
IBM WebSphere Transformation Extender

Platform API

Version 8.1

���

Note

Before using this information, be sure to read the general information in “Notices” on page 41.

October 2006

This edition of this document applies to WebSphere Transformation Extender, 8.1 and to all subsequent releases and

modifications until otherwise indicated in new editions.

To send us your comments about this document, e-mail DTX_doc_feedback@us.ibm.com. We look forward to

hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Platform API overview . 1

Installed files . 1

Platform API examples . 1

Chapter 2. Using the Platform API . 3

Platform API usage guidelines . 3

Retaining java objects . 3

Using Platform API . 3

The Run command and command options . 4

Whose memory is It anyway? . 5

Data to and from the Platform API . 5

Passing input data to a map . 5

Returning data from a map . 6

Using maps in memory . 6

An example of using maps in memory . 7

Loading multiple maps . 7

DTX_DO_NOT_CHDIR for Windows . 8

Chapter 3. Using Platform API in a UNIX environment 9

Dynamic load/unload of the API (advanced users only) . 9

Configuring the UNIX environment . 9

Environment variable setup program . 9

Environmental debug information (DTX_DEBUG) . 10

File locking (DTX_FILE_LOCKING) . 10

Do not change directory (DTX_DO_NOT_CHDIR) . 11

Configuring the map execution environment . 11

Enabling file locking . 12

Disabling file locking . 12

Using the Platform API with database adapters . 12

Chapter 4. Using Platform API on z/OS . 13

Overview . 13

Requirements . 13

Calling the Platform API from COBOL . 13

Calling the Platform API from a COBOL DLL . 13

Example files for z/OS . 14

SINKMAP example MAP . 14

Platform API `C’ example . 14

Platform API COBOL examples . 14

Passing function parameters . 14

Cobol copybooks . 15

PLATAPID DLL import definition . 15

Chapter 5. Platform API functions . 17

MercInitAPI() function . 17

Syntax . 17

Returns . 18

See Also . 18

MercExitAPI() function . 18

Syntax . 18

Returns . 18

For more information . 18

RunMap function . 18

Syntax . 18

© Copyright IBM Corp. 2006 iii

Parameters . 19

Returns . 19

InitializeRunMapInstance function . 19

Syntax . 19

Parameters . 20

Returns . 20

For more information . 20

RunMapUsesInstance function . 20

Syntax . 20

Parameters . 20

Returns . 21

For more information . 21

FreeRunMapInstance function . 21

Syntax . 21

Parameters . 21

Returns . 21

For more information . 21

GetCardIOs function . 21

Syntax . 22

Parameters . 22

Returns . 22

Chapter 6. Platform API structure definitions 25

EXITPARAM structure . 25

EXITPARAM components and usage . 25

CARDINFO structure . 26

CARDINFO components . 27

EXEOPTS structure . 31

EXEOPTS components . 32

Chapter 7. Platform API return codes and error messages 37

Messages . 37

Notices . 41

Programming interface information . 43

Trademarks and service marks . 43

Index . 45

iv IBM WebSphere Transformation Extender: Platform API

Chapter 1. Platform API overview

The Platform API provides tight integration of the Command Server or Launcher

into user applications, including those created using development tools such as

Visual Basic. The Platform API is based on the command options available for the

particular development platform. These options, explained in the Execution

Commands documentation, provide flexibility in how your maps are executed. For

example, you can pass data to be mapped to the API or receive mapped data from

the API without using files. The Platform API includes platform-specific database

connectivity. Compile and link commands are platform and operating system

specific.

Installed files

The following files are included in the WebSphere Transformation Extender, which

includes the Platform API for Win32 and UNIX. For z/OS information, see ″Using

the API on z/OS″.

File Description

librun.*

Platform API libraries (UNIX)

runmer32.dll

mercma32.dll

mercad32.dll

mercrm32.dll

dtxpi.dll

mresname.dll

Platform API libraries (Win32)

testapi.c

Sample ’C’ program showing use of the Platform API to execute the

sinkmap map example

runmerc.h

Platform API header file

readme.txt

Readme file containing instructions for compiling and running the testapi.c

file

testapid.c

Sample ’C’ program illustrating how to dynamically load the Platform API

and how to set the exit routine and unload in the Platform API in the exit

routine (UNIX only)

 This sample `C’ program is for the Sun operating system. The actual

implementation on other systems may be slightly different, but the concept

is the same.

Platform API examples

The examples provided with the WebSphere Transformation Extender Software

Development Kit are located at install_dir/examples/dk.

© Copyright IBM Corp. 2006 1

2 IBM WebSphere Transformation Extender: Platform API

Chapter 2. Using the Platform API

You can use the Platform API functions and structures to integrate mapping

processes within your application.

The Platform API is a C library.

Platform API usage guidelines

The guidelines for using the Platform API describe retaining java objects, using

Platform API, and the RUN command and command options.

Retaining java objects

To retain java objects after a given map instance ends, you must enable an option

in the dtx.ini initialization file listed under [JVM Options]:

option1=-Dmpi.map.destroy_object_pool=false

Since the java objects will not be released, the Platform API application is

responsible for freeing any existing java objects.

For information about JVM Options, see the Type Tree Importers documentation.

Using Platform API

The following procedure assumes that you have a previously created map or

system.

To use the Platform API

1. From within your application, if your map uses an adapter such as a database,

messaging or utility, call MercInitAPI() function to establish adapter

connections before calling any Platform API functions.

2. Initialize the ExitParam structure using a memset()call for the ExitParam

structure, which will subsequently be used as an argument for the RunMap

function.

When performing a memcpy(), be sure that the map name is null - terminated

by adding a terminating null of \0 to the line.

3. Create a standard command line within your application.

For example, to build a command line for use with the RunMap function:

v Assign lpDataToApp to point to the command line.

v Execute the RunMap function.
4. If you called MercInitAPI()to establish connections for an adapter in step 1

above, call MercExitAPI()after calling Platform API functions to close the

adapter connections and perform necessary API clean-up.

In the simplest situation, to run sinkmap.mmc, your program may look like the

following:

 #include "windows.h"

 #include <stdio.h>

 #include "runmerc.h"

 int main(void)

© Copyright IBM Corp. 2006 3

{

 EXITPARAM ExitParam;

 MercInitAPI();

 memset(&ExitParam,0,sizeof(EXITPARAM));

 ExitParam.lpDataToApp = (unsigned char *)"sinkmap.mmc -ae -ts -p32:8\0";

 ExitParam.dwSize = sizeof(EXITPARAM);

 ExitParam.lpv = NULL;

 RunMap(&ExitParam);

 printf("Map returned %d: %s\n", ExitParam.nReturn, ExitParam.szErrMsg);

 if (ExitParam.dwfromLen)

 free (ExitParam.lpDataFromApp);

 MercExitAPI();

 return 0;

 }

When using the Platform API on Windows, do not call the DLL from DLLMAIN.

The Run command and command options

To execute a map from within the Platform API, specify a standard run command

as an argument to the RunMap function.

A run command is defined as:

mapset[mapset](s)]|[@command-file-name](s)

where mapset is defined as:

map-name[command-option-list]

and command-option-list is defined as:

command-option[command-option(s)]

The content of a command-file is defined as:

mapset[mapset] (s)

where map-name specifies the compiled map file (.mmc) to be executed.

An example of a simple run command might be the name of the compiled map

and related command options:

sinkmap.mmc -ae -ts -p32:8

A run command might consist of more than one map file to be executed, such as:

xlatappdata.mmc -ae -if1 mydata.txt updmaster.mmc -ts -wm

Alternatively, the run command might reference a command file that contains one

or more maps with associated command options, such as:

@processorders.cmd

For a complete reference of command options, see the Execution Commands

documentation.

4 IBM WebSphere Transformation Extender: Platform API

Whose memory is It anyway?

When you call RunMap from your application, it is your responsibility to allocate

and release any memory associated with lpDataToApp. lpDataFromApp is allocated

by the Platform API, but you must release it. With the dynamic link library (DLL)

versions of the Platform API, release memory using the macro GlobalFreePtr,

defined in windowsx.h of the Microsoft header file, which is included with the

32-bit Windows APIs. With non-DLL versions of the Platform API, use the C

runtime free call.

See ″Return Codes and Error Messages″ for a list of the error codes that result

when an invalid command line is specified in lpDataToApp for the Platform API.

Data to and from the Platform API

Use the Input Source Override - Echo execution command (-IE) for a source or

target to pass data as input from your application to a map or to receive data as

output of a map without using files or applications.

Passing input data to a map

For example, if your application has a pointer to data you want to use as a source

to the map mymap.mmc, the following code fragment shows one way of doing

this:

int main(void)

{

EXITPARAM ExitParam;

LPBYTE lpBuf;

DWORD dwLen;

char szbuf[50];

int nlen;

/* do user stuff to get buffer and length of buffer to map /

.

.

.

/* dwLen is length of input data */

/* lpBuf is the buffer that contains the input data */

/* -ie1 means "echo" in input for source number 1 */

/* in this example, we will use the size option with the -ie option */

/* to tell the API the size of the input */

sprintf(szbuf, "mymapp.mmc -ie1s%d ", dwLen);

nlen = strlen(szbuf);

/* allocate storage space for lpDataToApp */

ExitParam.lpDataToApp = malloc(dwLen + 100);

ExitParam.dwSize = sizeof(EXITPARAM);

ExitParam.lpv = NULL;

/* assign it to lpDataToApp */

memcpy(ExitParam.lpDataToApp, szbuf, nlen);

memcpy(&ExitParam.lpDataToApp[nlen], lpBuf, dwLen);

/* call the function to map it */

RunMap(&ExitParam);

/* lpDataFromApp contains the string representation of nReturn */

.

.

.

return 0;

}

Chapter 2. Using the Platform API 5

Returning data from a map

When you do not override any of the map’s targets with the Output Target

Override - Echo execution command (-OE), lpDataFromApp contains the string

representation of nReturn. For example, if nReturn is 0, lpDataFromApp is the string

0.

If you override an output by using the Output Target Override - Echo execution

command (-OE), lpDataFromApp contains the data for the specified output card.

Using -OE for more than one output concatenates the data for the outputs with no

separator.

Using the previous example, if you append -oe1 to the lpDataToApp, then

lpDataFromApp contains the data that was mapped to the first output rather than

the string representation of nReturn. The length is in the dwFromLen component of

the EXITPARAM structure as you can see in the following code example:

int main(void)

{

EXITPARAM ExitParam;

LPBYTE lpBuf;

DWORD dwLen;

char szbuf[50];

int nlen;

/* do user stuff to get buffer and length of buffer to map */

.

.

.

/* dwLen is length of input data */

/* lpBuf is the buffer that contains the input data */

/* create the command line */

/* -ie1 means "echo" in input for source number 1 */

/* in this example, we will use the size option with the -ie option */

/* to tell the API the size of the input */

sprintf(szbuf, "mymapp.mmc -ie1s%d ", dwLen);

nlen = strlen(szbuf);

/* allocate storage space for lpDataToApp */

ExitParam.lpDataToApp = malloc(dwLen + 100);

ExitParam.dwSize = sizeof(EXITPARAM);

ExitParam.lpv = NULL;

/* assign it to lpDataToApp */

memcpy(ExitParam.lpDataToApp, szbuf, nlen);

memcpy(&ExitParam.lpDataToApp[nlen], lpBuf, dwLen);

/* now add in the -oe1 option to get the data that was mapped back */

memcpy(&ExitParam.lpDataToApp[nLen + dwLen], " -oe1", 5);

/* call the function to map it */

RunMap(&ExitParam);

/* lpDataFromApp now contains the output from card 1 that was mapped */

/* dwFromLen is the size of the output */

.

.

.

return 0;

}

Using maps in memory

The Platform API has the ability to load one or more maps into memory for

subsequent execution. The advantage of using the Platform API is that the map

only loads into memory once, rather than once for each execution.

The three functions Platform API that can load the map into memory are:

6 IBM WebSphere Transformation Extender: Platform API

v InitializeRunMapInstance

v FreeRunMapInstance

v RunMapUsesInstance

An example of using maps in memory

To execute maps in memory using RunMap:

1. Initialize and set up your EXITPARAM structure.

2. Initialize each map to be executed from memory using the

InitializeRunMapInstance function.

3. Associate the RunMapInstance, returned by the InitializeRunMapInstance

function, with its corresponding EXITPARAM structure by calling

RunMapUsesInstance with bSet equal to TRUE.

4. Set up the information in the EXITPARAM structure. Set up lpDataToApp and call

RunMap to execute the map.

5. When all instances of the RunMapInstance are complete, free the memory

associated with the map instance by calling FreeRunMapInstance, and clear the

EXITPARAM structure from knowledge of the map instance by calling

RunMapUsesInstance with bSet equal to FALSE.

Initially, if the program has an EXITPARAM variable named ep, to call RunMap the

program would have set:

ep.lpv = NULL

ep.dwSize = sizeof(EXITPARAM);

The following sample code uses the RunMap function to call a map (sinkmap.mmc)

that has been initialized into memory.

In the following code, lpv is an LPVOID type set within the user’s program.

/* declare a new local variable: */

LPVOID lpv;

/* to initialize, do these two steps */

/* this gets a pointer to a map instance: */

lpv = InitializeRunMapInstance("sinkmap.mmc");

/* this assigns the map instance to the ep structure: */

RunMapUsesInstance(&ep, lpv, TRUE);

/* now do the normal init stuff (setting up lpDataToApp) */

ep.lpDataToApp = "sinkmap.mmc -ae";

/* and call RunMap */

RunMap(&ep);

/* and to clear the maps in memory, these two steps: */

/* this frees the memory associated with the map instance: */

FreeRunMapInstance(lpv);

/* this clears the ep structure from knowledge of the map instance: */

RunMapUsesInstance(&ep, NULL, FALSE);

Loading multiple maps

You can preload more than one map. The RunMap function looks for the EXITPARAM

structure to determine whether the structure has been set with RunMapUsesInstance

call.

Be sure to set up the call to the RunMap function with the same map name

(including path) as when InitializeRunMap was called.

Chapter 2. Using the Platform API 7

DTX_DO_NOT_CHDIR for Windows

During run time, by default, the API changes to the directory where the compiled

map is located. To disable this feature, set the DTX_DO_NOT_CHDIR environment

variable to TRUE. For example:

DTX_DO_NOT_CHDIR=TRUE

Use caution when enabling the DTX_DO_NOT_CHDIR environment variable. Any

references to relative paths in the mapping may not remain relative to the

compiled map as required.

For detailed information, see ″Do Not Change Directory (DTX_DO_NOT_CHDIR)″.

8 IBM WebSphere Transformation Extender: Platform API

Chapter 3. Using Platform API in a UNIX environment

Environment variables can be set for the Platform API to define the location for

temporary files, to produce environmental debugging information, and to control

file-locking facilities. These features are available for all UNIX systems on which

the Platform API is available.

The HP Non-stop ZLE platform does not use dynamic-link libraries. Any part of

this documentation that describes shared libraries and shared library path

(LIBPATH) variables does not apply to this platform.

Dynamic load/unload of the API (advanced users only)

If you are using dynamic load/unload of the Platform API, the unload operation

must be moved to an exit handler. See the sample program testapid.c, found in the

default installation directory in the Examples\Platform API folder, for an example.

The unload operation must be in the exit handler because the Platform API also

uses exit handlers to free resources. If your program unloads the Platform API

before issuing the exit or return) API, results can be unpredictable.

The testapid.c sample is for Sun Microsystems platforms only. The actual operation

on other systems may be slightly different, but the concept is the same.

In the sample program testapid.c:

v atexit(myexit)sets up the exit handler in the beginning of the program.

v dlopen opens the Platform API shared library (libplatapi.so).

v dlsym obtains the address of the RunMap routine within the Platform API shared

library and this routine is run.

v When the return ExitParam.nReturn is run, the myexit function issues dlclose to

close the Platform API shared library.

Configuring the UNIX environment

The following documentation describes the guidelines for configuring the Platform

API in a UNIX environment.

The HP Non-stop ZLE platform does not use dynamic link libraries. Any sections

in this documentation that describe shared libraries and shared library path

(LIBPATH) variables do not apply to this platform.

Environment variable setup program

Before executing a map, execute the setup program in the Transformation Extender

installation directory. This will set the required environment variables for executing

(PATH, Shared Library Path, DTX_TMP_DIR, DTX_HOME_DIR).

The following procedure assumes that your UNIX command line environment is

the Korn (ksh) or Bourne (sh) shell. There must be a space between the period (.)

and the command path. The period does not work with the C shell (csh).

Execute the command as follows:

© Copyright IBM Corp. 2006 9

. /install_directory/setup

Environmental debug information (DTX_DEBUG)

If a problem occurs while executing a map with the Command Server or Platform

API on UNIX, environmental debug information is produced that helps determine

the cause of the problem.

By default, the environmental debug facility is disabled if the DTX_DEBUG

environment variable is not defined.

Enabling environmental debug

To enable this environmental debug or trace facility, set the DTX_DEBUG environment

variable to TRUE. For example:

DTX_DEBUG=TRUE

export DTX_DEBUG

This environmental debug information is written to a file named mercinfo.log in

the directory identified by the DTX_TMP_DIR environment variable. If the

DTX_TMP_DIR environment variable is not set, mercinfo.log is written to /tmp. The

setup program sets DTX_TMP_DIR to /install_directory/tmp.

The environmental debug file can be used to provide additional information for

troubleshooting problems with a specific map. The following is a sample of the

information contained in the environmental debug file:

PROCESS_ID: 27435, API_REF: 1

 Date/Time: Tue Mar 28 08:17:49.566911 2000

FILE: mercmain.c, line: 360

 info: [DTX Product Version: (561)]

PROCESS_ID: 27435, API_REF: 1

 Date/Time: Tue Mar 28 08:17:49.571748 2000

FILE: mercmain.c, line: 388

 info: [DTX RUNNING: Tue Mar 21 08:17:49 2000]

PROCESS_ID: 27435, API_REF: 1

 Date/Time: Tue Mar 21 08:17:49.583996 2000

FILE: mercrun.c, line: 1320

 New Map File - Tue Mar 28 08:17:49 2000 [sinkmap.mmc]

PROCESS_ID: 27435, API_REF: 1

 Date/Time: Tue Mar 28 08:18:05.109727 2000

FILE: mercmain.c, line: 645

 info: [Info - main(): Map Completed Successfully.]

Disabling environmental debug

To disable the environmental debug facility, set the DTX_DEBUG environment variable

to FALSE. For example:

DTX_DEBUG=FALSE

export DTX_DEBUG

File locking (DTX_FILE_LOCKING)

The file locking facilities allow two or more mapping processes or threads to write

to the same output files in a controlled manner. These files include not only output

files, but also map work files, audit log files and trace files.

File locking is enabled by default. The UNIX Command Server and Platform API

both use file locking. See ″Enabling File Locking″ and ″Disabling File Locking″ for

more information.

10 IBM WebSphere Transformation Extender: Platform API

During file locking, information should be written to a temporary file named

.mercShm in the directory identified by the DTX_TMP_DIR environment variable. If

the DTX_TMP_DIR environment variable is not set, this file will be written to /tmp.

Additional files created that are related to file locking and shared memory include:

File Name

Description

.mercPid

Contains process ID information for the mapping processes using shared

memory

.mercOldShm

Contains old shared memory information

.mercPid#

A series of files containing process ID information for entries in the

.mercOldShm file. The # is replaced by a number that references a

corresponding line in the .mercOldShm file.

These files should not be deleted for any reason.

Do not change directory (DTX_DO_NOT_CHDIR)

The do not change directory (DTX_DO_NOT_CHDIR) facilities control the use of the

change current directory (chdir) function. This means that the PAPI code will not

use the chdir function to change the directory.

By default, the do not change directory facility is disabled if the DTX_DO_NOT_CHDIR

environment variable is not defined.

Enabling Do Not Change Directory

To enable the do not change directory facility, set the DTX_DO_NOT_CHDIR

environment variable to TRUE. For example:

DTX_DO_NOT_CHDIR=TRUE

export DTX_DO_NOT_CHDIR

The DTX_DO_NOT_CHDIR variable can be used only in cases of absolute path names. If

you use relative path names and DTX_DO_NOT_CHDIR=TRUE, results may not be as

expected.

Disabling Do Not Change Directory

To disable the environmental debug facility, set the DTX_DO_NOT_CHDIR environment

variable to FALSE. For example:

DTX_DO_NOT_CHDIR=FALSE

export DTX_DO_NOT_CHDIR

Configuring the map execution environment

Because file locking applies to all files written to during map execution, certain

map and adapter settings should be used to set up the execution environment to

support this. Examples of this include:

v A map’s output files can be managed using the AdapterRetry setting for a

target. You can also specify this by using the Rc:i parameter within the -OFx

execution command.

Chapter 3. Using Platform API in a UNIX environment 11

v The map’s work files, audit logs and trace files can be managed using the map

setting. You can also specify this by using the -Yc:i execution command.

v Another option for work files and audit logs is to use the Unique FilePrefix

option for the MapAudit and WorkSpace map settings. You can also do this

using the -WU and -AU execution commands.

Because trace files do not have an option for using unique file names, they can

only be managed by using the MapRetry map setting, or the -Yc:i execution

command.

See the Execution Commands documentation and the Map Designer documentation

for detailed information about these options.

Enabling file locking

File locking is enabled by default. Setting the environmental debug facility is

optional to the file locking facility. To enable the environmental debug facility, set

the DTX_DEBUG environment variable to TRUE. To enable the file locking facility, set

the DTX_FILE_LOCKING environment variable to TRUE. For example:

DTX_FILE_LOCKING =TRUE

export DTX_FILE_LOCKING

To use this file locking facility, the DTX_TMP_DIR must be set to a common directory

for all situations in which maps are using common output files.

Disabling file locking

To disable the file locking facility, set the DTX_FILE_LOCKING environment variable

to FALSE. For example:

DTX_FILE_LOCKING=FALSE

export DTX_FILE_LOCKING

If you do not want file locking and the DTX_FILE_LOCKING environment variable is

not defined, the DTX_TMP_DIR must be set to a unique directory path for each

mapping process.

Using the Platform API with database adapters

To use the Platform API with database adapters, you must install the database

adapters and set the shared object path environment variable. However, even if

you are not using database adapters, this environment variable must be set to

access the shared libraries.

The RS/6000 AIX platform stores in cache shared libraries. So, if you update a

shared library on the disk, you will not be able to see the update. Use the slibclean

command at user root to remove the old shared library from system memory.

12 IBM WebSphere Transformation Extender: Platform API

Chapter 4. Using Platform API on z/OS

WebSphere Transformation Extender supports two execution environments on

z/OS: batch and CICS. The command server execution environment for CICS

provides a programming interface that uses the CICS Command Level Program

Control APIs.

This interface enables COBOL programs to call the WebSphere Transformation

Extender server on CICS in a fashion similar to the RunMap function described in

this documentation. Information about the WebSphere Transformation Extender

CICS programming interface is located in the Command Server documentation. The

Platform API documentation focuses on the z/OS batch Platform API.

Overview

The Platform API for z/OS, like the other platforms, is a set of function calls that

allow a high-level language program to programmatically call the WebSphere

Transformation Extender execution environment. The high-level languages

supported on z/OS are C/C++ and COBOL.

The Platform API is available as part of the Software Development Kit (SDK)

runtime execution environment included with the WebSphere Transformation

Extender for z/OS. The SDK contains the Platform API runtime and example

programs for ’C’ and COBOL.

Requirements

The use of the Platform API on z/OS requires the use of a Language Environment

(LE) enabled C/C++ or COBOL compiler. The Platform API will work with all

supported releases of the LE run time.

Calling the Platform API from COBOL

The WebSphere Transformation Extender provides a way to call platform API from

COBOL by calling the Platform API functions as a DLL.

This requires an IBM Host COBOL compiler that provides COBOL DLL support.

IBM COBOL for z/OS and VM 2.1 is the earliest host compiler that supports

COBOL DLLs.

Calling the Platform API from a COBOL DLL

From a programming perspective, calling a DLL from COBOL is not much

different from a COBOL dynamic CALL. The major difference is that the DLL

name can be up to 160 characters versus eight (8) for the traditional COBOL call

statement. There are some restrictions, such as the program must be reentrant.

The following COBOL compiler options were used to compile the DTXTCCOB

example program, located in the DTX.SDTXSAMP PDS included in the WebSphere

Transformation Extender installation:

CBL RENT,DLL,NOEXPORTALL,MAP,LIST,LIB,PGMNAME(M),OPT(STD)

© Copyright IBM Corp. 2006 13

For a description of these options, consult the IBM COBOL documentation for

z/OS.

Example files for z/OS

A set of examples is installed with the Software Development Kit included in the

WebSphere Transformation Extender installation that demonstrates how to call the

Platform API. Specific to the Platform API are three example programs and an

example map. There are readme files for each of the examples, which describe how

to install and use them. Compiled versions of these programs are included in the

DTX.SDTXLOAD load library and can be run without building them.

SINKMAP example MAP

The SINKMAP example map is the default map used by the three examples.

The map, input and JCL files are located in the DTX.SDTXSAMP PDS included in

the WebSphere Transformation Extender installation.

The example programs can use a different map by adding or changing the JCL job

parameter statement for the program and referencing the new map along with any

command line options.

Platform API `C’ example

The DTXTCCOB ’C’ example is a variation of the testapid.c example described in

″Dynamic Load/Unload of the API (Advanced Users only)″. The source and JCL

for this example is located in the DTX.SDTXSAMP PDS included in the WebSphere

Transformation Extender installation.

The major difference between the DTXTCCOB z/OS version of testapid.c and the

other platforms is that DTXTCCOB calls the SINKMAP example map using

command line options that are unique to z/OS. To learn more about these

command line options see the Command Server documentation.

Platform API COBOL examples

The DTXTCCOB COBOL example program demonstrates how to call all of the

Platform API functions from a COBOL program compiled as a DLL. The source

and JCL files for this example are located in the DTX.SDTXSAMP PDS included in

the WebSphere Transformation Extender installation.

Passing function parameters

To call platform API functions as a DLL, you will set up function parameters to

pass to the platform API.

The RunMap function takes only one parameter, the ExitParam structure address.

When using the RunMap function, the pointer to the map file name and the pointer

to the DataFromApp are contained in the ExitParam structure. CALLRMAP was

designed to take the extra parameters as a way to minimize the need to

manipulate and handle pointers. A major deficiency in COBOL is that the address

of a working storage item cannot be assigned to a pointer. The item needs to be in

the linkage section.

14 IBM WebSphere Transformation Extender: Platform API

Setting the address of the map file name requires that either the map file name be

passed through the JCL PARM statement (linkage section) or a sub-program be

created that takes the address of the map file name as one parameter and passes

the address back, in the form of a pointer, in another parameter.

Cobol copybooks

There are two copybooks included with the examples. Combined they make up the

COBOL definition of Platform API structures. They are:

Name Description

DTXTCCPY

This copybook contains the COBOL definition for both the EXITPARAM

and EXEOPTS structures.

DTXCICPY

This copybook contains the COBOL definition for the CARDINFO

structure.

The two copybooks are required because the DTXTCCPY copybook needs to be in

the COBOL program’s LINKAGE-SECTION and the DTXCICPY copybook needs to

reside in the WORKING-STORAGE section.

For content descriptions of these copybooks, see the Platform API Structure

Definitions″ in the Platform API documentation.

The variable names contained in the copybooks are the same as the component

names documented in Platform API Structure Definitions″, except that the COBOL

names are all in uppercase. In addition, unlike C, a COBOL program cannot

contain variables with the same name. Therefore, any variable name containing a

″-″ is already defined to the DTXTCCPY copybook.

The COBOL copybooks are located in the DTX.SDTXSAMP PDS included in the

WebSphere Transformation Extender installation.

PLATAPID DLL import definition

The DTXTAEXP is a file that contains the DLL import statements for the Platform

API functions. The file is required for the LE prelinker step of any COBOL or

C/C++ compile job that wants to link in the support for the Platform API.

If you are using your own compile and link JCL, add the DTXTAEXP PDS member

to the SYSIN DD definition of the LE prelinker step of the compile and link JCL.

The DTXTAEXP file is located in the DTX.SDTXSAMP PDS included in the

WebSphere Transformation Extender installation.

Chapter 4. Using Platform API on z/OS 15

16 IBM WebSphere Transformation Extender: Platform API

Chapter 5. Platform API functions

The following list of functions make up the Platform API and provides a brief

description of each function’s purpose.

Function

Description

Adapter Connection and Cleanup

MercInitAPI()

Establishes connections for WebSphere Transformation Extender adapters,

including database, messaging and utility.

MercExitAPI()

Closes the adapter connections established by MercInitAPI()and performs

necessary API clean-up

Executing a Map

RunMap Executes the maps

Executing a Map in Memory

InitializeRunMapInstance

Initializes a specific map file into memory for one or more subsequent

executions

RunMapUsesInstance

Sets or clears the EXITPARAM structure passed into the RunMap function for

maps that have been initialized into memory using the

InitializeRunMapInstance function

FreeRunMapInstance

Frees all memory associated with a map that has been initialized using the

InitializeRunMapInstance function

Examining I/O Cards

GetCardIOs

Obtains card and adapter settings for sources and targets for a particular

map file

MercInitAPI() function

If your map uses an WebSphere Transformation Extender adapter, such as a

database, messaging or utility, call the MercInitAPI() function to establish adapter

connections before calling any Platform API functions. MercInitAPI() is not

required if you are not using adapter connections.

MercInitAPI() and MercExitAPI() are used together. Call MercInitAPI() once at

the start of your application and then call a corresponding MercExitAPI() at the

end. Successive calls to MercInitAPI() are unnecessary.

Syntax

Platform

Syntax

© Copyright IBM Corp. 2006 17

C int MercInitAPI();

z/OS COBOL

CALL ’MercInitAPI’ RETURNING RETCODE.

Returns

Returns 0 if initialization is successful.

See Also

″MercExitAPI() Function″

If MercInitAPI() and MercExitAPI() are not used, each invocation of the RunMap

function establishes and closes adapter connections within the scope of the map. If

MercInitAPI() and MercExitAPI() are used, connections can be shared across maps.

MercExitAPI() function

Use the MercExitAPI() function to close the adapter connections established by the

MercInitAPI() function and perform necessary API clean-up actions.

Syntax

Platform

Syntax

C void MercExitAPI();

z/OS COBOL

CALL ’MercExitAPI’.

Returns

There is no return value.

For more information

v ″MercInitAPI() Function″

RunMap function

Use the RunMap function to execute the map using the map and card settings

compiled into the map, as well as any overrides specified as part of the

lpDataToApp member of the EXITPARAM structure.

Syntax

Platform

Syntax

C void RunMap (LPEXITPARAM lpExitParam);

z/OS COBOL

CALL ’RunMap’ USING BY REFERENCE EXITPARAM.

18 IBM WebSphere Transformation Extender: Platform API

Parameters

RunMap function parameters:

 Parameter Parameter Description

lpExitParam A pointer to an EXITPARAM structure. This structure contains the

input and output parameters used when running the map.

CALLRMAP function parameters:

 Parameter Parameter Description

EXITPARAM This structure contains the input and output parameters used

when running the map.

MapFile The name of the compiled map file and options to run.

DataFromApp Data that is returned from the map execution.

Returns

There is no return value.

However, the members of the EXITPARAM structure contain the following data based

on the map’s execution:

EXITPARAM structure members

Returned data

nReturn

map return code

szErrMsg

map return message

lpDataFromApp

any data returned by the map as a result of echoed outputs

When calling RunMap, the API fills in the value of nReturn based on the map’s

execution. If multiple maps are on the command line, nReturn is based on the last

map on the command line. See ″Return Codes and Error Messages″ for the values

of nReturn and the associated messages in szErrMsg.

InitializeRunMapInstance function

Use the InitializeRunMapInstance function to initialize a specific map file into

memory for one or more subsequent executions.

Syntax

Platform

Syntax

C LPVOID CALLBACK InitializeRunMapInstance(LPSTR lpszMapFile);

Chapter 5. Platform API functions 19

z/OS COBOL

CALL ’ InitializeRunMapInstance ’ USING BY

REFERENCE lpszMapFile,

RETURNING MapInstPtr.

Parameters

Following are parameters for the InitializeRunMapInstance function.

Parameter

Parameter Description

lpszMapFile

The name of the compiled map file to initialize and load into memory.

Returns

If successful, InitializeRunMapInstance returns a pointer to be used for a

subsequent call to RunMapInstance. A NULL return signifies a failure, most likely

meaning the specified map does not exist.

For more information

v ″FreeRunMapInstance Function″

v ″RunMapUsesInstance Function″

RunMapUsesInstance function

Use the RunMapUsesInstance function to set or clear the EXITPARAM structure passed

into the RunMap function for maps that have been initialized into memory using the

function InitializeRunMapInstance.

Syntax

Platform

Syntax

C void CALLBACK RunMapUsesInstance(LPEXITPARAM lpep,

LPVOID lpv,

BOOL bSet);

z/OS COBOL

CALL ’ RunMapUsesInstance’ USING BY REFERENCE EXITPARAM,

BY VALUE lpv,

bSet.

Parameters

Following are parameters for the RunMapUsesInstance function.

Parameter

Parameter Description

lpep The address of the EXITPARAM structure to be used in a RunMap call

lpv The return of a call to the InitializeRunMapInstance function

bSet Indicator of whether to set (TRUE) or clear (FALSE) the EXITPARAM structure

specified by lpep

20 IBM WebSphere Transformation Extender: Platform API

If the RunMapUsesInstance function is being used to clear the EXITPARAM structure

(bSet is FALSE), the lpv parameter can be NULL.

Returns

There is no return value.

For more information

v ″InitializeRunMapInstance Function″

v ″FreeRunMapInstance Function″

FreeRunMapInstance function

Use the FreeRunMapInstance function to free all the memory associated with a map

initialized using the InitializeRunMapInstance function. The FreeRunMapInstance

function is used with the RunMapUsesInstance function when maps in memory are

no longer required.

Syntax

Platform

Syntax

C BOOL CALLBACK FreeRunMapInstance(LPVOID lpRunMapInstance);

z/OS COBOL

CALL ’FreeRunMapInstance’ USING BY VALUE lpRunMapInstance.

Parameters

Following are parameters for the FreeRunMapInstance function.

Parameter

Parameter Description

lpRunMapInstance

The pointer returned by the InitializeRunMapInstance function for a map

loaded into memory.

Returns

The return value is always TRUE.

For more information

v ″InitializeRunMapInstance Function″

v ″RunMapUsesInstance Function″

GetCardIOs function

Use the GetCardIOs function to obtain card and adapter settings for sources and

targets for a particular map file.

Chapter 5. Platform API functions 21

Syntax

Platform

Syntax

C

BOOL CALLBACK GetCardIOs(LPSTR lpszMapFile,

 LPVOID FAR * lpci,

 LPWORD lpCardCount,

 LPVOID lpExeOpts,

 LPWORD lpwRC);

z/OS COBOL

CALL ’GetCardIOs’ USING BY REFERENCE lpszMapFile,

lpci,

lpCardCount,

lpExeOpts,

RETURNING BOOL.

Parameters

Following are parameters for the GetCardIOs function.

Parameter

Parameter Description

lpszMapFile

The map file for which to get card information. This can include an

absolute path or a relative path from where the application is loaded.

lpci A pointer to a void that is converted to a pointer for a CARDINFO structure.

lpCardCount

A pointer to a word that will receive a number representing the total

number of cards, both input and output, in the map.

lpExeOpts

A pointer to a void that is converted to a pointer for an EXEOPTS structure.

This structure contains the map settings that are compiled into the map.

This parameter may be NULL, in which case the map settings information

will not be returned.

lpwRC A pointer to the return code of the map. If successful, this will be 0. A

non-zero value indicates an error.

Returns

If successful, GetCardIOs returns TRUE and lpci contains a pointer to an array of

CARDINFO structures with lpCardCount receiving the count of cards. Otherwise,

GetCardIOs returns FALSE.

When GetCardIOs returns FALSE, it might indicate an incompatible version of the

map file with the release of the Platform API. This usually means the compiled

map file is invalid or needs to be recompiled.

22 IBM WebSphere Transformation Extender: Platform API

If the return value of GetCardIOs is TRUE, it is the calling function’s responsibility to

release the memory associated with lpci. The specific call to release the memory

depends on the platform on which the API resides. See the readme.txt file that

accompanies the specific API.

Chapter 5. Platform API functions 23

24 IBM WebSphere Transformation Extender: Platform API

Chapter 6. Platform API structure definitions

EXITPARAM structure

The EXITPARAM structure is used for the input and output parameters to the RunMap

function.

struct tagExitParamStruct

{

 DWORD dwSize;

 DWORD dwToLen;

 DWORD dwFromLen;

 DWORD dwMapInstance;

 void FAR * lpv;

 LPSTR lpszCmdLine;

 BYTE HUGE * lpDataToApp;

 BYTE HUGE * lpDataFromApp;

 UINT uRetryCount;

 UINT uRetryInterval;

 BOOL bRollback;

 BOOL bCleanup;

 int nReturn;

 char szErrMsg [100];

 char szFile[260];

 void FAR * lpMapHandle;

 void FAR * lpInternal;

 void FAR * lpCmdStruct;

 void FAR * lpAdaptParms;

 void FAR * lpContext;

 void FAR * lpWildcard;

 void FAR * lpfnMS;

 void FAR * lpMS;

 DWORD dwWildcardSize;

 LPSTR lpszMapDirectory;

 WORD wCardNum;

 WORD wCleanupAction;

 WORD wScope;

 UINT uUnitSize;

 BOOL bBurst;

 BOOL bFromRule;

 BOOL bSource;

 DWORD dwRecords;

};

typedef struct tagExitParamStruct EXITPARAM;

typedef struct tagExitParamStruct FAR * LPEXITPARAM;

EXITPARAM components and usage

The EXITPARAM structure has the following components that are used by the RunMap:

Some components of EXITPARAM are not used with the Platform API because this

general structure is also used elsewhere to provide a common interface method.

 Component Used As Use

dwSize Input The size (in bytes) of the EXITPARAM

structure to ensure correct version

compatibility

dwToLen Not used

© Copyright IBM Corp. 2006 25

Component Used As Use

dwFromLen Output The length (size in bytes) of

lpDataFromApp

dwMapInstance1 Must be set to a unique number for each

map that is executed

lpv Not used and should be NULL

lpszCmdLine Not used

lpDataToApp Input The command line being passed in

lpDataFromApp Output The result based on command options

uRetryCount Not used

uRetryInterval Not used

bRollback Not used

bCleanup Not used

nReturn Output Return code based on the last processed

map

szErrMsg Output String message based on nReturn

szFile Not used

lpInternal Not used

lpCmdStruct Not used

lpAdaptParms Not used

lpContext Not used

lpWildcard Not used

dwWildcardSize Not used

lpszMapDirectory Not used

wCardNum Not used

wCleanupAction Not used

wScope Not used

uUnitSize Not used

bBurst Not used

lpfnMS Not used

lpMS Not used

dwRecords Not used

1The dwMapInstance component must be set to a unique number for each map that

executes. Failure to do so will result in unpredictable transactional behavior.

CARDINFO structure

The CARDINFO structure is used to provide information about a map file’s input and

output cards.

struct tagCardInfo {

 WORD wCard;

 WORD wIOType;

 BYTE byFlag;

 char szCardName[MAX_TYPENAME + 1];

 char szFileName[_MAX_PATH + 1];

26 IBM WebSphere Transformation Extender: Platform API

BYTE byUnused[21];

 BOOL bIntegralMode;

 BOOL bSourceEvent;

 BOOL bBackupSwitch;

 BOOL bBackupAlways;

 BOOL bMapDirectory;

 BOOL bAppendBackup;

 BOOL bRollBackOnFailure;

 BOOL bRetrySwitch;

 BOOL bIgnoreAdapterWarnings;

 WORD wMapSuccessAction;

 WORD wScope;

 WORD wRetryAttempts;

 WORD wRetryInterval;

 WORD wFetchUnit;

 WORD wUnused[9];

 char szBackupFile[256];

 };

CARDINFO components

The CARDINFO structure has the following components.

Part Description

wCard The value of the card number in the map. If a map has two inputs and

two outputs, wCard will have the following values:

Card number

Value

first input

1

second input

2

first output

3

second output

4

wIOType

Specifies the source or target type of the card. See ″wIOType Settings″ for

possible values.

byFlag

A value that is OR’d together to get attributes about a card. For example, if

a card is an input card and the reuse work file attribute is set, byFlag will

be CI_INPUT | CI_REUSE. See ″byFlag Settings″ for possible values.

szCardName

A NULL-terminated string that is the name of the card

szFileName

A NULL-terminated string that is the source or destination of the card

 Card Setting:

SourceAdapterCommand

 TargetAdapterCommand

Execution Command:

-I, -O

Chapter 6. Platform API structure definitions 27

byUnused

Reserved for future use

bIntegralMode

Indicates whether the card mode for an input card is Integral (TRUE) or

Burst (FALSE)

 Card Setting:

CardMode

bSourceEvent

Indicates whether the input card is being used as a source event (TRUE).

bBackupSwitch

Indicates whether the Backup switch is ON (TRUE) or OFF (FALSE) for this

card

 Card Setting:

Backup → Switch

bBackupAlways

Indicates whether the When setting for the Backup option is Always (TRUE)

or OnError (FALSE).

 Card Setting:

Backup → When

bMapDirectory

Indicates whether to use the compiled map directory for the backup file

 Card Setting:

Backup → FilePath

bAppendBackup

Indicates whether to append the backup data to an existing file, if one

exists. Otherwise, a new file is created.

 Card Setting:

Backup → BackupFileAction

bRollBackOnFailure

Indicates whether the OnFailure setting is Rollback (TRUE) or Commit

(FALSE)

 Card Setting:

OnFailure

Execution Command:

-Ix#B, -Ox#B

 bRetrySwitch

Indicates whether the AdapterRetry switch is ON (TRUE) or OFF (FALSE)

 Card Setting:

AdapterRetry

Execution Command:

-Ix#R, -Ox#R

 bIgnoreAdapterWarnings

Indicates whether warnings returned by the adapter should be ignored

(TRUE) or not (FALSE)

 Card Setting:

AdapterWarnings

28 IBM WebSphere Transformation Extender: Platform API

wMapSuccessAction

Indicates action to be taken if a map successfully executes. See

″wMapSuccessAction Settings″ for possible values.

 Card Setting:

OnSuccess

Execution Command:

-Ix#X, -Ox#X

wScope

Scope of the transaction. See ″wScope Settings″ for possible values.

 Card Setting:

AdapterScope

wRetryAttempts

Indicates the number of retry attempts to be made

 Card Setting:

AdapterRetry → MaxAttempts

wRetryInterval

Indicates the interval (in seconds) at which retry attempts are to be made

 Card Setting:

AdapterRetry → Interval

wFetchUnit

Indicates the number of units to retrieve for each fetch

 Card Setting:

FetchUnit

wUnused

Not Used

szBackupFile

Name of the backup file that can include a full path, if specified

 Card Setting:

Backup → FilePath

wIOType settings

The wIOType argument has the following settings.

 Constant Value Description

DTX_DATAFILE 0 Source or target is a data file

DTX_STATICFILE 1 Not valid in this usage

DTX_WORKFILE 2 Not valid in this usage

DTX_TRACEFILE 3 Not valid in this usage

DTX_BUFFER 4 Not valid in this usage

DTX_DATABASE 5 Source or target is a database

DTX_APPLICATION 6

7 - 99

100+

Source or target is an

application

User defined

Reserved

Chapter 6. Platform API structure definitions 29

byFlag settings

The byFlag argument has the following settings.

 Constant Value Description

CI_INPUT 1 This is an input card

CI_REUSE 2 Reuse the work file if

possible

CI_APPEND 4 Append to existing output if

possible

CI_UPDATE 8 Update an input card

wScope settings

The wScope argument has the following settings.

 Constant Value Description

ADPT_SCOPE_MAP 0x0001 Scope for the card is the map

ADPT_SCOPE_BURST 0x0002 Scope for the card is the

burst

ADPT_SCOPE_CARD 0x0004 Scope for the card is the card

wMapSuccessAction settings

The wMapSuccessAction argument has the following settings.

For an input card

The wMapSuccessAction argument has the following settings for an input card.

 Constant Value Description

ADPT_KEEP_ALWAYS 0x0001 Do not remove the input

data from its source.

ADPT_KEEP_NEVER 0x0002 Remove the input data from

its source.

ADPT_KEEP_ONCONTENT 0x0004 Do not remove the input

data from its source, unless it

has no content.

For an output card

The wMapSuccessAction argument has the following settings for an output card:

 Constant Value Description

ADPT_C_F_ALWAYS 0x0001 Always send the output data

to its target.

ADPT_C_F_NEVER 0x0002 Never send the output data

to its target.

ADPT_C_F_ONCONTENT 0x0004 Only send the output data to

its target, if it has content.

30 IBM WebSphere Transformation Extender: Platform API

Constant Value Description

ADPT_C_F_APPEND 0x0008 Append the output data to

an existing data file. If the

data file does not exist, it

should be created.

ADPT_C_F_UPDATE 0x0010 Output data should be used

by the adapter to update or

replace existing data.

Additional constants

Some additional constants are available:

 Constant Value Description

MAX_TYPENAME 32 Largest size of the card name

in the CARDINFO structure

MAX_PATH 260 Largest size of the file name

in the CARDINFO structure

EXEOPTS structure

The EXEOPTS structure is used to provide information about the map settings

compiled into the map.

struct tagExecutionOptions

{

 DWORD dwTraceFlags;

 DWORD dwTraceInStart;

 DWORD dwTraceInEnd;

 DWORD dwFailFlags;

 DWORD nWorkFileType;

 BOOL bAuditOn;

 BOOL bUniqueLog;

 DWORD dwDataLog;

 BOOL bAppendLog;

 DWORD dwAuditLog;

 DWORD dwMSAudit;

 DWORD dwCSAudit;

 BOOL bBurstAudit;

 BOOL bUseMMCforAudit;

 BOOL bTraceOn;

 BOOL bUseMMCforTrace;

 BOOL bDefaultAuditFileName;

 BOOL bTraceMemory;

 BOOL bTraceIn;

 BOOL bTraceOut;

 BOOL bCardSummary;

 BOOL bStopOnFirstError;

 BOOL bOmitRestrictions;

 BOOL bOmitPresentation;

 BOOL bOmitSize;

 BOOL bDeleteWorkFiles;

 BOOL bUseMMCforWork;

 BOOL bBurstRestart;

 BOOL bMemoryLog;

 BOOL bMemoryActionSized;

 BOOL bMapRetry;

 BOOL bCustomValidation;

 BOOL bCenturySwitch;

 BOOL bEveryMapWarning;

Chapter 6. Platform API structure definitions 31

BOOL bUniqueWorkFilePrefix;

 BOOL bUnused;

 WORD wDateResolution;

 WORD wTraceICardNo;

 WORD wTraceOCardNo;

 WORD wRetryCount;

 WORD wRetryInterval;

 WORD wPageSizeInK;

 WORD wPageCount;

 WORD wBurstErrorLimit;

 char szAuditDir[264];

 char szTraceDir[264];

 char szWorkDir[264];

};

typedef struct tagExecutionOptions EXEOPTS;

typedef struct tagExecutionOptions;

EXEOPTS components

The EXEOPTS structure has the following components:

Part Description

dwTraceFlags

Specifies the type of trace information to be generated. See ″dwTraceFlags

Settings″ for possible values.

dwTraceInStart

Indicates the input object at which to start producing Trace file

information.

dwTraceInEnd

Indicates the input object at which to stop producing Trace file

information.

dwFailFlags

Specifies the MapSettings → Warnings value. See ″dwFailFlags Settings″ for

possible values.

nWorkFileType

Indicates the type of work area to be used. See ″nWorkFileType Settings″

for possible values.

bAuditOn

Indicates that the audit log is enabled.

bUniqueLog

Indicates that unique names are to be generated for the audit log files.

dwDataLog

If bAuditOn is TRUE, indicates that the data audit log is to be created.

bAppendLog

Indicates that the audit log information is to be appended to an existing

file; otherwise, a new file is created.

dwAuditLog

If bAuditOn is TRUE, indicates that the summary execution audit log is to

be generated.

dwMSAudit

If bAuditOn is TRUE, indicates that map settings are to be recorded in the

audit log.

32 IBM WebSphere Transformation Extender: Platform API

dwCSAudit

If bAuditOn is TRUE, indicates that card settings are to be recorded in the

audit log.

bBurstAudit

If bBurstAudit is TRUE, indicates the burst execution audit log is to be

generated.

bUseMMCforAudit

Indicates that the audit log file is to be created using the name and

location of the compiled map file.

bTraceOn

Indicates that the trace file is enabled.

bUseMMCforTrace

Indicates that the trace file is to be created using the name and location of

the compiled map file.

bDefaultAuditFileName

Indicates to use the <mapname>.log file-naming convention.

bTraceMemory

Not used.

bTraceIn

Indicates that the trace file is enabled for one or more inputs.

btraceOut

Indicates that the trace file is enabled for one or more outputs.

bCardSummary

Indicates that summary trace is enabled.

bStopOnFirstError

Indicates that map execution is to cease after the first card on which an

error occurs.

bOmitRestrictions

Indicates that item data is not checked against restriction values during

map execution.

bOmitPresentation

Indicates that the presentation settings of items is to be ignored during

map execution.

bOmitSize

Indicates that the minimum size of items in delimited data is not to be

checked during map execution.

bDeleteWorkFiles

Indicates that work files are to be deleted after map execution.

bUseMMCforWork

Indicates that work files are to be created using the name and location of

the compiled map file.

bBurstRestart

Indicates that BurstRestart is enabled.

bMemoryLog

Indicates that the audit log is to be created in memory and returned as the

contents of the lpDataFromApp buffer.

Chapter 6. Platform API structure definitions 33

bMemoryActionSized

Indicates that when the audit log is returned in memory, it is returned in

<size> <sp> <data> format.

bMapRetry

Indicates that MapRetry is enabled.

bCustomValidation

Indicates that CustomValidation is enabled.

bCenturySwitch

Indicates that SlidingCentury is enabled.

bEveryMapWarning

Indicates that a global MapWarning setting is specified.

bUniqueWorkFilePrefix

Indicates that unique work file names are to be generated.

bDefaultTraceFileName

Indicates that the default trace file name is to be used.

wDateResolution

Indicates the CCLookup setting for SlidingCentury.

wTraceICardNo

Indicates the card number for producing an input trace.

wTraceOCardNo

Indicates the card number for producing an output trace.

wRetryCount

Indicates the number of retries attempted when accessing non-data file

resources.

wRetryInterval

Indicates the interval (in seconds) between retries.

wPageSizeInK

Indicates the WorkSpace page size in Kbytes.

wPageCount

Indicates the number of WorkSpace pages.

wBurstErrorLimit

Indicates the maximum number of errors that are permissible for

BurstRestart.

szAuditDir[264]

Indicates the directory and filename for the audit log file.

szTraceDir[264]

Indicates the directory into which the trace file will be written.

szWorkDir[264]

Indicates the directory into which work files are to be written.

dwTraceFlags settings

The dwTraceFlags argument has the following settings:

 Constant Value Description

TRACE_ALL 1 Trace all inputs or outputs

34 IBM WebSphere Transformation Extender: Platform API

Constant Value Description

TRACE_CARD 2 Trace a specific input or

output card

TRACE_RANGE 3 Trace a range of input objects

nWorkFileType settings

The nWorkFileType argument has the following settings:

 Constant Value Description

WF_NORMAL 0 Create work files using the

map name

WF_UNIQUE 1 Use unique work file names

WF_INMEM 2 Create work area in memory

WF_FILE 3 Create work files

dwFailFlags settings

The dwFailFlags argument has the following settings:

 Constant Value Description

FO_OUTPUTINVALID 0x00000001 Fail on return code 14 - One

or more outputs was invalid

FO_PAGEUSECTERROR 0x00000002 Fail on return code 18 - Page

usage count error

FO_INPUTNOTCONSUMED 0x00000004 Fail on return code 21 -

Input valid, but unknown

data found

FO_OUTPUTINERRORWARN 0x00000008 Fail on return code 26 -

Output type in error

FO_OUTCONTAINSERRWARN 0x00000010 Fail on return code 27 -

Output type contains errors

FO_INCONTAINSERRWARN 0x00000020 Fail on return code 28 -

Input type contains errors

FO_UNKNOWNINOUTWARN 0x00000040 Fail on return code 29 -

Output valid, but unknown

data found

FO_ALLWARNINGS1 0x0000007F Fail on all warning return

codes (14, 18, 21, 26, 27, 28

and 29)

IW_OUTPUTINVALID 0x00010000 Ignore return code 14 - One

or more outputs was invalid

IW_PAGEUSECTERROR 0x00020000 Ignore return code 18 - Page

usage count error

IW_INPUTNOTCONSUMED 0x00040000 Ignore return code 21 - Input

valid, but unknown data

found

IW_OUTPUTINERRORWARN 0x00080000 Ignore return code 26 -

Output type in error

Chapter 6. Platform API structure definitions 35

Constant Value Description

IW_OUTCONTAINSERRWARN 0x00100000 Ignore return code 27 -

Output type contains errors

IW_INCONTAINSERRWARN 0x00200000 Ignore return code 28 - Input

type contains errors

IW_UNKNOWNINOUTWARN 0x00400000 Ignore return code 29 -

Output valid, but unknown

data found

IW_ALLWARNINGS

2 0x007F0000 Ignore all warning return

codes (14, 18, 21, 26, 27, 28

and 29)

1Value of all FO_XXX OR’d together.

2Value of all IW_XXX OR’d together.

36 IBM WebSphere Transformation Extender: Platform API

Chapter 7. Platform API return codes and error messages

Return codes and error messages are returned when the particular activity

completes. Return codes and error messages may also be recorded as specified in

the audit logs, trace files and execution summary files.

Messages

The Platform API return codes and messages may result when an invalid

command line is specified for the Platform API.

The following table lists the return codes and messages that can result when using

the Platform API.

The return codes marked with an asterisk (*) are displayed with the x replaced

with the specific option associated with the error.

Return Code

Message

50 Memory allocation failure

 Occurs when memory fails.

51 Card override failure

 Occurs when memory fails.

52 I/O initialization failure

 Occurs when memory fails.

53 Open audit failure

 The audit log file is not accessible.

54 No command line

 There is nothing to process.

55 Recursive command files

 More than one command file is included in the command line.

56 Invalid command line option -x

 The option is invalid for the command.

57 Invalid `W’ command line option

 The Work file option is invalid.

58 Invalid `B’ command line option

 The Batch (close) file option is invalid.

59 Invalid `R’ command line option

 The Refresh Rate option is invalid.

60 Invalid `A’ command line option

 The Audit option is invalid.

© Copyright IBM Corp. 2006 37

61 Invalid `P’ command line option

 The Paging option is invalid

62 Invalid `Y’ command line option

 The General I/O Retry option is invalid.

63 Invalid `T’ command line option

 The Trace option is invalid.

64 Invalid `G’ command line option

 The Ignore option is invalid

65 Invalid `I’ command line option for input x

 The Source option is invalid for the identified input.

66 Invalid size in echo command line for input x

 The size specified using the Size option is greater than memory allowed.

67 Invalid adapter type in command line for input x

 The adapter is not of a known adapter type. Includes -IMxxx where xxx is

an unknown adapter alias.

68 Invalid `O’ command line option for output x

 The target option is invalid for output x. The number of characters

between the single quotes that represent the options for an adapter exceed

258 characters in the adapter override.

69 Invalid adapter type in command line for output x

 The adapter is not of a known adapter type. Includes -OMxxx where xxx is

an unknown adapter alias.

70 Command line memory failure

 Occurs when memory is exceeded during echo or override card

commands.

71 Invalid `D’ command line option

 The Date option is invalid.

72 Invalid `F’ command line option

 The Failure option is invalid.

73 Resource manager failure

 (Launcher only) The Resource manager is not used, possibly a memory

failure.

74 Invalid `Z’ command line option

 The Ignore option is invalid.

75 Adapter failed to get data on input

 Enable the adapter trace to record the adapter activity to discover the

cause of the error.

76 Adapter failed to put data on output

 Enable the adapter trace to record the adapter activity to discover the

cause of the error.

38 IBM WebSphere Transformation Extender: Platform API

77 Invalid map name

 This message can occur in two different cases. First, this message occurs

when the map name specified on the command line is more than 32

characters long. Also, this message can occur when there is an error in the

command line such that text for another execution command is

erroneously being interpreted as the map name. For example, in the

command line below, the number representing the size of the echoed data

is missing.

 mymap.mmc -IE1S HereIsMyDataButIForgotToSpecifyTheSize -AED

 Because the size is missing, it is interpreted to be 0, such that there is no

echoed data. The next string encountered on the command line

 (HereIsMyData...)

 Because it does not start with a hyphen (-), it is assumed to be the name of

the next map to execute. Because the text is longer than 32 characters, the

Invalid Map Name message is returned.

Chapter 7. Platform API return codes and error messages 39

40 IBM WebSphere Transformation Extender: Platform API

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 41

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

42 IBM WebSphere Transformation Extender: Platform API

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

Tivoli

WebSphere

z/OS

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 43

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

IBM WebSphere Transformation Extender, Version 8.1

44 IBM WebSphere Transformation Extender: Platform API

Index

A
ADPT_C_F_ALWAYS 30

ADPT_C_F_APPEND 31

ADPT_C_F_NEVER 30

ADPT_C_F_ONCONTENT 30

ADPT_C_F_UPDATE 31

ADPT_KEEP_ALWAYS 30

ADPT_KEEP_NEVER 30

ADPT_KEEP_ONCONTENT 30

ADPT_SCOPE_BURST 30

ADPT_SCOPE_CARD 30

ADPT_SCOPE_MAP 30

allocating memory 5

atexit 9

B
bAppendBackup 27, 28

bAppendLog 31

bAuditLog 31

bAuditOn 31, 32, 33

bBackupAlways 27, 28

bBackupSwitch 27, 28

bBurst 25, 26

bBurstRestart 31

bCardSummary 31

bCenturySwitch 31

bCleanup 25, 26

bCSAudit 31

bCustomValidation 31

bDataLog 31

bDefaultAuditFileName 31

bDeleteWorkFiles 31

bEveryMapWarning 31

bIgnoreAdapterWarnings 27, 28

bIntegralMode 27, 28

bMapDirectory 27, 28

bMapRetry 31

bMemoryActionSized 31

bMemoryLog 31

bMSAudit 31

bOmitPresentation 31

bOmitRestrictions 31

bOmitSize 31

bRetrySwitch 27, 28

bRollback 25, 26

bRollBackOnFailure 27, 28

bSet 7, 20, 21

bSourceEvent 27, 28

bStopOnFirstError 31

bTraceIn 31

bTraceMemory 31

bTraceOn 31

bTraceOut 31

bUniqueLog 31

bUniqueWorkFilePrefix 31

bUseMMCforAudit 31

bUseMMCforTrace 31

bUseMMCforWork 31

byFlag 26, 27, 30

byUnused 26, 28

C
CARDINFO components 27

CARDINFO structure 22, 26

definition of 26

listing of the components 26

CI_APPEND 30

CI_INPUT 27, 30

CI_REUSE 27, 30

CI_UPDATE 30

command options 1

command syntax 4

components
CARDINFO 27

EXEOPTS 32

EXITPARAM 25

configuring the map execution environment 11

configuring the UNIX environment 9

D
data

passing to and from the Platform API 5

database adapters
using the Platform API with 12

destinations using buffers 6

disabling DTX_DO_NOT_CHDIR 11

disabling environmental debug 10

disabling file locking 12

dlclose 9

DLLMAIN 4

dlopen 9

do not change directory
DTX_DO_NOT_CHDIR 11

DTX_APPLICATION 29

DTX_BUFFER 29

DTX_DATABASE 29

DTX_DATAFILE 29

DTX_DEBUG 10, 12

DTX_DO_NOT_CHDIR 11

DTX_FILE_LOCKING 10, 12

DTX_STATICFILE 29

DTX_TMP_DIR 9, 10, 11, 12

DTX_TRACEFILE 29

DTX_WORKFILE 29

dwFailFlags 31, 35

dwFromLen 6, 25, 26

dwRecords 25, 26

dwSize 4, 5, 6, 7, 25

dwToLen 25

dwTraceFlags 31, 34

dwTraceInEnd 31

dwTraceInStart 31

dwWildcardSize 25, 26

dynamic load of API 9

© Copyright IBM Corp. 2006 45

E
Echo command option 6

enabling DTX_DO_NOT_CHDIR 11

enabling environmental debug 10

enabling file locking 12

environment variables 9

environmental debug 10

ep, EXITPARAM variable 7

error messages 37

example of using maps in memory 7

examples
Platform API 1

Platform API on z/OS 14

executing maps loaded into memory
example of using RunMap 7

execution
using the Echo command 5, 6

EXEOPTS components 32

EXEOPTS structure 22, 31

EXITPARAM structure 3, 6, 7, 17, 18, 19, 20, 21, 25

definition of 25

listing of the components 25

F
file locking 10

disabling 12

enabling 12

FO_ALLWARNINGS 35

FO_INCONTAINSERRWARN 35

FO_INPUTNOTCONSUMED 35

FO_OUTCONTAINSERRWARN 35

FO_OUTPUTINERRORWARN 35

FO_OUTPUTINVALID 35

FO_PAGEUSECTERROR 35

FO_UNKNOWNINOUTWARN 35

FreeRunMapInstance 7, 21

FreeRunMapInstance platform API function 21

function descriptions 17

functions
FreeRunMapInstance 21

GetCardIOs 21

InitializeRunMapInstance 19

MercExitAPI() 18

MercInitAPI() 17

RunMap 18

RunMapUsesInstance 20

G
GetCardIOs 21, 22, 23

guidelines for use 3

H
header file 1

I
initialize EXITPARM 7

initialize the ExitParam structure 3

InitializeRunMapInstance 7, 19, 20, 21

installed files 1

IW_ALLWARNINGS 36

IW_INCONTAINSERRWARN 36

IW_INPUTNOTCONSUMED 35

IW_OUTCONTAINSERRWARN 36

IW_OUTPUTINERRORWARN 35

IW_OUTPUTINVALID 35

IW_PAGEUSECTERROR 35

IW_UNKNOWNINOUTWARN 36

L
libplatapi.so 9

loading multiple maps 7

lpAdaptParms 25, 26

lpCardCount 22

lpci 22, 23

lpCmdStruct 25, 26

lpContext 25, 26

lpDataFromApp 5, 6, 19, 25, 26, 33

lpDataToApp 3, 4, 5, 6, 7, 18, 25, 26

lpep 20

lpExeOpts 22

lpExitParam 19

lpfnMS 25, 26

lpInternal 25, 26

lpMS 25, 26

lpszCmdLine 25, 26

lpszMapDirectory 25, 26

lpszMapFile 19, 22

lpv 4, 5, 6, 7, 20, 21, 25, 26

lpWildcard 25, 26

lpwRC 22

M
map

example of executing in memory using RunMap 7

execution environment 11

loading into memory using Platform API 7

MAX_PATH 26, 31

MAX_TYPENAME 26, 31

memcpy() 3

memory
allocating 5

example of using maps in 7

freeing 5

map loading 6

MercExitAPI() 3, 4, 18

MercInitAPI() 3, 4, 17

mercOldShm 11

N
nReturn 4, 5, 6, 9, 19, 25, 26

nWorkFileType 31, 35

O
overview

Platform API functions 17

P
Passing function parameters 14

passing input data to a map 5

Platform API
CARDINFO structure 26

46 IBM WebSphere Transformation Extender: Platform API

Platform API (continued)
example files 1

example files for z/OS 14

EXEOPTS structure 31

EXITPARAM structure 25

freeing all memory 21

getting card information 21

initializing a map file into memory 19

libraries (UNIX) 1

libraries (Win32) 1

loading maps into memory 7

set/clear EXITPARAM 20

Platform API functions
FreeRunMapInstance 21

GetCardIOs 21

InitializeRunMapInstance 19

RunMapUsesInstance 20

R
releasing memory 5

return codes 37

returning data from a map 6

Run command
specifying 4

RunMap 3, 4, 5, 6, 7, 9, 18, 19, 20, 25

example of executing maps in memory 7

RunMapUsesInstance 7, 20, 21

RunMapUsesInstance platform API function 20

runmerc.h 3

S
sample C program 1

settings
byFlag 30

dwFailFlags 35

dwTraceFlags 34

nWorkFileType 35

wIOType 29

wMapSuccessAction 30

shared libraries 12

sinkmap.mmc 3, 4, 7, 10

sources using buffers 5

structure
CARDINFO 26

EXEOPTS 31

structure defintions
Platform API 25

Sun operating system 1

szAuditDir[264] 32

szBackupFile 27, 29

szCardName 26, 27

szErrMsg 4, 19, 25, 26

szFile 25, 26

szFileName 26, 27

szTraceDir[264] 32

szWorkDir[264] 32

T
temporary files

set location 9

testapi.c 1

testapid.c 9

TRACE_ALL 34

TRACE_CARD 35

TRACE_RANGE 35

U
UNIX

configuring the environment 9

using the API on a UNIX system 9

UNIX Platform API libraries 1

unload of API
dynamic 9

uRetryCount 25, 26

uRetryInterval 25, 26

usage guidelines 3

using maps in memory 6

example 7

Using the API on z/OS
Overview 13

using the Echo command 5, 6

using the Platform API
on a UNIX system 9

with database adapters 12

uUnitSize 25, 26

V
Visual Basic 1

W
wCard 26, 27

wCardNum 25, 26

wCleanupAction 25, 26

wDateResolution 32

WF_FILE 35

WF_INMEM 35

WF_NORMAL 35

WF_UNIQUE 35

wFetchUnit 27, 29

Win32 Platform API libraries 1

windows.h 3

wIOType 26, 27, 29

wMapSuccessAction 27, 29, 30

work files 10, 12, 33, 34, 35

wPageCount 32

wPageSizeInK 32

wRetryAttempts 27, 29

wRetryCount 32

wRetryInterval 27, 29, 32

wScope 25, 26, 27, 29, 30

wTraceICardNo 32

wTraceOCardNo 32

wUnused 27, 29

Index 47

48 IBM WebSphere Transformation Extender: Platform API

����

Printed in USA

	Contents
	Chapter 1. Platform API overview
	Installed files
	Platform API examples

	Chapter 2. Using the Platform API
	Platform API usage guidelines
	Retaining java objects
	Using Platform API
	The Run command and command options

	Whose memory is It anyway?
	Data to and from the Platform API
	Passing input data to a map
	Returning data from a map

	Using maps in memory
	An example of using maps in memory
	Loading multiple maps

	DTX_DO_NOT_CHDIR for Windows

	Chapter 3. Using Platform API in a UNIX environment
	Dynamic load/unload of the API (advanced users only)
	Configuring the UNIX environment
	Environment variable setup program
	Environmental debug information (DTX_DEBUG)
	Enabling environmental debug
	Disabling environmental debug

	File locking (DTX_FILE_LOCKING)
	Do not change directory (DTX_DO_NOT_CHDIR)
	Enabling Do Not Change Directory
	Disabling Do Not Change Directory

	Configuring the map execution environment
	Enabling file locking
	Disabling file locking

	Using the Platform API with database adapters

	Chapter 4. Using Platform API on z/OS
	Overview
	Requirements
	Calling the Platform API from COBOL
	Calling the Platform API from a COBOL DLL

	Example files for z/OS
	SINKMAP example MAP
	Platform API `C' example
	Platform API COBOL examples

	Passing function parameters
	Cobol copybooks
	PLATAPID DLL import definition

	Chapter 5. Platform API functions
	MercInitAPI() function
	Syntax
	Returns
	See Also

	MercExitAPI() function
	Syntax
	Returns
	For more information

	RunMap function
	Syntax
	Parameters
	Returns

	InitializeRunMapInstance function
	Syntax
	Parameters
	Returns
	For more information

	RunMapUsesInstance function
	Syntax
	Parameters
	Returns
	For more information

	FreeRunMapInstance function
	Syntax
	Parameters
	Returns
	For more information

	GetCardIOs function
	Syntax
	Parameters
	Returns

	Chapter 6. Platform API structure definitions
	EXITPARAM structure
	EXITPARAM components and usage

	CARDINFO structure
	CARDINFO components
	wIOType settings
	byFlag settings
	wScope settings
	wMapSuccessAction settings
	Additional constants

	EXEOPTS structure
	EXEOPTS components
	dwTraceFlags settings
	nWorkFileType settings
	dwFailFlags settings

	Chapter 7. Platform API return codes and error messages
	Messages

	Notices
	Programming interface information
	Trademarks and service marks

	Index

