
IBM WebSphere Transformation Extender

Functions and Expressions

Version 8.1

���

Note

Before using this information, be sure to read the general information in “Notices” on page 209.

October 2006

This edition of this document applies to IBM WebSphere Transformation Extender Version 8.1; and to all subsequent

releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email DTX_doc_feedback@us.ibm.com. We look forward to

hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Expressions and evaluations . 1

Expressions . 1

Component rule expressions evaluate to true or false . 1

Map rule expressions evaluate to data . 1

Literals . 1

Data object names . 2

Object names in map rules . 2

Object names in component rules . 2

Card name . 3

Local type name . 3

Partition list . 3

Component path . 4

Indexed object names . 4

Component paths separated by a colon . 4

Component paths separated by IN . 5

Comment object name . 5

Shorthand notation . 6

Evaluating expressions . 6

Card order can influence the order of evaluation sets . 7

Functions influence the number of evaluation sets . 8

Object names influence the number of evaluation sets . 9

Operators . 10

Arithmetic operators . 11

Text operators . 11

Logical operators . 11

Comparison operators . 11

Order of operator evaluation . 11

Operands . 12

Using functions in expressions . 12

Function arguments . 12

Input arguments . 13

Nested input arguments . 13

Output arguments . 14

Function arguments and evaluation . 14

Map names in expressions . 15

Evaluation of functional maps in an expression . 15

Expressions that evaluate to NONE . 16

When an operand evaluates to NONE . 16

When an input argument of a function evaluates to NONE 16

When an input argument of a functional map evaluates to NONE 17

When an input of an executable map evaluates to NONE 17

Impact of track setting on order of output . 17

Evaluated expressions assigned to output items . 18

NONE assigned to an output number . 18

Automatic item format conversions . 18

Numeric precision . 19

Chapter 2. Using functions . 21

Functions in a component rule . 21

Functions in a map rule . 21

Chapter 3. Syntax of a function . 23

Chapter 4. Function argument syntax . 25

© Copyright IBM Corp. 2006 iii

Chapter 5. General functions . 27

CLONE . 27

DEFAULT . 27

ECHOIN . 28

HANDLEIN . 28

REFORMAT . 30

Chapter 6. Bit manipulation and testing functions 31

SETOFF . 31

SETON . 31

TESTOFF . 32

TESTON . 33

Chapter 7. Conversion functions . 35

BASE64TOTEXT . 35

BCDTOHEX . 35

BCDTOINT . 36

BCDTOTEXT . 37

CONVERT . 38

DATETONUMBER . 38

DATETOTEXT . 39

FROMBASETEN . 40

FROMDATETIME . 41

FROMNUMBER . 41

HEXTEXTTOSTREAM . 42

INT . 43

NUMBERTODATE . 44

NUMBERTOTEXT . 44

PACK . 45

PACKAGE . 46

QUOTEDTOTEXT . 46

SERIESTOTEXT . 47

STREAMTOHEXTEXT . 48

SYMBOL . 49

TEXTTOBASE64 . 50

TEXTTOBCD . 50

TEXTTODATE . 51

TEXTTONUMBER . 52

TEXTTOQUOTED . 52

TEXTTOTIME . 53

TEXTTOTIME . 54

TOBASETEN . 54

TODATETIME . 55

TONUMBER . 56

UNPACK . 57

UNZONE . 58

ZONE . 59

Chapter 8. Date/time functions . 63

ADDDAYS . 63

ADDHOURS . 64

ADDMINUTES . 64

CURRENTDATE . 65

CURRENTDATETIME . 66

CURRENTTIME . 67

DATETONUMBER . 67

DATETOTEXT . 68

FROMDATETIME . 69

MAX . 70

MIN . 70

iv IBM WebSphere Transformation Extender: Functions and Expressions

NUMBERTODATE . 71

TEXTTODATE . 72

TEXTTOTIME . 72

TIMETOTEXT . 73

TODATETIME . 74

Chapter 9. Error handling functions . 75

CONTAINSERRORS . 75

FAIL . 75

ISERROR . 76

ONERROR . 77

REJECT . 78

VALID . 79

Chapter 10. External interface functions . 81

DBLOOKUP . 81

DBQUERY . 83

DDEQUERY . 86

EXIT . 87

GET . 89

PUT . 90

RUN . 91

Chapter 11. Inspection functions . 95

ABSENT . 95

CONTAINSERRORS . 95

ISALPHA . 96

ISERROR . 97

ISLOWER . 97

ISNUMBER . 98

ISUPPER . 99

MEMBER . 99

NOT . 100

OFFSET . 101

OR . 101

PARTITION . 102

PRESENT . 102

SIZE . 103

TESTOFF . 104

TESTON . 104

VALID . 105

Chapter 12. Logical functions . 107

ALL . 107

EITHER . 107

IF . 108

ISALPHA . 109

ISLOWER . 110

ISNUMBER . 110

ISUPPER . 111

NOT . 112

OR . 112

WHEN . 113

Chapter 13. Implementing a library EXIT function 115

EXIT function’s library interface . 115

Using the EXITPARAM Structure . 115

Chapter 14. Lookup and reference functions 119

Contents v

CHOOSE . 119

DBLOOKUP . 119

DBQUERY . 122

DDEQUERY . 125

EXTRACT . 125

GETANDSET . 126

GETDIRECTORY . 127

GETLOCALE . 128

GETFILENAME . 129

GETPARTITIONNAME . 130

GETRESOURCEALIAS . 130

GETRESOURCENAME . 131

GETTXINSTALLDIRECTORY . 131

INDEX . 132

INDEXABS . 133

LASTERRORCODE . 133

LASTERRORMSG . 134

LOOKUP . 135

MEMBER . 136

SEARCHDOWN . 137

SEARCHUP . 138

SORTDOWN . 139

SORTUP . 140

UNIQUE . 140

Chapter 15. Math and statistics functions . 143

ABS . 143

ACOSINE . 143

ASIN . 143

ATAN . 144

ATAN2 . 144

COSINE . 144

COSINEH . 144

COUNT . 144

COUNTABS . 145

EXP . 146

FACTORIAL . 146

FROMBASETEN . 146

INT . 147

LOG . 147

LOG10 . 147

MAX . 148

MIN . 148

MOD . 149

POWER . 149

RAND . 149

ROUND . 150

SIN . 150

SINH . 150

SQRT . 151

SUM . 151

TAN . 151

TANH . 152

TOBASETEN . 152

TRUNCATE . 152

Chapter 16. Text functions . 153

BCDTOTEXT . 153

COUNTSTRING . 153

CPACKAGE . 154

vi IBM WebSphere Transformation Extender: Functions and Expressions

CSERIESTOTEXT . 155

CTEXT . 156

DATETOTEXT . 156

FILLLEFT . 157

FILLRIGHT . 158

FIND . 159

HEXTEXTTOSTREAM . 160

LEAVEALPHA . 161

LEAVEALPHANUM . 161

LEAVENUM . 162

LEAVEPRINT . 162

LEFT . 163

LOWERCASE . 164

MAX . 164

MID . 165

MIN . 165

NUMBERTOTEXT . 166

PACKAGE . 167

PROPERCASE . 167

REVERSEBYTE . 168

RIGHT . 168

SERIESTOTEXT . 169

SQUEEZE . 170

SUBSTITUTE . 171

TEXT . 172

TEXTTOBCD . 173

TEXTTONUMBER . 173

TEXTTOTIME . 174

TIMETOTEXT . 175

TODATETIME . 176

TONUMBER . 176

TRIMLEFT . 178

TRIMRIGHT . 179

UPPERCASE . 180

WORD . 180

Chapter 17. XML functions . 183

VALIDATE . 183

XPATH . 183

XSLT . 184

Chapter 18. Custom functions . 185

Creating a custom function . 185

Chapter 19. Date and time format strings . 189

Time units . 189

Date units . 189

Binary date and time format strings . 190

Japanese date and time format strings . 190

Japanese date format strings . 191

Japanese time format strings . 191

Western date and time format strings . 192

Western date format strings . 192

Western time format strings . 193

Chapter 20. Number format strings . 195

Leading sign format strings . 195

Trailing sign format strings . 195

Substring format strings . 195

Whole number and fraction format strings . 196

Contents vii

Chapter 21. RUN function return codes . 197

Chapter 22. Character set codes for CPACKAGE, CSERIESTOTEXT, and CTEXT . . . 201

Notices . 209

Programming interface information . 211

Trademarks and service marks . 211

Index . 213

viii IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 1. Expressions and evaluations

You can use functions and expressions to create component rules in the Type

Designer and to create map rules in the Map Designer.

The Examples directory, located in the product installation directory, contains type

trees and maps that can help you learn how to accomplish your mapping tasks.

These type trees and maps contain component and map rules that show the use of

many functions and expressions.

Expressions

An expression is a statement about data objects. Expressions are used in

component rules in the Type Designer and in map rules in the Map Designer.

The following are examples of expressions:

Account Balance = Credits - Debits

TrunkRoom < 15

PRESENT (Store#:StoreInfo)

As you enter an expression, you can add spaces before and after component names

and operators to make the expression more readable. Additional spaces have no

effect on an expression.

Expressions are a combination of literals, object names, operators, functions, and

map names.

Component rule expressions evaluate to true or false

Component rules are expressions that evaluate to ″true″ or ″false″. For example,

the result of each of the following component rules is ″true″ or ″false″.

WHEN (PRESENT (Qualifier), PRESENT (Address))

COUNT (Exchange) < COUNT (Purchase)

Invoice#:Item = Invoice#:Item[1]

Map rule expressions evaluate to data

Map rules are expressions that evaluate to data.

For example, the result of each of the following map rules is data:

= "Florida"

= Price:Input

= COUNT (Name:Roster)

= RecordMap (FixedRecord)

Literals

A literal is a constant value. A literal may be a number or a text string.

The rules for using numeric literals are:

v A numeric literal is in integer or decimal format and can be signed.

v A comma separator should not be included in a numeric literal.

v A numeric literal cannot be greater than 254 digits.

© Copyright IBM Corp. 2006 1

The rules for using text literals are:

v A text literal is enclosed in double quotes.

v A double-quote included in a text literal is released by another double quote.

The following are some examples of literals:

"This is a text literal"

"ABC Company"

"Some ""quoted data"" to show use of a double double-quote."

1.23

-9

1045

Carriage return/line feeds cannot be within a quoted string. To use a carriage

return/line feed the string must be broken into two strings with <CR><LF>

between them. For example:

="username=?????" + "<CR><LF>" + "&password=?????"

will place the output username and password information on separate lines.

<CR><LF> must be within quotation marks.

Data object names

A data object is referenced in an expression by its name. An object name can be as

simple as a card name or a local type name. It can also be complex depending on

the object you want to reference.

Object names in map rules

In a map rule, data object names always refer to the card name that contains the

data object name. So, in a map rule, a data object name ends with a card name. In

the following example image, the object name for the component Contact of the

card ContactFile is Contact:ContactFile.

The general definition of an object name in a map rule can be divided into three

parts as described in the following table. If one of these parts is used, it must be

sequenced according to the order in the table.

Parts of an Object Name

Required

Comment name

No

Set of component-paths, each ending with either a colon or the reserved word

IN No

Card name

Yes

 When IN is used, there must be a space before and after it, such as Dependent IN

Claim.

Object names in component rules

In a component rule, data object names always refer to components in the same

component list. In a component rule, a data object name ends with a component

name. For example, if LineItem is in a component list, the object name for the Qty

Info component of LineItem is Qty Info:LineItem.

2 IBM WebSphere Transformation Extender: Functions and Expressions

In the preceding Qty Info:LineItem example, the colon would be interpreted as ″is

a component of″. If the example was Qty Info LineItem, the space between Info

and LineItem would be interpreted as ″is a subtype of″.

The general definition of a component rule object name can be divided into the

two parts described in the following table. If one of these parts is used, it must be

sequenced according to the order in the table.

 Parts of an Object Name Required

Set of one or more component-paths

, infix separated with either a colon or the

reserved word, IN

At least one is required

The reserved word, COMPONENT No

IN and COMPONENT are reserved words. Reserved words are not case-sensitive.

Card name

A map rule can reference the object of an entire card. A card name is a simple type

name from 1 to 32 characters in length. For example, if the input card name is

Invoice, the name for the card object would be Invoice.

Local type name

An object name can be a local type name. A local type name is specified as one or

more simple type names separated by spaces, such as:

City Field

Local type names are typically used to refer to a component. If used in a

component rule, for example, the component referenced in a rule is specified as a

local type name. In a map rule, local type names refer to components contained in

a card object.

Local type names can also be used to refer to the partitioned type of a component.

When a type is partitioned, you can refer to all of its partitions by simply referring

to the partitioned type.

For this example, the type Record is partitioned into Header, Detail, and Trailer.

The object name that references Header, Detail, and Trailer Record is: Record

Here is another example: the type Transcript has Header Record, Detail Record,

and Trailer Record as components contained within it. The object name that

references all Header, Detail, and Trailer Records within Transcript would be

Record IN Transcript.

Partition list

A partition list is a set of partition names separated by the symbols <>. A partition

name is the simple name that represents the partitions found under the parent, or

partitioned, type. For example, the partition Header of the type Record would have

this component path: Header<>Record

Chapter 1. Expressions and evaluations 3

Component path

A component path is specified as an optional partition list, followed by a local type

name and then followed by an optional index. Here are some examples of

component paths:

Grand<>Ball Room[5]

Ball Room[LAST]

Really<>Grand<>Ball Room

Ball Room

Indexed object names

An object name can refer to a particular occurrence of a data object. The index of

the occurrence appears in square brackets immediately after its name. For example,

the object name of the third Note would be:

Note[3]

The index between the square brackets can be an integer or the reserved word,

″LAST″ (a special index value that refers to the last data object of a particular

series). The index cannot be another object name. To use a variable index, use the

CHOOSE function.

LAST is interpreted in the context in which it is used.

Using LAST in a map rule to reference an input

In a map rule, when referencing an input, LAST refers to the very last occurrence

of that input. For example, the last Note of the input Report would have the name:

Note[LAST]:Report

In this context, all of the input has been validated before map rules are evaluated.

Using LAST in a component rule

In a component rule, LAST refers to the last occurrence found. For example, in the

rule:

PO# Field:Order = PO# Field:Order[LAST]

LAST refers to previous occurrence of Order because when this rule is evaluated,

the last known Order is the last one found.

Using LAST in a map rule to reference an output

In a map rule, when referencing an output, LAST refers to the last built occurrence

of that object. For example, using the same expression:

PO# Field:Order = PO# Field:Order[LAST]

LAST refers to the previous occurrence of Order because, when this rule is

evaluated, the last known Order is the last one built.

LAST is a reserved word and is not case-sensitive.

Component paths separated by a colon

A component in the component list of another object is always referenced by a

colon (:). The local type name of the nested component is followed by the colon. To

the right of the colon is the name of the object that contains the component. For

example, the Line Item component of PO would have this name:

Line Item:PO

4 IBM WebSphere Transformation Extender: Functions and Expressions

The Last Name component of Client, which is in turn a component of Account,

would have this name:

Last Name:Client:Account

Component paths separated by IN

To reference all occurrences of an object contained in another object, use the

keyword IN.

For this example, ShipSchedules appears as a component of different components

within OrderAck.

The object name for all occurrences of ShipSchedules within

ORD_ADR_OUT_WD Record is:

ShipSchedules IN ORD_ADR_OUT_WD Record:OrderAck

When IN is used, the contained object name must refer to the same type. In the

example, the ShipSchedules component of ORD_ADR_OUT_WD Record and the

ShipSchedules component of OrderLine Structure must be of the same type.

In the Map Designer, you can refer to all occurrences of an object contained in a

card object. The object name for all occurrences of ShipSchedules within

OrderAck is:

ShipSchedules IN OrderAck

Referring to all occurrences with IN COMPONENT

In the Type Designer, you can refer to all occurrences of an object contained in a

component list. To refer to all components in a component list, up to a given

component, the word COMPONENT is used.

For example, the rule on the component Conclusion Topic needs to count all of

the valid Topics up to, and including, Conclusion Topic.

The IN COMPONENT expression can be used:

#Topic Field:$ = COUNT (Topic IN COMPONENT)

The above component rule works only if Topic is partitioned.

Comment object name

A comment name can be either an in-comment name or an @-comment name.

An in-comment name references all comment objects within a specified object. An

in-comment name is specified as a component-path, a space, the reserved word IN,

followed by another space, followed by the component path of the component on

which the floating component type is defined. For example, given the data

structure shown below, to reference all INPUT Parameters for a particular Input,

regardless of whether they followed Method OpenFile or Method GetEntry, the

object name would be INPUT Parameters IN Input.

An @-comment name references all comment objects that follow immediately after

a specified object. An @-comment name is specified as the component path of the

comment, followed by the reserved symbol ″@″, followed by the component path

of the component that follows the comment. For example, to reference only the

Chapter 1. Expressions and evaluations 5

INPUT Parameters that follow immediately after the Method OpenFile (and

before Method GetEntry), the object name would be INPUT Parameters @

Method OpenFile:Input.

Shorthand notation

In a rule, a dollar sign ($) can be used to refer to the object to the left of the rule

cell. In the Type Designer, the $ sign refers to the object you are qualifying. In the

Map Designer, the $ refers to the object to which the rule evaluates.

In certain cases, you can also use a period between colons to shorten the reference

to a data object name. The ″Use Ellipses″ command can be used to automatically

shorten data object names you drag into rule expressions.

Using the dollar sign ($)

The dollar sign can be used to refer to the object to the left of a rule cell.

For example, the component rule below applies to the component RunRule.

The RunRule in the rule can be replaced by $. You can remember it this way-a

dollar sign always means ″whatever component appears to the left of the rule″.

Here is an example of a Map Designer rule that uses the dollar sign:

Order:Invoice = MapMyOrder (Order:PO , Index ($))

In this example, each time this rule is evaluated, the index of the Order:Invoice

being built is the object referred to by the $.

Using ellipses

A single period can be used, like ellipses, in place of object names, as long as that

object name can be interpreted as a unique object.

For example, if you have the following object name:

City Field:BillTo Customer:Account:File

you may be able to replace it with

City Field:.:File

If file also contains another City Field, such as

City Field:ShipTo Customer:Account:File

and you use the Use Ellipses option, the system returns

City Field:BillTo Customer:.:File

Evaluating expressions

Expressions are evaluated based on the context in which data object names, literals,

operators, function names and map names appear in the expression, and the data

on which it operates. A component rule always evaluates once for each occurrence

of a component. A map rule can evaluate many times.

When a map rule evaluates, the Map Designer selects an evaluation set of values

and then evaluates the rule. Then it selects another evaluation set of values, if there

is one, and evaluates the rule again. This continues until all the different

evaluation sets have been used.

6 IBM WebSphere Transformation Extender: Functions and Expressions

The same number of evaluations is always produced, but output objects can be

ordered differently, depending on how you define your map.

For a selected evaluation set, a particular instance of a rule is evaluated using

parentheses, operator precedence rules, and left-to-right precedence rules to get

one result.

Card order can influence the order of evaluation sets

When an evaluation set is selected, card object names are ordered by their position

in the map: card 1 before card 2, and so on. The card order for a map can affect

the order of output results.

For example, suppose you want to evaluate the following map rule.

NumberSet (s) = B:Card2 + A:Card1

In this example, an evaluation set for this rule consists of one value for B and one

value for A. One evaluation set produces one NumberSet.

As an example, here there are three As and three Bs in the data:

 A Values B Values

1 3

2 2

3 1

There are nine evaluation sets. The order of the cards may affect the order of the

evaluation sets.

 If Card 1 is the first card, you get the following results:

Evaluation # A B Result

1 1 3 4

2 2 3 5

3 3 3 6

4 1 2 3

5 2 2 4

6 3 2 5

7 1 1 2

8 2 1 3

9 3 1 4

 If Card 2 is the first card, you get the following results:

Evaluation # B A Result

1 3 1 4

2 2 1 3

3 1 1 2

4 3 2 5

5 2 2 4

6 1 2 3

Chapter 1. Expressions and evaluations 7

If Card 2 is the first card, you get the following results:

Evaluation # B A Result

7 3 3 6

8 2 3 5

9 1 3 4

If both A and B are contained in the same card object, evaluation sets are selected

based on the order A and B appear in the rule. Leftmost objects are selected first. If

you change the rule to this:

NumberSet (s) = B:Card2 + A:Card2

the same results are produced as when card 2 is the first card.

Functions influence the number of evaluation sets

For this example, you have the following rule:

NumberSet (s) = A:Card1 + SUM (B:Card1)

Using the same values for A and B, there are only three evaluation sets as shown.

 NumberSet[1] = 7

A Values B Values

1 3

2 2

3 1

 NumberSet[2] = 8

A Values B Values

1 3

2 2

3 1

 NumberSet[3] = 9

A Values B Values

1 3

2 2

3 1

If your rule looks like:

NumberSet (s) = SUM (A:Card1) + SUM (B:Card1)

there is one evaluation set: NumberSet[1] = 12

 A Values B Values

1 3

2 2

3 1

8 IBM WebSphere Transformation Extender: Functions and Expressions

If you have the following rule:

NumberSet (s) = A:Card1 + EXTRACT (B:Card2 , B:Card2 != 2)

the order of the operands does not affect the order of evaluation set selected. This

is because an A is selected, then the EXTRACT is evaluated, then evaluation sets

are determined for that A and a given EXTRACT result. When all EXTRACT

results are used, the next A is selected, and so on.

Given the same data, this time you get the following results:

 Evaluation # A B Extract Values Result

1 1 3 4

2 1 1 2

3 2 3 5

4 2 1 3

5 3 3 6

6 3 1 4

As another example, the following map rule applies to the output Status(s):

= IF (Quantity:Order Record:Order > 10 &

OR (Store:Order Record:Order = "A") ,

 "Accept" , "Reject")

The first argument of the IF function is an expression. One evaluation set of this

expression requires:

v the Order

v one Order Record

v one Quantity of the selected Order Record

v all the Stores of the selected Order Record

The IF function evaluates once for each Quantity of each Order Record. Other

than the first argument of the IF function, nothing else in the map rule affects the

number of times the map rule will be evaluated. So, if there are 1000 Quantity

data objects contained in Order, this map rule will evaluate 1000 times.

Object names influence the number of evaluation sets

In some expressions, the same data object name may appear more than once. The

same data object name always refers to the same data object. The same data object

name influences the combinations of evaluation sets that are selected. For example:

BackOrder(s) = Qty Ordered:Record:Order - Qty Received:Record:Order

When a BackOrder evaluation set is selected, the Record that contains Qty

Ordered is always the same Record that contains Qty Received. And an Order is

always the same one for one evaluation set. When the same object name is used

more than once in the same expression, both references bind to the same object.

If there is always one Qty Ordered per Record and one Qty Received per Record,

the following would be sample data:

 Record # Qty Ordered Qty Received

1 5 4

Chapter 1. Expressions and evaluations 9

Record # Qty Ordered Qty Received

2 4 4

3 6 2

This would produce three Back Orders, one for each Record.

You can coordinate nested data objects easily by the way an object name is used.

Using object names to coordinate evaluation sets

In the following example, common object names are used to coordinate Qty and

UnitPrice so they do not get mixed up across different Records:

Extension = SUM (Qty:Detail Record:Order * UnitPrice:Detail Record:Order)

This rule has only one evaluation set because the SUM consumes all the objects

referenced in the rule.

Using IN to decouple object name coordination

Suppose you have a situation in which you do not want to coordinate common

objects. You may, for example, want to count different objects contained in the

same object, as in:

Summary = COUNTabs (Header:Order:Message) + COUNTabs (Line Item:Order:Message)

If there are multiple Orders in your data, the Summary would not be evaluated

correctly. This rule would only count the Headers of the first Order and add it to

the count of all Line Items of the first Order. To count all the Headers and all the

Line Items in all the Orders, use IN:

Summary = COUNTabs (Header IN Message) + COUNTabs (Line Item IN Message)

Using IN to decouple different partitions in the same rule

If data objects in an expression are different partitions of the same type, the

expression may evaluate to ″none″.

For example:

MyMap (Good<>Design , Best<>Design)

Good and Best are partitions of the same type, Design. A given Design could

never be both a Good<>Design and a Best<>Design; therefore, the second

argument of MyMap, Best<>Design, evaluates to ″none″.

To reference both the Good and Best partitions, use IN:

MyMap (Good IN Design , Best IN Design)

Operators

Operators are used for arithmetic functions and text functions on items. If an

operator requires two operands, the operator symbol appears between them. For

example, in the expression a + b, the operator symbol ″+″ appears between the

operands a and b.

Operators are reserved symbols that cannot be used in type names.

10 IBM WebSphere Transformation Extender: Functions and Expressions

Arithmetic operators

Operator

Description

+ addition

- subtraction

* multiplication

/ division

Text operators

Operator

Description

+ concatenation

Logical operators

Logical operators are used in expressions that evaluate to ″true″ or ″false″.

Operator

Description

^ exclusive or

& and

| or

! not

= equals

Comparison operators

Operator

Description

= equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

NOT= alternative for not equal to

The results of comparison operators are based on the native collating sequence of

the machine used to run the map.

Order of operator evaluation

Use parentheses to group operations. Expressions within parentheses are evaluated

before performing other operations. For example:

(UnitPrice - Discount) * Tax

Chapter 1. Expressions and evaluations 11

The expression UnitPrice - Discount is evaluated before the rest of the expression.

Some operators are evaluated before others according to standard rules of

precedence. Operators are evaluated in the following order:

 Precedence Operators Description

first () Operations within parentheses

second + and - unary plus and minus

The sign indicates a positive or negative expression,

for example:

- quantity*rate

third =, <, >, <=, >=, != comparative operators

fourth ^ logical operator ″exclusive or″

fifth & logical operator ″and″

sixth | logical operator ″or″

seventh * and / multiplication and division

eighth + and - addition and subtraction

Operators of equal precedence are evaluated left to right.

Operands

Operands are the arguments for an operator. For example, in the expression a + b,

the + is the operator symbol, and a and b are the operands.

An operand can be any of the following:

v a literal

v a data object name

v a function

v another operator

Using functions in expressions

Functions perform a particular action on its input arguments. A function is written

like this:

FUNCTION (argument1, argument2, ... argumentn)

The arguments of the function appear inside the parentheses, separated by

commas. A function may require a fixed number of arguments or may allow a

varying number of arguments. You can use functions anywhere in an expression.

Function arguments

Input arguments themselves can be expressions. Some functions limit the type of

expression that can be used as an input argument. The syntax specification tells

you the number of data objects that can be used for one function evaluation.

There is always one output argument for a function. The specification of the output

argument tells you: 1) the type of the result produced by a function and 2) the

number of objects that can be produced when the function evaluates once.

12 IBM WebSphere Transformation Extender: Functions and Expressions

You need to know the type of the output argument because functions can be used

as other arguments. The result of a function can also be used to directly produce

an output data object contained in an output destination.

When the Map Designer analyzes the interfaces of expressions in rules during the

build process, it ensures that the output argument of a function matches the input

argument it is used for. The analysis also checks the type of the output argument

when that function is used to directly produce an output data object.

The output argument of a function specifies the result that the function produces

for one evaluation. For example, one evaluation of the ABS function produces one

positive number. One function evaluation may produce multiple outputs. If it does,

the expression that contains that function may produce multiple evaluation sets.

Input arguments

The input arguments for a function specify the information the function uses to

return a result. Some functions require an exact number of input arguments. For

other functions, the number of input arguments can vary. Optional arguments for a

function are shown in brackets [].

To correctly use a function, you must use the correct arguments in the correct

order.

Each argument can, itself, be an expression. In general, an input argument may be

any of the following:

v an object name

v a literal

v a function-name and its arguments

v an operator and its arguments

v an enumerated series of literals, such as {a, b, c}

v a map name and its arguments

For example, some valid expressions that use the ABS function are:

ABS (Quantity:LineItem)

ABS (UNIQUE (Quantity:LineItem)

ABS (Quantity:LineItem - 300)

Each function has its own expression syntax for its input arguments. For example,

the ABS function cannot use a map as an argument. See ″Syntax of a Function″ for

notation used to specify valid expression syntax.

Nested input arguments

When a function, operator, or map is used as an input argument, each of these has

arguments of its own. Arguments of other arguments are said to be nested. For

example, in the use of the ABS function, you can use a function as an argument:

ABS (UNIQUE (Quantity:LineItem))

The output of the UNIQUE function becomes the input argument to the ABS

function.

Chapter 1. Expressions and evaluations 13

Output arguments

The output argument of a function indicates the type of object the function

produces and the number of objects a function can produce. An output argument

is specified as one of the following:

v A single data object of a type

v A series of data objects of the same type

v ″True″ or ″False″

If the output of a function is a series, that function may be used only in a map

rule in the Map Designer. It cannot be used in a component rule in the Type

Designer. For example, you cannot use the CLONE, EXTRACT, REJECT,

SORTDOWN, SORTUP or UNIQUE functions in the Type Designer.

Function arguments and evaluation

When a function is evaluated, the number of argument objects used for one

evaluation depends on the function. In the specification of the syntax for a

function, the number of input objects that can be used for each argument for one

function evaluation is expressed as ″single″ or ″series″.

Some functions use a single object as the value of an argument for one evaluation.

For example, the ABS function uses a single object as the value of its argument for

one evaluation.

ABS (Quantity:LineItem)

When a single object is used for one evaluation, the function itself can evaluate

many times if there is more than one data object that fits the argument definition.

For example, if there were ten Quantity:LineItem data objects, the ABS function

could evaluate ten times.

Some functions use an entire series of objects as the value of an argument for one

evaluation. For example, the COUNT function uses an entire series of data objects

as the value of its argument for one evaluation.

COUNT (LineItem:PO)

When a series of data objects is used for one evaluation, the function evaluates just

once when there is more than one data object that fits the argument definition. For

example, if there are ten LineItem:PO data objects, the COUNT function would

evaluate only once.

Some functions use an entire series as input and produce a series as output. For

example, the evaluation set for the EXTRACT function produces a series from an

input series. When a function produces a series, each output can be selected for

different evaluation sets of the expression that contains that function.

Consider the following expression:

Line Item(s) = EXTRACT (Line Item:Order, Qty:Line Item:Order > 1000)

Each Line Item that fits the specified criteria produces a Line Item of Order. In

this example, the map rule is evaluated many times, once for each Line Item

produced by the EXTRACT function.

When functions are part of other expressions, the number of evaluation sets for

that function depends on the object names used in the entire expression. For

example:

14 IBM WebSphere Transformation Extender: Functions and Expressions

Debit (s) = ABS (Debit:Account:Input)

There may be many evaluation sets for the above expression. The ABS function

may be evaluated many times, once for each Debit of each Account of Input.

However, if the ABS function is part of a more complex expression, common

objects of the expression may determine the number of ABS evaluations.

Map names in expressions

A map may be used like a function and may be referenced in a map rule. This

kind of map is called a functional map. The syntax of a functional map in an

expression is the same as the syntax of a function:

FunctionalMapName (argument1 , argument2 , ... argumentn)

Note: Unlike a function, a map cannot be used as an argument to an operator or

another map. A map may be used as an argument to a function only if the

output of the map evaluates directly to output data objects. For example,

Valid:

IF (A > 10 , BigMap (X) , LittleMap (Y))

Not valid:

IF (FunnyMap (A) , ″2″ , ″3″)

Evaluation of functional maps in an expression

A single evaluation of a functional map requires one object for each input

argument. The result of the evaluation is always one output object. As with

functions and operators, when a functional map is used in an expression,

evaluation sets for that expression may cause the functional map to be evaluated

many times.

Consider the following expression:

MakeForm (EntryForm:Input , GroupInfo:Input)

If there are two occurrences of GroupInfo and four occurrences of EntryForm, the

map MakeForm will be evaluated once per combination of EntryForm and

GroupInfo-a total of (2 x 4) = 8 times.

Consider another expression:

Fmap (a:Input , b:Input , c:Input)

The objects a, b, and c have only Input in common. The expression that contains

the Fmap reference will be evaluated once per combination of a, b, and c.

To illustrate how the functional map will be evaluated, use a very simple data file

of a’s, b’s, and c’s. Each time the map is evaluated, one a object, one b object, and

one c object are selected. The first time the map is evaluated, the data objects are

a1, b1, and c1. The next time it is evaluated, the data objects are a2, b1, and c1, and

so on.

An important difference in how the Map Designer evaluates a functional map in

an expression is when an input argument evaluates to ″none″.

Chapter 1. Expressions and evaluations 15

See ″When an Input Argument of a Function Evaluates to NONE″ .

Expressions that evaluate to NONE

The following discussion explains how the Map Designer evaluates an expression

when expressions within it evaluate to ″none″.

When an operand evaluates to NONE

The following table explains how an operator expression evaluates when an

operand evaluates to ″none″.

The symbol A represents one operand of the expression and B represents the other

operand. The symbol != means ″not equal to″.

 Operator Expression Condition Evaluates to:

A / B A = NONE B = NONE NONE

A*B A = NONE B = NONE NONE

A / B A != NONE B = NONE 0

A*B A != NONE B = NONE 0

A + B A = NONE B = NONE NONE

A - B A = NONE B = NONE NONE

A + B A = NONE B != NONE B

A - B A = NONE B != NONE -B

A + B A != NONE B = NONE A

A - B A != NONE B = NONE A

A > B A = NONE B = NONE FALSE

A < B A = NONE B = NONE FALSE

A = B A = NONE B = NONE TRUE

A > B A = NONE B != NONE FALSE

A < B A = NONE B != NONE TRUE

A = B A = NONE B != NONE FALSE

A > B A != NONE B = NONE TRUE

A < B A != NONE B = NONE FALSE

A = B A != NONE B = NONE FALSE

For example, in this operator expression:

Total = #Guests + 1

if #Guests evaluates to ″none″, the value for Total will be 1.

When an input argument of a function evaluates to NONE

If any input argument of a function evaluates to ″none″, the function may not

evaluate to ″none″. For example, ABS (NONE)=NONE, but COUNT (NONE)=0.

16 IBM WebSphere Transformation Extender: Functions and Expressions

When an input argument of a functional map evaluates to

NONE

If any argument of a functional map evaluates to ″none″, the functional map will

not be evaluated for that evaluation set.

For example:

MakeForm (EntryForm:Input , GroupInfo:Input)

Where the object GroupInfo is optional; it has a component range of (0:3). If there

are no occurrences of GroupInfo in the Input data object, the map MakeForm will

not be evaluated at all.

Here is another example:

OrderMap (OrderRecord:Order:Input , SummaryRecord:Order:Input)

If SummaryRecord has a component range of (0:1) and it is missing in a particular

Order. The map OrderMap will not be evaluated for that Order.

If you want OrderMap to be evaluated even when SummaryRecord is missing,

use the entire Order as an input argument, rather than SummaryRecord. This will

ensure that OrderMap will be evaluated, even if SummaryRecord is missing.

Then, in the map OrderMap, you can still map from SummaryRecord.

The rule you should use is this:

OrderMap (OrderRecord:Order:Input , Order:Input)

When an input of an executable map evaluates to NONE

The evaluation of a map referenced in an expression differs from the evaluation of

that map when it is executed as a functional map and the evaluation of a function

because of how the NONE is treated.

The evaluation of a map used as a function is different from the evaluation of that

map when it is run as an executable map. When a map is run as an executable, if

any input card data object has no content, the map will still run. This is not true

when that map is referenced as a function. If any input argument of a functional

map evaluates to ″none″, the map will not evaluate.

Impact of track setting on order of output

This property setting determines whether objects are tracked according to content

or according to their position within a series. This setting will determine the

sequence in which those objects are evaluated when referenced.

For example, assume that RunsByInning is a component of BallGame. BallGame

is defined as an explicit format, delimited (by a colon) group. The data for

BallGame is as follows:

2::1:1::1::3

v Track Content. If BallGame has a Track setting of Content, all instances of

RunsByInning with content will be mapped before any empty instances. So, if

BallGame was mapped to itself, the output would be:

2:1:1:1:3

Chapter 1. Expressions and evaluations 17

v Track Places. If BallGame has a Track setting of Places, instances of

RunsByInning will be mapped in the sequence in which they occur, including

those instances that are empty. So, if BallGame was mapped to itself, the output

would match the input.

2::1:1::1::3

Track Places will only have an impact on the sequence of the output when both

the input group object and output group object are defined as Track Places.

However, Track Places will have an impact in situations in which an input defined

with Track Places is referenced by index. For instance, in the above example,

v If RunsByInning was defined as Track Places, RunsByInning[2]:BallGame

would have a value of 2 because the value in the second ″place″ in BallGame is

a 2.

v On the other hand, if RunsByInning was defined as Track Content,

RunsByInning[2]:BallGame would have a value of 1 because the second

instance of BallGame with content has a value of 1.

Evaluated expressions assigned to output items

NONE assigned to an output number

When an output item is defined as a number, its value is determined from the

result of the evaluated expression that is then converted to its output form as

follows:

 Output is specified as: Evaluated value Output value

Required 0 0

Required NONE 0

Optional 0 0

Optional NONE NONE

Automatic item format conversions

When an item is assigned an output value, the Map Designer will automatically

convert an item with the same interpretation (either number, text, date, or time)

from one presentation to another. For example, if you want to map an item that is

a number and whose presentation is integer to an item that is also a number but

whose presentation is decimal, the Map Designer will automatically convert it.

The Map Designer fills in missing information in date and time conversions in the

following way:

v Dates with a year, but no century. The century will be determined using the

CenturyDerivation map setting.

v Missing part of an output date format. If a portion of the format of an output

date cannot be derived from the input date, the missing part will have pound

characters (#) in its place. For example, if 09/98 is the date for an input with a

format string of MM/YY and that date was mapped to an output date with a

format of MM/DD/YY, the output date would be built as 09/##/98.

v Missing part of an output time format. If a portion of the format of an output

time cannot be derived from the input time, the missing part will have zeroes (0)

in its place. For example, if 12:14 is the data for an input with a format string of

18 IBM WebSphere Transformation Extender: Functions and Expressions

HH12:MM and that time was mapped to an output time with a format of

HH:MM:SS, the output date would be built as 12:14:00.

To convert a number to text, a date or time, or vice versa, you must use a function

to perform the conversion. For example, to convert a date to text, use the function

DATETOTEXT.

Numeric precision

All numbers in the input and numeric literals in map rules are converted to

multiple precision and converted to the format required at output time.

v If the multiple precision number does not overflow but does not fit into the

maximum size of a numeric item, that item is filled with the number sign

character (#) up to its maximum size.

v An arithmetic overflow is recognized when an arithmetic expression includes:

– Divide by zero

– A multiple precision number greater than 1.0E254

Arithmetic overflow is designated in the output object with up to a maximum of

ten number sign (#) characters.

Chapter 1. Expressions and evaluations 19

20 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 2. Using functions

A function is an expression that generates an output by performing a certain

operation on one or more inputs. Most functions can be used in both component

rules and map rules. Those that produce a series can only be used in map rules.

Functions in a component rule

For example, the object TotalQty in your data is the sum of all the Qty objects in

your data; in a component rule for TotalQty, you can use the SUM function to

verify this relationship.

Functions in a map rule

Suppose you want to map your data differently according to the presence of a

certain input data object. In your map rule, to check the presence of the data

object, use the function PRESENT. To create the output according to whether the

input data was present, use the function IF. Examples of the IF function can be

found in ″Logical Functions″. Examples of the PRESENT function can be found in

″Inspection Functions″.

© Copyright IBM Corp. 2006 21

22 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 3. Syntax of a function

The following is an example of a function:

FUNCTION (argument1, argument2, ... argumentn)

When you use a function, substitute the name of a specific function for

FUNCTION and substitute a specific expression for each input argument. Each

input argument is separated by a comma and the set of arguments is surrounded

by parentheses.

© Copyright IBM Corp. 2006 23

24 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 4. Function argument syntax

Arguments typically have some restrictions on the expression used for that

argument. For example, the input argument to the INDEX function can only be an

object name. Depending on the function, one or many data objects can be used for

an input argument for one function evaluation.

For each function listed in this reference guide, the input argument has a syntax

definition that indicates:

v the number of objects that can be used for each argument for one function

evaluation, expressed as either ″single″ or ″series″

- followed by -

v the type of expression that can be used for each argument.

For the output argument, the syntax specification is similar to the input argument

syntax, except that the output is always used as a specific type of object, not an

expression.

For example, single-item-expression means one evaluation operates on a single

item that can be defined as an item expression. Series-item-expression means one

evaluation operates on one or more input argument items that can be defined as

an item expression.

In this reference guide, the terms listed in the following table are used to describe

the syntax of function arguments.

Term Explanation

general-expression

Any valid combination of object names, literals, operators, function names,

and map names.

condition-expression

Any valid combinations of object names, literals, conditional operators, and

functions whose output arguments are specified as ″true″ or ″false″.

item-expression

Any valid combination of object names, literals, operators, and functions

whose output argument is specified as an item.

 If an item must be interpreted as a date, time, or number, the item is

referenced by its interpretation. For example, if an item-expression must be

text, it is specified as text-expression.

object-expression

An object name or a series producing function.

 If an object expression is further limited to be an item, it is specified as

item-object-expression.

object-name

The name of a data object, as defined in ″Data Object Names″. If an object

name is further limited, it is specified as a prefix. For example,

simple-object-name refers to a simple type name.

© Copyright IBM Corp. 2006 25

... Indicates that the function can take on any number of additional similar

arguments.

[] Indicates that the argument is optional.

{ literal , literal ...}

An enumerated series of literals.

 The syntax specification shows each input argument, using terms as described in

the previous table, preceded by the word ″single″ or ″series″. For example:

Syntax:

ALL (series-condition-expression)

 The arguments are defined using a name that describes its use by the function. A

simple example is:

Meaning:

DATETONUMBER (date_to_convert)

 Function names are shown in uppercase letters in this guide. However, function

names are not case-sensitive.

There is also a description of what each function returns.

Returns:

A single integer

26 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 5. General functions

CLONE

The CLONE function creates a specified number of copies of some object.

This function can be useful when the number of output objects to be built depends

on a data value, rather than the number of objects that exist in the data.

Syntax:

CLONE (single-object-name , single-integer-expression)

Meaning:

CLONE (object_to_copy , number_of_copies)

Returns:

A series-object

The CLONE function returns a series of the object specified by object_to_copy. The

output series consists of as many copies of the object as specified by

number_of_copies. The value of each member of the resulting output series is the

same as object_to_copy.

Examples

v LineItem Segment (s) = LotsOf (CLONE (Detail Row , Quantity:Detail Row))

In this example, the input contains an object named Detail Row that has a

Quantity item component. You want to create multiple Line Item Segments for

every Detail Row in your input based on the value of Quantity. So, if Quantity

has the value 5, you want to build five Line Item Segments for that Detail Row.

DEFAULT

The DEFAULT function allows a pre-defined value to be introduced into an

expression.

DEFAULT, which is typically used with the EITHER function, returns the value

assigned as the default value when the type was defined.

.

Syntax:

DEFAULT(single-type-expression)

Meaning:

DEFAULT(type_whose_defined_default_value_is_desired)

Returns:

A single-object

Examples

v DEFAULT(ZipCode)

In this example, the defined default value for ZipCode is returned. When used

with EITHER, DEFAULT might appear like this:

EITHER(ZipCode,DEFAULT(ZipCode))

© Copyright IBM Corp. 2006 27

If the first argument evaluates to a value other than ″none″, that value is used. If

the first argument evaluates to ″none″, the default value for ZipCode is used.

ECHOIN

The ECHOIN function returns a command (or property) to be used in a RUN

function argument.

Syntax:

ECHOIN (single-integer-expression, single-text-expression)

Meaning:

ECHOIN (card#, item_or_group_interpreted_as_text)

Returns:

A single object

Examples

Before ECHOIN was introduced, the RUN function was used in this way:

RUN ("Mymap", "-IE1S"+NUMBERTOTEXT (SIZE(Data))+ " " + TEXT(Data)))

You can use ECHOIN with RUN, similar to the following:

RUN ("Mymap", ECHOIN(1,(Data)))

Related functions

HANDLEIN

HANDLEIN

The HANDLEIN function returns a command (or property) to be used in a RUN

function argument.

You can use the HANDLEIN function when deriving large amounts of data from a

parent map for use in a RUN map. The HANDLEIN function works by using the

same instance of the parent map’s data set in the RUN map, instead of duplicating

it as the ECHOIN function does.

The result of the HANDLEIN function is a text object that defines the

characteristics of the data to be used. This includes an internal handle, offset, and

length of the data. The result of this can be seen in an execution audit log:

<ExecutionSummary MapStatus="Valid" mapreturn="0" ElapsedSec="0.1803"

BurstRestartCount="0">

 <Message>Map completed successfully</Message>

 <CommandLine>install_dir\sdq20.mmc -IH1 4:512:1024 -ae</CommandLine>

 <ObjectsFound>85</ObjectsFound>

 <ObjectsBuilt>23</ObjectsBuilt>

<SourceReport card="1" adapter="Handle" bytes="1024" adapterreturn="0">

 <Message>Success</Message>

 <Settings>4:512:1024</Settings>

 <TimeStamp>05:06:07 January 27, 2004</TimeStamp>

</SourceReport>

You cannot use a GETANDSET function against an input that is passed using

HANDLEIN.

28 IBM WebSphere Transformation Extender: Functions and Expressions

Syntax:

HANDLEIN (single-integer-expression, single-text-expression)

Meaning:

HANDLEIN (card_to_override, data_object)

Returns:

A character text item

When the HANDLEIN function returns a character text item, the string is prefixed

with: IHx, where x is the first parameter.

String format:

-IHx <internal-handle>.<offset>.<length>

Example:

-IH1 4.4096.512

A single-integer-expression is the number item that specifies the card number to

override. A single-text-expression specifies the data object to use for the override.

In a RUN map rule, you can override a source card with a handle of a current

map’s card by specifying the card to override and the object to override it with.

Examples

In the following rule, the data is object c:b:a for input card 2 of the RUN map:

HANDLEIN(2, c:b:a)

The second parameter can be more complex if needed. For example,

HANDLEIN(2, SUBSTITUE(c:b:a, ″a″, ″A″))

Any data in object c:b:a that contains a lower case ″a″ would change it to an upper

case ″A″ for the call to the RUN map. In cases such as this, where the data cannot

be expressed contiguously within the original card(s), a scratch file is used to hold

the expression and the calling map’s handle is that of the scratch file.

There is no correlation between the handle returned in the output of HANDLEIN

and the actual card number of the second parameter.

Related functions

Generally, the ECHOIN function is used to return a command or property to be

used in a RUN function argument. However, for large amounts of data, using the

HANDLEIN function can be more efficient.

For best results, use the ECHOIN function for small quantities of data, such as less

than 100K, and the HANDLEIN function for larger quantities of data of more than

100K.

Chapter 5. General functions 29

REFORMAT

The REFORMAT function returns a type object that results from replacing the

syntax of the input type with the syntax of the output type. The initiator and

terminator of the output type are built. The content result rules are determined

based on the Input type and the Output type. Groups and Items can be used with

REFORMAT.

REFORMAT cannot be used as an argument to a function, operator, or functional

map.

Syntax:

REFORMAT (single-object-expression)

Meaning:

REFORMAT (type-to-convert)

Returns:

A type object

REFORMAT returns a type object whose content matches the input type object, but

whose syntax matches the output type object. The following table details the

expected results based on the input and output.

 Input Type Output Type Result

Group Group The content for each output component results from the

content of the corresponding input group component

content. For example, output component 1 is matched

with input component 1, output component 2 is matched

with input component 2, and so on. The components of

the groups must be items, not another group. If there is no

matching input component for an output component, the

output component’s required occurrences are built as

″none″S. If there is no matching output component for an

input component, the data of that input component is

ignored.

When a component occurrence is built, the delimiter (if

any) of the contained output group is built and an object

of the component’s output type is built from the

corresponding input type using the REFORMAT

algorithm.

Group Item The text of a corresponding input group content.

Item Group The input item content is applied as though it were the

first component of the output group.

Item Item The input item content is applied to the output item

content.

Examples

v MyXMLPurchaseOrder = REFORMAT(MyCOBOL_PurchaseOrder)

This function is useful when the same type structure may come from different

type trees, such as different versions of the same EDI, or when converting legacy

formats to XML.

30 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 6. Bit manipulation and testing functions

SETOFF

The SETOFF function sets to zero a specified bit in a binary number. You can use

this function to manipulate (turn off) a bit in a binary number.

Syntax:

SETOFF (single-binary-number-expression, single-integer-expression)

Meaning:

SETOFF (binary_number_to_change, bit_to_turn_off)

Returns:

A single binary number

The SETOFF function uses bit_to_turn_off to specify the bit of

binary_number_to_change to be set to the value 0. The result is a binary number

item of the same size as binary_number_to_change.

The value of bit_to_turn_off represents the position of the single bit in

binary_number_to_change to be set off. (Bits are numbered from left to right, with

the leftmost bit being bit 1.) If bit_to_turn_off is less than one or greater than the

number of bits of binary_number_to_change, SETOFF returns

binary_number_to_change unchanged.

Examples

v SETOFF (A , 16)

Assume A is the two-byte binary value of ″1″ (which is all zeros except for bit

16). The binary representation of the value in A is 0001.

The result is the two-byte binary value, ″0″

v SETOFF (A , 38)

Results in the two-byte binary value ″1″, the original value of A, because bit 38

does not exist in A.

SETON

You can use the SETON function to ″turn on″ a specific bit in a binary number.

SETON sets the specified bit in the number to ″1″.

Syntax:

SETON (single-binary-number-expression, single-integer-expression)

Meaning:

SETON (binary_number_to_change, bit_to_turn_on)

Returns:

A single binary number

SETON uses the value of bit_to_turn_on to specify the bit of

binary_number_to_change that should be set to the value 1. The result is a binary

number item of the same size as binary_number_to_change.

© Copyright IBM Corp. 2006 31

Bit_to_turn_on represents the position of the single bit in binary_number_to_change

to be set on. (Bits are numbered from left to right, with the leftmost bit being bit

1.) If bit_to_turn_on is less than one or greater than the number of bits of

binary_number_to_change, SETON returns binary_number_to_change, unchanged.

Examples

v SETON (A , 15)

In this example, assume A is the two-byte binary value of 1 (which is all zeros

except for bit 16). The binary representation of the value in A is 0001.

The function returns the two-byte binary value, 0011, which is the decimal value

of 3.

v SETON (A , 40)

Returns the two-byte binary value of 1-the original value of A- because bit 40

does not exist in A.

TESTOFF

The TESTOFF function tests a specified bit in a binary number item to see whether

it is off.

Syntax:

TESTOFF (single-binary-number-expression , single-integer-expression)

Meaning:

TESTOFF (binary_number_to_test , bit_to_test)

Returns:

″True″ or ″false″

The value of bit_to_test specifies which bit of binary_number_to_test should be tested

for the value 0. If bit_to_test has the value 1, it refers to the leftmost bit of

binary_number_to_test.

The TESTOFF function returns ″true″ if the specified bit is off and returns ″false″ if

the specified bit is on.

If bit_to_test is less than one or greater than the number of bits of

binary_number_to_test, TESTOFF returns ″false″.

Examples

v TESTOFF (A, 16)

Assume A is the two-byte binary value of ″1″, which is all zeros except for bit

16. The binary representation of the value in A is 0001.

This example returns ″false″.

v TESTOFF (A, 20)

Returns ″false″ because bit 20 does not exist.

32 IBM WebSphere Transformation Extender: Functions and Expressions

TESTON

The TESTON function tests a specified bit in a binary number to see if it is on.

Syntax:

TESTON (single-binary-number-expression, single-integer-expression)

Meaning:

TESTON (binary_number_to_test ,bit_to_test)

Returns:

″True″ or ″false″

The value of bit_to_test specifies the bit of binary_number_to_test to test for the

value 1. If bit_to_test has the value 1, it refers to the leftmost bit of

binary_number_to_test.

The function returns ″true″ if the specified bit is on; it has the value 1. It returns

″false″ if the specified bit is off; it has the value 0.

If bit_to_test is less than one or greater than the number of bits of

binary_number_to_test, TESTON returns ″false″.

Examples

v TESTON (A , 16)

Assume A is the two-byte binary value of ″1″, which is all zeros except for bit

16. The binary representation of the value in A is 0001.

This example returns ″true″.

v TESTON (A , 20)

Returns ″false″ because bit 20 does not exist in a two-byte value.

Chapter 6. Bit manipulation and testing functions 33

34 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 7. Conversion functions

BASE64TOTEXT

Use the BASE64TOTEXT decoding function to convert previously encoded data

from BASE64 back to the original text. The data is converted to the character set of

the output object used. For example, if the output object is EBCDIC the output will

be EBCDIC.

Syntax:

BASE64TOTEXT (single-object-expression)

Meaning:

BASE64TOTEXT (BASE64_object_to_convert)

Returns:

A single-text-item

This function receives a text object in Base64-encoded format, converts the object to

text, and returns a single data object that represents the original text object that

was encoded. If an error occurs during conversion, no data is returned.

Example

BASE64TOTEXT(″U29tZSBFeGFtcGxlIERhdGE=″)

Output: Some Example Data

BCDTOHEX

The BCDTOHEX function converts an item from binary coded decimal (BCD)

format to hexadecimal format. The binary value that is returned always has the

high-order byte first, regardless of the platform. This is useful for testing a specific

bit position for a specific value.

.

Syntax:

BCDTOHEX (single-text-expression, single-integer-expression)

Meaning:

BCDTOHEX (BCD_item_to_convert, length_of_output)

Returns:

A single binary bytestream

When using the BCDTOHEX function, the input argument is converted from BCD

format to its binary value.

Numbers in BCD format have two decimal digits in each byte. Each half-byte,

therefore, can contain a binary value from 0000 (which represents the digit 0)

through 1001 (which represents the digit 9). Based on this definition, the following

applies:

v If any half-byte of the BCD number contains the binary values 1101 or 1111, that

half-byte is ignored.

© Copyright IBM Corp. 2006 35

v If any half-byte contains the binary values 1010, 1011, 1100, or 1110, the output

of the function is ″none″.

The length of the output argument is specified as the value of the second input

argument. The length must be 1, 2, or 4. If it is any other value, the length is

assumed to be 2.

Examples

v You can use BCDTOHEX to test a specific bit position for a specific value. For

example, BCDTOHEX is useful when the BCD value represents flag bits. The

conversion performed by BCDTOHEX results in a predictable location for the

flag bits across platforms where the bytes may otherwise be reversed.

v TESTON (BCDTOHEX (ProcessIndicator, 2) 10)

Tests for the x`0040’ bit in a two-byte result.

Note: This same test, using BCDTOINT on a PC, tests the x`4000’ bit.

Related functions

v BCDTOTEXT

v BCDTOINT

v TEXTTOBCD

BCDTOINT

The BCDTOINT function converts an item from BCD (binary coded decimal)

format to integer format. The binary value that is returned has a form native to the

machine on which the map is being run.

Syntax:

BCDTOINT (single-text-expression , single-integer-expression)

Meaning:

BCDTOINT (BCD_item_to_convert , length_of_output)

Returns:

A single-binary-number

BCD_item_to_convert is converted from BCD (binary coded decimal) format to its

integer value.

Numbers in BCD format have two decimal digits in each byte. Each half-byte,

therefore, can contain a binary value from 0000 (which represents the digit 0)

through 1001 (which represents the digit 9). Based on this definition, the following

applies:

v If any half-byte of the BCD number contains the binary values 1101 or 1111, that

half-byte is ignored.

v If any half-byte contains the binary values 1010, 1011, 1100, or 1110, the output

of the function is ″none″.

The length of the output binary number is specified by length_of_output. The length

must be 1, 2, or 4. If it is any other value, the length is assumed to be 2.

BCDTOINT returns a binary value of the form native to the machine on which the

map is being run. The value can therefore be used in arithmetic operations or

compared to other numeric values. It should not be used for bit manipulations,

36 IBM WebSphere Transformation Extender: Functions and Expressions

because the order of the bytes in the number is dependent on the platform on

which the map is being run. For example, on a personal computer, the low-order

byte is first, while on a mainframe, the high-order byte is first.

Examples

v BCDTOINT (bcdAmount Field , 2)

If the bcdAmount Field contains x’37’ in BCD format, this example returns the

integer value of 37.

Related functions

v BCDTOTEXT

v BCDTOHEX

v TEXTTOBCD

BCDTOTEXT

The BCDTOTEXT function converts the digits in a BCD (Binary Coded Decimal)

item to a text item containing the digits of the BCD-encoded item as a string of

characters.

Syntax:

BCDTOTEXT (single-text-expression)

Meaning:

BCDTOTEXT (BCD_item_to_convert)

Returns:

A single text item

BCD_item_to_convert is converted from BCD format to a text string containing the

digits of the BCD-encoded value as a string of characters.

Numbers in BCD format have two decimal digits in each byte. Each half-byte,

therefore, can contain a binary value from 0000 (which represents the digit 0)

through 1001, which represents the digit 9). Based on this definition, the following

applies:

v If any half-byte of the BCD number contains the binary value 1101 or 1111, that

half-byte is ignored.

v If the BCD item contains the binary value 1010, 1011, 1100, or 1110, the output of

the function is ″none″.

Examples

v BCDTOTEXT (Qty:Item)

If Qty is x`1234’, the result is 1234.

v BCDTOTEXT (DiscountAmt)

If DiscountAmt is x`0123’, the result is 0123.

v BCDTOTEXT (TotalDollars)

If Total is x`F123’, the result is 123.

Related functions

v BCDTOHEX

v BCDTOINT

v TEXTTOBCD

Chapter 7. Conversion functions 37

CONVERT

The CONVERT function replaces each byte of a byte stream or text expression with

a byte from another byte stream or text expression. The decimal value of each byte

of the first argument is used to locate the corresponding byte in the second

argument that will replace it.

Syntax:

CONVERT (single-byte-stream-or-text-expression, single-byte-stream-or-
text-expression)

Meaning:

CONVERT (bytes_to_replace , replacement_bytes)

Returns:

A single byte stream or text item

The CONVERT function replaces each byte of bytes_to_replace with a byte from

replacement_bytes. The byte chosen from replacement_bytes is the one whose index is

the decimal value of bytes_to_replace. The first byte of replacement_bytes has the

index value of zero. If there is no corresponding byte in replacement_bytes,

CONVERT returns ″none″.

You can use the CONVERT function to convert ASCII to EBCDIC or EBCDIC to

ASCII data. See the convert.mms map source file in the examples\general\
portdata folder of the product installation directory. One of the maps in

convert.mms is ASCII_TO_EBCDIC, which converts ASCII to EBCDIC. The

EBCDIC_TO_ASCII map converts EBCDIC to ASCII.

ASCII to EBCDIC conversion can be performed automatically by defining the

appropriate data language (ASCII or EBCDIC) for each data item.

Examples

v CONVERT (SYMBOL (0) ,″AB″)

Returns A

v CONVERT (SYMBOL (1) ,″AB″)

Returns B

v CONVERT (SYMBOL (2) ,″AB″)

Returns ″none″

v CONVERT (ASCII , ATOETable)

Converts ASCII text to EBCDIC based on values in a table named ATOETable

DATETONUMBER

Use DATETONUMBER to perform arithmetic on dates.

The DATETONUMBER function returns an integer that results from counting the

number of days from December 31, 1864, to the specified date.

Syntax:

DATETONUMBER (single-date-expression)

Meaning:

DATETONUMBER (date_to_convert)

38 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

A single integer

The DATETONUMBER function converts a date to an integer. The resulting integer

represents the number of days since December 31, 1864, where using

DATETONUMBER with a date of January 1, 1865 returns the integer value 1.

If the input argument is in error, the function returns the value ″none″.

If the date format specified by the input argument does not include century, the

century is determined based on the Century map setting using the CCLookup

parameter or the current century.

Examples

v DaysBetween = DATETONUMBER (StopDate) - DATETONUMBER (StartDate

)

This expression could be used in a map rule to produce a value for

DaysBetween. It converts the StopDate and the StartDate to integers, then

subtracts the resulting two integers, and returns the result as DaysBetween.

Related functions

v ADDDAYS

v NUMBERTODATE

DATETOTEXT

The DATETOTEXT function converts a date object or expression to a text item.

Syntax:

DATETOTEXT (single-date-expression)

Meaning:

DATETOTEXT (date_to_convert)

Returns:

A single text item

If date_to_convert is a date object name, this returns the date as a text item

formatted according to the presentation of the date object.

If date_to_convert is a date expression produced by a function, this returns the date

as a text item formatted according to the presentation of the output argument of

that function.

Examples

v DATETOTEXT (ShipDate)

In this example, ShipDate is converted from a date to text. If ShipDate has a

CCYYMMDD presentation, the resulting text item will have that presentation, as

well.

v DATETOTEXT (CURRENTDATETIME (″{MM/DD/CCYY}″))

In this example, CURRENTDATETIME evaluates and returns a date in

MM/DD/CCYY format. Then DATETOTEXT evaluates and returns a text string

that is that date in MM/DD/CCYY format.

Chapter 7. Conversion functions 39

For example, use DATETOTEXT, to do text concatenation. The FROMDATETIME

function provides greater flexibility in specifying the format of the resulting text

item.

Related Functions

v FROMDATETIME

v NUMBERTOTEXT

v TEXT

v TEXTTODATE

v TEXTTONUMBER

v TEXTTOTIME

v TIMETOTEXT

v TODATETIME

FROMBASETEN

You can use FROMBASETEN when you need to convert numbers to a base other

than 10.

The FROMBASETEN function converts an integer to a text item that can be

interpreted as a number, using positional notation of the base specified.

Syntax:

FROMBASETEN (single-integer-expression , single-integer-expression)

Meaning:

FROMBASETEN (positive_integer_to_convert , base_to_convert_to)

Returns:

A single text item

FROMBASETEN returns a text item that results from converting

positive_integer_to_convert to a text item that can be interpreted as a number using

positional notation of the base specified by base_to_convert_to.

If base_to_convert_to is less than 2 or greater than 36, FROMBASETEN evaluates to

″none″. Resulting text item characters A-Z are interpreted as digits having decimal

values from 10-35, respectively. The characters returned are uppercase.

Example

v FROMBASETEN (18 , 2)

Returns the value 10010

v FROMBASETEN (123 , 8)

Returns the value 173

Related function

v TOBASETEN

40 IBM WebSphere Transformation Extender: Functions and Expressions

FROMDATETIME

The FROMDATETIME function converts a date/time item to a text string of a

specified format. For example, you can use FROMDATETIME to convert a

date-time item into a string for parsing or concatenation. You can also use this

function to access the individual parts of a date or time, such as the month, day,

year, and so forth.

Syntax:

FROMDATETIME (single-character-date-time-item

 [, single-text-expression])

Meaning:

FROMDATETIME (date_time [, date_time_format_string])

Returns:

A single character text item

FROMDATETIME returns the date/time specified by date_time as a text item with

the format specified by date_time_format_string. If date_time_format_string is not

specified, date_time will be returned in the same format as the date_time.

The date_time_format_string must conform to the date/time format strings as

described in the ″Format strings″ section.

Examples

v HeaderLine=″Today is″ + FROMDATETIME (CURRENTDATE (),″{MON DD,

CCYY}″)

If the current system date is March 3, 1999, this rule evaluates to Today is Mar

03, 1999.

v FROMDATETIME (TransactionTimeStamp Column:.:TransHistory)

If the value of TransactionTimeStamp Column is 10:14 A.M. on February 3, 2000

and its format is defined as ″{CCYYMMDDHHMM}″, 200002031014.

v EXTRACT (Expense:Report, FROMDATETIME (Date:Expense:Report, ″{MM}″) =

″03″)

In this example, the FROMDATETIME function is used in the condition

expression of the EXTRACT function to identify all expenses in the month of

March.

Related functions

v CURRENTDATE

v CURRENTDATETIME

v CURRENTTIME

v DATETOTEXT

v TODATETIME

FROMNUMBER

The FROMNUMBER function converts a number to a text string of a specified

format.

Chapter 7. Conversion functions 41

Use FROMNUMBER when you need to convert a number item into a string for

parsing or concatenation.

Syntax:

FROMNUMBER (single-character-number-item [, single-text-expression])

Meaning:

FROMNUMBER (number_to_convert [, number_format_string])

Returns:

A single character text item

FROMNUMBER returns the number specified by number_to_convert as a text item

with the format specified by number_format_string. If number_format_string is not

specified, number_to_convert will be returned in the same format as the

number_to_convert.

The date_time_format_string must conform to the number format strings as

described in the ″Format strings″ section.

Examples

v Greeting = ″You are caller number ″ + FROMNUMBER (SeqNo:.:History,

″{#’,’###}″) + ″!″

If the value of SeqNo is 2348192, this rule evaluates to ″You are caller number

2,348,192!″

v ″$″ + FROMNUMBER(CurrentRate Field:.:Schedule, ″{#’,’###’.’2##2}″)

If the value of CurrentRate Field is 15.875, ″$15.88″.

Related functions

v DATETONUMBER

v NUMBERTODATE

v NUMBERTOTEXT

v TONUMBER

HEXTEXTTOSTREAM

HEXTEXTTOSTREAM is the reverse of STREAMTOHEXTEXT. You can use the

HEXTEXTTOSTREAM function to assign a binary text value to a character text

item represented by hexadecimal pairs.

HEXTEXTTOSTREAM returns a binary text stream whose value is the evaluation

of input character text represented by hexadecimal pairs.

Syntax:

HEXTEXTTOSTREAM (single-text-expression)

Meaning:

HEXTEXTTOSTREAM (series_of_hex_pairs)

Returns:

A single byte stream item

42 IBM WebSphere Transformation Extender: Functions and Expressions

This function returns a binary text stream item whose value is the evaluation of

input character text in series_of_hex_pairs, ignoring <WSP> characters between the

hexadecimal pairs. White space characters include space, horizontal tab, carriage

return, and line feed characters.

Input formats

The following table shows an example of input in its character text representation

as viewed through the character editor, and in its ASCII code representation

(binary text stream) as viewed through the hex editor. Each pair of binary text in

the hex view represents one character in the character view of the character text.

 Input (″41 42 43 44″) Editor View Value

Character text (hex pairs) Character ″41 42 43 44″

ASCII code representation (binary text

stream)

Hex 0x3431203432203433203434

Examples

v HEXTEXTTOSTREAM (″41 42 43 44″)

Returns the evaluated value of the input (ASCII) character text string ″41 42 43

44″ as the output (ASCII) character text string ″ABCD″ as viewed in the

character editor. (The hex view of the input is 0x3431203432203433203434. The

hex view of the output is 0x41424344.)

v HEXTEXTTOSTREAM (″0D 0A 00″)

Returns the evaluated value of the input (ASCII) character text string ″0D 0A 00″

as the output (ASCII) character text string ″<CR><LF><NULL>″ as viewed in

the character editor. (The hex view of the input is 0x3044203041203030. The hex

view of the output is 0x0D0A00.)

See Design Studio Introduction documentation for a list of special symbols.

Related functions

v SYMBOL

v STREAMTOHEXTEXT

INT

You can use the INT function when you need only the integer portion of a number.

Syntax:

INT (single-number-expression)

Meaning:

INT (number_to_convert)

Returns:

A single integer

INT returns the integer portion of a number. The result is the integer part of

number_to_convert. Any fractional part after the decimal point is dropped.

Examples

v INT (1.45)

Returns 1

Chapter 7. Conversion functions 43

v INT (3.6)

Returns 3

v INT (Purchase:Amt - Discount:Amt)

Subtracts Discount:Amt from Purchase:Amt and returns the result as a whole

number.

Related functions

v MOD

v ROUND

v TRUNCATE

NUMBERTODATE

You can use the NUMBERTODATE function to perform a calculation on a date.

NUMBERTODATE converts an integer to a date, where the integer is the number

of days from December 31, 1864, to the specified date. Only positive, non-zero

values can be specified as valid parameters.

.

Syntax:

NUMBERTODATE (single-integer-expression)

Meaning:

NUMBERTODATE (integer_to_convert)

Returns:

A single date

After converting an integer to a date, if the result is being assigned to a date object,

the resulting date is in the presentation for that output. If the resulting date is not

being assigned to an object, it has a CCYYMMDD presentation.

When the year exceeds four digits, the output will display hash characters (#) for

the CCYY values because the field is defined to be only four digits in length.

Examples

v NUMBERTODATE (StartDate)

This example converts the StartDate value from an integer to a date that is in

CCYYMMDD format.

Related functions

v ADDDAYS

v DATETONUMBER

v FROMDATETIME

v TODATETIME

NUMBERTOTEXT

The NUMBERTOTEXT function converts a character number to a text item that

looks like the original object.

44 IBM WebSphere Transformation Extender: Functions and Expressions

You can use NUMBERTOTEXT when you need an object that is defined as a

number converted to an object defined as text. This is useful when you need to

concatenate text, however, the FROMNUMBER function provides greater flexibility

in specifying the format of the resulting text item.

Syntax:

NUMBERTOTEXT (single-number-expression)

Meaning:

NUMBERTOTEXT (number_to_convert)

Returns:

A single text item

The resulting text looks like the input argument. The result is truncated, if

necessary.

Examples

v NUMBERTOTEXT (ROUND (1000 - 24.75, 3))

This example converts the result of the calculation (rounded to 3 decimal places)

to text, resulting in 975.250.

v NUMBERTOTEXT (PurchaseNumber)

This example converts PurchaseNumber from a number to text.

Related functions

v FROMNUMBER

v TEXTTONUMBER

v TODATETIME

v TONUMBER

PACK

The PACK function converts an integer to a text item that can be interpreted as a

packed decimal number.

The sign values for packed data are as follows:

v C for positive (+)

v D for negative (-)

v F for unsigned, which is read as positive

Syntax:

PACK (single-integer-expression)

Meaning:

PACK (integer_to_conver)

Returns:

A single text item

In a packed decimal number, each half-byte is a digit, except for the last half-byte

of the rightmost byte, which contains a sign.

Examples

v PACK (314)

Returns ″1L″ and results in the hex value 31 4C (which, in ASCII, looks like 1L)

Chapter 7. Conversion functions 45

v PACK ((Unit Price * Quantity) * 100)

In this example, the packed number has two implied decimal places. Because

PACK does not accept decimal places, including implied ones, the nested

arithmetic expression, Unit Price * Quantity, is multiplied by 100 before

rounding.

Define items as having a packed decimal number presentation. Then, when

mapping to or from these items, the conversion to and from packed decimal is

automatically performed as needed.

Related function

v UNPACK

PACKAGE

The PACKAGE function converts a group or item object to a text item, including

its initiator, terminator, and any delimiters it contains.

Syntax:

PACKAGE (single-object-expression)

Meaning:

PACKAGE (object_to_convert)

Returns:

A single text item

The PACKAGE function converts object_to_convert, which must be a type reference

to a text item, including the type reference’s initiator, terminator, and all delimiters.

PACKAGE differs from TEXT in that it includes the initiator and terminator of the

specified type reference.

Examples

v PACKAGE (Record:Card)

Returns: #1339X10A,491.38,Green,42x54@

For this example, the group Record has an initiator of ″#″, a terminator of ″@″

and a delimiter of ″,″. The data looks like this: ″#1339X10A,491.38,Green,42x54@″.

Related functions

v DATETOTEXT

v NUMBERTOTEXT

v SERIESTOTEXT

v TIMETOTEXT

v TEXT

PACKAGE differs from TEXT because it includes the initiator and terminator of

the input object.

QUOTEDTOTEXT

The QUOTEDTOTEXT decoding function converts a single (text or binary) data

object in Quoted-Printable format to a single data object that represents the original

text or binary object.

Syntax:

QUOTEDTOTEXT (single-object-expression)

46 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

QUOTEDTOTEXT (quoted_printable_object_to_convert)

Returns:

A single-text-item

You can use this function to decode data that was previously encoded to RFC 1767

Quoted-Printable encoding. Any hexadecimal representations are decoded to the

appropriate ASCII character and any soft breaks are removed.

If an error occurs during conversion, no data is returned.

Example

QUOTEDTOTEXT(″Unencoded data=0CEncoded=″)

Output: Unencoded data<FF>Encoded

SERIESTOTEXT

You can use the SERIESTOTEXT function to project your input data as a series and

to interpret it as a text item for output.

SERIESTOTEXT converts a contiguous or non-contiguous series to a text item.

Syntax:

SERIESTOTEXT (series-object-expression)

Meaning:

SERIESTOTEXT (series_to_convert)

Returns:

A single text item

SERIESTOTEXT returns a text item containing the concatenation of the series of the

input argument, including nested delimiters but excluding initiators and

terminators.

Examples

In this example, you have the following data that represents bowler information

for a bowling league:

Andrews, Jessica:980206:JBC:145:138:177:159

Little, Randy:980116:BBK:175:168

Wayne, Richard:980102:JBC:185:204:179:164:212

Each record consists of the bowler’s name, the date of their last game played, a

team code and one or more bowling scores. Record is defined as a group that is

infix-delimited by a colon.

Using the rule:

= SERIESTOTEXT (Score Field:Bowler:Input)

Chapter 7. Conversion functions 47

the following results are produced, which is the concatenation of all of the scores

for all of the bowlers, even though the scores are not all contiguous within the

data:

145138177159175168185204179164212

However, if the rule was changed, for instance, to concatenate the list of scores to

the bowler’s name:

= BowlerName Field:Bowler:Input + ″ ->″ +

SERIESTOTEXT (Score Field:Bowler:Input)

the following output would be produced:

Andrews, Jessica -> 145138177159

Little, Randy -> 175168

Wayne, Richard -> 185204179164212

In this example, you have an input number that is of variable size, followed by a

name. There is no syntax that separates the number from the name. You can define

the number as a group with Byte(s) as a component and provide a component rule

for Byte(s), such as:

ISNUMBER ($)

Based on this, the number can be distinguished from the name. When mapping,

collect all the bytes of the number back again. You can use SERIESTOTEXT to do

this.

Related functions

v PACKAGE

v TEXT

STREAMTOHEXTEXT

Use STREAMTOHEXTEXT to assign a character text value to a binary text stream

item.

The STREAMTOHEXTEXT function returns a character text string represented by

hex pairs whose value is the evaluation of an input binary text stream.

This function is the reverse of the HEXTEXTTOSTREAM function.

Syntax:

STREAMTOHEXTEXT (single-byte-stream-item)

Meaning:

STREAMTOHEXTEXT (single-byte-stream-item)

Returns:

A series of hex pairs

STREAMTOHEXTEXT returns a string of hex pairs whose value is the evaluation

of input binary text in series_of_hex_pairs.

48 IBM WebSphere Transformation Extender: Functions and Expressions

Input formats

The following table shows an example of input in its ASCII code representation

(binary text stream) as viewed through the hex editor, and in its character text

representation as viewed through the character editor. Each four-character

grouping of binary text in the hex view represents one character in the character

view.

 Input (0x41424344) Editor View Value

ASCII code representation (binary text stream) Hex 0x41424344

Character ″ABCD″

Examples

v STREAMTOHEXTEXT (0x41424344)

Returns the evaluated value of the input (ASCII) binary text stream 0x41424344

as the output (ASCII) binary text stream 0x3431343234333434 as viewed in the

hex editor. (The character view of the input is ″ABCD″. The character view of

the output is ″41424344″.)

v STREAMTOHEXTEXT (0x0D0A00)

Returns the evaluated value of the input binary text stream 0x0D0A00 as the

output 0x304430413030 as viewed in the hex editor. (The character view of the

input is ″<CR><LF><NULL>″. The character view of the output is ″0D0A00″.)

Related functions

v HEXTEXTTOSTREAM

v SYMBOL

SYMBOL

You can use SYMBOL to include a symbol in your output.

The SYMBOL function returns a one-byte character that is the ASCII character

equivalent of a specified decimal value.

Syntax:

SYMBOL (single-integer-expression)

Meaning:

SYMBOL (decimal_value)

Returns:

A single one-byte text item

The value of the resulting item is the ASCII character equivalent of decimal_value.

Valid input values are 0 to 255. Values outside of this range return ″none″.

A listing of decimal values (0-127) and their ASCII character equivalents is

included in the Design Studio Introduction documentation.

Examples

v SYMBOL (13)

Produces a carriage return

v SYMBOL (13) + SYMBOL (10)

Chapter 7. Conversion functions 49

Produces a carriage return/linefeed

You can accomplish the same result using the angle-brackets around the decimal

value. For example, the second example above would be equivalent to

<CR><LF> or <<0D>><<0A>>

Related functions

v HEXTEXTTOSTREAM

v STREAMTOHEXTEXT

TEXTTOBASE64

The TEXTTOBASE64 encoding function converts a text item to Base64 format.

Syntax:

TEXTTOBASE64 (single-object-expression)

Meaning:

TEXTTOBASE64 (text_object_to_convert)

Returns:

A single-text-item

The TEXTTOBASE64 function receives a text object, converts the text to Base64

format, and returns a single data object that represents the Base64 encoding of the

original text object. If an error occurs during conversion, no data is returned.

Example

TEXTTOBASE64(″Some Example Data″)

Output: U29tZSBFeGFtcGxlIERhdGE=

TEXTTOBCD

The TEXTTOBCD function converts a text item from decimal digits to BCD (Binary

Coded Decimal) format.

Syntax:

TEXTTOBCD (single-integer-text-expression)

Meaning:

TEXTTOBCD (text_to_be_converted)

Returns:

A single BCD-formatted text item

TEXTTOBCD converts text_to_be_converted (which consists of decimal digits) to

BCD format. In this format, each byte contains two decimal digits represented as

binary numbers. If there is an odd number of decimal digits in the input, the

high-order half-byte of the leftmost output byte will contain the decimal value 15

(hex ″F″).

If anything other than a decimal digit is encountered in the input, TEXTTOBCD

returns ″none″.

50 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

v TEXTTOBCD (″1234″)

Returns the hexadecimal value x’1234’

v TEXTTOBCD (″123A″)

Returns ″none″

v TEXTTOBCD (″123″)

Returns the hexadecimal value x’F123’

In this example, the values shown as input (″123″) are meant to represent

character items in the native character set to the machine on which the map is

running. On a personal computer, ″123″ would contain the ASCII characters for

the digits that have the hexadecimal values ″31″, ″32″, and ″33″. The output,

described as ″the hexadecimal value `F123’″, consists of the two binary bytes

″F1″ and ″23″.

On an IBM mainframe the input string would contain EBCDIC characters for the

digits that have the hexadecimal values ″F1″, ″F2″, ″F3″, Âº, but the output

would be the same as the personal computer output.

Related functions

v BCDTOHEX

v BCDTOINT

v BCDTOTEXT

TEXTTODATE

The TEXTTODATE function converts text item from CCYYMMDD or YYMMDD

format to a date.

You can use the TEXTTODATE to convert a text item to a date, however, the

TODATETIME function provides greater flexibility for specifying the resulting

date-time format .

Syntax:

TEXTTODATE (single-text-expression)

Meaning:

TEXTTODATE (text_to_convert_to_date)

Returns:

A single date

The text_to_convert_to_date must be in either CCYYMMDD or YYMMDD format. If

the text_to_convert_to_date is in error (for example, it is not a valid date), the result

is ″none″.

If text_to_convert_to_date is in YYMMDD format and is being assigned to a date

format that includes a century, the century is determined based on the century run

option setting using the CCLookup parameter or the current century.

Examples

v TEXTTODATE (″990114″)

Returns a single date item with the value of January 14 in the year 99

v TEXTTODATE (OrderDate)

Returns OrderDate as a single date item.

Chapter 7. Conversion functions 51

Related functions

v DATETOTEXT v TEXTTOTIME

v NUMBERTOTEXT v TIMETOTEXT

v TEXTTONUMBER v TODATETIME

TEXTTONUMBER

Use TEXTTONUMBER to convert text to a number.

The TONUMBER function provides greater flexibility for specifying the format of

the text item that is to be converted to a number.

Syntax:

TEXTTONUMBER (single-text-expression)

Meaning:

TEXTTONUMBER (text_to_convert_to_number)

Returns:

A single character number

The text_to_convert_to_number must be in integer or ANSI-formatted (floating point)

presentation. The resulting number looks like the input argument, however,

nonsignificant zeroes to the right of the decimal separator will be truncated. If the

input argument is in error (for example, it is not a recognizable as a valid number),

the result is ″none″.

When specified as in ANSI-formatted presentation, the text string must meet the

following requirements:

v The decimal point can be a period, a comma, or ″none″.

v The leading sign can be a plus sign, a minus sign, or ″none″.

v No thousands separator is allowed.

Examples

v TEXTTONUMBER (OrderQty)

Returns OrderQty as a character number item

Related functions

v DATETOTEXT

v FROMNUMBER

v NUMBERTOTEXT

v TEXTTODATE

v TEXTTOTIME

v TIMETOTEXT

TEXTTOQUOTED

The TEXTTOQUOTED encoding function converts a text or binary item to

Quoted-Printable format.

52 IBM WebSphere Transformation Extender: Functions and Expressions

Syntax:

TEXTTOQUOTED (single_object_expression)

Meaning:

TEXTTOQUOTED (object_to_convert)

Returns:

A single text or binary item

You can use this function to encode data that largely consists of octets that

correspond to printable characters in the US-ASCII character set. It encodes the

data in such a way that the resulting octets are unlikely to be modified by mail

transport.

Quoted-Printable lines cannot be longer than 76 characters. Data with lines greater

than 76 characters are broken up and indicated with soft breaks of ″=<CR><LF>″.

If an error occurs during conversion, no data is returned.

Example

This example converts the <FF> (form feed) character, into a hexadecimal

representation, and indicates the end of data with a soft break.

TEXTTOQUOTED(″Unencoded data<FF>Encoded″)

Output: Unencoded data=0CEncoded=

The data is converted using the Quoted-Printable encoding as per RFC 1767.

TEXTTOTIME

Use TEXTTOTIME when you want to convert an object defined as text that is in

HHMM or HHMMSS presentation, to an item defined as time. For greater

flexibility, use the TODATETIME function for specifying the format of the text item

that is to be converted to a date/time.

Syntax:

TEXTTOTIME (single-text-expression)

Meaning:

TEXTTOTIME (text_to_convert_to_time)

Returns:

A single time

The text_to_convert_to_time must be in HHMM or HHMMSS presentation. HH is a

two-digit hour in a 24-hour format. If the result is being assigned to a time object,

the resulting time looks like the output object. Otherwise, the resulting time looks

like the input argument. If the input argument is in error (for example, it is not a

valid time), the result is ″none″.

Examples

v TEXTTOTIME (CallTime)

Returns CallTime as a time item

Chapter 7. Conversion functions 53

Related functions

v DATETOTEXT v TEXTTONUMBER

v FROMDATETIME v TIMETOTEXT

v NUMBERTOTEXT v TODATETIME

v TEXTTODATE

TEXTTOTIME

Use TEXTTOTIME when you want to convert an object defined as text that is in

HHMM or HHMMSS presentation, to an item defined as time. For greater

flexibility, use the TODATETIME function for specifying the format of the text item

that is to be converted to a date/time.

Syntax:

TEXTTOTIME (single-text-expression)

Meaning:

TEXTTOTIME (text_to_convert_to_time)

Returns:

A single time

The text_to_convert_to_time must be in HHMM or HHMMSS presentation. HH is a

two-digit hour in a 24-hour format. If the result is being assigned to a time object,

the resulting time looks like the output object. Otherwise, the resulting time looks

like the input argument. If the input argument is in error (for example, it is not a

valid time), the result is ″none″.

Examples

v TEXTTOTIME (CallTime)

Returns CallTime as a time item

Related functions

v DATETOTEXT v TEXTTONUMBER

v FROMDATETIME v TIMETOTEXT

v NUMBERTOTEXT v TODATETIME

v TEXTTODATE

TOBASETEN

The TOBASETEN function converts a text item that can be interpreted as a

number, using positional notation of the base specified, to a base 10 number.

Syntax:

TOBASETEN (single-text-expression , single-integer-expression)

Meaning:

TOBASETEN (text_to_convert , base_to_convert_from)

54 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

A single integer

TOBASETEN returns a number that results from converting text_to_convert that can

be interpreted as a number, using positional notation of the base specified by

base_to_convert_from, to its base 10 representation. Text item characters A-Z are

interpreted as digits having decimal values from 10-35, respectively.

If base_to_convert_from is less than 2 or greater than 36, TOBASETEN evaluates to

″none″. If text_to_convert contains a character that is not alphanumeric or is not in

the range specified by base_to_convert_from, TOBASETEN returns ″none″.

Examples

v TOBASETEN (″A″ , 16)

Returns the value 10

v TOBASETEN (″10″ , 36)

Returns the value 36

v TOBASETEN (″A0″ , 15)

Returns the value 150

v TOBASETEN (″A0″ , 5)

Returns the value ″none″

Related functions

v FROMBASETEN

TODATETIME

The TODATETIME function converts a text string of a specified format to a

date-time item.

Syntax:

TODATETIME (single-character-text-expression

 [, single-text-expression])

Meaning:

TODATETIME (text_to_convert [, date_time_format_string])

Returns:

A single character date item

TODATETIME returns the date-time that corresponds to the value specified by

text_to_convert, which is in the format specified by date_time_format_string. If

date_time_format_string is not specified, it will be assumed that text_to_convert is in

[CCYYMMDDHH24MMSS] format.

The date_time_format_string must conform to the date-time format strings as

described in ″Format strings″.

Examples

v TODATETIME (″05/14/1999@10:14pm″ , ″{MM/DD/CCYY}@{HH12:MMAM/
PM}″)

In this example, a text string containing a date and time is converted to a

date-time item.

Chapter 7. Conversion functions 55

v RptDate = TODATETIME (RIGHT (GETRESOURCENAME(), 8) ,

″CCYYMMDD″)

Assume that you receive a file that contains historical data. The name of the file

identifies the date of the historical data. For example, a filename of 19960424

indicates that the data was produced on April 24, 1996. To map this date to

RptDate, the TODATETIME function could be used with the RIGHT and

GETRESOURCENAME functions.

Related functions

v CURRENTDATE

v CURRENTDATETIME

v CURRENTTIME

v TEXTTODATE

v TEXTTOTIME

TONUMBER

The TONUMBER function converts a text string of a specified format to a number.

Syntax:

TONUMBER (single-character-text-expression [, single-text-expression])

Meaning:

TONUMBER (text_to_convert [, number_format_string])

Returns:

A single character number item

TONUMBER returns the number that corresponds to the value specified by

text_to_convert, which is in the format specified by number_format_string. If

number_format_string is not specified, it will be assumed that text_to_convert is in

ANSI decimal format (for example, ″{L-####[’.’##]}″).

The number_format_string must conform to the number format strings as described

in the ″Format strings″ section.

Examples

v TONUMBER(text_to_convert, ″{L+’$’#’,’###}″)

L+’$’ indicates the leading dollar sign is positive. That leading sign and the

comma separators are removed when the text is converted to a number.

Input String: $123,000,000

Output: 123000000

v TONUMBER(text_to_convert, ″{####T-}″)

Four number signs are required for each whole number, regardless of the actual

number of digits in the number.

 Input string: Output: Note:

12345- -12345 The output becomes a negative number.

67890 67890 No change occurs.

345- -345 The output becomes a negative number.

v TONUMBER(text_to_convert, ″{####T+’K’-}″)

56 IBM WebSphere Transformation Extender: Functions and Expressions

If an invalid character, such as an X, is encountered, nothing is returned.

If a K is encountered, it is treated as a positive indicator.

 Input string: Output: Note:

11212- -11212 The output becomes a negative number.

67890X The X is an invalid character. No number is

returned.

54354 54354 No change occurs.

34567K 34567 The K is recognized as a positive sign. The

character is removed and the number is returned

as a positive.

345- -345 The output becomes a negative number.

v TONUMBER(text_to_convert, ″{L-’(’#’,’###T-’)’}″)

The parentheses indicating a negative number are removed and replaced with a

negative sign.

Comma separators are removed when the text is converted to a number.

 Input string: Output: Note:

(12,345) -12345 The output becomes a negative number. The

comma separator is removed.

67,890 67890 The comma separator is removed.

(345) -345 The output becomes a negative number.

v TONUMBER(text_to_convert, ″{#[’,’]###[’.’##5]T+’K’-}″)

The optional comma separators are removed, but the decimal points and

decimal values are retained.

 Input string: Output: Note:

54,345.098 54354.098 The comma separator is removed.

67890.0X The X is an invalid character. No number is

returned.

11213- -11213 The output becomes a negative number.

34567K 34567 The K is recognized as a positive sign. The

character is removed and the number is

returned as a positive.

345.1- -345.1 The output becomes a negative number.

Related functions

v DATETONUMBER

v FROMNUMBER

v NUMBERTODATE

v NUMBERTOTEXT

UNPACK

You can use the UNPACK function to do arithmetic with a packed decimal number

or to move a packed decimal value into a numeric item.

Chapter 7. Conversion functions 57

UNPACK converts text that can be interpreted as a packed decimal number to a

signed integer item.

The sign values for packed data are as follows:

v C for positive (+)

v D for negative (-)

v F for unsigned, which is read as positive

Syntax:

UNPACK (single-fixed-size-text-expression)

Meaning:

UNPACK (text_to_unpack)

Returns:

A single signed integer

UNPACK returns a signed integer representing the value text_to_unpack, which is a

packed decimal number. If the text_to_unpack cannot be interpreted as a valid

packed decimal, UNPACK evaluates to ″none″.

In a packed decimal number, each half-byte is a digit, except for the last half-byte

of the rightmost byte, which contains a sign.

Examples

v UNPACK (″1L″) returns 314

The ASCII string ″1L″ in hex is 31 4C, which, when interpreted as a packed

number, results in (positive) 314. This example returns the value ″+314″.

The hexadecimal representation of the value ″1L″ is x`14C’, where C in the

rightmost half-byte represents a positive sign.

v UNPACK (UnitPrice) / 100 * QuantityOrdered

UnitPrice is unpacked and divided by 100 (to convert it from an integer to a

number with two decimal places) and then multiplied by the QuantityOrdered.

You can define items as having a packed decimal number presentation. Then,

when mapping to or from these items, the conversion to and from packed

decimal is automatically performed as needed.

Related functions

v PACK

UNZONE

You can use the UNZONE function to convert a text item that represents a zoned

(signed) number to an integer.

UNZONE converts a text item that can be interpreted as a number with a

super-imposed sign in the rightmost byte (called zoned or signed data) to a signed

integer item.

Syntax:

UNZONE (single-text-expression)

Meaning:

UNZONE (text_to_unzone)

58 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

A single integer

UNZONE returns a signed integer representing the value text_to_unzone that is an

integer in zoned (signed) format. If the text_to_unzone cannot be interpreted as a

valid zoned number, UNZONE evaluates to ″none″.

Zoned integers have a series of digits except for the rightmost byte. The rightmost

byte is a digit with a super-imposed sign. See ″Positive zoned values″ for a list of

rightmost byte values.

Examples

v UNZONE (″123D″)

Returns 1234

v UNZONE (″1234″)

Returns 1234

v UNZONE (TaxRate) / 1000 * Income

TaxRate is converted from zoned format to a signed decimal and divided by

1000 (to convert it to a number with three decimal places), and then multiplied

by Income.

You can define items as having a zoned character number presentation. Then,

when mapping to or from these items, the conversion to and from zoned

decimal is automatically performed as needed.

Related functions

v ZONE

ZONE

Use ZONE to convert a number to a zoned (signed) number.

The ZONE function converts a signed integer item to a text item that can be

interpreted as a number with a superimposed sign in the rightmost byte (called

zoned or signed).

You can define items as having a zoned character number presentation. Then,

when mapping to or from these items, the conversion to and from zoned decimal

is performed automatically, as needed.

Syntax:

ZONE (single-integer-expression , single-integer-expression)

Meaning:

ZONE (integer_to_convert , sign_indicator)

Returns:

A single text item

ZONE returns a text string that represents a zoned (signed) number representing

integer_to_convert.

Zoned integers have a sequence of digits except for the rightmost byte. The

rightmost byte is a digit with a super-imposed sign. The sign_indicator specifies

Chapter 7. Conversion functions 59

whether a super-imposed sign is required for positive integers, where 0 specifies

no sign is required and any other value specifies that a sign is required for positive

integers.

The following tables show positive and negative values of the numbers 1230 to

1239, with a sign indicator of 0 (no sign is required for positive values) or a sign of

1 (include a sign for both positive and negative values) in the rightmost byte.

 Table 1. Positive Zoned Values

Integer Value sign_indicator = 0 sign_indicator = 1

1230 1230 123{

1231 1231 123A

1232 1232 123B

1233 1233 123C

1234 1234 123D

1235 1235 123E

1236 1236 123F

1237 1237 123G

1238 1238 123H

1239 1239 123I

 Table 2. Negative Zoned Values

Integer Value sign_indicator = 0 sign_indicator = 1

-1230 123} 123}

-1231 123J 123J

-1232 123K 123K

-1233 123L 123L

-1234 123M 123M

-1235 123N 123N

-1236 123O 123O

-1237 123P 123P

-1238 123Q 123Q

-1239 123R 123R

Examples

v ZONE (1234 , 0)

Returns 1234

v ZONE (1234 , 1)

Returns 123D

v ZONE (-1234 , 1)

Returns 123M

v ZONE (INT (UnitPrice * 100) , 1)

UnitPrice is multiplied by 100 to move the first two decimal places to the left of

the decimal sign. The result of this calculation is converted to an integer using

the INT function. Finally, the result of the INT is converted to zoned format,

using a sign for positive values.

60 IBM WebSphere Transformation Extender: Functions and Expressions

Related function

v UNZONE

Chapter 7. Conversion functions 61

62 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 8. Date/time functions

ADDDAYS

The ADDDAYS function adds a specified number of days to a given date.

You cannot use ADDDAYS on a date/time object that does not specify the day of

the month because an error will occur.

Syntax:

ADDDAYS (single-date-expression, single-integer-expression)

Meaning:

ADDDAYS (any_date, number_of_days_to_add)

Returns:

A single date

The ADDDAYS function returns the date, which results from adding

number_of_days_to_add to any_date. If any_date has a presentation that does not

contain a century, the century is determined based on the Century > CCLookup

map setting (when the Century > Switch = ON), or the current century (when the

Century > Switch = OFF).

When the year exceeds four digits, the output will display hash characters (#) for

the CCYY values because the field is defined to be only four digits in length.

Examples

v You can use the ADDDAYS function to increment a date by a fixed number of

days, such as to calculate a DueDate that is always 30 days after the

InvoiceDate.

To produce a date in the output, such as a ship date, you might need to add a

variable number of days to a date in the input. For example: ADDDAYS

(PODate, LeadTime).

v ADDDAYS (InvoiceDate, 10)

Returns the date, which results from adding 10 days to the value of

InvoiceDate.

v ADDDAYS (InvoiceDate, DaysTilDue)

Returns the date that results from adding the value of DaysTilDue to the

InvoiceDate value.

v ADDDAYS (TODATETIME (″000101″), -1)

Returns 991231

v ADDDAYS (TODATETIME (″20000101″), 1)

Returns 20000102

v ADDDAYS (TODATETIME (″10/20/1996″, ″{MM/DD/CCYY}″), 5)

Returns 10/25/1996

In the examples containing TODATETIME, the text literal is first converted to a

date, and then the specified number of days is added to that date.

© Copyright IBM Corp. 2006 63

Related functions

v ADDHOURS v TEXTTODATE

v DATETONUMBER v TODATETIME

v NUMBERTODATE

ADDHOURS

The ADDHOURS function returns a time value that is the result of adding a

specified number of hours to a given time.

Syntax:

ADDHOURS (single-datetime-item-expression, hours-expressed-as-signed-
integer-expression)

Meaning:

ADDHOURS (any_datetime, number_of_hours_to_add)

Returns:

A single datetime item

The ADDHOURS function returns a single datetime item that is advanced from the

original value of the single datetime item expression by the specified number of

hours expressed as integer expression.

Examples

v ADDHOURS(TODATETIME(″Dec 31, 1999 23:59:00″), 2)

Returns: Jan 1, 2000 01:59:00

v ADDHOURS(TODATETIME(″Dec 31, 1999 23:59:00″), -25)

Returns: Dec 30, 1999 22:59:00

v ADDHOURS(TODATETIME(″23:59:00″), 2)

Returns: 01:59:00

If either argument is invalid, the result is ″none″. If the second argument is ″none″,

the result is the first argument. If the first argument contains only a time portion,

date changes are ignored. If the first argument contains only a date portion, the

time portion 00:00:00 will be used in the calculation. If both arguments are ″none″,

the result is ″none″.

Related functions

v ADDDAYS v TEXTTODATE

v DATETONUMBER v TODATETIME

v NUMBERTODATE

ADDMINUTES

The ADDMINUTES function returns a time value that is the result of adding a

specified number of minutes to a given time.

64 IBM WebSphere Transformation Extender: Functions and Expressions

Syntax:

ADDMINUTES (single-datetime-item-expression, minutes-expressed-as-
signed-integer-expression)

Meaning:

ADDMINUTES (any_datetime, number_of_minutes_to_add)

Returns:

A single datetime item

The ADDMINUTES function returns a single datetime item, advanced from the

original value of the single datetime item expression by the specified number of

minutes-expressed-as-integer expression.

Examples

v ADDMINUTES(TODATETIME(″Dec 31, 1999 23:59:00″), 2)

Returns: Jan 1, 2000 00:01:00

v ADDMINUTES(TODATETIME(″Dec 31, 1999 23:59:00″), -25)

Returns: Dec 31, 1999 23:34:00

v ADDMINUTES(TODATETIME(″23:59:00″), 2)

Returns: 00:01:00

If either argument is invalid, the result is ″none″. If the second argument is

″none″, the result is the first argument. If the first argument contains only a time

portion, date changes are ignored. If the first argument contains only a date

portion, the time portion 00:00:00 will be used in the calculation. If both

arguments are ″none″, the result is ″none″.

Related Functions

v DATETONUMBER

v NUMBERTODATE

v TEXTTODATE

v TODATETIME

CURRENTDATE

You can use CURRENTDATE when you need the current date as a transaction

processing date, an order received date, or other date that reflects when the data

was mapped.

When you need to parse the system date, use CURRENTDATE with the TEXT or

FROMDATETIME functions. The function returns the current system date.

Syntax:

CURRENTDATE ()

Meaning:

CURRENTDATE ()

Returns:

A single date

CURRENTDATE has no arguments but it does require parentheses.

Chapter 8. Date/time functions 65

If being assigned to a date/time output item, the current date is returned in the

format specified by that output item. Otherwise, the system date is returned in an

MM/DD/YY presentation.

Examples

v StartDate = CURRENTDATE ()

In this example, StartDate is assigned the value of the current dateIn this

example, because CURRENTDATE is assigned to an output, it is automatically

converted to the presentation of StartDate.

If CURRENTDATE evaluates to 06/24/37 and StartDate has a YYMMDD

presentation, the result is 370624.

v FROMDATETIME (CURRENTDATE () , ″DD.MON.CCYY″)

In this example, the current date is returned in DD.MON.CCYY format. If

today’s date is January 5, 1999, the date returned would be 05.JAN.1999.

Related functions

v CURRENTDATETIME

v CURRENTTIME

v FROMDATETIME

v DATETOTEXT

CURRENTDATETIME

CURRENTDATETIME returns the current system date and time. You can use this

function when you need to map the current system date and time to an item that

includes both a date and time portion.

.

Syntax:

CURRENTDATETIME ([single-text-expression])

Meaning:

CURRENTDATETIME ([date_time_format_string])

Returns:

A single date-time

CURRENTDATETIME has no arguments but it does require parentheses.

The CURRENTDATETIME function returns the system date and time in the format

specified by date_time_format_string or with a CCYYMMDDHHMMSS presentation

if no date_time_format_string is provided.

The date_time_format_string must conform to the date/time format strings as

described in ″Format strings″.

Examples

v StartDateTime = CURRENTDATETIME ()

In this example, StartDateTime is assigned the value of the current date and

time. Because CURRENTDATETIME is assigned to an output, it is automatically

converted to the presentation of StartDateTime.

If CURRENTDATETIME evaluates to 3:04pm on 6/24/1999 and StartDateTime

has a YYMMDDHH12MM presentation, the result is 9906240304.

66 IBM WebSphere Transformation Extender: Functions and Expressions

v CURRENTDATETIME (″{MM.DD.CCYY HH24:MM}″)

In this example, the current date is returned in MM.DD.CCYY HH24:MM

format. If it is currently 4:12 pm on January 5, 1999, the date returned would be

01.05.1999 16:12.

Related Functions

v CURRENTDATE

v CURRENTTIME

v FROMDATETIME

v DATETOTEXT

CURRENTTIME

The CURRENTTIME function returns the current system time.

You can use CURRENTTIME when you need the system time as a transaction

processing time, an order-received time, or a time that reflects when the data was

mapped.

Syntax:

CURRENTTIME ()

Meaning:

CURRENTTIME ()

Returns:

A single time

The CURRENTTIME function returns the system time. If assigned to a date-time

output item, the current time is returned in the format specified by that output

item. Otherwise, the system time is returned in HH:MM:SS presentation.

Note: CURRENTTIME has no arguments but it does require parentheses.

Examples

v End Time = CURRENTTIME ()

In this example, End Time is assigned the current time. Because CURRENTTIME

is assigned to an output, it is automatically converted to the presentation of End

Time.

If CURRENTTIME evaluates to 10:15:02 and End Time has an HH12:MM

presentation, the result is 1015.

v FROMDATETIME (CURRENTTIME () , ″{HH24MMSS}″)

In this example, the current time is returned in HH24MMSS format. If the

current time is 10:15:02 pm, the result is 221502.

Related functions

v CURRENTDATETIME

v FROMDATETIME

v DATETOTEXT

DATETONUMBER

Use DATETONUMBER to perform arithmetic on dates.

Chapter 8. Date/time functions 67

The DATETONUMBER function returns an integer that results from counting the

number of days from December 31, 1864, to the specified date.

Syntax:

DATETONUMBER (single-date-expression)

Meaning:

DATETONUMBER (date_to_convert)

Returns:

A single integer

The DATETONUMBER function converts a date to an integer. The resulting integer

represents the number of days since December 31, 1864, where using

DATETONUMBER with a date of January 1, 1865 returns the integer value 1.

If the input argument is in error, the function returns the value ″none″.

If the date format specified by the input argument does not include century, the

century is determined based on the Century map setting using the CCLookup

parameter or the current century.

Examples

v DaysBetween = DATETONUMBER (StopDate) - DATETONUMBER (StartDate

)

This expression could be used in a map rule to produce a value for

DaysBetween. It converts the StopDate and the StartDate to integers, then

subtracts the resulting two integers, and returns the result as DaysBetween.

Related functions

v ADDDAYS

v NUMBERTODATE

DATETOTEXT

The DATETOTEXT function converts a date object or expression to a text item.

Syntax:

DATETOTEXT (single-date-expression)

Meaning:

DATETOTEXT (date_to_convert)

Returns:

A single text item

If date_to_convert is a date object name, this returns the date as a text item

formatted according to the presentation of the date object.

If date_to_convert is a date expression produced by a function, this returns the date

as a text item formatted according to the presentation of the output argument of

that function.

Examples

v DATETOTEXT (ShipDate)

68 IBM WebSphere Transformation Extender: Functions and Expressions

In this example, ShipDate is converted from a date to text. If ShipDate has a

CCYYMMDD presentation, the resulting text item will have that presentation, as

well.

v DATETOTEXT (CURRENTDATETIME (″{MM/DD/CCYY}″))

In this example, CURRENTDATETIME evaluates and returns a date in

MM/DD/CCYY format. Then DATETOTEXT evaluates and returns a text string

that is that date in MM/DD/CCYY format.

For example, use DATETOTEXT, to do text concatenation. The FROMDATETIME

function provides greater flexibility in specifying the format of the resulting text

item.

Related Functions

v FROMDATETIME

v NUMBERTOTEXT

v TEXT

v TEXTTODATE

v TEXTTONUMBER

v TEXTTOTIME

v TIMETOTEXT

v TODATETIME

FROMDATETIME

The FROMDATETIME function converts a date/time item to a text string of a

specified format. For example, you can use FROMDATETIME to convert a

date-time item into a string for parsing or concatenation. You can also use this

function to access the individual parts of a date or time, such as the month, day,

year, and so forth.

Syntax:

FROMDATETIME (single-character-date-time-item

 [, single-text-expression])

Meaning:

FROMDATETIME (date_time [, date_time_format_string])

Returns:

A single character text item

FROMDATETIME returns the date/time specified by date_time as a text item with

the format specified by date_time_format_string. If date_time_format_string is not

specified, date_time will be returned in the same format as the date_time.

The date_time_format_string must conform to the date/time format strings as

described in the ″Format strings″ section.

Examples

v HeaderLine=″Today is″ + FROMDATETIME (CURRENTDATE (),″{MON DD,

CCYY}″)

If the current system date is March 3, 1999, this rule evaluates to Today is Mar

03, 1999.

v FROMDATETIME (TransactionTimeStamp Column:.:TransHistory)

Chapter 8. Date/time functions 69

If the value of TransactionTimeStamp Column is 10:14 A.M. on February 3, 2000

and its format is defined as ″{CCYYMMDDHHMM}″, 200002031014.

v EXTRACT (Expense:Report, FROMDATETIME (Date:Expense:Report, ″{MM}″) =

″03″)

In this example, the FROMDATETIME function is used in the condition

expression of the EXTRACT function to identify all expenses in the month of

March.

Related functions

v CURRENTDATE

v CURRENTDATETIME

v CURRENTTIME

v DATETOTEXT

v TODATETIME

MAX

The MAX function returns the maximum value from a series of number, date, time,

or text values.

Syntax:

MAX (series-item-expression)

Meaning:

MAX (series_of_which_to_find_max)

Returns:

A single number

The result is the maximum value in the input argument series: number, text, or

date/time.

Examples

v MAX (UnitPrice:Input)

If the values for UnitPrice are {20, 10, 100}, MAX returns 100.

v MAX(EXTRACT(DueDate:Book:Library, CheckedOut:Book:Library = ″Y″))

Returns the maximum (latest) DueDate for a book that is checked out from the

library.

Related functions

v MIN

MIN

Use MIN when you need the minimum value from a series of number, date, time,

or text values.

The MIN function returns the minimum value from a series.

Syntax:

MIN (series-item-expression)

Meaning:

MIN (series_of_which_to_find_min)

70 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

A single number

The result is the minimum value of the input series: number, text, or date/time.

Examples

v MIN (UnitPrice:Input)

If the values for UnitPrice are {20,10,100}, MIN returns 10.

v MIN (StartTime:.:Schedule)

Returns the minimum (earliest) StartTime in Schedule.

Related functions

v MAX

NUMBERTODATE

You can use the NUMBERTODATE function to perform a calculation on a date.

NUMBERTODATE converts an integer to a date, where the integer is the number

of days from December 31, 1864, to the specified date. Only positive, non-zero

values can be specified as valid parameters.

.

Syntax:

NUMBERTODATE (single-integer-expression)

Meaning:

NUMBERTODATE (integer_to_convert)

Returns:

A single date

After converting an integer to a date, if the result is being assigned to a date object,

the resulting date is in the presentation for that output. If the resulting date is not

being assigned to an object, it has a CCYYMMDD presentation.

When the year exceeds four digits, the output will display hash characters (#) for

the CCYY values because the field is defined to be only four digits in length.

Examples

v NUMBERTODATE (StartDate)

This example converts the StartDate value from an integer to a date that is in

CCYYMMDD format.

Related functions

v ADDDAYS

v DATETONUMBER

v FROMDATETIME

v TODATETIME

Chapter 8. Date/time functions 71

TEXTTODATE

The TEXTTODATE function converts text item from CCYYMMDD or YYMMDD

format to a date.

You can use the TEXTTODATE to convert a text item to a date, however, the

TODATETIME function provides greater flexibility for specifying the resulting

date-time format .

Syntax:

TEXTTODATE (single-text-expression)

Meaning:

TEXTTODATE (text_to_convert_to_date)

Returns:

A single date

The text_to_convert_to_date must be in either CCYYMMDD or YYMMDD format. If

the text_to_convert_to_date is in error (for example, it is not a valid date), the result

is ″none″.

If text_to_convert_to_date is in YYMMDD format and is being assigned to a date

format that includes a century, the century is determined based on the century run

option setting using the CCLookup parameter or the current century.

Examples

v TEXTTODATE (″990114″)

Returns a single date item with the value of January 14 in the year 99

v TEXTTODATE (OrderDate)

Returns OrderDate as a single date item.

Related functions

v DATETOTEXT v TEXTTOTIME

v NUMBERTOTEXT v TIMETOTEXT

v TEXTTONUMBER v TODATETIME

TEXTTOTIME

Use TEXTTOTIME when you want to convert an object defined as text that is in

HHMM or HHMMSS presentation, to an item defined as time. For greater

flexibility, use the TODATETIME function for specifying the format of the text item

that is to be converted to a date/time.

Syntax:

TEXTTOTIME (single-text-expression)

Meaning:

TEXTTOTIME (text_to_convert_to_time)

Returns:

A single time

72 IBM WebSphere Transformation Extender: Functions and Expressions

The text_to_convert_to_time must be in HHMM or HHMMSS presentation. HH is a

two-digit hour in a 24-hour format. If the result is being assigned to a time object,

the resulting time looks like the output object. Otherwise, the resulting time looks

like the input argument. If the input argument is in error (for example, it is not a

valid time), the result is ″none″.

Examples

v TEXTTOTIME (CallTime)

Returns CallTime as a time item

Related functions

v DATETOTEXT v TEXTTONUMBER

v FROMDATETIME v TIMETOTEXT

v NUMBERTOTEXT v TODATETIME

v TEXTTODATE

TIMETOTEXT

You can use the TIMETOTEXT function to perform text concatenation. For greater

flexibility, use the FROMDATETIME function for specifying the format of the

resulting text item.

TIMETOTEX converts a time object or expression to a text item.

Syntax:

TIMETOTEXT (single-time-expression)

Meaning:

TIMETOTEXT (time_to_convert_to_text)

Returns:

A single text item

If time_to_convert_to_text is a time object name, this returns the time as a text item

formatted according to the presentation of the input date object.

If time_to_convert_to_text is a time expression produced by a function, this returns

the time as a text item formatted according to the presentation of the output

argument of that function.

Examples

v TIMETOTEXT (LeadTime)

In this example, LeadTime is converted from a time to text. If LeadTime has an

HH:MM presentation, the resulting text item will be of that presentation.

v TIMETOTEXT (CURRENTDATETIME (″{HH:MM:SS}″))

Here, CURRENTDATETIME evaluates and returns a time in HH:MM:SS format.

Then, TIMETOTEXT evaluates and returns a text string that is that time in

HH:MM:SS format.

Chapter 8. Date/time functions 73

Related functions

v DATETOTEXT

v FROMDATETIME

v NUMBERTOTEXT

v TEXTTODATE

v TEXTTONUMBER

v TEXTTOTIME

v TODATETIME

TODATETIME

The TODATETIME function converts a text string of a specified format to a

date-time item.

Syntax:

TODATETIME (single-character-text-expression

 [, single-text-expression])

Meaning:

TODATETIME (text_to_convert [, date_time_format_string])

Returns:

A single character date item

TODATETIME returns the date-time that corresponds to the value specified by

text_to_convert, which is in the format specified by date_time_format_string. If

date_time_format_string is not specified, it will be assumed that text_to_convert is in

[CCYYMMDDHH24MMSS] format.

The date_time_format_string must conform to the date-time format strings as

described in ″Format strings″.

Examples

v TODATETIME (″05/14/1999@10:14pm″ , ″{MM/DD/CCYY}@{HH12:MMAM/
PM}″)

In this example, a text string containing a date and time is converted to a

date-time item.

v RptDate = TODATETIME (RIGHT (GETRESOURCENAME(), 8) ,

″CCYYMMDD″)

Assume that you receive a file that contains historical data. The name of the file

identifies the date of the historical data. For example, a filename of 19960424

indicates that the data was produced on April 24, 1996. To map this date to

RptDate, the TODATETIME function could be used with the RIGHT and

GETRESOURCENAME functions.

Related functions

v CURRENTDATE

v CURRENTDATETIME

v CURRENTTIME

v TEXTTODATE

v TEXTTOTIME

74 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 9. Error handling functions

CONTAINSERRORS

The CONTAINSERRORS function tests a valid object to see whether it contains

any objects in error.

Syntax:

CONTAINSERRORS (single-object-expression)

Meaning:

CONTAINSERRORS (object_to_test)

Returns:

True or false

The CONTAINSERRORS function returns ″true″ if any object contained in

object_to_test is in error; it returns ″false″ if the object_to_test is completely valid.

The input object, itself, is a valid input object. This function does not evaluate for

invalid objects. Therefore, if you have map rule:

CONTAINSERRORS (Invoice:InputFile)

and Invoice[1] is valid, Invoice[2] is invalid, and Invoice[3] is valid, then

CONTAINSERRORS evaluates only twice-once for each valid instance of Invoice.

Examples

v Msg (s) = IF (CONTAINSERRORS (Msg:MailBag) &

Type:Msg:MailBag = ″PRIORITY″ ,

Msg:MailBag,

″none″)

In this example, if Msg:MailBag contains any object in error and

Type:Msg:MailBag has a value of ″PRIORITY″, Msg:MailBag is mapped;

otherwise, ″none″ is returned for this occurrence of Msg. This map rule returns

all valid messages (Msg) that contain errors with a Type of ″PRIORITY″.

Related functions

v ISERROR

v REFORMAT

FAIL

You can use the FAIL function to abort a map based on map or application specific

logic. ″none″, aborts the map, and returns a text string to be reported as the map

completion error message.

Syntax:

FAIL (single-text-expression)

Meaning:

FAIL (message_to_return)

© Copyright IBM Corp. 2006 75

Returns:

″None″

The FAIL function returns ″none″ to the output to which the function is assigned,

aborts the map, and returns message_to_return as the map completion error message

included in the execution audit. The map return code will be ″30″, indicating that

the map failed through the FAIL function.

Examples

v AcctID = EITHER (LOOKUP (CustomerID:.:Xref, MyKey:.:Xref = ID:.:Input) ,

FAIL (″Unknown Customer (″ + ID:.:Input + ″). Processing Terminated.″))

In this example, the FAIL function is being used in conjunction with the EITHER

function to conditionally fail the map if a record in the customer cross-reference

file does not exist for a given CustomerID.

For example, the ID in Input is ABC123. If the LOOKUP succeeds, the

CustomerID result is assigned to AcctID and the map continues.

If the LOOKUP fails, AcctID is assigned a value of ″none″, the map aborts, and

the message Unknown Customer (ABC123). Processing Terminated.is written to

the execution audit log.

v Message = VALID (RUN (″Map1Msg.mmc″, ″-AE -OMMSMQ1B `-QN .\aqueue

-CID 2001’″),

FAIL (″Failure on RUN (″ + TEXT (LASTERRORCODE ()) + ″):″ +

LASTERRORMSG ()))

In this example, the FAIL function is being used in conjunction with the VALID,

LASTERRORCODE, and LASTERRORMSG functions to fail (abort) the map if

the map executed by the RUN function (Map1Msg.mmc) fails. In this example,

the map fails and returns the error code and error message reported by the RUN

function using the LASTERRORCODE and LASTERRORMSG functions.

If Map1Msg fails because one or more of its inputs was invalid, Message is

assigned a value of ″none″. The map aborts and the following message is

reported in the execution audit log:

″Failure on RUN (8): One or more inputs was invalid.″

Related functions

v LASTERRORCODE

v LASTERRORMSG

v VALID

ISERROR

The ISERROR function tests an object to see if it is in error

You can use ISERROR to output your data in exactly the same order as it occurs in

your input, both the valid data and the data in error. You can also use ISERROR to

produce error messages for bad data in the same file in which you map your good

data.

Syntax:

ISERROR (single-object-name)

Meaning:

ISERROR (object_to_test)

76 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

″True″ or ″false″

ISERROR returns ″true″ when object_to_test is in error and returns ″false″ when

object_to_test is completely valid.

Examples

v InfoRec (s) = IF (ISERROR (Record:SomeFile), ″Bad --> ″ + REJECT (

Record:SomeFile), ″Ok --> ″ + TEXT (Record:SomeFile))

In this example, ISERROR is used to produce a report for all Record objects in

SomeFile. If the record is in error, the InfoRec will have the text Bad -->

followed by the data from the input Record. If the record is valid, the InfoRec

will have the text Ok --> followed by the data from the input Record, such as:

Ok --> SZ-68839,486 Upgrade Microprocessor,186.86,100,W200

Bad --> MK-19309,,369.43,417,W100

Ok --> KL-20349,PCMCIA Network Adaptor,174.82,29,N300

Ok --> WP-37679,AC Adaptor,39.48,245,E100

Bad --> IL-39890,8MB Memory PCMCIA,390.48,0,S100

Related functions

v CONTAINSERRORS

ONERROR

Use ONERROR in component rules to add user-defined error messages to the data

section of the audit log.

The ONERROR function adds a user-defined error message to the data section of

the audit log. This function is relevant only in Type Designer Component rules.

.

Syntax:

ONERROR (single-condition-expression, single-text-expression)

Meaning:

ONERROR (condition_to_evaluate , message_to_display)

Returns:

″True″ or ″false″

If condition_to_evaluate evaluates to ″true″, the function returns ″true″.

If condition_to_evaluate evaluates to ″false″, the function returns ″false″.

If data audit is enabled and the object to which the component rule applies will

result in a failed component rule message (status E09), message_to_display is written

to the data audit section of the audit log with an entry type of U, representing

user-defined.

If the failed component rule message (E09) appears in the data section of the audit

log, one or more user-defined error messages can also be included in the data

section of the audit log. If a component rule has one ONERROR function, one

user-defined error message or none is included in the audit log. If a component

rule has two ONERROR functions, two user-defined error messages at most are

included in the audit log, and so on.

Chapter 9. Error handling functions 77

Examples

v Here is a component rule without ONERROR:

Claim Date Field > Accident Date Field &

Claim Date Field < ADDDAYS (Accident Date Field, 365)

If the component rule fails, the data section of the audit log shows the following

information:

<DataLog>

<input card="1">

 <object ... status="E07">InsuranceClaim</object>

 <object ... status="E09">Claim Date Field</object>

 <Text>980725</Text>

 <object ... status="E07">InsuranceClaim</object>

 <object ... status="E09">Claim Date Field</object>

 <Text>990526</Text>

</input>

</DataLog>

Status code E09 for the Claim Date Field indicates that the data for that object

failed its component rule, but does not provide any further detail.

v Using ONERROR, one or more error messages can be added to the data section

of the audit log to provide more information as to how or why the component

rule failed. For example,

ONERROR (Claim Date Field > Accident Date Field ,

″Claim date before accident.″) &

ONERROR (Claim Date Field < ADDDAYS (Accident Date Field , 365) ,

″Claim is more than one year old.″)

If the component rule fails and ONERROR is used, the data section of the audit

log can show the following messages:

<DataLog>

<input card="1">

 <object ... status="E07">InsuranceClaim</object>

 <object ... status="E09">Claim Date Field</object>

 <Text>980725</Text>

 <User>Claim date before accident.</User>

 <object ... status="E07">InsuranceClaim</object>

 <object ... status="E09">Claim Date Field</object>

 <Text>990526</Text>

 <User>Claim is more than one year old.</User>

</input>

</DataLog>

REJECT

The REJECT function returns the content of an object in error as a text item. Use

REJECT in conjunction with the restart attribute. You can use the REJECT function

in map rules only, not in component rules.

See the Type Designer and Map Designer documentation for information about the

restart attribute.

Syntax:

REJECT (series-object-expression)

Meaning:

REJECT (series_to_look_for_bad_objects)

Returns:

A series text item

78 IBM WebSphere Transformation Extender: Functions and Expressions

REJECT evaluates to a series of text items consisting of all the input series

members in error.

Examples

v REJECT (Record:File)

This example extracts all Records that are in error.

v IF (COUNT (REJECT (Msg IN Batch))) = 0, ″OK″, ″ERROR″)

In this example, the total number of invalid (rejected) Msg objects is counted. If

the total number of invalid Msg objects is equal to zero, it indicates that there

were no invalid Msg objects counted and a message of OK results. Otherwise, a

message of ERROR results.

Related functions

v CONTAINSERRORS

v ISERROR

v VALID

VALID

You can use the VALID function to perform conditional processing based on

whether an external interface function executes successfully.

VALID returns the result of the first argument if it is valid; otherwise, returns the

second argument.

Syntax:

VALID (single-text-expressions , single-general-expression)

Meaning:

VALID (function_that_can_fail , return_value_if_function_fails)

Returns:

A single text expression

VALID returns the result of the evaluation of function_that_can_fail if it is valid. If

the function fails, VALID returns return_value_if_function_fails.

The following functions can fail:

v DBLOOKUP v GET

v DBQUERY v PUT

v DDEQUERY v RUN

v EXIT

Examples

v SomeObject = VALID (RUN (″mymap.mmc″ , ″-OF1 mydata.txt″) ,

FAIL (″My RUN failed!″))

If the RUN function returns an error return code, the VALID functions returns

″none″, the map aborts, and the message ″My RUN failed!″ is reported under

″Execution Summary″ in the execution audit log.

Chapter 9. Error handling functions 79

Related functions

v DBLOOKUP

v DBQUERY

v DDEQUERY

80 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 10. External interface functions

DBLOOKUP

The DBLOOKUP function executes an SQL statement against a database. The SQL

statement can be any permitted by your database management system or ODBC

driver.

When the DBLOOKUP function is used in a map, the default OnSuccess action is

adapter-specific. The default OnFailure action is to rollback any changes made

during map processing. The default Scope will be integral unless the map is

defined to run in bursts (which is the case when one or more inputs have the

FetchAs property set to Burst).

There are two ways to specify arguments for DBLOOKUP.

You can use DBLOOKUP to execute an SQL statement when you want to execute a

SELECT statement to retrieve a specific column value in a large table in a database

using the value of another input, rather than defining the entire table as an input

card and using the LOOKUP, SEARCHDOWN, or SEARCHUP functions.

You can use DBLOOKUP to execute an SQL statement when you want to execute a

SELECT statement to retrieve a specific column value from a table or database that

might vary based on a parameter file. Using Meaning 2 of the DBLOOKUP

function allows these parameters to be dynamically specified at run time.

Syntax:

DBLOOKUP (single-text-expression , single-text-expression , [

single-text-literal])

Meaning:

1. DBLOOKUP (SQL_statement , mdq_filename, database_name)

2. DBLOOKUP (SQL_statement , parameters)

Returns:

A single text item

The DBLOOKUP function returns the results of the query in the same format as a

query specified for a map input card, except that it does not include the last

carriage return/linefeed. Because this information is removed, it is easier to make

use of a single value extracted from a database.

Arguments for meaning 1

DBLOOKUP (SQL_statement , mdq_filename , database_name)

v SQL_statement

The first argument is an SQL statement as a text string. This can be any valid

SQL statement permitted by your database management system and supported

by your database-specific driver. In addition to a fixed SQL statement, this

argument can be a concatenation of text literals and data objects, enabling the

concatenation of data values into your SQL statement.

v mdq_filename

© Copyright IBM Corp. 2006 81

The second argument is the name of a database query file (.mdq) produced by

the Database Interface Designer. It contains the definition of the database that

the SQL statement is to be executed against. If the .mdq file is in a directory

other than the directory of the map, the path must be specified.

Note: The .mdq file is accessed at map build time and is not needed at runtime.

v database_name

The third argument is the name of a database in the database query file (.mdq)

as defined in the Database Interface Designer.

If used in this way, both the .mdq filename and database name must be literals.

Arguments for meaning 2

DBLOOKUP (SQL_statement , parameters)

v SQL_statement

The first argument is an SQL statement as a text string. This can be any valid

SQL statement permitted by your database management system and supported

by your database-specific driver. In addition to a fixed SQL statement, this

argument can be a concatenation of text literals and data objects, enabling the

concatenation of data values into your SQL statement.

v parameters

The second argument is a set of parameters, either:

– -MDQ mdqfilename -DBNAME dbname

-or-

– -DBTYPE database_type [database specific parameters]

The keyword -MDQ is followed by the name of the database query file

(.mdq) produced by the Database Interface Designer. This .mdq file contains

the definition of the database. If the .mdq file is in a directory other than the

directory of the map, the path must be specified. The .mdq filename is

followed by the keyword -DBNAME and the database name as specified in

the Database Interface Designer.

Using this syntax, the .mdq file is accessed at runtime and must be present.

The keyword -DBTYPE is followed by a keyword specifying the database

type (for example, ODBC or ORACLE) followed, optionally, by

database-specific parameters.

This syntax does not use an .mdq file, because the database-specific

parameters provide the information required to connect to the database. Refer

to the Resource Adapters documentation for detailed information on the

database-specific parameters that can be specified.

When used with Meaning 2, DBLOOKUP must conform to these rules:

v All keywords (for example, -DBTYPE) can be upper or lowercase, but not mixed.

v A space is required between the keyword and its value (for example, -DBTYPE

ODBC).

v The order of the keywords is not important.

All database-specific parameters are optional.

82 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

Assume that you have a table named ″PARTS″ that contains the following data:

 PART_NUMBER PART_NAME

1 1/4″ x 3″ Bolt

2 1/4″ x 4″ Bolt

Assume that this database has been defined using the Database Interface Designer

in a file named mytest.mdq and that the name of the database, as specified in the

.mdq file, is PartsDB.

v DBLOOKUP (″SELECT PART_NAME from PARTS where PART_NUMBER =1″,

″mytest.mdq″,

″PartsDB″)

Returns: ¼″ x 3″ Bolt

Using Meaning 2, you can specify the DBLOOKUP this way:

v DBLOOKUP(″SELECT PART_NAME from PARTS where PART_NUMBER =1″,

″-MDQ mytest.mdq -DBNAME PartsDB″)

where both the .mdq file name and database name is specified.

Using Meaning 2, you can also specify the database type and the appropriate

database-specific parameters:

v DBLOOKUP(″SELECT PART_NAME from PARTS where PART_NUMBER =1″ ,

″-DBTYPE ORACLE -CONNECT MyDB -USER janes ″)

Related functions

v DBQUERY

v EXTRACT

v FAIL

v LASTERRORCODE

v LASTERRORMSG

v LOOKUP

v SEARCHDOWN

v SEARCHUP

v VALID

For more examples using the DBLOOKUP function, see the Database Interface

Designer documentation.

DBQUERY

The DBQUERY function executes an SQL statement against a database. The SQL

statement can be any permitted by your database management system or ODBC

driver.

When the DBQUERY function is used in a map, the default OnSuccess action is

adapter-specific. The default OnFailure action is to rollback any changes made

Chapter 10. External interface functions 83

during map processing. The default Scope will be integral unless the map is

defined to run in bursts (which is the case when one or more inputs have the

FetchAs property set to Burst).

There are two ways to specify the arguments for DBQUERY. You can use

DBQUERY [Meaning 1] to execute an SQL statement when you want to look up

information in a database using a parameterized query that is based on another

value in your data. If your SQL statement is a SELECT statement, the DBQUERY

function may be used in conjunction with the RUN function to issue dynamic

SELECT statements whose results can be used as input to another map.

You can also use the DBQUERY function [Meaning 2] to execute an SQL statement

when the database, table, or other database parameters might vary; perhaps being

supplied by a parameter file.

Syntax:

DBQUERY (single-text-expression , single-text-expression ,

 [single-text-literal])

Meaning:

1. DBQUERY (SQL_statement , mdq_filename, database_name)

2. DBQUERY (SQL_statement , parameters)

Returns:

A single text item

If your SQL statement is a SELECT statement, the results of the query in the same

format as a query specified as a map input card, including row delimiters and

terminators, and so on.

If your SQL statement is anything other than a SELECT statement, ″none″.

Arguments for meaning 1

DBQUERY (SQL_statement, mdq_filename , database_name)

v SQL_statement

The first argument is an SQL statement as a text string. This can be any valid

SQL statement that is permitted by your database management system and

supported by your database-specific driver. In addition to a fixed SQL statement,

this argument can be a concatenation of text literals and data objects, enabling

the concatenation of data values into your SQL statement.

v mdq_filename

The second argument is the name of a database query file (.mdq) produced by

the Database Interface Designer. It contains the definition of the database that

the SQL statement is to be executed against. If the .mdq file is in a directory

other than the directory of the map, the path must be specified.

Note: The .mdq file is accessed at map build time and is not needed at runtime.

v database_name

The third argument is the name of a database in the database query file (.mdq)

as defined in the Database Interface Designer.

If used in this way, both the .mdq filename and database name must be literals.

84 IBM WebSphere Transformation Extender: Functions and Expressions

Arguments for meaning 2

DBQUERY (SQL_statement , parameters)

v The first argument is an SQL statement as a text string. This can be any valid

SQL statement that is permitted by your database management system and

supported by your database-specific driver. In addition to a fixed SQL statement,

this argument can be a concatenation of text literals and data objects, enabling

the concatenation of data values into your SQL statement.

v The second argument is a set of parameters, either:

– -MDQ mdqfilename -DBNAME dbname

-or-

– -DBTYPE database_type [database specific parameters]

The keyword -MDQ is followed by the name of the database query file

(.mdq) produced by the Database Interface Designer. This .mdq file contains

the definition of the database. If the .mdq file is in a directory other than the

directory of the map, the path must be specified. The .mdq filename is

followed by the keyword -DBNAME and the database name as specified in

the Database Interface Designer.

Note: Using this syntax, the .mdq file is accessed at runtime and must be

present.

The keyword -DBTYPE is followed by a keyword specifying the database

type (for example, ODBC or ORACLE) followed, optionally, by

database-specific parameters.

Note: This syntax does not use an .mdq file, because the database-specific

parameters provide the information required to connect to the

database. Refer to the appropriate database adapter documentation for

detailed information about database-specific parameters.

When used with Meaning 2, DBQUERY must conform to these rules:

v All keywords (for example, -DBTYPE) can be upper or lower case, but not

mixed.

v A space is required between the keyword and its value (for example, -DBTYPE

ODBC).

v The order of the keywords is not important.

All database-specific parameters are optional.

Examples

Assume that you have a table named ″PARTS″ that contains the following data:

 PART_NUMBER PART_NAME

1 1/4″ x 3″ Bolt

2 1/4″ x 4″ Bolt

Also assume that this database has been defined using the Database Interface

Designer in a file named mytest.mdq and that the name of the database, as

specified in the .mdq file, is PartsDB.

DBQUERY ("SELECT * from PARTS" , "mytest.mdq" , "PartsDB")

Chapter 10. External interface functions 85

Returns 1|¼″ x 3″ Bolt<cr><lf>2|¼″ x 4″ Bolt<cr><lf>

where <cr><lf> is a carriage return followed by a line feed.

Using Meaning 2, you can also specify the DBQUERY this way:

DBQUERY ("SELECT * from PARTS" , "-MDQ mytest.mdq -DBNAME PartsDB")

where both the .mdq file name and database name are specified.

Or, specify it this way, using Meaning 2 by specifying the database type and the

appropriate database-specific parameters:

DBQUERY ("SELECT * from PARTS" , "-DBTYPE ORACLE -CONNECT MyDB -USER

janes")

Assume that you have an input file containing one order record. To map that order

to another proprietary format, you also have a parts table with pricing information

for every part for every customer, a very large table. Rather than using the entire

parts table as the input to your map, you might use the RUN function with a

DBQUERY to dynamically select only those rows from the parts table

corresponding to the customer in the order file, as follows:

RUN ("MapOrder.MMC" ,

 "IE2" + DBQUERY ("SELECT * FROM Parts WHERE CustID = "

 + CustomerNo:OrderRecord:OrderFile + " ORDER BY PartNo" ,

"PartsDB.MDQ", "PartsDatabase"))

Related functions

v DBLOOKUP

v EXTRACT

v FAIL

v LASTERRORCODE

v LASTERRORMSG

v LOOKUP

v SEARCHUP

v SEARCHDOWN

v VALID

DDEQUERY

The DDEQUERY function allows you to interface to other Windows applications

such as Trading Partner PC, Excel, and so forth, provided that certain criteria are

met. For example, if you receive an Excel spreadsheet file, you must have the

appropriate version of the Excel application installed (that is compatible with the

file received) and the application must be open.

Syntax:

DDEQUERY (single-text-expression , single-text-expression,

single-text-expression)

Meaning:

DDEQUERY (application_name , topic , text)

Returns:

A single text item from an application

86 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

v DDEQUERY (″excel″ , ″[MKTPRICE.XLS]Sheet1″, ″R8C1:R14C3″)

In this example, DDEQUERY is used to get data from an Excel spreadsheet. The

third argument, R8C1:R14C3, specifies the location of the data in the

spreadsheet. (In Excel, the 8th row, 1st column to the 14th row, 3rd column is

A8:C14.) The content of this spreadsheet range is returned as a single text item.

This example assumes that the application, the map, and the spreadsheet all

reside in the same directory. If they are not in the same directory you must add

the path. For example:

DDEQUERY (″excel″ , ″c:\spreadsheet[MKTPRICE.XLS]Sheet1″ , ″R8C1:R14C3″)

v DDEQYUERY (″tppc″,″PartnerX″,″BGyourEDIode″)

In this example, DDEQUERY is used as a request to Trading Partner PC.

Related functions

v EXIT v LASTERRORMSG

v FAIL v PUT

v GET v RUN

v LASTERRORCODE v VALID

EXIT

The EXIT function allows you to interface with a function in an external library or

application.

You can use EXIT when you need information from an existing function in a

library or a program or when you need to use a general function that is not

available.

Depending on the execution platform, there are two different methods for the EXIT

function: 1) the library method and 2) the program method. The program method

is not supported on Windows platforms.

Syntax:

EXIT (single-text-expression, single-text-expression,
single-text-expression)

Meaning:

1. EXIT (library_name, function_name, input_to_the_function)

2. EXIT (program_name , command_line_arg1 , command_line_arg2)

Returns:

A single text item

Meaning 1 - library method

At runtime, the function_name function will execute in the library specified by

library_name passing input_to_the_function as a text string. The result of

function_name is returned as a text item by means of lpep- → lpdataFromApp.

Chapter 10. External interface functions 87

Set lpep- → nReturn equal to 0 if the function is to succeed or set it equal to 1 to

fail.

For detailed information on the requirements of the library function that is

executed by the EXIT, see ″Implementing a library EXIT function″.

AIX Platform

On the AIX platform, the shared library that contains library_function must also

contain an entry_point function. The entry_point function must be prototyped in the

same manner as library_function. The server will invoke the entry_point function

before invoking library_function. The server passes the name of the library_function

to the entry_point function by way of the szFile EXITPARAM structure member. The

entry_point function must then determine the address of the library_function and

pass this address back to the server by way of the lpv EXITPARAM structure

member. The server will then use the contents of lpv as an address to invoke the

library_function.

The following example depicts a shared library called mcshex.so which contains

the entry_point function and the library_function.

 #include <stdio.h>

#include <string.h>

#include "runmerc.h"

void AIXEntry(LPEXITPARAM);

void bin2hex(LPEXITPARAM);

unsigned int i;

char *syms[] = { "bin2hex", "AIXEntry" };

void *adr[] = { (void *)bin2hex, (void *)AIXEntry};

void AIXEntry(LPEXITPARAM lpInputStruct)

{

 printf("AIXEntry called\n");

 for (i = 0; i < (sizeof(syms)) / (sizeof(char *)); i++)

 if (!(strcmp(lpInputStruct->szFile, syms[i]))) {

 lpInputStruct->lpv = adr[i];

 break;

 }

 }

void bin2hex(LPEXITPARAM lpInputStruct)

 {

 printf("bin2hex called\n");

printf("argument to library function: %s\n",lpInputStruct->lpszCmdLine);

lpInputStruct->nReturn = 0;

}

To build this shared library, run the following commands:

cc -c share1.c

cc -o mcshex.so share1.o -bE:shrsub.exp -bM:SRE -eAIXEntry

Meaning 2 - program method

The program method of the EXIT function is not supported on Windows platforms.

At execution time, the program specified by program_name executes and passes the

concatenation of command_line_arg1 + ″ ″ + command_line_arg2 as a text string.

Whatever is returned by program_name to the standard output device is returned as

text.

88 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

v EXIT (program_name , command_line_arg1

, command_line_arg2)

Returns a text string from the function or application that is executed. If the

EXIT function is not available for a particular platform, EXIT returns ″none″.

v EXIT (″mydll.dll″ , ″myfunction″ , ″12″)

This Windows library example passes the value 12 to myfunction, a function in

mydll.dll. The value of the item returned depends on what myfunction does

with the 12 passed to it.

v IF (EXIT (″mylib.sl″ , ″ckCust″ , CustID Column:Row:DB) = ″OK″ ,

MapKnownCust (Row:DB) , MapUnknownCust (Row:DB))

Similarly, this UNIX library example passes the value of CustID Field to ckCust,

a function in a UNIX shared library called mylib.sl. If the value returned by

ckCust is OK, a functional map is called to map Row for a known customer.

Otherwise, another functional map is executed to map Row for an unknown

customer.

v EXIT (″pwd″ , ″ ″ , ″ ″)

This UNIX program example executes the UNIX print working directory (pwd)

command to determine the current directory. The name of the current working

directory is then returned as a text string. Notice that although the pwd

command does not require additional command line arguments,

command_line_arg1 and command_line_arg2 must be included as a space enclosed

in quotes (″ ″).

v TEXTTONUMBER ((EXIT (″GetIncome″ , Applicant:Form , ″*Mortgage″))

This program example passes the value of Applicant concatenated to the text

literal *Mortgage to an application called GetIncome. The result is converted to a

number.

Related functions

v DDEQUERY

v FAIL

v GET

v LASTERRORCODE

v LASTERRORMSG

v PUT

v RUN

v VALID

GET

You can use the GET function to retrieve data using one of the source adapters,

such as a messaging system, a database, a file, and so forth, within the course of

your map.

When the GET function is used in a map, the default OnSuccess action is

adapter-specific. The default OnFailure action is to rollback any changes made

during map processing. The default Scope will be integral unless the map is

defined to run in bursts (which is the case when one or more inputs have the

FetchAs property set to Burst).

GET can also be used for adapters that support request/reply, such as Roma.

Chapter 10. External interface functions 89

Syntax:

GET (single-text-expression , single-text-expression

 [, single-text-expression])

Meaning:

GET (adapter_alias, adapter_commands

 [, data_request_to_send_to_adapter])

Returns:

A single character text item

GET returns the data that is returned by the source adapter. The adapter identified

by adapter_alias is called using the specified adapter_commands and passing

data_request_to_send_to_adapter as data to the adapter. See the Resource Adapters

documentation.

To identify whether the function was successful, you can generally use the VALID

function with the GET function. However, for certain adapters such as E-mail and

FTP, the success state is not known until after map completion and using the

VALID function in such cases might consistently return ″success″.

Examples

v Reply (s) = GET (″ROMA″, ″-BE Orders22A -MID 32001 -REQ 2″, PACKAGE

(Request Object:.:Input)

In this example, the GET function could be used in a request/reply mode to get

information from a Roma messaging system.

v Acct# = GET (″DB″ , ″-dbtype ORACLE -connect shasta -user rjc -pw vm70″ +

″SELECT Acct# FROM CustMaster WHERE CustID = ’″ + SenderID

Field:Identification Segment:Msg + ″’″)

In this example, the GET function could be used instead of a DBLOOKUP or

DBQUERY function to retrieve data from a database from within in a map rule.

Related functions

v FAIL

v LASTERRORCODE

v LASTERRORMSG

v PUT

v VALID

PUT

The PUT function passes data to a target adapter.

Use PUT to route data within your map using one of the target adapters such as to

a messaging system, a database, a file, and so forth.

When the PUT function is used in a map, the default OnSuccess action is

adapter-specific. The default OnFailure action is to rollback any changes made

during map processing. The default Scope will be integral unless the map is

defined to run in bursts (which is the case when one or more inputs have the

FetchAs property set to Burst).

90 IBM WebSphere Transformation Extender: Functions and Expressions

Syntax:

PUT (single-text-expression , single-text-expression, single-text-expression)

Meaning:

PUT (adapter_alias , adapter_commands, data_to_send_to_adapter)

Returns:

″None″

The adapter identified by adapter_alias is called using the specified

adapter_commands and passing data_to_send_to_adapter as data to the adapter.

To identify whether the function was successful, you can generally use the VALID

function with the PUT function. However, for certain adapters such as E-mail and

FTP, the success state is not known until after map completion and using the

VALID function in such cases might consistently return ″success″.

Examples

This example illustrates a mapping situation in which a set of messages is being

produced in the output (output card #1). However, the ultimate target for these

messages is a message queue and the messages need to be placed on the queue

one at a time.

To accomplish this, the first output card builds the set of messages and its Target is

defined as Sink. So, this set of messages is constructed in memory, but is discarded

after the map completes. A second output card, uses the following PUT function to

put each output message (from output card# 1), individually, on the output queue.

Message(s) = PUT (″MQS″, ″-QMN myqueuemgr -QN chips_queue -T″, PACKAGE

(PaymentMessage:CHIPS_Payment_Message))

v The first argument, MQS, identifies that the data is to be routed using the IBM

WebSphere MQ (server) adapter.

v The second argument, ″-QMN myqueuemgr -QN chips_queue -T″, provides the

adapter commands needed by the adapter to put the message on the queue.

v The third argument, PACKAGE, passes the data that is to be sent as the body of

the message.

Related functions

v FAIL

v GET

v LASTERRORCODE

v LASTERRORMSG

v VALID

RUN

The RUN function allows you to execute another compiled map from a component

or map rule.

You can use RUN to dynamically name source and/or destination files or to

dynamically pass data to a map. You can also use the RUN function to split the

output data into separate files based on some value in the input.

Chapter 10. External interface functions 91

Syntax:

RUN (single-text-expression [, single-text-expression])

Meaning:

RUN (map_to_run [, command_option_list])

Returns:

A single text item

The first argument, map_to_run, is an expression identifying the name of the

compiled map (.mmc) to be run.

The command_option_list argument is an optional argument that you can use to

specify execution commands applicable to the map to be run. Command_option_list

is a text item containing a series of execution commands separated by a space. Any

execution command can be used as part of the command_option_list argument. For

example, you can send data to another map by using the echo command option

(-IEx).

See the Execution Commands documentation for a list of command options.

The result of the RUN function depends on the command options in

command_option_list.

Echo command option

v If you use the Echo command option for an output card, the data from that card

will be passed back as a text item to the object in the map from which it was

run.

v If you use the Echo command option for more than one output card, the data

from all echoed cards will be concatenated together and passed back as a

text-item to the object in the map from which it was run.

v If you do not use the Echo command option, the return code indicating the

status of the map that was run will be passed back to the object in the map from

which it was run.

Examples

v RUN (″MyMap″ , ″-IE1s502 ″ + Invoice:File + ″ -OF1 install_dir\″ +

CustomerID:Invoice)

This example runs the MyMap map, sending 502-byte fixed-size Invoice data as

the data source for input card 1, overriding the filename of output card 1 based

on Customer data and returns the map return code as the result.

v RUN (″GetDbOpt″ , ″ ″)

This example runs the GetDbOpt map (with no command options specified)

and returns the map return code as the result.

v RUN (″DoOneSet″ , ″-A -GR″ +

ECHOIN(1 , Set:InFile)) +

″ -OF1 OUT_SET.″ + NUMBERTOTEXT (INDEX ($)) +

″ -OE2″)

This example runs the DoOneSet map. Command options include the following:

– ″-A -GR″

The DoOneSet map will produce no Audit Log and restrictions will be

ignored.

– ECHOIN(1 , Set:InFile)

92 IBM WebSphere Transformation Extender: Functions and Expressions

The ECHOIN function creates the -IE command option for echoing the data

represented by Set:InFile to input 1 of the RUN map.

– ″ -OF1 OUT_SET.″ + NUMBERTOTEXT (INDEX ($))

The output file for card 1 of the DoOneSet map will be called ″OUT_SET.″

plus a sequence number based on the index of the Set in InFile. For example,

the first output set will be OUT_SET.1, and so forth.

– ″ -OE2″

Using the output echo command option, the data built for output card 2 of

the DoOneSet map will be returned as the result of the RUN function.

An alternative to using the ECHOIN function shown above is using the long

version. For example, replace ECHOIN(1 , Set:InFile) with:

″ -IE1S″ + NUMBERTOTEXT (SIZE (Set:InFile) + ″ ″ + TEXT (Set:InFile)

Using the Echo input command option (-IE) with the sizing method (Sn) or

the ECHOIN function, one Set object of InFile is passed to input card 1 for

the DoOneSet map.

Related functions

v DDEQUERY

Chapter 10. External interface functions 93

94 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 11. Inspection functions

ABSENT

The ABSENT function tests for the absence of an object.

Syntax:

ABSENT (single-object-expression)

Meaning:

ABSENT (object_to_test)

Returns:

True or false

ABSENT returns ″true″ if the object_to_test evaluates to ″none″. If the

object_to_test does not evaluate to ″none″, the function returns ″false″.

Examples

v You can use this function to map an object only if another object is absent. For

example, you might want to map BillTo information to the ShipTo fields if the

ShipToName is absent.

v ABSENT (AreaCode:Phone)

This example evaluates to ″true″ when AreaCode:Phone evaluates to ″none″ or

evaluates to ″false″ when AreaCode:Phone does not evaluate to ″none″.

Related Functions

v PRESENT

CONTAINSERRORS

The CONTAINSERRORS function tests a valid object to see whether it contains

any objects in error.

Syntax:

CONTAINSERRORS (single-object-expression)

Meaning:

CONTAINSERRORS (object_to_test)

Returns:

True or false

The CONTAINSERRORS function returns ″true″ if any object contained in

object_to_test is in error; it returns ″false″ if the object_to_test is completely valid.

The input object, itself, is a valid input object. This function does not evaluate for

invalid objects. Therefore, if you have map rule:

CONTAINSERRORS (Invoice:InputFile)

and Invoice[1] is valid, Invoice[2] is invalid, and Invoice[3] is valid, then

CONTAINSERRORS evaluates only twice-once for each valid instance of Invoice.

© Copyright IBM Corp. 2006 95

Examples

v Msg (s) = IF (CONTAINSERRORS (Msg:MailBag) &

Type:Msg:MailBag = ″PRIORITY″ ,

Msg:MailBag,

″none″)

In this example, if Msg:MailBag contains any object in error and

Type:Msg:MailBag has a value of ″PRIORITY″, Msg:MailBag is mapped;

otherwise, ″none″ is returned for this occurrence of Msg. This map rule returns

all valid messages (Msg) that contain errors with a Type of ″PRIORITY″.

Related functions

v ISERROR

v REFORMAT

ISALPHA

You can use ISALPHA when you need to know whether a text string is all

alphabetic characters.

Syntax:

ISALPHA (single-text-expression)

Meaning:

ISALPHA (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

The ISALPHA function tests a text object to see if it is contains all alphabetic

characters.

If text_to_test contains only alphabetic characters (for example, A-Z and a-z),

ISALPHA evaluates to ″true″.

If text_to_test contains other than just alphabetic characters, ISALPHA returns

″false″.

Examples

v IF(ISALPHA (″AnywhereUSA″))

Returns ″true″

v IF(ISALPHA (″Anywhere USA″))

Returns ″false″

v IF(ISALPHA (″Mr. Brown″))

Returns ″false″

Related functions

v ISLOWER v LEAVEALPHANUM

v ISNUMBER v LEAVENUM

v ISUPPER v LEAVEPRINT

v LEAVEALPHA

96 IBM WebSphere Transformation Extender: Functions and Expressions

ISERROR

The ISERROR function tests an object to see if it is in error

You can use ISERROR to output your data in exactly the same order as it occurs in

your input, both the valid data and the data in error. You can also use ISERROR to

produce error messages for bad data in the same file in which you map your good

data.

Syntax:

ISERROR (single-object-name)

Meaning:

ISERROR (object_to_test)

Returns:

″True″ or ″false″

ISERROR returns ″true″ when object_to_test is in error and returns ″false″ when

object_to_test is completely valid.

Examples

v InfoRec (s) = IF (ISERROR (Record:SomeFile), ″Bad --> ″ + REJECT (

Record:SomeFile), ″Ok --> ″ + TEXT (Record:SomeFile))

In this example, ISERROR is used to produce a report for all Record objects in

SomeFile. If the record is in error, the InfoRec will have the text Bad -->

followed by the data from the input Record. If the record is valid, the InfoRec

will have the text Ok --> followed by the data from the input Record, such as:

Ok --> SZ-68839,486 Upgrade Microprocessor,186.86,100,W200

Bad --> MK-19309,,369.43,417,W100

Ok --> KL-20349,PCMCIA Network Adaptor,174.82,29,N300

Ok --> WP-37679,AC Adaptor,39.48,245,E100

Bad --> IL-39890,8MB Memory PCMCIA,390.48,0,S100

Related functions

v CONTAINSERRORS

ISLOWER

The ISLOWER function tests a text object to see if it contains all lowercase

alphabetic characters.

Syntax:

ISLOWER (series-text-expression)

Meaning:

ISLOWER (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

If text_to_test contains only lowercase alphabetic characters (for example, a-z),

ISLOWER evaluates to ″true″.

If text_to_test contains other than lowercase alphabetic characters, ISLOWER

returns ″false″.

Chapter 11. Inspection functions 97

Examples

v IF(ISLOWER (″company″))

Returns ″true″

v IF(ISLOWER (″pots and pans″))

Returns ″false″

v IF(ISLOWER (″Andrew″))

Returns ″false″

Related functions

v ISALPHA v LEAVEALPHANUM

v ISNUMBER v LEAVENUM

v ISUPPER v LEAVEPRINT

v LEAVEALPHA

ISNUMBER

The ISNUMBER function tests a text object to determine whether it contains all

numeric characters.

Syntax:

ISNUMBER (single-text-expression)

Meaning:

ISNUMBER (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

If text_to_test contains only digits (for example, 0-9), ISNUMBER evaluates to

″true″.

If text_to_test contains other than digits, ISNUMBER evaluates to ″false″.

Examples

v IF(ISNUMBER(″1″)

Returns ″true″

Related functions

v ISALPHA v LEAVEALPHANUM

v ISLOWER v LEAVENUM

v ISUPPER v LEAVEPRINT

v LEAVEALPHA

98 IBM WebSphere Transformation Extender: Functions and Expressions

ISUPPER

The ISUPPER function tests a text object to determine whether it contains all

uppercase alphabetic characters.

Syntax:

ISUPPER (series-text-expression)

Meaning:

ISUPPER (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

If text_to_test contains only uppercase alphabetic characters (for example, A-Z),

ISUPPER evaluates to ″true″.

If text_to_test contains other than uppercase alphabetic characters, ISUPPER returns

″false″.

Examples

v IF(ISUPPER (″BOMBAY″))

Returns ″true″

v IF(ISUPPER (″CD-ROM″))

Returns ″false″

v IF(ISUPPER (″Map Designer″))

Returns ″false″

Related functions

v ISALPHA v LEAVEALPHANUM

v ISLOWER v LEAVENUM

v ISNUMBER v LEAVEPRINT

v LEAVEALPHA

MEMBER

Use MEMBER when you need to know whether an object occurs within a series.

The MEMBER function searches a series, looking for a single specified object in the

series. If any object in the series matches the specified object, MEMBER returns

″true″. If there is no match, MEMBER returns ″false″.

Syntax:

MEMBER (single-object-expression , series-object-expression)

 MEMBER (single-object-expression , { literal, literal ... })

Meaning:

MEMBER (object_to_look_for , series_of_objects_to_look_at)

Returns:

″True″ or ″false″

Chapter 11. Inspection functions 99

MEMBER returns ″true″ if object_to_look_for matches one of the values in

series_of_objects_to_look_at.

It returns ″false″ if object_to_look_for does not match at least one of the values in

series_of_objects_to_look_at.

The two arguments, object_to_look_for and series_of_objects_to_look_at, must be

objects of the same item interpretation or the same group type. For example, if

object_to_look_for is a date/time item, series_of_objects_to_look_at must be a series of

date/time items.

Examples

v MEMBER (EntityIDCode:Name, {″BT″ , ″ST″})

This example tests whether EntityIDCode has one of a particular set of literal

values.

v MEMBER (Store# , EntityIDCode:Name)

This example tests whether Store# has the same value as any

EntityIDCode:Name.

Related functions

v EXTRACT

v LOOKUP

NOT

Use the NOT function to test a condition and have it return the inverse of its

″true″ or ″false″ result. For example, you want the function to return ″true″ if the

condition results in ″false″.

Syntax:

NOT (single-condition-expression)

Meaning:

NOT (condition_to_evaluate)

Returns:

″True″ or ″false″

NOT returns ″true″ if the condition evaluates to ″false″ and returns ″false″ if the

condition evaluates to ″true″.

Examples

v NOT (Qty:.:InputFile = 0)

This example returns ″false″ if the Qty equals 0 (the condition is true) and

returns ″true″ if Qty does not equal 0 (the condition is false).

v IF (NOT (PRESENT (StartDate)), ″Unknown″, ″none″)

This example returns ″unknown″ if StartDate is not present and returns ″none″

if StartDate is absent.

Another way to test that an object is not present is to use the ABSENT function.

100 IBM WebSphere Transformation Extender: Functions and Expressions

OFFSET

Use the OFFSET function when you need to know the position of a particular data

object within its card object.

OFFSET returns an integer representing the offset of the specified object within the

data.

Syntax:

OFFSET (single-object-expression)

Meaning:

OFFSET (object_whose_offset_is_needed)

Returns:

A single integer

OFFSET returns the offset, in bytes, of the specified object within its card object,

beginning at offset 0. For an object that has an initiator, the offset will apply to the

first byte of the data. For an object that is right-justified with pad characters,

OFFSET will return the offset of the first byte of data.

The OFFSET function works the same for output objects as it does for input

objects.

Examples

v OFFSET (Application:LoanData)

In this example, if the first character of the first occurrence of the object

Application occurs 210 bytes from offset 0 within LoanData, the OFFSET

function returns 210.

Related function

v SIZE

OR

Use the OR function to test whether one of a series of conditions is true.

OR evaluates a series of conditions and returns ″true″ if at least one evaluates to

″true″; otherwise returns ″false″.

Syntax:

OR (series-condition-expression)

Meaning:

OR (conditions_to_evaluate)

Returns:

″True″ or ″false″

OR evaluates to ″true″ if any member of the argument evaluates to ″true″ and

evaluates to ″false″ if all members of the argument evaluate to ″false″.

Examples

v Order(s)=IF (OR (Store:Table = Store#:Order:Input), Order:Input)

Chapter 11. Inspection functions 101

This example produces an Order if the Store# of an Order in Input matches any

Store in Table.

Related function

v ALL

PARTITION

The PARTITION function checks to see if an occurrence of an object belongs to a

certain partition. If the object is that partition, ″true″ is returned. Otherwise, ″false″

is returned.

Syntax:

PARTITION (single-object-expression, single-simple-object-name)

Meaning:

PARTITION (partitioned_object, simple_name_of_partition_to_check_for)

Returns:

″True″ or ″false″

PARTITION returns ″true″ if the data object of partitioned_object belongs to the

partition represented by simple_name_of_partition_to_check_for. Otherwise,

PARTITION returns ″false″.

Examples

v Assume that Transaction has been partitioned into three partitioned subtypes:

Invoice, Order, and Remittance, as shown.

The following rule could be used to detect whether a given Transaction is an

Invoice:

PARTITION (Transaction:.:Batch, Invoice)

If the Transaction is an Invoice, PARTITION returns ″true″. If the Transaction is

not an Invoice (for example, it is an Order or a Remittance), PARTITION

returns ″false″ for that Transaction.

Related function

v GETPARTITIONNAME

PRESENT

The PRESENT function tests for the presence of an object.

PRESENT is commonly used with the IF function in a map rule to provide

conditional logic. For example, if the object is present, do this; otherwise, do

something else.

Similarly, PRESENT is commonly used with the WHEN function in component

rules to provide conditional validation logic.

Syntax:

PRESENT (single-object-expression)

Meaning:

PRESENT (object_to_look_for)

102 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

″True″ or ″false″

PRESENT returns ″true″ if the input argument does not evaluate to ″none″; the

object is present. It returns ″false″ if the input argument evaluates to ″none″; the

object is not present.

Examples

v PRESENT (Trailer:File)

This example returns ″true″ if Trailer is present and returns ″false″ if Trailer is

absent.

v IF (PRESENT(MiddleInitial:.:Input), MiddleInitial:.:Input, ″***″)

This example in a map rule maps MiddleInitial if it is present. If MiddleInitial

is not present, three asterisks are mapped.

v WHEN (PRESENT (AreaCode Field), PRESENT (PhoneNo Field))

In this example, PRESENT is being used in conjunction with the WHEN

function in a component rule to determine whether a particular object is valid.

Related functions

v ABSENT

v IF

v WHEN

SIZE

The SIZE function returns an integer representing the size of a specified object,

exclusive of any pad characters.

Syntax:

SIZE (single-object-expression)

Meaning:

SIZE (object_whose_size_is_needed)

Returns:

A single integer

The SIZE function returns the size, in bytes, of object_whose_size_is_needed. The size

returned does not include any pad characters that may be in the object.

The size of a group is the size, beginning with the first character of the first

component and ending with the last character of the last component, of the group.

If the group has delimiters, the infix delimiters are included in the size.

Examples

v SIZE (Transaction)

Returns 8000 if the size of Transaction (without pad characters) is 8000 bytes

Chapter 11. Inspection functions 103

TESTOFF

The TESTOFF function tests a specified bit in a binary number item to see whether

it is off.

Syntax:

TESTOFF (single-binary-number-expression , single-integer-expression)

Meaning:

TESTOFF (binary_number_to_test , bit_to_test)

Returns:

″True″ or ″false″

The value of bit_to_test specifies which bit of binary_number_to_test should be tested

for the value 0. If bit_to_test has the value 1, it refers to the leftmost bit of

binary_number_to_test.

The TESTOFF function returns ″true″ if the specified bit is off and returns ″false″ if

the specified bit is on.

If bit_to_test is less than one or greater than the number of bits of

binary_number_to_test, TESTOFF returns ″false″.

Examples

v TESTOFF (A, 16)

Assume A is the two-byte binary value of ″1″, which is all zeros except for bit

16. The binary representation of the value in A is 0001.

This example returns ″false″.

v TESTOFF (A, 20)

Returns ″false″ because bit 20 does not exist.

TESTON

The TESTON function tests a specified bit in a binary number to see if it is on.

Syntax:

TESTON (single-binary-number-expression, single-integer-expression)

Meaning:

TESTON (binary_number_to_test ,bit_to_test)

Returns:

″True″ or ″false″

The value of bit_to_test specifies the bit of binary_number_to_test to test for the

value 1. If bit_to_test has the value 1, it refers to the leftmost bit of

binary_number_to_test.

The function returns ″true″ if the specified bit is on; it has the value 1. It returns

″false″ if the specified bit is off; it has the value 0.

If bit_to_test is less than one or greater than the number of bits of

binary_number_to_test, TESTON returns ″false″.

104 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

v TESTON (A , 16)

Assume A is the two-byte binary value of ″1″, which is all zeros except for bit

16. The binary representation of the value in A is 0001.

This example returns ″true″.

v TESTON (A , 20)

Returns ″false″ because bit 20 does not exist in a two-byte value.

VALID

You can use the VALID function to perform conditional processing based on

whether an external interface function executes successfully.

VALID returns the result of the first argument if it is valid; otherwise, returns the

second argument.

Syntax:

VALID (single-text-expressions , single-general-expression)

Meaning:

VALID (function_that_can_fail , return_value_if_function_fails)

Returns:

A single text expression

VALID returns the result of the evaluation of function_that_can_fail if it is valid. If

the function fails, VALID returns return_value_if_function_fails.

The following functions can fail:

v DBLOOKUP v GET

v DBQUERY v PUT

v DDEQUERY v RUN

v EXIT

Examples

v SomeObject = VALID (RUN (″mymap.mmc″ , ″-OF1 mydata.txt″) ,

FAIL (″My RUN failed!″))

If the RUN function returns an error return code, the VALID functions returns

″none″, the map aborts, and the message ″My RUN failed!″ is reported under

″Execution Summary″ in the execution audit log.

Related functions

v DBLOOKUP

v DBQUERY

v DDEQUERY

Chapter 11. Inspection functions 105

106 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 12. Logical functions

ALL

The ALL function evaluates a series of conditions and returns ″true″ if they all

evaluate to ″true″; otherwise returns ″false″.

Syntax:

ALL (series-condition-expression)

Meaning:

ALL (conditions_to_evaluate)

Returns:

True or false

The ALL function evaluates to ″true″ if all members of the input argument evaluate

to ″true″.; it evaluates to ″false″ if any member of the input argument is ″false″.

Examples

v You can use ALL when you want to test whether all conditions of a series are

true.

v PO (s)=IF (ALL(PO#:Line:Order = PO#:Line:Order[1]), Order, ″none″)

If each and every PO# matches the PO# of the first Order, ALL evaluates to

″true″. Otherwise, ALL evaluates to ″false″.

Related functions

v NOT

v OR

EITHER

The EITHER function returns the result of the first argument that does not evaluate

to ″none″.

Syntax:

EITHER (single-general-expression { , single-general-expression })

Meaning:

EITHER (try_this { , if_none_try_this })

Returns:

A single object

The EITHER return methods work in the following ways:

Returns...

When...

try_this

try_this does not evaluate to ″none″

if_none_try_this

try_this evaluates to ″none″

© Copyright IBM Corp. 2006 107

the next if_none_try_this

the first if_none_try_this evaluates to ″none″

Examples

v EITHER (OrderDate Field , CURRENTDATE ())

If OrderDate Field does not evaluate to ″none″, it is returned. If OrderDate

Field evaluates to ″none″, the current system date (using CURRENTDATE) is

returned.

v EITHER (LOOKUP (PriorityCd:Msg , CustID:Msg = ″93X″) , 8)

This example returns the result of the LOOKUP if that result does not evaluate

to ″none″; otherwise, it returns the second argument of 8.

v EITHER (IF (SomeCode = ″C″ , CustomerID:Input) ,

IF (SomeCode = ″S″ , SupplierID:Input) ,

IF (SomeCode = ″O″ , Reference#:Input) ,

″####″)

If SomeCode is C and CustomerID:Input has a value, EITHER returns the value

of CustomerID. Otherwise, if SomeCode is S and CustomerID:Input has a

value, EITHER returns the value of SupplierID. Otherwise, if SomeCode is O

and Reference#:Input has a value, EITHER returns the value of Reference#. If

none of those conditions result in a value, EITHER returns ″####″.

v You can use EITHER when you want a default value when an expression

evaluates to ″none″ and the expression may cause common arguments to

produce an unintended result. For example, use:

EITHER (LOOKUP (PriorityCd:Msg , CustID:Msg = ″93X″) , 8)

-instead of-

IF (PRESENT (LOOKUP (PriorityCd:Msg , CustID:Msg = ″93X″)),

LOOKUP (PriorityCd:Msg , CustID:Msg = ″93X″) , 8)

IF

You can use the IF function for conditional logic. For example, to return one of two

objects depending on the evaluation of a condition.

IF evaluates a conditional expression, returning one value if true, another if false.

Syntax:

IF (single-condition-expression , single-general-expression

 [, single-general-expression])

Meaning:

IF (test_this , result_if_true [, result_if_false])

Returns:

A single tem or single group

If test_this evaluates to ″true″, the result is result_if_true.

Otherwise, if test_this evaluates to ″false″, the result is result_if_false. If no

result_if_false is specified, this evaluates to ″none″.

The result_if_true and result_if_false arguments must correspond to the same item

interpretation or the same group type or either can be ″none″. For example, if

108 IBM WebSphere Transformation Extender: Functions and Expressions

result_if_true evaluates to a number, result_if_false must also evaluate to a number.

If result_if_true evaluates to a LineItem group, result_if_false must also evaluate to a

LineItem group.

Examples

v IF (Quantity:LineItem:PO > 500, ″PRIORITY″, ″REGULAR″)

This example tests the Quantity value. If that Quantity is > 500, the IF function

evaluates to the value PRIORITY. If that Quantity is <= 500, the IF function

evaluates to the value, REGULAR.

v IF (Status:Order = ″Special″, ″SPCL″)

This example tests the Status value. If the Status is Special, the IF function

evaluates to the value, SPCL. Otherwise, it evaluates to ″none″. Notice that this

rule is equivalent to

IF (Status:Order = ″Special″, ″SPCL″, ″none″)

ISALPHA

You can use ISALPHA when you need to know whether a text string is all

alphabetic characters.

Syntax:

ISALPHA (single-text-expression)

Meaning:

ISALPHA (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

The ISALPHA function tests a text object to see if it is contains all alphabetic

characters.

If text_to_test contains only alphabetic characters (for example, A-Z and a-z),

ISALPHA evaluates to ″true″.

If text_to_test contains other than just alphabetic characters, ISALPHA returns

″false″.

Examples

v IF(ISALPHA (″AnywhereUSA″))

Returns ″true″

v IF(ISALPHA (″Anywhere USA″))

Returns ″false″

v IF(ISALPHA (″Mr. Brown″))

Returns ″false″

Related functions

v ISLOWER v LEAVEALPHANUM

v ISNUMBER v LEAVENUM

v ISUPPER v LEAVEPRINT

Chapter 12. Logical functions 109

v LEAVEALPHA

ISLOWER

The ISLOWER function tests a text object to see if it contains all lowercase

alphabetic characters.

Syntax:

ISLOWER (series-text-expression)

Meaning:

ISLOWER (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

If text_to_test contains only lowercase alphabetic characters (for example, a-z),

ISLOWER evaluates to ″true″.

If text_to_test contains other than lowercase alphabetic characters, ISLOWER

returns ″false″.

Examples

v IF(ISLOWER (″company″))

Returns ″true″

v IF(ISLOWER (″pots and pans″))

Returns ″false″

v IF(ISLOWER (″Andrew″))

Returns ″false″

Related functions

v ISALPHA v LEAVEALPHANUM

v ISNUMBER v LEAVENUM

v ISUPPER v LEAVEPRINT

v LEAVEALPHA

ISNUMBER

The ISNUMBER function tests a text object to determine whether it contains all

numeric characters.

Syntax:

ISNUMBER (single-text-expression)

Meaning:

ISNUMBER (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

110 IBM WebSphere Transformation Extender: Functions and Expressions

If text_to_test contains only digits (for example, 0-9), ISNUMBER evaluates to

″true″.

If text_to_test contains other than digits, ISNUMBER evaluates to ″false″.

Examples

v IF(ISNUMBER(″1″)

Returns ″true″

Related functions

v ISALPHA v LEAVEALPHANUM

v ISLOWER v LEAVENUM

v ISUPPER v LEAVEPRINT

v LEAVEALPHA

ISUPPER

The ISUPPER function tests a text object to determine whether it contains all

uppercase alphabetic characters.

Syntax:

ISUPPER (series-text-expression)

Meaning:

ISUPPER (text_to_test)

Returns:

This function evaluates to a Boolean ″true″ or ″false″ and should only be

used as a conditional expression within a logical function.

If text_to_test contains only uppercase alphabetic characters (for example, A-Z),

ISUPPER evaluates to ″true″.

If text_to_test contains other than uppercase alphabetic characters, ISUPPER returns

″false″.

Examples

v IF(ISUPPER (″BOMBAY″))

Returns ″true″

v IF(ISUPPER (″CD-ROM″))

Returns ″false″

v IF(ISUPPER (″Map Designer″))

Returns ″false″

Related functions

v ISALPHA v LEAVEALPHANUM

v ISLOWER v LEAVENUM

v ISNUMBER v LEAVEPRINT

Chapter 12. Logical functions 111

v LEAVEALPHA

NOT

Use the NOT function to test a condition and have it return the inverse of its

″true″ or ″false″ result. For example, you want the function to return ″true″ if the

condition results in ″false″.

Syntax:

NOT (single-condition-expression)

Meaning:

NOT (condition_to_evaluate)

Returns:

″True″ or ″false″

NOT returns ″true″ if the condition evaluates to ″false″ and returns ″false″ if the

condition evaluates to ″true″.

Examples

v NOT (Qty:.:InputFile = 0)

This example returns ″false″ if the Qty equals 0 (the condition is true) and

returns ″true″ if Qty does not equal 0 (the condition is false).

v IF (NOT (PRESENT (StartDate)), ″Unknown″, ″none″)

This example returns ″unknown″ if StartDate is not present and returns ″none″

if StartDate is absent.

Another way to test that an object is not present is to use the ABSENT function.

OR

Use the OR function to test whether one of a series of conditions is true.

OR evaluates a series of conditions and returns ″true″ if at least one evaluates to

″true″; otherwise returns ″false″.

Syntax:

OR (series-condition-expression)

Meaning:

OR (conditions_to_evaluate)

Returns:

″True″ or ″false″

OR evaluates to ″true″ if any member of the argument evaluates to ″true″ and

evaluates to ″false″ if all members of the argument evaluate to ″false″.

Examples

v Order(s)=IF (OR (Store:Table = Store#:Order:Input), Order:Input)

This example produces an Order if the Store# of an Order in Input matches any

Store in Table.

112 IBM WebSphere Transformation Extender: Functions and Expressions

Related function

v ALL

WHEN

You can use the WHEN function in a component rule to test for the validity of one

object based on another object.

WHEN evaluates a condition. Then, based on that evaluation, evaluates another

condition and returns ″true″ or ″false″.

Syntax:

WHEN (single-condition-expression , single-condition-expression [,

single-condition-expression])

Meaning:

WHEN (condition1 , condition2 [, condition3])

Returns:

″True″ or ″false″

The following statements summarize how the WHEN function works:

v Returns ″true″ if condition1 and condition2 both evaluate to ″true″.

v Returns ″true″ if condition1 evaluates to ″false″ and there is no condition3 or if

condition1 evaluates to ″false″ and condition3 evaluates to ″true″.

v Returns ″false″ if condition1 evaluates to ″true″ and condition2 evaluates to ″false″.

v Returns ″false″ if both condition1 and condition3 evaluate to ″false″.

Evaluation of the three arguments:

 Condition 1 Condition 2 Condition 3 WHEN returns:

True True True

False True

False True True

True False False

False False False

Examples

v WHEN (ABSENT(CatalogueField), ABSENT (QuantityField))

Returns ″true″ when CatalogueField and QuantityField are both absent

v WHEN (PRESENT(ShipDate), PRESENT(InStock), PRESENT(BackOrderDate))

Returns ″false″ when ShipDate and BackOrderDate are both absent

Chapter 12. Logical functions 113

114 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 13. Implementing a library EXIT function

You can develop a function in a library to be executed from an EXIT function.

EXIT function’s library interface

Library functions are used within an EXIT function using information contained in

the EXITPARAM structure. This method provides great flexibility for data passed

to and from a map. For example, the map can pass binary data containing nulls,

and there is no limitation on the length of the returned data. The method also

allows functions to report additional information by providing a return code and

error message.

Using the EXITPARAM Structure

Function prototype

The function to be executed must be a function in a library with the following

prototype:

void MyFunc(LPEXITPARAM lpep);

Definition of the EXITPARAM structure

The definition of the EXITPARAM structure is as follows:

struct tagExitParamStruct

{

 DWORD dwSize;

 DWORD dwToLen;

 DWORD dwFromLen;

 DWORD dwMapInstance;

 void FAR * lpv;

 LPSTR lpszCmdLine;

 BYTE HUGE * lpDataToApp;

 BYTE HUGE * lpDataFromApp;

 UINT uRetryCount;

 UINT uRetryInterval;

 BOOL bRollback;

 BOOL bCleanup;

 int nReturn;

 char szErrMsg[100];

 char szFile[260];

 void FAR * lpMapHandle;

 void FAR * lpInternal;

 void FAR * lpCmdStruct;

 void FAR * lpAdaptParms;

 void FAR * lpContext;

 void FAR * lpWildcard;

 void FAR * lpfnMS;

 void FAR * lpMS;

 DWORD dwWildcardSize;

 LPSTR lpszMapDirectory;

 WORD wCardNum;

 WORD wCleanupAction;

 WORD wScope;

 UINT uUnitSize;

 BOOL bBurst;

 BOOL bFromRule;

© Copyright IBM Corp. 2006 115

BOOL bSource;

 DWORD dwRecords;

};

typedef struct tagExitParamStruct EXITPARAM;

typedef struct tagExitParamStruct FAR * LPEXITPARAM;

The engine environment sets up the EXITPARAM structure and the function should

fill in the result. The engine will allocate and free the memory associated with

lpDataToApp. The function must allocate the memory for lpDataFromApp. For all

Windows platforms, use the Windows macro GlobalAllocPtr defined in

windowsx.h. For all other platforms, use the C-runtime malloc function. The

engine will free this memory.

 Table 3. Components of EXITPARAM as used with the EXIT function.

Component Used as Usage

dwSize Input Size (in bytes) of EXITPARAM to assure

correct compatibility

dwToLen Input Length (size in bytes) of lpDataToApp

dwFromLen Output Length (size in bytes) of lpDataFromApp

dwMapInstance Not used

lpv Not used

LpszCmdLine Not used

lpDataToApp Input Data sent to the function. This is the third

parameter of the EXIT function

lpDataFromApp Output Data sent back to the server from the

function

uRetryCount Not used

uRetryInterval Not used

bRollback Not Used

bCleanup Not used

nReturn Output Return code based on the outcome of the

function

szErrMsg Output String message based on nReturn

szFile Not used

lpInternal Not used

lpCmdStruct Not used

lpAdaptParms Not used

lpContext Not used

lpWildcard Not used

dwWildcardSize Not used

lpszMapDirectory Not used

wCardNum Not used

wCleanupAction Not used

wScope Not used

uUnitSize Not used

bBurst Not used

lpfnMS Not used.

116 IBM WebSphere Transformation Extender: Functions and Expressions

Table 3. Components of EXITPARAM as used with the EXIT function. (continued)

Component Used as Usage

lpMS Not used

dwRecords Not used

There is no interaction with the nReturn or szErrMsg fields. However, this might

change in a future release.

Chapter 13. Implementing a library EXIT function 117

118 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 14. Lookup and reference functions

CHOOSE

The CHOOSE function returns the object within a series whose position in the

series corresponds to a specified number.

Syntax:

CHOOSE (series-object-name , single-integer-expression)

Meaning:

CHOOSE (from_these_objects , pick_the_nth_one)

Returns:

A single object whose index within the from_these_objects series matches

the number specified by pick_the_nth_one. If that member of the series

does not exist, CHOOSE returns ″none″.

You can use CHOOSE to use a variable value to specify the index for a particular

object from a series.

Examples

v CHOOSE (Row:DBSelect , 2)

Returns the second Row

v CHOOSE (Set:Claim , INDEX (Row:Header))

Returns the Set within the Claim that corresponds to the index of the Row of

Header.

Related function

v LOOKUP

DBLOOKUP

The DBLOOKUP function executes an SQL statement against a database. The SQL

statement can be any permitted by your database management system or ODBC

driver.

When the DBLOOKUP function is used in a map, the default OnSuccess action is

adapter-specific. The default OnFailure action is to rollback any changes made

during map processing. The default Scope will be integral unless the map is

defined to run in bursts (which is the case when one or more inputs have the

FetchAs property set to Burst).

There are two ways to specify arguments for DBLOOKUP.

You can use DBLOOKUP to execute an SQL statement when you want to execute a

SELECT statement to retrieve a specific column value in a large table in a database

using the value of another input, rather than defining the entire table as an input

card and using the LOOKUP, SEARCHDOWN, or SEARCHUP functions.

You can use DBLOOKUP to execute an SQL statement when you want to execute a

SELECT statement to retrieve a specific column value from a table or database that

© Copyright IBM Corp. 2006 119

might vary based on a parameter file. Using Meaning 2 of the DBLOOKUP

function allows these parameters to be dynamically specified at run time.

Syntax:

DBLOOKUP (single-text-expression , single-text-expression , [

single-text-literal])

Meaning:

1. DBLOOKUP (SQL_statement , mdq_filename, database_name)

2. DBLOOKUP (SQL_statement , parameters)

Returns:

A single text item

The DBLOOKUP function returns the results of the query in the same format as a

query specified for a map input card, except that it does not include the last

carriage return/linefeed. Because this information is removed, it is easier to make

use of a single value extracted from a database.

Arguments for meaning 1

DBLOOKUP (SQL_statement , mdq_filename , database_name)

v SQL_statement

The first argument is an SQL statement as a text string. This can be any valid

SQL statement permitted by your database management system and supported

by your database-specific driver. In addition to a fixed SQL statement, this

argument can be a concatenation of text literals and data objects, enabling the

concatenation of data values into your SQL statement.

v mdq_filename

The second argument is the name of a database query file (.mdq) produced by

the Database Interface Designer. It contains the definition of the database that

the SQL statement is to be executed against. If the .mdq file is in a directory

other than the directory of the map, the path must be specified.

Note: The .mdq file is accessed at map build time and is not needed at runtime.

v database_name

The third argument is the name of a database in the database query file (.mdq)

as defined in the Database Interface Designer.

If used in this way, both the .mdq filename and database name must be literals.

Arguments for meaning 2

DBLOOKUP (SQL_statement , parameters)

v SQL_statement

The first argument is an SQL statement as a text string. This can be any valid

SQL statement permitted by your database management system and supported

by your database-specific driver. In addition to a fixed SQL statement, this

argument can be a concatenation of text literals and data objects, enabling the

concatenation of data values into your SQL statement.

v parameters

The second argument is a set of parameters, either:

– -MDQ mdqfilename -DBNAME dbname

-or-

120 IBM WebSphere Transformation Extender: Functions and Expressions

– -DBTYPE database_type [database specific parameters]

The keyword -MDQ is followed by the name of the database query file

(.mdq) produced by the Database Interface Designer. This .mdq file contains

the definition of the database. If the .mdq file is in a directory other than the

directory of the map, the path must be specified. The .mdq filename is

followed by the keyword -DBNAME and the database name as specified in

the Database Interface Designer.

Using this syntax, the .mdq file is accessed at runtime and must be present.

The keyword -DBTYPE is followed by a keyword specifying the database

type (for example, ODBC or ORACLE) followed, optionally, by

database-specific parameters.

This syntax does not use an .mdq file, because the database-specific

parameters provide the information required to connect to the database. Refer

to the Resource Adapters documentation for detailed information on the

database-specific parameters that can be specified.

When used with Meaning 2, DBLOOKUP must conform to these rules:

v All keywords (for example, -DBTYPE) can be upper or lowercase, but not mixed.

v A space is required between the keyword and its value (for example, -DBTYPE

ODBC).

v The order of the keywords is not important.

All database-specific parameters are optional.

Examples

Assume that you have a table named ″PARTS″ that contains the following data:

 PART_NUMBER PART_NAME

1 1/4″ x 3″ Bolt

2 1/4″ x 4″ Bolt

Assume that this database has been defined using the Database Interface Designer

in a file named mytest.mdq and that the name of the database, as specified in the

.mdq file, is PartsDB.

v DBLOOKUP (″SELECT PART_NAME from PARTS where PART_NUMBER =1″,

″mytest.mdq″,

″PartsDB″)

Returns: ¼″ x 3″ Bolt

Using Meaning 2, you can specify the DBLOOKUP this way:

v DBLOOKUP(″SELECT PART_NAME from PARTS where PART_NUMBER =1″,

″-MDQ mytest.mdq -DBNAME PartsDB″)

where both the .mdq file name and database name is specified.

Using Meaning 2, you can also specify the database type and the appropriate

database-specific parameters:

v DBLOOKUP(″SELECT PART_NAME from PARTS where PART_NUMBER =1″ ,

″-DBTYPE ORACLE -CONNECT MyDB -USER janes ″)

Chapter 14. Lookup and reference functions 121

Related functions

v DBQUERY

v EXTRACT

v FAIL

v LASTERRORCODE

v LASTERRORMSG

v LOOKUP

v SEARCHDOWN

v SEARCHUP

v VALID

For more examples using the DBLOOKUP function, see the Database Interface

Designer documentation.

DBQUERY

The DBQUERY function executes an SQL statement against a database. The SQL

statement can be any permitted by your database management system or ODBC

driver.

When the DBQUERY function is used in a map, the default OnSuccess action is

adapter-specific. The default OnFailure action is to rollback any changes made

during map processing. The default Scope will be integral unless the map is

defined to run in bursts (which is the case when one or more inputs have the

FetchAs property set to Burst).

There are two ways to specify the arguments for DBQUERY. You can use

DBQUERY [Meaning 1] to execute an SQL statement when you want to look up

information in a database using a parameterized query that is based on another

value in your data. If your SQL statement is a SELECT statement, the DBQUERY

function may be used in conjunction with the RUN function to issue dynamic

SELECT statements whose results can be used as input to another map.

You can also use the DBQUERY function [Meaning 2] to execute an SQL statement

when the database, table, or other database parameters might vary; perhaps being

supplied by a parameter file.

Syntax:

DBQUERY (single-text-expression , single-text-expression ,

 [single-text-literal])

Meaning:

1. DBQUERY (SQL_statement , mdq_filename, database_name)

2. DBQUERY (SQL_statement , parameters)

Returns:

A single text item

If your SQL statement is a SELECT statement, the results of the query in the same

format as a query specified as a map input card, including row delimiters and

terminators, and so on.

If your SQL statement is anything other than a SELECT statement, ″none″.

122 IBM WebSphere Transformation Extender: Functions and Expressions

Arguments for meaning 1

DBQUERY (SQL_statement, mdq_filename , database_name)

v SQL_statement

The first argument is an SQL statement as a text string. This can be any valid

SQL statement that is permitted by your database management system and

supported by your database-specific driver. In addition to a fixed SQL statement,

this argument can be a concatenation of text literals and data objects, enabling

the concatenation of data values into your SQL statement.

v mdq_filename

The second argument is the name of a database query file (.mdq) produced by

the Database Interface Designer. It contains the definition of the database that

the SQL statement is to be executed against. If the .mdq file is in a directory

other than the directory of the map, the path must be specified.

Note: The .mdq file is accessed at map build time and is not needed at runtime.

v database_name

The third argument is the name of a database in the database query file (.mdq)

as defined in the Database Interface Designer.

If used in this way, both the .mdq filename and database name must be literals.

Arguments for meaning 2

DBQUERY (SQL_statement , parameters)

v The first argument is an SQL statement as a text string. This can be any valid

SQL statement that is permitted by your database management system and

supported by your database-specific driver. In addition to a fixed SQL statement,

this argument can be a concatenation of text literals and data objects, enabling

the concatenation of data values into your SQL statement.

v The second argument is a set of parameters, either:

– -MDQ mdqfilename -DBNAME dbname

-or-

– -DBTYPE database_type [database specific parameters]

The keyword -MDQ is followed by the name of the database query file

(.mdq) produced by the Database Interface Designer. This .mdq file contains

the definition of the database. If the .mdq file is in a directory other than the

directory of the map, the path must be specified. The .mdq filename is

followed by the keyword -DBNAME and the database name as specified in

the Database Interface Designer.

Note: Using this syntax, the .mdq file is accessed at runtime and must be

present.

The keyword -DBTYPE is followed by a keyword specifying the database

type (for example, ODBC or ORACLE) followed, optionally, by

database-specific parameters.

Note: This syntax does not use an .mdq file, because the database-specific

parameters provide the information required to connect to the

database. Refer to the appropriate database adapter documentation for

detailed information about database-specific parameters.

When used with Meaning 2, DBQUERY must conform to these rules:

Chapter 14. Lookup and reference functions 123

v All keywords (for example, -DBTYPE) can be upper or lower case, but not

mixed.

v A space is required between the keyword and its value (for example, -DBTYPE

ODBC).

v The order of the keywords is not important.

All database-specific parameters are optional.

Examples

Assume that you have a table named ″PARTS″ that contains the following data:

 PART_NUMBER PART_NAME

1 1/4″ x 3″ Bolt

2 1/4″ x 4″ Bolt

Also assume that this database has been defined using the Database Interface

Designer in a file named mytest.mdq and that the name of the database, as

specified in the .mdq file, is PartsDB.

DBQUERY ("SELECT * from PARTS" , "mytest.mdq" , "PartsDB")

Returns 1|¼″ x 3″ Bolt<cr><lf>2|¼″ x 4″ Bolt<cr><lf>

where <cr><lf> is a carriage return followed by a line feed.

Using Meaning 2, you can also specify the DBQUERY this way:

DBQUERY ("SELECT * from PARTS" , "-MDQ mytest.mdq -DBNAME PartsDB")

where both the .mdq file name and database name are specified.

Or, specify it this way, using Meaning 2 by specifying the database type and the

appropriate database-specific parameters:

DBQUERY ("SELECT * from PARTS" , "-DBTYPE ORACLE -CONNECT MyDB -USER

janes")

Assume that you have an input file containing one order record. To map that order

to another proprietary format, you also have a parts table with pricing information

for every part for every customer, a very large table. Rather than using the entire

parts table as the input to your map, you might use the RUN function with a

DBQUERY to dynamically select only those rows from the parts table

corresponding to the customer in the order file, as follows:

RUN ("MapOrder.MMC" ,

 "IE2" + DBQUERY ("SELECT * FROM Parts WHERE CustID = "

 + CustomerNo:OrderRecord:OrderFile + " ORDER BY PartNo" ,

"PartsDB.MDQ", "PartsDatabase"))

Related functions

v DBLOOKUP

v EXTRACT

v FAIL

v LASTERRORCODE

124 IBM WebSphere Transformation Extender: Functions and Expressions

v LASTERRORMSG

v LOOKUP

v SEARCHUP

v SEARCHDOWN

v VALID

DDEQUERY

The DDEQUERY function allows you to interface to other Windows applications

such as Trading Partner PC, Excel, and so forth, provided that certain criteria are

met. For example, if you receive an Excel spreadsheet file, you must have the

appropriate version of the Excel application installed (that is compatible with the

file received) and the application must be open.

Syntax:

DDEQUERY (single-text-expression , single-text-expression,

single-text-expression)

Meaning:

DDEQUERY (application_name , topic , text)

Returns:

A single text item from an application

Examples

v DDEQUERY (″excel″ , ″[MKTPRICE.XLS]Sheet1″, ″R8C1:R14C3″)

In this example, DDEQUERY is used to get data from an Excel spreadsheet. The

third argument, R8C1:R14C3, specifies the location of the data in the

spreadsheet. (In Excel, the 8th row, 1st column to the 14th row, 3rd column is

A8:C14.) The content of this spreadsheet range is returned as a single text item.

This example assumes that the application, the map, and the spreadsheet all

reside in the same directory. If they are not in the same directory you must add

the path. For example:

DDEQUERY (″excel″ , ″c:\spreadsheet[MKTPRICE.XLS]Sheet1″ , ″R8C1:R14C3″)

v DDEQYUERY (″tppc″,″PartnerX″,″BGyourEDIode″)

In this example, DDEQUERY is used as a request to Trading Partner PC.

Related functions

v EXIT v LASTERRORMSG

v FAIL v PUT

v GET v RUN

v LASTERRORCODE v VALID

EXTRACT

Use EXTRACT whenever you need only particular members of a series

returned-those that meet a certain condition. An example may be only POs that

contain backordered items.

Chapter 14. Lookup and reference functions 125

The EXTRACT function can only be used in a map rule. It cannot be used in a

component rule.

The EXTRACT function returns all members of a series for which a specified

condition is true.

Syntax:

EXTRACT (series-object-expression, single-condition-expression)

Meaning:

EXTRACT (objects_to_extract, condition_to_evaluate)

Returns:

A series object.

The result is each member of series_to_search for which the condition specified by

condition_to_evaluate evaluates to ″true″. EXTRACT returns ″none″, if no member of

series_to_search has a corresponding condition_to_evaluate that evaluates to ″true″.

Examples

v EXTRACT (PO:Transaction , Store# = Location:PO:Transaction)

This example returns all POs, individually, whose Location is a particular

Store#.

v EXTRACT (Row:DBSelect , ProcessFlag Column:Row:DBSelect = ″Y″)

This example returns all Rows that have a ProcessFlag Column value of ″Y″.

Related Functions

v CHOOSE

v LOOKUP

v SEARCHDOWN

v SEARCHUP

GETANDSET

You can use GETANDSET when you have an input file that keeps track of control

information that serves as an input to your map and the control information in the

file needs to be updated based on processing that occurs in your map.

The GETANDSET function gets a fixed length value from the input data stream,

updates that value in the input data stream, and returns either the original or

updated value.

Syntax:

GETANDSET (single-fixed-size-item-object-name, single-item-expression,

 single-integer-expression)

Meaning:

GETANDSET (original_value ,new_value,

integer_that_determines_which_value_to_return)

Returns:

A single-fixed-size-item and replaces the original value in the input data

stream.

126 IBM WebSphere Transformation Extender: Functions and Expressions

This function does not support decrementing integers past 0 into negative

numbers.

GETANDSET updates an input by finding the object represented by original_value

and replacing it with the value represented by the new_value. The function returns

either the original_value or the new_value, depending on the value of the

integer_that_determines_which_value_to_return. For example,

v If integer_that_determines_which_value_to_return has the value 1, original_value is

returned.

v If integer_that_determines_which_value_to_return has the value 2, new_value is

returned.

v If integer_that_determines_which_value_to_return has any other value, original_value

is returned.

v If one of the input arguments evaluates to ″none″, GETANDSET returns ″none″.

The original value specified for new_value must be a fixed size item. During map

execution, the original value is updated to reflect the evaluation of GETANDSET.

When the source is a file, that file will be updated after map completion.

However, if the source is a database, message, or application, the content of the

source is in memory and the source, itself, is not updated.

Examples

v New Tracking# = GETANDSET (Tracking#:Card, Tracking#:Card + 3, 1)

This rule finds the object Tracking#:Card (assume that it has the value 6), adds 3

to it, giving 9, and replaces the 6 with the 9 in the data location of

Tracking#:Card. Subsequent references to Tracking#:Card will find its value to

be 9. If Card is an input card whose source is a file, the file is rewritten with the

new value.

Because the third input argument (integer_that_determines_which_value_to_return)

is 1, the returned value is the original value of 6.

GETDIRECTORY

The GETDIRECTORY function returns the full path (directory) for the compiled

map file or the source or destination associated with a specified card object.

You can use GETDIRECTORY in a map rule or component rule when you need the

full path (directory) of either the compiled map or of a data source or destination.

Syntax:

GETDIRECTORY ([single-simple-object-name])

Meaning:

GETDIRECTORY ([card_or_object_for_which_directory_is_needed])

Returns:

A single text item

Without an argument, GETDIRECTORY returns the full path associated with the

compiled map.

With an argument, the following occurs:

v From a map rule, the function returns the full path of the source or destination

that is associated with the card. In a map rule, the argument must be the name

of the card for which to get the directory.

Chapter 14. Lookup and reference functions 127

v From a component rule, the function returns the full path of the source or

destination that is associated with the active source or destination.

The GETDIRECTORY command without arguments will return the directory of

the compiled map, regardless of whether it is used in a map rule or in a

component rule.

Examples

v GETDIRECTORY (OrderFile)

If the card OrderFile is associated with the data file, install_dir\order.txt,

GETDIRECTORY returns \install_dir\.

v GETDIRECTORY ()

If the compiled map on the HP-UX is /maps/prod/mymap.mmc,

GETDIRECTORY returns /maps/prod/.

Suppose you want to run the map, MyMap, from a component rule on Record

in your input to determine whether input customer names are valid. MyMap

has two inputs and one output. The first input is the customer name to up. The

second input is a lookup file. The output is a text item whose value is ″valid″ or

″error″.

The name of the lookup file is constant; it is always XREF_TBL.TXT. However,

its location may vary; it will always be in the same directory as the data file

used as the source you are trying to validate. For example, if the name of the

data file used as the source is C:\SHR\ABC\INPUT.TXT, the lookup file name

is C:\SHR\ABC\XREF_TBL.TXT. If the data file name is /local/data/somefile,

the lookup file name is /local/data/XREF_TBL.TXT, and so forth.

You could use this component rule on Record to determine whether the

customer name is valid:

RUN (″MyMap.mmc″ , ″-IE1S10″ + CustomerName:$ + ″ -IF2 ″ +

GETDIRECTORY () + ″XREF_TBL.TXT″ + ″ -OE1″) = ″VALID″

Related functions

v GETFILENAME

v GETRESOURCENAME

GETLOCALE

The GETLOCALE function returns the locale setting of the computer.

Syntax:

GETLOCALE ()

Meaning:

GETLOCALE ()

Returns:

A single text item

The GETLOCALE function returns the locale setting of the computer where the

map runs. The locale is returned in the format specified by the operating system.

Generally, the return format is an ISO Language Code (as defined by ISO-639) in

combination with an ISO Country Code (as defined by ISO-3166) when applicable.

The language codes are two lower-case letters and the country codes are two

upper-case letters. For example, en_US is the code for English (United States).

This function has no arguments but requires parentheses.

128 IBM WebSphere Transformation Extender: Functions and Expressions

Table 4. Examples

System locale Returns

French fr

Korean ko

Brazilian Portuguese pt_BR

Taiwanese Chinese zh-TW

GETFILENAME

The GETFILENAME function returns the file name for a file adapter source or

target of a specified card object. Without an argument, it returns the adapter

command associated with the active source or destination.

You can use GETFILENAME in a map rule or component rule when you need the

data file name.

Syntax:

GETFILENAME ([single-simple-object-name])

Meaning:

GETFILENAME ([card_for_which_resource_info_is_needed])

Returns:

A single text item

With an argument, GETFILENAME returns the file name for a file source or target

of a specified card object. Without an argument, the function returns the source or

destination name associated with the active source or destination.

Examples

v GETFILENAME (OrderFile)

If the card OrderFile is associated with the data file, install_dir\order.txt,

GETFILENAME returns install_dir\order.txt.

Suppose you want to run the map MyMap from a component rule on Record in

your input to determine if input customer names are valid. MyMap has two

inputs and one output. The first input is the customer name to be looked up.

The second input is a lookup file. The output is a text item whose value is

″valid″ or ″error″.

The name of the lookup file may vary; it must correspond to the name of the

data file used as the source you are trying to validate. For example, if the data

file name is c:\DATA.AAA, the lookup file name is c:\LOOKUP.AAA. If the

data file name is c:\DATA.XYZ, the lookup file name is c:\LOOKUP.XYZ, and

so on.

You could use this component rule on Record to determine whether the

customer name is valid:

RUN (″MyMap.mmc″ , ″-IE1S10″ + CustomerName:$ + ″ -IF2 LOOKUP.″ +

RIGHT (GETFILENAME () , 3) + ″ -OE1″) = ″VALID″

Related functions

v GETDIRECTORY

v GETRESOURCENAME

Chapter 14. Lookup and reference functions 129

GETPARTITIONNAME

You can use GETPARTITIONNAME when you need to know the name of the

partition to which the data for the given object belongs.

Syntax:

GETPARTITIONNAME (single-partitioned-object-expression)

Meaning:

GETPARTITIONNAME (partitioned_object)

Returns:

A single simple object name

GETPARTITIONNAME returns a text item that represents the name of the partition

to which the data for partitioned_object belongs.

Examples

v GETPARTITIONNAME (Transaction:File)

The type defined by Transaction is a partitioned object that has three partitions:

Add, Delete, and Modify. In this example, if the input data for Transaction

belongs to the Delete partition, the GETPARTITIONNAME function returns

″delete″.

Related functions

v PARTITION

GETRESOURCEALIAS

The GETRESOURCEALIAS function returns the resource alias value specified in a

Resource Registry resource name file (.mrn).

Syntax:

GETRESOURCEALIAS (sinlge-text-expression, single-text-expression)

Meaning:

GETRESOURCEALIAS (single-text-expression, single-text-expression)

Returns:

A single text item

The GETRESOURCEALIAS function loads a Resource Registry resource

configuration file and retrieves the specified alias value. The values are defined as

part of the Global object in the .mrc file.

In the below example the resource configuration file is defined as:

<?xml version="1.0" encoding="UTF-8"?>

<ResourceCfg>

 <Global>

 <ResourceFile ActiveVirtualServer="test">Company.mrn</ResourceFile>

 </Global>

</ResourceCfg>

The resource name file is defined as:

<?xml version="1.0" encoding="UTF-8"?>

<MRN>

 <VirtualServerSet>

 <VirtualServer>test</VirtualServer>

130 IBM WebSphere Transformation Extender: Functions and Expressions

</VirtualServerSet>

 <Resource>

 <Name>company</Name>

 <Value Server="test" encrypt="OFF">IBM</Value>

 </Resource>

</MRN>

..when used as a part of this rule:

=resourcelib->GETRESOURCEALIAS("company.mrc","%company%")

In this scenario, the return value is ″IBM″.

When an absolute path is not defined in the location, the default location is the

map directory.

GETRESOURCENAME

The GETRESOURCENAME function returns the adapter source or target command

of a specified card object. Without an argument, it returns the adapter command

associated with the active source or destination.

You can use GETRESOURCENAME in a component or map rule when you need

to know the name of a source or destination.

Syntax:

GETRESOURCENAME ([single-simple-object-name])

Meaning:

GETRESOURCENAME ([card_for_which_resource_info_is_needed])

Returns:

A single text item

With an argument, the source or destination name that is associated with the card.

Without an argument, returns the source or destination name associated with the

active source or destination.

Examples

v GETRESOURCENAME (OrderFile)

If the card OrderFile is associated with the data file, install_dir\order.txt, the

GETRESOURCENAME function returns install_dir\order.txt.

Related functions

v GETDIRECTORY

v GETFILENAME

GETTXINSTALLDIRECTORY

The GETTXINSTALLDIRECTORY function returns the WebSphere Transformation

Extender product installation directory.

Syntax:

GETTXINSTALLDIRECTORY ()

Meaning:

GETTXINSTALLDIRECTORY ()

Chapter 14. Lookup and reference functions 131

Returns:

A single text item

GETTXINSTALLDIRECTORY returns the product installation directory. For

example, a Windows operating system might return: C:\Program

Files\IBM\Websphere Transformation Extender 8.1, or a UNIX operating system

would return the DTX_HOME_DIR value in the setup script.

This function has no arguments but requires parentheses.

INDEX

You can use the INDEX function when you need to select or test particular objects

based on their occurrence, or to add a sequence number to output objects.

INDEX returns an integer that represents the index of an object relative to its

nearest contained object, counting only valid objects.

INDEX cannot be used in a component rule.

Syntax:

INDEX (single-object-name)

Meaning:

INDEX (object_for_which_to_get_index)

Returns:

A single integer

The result is the index of object_for_which_to_get_index.

v If object_for_which_to_get_index is an input, this will be the index within all valid

objects.

v If object_for_which_to_get_index is an output, this will be the index within all

objects (valid and invalid).

v Returns 0 if the input argument is ″none″.

The difference between INDEXABS and INDEX is that INDEXABS counts both

valid and invalid instances, whereas INDEX counts only valid instances.

Examples

v Message (s) = IF (INDEX (Message:Input) > 3, Message:Input, ″none″)

For example, there are five Messages in Input. The first three evaluations of this

rule return ″none″. The fourth evaluation returns Message[4]. The fifth

evaluation returns Message[5].

v Invoice (s) = MyMap (Invoice Segment:Input, INDEX ($))

For the first evaluation of MyMap, INDEX($) is 1. For the second evaluation of

MyMap, INDEX($) is 2.

Related functions

v CHOOSE

v COUNT

v COUNTABS

v INDEXABS

132 IBM WebSphere Transformation Extender: Functions and Expressions

INDEXABS

You can use INDEXABS when you need the absolute occurrence of a particular

object across all occurrences, rather than across only valid occurrences.

The INDEXABS function returns an integer that represents the index of an object

relative to its nearest contained object, counting both valid and invalid instances of

the object.

Syntax:

INDEXABS (single-object-name)

Meaning:

INDEXABS (object_for_which_to_get_index)

Returns:

A single integer

INDEXABS returns an integer that represents the absolute index of

object_for_which_to_get_index. The integer indicates the instance this object that is in

the set of all instances of the object, including both valid and invalid occurrences.

Returns 0 if the input argument is ″none″.

v If object_for_which_to_get_index is an input, this will be the index within all

members of the series, including valid objects, invalid objects, and existing

″none″s.

v If object_for_which_to_get_index is an output, this will be the index within all

existing members of the series, including existing ″none″s.

The difference between INDEXABS and INDEX is that INDEXABS counts both

valid and invalid instances, as well as existing ″none″s, whereas INDEX counts

only valid instances.

Examples

v INDEXABS (Message Record:Order:PO_File)

For this example, that Order contains the following Messages:

Message Record[1] Valid

Message Record[2 Error

Message Record[3] Valid

In a map rule, INDEXABS (MessageRecord[3]:Order:PO_File) would evaluate to

3.

If the INDEX function was used, INDEX (Message Record[3]:Order:PO) would

evaluate to 2.

Related function

v INDEX

LASTERRORCODE

The LASTERRORCODE function returns a text item whose value is the last error

code returned by one of a specified set of functions during map execution.

You can use LASTERRORCODE to interrogate or report the error code returned by

one of the external interface functions.

Chapter 14. Lookup and reference functions 133

Syntax:

LASTERRORCODE ()

Meaning:

LASTERRORCODE ()

Returns:

A single text item

LASTERRORCODE has no arguments but it requires parentheses.

LASTERRORCODE returns a text item whose value is the last error code returned

by one of a specified set of functions during map execution.

The following functions can fail:

v DBLOOKUP

v DBQUERY

v DDEQUERY

v EXIT

v GET

v PUT

v RUN

Examples

v Message = VALID (RUN (″Map1Msg.mmc″ , ″-AE -OMMSMQ1B `-QN

.\aqueue -CID 2001’″), FAIL (″Failure on RUN (″ + TEXT (LASTERRORCODE (

)) + ″):″ + LASTERRORMSG ()))

In this example, the LASTERRORCODE and LASTERRORMSG functions are

being used in conjunction with the FAIL and VALID functions to fail (abort) the

map if the map executed by the RUN function (Map1Msg.mmc) fails. In this

example, the map fails and returns the error code and error message reported by

the RUN function using the LASTERRORCODE and LASTERRORMSG

functions.

If Map1Msg fails because one or more of its inputs was invalid, Message is

assigned a value of ″none″. The map aborts and the following message is

reported in the execution audit log:

Failure on RUN (8): One or more inputs was invalid.

Related functions

v DBLOOKUP

v DBQUERY

v DDEQUERY

LASTERRORMSG

The LASTERRORMSG function returns a text item whose value is the message

corresponding to the last error code returned by one of a specified set of functions

during map execution.

Syntax:

LASTERRORMSG ()

Meaning:

LASTERRORMSG ()

134 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

A single text item

Although LASTERRORMSG has no arguments, it does require parentheses.

LASTERRORMSG returns a text item whose value is the message corresponding to

the last error code returned by one of a specified set of functions during map

execution.

The following is the list of functions that can fail:

v DBLOOKUP v GET

v DBQUERY v PUT

v DDEQUERY v RUN

v EXIT

Examples

v Message = VALID (RUN (″Map1Msg.mmc″ , ″-AE -OMMSMQ1B `-QN

.\aqueue -CID 2001’″), FAIL (″Failure on RUN (″ + TEXT (LASTERRORCODE (

)) + ″):″ + LASTERRORMSG ()))

In this example, the LASTERRORCODE and LASTERRORMSG functions are

being used in conjunction with the FAIL and VALID functions to fail (abort) the

map if the map executed by the RUN function (Map1Msg.mmc) fails. In this

example, the map fails and returns the error code and error message reported by

the RUN function using the LASTERRORCODE and LASTERRORMSG

functions.

If Map1Msg fails because one or more of its inputs was invalid, Message is

assigned a value of ″none″. The map aborts and the following message is

reported in the execution audit log:

Failure on RUN (8): One or more inputs was invalid.

Related functions

v DBLOOKUP

v DBQUERY

v DDEQUERY

LOOKUP

You can use LOOKUP to find an occurrence of an object that meets a certain

condition.

The LOOKUP function sequentially searches a series, returning the first member of

the series that meets a specified condition.

Syntax:

LOOKUP (series-object-expression , single-condition-expression)

Meaning:

LOOKUP (series_to_search , condition_to_evaluate)

Returns:

A single object

Chapter 14. Lookup and reference functions 135

LOOKUP returns the first member of series_to_search for which condition_to_evaluate

evaluates to ″true″; it returns ″none″ if no member of series_to_search meets the

condition specified by condition_to_evaluate.

Examples

v LOOKUP (Account#:Customer , Company Name:Customer = ″ACME″)

This example returns the Account# of Customer whose Company Name is

ACME.

v LOOKUP (Part#:Row:DBSelect , Model#:Row:DBSelect = ModelCode:Legacy &

Serial#:Row:DBSelect > ″123″)

This example returns the Part# of DBSelect where the Model# in that row

matches the ModelCode of Legacy and the Serial# is greater than 123.

Related functions

v CHOOSE

v EXTRACT

Note: LOOKUP differs from EXTRACT in that LOOKUP returns the first

member of series_to_search that meets the condition_to_evaluate, while

EXTRACT returns all members (one at a time) of series_to_search that meet

the condition_to_evaluate.

v SEARCHUP

v SEARCHDOWN

Note: LOOKUP performs a sequential search over series_to_search. Use LOOKUP

if series_to_search is not ordered. Using SEARCHUP when that series is in

ASCII ascending order or SEARCHDOWN when that series is in ASCII

descending order can save time if the series being searched is large.

MEMBER

Use MEMBER when you need to know whether an object occurs within a series.

The MEMBER function searches a series, looking for a single specified object in the

series. If any object in the series matches the specified object, MEMBER returns

″true″. If there is no match, MEMBER returns ″false″.

Syntax:

MEMBER (single-object-expression , series-object-expression)

 MEMBER (single-object-expression , { literal, literal ... })

Meaning:

MEMBER (object_to_look_for , series_of_objects_to_look_at)

Returns:

″True″ or ″false″

MEMBER returns ″true″ if object_to_look_for matches one of the values in

series_of_objects_to_look_at.

It returns ″false″ if object_to_look_for does not match at least one of the values in

series_of_objects_to_look_at.

136 IBM WebSphere Transformation Extender: Functions and Expressions

The two arguments, object_to_look_for and series_of_objects_to_look_at, must be

objects of the same item interpretation or the same group type. For example, if

object_to_look_for is a date/time item, series_of_objects_to_look_at must be a series of

date/time items.

Examples

v MEMBER (EntityIDCode:Name, {″BT″ , ″ST″})

This example tests whether EntityIDCode has one of a particular set of literal

values.

v MEMBER (Store# , EntityIDCode:Name)

This example tests whether Store# has the same value as any

EntityIDCode:Name.

Related functions

v EXTRACT

v LOOKUP

SEARCHDOWN

You can use the SEARCHDOWN function when data is sorted in ASCII,

descending order and you need to look up data within the sorted data.

SEARCHDOWN performs a binary search on a series sorted in ASCII descending

order, returning a related object that corresponds to the item found.

Syntax:

SEARCHDOWN (series-object-expression, series-item-object-expression ,

single-item-expression)

Meaning:

SEARCHDOWN (corresponding_object_to_return,

descending_items_to_search , item_to_match)

Returns:

A single object

SEARCHDOWN performs a binary search on the item series of

descending_items_to_search. The descending_items_to_search must be sorted in ASCII

descending order. The value to search for is specified as the item_to_match. The

object returned (corresponding_object_to_return) must be related to

descending_items_to_search by a common object name.

If no match is found, SEARCHDOWN returns ″none″.

Examples

v SEARCHDOWN (Age Column:Row:DBSelect ,

SSN Column:Row:DBSelect ,

SSN_Value:Message)

If there are ten rows in DBSelect, the search starts by comparing the first SSN

Column of the fifth row with the SSN_Value in Message. If the result matches,

SEARCHDOWN returns the first Age Column of that Row. If the value of SSN

Column is less than the SSN_Value in Message, the search continues with the

third Row. If the value of SSN Column is greater than the SSN_Value in

Message, the search continues with the seventh Row in DBSelect. The search

continues in this fashion until either a match is found or until one Row is

Chapter 14. Lookup and reference functions 137

selected. If there is more than one SSN Column for the selected Row, a similar

search is initiated for all SSN Column’s for the selected Row in DBSelect.

SEARCHDOWN returns the first Age Column for the selected Row of

DBSelect.

Related functions

v EXTRACT

v LOOKUP

v SEARCHUP

SEARCHUP

Use SEARCHUP when data is sorted in ASCII ascending order and you need to

look up data within the sorted data using the value on which the data is sorted.

The SEARCHUP function performs a binary search on a series sorted in ASCII

ascending order, returning a related object that corresponds to the item found.

Syntax:

SEARCHUP (series-object-expression, series-item-object-expression,

single-item-expression)

Meaning:

SEARCHUP (corresponding_object_to_return, ascending_items_to_search,

item_to_match)

Returns:

A single object

SEARCHUP performs a binary search on the item series of

ascending_items_to_search. The ascending_items_to_search must be sorted in ASCII

ascending order. The value to search for is specified as the item_to_match and must

be of the same type as the ascending_item_to_search. The object returned

(corresponding_object_to_return) must be related to ascending_items_to_search by a

common object name.

If no match is found, SEARCHUP returns ″none″.

Examples

v SEARCHUP (Age Column:Row:DBSelect, SSN Column:Row:DBSelect,

SSN_Value:Message)

If there are ten rows in DBSelect, the search starts by comparing the first SSN

Column of the fifth Row with the SSN_Value in Message. If the result matches,

SEARCHUP returns the first Age Column of that Row. If the value of SSN

Column is greater than the SSN_Value in Message, the search continues with

the third Row. If the value of SSN Column is less than the SSN_Value in

Message, the search continues with the seventh Row in DBSelect. The search

continues in this fashion until either a match is found or until one Row is

selected. If there is more than one SSN Column for the selected Row, a similar

search is initiated for all SSN Column’s for the selected Row in DBSelect.

SEARCHUP returns the first Age Column for the selected Row of DBSelect.

Related functions

v EXTRACT

v LOOKUP

138 IBM WebSphere Transformation Extender: Functions and Expressions

v SEARCHDOWN

SORTDOWN

You can use the SORTDOWN function to sort objects in a series in ASCII

descending sequence. The function returns a series containing the values from the

input series in ASCII descending order.

Syntax:

SORTDOWN (series-item-expression)

Meaning:

SORTDOWN (item_series_to_sort)

Returns:

A series object

Returns the values in item_series_to_sort in ASCII descending order.

Examples

v SORTDOWN (Abbr:File)

In this example, if Abbr has these values:

ABC, GHI, DEF

SORTDOWN returns these values as a series as:

GHI, DEF, ABC

v The following table displays the results of using the SORTDOWN and SORTUP

functions for a typical series of text items.

 Original Input Series Result using SORTDOWN Result using SORTUP

Clams Casino shrimps 1 Shrimp

Grouper raw oysters 22 Shrimp

groupers oysters A

Shrimp lobster tails A 1 A shrimp

shrimps lobster A1A Shrimp

lobster groupers AA

lobster tails clams AAAAA

oysters aaaaa Clams Casino

raw oysters aa Grouper

clams a Rock Lobster

SHRIMP Snapper SHRIMP

1 Shrimp Snapper Shark Fin Soup

22 Shrimp Shrimp Shrimp

A 1 A shrimp Shark Fin Soup Snapper

A1A Shrimp SHRIMP Snapper

AAAAA Rock Lobster a

aaaaa Grouper aa

aa Clams Casino aaaaa

AA AAAAA clams

Chapter 14. Lookup and reference functions 139

Original Input Series Result using SORTDOWN Result using SORTUP

A AA groupers

a A1A Shrimp lobster

Rock Lobster A 1 A shrimp lobster tails

Snapper A oysters

Snapper 22 Shrimp raw oysters

Shark Fin Soup 1 Shrimp shrimps

Related functions

v SEARCHDOWN

v SEARCHUP

v SORTUP

v UNIQUE

SORTUP

Use SORTUP when you need to sort the objects of a series in ASCII ascending

sequence. The SORTUP function returns a series containing the values from an

input series in ASCII ascending order.

Syntax:

SORTUP (series-item-expression)

Meaning:

SORTUP (item_series_to_sort)

Returns:

A series object

SORTUP returns the values in item_series_to_sort in ASCII ascending order.

Examples

v SORTUP (Abbr:File)

In this example, if Abbr had the values ABC, GHI, DEF, the SORTUP function

would return these values as a series: ABC, DEF, GHI.

Related functions

v SEARCHDOWN

v SEARCHUP

v SORTDOWN

v UNIQUE

UNIQUE

The UNIQUE function returns a series containing all ″unique″ members of a series.

UNIQUE can only be used in a map rule, not in a component rule.

Syntax:

UNIQUE (series-object-expression)

140 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

UNIQUE (series_to_evaluate)

Returns:

A series object

UNIQUE evaluates to a series containing all unique members of series_to_evaluate

and evaluates to ″none″ if series_to_evaluate evaluates to ″none″.

Examples

v UNIQUE (PartNumber:Inventory:File)

Returns the unique PartNumbers in Inventory:File

v COUNT (UNIQUE (Customer:Order:File))

Returns the number of unique Customers in Order:File

Related functions

v SORTDOWN

v SORTUP

Chapter 14. Lookup and reference functions 141

142 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 15. Math and statistics functions

ABS

The ABS function returns the absolute value of a number.

Syntax:

ABS (single-number-expression)

Meaning:

ABS (number)

Returns:

A single number; the absolute value of a number

Examples

v ABS (-3)

Returns 3

v ABS (3)

Returns 3

v AvailableCredit has a value of -69.42

ABS (AvailableCredit) returns 69.42

v FlexDollars has a value of 50

ABS ((100 - FlexDollars)/2) returns 25

ACOSINE

Use the ACOSINE function to calculate the arccosine of a value.

Syntax:

ACOSINE (single-number-expression)

Meaning:

ACOSINE (number_to_convert)

Returns:

A single number item

The result is the arccosine of the converted value.

ASIN

Use the ASIN function to calculate the arcsine of a value.

Syntax:

ASIN (single-number-expression)

Meaning:

ASIN (number_to_convert)

Returns:

A single number item

The result is the arcsine of the converted value.

© Copyright IBM Corp. 2006 143

ATAN

The ATAN function calculates the arctangent of a value.

Syntax:

ATAN (single-number-expression)

Meaning:

ATAN (number_to_convert)

Returns:

A single number item

ATAN2

The ATAN2 function calculates the arctangent of y/x.

Syntax:

ATAN2 (single-number-expression)

Meaning:

ATAN (number_to_convert)

Returns:

A single number item

COSINE

The COSINE function calculates the cosine of a value.

Syntax:

COSINE (single-number-expression)

Meaning:

COSINE (number_to_convert)

Returns:

A single number item

COSINEH

The COSINEH function calculates the hyperbolic cosine of a value.

Syntax:

COSINEH (single-number-expression)

Meaning:

COSINEH (number_to_convert)

Returns:

A single number item

COUNT

You can use the COUNT function to return an integer representing the number of

valid input or output objects in a series.

Syntax:

COUNT (series-object-expression)

Meaning:

COUNT (valid_objects_to_count)

144 IBM WebSphere Transformation Extender: Functions and Expressions

Returns:

A single integer

The result is the number of valid_objects_to_count. If the input argument evaluates

to ″none″, COUNT returns 0.

COUNT does not count existing ″none″s unless its group was defined as an

explicit format with a Track setting of Places.

Examples

v COUNT (Claim Record:Patient File)

This example returns the number of valid Claim Record objects in Patient File.

v COUNT (Class IN Transcript)

This example returns the number of valid Class objects in Transcript.

v COUNT (UNIQUE (Class IN Transcript))

This example returns the number of valid Unique Class objects in Transcript.

Related functions

v COUNTABS

COUNTABS

You can use COUNTabs to count the input or output objects in a series, regardless

of the validity of the object. an integer representing the number of input objects in

a series.

Unlike COUNT, COUNTABS includes both valid and invalid objects in a series.

Syntax:

COUNTABS (series-object-expression)

Meaning:

COUNTABS (objects_to_count)

Returns:

A single-integer

The result is the number of objects_to_count. If the input argument evaluates to

″none″, COUNTABS returns 0.

COUNTABS does not count existing ″none’s″ unless its group was defined as an

explicit format with a Track setting of Places.

Examples

v COUNTABS (Claim Record:Patient File)

This example returns the number of Claim Record objects in Patient File.

v COUNTABS (Class IN Transcript)

This example returns the number of Class objects in Transcript.

Related functions

v COUNT

Chapter 15. Math and statistics functions 145

EXP

The EXP function calculates the exponential of a value.

Syntax:

EXP (single-number-expression)

Meaning:

EXP (number_to_convert)

Returns:

A single number item

FACTORIAL

The FACTORIAL function calculates the factorial of a value.

Syntax:

FACTORIAL (single-number-expression)

Meaning:

FACTORIAL (number_to_convert)

Returns:

A single number item

FROMBASETEN

You can use FROMBASETEN when you need to convert numbers to a base other

than 10.

The FROMBASETEN function converts an integer to a text item that can be

interpreted as a number, using positional notation of the base specified.

Syntax:

FROMBASETEN (single-integer-expression , single-integer-expression)

Meaning:

FROMBASETEN (positive_integer_to_convert , base_to_convert_to)

Returns:

A single text item

FROMBASETEN returns a text item that results from converting

positive_integer_to_convert to a text item that can be interpreted as a number using

positional notation of the base specified by base_to_convert_to.

If base_to_convert_to is less than 2 or greater than 36, FROMBASETEN evaluates to

″none″. Resulting text item characters A-Z are interpreted as digits having decimal

values from 10-35, respectively. The characters returned are uppercase.

Example

v FROMBASETEN (18 , 2)

Returns the value 10010

v FROMBASETEN (123 , 8)

Returns the value 173

146 IBM WebSphere Transformation Extender: Functions and Expressions

Related function

v TOBASETEN

INT

You can use the INT function when you need only the integer portion of a number.

Syntax:

INT (single-number-expression)

Meaning:

INT (number_to_convert)

Returns:

A single integer

INT returns the integer portion of a number. The result is the integer part of

number_to_convert. Any fractional part after the decimal point is dropped.

Examples

v INT (1.45)

Returns 1

v INT (3.6)

Returns 3

v INT (Purchase:Amt - Discount:Amt)

Subtracts Discount:Amt from Purchase:Amt and returns the result as a whole

number.

Related functions

v MOD

v ROUND

v TRUNCATE

LOG

The LOG function calculates the logarithms of a value.

Syntax:

LOG (single-number-expression)

Meaning:

LOG (number_to_convert)

Returns:

A single number item

LOG10

The LOG10 function calculates the logarithms for base 10 of a value.

Syntax:

LOG10 (single-number-expression)

Meaning:

LOG10 (number_to_convert)

Chapter 15. Math and statistics functions 147

Returns:

A single number item

MAX

The MAX function returns the maximum value from a series of number, date, time,

or text values.

Syntax:

MAX (series-item-expression)

Meaning:

MAX (series_of_which_to_find_max)

Returns:

A single number

The result is the maximum value in the input argument series: number, text, or

date/time.

Examples

v MAX (UnitPrice:Input)

If the values for UnitPrice are {20, 10, 100}, MAX returns 100.

v MAX(EXTRACT(DueDate:Book:Library, CheckedOut:Book:Library = ″Y″))

Returns the maximum (latest) DueDate for a book that is checked out from the

library.

Related functions

v MIN

MIN

Use MIN when you need the minimum value from a series of number, date, time,

or text values.

The MIN function returns the minimum value from a series.

Syntax:

MIN (series-item-expression)

Meaning:

MIN (series_of_which_to_find_min)

Returns:

A single number

The result is the minimum value of the input series: number, text, or date/time.

Examples

v MIN (UnitPrice:Input)

If the values for UnitPrice are {20,10,100}, MIN returns 10.

v MIN (StartTime:.:Schedule)

Returns the minimum (earliest) StartTime in Schedule.

148 IBM WebSphere Transformation Extender: Functions and Expressions

Related functions

v MAX

MOD

Use MOD when you need the modulus of an integer and a number.

The MOD function returns the modulus that remains after a number is divided by

an integer.

Syntax:

MOD (single-number-expression , single-integer-expression)

Meaning:

MOD (dividend , divisor)

Returns:

A single integer

The result is the remainder (modulus) after dividend is divided by divisor. The

result has the same sign as divisor.

The dividend is first divided by the integer divisor, resulting in a quotient. The

modulus is calculated by multiplying the integer portion of the quotient by divisor

and then subtracting that product from dividend.

If divisor is 0, MOD returns ″none″.

Examples

v MOD (3 , 2) or MOD (-3, 2)

Returns 1

v MOD (3, -2) or MOD (-3, -2)

Returns -1

v MOD (-3, 2) or MOD (-3, -2)

Returns 1

v MOD (-3, -2) or MOD (-3, -2)

Returns -1

POWER

The POWER function calculates x raised to the power of y.

Syntax:

POWER (single-number-expression, single-number-expression)

Meaning:

POWER (base_number, exponent_number)

Returns:

A single number item

RAND

The RAND function returns a pseudorandom number.

Chapter 15. Math and statistics functions 149

Syntax:

RAND ()

Meaning:

RAND ()

Returns:

A single number item

ROUND

The ROUND function rounds a number to a specified number of decimal places. If

the number of decimal places is not specified, the number is rounded to a whole

number. The result is in character number format.

Syntax:

ROUND (single-number-expression [, single-integer-expression])

Meaning:

ROUND (number_to_round [, number_of_decimal_places])

Returns:

A single number

ROUND converts number_to_round to character format, if necessary, and then

produces the value of number_to_round rounded to the number of decimal places

specified by number_of_decimal_places. If number_of_decimal_places is not specified,

number_to_round is rounded to the nearest whole number.

Examples

v ROUND (1.46 , 1)

Returns 1.5

v ROUND (1.46)

Returns 1

Related functions

v TRUNCATE

SIN

The SIN function calculates the sine of a value.

Syntax:

SIN (single-number-expression)

Meaning:

SIN (number_to_convert)

Returns:

A single number item

SINH

The SINH function calculates the hyperbolic sine of a value.

Syntax:

SINH (single-number-expression)

150 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

SINH (number_to_convert)

Returns:

A single number item

SQRT

The SQRT function returns the square root of a number.

Syntax:

SQRT (single-number-expression)

Meaning:

SQRT (number)

Returns:

A single number

SQRT returns the square root of number.

Examples

v SQRT (4)

Returns 2

SUM

The SUM function calculates the sum of a series of numbers.

Syntax:

SUM (series-number-expression)

Meaning:

SUM (series_to_sum)

Returns:

A single number

SUM returns the sum of all members in series_to_sum.

Examples

v SUM (Quantity:LineItem)

This example calculates the sum of all the Quantity objects of LineItem.

TAN

The TAN function calculates the tangent of a value.

Syntax:

TAN (single-number-expression)

Meaning:

TAN (number_to_convert)

Returns:

A single number item

Chapter 15. Math and statistics functions 151

TANH

The TANH function calculates the hyperbolic tangent of a value.

Syntax:

TANH (single-number-expression)

Meaning:

TANH (number_to_convert)

Returns:

A single number item

TOBASETEN

See description in ″Conversion Functions″.

TRUNCATE

The TRUNCATE function removes decimal places from a number, leaving a

specified number of decimal places.

You can use TRUNCATE with a second argument to truncate a number to a

specified number of decimal places or without a second argument to reduce a

number to an integer by removing all decimal places.

Syntax:

TRUNCATE (single-number-expression[, single-integer-expression])

Meaning:

TRUNCATE (number_to_truncate[, number_of_decimal_places])

Returns:

A single number

TRUNCATE first converts number_to_truncate to character format, if necessary. It

then truncates that number by removing decimal places to the right of

number_of_decimal_places. If number_of_decimal_places is not used, the number is

truncated to an integer.

Examples

v TRUNCATE (3.9292 , 2)

Returns 3.92

v TRUNCATE (3.9292)

Returns 3

Related functions

v INT

v ROUND

152 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 16. Text functions

BCDTOTEXT

The BCDTOTEXT function converts the digits in a BCD (Binary Coded Decimal)

item to a text item containing the digits of the BCD-encoded item as a string of

characters.

Syntax:

BCDTOTEXT (single-text-expression)

Meaning:

BCDTOTEXT (BCD_item_to_convert)

Returns:

A single text item

BCD_item_to_convert is converted from BCD format to a text string containing the

digits of the BCD-encoded value as a string of characters.

Numbers in BCD format have two decimal digits in each byte. Each half-byte,

therefore, can contain a binary value from 0000 (which represents the digit 0)

through 1001, which represents the digit 9). Based on this definition, the following

applies:

v If any half-byte of the BCD number contains the binary value 1101 or 1111, that

half-byte is ignored.

v If the BCD item contains the binary value 1010, 1011, 1100, or 1110, the output of

the function is ″none″.

Examples

v BCDTOTEXT (Qty:Item)

If Qty is x`1234’, the result is 1234.

v BCDTOTEXT (DiscountAmt)

If DiscountAmt is x`0123’, the result is 0123.

v BCDTOTEXT (TotalDollars)

If Total is x`F123’, the result is 123.

Related functions

v BCDTOHEX

v BCDTOINT

v TEXTTOBCD

COUNTSTRING

You can use the COUNTSTRING function when you need to know the number of

times a specific text string appears within another text string. The function begins

to look for the character string from the first position of the first string, and

proceeds forward one byte at a time.

Syntax:

COUNTSTRING (single-text-expression , single-text-expression)

© Copyright IBM Corp. 2006 153

Meaning:

COUNTSTRING (text_to_search , text_to_find_and_count)

Returns:

A single-integer

COUNTSTRING returns an integer that represents the number of times that a

specified character string appears in another character string.

The result is a number representing the number of times text_to_find_and_count

appears within text_to_search. If either text_to_search or text_to_find_and_count

evaluates to ″none″, COUNTSTRING returns 0.

Examples

v COUNTSTRING (″banana″ , ″a″)

Returns a value of 3

v COUNTSTRING (″aaaa″ , ″aa″)

Returns a value of 3.

Related functions

v FIND

v LEFT

v MID

v RIGHT

CPACKAGE

CPACKAGE specifies the character set of the output of the function. From that

point onward, the data is treated as if it were in that character set. If the data is

not in the specified character set, you get the wrong answer.

The character set is required to be specified in this function. If you choose not to

specify a character set, you should use the original version of the PACKAGE

function.

Syntax:

CPACKAGE (single-object-expression , ″character-set-of-object-content″)

Meaning:

CPACKAGE (object_to_convert, object_character_set)

Returns:

A single text item

The second argument, object_character_set, represents the character set of the

resulting object. Character set codes are listed in ″Character set codes″.

Examples

In this example, the group Record has an initiator of ″#″, a terminator of ″@″ and a

delimiter of ″,″ with the following data:

″#1339X10A,491.38,Green,42x54@″

v CPACKAGE (Record:Card, ″ASCII″)

Returns: #1339X10A,491.38,Green,42x54@

154 IBM WebSphere Transformation Extender: Functions and Expressions

CSERIESTOTEXT

CSERIESTOTEXT specifies the character set of the output of the function. From

that point onward, the data is treated as if it were in that character set. If the data

is not in the specified character set, you get the wrong answer.

The character set is required to be specified in this function. If you choose not to

specify a character set, you should use the original version of the SERIESTOTEXT

function.

Syntax:

CSERIESTOTEXT (series-object-expression , ″character-set-of-object-
content″)

Meaning:

CSERIESTOTEXT (series_to_convert, object_character_set)

Returns:

A single text item

The series_to_convert argument concatenates the series of the input argument,

including nested delimiters but excluding initiators and terminators.

The second argument, object_character_set, represents the character set of the

resulting object.

Examples

In this example, you have the following data that represents bowler information

for a bowling league:

Andrews, Jessica:980206:JBC:145:138:177:159

Little, Randy:980116:BBK:175:168

Wayne, Richard:980102:JBC:185:204:179:164:212

Each record consists of the bowler’s name, the date of their last game played, a

team code and one or more bowling scores. Record is defined as a group that is

infix delimited by a colon.

Using the following rule produces results of the concatenation of all scores for all

of the bowlers, even though the scores are not all contiguous within the data.

v = CSERIESTOTEXT (Score Field:Bowler:Input, ″ASCII″)

Returns: 145138177159175168185204179164212

You can change the rule to concatenate the list of scores to the bowler’s name

using the following rule:

v = BowlerName Field:Bowler:Input + ″ ->″ +

CSERIESTOTEXT (Score Field:Bowler:Input, ″ASCII″)

Returns:

Andrews, Jessica -> 145138177159

Little, Randy -> 175168

Wayne, Richard -> 185204179164212

Chapter 16. Text functions 155

In this example, you have an input number that is of variable size, followed by a

name. There is no syntax that separates the number from the name. You can define

the number as a group with Byte(s) as a component and provide a component rule

for Byte(s), such as:

ISNUMBER ($)

Based on this, the number can be distinguished from the name. When mapping,

collect all the bytes of the number back again. You can use CSERIESTOTEXT to do

this.

CTEXT

CTEXT specifies the character set of the output of the function. From that point

onward, the data is treated as if it were in that character set. If the data is not in

the specified character set, you get the wrong answer.

The character set is required to be specified in this function. If you choose not to

specify a character set, you should use the original version of the TEXT function.

Syntax:

CTEXT (single-object-expression , ″character-set-of-object-content″)

Meaning:

CTEXT (object_to_convert , object_character_set)

Returns:

A single text item

The first argument, object_to_convert, represents the object that is converted to a text

item, excluding the initiator and terminator of the input object.

The second argument, object_character_set, represents the character set of the

resulting object.

Example

In this example, the group Record has an initiator of the pound sign (#), a

terminator of the at sign (@), and a delimiter of a comma (,), and uses the

following data:

#1339X10A,491.38,Green,42x54@

v CTEXT (Record:card, ″ASCII″)

Returns: 1339X10A,491.38,Green,42x54

The initiator and terminator are not included because only the content of the object

is converted to text.

DATETOTEXT

The DATETOTEXT function converts a date object or expression to a text item.

Syntax:

DATETOTEXT (single-date-expression)

156 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

DATETOTEXT (date_to_convert)

Returns:

A single text item

If date_to_convert is a date object name, this returns the date as a text item

formatted according to the presentation of the date object.

If date_to_convert is a date expression produced by a function, this returns the date

as a text item formatted according to the presentation of the output argument of

that function.

Examples

v DATETOTEXT (ShipDate)

In this example, ShipDate is converted from a date to text. If ShipDate has a

CCYYMMDD presentation, the resulting text item will have that presentation, as

well.

v DATETOTEXT (CURRENTDATETIME (″{MM/DD/CCYY}″))

In this example, CURRENTDATETIME evaluates and returns a date in

MM/DD/CCYY format. Then DATETOTEXT evaluates and returns a text string

that is that date in MM/DD/CCYY format.

For example, use DATETOTEXT, to do text concatenation. The FROMDATETIME

function provides greater flexibility in specifying the format of the resulting text

item.

Related Functions

v FROMDATETIME

v NUMBERTOTEXT

v TEXT

v TEXTTODATE

v TEXTTONUMBER

v TEXTTOTIME

v TIMETOTEXT

v TODATETIME

FILLLEFT

The FILLLEFT function returns a text item of the length specified. The output is

filled on its left with the specified pad value.

You can use FILLLEFT when you have a value that needs to be of a fixed size with

a variable number of leading characters with a specified value.

Syntax:

FILLLEFT (single-text-expression , single-text-expression,

single-integer-expression)

Meaning:

FILLLEFT (text_to_fill , pad_character, pad_to_length)

Returns:

A single text item

Chapter 16. Text functions 157

The FILLLEFT function returns the text string that results from padding out

text_to_fill on its left side with the pad_character up to pad_to_length bytes.

If the pad-length argument is less than the number of bytes in the text to fill, no

padding will appear.

Examples

v FILLLEFT (AcctID:Transaction , ″0″, 5)

If AcctID has the value 14, FILLLEFT returns 00014

v FILLLEFT (NUMBERTOTEXT (InvoiceAmt) , ″*″ , 10)

If InvoiceAmt has the value 24.75, FILLLEFT returns *****24.75

Related functions

v FILLRIGHT v SQUEEZE

v LEAVEALPHA v SUBSTITUTE

v LEAVEALPHANUM v TRIMLEFT

v LEAVENUM v TRIMRIGHT

v LEAVEPRINT

FILLRIGHT

The FILLRIGHT function returns a text item of the length specified. The output is

filled on its right with the specified pad value.

You can use FILLRIGHT when you have a value that needs to be of a fixed size

with a variable number of trailing characters of a specified value.

Syntax:

FILLRIGHT (single-text-expression , single-text-expression ,

single-integer-expression)

Meaning:

FILLRIGHT (text_to_fill , pad_character, pad_to_length)

Returns:

A single text item

FILLRIGHT returns the text string that results from padding out text_to_fill on its

right side with the pad_character up to pad_to_length bytes.

If the pad-length argument is less than the number of bytes in the text to fill, no

padding will appear.

Examples

v FILLRIGHT (LastName:Contact, ″ ″ , 25)

If LastName has the value Peterson, FILLRIGHT returns Peterson followed by

17 spaces.

Related functions

v FILLLEFT v SQUEEZE

158 IBM WebSphere Transformation Extender: Functions and Expressions

v LEAVEALPHA v SUBSTITUTE

v LEAVEALPHANUM v TRIMLEFT

v LEAVENUM v TRIMRIGHT

v LEAVEPRINT

FIND

The FIND function looks for one text string within another text string and returns

to its starting position, if found.

Syntax:

FIND (single-text-expression , single-text-expression

[, single-number-expression])

Meaning:

FIND (text_to_find, where_to_look[, position_to_start_the_search])

Returns:

A single integer

FIND returns the starting position of the text item specified by text_to_find within

the text item specified by where_to_look. A third argument

(position_to_start_the_search) can be used to specify the location in where_to_look for

the FIND to begin. Bytes in the text are numbered from left to right, with the

leftmost byte being position 1.

If text_to_find is ″none″, FIND evaluates to ″none″.

If a third argument is not used or position_to_start_the_search evaluates to a

negative number, it is assumed to be 1. If position_to_start_the_search evaluates to a

number greater than the size of where_to_look, FIND evaluates to ″none″.

If text_to_find is not found in the where_to_look string, FIND evaluates to 0.

Examples

v FIND (″id″, ″Florida″)

Returns the value 5

v FIND (″id″, ″Florida″, 8)

Returns 0 because the 8 (position_to_start_the_search) is greater than the size of

where_to_look

v FIND (″\″, ″mypath″,2)

Returns 0 because the string ″\″ was not found in argument 2

Related functions

v LEFT

v MID

v RIGHT

Chapter 16. Text functions 159

HEXTEXTTOSTREAM

HEXTEXTTOSTREAM is the reverse of STREAMTOHEXTEXT. You can use the

HEXTEXTTOSTREAM function to assign a binary text value to a character text

item represented by hexadecimal pairs.

HEXTEXTTOSTREAM returns a binary text stream whose value is the evaluation

of input character text represented by hexadecimal pairs.

Syntax:

HEXTEXTTOSTREAM (single-text-expression)

Meaning:

HEXTEXTTOSTREAM (series_of_hex_pairs)

Returns:

A single byte stream item

This function returns a binary text stream item whose value is the evaluation of

input character text in series_of_hex_pairs, ignoring <WSP> characters between the

hexadecimal pairs. White space characters include space, horizontal tab, carriage

return, and line feed characters.

Input formats

The following table shows an example of input in its character text representation

as viewed through the character editor, and in its ASCII code representation

(binary text stream) as viewed through the hex editor. Each pair of binary text in

the hex view represents one character in the character view of the character text.

 Input (″41 42 43 44″) Editor View Value

Character text (hex pairs) Character ″41 42 43 44″

ASCII code representation (binary text

stream)

Hex 0x3431203432203433203434

Examples

v HEXTEXTTOSTREAM (″41 42 43 44″)

Returns the evaluated value of the input (ASCII) character text string ″41 42 43

44″ as the output (ASCII) character text string ″ABCD″ as viewed in the

character editor. (The hex view of the input is 0x3431203432203433203434. The

hex view of the output is 0x41424344.)

v HEXTEXTTOSTREAM (″0D 0A 00″)

Returns the evaluated value of the input (ASCII) character text string ″0D 0A 00″

as the output (ASCII) character text string ″<CR><LF><NULL>″ as viewed in

the character editor. (The hex view of the input is 0x3044203041203030. The hex

view of the output is 0x0D0A00.)

See Design Studio Introduction documentation for a list of special symbols.

Related functions

v SYMBOL

v STREAMTOHEXTEXT

160 IBM WebSphere Transformation Extender: Functions and Expressions

LEAVEALPHA

The LEAVEALPHA function removes all non-alphabetic characters from a specified

text item.

You can use LEAVEALPHA to remove non-alphabetic characters such as symbols

or numbers from a text item.

Syntax:

LEAVEALPHA (single-text-expression)

Meaning:

LEAVEALPHA (text_to_change)

Returns:

A single text item

LEAVEALPHA returns a string containing only the alphabetic characters (for

example, A-Z and a-z) in text_to_change.

Examples

v LEAVEALPHA (″A-b-C-1$3″)

Returns: AbC

Related functions

v ISALPHA

v ISLOWER

v ISNUMBER

v ISUPPER

v LEAVEALPHANUM

v LEAVENUM

v LEAVEPRINT

LEAVEALPHANUM

The LEAVEALPHANUM function removes all non-alphanumeric characters (such

as symbols) from a specified text item.

Syntax:

LEAVEALPHANUM (single-text-expression)

Meaning:

LEAVEALPHANUM (text_to_change)

Returns:

A single text item

LEAVEALPHANUM returns a string containing only the alphanumeric characters

(for example, A-Z, a-z and 0-9) in text_to_change.

Examples

v LEAVEALPHANUM (″A-b-C-1$3″)

Returns: AbC13

Chapter 16. Text functions 161

Related functions

v ISALPHA v LEAVEALPHA

v ISLOWER v LEAVENUM

v ISNUMBER v LEAVEPRINT

v ISUPPER

LEAVENUM

The LEAVENUM function removes all non-numeric characters from a text item.

For example, you can use LEAVENUM when you want to remove all alphabetic

characters and symbols from a text string.

Syntax:

LEAVENUM (single-text-expression)

Meaning:

LEAVENUM (text_to_change)

Returns:

A single text item

LEAVENUM returns a string containing only the numeric characters (for example,

0-9) in text_to_change.

Examples

v LEAVENUM (″A-b-C-1$3″)

Returns: 13

Related functions

v ISALPHA v LEAVEALPHA

v ISLOWER v LEAVEALPHANUM

v ISNUMBER v LEAVEPRINT

v ISUPPER

LEAVEPRINT

The LEAVEPRINT function removes all non-printable characters from a text item.

Syntax:

LEAVEPRINT (single-text-expression)

Meaning:

LEAVEPRINT (text_to_change)

Returns:

A single text item

LEAVEPRINT returns a string containing only printable characters in

text_to_change.

162 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

v LEAVEPRINT (″A-b<SP>C-1$3<CR><LF>″)

Returns: A-b C-1$3

Related functions

v ISALPHA v LEAVEALPHA

v ISLOWER v LEAVEALPHANUM

v ISNUMBER v LEAVENUM

v ISUPPER

LEFT

The LEFT function returns a specified number of characters from a text expression

beginning with the leftmost byte of a text item.

You can use LEFT when you need a specific part of a text item. For example, a

customer number might have several uses and sometimes only the first 10

characters are needed. Therefore, LEFT can be used to return only the leftmost 10

characters.

Syntax:

LEFT (single-text-expression , single-integer-expression)

Meaning:

LEFT (text_to_extract_from , number_of_characters_to_extract)

Returns:

A single text item

LEFT returns the leftmost number_of_characters_to_extract characters from

text_to_extract_from starting at the first (the leftmost) character in

text_to_extract_from.

If number_of_characters_to_extract evaluates to an integer whose value is less than 1,

LEFT evaluates to ″none″. If number_of_characters_to_extract evaluates to an integer

whose value is greater than the size of text_to_extract_from, LEFT evaluates to the

entire value of text_to_extract_from.

Examples

v LEFT (″Abcd″, 2)

Returns Ab

v LEFT (″Abcd″, 6)

Returns Abcd

v LEFT (LastName + ″, ″ + FirstName, 25)

Returns the leftmost 25 characters of the text string resulting from the

concatenation of LastName and FirstName (separated by a comma and a space).

Related functions

v RIGHT

v MID

Chapter 16. Text functions 163

v FIND

LOWERCASE

The LOWERCASE function converts an alphabetic text item to all lowercase

characters.

Syntax:

LOWERCASE (single-text-expression)

Meaning:

LOWERCASE (text_to_convert)

Returns:

A single text item

LOWERCASE produces a text item in which each byte from the input has been

converted to lowercase. Any numeric or symbol characters in the text item remain

unchanged.

Examples

v LOWERCASE (″A1b2C!″)

Returns: a1b2c!

Related functions

v ISLOWER

v ISUPPER

v UPPERCASE

MAX

The MAX function returns the maximum value from a series of number, date, time,

or text values.

Syntax:

MAX (series-item-expression)

Meaning:

MAX (series_of_which_to_find_max)

Returns:

A single number

The result is the maximum value in the input argument series: number, text, or

date/time.

Examples

v MAX (UnitPrice:Input)

If the values for UnitPrice are {20, 10, 100}, MAX returns 100.

v MAX(EXTRACT(DueDate:Book:Library, CheckedOut:Book:Library = ″Y″))

Returns the maximum (latest) DueDate for a book that is checked out from the

library.

Related functions

v MIN

164 IBM WebSphere Transformation Extender: Functions and Expressions

MID

You can use the MID function when you need specific characters from a text item.

MID returns one or more characters from a text item.

Syntax:

MID (single-text-expression, single-number-expression,

single-number-expression)

Meaning:

MID (source_text, position_to_start_the_search, number_of_characters)

Returns:

A single text item

MID extracts one or more characters from source_text where

position_to_start_the_search is the position of the first character to extract and

number_of_characters specifies the number of characters to extract. The first

character (leftmost) of source_text has a starting position of 1.

If position_to_start_the_search is greater than the length of source_text, MID returns

″none″. If position_to_start_the_search or number_of_characters is less than one, MID

returns ″none″. If the rightmost number of characters of source_text, starting at

position_to_start_the_search, is less than number_of_characters, MID returns the

rightmost characters starting at the position specified in position_to_start_the_search.

Examples

v MID (″abc123″, 5 , 3)

Returns 23

v MID (″abc123″, 7 , 1)

Returns ″none″ because argument2 is larger than the number of characters in

argument1

v MID (″abc123″, -1 , 3)

Returns ″none″ because argument2 is a negative number

v MID (″abc123″, 2 , -2)

Returns ″none″ because argument3 is a negative number

Related functions

v FIND

v LEFT

v RIGHT

MIN

Use MIN when you need the minimum value from a series of number, date, time,

or text values.

The MIN function returns the minimum value from a series.

Syntax:

MIN (series-item-expression)

Chapter 16. Text functions 165

Meaning:

MIN (series_of_which_to_find_min)

Returns:

A single number

The result is the minimum value of the input series: number, text, or date/time.

Examples

v MIN (UnitPrice:Input)

If the values for UnitPrice are {20,10,100}, MIN returns 10.

v MIN (StartTime:.:Schedule)

Returns the minimum (earliest) StartTime in Schedule.

Related functions

v MAX

NUMBERTOTEXT

The NUMBERTOTEXT function converts a character number to a text item that

looks like the original object.

You can use NUMBERTOTEXT when you need an object that is defined as a

number converted to an object defined as text. This is useful when you need to

concatenate text, however, the FROMNUMBER function provides greater flexibility

in specifying the format of the resulting text item.

Syntax:

NUMBERTOTEXT (single-number-expression)

Meaning:

NUMBERTOTEXT (number_to_convert)

Returns:

A single text item

The resulting text looks like the input argument. The result is truncated, if

necessary.

Examples

v NUMBERTOTEXT (ROUND (1000 - 24.75, 3))

This example converts the result of the calculation (rounded to 3 decimal places)

to text, resulting in 975.250.

v NUMBERTOTEXT (PurchaseNumber)

This example converts PurchaseNumber from a number to text.

Related functions

v FROMNUMBER

v TEXTTONUMBER

v TODATETIME

v TONUMBER

166 IBM WebSphere Transformation Extender: Functions and Expressions

PACKAGE

The PACKAGE function converts a group or item object to a text item, including

its initiator, terminator, and any delimiters it contains.

Syntax:

PACKAGE (single-object-expression)

Meaning:

PACKAGE (object_to_convert)

Returns:

A single text item

The PACKAGE function converts object_to_convert, which must be a type reference

to a text item, including the type reference’s initiator, terminator, and all delimiters.

PACKAGE differs from TEXT in that it includes the initiator and terminator of the

specified type reference.

Examples

v PACKAGE (Record:Card)

Returns: #1339X10A,491.38,Green,42x54@

For this example, the group Record has an initiator of ″#″, a terminator of ″@″

and a delimiter of ″,″. The data looks like this: ″#1339X10A,491.38,Green,42x54@″.

Related functions

v DATETOTEXT

v NUMBERTOTEXT

v SERIESTOTEXT

v TIMETOTEXT

v TEXT

PACKAGE differs from TEXT because it includes the initiator and terminator of

the input object.

PROPERCASE

Use PROPERCASE to convert the first alphabetic character in each word to

uppercase and all remaining characters to lowercase.

Syntax:

PROPERCASE (single-text-item-expression)

Meaning:

PROPERCASE (text_item_to_convert)

Returns:

A single text item

The PROPERCASE function views the text string as containing a series of ″words″

where the delimiter between words is the space character. For each ″word″ in

text_item_to_convert, PROPERCASE converts the first alphabetic character (for

example, A-Z and a-z) found to uppercase and all other characters are converted to

lowercase.

Chapter 16. Text functions 167

Examples

v PROPERCASE (″sallY jo BRADLEY″)

Returns: Sally Jo Bradley

v PROPERCASE (″One AND only 1one.″)

Returns: One And Only 1One

Related functions

v ISALPHA

v ISLOWER

v ISUPPER

v LOWERCASE

v UPPERCASE

REVERSEBYTE

Use the REVERSEBYTE function when you need the bytes in the opposite

sequence. REVERSEBYTE reverses the byte order of an item.

Syntax:

REVERSEBYTE (single-item-expression)

Meaning:

REVERSEBYTE (item_to_reverse)

Returns:

A single item

This function reverses the byte order of item_to_reverse.

Examples

v REVERSEBYTE (″HI MOM!″)

Returns ″!MOM IH″

v RIGHT (FullName, FIND (″ ″ , REVERSEBYTE (FullName)) - 1)

If FullName is ″Alyce N. Wunderland″, the above example uses REVERSEBYTE

to reverse the characters in FullName (resulting in ″dnalrednuW .N ecylA″).

Then, the FIND function is evaluated to locate the first space in the resultant

string (between the ″W″ and the ″.″) that would result in a value of 11. Finally,

the RIGHT function is evaluated to take the rightmost 10 (11-1) characters of

FullName; providing the final result of ″Wunderland″.

RIGHT

You can use RIGHT when you need a specific part of a text item. For example, a

customer number may have several uses and sometimes only the last three

characters are needed. RIGHT can be used to return only the rightmost three

characters.

The RIGHT function returns a specified number of characters from a text

expression beginning with the rightmost byte of a text item.

Syntax:

RIGHT (single-text-expression , single-integer-expression)

168 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

RIGHT (text_to_extract_from , number_of_characters_to_extract)

Returns:

A single text item

RIGHT returns the rightmost number_of_characters_to_extract characters from

text_to_extract_from starting at the last (the rightmost) character in

text_to_extract_from.

If number_of_characters_to_extract evaluates to an integer whose value is less than 1,

RIGHT evaluates to ″none″. If number_of_characters_to_extract evaluates to an

integer whose value is greater than the size of text_to_extract_from, RIGHT

evaluates to the entire value of text_to_extract_from.

Examples

v RIGHT (″Abcd″ , 2)

Returns cd

v RIGHT (″Abcd″ , 6)

Returns Abcd

v RIGHT (″000000″ + NUMBERTOTEXT (TransactionNum), 6)

If TransactionNum contains 123, this example returns 000123. If

TransactionNum contains 123456789, this example returns 456789.

Related functions

v FIND

v LEFT

v MID

SERIESTOTEXT

You can use the SERIESTOTEXT function to project your input data as a series and

to interpret it as a text item for output.

SERIESTOTEXT converts a contiguous or non-contiguous series to a text item.

Syntax:

SERIESTOTEXT (series-object-expression)

Meaning:

SERIESTOTEXT (series_to_convert)

Returns:

A single text item

SERIESTOTEXT returns a text item containing the concatenation of the series of the

input argument, including nested delimiters but excluding initiators and

terminators.

Examples

In this example, you have the following data that represents bowler information

for a bowling league:

Andrews, Jessica:980206:JBC:145:138:177:159

Chapter 16. Text functions 169

Little, Randy:980116:BBK:175:168

Wayne, Richard:980102:JBC:185:204:179:164:212

Each record consists of the bowler’s name, the date of their last game played, a

team code and one or more bowling scores. Record is defined as a group that is

infix-delimited by a colon.

Using the rule:

= SERIESTOTEXT (Score Field:Bowler:Input)

the following results are produced, which is the concatenation of all of the scores

for all of the bowlers, even though the scores are not all contiguous within the

data:

145138177159175168185204179164212

However, if the rule was changed, for instance, to concatenate the list of scores to

the bowler’s name:

= BowlerName Field:Bowler:Input + ″ ->″ +

SERIESTOTEXT (Score Field:Bowler:Input)

the following output would be produced:

Andrews, Jessica -> 145138177159

Little, Randy -> 175168

Wayne, Richard -> 185204179164212

In this example, you have an input number that is of variable size, followed by a

name. There is no syntax that separates the number from the name. You can define

the number as a group with Byte(s) as a component and provide a component rule

for Byte(s), such as:

ISNUMBER ($)

Based on this, the number can be distinguished from the name. When mapping,

collect all the bytes of the number back again. You can use SERIESTOTEXT to do

this.

Related functions

v PACKAGE

v TEXT

SQUEEZE

The SQUEEZE function removes consecutive duplicate occurrences of a specified

character or characters from a text item.

Syntax:

SQUEEZE (single-text-item , single-text-item)

170 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

SQUEEZE (text_to_squeeze , duplicate_characters_to_remove)

Returns:

A single text item

SQUEEZE returns a text item with all the consecutive duplicates of

duplicate_characters_to_remove removed from text_to_squeeze.

Examples

v SQUEEZE (″AB CDE F″, ″ ″)

Returns: AB CDE F

v SQUEEZE (″Connolly″, ″n″)

Returns: Conolly

Related functions

v LEAVEALPHA

v LEAVEALPHANUM

v LEAVENUM

v LEAVEPRINT

v SUBSTITUTE

SUBSTITUTE

You can use the SUBSTITUTE function to replace or remove a character. You can

also use this function for multiple pairs.

Syntax:

SUBSTITUTE (single-text-expression { , single-text-expression ,

single-text-expression })

Meaning:

SUBSTITUTE (item_to_convert, one-or-more-text-substitution-pairs)

 Where each one-or-more-text substitution-pair is

text_to_change , substitute_text

Returns:

A single text item

SUBSTITUTE returns the text string that results from replacing all instances of the

first text_to_change with substitute_text in item_to_convert, then replaces all instances

of the second text_to_change with the substitute_text in the result of the first

substitution, and so forth.

Examples

v SUBSTITUTE (″123*456*7″ , ″*″ , ″/″)

Finds 123*456*7 and returns 123/456/7

v SUBSTITUTE (″120-45-6789″ , ″-″ , ″″)

Finds 120-45-6789 and returns 120456789

v =SUBSTITUTE (″ABBA″ , ″B″, ″A″, ″A″, ″B″)

This example illustrates multiple searches for the SUBSTITUTE function.

The first search-and-replace finds all ″B″s and returns ″A″s: AAAA

The next search-and-replace finds all ″A″s and returns ″B″s: BBBB

Chapter 16. Text functions 171

The end result is a return of: BBBB

Related functions

v LEAVEALPHA

v LEAVEALPHANUM

v LEAVENUM

v LEAVEPRINT

v SQUEEZE

TEXT

You can use the TEXT function to convert an object to a text item or when echoing

entire data objects to another map.

TEXT converts the content of a group or item object to a text item.

Syntax:

TEXT (single-object-expression)

Meaning:

TEXT (object_to_convert)

Returns:

A single text item

The TEXT function converts object_to_convert to a text-item, excluding the initiator

and terminator of the input object.

Examples

v TEXT (Record:card)

Data: #1339X10A,491.38,Green,42x54@

Returns: 1339X10A,491.38,Green,42x54

In this example, the group Record has an initiator of the pound sign (#), a

terminator of the at-sign (@), and a delimiter of a comma (,).

The initiator and terminator are not included because only the content of the

object is converted to text.

Related functions

v DATETOTEXT

v FROMDATETIME

v FROMNUMBER

v NUMBERTOTEXT

v PACKAGE

Note: TEXT differs from PACKAGE in that it does not include the initiator and

terminator of the input object.

v SERIESTOTEXT

v TIMETOTEXT

172 IBM WebSphere Transformation Extender: Functions and Expressions

TEXTTOBCD

The TEXTTOBCD function converts a text item from decimal digits to BCD (Binary

Coded Decimal) format.

Syntax:

TEXTTOBCD (single-integer-text-expression)

Meaning:

TEXTTOBCD (text_to_be_converted)

Returns:

A single BCD-formatted text item

TEXTTOBCD converts text_to_be_converted (which consists of decimal digits) to

BCD format. In this format, each byte contains two decimal digits represented as

binary numbers. If there is an odd number of decimal digits in the input, the

high-order half-byte of the leftmost output byte will contain the decimal value 15

(hex ″F″).

If anything other than a decimal digit is encountered in the input, TEXTTOBCD

returns ″none″.

Examples

v TEXTTOBCD (″1234″)

Returns the hexadecimal value x’1234’

v TEXTTOBCD (″123A″)

Returns ″none″

v TEXTTOBCD (″123″)

Returns the hexadecimal value x’F123’

In this example, the values shown as input (″123″) are meant to represent

character items in the native character set to the machine on which the map is

running. On a personal computer, ″123″ would contain the ASCII characters for

the digits that have the hexadecimal values ″31″, ″32″, and ″33″. The output,

described as ″the hexadecimal value `F123’″, consists of the two binary bytes

″F1″ and ″23″.

On an IBM mainframe the input string would contain EBCDIC characters for the

digits that have the hexadecimal values ″F1″, ″F2″, ″F3″, Âº, but the output

would be the same as the personal computer output.

Related functions

v BCDTOHEX

v BCDTOINT

v BCDTOTEXT

TEXTTONUMBER

Use TEXTTONUMBER to convert text to a number.

The TONUMBER function provides greater flexibility for specifying the format of

the text item that is to be converted to a number.

Syntax:

TEXTTONUMBER (single-text-expression)

Chapter 16. Text functions 173

Meaning:

TEXTTONUMBER (text_to_convert_to_number)

Returns:

A single character number

The text_to_convert_to_number must be in integer or ANSI-formatted (floating point)

presentation. The resulting number looks like the input argument, however,

nonsignificant zeroes to the right of the decimal separator will be truncated. If the

input argument is in error (for example, it is not a recognizable as a valid number),

the result is ″none″.

When specified as in ANSI-formatted presentation, the text string must meet the

following requirements:

v The decimal point can be a period, a comma, or ″none″.

v The leading sign can be a plus sign, a minus sign, or ″none″.

v No thousands separator is allowed.

Examples

v TEXTTONUMBER (OrderQty)

Returns OrderQty as a character number item

Related functions

v DATETOTEXT

v FROMNUMBER

v NUMBERTOTEXT

v TEXTTODATE

v TEXTTOTIME

v TIMETOTEXT

TEXTTOTIME

Use TEXTTOTIME when you want to convert an object defined as text that is in

HHMM or HHMMSS presentation, to an item defined as time. For greater

flexibility, use the TODATETIME function for specifying the format of the text item

that is to be converted to a date/time.

Syntax:

TEXTTOTIME (single-text-expression)

Meaning:

TEXTTOTIME (text_to_convert_to_time)

Returns:

A single time

The text_to_convert_to_time must be in HHMM or HHMMSS presentation. HH is a

two-digit hour in a 24-hour format. If the result is being assigned to a time object,

the resulting time looks like the output object. Otherwise, the resulting time looks

like the input argument. If the input argument is in error (for example, it is not a

valid time), the result is ″none″.

174 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

v TEXTTOTIME (CallTime)

Returns CallTime as a time item

Related functions

v DATETOTEXT v TEXTTONUMBER

v FROMDATETIME v TIMETOTEXT

v NUMBERTOTEXT v TODATETIME

v TEXTTODATE

TIMETOTEXT

You can use the TIMETOTEXT function to perform text concatenation. For greater

flexibility, use the FROMDATETIME function for specifying the format of the

resulting text item.

TIMETOTEX converts a time object or expression to a text item.

Syntax:

TIMETOTEXT (single-time-expression)

Meaning:

TIMETOTEXT (time_to_convert_to_text)

Returns:

A single text item

If time_to_convert_to_text is a time object name, this returns the time as a text item

formatted according to the presentation of the input date object.

If time_to_convert_to_text is a time expression produced by a function, this returns

the time as a text item formatted according to the presentation of the output

argument of that function.

Examples

v TIMETOTEXT (LeadTime)

In this example, LeadTime is converted from a time to text. If LeadTime has an

HH:MM presentation, the resulting text item will be of that presentation.

v TIMETOTEXT (CURRENTDATETIME (″{HH:MM:SS}″))

Here, CURRENTDATETIME evaluates and returns a time in HH:MM:SS format.

Then, TIMETOTEXT evaluates and returns a text string that is that time in

HH:MM:SS format.

Related functions

v DATETOTEXT

v FROMDATETIME

v NUMBERTOTEXT

v TEXTTODATE

v TEXTTONUMBER

v TEXTTOTIME

Chapter 16. Text functions 175

v TODATETIME

TODATETIME

The TODATETIME function converts a text string of a specified format to a

date-time item.

Syntax:

TODATETIME (single-character-text-expression

 [, single-text-expression])

Meaning:

TODATETIME (text_to_convert [, date_time_format_string])

Returns:

A single character date item

TODATETIME returns the date-time that corresponds to the value specified by

text_to_convert, which is in the format specified by date_time_format_string. If

date_time_format_string is not specified, it will be assumed that text_to_convert is in

[CCYYMMDDHH24MMSS] format.

The date_time_format_string must conform to the date-time format strings as

described in ″Format strings″.

Examples

v TODATETIME (″05/14/1999@10:14pm″ , ″{MM/DD/CCYY}@{HH12:MMAM/
PM}″)

In this example, a text string containing a date and time is converted to a

date-time item.

v RptDate = TODATETIME (RIGHT (GETRESOURCENAME(), 8) ,

″CCYYMMDD″)

Assume that you receive a file that contains historical data. The name of the file

identifies the date of the historical data. For example, a filename of 19960424

indicates that the data was produced on April 24, 1996. To map this date to

RptDate, the TODATETIME function could be used with the RIGHT and

GETRESOURCENAME functions.

Related functions

v CURRENTDATE

v CURRENTDATETIME

v CURRENTTIME

v TEXTTODATE

v TEXTTOTIME

TONUMBER

The TONUMBER function converts a text string of a specified format to a number.

Syntax:

TONUMBER (single-character-text-expression [, single-text-expression])

176 IBM WebSphere Transformation Extender: Functions and Expressions

Meaning:

TONUMBER (text_to_convert [, number_format_string])

Returns:

A single character number item

TONUMBER returns the number that corresponds to the value specified by

text_to_convert, which is in the format specified by number_format_string. If

number_format_string is not specified, it will be assumed that text_to_convert is in

ANSI decimal format (for example, ″{L-####[’.’##]}″).

The number_format_string must conform to the number format strings as described

in the ″Format strings″ section.

Examples

v TONUMBER(text_to_convert, ″{L+’$’#’,’###}″)

L+’$’ indicates the leading dollar sign is positive. That leading sign and the

comma separators are removed when the text is converted to a number.

Input String: $123,000,000

Output: 123000000

v TONUMBER(text_to_convert, ″{####T-}″)

Four number signs are required for each whole number, regardless of the actual

number of digits in the number.

 Input string: Output: Note:

12345- -12345 The output becomes a negative number.

67890 67890 No change occurs.

345- -345 The output becomes a negative number.

v TONUMBER(text_to_convert, ″{####T+’K’-}″)

If an invalid character, such as an X, is encountered, nothing is returned.

If a K is encountered, it is treated as a positive indicator.

 Input string: Output: Note:

11212- -11212 The output becomes a negative number.

67890X The X is an invalid character. No number is

returned.

54354 54354 No change occurs.

34567K 34567 The K is recognized as a positive sign. The

character is removed and the number is returned

as a positive.

345- -345 The output becomes a negative number.

v TONUMBER(text_to_convert, ″{L-’(’#’,’###T-’)’}″)

The parentheses indicating a negative number are removed and replaced with a

negative sign.

Comma separators are removed when the text is converted to a number.

 Input string: Output: Note:

(12,345) -12345 The output becomes a negative number. The

comma separator is removed.

Chapter 16. Text functions 177

Input string: Output: Note:

67,890 67890 The comma separator is removed.

(345) -345 The output becomes a negative number.

v TONUMBER(text_to_convert, ″{#[’,’]###[’.’##5]T+’K’-}″)

The optional comma separators are removed, but the decimal points and

decimal values are retained.

 Input string: Output: Note:

54,345.098 54354.098 The comma separator is removed.

67890.0X The X is an invalid character. No number is

returned.

11213- -11213 The output becomes a negative number.

34567K 34567 The K is recognized as a positive sign. The

character is removed and the number is

returned as a positive.

345.1- -345.1 The output becomes a negative number.

Related functions

v DATETONUMBER

v FROMNUMBER

v NUMBERTODATE

v NUMBERTOTEXT

TRIMLEFT

You can use the TRIMLEFT function to remove spaces or a text string at the

beginning of some text.

TRIMLEFT removes leading characters from a text item.

Syntax:

TRIMLEFT (single-text-expression [, single-text-expression])

Meaning:

TRIMLEFT (item_to_trim [, text_to_trim])

Returns:

A single text item

TRIMLEFT removes leading characters that match text_to_trim from item_to_trim

and returns the result as a single text item. If text_to_trim is not specified, leading

spaces are removed from item_to_trim.

Examples

v TRIMLEFT (″ abc″)

Returns: abc

v TRIMLEFT (″000345″ , ″0″)

Returns: 345

v TRIMLEFT (LastName Column:Row , ″<WSP>″)

178 IBM WebSphere Transformation Extender: Functions and Expressions

Returns the content of LastName Column after removing all leading whitespace

characters (space, horizontal tab, carriage return, or line feed characters).

Related functions

v FILLLEFTP v LEAVEPRINT

v FILLRIGHT v SQUEEZE

v LEAVEALPHA v SUBSTITUTE

v LEAVEALPHANUM v TRIMRIGHT

v LEAVENUM

TRIMRIGHT

You can use the TRIMRIGHT function to remove spaces or a text string at the end

of text.

TRIMRIGHT removes trailing characters from a text item.

Syntax:

TRIMRIGHT (single-text-expression [, single-text-expression])

Meaning:

TRIMRIGHT (item_to_trim [, text_to_trim])

Returns:

A single text item

TRIMRIGHT removes trailing characters that match text_to_trim from item_to_trim

and returns the result as a single text item. If text_to_trim is not specified, trailing

spaces are removed from item_to_trim.

Example

v TRIMRIGHT (″abc ″)

Returns: abc

v TRIMRIGHT (″Cat in the Hat!?!?!?″ , ″!?″)

Returns: Cat in the Hat

v TRIMRIGHT (LastName Column:Row)

Returns the content of LastName Column after removing all trailing spaces.

Related functions

v FILLLEFTP v LEAVEPRINT

v FILLRIGHT v SQUEEZE

v LEAVEALPHA v SUBSTITUTE

v LEAVEALPHANUM v TRIMLEFT

v LEAVENUM

Chapter 16. Text functions 179

UPPERCASE

The UPPERCASE function converts text to all uppercase characters.

Syntax:

UPPERCASE (single-text-expression)

Meaning:

UPPERCASE (text_to_convert)

Returns:

A single text item

UPPERCASE produces a text item in which each byte in text_to_convert has been

converted to uppercase. Any numeric or symbolic characters in text_to_convert

remain unchanged.

Examples

v UPPERCASE (″abC123!″)

Returns ABC123!

Related functions

v ISLOWER

v ISUPPER

v LOWERCASE

WORD

You can use the WORD function to parse a text item that is delimited by some

character, such as a space or a comma.

WORD returns the characters between two user-defined separators within a text

item. The separators are counted from left to right when the third argument is

positive, and from right to left when the third argument is negative, enabling the

function to search from either end of the item.

Syntax:

WORD (single-text-expression , single-text-expression ,

 single-integer-expression)

Meaning:

WORD (text_to_search , word_separator, number_of_word_to_get)

Returns:

A single text item

WORD returns the characters (word) between the nth-1 and nth word_separator,

where n corresponds to number_of_word_to_get.

Define the separator (word_separator) and specify the number of the occurrence of

that separator. The WORD function returns the characters between the nth-1 and

nth separators in the delimited text item.

The separator is case-sensitive.

180 IBM WebSphere Transformation Extender: Functions and Expressions

Examples

The following examples assume that a file exists named Letter with two text

objects named Line1 and Line2 as follows:

Line1:Congratulations, Mr Brown! You’re a winner!;

Line2:You may have already won 1 million dollars!;

v WORD (Line1:Letter , ″ ″ , 3)

Returns: Brown!

The exclamation point is returned because it is read as a character within the

word before the separator (a space).

v WORD (Line1:Letter , ″ ″ , 6)

Returns: winner!

If the nth separator is missing and the nth-1 separator exists, the function returns

the characters between the last separator and the end of the delimited text item.

The separator is a space; ″winner!″ (including the exclamation point) is the sixth

word.

v WORD (Line2:Letter , ″!″ , 3)

Returns ″none″

Both nth and nth-1 separators are missing. In this example, there is only one

separator, located at the end of the text object. As a result, there is no third word

because the function sees everything before ″!″ as the first word.

v WORD (Line1:Letter , ″ ″ , 1)

Returns: Congratulations,

If n-1 = 0, the function returns the characters between the beginning of the

delimited text item and the first separator.

v WORD (Line1:Letter , ″ ″ , -1)

Returns: winner!

If n+1 = 0, then the function returns the characters between the end of the text

item and the last separator.

Related functions

v FIND

v MID

Chapter 16. Text functions 181

182 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 17. XML functions

VALIDATE

The VALIDATE function validates the input XML.

This function validates XML input, given as a text stream or uniform resource

locator (URL), against the provided XML Schema, returning 0 if the validation

succeeded or -1 otherwise.

Syntax:

VALIDATE (single-text-expression, single-text-expression)

Meaning:

VALIDATE (xml_url_or_xml_fragment, xml_schema_url)

Returns:

A single number

Examples

v NUMBERTOTEXT(xmllib->VALIDATE(″ipo.in.xml″, ″http://www.example.com/IPO

ipo.xsd″))

Returns 0 when validation of the ipo.in.xml file succeeds and returns -1

otherwise.

v VALID(NUMBERTOTEXT(xmllib->VALIDATE(PACKAGE(source), ″ipo.xsd″)),

LASTERRORMSG())

Returns 0 when validation of the input XML fragment succeeds or returns a

validation error message otherwise.

XPATH

The XPATH function queries the input XML.

This function queries the XML input, given as a text stream or URL, using the

given XPath expression and context, returning the result of the evaluation.

Syntax:

XPATH (single-text-expression, single-text-expression, single-text-
expression)

Meaning:

XPATH (xml_url_or_xml_fragment, xpath_expression, context_expression)

Returns:

A single text item

Examples

v xmllib->XPATH(″ipo.in.xml″, ″./order//item[1]/shipDate″,

″/ipo:purchaseOrders ″)

Returns the content of the shipDate element from the ipo.in.xml file.

v xmllib->XPATH(PACKAGE(source), ″/ipo:purchaseOrders/order/items/item[1]/
shipDate″, ″/″)

Returns the content of the shipDate element from the input XML fragment.

© Copyright IBM Corp. 2006 183

XSLT

The XSLT function applies an XSLT transformation.

This function applies an XSLT transformation, expressed as a text stream or URL,

to the given XML input, returning the result of the transformation.

Syntax:

XSLT (single-text-expression, single-text-expression)

Meaning:

XSLT (xml_url_or_xml_fragment, xslt_url_or_xslt_fragment)

Returns:

A single text item

Examples

v xmllib->XSLT(″ipo.in.xml″, ″ipo.xsl″)

Applies the XSLT transformation defined in the ipo.xsl file to the ipo.in.xml file.

v xmllib->XSLT(PACKAGE(source), ″ipo.xsl″)

Applies the XSLT transformation defined in the ipo.xsl file to the input XML

fragment.

184 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 18. Custom functions

From the Type Designer or Map Designer, you can create custom functions to call

external libraries.

While the EXIT function is often used to call external libraries, the EXIT function is

limited to support only text objects and is operating system dependent. When you

create a custom function to use in a map rule, the function is operating system

independent and supports text, number, and date-time objects.

Similar to the regular functions that are shipped with the product, a maximum of

four parameters are supported per argument.

Creating a custom function

To create your own functions, a C or C++ development tool is required, or the Java

Native Interface (JNI) if you are working in a Java environment.

 1. From a component rule in the Type Designer or from a map rule in the Map

Designer, right-click and select the Insert Function option. (Additionally in the

Map Designer, if you are not in a map rule, you can create a new function by

selecting Rules → New Function.)

 2. From the Insert Function window, select Design. The Custom Function

Modules window is displayed.

 3. In the Path field, enter the path of where to create the external library. This

should always be in the install_dir/function_libs directory.

 4. In the Name field, enter a name for the library.

 5. Click Add to add a function to the library. The Function Specifics window is

displayed.

 6. In the Name field, enter a name for the function.

 7. For Return Type, select the function return type from the drop-down list. You

can select up to four function parameters from the respective drop-down list.

Choices include Boolean, date, number, text, time, and byte stream.

 8. In the space provided, enter a description for your function. This information

will be displayed in the Insert Function window of both Designers.

 9. Click OK to validate the selected parameters and close the Function Specifics

window.

10. Click Generate. The Designer generates a collection of operating system

specific makefiles and definition files that provide the framework for the

function you are creating.

11. Go to the install_dir/function_libs directory to view the results. As a result of

the generation process, framework files are created for each platform that

WebSphere Transformation Extender supports. You can find the following

platform specific makefiles and definition files in the install_dir/function_libs/
your_new_lib directory:

v makefile (Windows)

v aix.mak

v hp.mak

v hpi32.mak

v linux.mak

© Copyright IBM Corp. 2006 185

v os390.mak

v sun.mak

v your_new_lib.def (definition file)

v your_new_lib.c (C file with the functions defined)
12. Now you must modify the framework that was generated by the Designer.

The following functions with the parameter information that you selected

were exported to the .c file:

v GetFunctionCount

v GetFunctionName

v GetInputParameter

v GetReturnType

v GetParameterCount

v GetFunctionDesc

To complete the new function, open the .c file and add your programming

code for the applicable function(s) provided.

Use the .c file to build your dynamic link library (DLL) and then place the

DLL in the install_dir/function_libs/your_new_lib directory. (All custom

designed libraries and functions must be placed in the install_dir/function_libs

directory.)

The new library name is listed under Category in the Insert Function dialog,

and the new function that you created is placed in the list of functions and

will remain available for future use from both the Type Designer and Map

Designer applications.

The following example displays how to implement a custom function called SIN.

void ConvertToBytes(double returnValue, LPEXITPARAM lpep)

{

 double value = 0.0;

 int decimal = 2, sign = 0, j = 0, k = 0;

 char byString[100];

 char* lpbyData = _fcvt(returnValue, 7, &decimal, &sign);

 memset(byString, 0, sizeof(byString));

 if (sign)

 byString[j++] = ’-’;

 if (decimal <= 0)

 {

 byString[j++] = ’0’;

 byString[j++] = ’.’;

 while (decimal != 0)

 {

 byString[j++] = ’0’; decimal++;

 }

 }

 else if (decimal > 0)

 {

 while (decimal != 0)

 {

 byString[j++] = lpbyData[k++]; decimal--;

 }

 byString[j++] = ’.’;

 }

 while (lpbyData[k]) byString[j++] = lpbyData[k++];

 byString[j] = ’\0’;

 if (NULL == (lpep->lpDataFromApp = GlobalAllocPtr

186 IBM WebSphere Transformation Extender: Functions and Expressions

(GHND, j + 1)))

 {

 lpep->nReturn = -1;

 lstrcpy(lpep->szErrMsg, "Memory allocation failed in Alternate");

 return;

 }

 memcpy(lpep->lpDataFromApp, byString, j);

 lpep->dwFromLen = j;

 lpep->lpDataFromApp[j++] = ’\0’;

}

void CALLBACK EXPORT SIN(LPEXITPARAM lpep)

{

 double value = 0.0;

 double returnValue = 0.0;

 LPEXITPARAMEXTENDED lpExtended = NULL;

 if (lpep->dwSize != sizeof(EXITPARAM))

 {

 return;

 }

 lpExtended = (LPEXITPARAMEXTENDED)lpep->lpv;

value = atof(lpExtended->lpFirstInputParameter);

returnValue = sin(value);

ConvertToBytes(returnValue, lpep);

 lpep->wCleanupAction = GetReturnType("SIN");

lstrcpy(lpep->szErrMsg, "SIN function was successful");

return;

}

At runtime, all custom designed libraries and functions that your maps use must

be in the install_dir/function_libs directory. When you deploy a map that uses a

custom function to a remote host, the library is not transferred. Therefore you must

manually copy the custom function library to the install_dir/function_libs directory

on the remote host.

Chapter 18. Custom functions 187

188 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 19. Date and time format strings

You can use the listed format strings for numbers, dates and times in functions

such as the CURRENTDATETIME, FROMNUMBER, TONUMBER,

FROMDATETIME, and TODATETIME.

Create custom date and time formats by using the symbols based on the given

format strings.

Time units

Symbol

Description

HH24 Hour (based on a 24-hour clock) in two digits (00 to 23)

H24 Hour (based on a 24-hour clock) in one or two digits as needed (0 to 23)

HH12 Hour (based on a 12-hour clock) in two digits (1-12)

H12 Hour (based on a 12-hour clock) in one or two digits as needed (1 to 12)

MM Minute in two digits (00 to 59)

M Minute in one or two digits as needed (0 to 59)

SS Seconds in two digits (00 to 59)

S Second in one or two digits as needed (0 to 59)

AM/PM

Meridian (AM/PM)

ZZZ Three character abbreviation for time zone (EST, and so on)

+/-ZZZZ

Hours and minutes before or after Greenwich Mean Time (GMT), also

known as Coordinated Universal Time (UTC)

+/-ZZ:ZZ

4-digit time where the format is a 2-digit hour and 2-digit minute,

separated by a colon.

+/-ZZ[:ZZ]

4-digit time where the format is a 2-digit hour and an optional 2-digit

minute, separated by colon.

+/-ZZ[ZZ]

4-digit time where the format is a 2-digit hour and an optional 2-digit

minute.

Date units

Symbol

Description

CCYY Full year including century (2001)

YY Last two digits of the year (00-99)

MM Month of the year in two numeric digits (01-12)

© Copyright IBM Corp. 2006 189

M Month of the year in one or two numeric digits as needed (1 to 12)

MON First three letters of the month (Jan to Dec)

MONTH

Full name of the month (January to December)

DDD Day of the year in three numeric digits (001 to 366)

DD Day of the month in two numeric digits (01 to 31)

D Day of the month in one or two numeric digits as needed (1 to 31)

DY First three letters of the weekday (Sun to Sat)

DAY Full name of the weekday (Sunday to Saturday)

WW Week of year (1-52)

Qn Quarter of the year (Q1-Q4)

EEYY Emperor’s year, long form

EY Emperor’s year, short form

Binary date and time format strings

Sub-String Name

Sub-String Value

Binary DateTime

[″{″ + Date + ″}″] + [″{″ + Time + ″}″]

Date CCYYMMDD

 YYMMDD

 CCYYDDD

 YYDDD

Time HH24MMSS

 HH24MM

Japanese date and time format strings

Sub-String Name

Sub-String Value

Japanese DateTime

″{″ + DateTime + ″}″

 ″{″ + DateTime + ″}″ + Separator(1) + ″{″ + DateTime + ″}″

 ″{″ + DateTime + ″}″ + ″[″ + Separator(1) + ″{″ + DateTime + ″}″ + ″]″

DateTime

Date

 Time

Separator

Separator is optional. If specified, it can be up to 120 bytes, composed of

non-alphabetic characters. Symbol table values, such as <CR>, can be used

to indicate non-printable characters.

190 IBM WebSphere Transformation Extender: Functions and Expressions

The Separator is required if the second DateTime option is used and the

format string of the first DateTime ends in a variable sized specification -

EY, M, or D for Date or H24, H12, M, or S for Time.

Japanese date format strings

Sub-String Name

Sub-String Value

Japanese Date

Year + MonthSet(1)

Year CCYY

 YY

 EEYY

 EY

MonthSet

Separator(1) + ″MM″ + DayOfMonth(1)

 ″[″ + Separator(1) + ″MM″ + DayOfMonth(1) +]

 Separator(1) + M + DayOfMonth(1)

 [+ Separator(1) + M + DayOfMonth(1) +]

DayOfMonth

Separator(1) + ″DD″ + WeekDay(1)

 ″[″ + Separator(1) + ″DD″ + WeekDay(1) + ″]″

 Separator(1) + ″D″ + WeekDay(1)

 ″[″ + Separator(1) + ″D″ + WeekDay(1) + ″]″

WeekDay

Separator(1) + ″DY″

 ″[″ + Separator(1) + ″DY″ + ″]″

 Separator(1) + ″DAY″

 ″[″ + Separator(1) + ″DAY″ + ″]″

Separator

Separator is optional. If specified, it can be up to 120 bytes composed of

non-alphabetic characters. Symbol table values, such as <CR>, can be used

to indicate non-printable characters.

 MonthSet Separator required if Year is EY

 DayOfMonth Separator required if MonthSet is M

 WeekDay Separator required if DayOfMonth is D

Japanese time format strings

Sub-String Name

Sub-String Value

Japanese Time

Meridian(1) + HMS

Meridian

″AM/PM″

Chapter 19. Date and time format strings 191

HMS ″HH24″ + MinuteSet(1)

 ″H24″ + MinuteSet(1)

 ″HH12″ + MinuteSet(1)

 ″H12″ + MinuteSet(1)

MinuteSet

Separator(1) + ″MM″ + SecondSet(1)

 ″[″ + Separator(1) + ″MM″ + SecondSet(1) + ″]″

 Separator(1) + ″M″ + SecondSet(1)

 ″[″ + Separator(1) + ″M″ + SecondSet(1) + ″]″

SecondSet

Separator(1) + ″SS″

 ″[″ + Separator(1) + ″SS″ + ″]″

 Separator(1) + ″S″

 ″[″ + Separator(1) + ″S″ + ″]″

Separator

Separator is optional. If specified, it can be up to 120 bytes, composed of

non-alphabetic characters. Symbol table values, such as <CR> can be used

to indicate non-printable characters.

 MinuteSet Separator required if HMS is H24 or H12

 SecondSet Separator required if MinuteSet is M

Western date and time format strings

Substring Name

Substring Value

Western DateTime

″{″ +DateTime + ″}″

 ″{″ +DateTime + ″}″ + Separator(1) + ″{″ + DateTime + ″}″

 ″{″ +DateTime + ″}″ + ″[″ + Separator(1) + ″{″ + DateTime + ″}″ + ″]″

DateTime

Date

 Time

Separator

Separator is optional. If specified, it can be up to 120 bytes, composed of

non-alphabetic characters. Symbol table values, such as <CR>, can be used

to indicate non-printable characters.

 The Separator is required if the second DateTime option is used and the

format string of the first DateTime ends in a variable sized specification -

M, MONTH, D, or DAY for Date or H24, H12, M, or S for Time.

Western date format strings

Sub-String Name

Sub-String Value

Date DateUnit + DatePart2(1)

192 IBM WebSphere Transformation Extender: Functions and Expressions

DatePart2

Separator(1) + DateUnit + DatePart3(1)

 ″[″ + Separator(1) + DateUnit + DatePart3(1) + ″]″

DatePart3

Separator(1) + DateUnit + DatePart4(1)

 ″[″ + Separator(1) + DateUnit + DatePart4(1) + ″]″

DatePart4

Separator(1) + DateUnit

 ″[″ + Separator(1) + DateUnit + ″]″

Separator

Separator is optional. If specified, it can be up to 120 bytes, composed of

non-alphabetic characters. Symbol table values, such as <CR>, can be used

to indicate non-printable characters.

 When DateUnit has a variable length (M, MONTH, D, DAY), a Separator

must follow that DateUnit if data follows.

Western time format strings

Sub-String Name

Sub-String Value

Western Time

Hours + MinutesSet(1) + Meridian(1) + Zone(1)

Hours HH24

 H24

 HH12

 H12

MinutesSet

Separator(1) + ″MM″ + SecondSet(1)

 ″[″ + Separator(1) + ″MM″ + SecondSet(1) + ″]″

 Separator(1) + ″M″ + SecondSet(1)

 ″[″ + Separator(1) + ″M″ + SecondSet(1) + ″]″

SecondSet

Separator(1) + ″SS″ + FractionSet(1)

 ″[″ + Separator(1) + ″SS″ + FractionSet(1) + ″]″

 Separator(1) + ″S″ + FractionSet(1)

 ″[″ + Separator(1) + ″S″ + FractionSet(1) + ″]″

FractionSet

Separator(1) + MinPlaces + ″-″ + MaxPlaces

 ″[″ + Separator(1) + MinPlaces + ″-″ + MaxPlaces + ″]″

MinPlaces

An integer from 0 to 9

MaxPlaces

An integer from 0 to 9 (must be less than MinPlaces)

Chapter 19. Date and time format strings 193

Meridian

″AM/PM″

 ″[AM/PM]″

Zone ″+/-ZZZZ″

 ″ZZZ″

 ″[+/-ZZZZ]″

 ″[ZZZ]″

Separator

Separator is optional. If specified, it can be up to 120 bytes, composed of

non-alphabetic characters. Symbol table values, such as <CR>, can be used

to indicate non-printable characters.

 MinuteSet Separator required if Hours is H24 or H12

 SecondSet Separator required if MinuteSet is M

 FractionSet Separator required if SecondSet is S

194 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 20. Number format strings

You can create custom number formats by using the given format strings.

Decimal

″{″ + Leading-Sign(1) + Whole# + Fraction + Trailing-Sign(1) + ″}″

Integer

″{″ + Leading-Sign(1) + Whole# + Trailing-Sign(1) + ″}″

Leading sign format strings

 Sub-String Name Sub-String Value Positive Negative

Leading-Sign ″L″ + Positive + Negative +

Zero(1)

-or-

Req Req

″L″ + ″[″ + Positive + ″]″ +

Negative + Zero(1)

-or-

Opt Req

″L″ + Positive + ″[″ +

Negative + ″]″ + Zero(1)

-or-

Req Opt

″L″ + Positive + Zero(1)

-or-

Req -

″L″ + Negative + Zero(1) - Req

Trailing sign format strings

 Sub-String Name Sub-String Value Positive Negative

Trailing-Sign ″T″ + Positive + Negative + Zero(1) Req Req

″T″ + ″[″ + Positive + ″]″ + Negative +

Zero(1)

Opt Req

″T″ + Positive + ″[″ + Negative + ″]″ +

Zero(1)

Req Opt

″T″ + Positive + Zero(1) Req -

″T″ + Negative + Zero(1) - Req

Substring format strings

 Substring

Name Substring Value Meaning

Positive ″+″ + Value(1)

Negative ″-″ + Value(1)

© Copyright IBM Corp. 2006 195

Substring

Name Substring Value Meaning

Value A text-string enclosed in

single-quotes ’. Value has a release

character of / if the text contains

any single quote ’ or forward

slash / characters.

The sign value of the previous

sign-indicator. If Value is not used, the

default is + for positive numbers and -

for negative numbers.

Zero ″Z″ + Value

″[″ + ″Z″ + Value + ″]″

Specifies the required leading sign

value if the number is zero. If Zero is

not used, there is no sign associated

with a zero.

Specifies the optional leading sign

value if the number is zero. If Zero is

not used, there is no sign associated

with a zero.

Whole number and fraction format strings

 Substring

Name Substring Value Meaning

Whole# MinDigits(1) + ″#″ + Value(1) +

″###″ + MaxDigits(1)

-or-

MinDigits(1) + ″#″ + ″[″ +

Value(1) + ″]″ + ″###″ +

MaxDigits(1)

Specifies the thousands separator and

the range of whole number digits. If

min-digits is not used, the default is

zero. If max-digits is not used, the

default is ″S″. If a ThousandsItem is

specified, a Value must be present as the

default for the syntax item.

Fraction ″V″ + ImpliedPlaces

- or -

Value + MinDigits(1) + ″##″ +

MaxDigits(1)

- or -

″[″ + Value + MinDigits(1) + ″##″

+ MaxDigits(1) + ″]″

Specifies the decimal to be implicit and

implied places specifies where the

intended decimal separator is to be

placed.

Specifies the value of the decimal

separator to be required and the range

of fraction digits. If min-digits is not

used, default is zero. If max-digits is not

used, default is ″S″

Specifies the value of the decimal

separator to be optional if there is no

fractional portion of the number. It also

specifies the range of fraction digits. If

min-digits is not used, default is zero. If

max-digits is not used, default is ″S″

196 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 21. RUN function return codes

The RUN function return codes and messages may result when using the RUN

function. Return codes and messages are returned when the particular activity

completes. Return codes and messages may also be recorded as specified in the

audit logs, trace files, execution summary files, etc.

The following table lists the return codes and messages that can result when using

the RUN function.

Return Code

Message

50 Memory allocation failure

 Occurs when memory fails.

51 Card override failure

 Occurs when memory fails.

52 I/O initialization failure

 Occurs when memory fails.

53 Open audit failure

 The audit log file is not accessible.

54 No command line

 There is nothing to process.

55 Recursive command files

 More than one command file is included in the command line.

56 Invalid command line option -x

 The option is invalid for the command.

57 Invalid `W’ command line option

 The Work file option is invalid.

58 Invalid `B’ command line option

 The Batch (close) file option is invalid.

59 Invalid `R’ command line option

 The Refresh Rate option is invalid.

60 Invalid `A’ command line option

 The Audit option is invalid.

61 Invalid `P’ command line option

 The Paging option is invalid

62 Invalid `Y’ command line option

 The General I/O Retry option is invalid.

63 Invalid `T’ command line option

 The Trace option is invalid.

© Copyright IBM Corp. 2006 197

64 Invalid `G’ command line option

 The Ignore option is invalid

65 Invalid `I’ command line option for input x

 The Source option is invalid for the identified input.

66 Invalid size in echo command line for input x

 The size specified using the Size option is greater than memory allowed.

67 Invalid adapter type in command line for input x

 The adapter is not of a known adapter type. Includes -IMxxx where xxx is

an unknown adapter alias.

68 Invalid `O’ command line option for output x

 The target option is invalid for output x. The number of characters

between the single quotes that represent the options for an adapter exceed

258 characters in the adapter override.

69

Invalid adapter type in command line for output x

 The adapter is not of a known adapter type. Includes -OMxxx where xxx is

an unknown adapter alias.

70 Command line memory failure

 Occurs when memory is exceeded during echo or override card

commands.

71 Invalid `D’ command line option

 The Date option is invalid.

72 Invalid `F’ command line option

 The Failure option is invalid.

73 Resource manager failure

 (Launcher only) The resource manager is not used, possibly a memory

failure.

74 Invalid `Z’ command line option

 The Ignore option is invalid.

75 Adapter failed to get data on input

 Enable the adapter trace to record the adapter activity to discover the

cause of the error.

76 Adapter failed to put data on output

 Enable the adapter trace to record the adapter activity to discover the

cause of the error.

77 Invalid map name

 This message can occur in two different cases. First, this message occurs

when the map name specified on the command line is more than 32

characters long. Also, this message can occur when there is an error in the

command line such that text for another execution command is

198 IBM WebSphere Transformation Extender: Functions and Expressions

erroneously being interpreted as the map name. For example, in the

command line below, the number representing the size of the echoed data

is missing.

mymap.mmc -IE1S HereIsMyDataButIForgotToSpecifyTheSize -AED

 Because the size is missing, it is interpreted to be 0, such that there is no

echoed data. The next string encountered on the command line

(HereIsMyData...)

 Because it does not start with a hyphen (-), it is assumed to be the name of

the next map to execute. Because the text is longer than 32 characters, the

Invalid Map Name message is returned.

Chapter 21. RUN function return codes 199

200 IBM WebSphere Transformation Extender: Functions and Expressions

Chapter 22. Character set codes for CPACKAGE,

CSERIESTOTEXT, and CTEXT

The second argument of the CPACKAGE, CSERIESTOTEXT, and CTEXT functions

specifies the character set of the output of the function. The value of the second

argument (the character set of the object content), must be a valid character set

code.

All actions performed that use the text string resulting from one of these functions

(CPACKAGE, CSERIESTOTEXT, or CTEXT) treat the text string as being of the

specified character set–it is not automatically treated as Native.

 Character set code Data language

ASCII ASCII

BOCU-1 BOCU-1

CESU-8 CESU-8

CIIKANJI CII Kanji

EBCDIC EBCDIC

ebcdic-xml-us ebcdic-xml-us

EUC EUC

gb18030 gb18030

HZ HZ-GB-2312

ibm-1006_P100-1995 ibm-1006

ibm-1025_P100-1995 ibm-1025

ibm-1026_P100-1995 ibm-1026

ibm-1047_P100-1995 ibm-1047

ibm-1047_P100-1995,swaplfnl ibm-1047-s390

ibm-1051_P100-1995 hp-roman8

ibm-1089_P100-1995 Arabic

ibm-1097_P100-1995 ibm-1097

ibm-1098_P100-1995 ibm-1098

ibm-1112_P100-1995 ibm-1112

ibm-1122_P100-1999 ibm-1122

ibm-1123_P100-1995 ibm-1123

ibm-1124_P100-1996 ibm-1124

ibm-1125_P100-1997 ibm-1125

ibm-1129_P100-1997 ibm-1129

ibm-1130_P100-1997 ibm-1130

ibm-1131_P100-1997 ibm-1131

ibm-1132_P100-1998 ibm-1132

ibm-1133_P100-1997 ibm-1133

ibm-1137_P100-1999 ibm-1137

ibm-1140_P100-1997 ibm-1140 (ebcdic-us-37+euro)

© Copyright IBM Corp. 2006 201

Character set code Data language

ibm-1140_P100-1997,swaplfnl ibm-1140-s390

ibm-1141_P100-1997 ibm-1141 (ebcdic-de-273+euro)

ibm-1142_P100-1997 ibm-1142 (ebcdic-dk/no-277+euro)

ibm-1142_P100-1997,swaplfnl ibm-1142-s390

ibm-1143_P100-1997 ibm-1143 (ebcdic-fi/se-278+euro)

ibm-1143_P100-1997,swaplfnl ibm-1143-s390

ibm-1144_P100-1997 ibm-1144 (ebcdic-it-280+euro)

ibm-1144_P100-1997,swaplfnl ibm-1144-s390

ibm-1145_P100-1997 ibm-1145 (ebcdic-es-284+euro)

ibm-1145_P100-1997,swaplfnl ibm-1145-s390

ibm-1146_P100-1997 ibm-1146 (ebcdic-gb-285+euro)

ibm-1146_P100-1997,swaplfnl ibm-1146-s390

ibm-1147_P100-1997 ibm-1147 (ebcdic-fr-297+euro)

ibm-1147_P100-1997,swaplfnl ibm-1147-s390

ibm-1148_P100-1997 ibm-1148 (ebcdic-international+euro)

ibm-1148_P100-1997,swaplfnl ibm-1148-s390

ibm-1149_P100-1997 ibm-1149 (ebcdic-is-871+euro)

ibm-1149_P100-1997,swaplfnl ibm-1149-s390

ibm-1153_P100-1999 ibm-1153

ibm-1153_P100-1999,swaplfnl ibm-1153-s390

ibm-1154_P100-1999 ibm-1154

ibm-1155_P100-1999 ibm-1155

ibm-1156_P100-1999 ibm-1156

ibm-1157_P100-1999 ibm-1157

ibm-1158_P100-1999 ibm-1158

ibm-1160_P100-1999 ibm-1160

ibm-1162_P100-1999 ibm-1162

ibm-1164_P100-1999 ibm-1164

ibm-1168_P100-2002 KOI8-U

ibm-1250_P100-1995 ibm-1250

ibm-1251_P100-1995 ibm-1251

ibm-1252_P100-2000 ibm-1252

ibm-1253_P100-1995 ibm-1253

ibm-1254_P100-1995 ibm-1254

ibm-1255_P100-1995 ibm-1255

ibm-1256_P110-1997 ibm-1256

ibm-1257_P100-1995 ibm-1257

ibm-1258_P100-1997 ibm-1258

ibm-12712_P100-1998 ebcdic-he

ibm-12712_P100-1998,swaplfnl ibm-12712-s390

ibm-1276_P100-1995 ibm-1276 (Adobe Standard Encoding)

202 IBM WebSphere Transformation Extender: Functions and Expressions

Character set code Data language

ibm-1363_P110-1997 ibm-1363_P110-1997

ibm-1363_P11B-1998 ibm-1363 (korean)

ibm-1364_P110-1997 ibm-1364

ibm-1371_P100-1999 ibm-1371

ibm-1373_P100-2002 ibm-1373_P100-2002

ibm-1375_P100-2003 Big5-HKSCS (IBM)

ibm-1383_P110-1999 EUC-CN

ibm-1386_P100-2002 ibm-1386-P100-2002

ibm-1388_P103-2001 ibm-1388

ibm-1390_P110-2003 ibm-1390

ibm-1399_P110-2003 ibm-1399

ibm-16684_P110-2003 ibm-16684

ibm-16804_X110-1999 ebcdic-ar

ibm-16804_X110-1999,swaplfnl ibm-16804-s390

ibm-273_P100-1995 ebcdic-de

ibm-277_P100-1995 EBCDIC-CP-DK/NO

ibm-278_P100-1995 ebcdic-cp-fi/se/sv

ibm-280_P100-1995 ebcdic-cp-it

ibm-284_P100-1995 ebcdic-cp-es

ibm-285_P100-1995 ebcdic-cp-gb

ibm-290_P100-1995 EBCDIC-JP-kana

ibm-297_P100-1995 ebcdic-cp-fr

ibm-33722_P120-1999 ibm-33722-P120-1999

ibm-33722_P12A-1999 EUC-JP

ibm-367_P100-1995 ibm-367_P100-1995

ibm-37_P100-1995 ibm-037 (ebcdic-cp-us/ca/wt/nl)

ibm-37_P100-1995,swaplfnl ibm-37-s390

ibm-420_X120-1999 ebcdic-cp-ar1

ibm-424_P100-1995 ebcdic-cp-he

ibm-437_P100-1995 ibm-437

ibm-4899_P100-1998 ibm-4899

ibm-4909_P100-1999 ibm-4909

ibm-4971_P100-1999 ibm-4971

ibm-500_P100-1995 ebcdic-cp-be/ch

ibm-5123_P100-1999 ibm-5123

ibm-5346_P100-1998 ibm-5346

ibm-5347_P100-1998 ibm-5347

ibm-5348_P100-1997 ibm-5348

ibm-5349_P100-1998 ibm-5349

ibm-5350_P100-1998 ibm-5350

ibm-5351_P100-1998 ibm-5351

Chapter 22. Character set codes for CPACKAGE, CSERIESTOTEXT, and CTEXT 203

Character set code Data language

ibm-5352_P100-1998 ibm-5352

ibm-5353_P100-1998 ibm-5353

ibm-5354_P100-1998 ibm-5354

ibm-5478_P100-1995 GB_2312-80

ibm-737_P100-1997 ibm-737

ibm-775_P100-1996 ibm-775

ibm-803_P100-1999 ebcdic-803

ibm-813_P100-1995 Greek8

ibm-838_P100-1995 IBM-Thai

ibm-8482_P100-1999 ibm-8482

ibm-850_P100-1995 ibm-850

ibm-851_P100-1995 ibm-851

ibm-852_P100-1995 ibm-852

ibm-855_P100-1995 ibm-855

ibm-856_P100-1995 ibm-856

ibm-857_P100-1995 ibm-857

ibm-858_P100-1997 ibm-858

ibm-860_P100-1995 ibm-860

ibm-861_P100-1995 ibm-861

ibm-862_P100-1995 ibm-862

ibm-863_P100-1995 ibm-863

ibm-864_X110-1999 ibm-864

ibm-865_P100-1995 ibm-865

ibm-866_P100-1995 ibm-866

ibm-867_P100-1998 ibm-867

ibm-868_P100-1995 ibm-868

ibm-869_P100-1995 ibm-869

ibm-870_P100-1995 ebcdic-cp.roece/yu

ibm-871_P100-1995 ebcdic-is

ibm-874_P100-1995 ibm-874

ibm-875_P100-1995 ibm-875

ibm-878_P100-1996 KOI8-R

ibm-897_P100-1995 ibm-897

ibm-9005_X100-2005 ibm-9005_X100-2005

ibm-901_P100-1999 ibm-901

ibm-902_P100-1999 ibm-902

ibm-912_P100-1995 Latin2

ibm-913_P100-2000 Latin3

ibm-914_P100-1995 Latin4

ibm-915_P100-1995 Cyrillic

ibm-916_P100-1995 Hebrew

204 IBM WebSphere Transformation Extender: Functions and Expressions

Character set code Data language

ibm-918_P100-1995 ebcdic-cp-ar2

ibm-920_P100-1995 Latin5

ibm-921_P100-1995 ibm-921

ibm-922_P100-1999 ibm-922

ibm-923_P100-1998 Latin-9

ibm-930_P120-1999 ibm-930

ibm-933_P110-1995 ibm-933

ibm-935_P110-1999 ibm-935

ibm-937_P110-1999 ibm-937

ibm-939_P120-1999 ibm-939

ibm-942_P12A-1999 shift_jis78

ibm-943_P130-1999 Shift_JIS

ibm-943_P15A-2003 MS_KANJI

ibm-9447_P100-2002 ibm-9447

ibm-9449_P100-2002 ibm-9449

ibm-949_P110-1999 ibm-949_P100-1999

ibm-949_P11A-1999 ibm-949_P11A-1999

ibm-950_P110-1999 ibm-950_P110-1999

ibm-954_P101-2000 ibm-954_P101-2000

ibm-964_P110-1999 EUC-TW

ibm-970_P110-1995 ibm-eucKR

ibm-971_P100-1995 ibm-971_P100-1995

IBMKANJI IBM Kanji

IMAP-mailbox-name IMAP-mailbox-name

ISCII,version=0 x-iscii-de

ISCII,version=1 x-iscii-be

ISCII,version=2 x-iscii-pa

ISCII,version=3 x-iscii-gu

ISCII,version=4 x-iscii-or

ISCII,version=5 x-iscii-ita

ISCII,version=6 x-iscii-te

ISCII,version=7 x-iscii-ka

ISCII,version=8 x-iscii-ma

ISO_2022,locale=ja,version=0 ISO 2022, locale=ja,version=0

ISO_2022,locale=ja,version=1 ISO 2022, JIS, locale=ja,version=1

ISO_2022,locale=ja,version=2 ISO 2022, locale=ja,version=2

ISO_2022,locale=ja,version=3 ISO 2022, JIS7,locale=ja,version=3

ISO_2022,locale=ja,version=4 ISO 2022, JIS8,locale=ja,version=4

ISO_2022,locale=ko,version=0 ISO 2022,locale=ko,version=0

ISO_2022,locale=ko,version=1 ISO 2022,locale=ko,version=1

ISO_2022,locale=zh,version=0 ISO 2022,locale=zh,version=0

Chapter 22. Character set codes for CPACKAGE, CSERIESTOTEXT, and CTEXT 205

Character set code Data language

ISO_2022,locale=zh,version=1 ISO_2022,locale-zh,version=1

ISO-8859-1 Latin1

Latin1 Latin1

LMBCS-1 LMBCS-1

LMBCS-11 LMBCS-11

LMBCS-16 LMBCS-16

LMBCS-17 LMBCS-17

LMBCS-18 LMBCS-18

LMBCS-19 LMBCS-19

LMBCS-2 LMBCS-2

LMBCS-3 LMBCS-3

LMBCS-4 LMBCS-4

LMBCS-5 LMBCS-5

LMBCS-6 LMBCS-6

LMBCS-8 LMBCS-8

macos-0_2-10.2 macintosh

macos-2566-10.2 Big5-HKSCS (macos)

macos-29-10.2 x-mac-ce

macos-35-10.2 x-mac-turkish

macos-6-10.2 x-mac-greek

macos-7_3-10.2 x-mac-cyrillic

MIXED Contains items/syntax of multiple data

languages

Native

*Native

SCSU SCSU

SJIS SJIS

UNICODE_BE Unicode Big Endian

UNICODE_LE Unicode Little Endian

US-ASCII US_ASCII

UTF-16 UTF-16

UTF16_OppositeEndian UTF16 Opposite Endian

UTF16_PlatformEndian UTF16 Platform Endian

UTF-16BE UTF-16 Big Endian

UTF-16LE UTF-16 Little Endian

UTF-32 UTF-32

UTF32_OppositeEndian UTF32 Oppostie Endian

UTF32_PlatformEndian UTF32 Platform Endian

UTF-32BE UTF-32 Big Endian

UTF-32LE UTF32 Little Endian

UTF-7 UTF7

UTF-8 UTF-8

206 IBM WebSphere Transformation Extender: Functions and Expressions

Character set code Data language

UTF-8 UTF-8

windows-1256-2000 Windows-1256

windows-874-2000 Windows 874

windows-936-2000 GBK

windows-949-2000 Windows 949 (Korean)

windows-950-2000 BIG5

*National language is Western or Japanese.

Chapter 22. Character set codes for CPACKAGE, CSERIESTOTEXT, and CTEXT 207

208 IBM WebSphere Transformation Extender: Functions and Expressions

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 209

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

210 IBM WebSphere Transformation Extender: Functions and Expressions

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

AIX

AIX 5L

AS/400

Ascential

Ascential DataStage

Ascential Enterprise Integration Suite

Ascential QualityStage

Ascential RTI

Ascential Software

Ascential

CICS

DataStage

DB2

DB2 Universal Database

developerWorks

Footprint

Hiperspace

IBM

the IBM logo

ibm.com

IMS

Informix

Lotus

Lotus Notes

MQSeries

MVS

OS/390

OS/400

Passport Advantage

Redbooks

RISC System/6000

Roma

S/390

System z

Trading Partner

Tivoli

Notices 211

WebSphere

z/Architecture

z/OS

zSeries

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

IBM WebSphere Transformation Extender, Version 8.1

212 IBM WebSphere Transformation Extender: Functions and Expressions

Index

Special characters
$

in a component rule 6

[] reserved symbol 4

@ reserved symbol 5

< > reserved symbol 3

A
ABS function 143

ABSENT function 95

ACOSINE function 143

ADDDAYS function 63

ADDHOURS function 64

ALL function 107

arguments
of a function 12

arithmetic operators 11

ASIN function 143

ATAN function 144

ATAN2 function 144

B
BCDTOHEX function 35

BCDTOINT function 36

BCDTOTEXT function 37, 153

bound objects
in an expression 9

C
card name

in an expression 3

CHOOSE function 119

CLONE function 27

code pages 201

colon
in a component path 4

comment name 5

comparison operators 11

component
in a component list 4

in an expression 4

component path 3, 4

CONTAINSERRORS function 75, 95

CONVERT function 38

COSINE function 144

COSINEH function 144

COUNT function 144

COUNTABS function 145

COUNTSTRING function 153

CSERIESTOTEXT function 201

CTEXT function 156

CURRENTDATE function 65

CURRENTDATETIME function 66

CURRENTTIME function 67

D
DATETONUMBER function 38, 68

DATETOTEXT function 39, 68, 156

DBLOOKUP function 81, 119

DBQUERY function 83, 122

DDEQUERY function 86, 125

DEFAULT function 27

E
ECHOIN function 28

EITHER function 107

evaluation
of component rules 6

of expressions 6

of functional maps 15

of functions 12

of map rules 1, 6

influence of card order 7

influence of functions 8

influence of object names 9

of operands 12

EXIT function 87

EXP function 146

expressions
bound objects in 6

definition of 1

evaluating 6

functional map names in 15

operators in 10

shorthand notation in 6

EXTRACT function 126

F
FACTORIAL function 146

FAIL function 75

FILLLEFT function 157

FILLRIGHT function 158

FIND function 159

floating component type
in an expression 5

FROMBASETEN function 40, 146

FROMDATETIME function 41, 69

FROMNUMBER function 41

Function
used to convert output item value 18

functional maps
evaluation of 15

name in an expression 15

functions
arguments 12

creating custom 185

custom 185

evaluation of 12

© Copyright IBM Corp. 2006 213

G
GETANDSET function 126

GETDIRECTORY function 127

GETFILENAME function 129

GETLOCALE function 128

GETRESOURCEALIAS function 130

GETRESOURCENAME function 131

GETTXINSTALLDIRECTORY function 131

H
HANDLEIN function 28

HEXTEXTTOSTREAM function 42, 160

I
IF function 108

IN
in component path 5

reserved word 2, 10

INDEX function 132

INDEXABS function 133

indexing
an input 4

input
indexing 4

INT function 43, 147

ISALPHA function 96, 109

ISERROR function 76, 97

ISLOWER function 97, 110

ISNUMBER function 98, 110

ISUPPER function 99, 111

L
LAST reserved word 4

LASTERRORCODE function 133

LASTERRORMSG function 134

LEAVEALPHA function 161

LEAVEALPHANUM function 161

LEAVENUM function 162

LEAVEPRINT function 162

LEFT function 163

literals
definition of 1

in expressions 1

local type name 3

LOG function 147

LOG10 function 147

logical operators 11

LOOKUP function 135

LOWERCASE function 164

M
map names in an expression 15

map rules
evaluation 1

mathlib functions
ACOSINE 143

ASIN 143

ATAN 144

ATAN2 144

COSINE 144

COSINEH 144

mathlib functions (continued)
EXP 146

FACTORIAL 146

LOG 147

LOG10 147

POWER 149

RAND 150

SIN 150

SINH 150

MAX function 70, 148, 164

MEMBER function 99, 136

MID function 165

MIN function 70, 148, 165

MOD function 149

N
names

data object 2

in a component rule 3

in a map rule 2

NONE reserved word 16

assigned to an output number 18

when an input argument of a function evaluates to 16

when an input argument of a functional map evaluates

to 17

when an operand evaluates to 16

numbers
as literal 1

NUMBERTODATE function 44, 71

NUMBERTOTEXT function 44, 166

O
object names 2

OFFSET function 101

ONERROR function 77

operands
evaluation of 12

operators
arithmetic 11

comparison 11

in expressions 10

logical 11

order of evaluation 11

output items
conversion of 18

P
PACK function 45

PACKAGE function 46, 167

PARTITION function 102

partitions
in an expression 3

POWER function 149

PRESENT function 102

PUT function 90

R
RAND function 150

REFORMAT function 30

REJECT function 78

reserved symbol 4

214 IBM WebSphere Transformation Extender: Functions and Expressions

reserved words and symbols 4, 6

$ 6

[] 4

@ 5

< > 3

COMPONENT 3

LAST 4

resourcelib functions
GETLOCALE 128

GETRESOURCEALIAS 130

GETTXINSTALLDIRECTORY 131

REVERSEBYTE function 168

RIGHT function 168

ROUND function 150

RUN function 91, 197

S
SEARCHDOWN function 137

SEARCHUP function 138

SERIESTOTEXT function 47, 169

SETOFF function 31

SETON function 31

shorthand notation 6

in a map rule 6

SIN function 150

SINH function 150

SIZE function 103

SORTDOWN function 139

SORTUP function 140

SQRT function 151

STREAMTOHEXTEXT function 48

SUM function 151

SYMBOL function 49

T
TESTOFF function 32, 104

TESTON function 33, 104

text
as a literal 1

TEXT function 172

TEXTTOBCD function 50, 173

TEXTTODATE function 51, 72

TIMETOTEXT function 73, 175

TOBASETEN function 54

TODATETIME function 55, 74, 176

TONUMBER function 56, 176

TRIMLEFT function 178

TRIMRIGHT function 179

TRUNCATE function 152

type names
local 3

U
UNIQUE function 140

UNPACK function 58

UNZONE function 58

UPPERCASE function 180

V
VALID function 79, 105

VALIDATE function 183

W
WHEN function 113

WORD function 180

X
xmllib functions

VALIDATE 183

XPATH 183

XSLT 184

XPATH function 183

XSLT function 184

Z
ZONE function 59

Index 215

216 IBM WebSphere Transformation Extender: Functions and Expressions

����

Printed in USA

	Contents
	Chapter 1. Expressions and evaluations
	Expressions
	Component rule expressions evaluate to true or false
	Map rule expressions evaluate to data

	Literals
	Data object names
	Object names in map rules
	Object names in component rules
	Card name
	Local type name
	Partition list
	Component path
	Indexed object names
	Using LAST in a map rule to reference an input
	Using LAST in a component rule
	Using LAST in a map rule to reference an output

	Component paths separated by a colon
	Component paths separated by IN
	Referring to all occurrences with IN COMPONENT

	Comment object name
	Shorthand notation
	Using the dollar sign ($)
	Using ellipses

	Evaluating expressions
	Card order can influence the order of evaluation sets
	Functions influence the number of evaluation sets
	Object names influence the number of evaluation sets
	Using object names to coordinate evaluation sets
	Using IN to decouple object name coordination
	Using IN to decouple different partitions in the same rule

	Operators
	Arithmetic operators
	Text operators
	Logical operators
	Comparison operators
	Order of operator evaluation
	Operands

	Using functions in expressions
	Function arguments
	Input arguments
	Nested input arguments
	Output arguments
	Function arguments and evaluation

	Map names in expressions
	Evaluation of functional maps in an expression

	Expressions that evaluate to NONE
	When an operand evaluates to NONE
	When an input argument of a function evaluates to NONE
	When an input argument of a functional map evaluates to NONE
	When an input of an executable map evaluates to NONE
	Impact of track setting on order of output

	Evaluated expressions assigned to output items
	NONE assigned to an output number

	Automatic item format conversions
	Numeric precision

	Chapter 2. Using functions
	Functions in a component rule
	Functions in a map rule

	Chapter 3. Syntax of a function
	Chapter 4. Function argument syntax
	Chapter 5. General functions
	CLONE
	DEFAULT
	ECHOIN
	HANDLEIN
	REFORMAT

	Chapter 6. Bit manipulation and testing functions
	SETOFF
	SETON
	TESTOFF
	TESTON

	Chapter 7. Conversion functions
	BASE64TOTEXT
	BCDTOHEX
	BCDTOINT
	BCDTOTEXT
	CONVERT
	DATETONUMBER
	DATETOTEXT
	FROMBASETEN
	FROMDATETIME
	FROMNUMBER
	HEXTEXTTOSTREAM
	INT
	NUMBERTODATE
	NUMBERTOTEXT
	PACK
	PACKAGE
	QUOTEDTOTEXT
	SERIESTOTEXT
	STREAMTOHEXTEXT
	SYMBOL
	TEXTTOBASE64
	TEXTTOBCD
	TEXTTODATE
	TEXTTONUMBER
	TEXTTOQUOTED
	TEXTTOTIME
	TEXTTOTIME
	TOBASETEN
	TODATETIME
	TONUMBER
	UNPACK
	UNZONE
	ZONE

	Chapter 8. Date/time functions
	ADDDAYS
	ADDHOURS
	ADDMINUTES
	CURRENTDATE
	CURRENTDATETIME
	CURRENTTIME
	DATETONUMBER
	DATETOTEXT
	FROMDATETIME
	MAX
	MIN
	NUMBERTODATE
	TEXTTODATE
	TEXTTOTIME
	TIMETOTEXT
	TODATETIME

	Chapter 9. Error handling functions
	CONTAINSERRORS
	FAIL
	ISERROR
	ONERROR
	REJECT
	VALID

	Chapter 10. External interface functions
	DBLOOKUP
	DBQUERY
	DDEQUERY
	EXIT
	GET
	PUT
	RUN

	Chapter 11. Inspection functions
	ABSENT
	CONTAINSERRORS
	ISALPHA
	ISERROR
	ISLOWER
	ISNUMBER
	ISUPPER
	MEMBER
	NOT
	OFFSET
	OR
	PARTITION
	PRESENT
	SIZE
	TESTOFF
	TESTON
	VALID

	Chapter 12. Logical functions
	ALL
	EITHER
	IF
	ISALPHA
	ISLOWER
	ISNUMBER
	ISUPPER
	NOT
	OR
	WHEN

	Chapter 13. Implementing a library EXIT function
	EXIT function's library interface
	Using the EXITPARAM Structure

	Chapter 14. Lookup and reference functions
	CHOOSE
	DBLOOKUP
	DBQUERY
	DDEQUERY
	EXTRACT
	GETANDSET
	GETDIRECTORY
	GETLOCALE
	GETFILENAME
	GETPARTITIONNAME
	GETRESOURCEALIAS
	GETRESOURCENAME
	GETTXINSTALLDIRECTORY
	INDEX
	INDEXABS
	LASTERRORCODE
	LASTERRORMSG
	LOOKUP
	MEMBER
	SEARCHDOWN
	SEARCHUP
	SORTDOWN
	SORTUP
	UNIQUE

	Chapter 15. Math and statistics functions
	ABS
	ACOSINE
	ASIN
	ATAN
	ATAN2
	COSINE
	COSINEH
	COUNT
	COUNTABS
	EXP
	FACTORIAL
	FROMBASETEN
	INT
	LOG
	LOG10
	MAX
	MIN
	MOD
	POWER
	RAND
	ROUND
	SIN
	SINH
	SQRT
	SUM
	TAN
	TANH
	TOBASETEN
	TRUNCATE

	Chapter 16. Text functions
	BCDTOTEXT
	COUNTSTRING
	CPACKAGE
	CSERIESTOTEXT
	CTEXT
	DATETOTEXT
	FILLLEFT
	FILLRIGHT
	FIND
	HEXTEXTTOSTREAM
	LEAVEALPHA
	LEAVEALPHANUM
	LEAVENUM
	LEAVEPRINT
	LEFT
	LOWERCASE
	MAX
	MID
	MIN
	NUMBERTOTEXT
	PACKAGE
	PROPERCASE
	REVERSEBYTE
	RIGHT
	SERIESTOTEXT
	SQUEEZE
	SUBSTITUTE
	TEXT
	TEXTTOBCD
	TEXTTONUMBER
	TEXTTOTIME
	TIMETOTEXT
	TODATETIME
	TONUMBER
	TRIMLEFT
	TRIMRIGHT
	UPPERCASE
	WORD

	Chapter 17. XML functions
	VALIDATE
	XPATH
	XSLT

	Chapter 18. Custom functions
	Creating a custom function

	Chapter 19. Date and time format strings
	Time units
	Date units
	Binary date and time format strings
	Japanese date and time format strings
	Japanese date format strings
	Japanese time format strings
	Western date and time format strings
	Western date format strings
	Western time format strings

	Chapter 20. Number format strings
	Leading sign format strings
	Trailing sign format strings
	Substring format strings
	Whole number and fraction format strings

	Chapter 21. RUN function return codes
	Chapter 22. Character set codes for CPACKAGE, CSERIESTOTEXT, and CTEXT
	Notices
	Programming interface information
	Trademarks and service marks

	Index

