
IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

1
Copyright IBM Corporation 2001

Building Web Services the right way using
IBM® WebSphere Studio

November, 2001

Copyright IBM Corporation 2001
All rights reserved.

IBM is a registered trademark of

the International Business Machines
Corporation. All other company and

 product names may be trademarks or service
marks of their respective companies.

Reference to IBM products or services does not
imply that IBM intends to make them

available in all countries in which IBM operates.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

2
Copyright IBM Corporation 2001

Setting the record straight

The purpose of this paper is to respond to Microsoft’s misleading white paper about creating
Web Services with .Net versus IBM WebSphere V4.0 (“WebSphere”). The white paper can be
found at http://msdn.microsoft.com/net/compare/webservicecompare.asp. In this white paper,
Microsoft claims .Net is a better platform than J2EE for creating Web Services. In their attempt
to support this claim, Microsoft hired a supposedly independent consulting firm to develop a
Web Service using both .Net, and in Microsoft’s own words, the J2EE platform with the most
advanced support for XML based Web Services, WebSphere. According to Microsoft, the results
of this benchmarking exercise shows the .Net is a superior platform for the development of Web
Services, however, this simply is NOT the case.

In this response, we will not only show that IBM offers the superior platform for creating Web
Services, but will also point out how Microsoft has attempted to mislead customers. More
specifically, we will show that when the benchmark is properly run, (i.e., not in a manner
intended to produce a predetermined result), WebSphere created the sample Web Service faster,
cheaper, using fewer steps, with less lines of code, and in a heterogeneous environment, not
simply a Microsoft environment. In other words, there is no doubt that WebSphere is the
superior platform for developing Web Services.

Building Web Services the right way

Before we tell you what Microsoft actually did, lets briefly discuss the right way to build a Web
Service…the WebSphere way. There are two important points about building Web Services the
right way:

1. Use open standards to ensure portability across platforms
2. Use the most advanced, generally available tool to reduce hand crafted code

Microsoft did neither of these things.

Web Services represent an important step forward for interoperability by using standard methods
to communicate and describe applications and data. Most companies want more; they want to
ensure their application investment is protected across multiple platforms and across vendors.
By selecting J2EE, companies can create Web Services than run from Linux to zOS and many
additional operating systems and middleware environments obtained from multiple vendors.

Using WebSphere, the lines of handcrafted code can be reduced from 106 using .NET to a single
line of handcrafted code, a 99% reduction. WebSphere includes advanced Web Services
wizards and XML tools to rapidly create Web Services from existing applications. Integrated
application servers enable rapid testing and debugging across multiple platforms, including NT,
Linux, iSeries and zSeries.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

3
Copyright IBM Corporation 2001

What Microsoft did

Microsoft wanted to show that .NET is superior to J2EE for creating Web Services, so they used
a Sun sample called the PetShop. As previously noted, Microsoft “chose IBM WebSphere 4.0
because we believe IBM WebSphere 4.0 has the most advanced support for XML-based Web
Services of the major J2EE application servers on the market1.” IBM appreciates that Microsoft
recognizes our industry leading support for Web Services.

Microsoft used a beta release of Visual
Studio.NET to create a relatively simple Web
Service. The Web Service allows a browser to
enter an order number into a Web page. Next,
the application server uses the order number to
invoke a Web Service to backend server.
Finally, the backend server runs a stored
procedure to look up the order details and
return the information. Middleware includes
IIS and SQL Server from Microsoft – of
course, an all Microsoft implementation.
For the IBM implementation, they use
WebSphere Application Server V4.0 and

Oracle 8i for the database server. Care to guess what Operating System was used?

They made the service significantly more complicated by using a stored procedure, rather than
using SQL calls to the database. Possibly they chose this architecture so they could require an
additional tool for the IBM architecture? Using SQL calls would have further reduced the time
and effort to create the Web Service since the application could have been created using database
wizards. Microsoft also made the service more complicated since the stored procedure returns
an array of data, rather than simple data structures. Stored Procedures can be written in a
portable fashion, but are usually vendor specific in their implementations. Migrating stored
procedures is one of the more difficult aspects of migrating between databases.

To create the Web Service for IBM, they used the following tools:
• IBM WebSphere V4 Admin Console
• IBM WebSphere Assembly Tool
• IBM SoapEarEnabler
• IBM WebSphere Studio V4.02
• VisualAge for Java V4.0
• IBM Web Services Toolkit (from AlphaWorks)
• Oracle DBA tool.

1 “Building Web Services using with Microsoft .NET vs. IBM WebSphere 4.0.doc,” October 2001

2 The paper does not state whether Professional or Advanced Edition was used.

Web Service Architecture

Web Broswer calls
PetShopService

Web Server
Application Server

Calls Proxy
application to

remote Web Service

Application Server
with PetShop

Service

PetShop Database

Internet

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

4
Copyright IBM Corporation 2001

The summary says 6 tools were used, but doesn’t list VisualAge for Java. Possibly they
considered it a part of WebSphere Studio, since a copy is included with Studio. It’s also not
clear why they list standard features of WebSphere Application Server (Admin Console,
Assembly Tool, and SoapEarEnabler) as three separate tools. Perhaps it is to mislead you into
thinking it is more difficult or costly develop on WebSphere.

The WebSphere Studio V4.0 wizard for creating Web Services from a Java bean only supports
simple parameters (integers, strings, etc.) on its methods. So, they wrote the Web Services
Description Language (WSDL) file by hand and used the IBM Web Services Toolkit to generate
the Java skeleton beans, wrote the contents of the implementation in VisualAge for Java, turned
the Java code into a J2EE application using Application Server tools and so on. Naturally their
experience was not very positive by using this process and so many different tools.

IBM recommends using WebSphere Studio Application Developer V4.0 (“WebSphere Studio”).
Even when the study was done, the beta version could be freely downloaded, and would have
allowed them to use one tool to complete the Web Service. The Beta release did not support
arrays in the Web Services wizards (used in the PetShop Java bean), so more hand crafted code
would be needed than in the analysis below. WebSphere Studio, announced November 5, 2001
already available, provides a complete, integrated environment for developing, deploying,
testing, and debugging Web Services.

Microsoft Misdirection

Simplicity to code a Web Service
Microsoft has shown summaries where .NET creates the Web Service in less than 4 hours (238
minutes) with 9 steps, while WebSphere requires over 9 hours (550 minutes) with 14 steps. But
using Application Developer requires 8 steps and just over 3 hours (184 minutes).

Furthermore, Microsoft .Net required 89 lines of custom code to create the Web Service from the
business logic. WebSphere Studio required NO lines (that is, zero lines) of custom code. All
code for the Web Service was generated via our wizards.

Microsoft .NET also required 17 lines of code to consume the Web Service. WebSphere Studio
only required 1 line (that is, one line) of handcrafted code to consume the Web Service. All but
one line of the JSP code could be generated from the wizards.

Total Microsoft .NET handcrafted code to create and consume a Web Service: 106
Total WebSphere Studio handcrafted code to create and consume a Web Service: 1

A 99% reduction in the number of lines of handcrafted code!

The Microsoft analysis of WebSphere used a very different process for building the Web
Service, including hand coding of the Web Services Description Language (WSDL) file. The
process below uses the same process and completes more in one less step.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

5
Copyright IBM Corporation 2001

Summary of Steps in Development Process

Step Description Tool Time

1 Launch the Web project wizard to create the

PetWebServiceEAR project and the PetWebService Web in

a single step.

WebSphere Studio 1 minute

2 Create the PetWebService Class with business logic to

access Stored Procedure

WebSphere Studio 90 minutes

3 Create WebSphere Test Server Configuration and Instance WebSphere Studio 1 minute

4 Configure WebSphere Test Server Data source settings (to

complete the stored procedure call)

WebSphere Studio 2 minutes

5 Launch the Web Services wizard to generate WSDL files,

SOAP deployment descriptor, client proxy code, sample

application, deploy to WebSphere 4.0 Test Environment,

and deploy to UDDI Registry

WebSphere Studio 10 minutes

6 Test client proxy code and Web Service through to the

database (debug Java bean business logic)

WebSphere Studio 30 minutes

7 Use Java Bean Web Creation Wizard to generate input page

and results page from Java class files

WebSphere Studio 20 minutes

8 Build and test application, able to debug through all 3 tiers WebSphere Studio 30 minutes

Total

8 steps

 184

Open versus proprietary, Generally Available versus beta
The following was our initial response, published on the Web to begin focusing on the important
decision criteria that customers should be using as they move forward with Web Services. IBM
believes customers want open standards and implementations that run across heterogeneous
platforms and middleware. IBM believes in shipping products to customers, not merely beta
after beta after beta.

We appreciate Microsoft's recognition that IBM and WebSphere are leaders
when it comes to delivering Web Services capabilities, and want to take a
moment to set the record straight. The comparison is misleading in many
respects, but should at least have an apples to apples comparison. Instead it
has an inconsistent use of alpha, beta and Generally Available technologies.

But more importantly, Microsoft seems to have forgotten the Internet and Java
are all about choice - choice of hardware, choice of Operating System, choice of
language, choice of development platform - which translates into business
flexibility. Businesses need to leverage current and ongoing investments, not
rebuild from scratch.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

6
Copyright IBM Corporation 2001

The clear message from Microsoft is their tools fail to run on leading industry
products and platforms, like Java, J2EE, Sun Microsystems Solaris, IBM AIX,
IBM i-series and IBM z-series. We can all quote benchmarks till we’re blue in the
face, but at the end of the day it’s about proprietary, single vendor versus open
and multi-vendor.

 Microsoft .Net IBM WebSphere
Metric

Choice of Hardware Intel HP 9000, Intel, i-series,
PowerPC, Sparc, z-
series

Choice of Operating
System

Windows AIX, HP-UX, Linux,
OS/400, OS/390,
Solaris, Windows

Homogenous or
Heterogeneous
environment?

Homogenous Heterogeneous

Extend infrastructure or
build from scratch?

Build from scratch Extend infrastructure

Use alpha, beta or
Generally Available
products?

beta Primarily Generally
Available products

Choice of tools
providers?

Only .NET from
Microsoft

IBM, Borland, WebGain,
Macromedia

Java and J2EE support No, Hates Java Yes, delivers industry
standard support

C# Support Yes No

As another proof point on open implementations, IBM has donated to Eclipse.org the Eclipse
software, the basis for WebSphere Studio Workbench. Eclipse heralds a new era for
development tools by providing the capability to seamlessly integrate tools from multiple
vendors.

Ease of learning

Microsoft claims that “Web Services are an integral part of VisualStudio.NET, with ready-made
project templates and extensive documentation in the core product. In addition, almost all of the
work to create a Web Service is handled automatically by the tool. Hence the learning time is
very low.”3 However, in reality, the entire .NET framework is a radically different set of
middleware from the COM and DCOM architectures they have been promoting for many years.

In contrast, the Web Services paradigm is only a small enhancement to the J2EE standards for
Web Applications.

3 “Building Web Services using with Microsoft .NET vs. IBM WebSphere 4.0.doc,” October 2001

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

7
Copyright IBM Corporation 2001

WebSphere Studio has exceptionally good documentation with:

• Scenario sections to explain building complete applications, including Web Services
applications, in a step by step fashion. The Hospital scenario shows the user how to
create Web Services applications that link into two remote services.

• Concept sections to explain Web Services concepts like UDDI, WSDL, SOAP, and
DADX

• Task sections to explain how to perform specific tasks, such as Creating a Web Service
from a Java Bean

Customers can easily learn to create a Web Service using WebSphere Studio within a day, just as
Microsoft claims users can learn .NET.

Cost of creating this simple Web Service

Microsoft places a dollar cost on creating a Web Service based on the number of hours to learn
the new tools and create the Web Service. As we’ve seen in the last 2 sections, WebSphere
Studio reduces the time to create the Web Service, drastically reduces the number of lines of
handcrafted code, and has comparable learning costs. The resulting cost comparison now gives
the advantage to WebSphere.
 Microsoft .NET WebSphere Studio

Total time required to
build the Web Service

11.97 hours (including 8
hours learning time)

11.02 hours (including 8 hours
learning time)

Cost for this Web Service $2,393 (@ $200.004 per
hour)

$2,203 (@ $200.00 per hour)

After doing the costs for the single case, they extrapolate to a more complete project. In the
larger project, WebSphere Studio would look even better, since most of the time spent by
developers would be doing coding where we complete the tasks 25% faster with 99% less lines
of code to write.

In the Microsoft comparison, they also add the costs to deploy the Web Service and use an
incredibly misleading comparison for Server costs.

Costs of Microsoft .Net Framework

Microsoft claims a cost of only $3,999 per server for middleware software, so for 4 8-way
processors, the costs are $15,996. However, this does NOT take into account their Client
Access Licenses. Microsoft requires an additional charge for each user that is authenticated at
the server. In the pet shop scenario, it is unlikely that any user could go to a public web site to
request this order information without first logging into the system. Nor would the back end
Web Services allow any server to request this information without proper authentication.

4 The estimated developer cost of course may vary widely based on developer skill sets.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

8
Copyright IBM Corporation 2001

Microsoft offers packages of Client Access Licenses (CALs) at various prices, for example, 200
users for $9,999. An Internet Connector License Option is available for $1,999, which allows
unlimited Internet users to access a server. An Internet user is defined as “any person connected
to the Internet, other than a person employed by you, or otherwise providing goods or services to
you or on your behalf.”5 Therefore, use of this license will depend on the relationship between
the Pet Shop and the people requesting the Web Service.

4,000 affiliated resellers or suppliers would require 20 licenses of the 200 user CAL package.
These CALs on the two servers consuming the web service would require a payment of an
additional $399,960 (2 * 20 * $9,999). Additional CALs may be required on the back end
servers, depending on how many authenticated front end servers access the Web Service.

It is also misleading to compare Windows 2000 to a real Web Application Server. According to
Gartner Group, Windows 2000 does offer many functions, “however, you must purchase
BizTalk Server, Host Integration Server and Application Center 2000, the products that extend
their core capabilities into a fully functional application server.6” A combined license for
BizTalk Server 2000 and SQL Server is $9,749 per processor. To add this to the 4 servers in the
Microsoft presentation would add $311,968 to the Microsoft server costs.

It is very difficult to generalize the costs for a Microsoft .Net environment with so many
variables. Client Access Licenses and additional servers can easily add hundreds of thousands of
dollars to the costs quoted in the Microsoft white paper.

Cost of WebSphere Application Server

Microsoft claims this Web Service application requires Enterprise Edition, priced at $35,000 per
CPU. Thus, on the 4 servers with 8 CPU’s each, they calculate a cost of $1,112,000 (4 x 8 x
$35,000). Yet, Enterprise Edition is certainly not required in the application. In fact, their white
paper shows Advanced Edition Single Server, dropping the cost to $256,000 (4 x 8 x $8,000).

Summary

WebSphere Studio is:
• Generally Available
• Based on an open source platform
• Supports open J2EE standards
• Deploys to multiple application servers
• Deploys to multiple server and hardware platforms
• Generates all code required for PetShop Web Service creation
• Requires only a single line of code for PetShop Web Service consumption

The WebSphere software platform is clearly superior for creating and consuming Web Services.

5 Source: http://www.microsoft.com/windows2000/advancedserver/howtobuy/pricing/changes.asp
6 Source: Gartner Group report, Microsoft: An Application Server Vendor?, 23 October 2001

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

9
Copyright IBM Corporation 2001

Appendix

Step by step process to create Pet Shop Web Service with WebSphere Studio
using the same process as Microsoft would use for .NET

WebSphere Studio Application Developer:
Application Developer is a complete, integrated environment for building, deploying, testing,
and debugging Web Services and J2EE applications. Application Developer also includes
support for publishing and discovering Web services in UDDI Registries. Web services tools
wrap existing Java bean or EJB components as SOAP-accessible services and describe them in
the Web services description language (WSDL). Database developers can also use SQL as a
programming language to quickly build data-aware Web services. Application Developer
includes tools to wrap database access directly into a Web service using the DADX specification
file. DAD Extension (DADX) is an extension of the Document Access Definition (DAD) file for
IBM DB2 XML Extender. A DADX document enables the creation of Web Services that store
and retrieve XML documents managed by XML Extender.

The web services in the comparison study are based on the .Net Pet Shop and the Java Pet Store
application developed by Sun. The business requirement for the web service is to return detailed
information about an order that has been created through the web application. The IBM
implementation of the Web service was done via a Java bean that used a stored procedure call to
retrieve order data. There are two ways this Web service could be implemented in WebSphere
Studio. The first is to follow the same architecture used in the Microsoft comparison. The
second is to describe the Web service as a stored procedure call using the DADX specification
mentioned above. In the latter case, the Web service would make a stored procedure call directly
and no Java code needs to be written.

The following describes how the Java based implementation would flow in Application
Developer while contrasting to the comparison study experience.

1. Launch the Web project

wizard. Specify the name
of the Web project -
PetWebService - and also
the name of the Enterprise
Application project -
PetWebServiceEAR. This
one step creates the
PetWebServiceEAR
project and the
PetWebService Web
project, while Microsoft
required two steps.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

10
Copyright IBM Corporation 2001

2. Create the Java class implementation on which the Web service is based in the
PetWebService Web project. The Java class would be essentially what is provided with the
comparison study (it opens a datasource connection to the database and performs a stored
procedure call to retrieve order information based on an order id). This is fundamentally
different from how the
study was done because
they started by
handwriting the WSDL
files.

3. Create WebSphere

Server Instance and
Configuration. This
step creates an instance
of the WebSphere
Application Server to
be used in the test and
debug steps.

4. Configure the data

source for the PetShop
stored procedure in the WebSphere Configuration. Simply double click on the WebSphere
Configuration, select the Data Source tab and fill in the data source information for the
PetShop stored procedure.

5. Launch the Web Service wizard, selecting the Java file created in step 2. The wizard takes

the user through the pages where they can select which methods to expose in the Web

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

11
Copyright IBM Corporation 2001

service, perform custom Java/XML mappings on parameters, if necessary. The wizard
generates WSDL files, a SOAP deployment descriptor and deploys the Web service to the
WebSphere 4.0 Test Environment (included with WebSphere Studio). Since WebSphere
Studio Application Developer GA and Site Developer Beta 2 handle Java classes whose
methods contain complex type parameters, there is no need to handcraft the WSDL files, as
was done in the comparison study. Also there was no need to run the WebSphere Application
Assembly tool, the soapearenabler tool, soap admin tooling, or the WebSphere deployment
tooling. All the steps necessary to deploy the Web service application are performed by the

Web Service wizard. At the user’s choice, the wizard then proceeds to generate the Web
service Java client proxy code, launch a Test client, generate a sample application, and
finally optionally publish the Web service to a UDDI Registry.

6. Test and debug client proxy code and Web Service through to the database. To reproduce the

client usage of the PetShop Web service, launch the Web Services Client wizard and select
the PetShop-service.wsdl file. The wizard takes the user through the pages where they can
perform custom XML/Java mappings on parameters (if necessary), creates Java client proxy
bean (which includes creating Java beans corresponding to the complex parameter and return
types specified in the WSDL document) and launches the Test client. Since WebSphere
Studio provides a complete test environment for testing application running in WebSphere
Application Server, the developer can debug their Web service application in WebSphere
Studio. Since the Web service application is a J2EE application (contained in an EAR file),

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

12
Copyright IBM Corporation 2001

it is deployed to WebSphere 4.0 using the Test Environment inside WebSphere Studio or
alternatively the EAR file can be exported and deployed to J2EE Server. There is no need to
run WebSphere Application Assembly tool, soapearenabler tool or soap admin tooling.
Advanced capabilities like incremental compile and swipe and execute make this an
extremely productive test environment.

7. After testing the service, the user can use the sample application generated in the previous

step to build a Web based UI using the Web tooling in Application Developer. The sample
application is a set of JSPs that demonstrate how to call the Web service proxy client. Using
the Create New JSP from a Java Bean wizard, and selecting the Java class files created
earlier allows the user to merely specify input and output fields to display. Both an input
page (not done by Microsoft) and a results page are generated. By using the more complex

array generated by the Stored Procedure, this step is slightly more complicated than if a
traditional application were written simply using SQL standards to call the database. The
wizard must be called twice and two pages created. The first page displays results for the
order number, status, shipping and billing addresses. The second page displays results for
the array. These JSP code fragment from the second page must be cut and pasted into the
first page. Finally, this line of code must be handcrafted to associate the JSP to the proxy
Web Service application. However, even this is made simpler by using code assist (crtl
space) to select the URI and proxy methods.

mappings.Uri_pets_petshop_xsd_PetOrderContentType
orderdetails = proxy.GetOrderDetails(ordernumber);

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

13
Copyright IBM Corporation 2001

By using wizards, and reducing the number of lines of handcrafted code down to one line,
this task took 20 minutes, rather than 30 minutes for Microsoft.

8. Build and test application, with the ability to debug through all 3 tiers. WebSphere Studio
includes the ability to start a debug operation on a remote Application Server. It also allows
for debugging of JSP code, including the ability to set breakpoints. Since most of the
debugging of the application was done in step 4, we reduced this time from the Microsoft
example to merely 30 minutes for debugging the new JSP code generated in step 5.

IBM Response to Microsoft’s “Building Web Services with .Net vs. IBM WebSphere 4.0.doc”

14
Copyright IBM Corporation 2001

Step by step process to create Pet Shop Web Service with WebSphere Studio
using a simpler process

Application Developer includes tooling that can wrap database access directly into a Web
service. The Web service used in the comparison study could also be implemented using a
DADX specification file, which would perform the stored procedure call directly and not involve
a hand-written Java implementation at all.

1. Launch the Web project wizard. Specify the name of the Web project - PetWebService - and

also the name of the Enterprise Application project - PetWebServiceEAR. This one step will
create the PetWebServiceEAR project and the PetWebService Web project, while Microsoft
required two steps.

2. Create a DADX Group using the Web Service DADX Group configuration wizard in the

PetWebService Web project. Specify the JDBC source, database name, and other database
connection specific information.

3. Create a PetWebService.dadx file that contains the definition of the stored procedure call.

An example of a dadx file that performs a stored procedure is included with Application
Developer.

4. Follow steps 3 through 6 from the Java based scenario above, but instead of selecting the

Java file in the Web Service wizard, the user would select the PetWebService.dadx file.

The complexity with this particular DADX scenario is not in creating or deploying the service,
but in handling the complex response from the stored procedure. The response contains multiple
parts, and this presents a problem for the SOAP runtime on the client. The SOAP runtime can
only handle one return type, not many, as is the case with this stored procedure. This whole
issue is bypassed with the Java bean implementation of the service because it collects the return
parts into one complex type and returns that from the Java service. So, we could create Java
clients for the HTTP Get or HTTP Post protocol (where the DADX stored procedure service
returns XML schema), but some processing will have to done on the client side to extract the
information out of the returned XML.

WebSphere Studio’s strength is not only well integrated end-to-end Web services tooling, but
also that it is a complete J2EE development/test environment which includes Web tooling, EJB
tooling, Database tooling, XML tooling, WebSphere test environment, and of course Java IDE.

