
IBM WebSphere Portal for Multiplatforms, Version 4.1 security features
October 2002

Integrating WebSphere Portal
with your security infrastructure.

By Ingo Schuster, Frank Seliger and Thomas Schaeck
IBM Software Group

Integrating WebSphere Portal with your security infrastructure.

Page 2

Integrating WebSphere Portal with your security infrastructure.

Page 3

Executive overview

Portals provide personalized access to information, applications, processes

and people from a centralized point. You can authenticate users and control

access to various kinds of information and applications, based on preset security

definitions. Allow public access to less-sensitive information. And guard classi-

fied information—such as business-critical enterprise or government

data—more carefully.

To accommodate different security requirements, portal servers must integrate

with various security infrastructure components—such as authentication, autho-

rization and single sign-on control—so you can choose the combination that best

matches your security needs. For example, authentication might be as simple as

requiring users to provide a correct user name and password. Or, your customers

could use a “smart card”—for example, a bank card with a chip that safely stores

a private key and certificate—to provide authentication. The smart card enables

Secure Sockets Layer (SSL) or Transport Layer Security (TLS) client authentica-

tion to establish an authenticated and safe connection between the client and

the portal.

Through a modular architecture, IBM WebSphere® Portal for Multiplatforms,

Version 4.1 allows the integration of different authentication proxies, authoriza-

tion systems and credential vault implementations. WebSphere Portal is designed

to work with IBM WebSphere Application Server security 1 and IBM Tivoli®

Access Manager, as well as with third-party security products, so that you can

build a highly protected system that fits your individual infrastructure.

Introduction

Using WebSphere Portal, Version 4.1, you can establish protected access to portal

resources like page groups, pages, portlets and documents. WebSphere Portal

offers different ways to perform user authentication and authorization, and it

provides support for single sign-on. Figure 1 shows the key components, from

left to right, that are invoked when WebSphere Portal handles requests for portal

pages. Although some portal pages can be accessed without prior authentica-

tion (anonymously), all requests for personal pages or group pages must pass

through an authentication component. If a user is authenticated successfully, the

incoming request is analyzed and routed to the appropriate component.

2 Executive overview

2 Introduction

4 Typical portal scenarios

9 Available authentication methods

10 Authentication through WebSphere

Application Server security features

11 Authentication through a separate

authentication proxy

12 Requests in an authenticated

session

13 User registry versatility

14 Portal session login

15 User logout or timeout

16 Customization of the portal login and

logout process

16 Single-sign-on capabilities

17 Single sign-on from a client to Web

applications

18 Single sign-on from portal-to-back-

end system

23 Client-to-portal communication

security

26 Restricting protection to sensitive

communication only

26 Using client certificates

27 Secure back-end connections

28 Controlling access to portal

resources

29 Employing an external access

control system

30 Understanding and working with

access control rules

32 Maintaining portal security

33 Summary

33 For more information

Contents

Integrating WebSphere Portal with your security infrastructure.

Page 2

Integrating WebSphere Portal with your security infrastructure.

Page 3

HTTP requests from user agents seeking a portal page are routed to the portal

servlet, which acts as the central access point to all portal pages. Simple Object

Access Protocol (SOAP) requests from other portals intended to invoke one

of the local portlets are routed to the Web Services for Remote Portal (WSRP)

or SOAP router. In either case, authorization is required. The component

receiving the request calls the authorization component to determine whether

the requested page or the portlet to be invoked can be accessed. To guarantee

consistency of access rights, authorization information to most portal resources

is maintained in the portal. However, for some resources access control may be

externalized to systems such as Tivoli Access Manager or Netegrity SiteMinder.

When a request is routed to the portal servlet and access to a page is authorized,

the portal servlet obtains information about the portlets2 that are referenced

from the page. Next, the portal servlet calls the authorization component to

determine the subset that the current user may see, according to current access

rights, and then displays the subset. Next, the servlet selects the appropriate

aggregation module—based on the user-agent information from the request

—and calls that module, passing the information about the page and the port-

lets to be displayed. The invoked aggregation module renders the page and the

portlets in it by calling the referenced portlets. The module uses the portlet

application programming interface (API) to communicate additional user

profile information and portlet instance data from the WebSphere Portal data

store to the portlet.

Figure 1. Subsystems of WebSphere Portal, Version 4.1

��������
�������

���������
�������
���������

���������
�������

���������� �����������
���������

����������
����

���������

�������
�����������

������������� ��������������� ���������
������������

���������
�������������

������
�������������

������
������������

�����������
����������������� ���������

������������� ��������
���

�������
����

������
��������

���������

��
��
��

��
��
��
��

�
��
��
��
���
��

��
���

��
��

��
��
��
���

��
��
��
��

��
�

��
��

��
��

��
��

��

����������������

��
��

��
��

��
��

��
��

��
��
��
��

��
�

��
��
��
���
��
���
��

��
��
��

��
��
��
���

��
��
��

��
�

��
��
��
���

��
��
�

��������

���������
������

��������

��������

Integrating WebSphere Portal with your security infrastructure.

Page 4

Integrating WebSphere Portal with your security infrastructure.

Page 5

Portlets are special servlets that—unlike other servlets—are designed to

participate in the portal’s event model and exploit the portal infrastructure.

As a result, a portlet invoked by the portal can, in turn, invoke any Java™

2 Platform, Enterprise Edition (J2EE) function such as J2EE Connector

Architecture (JCA) Connectors, Enterprise JavaBeans (EJB) components,

message beans, and Java Database Connectivity (JDBC) components. A portlet

may also call Web services and HTTP uniform resource locators (URLs) in

the same way it calls other servlets. It can also invoke portal-specific portlet

services and tag libraries designed to access the portal infrastructure from

JavaServer Pages (JSP) components. As a special type of portlets, WebSphere

Portal offers portlet proxies. These are not functional portlets, but proxies for

remote portlets residing on another server that are made available as remote

portlet Web services.3 Conversely, WebSphere Portal provides the option to

publish local portlets as remote portlet Web services for other portlets to use.

Portlets are often used to integrate back-end applications with portals,

providing a Web-based user interface (UI) through the portal. When used this

way, having single sign-on capability is important because after logging into

the portal, users don’t want to enter an additional password for each applica-

tion portlet for the respective back-end systems. To enable single sign-on,

WebSphere Portal provides a credential vault portlet service. With this service,

credentials are available to portlets to forward to back-end systems where users

are then transparently authenticated. The credential vault service is backed

by a credential vault, which can either be the portal’s built-in vault or a Tivoli

Access Manager vault.

Typical portal scenarios

When you build a portal system on WebSphere Portal, you have a variety of

possible deployment options—including simple firewall protection and Internet

portal-based deployment—that provide different levels of performance, scal-

ability, availability and security.

Simple firewall protection

You can use a simple portal setup if your portal and its clients reside in your

intranet, assuming no internal attacks are expected. The portal server, the

database server and the user registry are all in the same network, but the portal

Integrating WebSphere Portal with your security infrastructure.

Page 4

Integrating WebSphere Portal with your security infrastructure.

Page 5

will not be visible to the Internet (see Figure 2). The HTTP server and the

application server (with the portal server code) are located on the same physical

machine. Clients can be connected to the portal server directly because they

are in the same network. The portal uses a separate database server to store

data. All user information is in a user registry, located in a third and separate

machine. And the same network includes any back-end systems the portal

applications might access.

Internet portals

When you need your portal to service Internet-based clients, simple firewall

protection isn’t enough. At least one node of the portal system must be visible

from the Internet. Typically, two or more firewalls are used, but there are a

number of variations.

The first configuration is appropriate for portals that use WebSphere

Application Server security. If the portal directly handles authentication and

access control for its resources, the machine running the HTTP server must

be visible to the Internet (see Figure 3) because the HTTP server is the first

node accessible to external clients. This requires that the HTTP server and the

application server with the portal server code be located on different machines.

The HTTP server is located in a demilitarized zone (DMZ) behind an outer

firewall. And HTTP requests to the HTTP server are the only incoming traffic.

�������� ��������

������
��������

����
��������

��������
������

��������

������
������

Figure 2. Deployment of a portal within a protected network

Integrating WebSphere Portal with your security infrastructure.

Page 6

Integrating WebSphere Portal with your security infrastructure.

Page 7

A second firewall provides additional protection for the inner network and the

back-end systems by only allowing traffic from the HTTP server to the portal

server. To penetrate the second firewall, an attacker must successfully seize

control of the HTTP server. To allow the portal server to access and aggregate

external content, an outbound proxy in the DMZ forwards requests from the

intranet and returns the responses from the Internet.

The second configuration option is ideal for portals that use a separate

authentication proxy. To authenticate, WebSphere Portal can use its own

authentication mechanism or rely on a separate authentication proxy, as shown

in Figure 4. A separate authentication component can provide a single central

authentication point for one or more portals and other Web resources. The

authentication proxy can be implemented as a separate server machine, as a

plug-in to the HTTP server or as a plug-in to IBM WebSphere Edge Server.

Web services

Internet Internet

��������
�����

����
������

������
������

������
��������

�������������

��������
������

�������������

�����������

��������
���������

�������� ��������

��������
�������

Figure 3. Example of a portal configuration serving to clients in the Internet

Integrating WebSphere Portal with your security infrastructure.

Page 6

Integrating WebSphere Portal with your security infrastructure.

Page 7

In this setup, authentication is performed by a proxy server. The authentica-

tion proxy is the only node visible to clients connecting from the Internet. It is

protected by an outer firewall that stops simple denial-of-service attacks. The

authentication proxy cooperates with its authorization server, which is behind

another firewall. This firewall allows inbound requests only from the authen-

tication proxy and inbound responses from the outbound proxy. The outbound

proxy forwards requests from the intranet and returns the responses from the

Internet. The authorization server accesses the user registry, which is in the

same network. The user registry is used by the authorization server, the portal

server and by other systems.

Public UDDI
registry

Web services

�������� ��������

��������
�����

�������������
������

���������������
��������������

������
��������

�������
����������

������

���������
����

��������
������

������
������

�������������

�����������

��������
���������

�������� �������� ��������

��������
�������

����
��������

��������������

Figure 4. A portal deployment with separate authentication component

Integrating WebSphere Portal with your security infrastructure.

Page 8

Integrating WebSphere Portal with your security infrastructure.

Page 9

The portal server functions execute on several machines in a cluster to

provide a higher capacity and fault tolerance. In Figure 5, the cluster includes

a load balance machine, several caching proxy machines and several portal

server machines.

In the same network as the authorization server, the user registry and the portal

server cluster is a portal database, content management server and a search server.

An additional firewall separates the network from the intranet, where the back-

end systems reside. In this deployment scenario, the portal can use remote portal

Web services through the outbound proxy. The portal also offers remote portal

Web services to others. Services offered to the Internet are registered with the

public Universal Discovery, Description and Integration (UDDI) registry in the

Internet, while those offered to your intranet only are registered with your corpo-

rate UDDI registry.

Public UDDI
registry

Web services

�������� ��������

User
registry

��������
�����

�������������
������

���������������
�������

�������������

��������������
������

��������

�������
����������

������

���������
����

��������
������

������
������

����
��������

�������������

�����������

��������
���������

�������� �������� ��������

��������
�������

Figure 5. Portal deployment with clusters of portal servers and authentication proxies

Integrating WebSphere Portal with your security infrastructure.

Page 8

Integrating WebSphere Portal with your security infrastructure.

Page 9

Another deployment possibility is based on a portal cluster, which is using a

separate, load-balanced and fault-tolerant cluster of authentication proxy server

machines (see Figure 5). The network node visible to the clients in the Internet

is the load balancer, which dispatches requests between several authentication

proxies. This load balancer is located behind the outer firewall and is the only

machine in the DMZ—other than the outbound proxy.

The cluster of authentication proxies fed by the first load balancer is behind

another firewall, together with the portal server cluster, the user registry, the

authorization server, the portal database, the search server and the content

management server. A third firewall separates the portal cluster network from

the intranet with the back-end systems.

Figure 5 shows a typical network administration setup. The middle firewall has

been given a third network adapter to connect the outer DMZ with the network

administration system and the intrusion-detection system (IDS). In the same

way, the inner firewall connects the inner DMZ with the network administration

system and IDS securely with customized filtering.

Available authentication methods

Access control features enable you to positively identify, or authenticate, the

person or program requesting access to a secured property, such as to data or to

a location. In most cases, the authentication process requires a user identifica-

tion (user ID) string and a user password to verify the authority of the user. The

standard way to provide the user ID and password to the server is through HTTP

basic authentication, which uses a Web browser mechanism with a standard

login dialog box. Alternatively, using HTTP form-based authentication, the

server sends a customized authentication form to the user.

Password-based authentication schemes can only offer limited security, in

general, because passwords can be poorly chosen, passed on carelessly, reused

between secure and insecure systems, and stolen. Other authentication mecha-

nisms include SSL/TLS client authentication (based on digital signatures and

certificates), hardware-based, one-time passwords such as the RSA SecureID

token and the use of smart cards. And various biometric mechanisms can be

used for authentication, including finger print verification, iris scanning and

speaker verification.

Integrating WebSphere Portal with your security infrastructure.

Page 10

Integrating WebSphere Portal with your security infrastructure.

Page 11

WebSphere Portal offers an authentication subsystem that delegates user

authentication to underlying mechanisms of IBM WebSphere Application

Server. The subsystem provides support for the following authentication setups:

• Use of native WebSphere Application Server authentication. A custom login form

posts the user’s authentication data to a servlet that requests WebSphere Application

Server security4 to validate the user’s authentication data. This setup exploits

WebSphere Portal integration with WebSphere Application Server and its capability

to configure the portal as a secure Web application.

• Use of an authentication proxy. WebSphere Application Server provides a trust

association interceptor (TAI) interface that allows it to establish cooperation with

trusted authentication proxies.

Authentication through WebSphere Application Server security features

To use WebSphere Application Server security features, the portal is config-

ured as a secure Web application. When WebSphere Application Server receives

a request for the application (the portal), its security component requests the

authentication credentials from the client. Depending on which authentica-

tion method is configured, the security component request will create an

HTTP basic authentication request or an HTTP over SSL (HTTPS) client

certificate request (which is an HTTP used over a secure connection) to be

sent to the Web browser. Or, the client is redirected to an authentication form

that prompts the user to provide the credentials for authentication. In the latter

case, the form posts the credentials to a WebSphere Portal custom authentica-

tion servlet that obtains the posted credentials. The servlet then makes the

required calls to WebSphere Application Server security functions to log in the

user to the WebSphere Application Server security context. With either HTTP

basic authentication or HTTPS client certificate authentication, WebSphere

Application Server receives the authentication credentials directly. WebSphere

Application Server authenticates users by checking provided credentials

against a user registry. The user registry can be a Lightweight Directory Access

Protocol (LDAP) directory or a custom user registry.

Authentication through a separate authentication proxy

An external authentication proxy can protect your portal by intercepting

all requests targeted to portal destinations. An authentication proxy can be

implemented as a proxy server such as WebSEAL in Tivoli Access Manager

for e-business. Or it can be implemented as a plug-in to the HTTP server or to

WebSphere Edge Server. Examples of HTTP plug-in authentication proxies

Integrating WebSphere Portal with your security infrastructure.

Page 10

Integrating WebSphere Portal with your security infrastructure.

Page 11

include the Web Agent in Netegrity SiteMinder and the authentication plug-in

in Entrust GetAccess. WebSEAL Lite from Tivoli is a plug-in to WebSphere

Edge Server.5 An external authentication component authenticates users by

checking the provided credentials against a user registry, which is, in most cases,

an LDAP directory.

Trust association interceptors registered with WebSphere Application

Server establish a connection between WebSphere Application Server and

the authentication component protecting it. TAIs are programs called by

WebSphere Application Server to work with external authentication compo-

nents, as shown in Figure 6. The program relies on external components to

process authenticating requests rather than performing authentication directly.

WebSphere Application Server defines the interface that a TAI uses to indicate

that it can handle a request and that the request has been authenticated. TAIs

communicate with the authentication component and make the authentication

decisions accessible to WebSphere Application Server through the specified

TAI interface.

After a request for a portal destination passes the external authentication

component, it is received by WebSphere Application Server and sequentially

passed to the registered TAIs until one TAI indicates that it is responsible for

authentication and either accepts or rejects the request. When no TAI can

handle the incoming request, WebSphere Application Server reverts to its

native authentication, as if no TAIs are available. The client is then redirected

to the custom login form. However, this only occurs with requests that bypass

the external authentication component.

Tivoli Access
Manager WebSeal

proxy server

Tivoli WebSeal Lite
Web server plug-in

Netegrity Siteminder
Web server plug-in

Authentication
component

TAI WebSphere
Application Server

WebSeal TAI
(part of WebSphere
Application Server,

Version 4.1)

Netegrity TAI
(part of WebSphere
Portal, Version 4.1)

WebSphere
Application Server
security features

Figure 6. Authentication components and TAIs

Integrating WebSphere Portal with your security infrastructure.

Page 12

Integrating WebSphere Portal with your security infrastructure.

Page 13

Requests in an authenticated session

When authentication is complete, the user is logged in, a portal session

is started and a Lightweight Third Party Authentication (LTPA) token,

containing the user ID and an expiration date and time, is issued to the client,

along with the HTTP session cookie (JSESSIONID)6. LTPA is supported by

WebSphere components.

Figure 7 shows the detailed flow of control for a request that is passing through

an external authentication proxy. The interactions are the same for authentica-

tion proxies implemented as separate servers and for proxies implemented as

plug-ins for the Web server or WebSphere Edge Server.

������ ��������������
�����

���������
�����������

������

���������
�����������

��������
������

��� ������
�������

����
���������
������

������������
���������������

��������������
����

���������������������������������������

����������
��������

����������������������

���

������������������������

������������

������������
���������������

��

��

�������

Figure 7. Flow of control for a request passing through an external authentication proxy

Integrating WebSphere Portal with your security infrastructure.

Page 12

Integrating WebSphere Portal with your security infrastructure.

Page 13

As proof of authentication, user information is signed and encrypted into

an LTPA token, which can be verified by all servers that are part of the LTPA

single sign-on (SSO) domain (see Figure 8).

User registry versatility

A user registry is a repository that holds information about registered

users and groups, as well as applications that are validated through the user

registry. WebSphere Application Server and WebSphere Portal allow an

internal WebSphere Portal database, an LDAP directory or a custom registry

to be used as a user registry. WebSphere Portal shares the authentication

registry with WebSphere Application Server while having a separate database

for user profiles and preferences. Some profile information may also be stored

in the same physical store as the authentication registry. For example, an LDAP

directory may contain significantly more information about each user than

simply a name and password.

In WebSphere Portal, Version 4.1, user information is centralized in

the member services component. This component in WebSphere Portal

can be configured for different layouts of data in the user registry and its

database as shown in Table 1. WebSphere Portal can also work with a read-

only user registry so all portal user data that has to be updated is stored in

the internal database.

������ ����
�����������

��������������

���������
�����������

������

���������
��������
������

��� ������
�������

������������
���������������

������������
�������

������

�������

����
�������

������

�������

����������������������

Figure 8. Flow for a request that is already authenticated

Integrating WebSphere Portal with your security infrastructure.

Page 14

Integrating WebSphere Portal with your security infrastructure.

Page 15

The member services component determines group membership. This infor-

mation is used by the WebSphere Portal access control and administration

functions. The lookup function helps to evaluate nested groups. A configu-

rable option stops group membership lookup at the first level to help prevent a

decrease in performance.

Portal session login

After WebSphere Application Server authentication, the portal login is

performed (see Figure 9). The user object is populated from the user registry

and the user session is resumed from the saved state, if this option is selected.

Finally, the Web browser is redirected to the target page, which can be defined as

part of the redirection policy.

During the WebSphere Portal login sequence, a Java Authentication and

Authorization Services7 (JAAS) login is executed. JAAS is a Java API that

specifies classes in three different categories: common, authentication and

authorization. WebSphere Portal primarily uses the common classes, such

as the JAAS subject. The authentication classes—such as LoginContext and

LoginModule—are used only with partial functionality, and the authorization

classes remain unused. A JAAS login, as defined by the JAAS specification,

executes a number of login modules and returns the user’s subject as a result

of a successful login. The subject is a container for the user’s identities (princi-

pals) and credentials. Each login module can add principals or credentials to

the subject.

Table 1. Supported authentication registries and corresponding WebSphere Application Server and WebSphere Portal settings

Member service
configuration

WebSphere Application Server
authentication registry

Description

LDAP and database LDAP The authentication registry is a directory server. You can configure which
profile information is stored in the LDAP and which is stored in the database.

Database only Custom user registry provided by
WebSphere Portal

WebSphere Portal provides a custom user registry implementation for the
internal database. The authentication registry is part of the member subsys-
tem, and profile information is stored in the same database.

Customer-provided registry Custom user registry provided by
customer

The customer supplies a custom user registry. Profile information is held in
the portal member subsystem database as well as in the custom registry.

Integrating WebSphere Portal with your security infrastructure.

Page 14

Integrating WebSphere Portal with your security infrastructure.

Page 15

By specification, JAAS login modules may also try to authenticate the user.

In WebSphere Portal, however, user authentication is already performed by the

authentication component. So, WebSphere Portal JAAS login modules typically

only populate the user’s JAAS subject, which allows you to store, for example,

SSO tokens. These tokens can be used by special active credential objects that

enable portlets to access other applications within the SSO domain.

User logout or timeout

A session can timeout at a specified interval of inactivity, or users can log out

manually with a logout button added by the aggregation engine to every page

banner. In the event of inactivity, when a timeout occurs, the portal logout

function performs the following actions:

• Suspend User Session. The user’s portal session is persisted.

• Portlet user logout. The portlets are notified of the event “user logged out” to give

them the option to finalize or terminate active actions and transactions.

WebSphere
Application

Server

Login
action

Login
context
(JAAS)

Login
modules

Subject
(JAAS)

User
subsystem

API

Portal
user

object

User
subsystem

implementation

User
registry

Portal
login

Populate
user object

��������������������������

�����

������

������
���������

�����������

������
���������

���
�������

���������������

�����������

Figure 9. Portal login after successful authentication

Integrating WebSphere Portal with your security infrastructure.

Page 16

Integrating WebSphere Portal with your security infrastructure.

Page 17

If the logout was initiated intentionally by the user and not by session timeout,

a WebSphere Application Server logout is performed.8 The user’s credential

token is marked as invalid, and a respective cookie invalidation command is

added to the response. The browser is then redirected to render the post-logout

target. When using an authentication proxy, WebSphere Portal must be set up

to redirect to the authentication proxy’s logout page after logout. That way, the

authentication proxy is also notified of the logout.

Customization of the portal login and logout process

WebSphere Portal allows you to customize the portal login and logout proce-

dures. The following modifications are possible:

• Specifying the post-login and the post-logout redirection policy and targets

• Adding custom JAAS login modules that are used to authenticate a user and

populate the portal’s user JAAS subject with principals or credentials

• Securing the login interactions and the personalized portal pages through SSL

• Extending or replacing the portal login and logout action classes

Single-sign-on capabilities

You can use WebSphere Portal to integrate enterprise information systems

and present them through the portal user interface. You want back-end systems

to perform authentication and authorization separately—to maintain current

security controls—without repeatedly prompting the user to authenticate. The

single-sign-on capability provides a reliable authentication method for one

user at a time. It allows, within a single environment—and using a single

authentication for the duration of the session—access to other applications,

systems and networks.

With WebSphere Portal, there are two SSO realms, one from the client to portal

and other Web applications. The other from the portal to back-end applications

(See Figure 10). With single sign-on from the client to Web applications and the

portal, a client logs in once to one Web application and is then able to access all

other Web applications that are part of the same SSO realm without a second

authentication challenge. It doesn’t matter whether WebSphere Portal is the

authenticating Web application or is one of the other, trusting Web applica-

tions. Similarly, single sign-on from the portal to back-end applications allows

a portal client to log in to the portal once and then access a number of back-end

applications through respective portlets without having to authenticate at each

of these applications.

Integrating WebSphere Portal with your security infrastructure.

Page 16

Integrating WebSphere Portal with your security infrastructure.

Page 17

Single sign-on from a client to Web applications

Single sign-on from a client to Web applications and the portal can be provided

through a variety of mechanisms:

• LTPA support built into WebSphere Application Server

• Authentication proxy single sign-on support (WebSEAL, Netegrity SiteMinder)

• Other third-party SSO frameworks or environments, such as Entrust GetAccess

In function, the various SSO solutions are essentially the same. With successful

authentication, the client receives a security token that enables it to prove

successful authentication and to pass subsequent requests through without

repeating the authentication.

Persistent cookies can be used to achieve the goal of single sign-on. Persistent

cookies are stored by the Web browser on the client in a form that has little

protection against reading and copying. For greater security, however,

WebSphere Portal only uses cookies that are deleted when the Web browser

session is terminated—not persistent cookies.

Client

Client

Client

Client

Authentication
proxy

Client
Web

application
SSO

Portal
back-end

SSO

Portal server

Web
application

Back-end
application

Back-end
application

Back-end
application

Web
application

Portlet

Portlet

Portlet

Figure 10. WebSphere Portal SSO realms

Integrating WebSphere Portal with your security infrastructure.

Page 18

Integrating WebSphere Portal with your security infrastructure.

Page 19

Single sign-on from portal-to-back-end system

WebSphere Portal, Version 4.1 offers a credential vault as a portlet service. This

service provides the portal and portlets with a mechanism to map from one user

identity—usually a user ID (principal)— to another user identity with a creden-

tial, such as a password. With this capability, you don’t have to use portlets to

store user credentials as part of the user-specific portlet data. In fact, storing

credentials in the portlet data is no longer recommended to achieve a single

sign-on. You should update portlets that store credentials to make use of the

credential vault (see Figure 11).

The credential vault service provides the following parameters:

• Map the requested credential slot, the user ID and the portlet ID to a resource in the

vault. A portlet can only retrieve a credential if a respective mapping rule exists.

Each credential slot is associated with a certain vault implementation (the actual

store), which allows different credentials to be kept in different physical stores.

• Retrieve the user’s credential. Some credentials will be stored and managed by the

portal that always uses the local default vault store. If a user password is not stored

in the portal’s local vault, it will be acquired from the respective external vault.

• If a credential is not available or the authentication fails, an appropriate exception

is thrown. The service passes this exception to the portlet to allow an appropriate

error handling. For example, it might ask the user to set the credential through the

portlets edit mode.

• The credential vault will not allow anyone but the credential owner —not even the

portal administrator — to manage or use the credentials, which preserves the trust of

the end user. No method to access another user’s credentials will be provided.

• Administrate the credential vault (vault-management interface). Portal

administrators can configure the credential vault services that are not controlled by

the user. This includes the management of the vault segments, the administration

defined slots and system (shared) credentials. Although an administrator cannot

access or change user-defined credential slots and passwords, user-defined slots are

deleted if the respective user is deleted.

Integrating WebSphere Portal with your security infrastructure.

Page 18

Integrating WebSphere Portal with your security infrastructure.

Page 19

For each vault segment, a flag indicates whether it is to be managed by the

administrator or by the user. Only administrators can create credential slots

in an administrator-managed vault segment. Portlets (acting on behalf of a

portal user) are permitted to create credential slots only in user-managed vault

segments, but they can set and retrieve credentials in both types of segments.

Figure 11 illustrates the structure of the WebSphere Portal credential vault.

The credential vault is organized as follows:

• The portal administrator can partition the vault into several vault segments.

Vault segments can only be created and configured by portal administrators.

• A vault segment contains one or more credential slots. Credential slots are the

“drawers” from which portlets retrieve credentials and to which they are stored.

Each slot holds one credential, if user-defined, and one credential per user, if

defined by the administrator.9

• A credential slot is linked to a resource in a vault implementation, where the

credentials are actually stored. Examples for vault implementations are the

WebSphere Portal default database vault or the Tivoli Access Manager repository.

Internal External
Vault

implementations

Slot A

Vault segment U

Slot B

Vault
adapter

Vault segment A1

Vault
adapter

Slot X

Vault segment A2

Slot Y

Vault
adapter

Slot C

Figure 11. WebSphere Portal, Version 4.1 introduces a credential vault portlet service

Integrating WebSphere Portal with your security infrastructure.

Page 20

Integrating WebSphere Portal with your security infrastructure.

Page 21

Therefore, portlets that need a credential to complete their service have two

options: to use an existing credential slot that has been defined by the portal

administrator in an administrator-managed vault segment or to create a new

credential slot in a user-managed vault segment.

The WebSphere Portal credential vault service distinguishes between three

types of credential slots:

• A system credential slot stores system credentials. Credentials are shared among all

users and portlets.

• A shared credential slot stores user credentials that are shared among the user’s

portlets. Credentials are user-specific but the same for all portlets of a user.

• A portlet private slot stores user credentials that are not shared among portlets.

Credentials are user-specific and specific to an individual portlet instance.

The credential vault service returns credentials in the form of credential

objects. WebSphere Portal differentiates between passive and active

credential objects.

Passive credential objects are a container for a credential’s sensitive informa-

tion, such as the user ID and password. Portlets that use passive credentials

must extract the information out of the credential. With passive credentials the

portlets are responsible for the communication (authentication) with the back-

end system, shown in Example 1.

Example 1. How a portlet uses a passive credential that carries a user ID and password

Passive credential object use (pseudo code)

// Retrieve the credential object from the credential vault
UserPasswordPassiveCredential credential = (UserPasswordPassiveCredential)
service.getCredential(slotId, “UserPasswordPassive”, null, porletRequest);

// Extract the actual secret out of the credential object

UserPasswordCredentialSecret secret = credential.getUserSecret([…]);

// Portlet connects to back-end system and authenticates using the user’s secret....

// Portlet uses the connection to communicate with the backend application....

// Portlet takes care of logging at the back-end....

Integrating WebSphere Portal with your security infrastructure.

Page 20

Integrating WebSphere Portal with your security infrastructure.

Page 21

An active credential object hides the user ID and password from the portlet,

making it an ideal method to preserve portal security. Active credentials allow

portlets to trigger authentication to remote servers using standard mechanisms

— such as HTTP basic authentication, HTTP form-based authentication or

POP3 authentication. To access server-side credentials, active credentials allow

the use of hardware tokens that never expose their sensitive information. Such

hardware tokens10 only allow the use of credentials inside the hardware with

the supported authentication algorithms.

Example 2 illustrates how a portlet uses an active credential. In this case, it’s an

active credential for HTTP form-based authentication, shown in Figure 12.

Example 2. How a portlet uses an active credential

Active credential object use (pseudo code)

// 1. Retrieve the credential object from the credential vault
HttpFormBasedAuthCredential credential = (HttpFormBasedAuthCredential)
service.getCredential(slotId, “HttpFormBasedAuth”, config, request);

// 2. Log into the backend system credential.login();

// 3. Get an authenticated connection to use

URLConnection connection = credential.getAuthenticatedConnection();

// 4. Portlet uses the connection to communicate with the backend application...

// 5. Log out of backend system credential.logout();

All credential types that are available within the portal are registered in a

credential type registry. WebSphere Portal, Version 4.1 provides a small set

of credential types out of the box, but additional credential objects can easily

be registered.

Integrating WebSphere Portal with your security infrastructure.

Page 22

Integrating WebSphere Portal with your security infrastructure.

Page 23

Included passive credential objects:

• SimplePassive. Stores credentials as “serializable” Java objects.

• UserPasswordPassive. Stores credentials as user ID-password pairs.

• JaasSubjectPassive. Stores credentials as javax.security.auth.Subject objects. It is

used to provide portlets with the JAAS subject that the portal established for the user.

Included active credential objects:

• HttpBasicAuth. Stores user ID and password and provides support for HTTP basic

authentication.

• HttpFormBasedAuth. Stores user ID and password and provides support for HTTP

form-based authentication.

• JavaMail. Stores user ID-password pairs and leverages the authentication

functionality of the javax.mail API.

• LTPA token. Supports authentication at a back-end system that is within the same

WebSphere Application Server SSO domain as the portal.

• SiteMinderToken. Supports accessing back-end systems that are in the same

SiteMinder SSO domain as the portal. It is typically used when a SiteMinder

authentication proxy protects the portal and other resources.

• WebSEALToken. Supports accessing back-end systems that are in the same

WebSEAL SSO domain as the portal. It is typically used when a WebSEAL

authentication proxy protects the portal and other resources.

Vault store

Portal engine
Back-end
system

Portlet
API

Active
credential

Portlet

Credential vault
portlet service

1a. Retrieve
credential

1b. Retrieve
secret

3a. Get
authenticated
connection

3b. Authenticate

4. Send business request

Figure 12. A portlet using an active credential object for back-end single sign-on

Integrating WebSphere Portal with your security infrastructure.

Page 22

Integrating WebSphere Portal with your security infrastructure.

Page 23

For security reasons, credential objects do not implement java.io.Serializable

and can therefore only be stored in the portlet session as a transient value. The

credential classes store the actual credential secret as private attributes. If

they were serialized into the WebSphere Application Server session table, the

credential could, potentially, be read by anyone who has access to this database.

Client-to-portal communication security

SSL and TLS protocols11 leverage different cryptographic algorithms to

implement security—for example, authentication with certificates, session key

exchange algorithms, encryption and integrity check. They are commonly used

to help provide privacy and reliability between communicating applications

such as Web clients and Web servers. SSL and TLS provide connection security

with three basic properties:

• Confidentiality. Encryption is used after an initial handshake to define a private

key. Symmetric cryptography such as Data Encryption Standard (DES) or RC4 is

used for data encryption.

• Authentication. User identity can be authenticated using public key cryptography

such as RSA or DSS.

• Integrity. Message transport includes a message integrity check using a keyed

message authentication code (MAC). Secure hash functions such as SHA and MD5

are used for MAC computations.

IP Security Protocol (IPSec) technology can be used as an alternative to SSL,

but only for direct connections between two systems, and it can’t be tunneled

through servers or firewalls. Although the operating systems of most clients

support IPSec today, only a few are preconfigured. Using IPSec between clients

and a server complex can prove difficult to maintain.

When you need to protect the communication between servers, however, you

have a choice between SSL and IPSec. SSL offers a slightly higher degree

of security. An attacker not only has to compromise a system, gain access to

the SSL keys and use SSL for communication. IPSec, by contrast, is easier to

set up because current operating systems have built-in support. Also, it may

perform faster if the operating system uses available cryptographic hardware.

WebSphere Portal can be configured to support SSL12 so that it can generate

respective URLs if needed, and the protocol as well as the port can be specified.

Integrating WebSphere Portal with your security infrastructure.

Page 24

Integrating WebSphere Portal with your security infrastructure.

Page 25

Using TLS, you need to decide where to terminate the client’s SSL connec-

tion and what communication to protect. It’s necessary not only to protect the

communication across unprotected networks (such as the Internet), but also

communication within corporate networks. You can’t underestimate the possi-

bility of human error or internal attack.

Figure 13 shows how TSL can be implemented in the simplest deployment

scenario (see Figure 2). With no systems or firewalls between the client and

portal server, one connection has to be secured with SSL.

In the second deployment scenario (see Figure 3), the HTTP server is separated

from the portal server with firewalls between client, HTTP server and portal

server. Again, SSL must be used for the client connection. The first firewall is

configured to allow this kind of data to pass through. One connection from the

HTTP server to the firewall and one connection from the firewall to the portal

server use IPSec. IPSec is preferred to SSL because it easier to configure. It can

be used in the described deployment because both servers are part of the same

administrative domain.

When an LDAP directory is added (see Figure 14), communication between the

application server and LDAP server can be protected because the LDAP queries

and responses might contain confidential data. The WebSphere Application

Server security component can be configured to use LDAP over SSL (LDAPS).

Client
HTTP

SSL

Client

HTTP server/
portal server

Figure 13. Communication security for portal installations within a protected network

Integrating WebSphere Portal with your security infrastructure.

Page 24

Integrating WebSphere Portal with your security infrastructure.

Page 25

The third deployment scenario (see Figure 4) places a reverse proxy for authen-

tication in the DMZ and adds a cluster of portal servers—fed by a load balancer

—behind another firewall. A possible TLS implementation could use SSL from

the client to reverse proxy, and IPSec for the remaining path through the DMZ.

If the security threat in the intranet was small, the remaining connections

would be implemented as plain HTTP, as shown in Figure 15.

Client
HTTP

SSL

Client

Firewall Firewall

LDAP

SSL

HTTP

IPSec

HTTP

IPSec Portal serverHTTP server
LDAP

directory

Figure 14. Communication security for a straightforward Internet portal installation

Client
HTTP

SSL

Client

Firewall Firewall

HTTP

IP

HTTP

IP
Load

balancer
HTTP

IPSec
Authorization

proxy HTTP server/
portal server

Figure 15. Communication security for a portal cluster in a trusted intranet

In a fully clustered portal setup with full TSL, the client’s SSL connection is

terminated at the first load balancer. IPSec is used for the communication

between all the remaining components thereafter. Both the reverse proxy and

the application server communicate with the LDAP server, and data confidenti-

ality is protected by IPSec, as shown in Figure 16.

Integrating WebSphere Portal with your security infrastructure.

Page 26

Integrating WebSphere Portal with your security infrastructure.

Page 27

Restricting protection to sensitive communication only

Using SSL consumes a considerable amount of computing power. The most

expensive SSL operation is the initial handshake, but the symmetric encryption

of the bulk data produces additional load. Therefore, it is recommended that

you keep SSL protection at the necessary minimum. WebSphere Portal allows

you to switch between SSL and non-SSL connections during a session. It’s

possible to set up the portal so that SSL is used only for the user login operation.

Once a user is logged in, it is the portlet’s responsibility to turn SSL on or off.

The final decision whether a portal should protect none, all or only parts of its

communication with SSL should be based on the sensitivity of the data.

Using client certificates

The SSL and the TLS protocol specify the authentication of communication

partners through the use of X.509 certificates. If the client is using a certificate

to authenticate to the server, this type of authentication through the client

certificate is more convenient than typing a password. And it avoids the known

security drawbacks of passwords. In addition, if the client certificate is stored

on a smart card, this form of authentication can establish particularly

strong trust.

Enforced certificate-based client authentication is a configuration option

with WebSphere Application Server that must be selected during configura-

tion if an authentication proxy such as Tivoli Access Manager WebSEAL is

used. WebSEAL offers additional control, called step-up authentication. You

can configure it to require and automatically prompt for different forms and

strengths of authentication for different targets.

Client
HTTP

SSL

HTTP

IPSec

HTTP

IPSec

Client

Firewall Firewall

Load
balancer

HTTP

IPSec

HTTP

IPSec
Load

balancer

LDAP

IPSec

Authentication
proxy HTTP server/

portal server

LDAP
directory

Figure 16. Communication security implementation in a fully clustered portal setup

Integrating WebSphere Portal with your security infrastructure.

Page 26

Integrating WebSphere Portal with your security infrastructure.

Page 27

Secure back-end connections

Some portlets are designed to access back-end applications that house critical

enterprise data. WebSphere Portal can help keep your data private in two ways:

1. Selected portlets can use SSL connections to exchange data with a corresponding

back-end application. Depending on the back-end application, an SSL handshake

with client authentication may be required.

2. The portal and the back-end applications can establish a virtual private network

(VPN) using IPSec.

WebSphere Portal offers a content access portlet service that enables portlets

to establish and use an SSL connection. It is designed to facilitate assigning

the portal a collection of client certificates that portlets can use to self-authen-

ticate to back-end applications. This collection may be different from what the

application server uses to authenticate directly. The portal certificates are only

available to the portal and its portlets. Other Web applications that are installed

on the same application server node cannot use them.

The content access service offers extensive SSL functionality:

• If an HTTPS protocol handler has been configured, any component

(particularly portlets) can initiate an HTTPS connection with URLConnection,

HttpURLConnection or HttpsURLConnection. The SSLContext and

SSLSocketFaktory will be created and assigned to the connection object on the

fly. The portlets can either request a markup or an input stream, and no other

communication with the content access service is necessary.

• If an HTTPS proxy has been configured, any HTTPS URL requested from content

access service will go through that proxy, unless it is explicitly listed on the content

access service exclusion list. Ports other than 443 can be configured.

• An SSL key store, a collection of keys that can be used to verify the portal’s identity

to remote systems, can be configured. The key store will be used for all direct HTTPS

requests initiated by content access service but not for the SSL handshake between

an HTTPS proxy and the back-end application.

• An SSL trust store, a collection of trusted certificates that remote systems may

present to the portal to self-authenticate, can be configured. The trust store will be

used for all direct HTTPS requests initiated by the content access service but not for

the SSL handshake between an HTTPS proxy and the back-end application.

• If an HTTPS URL returns an HTTP redirect and the maximum number of redirects

has not been exceeded, the content access service will follow the redirect using the

HTTPS protocol and the HTTPS proxy, if indicated.

Integrating WebSphere Portal with your security infrastructure.

Page 28

Integrating WebSphere Portal with your security infrastructure.

Page 29

Using IPSec for back-end connections is an alternative to using SSL. IPSec

operates efficiently on the network layer and is easy to configure in most

current operating systems.

Controlling access to portal resources

WebSphere Portal provides fine-grained access control for your resources

including portlets and Web pages. Access control is flexible enough to allow

highly complex protection scenarios. The access control function is encap-

sulated in a separate component and is called whenever you need to access,

display, modify or manage portal resources. The portal core code allows portal

users to view pages and the portlets on a page only when the required permis-

sions have been assigned.

You can manage the rules for access control and policies using a WebSphere

Portal access control portlet—a built-in graphical user interface (see Figure

17). Displaying and modifying access control rules are operations that also have

to be restricted by access control. Only users with at least the permission to view

the access control portlet can use it. The access control portlet verifies whether

the current user has the right to modify a given access control rule, including

the ability to change between external and internal control. For each user, the

access control portlet displays only those access control rules for which the user

has the proper permissions. Users must have the permission to delegate for the

object of the rule, as well as the permission to delegate for the subject or for a

group containing the subject as member.

Figure 17 shows how you can use the access control portlet to view and modify

access control permissions. The portlet shows the permissions for accessing

places, which are defined for the group of all authenticated users. The right

set of columns labeled “Minimum” is controlled by radio buttons and refers to

the permissions set for this group explicitly. The middle set of columns labeled

“Active” refers to the permissions that result from the combination of implicitly

Integrating WebSphere Portal with your security infrastructure.

Page 28

Integrating WebSphere Portal with your security infrastructure.

Page 29

inherited and explicitly assigned permissions. The outbound arrows in the

far right column can be clicked to transfer the access control to an external

access control system, such as Tivoli Access Manager. You can use Tivoli Access

Manager if you need to protect and administer WebSphere Portal resources and

other resources through one central access control component.

Figure 17. Example of using the access control portlet

Employing an external access control system

The access control system of WebSphere Portal can be configured to allow

external access control systems handle portal resources. Available external

systems like Tivoli Access Manager, Netegrity SiteMinder and Entrust

GetAccess offer centralized authentication, authorization and administration.

Integrating WebSphere Portal with your security infrastructure.

Page 30

Integrating WebSphere Portal with your security infrastructure.

Page 31

WebSphere Portal allows you to delegate the access control for any individual

resource or group of resources to external access control system (see Figure

18). During the portal operation numerous calls are sent to the access control

system. Some of these are carefully optimized to retrieve a set of results with a

single invocation and database lookup. This internal optimization is not prac-

tical for access control requests that are forwarded to an external access control

system. Instead, you can allow critical resources to be controlled externally

while the millions of less-critical resources— like private user pages and public

news pages—can be controlled more efficiently inside the portal. This approach

is implemented in WebSphere Portal with another performance optimization

that extends the internal caching of results to the results from external access

control decisions.

As shown in Figure 18, access requests (1) to the WebSphere Portal internal

access control are delegated (2) to an external system. All permissions for the

specified object are controlled by the same access control service, either inter-

nally or externally.

Portlet

Page

1

2

WebSphere
Portal internal
access control

External access
control system

Figure 18. Selected access control decisions are delegated to an external system

Understanding and working with access control rules

Portal access control rules are stated in the format: <subject> <permission>

<object>. The subjects of the rules can be either an individual user or a group

of users: for example, MillerJ or Dept-3269. And groups can be nested.

The permission types give the subject (individual or group) specific permis-

sions:

• View. View a resource in its predefined configuration.

• Edit. Change the configuration of a resource. Permission to edit implies the

permission to view.

Integrating WebSphere Portal with your security infrastructure.

Page 30

Integrating WebSphere Portal with your security infrastructure.

Page 31

• Manage. Install and remove a resource. This permission also implies permissions edit

and view. For some resources, like portlets and pages, WebSphere Portal makes a

distinction between two levels of modifiable settings. Settings that affect all users of a

portlet can only be changed with the permission to manage that portlet. Settings that

affect only the current user of a portlet can only be changed with the permission to edit

that portlet.

• Copy. Copy a resource, including its configuration. The new instance can be configured

independently from the old instance. The creator of the copied instance automatically

gets permissions manage and delegate. Copy permission does not imply permission

to create.

• Create. Create instances of a specific resource type. The creator of a resource instance

automatically gets permission to manage and delegate. Permission to create is not

required to be able to copy resources if you have the permission to copy.

• Delegate. Delegate some or all owned permissions to another subject. You need

this permission to change access control on an object or resource. To delegate a

permission on a specific resource, the delegating subject must have the specific

permission (copy permission, for example) to be delegated. The delegating subject

also has to have the delegate permission for the specific resource and to the intended

recipient of the resource.

The objects controlled by the portal access control can be of the following

types: PORTLET, PAGE, PLACE, CREDENTIAL, PORTAL, RESOURCE_

COLLECTION, PORTLET_APPLICATION, ANONYMOUS_USER, USER

(authenticated user) and USER-GROUP.

Examples of access control rules:

User:MILLERJ Edit Portlet:World Cup Results

Group:Dept-3269 View Page:3269 Team News

The portal doesn’t define any hard-coded group names like “administrators.”

An administrator with the authorization to create and change all permissions

is a user or group that has the permission manage for the special resource

“Portal.” Using the permission to delegate, it’s possible to establish a hierarchy

of administrators to whom the specific permissions for individual resources and

user groups have been delegated. For example, it is possible to establish country

administrators who can control the permissions to all specific resources for their

country and who can, in turn, forward part of the permissions to city administra-

tors in their country.

Integrating WebSphere Portal with your security infrastructure.

Page 32

Integrating WebSphere Portal with your security infrastructure.

Page 33

Maintaining portal security

Your portlet developers are charged with keeping sensitive data safe. And

they can’t afford to allow potentially vulnerable areas of your portal system to

be left unprotected. Even with built-in portal server security features, there

are risks. The portal engine can’t, by itself, protect against malicious portlets.

Your administrators are responsible for installing only trusted portlets.

Some portlets require secure connections. You need to guarantee the data that

portlets send is kept confidential. If the portal is enabled to serve pages through

SSL, portlets can initiate an SSL connection (with a start transaction link).

However, for each request, the portlet has to check whether the connection is

still secure. This verification can be done with the request.isSecure() method.

If a request does not come over a secure connection, the portlet must not write

confidential data to the output stream.

Some portlets accept data from any user and pass those data on to a different

user. If the portlet does not take special precautions to guard against malicious

input, the receiving user’s application (their Web browser) might process that

data with unfavorable results. This is known as a “cross-site-scripting attack”

because inputted malicious source is usually executed as scripting language

by the receiving user. In order to prevent such attacks, the portal engine filters

all input and converts the less-than (<) and greater-than (>) characters to the

respective HTML escape sequences.

A similar problem can arise when a portlet aggregates markup language code

from a third-party server — for example, with a clipping portlet. Unfortunately,

the portal engine isn’t able to filter markup commands accurately and can’t

offer protection. That means your portlet developers have to make sure that

potentially malicious markup is filtered out of the aggregated data.

Integrating WebSphere Portal with your security infrastructure.

Page 32

Integrating WebSphere Portal with your security infrastructure.

Page 33

Summary

WebSphere Portal offers state-of-the-art protection through industry-

standard security protocols and cryptographic algorithms. Single sign-on

capability at the portal front-end and for back-end applications provides a

superior user experience. The portal server can be flexibly integrated with

existing corporate user directories and with products for authentication,

authorization and administration. In addition to password-based authentica-

tion, stronger methods like X.509 certificates or one-time passwords (with

WebSEAL) are supported. Secure communication can be used wherever the

transmitted information is sensitive.

For more information

To learn more about IBM WebSphere Portal, Version 4.1 visit

ibm.com/websphere/portal.

G325-2090-00

© Copyright IBM Corporation 2002

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A

Produced in the United States of America
10-02
All Rights Reserved

The e-business logo, IBM, the IBM logo, Redbooks, Tivoli and
WebSphere are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries
or both.

Java and all Java-based trademarks and logos are trademarks of
Sun Microsystems, Inc. in the United States, other countries or both.

Other company, product and service names may be the trademarks
or service marks of others.

 1 For more information, read the IBM WebSphere Application Server,
Version 4.0 security overview.

 2 For more information, read “WebSphere Portal Server, Version 4.1
and Portlets,” available at ibm.com /websphere/portal.

 3 Read the white paper, “WebSphere Portal Server, Version 4.1 and
Web services,” available at ibm.com /websphere/portal.

 4 For more information, read the IBM Redbooks®, “IBM WebSphere
Application Server, Version 4.0 Advanced Edition Security” (SG24-
6520-00).

 5 Plugging into WebSphere Edge Server offers scalability advan-
tages.

 6 For devices that cannot manage cookies (like WAP phones), proxy
gateways are used to handle cookies.

 7 For JAAS documentation and specifications, visit
www.jaas.sun.com/products/jaas/.

 8 HTTP basic authentication has a known disadvantage: The browser
always sends user ID and password with every request to the same
target. Because there is no standardized mechanism through which
the browser will be notified of the user’s logout, the browser will
continue to implicitly log in the user as soon as the same target is
accessed again.

 9 WebSphere Portal, Version 4.1 installs with one preconfigured, user-
managed vault segment and does not allow defining any additional
user-managed segments. Administrator-managed vault segments
can be created without any limitation.

 10 IBM has a cryptographic coprocessor (IBM 4758PCI) to store the
private key and execute the cryptographic functions. This module is
designed to meet the FIPS PUB 140-1 level 4 specification. The card
keeps the server’s private keys securely (any data tampering will be
recognizable) and executes encryption algorithms. The private keys
do not leave the card.

 11 While TLS is the standard implementation, SSL is still more widely
distributed. In this document, when SSL is used, TLS is implied.

 12 Read “SSL/TLS in WebSphere: Usage, Configuration, and
Performance,” available at www7b.software.ibm.com /wsdd/
library/summaries/300257.html.

