
WebSphere Transformation Extender

Database Interface Designer

Version 8.1

���

Note

Before using this information, be sure to read the general information in “Notices” on page 95.

October 2006

This edition of this document applies to WebSphere Transformation Extender, 8.1 and to all subsequent releases and

modifications until otherwise indicated in new editions.

To send us your comments about this document, e-mail DTX_doc_feedback@us.ibm.com. We look forward to

hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Database Interface Designer overview 1

Basic steps for using database data . 1

To use the Database Interface Designer to import database definitions 1

To use the Map Designer to configure database sources, targets, or operands in a rule 2

Chapter 2. Database Interface Designer basics 3

Starting the Database Interface Designer . 3

Database Interface Designer user interface . 3

The Navigator . 3

Menu commands and tools . 4

Menu . 5

Toolbar . 5

Configuring the environment . 10

Tools > Options . 10

Shortcut keys . 12

Chapter 3. Database/query files . 13

Creating database/query files . 13

Defining a database . 13

Defining a query . 15

Editing or deleting a database or query . 15

To edit a database or query . 16

To delete a database or query . 16

Understanding the MDQ XML format . 16

XML Schema . 16

Saving database/query files . 17

Processing MDQ files . 18

Comparing database/query files . 18

Criteria for analyzing differences . 18

Creating a database/query file comparison . 19

Viewing database/query file differences . 19

Defining variables in SQL statements . 21

Defining a query with variables . 21

Specifying the values at runtime . 22

Generating type trees . 22

From a table or view . 23

From a stored procedure . 26

From a message queue (Oracle AQ) . 29

From a query . 31

Printing reports . 34

Database Interface Designer trace files . 34

Database Interface Designer trace . 35

Viewing Database Interface Designer trace files . 35

Finding text in trace files . 35

Chapter 4. Database type trees . 37

Table and query type tree structure . 37

Special characters in type names . 38

Characteristics of the DBSelect or DBTable type . 38

Components and format of the row type . 38

Defining the column type(s) . 40

Stored procedure type tree structure . 41

Oracle AQ Message type tree structure . 42

Chapter 5. Database sources and targets . 43

© Copyright IBM Corp. 2006 iii

Using a database as a source . 43

Defining a database source in the Map Designer . 43

Database GET> Source settings . 44

Using a database as a target . 44

Defining a database target in the map designer . 44

Database PUT > Target settings . 45

Database connections and transactions . 45

Transactional control . 46

Database connection management . 46

Connection example . 47

Chapter 6. Updating database tables . 49

Using key and update columns . 49

Defining key and update columns . 49

Specifying update mode . 50

Using the Map Designer or Integration Flow Designer . 50

Using an adapter command at execution time . 50

Update key columns . 50

Example using update columns . 51

Chapter 7. Database functions . 53

Accessing database information in a map rule . 53

Using DBLOOKUP and DBQUERY . 53

Syntax1 - using a static MDQ file . 53

Syntax2 - using dynamic adapter commands . 55

Examples . 56

Uses . 59

Using bind values in database functions . 59

Chapter 8. Using stored procedures . 61

Calling stored procedures . 61

Database-independent syntax for calls . 61

Examples using stored procedures . 62

Returning the Value from a stored function . 62

Using a stored procedure as an input . 63

Using a query to execute a stored procedure . 63

Using a stored procedure as an output . 63

Stored procedures with object type parameters . 64

Chapter 9. Database triggers . 67

Database triggers overview . 67

Database support . 67

Installation requirements . 67

Tables created for triggering . 68

Maintaining triggering tables . 69

Table-based triggering . 70

Row-based triggering . 70

Issues for both row- and table-based triggering . 71

Issues for row-based triggering only . 71

Defining a trigger using a database source . 71

Using a database as a map trigger . 72

Defining a trigger for a query . 72

Defining events . 73

Specifying a combination of different event classes . 74

Specifying AND or OR . 74

Specifying when . 74

Specifying triggers on the command line . 76

Using the Integration Flow Designer to enable triggers . 76

Chapter 10. Debugging and viewing results . 77

iv WebSphere Transformation Extender: Database Interface Designer

Troubleshooting tools . 77

Database trace files . 77

Format of database trace files . 77

Producing the database trace in the Database Interface Designer 78

Producing the database trace during map execution . 79

Tracing database errors only . 88

Viewing database source and target data . 90

Using backup settings . 91

Capturing data not processed . 91

Database audit files . 91

DBMS trace utilities and SQL command tools . 92

Trace utilities . 92

SQL command tools . 92

Notices . 95

Programming interface information . 97

Trademarks and service marks . 97

Index . 99

Contents v

vi WebSphere Transformation Extender: Database Interface Designer

Chapter 1. Database Interface Designer overview

The Database Interface Designer is used to import metadata about queries, tables,

and stored procedures for data stored in relational databases. It is also used to

identify characteristics of those objects to meet mapping and execution

requirements such as update keys and database triggers.

The Database Interface Designer is used to:

v specify the databases to use for a source or target

v define query statements

v automatically generate type trees for queries or tables

After defining database queries or tables in the Database Interface Designer, define

your map in the Map Designer where, in map cards, you can specify an input

source as either a query or a stored procedure and an output target as either a

table or a stored procedure.

Database connectivity is supported under the control of Relational Database

Management Systems (RDBMS).

The adapters provide the option of using a driver to connect to the platform of

your choice so that you can automatically create type trees for database queries

and tables. The adapters also provide a test environment on the PC for maps using

data stored in a database.

You can also install adapters on additional systems to provide remote database

connectivity, such as with ODBC, Oracle, Sybase, or DB2, on operating systems

such as HP-UX, Sun Solaris, AIX, and so on.

Non-Windows adapters do not require the Database Interface Designer if you plan

to only use mtsmaker without a database/query file (MDQ) to generate each type

tree. For information about using mtsmaker, see the Resource Adapters

documentation.

Basic steps for using database data

The following is a high-level description of the steps required to use database data.

To use the Database Interface Designer to import database

definitions

1. Create a database/query file (MDQ).

2. Define a database.

3. If the database is to be used as an input, define a query for that database.

4. Generate the type tree for the query, table, view, stored procedure, or message

from which or to which you want to map.

5. If the database is to be used as an output, set keys and designate columns for

performing SQL updates.

6. Save the MDQ file.

© Copyright IBM Corp. 2006 1

To use the Map Designer to configure database sources,

targets, or operands in a rule

1. From the input or output card(s) in the executable map, select Database as the

value for either the GET Source or PUT Target setting.

2. Select the MDQ file that contains the database-specific source or target

information.

3. Perform the following for an input and/or an output card:

v In an input card, select a query from the MDQ file.

v In an output card, specify a table name or stored procedure.

2 WebSphere Transformation Extender: Database Interface Designer

Chapter 2. Database Interface Designer basics

This chapter introduces the Database Interface Designer window and provides

information about working with the graphical user interface.

Starting the Database Interface Designer

During installation, an entry for the Database Interface Designer is added to the

WebSphere Transformation Extender program folder (listed under the Design

Studio).

When the Database Interface Designer runs, the Startup dialog appears. In this

dialog, you can select how the Database Interface Designer program should open.

The following options are available:

v Open an existing database/query file

Browse for the MDQ file you want.

v Create a new database/query file

Create a new MDQ file.

v Open a recently used database/query file

Select one or more files from the displayed file list. You can also double-click on

a file from this list to open it.

The Startup dialog can be disabled by enabling the Do not show this at startup

check box; however, you can always access this dialog from the Database Interface

Designer window Help menu by selecting the Startup Window menu option.

Database Interface Designer user interface

The main Database Interface Designer window provides a graphical user interface

in which to create and maintain MDQ files. These files contain database definitions

that include information such as database name, connection information, queries,

stored procedures, and so forth.

When you create a database/query file in the Database Interface Designer, a file

named Database_Query File (which is the default file name) followed by an

assigned, sequential number appears in the Navigator. This indicates that you can

begin defining databases, queries, and so on. Save this database/query file (a file

name with an MDQ extension), providing an appropriate name and location.

The Navigator

The Navigator graphically presents all of your opened MDQ files and the

databases that they contain. It also provides a graphical representation of the

queries, stored procedures, message queues, and tables or views that have type

trees generated. Also displayed are tables and views with update keys defined, as

well as variables that are defined in each MDQ file.

© Copyright IBM Corp. 2006 3

Changing the appearance of the navigator

The Navigator can be shown or hidden. It also can be presented as either a docked

window or a floating window. These choices are available from the context menu

of the Navigator. To access the context menu, right-click on the top border of the

Navigator.

To show or hide the Navigator:

1. To show the Navigator, from the View menu, select Navigator.

A check mark appears next to Navigator in the View menu, indicating that the

Navigator is displayed.

2. To hide the Navigator, from the context menu of the Navigator, select Hide.

or

Repeat Step 1 above to disable the Navigator selection from the View menu.

To float the Navigator in the main window:

1. Starting with the Navigator being docked, right-click on the top border of the

Navigator.

The context menu appears.

2. Click Float In Main Window.

The Navigator is now a separate window, floating in the main window.

To dock the Navigator:

This procedure assumes that the Navigator is floating in the main window.

1. In the Navigator, right-click anywhere around the border of the window, except

in the title bar.

The context menu appears.

2. If the Allow Docking option is not available, disable the check mark from the

Float In Main Window option.

The Navigator is docked.

or

If the Allow Docking option is available, select it and go to the next step.

3. After selecting Allow Docking, you can toggle between a docked window and

a floating window by double-clicking the top border (below the title bar) of the

Navigator. Double-click the title bar so that the Navigator is again docked.

Menu commands and tools

Actions can be performed in the Database Interface Designer window using menu

commands, tools, and shortcut keys. Not all menu commands have corresponding

tools, and not all tools are represented in the command menus. When working

with database/query files, you can activate commands in several different ways:

v Select functionality using the menu bar.

v Right-click on any entry in the Navigator to display its context menu.

v Click the tools on the toolbar.

v Double-click objects in the Navigator.

4 WebSphere Transformation Extender: Database Interface Designer

Note: Database Interface Designer commands are available using the methods

listed above. Most procedural information in this guide uses the menu

access as a default method. Use the access method most convenient for

you.

Menu

The Database Interface Designer window menu provides the common menu

structure for commands generally used with Windows programs, as well as for

commands to accomplish specific Database Interface Designer tasks.

Toolbar

The toolbar is a part of the Database Interface Designer window, providing quick

access to various tools that invoke Database Interface Designer actions while

working with database/query files. The left side of the toolbar provides the tools

generally available in Windows applications. The remaining tools are specific to the

Database Interface Designer. The applicability and behavior of each tool depends

upon the Database Interface Designer object selected and its current state.

File menu

The File menu provides the commands that are generally available in Windows

applications.

Using the keyboard, press Alt F to view the File menu.

 Command Shortcut Key Description

New Ctrl+N Creates a new MDQ file

Open Ctrl+O Opens an existing MDQ file

Close Closes the selected MDQ file

Save Ctrl+S Saves the selected MDQ file

Save As Saves the selected MDQ file with a

different name

Source Control → Create

Project

Alt+F, L, C Allows you to begin the process of

creating a project using the third-party

source control application you have

selected.

Source Control → Open

Project

Alt+F, L, O Displays the Project window in which you

can begin the process of selecting an

existing project in which to work using a

third-party source control dialog.

Source Control → Get

Latest Version

Alt+F, L, G Displays the Get Latest Version dialog in

which you can select related files that you

can get.

Source Control → Check

Out

Alt+F, L, E Displays the Check out file(s) dialog in

which you can specify the files to be

checked out.

Source Control → Check

In

Alt+F, L, I Displays the Check in file(s) dialog in

which you can either only check in or

both check in and check out again the

selected files.

Chapter 2. Database Interface Designer basics 5

Command Shortcut Key Description

Source Control → Undo

Check Out

Alt+F, L, U Displays the Undo Check Out dialog in

which you can reverse a check out of one

or more files without either the check out

or the undo of the check out showing up

in the archive history.

Source Control → Add

to Source Control

Alt+F, L, A Displays the Add to source control dialog

in which you select one or more files to

add to your source control project

archives.

Source Control →

Remove from Source

Control

Alt+F, L, R Displays the Remove from source code

control dialog in which you can specify

the file(s) to be removed from the

specified source control project archives.

Source Control → Show

Workfiles

Alt+F, L, F Displays the Project dialog in which you

can view all of the workfiles in this

project archive.

Source Control → Add

Workfiles

Alt+F, L, W Displays the Add Workfiles dialog in

which you can specify the workfiles to be

added to the project archives.

Source Control → Show

History

Alt+F, L, H Displays a third-party, source control

application-specific dialog that allows you

to define what you want to see in a

history report generated by that

third-party application.

Source Control → Show

Properties

Alt+F, L, P Displays a third-party, source control

application-specific dialog that allows you

to view labels and other source

control-determined information on a

revision-by-revision basis as recorded in

that third-party source control application.

Source Control →

Refresh Status

Alt+F, L, R Synchronizes the project information for

files displayed in your designer with the

archival information in your third-party

source control.

Database Query File

Differences

Alt+F, D Displays the Select First File dialog in

which you can begin the process of

specifying the two database/query (MDQ)

files to compare.

Trace Alt+F, T Enables trace functionality to create a

Database Interface Designer trace file for

the selected MDQ file

Print Ctrl+P Displays the Print dialog in which to

specify and print definitions for the

selected database(s)

Print Setup Alt+F, R Displays the Print Setup dialog in which

to configure printer options

Recent File Opens the selected MDQ file from this list

Exit Alt+F, X Quits the application and prompts to save

changes

6 WebSphere Transformation Extender: Database Interface Designer

Edit menu

The Edit menu provides the editing commands generally available in Windows

applications. It also contains the Find command that can be very useful when

viewing trace files in a trace window.

Using the keyboard, press Alt E to view the Edit menu.

 Command Shortcut Key Description

Undo Ctrl+Z Reverses the last-performed action

Cut Ctrl+X Deletes the selection and places a copy on the

clipboard

Copy Ctrl+C Copies the selection to the clipboard

Paste Ctrl+V Inserts the contents of the clipboard to the cursor

location

Find Ctrl+F Displays the Find dialog in which to locate specified

information in the active trace window

Replace Ctrl+H Displays the Replace dialog in which to specify the

text upon which to search and the text that is replacing

it

View menu

The View menu provides selections to control the appearance of your Database

Interface Designer environment.

Using the keyboard, press Alt V to view the View menu.

 Command Shortcut Key Description

Toolbar(s) Alt+V, T Displays the Customize dialog for

toolbars in which to select the toolbars

to be displayed and to adjust the tools

displayed on specific toolbars

Status Bar Alt+V, S Shows or hides the status bar located at

the bottom of the Database Interface

Designer window

Navigator Alt+V, N Shows or hides the Navigator

Trace File Alt+V, F Displays the Database Interface Designer

trace file for the selected MDQ file in a

separate trace window

Database menu

The Database menu provides commands to initiate actions for a selected database.

Using the keyboard, press Alt D to view the Database menu.

 Command Shortcut key Description

New Ctrl+D or Insert Displays the Database Definition window so

that you can add a database to the associated

MDQ file

Note: You must first select the Databases

object in the Navigator to be able to do this.

Chapter 2. Database Interface Designer basics 7

Command Shortcut key Description

Edit none Displays the Database Definition window that

allows you to modify the selected database

Note: There is no shortcut key. But you can

double-click the database object name to

perform the same function as the tool.

Delete Delete Deletes the selected database

Generate Tree

From → Table

Alt+D, G, T Displays the Generate Type Tree from Tables

dialog that allows you to generate a type tree

from a table or view in the selected database

Note: You can also double-click the Tables

object in the Navigator to perform the same

function as the tool.

Generate Tree

From → Procedure

Alt+D, G, P Displays the Generate Type Tree from Stored

Procedures dialog for the selected database or

stored procedure in which you can specify the

generation of a type tree from a stored

procedure

Note: You can also double-click the Stored

Procedures object in the Navigator to perform

the same function as the tool.

Generate Tree

From → Queue

Alt+D, G, Q Displays the Generate Type Tree from Queues

dialog in which you can specify the

generation of a type tree from a message

queue

Set Update Keys Alt+D, S Displays the Set Table Update Key Columns

dialog in which you can specify update keys

and the key columns to update in the selected

database

Query menu

The Query menu provides commands to initiate actions for a selected query.

Using the keyboard, press Alt Q to view the Query menu.

 Command Shortcut Key Description

New Ctrl+Q or Insert Displays the New Query dialog in which to

add a new query

Note: You must first select the Queries object

in the Navigator to be able to do this.

Edit Alt+Q, E Displays the Edit/View Query dialog in which

to modify the selected query

Note: You can also double-click the database

query name to perform the same function as

the tool.

Delete Delete Deletes the selected query

Generate Tree Alt+Q, G Displays the Generate Type Tree from Query

dialog that allows you to generate a type tree

from the selected query

8 WebSphere Transformation Extender: Database Interface Designer

Command Shortcut Key Description

Define Variables Alt+Q, V Displays the Define Variables dialog in which

to specify pseudo variable values

Note: You can also double-click the Variables

object in the Navigator to perform the same

function as the tool.

Define Trigger Alt+Q, T Displays the Trigger Specification dialog in

which to specify the input events that must

occur to launch a map using the selected query

as a data source

Tools menu

The Tools menu provides options to customize your Database Interface Designer

environment.

Using the keyboard, press Alt L to view the Tools menu.

 Command Shortcut Key Description

Shortcuts Alt+L, S Displays the Shortcut Keys dialog in which to assign

shortcut keys or key combinations to specific

Database Interface Designer operations

Options Alt+L, O Displays the Options dialog in which to configure

Database Interface Designer options for backups, the

Navigator, trace windows, tables/views, and

confirmations

Window menu (Alt+W)

The Window menu contains commands to provide control of open trace windows.

Using the keyboard, press Alt W to view the Window menu.

 Command Shortcut Key Description

Close All none Closes all open trace windows

Cascade none Arranges all open trace windows so that they

overlap in a descending pattern

Tile Horizontally none Arranges all open trace windows as horizontal,

non-overlapping tiles

Tile Vertically none Arranges all open trace windows as vertical,

non-overlapping tiles

Arrange Icons none Arranges all minimized trace windows in an

orderly fashion at the bottom of the Database

Interface Designer window

List of recently used

files

none Selecting a specific trace file from this list makes

it the active window. A check mark appears next

to the trace file that is in the active trace

window.

Help menu

The Help menu offers choices to display information about the Database Interface

Designer.

Chapter 2. Database Interface Designer basics 9

Using the keyboard, press Alt H to view the Help menu.

 Command Shortcut Key Description

Contents none Displays the contents of the Help system which

also lists the Help topics

Startup Window none Displays the Startup dialog in which to select

whether to create a new or open an existing

MDQ file

About Database

Interface Designer

none Displays application-specific information

Configuring the environment

Much of the Database Interface Designer environment can be configured to

accommodate your preferred work environment. For example, you can:

v Specify various user interface options (font, line appearance, dialog display)

v Select the tools to display

v Change the look of the tools on the toolbar

v Assign shortcut keys

Tools > Options

From the Tools menu, select Options. The Options dialog appears. Select choices

representing various aspects of the Database Interface Designer environment and

configure them as desired.

General options

In the list of options, select General to specify values concerning the backing up

and saving of your MDQ files. The fields in this dialog are as follows:

Field Description

Auto-save files every n minutes (where n represents a number)

This spin button indicates the time interval at which to automatically save

opened MDQ files. The default value is 0.

Show Banner

This check box specifies whether to display the banner, which appears

between the title bar and the menu bar of the Database Interface Designer

window. The default setting is enabled.

Backup on save

This check box specifies whether to create a backup copy of each MDQ file

when the file is saved. The default setting is enabled.

Navigator options

In the list of options, select Navigator to specify how to display objects in the

Navigator. The Navigator options are described in the following table.

 Field/Button Description

Font

Select this button to display the Font dialog in which to

select the font and font size to be used for text. The

default selection in the Sample list is Arial (10pt).

10 WebSphere Transformation Extender: Database Interface Designer

Field/Button Description

Lines

This group box displays the options that control the

appearance of lines in the Navigator. Select one of the

following options.

None No lines are displayed.

Solid Solid lines are displayed.

Dotted Dotted lines are displayed. This is the default setting.

Show tool tips

This check box allows you to display the name of each

object when the cursor is held over it and the Navigator

is sized too small for the name to be completely

displayed. The default setting is enabled.

Trace window options

In the list of options, select Trace Window to specify the font used to display text

in the Trace window.

Tables/views option

In the options list, select Tables/Views to determine the objects to be displayed

that are associated with the database. The fields in this dialog are as follows:

Field Description

List tables

This check box determines whether tables are displayed in the database

list. The default value is enabled.

List views

This check box determines whether views are displayed in the database

list. The default value is enabled.

List synonyms

This check box determines whether database synonyms are displayed in

the database list. The default value is enabled.

Confirmations options

In the list of options, select Confirmations to specify the actions for which you

want a confirmation dialog displayed before completion of those actions.

Field/Button

Description

Database operations

This group box displays the options that control whether confirmation

dialogs are displayed with regard to database operations. Select any or all

of these options.

Deleting database(s)

This check box determines whether a confirmation dialog appears when

deleting a database. The default value is enabled.

Copying database(s)

This check box determines whether a confirmation dialog appears when

copying a database. The default value is enabled.

Chapter 2. Database Interface Designer basics 11

Moving database(s)

This check box determines whether a confirmation dialog appears when

moving a database. The default value is enabled.

Table operations

This group box displays the options that control whether confirmation

dialogs are displayed with regard to table operations. Select any or all of

these options.

Deleting table(s)

This check box determines whether a confirmation dialog appears when

deleting a table. The default value is enabled.

Copying table(s)

This check box determines whether a confirmation dialog appears when

copying a table. The default value is enabled.

Moving table(s)

This check box determines whether a confirmation dialog appears when

moving a table. The default value is enabled.

Query operations

This check box allows you to display the name of each object when the

cursor is held over it and the Navigator is sized too small for the name to

be completely displayed. The default setting is enabled.

Deleting query(s)

This check box determines whether a confirmation dialog appears when

deleting a query. The default value is enabled.

Copying query(s)

This check box determines whether a confirmation dialog appears when

copying a query. The default value is enabled.

Moving query(s)

This check box determines whether a confirmation dialog appears when

moving a query. The default value is enabled.

Shortcut keys

You can assign your own shortcut keys for any existing or new menu items. Using

the Shortcut Keys dialog, you can:

v Assign shortcut keys.

v Remove shortcut key assignments.

v Restore the shortcut key assignments present at installation.

For information about these procedures, see the Design Studio Introduction

documentation.

12 WebSphere Transformation Extender: Database Interface Designer

Chapter 3. Database/query files

This chapter discusses how to use the Database Interface Designer when working

with MDQ files to perform the following types of tasks:

v Create MDQ files and learn about their XML format. (For more information

about the XML format, see ″Understanding the MDQ XML format″ .)

v Define the various objects included in an MDQ file. (For more information about

such objects as queries and variables, see ″Defining a query″ and ″Defining

Variables in SQL Statements″ .)

v Generate type trees. (See ″Generating type trees″ .)

v Print reports and enable trace functionality. (See ″Printing reports″ and

″Database Interface Designer trace files″ .)

Creating database/query files

An MDQ file contains the definitions for one or more databases, as well as queries,

stored procedures, and other specifications, that may contribute to the execution of

a map. Use the commands on the File menu in the Database Interface Designer to

create and save a database/query file with an .mdq file extension. This file name

and path appears in the title bar of the Database Interface Designer window

when it is the selected file in Navigator, indicating that it is the active MDQ file.

After starting the Database Interface Designer, the Navigator lists one or more

MDQ files depending upon whether your selection was to create a new MDQ file

or to open one or more existing files.

When an MDQ file is created, it appears in the Navigator next to the appropriate

icon. The Database_QueryFile file name is automatically assigned, along with a

sequential number.

To save an MDQ file or rename it:

1. From the File menu, select Save As.

The Save As dialog appears.

2. Enter the new file name and select the path.

3. Click OK.

Defining a database

When an MDQ file appears in the Navigator, you can add new database

definitions to it or you can modify the name of an existing database. This is done

using the Database Definition window. Each Database Definition window

contains some settings that are common across all platforms and others that are

platform-specific. To view more information about each platform-specific setting,

refer to either the context-sensitive help available from the dialog itself or to each

platform-specific reference guide.

For the purposes of outlining a basic procedure to define a database, the ODBC

adapter for the Windows platform will be used. An example follows.

© Copyright IBM Corp. 2006 13

see the following table for a listing of the settings in this window and their

descriptions.

 Setting Description

Database Name

This is the name of the database being defined.

This name appears in the Navigator.

Adapter

Type This is a list of adapters that can host the

database you are defining. Select one from the

list. The default value is ODBC.

This selection will affect the list of supported

platforms displayed in the Platform list.

Platform This is a list of platforms upon which the adapter

(that you selected in the Type list) is supported.

Access user tables/procedures only

This setting determines level of user access and,

to some extent, the presentation of the

information being presented. The default value is

Yes.

If No is selected, all of the names (of tables,

views, and so on) in the database are accessible

and are presented, including the respective prefix

of each associated user ID.

If Yes is selected, only the names (of tables,

views, and so on) in the databases associated

with the current user ID are accessed and

presented. Because these are all associated with

the same user, no prefix is added.

Surround table/column names with

This setting indicates the character you want to

use to enclose table and column names. For

example, many databases require that names be

enclosed by single or double quotation marks if

they have spaces in their names, or when the

names are SQL reserved words. When you

specify table names in output cards or column

names in update keys, these names will be

enclosed by the character defined in this setting

to provide database compatibility. There is no

default value.

Data Source

Database Interface

Designer

Both this and the Runtime settings are

platform-specific settings. On other platforms,

you may have different settings. Again, see the

platform-specific adapter reference guide or the

context-sensitive help for more setting-specific

information.

This is the name of the data source used to access

database information for design-time

(pre-production or testing) purposes.

Runtime This is the name of the data source used to access

database information for run-time (map

execution) purposes.

14 WebSphere Transformation Extender: Database Interface Designer

Setting Description

Security

User ID This is the user ID used to access the database. If

you do not know this information, contact your

database administrator. There is no default value.

Password This is the password used to access the database.

If you do not know this information, contact your

database administrator. There is no default value.

To define a database:

1. From the Navigator, select Databases under the MDQ file.

2. From the Database menu, select New.

or

Right-click the Databases object in the Navigator and select New.

The Database Definition window appears.

3. Enter information for the remaining settings as desired.

4. Click OK.

The new database name appears in the Navigator next to the database icon.

Defining a query

After you have opened an MDQ file in the Database Interface Designer window

and a database has been defined, you can specify queries. To use a query as a

source, define the query by assigning it a name and entering either the SQL

SELECT statement or the stored procedure invocation statement.

To define a query:

1. In the Navigator, select Queries under the database icon for which you want to

add a query.

2. From the Query menu, select New.

The New Query dialog appears.

3. In the Name field, enter a name for your query. Use this name to reference this

query using the Map Designer or you can use it in a data source override

execution command.

4. In the Query text box, enter an SQL statement that defines how data should be

retrieved from the database.

If your SELECT statement includes table names with spaces, you must enclose

them with either single or double quotation marks.

5. Click OK.

The new query appears in the Navigator next to the query icon.

Editing or deleting a database or query

The following procedures describe how to edit and delete a database or a query,

respectively.

Chapter 3. Database/query files 15

To edit a database or query

1. In the Navigator, select the name of the database or query to be edited.

2. From the Database menu (or Query menu as appropriate), select Edit.

or

In the Navigator, right-click the database or query icon and select Edit.

The Edit/View Query dialog appears.

3. Make any necessary changes and click OK.

To delete a database or query

1. In the Navigator, highlight the database(s) or one or more queries you want to

delete.

2. From the Database menu (or Query menu as appropriate), select Delete.

or

In the Navigator, right-click the database or query icon(s) and select Delete.

A confirmation dialog appears.

3. To confirm the deletion, click Yes.

Understanding the MDQ XML format

The database/query (MDQ) file is a configuration file that is used by WebSphere

Transformation Extender when accessing databases using database adapters. Some

of the information contained within an MDQ file could include the following:

v database logical names (to distinguish among settings for the databases defined

in this file)

v database adapter types

v database connection parameters

v user names and passwords

v information about tables

v queries and stored procedures accessed by the adapters

v primary keys for the tables (used for the database updates)

v event trigger information for the Launcher

XML Schema

The MDQ files are well-formed, valid XML documents. MDQ files can be created

using the Database Interface Designer (DID) or any other utility capable of creating

XML documents. The XML Schema file that is used by WebSphere Transformation

Extender to validate MDQ files is mdq.xsd.

Note: Do not modify the content of the mdq.xsd file. Unexpected results may

occur if you do.

If install_dir is the directory into which the WebSphere Transformation Extender

product is installed, the mdq.xsd file is copied to the following platform-specific

directories as part of that installation process:

Platform

Location

Windows

install_dir

16 WebSphere Transformation Extender: Database Interface Designer

UNIX install_dir/src

Saving database/query files

Note: If you do not use the Database Interface Designer to create MDQ files, verify

that the generated XML files are well-formed and valid for the provided

mdq.xsd XML Schema.

The following topics contain information related to saving MDQ files from the

Database Interface Designer (regardless of whether they were originally created in

the Database Interface Designer or using another utility):

v ″XML prolog text″

v ″XML data from XML-generated MDQ files″

v ″Attribute formatting″

v ″Password encryption″

v ″Backup copies″

XML prolog text

The XML prolog will always be generated as shown below:

<?xml version="1.0" encoding="UTF-8"?>

This means that the MDQ files saved from the Database Interface Designer use the

UTF-8 encoding scheme.

XML data from XML-generated MDQ files

If you have created this MDQ file outside of the DID, the following information is

ignored by the DID when it reads the MDQ file and the information is removed

from the MDQ file when it is saved from the DID:

v XML comments

v namespace declarations

v CDATA sections and processing instructions

The content from the CDATA sections is preserved. However, it is saved using

the XML entity references.

Attribute formatting

Attribute values are always enclosed in double quotes.

Password encryption

The XML schema provides two different password elements:

v PASSWORD.literal

v PASSWORD.encrypted

In an MDQ file that has not been saved in the Database Interface Designer, only

the PASSWORD.literal value can be specified, which is not encrypted. When the file

is saved in the Database Interface Designer, the password will be encrypted (using

the PASSWORD.encrypted element).

Backup copies

If the MDQ file was created (and saved) in an earlier version of the DID and when

that file is edited and saved from the DID, this newly saved MDQ file is in the

current version. In addition, a backup copy of the MDQ file is created for the older

version using the ODQ filename extension (instead of MDQ).

Chapter 3. Database/query files 17

Processing MDQ files

The MDQ files can be processed either at runtime or design-time, depending upon

how (and where) the files are specified.

Runtime execution

If the -MDQ adapter command is used along with the DBLOOKUP, DBQUERY, GET or PUT

map functions or if it is specified as an adapter command in the database cards,

the MDQ file is parsed at runtime.

Design-time execution

If the MDQ file name is specified in the DatabaseQueryFile setting of a map card,

the MDQ file is parsed when the map is compiled, which is during design time for

the map, not at runtime.

Comparing database/query files

Database/query (MDQ) files contain definitions of one or more databases, as well

as queries, stored procedures, tables, queues, and variables. The file differentiation

process identifies MDQ file differences first at the database-level, and then at the

query-, stored procedure-, table-, and variable-levels. See ″Creating a

database/query file comparison″ .

After you have performed a comparison between two MDQ files, color-coding is

used to highlight what is unique between the two:

v Differences are highlighted in red.

v New information is highlighted in blue.

For more information, refer to ″Viewing database/query file differences″ .

Criteria for analyzing differences

The criteria for analyzing differences for the different entities is as follows:

v MDQ file

– Any of the database definitions are different.

– Any of the variables are different.

– Any of the objects exist in one, but not the other, MDQ file.
v database definition

– Any of the database definition settings are different.

– Any of the syntax of the queries, column overrides of the stored procedures,

column overrides or update keys of the tables, or any of the values of the

variables are different.
v query

– The syntax of the queries is different.

– Column overrides of the queries are different.
v stored procedure

– Column overrides for the stored procedures are different.
v table

– Column overrides for the tables are different.

– Update keys for the tables are different.
v variable

– Values for the variables are different.

18 WebSphere Transformation Extender: Database Interface Designer

Creating a database/query file comparison

Use this procedure to compare database/query file differences between two

selected MDQ files. After you have created the comparison, you can view the

results.

To create an MDQ file comparison:

1. From the File menu, select Database Query File Differences.

The Select First File dialog appears.

2. Navigate your file system and select the first MDQ file to be compared.

3. Click Open.

The Select Second File dialog appears.

4. Navigate your file system and select the second MDQ source file to be

compared.

5. Click Open.

The progress of the comparison is shown briefly in the Database Source File

Differences Analysis dialog. When the analysis has completed, the Database

Differences window appears.

Viewing database/query file differences

Note: The Database Differences window should already appear. If you do not see

it, you must create the file comparison as described in ″Creating a

database/query file comparison″ .

Differences are indicated using color-coded text:

v Differences are red.

v Additions or new information items are blue.

To view MDQ file differences:

1. Place current focus in theDatabase Differences window.

2. Resize any of the four panes as needed.

3. Select any database, query, stored procedure, table, or variable to view the

differences.

The settings display in the two lower windowpanes, depending upon what you

select.

4. Press F8 or F7 to view the next or previous difference, respectively.

In the Database Differences window, you can view all of the settings for the

selected element in the compared MDQ file, even though differences may not

exist.

Database/query file difference results

When database/query source files are compared, they are considered different if

any of the database definition settings are different, any of the variables are

different, or any of the objects exist in one MDQ file and not the other. Text color is

used to provide a visual distinction. see the table below as a guide:

 Condition Upper Panes Lower Panes

Same name and content black text black text on tab, only one pane at a time

Same name, different

content

red text red text on tab, both panes appear, unique text in

red

Chapter 3. Database/query files 19

Condition Upper Panes Lower Panes

Different name and

content

blue text red text on tab, only one pane at a time, unique

text in green (for database settings only, rest

have unique text in blue)

Database definition setting differences

If any database definition settings of either of the two compared MDQ files are

different, both database names appear in red letters in the Database Differences

window.

The Database Properties tab in each lower windowpane also appears in red letters.

(If there were no differences, this tab would appear in black letters.)

Query differences

If there are differences between the two compared MDQ files with regard to query

syntax or column overrides, the name of the query with differences appears in red

letters in the Database Differences window. If the query in each MDQ file is

uniquely named, each query name appears in blue letters.

If each MDQ file has a query with the same name, but containing unique

information, the Query and/or Column Overrides tabs in each lower windowpane

appear in red letters. (If there were no differences, these tabs would appear in

black letters and you would only see one display in the bottom pane at a time,

depending upon where your cursor is in the upper pane.) When the tabs are red,

you can go to each display and see the differences indicated in red letters.

Click the Query and Column Overrides tabs in each pane to view the differences.

Variable differences

If the variables of the two compared MDQ files have the same name, but different

settings, the variable name will appear in red letters in the upper pane and both

variables will appear in the bottom panes with the tab letters also in red letters. In

the bottom panes, the unique value(s) will appear in red letters. If the variable

names of either of the two compared MDQ files are different, the name of each

variable appears in blue letters in the Database Differences window. If the variables

are exactly the same, the name of the variable in both the upper and lower pane

and the Variables tab would all appear in black letters.

Click the Variables tab in each pane to view the differences.

Unique database information

If the databases of the two compared MDQ files have the same name, but different

settings, this tab will appear in red letters. Also, both databases will appear in the

bottom panes of the Database Differences window. If the database names of either

of the two compared MDQ files are different, the name of each database appears in

blue letters in the Database Differences window. If the databases are exactly the

same, the name of the database in both the upper pane and the Database

Properties tab would all appear in black letters. In both of these latter scenarios

(with the different-named or duplicate databases), you can view only one tab at a

time by clicking on the Database icon in the upper (Navigator-like) portion of the

window for the specific MDQ file. The resulting display in this tab is a

reproduction of the settings of the Database Definition dialog. To see the respective

database differences, you must click alternately on each database icon in each

upper half of the Database Differences window.

20 WebSphere Transformation Extender: Database Interface Designer

Stored procedure differences

If the stored procedures of the two compared MDQ files have the same name, but

different values, the stored procedure name will appear in red letters in the upper

pane and both stored procedures will appear in the bottom panes with the

Column Overrides tab letters also in red letters. In the bottom panes, the unique

value(s) will appear in red letters. If the stored procedure names of either of the

two compared MDQ files are different, the name of each stored procedure appears

in blue letters in the Database Differences window. If the stored procedures are

exactly the same, the name of the stored procedure in the upper pane and the

Column Overrides tab and columns would all appear in black letters.

The columns on this tab (Column Name, Column Length, Presentation, and

Interpret As) correspond to fields and list names in the Column Datatype

Specification dialog.

Table differences

If the tables of the two compared MDQ files have the same name, but different

values for column overrides or update key definitions, the table name will appear

in red letters in the upper pane and both tables will appear in the bottom panes

with the Column Overrides and/or Update Keys tab letters also in red letters. In

the bottom panes, the unique value(s) will appear in red letters. If the table names

of either of the two compared MDQ files are different, the name of each table

appears in blue letters in the Database Differences window. If the tables are exactly

the same, the name of the table in the upper pane and the Column Overrides and

Update Keys tabs and related information would all appear in black letters.

Click the Column Overrides and Update Keys tabs in each pane to view the

differences.

The columns on the Column Overrides tab (Column Name, Column Length,

Presentation, and Interpret As) correspond to fields and list names in the Column

Datatype Specification dialog.

Defining variables in SQL statements

Elements of SQL statements can be executed as map sources that are determined at

runtime. Use the Database Interface Designer to define a statement variable with a

pseudo value in an SQL statement and then pass the actual value on the command

line at runtime. This technique is beneficial when using the RUN function because it

allows one map to modify the SQL statement of another map or to build,

potentially, an entire SQL statement.

When you generate type trees using the Database Interface Designer, a substitution

value must be entered for each variable to ensure that the syntax of the SQL

statement is valid. The Database Interface Designer provides a facility for

specifying a value for these variables; however, the value you enter for a variable

in the Database Interface Designer does not have to be the same value passed at

runtime. (Any value can be passed.)

Defining a query with variables

In the Database Interface Designer Query dialog, variables can be specified in SQL

statements as literals enclosed in pound sign (#) characters. For example, you

might enter a statement that defines a variable named ID:

select * from BigTable where Identifier = #ID#

Chapter 3. Database/query files 21

Because the value of a variable may be a text string, you can also create larger

elements of the statement variable. For example:

select * from BigTable where #WhereClause#

When you define variables in a query, the Database Interface Designer

automatically detects the presence of the variables in the statement and lists each

variable in the Navigator, along with a variable icon.

Use the Define Variables dialog to enter the variable values. Note that you cannot

generate a type tree for the query until you have specified a value for each variable

it contains. Also, if the variable you are defining in the Define Variables dialog is a

text string, you must enclose the value in single quotation marks.

The pseudo values specified using the Define Variables dialog are used in the

Database Interface Designer only when accessing the database to generate the type

tree. They are not used when executing a map.

To specify values in the Define Variables dialog

1. In the Navigator, select the variable to which you want to add one or more

values.

2. From the Query menu, select Define Variables.

The Define Variables dialog appears, listing all the variables in the MDQ file.

3. In the Value field, enter a value for each variable and click OK.

The pseudo values are stored in the MDQ file and can only be changed in the

Define Variables dialog. Also, if the variable you are defining is a text string,

you must enclose the value in single quotation marks.

To delete a variable

When a variable is removed from a query statement that was previously defined in

the Database Interface Designer, the variable is automatically deleted from the

Navigator and no longer displays.

Specifying the values at runtime

Even though you have specified pseudo values for the defined variables using the

Database Interface Designer, they are only substitution values that are not

referenced at runtime. Values must be provided for the variables at runtime;

otherwise, the SQL statement will be syntactically invalid.

The correct value for each variable is specified at run time using the Variable

adapter command (-VAR) in the Input Source - Override execution command (-ID).

For more information about how to specify values for these variables at runtime,

see the Resource Adapters documentation.

Generating type trees

Use the Database Interface Designer to generate a type tree from a table, query,

stored procedure, or message queue associated with a particular database. A type

tree generated using the Database Interface Designer contains a type for the table,

query, stored procedure, or message, as well as a row type and types for each

column in that table, query, stored procedure, or message.

22 WebSphere Transformation Extender: Database Interface Designer

As an alternative, use mtsmaker on non Windows-based platforms to generate

type trees when you cannot use the Database Interface Designer. For more

information about using mtsmaker, see the Resource Adapters documentation.

From a table or view

When you generate a type tree for a table or view, information from your database

and from the Database Interface Designer is used to create a type tree file (MTT). If

you change your database table definition or edit the database definition in the

Database Interface Designer, you must generate a new type tree to reflect the new

information.

Generated type trees may differ when generated using different database adapters.

For example, a date field may be represented differently by different databases. For

this reason, use the same adapter type that will be used at run time to generate the

type tree with the Database Interface Designer. Or, if you use ODBC, use the

Column Attributes Override dialog that is described in the Resource Adapters

documentation.

To define the type tree to generate from a table or view, use the Generate Type

Tree from Tables dialog or the Generate Type Tree from Views dialog. The

following table contains fields and descriptions.

 Field Description

Database Name

This is the name of the database from which you want

to generate a type tree. (This name is automatically

inserted based upon your selection in the Navigator.)

Tables/Views

This list displays all of the tables, views, or synonyms

that have been defined in this database. Select one or

more from this list.

Note: If the table, view, or synonym you want is not

displayed in this list, add it by right-clicking in the list,

selecting Insert, and typing the desired name.

File name This field displays a system-generated file name based

upon the database selection in the Navigator. The

default value is the database name with a type tree

extension (MTT) and a default path.

To change any of this information, click the browse

button.

Overwrite file This check box determines whether you want to replace

the existing type tree file (MTT) upon saving it. The

default value is disabled.

Override type This check box determines whether to replace existing

types with matching, newly generated types and to add

any non-matching new types to the type tree file (MTT).

This is useful when you want to add types for

additional tables into an existing type tree. The default

value is enabled.

Row group format This list displays options to determine the row format in

the generated type tree. The default value is Delimited.

Chapter 3. Database/query files 23

Field Description

Delimited Select this option to create rows delimited with a pipe

character (|) or some other user-defined selection. This

is the preferred option if you are using large column

widths where the values may be smaller than the width

of the columns. The pipe character is the default

selection.

Fixed Select this option to create rows of fixed size in the

generated type tree. There are certain situations in which

you would want to select Fixed:

v The query result contains a large number of rows

where each row consists of small, fixed-length fields.

In this situation, delimiters are unnecessary and they

also consume memory.

v You need to append fields in the output. This may be

true if multiple fields have some meaning when

concatenated together.

Delimiter This is the value for the delimiter to be used when

generating this type tree. For a list of available symbols,

click the browse button. The Symbols dialog appears,

allowing you to select the desired value. The default

value is a pipe character (|).

Terminator This is the value for the terminator to be used when

generating this type tree. For a list of available symbols,

click the browse button. The Symbols dialog appears,

allowing you to select the desired value. The default

value is <CR><LF >.

Release This is the value for the release character to be used

when generating this type tree. For a list of available

symbols, click the browse button. The Symbols dialog

appears, allowing you to select the desired value. The

default value is an exclamation point (!).

Override Column Definitions (For ODBC only) This check box indicates whether the

database driver (with check box disabled) or a command

line override (with check box enabled) is used to

interpret columns. The default value is disabled.

For more information about this field, see the

adapter-specific documentation in each adapter reference

guide.

Generate type trees in 1.4.0

format

(For Oracle adapter only) This check box determines

whether you can generate type trees that are compatible

with maps for Version 1.4.0. You might enable this

functionality if you have legacy 1.4.0 maps that you

want to maintain for some reason. The default value is

disabled.

For more information about this field, refer to

adapter-specific documentation in each adapter reference

guide.

24 WebSphere Transformation Extender: Database Interface Designer

Field Description

Represent date/time columns as

text items

This check box determines whether to automatically

format this information in its database-specific date and

time format (enabled) or as a text string (disabled).

If you enable this check box (generating date and time

as a text string), you may have to use either the

TEXTTODATE or TEXTTOTIME function in a map rule to

convert the text string to the database-specific date and

time format.

If you are generating new type trees, make sure this

check box is disabled. The default is disabled.

Because of adapter-specific differences in date and time

formats, see the adapter-specific instructions in each

adapter reference guide.

Treat text item as This list displays the languages available in which to

handle text items. The default value is Western.

To generate a type tree from a table or view:

1. In the Navigator, highlight the icon of the database containing the table from

which you want to generate a type tree.

2. From the Database menu, select Generate Tree From → Table.

or

In the Navigator, right-click the database icon and select Generate Tree From →

Table.

The Generate Type Tree from Tables dialog appears, including a list of tables

and views.

3. If you need to add a table because it is not displayed in the Tables/Views list,

you must insert it using the instructions provided in the Note below.

or

If you see one or more tables in the Tables/Views list that you want to select, if

it is one; select it. If it is multiple tables, press either Shift or Ctrl and click the

desired table.

If the table or view you want is not displayed in this list, add it by

right-clicking in the list, selecting Insert, and typing the desired name.

4. To create a new type tree, in the File name field, specify the path and name

(with an .mtt extension).

or

Click the browse button to select a type tree from the Save As dialog. Highlight

it and click OK.

5. Specify the remaining options as desired. Refer to context-sensitive help for

field-specific information.

6. Click Generate.

The Database Interface Designer and the Type Tree Maker produce a type tree

corresponding to the selected database table(s) or view(s).

The generated type tree is represented in the Navigator with the table/view icon

next to the name.

Chapter 3. Database/query files 25

From a stored procedure

Use the Database Interface Designer to generate type trees from the parameters of

stored procedures.

An example of the Generate Type Trees from Stored Procedures dialog follows,

along with a table describing its fields and their descriptions.

 Field Description

Database Name (Display only) This is the name of the database from

which you want to generate a type tree. (This name is

automatically inserted based upon your selection in the

Navigator.)

Stored Procedures This list displays all of the stored procedures that have

been defined in this database. Select one or more from

this list.

The list of stored procedures includes stand-alone

procedures by default. (Procedures that are parts of a

package are not listed.) If you need a procedure that is

part of a package (whether this functionality is available

is dependent upon your database), you may need to

insert it into this list before selecting it. To insert a

packaged stored procedure, right-click in the list, select

Insert, and type the desired name. Use the following

format:

schema.package.procedure.

File name This field displays a system-generated file name based

upon the database selection in the Navigator. The default

value is the database name with a type tree extension

(.mtt) and a default path.

To change any of this information, click the browse

button.

Overwrite file This check box determines whether you want to replace

the existing type tree file (MTT) upon saving it. The

default value is disabled.

Override type This check box determines whether to replace existing

types with matching, newly generated types and to add

any non-matching new types to the type tree file (MTT).

This is useful when you want to add types for additional

stored procedures into an existing type tree. The default

value is enabled.

Row group format This list displays options to determine the row format in

the generated type tree. The default value is Delimited.

Delimited Select this option to create rows delimited with a pipe

character (|) or some other user-defined selection. This is

the preferred option if you are using large column widths

where the values may be smaller than the width of the

columns. The pipe character is the default selection.

26 WebSphere Transformation Extender: Database Interface Designer

Field Description

Fixed Select this option to create rows of fixed size in the

generated type tree. There are certain situations in which

you would want to select Fixed.

v The query result contains a large number of rows

where each row consists of small, fixed-length fields.

In this situation, delimiters are unnecessary and they

also consume memory.

v You need to append fields in the output. This may be

true if multiple fields have some meaning when

concatenated together.

Delimiter This is the value for the delimiter to be used when

generating this type tree. For a list of available symbols,

click the browse button. The Symbols dialog appears,

allowing you to select the desired value. The default

value is a pipe character (|).

Terminator This is the value for the terminator to be used when

generating this type tree. For a list of available symbols,

click the browse button. The Symbols dialog appears,

allowing you to select the desired value. The default

value is <CR><LF >.

Release This is the value for the release character to be used

when generating this type tree. For a list of available

symbols, click the browse button. The Symbols dialog

appears, allowing you to select the desired value. The

default value is an exclamation point (!).

Override Column Definitions (For ODBC only) This check box indicates whether the

database driver (with the check box disabled) or a

command line override (with the check box enabled) is

used to interpret columns. The default value is disabled.

For more information about this field, see the

adapter-specific documentation in each adapter reference

guide.

Generate type trees in 1.4.0

format

(For Oracle adapter only) This check box determines

whether you can generate type trees that are compatible

with Version 1.4.0 maps. You might enable this

functionality if you have legacy 1.4.0 maps that you want

to maintain for some reason. The default value is

disabled.

For more information about this field, refer to

adapter-specific documentation in each adapter reference

guide.

Chapter 3. Database/query files 27

Field Description

Represent date/time columns

as text items

This check box determines whether to automatically

format this information in its database-specific date and

time format (enabled) or as a text string (disabled).

If you enable this check box (generating date and time as

a text string), you may have to use either the TEXTTODATE

or TEXTTOTIME function in a map rule to convert the text

string to the database-specific date and time format.

If you are generating new type trees, make sure this

check box is disabled. The default is disabled.

Note: Because of adapter-specific differences in date and

time formats, see the adapter-specific instructions in each

adapter reference guide.

Treat text item as This list displays the languages available in which to

handle text items. The default value is Western.

To generate a type tree from a stored procedure:

1. In the Navigator, highlight the icon of the database containing one or more

stored procedures from which you want to generate a type tree.

2. From the Database menu, click Generate Tree From → Procedure.

or

In the Navigator, right-click the database and select Generate Tree From →

Procedure.

The Generate Type Tree from Stored Procedures dialog appears, including a list

of stored procedures.

3. If you need to add a stored procedure because it is not displayed in the Stored

Procedures list, you must insert it following the instructions provided in the

Note below.

or

If you see one or more stored procedures in the Stored Procedures list that you

want to select, if it is one, select it; if it is multiple procedures, press either

Shift or Ctrl and click the desired stored procedures.

Note: The list of stored procedures includes stand-alone procedures by default.

(Procedures that are parts of a package are not listed.) If you need a

procedure that is part of a package (whether this functionality is

available is dependent upon your database), you may need to insert it

into this list before selecting it. To insert a packaged stored procedure,

right-click in the list, select Insert, and type the desired name. Use the

following format: schema.package.procedure.

4. To create a new type tree, in the File name field, specify the path and name

(with an .mtt extension).

or

Click the browse button to select a type tree from the Save As dialog. Highlight

it and click OK.

5. Specify the remaining options as desired. Refer to context-sensitive help for

field-specific information.

6. Click Generate.

The Database Interface Designer and Type Tree Maker produce a type tree

corresponding to the selected stored procedure(s).

28 WebSphere Transformation Extender: Database Interface Designer

The generated type tree is represented in the Navigator with the stored procedure

icon next to the name.

From a message queue (Oracle AQ)

Use the Database Interface Designer to generate type trees for a message on an

Oracle AQ message queue. An example of the Generate Type Tree from Queues

dialog follows, along with a table describing its fields and their descriptions.

 Field Description

Database Name This is the name of the database from which you

want to generate a type tree. (This name is

automatically inserted based upon your selection

in the Navigator.)

Tables/Views This list displays all of the queues that have been

defined in this database. Select one or more from

this list.

If the queue you want is not displayed in this list,

add it by right-clicking in the list, selecting Insert,

and typing the desired name.

File name This field displays a system-generated file name

based upon the database selection in the

Navigator. The default value is the database name

with a type tree extension (.mtt) and a default

path.

To change any of this information, click the browse

button.

Overwrite file This check box determines whether you want to

replace the existing type tree file (MTT) upon

saving it. The default value is disabled.

Override type This check box determines whether to replace

existing types with matching, newly generated

types and to add any non-matching new types to

the type tree file (MTT). This is useful when you

want to add types for additional stored procedures

into an existing type tree. The default value is

enabled.

Row group format This list displays options to determine the row

format in the generated type tree. The default

value is Delimited.

Delimited Select this option to create rows delimited with a

pipe character (|) or some other user-defined

selection. This is the preferred option if you are

using large column widths where the values may

be smaller than the width of the columns. The pipe

character is the default selection.

Chapter 3. Database/query files 29

Field Description

Fixed Select this option to create rows of fixed size in the

generated type tree. There are certain situations in

which you would want to select Fixed.

v The query result contains a large number of

rows where each row consists of small,

fixed-length fields. In this situation, delimiters

are unnecessary and they also consume memory.

v You need to append fields in the output. This

may be true if multiple fields have some

meaning when concatenated together.

Delimiter This is the value for the delimiter to be used when

generating this type tree. For a list of available

symbols, click the browse button. The Symbols

dialog appears, allowing you to select the desired

value. The default value is a pipe character (|).

Terminator This is the value for the terminator to be used

when generating this type tree. For a list of

available symbols, click the browse button. The

Symbols dialog appears, allowing you to select the

desired value. The default value is <CR><LF >.

Release This is the value for the release character to be

used when generating this type tree. For a list of

available symbols, click the browse button. The

Symbols dialog appears, allowing you to select the

desired value. The default value is an exclamation

point (!).

Override Column Definitions (For ODBC only) This field is not available for

message queues.

Generate type trees in 1.4.0 format (For Oracle adapter only) This check box

determines whether you can generate type trees

that are compatible with Version 1.4.0 maps. You

might enable this functionality if you have legacy

1.4.0 maps that you want to maintain for some

reason. The default value is disabled.

For more information about this field, refer to

adapter-specific documentation in each adapter

reference guide.

Represent date/time columns as text

items

This check box determines whether to

automatically format this information in its

database-specific date and time format (enabled) or

as a text string (disabled).

If you enable this check box (generating date and

time as a text string), you may have to use either

the TEXTTODATE or TEXTTOTIME function in a map

rule to convert the text string to the

database-specific date and time format.

If you are generating new type trees, make sure

this check box is disabled. The default is disabled.

Note: Because of adapter-specific differences in

date and time formats, see the adapter-specific

instructions in each adapter reference guide.

Treat text item as This list displays the languages available in which

to handle text items. The default value is Western.

30 WebSphere Transformation Extender: Database Interface Designer

To generate a type tree from a queue:

1. In the Navigator, select the icon of the database from which you want to

generate a type tree.

2. From the Database menu, click Generate Tree From → Queue.

The Generate Type Tree from Queues dialog appears, including a list of queues.

3. If you need to add a queue because it is not displayed in the Tables/Views list,

you must insert it following the information in the Note below.

or

If you see one or more queues in the Tables/Views list that you want to select,

if it is one, select it. If it is multiple queues, press either Shift or Ctrl and click

the desired queues.

4. To create a new type tree, in the File name field, specify the path and name

(with an .mtt extension).

or

Click the browse button to select a type tree from the Save As dialog. Highlight

it and click OK.

5. Specify the remaining options as needed.

6. Click Generate.

The Database Interface Designer and the Type Tree Maker produce a type tree

corresponding to the selected queue(s).

Note: Type trees generated from queues are not graphically represented in the

Navigator.

From a query

When generating a type tree from a query, information is used from your database

and from the Database Interface Designer to create the type tree. If you change the

definition of your query in the Database Interface Designer or edit that database

definition, you must generate a new type tree to reflect the new information.

When attempting to generate a type tree, if your query is incorrectly specified, an

error message from your database is received and a message displays, indicating

that the column definitions for that query could not be accessed. In this scenario, a

type tree is not generated.

Generating a type tree provides a way to test the syntax of your select statement. If

you can successfully generate a type tree from a query, you know that the query

has valid syntax.

An example of the Generate Type Trees From Query dialog follows, along with a

table describing its fields and their descriptions.

 Field Description

File name This field displays a system-generated file name based

upon the database selection in the Navigator. The

default value is the database name with a type tree

extension (.mtt) and a default path.

To change any of this information, click the browse

button.

Chapter 3. Database/query files 31

Field Description

Overwrite file This check box determines whether you want to

replace the existing type tree file (MTT) upon saving

it. The default value is disabled.

Override type This check box determines whether to replace existing

types with matching, newly generated types and to

add any non-matching new types to the type tree file

(MTT). This is useful when you want to add types for

additional stored procedures into an existing type tree.

The default value is enabled.

Row group format This list displays options to determine the row format

in the generated type tree. The default value is

Delimited.

Delimited Select this option to create rows delimited with a pipe

character (|) or some other user-defined selection. This

is the preferred option if you are using large column

widths where the values may be smaller than the

width of the columns. The pipe character is the default

selection.

Fixed Select this option to create rows of fixed size in the

generated type tree. There are certain situations in

which you would want to select Fixed.

v The query result contains a large number of rows

where each row consists of small, fixed-length

fields. In this situation, delimiters are unnecessary

and they also consume memory.

v You need to append fields in the output. This may

be true if multiple fields have some meaning when

concatenated together.

Delimiter This is the value for the delimiter to be used when

generating this type tree. For a list of available

symbols, click the browse button. The Symbols dialog

appears, allowing you to select the desired value. The

default value is a pipe character (|).

Terminator This is the value for the terminator to be used when

generating this type tree. For a list of available

symbols, click the browse button. The Symbols dialog

appears, allowing you to select the desired value. The

default value is <CR><LF >.

Release This is the value for the release character to be used

when generating this type tree. For a list of available

symbols, click the browse button. The Symbols dialog

appears, allowing you to select the desired value. The

default value is an exclamation point (!).

Override Column Definitions (For ODBC only) This check box indicates whether the

database driver (with the check box disabled) or a

command line override (with the check box enabled)

is used to interpret columns. The default value is

disabled.

For more information about this field, see the

adapter-specific documentation in each adapter

reference guide.

32 WebSphere Transformation Extender: Database Interface Designer

Field Description

Generate type trees in 1.4.0 format (For Oracle adapter only) This check box determines

whether you can generate type trees that are

compatible with Version 1.4.0 maps. You might enable

this functionality if you have legacy 1.4.0 maps that

you want to maintain for some reason. The default

value is disabled.

For more information about this field, refer to

adapter-specific documentation in each adapter

reference guide.

Represent date/time columns as

text items

If you enable this check box (generating date and time

as a text string), you may have to use either the

TEXTTODATE or TEXTTOTIME function in a map rule to

convert the text string to the database-specific date

and time format.

If you are generating new type trees, make sure this

check box is disabled. The default is disabled.

Note: Because of adapter-specific differences in date

and time formats, see the adapter-specific instructions

in each adapter reference guide.

Treat text item as This list displays the languages available in which to

handle text items. The default value is Western.

To generate a type tree from a query:

1. In the Navigator, highlight the icon of the query from which you want to

generate a type tree.

2. From the Query menu, select Generate Tree.

or

In the Navigator, right-click the query and select Generate Tree.

The Generate Type Tree from Query dialog appears, displaying the name of the

selected type tree.

3. To create a new type tree, in the File name field, specify the path and name

(with an .mtt extension).

or

Click the browse button to select a type tree from theSave As dialog. Highlight

it and click OK.

4. Specify the remaining options as desired. Refer to context-sensitive help for

field-specific information.

5. Click OK.

The Database Interface Designer and the Type Tree Maker produce a type tree

corresponding to the selected database query.

The generated type tree is represented in the Navigator with the query icon

displayed next to the name.

Chapter 3. Database/query files 33

Printing reports

You can print reports including detailed information about each specified database

and query contained in an MDQ file. Reports contain information about the

databases and queries that you designate. They can also include the time when the

report was printed, the full path name of the MDQ file, the database definition,

and definitions of each query and stored procedure.

You can only specify one database at a time.

To print a report:

1. Highlight the database within an MDQ file for which you want to print the

information.

2. From the File menu, select Print.

or

In the Navigator, right-click the icon of the database and select Print.

The Print dialog appears.

3. To print all of the entities displayed, skip to the next step.

or

To select certain entities to not be printed, disable the appropriate check box

next to the entity name.

4. To use the default font for the report, skip to Step 6.

or

To change the font for the report, click Font.

The Font dialog appears.

5. Change the settings as desired and click OK.

The Font dialog is closed and you are returned to the Print dialog.

6. Click OK.

The Print dialog appears.

7. Make any changes as desired and click OK.

The report is printed.

Database Interface Designer trace files

The Database Interface Designer trace is a facility that produces information about

accessing your database from the Database Interface Designer and then logs this

information to a file. This can be useful in determining problems encountered

when generating type trees or setting update keys using the Database Interface

Designer.

If trace is enabled, a Database Interface Designer trace file (.dbl) is automatically

created when you generate a type tree. This trace file is placed in the same

directory as the MDQ file. The newly created Database Interface Designer trace file

is named using the full name of the MDQ file with a .dbl extension. For example,

if your MDQ file is named Orders.mdq, the trace file is named Orders.dbl and is

located in the same directory. If the MDQ file has been newly created, the trace file

is named its assigned name (Database_QueryFilen.dbl, where n represents the

assigned sequential number) and resides in the directory in which the Database

Interface Designer is installed.

34 WebSphere Transformation Extender: Database Interface Designer

Database Interface Designer trace

You can enable or disable trace for any MDQ file listed in the Navigator.

To enable or disable trace:

Note: Because this is a toggle command, use the same procedure for both enabling

and disabling trace.

1. In the Navigator, highlight the MDQ file for which you want to enable a trace.

2. From the File menu, select Trace.

Viewing Database Interface Designer trace files

After trace has been enabled and a Database Interface Designer trace file has been

generated, the contents of this file can be viewed in a trace window in the

Database Interface Designer.

To view trace files:

1. In the Navigator, highlight the MDQ file for which you want to view the

results of a trace.

2. From the View menu, select Trace File.

A trace window appears, showing the results of the last trace.

Note: If a trace file has not yet been generated, a blank window appears.

3. To define how you want to view multiple trace windows simultaneously, from

the Window menu, enable either Cascade, Tile Horizontally, Tile Vertically or

Arrange Icons.

In addition to the Database Interface Designer trace that is applicable only when

working in the Database Interface Designer environment, you can also generate an

additional database trace file that records activities occurring during map

execution.

Finding text in trace files

Use the Find command to locate specific text in a Database Interface Designer trace

window. This is helpful when analyzing errors or searching for specific

information. The Find command is implemented as a result of values entered in

the Find dialog. An example of this dialog follows, along with a table describing

its fields and their descriptions.

 Field Description

Find what Enter the text upon which to search. The default

value is blank.

Match whole word only This check box determines whether to use the

value entered in the Find what field to match

only whole words against in the trace file. (For

example, if this was enabled and text was your

find value, texts would not be a match.). The

default value is disabled.

Chapter 3. Database/query files 35

Field Description

Match case This check box determines whether to use the

value entered in the Find what field to exactly

match its case in the trace file. (For example, if

this was enabled and Text was your find value,

text would not be a match.) The default value is

disabled.

Direction Select the option to determine the direction of the

find, that is whether to start at the beginning

point and search backward (Up) or forward

(Down). The default selection is Down.

Up Select this option to begin the find at this point

and go backwards in the trace file. The default

value for this is cleared.

Down Select this option to begin the find at this point

and go forward in the trace file. The default

value for this is selected.

To use the Find command:

1. Select the trace window containing the trace file upon which you want to

perform a text search.

Note: Ensure the trace window containing the desired trace file is the active

window.

or

From the Window menu, select the name of the trace file.

2. From the Edit menu, select Find.

The Find dialog appears.

3. In the Find what field, enter the text you want to find.

4. Make other selections as desired.

5. Click Find Next.

If a match is found, the text is highlighted in the file in the trace window.

Otherwise, there may be a message asking if you want to continue searching.

6. Repeat Step 5 until you have finished your search.

7. Click Cancel.

36 WebSphere Transformation Extender: Database Interface Designer

Chapter 4. Database type trees

Use the Database Interface Designer or mtsmaker to generate a type tree to be

used in a map. You can also define your own type tree using the Type Designer.

However, for the database adapters to correctly process your database data, your

type tree must conform to the format described in this chapter. For information

about using mtsmaker to generate type trees, see the Resource Adapters

documentation.

Although you can manually create a type tree for a table or a query using the Type

Designer, it is not recommended.

The following examples represent type trees generated by the Database Interface

Designer from two queries (one SELECT and one calls a stored procedure), a table,

a stored procedure, and a message queue.

As shown in these examples, the type trees generated from tables, views, queries,

and stored procedures are very similar, while the type tree generated for message

queues differs slightly.

In these example type trees:

v The type tree named ActvProj.mtt was created for a query that referenced a

Microsoft Access table.

v The type tree named Stores.mtt was created for a table in a Microsoft SQL

Server database.

v Two type trees were created for stored procedures in an Oracle database.

– The PymtInfo.mtt type tree was generated for a query called

GetPaymentInfo that calls an Oracle stored procedure to be used as a map

data source.

– The ApplyPmt.mtt type tree was generated for the

SCOTT.APPLY_PAYMENT stored procedure to be used as a map output.
v The type tree named Paulmsg.mtt was generated from a message queue on the

PAUL_MSG_QUEUE.

Table and query type tree structure

Type trees generated for a query and a table closely resemble one another.

Each type tree generated by the Database Interface Designer or mtsmaker for a

database table or query (or a query that calls a stored procedure) will have the

following standard characteristics:

v The root of the generated type tree is named Data.

v The generated type tree contains a category whose name corresponds to any one

of the following:

– the name of the table in the database

– the name of the query in the MDQ file

– the name specified using the Category Type (-N) parameter for mtsmaker

The types defining the columns and rows returned by the database adapter

stem from this type. In the examples, the categories are ActiveProjects and

stores.

© Copyright IBM Corp. 2006 37

v Stemming from the category named for the table or query are types that define

the contents of the table or the results of query execution.

v Each column in the database table or in the results of the query must have a

corresponding item type with a name identical to that of the column in the

database. These types stem from an item type (shown in each example) named

Column.

v A group type named Row represents a single row of data-either the result of a

SELECT statement or a row to be inserted/updated in a table or view.

v An implied group represents a collection of rows reflecting the results of a

query, table, or view. This group is named either DBSelect for a query or

DBTable for a table or view (or DBProcedure for a stored procedure.

Special characters in type names

Some characters used in column names are not valid within type names. The

Database Interface Designer replaces these characters when it creates the type

name for the column. If you create a type tree without using the Database Interface

Designer or mtsmaker, you need to replace these characters in the type name.

Again, if you use the Database Interface Designer, these conversions are

automatically performed. If you use mtsmaker, you must manually convert these

characters.

 Invalid Character(s) Conversion to Type Name

space or hyphen (-) example: My

Column Name

replaced with underscore (_) becomes:

My_Column_Name

punctuation (other than ~ # % \ ` ?

_) example: ^^Total^Amount

replaced with pound sign (#) becomes:

##Total#Amount

digit (as first character of column

name) example: 1st-Game-of-2

prefixed with pound sign (#) becomes:

#1st_Game_of_2

Characteristics of the DBSelect or DBTable type

In each type tree generated by the Database Interface Designer or mtsmaker, an

implied group type represents the results of executing the query or the contents of

the table.

v DBSelect

The type tree defines a query used as a data source for a map.

v DBTable

The type tree defines a table used as a data target for a map.

The DBSelect or DBTable type is an implied group with a series of row objects as

its only component.

Components and format of the row type

As its name implies, the Row group represents a row (or tuple). The Row type is a

group with an explicit format. The syntax of that format is based upon the options

specified when the tree was created from the Database Interface Designer or the

value passed to mtsmaker using the Format mtsmaker command (-X).

see the following table for information about specifying the value for the Row

group format list when generating a type tree for a query or table.

Using Information

38 WebSphere Transformation Extender: Database Interface Designer

Database Interface Designer

Database/query files

mtsmaker

Resource Adapters documentation

 There are two different row group formats:

v delimited row group format

v fixed row group format

You can specify the syntax for each of these when generating the type tree.

Delimited row group format

If you select Delimited as the value in the Row group format list in either the

Generate Type Tree from Tables dialog, the Generate Type Tree from Query dialog,

or the Generate Type Tree from Stored Procedures dialog, the Properties window

in the generated type tree indicates that the Group Subclass → Format is an explicit

group defined as having a delimited syntax.

In the Group options pane, which is located in the dialog for generating the type

tree, you can specify the Delimiter, Terminator, and Release setting values to be

used in the type tree. The default values are |, None, <CR><LF>, and !,

respectively. The Initiator value cannot be specified; it is always set to None.

When using the DBLOOKUP, DBQUERY, GET and PUT map functions with the database

adapter, the adapter will use the default values for the Delimiter, Terminator, and

Release settings. This is because the data passed to and from the adapter is, in this

case, not represented by the type trees generated in the Database Interface

Designer. The adapter will use the default values for the Delimiter, Terminator,

and Release settings since it cannot access this information from a type tree.

Each component of Row is a type representing a column. These components

appear in the component list in the same sequence as they appear in the query or

table, as opposed to the type tree, which lists them in alphabetical order. In a

delimited Row, each of the columns is defined as optional within the Row by

specifying a range of (0:1) for each column component.

Fixed row group format

If you select Fixed as the value in the Row group format list in either the Generate

Type Tree from Tables dialog, the Generate Type Tree from Query dialog, , or the

Generate Type Tree from Stored Procedures dialog, the Properties window in the

generated type tree indicates that the Row type is an explicit group defined as

having a fixed syntax.

In the Group options pane, which is located in the dialog for generating the type

tree, you can specify the Terminator setting values to be used in the type tree. The

default value is <CR><LF>.

When using the DBLOOKUP, DBQUERY, GET and PUT map functions with the database

adapter, the adapter will use the default values for the Delimiter, Terminator, and

Release settings. This is because the data passed to and from the adapter is, in this

case, not represented by the type trees generated in the Database Interface

Designer. The adapter will use the default values for the Delimiter, Terminator,

and Release settings since it cannot access this information from a type tree.

Chapter 4. Database type trees 39

Defining the column type(s)

Each named column in the database has a corresponding item type under the

Column type in the type tree with the same name. For example, if the

DEMO.DEPARTMENT table in the database has three columns

(DEPARTMENT_ID, LOCATION_ID, and NAME), the type tree will have three

identically named items (subject to restrictions described in ″Special Characters in

Type Names″) under the Column type.

Each item is defined according to the data type and length information returned to

the database adapter by the database driver. For more information about the

correspondence between database data types and item formats, see the specific

adapter reference guides.

The minimum size of item types for columns in a delimited Row is 0 unless

otherwise specified by the database driver. The minimum size of item types for

columns in a fixed Row equals the maximum size.

Binary column types

If a database column corresponds to a binary type, your type tree contains

additional types so that the binary data can be correctly interpreted. The method

used to define binary columns allows a distinction to be made between a NULL

column and a binary value of 0.

A category called SizedGroup is added to the tree. This category has an item

subtype called Sizeof and group subtypes with the same names as the item types

for each binary column.

The following changes are made to the type tree to account for columns

representing binary data:

v Two variable length binary items are created as subtypes of the Column type to

represent the value of the two binary type columns.

v The Sizeof item is a subtype of the SizedGroup category and is defined as a

character integer item.

v Also, as a subtype of the SizedGroup category, two groups given the same

name as the binary column type are created, each group including two

components. The first component of each group is the Sizeof item; the second,

the variable length binary item (either).

v The formats of those group types defined as subtypes of the SizedGroup

category are defined in the same way as the format for the Row group type.

If the type tree has a delimited Row group format, the group types for the

binary columns are also defined as delimited groups with the pipe character (|)

as an infix delimiter. In this example, the Sizeof component is defined as being

required in the component list. However, the binary item type is optional (with a

range of 0:1).

You cannot generate a fixed Row group format type tree for a table or query

containing variable length binary data.

If the type tree has a fixed Row group format, the group types for the binary

columns are also defined as fixed groups. In this situation, both the Sizeof

component and the binary item type are required.

v In the group type component list, the Sizeof component has the Sized attribute,

indicating that the Sizeof item contains the size of the binary item that follows

it.

40 WebSphere Transformation Extender: Database Interface Designer

When mapping to a table or view containing binary columns, use the SIZE

function to assign the size of the binary data to the Sizeof data item.

v The components for the Row type are the group types under the SizedGroup

category for the binary columns.

Column types for expressions

Each constant or function specified in a query is given a name based upon the

name returned from the database driver to the database adapter. If the database

driver does not return a name for a column in the results, the item type created for

the column is given a name beginning with Expr and is concatenated with a

number beginning with 1000 for the first constant or function, 1001 for the second,

and so on.

For example, the type tree generated for the following query

SELECT MIN(salary), MAX(salary) FROM Employee

would have a Row with two columns representing the result of the SQL MIN and

MAX functions. In the type tree, the items created to represent the results of these

functions would be Expr1000 and Expr1001 for the MIN and MAX functions,

respectively.

Specifying column aliases

When you want to control the name of the generated item to represent a particular

column or expression in a query, use the AS keyword to specify an alias for that

column.

For example, you could specify the query as:

 select min(salary) as min_salary, max(salary) as max_salary from employee

which would result in a type tree containing a Row with two columns

representing the result of the SQL MIN and MAX functions. In the type tree, the

items created to represent the results of these functions would be min_salary and

max_salary. An example of this follows.

You can also use the AS keyword to specify an alias for a column having a name

containing any of the characters that are invalid in a type name. Or, you can

specify an alias for a column having a name longer than 32 characters (which is

the limit for the size of a type name).

The following example results in a type tree having a Row with three columns.

Select SomeReallyReallyReallyLongColumnName AS

SomeLongColumnName,

 1st-Payment AS Payment#1,

 2nd-Payment AS Payment#2

 from some_table

The items created to represent the results of this query would be

SomeLongColumnName, Payment#1, and Payment#2.

Stored procedure type tree structure

The type trees generated by the Database Interface Designer for stored procedures

used for outputs from a map are slightly different from the ones generated for

tables, queries, and queries calling stored procedures (that are used as the source

of data for a map).

Chapter 4. Database type trees 41

Major differences between a type tree for a stored procedure that will be used as

output and a type tree for a table that will also be used as output are:

v Whereby table and query type trees have a Column item type from which stems

all of the individual column types, the type tree for a stored procedure has an

Argument item type from which stems item types representing each of the

arguments passed to the stored procedure.

v Instead of a Row group, the type tree for a stored procedure has a

ProcedureCall type. The ProcedureCall group represents the set of arguments

passed to the stored procedure for each execution of the procedure.

The ProcedureCall group is defined in the same way as a Row type for a table

or a query in the type tree. Its group format is determined by the value selected

in the Row group format list in the Generate Type Tree from Tables dialog or

the Generate Type Tree from Query dialog, respectively. The selected group

format determines the terminator and release characters.
v Similar to the DBTable or DBSelect types in type trees for tables or queries, the

type tree for a stored procedure has a DBProcedure type, which is an implied

group consisting of a series of ProcedureCalls. The stored procedure is called

once for each ProcedureCall in the DBProcedure output.

For information about using stored procedures as a data target, see″Using stored

procedures.″ For information about generating type trees for a stored procedure,

see″From a stored procedure″.

Oracle AQ Message type tree structure

The type trees generated by the Database Interface Designer for Oracle AQ

messages used as output from a map are different from those generated for tables,

queries, or stored procedures. For information about these type trees, see the

Oracle AQ Adapter documentation.

42 WebSphere Transformation Extender: Database Interface Designer

Chapter 5. Database sources and targets

This chapter explains how to use the Map Designer to configure a map having a

database source or target. For detailed information about using the Map Designer

and defining sources and targets in input and output cards, see the Map Designer

documentation.

Using a database as a source

After you have used the Database Interface Designer to define a query for a

database, you can use that query as an input source.

Note: You can use either a standard SQL SELECT query or a query using a stored

procedure. For specific information about using stored procedures, refer to

″Using stored procedures.″

To use a database query as a source:

1. Define the database using the Database Interface Designer.

2. Define a query to extract data from the database.

3. Generate a type tree for the query.

4. Use the Map Designer to create a map with an input card referencing the

query.

Defining a database source in the Map Designer

When you generate the type tree from a query, one of the types in the tree is a

group representing the results from executing the query (for example, DBSelect).

Select this type as the input card type when defining an input card for the

executable map.

After you have defined the query and have generated the type tree, using a

database as an input is very similar to using a file as input.

Using the Map Designer, specify Database as the GET → Source setting in the

input card and supply the name of the MDQ file containing the definition of the

database and query you want to use. see the following procedure and example.

To define a database as a data source:

Note: For more information about the map settings in this procedure, see the Map

Designer documentation. This procedure specifically addresses

database-specific parameters and settings.

1. In the Map Designer, when defining the settings for SourceRule, select

Database as the GET → Source setting.

The settings displayed in the Input Card dialog change to display the database

adapter settings for a source.

2. From the Card menu, select New.

The Add Input Card dialog appears.

3. For the CardName setting, enter a name for the card that describes the data

object represented by this card.

© Copyright IBM Corp. 2006 43

4. For the TypeTree setting, select the type tree containing the group type that

defines the desired query.

5. For the TypeName setting, select the group type from the type tree that defines

the desired query (for example, DBSelect).

6. For the TypeName setting, select the group type from the type tree that defines

the desired query (for example, DBSelect).

7. Specify the FetchAs, WorkArea, FetchUnit, and all Backup settings as desired.

For detailed information about these settings, see the Map Designer

documentation. For database adapter-specific information about source settings,

see the adapter-specific reference guide.

8. For the GET → Source setting, select Database from the list.

The SourceRule settings change to display the database adapter settings.

9. Specify the values as desired in the adapter settings and click OK.

Database GET> Source settings

After you select Database as the GET → Source setting and the database adapter

settings become available for an input, configure the settings for a source that uses

the database adapters.

Many of the adapter settings provide transactional control and connection

management that allow you to control the connections made to your database. For

information about specifying these particular GET → Source and SourceRule

settings, see″Database Connections and Transactions″ .

GET> Source> Command setting

The GET> Source> Command setting is used to enter the applicable database

adapter commands for this source. For general information about these settings,

see the Map Designer documentation. For specific information about using

database-specific adapter commands, see the Resource Adapters documentation.

Using a database as a target

After using the Database Interface Designer to define tables, views, message

queues, or stored procedures for a database, use the database to specify the

database adapter as the data target.

To use a database table, view, message queue, or stored procedure as a target:

1. Define the database using the Database Interface Designer.

2. Generate a type tree from a table, view, stored procedure, or message queue.

3. Using the Map Designer, create a map with an output card that specifies the

database table, view, message queue, or stored procedure as the data target.

Defining a database target in the map designer

When you generate the type tree for a table, view, message queue, or stored

procedure, one of the types in the tree is a group representing the contents of the

table, view, message queue, or stored procedure. For example, a type tree

generated for a table or view is named DBTable. Use the Map Designer to select

the appropriate type representing the contents as the output card type of the

executable map.

44 WebSphere Transformation Extender: Database Interface Designer

After you have defined the database and have generated the type tree, using a

database as an output is very similar to using a file as output.

Use the Map Designer to specify Database as the PUT → Target setting in the

output card at the executable map level. Provide the name of the MDQ file

containing the definition of the database, along with the table, view, message

queue, or stored procedure to be used.

To define a database as a target:

Note: For more information about the map settings in this procedure, see the Map

Designer documentation. This procedure specifically addresses

database-specific parameters and settings.

1. In the Map Designer, select the To window.

2. From the Card menu, select New.

The Add Output Card dialog is displayed, an example of which follows.

3. For the CardName setting, enter a name for the card.

4. For the TypeTree setting, select the type tree file containing the group type that

defines the content of the desired output.

5. For the TypeName setting, select the group type from the type tree that defines

the desired output (for example, DBSelect).

6. Specify all Backup settings as desired. For detailed information about these

settings, see the Map Designer documentation.

7. For the PUT → Target setting, select Database from the list.

The settings displayed in the Output Card dialog change to display the

database adapter settings for a target.

For database adapter-specific information about target settings, see the

adapter-specific reference guide.

8. Specify the values as desired in the adapter settings and click OK.

Database PUT > Target settings

After you select Database as the PUT → Target setting and the database adapter

settings for a target become available in the output card, you can configure the

settings for a target that uses the database adapters.

Many of the adapter settings provide transactional control and connection

management that allow you to control the connections made to your database. For

information about specifying these particular PUT → Target and TargetRule

settings, see ″Database connections and transactions″ .

PUT > Target > Command setting

The PUT → Target → Command setting is used to enter the database adapter

commands applicable for this target. For general information about these settings,

see the Map Designer documentation. For specific information about using

database-specific adapter commands, see the adapter-specific documentation.

Database connections and transactions

WebSphere Transformation Extender maps allow superior transactional control and

connection management by providing settings that allow the scope of transactions

to be controlled by the definitions provided in a map. It is important to

understand how these connections to databases are controlled and how this relates

to transactional scope.

Chapter 5. Database sources and targets 45

Transactional control

Scope is one of the settings that may be specified for a source (GET → Source →

Transaction → Scope) or target (PUT → Target → Transaction → Scope) in a map. For

information about Scope settings, see the Map Designer documentation.

There is one restriction for Scope. If the value of the SourceRule → FetchAs setting

in an input card is set to Burst, the Scope setting is always Map. The adapter

scope is determined to be Map because the context of the SELECT statement

cannot be maintained after the transaction has been terminated through a commit

or rollback. Therefore, if Burst is the value for the SourceRule → FetchAs setting in

an input card, any value in the Scope setting as well as any adapter command

(-CCARD or -CSTMT) specified in the GET> Source → Command setting is ignored.

Additionally, the global transaction management functionality is available for

certain adapters by using the Global Transaction Management (-GTX) adapter

command in the Command setting. For more information about this functionality,

see the Global Transaction Management documentation.

Database connection management

Connection management results in fewer connections being made to the database,

which may improve performance. The WebSphere Transformation Extender engine

reuses existing connections whenever possible. With global transaction

management for those adapters able to take advantage of this functionality,

connections have an even bigger role in maintaining data integrity. For more

information about global transaction management, see the Global Transaction

Management documentation.

There are two situations in which connection sharing occurs:

v between cards and maps within a map

v between multiple maps running serially within the Launcher

When connection sharing occurs between cards and maps within a map, the

connection is described as active as long as there are one or more cards or rules

that access a database and that have yet to be committed or rolled back. (For

example, an active transaction exists.) When there are no such cards or rules, the

connection is inactive, yet still alive.

When using a DBLOOKUP, DBQUERY, GET or PUT function, the Transaction → Scope

setting defaults to Map when the map SourceRule → FetchAs setting is set to

Integral. The Transaction → Scope setting will change to Burst when the map

SourceRule → FetchAs setting is set to Burst; the Transaction → OnFailure setting is

always Rollback.

Connection factors

The factors determining whether a connection is reused are the following:

v the database type

v the connection string (if applicable), datasource, or database name

v the user ID

v the OnFailure setting (Commit or Rollback)

v the Transaction → Scope setting

v the SourceRule → FetchAs setting

v whether -CCARD or -CSTMT are specified within the adapter’s command

46 WebSphere Transformation Extender: Database Interface Designer

Also, whether a connection will be part of a global transaction is determined by

the usage of the Global Transaction (-GTX) adapter command in the Command

setting.

Connection rules

Existing connections are reused whenever possible while adhering to certain

connection rules. The rules are as follows:

v An inactive connection is reused if the database type, connection string, and user

ID of the new card or rule match those of the previous card or rule that had

established the connection.

v In addition to the database type, connection string and user ID, an active

connection is reused only if the OnFailure and Transaction → Scope settings

match in the previous card or rule and the new card or rule.

v If a card or rule has -CSTMT set within the adapter’s command, this connection

may be shared with any other card or rule that has -CSTMT set or that has an

Transaction → Scope setting of Card (or -CCARD within the adapter’s command).

v If Burst is the SourceRule → FetchAs setting for an active card, it (the card) is

always executed in its own transaction. It establishes a connection that cannot be

shared by any other card for the duration of the map.

Connection example

A map has four database input cards. Assume the connections specified

(datasource, userID, and so on) are the same for each.

In this example,

v A connection will be made and a transaction started for Card 1.

v Because Card 2 has Transaction → Scope set to Card, this initial connection

cannot be shared. Therefore, another connection will be made for this card.

v For Card 3, because its OnFailure setting differs from the setting for Card 1, the

connection established in Card 1 cannot be reused. However, the connection

established for Card 2 is inactive (because Transaction → Scope was set to Card

and the card has completed) and, therefore, will be reused for Card 3. A new

transaction is started on this existing connection.

v Card 4 is able to share the connection established by Card 1 and can be part of

the same transaction because all of its settings match.

If the map fails, the transaction containing both Card 1 and Card 4 will be rolled

back and the transaction for Card 3 will be committed.

Chapter 5. Database sources and targets 47

48 WebSphere Transformation Extender: Database Interface Designer

Chapter 6. Updating database tables

This chapter discusses how you can designate specific columns in your database to

be updated with data produced by a mapping operation.

Using key and update columns

The data produced by a mapping operation can be inserted as new rows in a

database table or can update only specific columns in a table as designated.

Designate particular columns in a table to be used as key columns determining

whether output data updates an existing row or whether it is inserted as a new

row in the table or view. In addition to specifying key columns, you can designate

the columns in a table that will be affected by any update operation. You define

the columns to update.

The term key in this usage does not necessarily mean that the column is part of a

database primary or foreign key.

For any update to be performed, update mode must be specified for the target.

This is accomplished by specifying the Update adapter command (-UPDATE) in the

PUT → Target → Command settings using the Map Designer or Integration Flow

Designer, or by passing it with the override execution command on the command

line at execution time. For more information about how to enable update mode,

refer to ″Specifying update mode″ .

Defining key and update columns

To update a table from a map, use the Database Interface Designer to specify the

columns in a table to be used as key columns and to specifically specify the

columns that will be updated.

To designate columns as key columns or columns to update:

1. In the Navigator, select the database containing the table for which you want to

set update keys.

2. From the Database menu, choose Set Update Keys.

The Set Table Update Key Columns dialog appears.

3. From the Table name list, select the table containing the columns to be

updated.

The columns in the table appear in the Columns list.

4. To set a column as a key column, select it from the Columns list and click the

right arrow button associated with the Key columns list.

The selected column moves to the Key columns list.

5. To designate a column as a column to update, select it from the Columns list

and click the right arrow button associated with the Columns to update list.

The selected column moves to the Columns to update list.

6. To specify all non-key columns as Columns to update, click the ″all″ button

associated with the Columns to update list.

All of the columns in the Columns list move to the Columns to update list.

© Copyright IBM Corp. 2006 49

7. To remove columns from either the Key columns list or the Columns to update

list, select the column and click the associated ″delete″ button.

The selected columns are moved back to the Columns list.

A generated type tree with specified update keys is represented in the Navigator

under Tables.

Specifying update mode

To update a table, you must specify update mode using the Map Designer,

Integration Flow Designer, or the command line. By specifying update mode in

one of these ways, an update operation can be performed in which each row

produced by your map is analyzed and the update is performed based upon the

update keys and columns defined in the Database Interface Designer.

Using the Map Designer or Integration Flow Designer

After key columns and update columns are defined for a table, specify the table as

a target in the TargetRule settings in the Map Designer or in the Output(s) settings

in the Integration Flow Designer.

You must specify -UPDATE in the PUT → Target → Command setting so that your

specified columns are automatically updated.

Using an adapter command at execution time

The update mode for a table can be specified at execution time by using the

command line to pass the -UPDATE database adapter command. Specify OFF or

ONLY to control the updating operation. For more information about using

database-specific adapter commands, see the Resource Adapters documentation.

Update key columns

When you specify a column as a key column, the value in that column is used to

determine whether a row produced by a mapping operation should be inserted as

a new row into the table or should be used to update existing row(s) in a table.

v If the values in the rows generated by the mapping operation match the values

in the key columns as defined in the Database Interface Designer, the specified

update columns are updated.

v If the values in the rows generated by the mapping operation do not match the

values in the key columns, the rows are inserted as new rows into the table or

view as defined in the Database Interface Designer.

Note: You can override the behavior defined in the Database Interface Designer

by using the command line to specify the appropriate database adapter

commands for the database adapter. For information about the

database-specific adapter commands, see the Resource Adapters

documentation.
v If more than one column is designated as a key column, the values generated by

a map must match the values in each designated key column for the row to be

updated.

v If your map generates a row with key column values that match more than one

existing record, all of the matching records in the columns you have specified as

update columns are updated with the new row values.

50 WebSphere Transformation Extender: Database Interface Designer

v If your map produces multiple rows with the same values for the key columns,

you lose any updates that are made as a result of all but the last row. The

updates produced by each row are overwritten by the updates from subsequent

rows with the same key values.

Example using update columns

When only some columns in a table are specified as columns to be updated, the

values corresponding to all other columns are ignored when the update statement

is built and executed. For any row produced by the map, if the values for the

update key columns do not match any of the existing rows in the table or view, the

values of all columns will be inserted in the new row.

In the following example, a table (PersonalInfo) has the following key columns

and update columns defined in the Database Interface Designer.

When this map runs, because -UPDATE is enabled for the output, the database

adapter will first go through the results of the map and update all rows in the

table matching the key columns in the output produced. Essentially, the following

SQL statements are executed:

UPDATE PersonalInfo

 SET FirstName=’Karl’, LastName=’March’, PhoneNumber=’(847)

555-1234’

 WHERE ID = 10

UPDATE PersonalInfo

 SET FirstName=’Janice’, LastName=’Armstrong’,

 PhoneNumber=’(203) 555-9898’

 WHERE ID=14

In the first UPDATE statement, because this statement does not find any rows to

update, the following SQL statement is executed.

INSERT INTO PersonalInfo VALUES (10,’Karl’, ’March’,

’(847) 555-1234’, ’999-88-7766’)

This execution creates a new row in the table for Karl March-including values for

the ID, FirstName, LastName, PhoneNumber, and SSN columns.

In the second UPDATE statement, because an existing row has an ID value of 14,

only the values of the FirstName, LastName, and PhoneNumber columns are

updated because of the settings specified in the Columns to update list in the Set

Table Update Key Columns dialog of the Database Interface Designer. In this

example, Janice Taylor’s last name changed to Armstrong and her telephone

number is changed to (203) 555-9898. Her social security number remains

unchanged because it is not a column that has been designated for update.

Chapter 6. Updating database tables 51

52 WebSphere Transformation Extender: Database Interface Designer

Chapter 7. Database functions

This chapter discusses two functions (DBLOOKUP and DBQUERY) that are designed

exclusively for use with databases. These functions can be used in component rules

in the Type Designer and map rules in the Map Designer when creating a map to

be used with a database.

Accessing database information in a map rule

In many cases, database information for a map will be one of the following:

v the results of a database query or a stored procedure defined as the data source

for an input card

v the rows to update or insert into a table defined as the target for an output card.

However, there are certain situations in which you might not want to define the

entire query as a data source or the table as a target. For example, you may have a

very large table that is used as a source for cross-reference in your map. However,

because of its size, reading in and validating all of the information as an input card

is impractical. In other situations, you may want to call one map from another

using the RUN function when one of the data sources is a dynamically built query.

Two functions provide the ability to access database information from within a

rule:DBLOOKUP and DBQUERY. The difference between the two functions is subtle and

is based upon how the data resulting from either function is returned.

Using DBLOOKUP and DBQUERY

A single-text-item is returned by either the DBLOOKUP and DBQUERY function. If your

SQL statement is a SELECT statement, the DBLOOKUP or DBQUERY function returns the

results of the query in the same format as a query specified in a map input card. If

your SQL statement is anything other than a SELECT statement, these functions

return NONE.

Both functions return the results of a query (SQL SELECT statement) in the same

format as a query specified for a map input card, using the delimited row format.

However, the DBLOOKUP function strips off the last carriage return/line feed.

Because this information is stripped, it is easier to make use of a single value

extracted from a database.

DBLOOKUP and DBQUERY execute an SQL statement within a rule against the database.

The SQL statement can be any statement permitted by your database management

system or database-specific driver.

There are two syntax methods that can be used to specify the arguments for these

two functions: Syntax1 and Syntax2.

Syntax1 - using a static MDQ file

Use Syntax1 to execute a SELECT statement that retrieves a specific column value

from a large table in a database using the value of another input, as opposed to

having to define the entire table as an input card and using other functions such as

© Copyright IBM Corp. 2006 53

LOOKUP, SEARCHDOWN, or SEARCHUP. For more information about these functions, see

the Functions and Expressions documentation.

If column data from a table or database varies because it may be based upon a

parameter file, use Syntax2. For more information, refer to ″Syntax2 - using

dynamic adapter commands″ .

Syntax1 is a three-argument syntax, examples of which follow:

DBLOOKUP

 (SQL_statement,mdq_file,database_name[:adapter_commands])

DBQUERY

 (SQL_statement,mdq_file,database_name[:adapter_commands])

Using this syntax, DBLOOKUP and DBQUERY use the following arguments.

 Argument Explanation Must Be

SQL_statement single-text-expression a valid SQL statement

mdq_file single-filename a string literal

database_name single-database-name a string literal

adapter_commands adapter-commands a valid adapter command(s)

The following table describes these arguments in more detail.

Argument

Description

SQL_statement

SQL statement as a text string. It can be any valid SQL statement permitted

by your database management system and supported by your

database-specific driver.

 In addition to a fixed SQL statement, this argument can be a concatenation

of text literals and data objects, enabling the concatenation of data values

into your SQL statement.

mdq_file

Name of a database/query file (MDQ) produced by the Database Interface

Designer. It contains the definition of the database against which the SQL

SELECT statement is to be executed. If the MDQ file is in a directory other

than the directory of the map, the complete path must be specified.

Note: The MDQ file is accessed at map build time and is not needed at

runtime.

database_name

Name of a database in the MDQ file as defined in the Database Interface

Designer.

Note: This name is case-sensitive and must exactly match the name as

defined in the Database Interface Designer.

adapter_commands

Name of an adapter command or commands. This name is an optional

argument that appears after database_name, which allows you to specify

database adapter commands in component rules in the Type Designer and

map rules in the Map Designer.

54 WebSphere Transformation Extender: Database Interface Designer

Note: The rules are defined and compiled into your map at design time.

Note: All adapter commands (for example,-CS) can be either uppercase or

lowercase, but not mixed case.

Syntax2 - using dynamic adapter commands

Use Syntax2 to execute a SELECT statement that retrieves a specific column value

from a table or database when the database, table, or other database parameters

may vary. This can be used when parameters are being supplied by a parameter

file.

DBLOOKUP(SQL_statement,adapter_commands)

DBQUERY(SQL_statement,adapter_commands)

Using this syntax and the Syntax 2 formatting issues (″Syntax2 formatting issues″),

DBLOOKUP and DBQUERY use the following arguments.

Argument

Explanation

SQL_statement

single_text_expression

adapter_commands

Either

-MDQ mdq_file -DBNAME db_nameor

-DBTYPE database_type [database_adapter_commands]

The following table describes these arguments in more detail.

Argument

Description

SQL_statement

SQL statement as a text string. It can be any valid SQL statement permitted

by your database management system and supported by your

database-specific driver.

 In addition to a fixed SQL statement, this argument can be a concatenation

of text literals and data objects, enabling the concatenation of data values

into your SQL statement.

adapter_commands

Either the -MDQ or the -DBTYPE adapter command can be used for this

argument.

-MDQ This adapter command is followed by the name of the MDQ file produced

by the Database Interface Designer. This MDQ file contains the definition

of the database against which the SQL statement is to be executed. If the

MDQ file is in a directory other than the directory of the map, the path

must be specified.

 The MDQ file name is followed by the -DBNAME adapter command and the

name of the database in the MDQ file, as defined in the Database Interface

Designer.

 Using this syntax, the specified MDQ file must be available at run time.

Chapter 7. Database functions 55

-DBTYPE

This adapter command is followed by the type of database (for example,

ORACLE or ODBC) followed, optionally, by database-specific adapter

commands.

 This syntax does not use an MDQ file because the database-specific

adapter commands provide the information required to connect to the

database. For more information about your particular database adapter and

database-specific adapter commands, see the adapter-specific

documentation in the adapter reference guides.

Syntax2 formatting issues

When using Syntax2 for DBLOOKUP or DBQUERY, your function must conform to these

rules:

v All adapter commands (for example, -DBTYPE) can be either upper or lower case,

but not mixed case.

v A space is required between the adapter command and its value (for example,

-DT database_adapter).

v The order of the adapter commands is not important.

Examples

The section presents different DBLOOKUP and DBQUERY examples.

Example 1 - obtaining a single column value

Assume that you have a table named PARTS that consists of the following data:

 PART_NUMBER PART_NAME

1 1/4″ x 3″ Bolt

2 1/4″ x 4″ Bolt

Also assume that this database has been defined in a file named mytest.mdq using

the Database Interface Designer. The name of the database, as specified in the

MDQ file, is PartsDB. Notice the difference between the returned values from the

execution of the following two Syntax1-formatted functions.

 Function Returns PART_NAME

DBLOOKUP (″SELECT PART_NAME from

PARTS where PART_NUMBER =1″,

″mytest.mdq″, ″PartsDB″)

1/4″ x 3″ Bolt

DBQUERY (″SELECT PART_NAME from

PARTS where PART_NUMBER =1″,

″mytest.mdq″, ″PartsDB″)

1/4″ x 3″ Bolt<cr/lf> where <cr/lf> is a

carriage return followed by a line feed

Using Syntax2, you can also specify the DBLOOKUP or DBQUERY functions as in the

following examples.

DBLOOKUP("SELECT PART_NAME from PARTS where PART_NUMBER =1",

 "-MDQ mytest.mdq -DBNAME PartsDB")

DBQUERY("SELECT PART_NAME from PARTS where PART_NUMBER =1",

 "-MDQ mytest.mdq -DBNAME PartsDB")

Note that both the MDQ file name and database name are specified.

56 WebSphere Transformation Extender: Database Interface Designer

The examples below use the Syntax2 format to specify the database type and the

appropriate database-specific adapter commands (in this example, using the

-DBTYPE, -CONNECT, -USER, and -PASSWORD commands for an Oracle database):

DBLOOKUP("SELECT PART_NAME from PARTS where PART_NUMBER =1",

 "-DBTYPE ORACLE -CONNECT MyDatabase

 -USER janes -PASSWORD secretpw")

DBQUERY ("SELECT PART_NAME from PARTS where PART_NUMBER =1",

 "-DBTYPE ORACLE -CONNECT MyDatabase

 -USER janes -PASSWORD secretpw")

Example 2 - using DBQUERY to obtain multiple columns or rows

Assume that you have a table named PARTS that consists of the following data:

 PART_NUMBER PART_NAME

1 1/4″ x 3″ Bolt

2 1/4″ x 4″ Bolt

Also assume that this database has been defined in a file named mytest.mdq using

the Database Interface Designer. The name of the database, as specified in the

MDQ file, is PartsDB.

Using the Syntax1 format, the following DBQUERY function:

DBQUERY ("SELECT * from PARTS", "mytest.mdq", "PartsDB")

returns:

1|1/4" x 3" Bolt<cr/lf>2|1/4" x 4" Bolt<cr/lf>

where <cr/lf> is a carriage return followed by a line feed.

Notice that if the same function was executed using DBLOOKUP, the results would

be:

1|1/4" x 3" Bolt<cr/lf>2|1/4" x 4" Bolt

The difference between the two results is that the final carriage return/line feed is

stripped off the end of the results of the DBLOOKUP function.

Using Syntax2, you can obtain the same results as in the previous DBQUERY function

as shown in the following examples:

DBQUERY ("SELECT * from PARTS where PART_NUMBER =1",

 "-MDQ mytest.mdq -DBNAME PartsDB")

or:

DBQUERY ("SELECT * from PARTS where PART_NUMBER =1",

 "-DBTYPE ORACLE -CONNECT MyDatabase -USER janes

 -PASSWORD secretpw")

Example 3 - using DBQUERY to provide map input to RUN

function

In another example, assume that you have an input file containing one order

record. To map that order to another proprietary format, you also have a PARTS

table with pricing information for every part for every customer-a very large table.

Rather than using the entire PARTS table as the input to your map, you might

Chapter 7. Database functions 57

include the RUN function with your Syntax1-formatted DBQUERY to dynamically

select only those rows from the PARTS table corresponding to the customer in the

order file, as follows:

RUN("MapOrder.MMC",

 "-IE2’" + DBQUERY ("SELECT * FROM PARTS WHERE CustID =" +

 CustomerNo:OrderRecord:OrderFile +

 " ORDER BY PARTNO",

 "PartsDB.MDQ",

 "PartsDatabase") +"’")

Example 4 - using WORD to parse multi-column output from

DBQUERY

In certain situations, you may want to use one of the database functions, rather

than a database source, due to the size of a cross-reference table. However, you

need the function to return the data from several different columns.

For example, assume you need to create a map that processes inventory requests,

one order at a time, using a messaging system. Within the transformation of your

data, you need to reference the item master table that contains hundreds of

thousands of rows. However, for each item within the inventory request, you need

to get the internal item number, vendor ID, and description column value. You can

select from several available options, such as:

v Use a database source.

Define a query for only those columns needed. Use this for a database source

that you can then use within a LOOKUP, EXTRACT, or SEARCHUP/SEARCHDOWN

function. However, due to the size of the item master table, this might mean

validating hundreds of thousands of rows to find the item information for only

a few items.

v Use multiple DBLOOKUP functions.

Assuming that the internal item number, vendor ID, and description column

values are going to be used within different outputs, you could use three

separate DBLOOKUP functions to get the appropriate column value for each item.

However, this means executing three SQL statements to access the same row

within the item master table.

v Use the DBLOOKUP and WORD functions.

Assuming that a functional map will be used to build an object containing the

three desired columns, a DBLOOKUP could be used as an argument to the

functional map that retrieves the desired column values. see the following

example:

 =F_MakeOne (Item Set:SomeInput ,

 DBLOOKUP ("SELECT INT_ITEM_NO, VENDOR, ITEM_DESC " +

 "FROM ITEM_MASTER WHERE ITEM_NO = ’" +

 CatalogID:.:SomeInput + "’" , "PRODXL.MDQ"

 "WDDM"))

The functional map F_MakeOne has two inputs: an Item Set and a text item (that

is the result of the DBLOOKUP function). The text item will contain the three column

values separated by the pipe character (|). An example follows:

ARQJ06X6|DFQCO|6’ Jump Rope

Then, each rule requiring one of these pieces of data will use the WORD function to

access the appropriate column’s data. For example, if the input card for the results

of the DBLOOKUP function was called ItemData, the rule using the vendor ID

column would be:

=WORD (ItemData , "|" , 2)

58 WebSphere Transformation Extender: Database Interface Designer

The values of the other columns can be retrieved in a similar manner.

Example 5 - using DBQUERY with adapter commands to obtain a

single column value

This example demonstrates how you can use the DBQUERY function to enter adapter

commands as an argument following database_name using the Syntax1 format:

DBQUERY("SELECT PART_NAME from PARTS

 where PART_NUMBER =1",

 "mytest.mdq","PartsDB : -T -CS")

In the DBQUERY example above, the PART_NAME column value in the row that

contains the PART_NUMBER column value of 1 will be retrieved from the PARTS table.

The PARTS table is in the PartsDB Oracle database specified in the mytest.mdq file,

which was produced by the Database Interface Designer.

This example uses optional database-specific adapter commands. The Trace (-T)

adapter command will produce a database trace file. The Commit by Statement

(-CS) adapter command will commit or rollback the transaction after the rule

executes.

Uses

When you might want to use DBLOOKUP to execute an SQL statement:

v To retrieve a single column value from a database based upon another value in

your data without the carriage return/line feed row terminator

When you might want to use DBQUERY to execute an SQL statement:

v To look up multiple column values for multiple rows in a database using a

parameterized query based upon another value in your data

v When your SQL statement is a SELECT statement, the DBQUERY function can be

used along with the RUN function to issue dynamic SELECT statements whose

results can be used as input to a map.

v When using other SQL statements such as INSERT, UPDATE, DELETE, and so on.

For information about functions such as EXTRACT, LOOKUP, SEARCHUP, SEARCHDOWN,

GET, and PUT, see the Functions and Expressions documentation.

Using bind values in database functions

For information about the availability and usage of the bind facility for your

specific database and platform, see the database-specific adapter reference guides.

When the Database Management System (DBMS) receives an SQL request, the

request is cached because many applications repeatedly issue the same SQL

statement. If the SQL statement differs from one that the DBMS has recently

processed, the statement is reevaluated. (The DBMS performs parsing, derives an

execution plan, and so on.)

Similarly, if a DBLOOKUP or DBQUERY function repeatedly issues the same statement,

the second and subsequent executions of the statement execute much faster than

the first execution. However, if any element of the statement varies, the DBMS

considers the statement to be new and does not take advantage of caching. For

example, the two following statements are distinct to a DBMS:

Chapter 7. Database functions 59

SELECT * FROM MyTable WHERE CorrelationID=123

SELECT * FROM MyTable WHERE CorrelationID=124

Use the bind facility for DBLOOKUP and DBQUERY functions to submit such statements

to the DBMS so that the statements are syntactically identical. By binding a value

to a placeholder in the SQL statement, the actual syntax of the statement can be

made static.

The syntax for specifying a value in the SQL statement as a bind value is:

:bind(value)

For example, to use a bind variable in the statement above, the SQL statement

would be:

SELECT * FROM MyTable WHERE CorrelationID=:bind(123)

The database adapter strips out the :bind keyword and binds the value 123 to a

placeholder in the statement.

The value in the parentheses is always a text item. Single quotation marks should

not be specified around string literals. For example, if you had the statement:

SELECT Artist FROM CDList WHERE Title = ’Goodbye’

and you want to bind the value for the title, the syntax would be:

SELECT Artist FROM CDList WHERE Title=:bind(Goodbye)

Within the context of a DBLOOKUP or DBQUERY function, the elements of the statement

to be bound are dynamic elements. For example, if the following call toDBLOOKUP is

in a map:

DBLOOKUP ("SELECT Name FROM MyTable WHERE ID="+ Item1:Row +

 "and CorrelationID= ’" + Item2:Row + """,

 "DB.mdq",

 "MyDB")

The call could be modified to benefit from binding values as follows:

DBLOOKUP ("SELECT Name FROM MyTable WHERE ID=:bind("+ Item1:Row +")

 and CorrelationID=:bind(" + Item2:Row +")",

 "DB.mdq",

 "MyDB")

There is no performance benefit unless all values that change from one invocation

of the statement to the next are bound. For example, if the ID value is bound and

not the CorrelationID value, the statement will vary because the CorrelationID

value varies.

60 WebSphere Transformation Extender: Database Interface Designer

Chapter 8. Using stored procedures

This chapter describes the various mechanisms for using stored procedures to

access all types of parameters and return values from stored functions. You can call

stored procedures when using DBQUERY and DBLOOKUP functions and when defining

a query in the Database Interface Designer for a map data source. When defining a

database as the target for an output card, you can also output to a stored

procedure.

For information about the availability and usage of calling stored procedures,

including the correct native syntax for these calls, refer to each database-specific

adapter reference guide.

Calling stored procedures

When used as a source of data in one of the database functions (DBQUERY or

DBLOOKUP), in a GET function, or in a query defined in the Database Interface

Designer, there are two ways to call stored procedures:

v Use the database-independent syntax for calls.

This provides a means of accessing the output parameters and return values

from stored functions.

v Use the native syntax for the database.

Using this method, you cannot access output parameters or return values from

stored functions.

In addition to the above methods, when using Oracle object types as parameters in

stored procedures, there is a special syntax that must be used. For more

information about this, see ″Stored Procedures with Object Type Parameters″ .

Database-independent syntax for calls

The database-independent syntax for calling stored procedures is:

CALL [?=] procedure_name [(argument_list)]

The arguments are described below.

 Option Description

?= Indicates that the return value from a stored function

should be returned

procedure_name The name of the stored procedure or function

argument_list A comma-separated list of arguments in which each

argument is one of the following:

value This is the value to be passed to an

input parameter. If the value

contains spaces, it must be

surrounded by single quotation

marks (for example, ’city of’).

The quotation mark characters are

not passed as part of the

parameter.

© Copyright IBM Corp. 2006 61

Option Description

? Return the value from an output

parameter.

X Do not return the value from an

output parameter.

?/value This is the value to be passed to an

In / Out parameter and the value

to be returned from the parameter.

Examples using stored procedures

In the following example, there is a stored procedure named DoSalaryIncrease

with the following parameters:

Employee ID - parm1 - In

Merit Increase (%) - parm2 - Out

Salary - parm3 - In / Out

Effective Date - parm4 - Out

Using the DBLOOKUP function, an example of the syntax used to call

DoSalaryIncrease would be:

DBLOOKUP

("call DoSalaryIncrease("

 + EmpID:.:PayrollFile

 + ",?,?/"

 + Salary:.:PayrollFile + ",?)", "AdminDb.mdq", "HR_DB")

If EmpID has a value of SM01930 and Salary has a value of 42,750, the call syntax

would expand to:

call DoSalaryIncrease (SM01930, ?, ?/42750, ?)

The output from this call is a single text item in which each field is delimited by

the pipe character (|). In this example, there will be three fields in the output-one

for each question mark character (?) placeholder. If you do not want to use all of

the output parameters, you can use any other character in place of the question

mark character. For example, if you did not use the EffectiveDate (parm4), the call

could be changed to:

DBLOOKUP

("call DoSalaryIncrease ("+ EmpID:.:PayrollFile

 + ",?,?/" + Salary:.:PayrollFile + ",X)",

 "AdminDb.mdq", "HR_DB")

Once again, if EmpID has a value of SM01930 and Salary has a value of 42,750,

the call syntax would expand to:

call DoSalaryIncrease (SM01930, ?, ?/42750, X)

In this example, the EffectiveDate (parm4) would not be returned.

Returning the Value from a stored function

If you want the value from a stored function, prefix the procedure or function

name with ?=. For example:

DBLOOKUP("call ?= MyFunction(’cat’) , "My.mdq" , "MyDB")

62 WebSphere Transformation Extender: Database Interface Designer

Using a stored procedure as an input

Stored procedures can be used in input cards by specifying the call in the Query

field in the New Query dialog of the Database Interface Designer.

After the stored procedure call is entered in the New Query dialog or the

Edit/View Query dialog (if you are editing an existing query), you can generate a

type tree for the stored procedure.

Generated type trees for stored procedures adhere to the same format as type trees

for queries and will contain a Row group, the components of which correspond to

the ? placeholders in the CALL statement. Return values from stored functions will

typically have the field name RETURN_VALUE unless the database returns a

specific name.

The call syntax for a stored procedure can be used effectively in input cards in

combination with substitution variables to provide values to input parameters. For

example, to call GetPaymentInfo in an input card, because GetPaymentInfo takes

a single input parameter, first define the text in the Query field.

Next, provide the value on the command line for parm1 at execution time as

follows:

dtx MyMap.mmc -ID1 ’-VAR parm1=2000-03-11’

Using a query to execute a stored procedure

If your database permits the execution of a SELECT statement in a stored

procedure or function and can return values through subsequent row fetches, you

can specify a procedure call using the native database syntax in the Query field of

the New Query or Edit/View Query dialog using the Database Interface Designer.

For example, to call a stored procedure by means of ODBC using the native

syntax, the query text you enter in the New Query or Edit/View Query dialog

might be:

{call MyProc(-1)}

The query text for a call to a stored procedure must be in the native database

syntax. For more information about the correct syntax of the procedure call using

your particular database adapter, see the database-specific adapter reference guide.

To define a query using a stored procedure:

When you use a stored procedure to define a query, follow the same steps as when

you use a SELECT or other statement:

1. Define the query in the New Query or Edit/View Query dialog of the Database

Interface Designer.

2. Generate a type tree from the query.

3. In the Map Designer, specify the query when defining the data source for the

executable map input card for the stored procedure.

Using a stored procedure as an output

Using the database adapters, you can call stored procedures in output cards.

Chapter 8. Using stored procedures 63

Type trees generated for stored procedures contain an item type for each input

argument. Instead of a Row type, these type trees have a ProcedureCall type that

represents the set of arguments passed to the stored procedure for each execution

of that procedure. The DBProcedure type consists of a series of ProcedureCalls.

The stored procedure is called once for each ProcedureCall in the DBProcedure

output. This information is highlighted in the following example.

There are two ways to call stored procedures in output cards:

v In the output card dialog in the Map Designer, specify -PROC procedure_name in

the PUT> Target → Command setting. For more information, refer to ″Using a

database as a target″.

or

v When overriding an output card using database adapter commands on the

command line, use the -PROC adapter command and specify the stored

procedure name. For more information, see the Resource Adapters

documentation.

The values for each parameter are passed to the stored procedure with the stored

procedure being called for each row of data.

The types of the parameters may be IN, OUT, or IN/OUT. However, there is no

mechanism to return values from output parameters. Any values passed to an

OUT parameter will be ignored.

Stored procedures with object type parameters

The Oracle adapter provides full support for Oracle object types to be used as

parameters to stored procedures or functions. Mapping to a stored procedure call

in an output card is no different than mapping to a table; object types as

parameters are fully supported.

Similarly, invoking stored procedures with object type parameters using the ’call’

syntax is possible. For output parameters, there is no special syntax required.

Using a question mark character (?) will result in the entire object being returned

from the stored procedure call. However, for input parameters, a special syntax is

required to specify the objects. The syntax rules are as follows:

v The object must be contained within square brackets. An example of this is:

″[.......]″

v Each element of the type is separated from other elements of the type by the

pipe (|) delimiter character.

v Spaces are not allowed unless they are contained within the data itself.

see the following example. The type ’outer’ is defined by the following ’create

type’ statements:

create type inner as object (

a_char varchar(10),

b_int number(10,0));

create type outer as object (

x_inner inner,

y_date date);

Assume that there is a table named ’object_holder’ and a stored function

’insert_object’ defined to insert an object of type ’outer’ and to return the number

of objects in the table. The SQL required to create this follows:

64 WebSphere Transformation Extender: Database Interface Designer

create table object_holder (

myobj outer);

create or replace function insert_object (obj in outer) return

number is

row_count number;

begin

insert into object_holder values (obj);

select count(*) into row_count from object_holder;

return row_count;

end;

To provide an object with the following attributes:

x_inner.a_char = ’hello’

x_inner.b_int = 23

y_date = 2000-10-12 04:59:23

use the following query:

call ?= insert_object([[hello|23]2000-10-12 04:59:23])

Note that the inner object is also delimited by square brackets.

Chapter 8. Using stored procedures 65

66 WebSphere Transformation Extender: Database Interface Designer

Chapter 9. Database triggers

Data sources using database adapters can serve as input event triggers that are

defined in the Database Interface Designer, enabled in the Integration Flow

Designer, and executed by an Launcher.

For information about the availability and usage of triggering for your specific

database and platform, see the database-specific adapter reference guide.

Database triggers overview

This introductory section provides information about the following topics:

v ″Database Support″

This topic discusses those databases supporting triggering and the types of

triggering supported.

v ″Installation Requirements″

This topic discusses the database-specific scripts required to be run to enable

database triggering.

v ″Tables Created for Triggering″

This topic discusses the four tables created as a result of running the installation

scripts for triggering.

v ″Maintaining Triggering Tables″

This topic discusses table maintenance required in unusual situations such as

unexpected shutdown of Launchers and working with truncated tables.

Database support

The event(s) that occur causing a trigger to run a map may be the result of a map

or some other application.

The following databases support triggering:

v Oracle client and server (for Windows and UNIX)

v Microsoft SQL Server (for Windows only)

For information about the versions of these databases that are supported in this

release, see the release notes readme.txt file.

The Database Interface Designer allows two different triggering actions during

event-based map execution:

v Table-based triggering

v Row-based triggering

– Column-based triggering (an enhancement to row-based)

Installation requirements

Before you can take advantage of the database triggering functionality, either one

of three database-specific installation scripts must be run by a system

administrator:

© Copyright IBM Corp. 2006 67

Note: This is a one-time only operation except for a possible unexpected Launcher

shutdown. For more information about that scenario, refer to ″Handling

Unexpected Shutdowns″ .

v m4ora.sql (for Oracle)

v m4ora_col.sql (for Oracle)

v m4sqlsvr.sql (for Microsoft SQL Server)

Executing the respective script installs the database objects required for database

triggering:

v tables that track ″watch″ events

Four tables are added to your database. These are required for the triggering

functionality. For more information about these tables, refer to ″Tables created

for triggering″ .

v stored procedures that interface to the tables

v (for Microsoft SQL Server only) extended stored procedures that contain

signaling logic

v (for Oracle only) public synonyms for tables and stored procedures

v (for Oracle only) sequences that generate unique trigger IDs

Certain privileges must be granted to the user running the database card

triggers. The specific details for this and additional information are presented at

the beginning of each script.

Column-based triggering

To use column-based triggering (for Oracle only), run either of the following

scripts:

Script Use

m4ora_col.sql

if you are upgrading from a release prior to WebSphere Transformation

Extender 8.0, and had been using Oracle database triggering

m4ora.sql

to re-install the database objects required for column-based triggering

For more information, refer to ″Column-Based Triggering″.

Tables created for triggering

See the following table for information about the four tables that are created by

executing the SQL script.

Table Description

Trigger_Server

Used at startup, this table tracks the Launchers that are accessing this

database. The Launchers must have unique machine name and TCP/IP

address combinations. (In other words, triggering is only supported for one

Launcher per machine.)

Trigger_Catalog

Used at startup, this table tracks all triggers for all tables that have been

defined on this database. This functionality allows table ″watches″ to be

reused across multi-user/Launcher environments.

68 WebSphere Transformation Extender: Database Interface Designer

Trigger_Registry

Used during processing, this table registers every ″watched″ table for each

Launcher. The ″watches″ on each card are placed here. In this registry is

every map on every machine that is being ″watched″.

Trigger_Events

Used during processing, this table records all events that have occurred as

a result of the table ″watches″ defined in the Trigger_Registry table.

Note: For Oracle only. If an Oracle table is truncated or dropped while

having unprocessed row-based table entries, there may be map

execution problems. To avoid these problems, you may have to

perform some maintenance on this table. For information about how

to do this, refer to ″Handling truncated tables″ .

Maintaining triggering tables

The current implementation of the triggering functionality should be

self-maintaining. However, there are unusual situations in which some user

maintenance might need to be performed as described in the following sections:

v ″Handling unexpected shutdowns″

v ″Handling truncated tables″

Handling unexpected shutdowns

Note: Make sure that there are no other Launcher systems running on the target

DBMS before running the maintenance operations listed below.

If an Launcher system (containing database triggers) has encountered an

unexpected shutdown and cannot be re-started and subsequently shut down in a

normal sequence, you must re-run the triggering installation script (specific to your

database) to clean up any triggering resources that have been left behind on the

target DBMS. This is because when an Launcher is prematurely shut down, any

defined database triggers will remain in operation on the backend DBMS (for

example, Oracle) until the same system is re-started and then properly shut down.

The database triggers will continue to monitor for events while the Launcher is

shut down, thus enabling the system to be fault-tolerant with respect to any

database changes that occur during an unexpected downtime. This fault-tolerant

behavior requires that a normal system shutdown eventually take place. Otherwise,

the database triggers will continually remain in operation, taking up processing

and space resources on the target DBMS.

If the triggering installation script cannot be run, a temporary solution would be to

run the following SQL statements on the target DBMS:

1. DELETE FROM Trigger_Events;

2. DELETE FROM Trigger_Registry;

3. COMMIT;

Handling truncated tables

Note: For Oracle only.

Chapter 9. Database triggers 69

If an Oracle table is truncated or dropped while having unprocessed row-based

table entries, there may be map execution problems. To avoid these problems, you

may have to perform some maintenance on the Trigger_Events table as shown in

the following procedure.

Make sure you only delete those rows in the Trigger_Events table associated with

the truncated table. Also, you can perform this procedure after dropping and

recreating a table.

To delete table-specific truncated rows:

1. Enter the following SQL statement:

DELETE from Trigger_Events WHERE ID IN (

 SELECT ID FROM Trigger_Registry WHERE TriggerName IN (

 SELECT TriggerName FROM Trigger_Catalog

 WHERE UPPER(SourceSchema) = UPPER(’schema_name’) AND

 UPPER(SourceTable) = UPPER(’table_name’)))

where schema_name is the name of your schema and table_name is the name of

the truncated table.

2. Commit the transaction (for example, COMMIT;).

Table-based triggering

A typical usage for table-based triggering would be to set up a trigger that will

execute a map to run after another map has completed processing and has inserted

rows into a table.

For information about the Source → Transaction → Scope setting, see ″Database

sources and targets.″ For information about using the Commit by Statement

adapter command (-CSTMT), see the Resource Adapters documentation.

To see how to construct the WHEN expression for table-based triggering, see the

example in ″Table column format″.

Row-based triggering

The row-based triggering design enables a fault-tolerant, multi-server-aware

triggering mechanism that can enable maps to selectively process those rows

associated with a triggered watch event. In the preceding sentence, fault-tolerant

means that data is not lost if a process fails, a connection is dropped, an Launcher

stops, or some other unforeseen interruption occurs. Multi-server-aware means that

Launchers on different machines can connect to and ″watch″ the same table.

The main difference between row-based and table-based triggering is that with

row-based triggering, the query executes on only those rows that have been

updated or inserted, not on the entire table. Additionally, batch-like processing is

possible if the When clause is used to control the time and/or date at/upon which

processing should occur.

When using column-based triggering, batch processing does not occur.

To see how to construct the WHEN expression for row-based triggering, refer to

the example in ″SELECT 1 FROM Format″.

Column-based triggering

An enhancement to the row-based triggering functionality is column-based

triggering. It enables you to trigger an event to occur on a row when a particular

column condition is met. This functionality is available in both the m4ora.sql and

70 WebSphere Transformation Extender: Database Interface Designer

the m4ora_col.sql scripts. To use this functionality to trigger an Oracle database

watch event for a map when a column condition is met, supply the column

condition extension of the SQL WHEN expression in the Trigger Specification

dialog of the Database Interface Designer. The portion of the WHEN expression

that appears after column condition is the SQL clause that is passed to the Oracle

database for processing.

Refer to Oracle documentation for the WHEN clause syntax when using it in a

trigger definition.

For information on installing the m4ora.sql and the m4ora_col.sql scripts, refer to

″Installation Requirements″ .

To see how to construct the WHEN expression for column-based triggering, see the

example in the Format of the When Expression section.

Issues for both row- and table-based triggering

The following list represents what is and is not supported in row- or table-based

triggering:

v The appropriate database must be used (supported versions of either Oracle

client and server [for Windows and UNIX] or Microsoft SQL Server [for

Windows only]).

v The respective SQL file (refer back to ″Installation requirements″) must be

installed and executed by your system administrator.

v SELECT statements containing Union or Intersect clauses are not supported.

v Case sensitivity for either column or table names is not supported.

v Only one Launcher per machine is supported.

Issues for row-based triggering only

The following list represents what is and is not supported in row-based triggering

only:

v For Microsoft SQL Server, each table defined in the query must contain either an

identity column or one numeric primary key.

v Queries that reference views or public synonyms are not supported.

Defining a trigger using a database source

Specify that you want a database source to be a trigger for a map when using a

database adapter that supports triggering and an Launcher.

To define a trigger:

1. Use the Database Interface Designer to create an MDQ file containing the

desired query.

2. From the Trigger Specification dialog in the Database Interface Designer, define

the conditions under which changes in database tables will trigger a map. The

trigger you define is associated with a query and is saved in the MDQ file. For

more information about this, refer to ″Defining a trigger for a query″ .

3. Use the Map Designer to create an executable map with an input card that uses

the MDQ file containing the trigger specification. For more information, see the

Map Designer documentation.

Chapter 9. Database triggers 71

Make sure that the input card corresponding to the database trigger is set to

integral mode, not burst.

4. Use the Integration Flow Designer to create a system with the map component

containing the trigger specification. Enable the Input(s) → GET → Source setting

in the Launcher Settings dialog. For information about how to do this, refer to

″Using the Integration Flow Designer to enable triggers″ .

The Integration Flow Designer does not perform any validation of a database

source used as a trigger. Ensure that the trigger has been defined using the

Database Interface Designer prior to specifying it as an input event trigger.

5. Generate the Launcher system file (.msl) on the Launcher as appropriate. For

more information about how to do this, see the Integration Flow Designer

documentation.

Using a database as a map trigger

Database sources can be used as input events for the Launcher. Insertions,

deletions (for table-based triggering only), or updates to database tables can be the

trigger mechanism that will run a map.

A trigger specification is defined in the Database Interface Designer for an

individual query and is stored with the query in the MDQ file. When a database

source is specified as an input event in the Integration Flow Designer, the trigger

specification is evaluated by the Launcher and is run accordingly.

Defining a trigger for a query

After you have defined a query in the Database Interface Designer, you can define

a trigger specification that can be used to launch a map using that same query as a

data source.

To define a trigger specification:

1. In the Database Interface Designer, select the query for which you want to

define a trigger specification.

2. From the Query menu, select Define Trigger.

The Trigger Specification dialog appears. When initially displayed, the lists on

the left show all of the tables referenced by the SELECT statement of the

selected query.

3. Determine whether you can define row-based triggering for this query as

determined by the availability of the Row-based triggering check box.

If this is a new query and the table supports it, this check box will be enabled

as the default value. (For old queries, this check box will be cleared as the

default value, which means that you could use the functionality by enabling it.

In another scenario, the entire check box could be disabled because this

functionality is not available for the query and table being used.)

4. To specify the events, select a table name from the Insert into or Delete from

lists.

or

Select a table name from the Update of list.

The name of the table you select will be either the destination into which data

will be inserted, from which data will be deleted, or in which data will be

updated when the specified event occurs.

Note: Delete from cannot be used with row-based triggering.

72 WebSphere Transformation Extender: Database Interface Designer

5. To move the table name, in the text box area corresponding to the selected table

name (either Insert into, Delete from, or Update of), click the arrow button.

The table name moves into the corresponding list on the right.

6. Select as many names as necessary to define the event(s) that must occur so

that conditions can be met for the trigger specification.

7. If more than one table is added to a list, you can define conditions that must be

met. Select either the AND or OR radio button located directly above each list.

For more information, refer to ″Specifying a combination of different event

classes″ .

The AND option dictates that the condition is not met until the event occurs

for all tables in the list when data is either inserted, deleted, or updated. The

OR option dictates that the condition is met when the specified event occurs in

only one table in the list.

8. To define an additional condition that will be evaluated only after the other

specified event(s) has/have occurred, enter an expression in the When field.

For more information, refer to ″Specifying when″ .

9. After you have finished, click OK to save your trigger specification.

The query with the trigger specification is represented in the Navigator with an

icon displayed next to the name.

Note: To modify or delete an event, use the same procedure as indicated

above. Select the table name in the list on the right and click the

corresponding left arrow button. The When expression can also be

edited or deleted as required.

Defining events

Use the Trigger Specification dialog to define a trigger specification for an

individual query that will be stored with the query in the MDQ file. As you add

and remove the table names, the lists on the right display the tables for which an

Insert into, Delete from, or Update of event comprises the condition(s) that must

be met for the trigger specification. Additionally, you can specify whether

row-based triggering will be used. The different classes of events that you can

specify are:

v Insert into

The insertion of rows into the specified table serves as an input event trigger to

the map that uses this query as a data source.

v Delete from

The deletion of rows from the specified table serves as an input event trigger to

the map that uses this query as a data source.

Note: This functionality cannot be used with row-based triggering. As soon as

you move a table to the right, the Row-based triggering check box is

disabled.

v Update of

The update of rows in the specified table will serve as an input event trigger to

the map that uses this query as a data source.

Chapter 9. Database triggers 73

Specifying a combination of different event classes

If you define your trigger specification using a combination of event classes (Insert

into, Delete from or Update of), there is an implicit OR between the different

event classes.

For example, if you defined events in all three event classes, the implied condition

to be met for the trigger specification would be:

Insert into TableA

OR

Delete from TableB

OR

Update of TableC

When all events have occurred within only one of the specified event classes, the

condition(s) has/have been met for the trigger specification and the map is run.

Specifying AND or OR

Within the Insert into and Delete from event classes, you can define multiple

insert and delete events by specifying multiple tables. Similarly, you can define

multiple Update of events by specifying multiple table names.

Using the Delete from event class disables row-based triggering. However, you

can still define multiple Insert Into and Update of events using row-based

triggering.

When you specify multiple table names within an event class, you must also

specify how you want the condition within the event class to be met-either when

all of the events occur for all of the specified tables or when one event occurs on

any one entry in the list.

The options that dictate the condition(s) to be met when you set up multiple

events are:

Option Description

AND This option dictates that all of the specified events must occur (for

example, TableA AND TableB) for the condition to be met.

OR This option dictates that conditions are met when at least one event occurs

(for example, TableA OR TableB).

Specifying when

After specifying at least one Insert into, Delete from, or Update of event, you can

create an expression that must evaluate to true to satisfy the conditions of the

trigger specification. Enter an expression in the When field that will be evaluated

after the other events have occurred. If the When expression evaluates to true, the

conditions of the trigger specification are met and the map is run. If the When

expression is not true, the state is restored to what it was prior to the occurrence of

any events. When row-based triggering is used, all of the changed rows will be

batched together for subsequent processing after the event is re-triggered and the

When clause has been satisfied.

When using column-based triggering, batch processing does not occur.

74 WebSphere Transformation Extender: Database Interface Designer

Format of the when expression

There are three basic formats that can be used for the When expression as specified

in the Trigger Specification dialog:

v Clauses referencing table columns (“Table column format”)

v Clauses using the SELECT 1 FROM format to establish conditions of execution

(“SELECT 1 FROM format”)

v Clauses using the column condition (“Column condition format”)

Table column format

The When expression in the Trigger Specification dialog can contain any SQL

expressions that are valid for the database. If database columns are referenced in

the expression, the column name must be qualified with the tablename and the

tablename.column_name enclosed in square brackets ([]).

For example, if a map should be triggered only when there is a row in the

MyTable table having a column entitled Status with a value of Ready, specify the

Insert into, Delete from, and Update of events and enter the following expression

in the When field:

[MyTable.Status] = ’Ready’

SELECT 1 FROM format

The When expression can support any valid SQL statement that begins with a

SELECT 1 FROM clause. After a database event is detected on the DBMS, the

entire statement (as it appears in the Trigger Specification dialog) is executed.

For example, if a database input card should be triggered for execution only

during a certain time of day, the following statement could be entered:

Note: This example only applies to versions of the Oracle DBMS supported in this

release.
select 1 from dual where

TO_CHAR(SYSDATE, ’HH24’) > ’00’ AND

TO_CHAR(SYSDATE, ’HH24’) < ’06’

This When clause would restrict processing of any database ″watch″ events to the

timeframe of between midnight and 6AM.

Column condition format

The When expression can support column-based triggering.

An example of the syntax of the column condition that you would specify in the

Trigger Specification dialog of the Database Interface Designer is presented below:

column condition new.part_number = `S’

Because column-based triggering is based on row-based triggering, the Row-based

triggering check box must be enabled. You would enter the column condition

new.part_number = `S’clause into the When pane. The portion, new.part_number =

`S’, specified after column condition, is the SQL clause that the Oracle database

will process.

Chapter 9. Database triggers 75

Specifying triggers on the command line

If a trigger specification for a query has not been defined in the Database Interface

Designer or if you want to override conditions that are already defined in a trigger

specification associated with a query, use the command line.

For more information about using the command line and specifying the Trigger

adapter command (-TR), see the Resource Adapters documentation.

Using the Integration Flow Designer to enable triggers

After you have defined the trigger using the Database Interface Designer and have

created an executable map using the Map Designer, use the Integration Flow

Designer to define a system containing the associated map component and to

enable the trigger for execution by the Launcher. For more information, see the

Integration Flow Designer documentation.

To set the database source as a trigger:

1. In the Integration Flow Designer, display the Launcher Settings dialog for the

map you want to trigger.

2. Set the SourceEvent setting value to ON.

3. Click OK.

A trigger icon appears on the map component in the system diagram. When

the map component appears in expanded state, a trigger icon also appears on

the upper-left corner of the input card.

The trigger icon provides a visual cue showing the inputs that serve as triggers.

76 WebSphere Transformation Extender: Database Interface Designer

Chapter 10. Debugging and viewing results

This chapter explains various troubleshooting tools available when you encounter

problems using database objects as data sources or targets for a map or when

using the Database Interface Designer to define databases and queries. Also

presented are various methods for viewing data extracted from a database or

loaded into a database.

Troubleshooting tools

If you receive an error while attempting to generate a type tree in the Database

Interface Designer or if you run a map that uses database sources and/or targets

and receive a runtime error or do not get the expected output, use any or all of the

following troubleshooting tools:

v Map audit log (map_name.log)

For information about the map audit log and related settings, see the Map

Designer documentation.

v Database Interface Designer trace (mdq_file_name.dbl)

v Database execution trace file (map_name.dbl)

v Database source and target data

v Database audit file (audit.dbl)

v DBMS trace utilities and SQL command tools

Database trace files

Use the information contained in database trace files (.dbl) as one of the primary

tools to assist in troubleshooting. These files contain detailed information

generated during Database Interface Designer activity and also during map

execution. For example:

v The trace file recorded for a Database Interface Designer trace contains

information about the activities taking place when generating type trees such as

database connections, SQL statements executed, and so on.

v The database trace file produced at map execution time records detailed

information about the database adapter activity such as records retrieved, data

source and target activity, and so on.

Format of database trace files

Information displayed in the database trace file varies depending upon the

database generating the trace file. Database adapter trace files contain what

appears to be a range of numbers at the beginning of each line in the file. These

numbers represent:

v the process ID

This is the number representing the process that is running on the machine. If

you were watching the processes running on your machine (viewing the

Processes tab in the Task Manager window , the value displayed in the PID

(process ID) column would match the value displayed in the database trace file

produced as a result of this process.

v the thread ID

© Copyright IBM Corp. 2006 77

This ID distinguishes each map that is running concurrently. Each running map

has its own thread.

Producing the database trace in the Database Interface

Designer

Click the Trace tool or select Trace from the File menu to enable a database trace

file (.dbl). If trace is enabled, a database trace file is automatically created when

you generate a type tree. This file is placed in the same directory as the currently

open MDQ file. The newly created database trace file is named using the full name

of the MDQ file plus a .dbl extension. For example, if your MDQ file is named

Orders.mdq, the trace file is named Orders.dbl and is located in the same

directory. If your MDQ file is not yet named, the trace file is named

Database_QueryFile1.dbl and resides in the same directory, typically the default

installation directory.

Most problems encountered in the Database Interface Designer are relayed to the

user in message dialogs. For example, if an incorrect user-ID or password is

specified for a database, a dialog appears when attempting to generate type trees

for tables in that database. The following example dialog reports an Oracle error

ORA-01017 with the following message as returned by the database driver to the

database adapter:

invalid username/password; logon denied

If trace is enabled when the message in this dialog appears, a corresponding

message is also written to the database trace file (.mdq_file_name.dbl).

The following is a sample of a database trace file when generating a type tree that

describes two tables in an Oracle database.

The contents of any trace file are database platform-specific.

<1776-940>: Datalink: bocadb2\\Northwind

<1776-940>: UserId : test

<1776-940>: Password:****

<1776-940>: No existing connection was found.

<1776-940>: Local transaction usage: Transaction ID 0x019287F4

<1776-940>: Transaction started - ISOLATIONLEVEL_READCOMMITTED

<1776-940>: Connection to SQL Server bocadb2 has been established.

<1776-940>: Retrieving 1 rows per fetch.

<1776-940>: The columns are of the following types:

<1776-940>: Column 1 (CustomerID) type is nchar(5) [DBTYPE_WSTR].

<1776-940>: Column 2 (CompanyName) type is nvarchar(40) [DBTYPE_WSTR].

<1776-940>: Column 3 (ContactName) type is nvarchar(30) [DBTYPE_WSTR].

<1776-940>: Column 4 (ContactTitle) type is nvarchar(30) [DBTYPE_WSTR].

<1776-940>: Column 5 (Address) type is nvarchar(60) [DBTYPE_WSTR].

<1776-940>: Column 6 (City) type is nvarchar(15) [DBTYPE_WSTR].

<1776-940>: Column 7 (Region) type is nvarchar(15) [DBTYPE_WSTR].

<1776-940>: Column 8 (PostalCode) type is nvarchar(10) [DBTYPE_WSTR].

<1776-940>: Column 9 (Country) type is nvarchar(15) [DBTYPE_WSTR].

<1776-940>: Column 10 (Phone) type is nvarchar(24) [DBTYPE_WSTR].

<1776-940>: Column 11 (Fax) type is nvarchar(24) [DBTYPE_WSTR].

The following example was received when attempting to run a map to retrieve

data from a table in an SQL Server database.

<1324-3020>: Validating the adapter command...

<1324-3020>: Database type is MS SQL Server 7

<1324-472>: Connecting...

<1324-472>: Datalink: MY_2000_SERVER\\test

<1324-472>: UserId : test

78 WebSphere Transformation Extender: Database Interface Designer

<1324-472>: Password:****

<1324-472>: OLE DB Error code: 0x80004005

<1324-472>: [DBNMPNTW]Specified SQL server not found.

<1324-472>: Returned status: (-3) No error text found

In this example, the following lines:

<1324-472>: OLE DB Error code: 0x80004005

<1324-472>: [DBNMPNTW]Specified SQL server not found.

indicate the OLE DB provider-specific error code and the corresponding error

description. The last line (beginning with Returned status:) indicates the error

code returned by the adapter that caused the map to fail.

This information can be used, along with the SQL Server documentation, to resolve

the problem. In this particular example, the error was caused by typing the

incorrect server name in the SQL Server Server settings in the Database Definition

dialog, rather than by selecting the name from the list of servers. In this example,

the server name was incorrectly entered as MY_2000_SERVER, instead of its actual

name (MY_2000_SRVR).

Producing the database trace during map execution

There are several different ways to enable the database trace for reporting

database-related information during map execution as discussed in the following

sections:

v Using the Trace adapter command

v Source usage:

– for a valid source

– for a source with errors
v Target usage:

– for a valid target

– for a target with a missing required value

– for a target using the Bad Data adapter command

– for a target with -UPDATE off

– for a target using the DBLOOKUP/DBQUERY functions

Using the Trace adapter command

To produce database trace information for specific database data sources or targets,

use the Trace adapter command (-TRACE). For information about the syntax of this

command, see the Resource Adapters documentation.

To produce the database trace file when using the DBQUERY or DBLOOKUP functions,

use the Syntax2 format to call the function. For example, if output card 3 contains

a DBLOOKUP function, call the function as

DBLOOKUP ("SELECT ...", "-DBTYPE DB2 -SOURCE LAMBIN

 -USER ARL97IN -TRACE").

Database trace for a valid source

To produce the following database trace file example, we want to produce a

database trace for input card 2 (which is a database). To do this, you must include

the Trace adapter command (-TRACE) in the GET → Source → Command setting.

Upon execution, database trace information is generated for input card 2; the

example follows.

Chapter 10. Debugging and viewing results 79

Note: Line numbers are for reference purposes only.
01 Database type is Oracle

02 Status returned to engine: (0) Success

03 No existing connection was found.

04 Connection to Oracle has been established.

05 Interface library version 6.0(140)

06 Data being retrieved for input card 2.

07 Database adapter version 6.0(140)

08 Starting a database unload...

09 Host string:

10 Userid : demo

11 Password : ****

12 Query : SELECT I.*, P.LIST_PRICE, P.MIN_PRICE, P.START_DATE, P.END_DATE

13 FROM ITEM I, PRICE P, PRODUCT PR

14 WHERE I.PRODUCT_ID = P.PRODUCT_ID and PR.PRODUCT_ID = 15 I.PRODUCT_ID

15 ORDER BY PR.PRODUCT_ID

16 Query size : 189

17 Output is to a buffer.

18 Statement execution succeeded.

19 The columns are of the following types:

20 Column 1 (ORDER_ID) type is NUMBER(4).

21 Column 2 (ITEM_ID) type is NUMBER(4).

22 Column 3 (PRODUCT_ID) type is NUMBER(6).

23 Column 4 (ACTUAL_PRICE) type is NUMBER(8,2).

24 Column 5 (QUANTITY) type is NUMBER(8).

25 Column 6 (TOTAL) type is NUMBER(8,2).

26 Column 7 (LIST_PRICE) type is NUMBER(8,2).

27 Column 8 (MIN_PRICE) type is NUMBER(8,2).

28 Column 9 (START_DATE) type is DATE.

29 Column 10 (END_DATE) type is DATE.

30 Number of buffers in fetch array = 574

31 Writing results to a buffer.

32 Retrieved 543 records (34451 bytes).

33 Status returned to engine: (0) Success

34 Cleaning up and closing the transaction...

35 The transaction was successfully committed.

36 Status returned to engine: (0) Success

37 Commit was successful.

38 Database disconnect succeeded.

This sample database trace file (map_name.dbl) reveals important information,

examples of which are described below.

v Lines 1-5 show information about the connection made, identifying the database

type as Oracle as well as the version number of the interface library. In this

example, there was no existing database connection and a new connection was

successfully established.

v Line 6 indicates that the data is being retrieved for input card number 2.

v Line 7 identifies the version of the database adapter for Oracle. Lines 8-11

identify the information used to make the connection with the Oracle database:

the host string, user ID, and password. Because this information is for an input

card, there is a message indicating that a database unload is being started.

v Next, the database trace file indicates that the query successfully executed (as

indicated by the following text on Line 18: Statement execution succeeded) and

includes descriptions of the ten columns to be retrieved.

v The results of the query are written to the buffer. 543 records (rows) were

retrieved using this query.

Use the Trace adapter command (-TRACE) for as many database source or targets as

desired. Note that the information for later cards is appended to the default

database trace file unless a file name is specified using the -TRACE filename option

as described in the Resource Adapters documentation.

80 WebSphere Transformation Extender: Database Interface Designer

The exact information in the database trace file varies, depending upon the

information returned by different entities including the database driver, database

source versus target, and so on.

Database trace for a source with errors

The example in the preceding section provided database trace information for a

database source with no problems. The following is an example of information you

may see when there are errors while accessing the database source.

Database type is Oracle

Status returned to engine: (0) Success

No existing connection was found.

Connection to Oracle has been established.

Interface library version 6.0(140)

Data being retrieved for input card 1.

Database adapter version 6.0(140)

Starting a database unload...

Host string:

Userid : demo

Password : ****

Query : SELECT * FROM BONUSS

Query size : 20

Output is to a buffer.

Error in: oparse

Message : ORA-00942: table or view does not exist

Retrieved 0 records (0 bytes).

Error returned to engine: (-17) Failed to parse SQL statement

Cleaning up and closing the transaction...

The transaction was successfully committed.

Status returned to engine: (0) Success

Commit was successful.

Database disconnect succeeded.

The key information in the database trace is in the line defining the query

(beginning withQuery) and the four lines beginning with the Error in: line. In this

example, the attempt to execute the query failed because the table specified in the

query listed does not exist. This would result in a map return code of 12 and a

message of:

Source not available

Upon receiving this error, verify that the query is correct and that the table

referenced in the query exists using the Database Interface Designer or the SQL

command tool provided with your database.

Database trace for a valid target

The information included in the database trace for an output (data target) is similar

to that for a database source. The following example shows the PUT → Target

settings for the first output card (which is a database) in a map called

UpdateMembershipDB.

The Update adapter command (-UPDATE) specifies that the rows produced by the

map should update existing rows or should insert new rows, based upon the

update keys configured for the table in the Database Interface Designer. The Trace

adapter command (-TRACE) generates the database trace information for this output

card.

An example of the database trace information produced for this map follows.

Chapter 10. Debugging and viewing results 81

Database type is Oracle

Status returned to engine: (0) Success

No existing connection was found.

Connection to Oracle has been established.

Interface library version 6.0(140)

Loading data for output card 1.

Database adapter version 6.0(140)

Starting database load...

Host string:

Userid : eventmgt

Password : ********

Update mode is on.

The columns are of the following types:

 Column 1 (MEMBERID) type is VARCHAR(10).

 Column 2 (ATTENDEEFIRSTNAME) type is VARCHAR(30).

 Column 3 (ATTENDEELASTNAME) type is VARCHAR(50).

 Column 4 (TITLE) type is VARCHAR(50).

 Column 5 (COMPANYNAME) type is VARCHAR(50).

 Column 6 (ADDRESS) type is VARCHAR(255).

 Column 7 (CITY) type is VARCHAR(50).

 Column 8 (STATEORPROVINCE) type is VARCHAR(20).

 Column 9 (POSTALCODE) type is VARCHAR(20).

 Column 10 (COUNTRY) type is VARCHAR(50).

 Column 11 (PHONENUMBER) type is VARCHAR(30).

 Column 12 (FAXNUMBER) type is VARCHAR(30).

 Column 13 (EMAILADDR) type is VARCHAR(50).

 Column 14 (MEMBERSINCE) type is DATE.

The insert statement to be executed is:

INSERT INTO Membership VALUES

 (:a00,:a01,:a02,:a03,:a04,:a05,:a06,:a07,:a08,:a09,:a10,:a11,:a12,:a13)

The update statement to be executed is:

UPDATE Membership SET ATTENDEEFIRSTNAME=:a01,ATTENDEELASTNAME=:a02,TITLE=:a03,

 COMPANYNAME=:a04,ADDRESS=:a05,CITY=:a06,STATEORPROVINCE=:a07,

 POSTALCODE=:a08,COUNTRY=:a09,PHONENUMBER=:a10,FAXNUMBER=:a11,EMAILADDR=:a12

 WHERE (MEMBERID=:a00)5 rows inserted.

2 rows updated.

Database load complete.

Status returned to engine: (0) Success

Cleaning up and closing the transaction...

The transaction was successfully committed.

Status returned to engine: (0) Success

Commit was successful.

Database disconnect succeeded.

This sample database trace file (map_name.dbl) reveals important information that

is highlighted in bold type above and some of which is described below.

v After the logon information in the sample, a message indicates that Update mode

is on. This will affect how the rows produced are handled. Because update

mode is on (enabled by the -UPDATE adapter command), rows in the table are

inserted or updated based upon the update keys defined in the Database

Interface Designer.

v After the connection is made, the database trace shows the column definitions

for the output table.

v Next, the database trace file displays the actual SQL statements to be executed

using the data produced for the output card. Because update mode is enabled,

the database trace file displays both an INSERT statement and an UPDATE

statement. The UPDATE statement is executed for each row in the output for

which a corresponding row is found in the database table, using the update key

defined (which, in this example, is the MemberID column). The INSERT

statement is executed for all rows in the output for which a corresponding row

does not exist in the table.

82 WebSphere Transformation Extender: Database Interface Designer

v After the SQL statements in the sample, the database trace file indicates the

number of rows that were both inserted (5) and updated (2).

v Finally, the database trace file indicates that database load was executed

successfully (Database load complete) and that the database changes were

committed (The transaction was successfully committed).

Database trace for a target: missing required value

The following database trace file example was produced by using almost the same

map as in the preceding example except for the usage of a different input data file.

This database trace file illustrates the information you might see if a database error

occurred while attempting to insert or update rows in a table.

Database type is Oracle

Status returned to engine: (0) Success

No existing connection was found.

Connection to Oracle has been established.

Interface library version 6.0(140)

Loading data for output card 1.

Database adapter version 6.0(140)

Starting database load...

Host string:

Userid : eventmgt

Password : ********

Update mode is on.

The columns are of the following types:

 Column 1 (MEMBERID) type is VARCHAR(10).

 Column 2 (FIRSTNAME) type is VARCHAR(30).

 Column 3 (LASTNAME) type is VARCHAR(50).

 Column 4 (TITLE) type is VARCHAR(50).

 Column 5 (COMPANYNAME) type is VARCHAR(50).

 Column 6 (ADDRESS) type is VARCHAR(255).

 Column 7 (CITY) type is VARCHAR(50).

 Column 8 (STATEORPROVINCE) type is VARCHAR(20).

 Column 9 (POSTALCODE) type is VARCHAR(20).

 Column 10 (COUNTRY) type is VARCHAR(50).

 Column 11 (PHONENUMBER) type is VARCHAR(30).

 Column 12 (FAXNUMBER) type is VARCHAR(30).

 Column 13 (EMAILADDR) type is VARCHAR(50).

 Column 14 (MEMBERSINCE) type is DATE.

The insert statement to be executed is:

INSERT INTO Membership VALUES

 (:a00,:a01,:a02,:a03,:a04,:a05,:a06,:a07,:a08,:a09,:a10,:a11,:a12,:a13)

The update statement to be executed is:

UPDATE Membership SET FIRSTNAME=:a01,LASTNAME=:a02,TITLE=:a03, COMPANYNAME=:a04,

 ADDRESS=:a05,CITY=:a06,STATEORPROVINCE=:a07, POSTALCODE=:a08,COUNTRY=:a09,

 PHONENUMBER=:a10,FAXNUMBER=:a11,EMAILADDR=:a12 WHERE (MEMBERID=:a00)

Error in: oexec

Message : ORA-01400: cannot insert NULL into

("EVENTMGT"."MEMBERSHIP"."LASTNAME")

The following values were being inserted:

 Column 1 MEMBERID : D190-0002

 Column 2 FIRSTNAME : Leverling

 Column 3 LASTNAME : NULL

 Column 4 TITLE : Vice President-New Products

 Column 5 COMPANYNAME : Northwind Traders

 Column 6 ADDRESS : 722 Moss Bay Blvd.

 Column 7 CITY : Kirkland

 Column 8 STATEORPROVINCE : WA

 Column 9 POSTALCODE : 98033

 Column 10 COUNTRY : USA

 Column 11 PHONENUMBER : (206) 555-3412

 Column 12 FAXNUMBER : (206) 555-3413

 Column 13 EMAILADDR : jleverling@northwind.com

 Column 14 MEMBERSINCE : 1999-07-09 22:03:03

Chapter 10. Debugging and viewing results 83

Failed to insert a row (rc = -9).

Failed after 1 rows inserted.

Database load complete.

Error returned to engine: (-9) Failed to execute the SQL statement

Cleaning up and closing the transaction...

Transaction rollback was successful.

Status returned to engine: (0) Success

Commit was successful.

Database disconnect succeeded.

In this example, the bold text is information that can be provided when an error

occurs. The first lines of this example provide the same information as was in the

database trace file with no errors: connection parameters, update mode indicator,

table column descriptions, SQL statements to be used, and so on.

However, after the UPDATE statement, the database trace file provides details to

assist in determining the problem. The Message line indicates that an attempt was

made to insert a row with a NULL value for the EVENT.MEMBERSHIP.LASTNAME

column that cannot contain a NULL. To further identify the row in the output data

causing the error, the database trace file lists the values for all of the columns in

the row causing the error.

The remaining lines in the database trace file display information about the

disposition of the entire database card transaction. The transaction failed after one

row was inserted. The database adapter returns an error code of -9 to the

Launcher with a corresponding error message of Failed to execute the SQL

statement. If you produced the audit log, you would see the following line in the

execution summary section:

 <TargetReport card="1" adapter="DB" bytes="1218" adapterreturn="-9">

 <Message>Failed to execute the SQL statement</Message>

 <TimeStamp>22:07:32 January 8, 2004</TimeStamp>

 </TargetReport>

Subsequently, the database trace file communicates that the database adapter is

cleaning up and closing the transaction. Because the OnFailure setting was set to

Rollback for this output card, the final entry in the database trace reveals that the

transaction rollback was successful.

Database trace for a target - using the bad data adapter

command (-BADDATA)

Use the Bad Data adapter command (-BADDATA) for a target (or in a PUT function).

If any inserts, updates, or procedure calls fail to execute, the data that could not be

processed is written to a file that you specify and processing continues.

The following database trace example was produced using the same map and data

as in the preceding example, now additionally using -BADDATA.

.

.

Error in: oexec

Message : ORA-01400: cannot insert NULL into

("EVENTMGT"."MEMBERSHIP"."LASTNAME")

The following values were being inserted:

Column 1 MEMBERID : D190-0002

Column 2 FIRSTNAME : Leverling

Column 3 LASTNAME : NULL

Column 4 TITLE : Vice President-New Products

Column 5 COMPANYNAME : Northwind Traders

Column 6 ADDRESS : 722 Moss Bay Blvd.

Column 7 CITY : Kirkland Column 8 STATEORPROVINCE : WA

84 WebSphere Transformation Extender: Database Interface Designer

Column 9 POSTALCODE : 98033

Column 10 COUNTRY : USA

Column 11 PHONENUMBER : (206) 555-3412

Column 12 FAXNUMBER : (206) 555-3413

Column 13 EMAILADDR : jleverling@northwind.com

Column 14 MEMBERSINCE : 1999-07-09 22:03:03

Failed to insert a row (rc = -9).

4 rows inserted.

2 rows updated.

1 rows were rejected.

Database load complete.

Warning returned to engine: (1) One or more records could not be processed

Cleaning up and closing the transaction...

The transaction was successfully committed.

Status returned to engine: (0)

SuccessCommit was successful.

Database disconnect succeeded.

All of the information in this trace file example is the same as the previous

example except for the bold lines of text. In this example, because -BADDATA was

used, the database adapter goes on to process all of the other rows produced for

the target. Upon completion, four rows were successfully inserted, two rows were

successfully updated, and one row was rejected. The rejected record was saved in

the file specified with the Bad Data adapter command (-BADDATA). In this example,

the rejected record was saved to a file called badstuff.txt.

The remaining lines in the database trace file indicate information about the

disposition of the entire database card transaction. Notice that the use of -BADDATA

allows the card to successfully complete. The map successfully completes and the

transaction is committed.

If you produced the audit log, you would see the following line in the execution

summary section:

<TargetReport card="1" adapter="DB" bytes="1218" adapterreturn="1">

 <Message>One or more records could not be processed</Message>

 <TimeStamp>22:07:32 January 8, 2004</TimeStamp>

</TargetReport>

Database trace for a target with -UPDATE off

The following example illustrates the database trace that can result from a common

error encountered when developing maps have database targets.

Database type is ODBC

Status returned to engine: (0) Success

No existing connection was found.

Connection to datasource OracleProd has been established.

Interface library version 6.0(140)

Loading data for output card 1.

Database adapter version 6.0(140)

Starting database load...

Datasource: OracleProd

Userid : EVENTMGT

Password : ********

Update mode is off.

The columns are of the following types:

 Column 1 (MEMBERID) type is VARCHAR, precision is 10.

 Column 2 (ATTENDEEFIRSTNAME) type is VARCHAR, precision is 30.

 Column 3 (ATTENDEELASTNAME) type is VARCHAR, precision is 50.

 Column 4 (TITLE) type is VARCHAR, precision is 50.

 Column 5 (COMPANYNAME) type is VARCHAR, precision is 50.

 Column 6 (ADDRESS) type is VARCHAR, precision is 255.

 Column 7 (CITY) type is VARCHAR, precision is 50.

Chapter 10. Debugging and viewing results 85

Column 8 (STATEORPROVINCE) type is VARCHAR, precision is 20.

 Column 9 (POSTALCODE) type is VARCHAR, precision is 20.

 Column 10 (COUNTRY) type is VARCHAR, precision is 50.

 Column 11 (PHONENUMBER) type is VARCHAR, precision is 30.

 Column 12 (FAXNUMBER) type is VARCHAR, precision is 30.

 Column 13 (EMAILADDR) type is VARCHAR, precision is 50.

 Column 14 (MEMBERSINCE) type is TIMESTAMP, precision is 19.

The insert statement to be executed is:

INSERT INTO Membership VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Error in SQLExecute

Message: ORA-00001: unique constraint (SYSTEM.UNIQUE_MEMBER_ID) violated

SQL State: 23000

The following values were being inserted:

 Column 1 MEMBERID : I978-1964

 Column 2 ATTENDEEFIRSTNAME : Jean

 Column 3 ATTENDEELASTNAME : Fresnière

 Column 4 TITLE : Marketing Assistant

 Column 5 COMPANYNAME : Mère Paillarde

 Column 6 ADDRESS : 43 rue St. Laurent

 Column 7 CITY : Montréal

 Column 8 STATEORPROVINCE : Québec

 Column 9 POSTALCODE : H1J 1C3

 Column 10 COUNTRY : Canada

 Column 11 PHONENUMBER : (514) 555-8054

 Column 12 FAXNUMBER : (514) 555-8055

 Column 13 EMAILADDR : fresnierej@paillarde.org

 Column 14 MEMBERSINCE : {ts ’1999-07-09 23:18:04’}

Failed to insert a row (rc = -9).

Failed after 2 rows inserted.

Database load complete.

Error returned to engine: (-9) Failed to execute the SQL statement

Cleaning up and closing the transaction...

Transaction rollback was successful.

Status returned to engine: (0) Success

Commit was successful.

Database disconnect succeeded.

If you forget to specify the usage of the update setting (using -UPDATE either in the

PUT → Target → Command setting in the Map Designer or Integration Flow

Designer or in the command line), you may receive a database error resulting from

the attempt to insert a row with a duplicate index.

The first entry in this example highlighted in bold type indicates that update mode

is off. Because update mode is off, the database adapter attempts to insert a row

into the database table for each row produced by the map. The Message entry

contains the message returned by the database driver to the database adapter

describing the cause of the error. In this example, the row in error would violate

the UNIQUE_MEMBER_ID constraint defined for the table. The next lines show

the column values for the row in which the error occurred and the final result of

the database operation.

There are several possible methods for resolving this problem. Depending upon the

desired behavior, you might:

v Enable update mode when executing the map by using the -UPDATE ON or

-UPDATE ONLY adapter command.

v Use the Delete adapter command (-DELETE) to remove all rows from the output

database table before inserting the rows resulting from map execution.

v Build logic into your map to ensure that there is no existing row in the table

prior to generating an output row to be inserted. This might be accomplished by

86 WebSphere Transformation Extender: Database Interface Designer

either defining a query for the table being used as an input against which a

LOOKUP or SEARCHUP function is performed or by using the DBLOOKUP function to

check for an existing row.

v Use -BADDATA so that all rows with a unique MEMBERID are inserted. Those

rows that would result in duplicate rows are then saved to a specified file.

Database trace for a target: DBLOOKUP/DBQUERY functions

The following is a selection from a database trace file (map_name.dbl) for an

output card using the GET function to execute a DELETE statement based upon a

value in the input.

..Starting a database unload...

Host string:

Userid : eventmgt

Password : ********

Query : DELETE FROM REGISTRATION WHERE REGISTRATIONSTATUS = ’Overflow’

Query size : 71Output is to a buffer.

Statement execution succeeded.

Retrieved 0 records (0 bytes).

Size of DBLOOKUP data is 0.

Warning returned to engine: (2) No data found

Cleaning up and closing the transaction.....

The following SQL statement to be executed:

DELETE FROM REGISTRATION WHERE REGISTRATIONSTATUS = ’Overflow’

and the resulting successful execution statement:

Statement execution succeeded

are included in this trace file as shown in the example above. Note that no records

were retrieved because the DELETE statement does not return data.

The next series of statements are produced for an output card using a DBQUERY

function to obtain several columns from a database table based upon specified

values in the MEMBERID column in the input data.

..Starting a database unload...

Host string:

Userid : eventmgt

Password : ********

Query : SELECT FIRSTNAME, LASTNAME , EMAILADDR FROM EVENTMGT.MEMBERSHIP

 WHERE MEMBERID = ’D191-0001’

Query size : 108

Output is to a buffer.

Statement execution succeeded.

The columns are of the following types:

 Column 1 (FIRSTNAME) type is VARCHAR(30).

 Column 2 (LASTNAME) type is VARCHAR(50).

 Column 3 (EMAILADDR) type is VARCHAR(50).

Number of buffers in fetch array = 492

Writing results to a buffer.

Retrieved 1 records (40 bytes).

Size of DBQUERY data is 40.

The following data was returned from a DBQUERY:

Nancy|Davolio|nancyd@cascadecoffee.com

Status returned to engine: (0) Success

Status returned to engine: (0) Success

Interface library version 6.0(140)

Data being retrieved for DBQUERY function.

Database adapter version 6.0(140)

Chapter 10. Debugging and viewing results 87

Starting a database unload...

Host string: Userid : eventmgt

Password : ********

Query : SELECT FIRSTNAME, LASTNAME , EMAILADDR FROM EVENTMGT.MEMBERSHIP

 WHERE MEMBERID = ’D191-0002’

Query size : 108

Output is to a buffer.

Statement execution succeeded.

The columns are of the following types:

 Column 1 (FIRSTNAME) type is VARCHAR(30).

 Column 2 (LASTNAME) type is VARCHAR(50).

 Column 3 (EMAILADDR) type is VARCHAR(50).

Number of buffers in fetch array = 492

Writing results to a buffer.

Retrieved 1 records (42 bytes).

Size of DBQUERY data is 42.

The following data was returned from a DBQUERY:

Janet|Leverling|jleverling@northwind.com

.

.

In this example, as in the previous one, the database trace file reports the actual

query to be executed. In this example, each DBQUERY returns a single row

containing the three columns from the Membership table for the specified

MEMBERID. The data returned by the DBQUERY function conforms to the

Delimited Row group format type tree definition, meaning that there will be a

pipe character (|) delimiter between columns and a carriage return/line feed

terminator for each row of data.

The size of the data returned by the DBQUERY is also listed. Note that the size of the

DBQUERY data is specified as 42. This value represents the length of the data,

including the carriage return/line feed that follows the row of data. There will be a

similar set of entries in the database trace file for each DBQUERY executed.

Tracing database errors only

Depending upon the number of database sources and targets, the volume of

database functions that are executed, and the database trace settings that are used,

the database trace file can contain a large amount of data. Even when no database

errors occur, the database trace file can become very large.

Use the Trace Error adapter command (-TRACEERR) to minimize the amount of

information contained in the database trace file (map_name.dbl). This file contains

only the database errors occurring during the map execution.

When -TRACEERR is specified, the database trace file is produced using the full

name of the MDQ with a .dbl file name extension instead of the usual trace (.mtr)

extension. It is created in the directory in which the map is located. Use the

-TRACEERR filename syntax as described in the Resource Adapters documentation to

specify the name for the database trace file.

A full database trace is most beneficial during map development; however, it is

preferable to use -TRACEERR in a production environment because only the database

errors are reported.

For example, if you generate the full database trace for a map called DBUpdate

that has three database input cards, it would produce the following 88-line

MultiDB’s.dbl file.

88 WebSphere Transformation Extender: Database Interface Designer

Database type is MS SQL Server

Status returned to engine: (0) Success

No existing connection was found.

Error in: dbopen

Error : 5701

State : 2

Message : Changed database context to ’master’.

Error in: dbuse

Error : 5701

State : 1

Message : Changed database context to ’pubs’.

A transaction was started.

Connection to SQL Server has been established.

Interface library version 6.0(140)

Data being retrieved for input card 1.

Database adapter version 6.0(140)

Starting a database unload...

Server\\Database: HP_NT\\pubs

Userid : sa

Password :

Query : SELECT * FROM Authors

Query size : 21

Output is to a buffer.

Statement execution succeeded.

The columns are of the following types:

 Column 1 (au_id) type is varchar(11).

 Column 2 (au_lname) type is varchar(40).

 Column 3 (au_fname) type is varchar(20).

 Column 4 (phone) type is char(12).

 Column 5 (address) type is varchar(40).

 Column 6 (city) type is varchar(20).

 Column 7 (state) type is varchar(2).

 Column 8 (zip) type is varchar(5).

 Column 9 (contract) type is bit.

Number of buffers in fetch array = 1

Writing results to a buffer.

Retrieved 23 records (1810 bytes).

Status returned to engine: (0) Success

Database type is MS SQL Server

Status returned to engine: (0) Success

Interface library version 6.0(140)

Data being retrieved for input card 2.

Database adapter version 6.0(140)

Starting a database unload...

Server\\Database: HP_NT\\pubs

Userid : sa

Password :

Query : SELECT * FROM Publishers

Query size : 24

Output is to a buffer.

Statement execution succeeded.

The columns are of the following types:

 Column 1 (pub_id) type is char(4).

 Column 2 (pub_name) type is varchar(40).

 Column 3 (city) type is varchar(20).

 Column 4 (state) type is varchar(2).

 Column 5 (country) type is varchar(30).

Number of buffers in fetch array = 1

Writing results to a buffer.

Retrieved 8 records (305 bytes).

Status returned to engine: (0) Success

Database type is MS SQL Server

Status returned to engine: (0) Success

Interface library version 6.0(140)

Data being retrieved for input card 3.

Database adapter version 6.0(140)

Starting a database unload...

Chapter 10. Debugging and viewing results 89

Server\\Database: HP_NT\\pubs

Userid : sa

Password :

Query : SELECT * FROM Title

Query size : 19

Output is to a buffer.

Error in: dbsqlexec

Error : 208

State : 1

Message : Invalid object name ’Title’.

Error in: dbsqlexec

Error : 10007

Message : General SQL Server error: Check messages from the SQL Server.

Failed to execute statement.

Invalid object name ’Title’.

Retrieved 0 records (0 bytes).

Error returned to engine: (-9) Failed to execute the SQL statement

Cleaning up and closing the transaction...

The transaction was successfully committed.

A transaction was started.

Status returned to engine: (0) Success

After reviewing this file, notice that the query for input card number 3 (SELECT *

FROM Title) failed because it references an object name (the table name Title) that

does not exist. Alternatively, you could use the Trace Error adapter command

(-TRACEERR) for each of the three input cards and produce the following database

trace file:

Invalid object name ’Title’.

This file can be used along with the following execution audit log information:

 <SourceReport card="1" adapter="DB" bytes="1810" adapterreturn="0">

 <Message>Success</Message>

 <TimeStamp>01:02:00 January 9, 2004</TimeStamp>

 </SourceReport>

 <SourceReport card="2" adapter="DB" bytes="305" adapterreturn="0">

 <Message>Success</Message>

 <TimeStamp>01:02:00 January 9, 2004</TimeStamp>

 </SourceReport>

 <SourceReport card="3" adapter="DB" bytes="0" adapterreturn="-9">

 <Message>Failed to execute the SQL statement</Message>

 <TimeStamp>01:02:00 January 9, 2004</TimeStamp>

 </SourceReport>

Use this information to determine whether the query defined for input card 3

references a table or view that does not exist.

Viewing database source and target data

When debugging a map that uses database sources or targets, you cannot view the

database source or target data in the Map Designer by selecting Run Results from

the View menu. Because the data retrieved from a database for an input or written

to a database as an output is a snapshot of the data at a given time, it is not

available to the Map Designer after the map runs.

However, you can use Backup settings to capture the data retrieved from or

written to the database for debugging purposes.

90 WebSphere Transformation Extender: Database Interface Designer

Using backup settings

Backup settings are used to determine when, where, and how the data for a

specific card should be copied to a specified backup file. These settings are

configured in the Input Card and Output Card settings in the Map Designer and

the Launcher or in Command Settings for the Integration Flow Designer. For more

information about these settings, see the Map Designer documentation.

Capturing data not processed

The Bad Data adapter command (-BADDATA) can be used for a target (or in a PUT

function). If any inserts, updates, or procedure calls fail to execute, the data that

could not be processed is written to a file you specify and processing continues.

The -BADDATA command can be specified:

v as part of the PUT> Target → Command setting for a card target

v as part of the command line for a database target referenced in a RUN or PUT

function

v on the command line or in a command file.

The rejected record(s) is/are saved in the file specified with the -BADDATA adapter

command.

When the -BADDATA adapter command is used and one or more rows are rejected,

the database adapter returns an adapter return code of 1 with a message of One or

more records could not be processed as shown in the following TargetReport

excerpt in the execution summary section:

 <TargetReport card="1" adapter="DB" bytes="1218" adapterreturn="1">

 <Message>One or more records could not be processed</Message>

 <TimeStamp>22:07:32 January 9, 2004</TimeStamp>

 </TargetReport>

Database audit files

Additional troubleshooting and diagnostic information is available in the database

adapter audit. Use the Audit adapter command (-AUDIT) to create a file that

records the adapter activity for each specified database activity. This command can

be used for a source or target, or in a DBLOOKUP, DBQUERY, GET, or PUT function. This

adapter command can be specified for individual input and output cards on a

card-by-card basis or, optionally, as a global audit that encompasses all database

activity for the entire map.

The default is to produce a file named audit.dbl in the directory in which the map

is located. Optionally, you can append the audit information to an existing file or

specify a name or the full path for the file. For more information, see the Resource

Adapters documentation.

The database adapter audit file provides the following details for each database

access:

v Execution Time (Audit Time)

This is the amount of clock time (in seconds) the database adapter takes to

execute the database action (for example, the retrieval of all rows for a data

source, a single instance of aDBLOOKUP function, and so on).

v Adapter Return Code (AC)

Chapter 10. Debugging and viewing results 91

This is the adapter return code as a result of executing the database action.

v Connection

This information identifies the connection used for each database action. This

can be helpful in determining ways to configure your map to minimize the

number of database connections that must be made.

v Map Name (Map)

This is name of the compiled map file.

v Access Type (Input Card, Function, or Output Card)

This information identifies the type of database action (for example, whether the

type is for an input card, output card, or for a DBLOOKUP, DBQUERY, GET, or PUT

function).

v Additional Information

This information is provided (when appropriate) for each database action such

as the SQL statement associated with an input card, the name of the table or

stored procedure for a database target, or the SQL statement executed by any of

the functions for interfacing with data in a database (for example, DBLOOKUP,

DBQUERY, PUT, and GET).

DBMS trace utilities and SQL command tools

The utilities and tools that are part of your relational database management system

(RDBMS) will also be helpful during the troubleshooting process. For example, a

map fails at runtime because a table name was invalid in an input that is a

database source. Try to execute that same query using the tools included with your

database to determine whether the query will run natively.

Trace utilities

For example, when using ODBC data sources on a Windows platform, enable

ODBC tracing from the ODBC Data Source Administrator window. This creates a

log of the calls to ODBC drivers as you use the Database Interface Designer to

define databases and queries, and when you use an Launcher to run maps that

have database sources or targets. Similar tracing tools are available for most of the

other database systems. For information about the tracing capabilities available for

your database system, see the documentation for your RDBMS.

SQL command tools

Each database management system includes some form of an SQL command tool.

For example, ODBC data sources can be accessed using tools such as Microsoft

Query to test queries and view information about your tables, views, and stored

procedures. Oracle databases can be accessed using SQL Plus; Microsoft SQL

Server data sources can be accessed with ISQL.

These tools provide the ability to determine the problem by testing your queries

against the database using the same drivers being accessed by the database

adapters.

For example, if you run a map that executes a query for a data source and it fails

because one or more of the column names was invalid, you could copy the query

text from the Database Interface Designer and test it using the SQL command tool

for your database. Then, you could modify the query as necessary to get it to work

92 WebSphere Transformation Extender: Database Interface Designer

correctly. When you achieve the expected results, copy the SQL statement back to

the query defined in the Database Interface Designer.

Similarly, if a database insert or update operation fails, you could try entering the

corresponding INSERT or UPDATE statement into your database system’s SQL

command tool to help determine the cause of the failure.

Chapter 10. Debugging and viewing results 93

94 WebSphere Transformation Extender: Database Interface Designer

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 95

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

96 WebSphere Transformation Extender: Database Interface Designer

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

Tivoli

WebSphere

z/OS

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 97

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Transformation Extender, Version 8.1

98 WebSphere Transformation Extender: Database Interface Designer

Index

Special characters
-TRACE adapter commands

using ERROR option 88

.dbl files See DBL files 34

.log files See LOG files 77

.mdq files See MDQ files 16

.mtt files See MTT files 23

A
aliases for columns 41

arguments
DBLOOKUP/DBQUERY

using dynamic adapter commands 55

using static MDQ 54

AS keyword 41

B
binary column types

rules 40

bind facility
for DBLOOKUP/DBQUERY 59

bind values
example 60

C
cards

input
calling stored procedures 63

for a database 43

output
calling stored procedures 64

for a database 44

categories
SizedGroup 40

classes of events 73

column aliases 41

column types 40

binary 40

for expressions 41

column-based triggers 70

columns to update
defining 49

example 51

command access 4

connections
example 47

factors determining 46

management of 45, 46

rules for 47

sharing 46

customization options 10

D
database connections

example 47

database connections (continued)
management of 46

database data
using 1

Database Definition window 13

settings 14

database definitions
printing 34

Database Interface Designer
generating type trees 22

starting 3

Database Interface Designer window
basics 3

Database menu 7

commands 7

database trace files 77

database type tree structures 37

databases
as inputs in maps 43

as outputs in maps 44

defining to Database Interface Designer 15

deleting 16

editing 16

examples
columns to update 51

log file 78

trace files 34

triggers, issues for 71

triggers, using column-based 70

triggers, using row-based 70

triggers, using table-based 70

updating 49

DBL files 34

creating 78

logging errors only 88

DBLOOKUP/DBQUERY
arguments using static MDQ 54

examples
input to RUN function 57

obtain single column value 56

obtaining a single column value 56

obtaining multiple columns/rows 57

parsing multi-column output 58

using adapter commands to obtain a single column

value 59

using bind values 59

DBProcedure types 42

DBSelect and DBTable types 38

debugging
using native tools 92

delimited Row types
rules 39

E
Edit menu 7

commands 7

events
classes 73

conditions to be met 74

defining for triggers 72, 73

© Copyright IBM Corp. 2006 99

events (continued)
modifying or deleting for triggers 73

specifying
AND or OR condition 74

different classes 74

tables 72

When expression 74

examples
native call for stored procedures

Oracle adapters 64

execution audit logs 77

F
file extensions

.dbl 34

.log 77

.mdq 13

.mtt 23

File menu 5

commands 5

Find dialog 36

fields 35

G
Generate Type Tree from Queues dialog

fields 29

Generate Type Tree from Stored Procedures dialog
fields 26

Generate Type Trees from Query dialog
fields 31

Generate Type Trees from Tables dialog
fields 23

GET functions
target trace example 87

H
Help menu 9

commands 9

I
input cards

calling stored procedures 63

creating for a database 43

K
key columns

defining 49

L
LOG files 77

M
m4ora_col.sql 68

m4ora.sql 68

m4sqlsvr.sql 68

MapAudit log files (.log) 77

maps
using triggers in 72

MDQ files
attribute value formatting in 17

backup copies generated for 17

comparing 19

data removed when saved in DID 17

design-time processing of 18

information contained in 16

password encryption in 17

run-time processing of 18

using with DBLOOKUP/DBQUERY 53

XML Prolog text for 17

XML Schema of 16

mdq.xsd file 16

installed location of 16

menus
Database 7

Database Interface Designer window 5

Edit 7

File 5

Help 9

Query 8

Tools 9

View 7

Window 9

MTT files 23

N
Navigator 3

O
Options dialog

Confirmations options fields 11

General option fields 10

Navigator option fields 10

Tables/Views option fields 11

Trace option field 11

Oracle
using object type parameters for stored procedures 64

output cards
calling stored procedures 64

creating for a database 44

P
Print dialog 34

ProcedureCall types 42

Q
queries

comparing 19

defining triggersvfor 72

defining with variables 21

generating a type tree from 33

text using a stored procedure 63

type tree structure 37

Query menu 8

commands 8

queues
generating a type tree 29, 31

100 WebSphere Transformation Extender: Database Interface Designer

R
RDBMS 1

Row types
delimited 39

fixed 39

row-based triggers 70

rules
binary column type 40

delimited Row type 39

for type names in type tree 38

S
SELECT statements in queries 15

size of item types for columns in a row 40

Sized attributes 40

SizedGroup category 40

source
examples

tracing 81

source examples
tracing 79

special characters in type names 38

SQL command tools 92

starting the Database Interface Designer 3

Startup Window 3

status bar 7

stored procedures
calling in output cards 64

calling with object type parameters
Oracle 64

generating a type tree 28

in query text 63

methods of calling 61

returning values from 62

type tree structure 42

using as input 63

using as output 63

syntax
bind value in SQL statement 60

variables in the Database Interface Designer 21

system definition diagram tools 5

T
table-based triggers 70

tables
generating a type tree from 25

type tree structure 37

target
trace examples 81

missing required value 83

targets
trace examples

using -BADDATA 84

using GET 87

with UPDATE off 85

Toolbar 5

Tools menu 9

commands 9

trace examples
.dbl file 78

for a source 79, 81

for target 81

missing required value 83

using -BADDATA 84

trace examples (continued)
for target (continued)

using GET 87

with UPDATE off 85

transactional controls 45

triggers
column-based 70

databases supporting 67

defining events 72, 73

event conditions 74

installation requirements for 67

issues for 71

maintaining triggering tables for 69

modifying or deleting events 73

row-based 70

specifying
AND or OR condition 74

different event classes 74

tables 72

When expression 74

table-based 70

tables created for 68

types of 67

using a database 72

using a query 72

troubleshooting
tools 77

using native tools 92

type tree files 23

type trees
for stored procedures 63

generating
from a query 33

from a queue 29, 31

from a stored procedure 28

from a table 25

from a view 23, 25

using Database Interface Designer 22

query and table structure 37

stored procedure structure 42

type name rules 38

types
column 40

binary 40

columns for expressions 41

DBProcedure 42

DBSelect and DBTable 38

ProcedureCall 42

Row 38

delimited format 39

fixed format 39

U
update columns

definition 51

example 51

update keys
columns to update 51

definition of 49

examples
columns to update 51

specifying update mode 50

update modes
specifying in the Map Designer 50

specifying on the command line 50

Index 101

V
values

returned from stored procedures 62, 63

variables
passing values at run time 22

syntax for defining in a query 21

View menu 7

commands 7

views
generating a type tree from 23, 25

W
When expression 74

formats used for 75

table column format example 75

table SELECT 1 FROM format example 75

Window menu 9

commands 9

102 WebSphere Transformation Extender: Database Interface Designer

����

Printed in USA

	Contents
	Chapter 1. Database Interface Designer overview
	Basic steps for using database data
	To use the Database Interface Designer to import database definitions
	To use the Map Designer to configure database sources, targets, or operands in a rule

	Chapter 2. Database Interface Designer basics
	Starting the Database Interface Designer
	Database Interface Designer user interface
	The Navigator
	Changing the appearance of the navigator

	Menu commands and tools
	Menu
	Toolbar
	File menu
	Edit menu
	View menu
	Database menu
	Query menu
	Tools menu
	Window menu (Alt+W)
	Help menu

	Configuring the environment
	Tools > Options
	General options
	Navigator options
	Trace window options
	Tables/views option
	Confirmations options

	Shortcut keys

	Chapter 3. Database/query files
	Creating database/query files
	Defining a database
	Defining a query
	Editing or deleting a database or query
	To edit a database or query
	To delete a database or query

	Understanding the MDQ XML format
	XML Schema
	Saving database/query files
	XML prolog text
	XML data from XML-generated MDQ files
	Attribute formatting
	Password encryption
	Backup copies

	Processing MDQ files
	Runtime execution
	Design-time execution

	Comparing database/query files
	Criteria for analyzing differences
	Creating a database/query file comparison
	Viewing database/query file differences
	Database/query file difference results
	Database definition setting differences
	Query differences
	Variable differences
	Unique database information
	Stored procedure differences
	Table differences

	Defining variables in SQL statements
	Defining a query with variables
	To specify values in the Define Variables dialog
	To delete a variable

	Specifying the values at runtime

	Generating type trees
	From a table or view
	From a stored procedure
	From a message queue (Oracle AQ)
	From a query

	Printing reports
	Database Interface Designer trace files
	Database Interface Designer trace
	Viewing Database Interface Designer trace files
	Finding text in trace files

	Chapter 4. Database type trees
	Table and query type tree structure
	Special characters in type names
	Characteristics of the DBSelect or DBTable type
	Components and format of the row type
	Delimited row group format
	Fixed row group format

	Defining the column type(s)
	Binary column types
	Column types for expressions
	Specifying column aliases

	Stored procedure type tree structure
	Oracle AQ Message type tree structure

	Chapter 5. Database sources and targets
	Using a database as a source
	Defining a database source in the Map Designer
	Database GET> Source settings
	GET> Source> Command setting

	Using a database as a target
	Defining a database target in the map designer
	Database PUT > Target settings
	PUT > Target > Command setting

	Database connections and transactions
	Transactional control
	Database connection management
	Connection factors
	Connection rules

	Connection example

	Chapter 6. Updating database tables
	Using key and update columns
	Defining key and update columns
	Specifying update mode
	Using the Map Designer or Integration Flow Designer
	Using an adapter command at execution time

	Update key columns
	Example using update columns

	Chapter 7. Database functions
	Accessing database information in a map rule
	Using DBLOOKUP and DBQUERY
	Syntax1 - using a static MDQ file
	Syntax2 - using dynamic adapter commands
	Syntax2 formatting issues

	Examples
	Example 1 - obtaining a single column value
	Example 2 - using DBQUERY to obtain multiple columns or rows
	Example 3 - using DBQUERY to provide map input to RUN function
	Example 4 - using WORD to parse multi-column output from DBQUERY
	Example 5 - using DBQUERY with adapter commands to obtain a single column value

	Uses

	Using bind values in database functions

	Chapter 8. Using stored procedures
	Calling stored procedures
	Database-independent syntax for calls

	Examples using stored procedures
	Returning the Value from a stored function

	Using a stored procedure as an input
	Using a query to execute a stored procedure

	Using a stored procedure as an output
	Stored procedures with object type parameters

	Chapter 9. Database triggers
	Database triggers overview
	Database support
	Installation requirements
	Column-based triggering

	Tables created for triggering
	Maintaining triggering tables
	Handling unexpected shutdowns
	Handling truncated tables

	Table-based triggering
	Row-based triggering
	Column-based triggering

	Issues for both row- and table-based triggering
	Issues for row-based triggering only
	Defining a trigger using a database source

	Using a database as a map trigger
	Defining a trigger for a query
	Defining events

	Specifying a combination of different event classes
	Specifying AND or OR
	Specifying when
	Format of the when expression

	Specifying triggers on the command line
	Using the Integration Flow Designer to enable triggers

	Chapter 10. Debugging and viewing results
	Troubleshooting tools
	Database trace files
	Format of database trace files
	Producing the database trace in the Database Interface Designer
	Producing the database trace during map execution
	Using the Trace adapter command
	Database trace for a valid source
	Database trace for a source with errors
	Database trace for a valid target
	Database trace for a target: missing required value
	Database trace for a target - using the bad data adapter command (-BADDATA)
	Database trace for a target with -UPDATE off
	Database trace for a target: DBLOOKUP/DBQUERY functions

	Tracing database errors only

	Viewing database source and target data
	Using backup settings
	Capturing data not processed

	Database audit files
	DBMS trace utilities and SQL command tools
	Trace utilities
	SQL command tools

	Notices
	Programming interface information
	Trademarks and service marks

	Index

