
WebSphere Portal and Web Services
October 2002

Easily integrating remote portlet
Web services with your portal.

By Thomas Schaeck, Dr. Carsten Leue and Peter Fischer,
IBM Software Group

Easily integrating remote portlet Web services with your portal.

Page 2

Easily integrating remote portlet Web services with your portal.

Page 3

Introduction

Web services are an important way to make information and applications avail-

able through programs on the Internet. Portals need to allow the integration

of Web services as simple data sources and as remote application components.

Three important options are available for use of Web services with portals:

• Portlets running on a portal server can access a Web service to obtain information

or invoke remote methods provided by the Web service.

• Content or application providers can implement and publish interactive,

user-facing Web services that plug and play with portals.

• Portals can publish local portlets as remote portlet Web services to make them

available to other portals.

IBM WebSphere® Portal for Multiplatforms supports all of these options.

This white paper explains the concepts of traditional data-oriented Web

services, as well as interactive, user-facing Web services. It also describes how

you can use WebSphere Portal to set up distributed enterprise portal systems

that allow your administrators to easily share portlets across portals. It explains

how—using their portal administration user interfaces—content providers are

able to use WebSphere Portal to publish content as remote portlet Web services,

allowing other portal administrators to easily integrate content, without any

programming effort.

IBM WebSphere Portal1 thoroughly and flexibly integrates Web services, giving

you more options to deploy Web services than other portal offerings. Supported

by IBM’s strong commitment to open standards, WebSphere Portal helps you

use Web services effectively in a security-rich environment.

Portals provide personalized access to information, applications, processes

and people. Typically, portals get information from local or remote data

sources, such as databases, transaction systems, syndicated content providers

or remote Web sites. They render and aggregate this information into composite

pages to provide information to users in a compact and easily usable form. In

addition to pure information, many portals also include a variety of applica-

tions, like e-mail, calendar, organizers, banking, bill presentment and host

integration applications.

2 Introduction

6 Portlets in WebSphere

Portal architecture

8 Portlet API and portlet invocation

10 Web services

12 Data-oriented Web services

used by portlets

13 Remote portlet Web services

25 Standardization

25 Summary

26 For more information

Contents

Easily integrating remote portlet Web services with your portal.

Page 2

Easily integrating remote portlet Web services with your portal.

Page 3

Different kinds of information or applications require different rendering and

selection mechanisms. But all of them rely on the portal infrastructure and

operate on data or resources owned by the portal, such as user profile informa-

tion, persistent storage or access to managed content. As a result, most portal

implementations provide a model that allows components, called portlets, to

plug into the portal infrastructure. Typically, portlets are user-facing, interac-

tive Web application components that run on the portal server, processing input

data and rendering output. Figure 1 shows an example of a portal page gener-

ated by WebSphere Portal.

Content is often provided by external services and displayed by specific local

portlets running on the portal. This approach is feasible for establishing the

base function of a portal, but does not help to enable dynamic integration of

business applications and information sources into portals.

Figure 1. IBM WebSphere Portal for Multiplatforms, Version 4.1

Easily integrating remote portlet Web services with your portal.

Page 4

Easily integrating remote portlet Web services with your portal.

Page 5

Consider the following scenario. An employee portal manager wants to include

a human resources (HR) service that calculates variable pay for employees

and an external weather service that provides weather forecasts. Figure 2

shows a solution for this scenario in which an HR portlet and a weather portlet

run locally on the portal server and access remote Web services to obtain the

required information.

��������
������

��
�������

�������
�������

�������
��� �������

�� ���
�������

Figure 2. Local portlets using a Web service

The HR portlet uses an HR Web service to calculate the variable pay. By

default, the portlet displays a form to query the required input data such as the

employee’s job title. When the employee provides the data to the HR portlet, it

invokes the HR Web service to calculate the variable pay based on that data.

The HR portlet receives the information from the Web service and displays it as

a page fragment. By default, the weather portlet displays weather forecasts for

configurable locations and allows the user to select locations in an edit mode.

When the weather portlet is invoked during page aggregation, it requests the

most recent forecasts for the selected locations from the weather Web service

and renders a page fragment that displays those forecasts.

Easily integrating remote portlet Web services with your portal.

Page 4

Easily integrating remote portlet Web services with your portal.

Page 5

This approach works only when all portlets are physically installed at the

employee portal; the process of making new portlets available is tedious and

expensive. To integrate HR information in the portal using local portlets

as previously described requires the HR department to implement the HR

portlet and give it to an administrator of the employee portal to install it. Or an

employee portal developer could implement the HR portlet according to the

interface description of the HR Web service. Creation of the weather portlet

requires a similar process. Either results in significant cost and loss of time.

A more efficient process is to use HR and weather Web services that include

application and presentation logic producing markup fragments that are easy

to aggregate at the consuming portal, as shown in Figure 3.

��������
������

�������
��� �������

�� ���
���������

�������

�������
�����

�������
�����

�������
�������

Figure 3. A portal using remote portlet Web services

Instead of providing only raw data or single business functions that still

require special rendering on the portal side, remote portlet Web services are

user-facing, interactive Web services that include presentation. They are easy

to aggregate and can be invoked through a common interface using generic

portlet proxy code on the portal side. You don’t need to install special portlet

code on the portal. Using generic portlet proxies that use all remote portlet Web

services that conform to the common interface eliminates the need to develop

service-specific portlets to run on the portal.

Easily integrating remote portlet Web services with your portal.

Page 6

Easily integrating remote portlet Web services with your portal.

Page 7

The administrator’s task is much easier because the administrator can

add portlets dynamically to the environment, and users benefit by having

more services available to them in a timely manner. Administrators can easily

integrate remote portlet Web services with a portal by using the portal admin-

istration user interface to locate the services and bind to them with a few mouse

clicks. As a result, the portal creates a new, generic portlet proxy instance

bound to the remote portlet Web service. This means that remote portlet Web

services appear like local portlets, easily managed by users.

Portals need to apply an appropriate combination of caching and concurrent

invocation wherever using remote portlet Web services, so that the number of

remote calls is minimal. And, where possible, remote calls can occur concur-

rently to minimize overall page response times.

Portlets in WebSphere Portal architecture

WebSphere Portal provides an open architecture to allow for systems using

remote portlets, as described in the previous section. It supports local and

remote portlets to exploit the benefits of both approaches (see Figure 4).

Local portlets are tightly integrated with the portal server and run on the

same physical server or cluster of servers. Remote portlet Web services run

on remote servers at other places in an intranet or the Internet and are loosely

coupled to the portal server.

Figure 4. Local and remote portlets

�����
�������

�����
�������

�����
�������

�����
�������

������ ������
��� �������

������ ������
��� �������

������ ������
��� �������

������ ������
��� �������

���������
������
������

Easily integrating remote portlet Web services with your portal.

Page 6

Easily integrating remote portlet Web services with your portal.

Page 7

The WebSphere Portal architecture uniformly manages local portlets and

remote portlet Web services and integrates both seamlessly in its management

user interface. WebSphere Portal uses portlet proxies to plug in remote portlet

Web services, which allows the remote services to function like local portlets.

Figure 5 shows a high-level view of the relevant components, interfaces

and protocols.

�����
��������

������ ������
��� �������

������ ������
��� �������

������ �������
�������
�������

���� ����� ����
��������

�������� ���
��������

������������ ��� �������� ������

���� ��������

�������
���

Figure 5. WebSphere Portal interfaces and protocols

Portal clients access the portal through HTTP, either directly or through

appropriate gateways like Wireless Application Protocol (WAP) or voice gate-

ways. The markup languages used by these devices may be very different. WAP

phones typically use Wireless Markup Language (WML), iMode phones use

compact HTML (cHTML), voice browsers primarily use VoiceXML and the

well-known PC Web browsers use HTML.

When aggregating pages for portal users, the portal invokes all portlets that

belong to a user’s page through the portlet application programming interface

(API). There are two different kinds of portlets:

• Local portlets. These portlets run on the portal server itself and are deployed by

installing portlet archive files on portal servers. They are invoked by the portal

server through local method calls, which means they provide minimal latency times.

However, installing a local portlet usually requires assurance that it is not erroneous

or malicious.

Easily integrating remote portlet Web services with your portal.

Page 8

Easily integrating remote portlet Web services with your portal.

Page 9

• Remote portlets. They run as Web services on remote servers, typically published in

a Universal Description, Discovery and Integration (UDDI)2 registry so that they

are easy to locate and bind to. Portlet proxies are generic local classes that invoke

portlets located on remote servers through Simple Object Access Protocol (SOAP)3.

While local portlets can provide a large part of the base function for portals, the

remote portlet concept allows dynamic binding of a variety of remote portlet

Web services without any installation effort or code running locally on the

portal server.

You can wrap and publish local portlets as remote portlet Web services to

provide them to other WebSphere Portal instances. And conversely, you can

integrate remote portlet Web services with WebSphere Portal by wrapping

them in a portlet proxy written to the portlet API.

Portlet API and portlet invocation

Portlets are pluggable, user-facing, interactive Web application components

running inside a portal portlet container and written to a portlet API. Unlike

common servlets, portlets are special servlets that need to run embedded in

a portal environment. This result in a portlet API extending the servlet API

with portal-specific context and services. While servlets communicate directly

with their clients, portlets are invoked indirectly through the portal applica-

tion that enriches requests with portal context information. To properly run in

the context of a portal, portlets must produce content suitable to aggregate in

composite pages—that is, portlets must produce markup fragments that can be

aggregated. Portlets may not use redirects nor send errors to the client; these

commands are reserved for the portal itself.

When WebSphere Portal receives a servlet request resulting from a user

clicking a link or button inside a portlet, it generates and dispatches an action

for the portlet affected by parameters in the request. It then invokes all port-

lets for display through the portlet invocation interface (shown in Figure 6).

Portlets can implement action handling and rendering in separate methods,

which allow WebSphere Portal to employ portlet-markup-caching and concur-

rent portlet invocation when aggregating portal pages.

Easily integrating remote portlet Web services with your portal.

Page 8

Easily integrating remote portlet Web services with your portal.

Page 9

Portlet-markup-caching

WebSphere Portal uses markup-fragment-caching for portlets that use signifi-

cant time for computations and cause latencies waiting for data from remote

sources. The portlet markup is retrieved from a per-portlet cache, unless it has

expired or was explicitly invalidated.

Concurrent portlet invocation

WebSphere Portal uses concurrent invocation for portlets that incur significant

waiting times for retrieving external data. In fact, the latency time for the whole

page is only the maximum latency time of each portlet on the page—in the

optimal case.

Figure 6. Invocation of portlets in WebSphere Portal

����������

���

���
��������

����
����������

�����
�������

�����
�������

�����
�������

������ ��������������� ���� ��������
���������� ��� ��������� ������ �����

������� ���������

������
�������

�������
���

�������
���

������������

�������
���

���������

While portlets must implement the invocation methods the portlet API

requires, internally they can be implemented differently. A pattern that works

well for portlet programming is the model-view-controller (MVC) pattern. It

separates the portlet function into a controller that receives incoming requests,

invoking commands that operate on a model that encapsulates application data

and logic, and calls views for presentation of the results.

Easily integrating remote portlet Web services with your portal.

Page 10

Easily integrating remote portlet Web services with your portal.

Page 11

Portlets have access to portal-related functions and data, including access to

user profile information, persistent portlet instance data and portlet settings.

Apart from portal-specific functions, portlets can use all Java™ 2 Platform,

Enterprise Edition (J2EE) APIs that are available to servlets, as well as vendor-

provided connectors to access back-end data and applications or even services

in the Internet.

For easier deployment, portlets can be grouped in portlet applications that are

packaged into portlet archive files. These are special J2EE Web Application

Repository (WAR) files containing a deployment descriptor with portlet-

specific extensions, Java classes, jar files and resources.

Web services

Web services have been developed to allow business applications to communi-

cate and cooperate over the Internet, creating a new paradigm in how it is used.

While traditional applications interacting with services in the Internet know of

those services beforehand and need to be pointed to them manually, the Web

services approach allows applications to find services in a standardized direc-

tory structure and bind to them with minimal human interaction (see Figure 7).

Figure 7. Publish, find and bind

�������
��������

�������
��������

�������
���������

���� �������

����

Easily integrating remote portlet Web services with your portal.

Page 10

Easily integrating remote portlet Web services with your portal.

Page 11

Web services distribute objects across Web sites, allowing clients to access them

through the Internet. Global service registries are used to promote and discover

distributed services. The user that needs a particular kind of service can make

a query to the global service registry to find services that suit the user’s needs.

The user can select one of the services, bind to that service and use it for a

specified period of time. Service discovery and selection can occur without

human interaction, which means services can switch very quickly. With auto-

mated service discovery, it is possible to establish robust networks of services.

If multiple Web services exist that provide identical functions, a user can easily

switch to a backup system when the service fails.

For registration and discovery of Web services, the most important standard

is UDDI. For communication between Web services, the most important

standards are SOAP and the associated Web Services Description Language

(WSDL)4 for formal description of Web service interfaces and bindings.

From a portal perspective, you can differentiate between two kinds of Web

services—the traditional data-oriented Web services and presentation-oriented,

user-facing, interactive Web services (see Figure 8).

������������� ��� �������� ��������������������� ��� ��������

���
���

��
���

���
���

��
���

���
���

��
���

���
���

��
���

���
���

��
���

���
���

��
���

������������
�����

������������
�����

Figure 8. Data-oriented Web services compared to presentation-oriented Web services

Easily integrating remote portlet Web services with your portal.

Page 12

Easily integrating remote portlet Web services with your portal.

Page 13

Data-oriented Web services are Web services that receive SOAP requests and

return data objects encoded in XML documents in the SOAP response. The

signatures of their SOAP operations, as well as the structure and semantics of

the returned data, are typically service-type-specific. It is the responsibility

of the service consumer to process the received data in a service-specific

manner and generate any required presentation. While this approach works

well for applications that require specific data and can use and process the data

received, it is not appropriate for portals that need to quickly integrate content

and applications from a variety of sources.

User-facing Web services include presentation as a part of the service itself.

That is, they don’t simply provide raw data for processing and presentation

by the consumer. Instead the user-facing Web services can produce markup

fragments that can be easily aggregated by portals. User-facing Web services

may also include user interaction and are well suited for integration and use in

portals because they can be aggregated by portals. They can participate in user-

action-processing in a generic way with no service-specific presentation code

required on the consumer’s side. The following section discusses how portlets,

running locally on WebSphere Portal, use data-oriented Web services. And how

you can integrate user-facing, interactive Web services with WebSphere Portal.

Data-oriented Web services used by portlets

WebSphere Portal allows portlets to access data-oriented Web services to

obtain data from remote systems. When using data-oriented Web services with

a given interface, the portlets need to contain service interface-specific code

that matches the Web services operations and their particular signatures.

When a portlet receives a request that requires invocation of a remote

service, the portlet makes calls on a service-specific SOAP proxy. The SOAP

proxy takes the parameters and builds them into a programming language-

independent SOAP request. This request is then sent to the remote Web

service. The Web service receives the SOAP request, extracts the parameters

and invokes the Web service implementation with these parameters. When the

service implementation returns the result, the Web service builds the result

into a programming-language independent SOAP response and sends it back

to the SOAP proxy on the user’s side. The SOAP proxy extracts the result

data and returns it to the portlet as the appropriate language-specific objects

(see Figure 9).

Easily integrating remote portlet Web services with your portal.

Page 12

Easily integrating remote portlet Web services with your portal.

Page 13

You can formally describe Web services by using WSDL interface descriptions.

With appropriate tools, you can use the descriptions to generate service inter-

face-specific SOAP proxies for different programming languages. This means

that you can automatically generate the service-specific portlet. To simplify

writing portlets using data-oriented Web services, IBM provides tools that can

automatically produce the appropriate SOAP proxy code for the Java program-

ming language from a Web services WSDL interface description.

Portlets that consume data-oriented Web services through a SOAP proxy use

the service-specific Java SOAP proxy. As a consequence, those portlets indi-

rectly depend on the particular operations of the data-oriented Web service that

determines the proxy’s methods. The portlets need to know how to make calls

to the SOAP proxy and how to process and render the results. This means that,

in addition to the service-specific proxies, the individual portlets must contain

significant amounts of code tailored to the particular Web service interface.

Remote portlet Web services

To allow for dynamic integration in WebSphere Portal, remote portlets need

to be provided as Web services conforming to a well-defined, common remote

portlet Web service interface description defined in WSDL. This interface

description specifies a common set of operations and signatures corresponding

to the portlet API for local portlets. Remote portlet services do not have to be

implemented in Java; they can be implemented in other languages as well, as

long as they all adhere to the remote portlet Web services WSDL description.

�������
���

���������
����������������

��������� ��� ������� �
����� ����� ��
�������������

��� ������� �
����� ����� ��
����������������������

����������������
���������

�������
���

������
������

�������
��������
����� �

�������
��������
����� �

������� �
��������������

������� �
��������������

�����������

Figure 9. Portal consuming data-oriented Web services using service-specific portlet code

Easily integrating remote portlet Web services with your portal.

Page 14

Easily integrating remote portlet Web services with your portal.

Page 15

When invoking a remote portlet, the portal uses a generic portlet proxy to

invoke the remote portlet Web service. The portlet invokes the generic portlet

proxy exactly like it would invoke a local portlet. The generic portlet proxy

internally invokes a SOAP proxy to put all parameters into a SOAP request and

sends it to the remote server hosting the remote portlet Web service. Because all

remote portlet Web services adhere to the same service interface definition, the

same SOAP proxy class can be used for all of them. On the producer’s side, the

remote portlet Web service extracts the information from the incoming request

and calls on the remote portlet implementation.

�������
��� ����

������
������ ���

�������
���

����
������

������ ���
�������

���

������ ������
��� �������

������� �
��������� ����

��� �������������

������ ������
��� �������

������� �
��������� ����

��� �������������

�������
���

������
������

�������
�����

�������
�����

�����������

Figure 10. Portal consuming remote portlet Web services using generic portlet proxies

The result is put into a SOAP response and sent back as the reply to the SOAP

proxy, which then extracts the response for the portlet proxy. Like a local

portlet, a result object is returned to the portal engine that initiated the request.

The big difference between remote portlet Web services and data-oriented Web

services is that remote portlet Web services are user-facing, interactive services

that include presentation and all have one common interface. This means that

the remote portlet Web services can be integrated in portal servers in a plug-

and-play fashion and do not require any service-specific code to run on the

consuming portal.

Easily integrating remote portlet Web services with your portal.

Page 14

Easily integrating remote portlet Web services with your portal.

Page 15

Content or application providers who want to offer remote portlet Web services

can publish their service entries to a UDDI directory, referencing the remote

portlet Web services interface description. When a remote portlet has been

published, portal administrators can use their portal administration user inter-

face to search the UDDI directory for Web services that implement the remote

portlet Web services interface. The administrators can then make some of the

matching portlet Web services available for their users by adding them to their

local portlet registry (see Figure 11). Once the portlets are in the registry, users

can select them to be displayed on their personal pages, like local portlets.

Use of remote portlet Web services in WebSphere Portal, Version 4.1

In WebSphere Portal, Version 4.1, the mechanisms for publishing portlets as

remote portlet Web services, finding remote portlet Web services in a UDDI

registry, binding to them and using remote portlets are smoothly integrated

with the administration user interface. There are four different dialog flows

that apply to the use of remote portlet Web services (see Figure 12).

• Managing UDDI registries

Administrators manage a list of UDDI servers they want to use for querying

and publishing.

• Publishing portlets

������
������ ���

�������
����

�������
�����

������
�������

��� �������

��� ������

��� ����
���
����

������ ������� �

����

������
�����������

������
��������������

������� �����

������� �����

������� �����

�������
��������

������
�����������

������
��������������

�������
��������

������� ����� ����� ����� ������� �����

Figure 11. Publishing, finding and binding remote portlets

Easily integrating remote portlet Web services with your portal.

Page 16

Easily integrating remote portlet Web services with your portal.

Page 17

Administrators can publish portlets to make them available for use by other

portals as remote portlet Web services.

• Finding and binding remote portlets

Administrators find remote portlet Web services in a UDDI registry and bind

to these services to make them available for portal users.

• Using remote portlets

Users select and transparently use remote portlet Web services that have been

integrated by administrators, as easily as local portlets.

����� ��������
���� �����

������ ����� �������
�������� �� �������������

�� ��� �����������

������� ��������
�� ���� �� ������
������� ��� ���������

���������� ��������
���������������

������ ����
��� �������� �����

���� ��������

��������
���� ����������
���������������

������
������������

����� ����
��� ������ �������

������� ���
������� ��������
���������������

���� �� ������
������� �� ���������

� ����� ��������

���� ������ �������
����� ���������
������ ������
���� ��������

������ ����
��� ��������

����� ���� ��������

Figure 12. Web services-related dialog flows in WebSphere Portal

Easily integrating remote portlet Web services with your portal.

Page 16

Easily integrating remote portlet Web services with your portal.

Page 17

Managing UDDI registries

Before publishing portlets or looking for remote portlet Web services, one or

more UDDI servers must be configured. WebSphere Portal manages these

configurations, centrally stores the user name and password securely in the

system-wide credential vault and makes use of the registered servers in the

publish-and-find dialogs.

Using the Manage Web services dialog, the administrator can register a new

UDDI registry. WebSphere Portal prompts for a display name for the new

registry, the inquiry URL and the remote portlet Web services tModel key that

is valid in the scope of the UDDI registry. To use the registry for publishing, a

publish URL needs to be supplied in addition to the credentials required by

the UDDI registry to publish services.

Publishing portlets

Publishing portlets is done through the Publish portlets dialog. The user can

select the portlet or portlets to be published using the standard Get portlets

dialog. By default, the name under which the portlet is published to the UDDI

registry is taken from its registration information within WebSphere Portal.

However, the portal administrator has the option to modify the name and

description for each portlet for each supported locale. After names and descrip-

tions have been defined, the administrator selects one of the UDDI registries

(previously configured through the Manage Web services dialog) to publish

to. The publishing dialog displays a list of all business entities in the selected

UDDI registry that the current user has the right to publish to. If none of the

existing businesses is appropriate or if there is no such business entity, the user

has the option to create a new business entity.

Finding and integrating remote Web services

Finding and integrating remote Web services works like this: The user can

select a UDDI registry to search in, using the Integrate a Web service as a

remote portlet option. The administrator can search for all portlets, all portlets

in a business entity or portlets by name. The dialog will find only those portlets

that are compliant with the remote portlet Web service interface by making use

of the associated tModel key.

Easily integrating remote portlet Web services with your portal.

Page 18

Easily integrating remote portlet Web services with your portal.

Page 19

From the search result, the administrator can then select the remote portlet Web

services to integrate, which allows WebSphere Portal to add the remote portlet to

its portlet registry and make it available for portal users.

Using a remote portlet is as simple as using a locally installed portlet. Users

can select remote portlets from the Work with pages dialog just like they select

local portlets.

The following sections show how these functions are realized in WebSphere

Portal, Version 4.1. The screen captures shown in the figures are made from the

actual product.

Publishing portlets as remote portlet Web services in UDDI

Only portal administrators may publish portlets as remote portlet Web services

to a UDDI directory to make them available for integration with other portals.

After logging in for the first time, the administrator needs to select the Manage

Web services dialog to configure a list of UDDI registries, as shown in Figure 13.

Figure 13. Administrator configuring UDDI

Easily integrating remote portlet Web services with your portal.

Page 18

Easily integrating remote portlet Web services with your portal.

Page 19

The Provide registry authentication information dialog allows the adminis-

trator to provide the credentials required for publishing services to the registry

(see Figure 14).

Figure 14. Providing UDDI credentials

To make a portlet available as a remote portlet Web service in UDDI, the

administrator uses the Publish portlets dialog. The administrator selects the

portlets to publish, the destination registry and business, and presses the

publish button to finally publish a particular portlet to UDDI as a remote

portlet Web service (see Figure 15).

Easily integrating remote portlet Web services with your portal.

Page 20

Easily integrating remote portlet Web services with your portal.

Page 21

Finding and binding to remote portlet Web services

Only administrators can find and bind to remote portlet Web services. To find

a remote portlet Web service, the administrator selects the Integrate a Web

service as the remote portlet dialog (see Figure 16).

Figure 15. Selecting the portlet to be published

Figure 16. Finding remote portlet Web services

Easily integrating remote portlet Web services with your portal.

Page 20

Easily integrating remote portlet Web services with your portal.

Page 21

When the administrator clicks Get portlets, WebSphere Portal queries the

UDDI directory for all remote portlet Web services that meet the search criteria

(see Figure 17).

Figure 17. The portal lists remote portlet Web services.

To add the remote portlet to the WebSphere Portal portlet registry to make it

available to users, the administrator checks the World Clock portlet from the

search result list and selects OK. As a result, WebSphere Portal gets the relevant

information about the remote portlet Web service and creates a new portlet

proxy entry in its portlet registry, making the remote portlet available to users.

The administrator can also specify whether user information may be trans-

ferred to the remote portlet Web service.

Easily integrating remote portlet Web services with your portal.

Page 22

Easily integrating remote portlet Web services with your portal.

Page 23

Using remote portlet Web services

For users, remote portlet Web services are entirely transparent. After logging

in, the user can use the Work with pages option to navigate to the WebSphere

Portal Customizer screen. This screen lets the user select portlets and put them

on a page (see Figure 18).

Figure 18. Configuring pages

The user can select a proxy for a remote portlet, like you can for any local

portlet. After selecting the remote portlet in the customizer, it is displayed on

the user’s page (see Figure 19). The World Clock portlet in this screen is remote;

the other portlets are from a local source.

Application examples

After explaining the basic concepts and presenting the capabilities of

WebSphere Portal Server to publish, find and bind to remote portlet Web

services, the following section discusses examples of applications that show

how these capabilities can be exploited.

Easily integrating remote portlet Web services with your portal.

Page 22

Easily integrating remote portlet Web services with your portal.

Page 23

Content providers publishing remote portlet Web services

Most content providers publish their content live on the Internet using HTTP

or file transfer protocol (FTP) servers, or they provide client software that repli-

cates and caches content using proprietary protocols. Either way, integrating

content with a portal is a difficult task. Portals may provide some portlets that

support particular content sources out of the box. When an administrator sets

up a portal to integrate content from different sources, it’s expensive and time-

consuming because the administrator must develop and install additional

portlets for the remaining unsupported content. Without supported portlets,

portal owners and content providers are at a disadvantage because it’s difficult

to include a full range of content, limiting business growth. It also limits your

ability to control how a subscriber’s portlet renders content.

Figure 19. A portal page with a remote portlet

Easily integrating remote portlet Web services with your portal.

Page 24

Easily integrating remote portlet Web services with your portal.

Page 25

For easy integration of content in portals without any programming or service

effort, content providers can use WebSphere Portal Server to surface their

content as portlets and publish these portlets as remote portlet Web services

in the public, global UDDI directory.

To provide this new value to customers, the content provider runs a WebSphere

Portal installation that serves remote portlets in addition to the more tradi-

tional content server. After the content provider has used the publish function

provided by WebSphere Portal to advertise the remote portlet Web services in

UDDI, portal administrators who want to use content from the content provider

can simply look up the content provider’s business entry in the UDDI directory

and bind to remote portlet Web services that provide the desired content. The

portlets on the content provider’s server become available immediately without

any programming or installation effort and can be used by portal users. At the

same time, WebSphere Portal provides the content provider itself with a portal,

so that the content provider can also make content available to users directly.

The content provider can also easily use the same setup because all content

provider clients have to test and review the actual presented outcome on a

remote client portal.

Portals publishing local portlets for remote use

Portals initially operated in isolation from each other, but the demand for

cooperation between portals started within big corporations. In the near future,

corporate portals will also need to cooperate with supplier or customer portals,

so that eventually portals will need to cooperate over the Internet, as well as

within intranets. The introduction of this white paper described a scenario in

which an employee portal used a service provided by the HR function within

a corporation.

In that scenario, assume HR runs a portal that provides various HR-related

portlets. Some portlets serve only the HR staff, for example, a payroll portlet or

a curriculum vita (CV), or resume, portlet. Some portlets serve all employees,

such as a variable pay portlet and an HR information portlet, providing HR-

related news.

Easily integrating remote portlet Web services with your portal.

Page 24

Easily integrating remote portlet Web services with your portal.

Page 25

Assuming the corporation has its own corporate UDDI directory that is

only accessible from an intranet, an HR portal administrator could use the

WebSphere Portal server publish function to create remote portlet Web service

entries for the variable pay portlet and the HR information portlet in the corpo-

rate UDDI directory. This would allow these portlets to become available for

integration in other portals in the corporation. Using the WebSphere Portal

Server built-in UDDI browser, the administrator of the employee portal could

find remote portlet Web services published by the HR portal and integrate

them as part of the administrator portal with only a few clicks.

Standardization

Portal owners can benefit from the ability to publish and share portlets running

on WebSphere Portal. Content and application providers can implement and

provide remote portlet Web services so that the services can easily be found and

integrated by WebSphere Portal installations. Beyond the immediate benefits,

however, exploiting the full potential of the remote portlet concept requires

development of a standard.

IBM—together with portal vendors, content and application providers and

other organizations that have a vital interest in creation of a standard for plug-

gable services for portals—have initiated the OASIS Web services for remote

portlets (WSRP) standards initiative (see http://oasis-open.org/committees/

wsrp/). The OASIS WSRP technical committee has the charter to define a

standard for user-facing, interactive Web services that plug and play with

heterogeneous portal servers5. The standard will define meta-data to describe

WSRP services and illustrate how to locate the services and the protocol for use

of a WSRP service by consumers6.

WebSphere Portal will support the emerging WSRP standard for using remote

portlets and for publishing local portlets as soon as the standard is available.

Easily integrating remote portlet Web services with your portal.

Page 26

Summary

The remote portlet Web services approach allows deploying distributed portals

cooperating within an intranet or over the Internet. IBM WebSphere Portal for

Multiplatforms, Version 4.1 supports the remote portlet Web services concept

to allow publishing of local portlets as remote portlet Web services and integra-

tion of remote portlet Web services in WebSphere Portal software-based portals

using only a few clicks by an administrator, without any programming effort.

At the same time, the ability to host portlets and publish them as remote portlet

Web services that can be easily integrated with portals makes WebSphere

Portal a versatile platform that lets content and application providers offer their

services in an easy-to-use form.

With IBM WebSphere Portal, your company can easily publish, find and bind,

and use standards-based Web services and Web services portlets. The exten-

sive and flexible integration of Web services in WebSphere Portal should drive

increased use of portals and Web services within your organization, resulting in

greater employee productivity.

For more information

For more information about WebSphere Portal, visit:

ibm.com/websphere/portal

Easily integrating remote portlet Web services with your portal.

Page 26

G325-2098-00

© Copyright IBM Corporation 2002

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
10-02
All Rights Reserved

The e-business logo, IBM, the IBM logo and WebSphere are trade-
marks or registered trademarks of International Business Machines
Corporation in the United States, other countries or both.

Java and all Java-based trademarks and logos are trademarks of
Sun Microsystems, Inc. in the United States, other countries or both.

Other company, product and service names may be the trademarks
or service marks of others.

This publication contains non-IBM URLs. IBM is not responsible for
information found on these Web sites.

 1 See the “Guide to WebSphere Portal” IBM white paper at
www.ibm.com /websphere/portal.

 2 See “UDDI Technical White Paper” at
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf.

 3 See “SOAP Version 1.2, Part 1: Messaging Framework” at
http://www.w3.org/TR/soap12-part1/.

 4 See “Web Services Description Language (WSDL), Version 1.2” at
http://www.w3.org/TR/wsdl12/.

 5 For more information about OASIS Web services for Remote
Portlets, visit http://www.oasis-open.org/committees/wsrp.

 6 For more information about the Java Specification Request 168, visit
http://www.jcp.org/jsr/detail/168.jsp.

