
IBM Software Group - Tivoli

© 2004 IBM Corporation

Best practices for managing the
performance of composite applications
John Knutson
Market Manager - Web Services Management
IBM Tivoli
Knutson@uk.ibm.com

Last updated: Friday, 19 May 2006

IBM Software Group - Tivoli

© 2005 IBM Corporation2

Agenda
Introduction

Architecture & Design Best Practices

Development Best Practices

Testing Best Practices

Deployment Best Practices

Management Best Practices

Conclusion

IBM Software Group - Tivoli

© 2005 IBM Corporation3

Composite Application Performance
Performance and Availability problems . . .
– have moved to center stage

no longer simply an issue with firm’s internal users
affects customers, revenue, market share, brand equity

– but are typically . . .
discovered late
created early

Life-cycle Best Practices are essential to . . .
– Uncovering latent problems that appear only under load conditions
– Making better informed configuration decisions
– Ensuring applications meet end user requirements for response time

and availability on day one
– Ensuring scalability to meet unexpected traffic peaks & future growth
– Identifying thresholds to be used for production monitoring
– Avoiding all those business impacts

IBM Software Group - Tivoli

© 2005 IBM Corporation4

Created Early …

INCEPTION

iteration 1

ELABORATION TRANSITION

iteration 7

CONSTRUCTION

iteration 2 iteration 4 iteration 5 iteration 6iteration 3

Planning

Requirements

Architecture

Design

Implementation

Integration

Test/Assessment

10% 30% 50% 10%

RUP

PRODUCTIONTEST/
ASSESSMENT

IMPLEMENTATION / INTEGRATION

IBM

SD

Profe ssional Workst ation 60 00

PRO

SD

Prof essional Wor kst ation 6 000

PRO

SD

Profe ssional Workst ation 60 00

PRO

"release"

"catch up"

Version

(EAR file)

Promote into
Production

(EAR file)

TEST
ENVIRONMENT

PRODUCTION
ENVIRONMENT

DEVELOPMENT
ENVIRONMENT

Continuous Daily Weekly Quarterly

Bean
Developer

Web
Developer

Graphics
Developer

SD

Prof essional Wor kst ation 6 000

PRO

DataBase
Developer

"catch up"

"release"
"catch up"

"release"

"release"

"catch up"
IBM

Monthly

Design Decisions

Implementation Decisions
Deployment
Decisions

Last Chance To
Catch & Prevent

latent
Production
Problems

“For every phase in which a
defect is left beyond the point
of detection, it becomes 80 to
1,000 times more expensive
to remove.”

Gartner Aug-02

IBM Software Group - Tivoli

© 2005 IBM Corporation5

. . . Created Early … IBM Study: “factors inhibiting
performance & scale”

IBM Study:
Note: based on 16 case studies of
WebSphere "performance critical
situations." (Nov 2002)

SOURCE: Vanderham, Tim; IBM Corporation, presentation for session M21 at the
WebSphere Technical Exchange 2002, Las Vegas, NV, Nov-2002.

IBM Software Group - Tivoli

© 2005 IBM Corporation6

… Discovered Late
Gartner asked, “What happens when

you roll out a new application?”

12%

15%

9%7%

9%

34%
14%

“We cross our fingers and toes.”

“It meets all tested
and expected response
time measurements;

users are happy.”

“Our IT department is
overwhelmed with calls.”

“We just add bandwidth to get rid
of the problem.”“Our company loses revenue,

time and resources.”

“Our tools did not identify
what was wrong.”

“We hear ‘it worked fine in testing’.”

Theresa Lanowitz & Debra Curtis, Application Deployment: Tearing Down the Walls
between AD and Operations, Gartner Group Presentation, Oct-2002.

IBM Software Group - Tivoli

© 2004 IBM Corporation

Architecture & Design

IBM Software Group - Tivoli

© 2005 IBM Corporation8

Architecture & Design Phase
Requirements gathering
– Comprehensive

• Best/worst case scenarios
– Detailed business requirement

• Projects work best when this is done!
Application Types
Suitable architectures
Composite Application environments
– Web Services and SOA
– J2EE
– Asynchronous Messaging
– Brokers and ESBs
– Legacy Systems

IBM Software Group - Tivoli

© 2005 IBM Corporation9

Application Types
5 typical composite application types
– Online trading

– B2B

– Online shopping

– Information Sites

– Self Service Portals

IBM Software Group - Tivoli

© 2005 IBM Corporation10

Online Trading
High complex transaction
volumes

Typically connected to a
legacy system

High security

Low search traffic

Time sensitive information

Dramatic volume variation

Long session duration

Limited Caching potential -
requires a large test environment
– Lots of clients and data - to ensure

test data is not cached

High security
– Large number of pages using SSL

– Federated Identity

– Consider a SOA Appliance

IBM Software Group - Tivoli

© 2005 IBM Corporation11

B2B Trading
Low utilization

Constant traffic volumes

Few complex transactions

High interaction with legacy
systems
– Often multiple back-ends

Often nbr. Logged-in users >
nbr. of requests

Medium caching potential

Medium security
– Site and business dependent

– Federated Identity

May use web services
– Requests and responses may

contain large amounts of data

– Session sizes can be very large

IBM Software Group - Tivoli

© 2005 IBM Corporation12

A multi-tier Composite J2EE
Architecture Pattern

Client Tier:
User Interface

(HTML,Applets,Scripts)

Presentation Tier:
(JSP,Servlets)

Business Tier:
Business logic

(EJB, BPEL and other Business Objects)

Integration Tier:
Resource adapters legacy, external systems,

ESB, JMS, JDBC, Connectors, Legacy

Resource Tier:
Databases, legacy resources

Appliance Tier:
(Web Services,
XML, HTML)

IBM Software Group - Tivoli

© 2005 IBM Corporation13

A simple J2EE Architecture Pattern
Tailor your environment to your business requirements

Each logical J2EE tier on a single machine or

consolidate the presentation and business tiers

+ easier to design

- scalability is limited

- enterprise business logic is not protected behind two firewalls

IBM Software Group - Tivoli

© 2005 IBM Corporation14

A clustered J2EE Architecture Pattern
Choose a platform that supports clustering on each major tier

Goals are to allow scalability through adding hardware to the cluster
needing power

Increasing availability by adding redundancy

Clustering options:
– “Vertical” scaling (Scaling up)

• The addition of computational and system resources, e.g. adding CPU’s or
memory to a single machine

– Horizontal” scaling (Scaling out)
• The server application is distributed across more than one machine instead of

replacing an existing machine with a more powerful model

IBM Software Group - Tivoli

© 2005 IBM Corporation15

A SOA Architecture Pattern
Adopt SOA Principles, e.g. Service
Contract, Service Reusability

Implement an ESB for loose
coupling and service abstraction

Each component eligible for clustering

Some SOA Anti-Patterns

Overly granular business services

Remote access to local services

Overuse of XML

Use of loosely coupled services
where tight coupling is required

Presentation
Server

Edge
Firewall

XML / SOA
Appliances App

Server

Inner
Firewall

ESB
Server

Process
Server

DB
Server

Web Service
client

Legacy
Server

Portal
Server

HTML client

IBM Software Group - Tivoli

© 2005 IBM Corporation16

SOA Best Practices – Chatty Services
Problem
– Multiple Web services or a single

service called multiple times,
each call passing a tiny piece of
data

– Fine-grained service operations

Consequences
– Degradation in performance and

costly development. Extra
effort/knowledge to aggregate
these too finely grained

Solutions
– Re-factoring the design to

combine individual pieces of
data in one document

– Define services that map back
to business goals using a good
service modeling technique to
determine appropriate coarse-
grained services

IBM Software Group - Tivoli

© 2005 IBM Corporation17

SOA Best Practices – Verify application cost structure
Problem
– Application design not optimized

for IT infrastructure

Consequences
– Performance problems may arise

from accessing slower services
first

Solutions
– Customer information search

should use local databases,
corporate mainframes and, as a
last resort, third-party (paid)
service

– Monitor service flows and validate
that Execution Patterns match Use
Cases

IBM Software Group - Tivoli

© 2005 IBM Corporation18

SOA Best Practices – Understand cost of XML
Solutions
– Use XSLT to reduce message

content

– Use SOA / XML acceleration
appliance

Problem
– Large XML may take excessive

cpu resource to parse and
network bandwidth to transmit

Consequences
– Longer response times or extra

cost for more powerful
infrastructure

IBM Software Group - Tivoli

© 2004 IBM Corporation

Development

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

J2EE Development Best Practices
Use appropriate frameworks
Static vs. Dynamic Pages
Servlets
Java Server Pages
Logging
HTTP Sessions
Enterprise Java Beans
Database Connections
Object pools
Efficient Java Code

Follow links to Backup for details

IBM Software Group - Tivoli

© 2005 IBM Corporation21

Rational IDE plus IPOT

ITCAM for WS

Profile your Applications
Provide detailed view of an applications behaviour
– Down to the method level
– Which transactions/methods use the most CPU
– Which packages allocate most object
– Bottleneck analysis
– Let developers debug problems using real production data

ITCAM for WebSphere / RTT

ITCAM Basic for WebSphere

Trace information from
ITCAM for WS can be

exported directly to
developers using IBM

Performance
Optimization Toolkit

Trace information from
ITCAM for WS can be

exported directly to
developers using IBM

Performance
Optimization Toolkit

IBM Software Group - Tivoli

© 2004 IBM Corporation

Deployment

IBM Software Group - Tivoli

© 2005 IBM Corporation23

Deployment Best Practices
The HA Pattern

N-tier Model

Vertical and Horizontal Scaling

Pool funneling

JVM Heap

Http Server Patterns, Session state and Clustering

Other Web Application Component Issues

Monitoring

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Pool Funneling
Create reducing thread pool funnel
Minimize the size of thread pools

100
20

10

HTTP Listener
Threads

Servlet/JSP
Thread Pool

Database Connection
Pool

Requests

Servlet Threads
Requesting DB
Connections

Dynamic Pages

Static Pages

Queue Queue

Web
Browser

Plug-in

HTTP
Server

Application Server (JVM)

Application
Database

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

JVM Heap
Set heap size large enough so that
it is big enough enough to handle
peak throughput
– Minimizes number of garbage

collections

Set heap size small enough so that
garbage collection does not run
for long periods
– Application gets no CPU time

during garbage collection

Minimum heap should be 25-50%
of maximum

Total sum of all JVM heaps on
server less than total physical
memory

IBM Software Group - Tivoli

© 2004 IBM Corporation

Testing

IBM Software Group - Tivoli

© 2005 IBM Corporation27

Performance Testing
Why bother?

Who / what’s involved?

Types of testing
– Unit

– System

– Load

– Stress

Application characteristics
and testing

Performance and testing

IBM Software Group - Tivoli

© 2005 IBM Corporation28

Why Test?

Cost to Fix

D
ev

el
op

m
en

t

Te
st

in
g

D
ep

lo
ym

en
t

P
ro

du
ct

io
n

Cost

Ensures quality

Maintains corporate image

Improves productivity

Reduces development costs

Increases time available for
new development

IBM Software Group - Tivoli

© 2005 IBM Corporation29

Overall Best Practices
Plan for and fund Performance Testing

Adopt an end-to-end – Composite Application - mindset

Control as many variables as possible that can affect
your performance measurements
– Start with well-designed test plan & scripts

– Begin with a simple test environment, then systematically work
up to increasing complexity and load

– Test/Diagnose/Tune/Document all along the way

IBM Software Group - Tivoli

© 2005 IBM Corporation30

Overall Approach Methodology

A “light methodology” for
repeatable services

Applied as a guide, not a
bible – easily adapted as
needed

Framework for best
practices, consulting tools
& templates

Provides a project
management framework

PROJECT MANAGEMENT

TEST/DIAGNOSE/TUNE

1. LAUNCH
PROJECT

2. ANALYZE
APPLICATION

3. CONFIGURE
TEST

ENVIRONMENT

4. CREATE
TEST PLAN &

SCRIPTS
5. RUN TESTS

6. ANALYZE
RESULTS

7. RESOLVE
PERFORMANCE

PROBLEMS

8. CLOSE OUT
PROJECT

Stress

Testing

Load

Testing

Single Path, Single User

Optimization

Application

Infrastructure
Baseline

Application
Baseline

IBM Software Group - Tivoli

© 2005 IBM Corporation31

Performance Testing Checklist
Who should be involved?

Where should it be done?

What do I need to know to get started?

Has the application been System Tested?

Load Testing

Stress Testing

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Test monitoring tools
Customer (End-User) Experience
– For SLA preparation

WebSphere Application Server
– Statistical, application trace

Operating System Resources
– For Load and SUT systems

Database Resources
– From DB and App Server perspectives

ESB and Message Queue Resources
– Queues, Channels and Brokers

Legacy Systems
Application Systems

IBM Software Group - Tivoli

© 2004 IBM Corporation

Management Best Practices

IBM Software Group - Tivoli

© 2005 IBM Corporation34

Best Practice - Spot trends before any impact to end users
Problem:
– Users report response-time

problems before you know
about them

– Caught out by changes in
usage patterns

Solution:
– Generate synthetic transactions

to identify problems proactively
– Historical and future trend

analysis

Dashboard shows
transactions with a

availability or response
time problem

Click to see response time
trend

IBM Software Group - Tivoli

© 2005 IBM Corporation35

Best Practice – Use appropriate monitoring granularity

Problem:
– Need method-level tracing to

determine cause of problem

– Method-level tracing too
expensive to run continuously

Solution:
– Choose tools that change

monitoring levels on-the-fly
• No need to recycle app server
• Scheduled, triggered, targeted

Change monitoring levels on-
the-fly, without having to

stop/start the application server

Change monitoring levels on-
the-fly, without having to

stop/start the application server

IBM Software Group - Tivoli

© 2005 IBM Corporation36

Best Practice – Monitor Logical views
Problem:
– Too much detail – “can’t see

the wood for the trees”

– New systems added frequently
– can’t keep up

Solution:
– Create logical workspaces /

dashboards

– Associate server groups with
logical workspaces

Change monitoring levels on-the-fly, without having to stop/start the application server

Service Views Infrastructure Views Application Views Business Views

IBM Software Group - Tivoli

© 2005 IBM Corporation37

Messaging – Key to Composite Application performance

Message
Producing
Application(s)

AA

BB

Message
Consuming
Application(s)

Q Depth or
Time in Q

Channel
Performance

IBM Software Group - Tivoli

© 2005 IBM Corporation38

WebSphere MQ – A Management Checklist
Monitoring
– WMQ health and status
– Channel Status and performance
– Queue Status and performance
– Queue Sharing Group Status
– Availability of all Queue

Managers in the enterprise.
– Queue/channel thresholds
– Alerts and Real-time and

historical reports

Configuration
– Discover deployed WMQ

objects

– Model and build Queue
Managers and deploy
throughout the enterprise

– Configure all WMQ assets in
the enterprise

– Identify WMQ configuration
discrepancies

– Automated repair of error
conditions

– Recovery of WMQ
Environments

IBM Software Group - Tivoli

© 2005 IBM Corporation39

Best Practice – Detect “Delayed" Messages
Problem:
– "Delayed" messages and

“Queue Full” may indicate
message consumers are not
performing as expected or that
message load is too great and
additional instances should be
created or started

Solution:
– Monitor how long messages

have been resident on queues
– Set thresholds on queues

serving critical applications

Dashboard shows status
and alerts for “Full”

Queues or “Delayed”
messages

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Production monitoring tools
Customer (End-User) Experience
– End-To-End performance monitoring
– Component decomposition
J2EE Servers
– Instrumentation (class loader hooks)
– IBM API (PMI Application Server hooks) or JMX
– JVM Profiler (Java hooks)
– Application Server Log
ESB components
– Queues, Message and Channels
– Message Brokers, Flows etc
Legacy and Application Systems
– CICS, IMS, SAP etc
Database Resources
– Connection Pools, Locks, Table Space etc
Operating System Resources
– Memory, CPU utilization etc.

IBM Software Group - Tivoli

© 2005 IBM Corporation41

Multiple Customized Composite Application Management Views Multiple Customized Composite Application Management Views

Integration: Extensive Tivoli Enterprise Portal (TEP) workspace support

J2EE Workloads Legacy Systems Web Services

End to End Transactions ESB Infrastructure Databases

IBM Software Group - Tivoli

© 2005 IBM Corporation42

Services
atomic and composite

Operational Systems

Service Components

Consumers

Business Processes
process choreography

Service Provider
Service C

onsum
er

SAP Custom
Application

OO
ApplicationISV

Custom Apps

Platform Supporting Middleware

MQ DB2Unix OS/390

Outlook

SCA Portlet WSRP B2B Other

Integrated Console

• Allow for seamless views
across different layers of
abstraction.

SOA
Management

Application
Monitoring

Resource
Monitoring

Resource
Monitoring

Transaction
Tracking

Integrated Reporting
• Generate enterprise-

wide service level
reporting

A Complete View Of Composite Application Management

IBM Software Group - Tivoli

© 2005 IBM Corporation43

ITCAM Family: Composite Application Management Solutions

ITCAM for Response Time Tracking (RTT)
Proactively recognizes and isolates transaction performance problems using robotic
and real-time techniques and visualizes the transaction’s path through your
application systems, including response time contributions of each step. Supports
service level management through direct feeds to Tivoli Service Level Advisor.

ITCAM for SOA
Discover, monitor, track and apply controls to web service messages. Helps IT
Operators identify problems at web services layer, and provides automation
capabilities for service mediation. Eclipse-based console adds subject matter expert
views. Feeds Tivoli Service Level Advisor to support service-level management.

ITCAM for WebSphere
In depth analysis of J2EE applications to identify root cause of application
problems. Detailed memory leak analysis for J2EE applications, and the ability to
trace individual transactions that span into CICS and IMS

OMEGAMON XE for Messaging
Messaging management solution that measures messaging performance,
automates operational tasks, and provides problem determination for MQ
environments and SOA environments in which MQ messaging is the backbone of a
SOA implementation.

IBM Software Group - Tivoli

© 2005 IBM Corporation44

IBM Tivoli Monitoring
Ability to span your Composite Application environment

Best Practice
Library

Business
Integration

Web
Infrastructure

Messaging &
Collaboration

Platforms Databases Applications

Tivoli Monitoring Services

Lotus
Domino

Exchange

Unix

Windows

Linux

OS/400

DB2
(Z & Distributed)

Oracle

Informix

SAP
MySAP.com

Siebel
eBusiness
Applications

WebSphere
MQ

WebSphere
Message
Broker

WebSphere
(Z & Distributed)

IIS

iPlanet

Apache

WebLogic

SQL

.NET (8 appls)

CICS

IMS

Z/OS
Sybase
(New)

Citrix

VMWare

Web Services
Cluster(s)

40+ Custom
Packages
available for
modification

Examples:
Cisco Works
S1
Tuxedo
etc . . .

IBM Software Group - Tivoli

© 2005 IBM Corporation45

Summary
Adopt full life cycle approach
– Model, Assemble, Test,

Deploy, Manage

Get help where necessary
– Best Practices – Choose them

wisely – some decay rapidly

– Monitoring Tools

– Consulting and training

IBM Tivoli web site
– http://www-

306.ibm.com/software/tivoli/

http://www-306.ibm.com/software/tivoli/
http://www-306.ibm.com/software/tivoli/

IBM Software Group - Tivoli

© 2005 IBM Corporation46

Thank You!

Questions?

IBM Software Group - Tivoli

© 2004 IBM Corporation

Resources and Links

Application Types

Design Best Practices

Development Best Practices

Deployment Best Practices

Backup Material

IBM Software Group - Tivoli

© 2004 IBM Corporation

Resources and Links

IBM Software Group - Tivoli

© 2005 IBM Corporation49

Best Practice Summary
Best Practice is an ongoing learning experience
Plenty of resources
– developerWorks - IBM's resource for developers
– WebSphere Resource usage
– IBM Tivoli Open Process Automation Library (OPAL)
– http://developer.java.sun.com/
– http://www.theserverside.com/
– http://www.jguru.com
– Patterns

• http://developer.java.sun.com/developer/technicalArticles/J2EE/patter
ns/

• IBM Patterns for e-business
– Anti-patterns

• http://www-128.ibm.com/developerworks/webservices/library/ws-
antipatterns

http://www-106.ibm.com/developerworks/
http://www7b.software.ibm.com/wsdd/zones/bp/background.html
http://catalog.lotus.com/wps/portal/topal
http://developer.java.sun.com/
http://www.theserverside.com/
http://www.jguru.com/
http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/
http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/
http://www-128.ibm.com/developerworks/patterns/
http://www-128.ibm.com/developerworks/webservices/library/ws-antipatterns
http://www-128.ibm.com/developerworks/webservices/library/ws-antipatterns

IBM Software Group - Tivoli

© 2005 IBM Corporation50

Design Patterns
Design Pattern and Principles
– Google SOA Patterns

Anti-patterns
– What not to do / How not to do it

• http://www-
128.ibm.com/developerworks/webservices/library/ws-
antipatterns/

http://www-128.ibm.com/developerworks/webservices/library/ws-antipatterns/
http://www-128.ibm.com/developerworks/webservices/library/ws-antipatterns/
http://www-128.ibm.com/developerworks/webservices/library/ws-antipatterns/
http://aleph0.clarku.edu/~djoyce/julia/mandel4.gif
http://aleph0.clarku.edu/~djoyce/julia/index.html

IBM Software Group - Tivoli

© 2005 IBM Corporation51

Read about Test Plans
& Test Scripts Best
Practices

IBM Software Group - Tivoli

© 2004 IBM Corporation

Backup – Application Types

IBM Software Group - Tivoli

© 2005 IBM Corporation53

Online Shopping
Low transaction rates

High levels of “view-only”
operations

High traffic volumes for larger
sites
– Daily and seasonal variations

Large numbers of concurrent
users

Large returned page sizes

Stable, time in-sensitive data

Relatively short session
durations

High caching potential

Small number of secure pages
– Use minimum graphics

Need a large test database
– Ensure database is stressed

• Eliminate database cache with
variety

– Use copy of production database

IBM Software Group - Tivoli

© 2005 IBM Corporation54

Information Sites
Highest number of page hits
– Some sites > 1M hits/minute

Regular content changes

Usage spikes for interesting
content

Low security risk

Very few transactions
– E.g. paid access to certain

pages

Limited legacy connectivity

Very high caching potential
– Cache refresh depends on data

volatility

No security issues
– Very limited SSL usage

Need wide client base for testing
– Clients have little or no session data

– Can reduce “think-time” at the test
client

IBM Software Group - Tivoli

© 2005 IBM Corporation55

Self Service Portals
Personalized to a specific
customer

Potentially high security
considerations
– E.g. home banking

Heavy reliance on legacy
systems

Medium transaction rates
– Increasing as more people use

the web

Caching potential medium to low

Security is high for certain types
– e-banking – long secure sessions

Include simulations with many
users
– Users typically not very busy

IBM Software Group - Tivoli

© 2004 IBM Corporation

Backup – Design Best Practices

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Presentation Tier Best Practices
Problem:
– Exposing presentation-tier data

structures (like
HttpServletRequest) to
business-tier
• Increases coupling and

reduces reusability.

Solution:
– Implementation details specific

to one tier should not be
introduced in another tier.

– Copy the relevant state and
data into more generic data
structures and share those.
(Transfer Object Pattern)

Presentation tier Business tier

Presentation
Component

HttpServletRequest

Business
Component

HttpServletRequest

Presentation tier Business tier

Presentation
Component

HttpServletRequest

Business
Component

User Info

IBM Software Group - Tivoli

© 2005 IBM Corporation58

SOA Principles
Service reusability – Logic is
divided into services with the
intention of promoting reuse.

Service contract – Services adhere
to a communications agreement,
as defined collectively by one or
more service description
documents.

Service loose coupling – Services
maintain a relationship that
minimizes dependencies and only
requires that they maintain an
awareness of each other.

Service abstraction – Beyond what
is described in the service
contract, services hide logic from
the outside world.

Service composability –
Collections of services can be
coordinated and assembled to
form composite services.

Service autonomy – Services have
control over the logic they
encapsulate.

Service statelessness – Services
minimize retaining information
specific to an activity.

Service discoverability – Services
are designed to be outwardly
descriptive so that they can be
found and assessed via available
discovery mechanisms.

Credit: Thomas Erl

http://www.serviceorientation.org/p0.asp

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Business Tier Best Practices
Problem:
– Each time you access an

component like an EJB, you
need to get handles and
references to these objects

– Costly round-trips over the
network.

Solution:
– Cache these references (like

EJBHome references) and
handles.

– Use patterns like Business
Delegate and Service
Locator.

– The business delegate only
needs to make the JNDI
lookup the first time.

– Use a Business Delegate to
encapsulate access to a
business service (hides the
implementation details)

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Business Tier Best Practices
Problem:
– Exposing all enterprise bean

attributes via Get/Set methods.

– Each method call is potentially
remote, resulting in network
overhead.

Solution:
– Use a value object (Transfer

Object Pattern) to transfer
aggregate data to and from the
client.

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Data Access Best Practices
Problem:
– Data access logic is embedded

directly within a class that has
other unrelated responsibilities

Solution:
– Extract the data access code

into a new class, an Data
Access Object (DAO) class.

– This encapsulates the data
access and manipulation (Data
Access Object Pattern)

Business tier

Servlet

Data
Access
Logic

Database

Resource tier

Servlet
Data

Access
Logic

Business tier

Resource tier

Database

Integration tier

IBM Software Group - Tivoli

© 2005 IBM Corporation62
Warning: lim

its t
he web site

 sca
lability

Local EJB Interfaces
Formerly all EJBs must be considered remote
– Even if they were in the same JVM

– Expensive in terms of time and memory

Now we can optionally declare Local Interface for an EJB
– EJBs within the same JVM can access each other directly

– Pass-by-reference (not pass-by-values) semantics

Beans can be both local and remote
– A “local” interface defines the local protocol

– A “remote” interface defines the remote protocol

IBM Software Group - Tivoli

© 2004 IBM Corporation

Backup – Development Best Practices

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Use appropriate frameworks
Model View Controller (MVC)

• STRUTS from Apache is popular
– Model – responsible for the data or business process, business

logic (Java Beans, EJBs)

– View – responsible for the look and feel, GUI

– (Java Server Pages JSPs)

– Controller – is responsible for the flow of the application, traffic
cop (Servlets)

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Model-View-Controller Architecture

HTML
Page #1

HTML
Page #2

Stateful
Stateless
Session
Beans

CMP
BMP
Entity
Beans

JSP

DB

Servlet

View ModelController

Submit

Request

Forward

Response

Cookie

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Static vs. Dynamic Pages
Use external HTTP Server

Use WebSphere plug-in for routing requests
– HTTP server serve up static pages

– Application server’s Web Container serve up dynamic pages

– Allows requests to be workload managed across clones
• 1st checks for session affinity to route to a cloned application server
• 2nd load balancing is used to route to a cloned application server

Avoid having “file serving servlet” serve up static pages

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Servlets
Drive application flow (Controller)
– JSP’s generated by App Srv are memory efficient

Should serve up only a few web pages
Small, lightweight Servlets <50 Lines of code
Grab static resources during initialization init()
– JNDI context lookup for data sources, thread safe

Multi-threaded model, avoid single-threaded
– Do not use instance variables to hold state

Remove unneeded synchronize statements
Synchronize on short sections of code

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Java Server Pages
Provide presentation content (View)

Use Custom Tags rather than Java code

Use HTML and XML for web pages

Compiled into servlets so Pre-Compile them

Eliminate default HTTP session creation
– <% page session=“false” %>

Minimize <jsp:include> tag

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Logging
Have multiple logging levels

Make logging levels configurable at runtime

Keep production logging at a minimum

Use “buffered writing” for logs

Keep buffer memory minimal

Avoid use of “servlet.log()” method calls

Avoid use of “System.out.println” method calls

Use third party logging frameworks

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

HTTP Sessions
Keep session objects small <2KB

Persist session data, index using Session ID

Pass Session ID between Servlets
– Cookies

– URL rewriting

– Hidden form fields

Persist session data only for life of Session

Make HTTP session data serializable

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

HTTP Sessions (cont..)
Avoid using nontransferable data
– “transient” for variables prevent serialization

Do not create HttpSession objects by default on JSPs
even though it is part of J2EE spec
– <%@page session=”false”%>

Reduce HTTP session timeout value
– Check for timeout set in code

Provide logout function on Web pages for closing
session immediately

IBM Software Group - Tivoli

© 2005 IBM Corporation72

HTTP Sessions (cont..)
Consider Memory-to-Memory Replication
– Single Replica

– N-way peer-to-peer

– Client/Server

– Persist on timer, each request, on demand

– Can be encrypted

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Enterprise Java Beans
Ensure you need distributed enterprise objects

Avoid stateful session beans & remove unused ones
– Stateful non-web based clients

Use stateless session bean facades
– do not have servlets call multiple entity beans directly

• Expensive remote method calls
• Transactional, 2 database calls (get data, update database)

Access Entity beans from Session beans
– Reduces the number of remote method calls

– Single transaction context

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Enterprise Java Beans (con’t)
Use local interfaces for co-located beans
– This must be part of initial architecture

Use caching
– Homes - Reduce expensive JNDI calls

– If using custom finders

Use CMP 2.0 where possible
– Better performance and helps referential integrity

– Portable over multiple databases

– Easier to develop and maintained by container

– If you need BMP, sub-class CMP 2.0 bean

Transactions
– Abort transactions with setRollbackOnly() method

– Use declarative rather than programmatic

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Enterprise Java Beans (con’t)
Read-Only getter methods
– Consider group methods

Cache EJB Home
– Reduce expensive JNDI calls

Cache Bean content in custom finders

Reduce Tx Isolation Level
– TRANSACTION_READ_UNCOMMITTED

– TRANSACTION_READ_COMMITTED

– TRANSACTION_REPEATABLE_READ

– TRANSACTION_SERIALIZABLE

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Database Connection Pools
Use database connection pools

Use JNDI lookups for naming

Use vendor supplied JDBC drivers

When finished with database connections return them
to pool immediately

Verify exceptions do not leave connections open
– Return connections in “finally” clause

Set up data-source once and cache it
– Object initialization (Servlet.init(), ejbActive())

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Object pools
If application launches threads, create thread pool

Set configurable limits

Avoid waiting indefinitely for an Object
– Gives appearance of frozen web site, display error page

Set “hard maximums”
– Don’t create indefinitely

Set timeouts for retrieving connections
– Gives appearance of frozen web site, display error page

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Efficient Java Code
Minimize creation objects, pool and reuse them
– Check condition statements and loops

Write efficient code, reduce memory and leaks
– Avoid creating Strings use StringBuffer instead
– Use System.arraycopy()
– Remove hash tables when emptied
– Remove unused local variables
– Size collections appropriately

Use static and final variables
– use static finals, declared only once
– Place them in singletons, declared only once

IBM Software Group - Tivoli

© 2005 IBM Corporation79

Efficient Java Code (cont…)
Determine if reflection is really necessary
– Elegance vs. performance

Avoid very complex class structures and hierarchies

Use buffered IO for small amounts of data

Writer writer = new BufferedWriter(new
FileWriter(new File("file.txt")));

Writer.write(“Hello World”);
Writer.close();

IBM Software Group - Tivoli

© 2004 IBM Corporation

Backup – Deployment Best Practices

IBM Software Group - Tivoli

© 2005 IBM Corporation81

High Availability
An application or service that is provided in a near-
continuous fashion (can never guarantee 100%)

Failures
Disk failure
Machine crash
Process failure
Network failure
Human error
Planned maintenance
Loss of the data center

Application must be designed and built to be scalable

IBM Software Group - Tivoli

© 2005 IBM Corporation82

The HA Pattern

configure two or more load balancers
one LB monitors the other and takes over load
distribution if the primary LB fails

HA cluster

Active server

Standby server

heartbeatclient

Shared Virtual IP address
IP address ‘take-over’ IP-Sprayer 1

IP-Sprayer 2

Physical IP 10.0.0.3

Physical IP 10.0.0.4

Virtuall IP 10.0.0.2

IBM WebSphere Edge Server Network Dispatcher

IBM Software Group - Tivoli

© 2005 IBM Corporation83

N-tier Model
Tier
a logical partition of the separation of concerns in the system
assigned its unique responsibility in the system
is loosely coupled with the adjacent tier

IBM Software Group - Tivoli

© 2005 IBM Corporation84

Vertical Scaling
“Vertical” scaling (Scaling up)
– The addition of computational and system resources, e.g. adding

CPU’s or memory to a single machine
Strengths
– Improved throughput on large machines (up-size)
– Easy to maintain and support
Weaknesses
– Limited available resources on single machine
– Decreasing return on investment in throughput
Threats
– Hardware as Single point of failure
– Memory/CPU overhead if have too many clones
Opportunities
– Can be combined with other topologies

IBM Software Group - Tivoli

© 2005 IBM Corporation85

Horizontal Scaling
“Horizontal” scaling (Scaling out)
– The server application is distributed across more than one machine instead of

replacing an existing machine with a more powerful model
Strengths
– Distribution of load among machines
– Failover support if one machine goes down
– Increase in throughput is closer to linear than Vertical Scaling
Weaknesses
– More difficult to setup and maintain
– More $$ for hardware and software
Threats
– Requires session persistency
– Increased network traffic between machines
Opportunities
– Can increase number of machines as needed, highly scalable
– Can be combined with Vertical Scaling

IBM Software Group - Tivoli

© 2005 IBM Corporation86

High Availability Cluster

plugin-cfg.xml

<PrimaryServers>

<Server Name="HAClusterServer1"/>

<Server Name="HAClusterServer3"/>

</PrimaryServers>

<BackupServers>

<Server Name="HAClusterServer2"/>

<Server Name="HAClusterServer4"/>

</BackupServers>

Clustering software such as HACMP, MC/Serviceguard, MSCS

IBM Software Group - Tivoli

© 2005 IBM Corporation87

Web Application Component Issues
Web Containers
HTTP Session State
EJB Containers
Thread pools
JVM Heap Usage
Application Server Clones
HTTP Servers
Database Servers
Network Components

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Web Containers
Load servlets at startup

Precompile all JSPs so servlets get created

Turn off reload interval for Servlets

Turn off reload interval for JSPs

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

HTTP Servers
Configure number threads and process appropriately

Set timeouts accordingly

Verify Logging Level set correctly

Verify keep-alive set correctly

Only use SSL (Secure Socket Layer) when necessary,
overhead

IBM Software Group - Tivoli

© 2005 IBM Corporation90

Http Server Cluster

Load balancers (”IP Sprayers”) takes incoming requests and
distributes them across muliple servers.

uses routing algoithms
- round-robin
- weighted load distribution algorithm

needs to know about availability and handle ”affinity routing”
Some vendors* of load balancers implements the LB in hardware,
others provide LB software

*) IBM WebSphere Edge Server Network Dispatcher

IBM Software Group - Tivoli

© 2005 IBM Corporation91

Routing of Servlet Requests with HTTP plug-in

mechanism used to route HTTP requests to WebSphere application servers
provide distribution of requests and failover
handshaking: by adding special header information to the
HTTP request and response.
uses an XML configuration file to determine information about the WebSphere
domain it is serving. This configuration file is initially generated by the
WebSphere Administrative Server.

HTTP-plugin:

plugin-cfg.xml

<ServerCluster Name="HACluster">

<Server CloneID="u307p2vq" LoadBalanceWeight="2" Name="HAClusterServer1"></Server>

<Server CloneID="u307p48r" LoadBalanceWeight="3" Name="HAClusterServer2"></Server>

<Server CloneID="u307p62u" LoadBalanceWeight="4" Name="HAClusterServer3"></Server>

<Server CloneID="u307p71m" LoadBalanceWeight="5" Name="HAClusterServer4"></Server>

</ServerCluster>

IBM Software Group - Tivoli

© 2005 IBM Corporation92

Http Session Storage
manage HTTP-session affinity
maintain information about a client across multiple HTTP requests
each application server is assigned a unique cloneID
the plugin will bind cloneID and client’s sessionID when it
receives the client’s first request
a user’s session information can be kept on a server in two ways:

- in memory
- persistent to database

plugin-cfg.xml

<ServerCluster Name="HACluster">

<Server CloneID="u307p2vq" LoadBalanceWeight="2" Name="HAClusterServer1"></Server>

<Server CloneID="u307p48r" LoadBalanceWeight="3" Name="HAClusterServer2"></Server>

<Server CloneID="u307p62u" LoadBalanceWeight="4" Name="HAClusterServer3"></Server>

<Server CloneID="u307p71m" LoadBalanceWeight="5" Name="HAClusterServer4"></Server>

</ServerCluster>

IBM Software Group - Tivoli

© 2005 IBM Corporation93

Http Session Storage
manage HTTP-session affinity
maintain information about a client across multiple HTTP requests
each application server is assigned a unique cloneID
the plugin will bind cloneID and client’s sessionID when it
receives the client’s first request
a user’s session information can be kept on a server in two ways:

- in memory
- persistent to database

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Enterprise Java Bean Containers
Configure EJB pool size large enough to handle
maximum EJB requests

Set the cleanup interval appropriately for application

Use Local interface when available
– Available from EJB 2.0 specification

– Requires previous knowledge EJBs and where located

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Application Server Clones
Clone servers that are being under utilized based on
CPU utilization

Maximum number of clones are achieved if CPU
utilization approaches 90 %

As add clones to system add resources accordingly
– Database connections

– Heap memory space

– Network Capacity

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Database Servers
Verify Indices set on databases

Verify following resources set accordingly
– Buffer pools

– Cursors

– Sockets

– Caching used

– Multiple disks

– Stripe Logs

IBM Software Group - Tivoli

© 2005 IBM Corporation5/19/2006

Network Components
Routers

Firewalls

Proxy Servers

Network Interface Cards (NICs)

Load Balancers

IBM Software Group - Tivoli

© 2005 IBM Corporation98

Web Response Monitoring
Passive Server-Side Monitoring at the page level

AppServer“Click”

Network ServerClient

Web Server

• For each Web Page and Object

•Round trip response time

•Load, resolve and Web
application time

•Network vs. Application time

•Inbound vs. outbound traffic rates

•Cache request time

• Inbound vs. Outbound Traffic byte
counts and Object size

•Location Web Page or Object was
pulled from (Web Server or Cache)

• Video Response and Play time

• Audio Response and Play time

• Browser Type and Version

Detailed Web Server metrics

IBM Software Group - Tivoli

© 2005 IBM Corporation99

Client based Response Time Monitoring
Real end user response times

E
T
E
W
a
t
c
h

Client Network
Back End

Server

Click
Sc

re
en

Pa
int

E
T
E
W
a
t
c
h

Client Network
Back End

Server

Click
Sc

re
en

Pa
int

• Client Time Processing time spent on the client

• Network Time Client to Back End Server and back

• Server Time Total Back End Application Time

Metrics collected
§ Total Response Time
§ Segmented Response Time
§ Browse Time
§ Workstation Hostname
§ Application Name
§ Transaction Name
§ Application Destination IP Address
§ IP Packet Size

Problems are automatically
identified by finding resources that

are performing differently than
normal

IBM Software Group - Tivoli

© 2005 IBM Corporation100

Load Generation Tools

Software
– IBM Rational

Performance Test

– Mercury – LoadRunner

– Segue – Silkperformer

– Others

Free-ware
– Jmeter

– Grinder

– OpenSTA

– Microsoft WSTT

– Many others

IBM Software Group - Tivoli

© 2004 IBM Corporation

Backup - Testing

IBM Software Group - Tivoli

© 2005 IBM Corporation102

Who should be involved?
Quality Assurance / Performance Test Team

Lead Application Architect

Application Developers

Data Base Administrators

Various System Admins and SMEs for J2EE, Messaging,
ESB, OS, etc

Network Administrator

Operations

Yes, that is just about everyone, isn’t it

IBM Software Group - Tivoli

© 2005 IBM Corporation103

Where should it be done?
Separate, dedicated Test Environment

Test Environment mirrors Production configuration
(infrastructure, scalability, availability and application
portfolio)
– Has own separate, dedicated network

– Has a load generation tool available

– Has monitoring tools available that can view all application
infrastructure components which could impact performance
• (HTTP, J2EE, DB, OS, Network, Messaging and ESB, legacy etc.)

IBM Software Group - Tivoli

© 2005 IBM Corporation104

What do I need to know to get started?
Ensure Functional/Integration Testing finished

Know when testing/tuning is finished
– Set Performance Goals

Understand your user population & behaviors
– Establish Peak Load Estimates

– Establish Throughput Estimates

– Establish Response Time Estimates

– Determine mix of expected Workloads

IBM Software Group - Tivoli

© 2005 IBM Corporation105

System Testing
Testing functionality
– Easiest when requirements are detailed

– Ideally all tests should pass before performance testing

– Test both positive and negative paths

70% of new software systems fail in some way
upon deployment!

Standish Group 1998

IBM Software Group - Tivoli

© 2005 IBM Corporation106

Load Testing

0
5

10
15
20
25
30
35
40

1am 5am 9am 1pm 5pm 9pm

Average Site Usage

0
5

10
15
20
25
30
35
40

1am 5am 9am 1pm 5pm 9pm

Average Site Usage

Ensure site can handle expected load
Plan for daily, weekly and seasonal
variations

Ensure application performs as
expected
– Should have expected throughput

values
– Understand peak and normal usage
– Need to define different transaction

types
– Must collect the correct statistics

• HTTP Hits/day could be misleading
May result in tuning
May result in re-working/re-designing

IBM Software Group - Tivoli

© 2005 IBM Corporation107

0

10

20

30

40

50

60

70

1 20 40 60 80 100 120 140 160

Load (concurrent users)

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0

2.5

5

7.5

10

Re
sp

on
se

 T
im

e
(s

ec
)

Throughput Response Time

Saturation Point Buckle Point

Run to capacity and see where it breaks!
Composite Applications have multiple buckle points
Composite Applications break at the weakest links – understand
how to stress them using transaction decomposition

Stress Testing

IBM Software Group - Tivoli

© 2005 IBM Corporation108

Stress Test Analysis
End-to-End analysis
– Investigate all aspects of the application

• Network, Appliances, Web Server, Application Server, ESB,
Database, Legacy

Database/
Trans. Server

Application
server

Web
server Internet

ISP ISP

PC or Workstation

12

AAAAA NNNN N

	Best practices for managing the performance of composite applicationsJohn KnutsonMarket Manager - Web Services ManagementI
	Agenda
	Composite Application Performance
	Created Early …
	. . . Created Early …
	… Discovered Late
	Architecture & Design
	Architecture & Design Phase
	Application Types
	Online Trading
	B2B Trading
	A multi-tier Composite J2EE Architecture Pattern
	A simple J2EE Architecture Pattern
	A clustered J2EE Architecture Pattern
	A SOA Architecture Pattern
	SOA Best Practices – Chatty Services
	SOA Best Practices – Verify application cost structure
	SOA Best Practices – Understand cost of XML
	Development
	J2EE Development Best Practices
	Profile your Applications
	Deployment
	Deployment Best Practices
	Pool Funneling
	JVM Heap
	Testing
	Performance Testing
	Why Test?
	Overall Best Practices
	Overall Approach
	Performance Testing Checklist
	Test monitoring tools
	Management Best Practices
	Best Practice - Spot trends before any impact to end users
	Best Practice – Use appropriate monitoring granularity
	Best Practice – Monitor Logical views
	Messaging – Key to Composite Application performance
	WebSphere MQ – A Management Checklist
	Best Practice – Detect “Delayed" Messages
	Production monitoring tools
	Multiple Customized Composite Application Management Views
	A Complete View Of Composite Application Management
	ITCAM Family: Composite Application Management Solutions
	IBM Tivoli MonitoringAbility to span your Composite Application environment
	Summary
	Questions?
	Backup Material
	Resources and Links
	Best Practice Summary
	Design Patterns
	Read about Test Plans & Test Scripts Best Practices
	Backup – Application Types
	Online Shopping
	Information Sites
	Self Service Portals
	Backup – Design Best Practices
	Presentation Tier Best Practices
	SOA Principles
	Business Tier Best Practices
	Business Tier Best Practices
	Data Access Best Practices
	Local EJB Interfaces
	Backup – Development Best Practices
	Use appropriate frameworks
	Model-View-Controller Architecture
	Static vs. Dynamic Pages
	Servlets
	Java Server Pages
	Logging
	HTTP Sessions
	HTTP Sessions (cont..)
	HTTP Sessions (cont..)
	Enterprise Java Beans
	Enterprise Java Beans (con’t)
	Enterprise Java Beans (con’t)
	Database Connection Pools
	Object pools
	Efficient Java Code
	Efficient Java Code (cont…)
	Backup – Deployment Best Practices
	High Availability
	The HA Pattern
	N-tier Model
	Vertical Scaling
	Horizontal Scaling
	High Availability Cluster
	Web Application Component Issues
	Web Containers
	HTTP Servers
	Http Server Cluster
	Routing of Servlet Requests with HTTP plug-in
	Http Session Storage
	Http Session Storage
	Enterprise Java Bean Containers
	Application Server Clones
	Database Servers
	Network Components
	Web Response MonitoringPassive Server-Side Monitoring at the page level
	Client based Response Time Monitoring
	Load Generation Tools
	Backup - Testing
	Who should be involved?
	Where should it be done?
	What do I need to know to get started?
	System Testing
	Load Testing
	Stress Testing
	Stress Test Analysis

