
Simplifying the development of enterprise-
scale e-business applications

By Joseph Pesot, Stephen Hancock and Clifford Meyers
IBM Software Group

A WebSphere Studio Enterprise Developer solution

May 2002

Simplifying the development of enterprise-scale business applications.

Page 2

Introduction

To stay competitive in today’s marketplace, your enterprise needs to develop

an e-business solution that focuses on providing up-to-the-minute information

that is accessible and accurate. This means your business applications and data

need to be available across every level of the enterprise and on the Internet

at any time. Your enterprise Web applications must also effectively leverage

heterogeneous development teams, hardware and existing applications to

optimize fundamental business processes that can differentiate your business

from the competition. The right e-business solution can allow an enterprise to

more effectively manage relationships with customers and suppliers, streamline

business processes, speed decision making, reduce project cycle times and

increase control over inventory.

However, creating an e-business solution and enterprise Web applications for

your company can be challenging. Web applications must be flexible and able

to grow with your business. They must be able to incorporate a variety of

disparate core business applications and maximize the significant information

technology (IT) investment of legacy core business applications. These factors

create a significant IT challenge, which can slow Web application development,

modernization and time to market.

This white paper discusses the critical Web application development needs of

an enterprise and explains how an integrated development environment can

simplify the development of e-business solutions and associated Web applica-

tions. It also describes key aspects of IBM WebSphere® Studio Enterprise

Developer and how it can help your enterprise development team modernize

existing applications for use with Web applications and e-business solutions.

The intended audience includes software developers, system architects, IT

professionals, technical managers and anyone interested in Web application

development.

2 Introduction

3 Enterprise Web applications

4 The middle-tier problem

5 The Web application development

environment

5 The Web application development team

6 Elements of e-business

development tools

7 Using component technology

8 Managing change with model view

controller

9 Visual assembly tools

10 IBM WebSphere Studio Enterprise

Developer

10 Designing a Web application

11 Designing the application flow

12 Creating components from existing

capability

13 Developing new components

13 Creating Web pages with HTML

source editor

14 Implementing EGL applications

15 COBOL and PL/1 source editor

16 Java source editor

16 Testing and debugging

17 Building and deploying

18 Summary

19 For more information

20 Appendix

Contents

Simplifying the development of enterprise-scale business applications.

Page 3

Enterprise Web applications

An enterprise using traditional applications faces several challenges as it strives

to create Web applications that take advantage of an existing IT infrastructure.

When new and diverse technologies are linked with existing enterprise applica-

tions, the integrity of business operations may be compromised if the new

architecture is not extensible and compatible with the current one. Timing is also

critical when an enterprise is developing an e-business solution. If a company

moves too slowly in this area, it can mean losing customers to the competition.

The first step in creating an e-business solution is to develop appropriate

enterprise Web applications. Consider the topology of a typical Web application,

shown in Figure 1. Often called N-tiered applications, a Web application consists

of a client tier (usually browsers and thin clients), a middle tier (Web and

application servers) and an enterprise information system (EIS) tier of legacy

applications and databases (like IBM System/390® and other host systems).

EIS tier

Middle tier

Client tier

Figure 1. N-tier application topology

In the client tier, browsers generally remove the requirement to distribute code

to each user of an application. This greatly simplifies the task of managing

deployment of applications because enterprises have anywhere from hundreds

to thousands of internal users and thousands to millions of external users.

As new client hardware platforms emerge, such as handheld devices or data-

enabled phones, efficient application designs avoid sending large amounts of

code to the client.

Simplifying the development of enterprise-scale business applications.

Page 4

The middle tier, which can have many levels, plays a critical role in a Web

application because it holds everything together. For instance, the middle tier is

responsible for managing communication with the client tier and the EIS tier.

The middle tier often leverages JavaServer Pages (JSP) to manage input from the

client and the delivery of information back to the client. The middle tier also

manages communication with the EIS through various connector technologies.

In addition, the middle tier is where much of the new application code is written

to exploit component technologies and Internet enabling. The exploitation of such

component technologies can result in the creation of JSP pages, and JavaBeans

and Enterprise JavaBeans (EJB) components and servlets. The middle tier is

responsible for a significant portion of new business logic that is required to

handle today’s industry processes dictated by emerging online business models.

The EIS tier is where the bulk of an enterprise’s information technology investment

resides. It often includes transaction-processing applications and databases, usu-

ally developed over a long time, that are critical to the daily operation of a business.

Enterprises can leverage this core functionality as they build Web applications to

save significant time, energy and money.

The middle-tier problem

A critical issue for many enterprises is a mismatch between existing development

skills and the role of the middle tier in Web application development. The skills

necessary for effectively developing the middle-tier components of a Web applica-

tion are often difficult to learn, expensive, in short supply or not available at all.

Typically, programmers from multiple skill groups are required when developing

e-business solutions. Each brings important capabilities to the Web application

development team, yet no one group is capable of handling it all. For instance, tra-

ditional programmers with extensive experience on host systems are familiar with

the high-performance, transactional approach of EIS applications. Often they are

not generally experienced in the more object-oriented, class-based programming

models necessary in the middle tier. Conversely, programmers with experience

in Java™, Extensible Markup Language (XML) and other Internet programming

technologies are usually not familiar with the business logic that created existing

host systems. As a result, it is critical that teams made up of individuals from

diverse skill groups are brought together to solve the middle-tier problem.

Simplifying the development of enterprise-scale business applications.

Page 5

The Web application development environment

Insufficient Web application development environments have further complicated

the problems facing enterprise development teams. The Web application develop-

ment environment has been fractured and disjointed, and so have been the results.

Many early Web applications consist of chaotic strings of HTML and scattered

programs written in common gateway interface (CGI) or Practical Extraction

and Report Language (PERL) scripts. This should not be the foundation of a

robust, 24x7 enterprise application. Security, reliability and maintainability have

often been below acceptable standards. In addition, developers have faced a lack

of adequate development tooling for building complex Web applications. Web

applications and their middle-tier components have often been created by what

can be called point tools—development tools that were extremely narrow in terms

of function and focus. No single tool has been created to provide a complete

e-business solution. Early development teams entering the emerging Internet space

have been forced to cobble together development environments as best they could.

To make matters worse, much of recent Web application development has been

haphazard. Some developers in emerging Web spaces initially set aside—or at times

abandoned—standard approaches and processes to build applications as fast as

possible. This rushed development process is sometimes referred to as Web time.

The reality is that standard development processes that have helped ensure quality

code are just as important as ever. Today’s point tools do not always incorporate the

knowledge and best practices of the last thirty years of application development.

The Web application development team

The process for planning and building software applications has been evolving for

many years. Historically, requirements were gathered, project leads were put in place

and a team was enlisted. Next, the work was distributed, milestones were set and

project-tracking mechanisms were put in place. An entire software project might

be built in COBOL, PL/1, C, C++ or some other programming language. In the

past, software development teams were fairly homogeneous. Generally, the entire

application would run on a single platform. Within the project everyone basically

spoke the same language, learned the same processes and set similar milestones.

This is not the case for some teams currently creating e-business solutions.

Simplifying the development of enterprise-scale business applications.

Page 6

Today’s Web application development teams often include business analysts, man-

agers, host programmers, application programmers, Web page designers, graphics

designers, Java programmers and component developers. One person might fill

each role, or any one person might be required to play multiple roles. Planning a

Web application has become complex because of the varied skills and numerous

roles required. For example, on the EIS tier, you may have COBOL or PL/1

programmers with experience building IBM CICS® transactions or other applica-

tions and databases associated with current business logic. Their approach to

development is probably based on models of structural programming (and most

likely do not separate the user interface from the business logic). The processes

for building such systems are specific to the host environment.

Your development team needs professionals with experience in your existing busi-

ness applications—perhaps host programmers—working on aspects of the middle

tier. On the middle tier, you can have Java programmers building servlets, classes

or JSP code. Their development and architectural model is likely to be more

object-oriented. It is crucial to get the business knowledge that is embedded

in your existing applications and leverage it as you develop in the middle tier.

Graphic designers and HTML programmers develop for presentation on client

systems (graphics, JSP pages, HTML). Today this means browsers, but other client

platforms, such as hand-held devices and data-enabled phones, are becoming

popular. Team members with these skills tend to have backgrounds in building

user interfaces. Of course, managers of teams developing Web applications might

come from any of these programming disciplines or perhaps a technical business

role, or some other technical lead position. Teams need development tooling that

not only allows diverse roles to interact, but also integrates the members as a team.

Elements of e-business development tools

For enterprises to fully engage and implement Web applications, development

tools are needed to directly leverage existing assets, help solve the middle-tier

skill and complexity problems, and support proven development practices. The

need for an integrated development environment in which critical aspects of Web

application development and the associated modernization of existing applications

must be addressed. Such tools would also include capability that simplifies the

combination of the complex technologies involved—within and between the vari-

ous tiers— in Web application development.

Simplifying the development of enterprise-scale business applications.

Page 7

Development tools for the enterprise need to take the best capability of the point tools

and combine them into a single coherent environment where team members with

various technology backgrounds and experience can bring their particular expertise

to bear. These tools also need to support the enterprise’s requirement to create

reusable components that can be leveraged throughout the e-business environment.

Using component technologies

A key aspect of today’s Web application development effort revolves around

understanding and leveraging of components and component-based architectures.

Component models allow teams to reuse proven and reliable runtimes and capabili-

ties instead of duplicating development effort. A component is defined as any piece

of code that provides a service to another aspect of an application. It can be built

in any language and may ultimately run in any environment. Components may also

be harvested from existing capability within the enterprise. The use of component

technology provides significant benefits in areas, such as reuse, reliability, mainte-

nance, scalability and ultimate time to market of business applications.

The modernization of enterprise applications relies heavily on harvesting

candidates for becoming components. When a particular capability becomes a

component, that capability can be used again and again by many different appli-

cations. Emerging component models also allow for distributed application

topologies that can be deployed across multitiered environments, scaling as busi-

ness needs grow. Finally, component models isolate aspects of an application so

that, as technology changes, components can be updated independently, limiting

the impact of changes and updates to a manageable scope. Managing change is an

important benefit of leveraging component architectures and models. If not man-

aged well, change can result in the degradation of a modern Web application into

unwanted complexity. A comprehensive design pattern can bring much needed

structure to Web application development.

Simplifying the development of enterprise-scale business applications.

Page 8

Managing change with model view controller

Model view controller (MVC) is a design pattern for creating components that was

originally developed to help manage change in software application development.

MVC separates a user interface from business logic and data. The key aspects of

MVC are:

Model. The model contains the core of the application function. The model

captures the state of the application. It does not include knowledge of the view

or controller.

View. The view is the look of the application. The view presents, gathers

and submits information, but it does not include knowledge of the model or

controller.

Controller. The controller manages the execution flow of the application,

passing appropriate state information between the model and the view.

The MVC approach allows the key aspects of a Web application to be isolated and

maintained independently. For Web applications, the classic form of MVC needs

modification because the Web brings unique challenges to software developers.

Most important is the stateless connection between the client and server. This

stateless behavior makes it difficult for the model to notify the view of changes.

On the Web, the browser needs to query the server again to discover modification

to the state of the data within the application. Another change is that the view

is implemented using different technologies , such as Java, PERL, C/C++, from

the model or controller. This creates the need to separate key development roles.

For example:

• Business programmers should focus on developing services, not HTML.

• The Web page designer does not need to have direct involvement in—or awareness

of—service development.

• Changes to Web page layout by a page designer should not require changes to code of

a service developer.

• Customers of the service should be able to create views to meet their specific needs.

Simplifying the development of enterprise-scale business applications.

Page 9

MVC, modified for the Web, is called MVC2. Figure 2 presents the MVC2 approach

as it might appear in an N-tier environment. Input from the user is taken at the cli-

ent and passed to a controller (servlet) that examines the input and the current state

of the model. The model (or business objects) may reside on application servers,

host servers or both. The controller then populates the appropriate response view

with data obtained from the model. The view (display page) is then presented to the

user. Using a design pattern, such as MVC2, helps to separate code responsibility

and associated roles within the development team. Such separation helps ensure

that changes (regardless of where they occur) are isolated.

Visual assembly tools

The Web application builder would prefer to simply leverage components, taking

advantage of these services as needed without having to understand exactly how

they are actually implemented. Once candidates for componentization have been

identified, the focus shifts to assembling components in the most efficient way

to provide end-to-end capability that meets business needs quickly. How does

the application developer assemble components based on disparate technologies?

Clearly, to solve this problem visual assembly tools are required to help organize

and arrange components and their operations in meaningful ways. They automati-

cally define the order of events and how data is passed from tier to tier and

from component to component. Visual assembly tools should function to allow

the developer to focus on the business logic required, while complex details of

integrating disparate technologies are handled automatically.

Client Application server Host server

Figure 2. The MVC approach in an N-tiered environment

Input page (view) Business
objects
(model)

Display page (view)

Servlets
(interaction controllers)

Display page
(view engine)

Simplifying the development of enterprise-scale business applications.

Page 10

Visual assembly tools simplify the task of designing, coding, testing, debugging and

maintaining the controller. The key role of visual assembly tools within enterprise

Web application development is to build and manage the controller in an MVC2

implementation. The model and the view elements are the components driven by

the controller and require business logic and Web page layout skills, respectively. A

combination of visual assembly and componentization tools can help development

teams maintain the MVC separation.

WebSphere Studio Enterprise Developer

An integral part of an e-business solution is leveraging multiple skill sets, modern-

izing existing applications, identifying components and assembling them into Web

applications. Yet implementing an effective Web application requires a robust

component architecture and development tooling. WebSphere Studio Enterprise

Developer offers tools for building and managing complex, component-based,

N-tier Web applications to development teams with heterogeneous skill sets. It

also leverages component architecture models and development tooling that can

enable the successful creation, deployment and maintenance of enterprise Web

applications. With WebSphere Studio Enterprise Developer, an enterprise can

create Web applications by integrating diverse employee skill sets and extending

existing systems. This approach can allow enterprises to leverage proven runtime

environments while helping to reduce deployment risks.

WebSphere Studio Enterprise Developer also supports accepted practices and

emerging Web application technologies to help ensure that development teams

build robust component-based applications. In particular, you can leverage an MVC

architectural model and an open-source MVC2 implementation design. WebSphere

Studio Enterprise Developer also helps extend emerging Web application compo-

nent-oriented technologies and projects, such as XML, Struts, Web Services

Description Language (WSDL) and Simple Object Access Protocol (SOAP). (See the

appendix for a brief description and resources for each.)

Designing a Web application

The focus on modernizing enterprise applications and creating e-business solutions

dictates specific development processes. Existing enterprise applications must act

as a resource pool for the Web applications under construction. You will need new

application code and business logic. You need to create reusable components so that,

as your enterprise builds its Web applications, its capability can be leveraged as

components in future Web applications.

Simplifying the development of enterprise-scale business applications.

Page 11

Figure 3 shows a development process where existing components are identified,

new components are created and application flow is defined, and components

are linked together in an efficient way. Once you complete initial planning,

simultaneous development begins that defines application flow, finds existing

components, creates new components and engages in various levels of testing.

As this development concludes, your teams can engage in build and deploy activi-

ties. The following information highlights basic development activities and how

WebSphere Studio Enterprise Developer can provide development teams with the

support they need to be effective.

Designing the application flow

Connecting components that comprise disparate technologies is the biggest chal-

lenge facing Web application developers. WebSphere Studio Enterprise Developer

visual assembly environment is used to define the basic flow of a Web application

graphically connecting JSP pages with component services or actions. This

approach simplifies the creation of an MVC controller by masking the complexity

of the disparate technologies involved. The actions defined in the visual assembly

environment can be implemented in whatever technology is most appropriate for

your specific needs (COBOL, PL/1, Java or IBM Enterprise Generation Language).

WebSphere Studio Enterprise Developer visual assembly environment leverages

Struts, an emerging open standard for constructing MVC-based Web applications.

Struts provides an action servlet that manages the runtime relationship between JSP

pages and actions. The use of Struts helps to ensure an effective separation of code

responsibilities and developer roles. (See the appendix for a brief description and

additional references for Struts.)

Figure 3. A Web development process

Building and
deploying

Testing
Creating and assembling components

Designing application flow
Finding resourcesPlanning

Simplifying the development of enterprise-scale business applications.

Page 12

The visual assembly environment is used initially as part of the design process, help-

ing a development team quickly lay out view (JSP) and model (action) components

(see Figure 4) without having to consider the technical issues of combining disparate

technologies that have yet to be created or harvested from existing capability. The

visual assembly environment is then used throughout the development process to

add, extend and test a Web application’s capability.

Creating components from existing capability

A key aspect of creating a Web application involves leveraging existing applica-

tions, and harvesting components from within the enterprise. However, developers

may encounter significant difficulties when they try to create components based

on traditional applications. WebSphere Studio Enterprise Developer simplifies the

process by providing powerful componentization tooling that helps development

teams turn existing applications into reusable components. WebSphere Studio

Enterprise Developer adapter tooling, provides a wizard-based user interface,

which helps a developer identify important aspects of an EIS component.

Figure 4. Struts lets you quickly see layout and view of Web applications.

Simplifying the development of enterprise-scale business applications.

Page 13

The tooling automatically creates a Java 2 Connectivity (J2C) interface to the

host component. This component interface is a Java class that runs on the Web

server but can communicate with transactions or other capability on the host.

This component interface can then be incorporated into the visual design tool,

making it available as an action within the Web application. These connectors are

automatically designed to be complete Web services, allowing the enterprise to

directly engage Web service business paradigms.

Developing new components

In addition to leveraging existing capability, your development team will often

need to create new components to be part of a Web application. WebSphere Studio

Enterprise Developer provides powerful source editors integrated as a single devel-

opment tool for building many component types required, including HTML, JSP

pages, EJB components, JavaBeans, COBOL, PL/1, Assembler and IBM Enterprise

Generation Language (EGL). Many combinations of these technologies can be lev-

eraged when implementing actions described in the visual assembly environment.

This approach can allow WebSphere Studio Enterprise Developer to provide a

fully integrated development environment in which the various Web application

development roles can be performed effectively by a heterogeneous team.

Creating Web pages with HTML source editor

Once the general layout of Web pages has been defined in the visual assembly

environment, the actual Web pages can be created. WebSphere Studio Enterprise

Developer HTML source editor is an advanced-function HTML editor that can

allow your Web page designer to quickly build complex dynamic Web pages, visually

and textually. The dynamic element support enables you to include form elements,

Java applets, embedded scripts, dynamic controls and JSP tags. You can toggle

among three modes to visually design pages, work with HTML text and preview

your pages (see Figure 5). Content help provides guided editing as you insert new

tags and is available in the HTML source view. To help you create the visual impact

you want on your Web sites, the editor includes its own library of reusable graphics

and two graphic programs that create, edit and animate image files.

Simplifying the development of enterprise-scale business applications.

Page 14

Implementing EGL applications

As part of WebSphere Studio Enterprise Developer, IBM also includes EGL, a high-

level programming language (based on the IBM VisualAge® Generator product

family). EGL is a fourth-generation programming language (4GL) that enables

traditional developers to code aspects of Web applications at a high level and then

generate the appropriate source code for targeted runtime environments. From the

visual assembly environment, a traditional developer can choose to implement a

particular action using EGL. Then, using the EGL editor, seen in Figure 6, and the

associated scripting language (optimized for rapid application development), your

developers can create programs, functions, records and other structures. And then

generate COBOL or Java source code as needed. The EGL editor also includes task

wizards to help your developers quickly create the parts they need.

The EGL language is similar to COBOL and PL/1, and other 4GLs, providing

developers who have those skill sets with the ability to quickly generate applica-

tions that can run in either the middle tier (Java) or EIS tier (COBOL or CICS) of

a Web application. This capability provides a developer with options to write code

once and then have it potentially run in multiple environments (using COBOL or

Java generation as needed).

Figure 5. Web page designer preview screens allow you to see your work before it’s published.

Simplifying the development of enterprise-scale business applications.

Page 15

Specifically, EGL allows traditional developers to create business logic and then

generate Java programs for the middle tier. Further, EGL provides traditional

developers with an easy way to take that same business logic and create new EIS

COBOL applications and the associated Java wrappers and connectors needed in

the middle tier. This capability can help your development teams overcome the

middle-tier problem. Because the Java wrappers and associated connectors are

created automatically, Java programmers are not required to develop wrappers for

COBOL applications they didn’t create. The wrappers are created automatically

and can be directly leveraged in the visual assembly environment.

Figure 6. EGL editor

COBOL and PL/1 source editor

Actions defined in the visual assembly environment may also be implemented in

COBOL or PL/1. Traditional developers can create and edit host-based resources

using the WebSphere Studio Enterprise Developer COBOL, PL/1 source editor

(see Figure 7). It includes the ability to connect to various host systems to locate

your development resources, as well as syntax highlighting, a job monitor and the

capability to enter TSO commands. Once a developer has prepared the capability,

the developer can use the adapter tooling to connect this host logic to the appropri-

ate part of the Web application through the visual assembly environment.

Simplifying the development of enterprise-scale business applications.

Page 16

Figure 7. COBOL, PL/1 source editor

Java source editor

If your application includes middle-tier Java logic, your Java programmers can use

the WebSphere Studio Enterprise Developer full-function Java editor to implement

selected actions using Java technology-based software. The Java editor includes

multiple views showing project structure, the class outlines and properties and

their associated values. The Java editor, featured in Figure 8, also includes a class

hierarchy browser. This editor can be used to create JavaBeans and EJB components

for use in WebSphere Studio Enterprise Developer Web application development.

Testing and debugging

Testing Web applications can be just as complex as building them. As a team

brings together the various technologies required when an enterprise modernizes its

applications, it needs a development environment that provides end-to-end support.

WebSphere Studio Enterprise Developer starts by providing breakpoint and monitor

testing capability within the visual assembly environment. This capability can allow

the team to debug the flow of the Web application, helping to ensure that each

aspect of the flow and the associated connections perform as intended. WebSphere

Studio Enterprise Developer includes a validation framework that identifies many

coding errors while the code is being written. Programmers can select the error and

immediately see the area of the code where the problem was identified.

Simplifying the development of enterprise-scale business applications.

Page 17

WebSphere Studio Enterprise Developer also includes problem determination

capabilities such as traditional debugging, distributed code profiling and unit

testing. WebSphere Studio Enterprise Developer problem-determination capa-

bilities feature local debugging of Java source, including middle-tier and EIS

debugging for Java, EGL, COBOL and PL/1 technology-based components. Tradi-

tional debugging support includes functions like setting code breakpoints and

monitors and querying variable content. Distributed code profiling provides per-

formance analysis tools that can locally or remotely monitor code as it is executing

to better understand memory allocation and bottlenecks. The unit test environ-

ment can allow users to model their configurations for test or production. Users can

update their environment version and release at any time.

Building and deploying

After a Web application is tested and approved, your developers can use WebSphere

Studio Enterprise Developer to build and deploy the application to target environ-

ments on specific machines, as shown in Figure 9. WebSphere Studio Enterprise

Developer also enables automated deployment of EGL applications based on instruc-

tions included in a build plan.

Figure 8. Java source editor

Simplifying the development of enterprise-scale business applications.

Page 18

Build plans are created to specify such information as target machine, target direc-

tory, the list of files to move, procedures to invoke to build the outputs and so on.

The build plan is an XML file, which is generated from a build descriptor specifying

generation and output preparation options, as well as information the generators

derive from program content. Build descriptors can often be shared by developers

working on the same project. When the build process is initiated and outputs are to

be built on a runtime platform, the WebSphere Studio Enterprise Developer build

command processor transfers files to the appropriate machine and executes any

necessary commands on that machine as specified in the build plan. WebSphere

Studio Enterprise Developer build deployment uses TCP/IP sockets to transfer data

between the client and target server machines.

Summary

Competitive pressure to move all phases of business to emerging e-business models

drives the need for enterprises to optimize business processes. An integral part

of an e-business solution is the Web application. Implementing a Web application

requires robust component architecture and development tools. WebSphere Studio

Enterprise Developer provides the architectural models and development tools for

successful creation, deployment and maintenance of enterprise Web applications.

Figure 9. WebSphere Studio Enterprise Developer build command process

Java

COBOL

Build plan
(XML)EGL

WebSphere Studio
Enterprise

Developer build
command processor

Build command

Build command

Build command

TCP/IP socket
Build servers

USS

Microsoft® Windows®

TSO

Simplifying the development of enterprise-scale business applications.

Page 19

e-business is a necessity in today’s marketplace and your enterprise faces a

competitive opportunity if you act fast or a competitive liability if you move too

slowly. Development tools for Web applications must enable the enterprise to act

quickly and effectively. WebSphere Studio Enterprise Developer can simplify the

development of enterprise Web applications by helping teams reduce development

cycle times and enable the transformation of existing systems.

For more information

For more information about IBM Application Framework for e-business, visit:

http://www.research.ibm.com /journal/sj/401/flurry.html

For more information about WebSphere Enterprise Developer, visit:

ibm.com /websphere/studio

For more information about MVC, visit:

http://ootips.org/mvc-pattern.html

For more information about Struts, visit:

http://jakarta.apache.org/struts/index.html

For more information about XML, visit:

http://www.w3.org/xml

For IBM Glossary of Computing Terms, visit:

http://www-3.ibm.com /ibm/terminology/goc/gocmain.htm

For more information about Web Services and WSDL, visit:

http://www.w3.org/TR/wsdl

For more information about SOAP, visit:

http://www.w3.org/TR/SOAP/

Simplifying the development of enterprise-scale business applications.

Page 20

Appendix: e-business technologies

WebSphere Studio Enterprise Developer leverages and supports a number of

emerging technologies that are becoming industry standards in the effort to create

e-business Web applications. Some examples of these technologies are: XML, Struts,

WSDL and SOAP. A brief description of each follows.

Extensible Markup Language

Extensible Markup Language (XML) is a markup language for documents contain-

ing structured information. Structured information contains both content—text

and graphics—and labels the content (for example, content in a section heading has

a different meaning than content in a footnote). Almost all documents have some

structure. XML specifications define a standard way to add markup to documents.

XML is a subset of Standard Generalized Markup Language (SGML). XML does

not exploit the complex, less-used parts of SGML, making it much easier to:

• Write applications to handle document types.

• Author and manage structured information.

• Transmit and share structured information across diverse computing systems.

XML was created so that richly structured documents could be used on the Web.

HTML and SGML are not practical for this purpose. HTML comes bound with a set

of semantics and does not provide arbitrary structure. SGML provides an arbitrary

structure, but it is too difficult to implement for a Web browser.

Struts

Struts is a set of cooperating classes, servlets and JSP tags that comprise a reusable

MVC2 design. The definition implies that Struts is a framework rather than a

library. Struts also contains an extensive tag library and utility classes that work

independently from the framework.

Client browser

An HTTP request from the client browser creates an event.

Controller

The controller receives the request from the browser and makes the decision

where to send the request. With Struts, the controller is a command design pattern

implemented as a servlet. The struts-config.xml file configures the controller.

Simplifying the development of enterprise-scale business applications.

Page 21

Business logic and model state

The business logic updates the state of the model and helps control the flow of the

application. In Struts, this is accomplished with an action class as a thin wrapper

to the actual business logic. The model represents the state of the application. The

business objects update the application state.

View

The view is simply a JSP page. There is no flow logic, no business logic and no

model information—just tags.

Web Services Description Language (WSDL)

WSDL is an XML format for describing network services as sets of endpoints

that operate on messages containing document- or procedure-based information.

The messages are described abstractly, and then bound to a network protocol

and format that define an endpoint. Related endpoints are combined into abstract

endpoints, or services.

A WSDL document defines services as collections of network endpoints, or ports.

In WSDL, the abstraction of endpoints and messages is separated from the network

deployment or data format bindings. This allows the reuse of abstract defini-

tions—messages that are abstract descriptors of data being exchanged, and port

types that are abstract collections of operations. The protocol and data format

specifications for a particular port type comprise a reusable binding. A port is

defined by associating a network address with a reusable binding, and a collection

of ports defines a service.

The following elements define a network service:

• Types—a container of data type definitions

• Message—an abstract, typed definition of data

• Operation—an abstract description of an action supported by the service

• Port type—an abstract set of operations supported by one or more endpoints

• Binding—a protocol and data format specification for a specific port type

• Port—an endpoint defined as the combining of a binding and network address

• Service—a collection of related endpoints

G325-2008-00

© Copyright IBM Corporation 2002

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
05-02
All Rights Reserved

CICS, IBM, the IBM logo, System/390, VisualAge and
WebSphere are trademarks or registered trademarks
of International Business Machines Corporation in the
United States, other countries or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries or both.

Java and all Java-based trademarks and logos are trade-
marks of Sun Microsystems, Inc. in the United States,
other countries or both.

Other company, product and service names may be
trademarks or service marks of others.

This publication contains Internet addresses of other
companies. IBM is not responsible for information on
these Web sites.

IBM has made reasonable efforts to ensure the accuracy
of the information contained in this publication. However,
this publication is presented as-is and IBM makes no
warranties of any kind with respect to the contents
hereof—the products listed herein or the completeness
or accuracy of this publication. Customer experiences
may be different from those described here. IBM does
not warrant any non-IBM programs or products which
are described in this white paper. This white paper is for
information only.

Simple Object Access Protocol (SOAP)

SOAP provides a protocol for exchanging structured and typed information

between peers in a decentralized environment using XML. The protocol consists

of three parts:

• A framework definition for describing the content of a message and how to process it

• A set of rules for expressing instances of application defined data types

• A convention for representing remote procedure calls and responses

SOAP does not itself define any semantics. Instead, it defines a simple mechanism

for expressing semantics by providing a modular packaging model and mechanisms

for encoding module data.

