
Welcome to the WebSphere® MQ Version 6.0 Quick Tour

This section contains a text version of the interactive Quick Tour. It is included here
as an accessibility feature for visually-impaired users who have access to a screen
reader. Information about each topic covered in the tour is provided in a two-column
table, with the tour text in the left column, and a description of the animation in the
right column.

This tour aims to provide an overview of the key concepts and interfaces related to
WebSphere MQ. The tour has two sections, core topics and additional topics. These
contain the following sections.

Core Topics

• Business Needs - introduces the ways in which this product can work for your
business. The topics covered are integration, asynchrony, assured delivery,
and scalability.

• Introduction to Messaging and Queuing - introduces the concepts of messages
and queues, shows how they are used together, and includes a simple
messaging scenario.

• WebSphere MQ Fundamentals - introduces the concepts central to WebSphere
MQ messaging environments. These include queue managers, MQ clients, and
messaging communications.

• Interacting with WebSphere MQ - introduces the WebSphere MQ
administration interfaces and the messaging interfaces available for programs
to use.

Additional Topics

• Using Queue Manager Clusters - introduces how queue manager clusters can
be used to simplify the administration of complex messaging networks and
balance workload between programs.

• Publish/Subscribe messaging - introduces the concept of publish/subscribe and
the advantages of using a publish/subscribe messaging environment.

• WebSphere MQ and the Java™ Messaging Service - introduces how
WebSphere MQ can use JMS in both point-to-point and publish/subscribe
messaging environments.

• WebSphere MQ with z/OS - introduces the concepts unique to the z/OS
platform including shared queues and shared channels.

Core Topics

Business needs

This part of the tour shows how the product can work for your business. The topics
covered here are integration, asynchrony, assured delivery, and scalability.

WebSphere MQ meets these business needs, and provides an ideal business
information messaging and queuing environment.

Integration
Product tour text Product tour animation

Typical business
applications consist of
groups of intercommunicating
programs.

Communication is harder to
achieve when these programs:

• span business
boundaries

• are written in
different languages

• are hosted on different
operating systems or
processors

• use different
communications
protocols

There is a need for a common
method of communication,
unaffected by languages,
operating systems, and
protocols.

This part of the animation shows how
WebSphere MQ allows the integration of
distributed business applications.

Two programs appear, and a connection is
created between them. A unit of
information (a message) is passed over the
connection from the first program to the
second one.

The second program is now enclosed by a
business boundary.

The names of the languages that the
programs might be written in appear: C++,
COBOL, Visual Basic, Java™, PL/1, C#.

The names of the operating systems on
which the programs might be running
appear: Windows, Linux, z/OS, iSeries.

The names of the communications
protocols that might be used appear:
HTTP, TCP/IP (SSL), LU6.2.

A summary animation shows a message
being sent from the first program to the
second, across a business boundary,
regardless of programming language,
operating system or communications
protocol.

Asynchrony

Product tour text Product tour animation

Synchronous communication
requires programs to be
available at the same time,
otherwise some programs are
prevented from doing work
until others become

This part of the animation shows how
WebSphere MQ supports asynchronous
communication between programs.

Messages are passed from the sending
program to the receiving program, while

Product tour text Product tour animation

available.

There is a need for programs
to communicate independently
of each other (that is, to
use asynchronous
communication).

the receiving program is available.

The receiving program suddenly becomes
unavailable.

Messages now sent to the receiving
program are stored on the receiving
machine (outside the program).

The receiving program becomes available
again.

The messages held on the receiving
machine are transferred to the program.

Note that messages were still sent, even
while the receiving program was
unavailable.

Assured Delivery

Product tour text Product tour animation

When all or part of a
business system fails, the
integrity of the information
in transit can be
compromised:

• information can be lost
if it is not safely
stored while en route

• information can be
duplicated if resent
unnecessarily

There is a need to assure
that information is not lost
in transit or duplicated.

This part of the animation shows how
WebSphere MQ provides assured
delivery.

Messages are sent to the receiving
program without using assured delivery.
The receiving program becomes
unavailable then available again, but the
sent messages are lost.

Messages are sent to the receiving
program without using assured delivery.
The sent messages are stored on the
receiver. The receiving program becomes
unavailable, then available again. The
sending program resends the same
messages which are now inadvertently
duplicated.

Messages are now sent using assured
delivery. Messages are stored on a queue
at the receiver and are therefore not lost.
Messages are sent once and once only and
are therefore not duplicated.

Scalability
Product tour text Product tour animation

As businesses expand their
operations (for example,
when customer demand grows)
they may require additional
systems. However, the time
and effort required to
connect a new system into an
existing network may be
significant, and may require
substantial downtime,
interrupting customer
service.

There is a need for a way to
integrate new systems with
minimal interruption to
service.

This part of the tour shows how
WebSphere MQ provides a scalable
messaging environment.

Three external programs are connected to
an existing business program, across the
business boundary. The three external
programs represent an increase in
business.

A second business program is added
alongside the existing one, inside the
business boundary.

Messages are passed from the three
external programs, to the first business
program. Additional messages
representing increased business are
passed to the second business program.

Introduction to messaging and queuing

This part of the tour introduces the concepts of messages and queues, shows how they
are used together, and includes a simple messaging scenario.

Messages
Product tour text Product tour animation

A message is used by
communicating programs to
exchange data.

The sending program
constructs a message
containing:

• the data to send
• a message header

(control information,
for example message ID
and return address)

This part of the animation shows how
WebSphere MQ messages are constructed
by the programs that send them.

The animation shows two programs
connected by a message channel. One
program needs to send a message to the
other program.

The sending program creates a message
wrapper for holding the message header
and data.

Product tour text Product tour animation

When the message has been
constructed by the program,
it is then ready to send.

The sending program places a header
containing the message ID, expiration and
return address into the message wrapper.

The sending program places the data to be
sent into the wrapper.

The completed message is now ready for
sending.

Queues

Product tour text Product tour animation

A queue is where messages
are stored until a program
receives them.

The sending program puts
messages onto the
appropriate queue.

When the receiving program
is ready, it gets its
messages from the queue.

This part of the animation shows how
WebSphere MQ uses queues to safely
hold messages in transit.

The animation shows a queue on the
receiving program.

The sending program sends a message to
the receiving program.

The message is transferred over the
connection, and is placed on the queue.

The sending program sends a second
message to the receiving program.

The second message is transferred over
the connection, and is placed on the queue
next to the first message.

The receiving program retrieves the first
message from the queue.

The receiving program retrieves the
second message from the queue.

Messaging topologies

Product tour text Product tour animation

Messaging topologies can
contain different
combinations of networked
machines and programs. A

This part of the animation shows how
WebSphere MQ messaging works on
different messaging networks.

Product tour text Product tour animation

queue is used for holding
messages received from
programs on the same
machine, or other machines.

Messages on the queue can
also be accessed by programs
on the same machine, or
other machines.

The animation shows two machines (a
sender and a receiver), with a program on
each. The machines are connected, and a
queue is created on the receiver.

A second program is added to the
receiver machine.

A second machine with a program is now
added to the sender side, and a
connection to the receiver machine is
established.

A program on the receiver places a
message onto its own queue.

A program on a sender places a message
on the receiver queue.

Two more machines with a program on
each are created, and connections
established to the receiver machine.

A program on the receiver machine
retrieves a message from its own queue.

A program on one of the new machines
retrieves a message from the queue.

A simple messaging scenario

Product tour text Product tour animation

The flexibility of WebSphere
MQ allows it to provide
messaging throughout the
business.

For example, shops can use
messaging to send orders to
headquarters.

Headquarters can use
messaging to send delivery
requests to depots.

Depots can use messaging to
confirm delivery dates with

This part of the animation shows how
WebSphere MQ allows programs running
in different parts of the business to
communicate.

The animation shows how messaging
might be applied in a simple business
scenario.

Headquarters is represented by a single
machine, with two programs on it.

Shops are represented by two machines,
with a program on each.

Product tour text Product tour animation

headquarters (which then
sends confirmations to
shops).

Depots are represented by two machines,
with a program on each.

The shop and depot machines each have
their own connection to headquarters.

Messages (for example orders) are placed
by the programs on the shop machines,
onto the queue on the headquarters
machine.

The programs on the headquarters
machine retrieve these messages from the
queue.

Queues are created on the depot
machines.

Messages (for example stock queries) are
placed by the programs on the
headquarters machines, onto the queues
on the depot machines.

The programs on the depot machines
receive these messages from their
respective queues.

Making queue locations transparent

Product tour text Product tour animation

A program can send messages
to a remote queue without
needing to know its
location, if a remote queue
definition has been defined
locally.

The remote queue definition
holds the target queue and
transmission queue names.
The local queue manager uses
this information to
determine where to send the
message.

By using remote queue
definitions, message

This part of the animation shows how a
WebSphere MQ queue manager uses
remote queue definitions to obtain the
location of queues before sending
messages.

A remote queue definition is created on
the sender machine. The definition points
to a local queue on the receiving machine.

A program on the sending machine wants
to send a message to a program on the
receiving machine.

The queue manager on the sender machine
obtains the name of the transmission
queue for the required destination, from its

Product tour text Product tour animation

channels and transmission
queues, any program can send
messages to any queue
without needing to know
where that queue is located.

remote queue definition.

The message is placed on the correct
transmission queue, and then transferred
over the message channel, to the local
queue on the receiving machine.

The program on the receiving machine
retrieves the message from its local queue.

The animation now shows how messages
might be sent to other remote queues on
the topology, without the sending queue
managers having to know explicitly,
where the remote queues are physically
located.

WebSphere MQ fundamentals

This part of the tour introduces the concepts central to WebSphere MQ messaging
environments. These include queue managers, MQ clients and messaging
communication.

Queue Managers
Product tour text Product tour animation

Each computer that hosts
queues requires a queue
manager. Each queue manager
has a unique name, and
administers the queues that
have been created on it
(these are known as local
queues).

Each local queue also has a
name which, along with the
name of its queue manager,
provides a unique address
where messages can be sent.

This part of the animation shows how
WebSphere MQ queue managers support
a typical business scenario.

Three machines have a program on each.

Three more machines each have a
program, a queue manager, and one or
more queues. The queue managers and
queues on these machines are:

• A queue manager QM_A, and two
queues Q1 and Q2

• A queue manager QM_B, and one
queue Q3

• A queue manager QM_C, and one
queue, Q4

Communicating with local queue managers
Product tour text Product tour animation

A program communicates with
a local queue manager using
a supported application
programming interface (API),
such as the WebSphere MQ
Message Queue Interface
(MQI), or the Java Message
Service (JMS).

Messages are constructed by
the program and sent to its
queue manager using API
calls.

If the target queue is
local, the queue manager can
put messages onto it
directly.

API calls are also used by
programs to retrieve
messages from their local
queues.

This part of the animation shows how a
WebSphere MQ API provides the
interface between a program and the
queue manager on the same machine.

A program on a machine that has a queue
manager places a message directly onto a
queue on that machine, using a
WebSphere MQ MQPUT call.

Another program on the same machine
retrieves the message from the queue,
using a WebSphere MQ MQGET call.

Communicating using WebSphere MQ Clients

Product tour text Product tour animation

A program that does not have
a queue manager on the same
machine uses API calls via a
local WebSphere MQ Client
instead.

The client communicates with
the remote queue manager
over a client connection.
This allows the program to
interact with the remote
queue manager as though it
were local.

This part of the animation shows how a
business might use WebSphere MQ
clients.

Three machines, each with a program, an
API, and a WebSphere MQ Client (but no
queue manager or queues) are the client
machines.

A machine with two programs, an API, a
queue manager, and two queues is the
server machine.

A client connection is created between
each of the client machines and the server
machine.

A program on one of the client machines
sends a message to the server machine.

Product tour text Product tour animation

The message is transferred over the client
connection to a queue on the server
machine.

One of the programs on the server
machine retrieves the message from the
queue.

The same program on the server machine
places a message on the same queue.

The message is transferred over the client
connection to the client machine.

Sending messages to remote queues

Product tour text Product tour animation

For a program to send
messages to a remote queue (a
queue on a different queue
manager), the following must
be available:

• A message channel
(connects the local and
remote queue managers)

• A transmission queue
(used to store messages
if the message channel
is unavailable)

The queue manager puts
messages onto the
transmission queue, which are
then sent to the associated
remote queue manager.

This part of the animation shows how a
program puts WebSphere MQ messages
onto a remote queue.

A message channel is created between a
queue manager on one machine (the
sending machine), and a queue manager
on another machine (the receiving
machine).

A transmission queue is created on the
queue manager on the sending machine.

A program on the sending machine
wants to send a message to the receiving
machine.

The sending program places a message
on the transmission queue.

The message is sent over the channel to
the local queue on the receiving
machine.

Making queue locations transparent

Product tour text Product tour animation

A program can send messages
to a remote queue without
needing to know its

This part of the animation shows how a
WebSphere MQ queue manager uses
remote queue definitions to obtain the

Product tour text Product tour animation

location, if a remote queue
definition has been defined
locally.

The remote queue definition
holds the target queue and
transmission queue names.
The local queue manager uses
this information to
determine where to send the
message.

By using remote queue
definitions, message
channels and transmission
queues, any program can send
messages to any queue
without needing to know
where that queue is located.

location of queues before sending
messages.

A remote queue definition is created on
the sender machine. The definition points
to a local queue on the receiving machine.

A program on the sending machine wants
to send a message to a program on the
receiving machine.

The queue manager on the sender machine
obtains the name of the transmission
queue for the required destination, from its
remote queue definition.

The message is placed on the correct
transmission queue, and then transferred
over the message channel, to the local
queue on the receiving machine.

The program on the receiving machine
retrieves the message from its local queue.

The animation now shows how messages
might be sent to other remote queues on
the topology, without the sending queue
managers having to know explicitly,
where the remote queues are physically
located.

Interacting with WebSphere MQ

This part of the tour introduces the WebSphere MQ administration interfaces, the
messaging interfaces available for programs to use.

Creating and administering WebSphere MQ objects
Product tour text Product tour animation

WebSphere MQ objects
such as queues and
channels can be
administered by using:

WebSphere MQ Explorer

WebSphere MQ Script

This part of the animation shows how
WebSphere MQ objects such as queues and
channels are created and managed.

The animation uses a single machine with two
programs, two APIs, a queue manager QM_A, and
a single queue Q1.

Product tour text Product tour animation

Commands (MQSC)

MQSC is a command line
based interface which
can be used to issue
commands interactively
or from scripts.

For example, the MQSC
command DEFINE (used to
define objects such as
queues), DISPLAY (used
to display object
attributes such as the
number of messages on a
queue) and CLEAR (used
to remove messages from
a queue).

The animation shows how these objects are
represented in the MQ Explorer (the queue
manager is highlighted in the navigation tree in
the left pane, and the queue is highlighted in the
pane on the right).

Another machine with a single program and an
API appears in the topology. This machine has a
queue manager QM_C and two queues, Q4 and
Q5. The animation shows how these objects are
represented in the MQ Explorer.

A command prompt window opens, the
command runmqsc QM_A is issued, and the
status message Starting WebSphere MQ
script commands appears.

A sequence of operations in the command prompt
window now shows how MQSC commands can
be used to define a queue, check the queue
current depth (number of messages are on the
queue), put a message onto the queue, check the
queue current depth, clear the queue, check the
queue current depth:

The command DEFINE QLOCAL(Q2)
CLUSTER(QMCLUS1) (create new queue)
appears in the command prompt window. The
new queue Q2 appears on the cluster. The status
message AMQ8006 WebSphere MQ queue
created (queue created) appears in the
command prompt window.

The command DISPLAY QLOCAL(Q2)
CURDEPTH (display current queue depth)
appears in the command prompt window. The
status message AMQ8409 Display queue
details appears in the command prompt
window, followed by the message QUEUE(Q2)
CURDEPTH(0) (zero messages on queue).

A message is now put onto queue Q1.

The command DISPLAY QLOCAL(Q2)
CURDEPTH (display current queue depth)
appears in the command prompt window. The

Product tour text Product tour animation

status message AMQ8409 Display queue
details appears in the command prompt
window, followed by the message QUEUE(Q2)
CURDEPTH(1) (1 message on queue).

The command CLEAR QLOCAL(Q2) (clear
queue), followed by the status message
AMQ8022 WebSphere MQ queue
cleared appear in the command prompt
window.

The command DISPLAY QLOCAL(Q2)
CURDEPTH (display current queue depth)
appears in the command prompt window. The
status message AMQ8409 Display queue
details appears in the command prompt
window, followed by the message QUEUE(Q2)
CURDEPTH(0) (zero messages on queue).

WebSphere MQ application development

Product tour text Product tour animation

Programs use WebSphere MQ
application programming
interfaces (APIs) to
communicate with queue
managers.

• Procedural languages
such as C use the
Message Queue Interface
(MQI).

• Object oriented
languages such as Java
use WebSphere MQ
classes.

MQI commands such as MQCONN
(to connect with queue
managers), MQOPEN (to open
queues for messaging), and
MQPUT (to send messages),
are provided by the MQI.

MQI commands are standard
across all supported
procedural languages,

This part of the animation shows how
applications interact with WebSphere
MQ.

The animation uses a single machine with
two programs, two APIs, a queue
manager QM_A, and two queues Q1 and
Q2.

A programming editor window containing
a sample of C code opens, and the sample
code in the editor window scrolls to
reveal examples of how the MQI
commands MQCONN (connect to queue
manager), MQOPEN (open queue), and
MQPUT (put message onto queue) are
used in C application messaging.

The programming editor window now
shows a sample of Visual Basic code
which scrolls to reveal how the MQI
MQPUT command is used in Visual Basic
application messaging.

Product tour text Product tour animation

including C, COBOL and
Visual Basic.

Java applications connect to
a queue manager by defining
an object of class
MQQueueManager, open a queue
for messaging by calling the
accessQueue() method, and
receive messages by calling
the get() method.

C++ applications use similar
objects and methods.

The programming editor window now
shows a sample of COBOL code which
scrolls to reveal how the MQI MQPUT
command is used in COBOL application
messaging.

The programming editor window now
shows a sample of Java™ code which
scrolls to reveal how the MQI MQPUT
command is used in Java application
messaging.

The programming editor window now
shows a sample of C++ code which
scrolls to reveal how the MQI MQPUT
command is used in C++ application
messaging.

Additional Topics

Using Queue Manager Clusters

This part of the tour introduces how queue manager clusters can be used to simplify
the administration of complex messaging networks and balance workload between
programs.

Simplifying queue administration
Product tour text Product tour animation

Administration of complex
messaging networks can become
demanding, particularly when
queues are regularly being
added or removed. This
administrative burden can be
reduced by using queue
manager clusters.

Queue managers in the same
cluster can exchange messages
without requiring remote
queue definitions,
transmission queues, or
message channels.

This part of the animation shows how a
WebSphere MQ queue manager cluster
reduces the administration overhead on a
messaging network.

Three machines each hold a queue
manager, multiple transmission queues,
and multiple remote queue definitions.
The queue managers on this network are
connected by multiple message
channels. The queue managers on this
complex network are not currently
clustered.

The queue managers are now clustered,
and all the transmission queues, remote

Product tour text Product tour animation

Information about all cluster
queues on the cluster are
held in a cluster full
repository.

When a queue manager in the
cluster wants to send a
message to a cluster queue,
it obtains the queue location
from the cluster full
repository. A cluster channel
can then be automatically
established.

Whenever a cluster queue is
added to, or removed from a
queue manager in the cluster,
the cluster full repository
is automatically updated.

queue definitions, and message channels
that were previously required are
removed, leaving only one or two local
queues on each queue manager. The
local queues are known as cluster
queues, and the messaging network has
already become much less complex.

A cluster full repository containing
information about the location of each
queue on the cluster is created on one of
the queue managers. The entries in the
repository map each cluster queue to its
owning queue manager, for example Q1
is on QM_A.

A program within the cluster now wants
to send a message to another program
within the same cluster.

The queue manager on the sending
machine obtains the name of the queue
manager where the target queue is
located, from the full cluster repository.

A cluster channel is automatically
created between the sending queue
manager and the receiving queue
manager, and the message is sent over
the cluster channel, to the cluster queue
on receiving queue manager.

The message is now retrieved from the
local cluster queue by the receiving
program.

Another queue is added to one of the
queue managers within the cluster.

The full cluster repository is
automatically updated with the queue
name and the owning queue manager
name.

The new queue has now become a
cluster queue and can easily be located
by other queue managers in the cluster.

Workload balancing between programs
Product tour text Product tour animation

If the volume of messages
being sent to a cluster
queue exceeds the processing
capabilities of the
receiving program(s), the
workload can be balanced by
defining cluster queues with
the same name, on other
queue managers in the same
cluster.

When messages are sent to a
cluster queue that has been
defined on multiple queue
managers, WebSphere MQ
automatically balances the
workload by distributing the
messages equally.

This part of the animation shows how
WebSphere MQ allows an increasing
amount of messaging traffic to be
balanced between the cluster queues on a
queue manager cluster.

A queue named Q5 is defined on queue
manager QM_B and queue manager
QM_C, within the same queue manager
cluster.

The full cluster repository is
automatically updated with the names of
the cluster queues and the names of their
queue managers.

These cluster queues are now available to
any queue manager within the cluster.

Programs on machines outside the cluster
now start sending multiple messages
destined for queue Q5, to one of the
machines within the cluster.

As the first message arrives, the cluster
queue manager on that machine obtains
the locations of the two queues named
Q5, from the full cluster repository.

Subsequent messages arriving for queue
Q5 can now be sent alternately to each Q5
queue, thus balancing the workload.

Publish/Subscribe Messaging

This part of the tour introduces the concept of publish/subscribe and the advantages of
using a publish/subscribe messaging environment.

An alternative style of messaging
Product tour text Product tour animation

This tour has described how
messages are sent directly
from one application to

This part of this animation demonstrates
the publish/subscribe style of messaging.

Product tour text Product tour animation

another. This style of
messaging is known as point-
to-point messaging.

An alternative style of
messaging, where applications
communicate indirectly via a
broker, is known as
publish/subscribe.

A publisher sends a message
about a topic (for example,
stock prices) to the broker.

The broker passes the
published message to the
subscribers, applications who
have registered interest in
the topic.

Publishers and subscribers
are unaware of each others'
existence.

One program sends a message directly to
another program, illustrating the point-
to-point style of messaging.

A broker is now created and the two
programs connect to it rather than each
other. The sending program, now called
a publisher, sends a message to the
broker. The topic of the message is
Stocks.

The broker recognizes that Stocks is a
registered topic of interest of the
receiving program, now called the
subscriber. The message is passed by the
broker to the subscriber.

Distributing messages on demand

Product tour text Product tour animation

Publish/subscribe messaging
provides flexible
distribution of messages
between applications.

• An application can
publish information
about one or more chosen
topics, and a topic can
have multiple
publishers.

• An application can
subscribe to one or more
chosen topics, and a
topic can have many
subscribers.

The broker can distribute
messages from many
publishers, on many topics,
to many subscribers.

This part of the animation shows how
using a publish/subscribe messaging
model can increase the flexibility of
message distribution.

Two more publishers are connected to
the broker. Each has one or more topics
that they publish messages about.

Two more subscribers are connected to
the broker, each subscribes to one or
more topics of information.

Messages are now sent by the publishers
to the broker. For each message, the
broker recognizes the topic and forwards
a copy of the message to each subscriber
that is interested.

Multiple brokers

Product tour text Product tour animation

A publish/subscribe messaging
environment can contain
multiple brokers, each with
their own group of publishers
and subscribers.

Brokers are arranged in a
hierarchy to minimise the
number of connections
required.

When a broker receives a
publication on a topic that
other brokers have registered
interest in, copies are sent
via the connection hierarchy
to these other brokers.

This part of the quick tour shows how
multiple brokers can be arranged in a
publish/subscribe messaging
environment.

Two more brokers are now added to the
messaging network. Each has its own
publishers and subscribers. Broker 1
is connected to both Broker 2 and
Broker 3.

A message is published to Broker 2.
Broker 3 passes the message to both
of the other two brokers who pass the
message to their subscribers that are
interested in the message's topic.

WebSphere MQ Publish/Subscribe

Product tour text Product tour animation

Publish/subscribe messaging
is supported by WebSphere MQ,
which can provide a simple
multiple broker service.

Publishers send messages to
stream queues, using the APIs
described earlier in this
tour, or by using JMS as
described in the next
section.

The brokers examine each
publications topic, and:

• Forward copies of the
publication to their
subscribers via their
local queue

• Forward copies to other
brokers interested in
the topic, via their
stream queue, who then
forward copies to their

This part of the animation shows how
brokers are used in a WebSphere MQ
messaging environment.

The animation now changes to a
WebSphere MQ messaging topology
containing clients and queue managers
with their local queues, programs and
remote queue definitions.

Appended to each of the queue
managers is a broker, each broker has its
own stream queue.

A message is sent from a publisher
program to its local broker. The broker
forwards a copy of the message to a
local subscriber program via a local
queue. It also passes a copy of the
message to the stream queue of a second
broker interested in the message topic.
The message is then forwarded by the
second broker to the subscribing
programs that are local to it via the local

Product tour text Product tour animation

subscribers. queues.

WebSphere Business Integration Message Broker

Product tour text Product tour animation

The basic publish/subscribe
service provided by WebSphere
MQ can be enhanced by using
an additional IBM product,
WebSphere Business
Integration Message Broker.

This product provides a more
powerful message broker
solution driven by business
rules. Messages are formed,
routed, and transformed
according to these rules,
which can be defined by an
easy-to-use graphical
interface.

For further information on
this product visit ibm.com

There is no animation for this section of
the tour.

WebSphere MQ and the Java™ Messaging Service

This part of the tour introduces how WebSphere MQ can use JMS in both point-to-
point and publish/subscribe messaging environments.

WebSphere MQ and the Java Message Service
Product tour text Product tour animation

Java programs can be written
to access WebSphere MQ
through the open standard
Java Message Service (JMS).

Programs using JMS do not
directly specify queues or
queue managers. Instead they
use generic objects such as
Destination and
ConnectionFactory.

This part of the animation shows how
WebSphere® MQ interacts with the
Java™ Messaging Service.

The animation uses a single machine
with two programs, two APIs, a queue
manager QM_A, and two queues Q1 and
Q2.

A program editor window opens and a
Java code example shows how the

Product tour text Product tour animation

Mappings to WebSphere MQ
objects are defined in a Java
Naming Directory Interface
(JNDI) namespace, using the
command line based JMS Admin
tool.

Destination and
ConnectionFactory objects are
invoked.

A command prompt window opens, and
the JMSAdmin command starts the JMS
Admin tool.

A JMS admin DEFINE command is
issued to define an entry for the
connection factory in the JNDI (Java
Naming Directory Interface). This
connection factory maps to queue
manager QM_A

A JMS admin DEFINE command is
issued to define an entry for the
destination in the JNDI. This destination
maps to Q1.

The Java code in the program editor
window runs, the JMS object definitions
are imported from the JNDI and a
message is put onto Q1.

JMS and point-to-point messaging

Product tour text Product tour animation

JMS programs can be used with
both point-to-point and
publish/subscribe messaging
models (for an explanation of
these terms, see the Publish
Subscribe section).

For point-to-point messaging
the JNDI namespace holds
mappings to queues. JMS
programs import this
information at runtime to:

• Put messages on queues
• Get messages from queues

This section of the animation shows how
mappings are defined in the JNDI
namespace for the point-to-point style of
messaging.

The Java™ code in the editor window
runs again, the JMS objects definitions
are imported from the JNDI and a
message is put to Q1 on QM_A and
retrieved from it.

The connection factory and destination
entries held in the JNDI namespace are
used by WebSphere® MQ to determine
directly where messages should be sent
to and retrieved from.

JMS and publish/subscribe messaging

Product tour text Product tour animation

JMS supports
publish/subscribe messaging
services such as that
provided by WebSphere MQ
Publish/Subscribe.

The JNDI namespace holds
mappings to the queue manager
and queues each message
broker uses, and the topics
that publishers and
subscribers are interested
in.

JMS programs import this
information at runtime to:

• Publish messages to
brokers

• Receive messages on
topics

This section of the animation shows how
mappings are defined in the JNDI
namespace for the publish/subscribe
style of messaging.

The diagram now changes to show the
publishers, subscribers, brokers and
stream queues introduced in the
Publish/Subscribe Messaging section of
this tour.

Additional mappings are defined in the
JNDI namespace, these mappings point
to the stream queue the broker uses to
receive messages and the local queues it
uses to publish messages. Mappings are
also defined in the JNDI namespace
about the topics of information the
broker has registered interest in.

The Java™ code in the editor window
runs again, the JMS object definitions
are imported from the JNDI and a
message is then put onto the broker's
stream queue. The broker forwards
copies of the message to a local
subscriber and to another broker that has
registered interest in the message topic.
The other broker then forwards copies of
the message to it's local subscribers.

WebSphere MQ with z/OS

This part of the tour introduces the concepts unique to the z/OS platform including
shared queues and shared channels.

Messaging between z/OS and other platforms
Product tour text Product tour animation

WebSphere MQ for z/OS extends
the benefits of integration,
asynchrony, assured delivery
and scalability to z/OS
applications.

The MQ concepts and objects

This part of the animation shows
additional concepts which are unique on
the z/OS platform are described in this
section.

The animation labels two of the three
existing system as z/OS systems.

Product tour text Product tour animation

described previously in this
tour are equally applicable
to the z/OS environment. This
section describes some
additional concepts which are
unique on the z/OS platform.

Messages are sent between all three
systems to show that messaging is
unaffected.

The animation shows that WebSphere
MQ can be used on z/OS systems
exactly as previously described in the
tour. Messages are sent and retrieved by
queue managers on z/OS systems.

Messaging and z/OS sysplexes

Product tour text Product tour animation

Multiple z/OS systems can be
grouped together to form a
sysplex.

A sysplex uses one or more
coupling facilities to
provide high-speed caching,
list processing, and locking
functions.

WebSphere MQ for z/OS can
group together queue managers
within a sysplex to form a
queue-sharing group.

Queue managers within a
queue-sharing group can
exchange messages via the
coupling facility, reducing
the need for message
channels.

This part of the animation shows how a
z/OS sysplex reduces the administration
overhead on a messaging network.

The two z/OS queue managers are now
grouped in a sysplex. A coupling facility
belonging to the sysplex is created
between the two z/OS machines.

The two z/OS machines in the sysplex
are now put in a queue-sharing group.

A message is sent from a program on
one of the z/OS queue managers to a
program on the other z/OS queue
manager. Because both queue managers
are in the same queue-sharing group, the
message is transported via the coupling
facility without the need for the message
channel between the queue managers.
This message channel is removed from
the diagram.

Sharing queues between queue managers

Product tour text Product tour animation

Using MQ for z/OS, local
queues can either be defined
as private and hosted by a
queue manager (as shown in
earlier sections of this
tour), or shared and hosted
by the coupling facility.

This part of the animation shows how
queues can be shared by queue managers
within a queue-sharing group.

In the animation a shared queue
definition, SQ_1, is placed in the

Product tour text Product tour animation

Shared local queues can be
accessed and administered by
any queue manager within the
queue-sharing group.

Messages destined for shared
local queues can be delivered
via any queue manager within
the queue-sharing group.

Any queue manager within the
queue-sharing group can
retrieve messages from a
shared local queue

If shared local queues are
used for all inbound
messages, the need for
private local queues is
reduced.

coupling facility.

Two messages are sent from a program
on queue manager QM_A, outside the
sysplex, to the shared queue SQ_1. The
remote queue definition for SQ_1
directs the first message to queue
manager QM_B, which then directs it
onto the shared queue. The remote
queue definition for SQ_1 is then
changed so that the second message is
directed to queue manager QM_C, which
then also directs it onto the shared
queue.

The first message on the shared queue is
retrieved by a program on QM_B. The
second message on the shared queue is
then retrieved by a program on QM_C.

The local queues on QM_B and QM_C,
and the remote queue definitions for the
queues on QM_B and QM_C are now
removed as they are no longer needed,
leaving the shared queue, SQ1. The
messaging network has now become less
complex.

Sharing inbound message channels

Product tour text Product tour animation

Sysplexes can be configured
to use a load balancing
facility so that inbound
connections are allocated to
the least busy system.

Inbound message channels can
be configured to connect to
the queue-sharing group using
the load balancing facility.
Messages destined for shared
local queues can then be
automatically routed via any
queue manager in the queue-
sharing group.

This part of the animation shows how a
load balancing facility and shared
message channels can be used by a
queue-sharing group.

In the animation a load balancing facility
appears within the sysplex, with
connections from it to each of the three
systems in the animation. In queue
manager QM_A, (which is outside the
sysplex), a transmission queue QSG1
and a message channel to the load
balancing facility are added. The remote
queue definition for SQ1 is modified to
route messages via this new message

Product tour text Product tour animation

Using this configuration the
need for inbound message
channels to specific queue
managers is reduced.

channel.

Two messages are sent from a program
on queue manager QM_A destined for
SQ1. The first message is routed to the
load balancing facility, which chooses to
direct the message to queue manager
QM_B, which then directs the message to
shared queue SQ1. The second message
is also routed to the load balancing
facility, which chooses to direct it to
queue manager QM_C, which then
directs it to shared queue SQ1.

Now that the inbound message channels
to the specific queue managers within
the queue-sharing group are not
required, they are removed.

Sharing outbound message channels

Product tour text Product tour animation

Outbound message channels
and their transmission
queues, can be configured to
be shared, and hosted by the
coupling facility.

Using this configuration,
the need for outbound
message channels defined on
specific queue managers is
reduced.

When a message is passed to
a shared transmission queue,
WebSphere MQ selects the
least busy queue manager to
establish the message
channel.

This part of the animation shows how
outbound message channels can be
shared by queue managers within a
queue-sharing group.

A transmission queue now appears in the
coupling facility for messages destined
for QM_A outside the sysplex.

Now that the outbound message channels
to the specific queue managers within the
queue-sharing group are not required,
they are removed.

Programs on each of the two queue
managers within the queue-sharing group
now send a message destined for a
remote queue on queue manager QM_A,
outside the sysplex. The messages are
passed to the shared transmission queue
hosted on the coupling facility.

For the first message, the coupling
facility establishes a message channel to
queue manager QM_A via queue manager

Product tour text Product tour animation

QM_B. For the second message, the
coupling facility establishes a message
channel to queue manager QM_A via
queue manager QM_C. Both messages are
delivered safely to the remote queue.

Using queue-sharing groups to improve availability

Product tour text Product tour animation

If a queue manager within a
queue-sharing group becomes
unavailable (for example if
an unplanned outage occurs),
messaging activity is
automatically diverted to the
remaining queue managers.

This part of the animation shows how
queue-sharing groups can improve the
availability of a messaging network.

Two messages are put from a program
on QM_A to the shared queue hosted by
the coupling facility. They are delivered
via the shared channel to the load
balancing facility, then to the shared
queue via QM_B.

QM_B becomes unavailable, more
messages are then sent from QM_A. The
load balancing facility ensures that the
message is still delivered to the shared
queue by directing it via QM_C.

QM_B becomes available again and
applications on both QM_B and QM_C
retrieve messages from the shared
queue.

Using queue-sharing groups to increase performance

Product tour text Product tour animation

When increased performance is
needed, queue-sharing groups
make adding extra processing
power easy.

• Because shared queues
can be accessed from any
queue manager in the
group, additional
applications can be
started on any z/OS
system that has spare

This part of the animation shows how
queue-sharing groups are an easy way of
increasing processing power.

Many messages are sent to the shared
queue, via the load balancing facility.
These messages are retrieved by
programs on QM_B and QM_C for
processing, but a backlog of messages
builds up on the shared queue.
Additional programs then appear on
both QM_B and QM_C. All these

Product tour text Product tour animation

capacity.
• When new queue managers

are added to the queue-
sharing group, they will
automatically inherit
the shared objects
defined for the queue-
sharing group.

Workload will automatically
be balanced across the queue-
sharing group.

applications now retrieve messages from
the shared queue increasing the speed at
which all the messages are dealt with,
and clearing the backlog.

Two additional queue managers are
added to the queue-sharing group. The
remote queue definitions that were
defined on the existing queue managers
within the queue-sharing group
automatically appear on the new queue
managers.

Many messages are sent from QM_A to
the shared queue. WebSphere MQ
automatically balances the workload
across all four queue managers and
applications on each of these queue
managers retrieve the messages from the
shared queue.

