
IBM China Development Lab

© 2011 IBM Corporation

How to analyze an OutOfMemory issue

WebSphere Application Server Level2 Support team

WASSDK,103/WOTSDK,103

Yang Jie

IBM China Development Lab

© 2011 IBM Corporation

Agenda

 Java memory: heap and native
 What can trigger OutOfMemory issue?
 How to gather data to analyze OutOfMemory issue?
 Analyze OutOfMemory issue

IBM China Development Lab

© 2011 IBM Corporation

How to analyze OutOfMemory(OOM) issue

 Java memory: heap and native
 What can trigger OOM issue?
 How to gather data to analyze OOM issue?
 Analyze OOM issue

IBM China Development Lab

© 2011 IBM Corporation

Type of OOM
 An OutOfMemoryError exception is generated when a particular

resource is exhausted. The Java run time throws an
OutOfMemoryError exception for these resources:

 Java heap
 The memory area used for the allocation and management of Java objects

created by the application.
 Native heap
 The memory area used for the Java run time itself, for the allocation of resources

to back some Java objects, and for the allocation of memory by JNI code.

IBM China Development Lab

© 2011 IBM Corporation

How to analyze OOM issue

 Java memory: heap and native
 What can trigger OOM issue?
 How to gather data to analyze OOM issue?
 Analyze OOM issue

IBM China Development Lab

© 2011 IBM Corporation

What can trigger OOM

 Java Heap OutOfMemory

– Java Heap Exhaustion
– Excessive GC activity

 Native Heap OutOfMemory

– Native Heap Exhaustion
– Native Heap Fragmentation
– Classloader exhaustion
– OS resource restriction
– OS resource consumption

IBM China Development Lab

© 2011 IBM Corporation

How to analyze OOM issue

 Java memory: heap and native
 What can trigger OOM issue?
 How to gather data to analyze OOM issue?
 Analyze OOM issue

IBM China Development Lab

© 2011 IBM Corporation

Collecting data(IBM JDK)

"MustGather: Out of Memory errors on AIX, Linux, or Windows"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21138587

"MustGather: Native Memory Issues on AIX"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21405353

"MustGather: Native Memory Issues on Linux"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21138462

"MustGather: Native Out Of Memory on Windows"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21313578

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21138587
http://www.ibm.com/support/docview.wss?rs=180&uid=swg21405353
http://www.ibm.com/support/docview.wss?rs=180&uid=swg21138462

IBM China Development Lab

© 2011 IBM Corporation

Collecting data(non-IBM JDK)

"MustGather: Out of Memory exceptions on HP-UX"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21164686

"MustGather: Out of Memory errors on Solaris - Heap Leak"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21145349

"MustGather: Out of Memory errors on Solaris - Native Leak"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21104470

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21164686
http://www.ibm.com/support/docview.wss?rs=180&uid=swg21145349

IBM China Development Lab

© 2011 IBM Corporation

Collecting data

 Javadumps (javacore.txt files IBM-JDK only)
 Heapdumps (heapdump.phd files)
 -verbose:gc output

 Rotate gc log configuration:
-Xverbosegclog:<path to file><filename, X, Y>
the verboseGC output is redirected to X files, each containing verboseGC output from Y GC

cycles.
For example: -Xverbosegclog:/opt/websphere/logs/gc#.log,100,1000

 Process size monitoring output
 WSAS server log directory

IBM China Development Lab

© 2011 IBM Corporation

How to analyze OOM issue

 Java memory: heap and native
 What can trigger OOM issue?
 How to gather data to analyze OOM issue?
 Analyze OOM issue

 First need to decide if heap or native OOM issue
 Heap OOM

− Leak? Fragmentation? Workload high?
 Native OOM

− Known possible native OOM issue and solution.

IBM China Development Lab

© 2011 IBM Corporation

Decide if native or heap OOM

 Use the last garbage collection cycle before the OutOfMemoryError exception in the
verbose:gc output to determine whether the OutOfMemoryError exception was
caused by exhaustion of the Java heap or by excessive garbage collection.

 Heap exhaustion
<gc type="global" id="13" totalid="74" intervalms="0.030">

 <compaction movecount="12133" movebytes="262762572" reason="compact to meet allocation" />

 <refs_cleared soft="0" weak="0" phantom="0" />

 <finalization objectsqueued="0" />

 <timesms mark="21.701" sweep="9.644" compact="590.093" total="621.504" />

 <nursery freebytes="785168" totalbytes="786432" percent="99" />

 <tenured freebytes="4435616" totalbytes="267386880" percent="1" />

 </gc>

 <tenured freebytes="4435616" totalbytes="267386880" percent="1" />

 <time totalms="745.990" />

 </af>

 Exccessive gc

 <warning details="excessive gc activity detected" />

IBM China Development Lab

© 2011 IBM Corporation

Decide if native or heap OOM (continued)
 In JAVACORE, if find following information, then that means a

Native OOM issue.
"java/lang/OutOfMemoryError": "Failed to fork OS thread" received

"java/lang/OutOfMemoryError": "Failed to create a thread: retVal

IBM China Development Lab

© 2011 IBM Corporation

Decide if native or heap OOM (continued)

 If no gc log, we can analyze javacore(IBM-JDK only)
 Check maxheap, free heap, allocated heap from JAVACORE

 2CIUSERARG -Xmx15360m

 1STHEAPFREE Bytes of Heap Space Free: 1a96a8

 1STHEAPALLOC Bytes of Heap Space Allocated: 10000000

 Analyze GC History in JAVACORE
− These terms indicate Java heap exhaustion:

 J9AllocateIndexableObject() returning NULL!

 J9AllocateObject() returning NULL!

− Excessive GC can also cause OOM.
 Forcing J9AllocateIndexableObject() to fail because of excessive GC

 J9AllocateIndexableObject() to fail because of excessive GC

IBM China Development Lab

© 2011 IBM Corporation

How to resolve a Java Heap OOM issue

 Java Heap used

 Analyze heapdump
 Tools: HeapAnalyzer, Memory Analyzer

− Memory Leak
− Workload too high

 Java Heap fragmentation

 Configure to make large object can be allocated in large object area –
can only delay the issue.

 Correct code not to request large object
"How to identify the Java stack of a thread making an allocation request larger than a certain size" (ALLOCATION_THRESHOLD)

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21236523

IBM China Development Lab

© 2011 IBM Corporation

How to resolve a Java Heap OOM issue(continued)

 Heap fragmentation

 If heap OOM caused by large object request, then analyze the
calling thread. The calling thread can be determined by using
ALLOCATION_THRESHOLD or -xdump (noted on page previous).

 If last gc cycle which triggered OOM issue requests large size of
memory, then analyze javacore to find the current thread as first step:
Current Thread Details

 "main" (TID:0x000C4600, sys_thread_t:0x0003696C, state:R, native ID:
0x00000E48) prio=5

 at java/lang/StringBuffer.ensureCapacityImpl(StringBuffer.java:397)

 at java/lang/StringBuffer.append(StringBuffer.java:246)

IBM China Development Lab

© 2011 IBM Corporation

If can't decide if native or heap OOM issue

 If there is no verbosegc log, it is not apparent if it is a native or java heap OOM
issue, clear the logs, enable verbosegc and wait for the issue to re-occur

"Enabling verbose garbage collection (verbosegc) in WebSphere Application Server"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21114927

IBM China Development Lab

© 2011 IBM Corporation

Tools to analyze gc log

 Use analyze tool to analyze verbosegc log

 JAVA GC and Memory Visualizer

http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/
_1vg00011e17d8ea-1163a087e6c-7ff6_1005.html

 PMAT

IBM China Development Lab

© 2011 IBM Corporation

Analyze native OOM issue

 If there is no problem in the GC cycle just before the javacore, then the issue is a
native one.

 Check the size of the Java process. If it is close to the maximum process size for
your platform the native heap has become exhausted.

 In log files, if find following information, then that means a Native OOM issue

JVMCI015:OutOfMemoryError, cannot create anymore threads due to memory or resource constraints

 JVMDBG001: malloc failed to allocate n bytes

 JVMDBG004: calloc failed to allocate an array of

 JVMCL052: Cannot allocate memory in initializeHeap for heap segment

 If WSAS is 32 bit, please reference following table

"

IBM China Development Lab

© 2011 IBM Corporation

Analyze native OOM issue

 Known Native OOM issue and solution
"Troubleshooting native memory issues"

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21373312

 Check the maximum heap size

 Potential native memory use in WebSphere Application Server thread pools

 WebContainer DirectByteBuffer use

 AIO Native Transport

IBM China Development Lab

© 2011 IBM Corporation

 Thank you!

	How to analyze an OutOfMemory issue
	Agenda
	How to analyze OutOfMemory(OOM) issue
	Type of OOM
	How to analyze OOM issue
	What can trigger OOM
	How to analyze OOM issue
	Collecting data(IBM JDK)
	Collecting data(non-IBM JDK)
	Collecting data
	How to analyze OOM issue
	Decide if native or heap OOM
	Decide if native or heap OOM (continued)
	Decide if native or heap OOM (continued)
	How to resolve a Java Heap OOM issue
	How to resolve a Java Heap OOM issue(continued)
	If can't decide if native or heap OOM issue
	Tools to analyze gc log
	Analyze native OOM issue
	Analyze native OOM issue
	页面 21

