

Enhancing WebSphere Application using
MQSeries 1.0

Authors: Sudhakar; Sandeep Goyal

Intended Audience: This paper is primarily intended for users of WebSphere and MQSeries

Further Inquiries and Feedback: info@thbs.com

 Notices:

The contents of this paper are protected by copyright. No part of this paper may be reproduced in any form

by any means without the prior written authorization of Torry Harris Business Solutions, Inc.

WebSphere� is a trademark of the IBM Corporation

MQSeries� is a trademark of IBM Corporation

 Torry Harris Business Solutions
 1090 King Georges Post Rd
 Suite 103

Edison NJ 08837
 USA

Torry Harris

Distributed e-enterprise Computing

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 2

CONTENTS

1. WEBSPHERE APPLICATION SERVER 4

1.1. AN OVERVIEW 4
1.2. THE ADVANCED APPLICATION SERVER ENVIRONMENT 4
1.3. JAVA STANDARDS 6
1.3.1. JAVA APPLETS AND SERVLETS 6
1.3.2. JAVA SERVER PAGES 6
1.3.3. EJB SERVERS AND ENTERPRISE BEANS 6

2. MQSERIES � AN OVERVIEW 8

2.1. FEATURES OF MQSERIES 8
2.2. MQSERIES OBJECTS 9

3. WHY MQ? 11

3.1. INTEGRATING ACROSS PLATFORMS 11
3.2. MINIMAL CODE REWRITE 12
3.3. ACCESSING BACK END LEGACY SYSTEMS/ PROCESSES/ DATA/ LOGIC 12
3.4. MQ SERIES FOR WEBSPHERE APPLICATIONS 13

4. ADVANTAGES OF USING MQSERIES WITH WEBSPHERE APPLICATIONS 14

4.1. INCREASE IN PERFORMANCE 14
4.2. TRIGGERING OTHER PROCESSES 15
4.3. MAINTAINS TRANSACTIONAL BOUNDARIES WHILE SENDING/RECEIVING MESSAGES 16
4.4. ASYNCHRONOUS PROCESSING (STORE AND FORWARD PROCESSING) 19
4.5. WORKLOAD DISTRIBUTION 19

5. APPENDIX 22

5.1. CASE STUDY - I 22
5.2. CASE STUDY - II 26
5.3. CASE STUDY - III 29

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 3

FIGURES

FIGURE 1 COMPONENTS OF THE ADVANCED APPLICATION SERVER ENVIRONMENT ..5
FIGURE 2 DEPICTS THE HIGH LEVEL ARCHITECTURAL UNDERSTANDING OF MQSERIES...9
FIGURE 3 ISLANDS OF AUTOMATION..11
FIGURE 4 INTEGRATE BACK-END INFRASTRUCTURE WITH WAS ..12
FIGURE 5 AGENT APPLICATION FLOW ...14
FIGURE 6 FLOW OF APPLICATION AND TRIGGER MESSAGE ..16
FIGURE 7 ASP SCENARIO..18
FIGURE 8 WAS CLONES WITHOUT MQSERIES CLUSTERING ..20
FIGURE 9 WAS CLONES WITH MQSERIES CLUSTERING ..21
FIGURE 10 CONTROL FLOW � CASE STUDY I...24
FIGURE 11 CONTROL FLOW � CASE STUDY II..27
FIGURE 12 CONTROL FLOW � CASE STUDY III...34

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 4

WebSphere Application Server

1.1. An overview
The marketplace of the World Wide Web continues to grow rapidly. Increasingly, Web sites with
dynamic HTML pages gain the competitive edge by offering interactivity and self-serve
transactions. For this interactivity, the business logic applications work behind the scenes to
provide immediate access to data in response to user requests.

WebSphere Application Server Advanced Edition enables web transactions and interactions with a
robust deployment environment for e-business applications. It provides a portable, Java-based web
application deployment platform focused on supporting and executing servlets, Java Beans, Java
Server Pages (JSP) files, and enterprise beans. It builds on the Standard Edition to provide
portability and control of server-side business applications along with the performance and
manageability of enterprise beans to offer a comprehensive Java-based Web application platform.
It extends the value and versatility of this platform with:
• Complete Java and Enterprise Java support including a server for applications built to the

enterprise beans specification. The focus is on medium to high-level transactional
environments used with dynamic Web content generation and Web-initiated transactions.

• Inclusion of an Apache-based HTTP server with enhancements for security and control, as well
as support for other major Web servers.

• Performance and scaling attributes with support for bean-managed and container-managed
persistence, for entity beans and session beans, with transaction management and monitoring.
Container management and persistent storage helps provide a high-performance transactional
environment using servlets and enterprise beans.

• Support for Intel and Unix-based platforms including Windows NT, Sun Solaris, and AIX on
HTTP servers from IBM, Apache, Microsoft, and Netscape.

WebSphere Application Server is integral in managing and integrating enterprise-wide applications
while leveraging open Java-based technologies and APIs. It enables powerful interactions with
relational databases, transaction processing systems, and other applications. WebSphere
application server provides deployment and management of Java, CORBA, and enterprise beans
applications.

1.2. The Advanced Application Server environment
The Advanced Application Server contains the following components, which can be combined to
create a powerful Java-centered three-tiered system that puts heavy emphasis on a customer's
Web site. These components are illustrated in the following figure.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 5

Figure 1 Components of the Advanced Application Server environment

Browser-based applications
Allow users to send and receive information from Web sites by using the Hypertext Transfer
Protocol (HTTP). There are three general types of browser-based applications: Java applets, Java
servlets, and Java Server Pages(TM) (JSP).

Web servers
Except for stand-alone Java applets, which are restricted by built-in Java security, browser-based
applications require that a Web server be installed on at least one machine in your Advanced
Application Server environment.

EJB servers and enterprise beans
The WebSphere EJB server contains one or more enterprise beans, which encapsulate the
business logic and data used and shared by EJB applications. The enterprise beans installed in an
EJB server do not communicate directly with the server; instead, an EJB container provides an
interface between the enterprise beans and the EJB server, providing many low-level services
such as threading, support for transactions, and management of data storage and retrieval.

Java applications
Java applications can interact directly with an EJB server by using Java remote method invocation
over the Internet Inter-ORB Protocol (RMI/IIOP).

Data sources
The EJB server stores and retrieves this persistent data in a database.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 6

Administration server and the administrative interface
The administration server manages servlets, JSP files, enterprise beans, and EJB servers. The
WebSphere Application Server administrator who uses the WebSphere Administrative Console,
who is the administrative interface to the administration server, directs this management.

1.3. Java standards
The Web server provides the communications link between browser-based applications and the
other components of Advanced Application Server.

The Advanced Application Server contains a Java-based servlet engine that is independent of both
your Web server and its underlying operating system. It supports many of the most widely used
Web servers. The IBM HTTP Server, which is a modified version of the Apache server, comes with
the Advanced Application Server.

1.3.1. Java applets and servlets
Java applets are Java applications that run on a browser and extend the browser's capabilities.

Java servlets run on a Java-enabled Web server and extend the server's capabilities. Servlets are
Java programs that use the Java Servlet API and the associated classes and methods.

Servlets extend Web server capabilities by creating a framework for providing request and
response services over the Web. When a client sends a request to the server, the server can send
the request information to a servlet and have the servlet construct the response that the server
sends back to the client. Servlets can handle user requests by using threads.

1.3.2. Java Server Pages
JSP is a powerful, new approach to dynamic Web page content. JSP embed servlet functionality
into the Web page. In JSP, Java servlet code (or other Java code) is embedded directly into the
HTML page. One of the many advantages of JSP is that it enables you to effectively separate the
HTML coding from the business logic in your Web pages. You can use JSP to access reusable
components, such as servlets, Java beans, enterprise beans, and Java-based Web applications.

1.3.3. EJB servers and enterprise beans
An Enterprise bean is a Java component that can be combined with other enterprise beans and
other Java components to create a distributed, three-tiered application.

An EJB server provides the run-time environment for enterprise beans, handling low-level
programming tasks like transaction management, naming, and security.

There are two types of enterprise beans:
• An entity bean encapsulates permanent data, which is stored in a data source like a database

or a file system, and associated methods to manipulate that data. In most cases, an entity
bean must be accessed in some transactional manner. Instances of an entity bean are unique,
and multiple users can access them. For example, the information about a bank account can
be encapsulated in an entity bean instance. An account enterprise bean might contain an

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 7

account ID, an account type (checking or
savings), and a balance.

• A session bean encapsulates one or more business tasks and nonpermanent data associated
with a particular client. Unlike the data in an entity bean, the data in a session bean is not
stored in a permanent data source and no harm is caused if this data is lost. Nevertheless, a
session bean can update data in an underlying database, usually by accessing an entity bean.
For this reason, a session bean can be transaction aware. When created, instances of a
session bean are identical, though some session beans can store semi-permanent data that
makes them unique at certain points in their life cycle. A stateful session bean is always
associated with a single client, whereas a stateless session bean is associated with a client
only during a method call. For example, the task associated with transferring funds between
two bank accounts can be encapsulated in a session bean. Such a transfer enterprise bean
might find two instances of an account enterprise bean (by using the account IDs), and then
subtract a specified amount from one account and add the same amount to the other account.

Before an enterprise bean can be installed in an EJB server, the enterprise beans must be
deployed. During deployment, several EJB server-specific classes are generated. The deployment
descriptor contains attribute and environment settings that define how the EJB server invokes
enterprise bean functionality. Every enterprise bean (both session and entity) must have a
deployment descriptor that contains settings used by the EJB server; these attributes can often be
set for the entire enterprise bean or for the individual methods in the bean. The Advanced
Application Server provides tools for creating deployment descriptors and deploying enterprise
beans.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 8

MQSeries � an Overview

MQSeries products enable applications to use message queuing to participate in message-driven
processing. With message-driven processing, applications can communicate with each other
across a network of unlike components, such as processors, subsystems, operating systems and
communication protocols. MQSeries programs use a consistent application program interface (API)
across all platforms.

1.4. Features of MQSeries
MQI - a common application-programming interface
MQSeries products implement MQI, which is used on almost any platform the applications run on.
The calls made by the applications and the messages they exchange are common. This makes it
much easier to write and maintain applications than using traditional methods. It also facilitates the
migration of message queuing applications from one platform to another.

Time-independent applications
With message queuing sending and receiving applications are de-coupled so that the sender can
continue processing without having to wait for the receiver to acknowledge the receipt of the
message. The receiving application might be busy when the message is sent. Indeed, the receiving
application doesn't even need to be running. MQSeries holds the message in the queue until it can
be processed.

Message-driven processing
Message-driven processing is a style of application design. With this style, the application is
divided into a number of separate, discrete, functional blocks, with each block having well-defined
input and output parameters. Each functional block is coded as an application program, with its
input and output parameters being interchanged between other application programs by placing
their values in messages, which are then put on queues.

This style of application design allows new applications to be built, or existing applications to be
modified, more quickly than with some other application design styles.

Data integrity and resource protection
MQSeries applications can transfer data with an extremely high degree of confidence. Message
delivery can be implemented using a �syncpoint� mechanism and the MQSeries logs or journals-for
the recovery of important data in the event of system failure.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 9

Figure 2 Depicts the high level architectural understanding of MQSeries

1.5. MQSeries objects
Queue manager
A queue manager is that part of an MQSeries product that provides the messaging and queuing
services to application programs, through the Message Queue Interface (MQI) program calls.

The applications issue the MQI calls that are implemented by the queue manager. For incoming
messages, the queue manager directs them onto their respective destination queues; for outgoing
messages, x sends the message to the destination queue manager. The destination queue
manager ensures that the message is put onto the correct queue.

Queues
A message is a string of bytes that has meaning to the applications that use the message.
A queue is a MQSeries object that can store messages.

In MQSeries, there are several types of queue object:
• A local queue object defines a local queue belonging to the queue manager to which the

application is connected.
• A remote queue object identifies a queue belonging to another queue manager. The remote

queue is usually given a local definition.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 10

• An alias queue object enables applications to access queues by referring to them indirectly in
MQI calls. This enables you to change the queues that applications use without changing the
application in any way; you merely change the alias definition.

• The model queue object defines a set of queue attributes that are used as a template for a
dynamic queue. The queue manager creates dynamic queues when an application makes an
open queue request specifying a queue that is a model queue.

 Dynamic queues can be of two types, Temporary and Permanent.

Distribution lists
A distribution list provides a way for an application to send a message to several destinations with
a single MQPUT call. The list of destinations is supplied by the application.

Process definitions
A process definition object defines an application to a MQSeries queue manager. A process
definition object is used for defining applications to be started by a trigger monitor.

Trigger monitors
A trigger monitor is an application that monitors an initiation queue associated with a queue
manager. When a trigger message arrives on the initiation queue, the trigger monitor retrieves it.
Typically, the trigger monitor then starts an application that is specified in the message on the
initiation queue.

Channels
A channel provides a communication path. There are two types of channel, message channels and
MQI channels.

Message channels
A message channel provides a communication path between two queue managers on the same, or
different, platforms. The message channel is used for the transmission of messages from one
queue manager to another, and shields the application programs from the complexities of the
underlying networking protocols. There are six types of message channels, Sender, Server,
Receiver, Requester, Cluster-sender and Cluster-receiver.

MQI channels
An MQI channel connects a MQSeries client to a queue manager on a server machine. It is for the
transfer of MQI calls and responses only and is bi-directional.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 11

Why MQ?

1.6. Integrating across platforms
Many large organizations would like to like to communicate electronically with their suppliers and
customers, but their suppliers and customers might have disparate systems. Even within their own
enterprises, many large organizations have IT systems from various manufacturers. The business
problem is how to make these disparate systems work together? This problem assumes all the
more critical dimensions when we are talking about e-business and Internet presence for the same.

Even where such techniques as OSI exist, there have been severe limitations on the application
design choices available. Worse, where data held on different databases on different systems must
be kept synchronized, very little is available in the way of protocols to coordinate updates,
deletions, etc.

Figure 3 Islands of Automation

Many organizations have �legacy � systems or are running their big terabyte databases on
mainframes (enterprise servers), so mainframes need to be included. Integrating these systems is
quite complex. There are �one-off� solutions based on OSI or RPC or on SNA, but these are either
inflexible in design or need a lot of additional design and code. Finally it is no good exchanging
data unless both sides can agree on what has and has not transpired so that their respective
databases hold consistent data. For example if you book a hotel room or hire a car, your travel
agent needs to know that when his system prints the itinerary, the other guy�s system has updated
its database so that when you arrive, the hotel room or rental car is waiting. This may sound trivial

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 12

but if the deal were worth $5 million, it would be disastrous if the other could not repudiate a
transaction from one side.

1.7. Minimal code rewrite
MQSeries products implement a common application programming interface, the message queue
interface (MQI), that is used on whatever platform the applications run on. The calls made by the
applications and the messages they exchange are common. It facilitates the migration of message
queuing applications from one platform to another.

1.8. Accessing back end legacy systems/ processes/ data/ logic
The last time you called your bank to raise the credit limit on your VISA card, did the service
representative also offer you life insurance? Or, did your insurance agent advise you how best to
invest surplus funds in the capital market?

Maybe your mortgage company offered to consolidate your credit card balances with a home
equity loan?

In "the old days," the roles of banks, insurance companies and securities firms seemed clearly
defined. Today, those lines of distinction have blurred, and financial services companies pitch
themselves as full-service organizations catering to all the financial needs of their clients. To
support this convergence of services, these companies are looking to integrate numerous, diverse
back-end information systems into a cohesive corporate information cosmos.

Figure 4 Integrate back-end infrastructure with WAS

With an integrated back-end infrastructure, financial services companies can present a
consolidated view of their business to their customers, employees, business partners and
investors. They can improve customer satisfaction by allowing customers to communicate with
them through their channel of choice - say, the Internet, a brick-and-mortar office or a call center
and also capture opportunities to cross sell.

You could use Enterprise Java Beans to connect the various front-end delivery channels to
multiple, heterogeneous back-end administration systems. The core technology could be IBM

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 13

WebSphere Application Server Advanced Editions and IBM MQSeries (on multiple platforms), IBM
VisualAge for Java and IBM CICS Transaction Server for OS/390.

1.9. MQ Series for WebSphere applications
MQSeries provides an excellent infrastructure for access to enterprise applications and for
development of complex Web applications. A service request from a Web browser can be queued
and processed. This allows a timely response to be sent to the end user regardless of system
loading. By placing this queue close to the user in network terms, then the timeliness of the
response is not impacted by network loading. In addition the transactional nature of MQSeries
messaging means that a simple request from the browser can be expanded safely into a sequence
of individual backend processes in a transactional manner.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 14

Advantages of using MQSeries with WebSphere
applications

1.10. Increase in performance
MQ Series can significantly improve the performance and response times of co-operating web
applications. Consider the scenario of a travel portal. A single customer request might mean calling
multiple back end applications. For example, make an airline reservation, book a hotel, run a credit
check and so on. All these events must be run before the overall business transaction can be
considered complete. Using MQSeries, a request message can be put in each of the three queues
which are serving the car rental application, flight reservations application, hotel reservations
application and so on. Each application can then perform its respective task in parallel with the
other two and put a reply message in the reply-to-queue. The agent�s application can then get the
three replies and produce a consolidated answer.

Figure 5 Agent Application Flow

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 15

This model allows several requests to be sent by an application without the application having to
wait for a reply to one request before sending the next. All the requests can then be processed in
parallel. Designing the system in this way can improve the overall response time. By using queues,
the steps do not have to be performed serially. The application might then wait until it has received
all the replies before preparing a consolidated response. Alternatively, the business logic might
define a time limit to wait for replies.

1.11. Triggering other processes
We can use the Trigger mechanism of MQSeries to start some other application to process the
queue, which caused the trigger message to be generated. This results in significant performance
improvement figures, as we are not continuously monitoring the message queues (which can be an
input mechanism to start the second application) to take action.

The queue manager defines certain conditions as constituting "trigger events". If triggering is
enabled for a queue and a trigger event occurs, the queue manager sends a trigger message to a

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 16

queue called an initiation queue. The presence of the trigger message on the initiation queue
indicates that a trigger event has occurred.

The program, which processes the initiation queue, is called a trigger-monitor application, and its
function is to read the trigger message and take appropriate action, based on the information
contained in the trigger message. Normally this action would be to start some other application to
process the queue, which caused the trigger message to be generated.

Figure 6 Flow of application and trigger message

In the above figure, the sequence of events is:
• Application A, which can be either local or remote to the queue manager, puts a message on

the application queue.
• The queue manager checks to see if the conditions are met under which it has to generate a

trigger event and queue manager examines the process object referenced by application
queue.

• The queue manager creates a trigger message and puts it on the initiation queue associated
with this application queue.

• The trigger monitor retrieves the trigger message from the initiation queue.
• The trigger monitor issues a command to start program B.
• Application B opens the application queue and retrieves the message.

1.12. Maintains transactional boundaries while sending/receiving messages
 MQSeries can participate in unit of work processing in several ways:
• As a stand-alone resource manager coordinating its own resources.

When MQGET is issued within syncpoint control, the message is not removed from the queue
immediately; it is made unavailable to other applications. Only when the unit of work is
committed, the message is actually removed from the queue.

• As a transaction manager coordinating its resource and those of some other resource
manager.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 17

Using the X/Open XA interface, a queue manager is able to coordinate changes to its
resources and to those, of other resource mangers within a unit of work.

• As a resource manager being managed with other resource manager by a transaction
manager.
An external syncpoint coordinator is required when you have to coordinate those resource
managers who are not supported by queue manger.

The following Application Service Provider scenario explains some of the above advantages,

An application service provider (ASP) is a company that offers individuals or enterprises access
over the Internet to application programs and related services that would otherwise have to be
located in their own personal or enterprise computers. ASP services are expected to become an
important alternative, especially for smaller companies with low budgets for information technology.

In our scenario, ASP1 is the application service provider for WA1, WA2 and WA3. Here ASP1 is an
instance of WebSphere Application Server and WA1, WA2 and WA3 can be independent Web
Applications or WebSphere instances. These applications belong to three different companies who
use ASP1�s services. Let us assume that all these companies want to sell their services to
registered customers across the Internet and charge them accordingly. D1, D2 and D3 are the
databases to store the billing information for the applications WA1, WA2 and WA3 respectively.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 18

Figure 7 ASP Scenario

Q4/QM2

Q3/QM1 Q2/QM1 Q1/QM1

WA1 WA2 WA3

ASP1
(www.xyz.com)

D1

D2

D3

Internet

P1

Client1 Client2

ASP1: Application Service Provider

WA1, WA2 and WA3: Web Applications
hosted on ASP1

Q1, Q2, Q3 and Q4: MQ Queues

QM1 and QM2: Queue Managers

P1: Process triggered by Q4

D1, D2 and D3: Databases for the three Web
Applications

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 19

The customers would be charged on monthly basis, based on their usage of services. However,
transparent to the customers their usage and service charges have to be stored in the database.
This operation needn�t be synchronous. So the applications dump the billing information in
separate queues (Q1, Q2, and Q3). These queues in turn populate a common queue (Q4). Q4
after reaching a specified queue depth (number of messages in a queue) triggers a process. This
process populates the respective database (D1, D2 or D3) based on the source of the message
(WA1, WA2 or WA3). The information in the database may later be sent to an agency like
CyberCash.

QM1 is the Queue Manager for Q1, Q2 and Q3. QM2 is the Queue Manager for Q4. In the ASP
scenario, we can observer some of the advantages of MQSeries,
• MQSeries as a stand alone resource manager
QM1 acts as a stand-alone resource manager coordinating its resources, Q1, Q2 and Q3.
• MQSeries as a transaction manager
Here D1, D2 and D3 are registered with QM2 as XA compliant resource managers. After reaching
a pre-specified queue depth Q4 triggers P1, which gets the messages in Q4 and populate them in
D1, D2 and D3. The entire process is treated as a unit of work and QM2 coordinates among the
resource managers and Q4.
• Triggering other processes
Q4 after reaching a pre-specified queue depth triggers a process P1. P1 then gets all the
messages in Q4 and populates them in D1, D2 and D3. The triggering option in MQSeries avoids
unnecessary daemons listening for new messages in the queue.

1.13. Asynchronous processing (Store and Forward Processing)
The MQSeries assured delivery capability ensure that data is not lost because of failures in the
underlying system or network infrastructure. So you can store your requests in queues and
processed when possible.

In the ASP scenario discussed earlier, the billing information for the customers has to be updated
in the database. As the customers would be charged only on monthly basis, the updating process
can be asynchronous. MQSeries fits in this model and also, it assures delivery of data even in case
of system or network failure.

1.14. Workload distribution
Using MQSeries� clustering (from MQSeries v5.1), you can benefit from
• Increased availability of your queues and applications
• Faster throughput of messages
• More even distribution of workload in your network

The following scenario will illustrate the workload management performed by MQSeries,

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 20

Figure 8 WAS Clones without MQSeries Clustering

Here C1, C2 and C3 are WebSphere application server instance clones. The application servers
are cloned for effective workload management. The application needs to put messages in a queue
(Q1). Based on the triggering condition set on Q1 a process P1 would be triggered for backend
operations. Though workload management is taken care from the WebSphere front there would be
a potential bottleneck when it comes to the MQ queue part.

Introducing queue clusters in the picture can solve this bottleneck. The following figure is with
queue clustering.

Q1/QM1

C1 C2 C3

P1
C1, C2 and C3: Application Server clones

Q1: MQSeries Queue

QM1: MQSeries Queue Manager

P1: Triggered Backend Process

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 21

Figure 9 WAS Clones with MQSeries Clustering

With clusters the same queue name can be used across queue managers. The queue managers in
a cluster can be across machines/platform. The application server clones needn�t have knowledge
of the cluster. They would put messages in a queue named Q1. MQSeries distributes messages
round robin. However, our own workload balancing routine can be used.

Each of the three queue managers owns a queue with the name, Q1. By default, the first message
is placed in Q1 on QM1, the next in Q1 on QM2, the third goes to QM3 and the fourth message to
the queue on QM1 again. Since all the queue managers are in a cluster, even if one queue
manager (say QM2) is down, the information is passed on to the other queue managers. Now, no
message would be put in Q1/QM2. A change in status of QM2 would be published to the queue
managers in the cluster.
With the triggering option enabled in the queues, a backend process would be triggered based on
the triggering condition set.

P1

Q1/QM1

C1 C2 C3

C1, C2 and C3: Application Server clones

Q1: MQSeries Queue

QM1, QM2 and QM3: MQSeries Queue
Managers

P1: Triggered Backend Process

Q1/QM2 Q1/QM3

Queue Manager Cluster

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 22

Appendix

1.15. Case Study - I
Objective
To come up with a high performance and reliable solution for your web application, to perform
asynchronous activities like logging, tracing, batch operations etc.

Asynchronous processing means that the exchange of data between the sending and receiving
applications is time independent. This allows the sending and receiving applications to be de-
coupled so that the sender can continue processing, without having to wait for the receiver to
acknowledge that it has received the data.

Logging is an asynchronous activity. Logging is the process of recording changes during the
runtime of an application. The changes can span from any user intervention to any changes in the
application itself. The changes can be recorded in any persistent media like file or database. This
information can be used later for report generation or fail recovery. Logging is a complex process
wherein it may be required to handle file operations, database updates, I/O and database errors.
The overall performance of the application will reduce if the application handles logging by itself.

You can avoid these complexities by separating the web application and logging logic. A separate
web application can take care of logging. Even then the Logging module would be part of your
WebSphere instance. The following points have to be considered before going in for such a
module,
• There could performance issues related to response time, hardware capabilities, network, etc.

It would be a burden on the WebSphere Application Server�s overall performance.
• If there is a change in the Logging logic, then the application server might have to be brought

down, to implement the new logic.
• The events to be logged can be stored and forwarded in batches. But then the module needs

to handle file/database operation.
• The Logging Web Application has to be running always, whether or not logging happens.
• The module needs to ensure redundancy and consistency in data delivery in general and in

case of system failures.

To add a Logging module to an existing application, the ideal approach would be to use MQSeries
in the scenario. Doing so would solve all the above issues. This document describes a practical
approach to develop applications wherein the Logging module can be totally independent of the
WebSphere application.

Scenario
The scenario circles around three applications,
• e-Bank Web Application.
• MQJavaBean a Java Bean
• LogManager a MQ base application

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 23

e-Bank Web Application
e-Bank is a WebSphere application, based on servlets, JSPs and EJBs. The application provides
the following Internet banking functionality,
• User can create new account
• User can login using his user ID and password
• User can withdraw/deposit/transfer money
• User can view his account balance and transactions

When the user leverages on any one of the above functionality, there is a change in the state of the
e-Bank application. This change is an event. For example, when a user logs in, the number of
�current user parameter� is changed. This is an event. The application described here is logging of
such events and using MQSeries for the same.

Here we log the following events,
• Login

The user logs in to the e-Bank application
• Logout

The user logs out of the e-Bank
• Sign Up

A new user signs up with e-Bank
• Deposit

A user deposits money in to a valid account in e-Bank
• With Draw

A user withdraws money in to a valid account in e-Bank

MQJavaBean a Java Bean
All MQ related operations like connecting to the Queue Manager and Queue, put and get message
etc. are implemented in this Java Bean. This approach provides clarity and modularity. It also helps
to handle all types MQ related exceptions, to add or modify MQ related functionality in a single
place.

LogManager Application
Log Manager is a MQ based application that has the logging logic. This application is responsible
for getting event information using MQSeries and put this information in log files corresponding to
the event type. This module also takes care of any I/O errors that might occur due to the file
operations. The LogManager is triggered by the queue based on the queue depth (number of
messages in the queue).

The MQSeries queue used for this application is termed LOG QUEUE.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 24

Overview of the flow

Figure 10 Control flow � Case Study I

LOG QUEUE

WAS1

WS1

Internet

LogManager

Client1 Client2

WS1: Web Server

WAS1: WebSphere Application Server
instance

L1 and L2: Log Files

EJBs Servlets/
JSPs

MQJavaBean

L2

L1

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 25

• The MQJavaBean is initialized in the �init� method of the servlets where an event may occur.
Similarly the MQJavaBean instances are destroyed in the destroy methods of the servlet.
Initializing the MQJavaBean would create a handle to the MQSeries Queue Manager and
opens a connection to the LOG QUEUE. Destroying would close the LOG QUEUE connection
and destroys the Queue Manager handle. The MQJavaBean instance is used in the entire life
cycle of the servlets for putting messages to MQSeries queue.

• The parameters of each event are encapsulated in separate objects. This separation allows
the LogManager to identify the different events and log them appropriately.

• When an event occurs, the servlet instantiates a new event type object corresponding to that
event. The event related information is set in the object and put to the LOG QUEUE. A different
Message Identifier range is set for each event.

• MQSeries�s triggering mechanism is leveraged in this application. The trigger is set for the
LOG QUEUE. So, when 100 messages are collected in the LOG QUEUE the LogManager
application is triggered.

• The LogManager gets all the event information from the LOG QUEUE. It then writes the events
in separate log files based on the event type. The LogManager identifies the different events
through the Message Identifier range set for each message.

Advantages of using MQ for logging in e-Bank web application,
• De-couple the logging logic from the web application. Hence,

��Modularity of the logging application.
��Asynchronous processing.

• Using MQ Triggering eliminates the listening overhead of the LogManager application and also
automates the logging process.

• Chances of loosing or duplication of messages is zero because MQSeries assures, once-only
delivery of message.

• The WebSphere application can use the Java APIs for MQ, whereas the LogManager
application can be written in C/C++/Java/Cobol etc. Because MQSeries has APIs for almost all
languages.

• LogManager application may be reside on same machine with WAS or on a different machine
which may or may not be of the same platform. MQSeries has common APIs (Message Queue
Interface) for almost all platforms (36).

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 26

1.16. Case Study - II
Objective
To use MQSeries for failover in case a synchronous call does not go through in your web
applications.

Success of an e-business application entirely depends on customer satisfaction. To achieve this
your application should provide robust, fast, convenient and efficient services. Almost every e-
business application has a backend system it can be a database legacy system or any other
server. Speed, robustness, and efficiency of your e- business application highly depends on these
backend systems� performance.

A failure happens when the connection between the Web Application and the backend system
goes down. This could happen due to system failures, busy backend systems, etc. Your e-
business application should be able to handle such conditions.

MQSeries offers asynchronous processing and assures delivery of message even during system
failures. This case study explains a complete, robust and efficient model for failover.

Scenario
The scenario uses the following applications,
• e-Shop Web Application.
• MQJavaBean a Java Bean
• FailOverManager Application

e-Shop Web Application
e-Shop is a very simple Web Application. It provides the user with an order entry form, wherein the
user can choose items and their quantity and place an order.

The item availability, price and other details of the item are stored in the database. After the user
selects the items the application displays the total amount that would be charged from the user, if
he places an order. To place the order, the user enters his credit card number and submits the
details. e-Shop inserts this order information (user information, purchase details) in a database
table. If the record insertion fails, then the order information is put in a MQ queue. e-Shop uses
EJBs for all database related operation.

MQJavaBean a Java Bean
All MQ related operations like connecting to the Queue Manager and Queue, put and get message
etc. are implemented in this Java Bean. This approach provides clarity and modularity. It also helps
to handle all types MQ related exceptions, to add or modify MQ related functionality in a single
place.

FailOverManager Application
FailOverManager is a Java application, which uses MQSeries Java Libraries and EJBs. This
application is responsible for getting the order information from the messages in the queue using
MQI and retry updating the database using the EJBs (the same EJBs are used in e-Shop Web
Application) until success.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 27

Similar to the previous cases study, the MQJavaBean is initialized in the init method of the servlet
in e-Shop and destroyed in the destroy method. Initializing the MQJavaBean would create a
handle to the MQSeries Queue Manager and open a connection to the RETRY QUEUE.
Destroying would close the RETRY QUEUE connection and destroys the Queue Manager handle.
The MQJavaBean instance is used in the entire life cycle of the servlets for putting messages to
MQSeries queue.

Overview of the flow

Figure 11 Control flow � Case Study II

RETRY QUEUE

WAS1

WS1

Internet

FailManager

Client1 Client2

WS1: Web Server

WAS1: WebSphere Application Server
instance

D1: Database

EJBs Servlets/
JSPs

MQJavaBean
D1

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 28

• The web client selects the items and their quantity through the browser and places his order.
• In the e-Shop servlet

��Get the information from the request
��Insert order information into the Order table using the EJB interface

• If database insertion fails in the previous step, then the order information is put in the MQ
queue, RETRY QUEUE.

• The RETRY QUEUE triggers the FailOverManager. The FailOverManager application retrieves
the message from the queue and,
��Extracts the order information from retrieved message
��Tries to insert the order information into the Order table using the EJB interface

• From retrieving the message from the RETRY QUEUE to calling the EJB, is in one unit of
work. To enable this we need to specify the SYNCPOINT option when we call MQGET from
the application.

• If the FailOverManager succeeds in inserting the record (through EJBs), MQCOMMIT is
invoked to remove the message from the RETRY QUEUE. Else MQBACK is invoked to
rollback MQGET. This leaves the message in the RETRY QUEUE.

• If inserting the record is a failure, FailOverManager spawns a new thread, which would keep
trying the same in regular intervals for a specified time limit. This step is for optimization.

Advantages of using MQSeries for failover in the e-Shop Web Application:
• Here we use the transactional features of MQSeries, enabling us to rollback MQGET in case of

failures.
• Chances of loosing or duplication of messages is zero because MQSeries assures, once-only

delivery of messages.
• The asynchronous processing capability of MQSeries doesn�t cause any delay in response to

the web clients.
• The triggering mechanism is used to trigger the FailOverManager. This avoids a daemon

running to get the messages from the queue.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 29

1.17. Case Study - III
Objectives
• To explore the transactional features of MQSeries and how to integrate them with your web

application.
• To enable MQSeries as a reliable communication channel between your web application and a

legacy system.

To explore the transactional features of MQSeries and how to integrate them with your web
application
Transaction is an essential part of any critical application. Operations like transfer of money across
bank accounts has more then one logically related task. All of these tasks have to be successful for
data integrity. If one task succeeds while another fails then data integrity would be lost. So, there�s
a need to keep all such tasks within a transaction boundary.

IBM MQSeries supports transactional messaging. MQSeries can participate in global unit of work
in which resources belonging to other resource managers, such as XA-compliant databases, are
also updated with MQSeries resource. Two-phase commit procedure must be used and this unit of
work may be coordinated by the queue manager itself, or externally by another XA-compliant
transaction manager.

In your WebSphere application, you can either allow the EJB Server to manage the transactions or
they can be managed by the application using javax.transaction.UserTransaction interface (JTA).
This case study explores the options for integrating the transactional features of MQSeries and
WebSphere. However there is no explicit support in WebSphere Advanced Edition 3.02 for
MQSeries. We use JMS implementation from IBM, within our Web Application for communicating
with MQSeries. IBM�s JMS implementation supports transactional sessions. So, we can perform
the MQ related operations within a unit of work. But, the JMS XA* interfaces defined by Sun
Microsystems haven�t been implemented by IBM till date (06/22/2000) and support for JMS in EJB
is only from EJB 2.0. So, the MQ operations within the Web Application won�t be part of either the
user transaction created in the EJB clients or the WebSphere (Advanced Edition v 3.02) managed
transaction.

To enable MQSeries as a reliable communication channel between your web application and
a legacy system.
Old days are gone when it is usual to apply a single architecture and set of standards to an
application, but now its time for Enterprise Application Integration. But the root problem is the lack
of Common Architectures. IBM MQSeries is a solution for Enterprise Application Integration
because it enables asynchronous, loose coupling of distributed applications.

In this case study, we try to integrate two existing Bank applications. One of them runs on
WebSphere and the other on DCICS and they use MQSeries as an asynchronous communication
link. Wrapper applications and helper classes were written on both ends, to minimize code rewrite
of the existing applications.

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 30

Scenario
A customer with e-Bank wants to transfer some money to another account in CICS-Bank. This
operation requires two tasks, debit from e-Bank and credit to CICS-Bank. Both these tasks have to
be in a unit of work. To enable this, we need a distributed transaction. Its not possible to achieve
this with our current setup (WAS AE3.02, MQSeries5.1 and DCICS � TXSeries4.2). So, we can
have a set of three transactions,
• Debit from e-Bank and MQPUT in a MQ queue. The message put will consist of the CICS-

Bank account number and the amount to be transferred.
• MQGET, credit the transferred amount to the CICS-Bank account and MQPUT the

acknowledgement message. The acknowledgement will have the information, whether the
credit was successful or not.

• MQGET and if a �failure� acknowledgement, credit the transferred amount back to the e-Bank
account.

e-Bank Web Application
e-Bank is a WebSphere application, based on servlets, JSPs and EJBs. e-Bank is an existing
application. The application provides the following Internet banking functionality,
• User can create new account
• User can login using his user ID and password
• User can withdraw/deposit/transfer money
• User can view his account balance and transactions

In our case study we would be using the transfer feature of e-Bank. Using this an e-Bank account
holder can transfer money to other accounts in e-Bank or CICS-Bank.

When the user chooses to transfer amount to a CICS-bank account, the servlet invoked debits the
amount specified from the user�s e-Bank account�s ACCOUNT_TABLE. Apart from that, the servlet
also creates a record of the transfer details in the CLEARANCE_TABLE. When the user wants to
view the current status of his account, information is pulled out from both the ACCOUNT_TABLE
and CLEARANCE_TABLE and displayed to the user.

The different modules on the e-Bank front,

Account EJB
All operations regarding an Account like deposit, withdrawal, getting balance and transferring the
amount and type of the account etc, are implemented in Account EJB.

Transaction EJB
Records all the transactions involved with an account. Each time the bean creates a record it also
creates a unique transaction ID.

Process EJB
In our case, if the transfer operation failed, the amount withdrawn from the e-Bank account has to
be deposited back to the source account. Since the entire process of transfer is asynchronous,
there would be data inconsistency between the database and the balance amount in the user�s
current session. In order to remove this inconsistency we have come up with the concept of funds

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 31

in clearance. The funds in clearance holds the total amount transferred to CICS-Bank accounts, by
an e-Bank account holder. For every account, we have the account balance and funds in clearance
in the current session. The Process EJB takes care of this functionality.

MQJMSBean
All MQ related operations like connecting to the Queue Manager and Queue, put and get message
etc. are implemented in this Java Bean. IBM�s JMS implementation (MA88) is used for the MQ
related operations. This approach provides clarity and modularity. It also helps to handle all MQ
related exceptions; to add or modify MQ related functionality in a single place. The other alternative
in the future would be EJB 2.0 (yet to be released). The Enterprise JavaBeans 2.0 specification
extends the EJB architecture with new features including the integration with the Java Message
Service. So, with EJB 2.0, we can use a JMS EJB instead of a JavaBean taking care of JMS
operations.

TransferAck
TransferAck is a standalone Java application. This application would be triggered upon receiving a
message in the TRANSFER.ACK QUEUE. Upon triggering, the application uses the MQJMSBean
to retrieve the message from the queue. If the message was a �failure� acknowledgement, then the
application credits back the amount withdrawn from the e-Bank account. Upon receiving the
message from the queue, this application removes that particular transaction record from the
CLEARANCE_TABLE using the Process EJB.

CICS-Bank Application
CICS-Bank is a simple DCICS application on Windows NT, which portrays a bank model. The
application provides functionality to create accounts, credit money, debit money and transfer
money across CICS-Bank accounts. CICS-Bank is an existing application.

The different modules on the CICS-Bank front,

CICS-Bank is a set of three CICS Server Programs1 (Create, Debit, Credit) written in C++. Each of
these, map to a CICS Transaction2. CICS-Bank also has a common library, consisting of 4 classes,
• Account class: Provides an interface for all account related activities like, creation of accounts,

credit, debit and transfer of money across accounts.
• Person class: Provides an interface for all customer-related information like, adding and getting

information about them.
• Database class: In CICS, we can map a database table to a CICS File3. This class provides an

interface for reading from and writing to a file.
• Application class: Interface for reading from and writing to the COMMAREA4.

The application flow is as follows,
• The CICS Client (an ECI Program) invokes the banking application after writing the user�s

requests/information to the COMAMREA
• The CICS-Bank uses the Application class to read the request/information from the

COMMAREA
• Based on the request CICS-Bank invokes the Create/Debit/Credit function using the Account

class

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 32

• Then user�s account information is updated in the database using the Database class
• After updating, CICS-Bank writes the status of the transaction in the COMAMREA.
• The CICS Client can now read the COMAMREA to know the status

Wrapper to CICS-Bank
In traditional CICS applications standard ways for inter process communication is using
COMMAREA. CICS-Bank application like any other traditional CICS application gets the data form
COMMAREA and after processing writes back data to the COMMAREA.

In our case study, we are using MQSeries for communication between the web application (e-
Bank) and the CICS-Bank. The wrapper is basically a CICS program that enables data transfer
between the CICS-Bank application and the MQ queue.

The functionality of the wrapper is,
• To get the message from the MQ queue (WAS.TO.CICS QUEUE)
• To extract data from the queue and write it to the COMMAREA
• To pass the control to the CICS-Bank Server Program
• To retrieve the data from the COMMAREA after the execution of the CICS-Bank Server

Program
• To create a MQ message using the data and put back an acknowledgement message in the

MQ queue (TRANSFER.ACK QUEUE).
A transactional boundary is maintained, which starts from the point of getting the message from the
queue and putting back the acknowledgment in the queue.

Note: You have to register the MQ Queue Manager with DCICS as a XA compliant resource
manager.

The scenario in our case study is to transfer money from e-Bank to CICS-Bank. So we would be
using the �WrapperCredit Program�.

BankECI Program
The common ways of invoking a CICS program/transaction are, through a non-CICS application,
by another CICS program or using the CICS terminal (CICS Client 3270 Terminal Emulator). There
are two types of interfaces for calling a CICS program from a non-CICS application, ECI 5 and EPI6.

In our case study we would be using ECI programs (BankECI). The BankECI program would be
triggered by the WAS.TO.CICS queue when it receives a message. The functionality of this
program is to invoke the WrapperCredit CICS Server Program. Since MQ can�t trigger a CICS
program/transaction explicitly, we use this BankECI Program.

CICS on Windows NT (TXSeries 4.2) - Terminology
1.) CICS Server Programs
CICS offers a standard set of commands used by application programs to request services from
CICS regions. This set of commands is called the CICS application-programming interface (API).
CICS Server Program is a program, which uses these APIs.
2.) CICS Transaction

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 33

A transaction is a unit of processing consisting of one or more application programs. When you
develop your application program, you associate it with a transaction that is used to request the
program. You can then use the CICS Clients or a cicsteld command to run the transaction and,
therefore, run your application program. The transaction is executed under the control of CICS,
which provides the services requested by each API command.
3.) File
Transaction processing systems provide users with timely, accurate, and reliable access to data.
Such user data can be in the form of files, queues, and database entries. The files can be either in
Structured File Server (SFS) or an RDBMS like DB2. Data in files is organized as a collection of
records. A record is a grouping of related information with a predefined size and a predefined
number and layout of fields. Each record in a file has the same number and layout of fields, which
hold specific parts of the record's information.
4.) CICS COMMAREA
A communication area (COMMAREA) is a command-level facility used to transfer information
between two programs within a transaction or between two transactions from the same terminal.
5.) ECI (The External Call Interface)
The external call interface (ECI) enables a non-CICS application running on the client machine to
call a CICS server program running on a CICS region. The client program can call the server
program synchronously or asynchronously as a subroutine.
6.) EPI (The External Presentation Interface)
The EPI allows a non-CICS application program to be viewed as a 3270 terminal by a CICS server
system to which it is connected

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 34

Overview of the flow

Figure 12 Control flow � Case Study III

13

12

11

10

9

8

7

6

5

4

3

2

1

TransferAck

TRANSFER.ACK QUEUE WAS.TO.CICS QUEUE

Internet

WAS1

Client

EJBs Servlets/
JSPs

MQJMSBean

D1

BankECI
Program

CICS SERVER D2

D1 and D2: Databases

WAS1: WebSphere Application
Server instance

1 � 13: Control flow after the
MQJMSBean is invoked by the Web
Application and till the TransferAck
invokes the EJBs

Credit
Program

Wrapper
Credit

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 35

• The e-Bank account holder chooses to transfer some amount from his account to a CICS-Bank
account.

• The e-Bank verifies his account credibility and withdraws the amount from his account using
the Account EJB. The Transaction EJB creates a unique transaction ID and records this
transaction.

• The amount withdrawn would be made Funds in Clearance and recorded with the generated
transaction Id in the CLEARANCE_TABLE using the Process EJB.

• e-Bank invokes the MQJMSBean. The CICS-Bank account number, e-Bank account number,
the transaction ID and the amount to be transferred are put in the MQ queue (WAS.TO.CICS)
as a message using the MQJMSBean. The message type is persistent. (Step 1 and 2 in Figure
12)

• From withdrawing the amount from the e-Bank account to putting the message in a queue
forms a single unit of work. The transaction is started in the servlet invoked, when the user
chooses to transfer, and propagated to the MQJMSBean and across the Account EJB,
Transaction EJB and the Process EJB. But, the JMS XA* interfaces defined by Sun
Microsystems haven�t been implemented by IBM till date (06/22/2000) and support for JMS in
EJB is only from EJB 2.0. So, the MQ operations within the Web Application wont be part of
either the user transaction created in the EJB clients or the WebSphere (Advanced Edition v
3.02) managed transaction.

• The WAS.TO.CICS QUEUE is configured such that it would trigger the BankECI Program
whenever it receives a message. (Step 3 in Figure 12)

• The BankECI Program invokes the �WrapperCredit� CICS Server Program and exits. (Step 4 in
Figure 12)

• The wrapper program gets the message from WAS.TO.CICS QUEUE. The SYNCPOINT
option is set for this particular MQGET call. Doing so brings the MQ operation under the CICS
transaction boundary. (Step 5 in Figure 12)

• The CICS-Bank uses a standard data structure for passing information between itself and the
CICS Client. The wrapper program leverages on the same structure for its communication with
CICS-Bank. The wrapper extracts the information from the message and populates the
structure with the data. The data essentially consists of the CICS-Bank account number and
the amount to be credited.

• The wrapper program then calls (CICS LINK) the CICS Credit Program and passes the
structure (pointer to the structure) to the COMMAREA. (Step 6 in Figure 12)

• The CICS Credit Program reads the information from the COMAMREA and credits the amount
to the specified CICS-Bank account. During this process the Credit Program uses the
Application, Account and Database classes. (Step 7 and 8 in Figure 12)

• Then the Credit Program updates the data structure with the new account balance and the
status of the operation. Depending on the success of the operation the status is either
SUCCESS or FAILURE.

• The COMMAREA is updated with the new structure.
• The wrapper program reads from the COMMAREA and based on the status of the Credit

operation puts an appropriate message in the TRANSFER.ACK QUEUE. The SYNCPOINT
option is set for the MQPUT call. (Step 9 in Figure 12)

Enhancing WebSphere Applications using MQSeries 1.0 7/12/01

 Torry Harris Business Solutions, India 36

• The MQSeries Queue Managers of both the queues are registered with the CICS Region as
XA Compliant Resource Managers. So, the transaction is managed by CICS. From the point of
MQGET from WAS.TO.CICS QUEUE to MQPUT to TRANSFER.ACK QUEUE is a transaction.

• The TRANSFER.ACK QUEUE is configured such that it would trigger the TransferAck
application whenever it receives a message. (Step 10 in Figure 12)

• The TransferAck application uses the MQJMSBean to retrieve the message from the
TRANSFER.ACK QUEUE. (Step 11 and 12 in Figure 12)

• The application then extracts the transaction ID, the e-Bank account number, the transfer
amount and the status from the message.

• Using the Process EJB, the TransferAck application removes the record from the
CLEARANCE TABLE corresponding to the retrieved transaction ID. (Step 13 in Figure 12)

• The previous operation is performed whether or not the transfer operation was successful.
• If the transfer operation was a FAILURE, the TransferAck application credits back the

transferred amount to the e-Bank account using the Account EJB. (Step 13 in Figure 12)
• From getting the message from the TRANSFER.ACK QUEUE to depositing the transferred

amount to the e-Bank account (in case of FAILURE) forms a single unit of work. The
transaction is started in the TransferAck application and propogated to the MQJMSBean and
the Account EJB.

Advantages of using MQ
• MQSeries Triggering mechanism eliminates the listening overhead of the BankECI program

and the TransferAck application. It also helps to automate the process.
• MQSeries can act as a resource manager being managed with other resource managers by a

transaction manager. On the CICS-Bank front, we have registered the MQSeries Queue
Managers as XA Compliant resource managers with the DCICS Region. In this scenario
DCICS acts as the Transaction coordinator for its own resources and MQSeries� resources.

• Chances of loosing or duplication of messages is zero because MQSeries assures once-only
delivery of message. So, even though the money transfer from the e-Bank to the CICS-Bank is
broken into three different transactions, with MQSeries it appears to be a single global
transaction.

• Since MQSeries is available on many different platforms, integrating your Web Application with
a backend system is made simple with MQSeries.

• MQSeries and Web Application integration is made possible with IBM�s JMS implementation.

