

DB2 for z/OS V8

Why did the optimizer choose that access path?

Terry Purcell DB2 z/OS Optimizer Development IBM Silicon Valley Lab

© 2007 IBM Corporation

Agenda

Introduction

- Data skew
- Correlation and the effect of index screening
- Range predicate accuracy
- Conclusion

Presentation Goal

- When the optimizer makes a "poor access path choice"
 - Demonstrate how DB2 for z/OS V8 makes it easier to:
 - Identify what went wrong
 - Resolve the problem with the "right" solution

Reaching the Goal

- How to determine why the optimizer may choose a poor access path?
 - Using some simple query examples.....
 - Show how the DB2 z/OS optimizer "estimates" the number of qualified rows per object
 - Compare this with the "actual" qualified rows per object
 - 3 most common reasons for poor access path choice will be demonstrated:
 - Data skew
 - Correlation
 - Range predicates with host variables/parameter markers

Filter Factors

- Optimizer assigns a "Filter Factor" (FF) to each predicate or predicate combination
 - Number between 0 and 1 that provides the estimated filtering percentage
 - FF of 0.25 means 25% of the rows are estimated to qualify
 - Calculated using available statistics
 - Column cardinality (COLCARDF)
 - HIGH2KEY/LOW2KEY
 - Frequency statistics (FREQUENCYF in SYSCOLDIST)

Combining Filter Factors

- Individual Filter Factors (FFs) are combined to determine the total filtering per object
 - AND predicate FFs are multiplied
 - OR predicate FFs are added
- Available statistics determine "degree" of multiplication

Assigning and combining Filter Factors

- Accuracy of individual FFs and how to combine them is important for costing
 - Index matching
 - Total index filtering
 - Total table level filtering
- Therefore.....for each object, the goal is:
 - To accurately assign the individual predicate FFs
 - To correctly combine the individual FFs
- The more objects involved, the more important for optimizer to be able to distinguish between these objects

DB2 for z/OS V8

How to obtain Visual Explain detail

-	10000	And Advantation
	100 1000	second second
1000	10000	STEPAS, Provint
1000	And the second second	And visitory start.
1004	100 . 000	104 1mm 100
		success the second

How to access Visual Explain reports

From the "Tune SQL" screen

- Choose the "Report" tab
- Click "Generate Report"

예Tune SQL - STLEC1		
File Report View		
SQL Text Access Plan	Execution Result	Report

- Then choose either:
 - Query Summary
 - Table Summary
 - Predicate Summary

Agenda

9

- Introduction
- Data skew
- Correlation and the effect of index screening
- Range predicate accuracy
- Conclusion

Data Skew

Data Skew (or skew)

- Describes situation where data is non-uniformly distributed
- Data can be point-skewed on a value or skewed over a range
- Eg. STATUS
 - Domain (Y, N)
 - 95% = Y, 5% = N

Query example

User is complaining about performance

Validate the user complaint

Start by determining where the problem is.

- Need actual data values to run a count of the query
 - Hint: Use data values that perform poorly

```
SELECT COUNT(*) = 811 rows
FROM CUSTOMERS
WHERE COUNTRY = 'USA'
AND CITY = 'NEW YORK'
AND GENDER = 'F'
AND STATUS = 'N'
```


Identify available choices

Determine the available access path choices

- For multi-table joins
 - Many join sequences may be candidates
- Within each table (or for single table queries)
 - Many indexes may be candidates
- Break apart the query per object
- Our example is single table
 - So what are the available indexes?

SELECT *

- FROM **CUSTOMERS**
- WHERE COUNTRY = ?
 - AND CITY = ?
 - AND GENDER = ?
 - AND STATUS = ?

Query breakdown per Object

Single table query

Match query to available indexes

-			
25.74	 	10.00	

Counts of qualified rows per object

- Per object (index)
 - Count of rows qualified by CUSTIX2

SELECT COUNT(*) = 147,456
FROM CUSTOMERS
WHERE COUNTRY = 'USA'
AND CITY = 'NEW YORK'

- Count of rows qualified by CUSTIX3
 SELECT COUNT(*) = 1,121
 FROM CUSTOMERS
 WHERE COUNTRY = 'USA'
 AND GENDER = 'F'
 - AND STATUS = 'N'

Better choice

Counts of qualified rows per predicate

- Further query breakdown per predicate
 - Breakdown to the individual components that make up the "estimates per object"

SELECT COUNT(*) = 192,960 FROM CUSTOMERS WHERE COUNTRY = 'USA' SELECT COUNT(*) = 147,456 FROM CUSTOMERS WHERE CITY = 'NEW YORK' SELECT COUNT(*) = 24,393 FROM CUSTOMERS SELECT COUNT(*) = 9,642 WHERE GENDER = 'F' FROM CUSTOMERS WHERE STATUS = 'N'

Optimizer Predicate Estimates

How did the optimizer determine these FFs?

Predicate Summary							
Left-hand Side	Left-hand Side Column Cardinality	Predicate Type	Right- hand Side	Side Column	Filter Factor		
COUNTRY	1	EQUAL	VALUE		1	1/1 = 1	
CITY	26	EQUAL	VALUE		0.0385	1/26 = 0.03840	
GENDER	3	EQUAL	VALUE		0.3333	1/3 = 0.3333	
STATUS	2	EQUAL	VALUE		0.5	1/2 = 0.5	
and the second s	Side COUNTRY CITY GENDER	Left-hand Side Column CardinalityCOUNTRY1CITY26GENDER3	Left-hand Side Column CardinalityPredicate TypeCOUNTRY1EQUALCITY26EQUALGENDER3EQUAL	Left-hand Side Column CardinalityPredicate TypeRight- hand SideCOUNTRY1EQUALVALUECITY26EQUALVALUEGENDER3EQUALVALUE	Left-hand Side Column CardinalityPredicate TypeRight- hand Side Column CardinalityCOUNTRY1EQUALVALUECOUNTRY26EQUALVALUEGENDER3EQUALVALUE	Left-hand Side Column CardinalityPredicate TypeRight- hand Side Column Column CardinalityFilter FactorCOUNTRY1EQUALVALUE1CITY26EQUALVALUE0.0385GENDER3EQUALVALUE0.3333	

FF estimates assume even distribution

/3/2007

	-				
2220	-	-	-		
2004				-	
3576			100		
			-		

Optimizer index estimate

 How did optimizer use the FF estimates to calculate how many rows qualified from the index?

Name	Value
Input RIDs	192960
Index Leaf Pages	1723
Matching Predicates	Filter Factor
CUSTOMERS.COUNTRY=(EXPR)	1
CUSTOMERS.CITY=(EXPR)	0.0385
Scanned Leaf Pages	67
Output RIDs	7422

1723 * 1/1 * 1/26 = 66.269 leaf pages 192960 * 1/1 * 1/26 = 7421.54 output RIDs

> Outcome is dependent on the FFs. If FFs are wrong, estimate is wrong.

	-	-	-		
1000	-	-	-		
2000	1	_	100		
3576		-	1000	100	
			_	- 10	

Comparing estimates with reality

Calculate actual FF and compare with estimate

- Since optimizer estimates assume "even distribution"

Predicate	Count	Table cardf	Actual FF (count/cardf)	Optimizer FF	
COUNTRY = 'USA'	192,960	192,960	1	1	
CITY = 'NEW YORK'	147,456	192,960	0.764	0.0385	X
GENDER = 'F'	24,393	192,960	0.125	0.3333	X
STATUS = 'N'	9,642	192,960	0.05	0.5	X

• Data must NOT be evenly distributed

How do detect Uneven Distribution

- Run the following count for the column
 - Results provide proof that CITY is skewed

= 147456/192960 * 100 = 76.4only top 6 of 26 shown

Data Skew on other columns

Proof that STATUS and GENDER are also skewed

- If skew is not provided to optimizer, how can it know?

How to collect data skew statistics

DB2 V8 adds COLGROUP keyword

- For collection of non-uniform distribution statistics on non-indexed (or non-leading index) columns
- V7/8 collects top 10 frequencies on leading index columns (by default)

RUNSTATS TABLESPACE TPTEST.TPTSTTS1 TABLE(SYSADM.CUSTOMERS) COLGROUP(STATUS) FREQVAL COUNT 10 COLGROUP(CITY) FREQVAL COUNT 10 COLGROUP(GENDER) FREQVAL COUNT 10

DB2 for z/OS V8	/8
-----------------	----

Original query with new statistics

- New statistics collected
- But....access path hasn't changed!

DB2 for z/OS V8

Host variables and frequencies

Host variables cannot exploit frequencies

- Except GENDER = :HV cannot be NULL
- Only this estimate has changed

Access path is original CUSTIX2

Predicate Number	Left-hand Side	Left-hand Side Column Cardinality	Predicate Type	Right- hand Side	Right-hand Side Column Cardinality	Filter Factor
2	COUNTRY	1	EQUAL	VALUE		1
3	CITY	26	EQUAL	VALUE		0.0385
4	GENDER	3	EQUAL	VALUE		0.4126
5	STATUS	2	EQUAL	VALUE		0.5

Predicate Summary

33722 NULLs Thus FF = ½ of (192960 – 33722)

/3/2007

Access path with literal values

- After new statistics are collected
- AND literals known to the optimizer either with REOPT(ALWAYS) or hard-coded
 - Optimizer now chooses the preferred index

Predicate report for literals

Sec. 2	62 (A)	- AN	
Prod	icate	Num	mary
TIM	incure	Dum	11164 L Y

Predicate Number	Left-hand Side	Left-hand Side Column Cardinality	Predicate Type	Right- hand Side	Right-hand Side Column Cardinality	Filter Factor	Actual FF
2	COUNTRY	1	EQUAL	VALUE		1	1
3	CITY	26	EQUAL	VALUE		0.7642	0.764
4	GENDER	3	EQUAL	VALUE		0.1264	0.125
5	STATUS	2	EQUAL	VALUE		0.05	0.05

Resultant FF estimates match reality

- Don't always expect perfection.
- Objective is to have estimates close to reality.

And other values?

Index on CITY was a poor choice for "NEW YORK"

- But a good choice for values with lower frequencies
- STATUS/GENDER index becomes a bad choice for higher frequency values of these columns
- Different data values may call for a different index choice

DB2 for z/OS V8

	-	-			
1000		_	-		
-	_	_	-		
1000		-	100	time of	
				122 40	

Tuning shortcut - Visual Explain

Current degree: System default Current refresh age: System default Current maintained table types: System default Table qualifier for EXPLAIN stored procedure: Input an SQL statement or select one from command history:
Current maintained table types: System default Table qualifier for EXPLAIN stored procedure:
Table qualifier for EXPLAIN stored procedure:
Table qualifier for EXPLAIN stored procedure:
Input an SQL statement or select one from command history:
SELECT COUNT(*)
FROM SYSADM. CUSTOMERS
WHERE COUNTRY = ?
AND CITY = ?
AND GENDER = ?
AND STATUS = ?
Messages for Execution and Explain
The 🛃
M Realows
📈 Analyze
Explain with stored procedure Explain Execute Plan Hint M Analyze Help

Statistics Advisor Recommendations

- When literal values have been provided
 - SA recommends the following RUNSTATS with FREQVAL option

Runstats	Explanation Conflict Report
RUNSTATS	TABLESPACE TPTEST.TPTSTTS1
	TABLE (SYSADM. CUSTOMERS)
	COLGROUP(STATUS) FREQVAL COUNT 1
	COLGROUP(CITY) FREQVAL COUNT 10
	COLGROUP (GENDER) FREQUAL COUNT 10
	SORTDEVT SYSDA
SHRLEVEL	CHANGE REPORT YES

SA Explanations

Explanation tab provides reasons for recommendations

GENDER Local	
Cardinality:	3.0
Collection Time:	2006-01-31 13:15:07.866862
Uniform Statistics Status:	OK
Non-uniform Statistics Status	5: missing
Possibly Skewed:	YES
200 - Marine 1997 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	7 relative to table cardinality are more likely to be skewed.
	2.0
STATUS Local	
STATUS Local Cardinality:	2.0 2006-01-31 13:15:07.866862
STATUS Local Cardinality: Collection Time:	2.0 2006-01-31 13:15:07.866862 OK
STATUS Local Cardinality: Collection Time: Uniform Statistics Status:	2.0 2006-01-31 13:15:07.866862 OK

© 2007 IBM Corporation

Statistics Advisor recommendations

When host variables are specified

- REOPT is suggested

31

he following)	predicates may cont	ain host variable	s, parameter markers,	or special registe	rs =≻
YSADM. CUSTOME	RS.COUNTRY = {MARKE	R) (COLCARD: 1.0,	FF: 1.0)		
YSADM. CUSTOME	RS.CITY = {MARKER}	(COLCARD: 26.0, F	F: 0.0384615398943424	2)	
YSADM. CUSTOME	RS.GENDER = {MARKER) (COLCARD: 3.0,	FF: 0.333333313465118	4)	
YSADM. CUSTOME	RS.STATUS = {MARKER	(COLCARD: 2.0,	FF: 0.5)		
ecommended act	ion: use REOPT(VAR	S) or REOPT(ONCE)	as bind option		

Data Skew Conclusions

- When column values are unevenly distributed (skewed)
 - The optimizer is not aware unless:
 - Frequency statistics are collected
 - The literal values are provided or REOPT(ALWAYS or ONCE) is used
 - Exception: Knowledge of NULL frequencies will be utilized for host variables/parameter markers if predicate cannot be NULL

	_		_		-
		· · ·			
2010		_			
20204		-	1000	100	

Possible Recommendations

- 1. REOPT(ALWAYS) (a.k.a REOPT(VARS))
- **2.** A single index that supports all combinations
- **3.** If search is always for the same STATUS value
 - 1. Hardcode the literal in the SQL.
 - 2. Ensure frequency statistics are collected for that value.
- 4. Don't index columns that are skewed and search is by high frequency value.
 - 1. Unless literals are known to optimizer
- **5.** Or, separate SQLs for the skewed cases

Agenda

- Introduction
- Data skew
- Correlation and the effect of index screening
- Range predicate accuracy
- Conclusion

Correlation

Correlation

- When two or more columns are NOT independent
 - Eg. CITY, STATE
 - Every city does NOT exist in every state.
 - Eg. Automobile MANUFACTURER, MODEL
 - Only TOYOTA makes a CAMRY
- Determines degree that predicate FFs are multiplied
 - Applicable for literals, host vars and parameter markers

Query & Candidate Indexes

Customer complaint about performance

	-		
100		-	Annalise Annalise
100	1	_	And these such
3574	100	-	201 207 200

Validate the user complaint

- Start by determining where the problem is.
 - Need actual data values to run a count of the query
 - Using data values that perform poorly

```
SELECT COUNT(*) = 3072
```

FROM CUSTOMERS

- WHERE ZIPCODE = 60607'
 - AND CITY = 'CHICAGO'
 - AND STATE = 'IL'

	-		
100		-	Annalise Annalise
100	1	_	And these such
3574	100	-	201 207 200

Query breakdown per object

Single table query

- Match query to available indexes

Counts of qualified rows per index

Per index

SELECT COUNT(*) = 21,504

FROM CUSTOMERS

WHERE CITY = 'CHICAGO'

AND STATE = `IL'

Counts of qualified rows per predicate

	-				
1000					
1000	1	_	100		part.
1074	1000	-	100	1.100	-
				1.22	

Optimizer index estimate

Name	Value
Input RIDs	192960
Index Leaf Pages	1678
Matching Predicates	Filter Factor
CUSTOMERS.CITY=(EXPR)	0.0385
Scanned Leaf Pages	65
Screening Predicates	Filter Factor
CUSTOMERS.STATE=(EXPR)	0.1111
Output RIDs	825
Cumulative Total Cost	141.2502
Cumulative IO Cost	14.025
Cumulative CPU Cost	204125
Matching Filter Factor	0.0385
Total Filter Factor	0.0043
Prefetch	
Matching Columns	1

Didn't we find STATE did not filter after CITY?

Why is total index FF 1/26 * 1/9 = 0.0043?

Optimizer considers predicates independent, unless statistics indicate otherwise

		_	Annual Annual State
-	-	_	hand then and
	-	_	And have seen

Detecting Correlation - Counts

Run Predicate counts

Distinct occurrences of each column

SELECT COUNT(DISTINCT CITY) = 26 CITIES
,COUNT(DISTINCT STATE) = 9 STATES
FROM CUSTOMERS

- Distinct occurrences of the column group

```
SELECT COUNT(*) = 31 Combinations of CITY, STATE
FROM
(SELECT DISTINCT CITY, STATE
FROM CUSTOMERS) AS A
```


Detecting Correlation - Calculation

Calculation to detect correlation

- If the product of the individual counts > group count
 - Then columns are correlated
 - Product of counts = 26 * 9 = 234
 - Group count = 31
 - 234 > 31
 - Therefore, columns are correlated

Current index qualified row estimate

- 192960 * 1/26 * 1/9 = 824.6
- Current statistics fail to show columns are correlated

- On the scale of "correlated" vs "independent"
 - 26 (CITY colcardf) = columns are correlated
 - Largest COLCARDF of the 2 or more columns
 - Every city belongs in only 1 state
 - 234 (CITY colcardf * STATE colcardf) = columns are independent
 - Product of the 2 or more columns
 - Every city belongs in every state
 - Counts show that there are 31 combinations of city/state
 - Some cities exist in more than 1 state

Available correlation statistics

- Optimizer uses available "multi-column cardinalities" (MCARDs) from
 - Index KEYCARD
 - Index FULLKEYCARDF
 - COLGROUPs from other columns
- Available cardinalities for CITY/STATE
 - Index CUSTIX4 (CITY, ACCTNO, STATE)
 - Only index FULLKEYCARDF is available for this index
 - Fullkeycardf = 192960
 - Colcardf of ACCTNO = 192960 (unique)

	-	 -		
1000		100		
10.04				
			1 22 1	

What about KEYCARD?

- By default, RUNSTATS collects Firstkeycardf & Fullkeycardf
- KEYCARD collects all intermediate MCARDS:
 - 2ndkeycardf, 3rdkeycardf etc.
 - RUNSTATS TABLESPACE TPTEST.TPTSTTS1 INDEX(CUSTIX4) KEYCARD

CUSTIX4

- (CITY Firstkeycardf (CITY)
- , ACCTNO MCARD (CITY, ACCTNO) from KEYCARD
- - KEYCARD is irrelevant here because it does not contain both CITY & STATE

Effect of screening predicates

- Index CUSTIX4 (CITY, ACCTNO, STATE)
 - Fullkeycardf = 192960 ← Contains CITY/STATE & ACCTNO
 - Colcardf of ACCTNO (unique) = 192960
- To determine the filtering for index CUSTIX4
 - Optimizer will multiply individual FFs for CITY/STATE
 - And compare with available MCARD (fullkeycardf = 192960)
 - 26 * 9 = 234 < 192960
 - Thus, columns are considered independent
 - CITY/STATE MCARD was destroyed by high colcardf column ACCTNO

Collecting correlation statistics

- V8 simplifies MCARD collection for non-indexed columns or non-consecutive indexed columns
 - Using the new COLGROUP option

RUNSTATS TABLESPACE TPTEST.TPTSTTS1 TABLE(SYSADM.CUSTOMERS) COLGROUP(CITY, STATE)

New Optimizer Choice

CUSTIX5 is now used

 ZIPCODE is considered more filtering than CITY/STATE

INDEX CUSTIX4 (**CITY** ASC ,ACCTNO ASC ,**STATE** ASC)

INDEX CUSTIX5 (ZIPCODE ASC ,ACCTNO ASC)

100 million (* 1	-	_	and the second second	
			And Anna	
	-			

Optimizer index costing result

 Visual explain index scan detail for new optimizer choice index CUSTIX5 (ZIPCODE)

No. of qualified rows from index = 3711

Name	Value
Input RIDs	192960
Index Leaf Pages	815
Matching Predicates	Filter Factor
CUSTOMERS.ZIPCODE=(EXPR)	0.0192
Scanned Leaf Pages	16
Output RIDs	3711
Cumulative Total Cost	39.7731
Cumulative IO Cost	3.95
Cumulative CPU Cost	55749.996
Matching Filter Factor	0.0192
Total Filter Factor	0.0192
Prefetch	
Matching Columns	1

-					
2120	-		1000		
			100		
		-		7.5	

DB2 for z/OS V8

Optimizer data fetch costing result

	# of qualified rows
Value	from ZIPCODE index
3711	
3711	Stage 1 predicate
Filter Factor	
0.0385	Filter Factors
0.1111	
119.7022	3711 * 1/26 * 1/9 = 16
119.7022	Thus we have used
119.7022	
207.5566	CITY/STATE MCARD.
20.2327	
1067319	But after ZIPCODE,
10	CITY/STATE don't filter.
	So we need more
S	correlation stats.
	3711 3711 Filter Factor 0.0385 0.1111 119.7022 119.7022 207.5566 20.2327 1067319 10

Correlation – Just to prove it (again)

- Run counts for all predicate columns this time
 - Distinct occurrences of each column

SELECT COUNT(DISTINCT CITY) = 26 CITIES
,COUNT(DISTINCT STATE) = 9 STATES
,COUNT(DISTINCT ZIPCODE) = 52 ZIPCODES
FROM CUSTOMERS

- Distinct occurrences of the column group

```
SELECT COUNT(*) = 52 Combinations - CITY,STATE,ZIPCODE
FROM
(SELECT DISTINCT CITY, STATE, ZIPCODE
FROM CUSTOMERS) AS A
```


Detecting Correlation - Calculation

Calculation to detect correlation

- If the product of the individual counts > group count
 - Then columns are correlated
 - Product of counts = 26 * 9 * 52 = 12,168
 - Group count = 52
 - 12,168 > 52
 - Therefore, columns are correlated

RUNSTATS TABLESPACE TPTEST.TPTSTTS1 TABLE(SYSADM.CUSTOMERS) COLGROUP(CITY, STATE, ZIPCODE)

		and a second
	100 1000	STREET, STREET,
2229	10000	STEPRE APRIL
2020	And in case of the local diversion of the local diversion of the local diversion of the local diversion of the	And values such
3574	10.0	FOR JUSA NOT
		100 H 10 H 100 H

Optimizer data fetch final result

blesse	1 Station	No of qualified rows
Name	Value	from index = 3711
Input Cardinality	3711	
Scanned Rows	3711	
Stage 1 Predicates	Filter Factor	
CUSTOMERS.CITY=(EXPR)	0.0385	
CUSTOMERS.STATE=(EXPR)	0.1111	Stage 1 predicate
Stage 1 Returned Rows	3710.769	Filter Factors
Stage 2 Returned Rows	3710.769	
Output Cardinality	3710.769	
Cumulative Total Cost	229.024	CITY, STATE
Cumulative IO Cost	20.2327	predicates now have
Cumulative CPU Cost	5448419	no effect on final
Stage 1 Columns	10	count
Page Range		
Prefetch	S	
Correlated Subquery IO Cost	0	

				_
	-			
100		-	-	pass. Amphibit
1000		_		Contract Stand
1004	-	-		1007 100
				1 32 2000

Correlation Conclusions

- Optimizer will consider columns to be independent unless statistics demonstrate otherwise
 - Columns incorrectly assumed to be independent have a dramatic effect on the total filtering estimate
- Correlation does not require knowledge of literal values
- While indexes can provide correlation information,
 - Indexes should be designed for filtering
 - RUNSTATS should be used for correlation
 - Where possible

Possible Recommendations

- Use KEYCARD option for all multi-column indexes
- Create indexes to support filtering
- Use COLGROUP option to collect correlation
 - For matching + screening cases
 - And for total predicate filtering
 - Use indexing if RUNSTATS options are difficult to implement

Agenda

- Introduction
- Data skew
- Correlation and the effect of index screening
- Range predicate accuracy
- Conclusion

-	_	
-		States and a
-	-	STORAGE STORE
10.04	1010 0000	Sets time and

Query example

 User complaint about performance

SELECT *		
FROM CUSTOMERS		
WHERE ZIPCODE	=	?
AND CITY	=	?
AND BIRTHDATE	<	?

Multi-index access path via CUSTIX5 & CUSTIX6

Validate the user complaint

Start by determining where the problem is.

- Need actual data values to run a count of the query

SELECT COUNT(*) = 1536 rows
FROM CUSTOMERS
WHERE ZIPCODE = 30301
AND CITY = `ATLANTA'
AND BIRTHDATE < `9999-12-31'</pre>

Query breakdown

- Break apart the query to compare reality and estimates per object
 - Match query to indexes

Counts of qualified rows per index

Per index

Count of rows qualified by CUSTIX5

SELECT COUNT(*) = 1,536 FROM CUSTOMERS WHERE ZIPCODE = 30301

Equals total table filtering, thus CITY/BIRTHDATE provide no further filtering

- Count of rows qualified by CUSTIX6
SELECT COUNT(*) = 7,968
FROM CUSTOMERS
WHERE CITY = `ATLANTA'
AND BIRTHDATE < `9999-12-31'</p>

		A CONTRACTOR		
		Inc	1/0	
	DB2		VA	and an all succession of
1 100 K 100	statistics of the local division of the	COLUMN TWO IS NOT		

Counts of qualified rows per predicate

 Breakup the query further

SELECT COUNT(*) = 7,968 FROM CUSTOMERS WHERE CITY = 'ATLANTA'

SELECT COUNT(*) = 1,536
FROM CUSTOMERS
WHERE ZIPCODE = 30301

Predicate Report with Host Vars

Obtain optimizer estimates from predicate report...

Left-hand Side	Left-hand Side Column Cardinality	Predicate Type	Right- hand Side	Right-hand Side Column Cardinality	Filter Factor
CITY	26	EQUAL	VALUE		0.0385
ZIPCODE	52	EQUAL	VALUE		0.0192
BIRTHDATE	456	RANGE	VALUE		0.1

-		100	-	1.5	
34934	-	-	12	tinter Salar	
				Ξ.	

Comparing estimates with reality

- Calculate actual FF and compare with estimate
 - We know CITY & ZIPCODE are skewed and correlated
 - But why is the BIRTHDATE estimate incorrect?

Predicate	Count	Table cardf	Actual FF (count/cardf)	Optimizer FF	
CITY = 'ATLANTA'	7,968	192,960	0.0413	0.0385	ok
ZIPCODE = 30301	1,536	192,960	0.008	0.0192	X
BIRTHDATE < '9999-12-31'	192,960	192,960	1	0.1	X

Range Predicate Interpolation

Default filter factors for interpolation (from DB2 Admin Guide)

Note: Op is one of these operators: <, <=, >, >=.

COMMENT: This is DB2's documented guess for an impossible to estimate Filter factor. Used for host variables/parameter markers.

-		-			
100 million (* 1		_			_
-	·				
	_	_	_		
				_	

Range Predicate Interpolation

Range predicate with host var/parameter marker

- Use default interpolation filter factor chart
 - COLCARDF 456 --> FF = 1/10
- In reality, could qualify anywhere from all to no rows
 - Here's another sample predicate:
 - BIRTH_DATE <= ?</pre>
 - How many people here were born before parameter marker?
 - What if value is '1920-01-01'?
 - What if value is '1990-01-01'?
 - Cannot accurately estimate without literal value

Access path with literal values

	-	100	_		
2229			1		
2020			100	1000	100
3576				-	
				-	

Predicate report for literals

• With literals or REOPT, how do estimates compare?

- CITY FF is correct
- BIRTHDATE is very close
- ZIPCODE is near enough

Left-hand Side	Left-hand Side Column	Predicate Type	Right- hand Side	Right-hand Side Column	Filter Factor	
	Cardinality		Side	Cardinality		Actual FF
CITY	26	EQUAL	VALUE		0.0413	0.0413
ZIPCODE	52	EQUAL	VALUE		0.0037	0.008
BIRTHDATE	456	RANGE	VALUE		0.9978	1

Statistics Advisor Recommendations

For original query with host variables

SA recommends using REOPT

Conclusions

Range predicates with parameter markers/host vars

- Optimizer calculates FFs using documented default interpolation formula:
 - Impossible for optimizer to always estimate correctly
 - Also used for special registers
 - WHERE BIRTHDATE < CURRENT DATE</p>
 - Defaults are very optimistic
 - Which is problematic if the predicate provides poor filtering

-	-	-	_	
	_	_	_	_

Possible Recommendations

REOPT(ALWAYS)

- Or provide the literal value if regularly used
- REOPT(ONCE) for dynamic SQL
- Don't index range predicate columns that are poorly filtering.
 - If a correct FF estimate will be challenging for optimizer
 - Poorly estimated predicates can encourage an index to be chosen
 - If it must be indexed, then also add it to the preferred index

Other predicate challenges

- Predicate examples that are difficult to estimate FF:
 - Column expressions
 - WHERE SUBSTR(STATE,1,1) = 'A'
 - Non-column expressions
 - WHERE BIRTHDATE < DATE('2006-01-01') 1 YEAR
 - LIKE with leading (or intermediate) wildcard
 - WHERE LASTNAME LIKE '%A%'
 - IN predicates with many duplicates
 - WHERE ACCTNO IN (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Agenda

- Introduction
- Data skew
- Correlation and the effect of index screening
- Range predicate accuracy

Conclusion

Conclusion

- We demonstrated the 2 main factors for the optimizer to accurately cost different objects
 - The individual filter factors, and
 - How those filter factors are combined.
- These impact estimates for
 - Index matching
 - Total index filtering
 - Total table level filtering
- And we highlighted how DB2 V8 simplifies the identification and resolution of poor optimizer estimates

Why did the optimizer choose that access path?

Thank you for listening!!!

Terry Purcell

IBM Silicon Valley Lab

tpurcel@us.ibm.com

