and XML Schema importers can generate a simple type tree when

encountering character content within mixed data. During the import process,

when character data (CDATA/PCDATA) is encountered, the importer incorporates

it into existing text items within the type tree.

Element and attribute wildcards

DTDs and XML Schemas allow the specification of wildcard elements within a

grammar. The WebSphere Transformation Extender XML Schema and DTD

importers recognize element wildcards, build the appropriate types, and set the

appropriate properties for those types to represent element wildcards in the type

tree.

During the import process, when a wildcard element resolves to an element that is

not defined in the imported grammar, it is represented by a text item.

The value of these text items is the text string from the input buffer that runs from

the start of the open tag to the end of the close tag for that element.

XML Schemas allow the specification of an attribute wildcard that matches any

number of undeclared attributes within the element tag. The XML Schema

Importer recognizes the attribute wildcard and creates a sequence of name and

value text item pairs within the attribute list of the enclosing element. The XML

validation library fills this sequence with the names and values of attributes that

do not match any declared attributes in the attribute list.

Chapter 4. Type properties 37

38 IBM WebSphere Transformation Extender: Type Designer

Chapter 5. Item properties

This chapter discusses the properties of item types. Item types define data for a

selected type. Item types are divided into the following subclasses: Number, Text,

Date & Time, and Syntax. Each item subclass has a specific set of properties.

Item subclass

Both category and item types have the Item Subclass property. The subclass of an

item determines the characteristics of the data.

To define the subclass of an item type:

1. Access the Properties for the selected category or item type.

2. For the Item Subclass property, select a value that defines the data for the type:

Property

Description

Number

Any number excluding active syntax objects. The interpretation can be

either character or binary. See ″Number Item Subclass Properties″ .

Text Any character excluding active syntax objects. The interpretation can be

either character or binary. See ″Text Item Subclass Properties″ .

Date & Time

A valid date and time format based on the data. The interpretation can

be either character or binary. See ″Date & Time Item Subclass

Properties″ .

Syntax

Syntax objects are used as separators between portions of data. A

restricted set of values used to define a dynamic delimiter, initiator,

terminator, or release character. The interpretation is character. A syntax

object cannot be longer than 120 bytes. Syntax objects, used as syntax,

cannot be mapped. See ″Syntax Item Subclass Properties″ .

Number item subclass properties

Number item subclass properties can be of Character or Binary value. When you

choose Number as the Item Subclass value, you must choose an Interpret as

value: Binary or Character.

The Interpret as value defines how the data should be interpreted. Items with a

subclass of Number, Text, and Date & Time can be interpreted as either character

or binary. Items with a subclass of Syntax can be interpreted as character only.

Interpret as binary

Binary text items have content size and pad properties. Binary data is required to

be sized or of a fixed size.

Binary number items interpret the data as a binary number or as a byte stream.

© Copyright IBM Corp. 2006 39

Items with an item subclass of Text can be interpreted as character or binary.

When Interpret as is set to Binary, the following Presentation options are

available:

v ″Binary Integer Presentation″

v ″Binary Float Presentation″

v ″Binary Packed Presentation″

v ″Binary BCD Presentation″

Binary Integer Presentation

The Integer value is a whole number.

Property

Description

Length(bytes)

Can have a length of 1, 2, or 4 bytes

Byte order

See ″Byte order″ .

Sign See ″Sign″ .

Binary float presentation

The Float value is a number with decimals in a location as needed.

Property

Description

Length(bytes)

Can have a length of 4, 8, or 10 bytes

Binary packed presentation

The Packed value is a number that has size, decimal places, and sign properties.

The following are binary packed properties:

Property

Description

Length

Can have a length of 1 - 16 bytes

Implied places

Can be from 0 - 31

Sign Can be Trailing- or Trailing+

For Packed numbers, the Implied places cannot exceed the Length.

Binary BCD presentation

The BCD value is a binary coded decimal number that has size.

Length (bytes)

Use the Length (bytes) property to select the number of bytes that equals the

length of the item.

40 IBM WebSphere Transformation Extender: Type Designer

The Length(bytes) property is an option when the Number item subclass property

is interpreted with a Binary value.

Byte order

Use the Byte order property to define the way that bytes in the data are ordered

by selecting one of the following values from the drop-down list in the Value

column:

 Value Description

Big Endian The most significant byte has the lowest

address. (Usually systems such as IBM, HP,

and Solaris.)

Little Endian The least significant byte has the lowest

address. (Usually systems such as Intel and

VAX.)

Native The order is dictated by the platform.

Byte order is an option when the Number item subclass is interpreted with a

Binary value.

Interpret as character

Character number items interpret the data as symbolic data. Symbolic data has the

same meaning on different computers. For example, a comma is symbolic because

it has the same meaning, regardless of the computer type.

Character text items can have content size and pad properties.

When the Interpret as value is defined as Character, the Release property is

specific to the Character value and is not available as an option for a Binary value.

For more information, see ″Release Characters″.

When Interpret as is set to Character, the following Presentation options are

available:

v ″Character Integer Presentation″

v ″Character Decimal Presentation″

v ″Zoned Character Presentation″

Character integer presentation

The Integer value is a whole number.

Further information on the Integer value is found in ″Integer Separators″ .

Character decimal presentation

The Decimal value is a number that contains decimals.

Further information on the Decimal value is found in ″Decimal Separators″ .

Chapter 5. Item properties 41

Zoned character presentation

The Zoned value is a number that has a size, decimal place, pad, and sign

properties.

Use the ″Size (content)″ property to specify the size of the zoned number. The size

of a zoned number can also be specified in terms of minimum and maximum. The

minimum size must be less than or equal to the maximum size.

When the content size of a character-zoned number is used, the last digit and the

sign are combined into the same digit but the content size does not include the

initiator, terminator, release characters, or pad characters.

When the content size of a character-zoned number is important (for example,

when the SIZE function is used on the character zoned number), the content size

includes the sign but does not include the initiator, terminator, release characters,

or pad characters.

Use the ″Sign″ property to define whether the zoned number will be signed. The

default value is No.

The size of a zoned number is specified in terms of the minimum and maximum

number of digits. If the size is specified with the Min and Max properties, the sign

is not included.

Example

Zoned Number Not Signed

Signed Zoned Number

1230 123{

1231 123A

(Length = 4 digits)

(Length = 4 digits)

Places > implied

Numbers have implied decimal places. The number of decimal places cannot

exceed the length specification. The list of available decimal places varies with the

length selected. In the Value column, enter a total number of decimal places (not to

exceed 31).

Size (content)

Use the Size (content) property to specify the minimum and maximum size of an

item’s content.

Property

Description

Min The minimum number of digits of the item.

 The default value is 0.

Max The maximum number of digits of the item.

42 IBM WebSphere Transformation Extender: Type Designer

The content size of a text item specifies the bytes of data, excluding any initiator,

terminator, release characters, and pad characters. It is also independent of the

character set.

Size is specified in bytes. Some character sets use two or more bytes per character.

Digits, separators, and signs are pertinent to number items. Separators can also

pertain to date items.

However, when you use the SIZE function, separators and signs are included in

the count.

If there is no maximum content size, a Max value is not required.

Excluded from min and max size

For character number items, there are certain objects excluded from the Min or

Max count. For each Presentation option, the following table lists what is excluded

from the minimum or maximum Size (content) count.

 Presentation: Integer Decimal Zoned

initiators initiators initiators

pad characters pad characters pad characters

release characters release characters release characters

separators separators terminators

signs signs

terminators terminators

Size example

In the following ASCII number there are a total of 12 characters:

+1234567.999

However, because the initiator (+) and separator (.) are not counted, the number

would validate for a maximum size of 10 (Max=10).

Separators

Integer and decimal number items can have a separator for thousands and

fractional places. If you opt to have a separator, choose Yes and sub-options will

appear that enable you to choose the format and syntax.

The Zoned value of the Presentation property does not have separators.

Integer separators

For integer numbers, the separator is the thousands separator.

Integer character numbers have separator properties of:

v Format

v 1000’s Syntax

v Value

Chapter 5. Item properties 43

These properties specify the placement and value of the thousands separator.

Separator > format

Use the Separators Format property to specify the placement and value of the

thousands separator.

To define the separator format, select one of the separator formats from the

drop-down list in the Value column.

Property

Description

#[.]####

The thousands separator is not required on input, but if present, it must be

in the proper location. The separator is not built on output.

#.#### The thousands separator is required on input in the proper location. The

separator is built on output.

1000’s syntax > value

Define the thousands separator as either literal or variable. Select one of the

following from the drop-down list in the Value column:

Property

Description

Literal The thousands syntax is a constant literal specified in the 1000’s Syntax >

Value column.

Variable

The thousands syntax allows for variable values. Use the 1000’s Syntax >

Default, Item, and Find properties to define the variable fraction separator.

1000’s syntax (literal) > value

For the literal thousands separator, define the literal separator by typing the literal

separator character in the Value column or by clicking the browse button to

display the Symbols dialog box from which you can insert any non-printable

value.

A separator can be from one to 120 bytes in length. A separator cannot start or end

with a digit and cannot be the? character. The ? character is a reserved character

that can be used as a wildcard to represent any single valid character.

1000’s syntax (variable) > default

Use the 1000’s Syntax > Default property to define the default variable separator

value for the thousands place. The default literal separator value for thousands

syntax is a comma.

Enter the default variable separator character or click the browse button to display

the Symbols dialog box in which you can insert any non-printable value.

1000’s syntax (variable) > item

For integer numbers with a variable thousands separator, the Separator property is

Yes, and the 1000’s Syntax is Variable, you can specify an item type for the

variable thousands separator.

44 IBM WebSphere Transformation Extender: Type Designer

You can select the desired syntax item from the drop-down list. Or, with the focus

on the Item property (in the Value column), press Alt and drag the default

separator type item from the type tree window into the Value column.

An item type with a class of Syntax must exist in the type tree to be a valid 1000’s

Syntax Item.

1000’s syntax (variable) > find

For integer numbers with a variable thousands separator, the Separator property is

Yes and the 1000’s Syntax is Variable The value of the separator can be the current

value or the value of the separator can be determined each time an occurrence of

that type is found.

Property

Description

Yes Determine the value of the separator each time an occurrence of that type

is found. After the value of that separator is found, that particular value is

used until it is reset either by another Find or by the occurrence of that

separator as a component.

No The system uses the value to which the separator item is currently set or, if

not set, it uses the default value.

Decimal separators

For decimal numbers, the separator is the thousands separator and the fractional

separator.

Decimal character numbers have separator properties of:

v Format

v 1000’s Syntax

v Fraction syntax

v Value

These properties specify the placement and value of the fractional separator.

The item is assumed to have an implicit number of decimal places. To specify the

number of implied decimal places, use theItem Subclass Places property to specify

the number of implied decimal places.

Separators > format

Use the Separators Format property to specify the placement and value of the

fraction separator.

To define the separator format, select one of the separator formats from the

drop-down list in the Value column.

Property

Description

####[.##]

The fractional separator is present if there are fractional digits. There is no

thousands separator.

Chapter 5. Item properties 45

####.##

The fractional separator is always present, even if there are no fractional

digits. There is no thousands separator.

#[,]###[.##]

The fractional separator is present if there are fractional digits. There is an

optional thousands separator.

#[,]###.##

The fractional separator is always present. There is an optional thousands

separator.

#,###.##

The fractional separator is always present. There is always a thousands

separator if there are more than three whole number digits.

Separators > 1000’s syntax

Use the Separators 1000’s Syntax to define the thousands syntax. Select one of the

following from the drop-down list in the Value column:

Property

Description

Literal The thousands syntax is a constant literal specified in the 1000’s Syntax >

Value column.

Variable

The thousands syntax allows for variable values. Use the 1000’s Syntax >

Default, Item, and Find properties to define the variable fraction separator.

The following properties are described in the Integer Separators section:

v ″1000’s Syntax (Literal) > Value″

v ″1000’s Syntax (Variable) > Default″

v ″1000’s Syntax (Variable) > Item″

v ″1000’s Syntax (Variable) > Find″

Separators > fraction syntax

Use the Fraction syntax property to define the fraction syntax as either a constant

literal value or a variable value.

You can define the Fraction syntax as literal or variable.

Property

Description

Literal A constant value. Use the Fraction syntax Value property to select a literal

fraction separator from the Symbols dialog box.

Variable

Allow for variable fraction separator values. The following options are

available to define the variable fraction separator:

v Default - Use this property to define the default variable separator value

for fractions. The default literal separator value for fractions is a period.

Enter the default variable separator character or click the browse button

to display the Symbols dialog box in which you can insert any

non-printable value.

46 IBM WebSphere Transformation Extender: Type Designer

v Item - For decimal numbers with a variable fractional separator, the

Separator property is Yes and the Fraction syntax is Variable, you can

specify an item type for the variable fraction separator.

Note: An item type with a class of Syntax must exist in the type tree to

be a valid Fraction syntax Item.

v Find - For decimal numbers with a variable fraction syntax, the

Separator property is Yes and the Fraction Syntax is Variable, the value

of the separator can be either the current value or the value of the

separator can be determined each time an occurrence of that type is

found. Select an option:

Yes - Determines the value of the separator each time an occurrence of that

type is found. After the value of that separator is found, that particular

value is used until it is reset by another find or by the occurrence of that

separator as a component.

v No - The system uses either the value that the separator item is set to

currently, or, if it is not set, uses the default value.

Sign

Use the Item Subclass Sign property to define whether the number is signed for

either the Integer or Decimal value. A sign is a symbol that identifies a number as

being either positive or negative. A positive sign is plus (+); a negative sign is

negative (-).

Property

Description

Yes The number is signed. Expand the Sign property to define the sign values.

If the Sign property is Yes, a minimum of at least one sign value (If

number is +, If number is -, or If number is 0) must be specified and at

least one value must be required on input.

No The number is not signed. This is the default setting.

When you select Yes, you can further define the sign values. The following

sub-options are available:

Option Description

Leading-

The sign precedes the number when it is negative only. For input, a sign is

required for negative data, but is optional for positive data.

Trailing-

The sign follows the number when it is negative only. For input, a sign is

required for negative data, but is optional for positive data.

Leading+

The sign always precedes the number. A sign is required for input and

output data.

Trailing+

The sign always follows the number. A sign is required for input and

output data.

Custom

Defaults to Leading- but can be changed.

Sign values may be specified for the following:

Chapter 5. Item properties 47

v If Number is + (positive numbers)

v If Number is - (negative numbers)

v If Number is 0 (value of zero)

For each value (If number is +, If number is -, or If number is 0), specify the

following:

Leading sign

Enter the symbol to be placed before a number.

Trailing sign

Enter the symbol to be placed after a number.

Required on input

If the number has a sign, at least one value (If number is +, If number is -, or If

number is 0) must be required on input. Select an option from the drop-down list:

Property

Description

Yes The sign is mandatory on input.

No The sign is optional on input.

Pad

If the data value to be mapped to the target item is smaller than the minimum

length of that item, pad characters are used to pad the data to that minimum

length. Input data may contain both content and pad characters. Output data is

built according to the pad definitions of the types.

Property

Description

Yes Enables the Pad option. Allows the item to contain both content and pad

characters. Pad properties include:

v ″Pad > Value″

v ″Pad > Padded to″

v ″Pad > Justify″

v ″Pad > Apply pad″

No All data is assumed to be content on input; no pad characters are built on

output.

Pad > value

Use the Pad Value property to define the one-byte pad character. The default pad

value is 0.

Type the pad character symbol between angled brackets < > in the Value field or

click the browse button to display the Symbols dialog box to insert any

non-printable value.

48 IBM WebSphere Transformation Extender: Type Designer

For example, to enter a FormFeed value for the pad character, in the Value field

enter <FF> or click the browse button to select the FF (FormFeed) symbol from the

Symbols dialog box.

Pad > padded to

Use the Pad Padded to property to define whether the data item is padded to a

fixed size or to the minimum content size defined for that data item.

Property

Description

Fixed size

The data item is padded to a fixed size that you specify. The item must

have a value specified for the Size Max property. Expand this property to

define a Length value.

Min Content

The data is padded to the number of bytes specified as the minimum size

in the Size Min property. This selection presents a sub-option ″Padded to

> CountsTowardMinContent″ to count pad characters toward the length of

an object.

For any item padded to a fixed size, the item must have a value specified for the

Size Max property and the Padded to Length must be greater than or equal to the

Size Max value.

Shown below are the item properties for a text item type that is padded to a length

of 6. The pad character is a space. The data is padded to six bytes. The Padded to

value is Fixed Size and the Padded to Length value is 6. For example, if there are

only four bytes of data, then two bytes of pad character makes the item data size

equal to six bytes.

Padded to > length

Input data may contain both content and pad characters. When an item is built for

output, the item is padded to the number of bytes specified for Length.

The Padded to Length must be greater than or equal to the Size Max value.

Padded to > CountsTowardMinContent

When you select Padded to → Min Content, the CountsTowardMinContent field is

displayed. Use this setting to specify if pad characters should count toward the

length of an object when determining if it meets its minimum content length.

Value Description

Yes Pad characters are included in the count for the length of an object.

No Pad characters are not counted toward the length of an object.

-

You can use the Propagate function here to propagate the present

CountsTowardMinContent value to the subtypes of the present type, if present.

If you are using the trace option, there might be cases where in the trace file the

content length appears to be different than the input length. A trace file lists the

Chapter 5. Item properties 49

input length (the length used to validate an object), which includes the input

length of each object plus the pad characters. In the case of numbers, signs and

separators are also counted in the length.

CountsTowardMinContent > AcceptAllPads

The AcceptAllPads property is applicable to data objects that contain only pad

characters. Use this property when you need an object that contains only pad

characters (no content) to either pass or fail validation depending on whether it is

a mandatory or an optional type, regardless of the minimum size requirement.

Value Description

Yes When an object contains only pad characters, the minimum size

requirement is ignored and the object passes size validation. The object

then passes or fails type validation depending on whether it is a

mandatory or an optional type.

No (Default setting) Pad characters do not count toward the minimum size

requirement, therefore an object that contains only pad characters and that

does not meet the minimum size (content) requirement fails size validation.

Example

The results of the following examples are based on these values:

Property

Value

Size (content)

5

Pad Yes

Pad > Padded to

Min Content

Padded to > CountsTowardMinContent

No

Default Behavior: When AcceptAllPads is set to No, the following results occur:

Input Data (X = pad character)

Valid?

ABCDE

Yes

ABC No

ABCXX

No

XXXXX

No

When AcceptAllPads is set to Yes, the following results occur:

Input Data (X = pad character)

Valid?

ABCDE

Yes

50 IBM WebSphere Transformation Extender: Type Designer

ABC No

ABCXX

No

XXXXX

Yes (when type is optional)

No (when type is mandatory)

X Yes (when type is optional)

No (when type is mandatory)

Pad > justify

Use the Justify property to specify whether the data is padded to the left or right.

Property

Description

Left The data will be on the left and will be padded (if necessary) on the right.

Right The data will be on the right and will be padded (if necessary) on the left.

Use the TRIMLEFT and TRIMRIGHT functions to exclude pad characters from the

justified side.

In the following example, xxxxxxxxxx represent 10 spaces:

For an input of 1234567891xxxxxxxxxx with a right justified pad, the rule

=SIZE(input) returns 20. For the same input, the rule =SIZE(TRIMRIGHT(input))

would return 10 (removing the padding on the right).

Pad > apply pad

Use the Apply pad property to specify when to apply the pad character. Choose a

value from the drop-down list.

Property

Description

Fixed Group

Apply the pad characters only when the item appears in a fixed group.

Any context

Apply the pad characters when the item appears in any context.

Each item in a fixed group must be padded to a fixed size or have the same value

for the minimum and maximum content size.

For example, suppose the item Name has a space pad character with this value:

Mary<sp><sp>

If the Apply pad property is Fixed Group, the two spaces at the end are treated as

pad characters only when the item appears in a fixed group. If the Apply pad

property is Any context, then the spaces are always treated as pad characters.

Each item in a fixed group must be padded to a fixed size or have the same value

for the minimum and maximum content size.

Chapter 5. Item properties 51

Pad > fill

For padded signed numbers, this option determines placement of pad characters.

Choose a value from the drop-down list.

Property

Description

After sign

Pad characters are placed after the sign.

Before sign

Pad characters are placed before the sign.

Restrictions

Restrictions of an item are the valid values of that item. When the Interpret as

value is defined as Character, the Restrictions property is specific to the Character

value and is not available as an option for a Binary value.

Depending on other Item Subclass settings, the Restrictions property can be set to

Value, Character, or Range.

Restrictions > iIgnore case

By default, restrictions are case-sensitive. To enable or disable the Ignore case

property of the Restriction, choose from one of the following options:

Property

Description

Yes Ignore case of restrictions in item type properties.

No Do not ignore case-sensitive restrictions.

For example, if Ignore Case = Yes and the restriction Value is Ft, the data values

ft, fT, Ft, and FT are all valid.

Restrictions > rule

This setting indicates whether you are going to include or exclude the criteria (as

″valid″ or ″invalid″) specified for the restrictions.

Value Description

Include

Includes the restriction values as valid data.

Exclude

Excludes the restriction values as invalid data.

National language

The default National language value is Western. You can expand the National

language property to define the Data language.

When the Interpret as value is defined as Character, the National language

property is specific to the Character value and is not available as an option for a

Binary value.

52 IBM WebSphere Transformation Extender: Type Designer

National language > data language

Use the National language → Data language property to define the data language

or character set of this character text item.

As of version 8.1, WebSphere Transformation Extender uses International

Components for Unicode (ICU) 3.2.1, supporting Unicode 4.0.

Supported code pages:

WebSphere DataStage TX version 8.1 supports the following code pages.

 Arabic

BIG5

Big5-HKSCS (IBM)

Big5-HKSCS (macos)

BOCU-1

CESU-8

Cyrillic

ebcdic-803

ebcdic-ar

ebcdic-cp.roece/yu

ebcdic-cp-ar1

ebcdic-cp-ar2

ebcdic-cp-be/ch

EBCDIC-CP-DK/NO

ebcdic-cp-es

ebcdic-cp-fi/se/sv

ebcdic-cp-fr

ebcdic-cp-gb

ebcdic-cp-he

ebcdic-cp-it

ebcdic-de

ebcdic-he

ebcdic-is

EBCDIC-JP-kana

ebcdic-xml-us

EUC-CN

EUC-JP

EUC-TW

GB_2312-80

gb18030

GBK

Greek8

Hebrew

hp-roman8

HZ-GB-2312

ibm-037 (ebcdic-cp-us/ca/wt/nl)

ibm-1006

ibm-1025

ibm-1026

ibm-1047

ibm-1047-s390

ibm-1097

ibm-1098

ibm-1112

Chapter 5. Item properties 53

ibm-1122

ibm-1123

ibm-1124

ibm-1125

ibm-1129

ibm-1130

ibm-1131

ibm-1132

ibm-1133

ibm-1137

ibm-1140 (ebcdic-us-37+euro)

ibm-1140-s390

ibm-1141 (ebcdic-de-273+euro)

ibm-1142 (ebcdic-dk/no-277+euro)

ibm-1142-s390

ibm-1143 (ebcdic-fi/se-278+euro)

ibm-1143-s390

ibm-1144 (ebcdic-it-280+euro)

ibm-1144-s390

ibm-1145 (ebcdic-es-284+euro)

ibm-1145-s390

ibm-1146 (ebcdic-gb-285+euro)

ibm-1146-s390

ibm-1147 (ebcdic-fr-297+euro)

ibm-1147-s390

ibm-1148 (ebcdic-international+euro)

ibm-1148-s390

ibm-1149 (ebcdic-is-871+euro)

ibm-1149-s390

ibm-1153

ibm-1153-s390

ibm-1154

ibm-1155

ibm-1156

ibm-1157

ibm-1158

ibm-1160

ibm-1162

ibm-1164

ibm-1250

ibm-1251

ibm-1252

ibm-1253

ibm-1254

ibm-1255

ibm-1256

ibm-1257

ibm-1258

ibm-12712-s390

ibm-1276 (Adobe Standard Encoding)

ibm-1363 (korean)

ibm-1363_P110-1997

ibm-1364

ibm-1371

ibm-1373_P100-2002

ibm-1386-P100-2002

54 IBM WebSphere Transformation Extender: Type Designer

ibm-1388

ibm-1390

ibm-1399

ibm-16684

ibm-16804-s390

ibm-33722-P120-1999

ibm-367_P100-1995

ibm-37-s390

ibm-437

ibm-4899

ibm-4909

ibm-4971

ibm-5123

ibm-5346

ibm-5347

ibm-5348

ibm-5349

ibm-5350

ibm-5351

ibm-5352

ibm-5353

ibm-5354

ibm-737

ibm-775

ibm-8482

ibm-850

ibm-851

ibm-852

ibm-855

ibm-856

ibm-857

ibm-858

ibm-860

ibm-861

ibm-862

ibm-863

ibm-864

ibm-865

ibm-866

ibm-867

ibm-868

ibm-869

ibm-874

ibm-875

ibm-897

ibm-9005_X100-2005

ibm-901

ibm-902

ibm-921

ibm-922

ibm-930

ibm-933

ibm-935

ibm-937

ibm-939

ibm-9447

Chapter 5. Item properties 55

ibm-9449

ibm-949_P100-1999

ibm-949_P11A-1999

ibm-950_P110-1999

ibm-954_P101-2000

ibm-971_P100-1995

ibm-eucKR

IBM-Thai

IMAP-mailbox-name

ISO 2022, JIS, locale=ja,version=1

ISO 2022, JIS7,locale=ja,version=3

ISO 2022, JIS8,locale=ja,version=4

ISO 2022, locale=ja,version=0

ISO 2022, locale=ja,version=2

ISO 2022,locale=ko,version=0

ISO 2022,locale=ko,version=1

ISO 2022,locale=zh,version=0

ISO_2022,locale-zh,version=1

KOI8-R

KOI8-U

Latin1

Latin2

Latin3

Latin4

Latin5

Latin-9

LMBCS-1

LMBCS-11

LMBCS-16

LMBCS-17

LMBCS-18

LMBCS-19

LMBCS-2

LMBCS-3

LMBCS-4

LMBCS-5

LMBCS-6

LMBCS-8

macintosh

MS_KANJI

SCSU

Shift_JIS

shift_jis78

US_ASCII

UTF-16

UTF-16 Big Endian

UTF-16 Little Endian

UTF16 Opposite Endian

UTF16 Platform Endian

UTF-32

UTF-32 Big Endian

UTF32 Little Endian

UTF32 Oppostie Endian

UTF32 Platform Endian

UTF7

UTF-8

56 IBM WebSphere Transformation Extender: Type Designer

Windows 874

Windows 949 (korean)

windows-1256

x-iscii-be

x-iscii-de

x-iscii-gu

x-iscii-ita

x-iscii-ka

x-iscii-ma

x-iscii-or

x-iscii-pa

x-iscii-te

x-mac-ce

x-mac-cyrillic

x-mac-greek

x-mac-turkish

None

Expand the None or Zero property to specify an override data value for None or

define the Special value and Required on input properties.

None > special value and zero > special value

Enter a special value if the item is None or Zero.

For example, if you specify * as the special value for NONE, and a text object has

the value *, it will be interpreted as NONE.

If you enter a special value for None, enter the exact characters to be validated and

built in the output data.

None > required on input and zero > required on input

Property

Description

Yes If the data object is NONE, use the Special value when building the item

in the input.

No Do not use the Special value.

 When building the item in the input, the item may be either the special

value, or the default value for NONE. For example, consider an item

containing all pad characters, and no actual data. When building that item

in the input, the default value for NONE is used.

Places

The Places property allows you to specify the number of implied decimal places.

For item types defined with an Item Subclass of Number, a Decimal presentation,

and a Separator, the Places property allows you to specify the minimum and

maximum number of decimal places and whole number places. The minimum

number of places must be less than or equal to the maximum number of places.

If the decimal number has no separator, use the Places property to specify the

number of implied decimal places.

Chapter 5. Item properties 57

Text item subclass properties

Text item subclass properties can be interpreted with a Character or Binary value.

Depending on the value, character or binary, the following are text item subclass

properties:

v ″Interpret as Binary″ or ″Interpret as Character″

v ″Size (content)″

v ″Pad″

v ″Restrictions″

v ″National language″

Date & time item subclass properties

The Date & Time properties provide the flexibility to define multiple combinations

of date-time formats.

Date & Time items can be interpreted as either binary or character. (See sections

″Interpret as Binary″ and ″Interpret as Character″).

For binary Date & Time items, the Presentation property has two different values:

Packed and BCD.

Value Description

Packed

The Packed value is a number that has size, decimal places, and sign

properties.

BCD The BCD value is a binary coded decimal number that has size.

Other Item Subclass properties for Date & Time are displayed depending on the

Interpret as setting (Binary or Character):

v ″Date″

v ″Time″

v ″Format″

v ″Pad″

v ″Restrictions″

v ″None″

v ″National language″

Date

For binary Date & Time items, use the Date property to define whether the date

format is enabled.

Value Description

Yes Date format is enabled for this type. Expand the Format property to select

the date format.

No Date is not defined for this type.

58 IBM WebSphere Transformation Extender: Type Designer

Date > format

Select the date format that the data interpretation will be based on. For binary

Date & Time items, the Date → Format property has four values.

CCYYDDD and YYDDD Julian date formats are supported.

v CCYYMMDD

v YYMMDD

v CCYYDDD

v YYDDD

Time

For binary Date & Time items, use the Time property to define whether the time

format is enabled. Select one of the following options:

Value Description

Yes Time format is enabled for this type. Expand the Format property to select

the time format.

No Time is not defined for this type.

Time > format

Select the time format that the data interpretation will be based on. For binary

Date & Time items, the Time → Format property has several values. The following

choices are available from the drop-down list:

v HH24MMSS

v HH24MM

v HH24:MM:SS

v HH24:MM

v Custom

Format

You can define a date-time format from within the type properties.

To define the Date & Time format:

1. Open the type properties.

2. Under Item Subclass Format, click the browse button.

The Date Time dialog box is displayed.

3. Make your format selections and click OK.

You can use alphabetical characters as separators. In the example,

2001-04-02T10:32:59-0500, T is the separator.

Separators are limited to 60 characters.

Supported date formats:

v CCYYMMDD

v YYMMDD

v MMDDCCYY

v MMDDYY

Chapter 5. Item properties 59

v CCYYDDD

v YYDDD

v DDMMCCYY

v DDMMYY

Note: The DDMMCCYY and DDMMYY formats did not exist prior to version

6.5 of the Design Studio. If you had defined either one of these formats

prior to 6.5 as a custom format, it will be recognized in 6.5 as the

respective new format, instead of the previously defined custom format.

Use of format elements

If you select the same format element more than once for the same item, that item

may not be validated separately. If you specify MON twice, the day of the month

is not validated separately for both months. For example, if the date format

element MON is used twice for a single item, with the following format string:

MON D-MON D

Suppose the data is this:

Feb 28-Mar 31

28 is not validated for the month of February.

Some combinations of reserved words are invalid. A separator must follow

reserved words representing a variable number of digits (D and M for date) if data

follows.

For example:

v D/M/CCYY is valid.

v CCYYM/D is valid.

v DMCCYY is invalid.

See the Design Studio Introduction documentation for a list of reserve words and

symbols.

Custom Date Format

After choosing Custom from the date format drop-down list, click browse. The

Date Format dialog box is displayed.

You can only use non-alphanumeric characters (excluding the {, } and [,]

non-alphanumeric characters) as separators in the custom Date Format dialog box.

The following table provides examples of date formats.

 Date Format Description Example

CCYY 4-digit Century + Year 1999

YY 2-digit Year (00-99) 99

MM 2-digit Month (01-12) 12

M 1- or 2-digit Month (1-12) 8

MON 3-character Month (Jan to Dec) JAN

60 IBM WebSphere Transformation Extender: Type Designer

Date Format Description Example

MONTH Full name of Month January

DDD 3-digit Day of year (001-366) 32

DD 2-digit Day of Month (01-31) 31

D 1- or 2-digit Day of Month (1-31) 7

DY 3-character Day of Week (Sun-Sat) Fri

DAY Full Name of Day of Week

(Sunday-Saturday)

Friday

WW 1- or 2-digit Week of Year 13

Qn Quarter of Year (Q1-Q4) Q2

Custom User defined custom date format

After you define and save a custom format, the custom format string is displayed

in the Properties window. For example, the custom date format CCYYMMDD, and

the custom time format HH24MMSS display as:

{CCYYMMDD}{HH24MMSS}

Custom Time Format

After choosing Custom from the time format drop-down list, click browse. The

Time Format dialog box is displayed.

You can only use non-alphanumeric characters as separators (excluding the {, } and

[,] non-alphanumeric characters) in the Time Format dialog box.

The following table provides time format examples.

 Time Format Description Example

HH24 2-digit hour in 24 hour format (00-23) 23

H24 1- or 2-digit hour in 24 hour format (0-23) 11

HH12 2-digit hour in 12 hour format (00-12) 08

H12 1- or 2-digit hour in 12 hour format (0-12) 8

MM 2-digit minute (00-59) 09

M 1- or 2-digit minute (0-59) 9

SS 2-digit second (00-59) 05

S 1- or 2-digit second (0-59) 5

AM/PM Meridian (AM/PM) AM

ZZZ A time zone abbreviation. See ″Time Zones″ for a

list of supported time zones.

EST

+/-ZZZZ Hours and minutes before or after the Greenwich

Mean Time (GMT). GMT is now referred to as

Coordinated Universal Time (UTC).

+0500

+/-ZZ:ZZ 4-digit time where the format is a 2-digit hour and

2-digit minute, separated by a colon.

+05:00

+/-ZZ[:ZZ] 4-digit time where the format is a 2-digit hour and

an optional 2-digit minute, separated by colon.

+05:00

Chapter 5. Item properties 61

Time Format Description Example

+/-ZZ[ZZ] 4-digit time where the format is a 2-digit hour and

an optional 2-digit minute.

+0500

After you define and save a custom format, the custom format string is displayed

in the Properties window. For example, the custom date format CCYYMMDD, and

the custom time format HH24MMSS display as:

{CCYYMMDD}{HH24MMSS}

Time zones

The following table lists the supported time zones.

Time Zone Abbreviation

Hours before

Greenwich Mean

Time

Hours ahead of

Greenwich Mean

Time

Greenwich Mean Time

(Zulu)

GMT 0 0

West African Time WAT -1 +23

Azores Time AT -2 +22

No name; Brasilia Time ### -3 +21

Atlantic Standard Time AST -4 +20

Eastern Standard Time EST -5 +19

Central Standard Time CST -6 +18

Mountain Pacific Time MST -7 +17

Pacific Standard Time PST -8 +16

Yukon Standard Time YST -9 +15

Hawaii Standard Time HST -10 +14

Nome Time NT -11 +13

New Zealand Time NZT -12 +12

No name; no location ### -13 +11

Guam Standard Time GST -14 +10

Japan Standard Time JST -15 +9

China Coast Time CCT -16 +8

West Australia Time WAT -17 +7

Zulu + 6 (Russia zone 6) ZP6 -18 +6

Zulu + 5 (Russia zone 5) ZP5 -19 +5

Zulu + 4 (Russia zone 4) ZP4 -20 +4

Baghdad Time BT -21 +3

Eastern European Time EET -22 +2

Central European Time CET -23 +1

62 IBM WebSphere Transformation Extender: Type Designer

Time zone format string for XML

The following time zone strings support the specification of a single character Z to

indicate Coordinated Universal Time (UTC), as described by the World Wide Web

Consortium (www.w3c.org) and the ISO 8601 standard:

v +/-ZZZZ

v +/-ZZ:ZZ

When the +/-ZZ:ZZ or +/-ZZZZ format string is specified, the data validation

process works in the following manner:

v Valid data that corresponds to this format string will contain either a character

literal Z (representing UTC) or a zone in the appropriate format: +/-ZZ:ZZ or

+/-ZZZZ, as specified.

v If a character literal Z is present, it shall be interpreted as, and treated at

mapping time, as UTC, which is equivalent to +00:00 or +0000.

The following time zone strings support the omission of the minute portion of the

difference from UTC:

v +/-ZZ[:ZZ]

v +/-ZZ[ZZ]

Optional time segments of the time format string

This section discusses how you can specify a portion of a time-format string to be

optional. For example, you can specify that either the time zone portion or the

hours, minutes, seconds, fractional seconds, Meridian portion is optional.

This flexibility is also applicable to time-format strings used in functions or in type

tree scripts imported by the Type Tree Maker.

Only the time portion or the zone portion can be optional-not both.

To specify a portion of the time-format string as optional:

1. The following procedure assumes that the Item Subclass property of your type

tree is Date & Time.

2. From within the type tree properties, navigate to Item Subclass → Format.

3. Click the browse button to open the Date Time dialog.

4. From a Format field that is set to Time, go to the field directly below it and

choose Custom from the drop-down menu.

5. Next to the Format field with Custom selected, click the browse button.

The Time Format dialog is displayed.

6. Choose from the following tasks:

v To specify the hours, minutes, seconds, fractional seconds, and Meridian-portion

of the time format string as optional, enable the check box on the far left side

of the dialog.

v To specify the time zone portion of the time format string as optional, enable

the check box.

Only one segment of the time format string can be specified as optional.

Date and time format examples

The following list includes examples of popular standard date and time formats:

Chapter 5. Item properties 63

Format Description

X12 EDI

Currently supports fractional seconds. HH24MM[SS[0-2]]

HL7 The time format in HL7 is HH24MM[SS[.0-6]][+/-ZZZZ]. HL7 also has a

TimeStamp format: CCYYMMDDHHMM[SS[.0-6]][+/-ZZZZ], a

combination of date and time.

SAP SAP represents time as HHMMSS

ODBC

 The form most commonly used in ODBC mapping is HH:MM:SS[.0-9]. The

fractional part is optional and not often used.

Special

When the Item Subclass has a Date & Time value and the Interpret as property

has a Character value, the Special property has two properties:

v If Date & Time is NONE

v If Date & Time is Zero

If Date & Time is NONE

Select one of the following from the drop-down list:

Value Description

Yes An override data value for NONE can be specified. Expand the If Date &

Time is NONE property to define the following properties:

v Special value

v Required on input

No No special values or input requirements are defined when data is NONE.

NONE > special value

Enter a special value if the item is NONE. For example, if you specify * as the

special value for NONE, and a text object has the value *, it will be interpreted as

NONE.

The same description applies to the ″If Date & Time is Zero″ property.

NONE > required on input

Select one of the following from the drop-down list:

Value Description

Yes If the data object is NONE, use the Special value when building the item

in the input.

No Do not use the Special value. When building the item in the input, the

item may be either the special value or the default value for NONE. For

example, if an item contains all pad characters and no actual data, the

default value for NONE is used when that item is built in the input.

The same description applies to the ″If Date & Time is Zero″ property.

64 IBM WebSphere Transformation Extender: Type Designer

If Date & Time is Zero

Select a value from the drop-down list:

Value Description

Yes An override data value for Zero can be specified. Expand the If Date &

Time is Zero property to define the following properties: Special value

and Required on input.

No No special values or input requirements are defines when data is Zero.

Syntax item subclass properties

Syntax objects are characters that precede, separate, or follow a particular data

object. Item types with an Item Subclass of Syntax are defined and used to specify

delimiters, initiators, terminators, and release characters. Syntax objects with

variable values are defined as the syntax object’s Variable property. Syntax objects

appearing as actual data to be mapped as output data are defined as components

of a type.

Syntax objects with variable values

Using a syntax item to specify delimiters, initiators, terminators, and release

characters is required when the value of syntax objects (delimiters, initiators,

terminators, and release characters) may vary.

The restrictions of syntax items define the variable literal values.

To define a variable syntax object:

1. Create an item type with an Item Subclass of Syntax to represent the syntax

object.

2. Define the restrictions for the syntax item type.

3. For the item or group type with the variable syntax object, for the Variable

delimiter, initiator, terminator, and release character, select the item from the

Item drop-down list in the Properties window.

4. For the Find property, select Yes.

Only item types defined with an Item Subclass of Syntax appear in the

drop-down list.

Example of Variable Syntax Object as an Item Type

In this example, the group type Header has variable delimiter values of: , * + ~

 1. Create an item type with the Item Subclass of Syntax and the name

Delimiter. (The name can be any valid type name, but naming this item

Delimiter is useful).

 2. To define the item restrictions, double-click the Delimiter type.

The item window is displayed.

 3. Define the restrictions in the Include column.

 4. In the Properties window, select Syntax for the Item Subclass property.

 5. Open the properties for the delimited group type Header.

 6. For the Syntax property, choose Delimited.

 7. For the Delimiter property, choose Variable.

Chapter 5. Item properties 65

8. Expand the Delimiter property.

 9. Define the Delimiter Default literal value.

10. For the variable Delimiter Item property, choose the item type Delimiter from

the drop-down list.

11. Indicate that the variable delimiter should be determined for each occurrence

of the object by selecting Yes for the Delimiter Find property.

Syntax objects as data

The value of a syntax object (delimiters, initiators, terminators, and release

characters) may appear as actual data that can be mapped. Syntax objects that

appear as actual data are defined as components of a type.

Example of syntax objects as components of a type

The following is an example of defining a syntax object as a component of a group

type. The following data represents a message received from multiple departments.

Each message is made up of segments. Each department uses different segment

delimiters and terminators. The message format specifies that the delimiter and

terminator are the first two bytes of the message, followed by the actual data.

To define syntax objects for the delimiter and terminator:

1. Define two separate syntax objects with an Item Subclass of Syntax, one for

the message delimiter and one for the message terminator. Appropriate type

names might be SegmentDelimiter and SegmentTerminator.

2. Define the possible message delimiter values as restrictions of the

SegmentDelimiter item type. Define the possible message terminator values as

restrictions of the SegmentTerminator item type.

3. Define these item types as the first two components of the group type

Message.

4. Expand the Delimiter property.

5. For the variable Delimiter Item property, select SegmentDelimiter from the

drop-down list.

6. For the variable Terminator Item, select SegmentTerminator from the

drop-down list.

During the data validation process, the component SegmentDelimiter appears in

the data with a value of *. The group type Segment has a variable delimiter

specified as the item type SegmentDelimiter, with the value *. Therefore, it is

understood that the segment has * as the delimiter.

When the value of a syntax object appears as actual data, it can be mapped as

data. For example, source data may use different delimiters from several different

sources. Acknowledgments of this data must be sent back to the source using the

delimiter used in the original data. This data can be mapped from the input to the

output if these syntax objects are defined as components within the data.

Delimiter > find

When syntax objects are Variable, the Find property must be defined. The Find

property determines whether the value of syntax object is set on each occurrence

or whether the current setting (or default value) is used.

66 IBM WebSphere Transformation Extender: Type Designer

When the Initiator, Terminator, Release, or Delimiter property value is Variable,

select one of the following from the drop-down list in the Value column:

Property

Description

Yes Determine the value of the syntax object each time an occurrence of that

type is found. After the value of that syntax object is found, that particular

value is used until it is reset by another Find or by the occurrence of that

syntax item as a component.

 INPUT: The value of the object in the input data is determined by the

location in the data stream and the restrictions of the syntax item.

 OUTPUT: The default value is used for building the syntax object in the

output data.

No The variable syntax object is defined as the current value or, if it is not set,

as the default value.

 INPUT: If the syntax object is not encountered in the data stream, the value

of the syntax object is the default value.

 OUTPUT: If the value of the syntax item has not been previously set, the

default value is used.

Chapter 5. Item properties 67

68 IBM WebSphere Transformation Extender: Type Designer

Chapter 6. Item restrictions

Item restrictions are an optional feature you can use to specify valid or invalid

data objects for an item type.

Restrictions of an item type are the valid or invalid values for that item. For

example, a unit of measure field in the data must be one of a set of values: CN, BX,

PK, BR. These values should be defined as ″include″ restrictions of the item

UnitOfMeasure.

Defining restrictions for an item restricts the valid data for that item. Partial lists of

the valid values are not possible. For example, it is not possible to define the

values for a certain item to be {A, B, C, ″some other possible values″}. Include

restrictions are all of the valid values for an item. Exclude restrictions specify all of

the invalid values.

Most items will not have restrictions. For example, you probably would not want

to restrict the valid values of something like a name field. You would probably

want to accept any name as valid data for that field. But you could assign

restrictions to it if needed. You can define restrictions for any item.

The top section of the item window contains information about restrictions for the

item type. You set the restrictions from the Properties window (for the item) in the

Type Designer.

Item restrictions are grouped into three categories: Value, Character, and Range.

Defining item restrictions

By default, restrictions are case-sensitive. To ignore the case of restrictions, when

defining the properties of the item, choose Yes for the Restrictions Ignore Case

property.

In the following instructions, it is assumed that the Enter key is the ″commit

changes″ key. (See ″Options″.)

To define restrictions of an item:

1. Double-click the item for which you want to define restrictions.

The item window is displayed.

2. Type each restriction value in the appropriate cell and press Enter.

The column headings of the restriction cells will differ based on the item

properties set.

3. (Optional) In the corresponding cell, type a description of the value and press

Enter.

Entering a description of a value is helpful when the value of the restriction is

not obvious. For example, BR could mean ″barrel″. A description can be

especially useful when building a map with this data.

© Copyright IBM Corp. 2006 69

Inserting new rows

You can add new rows to the item window’s columns by right-clicking or pressing

the Insert key. The new row inserts after the selected row.

For example, click on the row containing ANALYZE and right-click. After choosing

Insert from the context box, the row is inserted under ANALYZE.

Restrictions settings

In the Properties window, the Restrictions property has three values to choose

from: Value, Character, and Range.

Value restrictions

When the Item Subclass Restrictions field is set to Value and Restrictions Rule is

set to Include, the Include and Description columns are present in the item

window.

When the Item Subclass Restrictions field is set to Value and Restrictions Rule is

set to Exclude, the Exclude and Description columns are present in the item

window.

v Include column: Specify the restrictions to use in determining if input data is

valid or invalid for the item. One-to-many values are allowed. The order in

which restrictions appear in the list is not relevant.

″Include″ values are considered valid. An input item is considered invalid if a

character other than those specified in the Include column appears in the data.

v Exclude column: Specify the text character values to be excluded. ″Exclude″

values are considered invalid. This option provides a means to specify a default

set of restrictions.

v Description column: (Optional) Enter a brief description of the value restrictions.

Character restrictions

When you are setting item type properties, you can select Include or Exclude for

the Restrictions Rule value.

Include character restrictions

When the Restrictions field is set to Character and Restrictions Rule is set to

Include, the Include First and Include After columns are present in the item

window.

v Include First column: Defines the first character of a character list.

v Include After column: Defines the character list of the characters to follow the

first character (defined in the Include First column).

For example, the first character could be a letter and all characters that follow

could be either letters or digits.

Exclude character restrictions

When the Restrictions field is set to Character and Restrictions Rule is set to

Exclude, the Exclude and Reference String columns are present in the item

window.

70 IBM WebSphere Transformation Extender: Type Designer

v Exclude column: Specifies the substrings in the input data that must be excluded

and replaced with the associated reference string.

v Reference String column: Defines what the excluded character substrings will be

replaced with. If no reference string is specified, the Exclude substring is not

built.

On output, a character text item is built by using the corresponding reference

string when the content contains any of the Exclude character substrings listed.

For example, you can define XML item content that excludes markup delimiters

by using the corresponding reference strings (because XML character text items

cannot contain the markup delimiters <, >, or & in the raw form).

To make it easier to specify a common range of characters, you can use reserved

words and symbols. See the Design Studio Introduction documentation for a list of

reserved words and symbols.

Range restrictions

Include

When the Restrictions value is Range and the Restrictions Rule value is Include,

the item window displays Include Minimum, Include Maximum, and Description

columns.

v Include Minimum column: (Required) Defines the minimum value of the range.

v Include Maximum column: (Required) Defines the maximum value of the range.

v Description column: (Optional) Enter a brief description of the range

restrictions.

Exclude:

When the Restrictions value is Range and the Restrictions Rule value is Exclude,

the item window displays Exclude Minimum, Exclude Maximum, and

Description columns.

v Exclude Minimum: Defines the minimum value of the range to be excluded or

considered invalid.

v Exclude Maximum: Defines the maximum value of the range to be excluded or

considered invalid.

v Description column: (Optional) Enter a brief description of the range

restrictions.

Unbound restrictions are not supported.

Value not in range

The minimum value and the maximum values can be specified as not included in

the range. For example, when the Value NOT In Range icon appears beside a

number in an Include Minimum field, it indicates that the number is not included

as the minimum value. The range will therefore extend from any value that is

greater than that number to the maximum value specified. Similarly, if the Include

Maximum value is designated as ″not in range″, the valid range would extend up

to any value this is less than the maximum value.

To specify a value as ″not in range″:

1. Select the field (cell) that contains the value to be designated as ″not in range″.

2. Right click on the value and choose the Value NOT In Range menu item.

Chapter 6. Item restrictions 71

The Value NOT In Range icon appears to the left of the selected value.

Inserting symbols

Symbols are used to indicate nonpintable characters. Symbols are inserted by using

the Symbols dialog box.

For example, the carriage return/line feed symbols can be inserted from the

Symbols dialog box or entered in angle brackets.

Using the Symbols dialog box, the carriage return/line feed appears in literal

quotation marks as ″<CR><LF>″.

For example, to define a CR/LF as an item restriction select the carriage return

(CR) symbol and click Insert. Then select the line feed (LF) symbol and click

Insert. Notice in the window shown below, a description of the selected symbol

appears at the bottom of the window. In this case the description is LineFeed.

Alternatively, enter the hexadecimal values in double angle brackets. For example,

enter <<00>> to indicate a hex null value.

To insert a symbol:

1. From the Component or Restriction menu, select Insert Symbols.

The Symbols dialog box is displayed.

2. Select the desired symbol and click Insert. Or, double-click on the desired

symbol

The selected symbol appears in the Value field.

3. Click OK.

When a symbol is selected, the description of that symbol is shown at the

bottom of the dialog box.

Ignoring restrictions

There might be instances when you do not require the data for an item to match

any of its restrictions. Suppose you defined restrictions for your data, but you want

to run a test on some test data, and you do not want to use the restrictions for this

time only. You can ignore the restrictions for a given execution of a map.

In another example, you have a list of valid part numbers that can appear in any

data circulated within your company. Suppose you receive data from some other

company in the same format as your internal data. The other company may be

using different part numbers, so you do not want to make their data conform to

the restrictions. When you map the other company’s data, you could ignore the

restrictions.

For instructions on ignoring restrictions during map execution, see Map Designer

and Command Server documentation.

72 IBM WebSphere Transformation Extender: Type Designer

Chapter 7. Group properties

Group properties include the group’s Subclass and Format, which describes how

to distinguish one component of that group from another component of that

group.

Group subclass

Group types have a subclass of Sequence, Choice, or Unordered.

 Property Description

Sequence A partially-ordered or sequenced group of data objects.

Each component of a Sequence group is validated

sequentially.

Choice Choice groups provide the ability to define a selection from

a set of components like a multiple-choice question on a test.

Choice groups are similar to partitioned sequence groups.

A Choice group is validated as only one of its components.

Validation of a Choice group is attempted in the order of the

components until a single component is validated. If the

Choice group has an initiator, the initiator is validated first.

Unordered An unordered group has one or more components.

Unordered groups can only have an Implicit format

property, with the same syntax options as sequence groups:

None or Delimited.

Properties of group subclasses

The distinction between Sequence and Choice group subclasses is that Choice

groups have no Partition or Format properties.

Type syntax properties such as Initiator, Terminator, Release, and Empty may be

applied to Choice groups. If a release character is defined, by default it applies to

the Terminator.

Choice group components

The components of a choice group are similar to the partitions of a partitioned

type. However, a Choice group can have both items and groups as components. A

partitioned Sequence group can only have group subtypes.

Components of a Choice group must be distinguishable from each other. The

components of a Choice group cannot have a component range other than (1:1).

Only one component of a Choice group built in the output data.

A Choice group data type is only one of the group components. For example, the

data type Record is a group type with a Group Subclass of Choice. The group

type Record has three components: Order, Invoice, and Sales. The data validation

of Record will be only one of the components: Order, Invoice, or Sales. For this

reason, the components of a Choice group must have a component range of (1:1).

© Copyright IBM Corp. 2006 73

Unordered group components

An unordered group has one or more components that can appear in the data

stream in ay order. They allow many SWIFT and FIX message types, for example,

to be defined in a more natural way.

Unordered groups have no partitioned property. They have Implicit format

properties with the same syntax options as sequence groups: None and Delimited.

When a group is defined as Unordered, any component can appear in the data

stream. A component can be an item or a group.

Unordered group components have a range property. For example, if the

unordered group, A, has the following component list:

B(1:S)

C

D(S)

then A must have one C, at least one B, and possibly some Ds. They could appear

in any order. For example, data for A could have the pattern: CDDBDDD or

BBBDDCBD.

Component rules of an unordered group cannot reference other components of the

same group. They can only reference the component to which the rule refers and

the objects contained in that component.

Sequence group formats

A sequence group has either an Explicit or Implicit format.

Property

Description

Explicit

The explicit format relies on syntax to separate components. Each

component can be identified by its position or by a delimiter in the data.

Delimiters appear for missing components.

Implicit

The implicit format relies on the properties of the component types. The

format is not fixed. If delimiters separate components, they do not appear

for missing components.

 For example, if each component of a fixed group has a fixed size, the component is

distinguished from the next component by its position in the data. Or, a group

may have delimiters that appear for missing components. In these cases, the

format is apparent; the group has an explicit format.

If a group does not have an explicit format, it has an implicit format. An implicit

format relies on the properties of the component types. In this example, the

components make some pattern in the data and it is possible to distinguish

between them, but the format is not fixed and if delimiters separate components,

they do not appear for missing components.

When deciding what format a group has, it may help to ask first whether it is clear

where one component ends and another begins. Generally, a group has an explicit

format if the position of each component in the data stream is always the same or

if a delimiter always marks the place for each component.

74 IBM WebSphere Transformation Extender: Type Designer

Explicit format

To specify that a group has an explicit format, choose Explicit for the Format

property. Select a setting for the Track property, and choose the group’s syntax:

Fixed or Delimited.

Track

The Track property indicates whether the system should track only the

components that have content or all components, including those that do not have

content. The settings are Content and Places.

For example, if a group StudyGroup has the component Name(s), and Track

Places is specified, any empty occurrences of Name are tracked.

Suppose Name has an * initiator and a space pad character. This is the data for

StudyGroup:

*Carolyn * *Stuart *Margaret

Notice that the second Name is missing.

If Track Places is specified and you want to map the third Name, the empty Name

would be counted as an occurrence, so the third Name would be Stuart. However,

if Track Content is specified, the empty Name would not be counted as an

occurrence because it does not have content and the third Name would be

Margaret.

Fixed syntax

If a group data object is always the same size (in bytes), it has a fixed syntax. For

example, a record that is always 160 bytes has a fixed syntax.

Each component of a fixed group must be fixed. If you break down a fixed group,

it ultimately consists of items that are fixed. Each is padded to a fixed size or its

minimum and maximum content size are equal. Do not specify the size of a fixed

group. The size is automatically calculated based on the size of the group’s

components.

Guidelines for defining a fixed group

v Each component must be a group with a fixed syntax or a fixed item. The item

is padded to a fixed size or its minimum and maximum content size are equal.

v Each component must have a specified range maximum. The maximum cannot

be s.

v If a component range minimum is not equal to the maximum, content is not

required for optional component occurrences.

For example, if a component is the item ShippingAddress (0:1) and

ShippingAddress has a minimum content size of two characters, data may

either contain: 1) all pad characters, or 2) if content is in the data stream, there

must be a minimum of two characters for a ShippingAddress. If a component is

a group, no content is required for any of the items contained in an optional

occurrence of that component.

Chapter 7. Group properties 75

Explicit delimited syntax

An explicit format group with a delimited syntax is one whose components are

separated by a delimiter and the delimiter appears as a placeholder even when a

component has no content. The only time a delimiter can be missing is if

components following the delimiter are all optional and there is no data for these

optional components.

A delimiter is a character or series of characters that separates data objects.

A delimiter cannot be longer than 500 bytes.

The delimiter of a group appears inside the group, separating its components.

When a group is delimited, that indicates something about the components of the

group. The delimiter inside a group is delimiting the components.

For example, the group Employee has an explicit delimited format because a

comma delimiter appears between Employee’s components, the items that make

up the Employee object. In addition, the delimiter is displayed when a component

is missing and there is data for components following it.

The components of Employee are the items ID#, Name, Department, Address, and

Age.

Delimiter

In the Delimiter property, specify the value and location of the delimiter. For

specific information on specifying the delimiter, see ″Specifying a Delimiter″ .

In an explicit delimited group, if the delimiter is whitespace <WSP>, the delimiter

is interpreted as one byte long; each <WSP> character is interpreted as another

delimiter. In the output, a <WSP> delimiter is one space.

The limit for <WSP> is 256 bytes.

Implicit format

In a group with an implicit format, the components are distinguishable not by

delimiter or position, but by their pattern; something in the definition of the

component types themselves. The group has no syntax property that distinguishes

one component from another.

For example, the type File consists of Record(s). <CR><LF> appears at the end of

each Record. It has been defined as the terminator of Record. File, however, has

no syntax of its own. The Record terminator distinguishes one Record from

another.

To specify that a group has an implicit format, choose Implicit for the Format

property. Optionally, define a comment type, and choose the group’s syntax:

Delimited or None.

Floating component

The floating component represents an object that may appear after any component

of the group.

76 IBM WebSphere Transformation Extender: Type Designer

An implicit group can have a floating component; an explicit group cannot. If the

group is prefix or infix delimited, the floating component is displayed before the

delimiter. If the group is postfix delimited, the floating component is displayed

after the delimiter.

A floating component can be an optional component that may appear after any

other component. However, it is not included in the component list because it does

not appear at a specific location.

If a group has a floating component, a component must be distinguishable from a

floating component. For example, components and floating component could start

with different initiators.

Note: When a floating component appears in the input data, it is validated during

mapping. If there are floating components in your output data, define them

as actual components of the output.

A floating component can appear after the initiator (when the type has an

initiator), after each component, or both. For EDI and other existing floating

components, trees will be converted as ″after each component″.

A floating component can be specified for implicit sequence group, choice group,

and unordered group definitions.

A floating component provides additional flexibility to support XML data. With the

floating component property, XML element groups would have a floating

component defined as an unordered group of XML comments, XML processing

instructions, and/or white space.

The XML DTD Importer, for example, uses the floating component property for

XML elements whose content contains other elements. For such XML element

definitions, a floating component can be a choice of XML comments and/or XML

processing instructions.

To define a type as a floating component:

1. In the Properties window expand the Format property.

2. With current focus in the Floating Component Value field, define the value for

the floating component by pressing Alt and dragging the item from the tree

into the Floating Component Value field.

Implicit whitespace syntax

Select WhiteSpace for the Component Syntax value when white spaces are not

allowed it the data. When you select the WhiteSpace option, define the Build As

and Character Set properties.

Note: Helpful for XML data.

Build as

Enter the characters that will replace white spaces.

The Build As property is only available when the Component Syntax property is

defined as WhiteSpace.

Chapter 7. Group properties 77

Character set

Select one of the following from the drop-down list in the Value column:

Property

Description

Native

Literal values for this character text item use the machine’s native character

set.

ASCII Literal values for this character text item use ASCII (American Standard

Code for Information Interchange) for the data language.

EBCDIC

Literal values for this character text item use EBCDIC (Extended

Binary-Coded Decimal Interchange Code), which is an IBM code for

representing characters as numbers.

Latin1 Literal values for this character text item use Latin1 for the data language.

Latin1 uses the byte values in the 0x80-0xFF range to represent characters

that are not defined in ASCII.

UNICODE Big Endian

Literal values for this character text item use UNICODE for the data

language. The rightmost bytes are most significant.

UNICODE Little Endian

Literal values for this character text item use UNICODE for the data

language. The leftmost bytes are most significant.

UTF-8 Literal values for this character text item use UTF-8 (Universal

Transformation Format 8), which is an ASCII- compatible multibyte

Unicode and UCS encoding.

Implicit delimited syntax

If a delimiter separates the components of a group, but the delimiter does not

appear when a component is missing that group has an implicit format, with a

delimited syntax.

In certain data, the delimiter may not be a placeholder.

Delimiter

In the Delimiter property, specify the value and location of the delimiter. For

specific information on specifying the delimiter, see ″Specifying a Delimiter″ .

In an implicit delimited group, if the delimiter is whitespace <WSP>, all

contiguous <WSP> characters are treated as one delimiter. In the output, a <WSP>

delimiter is built as one space.

The limit for <WSP> is 256 bytes.

No syntax

To specify a group with an implicit format that has no syntax, choose None for the

Component Syntax value.

78 IBM WebSphere Transformation Extender: Type Designer

Distinguishable components of an implicit group

Each component of an implicit group needs to be recognizable. If either of two

different components appears at the same place in a data stream, there must be a

distinguishable difference between one component and the other.

Sometimes components of an implicit group may be distinguished because there is

something in the data that distinguishes them.

After the first item Line of the Form, the next data object could be another item

Line. Or, it could be a Trailer Line. When looking at a particular Line, there is

something in the data that identifies that Line either as a Header Line, an item

Line, or a Trailer Line. The type Line has been partitioned to distinguish between

the different kinds of Lines.

Specifying a delimiter

For the Delimiter property, specify whether the delimiter is a literal or a variable

value.

Literal

If the delimiter is a constant value, enter the delimiter value in the Value field. To

enter a non-printable value, click the browse button and select a value from the

Symbols dialog box.

National language

The national language is Western.

Data language

Choose the data language of the delimiter from the list. Select one of the following

from the drop-down list in the Value column:

Property

Description

Native

Literal values for this character text item use the application’s native data

language.

ASCII Literal values for this character text item use ASCII for the data language.

EBCDIC

Literal values for this character text item use EBCDIC (Extended

Binary-Coded Decimal Interchange Code), an IBM code for representing

characters as numbers.

Latin1 Literal values for this character text item use Latin1 for the data language.

Latin1 uses the byte values in the 0x80-0xFF range to represent characters

that are not defined in ASCII.

UNICODE Big Endian

Literal values for this character text item use UNICODE for the data

language. The rightmost bytes are most significant.

UNICODE Little Endian

Literal values for this character text item use UNICODE for the data

language. The leftmost bytes are most significant.

Chapter 7. Group properties 79

UTF-8 Literal values for this character text item use UTF-8 (Universal

Transformation Format 8), which is an ASCII- compatible multibyte

Unicode and UCS encoding.

Variable

Sometimes you do not know what delimiter is used in the data source, especially if

you receive that data from an outside source. However, you know all of the

possible values that the delimiter could be. You can create an item to represent this

delimiter and specify all of the possible values as restrictions of that item. The

value of the delimiter in the data is found.

To specify an item as a Variable Delimiter:

1. In the Properties window for the delimited group, click in the Delimiter Item

value field.

2. Press Alt and drag the item from the type tree window into the Item field.

Location

The Location property specifies the location of the delimiter with respect to the

components. The options are prefix (the delimiter appears before the component),

postfix (the delimiter appears after the component), and infix (the delimiter

appears between components).

The following table explains each option.

 Property Description Example

Prefix Before each component.

Before each member of a component in a series.

*a*a*b*c

Postfix After each component.

After each member of a component in a series.

a*a*b*c*

Infix Between components.

Between members of a component in a series.

a*a*b*c

Delimiter value appears as data

Delimiters do not appear as part of the actual data. For example, if the delimiter is

specified as a comma, the comma in the following text item would be considered a

delimiter, rather than part of the data itself:

Tom Smith, Jr.

If the data does contain the delimiter value, there are ways to format the data so

that both the data and the delimiter are distinguishable. For example, text items

can be enclosed in quotation marks. Or, a release character may be used. For

information about release characters, see ″Release Characters″.

80 IBM WebSphere Transformation Extender: Type Designer

Chapter 8. Components

A component represents a data object that is part of another data object.

Components are required for group types

Categories and groups can have components. Components of group and category

types display in the group and category windows. Item types do not have

components.

Group types represent actual data objects, so groups must have components. The

one exception is a partitioned group which is explained in ″Partitioning″.

By contrast, a category is used for organizing types and for type property

inheritance reasons. Categories do not define actual data objects in detail. A

category does not need components.

Each group must have at least one component, unless it is partitioned.

Components must be in the same type tree

A component must be a type in the same type tree as the type that contains the

component.

You cannot define the components of a type by opening up a different type tree

and dragging components from that tree. You can, however, copy types from one

type tree to another.

Importance of component order

Components are listed from top to bottom in the group window in the order they

appear in the data stream. The component in the first cell appears first in the data

stream. The component in the second cell appears next, and so forth.

Component range

The range defines the number of consecutive occurrences of that component. A

component range can be specified for any component. A component range defines

the number of occurrences. The range (s) represents some or any number greater

than one.

When a component is selected, the component name is displayed in the rule bar.

Click in the rule bar after the component name to type the component range.

The range is displayed in parentheses immediately after the component name. The

range is two numbers separated by a colon. The first number indicates the

minimum number of consecutive occurrences of that component. The second

number indicates the maximum number of consecutive occurrences of that

component. The syntax of the component name and range is:

Component (MIN:MAX)

To enter a range after a component name, type in the rule bar or use the Set Range

command.

© Copyright IBM Corp. 2006 81

The maximum component range is 2147483647.

Whenever a component has a range, each occurrence of that component may be

referred to as a ″member″ of a series. The words ″occurrence″ and ″member″ are

used interchangeably in the documentation.

Indefinite number

When there is no maximum number of occurrences of a component (the maximum

is indefinite) use the letter s to stand for ″Some - you do not know how many″.

Therefore, a file that contains at least one record and has no maximum number of

records has this component:

Record(1:s)

If the range minimum is zero, omit the 0 and only enter s. If a file has a minimum

of zero records and no maximum number of records, it would have this as its

component:

Record(s)

Remember that when you see (s), the minimum of zero is implied. Therefore,

Record(0:s) is the same as Record(s)

If you enter any number alone in the parentheses, the range changes to a

minimum of 0 and a maximum of that number. For example, if you enter (5) for a

range and save and close the group window, the next time you open it, you see

the range displays:

(0:5)

Single occurrence

If there may be a minimum and a maximum of one consecutive occurrence of a

component, its range is (1:1). This is the default. If there is no range after a

component name, the range (1:1) is implied. When you drag a type to make it a

component, it is automatically created with the default component range of (1:1).

Group windows

The group window displays the components of the selected group type.

The contents of the selected cell are displayed in the rule bar. To size the

component rule bar, move the mouse over the bottom border of the component

rule bar, and drag the bar to the desired size.

Nested components

In a group window, nested components are displayed. For example, in the group

window of CustomerList, the component Prolog(0:1) may be expanded to show

Prolog’s components. In addition, the component XMLDesl AttList, within Prolog,

may be expanded to show XMLDesl AttList’s components.

When components are expanded, the rule cells associated with nested components

are gray. Unavailable rule cells indicate that you can add component rules for

components of a type, but cannot add component rules to nested components or

partitions.

82 IBM WebSphere Transformation Extender: Type Designer

Defining components

Most groups need at least one component. Categories may not have components,

but you can define components for a category for inheritance purposes.

To determine the components of a group, ask yourself:

Group type _____________ consists of what?

For example, ″The file consists of what?″ The answer might be ″records″. So,

Record(s) is a component of that group or category type.

Suppose you have a data file containing order records for an office supply store.

You need to define the components of the type File.

To define components:

1. In the type tree, double-click the type whose components you want to define.

For group types, the group window is displayed. For category types, the

category window is displayed.

2. Drag each component from the type tree into the group or category window.

The type name appears in the component cell.

3. Enter component ranges where necessary.

For example, double-click File.

4. Drag each component from the type tree into the group window.

Drag Record from the type tree into the component cell of File window. The

name Record appears in the component cell.

5. Enter component ranges where necessary.

A component range indicates the number of occurrences. The number of

records in the file is indefinite, so the range is (s), which represents ″some.″

When a component is highlighted, it appears in the component rule bar. Click

in the component rule bar after Record, and type (s).

6. Press Enter.

7. In a group window, enter component rules, if necessary.

8. Close the window and click Yes when prompted to save changes.

Complete type name

The complete name of a group is displayed in the title bar of its window. A type’s

complete name is similar to a path name, beginning at the type and including all

types in the path up to the root. Spaces appear between types in a complete type

name.

You can have duplicate type names as long as they are not on the same level. Each

type has a unique complete name, so there is no doubt as to which particular type

is being referenced.

Relative type names

A component name is similar to a relative path name. Component names exclude

types that the defined type and component type have in common in their complete

names.

Chapter 8. Components 83

The relative type name excludes the names that appear in the complete names of

both the type and the component type. Therefore, because ROOT is included in

the complete type name of both Row ROOT and Product Column ROOT, it is

excluded from the relative type name Product Column.

If more than one type in a type tree has the same relative type name as another in

a group, then the full path of the type is exported instead of the relative type

name. No two types that have different full type names but identical relative type

names can be added to a component list.

Moving types with the same relative type name

In the following illustration, Group Category ROOT shows that it has one type

named Item. There are two types with the same name Item in the type tree at

different places. The relative type names of both types, Item ROOT and Item

Category ROOT both evaluate to Item with respect to the Group component.

You are allowed to drag and drop only one Item into the component list. If you

attempt to drag-and-drop the second, you will be blocked and the component will

not be added to the list.

Ambiguous type names

A component name can refer to more than one type. If this is true, you must

change type names so that the component name is no longer ambiguous. The Type

Designer will not allow components with the same relative type names to be

added to component lists.

If you delete a type that is used as a component of another type, and then perform

an ″Undo″, thus adding the type back, and the component name is ambiguous; the

component name remains unresolved in the component list. The ″Undo″ operation

will not result in a complete reversal of the operation being undone.

Manual entry of types with same relative type names

Although the drag-and-drop method is the recommended method of entering

component names into the component list, it is possible to type the component list

manually into the text entry area of the group window. In the following example,

there are two component types with the name of Item in the type tree.

If you type Item in the text entry area at the top of the group window and press

Enter, the component name Item will appear in the component list, preceded by

an ambiguous type name icon.

An ambiguous type name indicates that there is another type with the same relative

type name in the type tree. There are two ways of eliminating the ambiguity:

v You can drag one of the types named Item from the type tree onto the type

name in the component list. When you do this, the ambiguous type icon will

change to a solid color to indicate that the ambiguous type name is resolved. If

you attempt to drag the second type name called Item from the type tree into

the component list you will be blocked.

v You can also type a path name in the group window as shown in the following

illustration. You must type either the full path name of the type, or if you type a

partial path name it must contain enough of the path name to make the type

unique.

For example, if you enter Item Category ROOT, or Item Category, the type name

Item will be unique and the ambiguity will be removed. When you enter this

84 IBM WebSphere Transformation Extender: Type Designer

unique path name, the type will be successfully entered into the component list.

The ambiguity is thereby resolved, however, you will be blocked from adding the

other Item type to the component list.

Always drag components

Because the component rule bar allows you to add a component range, the entire

component name is editable. You could enter a component name by typing it.

However, this is not advisable. Always drag components into component lists. This

is recommended for the following reasons:

v To avoid typographical errors

v To enter type names in the exact case in which they were created. Type names

are case sensitive. For example, a type named PO_Date is different from a type

named po_date.

v To avoid incorrectly entering a relative type name

When you drag types into a component list, the correct relative type name is

automatically entered.

Viewing the component number

You can view the number of each component in a group and category window.

To view component numbers:

1. From the Tools menu, choose Options.

2. Select Group Window or Category Window.

3. Enable the Show component number check box.

4. Click OK.

Specifying minimum and maximum consecutive occurrences

in the component list

The following table contains examples of how to specify in the component list the

minimum and maximum consecutive occurrences for specific data objects:

 Data Object Min Max How to Specify

DateField 1 5 DateField (1:5)

DetailRecord 1 100 DetailRecord (1:100)

AddressField 2 3 AddressField (2:3)

Fixed and variable ranges

Sometimes the range of a component is described as fixed or variable. A fixed

range has the same minimum and maximum, (5:5) for example. A variable range

has a different minimum and maximum, (1:10) or (s) for example.

Using the set range command

You can specify a component range by using the Set Range command.

To enter a component range using the Set Range command:

1. Select the component whose range you want to specify.

2. From the Component menu, choose Set Range.

Chapter 8. Components 85

3. In the Set Range dialog box, enter the minimum and maximum number of

occurrences.

4. Click OK.

For example, to enter the range (0:1) for the component MiddleInitial Field,

select MiddleInitial Field and choose Set Range from the Component menu.

You can select multiple components and use the Set Range command to apply the

same range to each component. For example, to assign the range (0:1) to multiple

components, select them and use the Set Range command.

A range of (1:s) means that there will always be at least 1 occurrence, but could

occur an infinite number of times. A range of (0:s) means that an occurrence is

optional, but could occur an infinite number of times.

Viewing the range column

You can view component ranges in a separate column.

To view the component range column:

1. From the Tools menu, choose Options.

2. Click Group Window.

3. Enable the Show range column check box.

4. Click OK.

Types that can be components

There are certain guidelines to follow when defining types. It is not necessary to

memorize these guidelines because the Type Designer assists you when you define

components. The Type Designer does not allow the dragging of invalid

components.

Guidelines for defining components

The guidelines below are numbered to allow references to the following type tree

and to each other. The numbering does not suggest a priority or a sequence to be

followed in observing the guidelines.

1. Categories may not have components.

A category is only used for organizing your type tree and for setting common

properties.

2. A partitioned group may not have components.

A partitioned group always represents a choice among the subtypes of that

group. You never map a partitioned group without its subtree, so it does not

need components.

Note: A subtree is a branch of a type tree that includes a type and all of the

subtypes that stem underneath it.

3. If a group is not partitioned, it must have at least one component.

Non-partitioned groups are sequences of data objects rather than choices. A

sequence must contain at least one component.

4. A type and one of its subtypes cannot be in the same component list.

5. If a type has components, a subtype can inherit any of those components or

any type in the subtree of one of those components.

86 IBM WebSphere Transformation Extender: Type Designer

6. If a type has no components, a subtype can inherit any type that could be in

that type’s component list.

7. A type that has an initiator and a terminator can have itself or one of its

ancestors as a component.

8. A type cannot have one of its subtypes as a component.

Variable component names

A component may refer to more than one type. To refer to all possible types whose

names could appear at a certain place in the component name, use the word ANY.

The word ANY is like a wild card. It represents any type whose name could appear

in that place.

The use of ANY is restricted to Categories and partitioned groups. For more

information about using ANY in a partitioned group, see ″Partitioning″. For a list of

reserved words and symbols, see the Design Studio Introduction documentation.

Opening a component window

Double-click the component whose window you want to open.

For example, if the Order window is open and it has the component Row (s),

when you double-click the component Row (s), it opens the window of Row.

Required and optional data

Sometimes, a certain data object is optional; it does not have to be present in the

data. For example, in purchase order data, there might be a billing address and a

shipping address. If the company wants the items shipped to the billing address,

the shipping address would not appear in the data. The shipping address would

be optional; it might not appear in the data.

Another example is a middle name field. Some people do not have a middle name,

so the middle name field might be optional.

The Type Designer needs to know what data is optional. This is evident from the

component range. The range minimum tells how many occurrences of that object

must be present in the data. These are the required occurrences. Optional

occurrences are the ones that are not required.

For example, for the following component, the range minimum is zero. No

occurrences must be present. It is optional data:

DateField (0:1)

Suppose the component looks like this:

DateField (1:5)

The range is between one and five occurrences. This means that one occurrence of

DateField is required and the remaining four occurrences are optional.

The following table lists examples of components and explanations of their status.

Chapter 8. Components 87

Component Status Reason

LineItem (1:s) 1 occurrence required Range minimum is 1

Note Field (5:5) 5 occurrences required Range minimum is 5

RecordID 1 occurrence required Range minimum is 1

ShipTo (0:1) 0 occurrences required (Optional) Range minimum is 0

OrderRecord (s) 0 occurrences required (Optional) Range minimum is 0

Significance of required data

If you define an occurrence of a component as required, you are saying that, for

the data containing the component to be valid, this component must exist. If it does

not exist, the data is invalid. For example, if you define Record as having the

component Field (3:3), you are saying that there must be three Fields in the

Record. If there are not three Fields, then either it is a Record in error or it is not a

Record.

There are other factors, besides the existence of all required components that make

data valid. The existence of required components is necessary, but not sufficient,

for data to be valid.

Defining component rules

A component rule is an expression about one or more components. It indicates

what must be true for that component to be valid. For given data, it evaluates to

either TRUE or FALSE. A component rule is similar to a test. If the data does not

pass the test, it is invalid.

Component rules are used for validating data. Some important points about

component rules are:

v Only components of a group may have component rules. Components of a

category cannot have component rules.

v A component rule cannot be longer than 32K.

v If a component is optional and does not appear in the data, the component rule

is evaluated, after determining that the data is missing. In a component rule,

you can specify relationships that depend on existence or nonexistence of data.

Sometimes components have relationships among each other. For example, an

address field in purchase order data is preceded by a qualifier field which tells

whether the address is a bill-to or a ship-to address. If the value of the qualifier

field is BT, the address field following it is a bill-to address. If the value is ST, the

following address is a ship-to address.

The qualifier and address fields are dependent on each other. They only make

sense as a pair. If one of these fields is optional and is missing, the other field is

not meaningful. If the qualifier is missing, you do not know whether the address is

a bill-to or a ship-to. If the address is missing, the qualifier does not qualify

anything!

You might want to define this kind of relationship and other relationships among

data objects. To do this, use a component rule. For example, use a rule on the

address field component to indicate that the qualifier must be present if the

address is present.

88 IBM WebSphere Transformation Extender: Type Designer

The following instructions, assume that the Enter key has been assigned to the

Commit changes with option in the General settings of the Options dialog.

To enter a component rule:

1. In the group window, select the rule cell to the right of the component.

For example, to create a rule for Quantity Column, select the rule cell to the

right of it.

2. Enter the component rule in the edit window and press Enter.

For example, type the following component rule to indicate that Quantity must

be greater than 1000:

QuantityOrdered > 1000

Examples of component rules

A component rule can limit the acceptable values of a component as shown in the

following example:

Quantity < 10000

Interest Rate > .13 & Interest Rate < .20

WHEN (PurposeCode != ″PF″, ShipValue = 200|ShipCode < 0)

The following example illustrates how a component rule can make the presence of

one component mandatory, if another component is present:

WHEN (PRESENT (Address Field), PRESENT (Qualifier Field))

WHEN (PRESENT (PhoneNumber), PRESENT (AreaCode), ABSENT (AreaCode))

A component rule can compare a component to the result of an arithmetic

operation as shown in the following example:

SUM (((QuantityOrdered:Item Record:Detail) = TotalQuantity:Summary

Record:Detail

Account Balance = Credits - Debits

Extension = Quantity*Price

#Items Field = COUNT (Item Record IN Invoice)

Component rule syntax

A component rule is a complete expression that evaluates to either TRUE or

FALSE. It may contain functions (for example, PRESENT, COUNT, and SUM). It

may contain arithmetic operators (for example, - + / *).

A component rule is a statement, so it does not start with an equal sign.

For more information on the syntax of expressions, see the Functions and

Expressions documentation.

Chapter 8. Components 89

Entering object names in component rules

A component rule may refer to a component within a component. The syntax for a

component is the component name, followed by a colon (:), followed by the object

of which the component is a part. Whenever you see the colon (:) in an

expression, it can be interpreted as ″component of″ or simply ″of″.

For example, the following expression means ″The item number of the order record

of the order″:

Item#:OrderRecord:Order

All of the objects that can be used in component rules are shown in the group

window. You can enter an object name into a component rule by pressing Alt and

dragging the object into the edit window. The complete object name is

automatically entered in the edit window.

For example, to enter the component name for Phone# Field in the component

rule, select the component rule. Press Alt, and drag Phone# Field into the edit

window. The object name Phone# Field:$ (where $ represents Customer) is

entered.

A component rule may refer to:

v The component it applies to and any nested components.

v Any component above the given component in the component list, and its

nested components.

You can enter an object name in a component rule by typing it; however, this is

not advisable. It is better to press Alt and drag the component to the edit

window.

Shorthand notation

In a component rule, the dollar sign $ represents the component itself. When you

enter an object name in a rule by pressing Alt and dragging the object, the dollar

sign is automatically entered in the rule to represent the given component.

Component rules are context-sensitive

Component rules apply to components, not types. It applies to data in a certain

context when the data is a component of a given group.

Suppose you have some order data that contains two kinds of records: a regular

order record and a bulk order record. In the bulk order record, the quantity

ordered must be greater than 1000. In the regular order record, the quantity can be

any number. You could put a rule on the quantity ordered component of a bulk

order, but not on the quantity ordered of a regular order.

The component rule in this example applies in a given context. When the

QuantityOrdered field is displayed in the context of the Bulk OrderRecord, it

must conform to the component rule. When it is displayed in the Regular

OrderRecord, it does not have to conform to any component rule.

90 IBM WebSphere Transformation Extender: Type Designer

Special characters in component rules

To enter the actual value of a special character in a component rule, you must

enter the Hex value for one of the characters. For example, to enter the text value

<WSP>, enter the Hex value for the less than sign <<3C>>, and then the rest:

<<3C>>WSP>

See the Design Studio Introduction documentation for a list of non-printable Hex

and decimal values.

Inserting functions into component rules

You can use most of the functions in a component rule. Component rules in the

examples previously shown use the functions COUNT, PRESENT, SUM, and

WHEN.

The function WHEN is similar to the function IF. However, WHEN evaluates to

″true″ or ″false″. IF evaluates to a data object. WHEN is most often used in a

component rule.

To insert a function into a component rule:

1. Select the cell in which you want to insert the component rule.

2. Click in the edit window where you want to insert the function.

3. From the Component menu, choose Insert Function.

4. Or, click with the right mouse button and choose Insert Functions from the

context menu.

5. Or, place your cursor in the component edit window and press Insert on your

keyboard.

6. The Insert Function dialog box is displayed.

Some functions are listed in more than one category.

7. Select the function you want and click Insert.

8. The function and a set of parentheses are entered in the component rule.

9. Click Close.

Formatting a component rule

To add a new line to a component rule, press Ctrl and Enter if commit changes is

set to Enter, or press Tab if commit changes is set to Tab.

Comments in component rules

You can add comments to component rules. Comments do not affect how

component rules are evaluated.

A comment begins with the characters /* and ends with the characters */. A

comment may appear anywhere in a rule as long as it does not separate object

names.

For example, the following component rule has a comment:

SIZE (Phone# Field:$) >=7

Chapter 8. Components 91

/* Phone numbers must include area code */

Syntax errors

If you type a component rule that is syntactically incorrect and press Enter , the

part of the rule in error is highlighted and you cannot enter it until the error has

been corrected.

Searching for components

You can search for components by using a Find operation.

Finding a component by number

Sometimes you need to search for a certain component by number. For example,

you may have received an analysis error that references a particular component by

number. Use the Go To command to locate this component.

To find a component by number:

1. Select the Group or Category window.

2. From the Component menu, choose Go To.

3. Enter the number of the component to which you want to go.

4. Click Go To.

Managing components

You can easily move components around, copy them, or delete them. For

information on general drag-and-drop procedures, see ″Managing Types″. When

you move, copy, or delete a component, if it has a range and/or a component rule,

the range and rule are moved, copied, or deleted with the component.

Component attributes

Three attributes can be assigned to a component in a component list:

v Identifier

v Restart

v Sized

Component attributes are toggle commands. If an attribute is assigned to the

selected component, the attribute tool and the attribute in the Component menu

appear to be selected.

When an attribute is applied to a component, a corresponding icon is displayed to

the left of the component name in the component list.

To assign an attribute to a component

1. Select the component.

2. From the Component menu, choose the attribute you want to assign. Or click

the tool in the toolbar.

Identifier attribute

The identifier attribute can be used on a component of a group. The identifier

indicates the components that can be used to identify the type to which a data

92 IBM WebSphere Transformation Extender: Type Designer

object belongs. All the components, from the first, up to and including the

component with the identifier attribute, are used for type identification.

When this data is validated, it knows that, when it reaches the identifier, it has

found a specific group. That group, therefore, is known to exist, even if part of the

group following the identifier is missing. The Map Designer documentation

discusses how data validation occurs.

The identifier attribute is also useful when identifying an object of a partitioned

group. For information about using an identifier with partitioned data, see

″Partitioning″.

In a component list, there can be only one identifier attribute.

Restart attribute

To continue processing your input data when a data object of a component is

invalid, assign the restart attribute to that component.

Do not put the restart attribute on a required component. There must be a

sufficient number of valid instances to cover all the required components. If you

have a required component, that is not valid, the restart attribute will not validate

the data.

Sized attribute

The sized attribute is used on a component in which the value specifies the size (in

bytes) of the component immediately following it. The sized attribute can be used

on more than one component of a group.

For example, you may have a variable length component with a number

immediately preceding it that indicates the length of the component:

The 10 indicates the size of the following component.

Some important points about using the sized attribute are:

v The component with the sized attribute must be defined as an unsigned integer.

v If a binary byte stream item does not have a fixed size, the component preceding

it must specify its size and the sized attribute must be used on that component.

The size of a component is the number of bytes from the beginning of that

component, up to and including the end of the component. If a component has a

series range (such as [1:3]), the size includes all of the members in the series of that

component. If a delimiter separates each member of that series, the delimiters must

be included in the size. Also, if release characters appear in the component, they

must be included in the size.

The size does not include delimiters that separate one component type from the

next.

Include self in size

If the value of the component with the sized attribute includes the size of the

component, choose Include Self in Size from the Component menu. For example,

suppose the component with the sized attribute has a length of seven bytes. The

Chapter 8. Components 93

value of the component with the sized attribute would be seven. So, its data would

be one byte long, to hold the character seven. If its value includes the length of

itself, its value would be 7 + 1 = 8.

For example, a sized component is 7 bytes.

+ 1 byte (the length of the character 7)

If Include Self in Size is selected: 8 bytes

94 IBM WebSphere Transformation Extender: Type Designer

Chapter 9. Partitioning

By partitioning, you can define your data to distinguish the difference between

data objects based on values in the data or differences in the syntax.

Partitioning is a method of subdividing objects into mutually exclusive subtypes.

A special icon in the type tree identifies a partitioned type. The partitioned type

maintains the same class.

To partition a type:

1. Select the type you want to partition.

2. From the Type menu, choose Properties.

3. For the Partitioned property, choose Yes.

You can only partition items and groups.

Determining when to partition

There are some cases in which you will need to partition your data and others in

which you will want to partition your data. You are required to partition for

unordered data when a data object at a certain place in the data stream can be any

number of types and each type has different definitions. Choose to partition for

convenience, either to simplify mapping rules or to put additional logic into your

data’s definition.

Required partitioning

Partitioning is required when components are randomly or partially ordered. The

following example represents unordered data:

BGI - 13100,REM,931104,19970424...

AXR - 10930,INV,003X114,19970422...

PVY - 19496,ORD,PO-104-1499,19970425...

BGI - 13100,ORD,PO-182-2587,19970425...

AXR - 10930,INV,003X-114,19970422...

PVY - 19496,REM,931104,19970424...

The file would contain three different types of transactions: Invoice, Order, and

Remittance. Each transaction has a different definition based on the type of

information it represents.

Partitioning for convenience

You might decide to use partitioning in your type tree to build additional logic

into the definition of your data. You may also use partitioning to simplify the rules

needed in your map.

© Copyright IBM Corp. 2006 95

The following is an example of partitioning to simplify rules. The example

compares the differences between rules needed with and without partitioning. In

the rule without partitioning, you would specify a condition for each state

abbreviation in each region. This could make your mapping rules long, difficult to

read, and difficult to maintain. The mapping rule with partitioning is more concise,

self-documenting, and easier to maintain.

Map rule without partitioning:

=IF(ShipToCode Field:.:Input="NY"|

ShipToCode Field:.:Input="NJ"|

ShipToCode Field:.:Input="PA",

F_MapEast (Record:Input), NONE)

Map rule with partitioning:

=F_MapEast (EXTRACT (Record:Input,

PARTITION (ShipToCode Field:.:Input, East)))

Benefits of partitioning

Using the above example, explore the benefits of partitioning.

v The rule is shorter than the rule without partitioning. The knowledge of which

states belong to each region is maintained in the type tree rather than the map

rule.

v It is easy to read this map rule and understand the mapping function being

performed. For example, if the state belongs to the list of states in the eastern

region, execute the MapEast functional map.

v The partitioning method is easier to maintain. If a value for State is added or

moves from one region to another, it can be easily changed in the type tree and

automatically reflected in any mapping rules that reference the partitioned

object.

v Partitioning using a restriction list used with the Ignore Case setting eliminates

the need for PROPER, LOWERCASE, or UPPERCASE functions to compare each

state with a literal.

Partitioning types

When data objects of different types appear in the same place in the data, the types

must be distinguishable. This means that the data needs to be distinguishable by

their definitions in the type tree.

When the data object at any given point in the data may belong to any of a

number of different types, there must be some way to tell the difference between

them. To do this, you create a type and define a mutually exclusive subtype for

each data object that may appear in the same place in the data. Once the subtypes

are created, the subtypes also need to be distinguishable. Subtypes are

distinguishable based on a value in the data or in the syntax of the different types.

Partitioning items

Use one of the following three methods to partition items in type trees:

v Initiators

v Restrictions

v Format

96 IBM WebSphere Transformation Extender: Type Designer

Partitioning an item type using initiators

To partition by initiator, each subtype must have an initiator and the value of the

initiator must be unique for each subtype.

Partitioning by initiator is the most efficient method of partitioning.

Partitioning an item type using restrictions

If an item has restrictions, you can partition that type, create mutually exclusive

subtypes, and divide the restrictions between subtypes. A restriction cannot appear

in more than one subtype of that item.

Example of using restrictions

You have new data that needs to be entered into the Type Designer. Each new

record contains the name of the employee and his or her department.

The Employee List type tree illustrates components of Record.

The following is the new data containing the name of the employee and the

department.

Steven Barlow,Doc

Heather Proust,Qa

Mary Whiting,Doc

Genie Elks,Sup

Francine Maxwell,Dev

Mark Brown,Sup

Daryl Schwartz,Acc

Harry O’Brian,Sal

Ellen Randolph,Dev

Paula Keller,Qa

Define the values of Department as a character text item.

Define the example data as valid restrictions (enter in the Include column) of

Department:

If the departments are located in different offices, you can divide the data into

separate files; one file per office. To do this, map the data from the main office to

one file, the data from the development office to one file, and the data from the

support office to another file. Then create subtypes of Department: MainOffice,

DevelopmentOffice, and SupportOffice and partition Department. When you

partition Department and create subtypes, you are saying that a given department

data object belongs to only one of the subtypes based on its value.

Chapter 9. Partitioning 97

The subtypes of Department inherit the restrictions of Department. Now allocate

restrictions among subtypes. To do this, delete the restrictions from the subtype

that do not apply to that particular office. For example, the MainOffice item has

only the departments in that office, DevelopmentOffice item has only the

departments in that office, and the SupportOffice item has only the departments

in that office.

Partitioning an item type by format

Subtypes that differ by their format are distinguishable from each other.

Partitioning groups

Use one of the following three methods to partition groups in type trees:

v Initiators

v Identifiers

v Component Rules

Partitioning a group type using initiators

To partition by initiator, each subtype must have an initiator and the value of the

initiator must be unique for each subtype.

The method of partitioning by initiators for group types is similar to item types.

Partitioning a group type using identifiers

In a component list, only one component may have the identifier attribute.

The identifier attribute distinguishes the components that can be used to identify

the type to which a data object belongs. Typically, use this technique to distinguish

group partitions when components following the identifier are different for each

partition, or, if you have a multilevel partitioned subtree. In the latter case, using

an identifier accelerates data validation.

A partition is valid when each component up to and including the identifier is

validated. If the set of components is valid, the partition exists.

If the identifier set of components is not valid, the partition is determined not to

exist. Either validation occurs for the next partition at the same level (if there is

one) or it is determined that the partitioned group does not exist.

If the partition exists, what occurs next depends on the position of the partition

type in the subtree.

v If the partition is partitioned (that is, it has subtypes), the rest of the components

are skipped and the process begins to validate subtypes until a subtype is valid,

exists and is in error, or does not exist.

v If the partition has no subtypes, the remaining components are validated. If all

remaining components are valid, the partition not only exists, but also is valid. If

one or more components are found to be in error, the partition exists, but its

type is in error. If the partition exists, but its type is in error, the error is

propagated back up the partitioned subtree until the group being validated is

reached. When a partition is found to exist, the system will not continue to

search for partitions.

To specify a component as the identifier:

98 IBM WebSphere Transformation Extender: Type Designer

1. Select the component.

2. From the Component menu, choose Identifier.

The identifier symbol appears to the left of the component name.

Partitioning a group type using component rules

Component rules are used to partition data when a value or range of values can be

used to distinguish one partition from another.

Example of using component rules

Using the Payments.mtt type tree, this example shows the use of component rules.

You can tell the difference between the types by looking at the value of the

PaymentMethod Column. When the payment method is cash, the component rule

is $=″CASH″. When the payment method is a credit card, the component rule is

$=″CREDCARD″. When the payment method is a check, the component rule is

$=″CHECK″.

Notice how the component rules are used with identifiers in this type tree to

define payment types.

Chapter 9. Partitioning 99

100 IBM WebSphere Transformation Extender: Type Designer

Chapter 10. Type inheritance

Properties, components, and restrictions of a type can be inherited by the types

created as subtypes under it. Some properties of a type can also be propagated to

already existing subtypes.

When you create a type, it becomes a subtype of whatever type is selected at the

time. Everything that defines a type gets passed down: properties (with the

exception of the Partitioned property), components, and restrictions. After a type is

created, you can then modify any aspect of its definition.

When a group is created within a category, the item properties do not apply, so

they are not inherited. When an item is created under a category, the group

properties are not inherited.

Inheritance of item properties and restrictions

Properties and restrictions of items are inherited when a new item is created.

For example, the item Department is defined as a character item with an Item

Subclass of Text. It has a content size minimum of 2 and maximum of 3.

When the type MainOffice is created as a subtype of Department, it inherits the

properties and restrictions of Department. You can then delete the restrictions that

are not in the MainOffice.

Inheritance of category properties and components

Categories can be used for organizing types and for inheritance reasons. Generally,

you would use categories when you want to put items, groups, and possibly other

categories under it as subtypes.

Organizing types under a category

If you have two tables defined in one type tree, you might divide the types of the

two tables into different categories. Under one category would be the types of one

table and under another category, would be the types of the other table.

A benefit when you use a category is that you can have any class of subtype: other

categories, groups, and items. For example, in the Categories type tree, notice how

ClassInfo and LabInfo contain items and groups.

Using categories for inheritance

The properties of a category include group and item properties. Assign properties

to a category that you want types beneath the category to inherit.

Any group created under a category inherits the property of the category. Any

item created under a category inherits the category’s item properties. A category

created under a category inherits both the group and item properties. Each type

created under a category inherits the other properties of the category, such as

initiator and terminator.

© Copyright IBM Corp. 2006 101

If most groups in your LabInfo data are infix delimited with ~ and most items in

your LabInfo data are unsigned integers, you would have defined these as the

properties of the category LabInfo. When you created the types under LabInfo,

the properties would be inherited.

You can change the properties of the root type which is a category. Categories can

have components, so you can also use them for inheriting components.

When not to use categories

Suppose you create a type and plan on creating subtypes under it. If you are only

going to create items under that type, or only groups under that type, you

probably do not want to make that type a category. Suppose you have a type

named Field, and under it, you are only going to create items. If you make Field a

category type, each time you create a subtype beneath it, you must define the

Class as Item in the Properties window. If you make Field an item type, the Class

of Item is automatically selected.

Propagating properties

Creation time is not the only time properties can be passed from a type to its

subtypes. You can pass certain properties after types have been created. This is

called propagation. Propagation passes the settings of a particular property from a

given type to all types in its subtree.

To propagate a property:

1. In the Properties window for the type, right-click the property you want to

propagate.

2. Click Propagate.

Properties that can be propagated

You can select any property and propagate it to types in the subtree of the selected

type. When a property does not apply to a type, it is not propagated. For example,

if the selected type is an item with Number Character Decimal properties, and

you propagate the Separator property, it affects only types in the subtree that also

have Number Character Decimal properties. If the selected type is a fixed group

and you propagate the Include trailing white space property, only fixed groups in

the subtree are affected.

Propagating affects types in the subtree

When you propagate a property of a certain type, the property gets passed down

to the types in its subtree. For example, if you propagate the terminator of Report,

the terminator is assigned to all types in the subtree of Report.

102 IBM WebSphere Transformation Extender: Type Designer

Chapter 11. Managing types

Standard windows capabilities

The Type Designer supports standard Windows mouse and keyboard capabilities.

In this section, the word ″object″ refers either to a graphical object (such as a type)

or text (such as text in a component rule).

Object selection

The Type Designer supports standard Windows selection capability.

v To select multiple, contiguous objects, select the first object, press Shift and

select the last object.

v To select multiple, noncontiguous objects, press Ctrl while selecting each object.

Drag-and-drop procedures

The following is a summary of drag-and-drop procedures:

v To move an object, drag it to the destination.

v To copy an object, press Ctrl and drag it to the destination.

v To merge a type, press Shift and drag the type to the destination tree.

v To add a component name to a component rule, press Alt and drag the

component to the component rule bar.

v To specify a type as a comment type or a variable delimiter, initiator, terminator,

or release character in the Properties window, press Alt and drag the type from

the tree to the Properties window.

Moving and copying objects

You can move and copy the following objects within the Type Designer by using

the drag-and-drop method:

v Types (within the same tree)

When you drag a type from one tree to another, it is copied to the other tree

because it is copied from one type tree file to another.

v Components (from one window to another)

v Restrictions (from one window to another)

Duplicate restrictions are not permitted.

When you move or copy a type using the drag-and-drop method, the entire

subtree of the type is also moved or copied. The properties, components,

component rules, and restrictions are also copied.

If a type cannot be a subtype of the type you are dragging it to, you will not be

able to drag it. For example, you cannot move an item under a group.

Note: You cannot place a type under another type if it cannot be a valid subtype.

© Copyright IBM Corp. 2006 103

Using the move command

In addition to drag-and-drop, use the Move command to move a type.

To move a type using the Move command:

1. Select the type you want to move.

2. From the Type menu, choose Move.

3. Select the type under which you want to move the given type.

4. Click Move.

5. Click Close.

Using a copy command

In addition to using the drag-and-drop method, use the Copy command to copy a

type.

To copy a type using the Copy command:

1. Select the type you want to copy.

2. From the Type menu, choose Copy.

3. Select the type under which you want to copy the given type.

4. To change the name of the copied type, rename the type in the As field.

5. To copy the subtree of the given type, click Copy sub-tree.

6. Click Copy.

7. Click Close.

Type names

When you move or copy a type, if that type is referenced by another type (for

example, if it is used as a component), the reference is updated to reflect the new

relative type name. In addition, if a type you move or copy references other types,

these references are automatically updated. Referenced type names include

component names, syntax item names, and comment type names.

When you move a syntax item that is referenced as a number separator, initiator,

terminator, delimiter, or release character, its referenced name changes.

When you move a type that references other types, the references are automatically

updated.

Reordering objects

You can reorder the following objects within the Type Designer by using the

drag-and-drop method:

v Subtypes - to reorder subtypes, press Ctrl + Shift while dragging a subtype to

the desired location.

Subtypes may be reordered only when the type whose subtypes you are

reordering has the Add First or Add Last setting for the Order subtypes

property.

v Components - to reorder components, drag the component(s) to the desired

location in the component list.

v Restrictions - to reorder restrictions, drag the restriction(s) to the desired location

in the restriction list.

104 IBM WebSphere Transformation Extender: Type Designer

Reordering existing subtypes

If the Order Subtypes option is set to Add First or Add Last, you can arrange the

subtypes in any order.

To reorder subtypes:

1. Select the type whose subtypes you want to rearrange.

2. Open the Properties window to confirm that the Order subtypes property is

Add First or Add Last.

3. From the Type menu, choose Reorder Subtypes.

The Reorder Subtypes dialog box is displayed.

4. To move a subtype, drag it to a position.

5. Click Close.

For example, to arrange the subtypes of Field in the order that they appear in the

data, select Field and choose Reorder Subtypes from the Type menu.

Merging types

You can merge types from one tree to another. Merging a type copies that type and

all types referenced by that type to another tree. The referenced types include any

components, comment types, and any syntax items used as a number separator,

initiator, terminator, release character, or delimiter. You can merge the type itself or

the type with its subtree.

Before using the merge command

Before using the Merge command, perform the following:

v Analyze the type tree you are merging from.

v Analyze the type tree you are merging to.

v Ensure that the root of the type tree you are merging to has the same root name

as the tree you are merging from.

To merge a type from one tree to another:

1. Select the type you want to merge into another tree.

2. From the Type menu, choose Merge.

3. Enable the Merge subtree check box to merge the entire subtree.

4. Open the destination type tree if it is not already open.

5. Select the destination tree.

6. Click Merge.

7. Click Close.

For example, to merge Detail Record from Sales Tree to New Tree:

v Select Detail Record in Sales Tree

v Choose Merge from the Type menu

v Click the Merge sub-tree option to merge all the types in Detail Record’s

subtree

v Select New Tree

Chapter 11. Managing types 105

Detail Record and the types referenced by Detail Record are automatically copied.

In addition, the types in Detail Record’s subtree and their referenced types are

copied.

Supertypes

When you merge a type from one tree to another, the supertypes of that type are

created. In the example above, notice that Detail’s supertype, Record, is included

in the copied types.

Existing types

The Merge command copies a type only if it does not already exist in the

destination tree. If the type already exists in the destination tree, it is not copied.

Invalid types

The Merge command will only merge a type if it can exist in the new tree. For

example, if you try to merge an item into a tree where it would exist as a group,

the type is not merged.

Types referred to by ANY in a component are not copied in a merge.

Renaming types

One way to rename a type is to press Ctrl Alt and click on the type. Then, type

the new name and press Enter.

Another way to rename a type is to use the Properties window.

To rename a type:

1. Select the type.

2. From the Type menu, choose Properties.

3. Enter the new name in the Name field.

4. Close the Properties window.

When you rename a type, it may move to a different position on the same level

in the tree if types on that level are in alphabetic order.

Using find and replace

The Type Designer supports standard search facilities. You can find and replace the

following objects:

v Types

v Components

v Restrictions

Using the find command

Use the Find command to find types, components, or restrictions.

To use the Find command:

1. Select the window in which you want to search. For example, the type tree

window or the group window).

106 IBM WebSphere Transformation Extender: Type Designer

2. From the Edit menu, choose Find.

3. In the Find what field, enter the text you want to find.

4. Optionally, choose Match whole word only or Match case.

5. Select the direction in which to search: Up or Down.

6. Click Find Next.

7. Continue to click Find Next for as long as you want to search, then click

Cancel.

If a match is detected, the match is selected. Otherwise, a message asks if you

want to continue searching.

Using the replace command

The Replace command replaces text. For example, you can rename types by using

the Replace command.

To replace text:

1. Select the window in which you want to search. For example, the type tree

window or the group window.

2. From the Edit menu, choose Replace.

3. In the Find what field, enter the text you want to find.

4. In the Replace with field, enter the text with which you want to replace it.

5. Optionally, choose Match whole word only or Match case.

6. Click Find Next and then Replace if you want to replace that occurrence.

Continue until you are finished replacing. Or, click Replace All, to replace

every occurrence.

Printing in the Type Designer

You can print the contents of any window and type definition in the Type

Designer.

To print the Type Tree window and type windows:

1. Select the window to print.

2. From the File menu, choose Print.

3. Click OK.

To print the Properties window

1. Select the window to print.

2. From the File menu, choose Print Type Definition.

You can also right-click and select Print Properties from the context menu.

Print preview

You can perform a print preview for a type tree.

To preview a print job:

1. Select the type tree to be printed.

2. From the File menu, choose Print Preview.

3. The Print Preview window is displayed.

Chapter 11. Managing types 107

Printing type definitions

To print the definition of a type and the types in its subtree, choose Print Type

Definition.

To print type definitions:

1. Select the type whose definition you want to print.

2. From the File menu, choose Print Type Definition.

The Print Type Definition dialog box is displayed.

3. Disable any check box next to the definition you do not want to print.

4. Disable the Include Sub-tree check box if you do not want to print the

definitions of types in the subtree.

5. Click OK.

The Print dialog box is displayed.

6. Click OK.

Printing type properties

You can print a type’s properties from the Properties window.

To print type properties:

1. Click the type you wish to print.

2. Right click and select Print Properties.

The Print dialog box is displayed.

3. Click OK.

108 IBM WebSphere Transformation Extender: Type Designer

Chapter 12. Error detection and recovery

Error detection

During map execution, the input data is compared to the data definition in the

type tree. If the data does not match the definition, it is invalid or ″in error″.

To validate a data object as belonging to a certain type, the data must be matched

to its type definition. For data to be valid, the following must be true:

v The data must have the properties defined in the Properties window.

v If the type is an item that has restrictions, the data object must match one of the

restrictions.

v If the type is a group, the components of the data object must match those

defined in the group window, and each component rule must evaluate to TRUE

at map execution time.

Ultimately, all data objects, no matter how complex, consist of items because items

represent the smallest unit of data. When all of the items that collectively comprise

a component are found, the component has been ″found.″

When executing a map, invalid data is recorded in the trace file. You can decide

what you want the system to do when errors are encountered: you can map the

errors to an output and also have the system ignore invalid data. For methods on

ignoring invalid data, see ″Restart Attribute″ .

How error detection works

When data is validated, the system may encounter data that does not match its

type definition. A combination of how that type is defined and what data shows

up determines what happens next. As data is validated, the system tracks valid

data objects, data objects that exist but are in error, and data that cannot be

recognized as belonging to any type.

If a data object is valid, the information is recorded, as needed, and validation

continues.

If the system is looking for a data object of a particular type, and something in the

data does not exactly match the type definition, the system bases the determination

on whether to continue validation on whether that data object is known to exist.

If a data object contains enough information to determine its existence, errors

associated with that data object are recorded and validation continues.

If a data object exists but contains errors, it is marked as an error. If a restart point

is specified for the component of the type in error, these errors are ignored and

validation continues.

If a data object does not contain enough information to determine its existence, the

following occurs:

v If no validation recovery mechanism is specified, validation is stopped because it

will get lost if it continues. Validation recovery mechanisms are discussed in the

section ″Error Recovery″ .

© Copyright IBM Corp. 2006 109

v If recovery mechanisms are specified, the system returns to the nearest restart

point and resets what it is looking for. It proceeds by examining the data

byte-by-byte until it either recognizes something or reaches the end of the data

stream. All rejected bytes (from the first byte not associated with a type to the

last unrecognizable byte) are collectively marked as an unidentified foreign

object (UFO). A UFO is data in error with no valid data contained within it.

In summary, the data object of an input card could be valid, yet contain errors. If

the data object of any input card is invalid, output data is not built. If all input

card data objects are valid, the input is mapped to the output based on the map

rules. Operators, most functions, and map references operate on valid data. To map

invalid data, use the REJECT function.

Existence indicators

When the source or destination of a data object exists, the system knows that the

entire data object of that source or destination exists. For example, if a source

specified to contain a transaction is a file, and that file exists, the transaction exists.

On the other hand, if you get a Source not available message, the data object of

that source does not exist because the source itself does not exist.

When the data object of a source or destination exists, specific information about

errors will appear in the data. For example, you might have any of the following:

v The data object is valid because it conforms to its type definition.

v The type of the data object exists, but has no content.

v The data object is in error because it does not conform to its type definition.

v The data object is valid but contains errors. You indicated that you wanted to

ignore certain errors.

In addition to these conditions, the system can also tell if there is any unknown

data remaining after the card object has been recognized. This can occur if there

really is ″junk″ at the end. It may also be that enough data was identified to

determine the status of the entire object and the data at the end could not, for

some reason, be determined to have anything to do with the data object.

When a data object exists, the status of that object is determined by validating its

type properties. If an entire data object is an item, it is easy to determine what the

status is: whether it is valid or whether it does not match its item format, whether

its value is not one of the specified restrictions, or whether it is missing an initiator

or terminator. If the source or destination exists and the entire data object is an

item, there is nothing else it could possibly be.

If the type of the entire data object is a group, the status of each component must

be determined. The system uses existence indicators to determine whether a group

component exists. If a component exists, the system can also tell you its status. If a

component is required in another component that exists, the system will notify you

if that required component is missing.

Existence versus presence of components

A component exists if the data object in which it is contained in exists and if the

component takes up space (if there is at least one byte in the data stream

representing that component).

For example:

v If a delimiter appears as a placeholder for that component.

110 IBM WebSphere Transformation Extender: Type Designer

v If the type of that component has an initiator that distinguishes that component

from any other component that may appear at that position in a data stream, the

component exists if the initiator is there.

v If the type of that component is a group with an identifier and all components

up to and including that identifier have been found to be valid.

v If the type of the component is an item with a restriction list and one of its

restrictions appear in the data.

v If the type of the component is an item with a Padded To length specified and

the item contains at least the number of bytes in the Pad To length.

v If the type of an optional component is valid, but the component rule evaluates

to FALSE, the component only exists if there is a syntactic placeholder.

Data might exist, but might not be present. The presence of data is determined by

whether the data has content. The following definitions are used in other parts of

the documentation:

Function

Description

EXISTS

Something in the data represents that data object.

CONTENT

The data contains at least one byte other than a syntactical placeholder,

such as a pad character or delimiter.

PRESENT

The data object exists and has content.

ABSENT

The data object does not exist or it exists and has no content.

 Required components must exist. They do not necessarily have to be present. For

example, a required item with no minimum content size can exist, be absent, and

still be valid. However, if some minimum content size is specified, a required

component is not valid if there is no minimum content.

The existence of optional components depends on the context in which they are

used. For example:

v In a delimited group, an optional component must exist if data follows.

v In a fixed group, an optional component must exist if trailing white space is

required. If no trailing white space is required, an optional component must

exist if data follows.

v In an implicit group, an optional component is not required.

Unlike a required component, when an optional component exists, it might not

have content - even when the minimum content specification is greater than zero

bytes. The following table explains the conditions that must be met for required

and optional components.

 EXISTS CONTENT PRESENT ABSENT

Required

Component

Must exist in

any context

Must conform

to content

specification

Must be present if

minimum content

specification is

greater than zero

bytes.

May be absent only

if minimum content

specification is zero.

Chapter 12. Error detection and recovery 111

EXISTS CONTENT PRESENT ABSENT

Optional

Component

Depends on

context

Need not have

content

Not necessary May be absent

Error recovery

You might want to map your data even when invalid data is encountered. For

example, you have a file of records and if some of the records are invalid, that is

fine. You do not want to stop; you want to go on and process all the valid records.

Restart attribute

The restart attribute provides instructions for handling errors encountered in a data

stream.

The restart attribute may be assigned to a component. It applies when data is

validated - input data is validated as the first step in the mapping process. When

output data is audited by using Audit Settings in the Map Designer, output data is

also validated.

If you are mapping data of a component with a restart attribute only the valid

occurrences of that component are mapped. For example, suppose your input is a

file of records, and the Record component of File has the restart attribute. Suppose

some of the records are invalid. When you map the Record objects, only the valid

records are mapped. To map the invalid records (for example, to an error file) use

the REJECT function.

For information on the REJECT function, see the Functions and Expressions

documentation.

Typically, you would assign the restart attribute to a component that has a series

range. For example, (1:20) or (s) and the objects in the series are independent of

one another. For example, if each record in your file is independent from the

others, it makes sense to ignore an error if it encounters an invalid one. A bad

record does not make the next record meaningless. But suppose the records are

related. Maybe they are records related to one purchase order; if any record is bad,

you want to stop after validation because it is important to have all records. Losing

any records would make the overall data incomplete.

To assign the Restart attribute to a component:

1. Select the component.

2. From the Component menu, choose Restart.

How the Restart Attribute works

The restart attribute has the following properties:

v During validation, the restart attribute is used to tell the system where to start

over when an unidentified foreign object (UFO) is encountered in the data. All

unrecognized data is considered to be an error of the type with the restart

assigned.

v The restart attribute is used during validation to mark both UFOs and existing

data objects in error that are ignored when mapping input to output.

v The restart attribute is used to identify valid data objects that contain objects in

error.

112 IBM WebSphere Transformation Extender: Type Designer

If an invalid data object is a component that does not have the restart attribute,

that component is marked in error. If components, from the beginning of the data

are marked in error because none of them has a restart, the system stops after

validation. It does not map the input data to the output.

Do not put the restart attribute on a required component. There must be a

sufficient number of valid instances to cover all the required components. If you

have a required component that is not valid, the restart attribute will not validate

the data.

Mapping invalid data

You can map the invalid or rejected data which you can use to determine what is

wrong with the data. To do this, you use the restart attribute, in conjunction with

the REJECT, CONTAINSERRORS, and ISERROR functions in map rules. For

information on using these functions, see the Functions and Expressions

documentation.

Chapter 12. Error detection and recovery 113

114 IBM WebSphere Transformation Extender: Type Designer

Chapter 13. Distinguishable objects

Differences can be identified for objects in a data stream. This information is

helpful when a type tree analysis produced an error message concerning objects

that are not distinguishable.

Objects in a data stream

A data stream is a byte-by-byte flow of data. Objects in a data stream include both

data objects and syntax objects. Syntax objects indicate where a data object begins

or ends. They include separators, initiators, terminators, delimiters, release

characters, and pad characters. Sometimes, data values are used to identify where

another data object begins or ends.

It might be necessary to distinguish between data objects in a component series,

data objects of different types, or even syntax objects.

Type tree analyzer and distinguishable objects

The type tree analyzer indicates whether your data definitions are sufficient to

distinguish the objects in your data stream. The following discussion explains how

you can define your data so that the objects that need to be distinguishable are

distinguishable. Chances are, if you analyzed your tree and received a message

that involves distinguishable objects, you need to define the types differently or

more specifically.

Bound types

A type is bound if its definition makes it clear where an instance of that type ends.

If a type is bound, different objects of that type can be distinguished in a data

stream. A bound type is easier to distinguish between an object of that type and an

object of another type. The following tables describe how types may be bound.

An object of this type:

Is bound if any of the following is true:

Item It is padded to a fixed size or its minimum and maximum content size are

equal.

 It has a terminator.

 It has an include restriction list.

Partitioned item

Each non-partitioned item in the subtree is bound.

Sequence Group

It has an explicit fixed format.

 It has a terminator.

 Its last component is bound.

 It is postfix delimited and its last component has a fixed range. For

example, Comment Field (3:3) has a fixed range of (3:3).

Partitioned Group

Each non-partitioned group in its subtree is bound.

© Copyright IBM Corp. 2006 115

Choice Group

It has a terminator.

 The type of each selection component is bound.

Unordered Group

It has a terminator.

Bound components

A component is bound if it is possible to tell if a data object belongs to that

component without comparing it to a component that follows it.

Component of a fixed group

Condition

Example

A range maximum is specified (it is not ″s″), and its type is either a fixed group

or an item whose length is fixed.

The component InventorySection (0:3) is bound because it is assumed

there will be spaces in the data stream for 3 InventorySections.

Component of an explicit delimited group

Condition

Example

A range maximum is specified (it is not ″s″) if a component of the same group

follows.

In the component list, Security Sequence (0:10) Trailer is bound in an

explicit delimited group. It is assumed there will be a delimiter for all 10

Security Sequences in the data stream because Trailer is required.

The component is the last one and the explicit group has a terminator.

In the component list, Security Sequence (s) is bound in an explicit

delimited group with a terminator. The system assumes the terminator will

appear to indicate that there are no more Security Sequences.

Component of an implicit group

Condition

Example

Its range is fixed and its type is bound.

The component Inventory Record (3:3) is bound, if the type Inventory

Record is bound according to any of the conditions listed under ″Bound

Types″ .

It has a component rule that binds it.

The component PO Record (s) is bound, if it has the following component

rule which binds it:

 PO# Field:PO Record = PO# Field:PO Record[LAST]

 The type tree analysis checks only that the component has a rule that refers

to the component itself. The analysis does not check that the rule binds the

component. You must ensure that the rule is one that binds the component.

116 IBM WebSphere Transformation Extender: Type Designer

It is sized (using the Sized attribute) by the component that precedes it.

The component Name Field (0:2) is bound, if the previous component in

the group has the Sized attribute.

Component of a choice group

Condition

Example

A component is bound if the type of a component is bound.

The component Customer Record is bound if the type Customer Record is

bound.

Component of an unordered group

Condition

Example

A component is bound if its range is fixed and its type is bound.

The component Address Field is bound if its range is fixed, for example

(3:3), and the type Address Field is bound.

Group starting set

Data objects in a data stream need to be distinguishable when they could belong to

two different groups. Specifically, the difference between the data that can come

first in one group and the data that can come first in the other group. All of the

possible types of data that may appear first in a group are referred to as the

group’s starting set.

The following describes the starting set of a group based on its group format:

 Group

Format Starting Component Set

Explicit

v Delimited

v Fixed

Includes the type of its first component.

Implicit

v Sequence

v Unordered

v Includes the type of all components up to and including the first

component that has a minimum range of at least one.

v Includes the type of each component.

Choice Includes the type of each component.

Group unbound set

Based on the nature of a bound group, the end of a bound group is determined

without analyzing the data that follows it. However, if a group is not bound, the

data that belongs to that group must be distinguishable from data that belongs to

another type that might follow it in the data stream.

The unbound set of a choice or unordered group consists of the type of each

component. The unbound set of a partitioned group consists of the unbound set of

each unbound partition.

Chapter 13. Distinguishable objects 117

Unbound set of a sequence group

The unbound set does not include a type that could come last, if that type is a

required occurrence. For example, if the type Comment Record could appear last

and the component is specified as Comment Record (2:2), it is not in the unbound

set, because the two occurrences of Comment Record are required. However, if

Comment Record could appear last and the component is specified as Comment

Record (1:2), then Comment Record is in the unbound set, since its second

occurrence is optional.

To determine the unbound set of a group, start with the last component of the

group and proceed backward up the component list. If a component is unbound or

has a minimum range of zero, continue up the list. Stop at the first component that

is bound or that is unbound but has a minimum range greater than zero.

Essentially, a group’s unbound set is everything that is not clearly defined at the

end of the group.

Initiator-distinguishable types

Initiator-distinguishable types are used during validation to determine existence of

a type object based on the existence of its initiator.

Determining if a component is initiator-distinguishable from

its following set

A component is initiator-distinguishable from its following set if:

v The component is not a member of the identifier set and

v The type of the component has an initiator and

v The following set is empty or

v The type of the component is initiator-distinguishable from each type in its

following set.

Type trees are analyzed to determine if components are initiator-distinguishable.

Each implicit sequence group, choice group, and unordered group is analyzed to

determine if their components are initiator-distinguishable. A component is marked

as initiator-distinguishable when that component is initiator-distinguishable from

its following set. The basis for this determination is found in ″Determining If Two

Types are Initiator-Distinguishable″ .

Determining if a partition is initiator-distinguishable from its

following set

In a partitioned type, a partition is initiator-distinguishable from its following set

if:

v The type of a partition has an initiator and

v The following set is empty or

v The type of the partition is initiator-distinguishable from each partition in its

following set and the following set of a partition is the type of each partition

that may follow.

Type trees are analyzed to determine if partitions are initiator-distinguishable. Each

partitioned type is analyzed to determine if its partitions are initiator-
distinguishable.

118 IBM WebSphere Transformation Extender: Type Designer

Determining if two types are initiator-distinguishable

The following table lists ways two types may be initiator-distinguishable. This is

helpful if data validation errors indicate a type does not exist.

 Type1 Type2 How to define them as initiator-distinguishable

item item If Type1 and Type2 have an initiator, and the

initiators are different.

item sequence group Either:

v Type1 and Type2 both have an initiator and the

initiators are different.

or

v Type1 has an initiator, Type2 does not, Type2

has no delimiter, and Type1 is initiator

distinguishable from type of each component

in the starting component set of Type2.

item choice group or

unordered group

Either:

v The Type1 and Type2 both have an initiator

and the initiators are different.

or

v Type1 has an initiator, Type2 does not, Type2

has no delimiter, and Type1 is initiator

distinguishable from type of each component

of Type2.

item partitioned item or

partitioned group

Type1 has an initiator and is initiator

distinguishable from each partition of Type2.

partitioned item item or sequence

group

Type1 has an initiator and each partition is

initiator distinguishable from Type2.

partitioned item partitioned item or

partitioned group

Type1 has an initiator and each partition is

initiator distinguishable from each partition of

Type2.

sequence group item Type1 has no identifier, Type1 and Type2 both

have initiators, and the initiators are different.

sequence group sequence group Type1 has no identifier and

v Type1 and Type2 both have initiators and the

initiators are different

or

v Type1 has an initiator, Type2 does not have an

initiator, Type2 has no delimiter, and Type1 is

initiator distinguishable from the starting

component set of Type2.

sequence group choice group or

unordered group

Type1 has no identifier and

v Type1 and Type2 both have initiators and the

initiators are different.

or

v Type1 has an initiator, Type2 does not have an

initiator, Type2 has no delimiter, and Type1 is

initiator distinguishable from the type of each

component of the Type2.

Chapter 13. Distinguishable objects 119

Type1 Type2 How to define them as initiator-distinguishable

sequence group partitioned item Type1 has no identifier and Type1 must be

initiator distinguishable from each partition of

Type2.

sequence group partitioned group Type1 has no identifier and the Type1 must be

initiator distinguishable from each partition of

Type2.

partitioned group partitioned item Type1 has no identifier and each partition Type1

must be initiator distinguishable from Type2.

partitioned group sequence group Type1 has no identifier and each partition of the

Type1 must be initiator distinguishable from

Type2.

partitioned group partitioned item Type1 has no identifier and each partition of

Type1 must be initiator distinguishable from each

partition of Type2.

partitioned group partitioned group Type1 has no identifier and each partition of

Type1 must be initiator distinguishable from each

partition of Type2.

choice group or

unordered group

item Type1 and Type2 both have an initiator and the

initiators are different.

choice group or

unordered group

partitioned item Type1 is initiator-distinguishable from each

partition of Type2.

choice group or

unordered group

choice group or

unordered group

Either:

v Type1 and Type2 both have an initiator and the

initiators are different.

or

v Type1 has an initiator and Type2 does not,

Type2 has no delimiter, and Type1 is

initiator-distinguishable from the type of each

component of Type2.

choice group or

unordered group

sequence group Either:

v Type1 and Type2 both have an initiator and

they are different.

or

v Type1 has an initiator and Type2 has no

initiator and no delimiter, and Type1 is

initiator-distinguishable from the type of each

component in the starting component set of

Type2.

choice group or

unordered group

partitioned group Type1 is initiator distinguishable from each

partition of the Type2.

Distinguishable objects of the same component

When a component has a series range, for example, (1:10) or (s), one occurrence of

that component must be distinguishable from the next occurrence of that same

component.

Different data objects of a component are distinguishable if any of the following is

true:

v The component type is bound.

120 IBM WebSphere Transformation Extender: Type Designer

v The component type is a non-partitioned group with an unbound set that is

content distinguishable from the component type as a whole.

v The component type is a partitioned group and the unbound set of each

non-partitioned group in its subtree is content-distinguishable from the

component type as a whole.

Content-distinguishable components

A component is distinguishable from its following set when the component is:

v Initiator-distinguishable from its following set.

or

v Content- distinguishable from its following set.

A component is content-distinguishable from its following set when:

v The following set is empty.

or

v The type of the component is content-distinguishable from each component in

its following set.

Content-distinguishable types

The following table lists the ways in which two types may be

content-distinguishable. The table is helpful particularly if you analyzed your tree

and received an error indicating that two types are not distinguishable. Look up

the combination of types in the first two columns and read the list of ways to

define them that would make them distinguishable.

For example, if you get an error indicating that X is not distinguishable from Y,

where X is an item, and Y is a partitioned group, you would find the row in the

table where Type1 is an item and Type2 is a partitioned group.

Remember that the order in which you compare two types matters. When you ask

the question ″Is type A content-distinguishable from type B?″, this is not the same

question as ″Is type B content-distinguishable from type A?″

If you are trying to determine whether two types are distinguishable and you

follow the guidelines in the following tables, you may encounter a situation in

which you are comparing a type to itself. A type is never distinguishable from

itself.

Another thing to keep in mind is that is that the context in which a type is used

matters. When you ask the question, ″Is type A, as a component of type C,

content-distinguishable from type B?″ this is not the same question as, ″Is type A,

as a component of type D, content-distinguishable from type B?″

Chapter 13. Distinguishable objects 121

The following table shows how to define types as content-distinguishable.

 Type 1 Type 2 How to define them as content-distinguishable

item item The first component or partition is either:

v An item and marked as initiator distinguishable

and

Both items are different partitions of the same

partitioned subtree, or The second type has an

initiator and those initiators are mutually exclusive,

or Both types have the same initiator and the value

of the first item is distinguishable from the value of

the second item, or The second type has no

initiator and the initiator of the first type is

distinguishable from the value of the second type.

v An item and not marked as initiator

distinguishable and

Both items are different partitions of the same

partitioned subtree, or The first item has an

initiator, second has an initiator and initiator value

of first is distinguishable from initiator value of the

second. Both types have initiators and they are the

same, or both types have no initiator and the value

of the first item is distinguishable from the value of

the second item. The first item has an initiator,

second does not, and value of initiator

distinguishable from the value of second item. The

first item has no initiator, second does, and the first

item’s value is distinguishable from the value of

the second item’s initiator.

item sequence group,

choice group, or

unordered group

The first component or partition is either:

v An item marked as initiator distinguishable and

The second type has an initiator and those

initiators are mutually exclusive, or The second

type has no initiator and the item is

initiator-distinguishable from each type in the

starting component set of the group.

v An item not marked as initiator distinguishable

and

The item and group both have an initiator and the

initiator of the item is distinguishable from the

initiator of the group, or The item has no initiator,

the group has an initiator, and the item’s value is

distinguishable from the value of group’s initiator,

or Both types have initiators and they are the same

or both types have no initiator, and the item’s

value is distinguishable from the type of each

component in the starting component set of the

group, or The item has an initiator, the group has

no initiator, and the item is content-distinguishable

from the type of each component in the starting

component set of the group, or The item has no

initiator, the group has an initiator, and the item’s

value is distinguishable from each type in the

starting component set of the group.

122 IBM WebSphere Transformation Extender: Type Designer

Type 1 Type 2 How to define them as content-distinguishable

item partitioned item or

partitioned group

The first component or partition is

content-distinguishable from each partition of the

second type.

partitioned

item

item Each partition of the first type is

content-distinguishable from the second type.

partitioned

item

sequence group Each partition of the first type is

content-distinguishable from the second type.

partitioned

item

choice group Each partition of the first type is

content-distinguishable from second type.

partitioned

item

unordered group Each partition of the first type is

content-distinguishable from second type.

partitioned

item

item Each partition of the first type is

content-distinguishable from second type.

partitioned

item

partitioned group Each partition of the first type is

content-distinguishable from second type.

group item Each partition of the partitioned group is

content-distinguishable from the item.

partitioned

group

partitioned item Each partition of the partitioned group is

content-distinguishable from each partition of the

item.

partitioned

group

sequence group Each partition of the partitioned group is

content-distinguishable from the second group.

partitioned

group

partitioned group Each partition of the first partitioned group is

content-distinguishable from each partition of the

second partitioned group.

partitioned

group

choice group Each partition of the partitioned group is

content-distinguishable from the choice group.

partitioned

group

unordered group Each partition of the partitioned group is

content-distinguishable from the unordered group.

sequence

group

item The first component is either:

v A group marked as initiator distinguishable and

The item has an initiator and the initiator value of

the group is distinguishable from the initiator

value of the item, or The second type has no

initiator and the initiator value of the first type is

distinguishable from the value of the second type.

v A group not marked as initiator distinguishable

and

The group has an initiator, the item has an initiator

and the initiator value of the group is

distinguishable from initiator value of the item, or

The group has an initiator, the item does not, and

value of the initiator is distinguishable from value

of the item, or Both types have initiators and they

are the same, or both types have no initiator and

each type in the starting component set of the

group is content-distinguishable from the value of

the second item.

Chapter 13. Distinguishable objects 123

Type 1 Type 2 How to define them as content-distinguishable

sequence

group

sequence group The first component is either:

v A group marked as initiator distinguishable, and

Both groups are different partitions of the same

partitioned subtree, or The second type has an

initiator and those initiators are mutually exclusive,

or The second type has no initiator and the first

group is initiator-distinguishable from each type in

the starting component set of the second group.

v A group not marked as initiator distinguishable,

and

Both groups are different partitions of the same

partitioned subtree, or Both groups have an

initiator and the initiator value of the first group is

distinguishable from the initiator value of the

second group, or The first group has no initiator,

the second group has an initiator and the type of

each component in the starting component set of

the first group is content-distinguishable from the

second group, or The first group has an initiator,

the second group has no initiator and the first

group is content-distinguishable from the type of

each component in the starting component set of

the group. Both types have initiators and they are

the same or both types have no initiator and The

first group is content-distinguishable from the

starting component set of the second group, or The

second group is content-distinguishable from the

starting component set of the first group, or The

starting component set of the first group is

content-distinguishable from the starting

component set of the second group.

124 IBM WebSphere Transformation Extender: Type Designer

Type 1 Type 2 How to define them as content-distinguishable

sequence

group

choice group or

group

The first component is either:

v A group marked as initiator distinguishable and

Both groups are different partitions of the same

partitioned subtree, or The second type has an

initiator and those initiators are mutually exclusive,

or The second group has no initiator and the first

group is initiator-distinguishable from the type of

each component of the second group.

v A group not marked as initiator distinguishable

and

Both groups are different partitions of the same

partitioned subtree, or Both groups have an

initiator and the initiator of the first group is

distinguishable from the initiator of the second

group, or The first group has an initiator, the

second group has no initiator and the first group is

content-distinguishable from the type of each

component of the second group, or The first group

has no initiator the second group has an initiator,

and each component in the starting component set

of the first group is distinguishable from the

second group, or Both types have initiators, either

the initiators are the same or both types have no

initiator, and each component in the starting

component set of the first group is

content-distinguishable from the type of each

component of the second group.

sequence

group

partitioned item or

partitioned group

The first component is either:

v A group marked as initiator-distinguishable and

the group is initiator-distinguishable from each

partition of the second type, or

v A group not marked as initiator-distinguishable

and the group is content-distinguishable from

each partition of the second type.

Chapter 13. Distinguishable objects 125

Type 1 Type 2 How to define them as content-distinguishable

choice group

or unordered

group

item The first component is either:

v A group marked as initiator distinguishable and

The item has an initiator and the initiator value

of the group is distinguishable from the initiator

value of the item, or

The second type has no initiator and the initiator

value of the first type is distinguishable from the

value of the second type.

v A group not marked as initiator distinguishable

and

Both types have an initiator and the initiator

value of the group is distinguishable from

initiator value of the item, or

The group has an initiator, the item does not,

and the value of the initiator is distinguishable

from value of the item, or

The group has no initiator, the item has an

initiator and the starting component set of the

group is content-distinguishable from the item,

or

Both types have initiators and they are the same,

both types have no initiator and the type of each

component of the group is distinguishable from

the value of the second item.

choice group

or group

sequence group The first component is either:

v A group marked as initiator distinguishable and

Both groups are different partitions of the same

partitioned subtree, or The second type has an

initiator and those initiators are mutually exclusive,

or The second type has no initiator and the first

group is initiator-distinguishable from each type in

the starting set of the second group.

v A group not marked as initiator distinguishable,

and

Both groups are different partitions of the same

partitioned subtree, or Both groups have an

initiator and the initiator value of the first group is

distinguishable from the initiator value of the

second group, or The first group has an initiator,

the second group has no initiator and the first

group is content-distinguishable from the type of

each component in the starting component set of

the second group. The first group has no initiator,

the second group has an initiator and the type of

each component of the first group is

content-distinguishable from the second group, or.

Both types have initiators and they are the same or

both types have no initiator, and the type of each

component of the first group is

content-distinguishable from the type of each

component in the starting component set of the

second group.

126 IBM WebSphere Transformation Extender: Type Designer

Type 1 Type 2 How to define them as content-distinguishable

choice group

or group

choice group or

group

The first component is either:

v A group marked as initiator distinguishable and

Both groups are different partitions of the same

partitioned subtree, or The second type has an

initiator and those initiators are mutually exclusive,

or The second group has no initiator and the first

group is initiator-distinguishable from the type of

each component of the second group.

v A group not marked as initiator distinguishable

and

Both groups are different partitions of the same

partitioned subtree, or Both groups have an

initiator and the initiator of the first group is

distinguishable from the initiator of the second

group, or The first group has an initiator, the

second group has no initiator and the first group is

content-distinguishable from the type of each

component of the second group, or The first group

has no initiator the second group has an initiator,

and each component of the first group is

distinguishable from the second group, or Both

types have initiators and the initiators are the same

or both types have no initiator, and the type of

each component of the first group is

content-distinguishable from the type of each

component of the second group.

choice group

or group

partitioned item or

partitioned group

The first component is either:

v A group marked as initiator-distinguishable and

the group is initiator-distinguishable from each

partition of the second type, or

v A group not marked as initiator-distinguishable

and the group is content-distinguishable from

each partition of the second type.

Ending-distinguishable types

Ending-distinguishability is used to determine if the end of a data object is

distinguishable from the start of any other data object that could be next in the

data.

The following table describes how two types may be ending-distinguishable. This

is helpful if you are validating data and you receive a message that says a type

exists, but it belongs to the wrong component.

Type1 Type2

How to define them as ending-
distinguishable

item item or sequence group

or choice group or

unordered group

Type1 is bound or the value of Type1 is

content-distinguishable from Type2.

item partitioned item or

partitioned group

Type1 is bound or the value of Type1 is

content-distinguishable from each partition of

Type2.

Chapter 13. Distinguishable objects 127

Type1 Type2

How to define them as ending-
distinguishable

sequence group item or sequence group

or choice group or

unordered group

Either:

v Type1 is bound.

or

For each component in the unbound set of

Type1

v If the component has a fixed range it must

be ending-distinguishable from Type2.

v If the component range is variable, it must

be content-distinguishable from Type2 and

ending-distinguishable from Type2.

sequence group partitioned item or

partitioned group

Either:

v Type1 is bound.

or

For each component in the unbound set of

Type1

v If the component has a fixed range it must

be ending-distinguishable from each

partition of Type2.

v If the component range is variable, it must

be content-distinguishable from each

partition of Type2 and

ending-distinguishable from each partition

of Type2.

choice group or

unordered group

item or sequence group

or choice group or

unordered group

Either:

v Type1 is bound.

or

v For each component of Type1,

The type of that component is bound, or The

type of that component is unbound, and that

type must be ending-distinguishable from

Type2.

choice group or

unordered group

partitioned item or

partitioned group

Either:

v Type1 is bound.

or

v For each component of Type1,

The type of that component is bound, or The

type of that component is unbound, and that

type must be ending-distinguishable from

each partition of Type2.

128 IBM WebSphere Transformation Extender: Type Designer

Type1 Type2

How to define them as ending-
distinguishable

partitioned item

or partitioned

group

item, sequence group,

choice group, or

unordered group

For each partition of Type1, either:

v The partition is a partitioned type and

ending-distinguishable from the second

type, or

v The partition of the first type is bound, or

v The partition of the first type is unbound

and ending-distinguishable from the

second type.

partitioned item

or partitioned

group

partitioned item or

partitioned group

For each partition of the first type, either:

v The partition is a partitioned type and

ending-distinguishable from the second

type, or

v The partition of the first type is bound, or

v The partition of the first type is unbound

and ending-distinguishable from the

second type.

Distinguishable data objects of an implicit group

When a data object belongs to an implicit sequence, determining the component a

data object belongs to depends on the format of the sequence, the type definition

of a component, and the component properties.

Guidelines for defining an implicit delimited sequence

v If the type of a component has a terminator, that terminator must be different

from the delimiter of the explicit group. If the delimiter and terminator are both

defined as literal values, a type analysis confirms both have different values.

v The type of a component cannot be a binary item whose length is not fixed or

sized.

v If the type of a component or a contained component is not bound, the type of

the component cannot have a delimiter that is the same as the delimiter of the

implicit sequence.

v If the range of a component is not bound, the type of that component must be

content-distinguishable from the type of each component in the following set of

that component.

v If the type of a component has both an initiator and terminator, the nested

delimiters do not have restrictions. If this is not the case, all contained delimiters

must be different.

Guidelines for defining an implicit sequence that has no

delimiter

v The type of a component cannot be a binary item whose length is not fixed or

sized.

v If the range of a component is bound, but the type of the component is

unbound, the type must be ending-distinguishable from each type in the

component’s following set.

v If the range of a component is not bound, all the following rules apply:

– The type of the component must be content-distinguishable from each type in

the component’s following set.

Chapter 13. Distinguishable objects 129

– If the maximum range for that component is greater than one, and the type is

unbound, the type must be ending-distinguishable from itself.

– If the type of the component is unbound, the type must be

end-distinguishable from each type in the component’s following set.

Guidelines for defining an implicit unordered group that is

delimited

v The type of a component cannot be a binary item whose length is not fixed.

v The type of a component must be content-distinguishable from the type of each

other component.

v If the type of a component has both an initiator and terminator, the nested

delimiters do not have restrictions. If this is not the case, all contained delimiters

must be different.

Guidelines for defining an implicit unordered group that has

no delimiter

v The type of a component cannot be a binary item whose length is not fixed.

v The type of a component must be content-distinguishable from the type of each

other component.

v If the type of a component is unbound, the type must be

ending-distinguishable from the type of each other component.

v If the maximum range is greater than one and the type is unbound, the type

must be ending-distinguishable from itself.

Distinguishable data objects of an explicit group

When a data object belongs to an unordered group, distinguishing one data object

from another depends on the format of the unordered group and the type

definition of each component.

Guidelines for defining an explicit fixed group

v In a fixed group, each component must be either an item of fixed size, an item

padded to a fixed length, or an explicit fixed group.

v The range maximum for each component must have a specific value; it cannot

be s. A fixed amount of space is assumed in the data stream for each series

member of a component in a fixed group.

Guidelines for defining an explicit delimited group

A component of an explicit delimited group can be a group or item, with the

following restrictions:

v If the type of a component has a terminator, that terminator must be different

from the delimiter of the explicit group. If the delimiter and terminator are both

defined as a literal, analysis confirms if both have different values.

v If a component of an explicit delimited group is a binary item whose length is

not fixed, that component must be sized by the component that precedes it.

v If the type of a component, or a contained component, does not have a

terminator and the type of the component has a delimiter that is the same as the

delimiter of the explicit group, the type of the component must be an explicit

sequence. In this case, the delimiter appears as a placeholder for every data

object if data of the same delimiter follows it.

130 IBM WebSphere Transformation Extender: Type Designer

v If an explicit group has a delimiter, the range maximum of any component other

than the last one must have a specific value; it cannot be s. A delimiter is

assumed in the data stream for each series member of a component of an

explicit group with a delimiter.

Objects of a choice group

When a data object belongs to a choice group, which component the data object

belongs to is based on the order the components appear in the type definition.

In a choice group, if a component is unbound it must be content-distinguishable

from the type of each component that follows it in the component list.

Objects of a partitioned type

When data objects of different types appear in the same place in the data, the types

must be distinguishable. The data must be distinguishable in the type definition.

When a partition is part of a partitioned object, the process of cycling through the

partitioned subtree begins to make the determination of which partition the data

object belongs to.

In a partitioned type, each partition must be content-distinguishable from the type

of each partition that follows it.

Distinguishable syntax objects

The system must be able to distinguish between different syntax objects contained

within a group. To ensure that the syntax objects are distinguishable, use the

following guidelines:

v If a component is unbound, make sure its delimiter and any delimiter contained

in it is distinguishable from the delimiter of the group. If you get an analysis

error, look for missing placeholders or components with a range maximum of s.

In a component or a contained component with the same delimiter as the type

delimiter, the system assumes that the delimiter appears as a placeholder for

every data object if data with the same delimiter follows it.

v If the delimited group has a terminator, make sure that the delimiter and any

contained delimiter is distinguishable from the terminator.

The type tree analysis verifies if the above requirement is met in a

non-partitioned group.

Chapter 13. Distinguishable objects 131

132 IBM WebSphere Transformation Extender: Type Designer

Chapter 14. Type Tree Analyzer

Use the type tree analyzer to analyze your type definitions.

The type tree analyzer analyzes type definitions and ensures internal consistency.

For example, if you defined a group as fixed, but accidentally defined one of its

items with no Padded To length, errors occur during analysis.

The analyzer checks your data definitions for logical consistency. It does not

compare your definitions to your actual data. The resulting analyzer messages

indicate whether your type tree definitions are acceptable; not whether they match

your data.

To analyze a type tree:

1. Select the type tree.

2. From the Tree menu, choose Analyze.

3. Choose Structure Only, Logic Only, or Logic and Structure.

4. Click Results to view the results.

Error scenario

After analysis, the Analysis Results dialog displays error L201.

The error concerns the type File. File’s first component, Record(s) is a series. The

way the data is currently defined does not allow one Record to be distinguishable

from the next Record in the series.

There are a number of reasons why the records might not be distinguishable.

A good way to figure out how to resolve an error is to look at the data. When you

look at the data, it is clear where a record ends. Ask the question: How can I tell the

difference between one record and the next? Each record ends with a carriage

return/linefeed.

In this case, you forgot to define CR/LF as the terminator of Record.

To resolve the problem, open the Properties window for Record and define the

terminator for Record. After you define the terminator for Record, analyze the tree

again and receive no errors.

Internal consistency

The analyzer checks the logic of your data definitions. For example, suppose you

defined a group PO as fixed and consists of Line(s). For the PO to be fixed, it

cannot have an indefinite number of Lines. An analysis error would occur,

indicating that you defined PO as fixed but it has a variable number of

components.

© Copyright IBM Corp. 2006 133

Mapping effects

The analyzer helps you define your data by locating objects in your input data and

creating the objects in your output data. The analysis indicates whether there is

something in your definition that may prevent a correct mapping your data.

In the preceding example using orders.mtt, if the orders data was your input and

you did not terminate each record with a CR/LF, the Map Designer would not

know when a record ends. It would not be able to find each record in the input.

If the orders data was the output and you did not define the terminator, CR/LF

would not be placed at the end of each record and the records would be received

one after the other, wrapped, with no line breaks.

If you do not analyze a tree before you map the data or you analyze a tree and do

not resolve the errors, you will be warned that you may receive unpredictable

results when you map.

When to Analyze Structure or Logic

You can choose to analyze the structure or the logic of your type definitions, or

both.

Logical analysis

Logical analysis addresses the integrity of the relationships that you define. Logical

analysis detects, for example, undefined components, components that are not

distinguishable from one another, item restrictions that do not match the properties

of that item, and circular type definitions. The analyzer also checks delimiter

relationships to each other and to components, undefined inherited relationships,

and logic errors contained in component rules.

Structural analysis

Typically, you should not encounter structural analysis errors. Structural analysis

addresses the integrity of the underlying database. Structural analysis may be able

to detect and possibly correct defects caused by system environment failures.

Error and warning messages

Analysis results may contain error and warning messages.

Warnings are relatively insignificant. They indicate an inconsistency that occurred

when you changed something in the tree that was resolved. For example, if you

change a group to an item, the analyzer removes the components of that type

because items do not have components. To remind you of this change, the analyzer

issues a warning.

Errors are important. An error is a problem in your type definitions that you

should correct. An error may result in unpredictable results in your mapping.

Occasionally there are errors that prevent the analysis of the rest of your

definitions (for example, when a component type cannot be found in the tree).

Analysis halted before completion is displayed. This error might be due to one

of the following:

v Undefined COMPONENTs found: ending analysis.

134 IBM WebSphere Transformation Extender: Type Designer

v Circular reference found in COMPONENT list: ending analysis.

When this occurs, click Results, correct the errors, and analyze the tree again.

Chapter 14. Type Tree Analyzer 135

136 IBM WebSphere Transformation Extender: Type Designer

Chapter 15. Utilities for XML

There are XML utilities provided with the Type Designer.

v Use the XML Type Tree/Schema Synchronization Utility to synchronize a type

tree with an XML schema or DTD.

v Use the XML Type Tree Compatibility Utility to add non-XML types back into a

target type tree. The XML Type Tree Compatibility Utility is also available from

the command line (dsxmlconv).

v Use Any-2-XML to create a map that can transform any input data into XML

output. Any-2-XML is also available from the command line (dtxany2xml)

There is also a Map Migration Utility (dsmapconv) that updates map source files

and the associated XML type trees to the current XML format that is available from

the command line.

See the Utility Commands documentation for information about all command line

utilities.

XML Type Tree/Schema Synchronization utility

Use this utility to synchronize a type tree with an XML schema or DTD.

You can only use this utility to update 8.0 type trees that have been generated

from a DTD or schema using the XML DTD or XML Schema importers.

To synchronize a type tree with a an XML DTD or schema:

1. In the Type Designer, select Tree → Synchronize.

The XML Type Tree/Schema Synchronization Utility appears.

2. From the drop-down list, select the importer that was originally used to create

the type tree: XML, which is the default setting, or DTD.

3. Click the browse button and choose a type tree.

4. In the next field, click the browse button and select the modified DTD or

schema file that you want to synchronize the type tree to.

The Create backup file option is enabled by default and the location for the

backup file is automatically displayed (based on the type tree you selected).

You can change the location and filename extension if desired.

5. If applicable, select the national language of the original type tree.

6. Click Next to begin synchronization.

Possible results include:

v If no modifications have been made to the original type tree created from the

DTD or schema, the synchronization process completes successfully.

v If modifications have been made to the original type tree created from the

DTD or schema, they are displayed in the left pane of the utility in red text.

At this point you can incorporate any differences into the new (target) type

tree.

For example, you can take an attribute that was added to the original type tree

and add it to the target type tree (see ″Modifying the Target Type Tree″).

7. Make changes as needed and click Next.

© Copyright IBM Corp. 2006 137

When you see that the type tree was synchronized successfully, click Finish to

close the utility.

XML type tree compatibility utility

If you have type trees generated with the XML Schema or DTD importers of

WebSphere Transformation Extender 6.7 or 7.5 or older, and you are now using

version 8.0, you must update your type trees in order to use the current XML

validation. To perform the task of updating your type trees, you can use the XML

Type Tree Compatibility Utility. This utility is also available from the command

line (dsxmlconv).

When using the XML Type Tree Compatibility Utility, there are two important

requirements. One is that you must specify the correct version of the WebSphere

Transformation Extender XML Schema or DTD importer that was used to create

the original type tree. The other is that you must have the original DTD or

Schema.

To make a type tree compatible with WebSphere Transformation Extender 8.0 XML

validation:

Note: The original DTD/schema file is required when using the XML Type Tree

Compatibility Utility.

1. In the Type Designer, select Tree → Convert.

The XML Type Tree Compatibility Utility appears.

2. From the drop-down list, select the importer that was originally used to create

the type tree: XML Schema, which is the default setting, or DTD.

3. Click the browse button and choose a type tree.

4. From the drop-down list, choose the version of the WebSphere Transformation

Extender importer used to create the type tree. Choices include: 6.7 (268), 6.7.1

(306), 6.7.2 (342), and 7.5.

Note: It is essential that you specify the correct version of the WebSphere

Transformation Extender importer used to create the original type tree. If

you use an incorrect version number, the conversion process could

complete successfully, however, the type tree would be invalid.

5. In the Select the XML grammar location field, accept the default value for the

original XML DTD or Schema used to create the type tree if it is accurate.

Otherwise, enter the correct location of the XML grammar.

6. Enable or disable the Create backup file option. By default, the option is

enabled and the location for the backup file is automatically displayed in the

subsequent field (based on the type tree you selected). You can change the

location and filename extension if needed.

7. If applicable, select the national language of the original type tree.

8. Click Next to begin the update process.

Possible results include the following:

v If no modifications have been made to the original type tree created from the

DTD or schema, the process completes successfully.

v If modifications have been made to the original type tree, they are displayed

in the right pane of the utility in red text. At this point you can incorporate

any differences into the new (target) type tree (see ″Modifying the Target

Type Tree″).

138 IBM WebSphere Transformation Extender: Type Designer

For example, the non-XML types that were added to the original type tree can

be added to the new (target) type tree at this point.

9. When you see that the type tree was synchronized successfully, click Finish to

close the utility.

Modifying the target type tree

When the XML utility encounters any non-XML types that have been added to the

type tree after it was first created from a schema or DTD, the unrecognized types

are displayed in red text.

The instructions below describe how to add the types back into your target tree,

however, you have the ability from within this utility to make any necessary

modifications to the target type tree in the same manner as you would from the

type tree window (using add, delete, copy, and paste operations).

The following procedures can be used for both XML utilities: XML Type Tree

Compatibility Utility and XML Type Tree/Schema Synchronization Utility.

To add a type to the target tree

1. In the left pane of the XML utility, right-click on the type and select Edit →

Copy.

2. In the right pane (which displays the target type tree), right-click on the

corresponding (parent) type and select Edit → Paste.

The type appears in the target tree.

3. After making all changes, click Next to continue.

To add a component to the target tree

1. In the right pane (which displays the target type tree), select the type to add

the component to.

2. At the bottom of the pane, select the Components tab.

3. Press Alt and then select-and-drag the type to the Component column of the

Components tab.

4. After adding all components, click Next to continue.

Any-2-XML

The Any-2-XML utility is an extension of the type tree Export as Schema

functionality that you can use to create a map that can transform any input data

into XML output, based on a type tree structure that you select.

How it works

Choose a type within a type tree that models the XML output you want to

produce. The utility converts the type into an XML Schema from which it creates a

new XML type tree. A new map source file is created containing the new map. The

input card of the new map references the original type tree and input and the

output card references the new XML type tree and the new output file name. The

result of running the new map is XML output.

Chapter 15. Utilities for XML 139

Using Any-2-XML from the Type Designer

 1. Using the Type Designer (version 8.1 or later), open a type tree that models

the XML output structure you are seeking.

 2. In the type tree window, select a type that represents the portion of the input

file that you want to export. (This must be a group or item.)

 3. Select Tree → Export as Schema. The Export as Schema window opens.

 4. Enable the Create a map that transforms the input data described by the

type tree into XML output check box.

 5. In the Input file name field, click the navigation button and select the input

file that corresponds to the type tree.

 6. In the Output file name field, enter a filename and path for the XML output

file that will be generated as a result of the executing the new map.

 7. In the Map file name field, enter a name for the new map and map source

file.

 8. Select OK to start the utility. The following files are created:

v XML Schema (orig_type_tree _name_plus_exported_type_name.xsd)

v Type tree (orig_type_tree _name_plus_exported_type_name.mtt)

v Map source file (.mms)

A log file (map_name.log) is created only when an error occurs.

 9. Using the Map Designer, open the new map.

10. Build and run the map. An XML output file is created.

140 IBM WebSphere Transformation Extender: Type Designer

Chapter 16. Return codes and error messages

Type Tree Analyzer errors and warnings

The Type Tree Analyzer checks the logic and internal consistency of your data

definitions. Type tree analyzer error and warnings messages are issued on the type

of analysis that is performed: logic and structural.

v Logical analysis addresses the integrity of the relationships that you define in

the type tree.

v Structural analysis addresses the integrity of the underlying database.

Warnings indicate a successful analysis and are relatively insignificant. Warning

messages provide information about inconsistencies that occurred and were

automatically resolved when the type tree was changed.

Errors are important. Error messages provide information about errors in your type

definitions that you should correct. An error may result in unpredictable results in

your mapping.

Words in italics represent information that varies, indicating information specific to

the type for which the message is generated.

Type tree analysis logic error messages

The following table lists the logic error messages that result from a logical analysis

of a type tree:

Return Code

Message

L100 COMPONENT neither inherited nor local: `type name’ of TYPE: `type name’

 Hint: Look at the super-type’s component list. The component is a valid

type, but the supertype has a component list that restricts you from using

this type as a component. You may have added subtype components

before adding supertype components. Either remove all supertype

components or add the components in error to the component list of the

supertype.

L101 This GROUP must have at least one component - TYPE: `type name’

 Hint: If you want to map this group, add components. If you do not want

to map it, make it a category.

L102 Circular reference found in COMPONENT # (`type name’) - TYPE: `type

name’

 Hint: Look at the type of the component in error. It is probably missing an

initiator or terminator.

L103 Circular reference found in Floating Component type - TYPE: `type name’

 Hint: Look at the floating component type in error. It is probably missing

an initiator or terminator.

L104 DELIMITER for TYPE - `type name’ must have a value

© Copyright IBM Corp. 2006 141

Hint: All delimited groups need a delimiter. Edit delimited group

properties to insert the missing delimiter.

L105 DELIMITER type neither inherited nor local - TYPE: `type name’

 Hint: The delimiter name has been entered incorrectly. It should be the

name of a local type, or the name of an inherited delimiter, or the name of

a type in the sub-tree of the inherited delimiter.

L106 Default DELIMITER not specified - TYPE: `type name’

 Hint: This Type was specified with a FIND option for its delimiter. Please

add a default value to define what to use for building outputs.

L107 Default DELIMITER not in restriction list - TYPE: `type name’

 Hint: This delimiter was specified as a syntax item. Add the default value

to the restriction list for that syntax item.

L108 DELIMITER type is not a SYNTAX ITEM - TYPE: `type name’

 Hint: Delimiters specified as an item must be specified to be interpreted as

SYNTAX to set the value of the delimiter if it appears as a component in a

data stream.

L109 DELIMITER type has no restriction list - TYPE: `type name’

 Hint: All syntax items need a restriction list.

L110 RELEASE CHARACTER neither inherited nor local - TYPE: `type name’

 Hint: The release character name has been entered incorrectly. It should be

either the name of a local type, the name of an inherited release character,

or the name of a type in the sub-tree of the inherited release character.

L111 Default RELEASE CHARACTER not specified - TYPE: `type name’

 Hint: This Type was specified with a syntax item for its release character.

Please add a default value to define a value for the release character that

has not been encountered in the data.

L112 Default RELEASE CHARACTER not in restriction list - TYPE: `type name’

 Hint: This Type was specified with a syntax item for its release character.

Please add the default value to the restriction list of that syntax item.

L113 RELEASE CHARACTER type is not a SYNTAX ITEM - TYPE: `type name’

 Hint: Release characters specified as an item must be specified to be

interpreted as SYNTAX to set the value of the release character if it

appears as a component in a data stream.

L114 RELEASE CHARACTER type has no restriction list - TYPE: `type name’

 Hint: All syntax items need a restriction list.

L115 Floating Component TYPE neither inherited nor local - TYPE: `type name’

 Hint: The floating component name has been entered incorrectly. It should

be either the name of a local type, the name of an inherited floating

component, or the name of a type in the sub-tree of the inherited floating

component.

L116 INITIATOR type neither inherited nor local - TYPE: `type name’

 Hint: The initiator name has been entered incorrectly. It should be either

the name of a local type, the name of an inherited initiator, or the name of

a type in the sub-tree of the inherited initiator.

142 IBM WebSphere Transformation Extender: Type Designer

L117 Default INITIATOR not specified - TYPE: `type name’

 Hint: This Type was specified with a syntax item for its initiator. Add a

default value to define a value for that initiator has not been encountered

in the data.

L118 Default INITIATOR not in restriction list - TYPE: `type name’

 Hint: This Type was specified with a syntax item for its initiator. Add the

default value to the restriction list of that syntax item.

L119 INITIATOR type is not a SYNTAX ITEM - TYPE: `type name’

 Hint: Initiators specified as an item must be specified to be interpreted as

SYNTAX to set the value of the initiator if it appears as a component in a

data stream.

L120 INITIATOR type has no restriction list - TYPE: `type name’

 Hint: All syntax items need a restriction list.

L121 TERMINATOR type neither inherited nor local - TYPE: `type name’

 Hint: The terminator name has been entered incorrectly. It should be either

the name of a local type, the name of an inherited terminator, or the name

of a type in the sub-tree of the inherited terminator.

L122 Default TERMINATOR not specified - TYPE: `type name’

 Hint: This Type was specified with a syntax item for its terminator. Add a

default value to define a value for that terminator has not been

encountered in the data.

L123 Default TERMINATOR not in restriction list - TYPE: `type name’

 Hint: This Type was specified with a syntax item for its terminator. Please

add the default value to the restriction list of that syntax item.

L124 TERMINATOR type is not a SYNTAX ITEM - TYPE: `type name’

 Hint: Terminators specified as an item must be specified to be interpreted

as SYNTAX to set the value of the terminator if it appears as a component

in a data stream.

L125 TERMINATOR type has no restriction list - TYPE: `type name’

 Hint: All syntax items need a restriction list.

L126 COMPONENT range minimum (#) greater than range maximum (#) -

COMPONENT `type name’ - TYPE: `type name’

 Hint: The minimum range must be less than or equal to the maximum

range.

L127 COMPONENT range minimum (#) less than inherited range minimum(#) -

COMPONENT `type name’ - TYPE: `type name’

 Hint: The component in error has been inherited. Look at the range of the

component with the same name in the super-type’s component list.

L128 COMPONENT range maximum (#) greater than inherited range

maximum(#) - COMPONENT `type name’ - TYPE: `type name’

 Hint: The component in error has been inherited. Look at the range of the

component with the same name in the super-type’s component list.

L129 COMPONENT RULE references a COMPONENT later in the component

list - `type name’ - TYPE: `type name’

Chapter 16. Return codes and error messages 143

Hint: Move the component rule to the component later in the list.

L130 COMPONENT RULE references undefined type - COMPONENT # of

TYPE: `type name’

 Hint: Verify the spelling of the data object name. The rule should reference

a data object name of the component or a data object name of a component

earlier in the component list.

L131 Reserved for future use.

L132 Invalid partitioning: TYPE has no SUBTYPES - TYPE: `type name’

 Hint: Remove the partitioned option from the class window or add

sub-types to the Type in error.

L133 Type of COMPONENT exists, but its relative name is not valid: `type name’

in TYPE: `type name’

 Hint: To get the correct relative name, drag the type you want to use as a

component and drop it in the component list of the Type. (Remember to

delete the invalid component!)

L134 Reference to `ANY’ not allowed: COMPONENT number # of TYPE: `type

name’

 Hint: In this case, the Type in error is a group and it is not the root of a

partitioned tree. ANY cannot be used if that component needs to be

validated. So, if that group is partitioned, you cannot use ANY for a

component up to and including the identifier (if there is one). If that group

is not partitioned, you cannot use ANY at all.

L135 COMPONENT number # cannot reference a CATEGORY in TYPE: `type

name’ (because group is not partitioned)

 Hint: In this case, the Type in error is a group and it’s not the root of a

partitioned tree. A category cannot be used if the component must be

validated. So, if that group is partitioned, you cannot use a category for a

component up to and including the identifier (if there is one). If that group

is not partitioned, you cannot use a category as a component at all.

L136 COMPONENT `type name’ occurs more than once in list - TYPE: `type name’

 Hint: Each component in the same component list must have a unique

type name. Try to make sub-types of the type name in error and replace

each non-unique component with one of the new sub-types.

L137 COMPONENT `type name’ and its super-type cannot be in same

COMPONENT LIST (in TYPE: `type name’)

 Hint: Try making another sub-type of the super-type and replace the

super-type reference with the new sub-type.

L138 COMPONENT `type name’ is same type as delimiter - TYPE: `type name’

 Hint: A component and a delimiter cannot have the same name. You may

need to add sub-types to the type name used in error to resolve this one.

L139 COMPONENT `type name’ is sub-type of delimiter - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify a delimiter. You

can add another sub-type to the syntax item and replace the delimiter

name with the new sub-type name.

L140 COMPONENT `type name’ is super-type of delimiter - TYPE: `type name’

144 IBM WebSphere Transformation Extender: Type Designer

Hint: This occurs when a syntax item is used to specify a delimiter. You

can add another sub-type to the syntax item and replace the component

name with the new sub-type name.

L141 COMPONENT `type name’ is same type as initiator - TYPE: `type name’

 Hint: A component and an initiator cannot have the same name. You can

add sub-types to the type name used in error and replace both the

component name and the initiator name.

L142 COMPONENT `type name’ is sub-type of initiator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify an initiator. You

can add another sub-type to the syntax item and replace the initiator name

with the new sub-type name.

L143 COMPONENT `type name’ is super-type of initiator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify an initiator. You

can add another sub-type to the syntax item and replace the component

name with the new sub-type name.

L144 COMPONENT `type name’ is same type as terminator - TYPE: `type name’

 Hint: A component and a terminator cannot have the same name. Try

adding sub-types to the type name used in error and replace both the

component name and terminator name with one of the new sub-types.

L145 COMPONENT `type name’ is sub-type of terminator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify a terminator. You

can add another sub-type to the syntax item and replace the terminator

name with the new sub-type name.

L146 COMPONENT `type name’ is super-type of terminator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify a terminator. You

can add another sub-type to the syntax item and replace the component

name with the new sub-type name.

L147 COMPONENT `type name’ is same type as Floating Component - TYPE:

`type name’

 Hint: Make both the floating component name and the component name

sub-types of the floating component.

L148 COMPONENT `type name’ is sub-type of Floating Component - TYPE: `type

name’

 Hint: Make both the floating component name and the component name

sub-types of the floating component.

L149 COMPONENT `type name’ is super-type of Floating Component - TYPE:

`type name’

 Hint: Make both the floating component name and the component name

sub-types of the floating component.

L150 COMPONENT `type name’ is same type as release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify a release character.

You can add sub-types to the syntax item and replace both the component

name and the release character name with the new sub-type names.

Chapter 16. Return codes and error messages 145

L151 COMPONENT `type name’ is sub-type of release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify a release character.

You can add another sub-type to the syntax item and replace the release

character name with the new sub-type name.

L152 COMPONENT `type name’ is super-type of release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify a release character.

You can add sub-types to the syntax item and replace the component name

with the new sub-type name.

L153 DELIMITER `type name’ is same type as initiator - TYPE: `type name’

 Hint: A delimiter and an initiator cannot have the same name. You may

need to add sub-types to the type name used in error and replace both the

delimiter and initiator names to refer to the new sub-types.

L154 DELIMITER `type name’ is sub-type of initiator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a delimiter. You can add another sub-type to the syntax item and

replace the initiator name with the new sub-type name.

L155 DELIMITER `type name’ is super-type of initiator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a delimiter. You can add another sub-type to the syntax item and

replace the delimiter name with the new sub-type name.

L156 DELIMITER `type name’ is same type as terminator - TYPE: `type name’

 Hint: A delimiter and a terminator cannot have the same name. You may

need to add sub-types to the type name used in error and replace both the

delimiter and terminator names to refer to the new sub-types.

L157 DELIMITER `type name’ is sub-type of terminator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both a delimiter

and a terminator. You can add another sub-type to the syntax item and

replace the terminator name with the new sub-type name.

L158 DELIMITER `type name’ is super-type of terminator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both a delimiter

and a terminator. You can add another sub-type to the syntax item and

replace the delimiter name with the new sub-type name.

L159 DELIMITER `type name’ is same type as release character - TYPE: `type

name’

 Hint: A delimiter and a release character cannot have the same name. You

may need to add sub-types to the type name used in error and replace

both the delimiter and release character names to refer to the new

sub-types.

L160 DELIMITER `type name’ is sub-type of release character - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both a delimiter

and a release character. You can add another sub-type to the syntax item

and replace the release character name with the new sub-type name.

L161 DELIMITER `type name’ is super-type of release character - TYPE: `type

name’

146 IBM WebSphere Transformation Extender: Type Designer

Hint: This occurs when a syntax item is used to specify both a delimiter

and a release character. You can add another sub-type to the syntax item

and replace the delimiter name with the new sub-type name.

L162 DELIMITER `type name’ is same type as Floating Component - TYPE: `type

name’

 Hint: A delimiter and a floating component cannot have the same name.

Try adding sub-types to the type name used in error and replace both the

delimiter and floating component names to refer to the new sub-types.

L163 DELIMITER `type name’ is sub-type of Floating Component - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both a delimiter

and a floating component. You can add another sub-type to the syntax

item and replace the floating component name with the new sub-type

name.

L164 DELIMITER `type name’ is super-type of Floating Component - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both a delimiter

and a floating component. You can add another sub-type to the syntax

item and replace the delimiter name with the new sub-type name.

L165 INITIATOR `type name’ is same type as terminator - TYPE: `type name’

 Hint: An initiator and a terminator cannot have the same name. You may

need to add sub-types to the type name used in error and replace both the

initiator and terminator names to refer to the new sub-types.

L166 INITIATOR `type name’ is sub-type of terminator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a terminator. You can add another sub-type to the syntax item and

replace the terminator name with the new sub-type name.

L167 INITIATOR `type name’ is super-type of terminator - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a terminator. You can add another sub-type to the syntax item and

replace the initiator name with the new sub-type name.

L168 INITIATOR `type name’ is same type as release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a release character. You can add sub-types to the syntax item and

replace both the initiator name and the release character name with a new

sub-type name.

L169 INITIATOR `type name’ is sub-type of release character - TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a release character. You can add another sub-type to the syntax item

and replace the release character name with the new sub-type name.

L170 INITIATOR `type name’ is super-type of release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a release character. You can add another sub-type to the syntax item

and replace the initiator name with the new sub-type name.

Chapter 16. Return codes and error messages 147

L171 INITIATOR `type name’ is same type as Floating Component - TYPE: `type

name’

 Hint: An initiator and a floating component cannot have the same name.

Try adding sub-types to the type name used in error and replace both the

initiator and floating component names with the new sub-types.

L172 INITIATOR `type name’ is sub-type of Floating Component - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a floating component. You can add another sub-type to the syntax

item and replace the floating component name with the new sub-type

name.

L173 INITIATOR `type name’ is super-type of Floating Component - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both an initiator

and a floating component. You can add another sub-type to the syntax

item and replace the initiator name with the new sub-type name.

L174 TERMINATOR `type name’ is same type as release character - TYPE: `type

name’

 Hint: A terminator and a release character cannot have the same name. You

may need to add sub-types to the type name used in error and replace

both the terminator and release character names with the new sub-types.

L175 TERMINATOR `type name’ is sub-type of release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both a terminator

and a release character. You can add another sub-type to the syntax item

and replace the release character name with the new sub-type name.

L176 TERMINATOR `type name’ is super-type of release character - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both a terminator

and a release character. You can add another sub-type to the syntax item

and replace the terminator name with the new sub-type name.

L177 TERMINATOR `type name’ is same type as Floating Component - TYPE:

`type name’

 Hint: A terminator and a floating component cannot have the same name.

You may need to add sub-types to the type name used in error and replace

both the terminator and floating component names with the new

sub-types.

L178 TERMINATOR `type name’ is sub-type of Floating Component - TYPE: `type

name’

 Hint: This occurs when a syntax item is used to specify both a terminator

and a floating component. You can add another sub-type to the syntax

item and replace the floating component name with the new sub-type

name.

L179 TERMINATOR `type name’ is super-type of Floating Component - TYPE:

`type name’

148 IBM WebSphere Transformation Extender: Type Designer

Hint: This occurs when a syntax item is used to specify both a terminator

and a floating component. You can add another sub-type to the syntax

item and replace the terminator name with the new sub-type name.

L180 RELEASE CHARACTER `type name’ is same type as Floating Component -

TYPE: `type name’

 Hint: A release character and a floating component cannot have the same

name. You may need to add sub-types to the type name used in error and

replace both the release character and floating component names to refer to

the new sub-types.

L181 RELEASE CHARACTER `type name’ is sub-type of Floating Component -

TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both a release

character and a floating component. You can add another sub-type to the

syntax item and replace the floating component name with the new

sub-type name.

L182 RELEASE CHARACTER `type name’ is super-type of Floating Component -

TYPE: `type name’

 Hint: This occurs when a syntax item is used to specify both a release

character and a floating component. You can add another sub-type to the

syntax item and replace the release character name with the new sub-type

name.

L183 COMPONENT NAME ambiguous: `type name’ in TYPE: `type name’

 Hint: This type has a component whose relative name can be associated

with more than one type in the type tree. Rename the conflicting types.

L184 RESTRICTION longer than max TYPE size - RESTRICTION # of TYPE:

`type name’

 Hint: The Type in error is an item. Either change the maximum size of the

item or remove the restriction.

L185 RESTRICTION used in an earlier partition - RESTRICTION # of TYPE:

`type name’

 Hint: Item Partitions must have mutually exclusive restrictions. Remove

the restriction from one of the partition restriction lists.

L186 Type of COMPONENT does not exist - `type name’ in TYPE: `type name’

 Hint: You probably entered an incorrect type name. Try the drag and drop

approach to get the correct one.

L187 TYPE must be partitioned (since in a partitioned tree and has sub-types) -

TYPE: `type name’

 Hint: All types in a partitioned sub-type must have mutually exclusive

data objects. Set the partitioned property for the type in error.

L188 Reserved for future use.

L189 TYPE is FIXED, but COMPONENT # is not fixed - TYPE: `type name’

 Hint: If the component is not intended to be fixed in size, change the

group format for the Type to implicit. If the group format is intended to be

fixed, check the component: if that component is an item, make sure it has

a Padded To length; if that component is a group, change its type to be of

fixed syntax.

Chapter 16. Return codes and error messages 149

L190 BINARY text ITEM used as COMPONENT neither FIXED nor SIZED -

COMPONENT # of TYPE: `type name’

 Hint: The size of a binary text item must either have a Padded To length or

it must be sized by the previous component.

L191 COMPONENT with SIZED attribute is not an UNSIGNED INTEGER ITEM

TYPE - COMPONENT # of TYPE: `type name’

 Hint: A component used to size the component that follows it must be

defined as an unsigned integer item type.

L192 The last COMPONENT in the COMPONENT LIST may not have a SIZED

attribute: TYPE: `type name’

 Hint: Specify a component to follow the one with the sized attribute.

L193 Range of COMPONENT # must have a maximum value to indicate how

many placeholders are needed for its series in TYPE: `type name’.

 Hint: Change the range maximum to a specific value (not ″s″) if you may

re-define the data this way.

L194 Cannot distinguish delimiter from terminator in TYPE: `type name’.

 Hint: Make the range of the last component in the type fixed or make the

delimiter of the type different from its terminator.

L195 Cannot distinguish delimiter contained in COMPONENT # from

terminator of TYPE: `type name’.

 Hint: Make that component bound or make that contained delimiter

different from the type terminator.

L196 Cannot distinguish delimiter of COMPONENT # from delimiter of TYPE:

`type name’.

 Hint: Make that component bound or make that component’s delimiter

different from the type delimiter.

L197 Cannot distinguish delimiter of COMPONENT # from delimiter of TYPE:

`type name’.

 Hint: Make that component bound, or make that component’s delimiter

different from the type delimiter, or specify a range maximum that has a

specific value (not ″s″) for the last component of COMPONENT #.

L198 Cannot distinguish delimiter contained in COMPONENT # from delimiter

of TYPE: `type name’.

 Hint: Make that contained component bound or make that contained

component’s delimiter different from the type delimiter.

L200 Cannot distinguish delimiter contained in COMPONENT # from delimiter

of TYPE: `type name’.

 Hint: Either make that contained component bound, make that contained

component’s delimiter different from the type delimiter, or specify a range

maximum that has a specific value (not ″s″) for the last component of the

contained component.

150 IBM WebSphere Transformation Extender: Type Designer

Logic error and warning messages

The tables in this section list the logic warning messages that result from a logic

analysis of a type tree.

The following table lists the warnings than can result when a map is compiled.

Warnings should be resolved because they may produce unpredictable results at

mapping time.

Return Code

Message

L199 COMPONENT # is not distinguishable from COMPONENT # that may

follow in TYPE: `type name’.

 Hint: Make the first COMPONENT bound, or look at the tables in

″Distinguishable objects″ to see how you can define the two component

types as distinguishable.

L201 Different data objects of COMPONENT # are not distinguishable in TYPE:

`type name’.

 Hint: See ″Distinguishable objects″ for more information about

distinguishable objects.

L202 RESTRICTION list deleted: TYPE is not an ITEM - TYPE: `type name’

 Hint: Type class was changed from an item to a group or category, so the

restriction list was deleted. If this was not your intent, change it back to

the way it was.

L203 COMPONENT list deleted: TYPE is an ITEM - TYPE: `type name’

 Hint: Type class was changed from a group to a item or category, so the

program deleted its component list. If this was not your intent, change it

back to the way it was.

L204 DELIMITER deleted: TYPE is not a DELIMITED GROUP - TYPE: `type

name’

 Hint: Group format was changed from delimited to something else, so the

program deleted its delimiter. If this was not your intent, change it back to

the way it was.

L205 COMPONENT RULE deleted: TYPE is a CATEGORY - TYPE: `type name’

(warning)

 Hint: Type class was changed from a group to a category, so its component

rule was deleted. If this was not your intent, change it back to the way it

was.

L206 DELIMITER cannot be found (because first component is not required) -

TYPE: `type name’ (warning)

 Hint: If the delimiter is missing, a previously set initiator value or the

default value is used.

L251 COMPONENT NAME could apply to more than one type:’type name’ in

TYPE: `type name’ (warning).

Chapter 16. Return codes and error messages 151

Type tree analysis structure error messages

The following table lists the structure error messages that result from a structural

analysis of a type tree:

Return Code

Message

S100 Invalid TYPE Name: SubTYPE # of TYPE: `type name’

S101 Invalid TYPE chain: SubTYPE # of TYPE: `type name’

S118 Invalid TYPE NAME WhereUsed chain - TYPE NAME: `type name’ (error).

S133 Referenced COMPONENT not `InUse’ - COMPONENT # of TYPE: `type

name’ (error).

S134 COMPONENT previously referenced - COMPONENT # (COMP #) of

TYPE: `type name’ (error).

S149 Bad Parent COMPONENT Index - COMPONENT `type name’ - TYPE: `type

name’ (error)

Type tree analysis structure warning messages

The following table lists the structure warning messages that result from a

structural analysis of a type tree:

Return Code

Message

S102 Unused DELIMITER deleted: `type name’ (at index #)

S103 Invalid DELIMITER pointer deleted - TYPE: `type name’

S104 Invalid default DELIMITER pointer deleted - TYPE: `type name’

S105 Invalid RELEASE Char pointer deleted - TYPE: `type name’

S106 Invalid default RELEASE Char pointer deleted - TYPE: `type name’

S107 Invalid INITIATOR pointer deleted - TYPE: `type name’

S108 Invalid default INITIATOR pointer deleted - TYPE: `type name’

S109 Invalid TERMINATOR pointer deleted - TYPE: `type name’

S110 Invalid default TERMINATOR pointer deleted - TYPE: `type name’

S111 Resetting DELIMITER Use Count (was # now #) - DELIMITER: `type name’

S112 Unused DESCRIPTION deleted: `type name’ (at index #)

S113 Invalid DESCRIPTION pointer deleted - TYPE: `type name’

S114 Resetting DESCRIPTION Use Count (was # now #) - DESCRIPTION: `type

name’

S115 Invalid Floating Component TYPE pointer deleted - TYPE: `type name’

S116 Invalid TYPE UsedInComp chain repaired - TYPE: `type name’

S117 Unused TYPE NAME deleted - TYPE NAME: `type name’ (at index #)

S119 Resetting TYPE NAME use count (was # now #) - TYPE NAME: `type

name’

S120 Repaired empty TYPE NAME WhereUsed chain - TYPE NAME: `type name’

152 IBM WebSphere Transformation Extender: Type Designer

S121 Unused RESTRICTION NAME deleted: `type name’ (at index #)

S122 Invalid RESTRICTION NAME deleted no DESCRIPTION was available -

TYPE: `type name’ .

S123 Invalid RESTRICTION NAME deleted DESCRIPTION was `type name’ -

TYPE: `type name’

S124 Resetting RESTRICTION NAME Use Count (was # now #) -

RESTRICTIONS: `type name’

S125 Unused RESTRICTION DESCRIPTION deleted: `type name’ (at index #)

S126 Invalid RESTRICTION DESCRIPTION deleted - TYPE: `type name’

S127 Resetting RESTRICTION DESCRIPTION Use Count (was # now #) -

RESTRICTIONS: `type name’

S128 Unused RULE deleted: `type name’ (at index #)

S129 Invalid RULE pointer deleted - COMPONENT # of TYPE: `type name’

S130 Resetting RULE Use Count (was # now #) - RULE: `type name’

S131 Invalid COMPONENT TYPE Description pointer - COMPONENT #

S132 COMPONENT marked `InUse’ found in Free Chain- COMPONENT #

S135 COMPONENT in Free Chain referenced by a TYPE - COMPONENT #

S136 COMPONENT recovered and added to Free Chain - COMPONENT #

S137 TYPE in Free Chain referenced by another TYPE - TYPE #

S138 TYPE recovered and added to Free Chain - TYPE X’%04X’

S139 TYPE marked `InUse’ but not referenced - TYPE #

S140 Referenced TYPE not marked `InUse’ - TYPE #

S141 TYPE Free Chain not in order: sorting

S142 COMPONENT Free Chain not in order: sorting

S143 Overlap found in LIST Free Chain

S144 Free Chain extends into unallocated region

S145 Overlap found in COMPONENT LIST SPACE: list cleared COMPONENTS

will be deleted

S146 Invalid COMPONENT LIST pointer: all COMPONENTS DELETED - TYPE:

`type name’

S147 Resetting COUNT in COMPONENT LIST: some COMPONENTS may be

lost

S148 RULE truncated (due to internal error): `type name’ (at index #)

S150 CATEGORY `type name’ was missing GROUP and/or ITEM attributes

S151 GROUP `type name’ was missing GROUP attributes

S152 ITEM `type name’ was missing ITEM attributes

Chapter 16. Return codes and error messages 153

154 IBM WebSphere Transformation Extender: Type Designer

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 155

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

156 IBM WebSphere Transformation Extender: Type Designer

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

AIX

AIX 5L

AS/400

Ascential

Ascential DataStage

Ascential Enterprise Integration Suite

Ascential QualityStage

Ascential RTI

Ascential Software

Ascential

CICS

DataStage

DB2

DB2 Universal Database

developerWorks

Footprint

Hiperspace

IBM

the IBM logo

ibm.com

IMS

Informix

Lotus

Lotus Notes

MQSeries

MVS

OS/390

OS/400

Passport Advantage

Redbooks

RISC System/6000

Roma

S/390

System z

Trading Partner

Tivoli

Notices 157

WebSphere

z/Architecture

z/OS

zSeries

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

IBM WebSphere Transformation Extender, Version 8.1

158 IBM WebSphere Transformation Extender: Type Designer

Index

Special characters
.bak file name extension 3

.dbe file name extension 3

.mtt file name extension 3

A
analysis

logic 134

structural 134

analyzer
type trees 115, 133

ANY
reserved word 87

Any-2-XML utility 139, 140

arrange icons
window 13

As Work Book option 6, 10

attribute
restart 112

attributes
identifier 92

restart 92, 93

sized 92, 93

B
big endian 41

binary values 40

BCD 40

float 40

integer 40

packed 40

bound types 115

byte order property
big endian 41

big native 41

little endian 41

C
cascade

window 13

category
definition of 19

inheritance 101

organizing 101

when not to use 102

window 7

CDATA 37

character values 40

decimal 41

integer 41

zoned 42

character zoned numbers
places 42

sign 42

size (content) 42

choice group
objects 131

class
definition of 27

commands
copy 104

find 9, 106

menu 8

merge 105

move 104

replace 107

undo 9

comments
component rules 91

common item properties
national language 52

none 57

pad 48

special value 57

components 7, 81

attributes
identifier 92

restart 92

sized 92

defining 86

definition of 19, 83

distinguishable 120

implicit group 79

guidelines 86

inheritance 101

manipulating 92

name 83

number 85

optional 87

order of 81

range 81, 82

fixed 85

variable 85

viewing 86

required 87

restart attribute 112

rules 88, 89, 90

comments 91

examples 89

formatting 91

inserting functions 91

object names 90

shorthand notation 90

syntax 89, 92

searching for 92

variable 87

configuring 13

CONTAINSERRORS function 113

content distinguishable
components 121

copy
command 104

edit 9

cut
edit 9

© Copyright IBM Corp. 2006 159

D
data

composition 1

defining 18

object
definition of 18

objects
subtypes 2

date & time subclass properties 58

custom date format 60

custom time format 61

date 58

examples 63

format 59

presentation 58

special 64

time 59

date format
custom 60

date property 58

defining
type properties 25

delimited syntax
explicit group 76

implicit group 78

delimiter 80

definition of 76

literal 79

location of 80

variable 80

description
types 27

distinguishable data
explicit group 130

implicit group 129

distinguishable objects 115

components 121

implicit group 79

of same component 120

types 121

document type 32

document verification 32

drag and drop
types 83

E
edit menu 9

element type declarations 37

Empty type property 31

errors
detection 109

messages 134

recovery 112

syntax 92

examples
using AcceptAllPads type property 50

using Empty type property 31

expanding
types 18

explicit format 75

explicit group
distinguishable data 130

export
type trees 19

extensions See file name extensions 2

F
file name extensions 2, 3

find
command 106

edit 9

fixed syntax 75

floating component 76

flow chart
properties 39

format
date & time 59

custom 60, 61

group
explicit 75, 76

implicit 76, 77, 78

G
group

component 7

name 83

components 81, 83

definition of 19

formats
explicit 75, 76

implicit 76, 77, 78

window 7, 82

group subclass 73

choice 73

sequence 73

unordered 73

H
Help

menu 13

hex values 72, 91

hierarchy
of a type tree 2

I
icons 3

identifier attribute 92, 99

implicit group
distinguishable data 129

Importer Wizard 5

inheritance
category 101

components 101

item properties 101

restrictions 101

initiator 29

inserting functions 91

interpret as 39

ISERROR function 113

item
definition of 18

restrictions 69, 70

item properties 39

date & time subclass properties 58

flow chart 39

interpret as 39

item subclass 39

number item subclass 39

160 IBM WebSphere Transformation Extender: Type Designer

item properties (continued)
syntax objects 65

text item subclass properties 58

item subclass 39

L
language options 32

length property
bytes 40

literal
delimiter value 79

little endian 41

location property 80

logic errors
type tree analysis 141

logic warnings
type tree analysis 151

logical analysis 134

M
menu

commands 8

edit 9

help 13

tools 8, 12

tree 11

view 10

window 12

merge command 105

messages
errors 134

warnings 134

move command 104

N
name

relative 83

type 83

namespaces 36

national language 32, 52

native 41

no syntax group 78

non-printable values 72

number item subclass property 39

byte order 41

length (bytes) 40

places 57

separators 43

sign 47

O
objects

copying 103

distinguishable 115, 120

moving 103

names
component rules 90

reordering 104

selection 103

optional component 87

options dialog box 12

options dialog box (continued)
analysis results 15

confirmations 15

general 13

group window 14

item window 15

type properties 15

type tree 14

P
pad characters 49

pad property 48

partitioning 95

benefits of 96

convenience 95

groups 98

component rules 99

items 96, 97, 98

required 95

types 29, 96, 131

paste
edit 9

PCDATA 37

places property 57

presentation property 58

printing
type definitions 108

type properties 108

propagate
types 25

properties
flow chart 39

inheritance of 101

national language 32

where used 33

window 7

dock 7

float 7

R
range

default 82

fixed 85

variable 85

viewing 86

recently used window list
window 13

REJECT function 112

relative type name 83

release characters
definition of 30

guidelines 30

rename types 106

replace
command 107

edit 9

required component 87

reserved words and symbols
ANY 87

restart attribute 93, 112

restrictions
defining 69

inheritance of 101

settings 70

Index 161

rules
component 88, 89

examples 89

syntax 89

S
separators 43

decimal 45

integer 43

set range command 85

shortcuts
tools 12

shorthand notation
component rules 90

sign property 42, 47

size
command

include self 93

digits 42

sized attribute 93

special property 64

startup window 5

status bar
view 10

structural analysis 134

structure errors
type tree analysis 152

structure warnings
type tree analysis 152

subtree 27, 86, 98, 102, 104, 105

subtypes 2

order 29

reordering 105

supertype
definition of 2

symbols
dialog box 72

inserting 72

syntax
errors 92

initiator 29

none 78

objects 65

data 66

variable values 65

of a component rule 89

release character 30

terminator 30

T
terminator 30

text item subclass properties 58

interpret as 40

time format
custom 61

time property 59

time zones 62

toolbars
view 10

tools menu 12

trace option 49

track property 75

Type Designer
configuring 13

type tree analysis
logic errors 141

logic warnings 151

structure errors 152

structure warnings 152

Type Tree Analyzer 141

type trees
analyzer 115, 133

As Work Book option 6

creating 17

differences 20

exporting 19

file name extension 3

hierarchy 2

icons 3

importing 5

opening 23

views 6

window 6

types
bound 115

category 19

class 18, 27

copying 103

creating 17

definition of 18

description 27

distinguishable 121

drag and drop 83

expanding 18

groups 19, 81

components 19, 83

icons 3

inheritance 101

item 18

moving 103

name 26, 83

organizing 101

partitioned 29

propagate 25

properties
defining 25

window 7

relative name 83

renaming 106

reordering 104

subtypes 2

supertypes 2, 17

U
undo command 9

V
Value Not In Range

range restriction 71

variable component name 87

variable delimiter 80

view menu 10

W
warning messages 134

where used 33

162 IBM WebSphere Transformation Extender: Type Designer

whitespace syntax
build as 77

character set 78

wildcards
element and attribute 37

window
category 7

close all 13

group 7, 82

menu 12

properties 7

type tree 6

view
cascade 13

tile horizontally 13

tile vertically 13

wizard
importing 5

work book option 6

X
XML 139, 140

and exporting a type tree 19

data and floating components 77

excluding delimiters 71

identity constraints 36

properties in the type tree 33

supported constructs 33

time zone formats 63

Type Tree Compatibility Utility 138

Type Tree/Schema Synchronization Utility 137

using Empty property 31

wildcards 37

XML DTD Importer 37

XML Schema
datatypes and type tree constructs 34

XML Schema Importer 36, 37

XML type property See document type 32

Index 163

164 IBM WebSphere Transformation Extender: Type Designer

����

Printed in USA

	Contents
	Chapter 1. Introduction to the Type Designer
	About type trees
	Data composition
	Subtypes
	Type tree hierarchy

	Type Designer files
	Type Designer icons

	Chapter 2. Type Designer basics
	Type Designer startup
	To import a type tree
	To open an existing type tree
	To create a type tree
	To open a recently used type tree

	User interface
	Type tree window
	As work book option
	Splitting the type tree view

	Item window
	Group window
	Category window
	Properties Window
	Menu commands and tools
	File menu
	Edit menu
	Undo commands
	View menu
	Type menu
	Tree Menu
	Component menu
	Restriction menu
	Tools menu
	Window menu
	Help menu

	Status bar
	Configuring the Type Designer environment
	Options
	General options
	Type tree
	Group window options
	Item and category window options
	Analysis results
	Confirmations
	Type properties

	Chapter 3. Working with type trees
	Creating type trees
	Creating types
	Viewing types
	Expanding a Type

	Data content
	Data objects
	Types
	Classes
	Item
	Group
	Category
	Components

	Exporting a type tree
	Exporting a type as a schema
	Type to XML conversion

	Type tree differences
	Creating a type tree exercise
	Opening an existing type tree

	Chapter 4. Type properties
	Defining type properties
	To access properties of a type
	To define the properties of a type

	Basic type properties
	Name
	Class
	Description
	Intent
	Validate as

	Partitioned
	Order subtypes
	Initiator
	Terminator
	Release characters
	Building release characters for output data
	Guidelines for using release characters
	Release character example

	Empty
	Empty type property example

	National language
	Document Type
	Where used

	XML properties in the type tree
	Support for XML constructs
	XML schema datatypes
	Simple types
	Complex types
	Elements
	Attributes
	Groups and substitution groups

	Identity constraints
	Namespaces
	Element type declarations
	Element and attribute wildcards

	Chapter 5. Item properties
	Item subclass
	Number item subclass properties
	Interpret as binary
	Binary Integer Presentation
	Binary float presentation
	Binary packed presentation
	Binary BCD presentation

	Length (bytes)
	Byte order
	Interpret as character
	Character integer presentation
	Character decimal presentation
	Zoned character presentation
	Places > implied

	Size (content)
	Excluded from min and max size
	Size example

	Separators
	Integer separators
	Separator > format
	1000's syntax > value
	1000's syntax (literal) > value
	1000's syntax (variable) > default
	1000's syntax (variable) > item
	1000's syntax (variable) > find
	Decimal separators
	Separators > format
	Separators > 1000's syntax
	Separators > fraction syntax
	Sign

	Pad
	Pad > value
	Pad > padded to
	Padded to > length
	Padded to > CountsTowardMinContent
	Pad > justify
	Pad > apply pad
	Pad > fill

	Restrictions
	Restrictions > iIgnore case
	Restrictions > rule

	National language
	National language > data language

	None
	None > special value and zero > special value
	None > required on input and zero > required on input

	Places

	Text item subclass properties
	Date & time item subclass properties
	Date
	Date > format

	Time
	Time > format

	Format
	Use of format elements
	Custom Date Format
	Custom Time Format

	Time zones
	Time zone format string for XML
	Optional time segments of the time format string
	Date and time format examples
	Special
	If Date & Time is NONE
	NONE > special value
	NONE > required on input
	If Date & Time is Zero

	Syntax item subclass properties
	Syntax objects with variable values
	Example of Variable Syntax Object as an Item Type
	Syntax objects as data
	Example of syntax objects as components of a type
	Delimiter > find

	Chapter 6. Item restrictions
	Defining item restrictions
	Inserting new rows

	Restrictions settings
	Value restrictions
	Character restrictions
	Include character restrictions
	Exclude character restrictions

	Range restrictions
	Include

	Value not in range
	Inserting symbols

	Ignoring restrictions

	Chapter 7. Group properties
	Group subclass
	Properties of group subclasses
	Choice group components
	Unordered group components

	Sequence group formats
	Explicit format
	Track
	Fixed syntax
	Guidelines for defining a fixed group

	Explicit delimited syntax
	Delimiter

	Implicit format
	Floating component
	Implicit whitespace syntax
	Build as
	Character set

	Implicit delimited syntax
	Delimiter

	No syntax
	Distinguishable components of an implicit group

	Specifying a delimiter
	Literal
	National language
	Data language

	Variable
	Location
	Delimiter value appears as data

	Chapter 8. Components
	Components are required for group types
	Components must be in the same type tree
	Importance of component order
	Component range
	Indefinite number
	Single occurrence

	Group windows
	Nested components

	Defining components
	Complete type name
	Relative type names
	Moving types with the same relative type name

	Ambiguous type names
	Manual entry of types with same relative type names

	Always drag components
	Viewing the component number
	Specifying minimum and maximum consecutive occurrences in the component list
	Fixed and variable ranges
	Using the set range command
	Viewing the range column
	Types that can be components
	Guidelines for defining components

	Variable component names
	Opening a component window

	Required and optional data
	Significance of required data

	Defining component rules
	Examples of component rules
	Component rule syntax
	Entering object names in component rules
	Shorthand notation
	Component rules are context-sensitive
	Special characters in component rules
	Inserting functions into component rules
	Formatting a component rule
	Comments in component rules
	Syntax errors
	Searching for components
	Finding a component by number
	Managing components

	Component attributes
	Identifier attribute
	Restart attribute
	Sized attribute
	Include self in size

	Chapter 9. Partitioning
	Determining when to partition
	Required partitioning
	Partitioning for convenience
	Benefits of partitioning

	Partitioning types
	Partitioning items
	Partitioning an item type using initiators
	Partitioning an item type using restrictions
	Example of using restrictions
	Partitioning an item type by format
	Partitioning groups
	Partitioning a group type using initiators
	Partitioning a group type using identifiers
	Partitioning a group type using component rules
	Example of using component rules

	Chapter 10. Type inheritance
	Inheritance of item properties and restrictions
	Inheritance of category properties and components
	Organizing types under a category
	Using categories for inheritance
	When not to use categories

	Propagating properties
	Properties that can be propagated
	Propagating affects types in the subtree

	Chapter 11. Managing types
	Standard windows capabilities
	Object selection
	Drag-and-drop procedures

	Moving and copying objects
	Using the move command
	Using a copy command
	Type names

	Reordering objects
	Reordering existing subtypes

	Merging types
	Before using the merge command
	Supertypes
	Existing types
	Invalid types

	Renaming types
	Using find and replace
	Using the find command
	Using the replace command

	Printing in the Type Designer
	To print the Properties window
	Print preview
	Printing type definitions
	Printing type properties

	Chapter 12. Error detection and recovery
	Error detection
	How error detection works
	Existence indicators
	Existence versus presence of components

	Error recovery
	Restart attribute
	How the Restart Attribute works
	Mapping invalid data

	Chapter 13. Distinguishable objects
	Objects in a data stream
	Type tree analyzer and distinguishable objects
	Bound types
	Bound components
	Component of a fixed group
	Component of an explicit delimited group
	Component of an implicit group
	Component of a choice group
	Component of an unordered group

	Group starting set
	Group unbound set
	Unbound set of a sequence group

	Initiator-distinguishable types
	Determining if a component is initiator-distinguishable from its following set
	Determining if a partition is initiator-distinguishable from its following set
	Determining if two types are initiator-distinguishable

	Distinguishable objects of the same component
	Content-distinguishable components
	Content-distinguishable types
	Ending-distinguishable types
	Distinguishable data objects of an implicit group
	Guidelines for defining an implicit delimited sequence
	Guidelines for defining an implicit sequence that has no delimiter
	Guidelines for defining an implicit unordered group that is delimited
	Guidelines for defining an implicit unordered group that has no delimiter

	Distinguishable data objects of an explicit group
	Guidelines for defining an explicit fixed group
	Guidelines for defining an explicit delimited group
	Objects of a choice group
	Objects of a partitioned type

	Distinguishable syntax objects

	Chapter 14. Type Tree Analyzer
	Internal consistency
	Mapping effects
	When to Analyze Structure or Logic
	Logical analysis
	Structural analysis

	Error and warning messages

	Chapter 15. Utilities for XML
	XML Type Tree/Schema Synchronization utility
	XML type tree compatibility utility
	Modifying the target type tree
	To add a type to the target tree
	To add a component to the target tree

	Any-2-XML
	Using Any-2-XML from the Type Designer

	Chapter 16. Return codes and error messages
	Type Tree Analyzer errors and warnings
	Type tree analysis logic error messages
	Logic error and warning messages
	Type tree analysis structure error messages
	Type tree analysis structure warning messages

	Notices
	Programming interface information
	Trademarks and service marks

	Index

