

Enterprise Service Bus Scenarios and Solution
Patterns in Service Oriented Architecture

Implementing an ESB in Today’s Technology

Rick Robinson

IT Architect

Architecture Services, EMEA WebSphere Lab Services, IBM UK

rick_robinson@uk.ibm.com

10th May 2004

Contents
1 Introduction ...1

1.1 Acknowledgements ...1
1.2 The Role of the Enterprise Service Bus Within a Service Oriented
Architecture ..2
1.3 Security Issues Affecting the Enterprise Service Bus8

2 ESB Scenarios and Analysis ..9
2.1 ESB Scenarios in Service Oriented Architecture ...9
2.2 Issues Driving ESB Architecture and Design Decisions13

3 Solution Patterns ..17
3.1 Basic Adaptors ..17
3.2 Service Gateway ...20
3.3 Web Services Compliant Broker...22
3.4 Enterprise Application Integration Infrastructure for Service Oriented
Architecture ..23
3.5 Service Choreographer ...26
3.6 Full Service Oriented Architecture Infrastructure ...27

4 A Roadmap for SOA and ESB Adoption ..28
4.1 Identifying the Immediate Scope of Concern..28
4.2 SOA Milestones...29
4.3 Steps to SOA Implementation...30

5 References..32
5.1 General References ..32
5.2 Web Services Standards References...33
5.3 IBM Software References ...33

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 1

1 Introduction
The current state of the art in IT integration is the implementation of Service Oriented
Architectures (SOA) using Web Services technologies, and many excellent
descriptions of their benefits and practise are available (see References 1 to 4). More
recently, the concept of an “Enterprise Service Bus” (ESB) has been expressed as a
key component of the SOA infrastructure (see References 4 to 6). However it is
important to clarify whether the ESB is a product, a technology, a standard or
something else. In particular, is the Enterprise Service Bus something that can be
built today, and if so, how?

This paper describes the Enterprise Service Bus as providing a set of infrastructure
capabilities, implemented by middleware technology, that enable Service Oriented
Architecture. The ESB supports service, message and event-based interactions in a
heterogeneous environment with appropriate service levels and manageability. A
variety of ESB capabilities required to achieve this are summarised and categorised;
however, not all of them are required in every situation in which some form of ESB
can deliver value.

This paper therefore identifies a set of minimum capabilities that fulfil the most basic
needs for an Enterprise Service Bus consistent with the principles of Service
Oriented Architecture. Identifying these minimum capabilities allows us to identify
which existing technologies can be used to implement an ESB to support a Service
Oriented Architecture. By then considering how the requirements of a specific
situation indicate the need for additional capabilities, we can choose the most
appropriate implementation technology for that situation.

In order to assist organisations wishing to take this approach we have defined a set
of ESB Scenarios in Service Oriented Architecture capturing common starting points
for ESB or SOA implementation. The scenarios can be analysed using A Capability
Model for the Enterprise Service Bus and some common Issues Driving ESB
Architecture and Design Decisions in order to select suitable Solution Patterns. The
solution patterns in turn provide guidance for choosing appropriate implementation
technologies.

It is likely that the capabilities required of the ESB in any particular solution will
evolve incrementally over time as both the solution and the uses to which it is put
evolve and mature. Similarly, the availability and capability of explicit ESB products
will also mature. We therefore consider A Roadmap for SOA and ESB Adoption to
guide the initial use of ESB capabilities and technologies, and illustrate options for
such an incremental approach.

Throughout this paper, references are made to various IBM software products and
technologies; links to further information can be found in References below.

1.1 Acknowledgements
This paper would not exist without the discussions the author has been involved in
with the following people, all of whom contributed to the ideas and thinking behind it:

Beth Hutchison, Rachel Reinitz, Olaf Zimmerman, Helen Wylie, Kyle Brown, Mark
Colan, Jonathan Adams, Paul Fremantle, Keith Jones, Paul Verschueren, Daniel
Sturman, Scott Cosby, Dave Clarke, Ben Mann, Louisa Gillies, Eric Herness, Bill
Hassell, Guru Vasudeva, Kareem Yusuf, Ken Wilson, Mark Endrei, Norbert
Bieberstein, Chris Nott, Alan Hopkins and Yaroslav Dunchych.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 2

1.2 The Role of the Enterprise Service Bus Within a Service
Oriented Architecture

Whilst we will not discuss the definition of Service Oriented Architecture in depth, as
that has been covered elsewhere (see References 1 to 4), it is useful to summarise
here the principles that most descriptions of SOA agree with:

• The use of explicit implementation-independent interfaces to define services.

• The use of communication protocols that stress location transparency and
interoperability.

• The definition of services that encapsulate reusable business function.

These principles are illustrated in figure 1 below; and note that whilst the Web
Services standards are an excellent match to these principles, they are not the only
technology consistent with them.

Shared process and
interface definitions

CONTRACT

Interface Code exposing well
encapsulated services

Internal code
and processs

SYSTEM 1

SYSTEM 2

Internal code
and processs

Interface Code exposing well
encapsulated services

 interoperable protocols with
location transparency

 interoperable protocols with
location transparency

Figure 1: The principles of Service Oriented Architecture

In order to implement an SOA, both applications and infrastructure must support the
SOA principles. Enabling applications involves the creation of service interfaces to
existing, or new, functions, either directly or through the use of adaptors. Enabling
the infrastructure at the most basic level involves the provision of capability to route
and transport service requests to the correct service provider. However, it is also vital
that the infrastructure support the substitution of one service implementation by
another with no effect to the clients of that service. This requires not only the service

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 3

interfaces specified by SOA, but also that the infrastructure allows client code to
invoke services in a manner independent of the service location and communication
protocol involved. Such service routing and substitution are amongst the many
capabilities of the Enterprise Service Bus (ESB).

The Enterprise Service Bus supports these service interaction capabilities and
provides the integrated communication, messaging and event infrastructure to enable
them, thus combining the major enterprise integration patterns in use today. The ESB
provides an infrastructure for SOA consistent with the needs of the enterprise to
provide suitable service levels and manageability, and to operate in a heterogeneous
environment.

The remainder of this paper will discuss this role of the ESB in SOA, including the
capabilities it provides beyond basic routing and transport, as described in A
Capability Model for the Enterprise Service Bus below. The roles of the ESB in
supporting message and event driven architectures are subjects in themselves, and
beyond the scope of this paper.
The ESB is sometimes described as a distributed infrastructure, and contrasted as
such against solutions, such as message broking technologies, which are commonly
described as “hub and spoke”. However, this is a false distinction: two different
issues are being addressed: the centralisation of control and the distribution of
infrastructure. Both ESB and “hub and spoke” solutions centralise control of
configuration such as routing information, service naming etc. Similarly, both may be
deployed in a simple centralised infrastructure, or a more sophisticated distributed
manner. Figure 2 below illustrates this point.

Of course, different technologies will have different constraints on the physical
deployment patterns they support – some might be suited to very widespread
distribution to support integration over large geographical areas, whilst some might
be more suited to deployment in localised clusters to provide availability and
scalability. Matching the requirements for physical distribution to the capabilities of
candidate technologies is an important aspect of ESB design. Also important is the
ability to incrementally extend the initial deployment to reflect evolving requirements
to integrate additional systems or extend the geographical reach of the infrastructure.

Provider Provider Provider Provider

Interface or
Adaptor

Interface or
Adaptor

Interface or
Adaptor

Interface or
Adaptor

Interface or
Adaptor

Interface or
Adaptor

Interface or
Adaptor

Client Client Client

Distributed Infrastructure

Runtime
Engine

Administration and
control

Configuration
Runtime
Engine

Runtime
Engine

Runtime
Engine

Distribution

Figure 2: Centralised Control over Distributed “Bus” Infrastructure

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 4

We should also position the ESB in relation to other components in the SOA
infrastructure, in particular the Service Directory, Business Service Choreography
and Business to Business (B2B) Gateway components. Since these components are
not strictly required by the SOA principles above, we will treat them as optional
components. Figure 3 below shows a Service Oriented Architecture indicating the
relationship of these components to the ESB.

Internal Service
Requesters

Internal Service
Requesters

External Service
Providers

External Service
Providers

Internal Service
Providers

Business Service
Choreographer

Internal Service
Providers

External Service
Requesters

External Service
Providers

B2B
Gateway

Internal Service
Providers

Internal Service
Requesters

Enterprise Service Bus

Routing, transformation, mediations,
security etc.

Infrastructure components
for Service Oriented
Architecture

Service
Routing

Directory

Business Service
Directory

Figure 3: The Role of the Service Bus in a Service Oriented Architecture

Some form of service routing directory is required by the ESB in order to route
service requests. However, an SOA may also have a separate “business service
directory”, which at its most basic might be a design-time service catalogue used to
achieve re-use of services across the development activity of an organisation. The
vision of Web Services places a UDDI directory in both the “business service
directory” and “service routing directory” roles, enabling the dynamic discovery and
invocation of services. Such a directory might be viewed as part of the ESB;
however, until such solutions become common, the “business service directory” is
likely to be separate from the ESB.

The role of the Business Service Choreographer is to choreograph business services
into business processes; it will therefore invoke services through the ESB, and will
itself expose business process as services available to clients, again through the
ESB. However, its role in choreographing business processes and services identifies
the Business Service Choreographer as separate from the ESB, which is an
infrastructure technology.

Finally, the role of a B2B Gateway component is to make the services of two or more
organisations available to each other in a controlled and secure manner. It is useful
to view such components as integrated to the ESB, but not part of it. Whilst gateway
technologies exist that provide capabilities suitable for implementing both “B2B
Gateway” components and the ESB, the purpose of the “B2B Gateway” component

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 5

separates it from the ESB. Indeed this purpose might also require additional
capabilities, such as partner relationship management, that would not be part of an
ESB and might not be supported by ESB technologies.

1.2.1 A Capability Model for the Enterprise Service Bus

The table below summarises and categorises some of the Enterprise Service Bus
capabilities identified in existing literature (see References 4 to 6). Whilst some are
quite basic, some (such as autonomic or intelligent capabilities) represent significant
steps towards an On Demand Operating Environment (see reference 8 in the
References). It is important to recognise that most current ESB scenarios require
only a subset of these capabilities from a subset of the categories; the minimum
capabilities required for an ESB implementation are considered in The Minimum
Capability Enterprise Service Bus Implementation below.

Communications Service Interaction
• Routing
• Addressing
• Communication technologies,

protocols and standards (e.g.
WebSphere MQ, HTTP, HTTPS)

• Publish / subscribe
• Response / request
• Fire & forget, events
• Synchronous and asynchronous

messaging

• Service interface definition (e.g.
WSDL)

• Support for substitution of service
implementation

• Service messaging models required
for communication and integration
(e.g. SOAP or Enterprise Application
Integration middleware models)

• Service directory and discovery

Integration Quality of Services
• Database
• Service aggregation
• Legacy and application adaptors
• Connectivity to enterprise application

integration middleware
• Service mapping
• Protocol transformation
• Application server environments (e.g.

J2EE and .Net)
• Language interfaces for service

invocation (e.g. Java, C/C++/C#)

• Transactions (Atomic transactions,
Compensation, WS-Transaction)

• Various assured delivery paradigms
(e.g. WS-ReliableMessaging or
support for Enterprise Application
Integration middleware)

Security Service Level
• Authentication
• Authorisation
• Non-repudiation,
• Confidentiality
• Security standards (e.g. Kerberos,

WS-Security)

• Performance
• Throughput
• Availability
• Other continuous measures that

might form the basis of contracts or
agreements

Message Processing Management and Autonomic
• Encoded logic
• Content-based logic
• Message and data transformations
• Validation
• Intermediaries
• Object identity mapping

• Service provisioning and registration
• Logging, metering and monitoring
• Discovery
• Integration to systems management

and administration tooling
• Self-monitoring and self-

management

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 6

• Data enrichment management
Modelling Infrastructure Intelligence
• Object modelling
• Common business object models
• Data format libraries
• Public vs. private models for

business-to-business integration
• Development and deployment tooling

• Business rules
• Policy driven behaviour particularly

for service level, security and quality
of service capabilities (e.g. WS-
Policy)

• Pattern recognition

Many of these capabilities can be implemented either using proprietary technologies
or through the use of open standards. However, the various technology candidates
for ESB implementation in a given case might vary considerably in their performance,
scalability and availability characteristics, as well as in the ESB capabilities and open
standards they support. Because of this, and the fact that some of the relevant
standards are recent or still emerging, many critical decisions in implementing the
Enterprise Service Bus today are concerned with the trade-off between more mature,
proprietary technologies and less mature open-standard support.
We will not discuss each of these capability categories in detail in this paper; rather,
we will focus on those that drive decisions between different approaches to adopting
or implementing an ESB. In particular, in the next section, we will discuss what are
the minimum capabilities that an ESB requires in order to support a Service Oriented
Architecture.

1.2.2 The Minimum Capability Enterprise Service Bus
Implementation for Service Oriented Architecture

If only a subset of the capabilities identified above are relevant to most SOA
scenarios, we need to consider what is the minimum set of capabilities that are
required in order to implement an Enterprise Service Bus. In order to do this,
consider the most commonly agreed elements of the ESB definition:

• The ESB is a logical architectural component that provides an integration
infrastructure consistent with the principles of Service Oriented Architecture.

• SOA principles require the use of implementation-independent interfaces,
communication protocols that stress location transparency and interoperability,
and service definitions that are relatively large-grained and encapsulate
reusable function.

• The ESB may be implemented as a distributed, heterogeneous infrastructure.

• The ESB provides the means to manage the service infrastructure and the
capability to operate in today’s distributed, heterogeneous environment.

The minimum ESB capabilities can be defined from those principles, and are shown
in the table below.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 7

Communication Integration
• Routing and addressing services providing

location transparency.
• An administration capability to control

service addressing and naming.
• At least one form of messaging paradigm

(e.g. request / response, pub/sub, etc.).
• Support for at least one transport protocol

that is or can be made widely available.

• Support for multiple means of
integration to service providers,
such as Java 2 Connectors,
Web Services, asynchronous
messaging, adaptors etc.

Service Interaction
• An open and implementation independent service messaging and interfacing

model, that should isolate application code from the specifics of routing services
and transport protocols, and allow service implementations to be substituted.

Note that these minimum capabilities do not require the use of particular
technologies, such as Enterprise Application Integration Middleware, Web Services,
J2EE, or XML. The use of those technologies is very likely as they fit the
requirements well, but it is not mandatory. Conversely, the minimum capabilities are
nearly, but not wholly, fulfilled by the simple use of SOAP/HTTP and WSDL:

• URL addressing and the existing HTTP and DNS infrastructure provide a “bus”
with routing services and location transparency.

• SOAP/HTTP supports the Request / Response messaging paradigm.

• The HTTP transport protocol is widely available.

• SOAP and WSDL are an open, implementation independent messaging and
interfacing model.

However, this basic use of SOAP/HTTP and WSDL is really point-to-point integration,
and does not fulfil some key capabilities required for an Enterprise Service Bus:

• There is no “administration capability” to control service addressing and
naming; rather, service names are controlled individually by each adaptor, and
service routing control is dispersed between the addresses invoked by service
clients, the HTTP infrastructure, and the service names assigned to adaptors.

• Whilst dependent on implementation details, this approach does not tend to
facilitate substitution of service implementations; service requester code
(perhaps generated by development tools) will often bind directly to specific
service provider implementations through specific protocols at specific
addresses. Substituting one service implementation for another will hence
require changes to and redeployment of application code.

Of course, further capabilities are required in many or even most scenarios, and will
become increasingly common. In particular, the following types of requirement are
likely to lead to the use of more sophisticated technologies, either now or over time:

• Quality of Service and Service Level capabilities.

• Higher level Service Oriented Architecture concepts, e.g. service choreography,
directory, transformations etc.

• On Demand Operating Environment demands, such as Management and
Autonomic capabilities and Infrastructure Intelligence capabilities.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 8

• Truly heterogeneous operation across multiple networks, multiple protocols,
multiple domains of disparate ownership.

1.3 Security Issues Affecting the Enterprise Service Bus
In this paper, we won’t directly address security requirements; however, they are
likely to be important to the choice of ESB technology. For example, if no
authentication or authorisation of service requests is required, the choice of
technology will be very broad. If, as is more likely, some level of security is required,
it is important to assess what style of security will be acceptable, e.g.:

1. Is security in the communications infrastructure acceptable, e.g. the use of SSL
mutual authentication between Enterprise Application Integration middleware
servers, or through the use of the HTTPS protocol?

2. Is individual, point-to-point security acceptable between participating systems,
or is an end-to-end model required? For example, is there a need to propagate
client identity through intermediate systems such as brokers to the end-
providers of service implementations?

3. Is security in the application layer acceptable, e.g. such that client code
performs basic HTTP authentication with a userid and password, or that it
passes such information to the service as application data?

4. Is some form of standard security required such as Kerberos or WS-Security?

Whilst all of these approaches are possible, the industry direction is towards
standards-compliant (i.e. WS-Security) security features supported by infrastructure
and middleware. However, these standards are relatively recent, and product support
for them is emerging rather than established, particularly where interoperability is
concerned. A priority of any ESB architecture should hence be to establish the
security requirements as early as possible so that they can be included in the choice
of implementation technology.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 9

2 ESB Scenarios and Analysis
The starting points for many SOA and ESB implementations are described in the
section ESB Scenarios in Service Oriented Architecture below. Each scenario
indicates specific Issues Driving ESB Architecture and Design Decisions that drive
the selection of Solution Patterns, described in the next section of this paper. The
solution patterns represent an evolution from a basic use of service technology,
through simple ESB implementations to a sophisticated Service Oriented
Architecture infrastructure.

The scenarios are not meant to represent the totality of an organisation’s
requirements for SOA or ESB, either at a moment in time or as they evolve. For
example, whereas one of the scenarios such as Basic Integration of Two Systems
might seem a good match to a particular current requirement, that requirement might
evolve over time into something more sophisticated, such as Enable Wider
Connectivity to One or More Applications. Alternatively, there may be many separate
requirements for SOA or ESB infrastructure, which individually match simple
scenarios but overall represent something more complex.

There is a balance to be struck here between implementing a solution that meets the
immediately apparent needs, attempting to anticipate future needs, and defining a
consistent solution across an Enterprise. It may be appropriate to recognise the
organisation’s needs as a whole as a relatively sophisticated scenario such as
Implement a Service Oriented Architecture Infrastructure with High Quality of Service
and Web Services Standards Support; an alternative would be to treat individual
situations separately as simple scenarios, but define a roadmap for evolving the
resulting solutions over time into a common infrastructure.

2.1 ESB Scenarios in Service Oriented Architecture
The scenarios characterised in the sections below are:

• Basic Integration of Two Systems

• Enable Wider Connectivity to One or More Applications

• Enable Wider Connectivity to Legacy Systems

• Enable Wider Connectivity to an Enterprise Application Integration
Infrastructure

• Implement Controlled Integration of Services or Systems Between
Organisations

• Automate Processes by Choreographing Services

• Implement a Service Oriented Architecture Infrastructure with High Quality of
Service and Web Services Standards Support

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 10

2.1.1 Basic Integration of Two Systems

Scenario

There is a business need to provide basic integration between two systems
implemented in different technologies such as J2EE, .Net or CICS etc. The Web
Services SOAP standard or messaging middleware might be candidate integration
technologies. Whichever technology is chosen will need to be supported to some
extent in the environments of both applications. An important question in this
scenario is whether the need to integrate additional systems is likely to arise in the
future – the use of an extensible solution in the first place will facilitate support for
future requirements, but this needs to be balanced against the initial need to solve a
simple problem.

Most Relevant
Issues

Relevant Solution Patterns

1,3,4,6,10,13 • Implement basic integration using wrappers or adaptors - Basic
Adaptors

• Or, with future expansion in mind, either:
o add a controlling Service Gateway
o or implement a sophisticated infrastructure - Web

Services Compliant Broker or Enterprise Application
Integration Infrastructure for Service Oriented
Architecture

2.1.2 Enable Wider Connectivity to One or More Applications

Scenario

Existing packaged applications (e.g. CRM, ERP etc.) or bespoke applications, perhaps
implemented in J2EE or other application server environments, provide functions that
are useful beyond the applications themselves. There is value in exposing these
functions as services either to enable the applications to interoperate with each other,
or to provide access to new channels or clients. The use of interoperable or open
standard communication and service protocols seems the best way forward.

Most Relevant
Issues

Relevant Solution Patterns

1,2,3,4,6,8,9,10,

11,12,13,14

• Implement basic integration using wrappers or adaptors - Basic
Adaptors

• Or add a controlling Service Gateway

• If more sophisticated capabilities are required implement - Web
Services Compliant Broker or Enterprise Application Integration
Infrastructure for Service Oriented Architecture

• If process choreography is also required, implement Service
Choreographer or Full Service Oriented Architecture
Infrastructure

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 11

2.1.3 Enable Wider Connectivity to Legacy Systems

Scenario

An organisation has a large investment in “legacy” technologies (such as CICS, IMS
etc.) supporting applications that provide their core business transactions and data
access. There is significant value in providing interoperable or open standard,
service-based access to those transactions (e.g. transactions that query account
balance, create orders, schedule or track deliveries, query stock levels etc.).

Most Relevant
Issues

Relevant Solution Patterns

1,2,3,4,7,8,9,

10,11,13,14

• Implement basic integration using wrappers or adaptors - Basic
Adaptors

• Or, with future expansion in mind, either:

o add a controlling Service Gateway

o or implement a sophisticated infrastructure - Web
Services Compliant Broker or Enterprise Application
Integration Infrastructure for Service Oriented
Architecture

2.1.4 Enable Wider Connectivity to an Enterprise Application
Integration Infrastructure

Scenario

There is an existing Enterprise Application Integration infrastructure, such as
WebSphere Business Integration Server, to which extended access based on
interoperable protocols or open standards is required. Whilst the exposure of service
interfaces defined in terms of XML business data through a highly interoperable
protocol such as HTTP or WebSphere MQ might provide an appropriate level of
interoperability in some scenarios, support for the WSDL and SOAP Web Services
standards might be required if neither a bespoke nor proprietary extension to the
existing scope of integration are acceptable.

Most Relevant
Issues

Relevant Solution Patterns

3,4,5,8,9,11,13,

14

• Extend the EAI infrastructure using open data formats -
Enterprise Application Integration Infrastructure for Service
Oriented Architecture

• Add a Service Gateway
• Or add open standard support to the infrastructure - Web

Services Compliant Broker

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 12

2.1.5 Implement Controlled Integration of Services or Systems
Between Organisations

Scenario

An organisation wishes to enable its customers, suppliers or other partners to integrate
directly with functions provided by one or more applications, legacy or otherwise. A
point of control is required to provide secure, manageable access from external parties
to those applications. The use of open standards is preferred as the organisation has
no direct control over the technologies used by its partners. This scenario might apply
either between separate organisations, or between units of a larger distributed
organisation.

Most Relevant
Issues

Relevant Solution Patterns

1,2,3,4,6,8,9,10,

11,13,14

• Add a Service Gateway

• Or if more sophisticated capabilities are required - Web Services
Compliant Broker

2.1.6 Automate Processes by Choreographing Services

(Note: this scenario can be considered an evolution of the Enable Wider Connectivity
to One or More Applications scenario).

Scenario

Existing packaged applications (e.g. CRM, ERP etc.) or bespoke applications,
perhaps implemented in J2EE or other application server environments, provide
functions that are useful beyond the applications themselves. These functions can be
exposed as services using interoperable or open standard communication and
service protocols so that the applications can interact. The interactions combine to
form business processes at some level, and these processes should be explicitly
modelled and executed using appropriate modelling and process execution
technology, possibly in compliance with appropriate open standards.

Most Relevant
Issues

Relevant Solution Patterns

1,2,3,4,6,10,11,

12,13,14

• If the direct connection of services is possible, implement
Service Choreographer

• If more sophisticated integration or control are required,
implement a Full Service Oriented Architecture Infrastructure

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 13

2.1.7 Implement a Service Oriented Architecture Infrastructure
with High Quality of Service and Web Services Standards
Support

Scenario

This scenario is a composite of the preceding scenarios. It represents the need to
enable widespread internal or external access to services provided by multiple
applications, legacy or otherwise. Various security, aggregation, transformation,
routing and service choreography capabilities are required. It is worth noting that this
scenario is often driven by an IT organisation in response to increasing demands
from across the business it supports to enable more widespread, more flexible
integration between business systems.

Most Relevant
Issues

Relevant Solution Patterns

All • Implement a Full Service Oriented Architecture Infrastructure

2.2 Issues Driving ESB Architecture and Design Decisions
In order to identify a suitable solution pattern and implementation technology for an
ESB, requirements for specific ESB capabilities will need to be analysed in more
detail than is encapsulated in the basic ESB Scenarios in Service Oriented
Architecture above. The following questions are intended to aid this process, and the
specific questions relevant to each scenario are indicated in the preceding section.

1. Are the existing functions and their data interfaces good matches to the
services you want to provide, or can appropriate modification or aggregation be
performed in the applications?

§ If not, transformation or aggregation capability will be required either in
adaptors or the ESB infrastructure, or will have to be performed by service
clients.

2. Should the services be exposed in the form of some common business data
model, and if so, do the systems implementing those services already support
that model, or can they be made to do so?

§ If not, transformation or aggregation capability will be required either in
adaptors or the ESB infrastructure.

3. Are open standards required, or can appropriate interoperability be achieved
through Enterprise Application Integration middleware? If open standards are
required, which ones are appropriate?

§ Whilst the use of open standards is one way to achieve interoperability,
proprietary Enterprise Application Integration middleware is also highly
interoperable, and often significantly more mature. Many organisations also
have extensive existing infrastructures which can, in some scenarios,
minimise the benefits of open standards.

§ In scenarios where open standards are required, Web Services are perhaps
the most obvious choice in this context. However, Java Messaging Service

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 14

(JMS), JDBC, basic XML or several other technologies such as EDI or
industry XML formats can also be applied.

§ In practise, interoperability between different implementations of the same
standards cannot always be assumed, particularly if the standards are
recent or emerging. In the case of Web Services, the Web Services
Interoperability Organisation has recently published the Basic Profile for
interoperability using SOAP and WSDL, and other profiles for more
advanced standards will follow (e.g. WS-Security, WS-Transaction etc.).
Until such profiles are comprehensive, established and widely supported by
products, the use of open standards will not guarantee, and may not always
facilitate, interoperability.

4. Is support for basic communication protocols and standards (e.g. WebSphere
MQ, SOAP, WSDL) required, or more capabilities such as WS-Security, WS-
Transaction etc.)?

§ Requirements to support more sophisticated standards will impose more
stringent constraints on the options for implementation technologies, and
may imply the use of less mature technologies.

5. Where changes to the message formats and protocols used by an existing
infrastructure are under consideration, including the adoption of open
standards, are the changes required throughout the existing infrastructure, or
can they be applied at the edges? If EAI technology is in use or under
consideration, does that have it’s own internal format, or can it process open
standards as an internal format?

§ Any use of open standards is likely to be driven by needs to extend access,
so it is usually more important that they are available at the interfaces to
existing infrastructure than that they are used internally.

§ If internal use of specific formats, technologies or standards is required, this
will place constraints on the choice of implementation technology.

6. Do the systems implementing functions which should be exposed as services
support the required technologies or open standards such as SOAP, JMS or
XML?

§ If not, either the ESB infrastructure or adaptors will need the capability to
transform between the required open standards and the formats supported
by the service providers.

7. Where access to legacy systems is required using more recent XML-based
technologies (including SOAP, but also basic XML with Enterprise Application
Integration middleware), is direct support (e.g. CICS SOAP support) available,
or is a separate adaptor required? Does the legacy platform support XML
processing, and is such processing a sensible use of the platform capabilities?

§ If for any of these reasons a required SOAP or XML capability will not be
made available on a legacy platform, appropriate transformation capability
will be required either in adaptors (such as JCA or WebSphere Business
Integration Adaptors), in an integration tier, or in the ESB infrastructure.

8. If an EAI technology is already available, does it implement “services” as
message flows with appropriate function and interface granularity, or can it be
made to do so? What connectivity protocols does it support (e.g. JCA, SOAP,
WebSphere MQ, RMI)?

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 15

§ If existing message flows do not provide the required services, then
additional flows will be needed to perform transformations. If the EAI
technology does not directly support the required standards, a gateway
component can be added.

9. What measure of protection should be afforded to the service provider systems
from service client channels in the form of workload buffering, security, logging
etc.?

§ Such buffering will often be a role of the ESB infrastructure, and define
some of the capabilities it requires. If specific service provider systems (e.g.
legacy transactional systems) have additional needs for protection, a
dedicated integration tier could be used.

10. How many services should be enabled? What aspects of enablement should be
consistent across the services, and how can consistency be enforced, perhaps
across multiple platforms and applications?

§ If very few services are involved, a simple point-to-point integration model
may be appropriate. However, if more are involved, or likely to become so
over time, the addition of a control point such as that provided by an ESB
becomes increasingly beneficial.

11. Are the service interactions contained within the organisation or are some
external?

§ If external access is required, a gateway component can be used to provide
additional control. This is often the case in addition to an ESB infrastructure
implemented within a single organisation, as the requirements for security
and service routing etc. may differ for services made available externally.

12. Are there requirements for service choreography, and do they involve short-
lived or long-lived (i.e. stateful) processes, or both? Do they include manual
activities?

§ Where these requirements constitute business function, the choreography
should be implemented in a Service Choreographer component separate
from the ESB. Requirements to support long-lived stateful processes or
manual activities will place constraints on the choice of implementation
technology.

13. What service level requirements should the infrastructure support, e.g. service
response time, throughput, availability etc., and how is it required to scale over
time?

• Some of the candidate technologies for ESB implementation are relatively
new and may only have been tested against limited service levels. Similarly,
because the relevant open standards are either recent or emerging, support
for them in more established products and technologies is also new.

• For the foreseeable future, critical architectural decisions will be concerned
with balancing the benefits of specific open standards supported by
emerging or mature product technologies against service level
requirements. These point-in-time decisions will need to recognise that
some standards, and product support for them, are relatively mature (e.g.
XML, SOAP etc.), others (e.g. WS-Security) are newer whilst others (e.g.
WS-Transaction) are still emerging.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 16

• The trade off between the benefits of standards and proven service level
characteristics will often drive a mixed approach combining standards-
compliant and proprietary or bespoke technologies in an ESB and SOA
architecture.

14. Is a point to point or end-to-end security model required (e.g. should the ESB
simply authorise service requests, or should it pass the requestor identity or
other credentials through to the service provider)? Is there a need to integrate
the service security model with application or legacy security systems?

§ If point to point security is acceptable, a number of existing solutions (e.g.
SSL, J2EE security for database access, adaptor security models etc.) can
be applied. If end to end security is required, the WS-Security standard is a
possibility, providing it is supported by all the systems involved. Alternatively
a bespoke model using custom message headers or passing security
information as application data could be used.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 17

3 Solution Patterns
Each of the following sections describes a “solution pattern” for one style of
Enterprise Service Bus (except the Basic Adaptors pattern, which represents a
simpler, point-to-point solution). Each pattern suggests various implementation
options using current technologies, along with pros, cons and migration
considerations.

Note that the diagrams in each solution pattern depict “Service Clients” as being
separate from the systems that provide services; of course, in many situations the
same systems or applications may be both clients and providers of services. The
diagrams are not intended to rule out this possibility by separating clients and
providers, but do recognise that there are two different roles that may be played by
the same system in different interactions. This distinction is often important in
determining the way a system selects, identifies and invokes services in its role as a
client, and receives, handles and responds to service requests in its role as a
provider.

The solution patterns characterised in this section are:

• Basic Adaptors

• Service Gateway

• Web Services Compliant Broker

• Enterprise Application Integration Infrastructure for Service Oriented
Architecture

• Service Choreographer

• Full Service Oriented Architecture Infrastructure

3.1 Basic Adaptors

3.1.1 Description

This solution option represents simple point-to-point service integration using
wrapper or adaptor technology, rather than a true Enterprise Service Bus. Such
technology might enable integration through WSDL-defined SOAP access, or other
interoperable technologies such as WebSphere MQ. In the case of technologies
which do not provide a native model for service interface definition, such as WSDL, a
bespoke model will be needed to fulfil the principles of Service Oriented Architecture.

Whilst simple, the benefits that can be obtained through this pattern should not be
underestimated. For example, “direct” integration through WebSphere MQ or
SOAP/HTTP can still be relatively loosely coupled, particularly if aspects of the
interaction are declared using interfaces. At some point in the future, the integration
could be “interrupted” by an ESB infrastructure that supports the integration
technologies initially used. It is also possible to exert some level of control over
service naming and addressing at a process level.

A wide range of adapters are available or can be created via development tooling or
runtime technology. Support can be provided for Web Services standards and
Enterprise Application Integration middleware, and for a variety of systems, including
modern distributed application servers (i.e. J2EE Servers such as WebSphere, or
.Net), legacy applications (e.g. CICS), and Commercial Off-the-Shelf (COTS)
software packages (such as SAP or Siebel).

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 18

Figure 4 below illustrates the generic Basic Adaptors solution, including the use of
existing HTTP and Enterprise Application Integration middleware infrastructure to
support new integrations. Whilst the figure depicts an internal integration scenario, it
could also apply to external scenarios, providing HTTP is used as the communication
protocol, or some form of internet-compatible EAI technology is available, such as
WebSphere MQ Internet pass-thru.

Existing component or components providing services (Legacy, Applications, EAI Middleware etc.)

Service Client Service Client Service Client Service Client

Various proprietary and standard interfaces or adaptors

WSDL / SOAP
Interface

XML Interface
WSDL / SOAP

Interface
XML Interface

XML Interface
WSDL / SOAP

Interface
WSDL / SOAP

Interface

"Service Bus" Components

EAI
Infrastructure

HTTP
Infrastructure

Intranet

Figure 4: Basic Adaptor solution pattern depicting existing HTTP and unmodified EAI

infrastructures as supporting some aspects of service bus capability.

3.1.2 Implementation Technology Options

• Use SOAP or EAI capability directly provided by legacy systems or applications.
For example, IBM CICS now provides direct SOAP support, and many systems
and application packages can support WebSphere MQ or SOAP interfaces.

• If the applications you wish to provide access to are bespoke applications
running in an application server environment, either the runtime or application
development tooling for the application server can be used to add wrappers to
the application. WebSphere Studio Application Developer can be used to add
XML, SOAP or WebSphere MQ support to J2EE applications deployed in
WebSphere Application Server.

• Where such support is not available or appropriate (e.g. if XML transformation is
not an appropriate use of processing resources on the existing platform), an
additional architecture layer may be required, as shown in Figure 5 below. This
might be an application server layer hosting adaptors integrated with application
or legacy systems. For example, WSAD-IE provides Java 2 Connector
Architecture connector tooling to access legacy systems such as CICS and
provide both J2EE and Web Services interfaces to them through a WebSphere
runtime environment.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 19

Service Adaptor

Legacy Integration Server (e.g. CICS Transaction Gateway)

Legacy System (e.g. CICS)

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

T
ransaction

Mainframe

Legacy Integration Client (e.g. CICS Transaction Gateway Client)

Service Interface
(e.g. WSDL)

Service Adaptor

Service Interface
(e.g. WSDL)

Service Adaptor

Service Interface
(e.g. WSDL)

Service Adaptor

Service Interface
(e.g. WSDL)

Service Requests

Transformation Layer e.g. WebSphere Application Server & Java 2 Connectors

Transformation Tier Servers

Figure 5: Additional Architecture Layer to Perform XML Transformation Processing

• Where development tooling is used to create wrappers it is possible to augment
the function provided by the tooling, for example by creating a framework or set
of utility classes to perform common tasks, such as security, logging etc.
However, this approach can lead to “scope creep” and result in the framework
becoming a de facto bespoke Service Gateway or Web Services Compliant
Broker. Care is required when defining the capabilities of a proposed framework
to verify that the benefits justify the development and maintenance cost, and that
it would not be more appropriate to switch to a more sophisticated pattern.

More detailed implementation advice for this pattern can be found in reference 10 in
the References.

3.1.3 Implications

On the positive side, this solution pattern requires no or minimal new infrastructure,
and employs basic, widely supported standards and technologies. On the negative
side, any security, management etc. capabilities are left to the applications or
perhaps the implementation of individual wrappers.

Migration to a more sophisticated architecture should be relatively straightforward as
this pattern is based on the use of interoperable technologies and open standards.

3.1.4 Alternative Patterns

Where integration requirements cannot be met by any of the options above, or where
some additional capability or quality of service requirement exists, a “wrapper”
approach might be insufficient. In this case a Service Gateway is the logical next

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 20

step. If more sophisticated ESB capabilities are required, then either the Web
Services Compliant Broker or Enterprise Application Integration Infrastructure for
Service Oriented Architecture patterns could be suitable.

3.2 Service Gateway

3.2.1 Description

This pattern represents a basic ESB implementation, close to The Minimum
Capability Enterprise Service Bus Implementation described above. Service
Gateways often support client connectivity through SOAP/HTTP, WebSphere MQ,
JMS etc., but may support broader integration to service providers, e.g. through the
Java 2 Connector Architecture or WebSphere Business Integration Adaptors. The
gateway component acts as a central control point for service routing, protocol
transformation and security.

A gateway can be used to provide clients with a consistent service namespace (e.g.
in the form of URLs for SOAP/HTTP services) and authorisation model to services
that are in fact provided by disparate systems through multiple protocols. This is
obviously a requirement where there is a need to expose services to external
partners such as clients or suppliers, but may also be useful within a single
enterprise where there is a desire to simplify access from applications to functions
implemented in a variety of systems and technologies.

A key gateway capability is the transformation of service protocols supported by
clients to service protocols supported by providers. Protocols might include
SOAP/HTTP, WebSphere MQ or SOAP/JMS, Java 2 Connector Architecture,
RMI/IIOP etc. The capabilities of candidate implementation technologies will need to
be assessed against the required client and provider protocols.

Figure 6 below depicts the Service Gateway solution pattern.

Existing component or components providing services (Legacy, Applications, EAI Middleware etc.)

Various proprietary and standard interfaces or adaptors

WSDL Interface:
SOAP/HTTP RMI/IIOP Interface JCA Interface XML Interface:

XML/MQ

WSDL Interface:
SOAP/HTTP

WSDL Interface:
SOAP/JMS

XML Interface:
XML/MQ

Service Client Service Client Service Client

Enterprise Service Bus Components

Service Gateway

Protocol Translation, Service Address
Mapping, Security, Logging

Figure 6: Implementation of an Enterprise Service Bus using a Service Gateway

Pattern

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 21

3.2.2 Implementation Technology Options

• Use packaged Gateway technology such as the Web Services Gateway provided
with WebSphere Application Server Network Deployment or WebSphere
Business Integration Connection. Many gateway technologies support some form
of “intermediary”, “filter” or “handler” programming model to enable bespoke
enhancements to function. The Web Services Gateway provides some
configurable intermediary function, and also supports the use of Web Services
request and response handlers as defined in the JAX-RPC specification.

• Use the application development and runtime capabilities of a modern application
server technology, such as the WebSphere Application Server, to implement a
bespoke gateway. This might involve the same type of adaptors as described in
the Basic Adaptors solution pattern above.

• If more sophisticated function is required consider more sophisticated Enterprise
Application Integration middleware, such as WebSphere Business Integration
Message Broker.

• A number of implementations of this pattern exist in legacy technology, usually
without the use of Web Service technologies. Many organisations have, for
example, constructed “router” transactions that offer a simple interface using a
text-like data model to multiple legacy transactions. Such systems are effectively
implementing the “gateway” pattern, using a bespoke data format with some of
the portability benefits of XML.

3.2.3 Implications

On the positive side, this solution can involve minimal infrastructure, although some
gateway technology must be deployed in an appropriately resilient manner. The
emphasis on interoperable protocols and open standards also simplifies
infrastructure concerns. The ability of most gateway technology to interact with a
number of other interface types, such as RMI/IIOP and JCA, should minimise the
deployment of additional connectivity technology.

However, gateway technologies will often limit service processing to simple one to
one mapping of request / response and publish / subscribe services – any more
sophisticated function such as message transformation, message correlation,
message aggregation etc. might lie outside the capabilities of appropriate technology,
or require inappropriate development effort in a bespoke scenario.

Most Enterprise Service Bus technologies recognise the gateway pattern and its
associated capabilities; given this, the use of interoperable protocols and open
standards, and the simplicity of gateway function, any migration issues to a more
sophisticated ESB infrastructure should be kept reasonably low.

3.2.4 Alternative Patterns

The most obvious alternative patterns are Web Services Compliant Broker or
Enterprise Application Integration Infrastructure for Service Oriented Architecture,
suitable when the requirements indicate rather more capability than would
comfortably be associated with a “Gateway”, or than is provided by packaged
Gateway technologies. On the other hand, if very few services are in fact involved, a
simple Basic Adaptors solution might be appropriate.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 22

3.3 Web Services Compliant Broker

3.3.1 Description

This solution pattern represents a sophisticated enterprise service bus
implementation, providing all the capabilities of a fully fledged EAI solution, and using
an open standards model. The precise requirements of a specific situation will define
what level of EAI capability is required, and hence which EAI technologies are
appropriate. Figure 8 below shows the implementation of an ESB using a Web
Services compliant broker.

Existing component or components providing services (Legacy, Applications, EAI Middleware etc.)

Various proprietary and standard interfaces or adaptors

WSDL Interface:
SOAP/HTTP RMI/IIOP Interface JCA Interface

XML Interface:
XML/MQ

WSDL Interface:
SOAP/HTTP

WSDL Interface:
SOAP/JMS

XML Interface:
XML/MQ

Service Client Service Client Service Client

Enterprise Service Bus Components

Web Services Compliant Broker

Routing, Transformation, Enrichment, Aggregation, Disaggregation, Publish / Subscribe, Event
Handling, Message Correlation, Security, Logging, Multi-Cast, Industry Data Formats, etc.

Figure 8: Implementation of a Rich-Featured Enterprise Service Bus Using a Web

Services Compliant Broker

3.3.2 Implementation Technology Options

• The most likely implementation technology for this solution is Enterprise
Application Integration middleware, such as WebSphere Business Integration
Server, providing appropriate Web Services support.

• Optionally, where Web Services support is required primarily for external
integration, the proprietary features of the EAI middleware can be used internally,
combined with the use of a Service Gateway component to add Web Services
support.

More detailed implementation advice for this pattern can be found in reference 9 in
the References.

3.3.3 Implications

The advantages of this implementation are the provision of rich functionality within an
open standard model. However, whilst EAI middleware is mature, its support for open
standards, particularly the more advanced Web Services standards such as WS-

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 23

Policy and WS-Transaction, might not yet be so mature. So, the primary
disadvantage of this scenario is that it simply may not be viable in all situations.

3.3.4 Alternative Patterns

If appropriate Web Services support cannot be provided, the requirements for a
service bus can be fulfilled in a more proprietary or bespoke manner by the
Enterprise Application Integration Infrastructure for Service Oriented Architecture
pattern, perhaps in combination with a Service Gateway component to at least add
Web Services interfaces. Alternatively, if open standards support is the most critical
requirement and some of the EAI capabilities such as transformation and
aggregation can be accomplished elsewhere, perhaps in applications or adaptors,
the Service Gateway pattern might be appropriate.

3.4 Enterprise Application Integration Infrastructure for
Service Oriented Architecture

3.4.1 Description
For reasons discussed throughout this paper, it may not always be appropriate to
adopt the Web Services standards. However, the principles of Service Oriented
Architecture (SOA) can still be applied to construct a solution based around either
proprietary or bespoke technology, or alternative open standards.

An obvious approach, proven in many successful implementations, is to use
Enterprise Application Integration (EAI) technology, often but not exclusively in
combination with XML, to construct a bespoke SOA infrastructure. Providing service
interfaces are explicitly defined and of appropriate granularity, EAI middleware can
ensure the interoperability and location independence principles of SOA are met.

The potential benefits of this approach are significant, as the full functional and
performance power of mature EAI technology is applied to the flexibility of SOA.
These benefits apply both to the implementation of new, robust infrastructures for
SOA, or to the application of SOA principles to an existing infrastructure.

An Enterprise Service Bus implemented in this way will use and benefit from
important open and de facto standards, and may in fact be the means by which
widespread introduction of these standards to the existing IT infrastructure takes
place, providing a basis for further evolution:

• Many EAI technologies are so widespread, particularly within individual
organisations, that they bring the same interoperability benefits as open
standards.

• Where appropriate, XML data and message formats can be used to facilitate
interoperability and platform independence – just as XML facilitates these
benefits in the Web Services standards.

• It is likely that the EAI technology will support some form of Web Services, so
open standard interfaces might be provided where appropriate, particularly
using the Document / Literal SOAP model to expose any XML formats in use.
Alternatively, such access could be provided by addition of a Service Gateway
to the solution.

• In some cases, the use of Java as a platform-independent programming
language can be used to provide a client API package, and this might be usable

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 24

not only from J2EE environments but from standalone Java environments,
Database environments that support Java, and various others.

• The EAI middleware might support other open standards, such as Java
Messaging Service, which whilst not perhaps quite as broadly applicable as
Web Services, are nevertheless supported by multiple technologies.

This approach can represent a significant step towards a fully open standard SOA
infrastructure: whilst migration to Web Services standards is likely to be at least a
consideration at some point, the interim use of EAI and perhaps XML technologies
does at least provide a means to address questions such as interface granularity,
common data models and formats, etc., all of which are important steps along the
way.

Finally, we should re-emphasise the benefits of this approach: mature EAI
technology offers an incredible wealth of Enterprise Service Bus capability (process
and data modelling, transformation, content-based routing, service aggregation and
choreography etc., etc.) with proven performance, availability and scalability
characteristics. Where these capabilities are the most significant requirements, the
use of EAI technology to implement an Enterprise Service Bus without Web Services
technologies at the core of the solution is entirely appropriate, particularly since there
are a number of options for adding Web Services support where required.

Figure 7 below depicts the components involved in this solution pattern.

Existing component or components providing services (Legacy, Applications, EAI Middleware etc.)

Various proprietary and standard interfaces or adaptors

Service Interface Service Interface Service Interface Service Interface

Service Interface Service Interface Service Interface

Service Client Service Client Service Client

"Service Bus" Components

Enterprise Application Integration Middleware

Routing, Transformation, Enrichment, Aggregation, Disaggregation, Publish / Subscribe, Event
Handling, Message Correlation, Security, Logging, Multi-Cast, Industry Data Formats, etc.

Figure 7: Implementation of a Rich-Featured Service Bus Using Enterprise

Application Integration Middleware

3.4.2 Implementation Technology Options

The choice of Enterprise Application Integration middleware will be determined by
matching the ESB capabilities required by a specific situation with the features of
various EAI products such as the WebSphere Business Integration family.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 25

A key area of design activity is in the service interface definition model: in order to
comply with the principles of Service Oriented Architecture, services should be
defined using an explicit interface. Whilst some EAI technologies may offer such a
model, in other cases a bespoke solution is required. In practise, this is often
implemented using an XML schema combining service identification and addressing
and business data. However, non-XML solutions are possible, such as the textual
solutions used by some legacy implementations of the Service Gateway pattern.

The function of those aspects of the interface model that are not related to the data
model is to declaratively define how the features of the EAI infrastructure should be
used to mediate service requests and responses. Some mechanism is therefore
required by which applications can interpret the interface definition and make the
appropriate calls to the EAI infrastructure. Again, this may be provided by the EAI
technology; alternatives include the enforcement of design and development
standards, or the use of framework APIs.

The development and maintenance of a framework API is obviously not trivial, but
more effective than enforcing standards across multiple applications. Such an
approach is most beneficial where at least a majority of the applications connecting
to the service bus support the same programming language, such as Java.

Choices also exist in the adoption of a business data model, whether XML-based,
proprietary or bespoke. There are a large number of both general and industry
specific XML data models, and there may be some advantage in adopting one of
these. However, many are in the process of migrating to the Web Services
standards; if this solution pattern is under consideration because the available Web
Services technologies are not suitable for some reason, then those standards would
not be an option.

Finally, if some form of Web Services or other standards based access is required to
services implemented using this bespoke solution, then options exist either to use
Web Services support provided by the EAI technology, or to add an explicit Service
Gateway component if that provides a better match to the requirements.

3.4.3 Implications

As this solution pattern can represent significant development, implementation and
maintenance effort, it demands careful consideration. The benefits are that the
solution is entirely consistent with the principles of Service Oriented Architecture, has
repeatedly been proven to deliver business benefit, and can be implemented in
mature technologies with enterprise-class function, resilience and performance.

The costs lie primarily in two areas: firstly, in the initial implementation and ongoing
maintenance of the solution, and secondly in the migration effort that is eventually
likely to be required to adopt an open standards solution as Web Services
technologies mature, and their use becomes increasingly compelling.

Adoption of this pattern is a point-in-time decision depending on whether near or
medium term advantages justify the necessary investment. The investment required
can depend on the existing level of use of EAI, and on the extent of any additional
bespoke development. The definition of “near or medium” term depends on when an
individual organisation believes that emerging Web Services standards will be
sufficiently mature to meet its functional and non-functional requirements.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 26

3.4.4 Alternative Patterns

The Web Services Compliant Broker pattern represents a similar implementation
using open standards technology.

3.5 Service Choreographer

3.5.1 Description

This pattern consists of the implementation of a dedicated service choreography
component. Such a component is not really an enterprise service bus but will support
connectivity to services through various protocols such as SOAP/HTTP or
WebSphere MQ that either require or imply the presence of an ESB. In some
scenarios, such support might be sufficient to allow direct connectivity to service
providers and server requestors; where that is not the case, an ESB could be
provided through any of the other solution patterns described in this paper – this
would constitute the Full Service Oriented Architecture Infrastructure solution pattern.

Figure 9 below depicts the implementation of a service choreographer.

Existing component or components providing services (Legacy, Applications, EAI Middleware etc.)

Various proprietary and standard interfaces or adaptors

Service Interface Service Interface Service Interface Service Interface

Service Interface Service Interface Service Interface

Service Client Service Client Service Client

Service Bus Components

Service Choreographer

Process Modelling, Service Choreography, Transformation, Enrichment, Aggregation,
Disaggregation, Publish / Subscribe, Event Handling, Message Correlation, Security, Logging,

Industry Data Formats, etc.

Service Interface Service Interface Service Interface Service Interface

Service Interface Service Interface Service Interface

Figure 9: Implementation of a Service Choreographer

3.5.2 Implementation Technology Options

The most important choice to make in this solution pattern is the degree to which
open standard support is required; roughly three scenarios exist:

• The wholesale adoption of Web Services standards for service interfaces and
process modelling.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 27

• The adoption of Web Services standards for service interfaces combined with the
use of proprietary process modelling technology.

• The use of both proprietary interfaces and proprietary process modelling
technology.

These questions are particularly relevant to this solution pattern as the Web Services
standards relating to process modelling (primarily BPEL4WS) are amongst the most
recent, and hence amongst those for which product support is least mature. Most
vendors of service choreography technology will offer a mixture of proprietary and
standards based technology, for example:

• WebSphere Enterprise Process Choreographer technology, which provides
support for Web Services interfaces and process definitions.

• WebSphere MQ Workflow provides support for more mature but more proprietary
service choreography technology, with either Web Services or proprietary
interfaces.

If a proprietary technology is adopted, perhaps in order to address scalability or
resilience requirements, a Service Gateway component could be added to provide
Web Services connectivity. If the service choreography technology chosen cannot
provide sufficient integration with service providers (e.g. legacy systems or
application servers), then an ESB will be required following one of the other solution
patterns.

3.5.3 Implications

The implications of this solution pattern depend largely on whether a standards-
based or proprietary solution is implemented. Standards-based solutions are
currently less mature but will eventually offer better interoperability. Proprietary
solutions will likely offer scalability and resilience in better known models, and may
well utilise highly interoperable communication technologies such as WebSphere
MQ; however as open standard technologies mature and become pervasive, some
migration effort may eventually be required.

3.6 Full Service Oriented Architecture Infrastructure

3.6.1 Description

This pattern represents the combination of a Service Choreographer component with
a service bus implementation. As both these aspects are described in detail
elsewhere in this paper, they will not be described further here, except to say that an
entire spectrum of implementation is obviously possible, from an entirely proprietary
solution using perhaps the Enterprise Application Integration Infrastructure for
Service Oriented Architecture pattern for the enterprise service bus and a proprietary
Service Choreographer technology, through to an entirely open-standard solution
using the Web Services Compliant Broker pattern for the enterprise service bus and
an open-standards compliant Service Choreographer technology.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 28

4 A Roadmap for SOA and ESB Adoption
The patterns described in this paper are concerned with constructing an Enterprise
Service Bus for immediate needs, and are likely to be simply the first step towards a
more comprehensive Service Oriented Architecture implementation. This section
discusses some of the options available to an organisation considering how to evolve
in a controlled and incremental fashion. We do not propose that there is a single
roadmap for all organisations; rather, we intend to discuss some of the issues that
should be considered in the construction of an SOA or ESB roadmap.

4.1 Identifying the Immediate Scope of Concern
In a simplistic view, there are two major aspects to implementing a comprehensive
Service Oriented Architecture: the implementation of a fully functional, resilient
infrastructure, and the exposure of all relevant function across the business as
services. Whilst not entirely independent, there is a degree of decoupling between
these two aspects, allowing organisations some flexibility in how they choose to
approach them.

In some ways, then, the first decision to take is: whether to prove an ESB technology,
or to prove the SOA principles of functional architecture? This question leads to two
extremes of approach:

• Rich Infrastructure, Pilot Function – here, the primary concern is proving
technology capability. The infrastructure is likely to include sophisticated ESB
capabilities (whether open-standard or proprietary), and perhaps constitute the
Full Service Oriented Architecture Infrastructure solution pattern. However,
such a technical solution incorporates a high degree of risk and may
incorporate relatively immature technologies, so its implementation will not be
linked to business critical projects or functions. The functions exposed as
services may either be of low criticality, or remain delivered primarily through
alternative channels. As the infrastructure capability is proven and matures,
services will be migrated to it over time.

• Basic Infrastructure, Rich Function – here, the primary concern is the
exposure of business function as services so that they can be accessed or
combined in new ways to deliver business value. In this case the forecasted
business benefit or other factors driving change are usually significant enough
that a lower level of technical risk is mandated. Consequently, the infrastructure
is implemented either using only the most basic and mature Web Services
standards, or in more established EAI technologies. Once the infrastructure is
in place and supporting service interactions, its capabilities can be upgraded or
migrated over time as ESB technologies mature.

Of course, there are two other extreme cases of approach – to do nothing, or to do
everything at once, but these are perhaps less interesting from the point of view of a
roadmap!

Another approach is adoption “by stealth”: i.e., the incremental adoption of SOA and
ESB principles, technologies and infrastructure by individual departments, projects or
applications. Many organisations may in this way have progressed further with ESB
or SOA adoption than might be immediately apparent. This “local” adoption of
specific technologies or practises may often provide a more successful proof of them
than a “big bang” approach. This is similar to the “rich infrastructure, pilot function”
approach, but consists of many basic infrastructures rather than a single rich one.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 29

There are two other aspects of an approach to SOA should be established early on:
the provision of internal or external access to services, and an approach to service
granularity.

The decision to support internal or external access will drive several factors, including
what level of service security is required (See Security Issues Affecting the
Enterprise Service Bus above), and whether an explicit Service Gateway component
is required to control external access. External access may also drive the use of Web
Services standards, whereas for internal access rather more flexibility is possible,
such as WebSphere MQ, RMI/IIOP or proprietary XML, as discussed in the
Enterprise Application Integration Infrastructure for Service Oriented Architecture
solution pattern.

The issue of service granularity has been discussed widely in the industry (see, for
example, References 2 and 11). A comprehensive SOA is likely to contain various
granularities of service, perhaps from “technical functions” such as logging, billing
etc., through “business functions” such as “query account balance” through to
business processes such as “process stock order”.

Services at each level of granularity will be composed from services, or other
functions, of lower levels of granularity. There are hence several levels of service
aggregation or choreography to consider, which may well be suited to more than one
implementation technology. A practical way to deal with this issue in any specific
situation is to identify, characterise and name the levels of service granularity which
are applicable. Specific aggregation or choreography requirements between different
granularity levels can then be defined, and appropriate implementation technologies
selected.

Finally in this context, it is worth noting the relationship between the “top-down” and
“bottom-up” models of service enablement. The “bottom-up” approach is focussed on
enabling the functions of applications and legacy systems as services. In the general
case, this involves the use of adaptors and development tooling to provide
appropriate interfaces, and results in the enablement of relatively fine-grained
“business functions”.

The “top-down” approach is more concerned with the architectural process of
analysing business systems and components to identify processes and services.
This tends first to identify rather large-grained services which are likely to be
composed from more granular services.

It is likely that many organisations will employ both these approaches to service
identification and enablement: some sort of “meeting in the middle” is then required
to combine them. That meeting is likely to be more straightforward to engineer if it is
undertaken whilst explicitly recognising and categorising the various granularity
levels as suggested here.

4.2 SOA Milestones
Whichever broad approach is taken to full SOA implementation, there are a number
of milestones that will need to be passed along the way. This section identifies and
discusses some of these milestones. The milestones are not presented in order, as
they are largely independent, and the order in which they are achieved depends on
many factors affecting individual organisations.

• Standards Based Security Model - Whilst simplified or proprietary models
may be sufficient in the short term, a fully featured and open standard security
model will be essential to a comprehensive SOA. Understanding the point at

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 30

which product support for the Web Services security standards meets an
organisation’s requirements should be a key component of the overall
implementation plan.

• Service Enable Legacy Systems and Applications – In the same way that
the evolution of modern application servers (e.g. J2EE servers such as
WebSphere Application Server) led organisations to enable SQL and JDBC or
ODBC interfaces to their databases, the evolution of Service Oriented
Architecture will drive organisations to enable service-based access to their
legacy transactions and application functions. Organisations should therefore
plan to define and implement the most appropriate form of service enablement
for each system – options include leveraging native XML or Web Services
support, the use of adaptors such as JCA adaptors, or the use of EAI or
Gateway technology providing legacy connectivity.

• Implement a High Quality of Service Infrastructure – By far the most mature
Web Services support available is for an unreliable communication protocol, i.e.
SOAP/HTTP; standards offering higher qualities of services, such as WS-
ReliableMessaging or WS-Transaction, are not yet widely supported. Providing
higher qualities of service for SOA currently requires the use of EAI technology.
Longer term, organisations should keep abreast of support for emerging
standards, and the convergence of EAI technologies with Web Services
standards.

• Identified service granularity levels – as noted in Identifying the Immediate
Scope of Concern above, it is critical to identify the levels of granularity relevant
to an SOA, and the requirements for aggregation and choreography between
them. Implementation of each level of granularity (e.g. technical function,
business function, business process etc.) and the associated choreography
should also form a key milestone.

4.3 Steps to SOA Implementation
Following the discussions in the preceding two sections, we are now in a position to
compose a general roadmap for SOA and Service Bus implementation:

1. Decide which elements of SOA technology or SOA function are your priorities
to implement (see Identifying the Immediate Scope of Concern).

2. Identify or define a suitable project to implement a first solution, either a
technical pilot, a business pilot or perhaps a real business project with an
acceptable risk profile.

3. Identify which one of the ESB Scenarios in Service Oriented Architecture is
applicable to the project. Further analyse the requirements relative to the Issues
Driving ESB Architecture and Design Decisions and A Capability Model for the
Enterprise Service Bus. Select one of the Solution Patterns based on this
analysis. Based on further analysis and security and non-functional
requirements (see Security Issues Affecting the Enterprise Service Bus) select
an appropriate implementation technology.

4. In parallel to this work, begin planning the roadmap to evolve this first
implementation towards a fully comprehensive SOA. Depending on the focus of
the initial pilot, this might involve various aspects of evolving the technical
capability of the infrastructure or enabling additional functional services to take
advantage of it. In either case, the roadmap should include the SOA Milestones
identified above.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 31

5. Beyond these initial projects, plan to evolve in several directions

1. Evolve and improve data models and processes across the organisation.

2. Implement phased service enablement of applications, and bring them into
the infrastructure.

3. Evolve the technical capability of the SOA infrastructure.

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 32

5 References

5.1 General References
1. “Web Service Oriented Architecture – The Best Solution to Business

Integration”, Annrai O’Toole, Cape Clear Software CEO at
http://www.capeclear.com/clear_thinking1.shtml

2. “SOA – Save Our Assets”, Lawrence Wilkes, CBDI Forum (subscription
required) at
http://www.cbdiforum.com/report_summary.php3?topic_id=2&report=623&start
_rec=0

3. “Patterns: Service Oriented Architecture and Web Services”, Mark Endrei et al,
IBM Redbook SG246303 at

http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246303.html?Open

4. The IBM series of articles “Migrating to a Service Oriented Architecture” by
Kishore Channabasavaiah, Kerrie Holley and Edward M. Tuggle Jr. at
http://www-106.ibm.com/developerworks/library/ws-migratesoa/ (part one) and
http://www-106.ibm.com/developerworks/webservices/library/ws-migratesoa2/
(part two).

5. LooselyCoupled.com has a list of Enterprise Service Bus links at
http://www.looselycoupled.com/blog/2003_07_13_lc.htm -
105836683995371084

6. The original Gartner article defining the Enterprise Service Bus requires a
subscription, but can be found by searching their site http://www.gartner.com ,
and is entitled “Predicts 2003: Enterprise Service Buses Emerge”, published 9th
December 2002 by Roy W. Schulte.

7. IBM Patterns for e-Business website at
http://www.ibm.com/developerworks/patterns/

8. “The On Demand Operating Environment” at http://www-3.ibm.com/e-
business/doc/content/evolvetech/operating_environment.html

9. “Using Web Services for Business Integration”, Geert Van de Putte et al, IBM
Redbook SG246583 at

http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg246583.html?Open

10. “WebSphere Version 5.1 Application Developer 5.1.1 Web Services
Handbook”, Ueli Wahli et al, IBM Redbook SG246891-01 at

http://publib-
b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/d336d
bf7a0ae01c385256d5000578477?OpenDocument

11. “Coarse-Grained Interfaces Enable Service Composition in SOA”, Jeff Hanson,
Builder.com at

http://builder.com.com/5100-6386-5064520.html

Enterprise Service Bus Scenarios and Solution Patterns in Service Oriented
Architecture

Page 33

5.2 Web Services Standards References
1. SOAP:

http://www.w3.org/TR/soap/

2. WSDL:

http://www.w3.org/TR/wsdl

3. UDDI:

http://www.uddi.org/specification.html

4. WS-Security:

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

5. BPEL4WS:

http://www-106.ibm.com/developerworks/library/ws-bpel/

6. WS-Transaction:

http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

7. WS-ReliableMessaging:

http://www-106.ibm.com/developerworks/library/ws-rm/

5.3 IBM SOA References
1. Enterprise Integration Solutions, IBM’s Service Oriented Architecture team

http://www.ibm.com/webservices/eis

2. WebSphere Application Server:

http://www.ibm.com/software/websphere/appserv

3. WebSphere Studio:
http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/studio

4. WebSphere Business Integration (homepage):
http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/businessin
t

5. WebSphere Business Integration Message Broker:
http://www.ibm.com/software/integration/wbimessagebroker/

6. WebSphere MQ Workflow:

http://www-306.ibm.com/software/integration/wmqwf/

7. WebSphere MQ Internal pass-thru, support pac MS81:

http://www-306.ibm.com/software/integration/support/supportpacs/product.html

8. WebSphere Business Integration Connect

http://www-306.ibm.com/software/integration/wbiconnect/

9. WebSphere Web Services Gateway Introductory article:

http://www-106.ibm.com/developerworks/webservices/library/ws-gateway/

