

IBM Corporation

A primer on the
IBM Enterprise Service Bus

for decision makers.

The term “Enterprise Service Bus (ESB)” is currently receiving a lot of attention from
IT media and analysts alike; however, there is no clear, commonly accepted definition.
Analyst definitions vary widely, but many are limiting the term to describe a very
narrow notion of connectivity software for applications written specifically to the
specific standards for Web services. Meanwhile software vendors, many of them
selling nothing much more than a JMS compliant messaging system, are using the term
to describe only what they have. This paper outlines IBM’s definition.

IBM Corporation

 What business problem does the ESB address?

Studies show that application integration is one of the top challenges facing CIOs today 1 .
Integration is not just a technology issue. It is also a business issue. Harnessing company
resources to realize new opportunities and counter competitive threats is one of the most difficult
problems facing a CEO. Business leaders are asking to be able to change their business,
including their Information Technology -- on demand.

Business applications that do not communicate with each other can prevent CEOs from meeting
their objectives. Typical business applications run on different platforms, have been written using
different programming languages, represent data using different data representations, and utilize
different programming models. It is a Tower of Babel. The result is not just that operational
systems don’t work with business systems, but also that a CEO cannot quickly harness his/her
company resources to realize business goals.

Software vendors have, over the years, developed products to facilitate application
communications. Unfortunately, different types of software have emerged for different business
purposes. Point-to-point messaging software is used for application to application integration,
publish/subscribe software is used for information distribution, and the new approach of Web
services has introduced yet another connectivity paradigm based on commonly agreed open
standards. Many companies have ended up with a mixture of technologies that are not integrated.
The challenge is to find a way to get ALL software assets – old and new -- working together in a
common reconfigurable connectivity framework that minimizes both cost and disruption.

The Enterprise Service Bus (ESB) is an architectural framework for addressing this problem. It
provides an enterprise with a common way for all applications, existing and new, to communicate
with minimal change to existing applications. Its purpose is to help a company change its
business, more or less on demand.

An ESB solves four main classes of problem:

1) Application Communications
Programmers require a simple way to connect applications, without wasting time and money
writing and maintaining complex connectivity logic. However, connecting applications is only
part of their problem. The notion of connectivity does not itself address whether the information
being transferred from one system to the next is actually useful. After all, applications run on
different platforms, are written in different programming languages, describe and interpret data
in different ways, and/or are implemented using different programming models. These
applications need a common “communications” infrastructure to overcome and mediate their
differences. The ESB provides the framework to overcome these differences, thus facilitating
application communications.

2) Departmental or Corporate Mergers and Consolidations

Many businesses today have departmental silos that don’t communicate well with each another.
From an application IT perspective, each department may use different IT standards. This
inability to communicate can inhibit a company from achieving its business goals. Similarly,
companies do not need to integrate just their departments. They often have to integrate with
other companies too. Investors in particular will eye an organization critically to see how fast it
can be knit together with another business to improve shareholder value. The ESB is thus more
than just a technology. It is part of a strategic business strategy to ensure that a company can
quickly integrate its varied departments or its overall business with that of another.

3) Information Distribution

1 For example, the Merrill Lynch CIO Survey Results, September 2004

IBM Corporation

Business events occur inside or outside an organization, but the people and systems that could
and should respond be made aware of those event often aren’t. The result: lost business
opportunities. Many companies need a high-speed scalable information notification system that
can deliver information to the right place, at the right time, in the right format, potentially
anywhere --and everywhere -- in the enterprise or beyond. The business may also need a way
to identify patterns of events, in real-time, and have no easy means of doing so. The ESB
provides the framework that allows these events to surface and be delivered, to any application,
person, or device in your organization.

4) Services-Based Integration
An organization is adopting Web services standards and a services oriented architecture and
needs a mechanism for these applications to communicate. The organization also needs a way
to mediate the differences between applications written to the Web services standards to those
written to other internal or industry standards. The ESB provides a ready framework to mediate
between Web services or to mediate between Web services and just about anything else.

 What is an Enterprise Service Bus?

Industry definitions of an Enterprise Service Bus vary. Some analysts and software vendors
restrict its definition to describe only a connectivity infrastructure for connecting Web services.
IBM’s view is broader.

The IBM definition of an Enterprise Service Bus is that of an application communications
infrastructure that allows any application to communicate with any other as a reusable asset or
service. This notion of services is not new; IBM has supported the concept for a long time with
message oriented middleware. What has changed has been the introduction of a new set of
standards, Web services, AND an infrastructure specifically designed to connect them. Supporting
these standards is important, and IBM does so within its ESB framework, but support for only
these standards is not sufficient. Most applications in production today do not in fact support the
Web services standards, and will not for some time. So what companies really need is an
infrastructure that allows applications to be treated as “reusable services” whether or not they
currently support the Web services standards. Companies actually need a communications
infrastructure that can mediate between all kinds of applications.

An ESB is therefore best described as a communications infrastructure that enables
applications - running on different platforms, written in different programming languages,
which use different data representations, or which using different programming models - to
communicate with each other, without changing the applications themselves.

A fundamental notion of IBM’s view of an ESB is the notion of “customized communications”. Just
as a speaker may need to customize a message for different audiences, applications need to
customize communications when interacting with other applications. It is this notion of mediating
the differences that lies at the heart of IBM’s definition.

English

Japanese

French

ESB

English

Japanese

French

ESB

Step on the bus speaking one language. Step off the bus speaking another.

IBM Corporation

One can think of an Enterprise Services Bus as a passenger bus network spanning all the
countries of the world. Each country communicates in its own way. The ESB mediates the
differences. I step on the bus speaking one language and step off, potentially in multiple locations,
speaking a different language, or potentially different languages (since communications may in
fact be delivered to many targets each which communicate in their own way).

This notion of customized communications extends beyond the idea of translation. While on the
bus, I may also want to carry out some other operation such as rerouting of communications,
logging the interaction, augmenting the communications, comparing the communications with
other communications and driving a specific decision as a result. Customized communications
can mean any mediation that can occur to information as it moves from one application to another.

 What is IBM’s Enterprise Service Bus?

An IBM Enterprise Service Bus is an applications communications architecture that can be
built today using current IBM products. The products support transport, transformation,
intelligent routing, logging, mediating between programming models such as Web services,
publish/subscribe, and point-to-point, open standards such as JMS and SOAP, and much more. If
you have made an investment in IBM’s proven, and popular WebSphere MQ product, you are
already well on the way to having an ESB.

The elements of today’s Enterprise Service Bus by IBM are as follows:

• WebSphere MQ is at the core of the IBM ESB framework. WebSphere MQ has long provided
the reliable transport and common API for connecting applications written in nearly all
operating platforms, programming languages, and message formats. In recent years, it has
also been augmented to provide full support for JMS, SOAP and other open standards. Today
it is the only commercially available messaging system that in one product combines JMS (the
messaging application programming interface (API) used for the Java-based J2EE
environment) with MQI (the messaging API in most common use for non-Java environments).

• IBM WebSphere Business Integration (BI) Message Broker is an application built upon
WebSphere MQ that inherits many of WebSphere MQ’s capabilities such as assured message
delivery and end-to-end transactionality. WebSphere BI Message Broker adds the following:

o additional specialized messaging protocols
o a highly scalable, Internet capable, publish/subscribe service
o the concept of “customizable communications” -- message routing,

transformation, enrichment, warehousing, mediations between Web services;
o interoperability of Web Services with non Web Services.

• IBM WebSphere Application Server Network Deployment extends the IBM ESB further by
adding a Web Services UDDI registry and a Web Services gateway for secure mapping
between Web Services requests and other formats defined using the WSDL standard, as well
as JMS over MQ, and JMS over HTTP. All of this is made transparent to the original
requestor of the information.

• Most WebSphere products have been or are being upgraded to easily plug into an
Enterprise Service Bus. WebSphere Application Server V6 delivers a new Java messaging
engine that simplifies administration, improves Web Services support and works effectively
with WebSphere MQ and the WebSphere BI Message Broker.

IBM Corporation

WebSphere MQ

WebSphere Business Integration
Event/Message Brokers

WebSphere Application Server
Network Deployment

Legacy Applications

Web Services Applications

JMS API, MQI API

WebSphere MQ

WebSphere Business Integration
Event/Message Brokers

WebSphere Application Server
Network Deployment

Legacy Applications

Web Services Applications

JMS API, MQI API

An IBM Enterprise Service Bus is implemented in a topology that is right for your particular
business and incrementally as your needs warrant. Multiple IBM Enterprise Service Bus
components can be connected together over time in any number of units to produce a powerful,
scalable distributed enterprise bus that connects anything to anything. An IBM Enterprise Service
Bus is your bridge to both legacy application programs and new applications written to new
standards.

An IBM Enterprise Service Bus enables you to do all of the following:

• Connect virtually anything to anything – operational systems, business systems, physical
devices (including RF Tags and telemetry devices), Web browsers – all without incurring
the cost and time associated with totally rewriting your applications.

• Hide the complexities of platform, software architecture, programming models, and
network protocols. This enables your programmers to more productively spend their time
working on business logic and getting the job done faster.

• Assure delivery of information, even when systems and networks go off-line. This means
that you don’t incur huge downtime costs trying to find out what happened when
something fails.

• Distribute information to virtually anywhere in your organization, and beyond, in manner
customized to the needs of each receiving application.

IBM is investing heavily in Enterprise Service Bus offerings and capabilities, and is continually
enhancing its ESB portfolio. This means you can be assured that, by building upon the powerful
WebSphere MQ and WebSphere BI Message Broker foundation already used by thousands of
companies, you are making a sound investment.

 What differentiates an IBM Enterprise Service Bus from other

vendors’ offerings?

Many vendors use the term “Enterprise Service Bus” to refer to a very narrow set of capabilities.
Some offer nothing more than a JMS-compliant messaging engine. Some will even claim that
because their JMS messaging system is written in Java, it is more of an Enterprise Service Bus
than a messaging system written in another language like C++, or even COBOL. Others expand
their ESB definition further to incorporate XML transformations and perhaps even orchestration of
services.

IBM fully supports these capabilities too, but believes that an ESB, to be truly usable, needs to be
much more. While one day all applications may be written to J2EE and/or comply to the Web
services standards, that day is not yet here. So what companies need today is a bridge strategy
that incorporates these standards – and everything else. The issue is that what companies really
need is a common framework for all their enterprise applications so that they can achieve on
demand flexibility. An Enterprise Service Bus must be able to connect everything, including

IBM Corporation

applications written in programming languages, like C++ and COBOL, and programming models
and data representations.

An IBM Enterprise Service Bus is the cornerstone of a Service Oriented Architecture. It is a vision
that is central both to IBM’s WebSphere product strategy and IBM’s overall on demand initiative. It
is this focus – to build an on demand world – that distinguishes IBM from virtually everyone else.
With one common framework, an IBM Enterprise Service Bus supports different platforms,
different programming languages, different data representations, and different programming
models, and customizes the communications for each and all.

Here are six ways an IBM ESB solution is different and why these differences matter:
1) Customized communications and central management.

As already stated, the purpose of an ESB is to provide a common communications
framework that does not require applications to be rewritten. It is about achieving on
demand flexibility for a business. An IBM ESB customizes communications: information
gets on the bus speaking one “language” and gets off the bus speaking another.

Some ESB vendors rely on their customers implementing a “canonical” model throughout
the customer’s entire organization and force them to use “fat” adapters to transform the data
into and out of this canonical model wherever they get on the bus. This approach can be
effective within the domain of an individual integration project or process interaction, but as
an enterprise strategy, as requirements and technologies change, or as departments and
organizations are linked, it is not typically manageable or affordable. Changes to a
canonical form, for example following a merger, could require every “fat” adapter in an
enterprise to be changed.

The IBM approach to an ESB focuses on manageability and speed of change. IBM blends
the concepts of messaging, customized communications, and management into one. As
information passes through the bus, it is transformed in flight to whatever the target requires.
This might involve putting data into a canonical format or not. A key point is that an IBM
ESB is a centrally managed network of interconnected message processing engines or
‘brokers’. Adapters can still be used, but they can be thinner and more manageable. And
IBM does not force you into a single canonical model, which means that you don’t need to
police your programmers at the enterprise level. And if you need to merge or consolidate
departments, divisions, or companies, it can be done quickly and easily – on demand.

2) Rich any-to-any transformations, not just transformations that involve XML.
XML is an open standard used for describing data. It is a good idea, but it does not
represent all of the data that companies typically use. Every industry has its own standards,
and most companies have a library of legacy data representations – example COBOL
copybooks, that are not in XML formats. Furthermore, XML messages tend to be rather
large so if you need to shift a lot of messages around your organization and you need to do
it at very high speed, XML formats may not fit your strategy.
Furthermore, many vendors don’t offer “any” in-flight transformation services and others
have only recently introduced offerings to do this. Those that do offer transformations,
typically only handle only XML-to-XML (XSLT). Unfortunately, XSLT takes care of only a
fraction of most companies’ needs.
An IBM ESB can transform anything to anything, including XML-to-XML or XML-to-anything
else. The IBM solution includes a logical message model that enables messages to be
transformed from any format to any other. You can even implement a canonical
model…where it’s appropriate. Overall, this gives the IBM ESB a lot of power to help a
company transform whatever they need to transform.

3) Secure, reliable connectivity of resources that communicate using different
programming models.
Most vendors presenting an ESB story have very limited connectivity capabilities. They may
only support JMS, the API used by applications written to the J2EE programming model
(such as applications written to the IBM WebSphere Application Server). Interestingly, even
though Java itself should run on many systems, many of these vendors only support a

IBM Corporation

limited number of Java platforms. Furthermore, few vendors support the interconnectivity of
telemetry and mobile devices, except through specialized unwieldy adapters. And virtually
none of them support the MQI API, which is widely and heavily used throughout the industry.
IBM offers the widest support for your infrastructure -- 35 plus platforms, JMS, MQI,
publish/subscribe, Web Services, and more. This is not just a portion of your requirements.
It is your entire enterprise. The result is that you can rest assured that no applications will
be left out.

4) Scalability and performance with centralized administration to minimize the cost of
ownership.
Many vendors offer systems that only work as single-broker configurations; they don’t
connect brokers together to form a distributed bus. Even some who claim to offer an
integrated broker network actually require you to build and administer all of the links
between each and every broker at each and every broker. As a network grows, this can be
a daunting administrative job, one that creates a high cost of maintenance and
administration, particularly as your network grows.
An IBM ESB can include a network of brokers, implemented as a single administrative unit.
Multiple Message Brokers can be implemented as a single broker domain. In
publish/subscribe scenarios, specific subsets of an overall broker network can be identified
as a publish/subscribe “collective” that can harnesses the power of hundreds of brokers to
deliver information to tens of thousands of users – even over the Internet. The result is
performance and scalability with minimal administration.

5) Support for the JMS API without proprietary extensions.
As already stated, JMS is a standards-based API for the Java programming language. If
you write to it, your applications should be able to use any other vendors messaging system
that supports JMS. Unfortunately, some vendors don’t quite see it that way and have opted
to add proprietary extensions to their JMS implementations. This means that if you write to
their JMS extensions you will have locked yourself into their proprietary JMS model. So
much for the promise of open systems.
IBM’s JMS implementation supports the JMS specification without any extensions. This
means that if you are writing in Java and you want to use JMS as your API, we don’t lock
you in.

6) Support for the de facto industry-standard MQI API as well as JMS.
WebSphere MQ, used by more than 80% of those who buy messaging systems, is the de
facto industry standard in messaging. It grew to that position partially by providing the MQI
API across more than 35 operating systems platforms and programming languages when
other vendors were offering very limited support. As such, MQI is now pervasive in the
marketplace, used by tens of thousands of applications. If you want to connect to those
applications, MQI is the logical API to continue to use. It is also the only effective API to use
across most programming environments other than Java, where you are more likely to use
JMS.
The IBM solution supports both MQI and JMS, in one offering. This means a C++ or
COBOL application written to the MQI API can talk with a Java application written to JMS.
The result is seamless integration of JMS applications with whatever other applications you
have today.

Where can I find out more about the IBM ESB?

Directly from the IBM Website:

• The IBM ESB web pages: http://www.ibm.com/software/integration/esb
• IBM makes the ESB real – Read the Charles Schwab story
• Understand Enterprise Service Bus scenarios and solutions in SOA

- Part 1: The role of the Enterprise Service Bus
- Part 2: ESB scenarios and issues driving the architecture

Through the IBM intranet from an IBM sales Specialist:

IBM Corporation

• ESB analyst papers: http://w3-3.ibm.com/software/analyst/
 Forrester, Bruce Silver

• ESB Frequently Asked Questions: click here

Talk to your IBM Client Rep or IBM Business Partner.

