
Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Redbooks Paper

The Role of IBM System z in the
design of a Service Oriented
Architecture

Introduction
IBM®'s clients have many years worth of applications, some of which perform
critical business functions, in their portfolios and huge investments in mainframe
computing. The natural question that occurs to an IT or business executive is:
"how can my existing mainframe IT infrastructure and assets work in this new On
Demand, Service-Oriented Architecture-centric universe?" That is the question
that this paper attempts to answer.

This paper does not attempt to answer "what is SOA?" in great detail. A good
whitepaper for an overview of that and other related questions can be found at:

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-whitepaper

There are a number of other good resources from which to obtain more detailed
information about SOA and IBM's SOA strategy, as well. A good source is the
IBM developerWorks® Web site:

http://www.ibm.com/developer

Bill Seubert
Daniel Raisch
© Copyright IBM Corp. 2006. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-whitepaper
http://www.ibm.com/developer

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
There are links to SOA-specific resources and to IBM System z™ resources on
the developerWorks home page. The developerWorks site contains many
whitepapers, tutorials and software downloads that provide additional information
related to SOA and the mainframe.

The IBM SOA Lifecycle - the center of IBM's SOA
strategy

In late 2005, IBM announced a refined approach to implementing SOA, centering
on what IBM calls the "SOA Lifecycle." The SOA lifecycle is the framework of
IBM's SOA strategy. As Figure 1 on page 3 shows, the SOA lifecycle consists of
four stages:

� Model - Use modeling tools to define the business process, at a business
function level, and model the actual services that will be part of an
assembled, composite application.

� Assemble - Assemble the individual services and write the code that is
needed to implement the business rules for the application. Services may be
re-used, or they may be developed new.

� Deploy - Deploy the services to run-time environments, such as transaction
management engines like WebSphere® Application Server, CICS®, IMS™,
etc. Use integration components - primarily an enterprise service bus (ESB) -
to link together the various services needed for the composite application.

� Manage - Implement the management infrastructure for monitoring and
managing the services and the service infrastructure. This includes not only
IT management tools, but also business management and monitoring tools to
measure actual business activities.
2 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Figure 1 IBM’s SOA Lifecycle

Since this is a lifecycle, it implies a "closed loop" - at the end of the cycle, the
Manage stage feeds information back to the Model stage. Results from the
runtime management tools can be fed into the modeling tools to provide
feedback for refinement of the business processes that are being instantiated
into services and composite applications.

Underlying the four phases of the life cycle is the function of governance.
Governance of the SOA implementation is critical to the integrity of the
architecture. Governance can ensure the consistency of the service
development strategy and the adherence to the policies and procedures of the
SOA implementation. This is often the area where enterprises stumble in their
implementation. A "build it and they will come" approach to an SOA and the
accompanying infrastructure is often a ticket to failure, unless there is constant
monitoring, management and "enforcement" of how the architecture is rolled out
and used.

The SOA Lifecycle is not an entirely new concept. Many application
development models, including those for developing mainframe applications,
have involved the same concepts described therein. But there are several
aspects of SOA that make this particular life cycle unique:

� SOA involves modeling of business processes, not just the modeling of the
applications themselves. Developers are very familiar with the idea of
object-oriented (OO) design and modeling. This involves the use of OO
 The Role of IBM System z in the design of a Service Oriented Architecture 3

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
design tools, creation of UML models, and generation of application code
from the models. In SOA, this technique is replicated at a higher level of
abstraction. With SOA, the business process is modeled first, and the results
of the model are fed to additional development tools like with in a similar way
to UML models, only in this case the tools emit Business Process Execution
Language (BPEL). The BPEL artifacts are then passed to other tooling that
are designed to enable the construction of composite applications that consist
built from of multiple, orchestrated services.

In the past, mainframe applications have been built using traditional
processes such as the "waterfall" design method. Design techniques that
include modeling at the business process level are closer to design methods
such as the Rational® Unified Process®, using design feedback loops with
the end user. Business process modeling assists with that feedback process.

� SOA applications are assembled from multiple services that can be "wired"
together using orchestration and process management tools. This is similar
to how visual design tools such as VisualAge Smalltalk were used several
years ago for building object-oriented applications. However, with SOA, the
assembly process is done using service components that are based on many
different technologies, not just objects.

Mainframe applications can be employed as services in the SOA Lifecycle.
The section of this document titled "Integrating Existing Applications into an
SOA" will explore this further. Many mainframe customers use this
application integration and service enablement process as their key "entry
point" into SOA.

� In a full SOA implementation, the individual services are deployed to a
runtime, just like a "traditional" transactional system. However, the composite
applications are represented in, and "executed" from a flow engine, and that
runtime engine takes care of calling the services in the proper sequence ,
based upon what is specified in the BPEL - the input to the flow engine. The
advantage behind this construct is that the "rules" for the service flow can be
modified more easily than in an application where the rules and workflow are
coded into the application source. This is a key feature that helps enable the
"flexibility", “reuse” and "speed" that are key attributes of the On Demand
model.

In the past, many mainframe applications included process management
within the application. Moving this flow management out of the application
into middleware components can make it easier to adapt to changes to
business processes. Changes are made in the choreography tool rather than
modifying existing COBOL source or other application program logic.

� While the logical linkage between the services is represented by the flows
that execute under the control of a flow engine, the physical linkage between
deployed services is typically implemented in an Enterprise Service Bus
4 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
(ESB). The Enterprise Service Bus ESB is the abstraction layer that is
designed to eliminate the point-to-point connectivity between specific
services. The traditional Message Oriented Middleware implementation
requires defined connections between endpoints, but, in an ESB, the
endpoints are not explicitly hard-coded into the tools; they can be resolved at
runtime.

Enterprise Application Integration (EAI) has been a significant focus area over
the last 5-10 years, and integration of existing mainframe applications has
been the primary target. Many EAI principles and best practices still apply in
an ESB-centered SOA, but the presence of standards such as messaging
(WebSphere MQ, JMS) and SOAP have helped to make this job easier and
faster than before.

� In previous application architectures (mainframe and other), monitoring is
traditionally only done at the I/T level. Organizations are often concerned
about the number of transactions per second being executed, what the
end-user response time is, application server utilization, etc. In the SOA
Lifecycle, there is a keen interest in the business performance. For example,
Bank A might be interested in how many new accounts were opened last
week, or how many ATM withdrawals occurred…rather than what the
average response time was for the ATM transaction. This kind of business
information is fed into the business modeling tool to refine the business
process. In fact, the business process modeling tools can often simulate a
process model that will help to determine where improvements may be found.
The input to the simulation tools may come from the actual run-time monitors.

� IBM's sharp focus on governance is unique in this model. While architectural
governance (including security) has always been an important facet of I/T and
architectural management, it is particularly critical in SOA, due to the
loosely-coupled nature of services. In a world where applications are
composed from services that are scattered throughout the enterprise and
beyond, it is critical to have a firm grasp on the architecture and the
implementation of services within it.1

The mainframe environment has a long history of strong IT architecture and
infrastructure governance and stringent application development practices.
The focus on SOA governance is an extension of the same type of rigid
policies that have succeeded in the traditional host-based world.

1 More on SOA governance can be found at
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-govern/
 The Role of IBM System z in the design of a Service Oriented Architecture 5

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
More on reuse and governance
In the SOA Lifecycle Model, there are two elements that are crucial to SOA
deployment success - reuse and governance. The construction of SOA-based
applications through the assembly and choreography of existing services
depends upon the reuse of assets, both those that are newly created and those
harvested from existing mainframe (and other) environments. Reuse is one of the
most important sources of SOA business value because it reduces development
and testing time. It is closely tied to flexibility and agility, as any new application
to be deployed will primarily be the result of a new assembly of existing parts - a
set of proven existing services choreographed to match a new business process.
The key focus of reuse is to avoid building new services and the associated cost
of maintaining them.

Reuse must be supported by a governance infrastructure. There must be
policies and best practices that define the development architecture that allows a
service to be used by many applications, or to make it reusable. There should
be a central repository where services are stored or cataloged, and mechanisms
to make them accessible, similar to a yellow pages phone book. Beyond this
central repository, additional management requirements emerge, including
versioning, tracking, and migration of services and their various releases.
Mainframe shops have had a good understanding of these concepts and
requirements because the mainframe application development lifecycle has had
similar requirements, but with different scope and different technologies.
Mainframe shops typically have a set of source code repositories and respective
load module libraries, as well as other libraries for shared application code (such
as error handling routines) and procedures and programs used by the IT
department. Access to these repositories is controlled, and there are rules for
code check-in/check-out, versioning, and other change management
procedures. For mainframe shops, reuse and the controls that surround it are not
new concepts.

As described above, there are many policies that must be defined in order to
make an SOA infrastructure more robust. This set of rules, practices and
procedures is known as governance. Because SOA requires a corporate view of
IT, it is essential that corporations define these rules and procedures.
6 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Governance is required along with technical SOA design considerations, and
companies that are adopting SOA must develop a governance model that
matches company business processes and their SOA deployment model.2

Choosing a development and design approach
One of the more interesting philosophical discussions in SOA is "where do we
start?" This is a particularly lively discussion when mainframe assets are
involved, as few companies wish simply to discard working applications that
contain valuable intellectual capital. The general approaches to SOA analysis
and design tend to center on three philosophies:

� Top-down - This is usually considered the “purist” approach to SOA. The
top-down approach begins with analysis and understanding of the business
environment and the services that make up the functions of the business.
The business model is decomposed into the elementary components that
represent business services. Those business services are eventually
represented by IT services. This analysis is accompanied by documentation
of the processes that link together the various business services.

IBM's Component Business Modeling (CBM) can be followed to discover the
business architecture. Once a model is developed, the strategically important
parts of the business architecture can be identified and fed into the process of
service modeling so IT services can be created from them.

One drawback to the Top-Down method is that it may result in service
decompositions that do not closely match the existing business applications.
This can imply several things. For example, if the the ideal model does not
match existing assets, there may be a greater need for newly-developed
services. There is a fair chance that the match will be close - that existing
assets can be used, but there may need to be more IT development work
done to more invasively extract and reuse code.

� Bottom-Up - The Bottom-Up approach involves exposing existing
applications as services which are then used to create new, composite
applications developed using techniques such as business modeling and
development with process orchestration tools.

2 For more details on this, see "SOA Compass" published by IBM Press,
ISBN:0131870025;Published October 25, 2005, Copyright 2006.
 The Role of IBM System z in the design of a Service Oriented Architecture 7

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
When a Bottom-Up approach is used, concerns often emerge regarding the
granularity of the services. With existing mainframe systems, an interesting
situation often arises: older mainframe systems are frequently well-suited for
SOA because the applications themselves already represent discrete
business functions. A recent article in Enterprise Systems magazine stated:

The irony is that host applications are probably better suited for exposure as
part of an SOA than many applications based on more modern 4GL
object-oriented languages, said Phil Murphy, a principal analyst with
consultancy Forrester Research, in an interview last year. "When folks wrote
screen-based transactions many months ago, they wrote it at a business
function viewpoint: I add a customer, I add an order for that customer, I check
backlogs for that customer, etc. So in many respects, those CICS screens of
15 years ago are better suited to service orientation than a lot of the newer,
distributed code that's been written over the last several years, because of
their affinity with a business function," he argued, adding: "What did the
object-oriented guys do? They took those screens and they broke them down
into a thousand different objects.3

So, at least at the user interface, the reuse of existing host applications is
sometimes simpler than it would appear on the surface. Unfortunately, the
underlying programming structure is not always as friendly to reuse as the
application may appear at the surface. These applications may not match
perfectly with the services that would be identified in an analysis exercise
such as CBM. In this case, a compromise may be appropriate.

� Meet-in-the-Middle - The Meet-in-the-Middle approach is a compromise that
employs techniques from both Top-Down and Bottom-Up. It affirms that there
is considerable value in existing assets that should be reused when
appropriate, and also utilizes top-down service identification and
decomposition techniques. A recent article on the IBM developerWorks Web
site states:

There are no green field projects in the real-world as legacy applications …
always have to be taken into account. Therefore, a meet-in-the-middle
approach is required, rather than pure, top-down or bottom-up process.

The bottom-up approach tends to lead to poor business-service abstractions
in case the design is dictated by the existing IT environment, rather than
existing and future business needs. On the other hand, top-down processing
might cause insufficient, non-functional requirement characteristics, and
compromise other architecture quality factors (for example, performance
problems due to lack of normalization in the domain model) as well as provide
impedance mismatches on the service and component layer.4

3 Source: http://esj.com/enterprise/article.aspx?EditorialsID=1457. Reprinted by permission of
Enterprise Strategies (www.esj.com), a publication of 1105 Media LLC, Copyright 2006.

4 Source: http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
8 The Role of IBM System z in the design of a Service Oriented Architecture

http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
This summary shows the need to address SOA analysis and design from both
the top and the bottom. In a mainframe environment, where there is a
pre-existing inventory of mature, high-performance business applications, it
only makes sense to try to reuse as much as possible.

Figure 2 illustrates how Top-down and Bottom-up approaches relate.
Business knowledge, issues and architectures press from the top, and are
represented using an analysis like CBM. The IT infrastructure, based on an
On Demand Operating Environment and SOA as an application architecture,
provides the computing base for the modeling, development, deployment and
management of composite services that instantiate the processes from the
business model.

Figure 2 Top-Down/Bottom-Up Relationship between Business and IT
 The Role of IBM System z in the design of a Service Oriented Architecture 9

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
A further illustration of this is found in Figure 3, which shows how traditional
architectures do not necessarily have the same degree of cooperation
between the top and bottom.

Figure 3 Traditional versus SOA - top-down/bottom-up
10 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Service Oriented Architecture on IBM System z
The main focus of this paper is not to define Service Oriented Architecture or
other terms related to it, but to clarify the role of the mainframe in a world
centered on SOA. The natural inclination for many is to assume that SOA only
involves distributed systems and technology that is less than five years old!
However, this is far from the truth.

The 21st century mainframe can still trace its origins to the System/360™ of the
mid-1960s. One of the key design points of the System/360 was to implement a
computer architecture that would scale within the family and throughout a long
upgrade lifecycle, without losing backwards compatibility. IBM's commitment to
this level of compatibility has been maintained ever since. Because of this
backward compatibility, many programs that were written decades ago will still
run on current IBM mainframes. This has provided significant business value to
our customers by allowing them to protect the investment in their applications.
However, as the world has adopted new technologies and architectures, this has
posed a problem: how do we unleash the power of these business assets in the
new computing architectures that have emerged in recent years? This challenge
began in the client/server days of the 1990s, and has continued into this decade.
SOA is simply an extension of that challenge.

Standards in SOA
Fortunately, SOA possesses a key attribute that positions the mainframe as a full
participant. The IBM developerWorks web site, found at
http://www-128.ibm.com/developerworks/webservices/newto/ ,refers to the
following attribute of SOA:

The interface is defined in a neutral manner that should be independent of the
hardware platform, the operating system, and the programming language in
which the service is implemented.

Standards are critical to SOA, and specifically to the mainframe's participation in
it. Through the standardization of interfaces between services, it is now possible
for vendors (like IBM) to incorporate those standards into the transaction
processing systems and database managers so existing applications may be
integrated more easily into the SOA environment. There are a number of
standards that enable this interaction, but several stand out:
 The Role of IBM System z in the design of a Service Oriented Architecture 11

http://www-128.ibm.com/developerworks/webservices/newto/

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
� Web services - One of the most important standards to emerge in the last 10
years has been the emergence of SOAP. SOAP defines a common XML
format to describe service calls and return messages for invoked services.
SOAP is a simple XML based protocol to let applications exchange
information over HTTP or Messaging middleware.

The emergence of SOAP as a standard transport has helped enable vendors
to SOAP-enable their subsystems to make it easier for services to interact.
The HTTP transport protocol is relatively ubiquitous, and as a result, SOAP
messages can be passed between most computing platforms, providing that
hardware and OS neutrality described in our SOA definition. Later in this
paper, we will see details about how the System z software has implemented
SOAP and other standard interfaces to facilitate Web services calls to
mainframe transactions and data.

� XML - XML is not a new technology: it has been in fairly wide use for more
than five years now. It can be said that it is key to the required interoperability
between services in SOA. The self-describing nature of XML, along with the
ubiquity of utilities that process it, make it an ideal data representation format
for information that flows in a service invocation. This ubiquity extends to
System z, where XML processing is possible in new technology server
software such as WebSphere Application Server, and support for XML is also
built into the traditional software systems, including CICS, IMS and the
COBOL and PL/I compilers.

� Message Oriented Middleware - Messaging and queuing has been in
existence for over ten years, providing a reliable, fast transport mechanism
for passing data between applications. Many IBM customers have employed
WebSphere MQ (formerly known as MQSeries®) as a transport to call remote
functions on separate systems, just as SOAP does. In fact, WebSphere MQ
can be used as the underlying transport for SOAP. IBM's WebSphere MQ
(WMQ) is present in the business of many IBM customers world-wide, and
this penetration has helped to make WMQ a de facto standard for
implementing program-to-program communications. Some IBM customers
have designed their entire SOA implementation around a WMQ transport.
There is a key message here: SOA is not just Web services! A service
oriented architecture can be implemented without employing Web services,
although this is uncommon. SOA simply must have a hardware/OS/language
neutral transport to facilitate communication between services. In the case of
IBM System z, WebSphere MQ is a key component of many customers'
infrastructure on z/OS®, and there are bridges that permit the invocation of
host transactions using its transport.

� Java™ Database Connectivity (JDBC™) and Service Data Objects (SDO)
- An emerging concept in SOA is Information As A Service (IAAS). Besides
accessing applications as services, composite applications may need to
access data in a similar fashion. JDBC, along with the Structured Query
12 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Language (SQL), are key standard technologies for providing IAAS. Now any
database management system can provide a JDBC driver interface to enable
a Java-based SQL application to access information in a seamless, hardware
and platform-neutral fashion. Obviously, JDBC is inherently
language-dependent - it requires Java! However, most database
management systems now provide SOAP-based interfaces to the data
resources. For example, technology now exists in DB2® Universal
Database™ to access data in DB2 via Web services protocols.

SDO is a newer technology than JDBC and is a key component of IBM's SOA
programming model. An SDO "define(s) a uniform paradigm of data graphs to
access and manipulate data from heterogeneous sources, including relational
databases, XML data sources, Web services, and enterprise information
systems”.5 When using SDOs, a service developer connects to a "Data
Access Service" to access data, rather than using a language-specific
construct such as JDBC. This provides abstraction between the data request
and the data source.

The next sections will focus on the specifics of the IBM SOA-on-the-mainframe
strategy and how the mainframe and z/OS can participate in, and host the
infrastructure for a service oriented architecture implementation

Design Considerations for an SOA with IBM System z
There are many architectural principles involved in the design of an SOA
infrastructure and in the applications that use that infrastructure. Some of those
are not unique to environments with mainframes, but the presence of the
mainframe can introduce some special considerations. Some design principles
that are of particular interest:

� Existing IT standards - This is the design principle that generally comes up
first in architecture design sessions. These common statements: "We
already use xxxxxx product" "We are pursuing an open systems design for
our systems" "We are trying to get off the mainframe" are the kinds of
quasi-standards that are often encountered, in addition to more formalized
standards documents. Existing IT standards may be dictated by the
presence of zSeries® in the customer environment. For example, if CICS is
being used to host existing applications, then an infrastructure that permits
easy integration of existing CICS business logic is usually desirable.
"Placement of critical business data on an existing DB2 for z/OS" system is
an IT standard that is often followed by mainframe customers.

� Scalability - Scalability is the ability to adjust the capacity of a system to
absorb varying transaction rates, usually dynamically. How can a particular

5 Source: IBM Systems Journal, http://www.research.ibm.com/journal/sj/444/ferguson.html
 The Role of IBM System z in the design of a Service Oriented Architecture 13

http://www.research.ibm.com/journal/sj/444/ferguson.html

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
system be scaled to take on additional work? Can this scalability occur
dynamically, or does it require additional fixed resources (servers, storage,
network, etc.) to be added manually? Often, scalability is referred to as
horizontal - adding more capacity by adding additional systems/servers, or
vertical - increasing capacity by growing the size of the existing platform.

The IBM mainframe has a long heritage of scalability, both vertical and
horizontal. The current generation of IBM System z9™, the System z9 EC,
can scale from several hundred Millions of Instructions Per Second, or MIPS,
to well over 17,000 MIPS, on one to fifty-four processor units, or engines in
common terminology.

If a System z customer requires more capacity than is available in a single
mainframe, horizontal scaling may be accomplished by implementing a
Parallel Sysplex®6, which permits multiple z/OS systems to be clustered
using a set of unique hardware and software technologies that provide
horizontal scaling, full data-sharing between systems, and improved system
availability by virtually eliminating planned and unplanned outages (see next
topic "Availability").

� Availability - No one wants their system to fail. Availability is a rather
subjective concept, particularly in an SOA. What defines available? Is it
availability to the end user? Availability of a particular infrastructure
component? Does poor performance equate to unavailable? How good is
good enough, with respect to availability?

IBM mainframes have gained a stellar reputation over time by achieving very
high levels of system and application availability, by avoiding both planned
and unplanned outages. The IBM System z9 is often referred to as having
five nines availability (available 99.999% of the time, around 5 minutes of
downtime per year). This high availability is achieved through a variety of
hardware and software features, including hardware component sparing,
clustering via Parallel Sysplex, and long-distance clustering with
Geographically Dispersed Parallel Sysplex™.7 Many distributed computing
platforms, including IBM's, have claimed to have mainframe-like features.
However, the features of single system, intra-datacenter and intra-datacenter
failover for System z are unique and unparalleled.

Note: MIPS are a very rough indicator of processor capacity. IBM has always
stated that MIPS is a poor indicator of performance, as different workloads
consume processor resource at different rates. See
http://www.zjournal.com/PDF/deitch.pdf for an interesting article on the topic.

6 Details on Parallel Sysplex can be found at
http://www-03.ibm.com/servers/eserver/zseries/pso/sysover.html

7 More details on Geographically Dispersed Parallel Sysplex (GDPS®) can be found at
http://www-03.ibm.com/servers/eserver/zseries/gdps/
14 The Role of IBM System z in the design of a Service Oriented Architecture

http://www.zjournal.com/PDF/deitch.pdf
http://www.zjournal.com/PDF/deitch.pdf
http://www-03.ibm.com/servers/eserver/zseries/pso/sysover.html
http://www-03.ibm.com/servers/eserver/zseries/pso/sysover.html

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
An SOA can deliver high availability by selection of high-availability runtime
platforms, but this may also be driven by the reduction of potential
points-of-failure can deliver the same results. IBM System z helps facilitate
the reduction of points-of-failure by enabling the architect to place more
components on the mainframe platform and helping to reduce the potential
for failures on the network or on the system itself. Failover on a Parallel
Sysplex is usually painless and seamless to the application.

� Performance - No one wants their transactions to be slow! Performance is
one of the key considerations that drives design decisions - what components
and software can deliver optimal performance? This is a much more
interesting question in an SOA than in a traditional, single-tier mainframe
application architecture, since a multi-tier application has many more
components which may pose performance issues.

Several design principles may affect performance: proximity to data,
reduction of network hops, fast computing platforms, reduction or optimization
of I/O, and many others. The IBM System z delivers many of these
high-performance features. By collocating components on the same
mainframe and/or OS instance, network activity may be reduced or
eliminated. Marshalling/de-marshalling of objects in an RMI-style
environment can be eliminated, thus removing the associated CPU and I/O
overhead. The mainframe I/O subsystem is generally much more scalable
and efficient than other platforms, helping to remove another major overhead
bottleneck for transactions. And middleware components such as CICS, IMS
and DB2 for z/OS have matured over decades and have been tuned to
sustain very high transaction rates. Even if Linux® on IBM System z is a part
of the architecture, proximity can be employed to improve performance by
using a Hipersocket8 connection between Linux and z/OS

� Workload management - z/OS has long been known for its superior
operating system functionality in the management of multiple, heterogeneous
workloads. z/OS is designed to run on a single OS instance, transaction
processing (IMS, CICS, WebSphere), database management (DB2, IMS,
ISV), batch, interactive work(TSO), systems management tools, portals,
e-mail (Domino®), and many other types of work - simultaneously! The
sophistication of the z/OS dispatching algorithms and the Workload Manager
(WLM) make it possible for all of this work to run at the same time, without
impacting the work running alongside. Furthermore, when a Parallel Sysplex
is implemented, work may be dispatched in the same manner across multiple
z/OS instances in the Sysplex. Hardware partitioning takes care of
virtualizing CPU, memory, and peripheral channels so they may be shared
across Logical Partitions on a single System z machine.

8 For more information on Hipersockets:
http://www-03.ibm.com/servers/eserver/zseries/networking/hipersockets.html
 The Role of IBM System z in the design of a Service Oriented Architecture 15

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
What does this mean? A z/OS system may be fully utilized to extract the full
value of the machine. A zSeries/System z system is designed to run at 100%
utilization, 24 hours a day with the workloads balanced in a way that
preserves adequate performance based upon business objectives specified
by the customer at the operating system level. And this is true not only of
z/OS, but also across z/VM® and Linux on System z as well - virtualization
happens at the hardware and the OS level.

The implications of mixed workloads and virtualization in SOA are interesting.
As asserted in the Performance topic, collocation of data and transactions is
important for maintaining good levels of performance. Since z/OS can
support multiple heterogeneous workloads, this collocation works well and
should not pose performance problems. The various SOA infrastructure
components may be run alongside the services themselves and the data
being accessed by the services, helping to optimize performance, and
minimize points of failure. Leveraging the underlying qualities of service of the
operating system by using the z/OS infrastructure components may help
optimize these interrelationships.

� Security - There are several areas of security that are of concern in an SOA -
authentication, authorization, and privacy. The mainframe security
infrastructure already exists to support all of these, through a synergy of the
hardware and software. System z hardware contains a number of security
features that help make the platform inherently secure. For example, the
Storage Protect Key feature of the hardware and operating system makes it
virtually impossible for one user/address space to overwrite another. All
System z machines come with built-in, on-board encryption engines to
accelerate functions like SSL. z/OS ships with built-in Public Key
Infrastructure software so customers can build their own Certificate Authority.
The Resource Access Control Facility (RACF®) is the standard security
facility for z/OS and supports authentication and authorization for all system
components.

� Ease of use - The mainframe has a green-screen reputation. For years the
3270 terminal interface has been the standard way to gain interactive access
to mainframe applications. But, this is no longer the only way to access the
mainframe. New development tool options, such as WebSphere Developer
for zSeries, allow traditional application developers to build COBOL and PL/I
applications using a workstation interactive development environment (IDE).
Monitoring utilities such as the Tivoli® Omegamon suite provide an attractive
GUI for performance and availability monitoring. And if existing 3270 user
interfaces to applications are inadequate, the Host Access Transformation
Services (HATS) tool provides a very fast, simple way to wrap transactions
with an attractive Web face (more about HATS in the section labeled,
“Improve” on page 31).
16 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
The New Face of z/OS9 initiative is intended to provide friendlier ways to
access and administer the mainframe, and has already provided innovative
ways to present documentation and training materials to new z/OS users and
administrators.

� Flexibility - The mainframe will probably not be the only platform in an SOA
implementation. Placing components on the IBM System z does not restrict a
customer to that platform. There is a great deal of flexibility in placing
components where they best fit, based upon the aforementioned
characteristics. Use of standards in service creation and SOA infrastructure
help to provide flexibility in placement of the services themselves, and of the
components, such as a portal or an Enterprise Service Bus.

Most major middleware from IBM is supported on the Windows/Linux/Unix
environment and on z/OS and Linux on IBM System z. And while there is
somewhat limited support for the IMS and CICS transaction management
APIs outside z/OS, there is the option to create transactions for both using
Java, and to access those transactions using Web services, helping to make
the code more portable than it would be otherwise, and helping to make it
possible to swap out native CICS or IMS Web services with other alternatives,
if that need ever arose.

� Politics - The "1000 Pound Gorilla" of architectural decisions is politics, or
ideology. No one wants to admit that politics plays a role in decisions, but it
does. There are natural preferences in everyone - customers, vendors, and
consultants (there's no such thing as an impartial consultant!). And those
preferences drive decisions.

Mainframes are associated with many myths and urban legends,, such as
"the mainframe's too expensive", "the mainframe is just an old box for
running batch jobs", "we can't find anyone to write COBOL", and more. The
key to making an architectural decision for SOA with respect to the mainframe
is: Go beyond the myths and make decisions based upon business issues.
Where is the best platform to provide optimal performance/security/reliability,
based upon the SLA for this application? What is the most cost-effective
solution (and one must look beyond the cost of acquisition to get the true
cost)? When decisions are backed with facts and good business cases,
political influences are reduced, but not eliminated.

9 Further information on the z/OS Ease of Use project may be found at:
http://www-03.ibm.com/servers/eserver/zseries/zos/eou/
 The Role of IBM System z in the design of a Service Oriented Architecture 17

http://www-03.ibm.com/servers/eserver/zseries/zos/eou/
http://www-03.ibm.com/servers/eserver/zseries/zos/eou/

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
The Three Facets of IBM's SOA on System z Strategy
When examining the various parts of the IBM software portfolio and strategy,
three facets of the IBM software offerings stand out with respect to SOA:

– Deployment of new Web services to IBM transaction managers on System
z,

– Placement of SOA infrastructure components on System z, and

– Integration of existing z/OS transactions into the SOA as services.

We now look at each of these in detail.

Deploying services to an IBM System z runtime server
One of the key strengths of the mainframe and z/OS is transaction processing.
The ability for the mainframe to process large amounts of data simultaneously,
with mixed workloads (thousands of transactions per second, alongside
database managers, security managers, Web serving, etc., all on the same OS
image), is well-known in the IT industry. For 30+ years, CICS and IMS have
been hosting mission-critical applications for virtually all of the Fortune 500
companies and most major non-commercial enterprises. The mainframe is
designed to deliver the best quality of service (QoS) in the industry for
commercial transaction processing. Beginning in the late 1990s, Web application
serving also took off on the z/OS platform, with the emergence of the
WebSphere Application Server for z/OS. Now the mainframe is also a premier
platform for serving Java 2 Platform, Enterprise Edition (J2EE™) compliant
transactions.

Many services in an SOA are today's business transactions. A service may be
akin to a subroutine, or it may be a consolidation of many different transactions
(as in a composite SOA transaction) into a single orchestrated business process.
The nature of services in SOA is the same as transactions - they are a key part of
a business transaction and should be hosted in a transaction manager that
provides a high level of QoS. Services that update critical business data have
the same requirements to run as transactions, with the traditional Atomicity,
Consistency, Isolation, Durability (ACID) attributes, that any traditional
transaction must possess.

Java transaction management
Since a service often must be transactional, it makes sense for transaction
management middleware to host the service. In fact, most SOA implementations
outside the mainframe realm do use transaction managers for this purpose. The
18 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
WebSphere Application Server is IBM's primary transaction management
container on distributed platforms for services written in the Java programming
language. WebSphere is the market leader for J2EE-compliant application
servers. On the mainframe, the WebSphere Application Server for z/OS (WASz)
provides that function. If a company wishes to build J2EE-compliant services
with a Web services (SOAP) interface, WebSphere Application Server for z/OS
fulfills that role. WASz provides the same J2EE functions/APIs as distributed
versions of WAS. All WebSphere Application Server products are now written to
a common code base, and WASz benefits from that. Over 90% of the WAS code
is common across platforms, and the portion that is NOT common on z/OS
actually provides the superior QoS for the WASz product. It allows WASz to
exploit the underlying z/OS features, including the System Access Facility (SAF)
- the security interface to z/OS, Resource Recovery Services (RRS) - the z/OS
component that implements a two-phase syncpoint coordinator, and Workload
Manager for z/OS (WLM) - the operating system component that manages
workloads on z/OS in a business-goal oriented manner.

Traditional transaction management
The WebSphere Application Server is not the only transaction manager on z/OS
that can host services in an SOA. The two long-established transaction
managers, Information Management System (IMS) and Customer Information
Control System (CICS), are also able to serve transactions that cooperate
directly in a service oriented environment. IMS and CICS both have over thirty
years of heritage in supporting high-volume, high-reliability transactional
applications, and that environment is perfect for services today that require those
same high qualities of service.

The traditional transaction managers support development in their native APIs,
using traditional compiled programming languages, including COBOL, PL/I, C,
and Assembler. However, both IMS and CICS also support the Java
programming language for development of transaction programs/services. In
IMS, this feature is known as the IMS JDBC Connector, although it can be used
for more than just Java Database Connectivity(JDBC) connections. More details
regarding this can be found at:

http://www-306.ibm.com/software/data/ims/imsjava/javapi.html

Applications can be written in the Java language that access IMS Databases,
using the JDBC protocol. Also, those Java applications can perform other IMS
functions such as calling transaction commit/rollback services, communicating
with IMS message queues, and calling IMS XML DB services.

Within CICS, an analogous API exists, known as the CICS Java API, or JCICS.
 The Role of IBM System z in the design of a Service Oriented Architecture 19

http://www-306.ibm.com/software/data/ims/imsjava/javapi.html

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
Like the IMS API, this feature allows a Java programmer to create an application
which accesses CICS functions using the Java language and the JCICS
interface. JCICS functionality encapsulates most CICS functions, such as the
traditional commit/rollback functions, CICS terminal control, file control, and other
key areas of CICS. For more information on JCICS, see:

http://www.redbooks.ibm.com/abstracts/sg245275.html?Open

There are features within the IMS and CICS to enable SOAP and other Web
services protocols, independent of Java. In section , “Integrating existing
mainframe applications in an SOA” on page 28 we examine how IMS, CICS and
DB2 transactions can be enabled to support SOA and Web services. The Java
functions do provide the ability for native transaction development inside these
traditional systems. This is important in expanding the potential skill pool for
developing transactions and services. Since many current college and university
graduates have skills in Java development, support for Java in the subsystems
helps to enlarge the potential CICS and IMS developer community. Skills in
heritage programming languages are no longer necessary for building
applications in these environments, enabling wider use of IMS and CICS in SOA.

Hosting the SOA infrastructure on System z
Service Oriented Architecture, in its purest form, requires very little heavyweight
infrastructure, as the nature of service orientation simply dictates a logical
structuring of application code that encapsulates business functions as services.
The definition provided in Appendix 1 (A Brief Overview of Service Oriented
Architecture) makes no reference to any kind of middleware or other supporting
software. It simply refers to the standardization of the service interface and
neutrality of platform. However, in large SOA implementations, it is not really
practical to implement without tools to assist in the connectivity and the
orchestration of the interaction between services. Also, other ancillary tools are
necessary in most SOA implementations, including development and test tools,
user interface tools such as portals, and monitoring and management utilities.
This section describes why IBM System z is an ideal platform for running these
tools and middleware products that are commonly used in the implementation of
an SOA.

As organizations adopt SOA as the guiding architectural framework for
development of enterprise applications, the newly-deployed services quickly
become business critical components of the application infrastructure. This
implies that services must be treated as such, and should be deployed on a
robust, scalable, secure, high-performance platform. Along with the services,
the SOA infrastructure middleware and tools should also reside on such a
platform. The mainframe, z/OS in particular, is the premier IBM computing
20 The Role of IBM System z in the design of a Service Oriented Architecture

http://www.redbooks.ibm.com/abstracts/sg245275.html?Open

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
environment for providing ultra-high qualities of service for enterprise
applications.

What are key SOA infrastructure components? The IBM SOA Reference
Architecture, shown in Figure 4, defines the necessary building blocks to support
an SOA environment.

Figure 4 The IBM SOA Reference Architecture

At the center of this reference architecture is the Enterprise Service Bus, or ESB.
Surrounding the ESB are the key services needed to support the SOA runtime
environment: Interaction Services, Process Services, Information Services,
Partner Services, Business Application Services, and Access Services. We will
touch briefly on each of these to expand upon what they do to support the SOA.
Along with those core services, the surrounding boxes describe the other
functions that are necessary to support the services before, during, and after
their deployment.

Infrastructure Services
At the base of the SOA is the platform for deployment. This includes the
deployment of hardware and software for the actual business services and
service infrastructure. A production environment usually requires the highest
degree of quality of service (QoS), and the Infrastructure Services component
provides the QoS. Services at this layer can include operating system functions,
security, and hardware functions. This requirement for a high level of service is
where System z plays such an important role. Considering the mission criticality

A
pp

s
&

In

fo
 A

ss
et

s

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es
Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

Integrated
environment
for design

and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

Facilitates better decision-making
with real-time business information

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Manages diverse
data and content in a

unified manner

Connect with trading
partners

Build on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

ESBFacilitates communication between services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Optimizes throughput,
availability and performance

A
pp

s
&

In

fo
 A

ss
et

s
A

pp
s

&

In
fo

 A
ss

et
s

A
pp

s
&

In

fo
 A

ss
et

s

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es
Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

Integrated
environment
for design

and creation
of solution

assets

Integrated
environment
for design

and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

Manage
and secure
services,

applications
&

resources

Facilitates better decision-making
with real-time business information
Facilitates better decision-making
with real-time business information

Enables collaboration
between people,

processes & information

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Orchestrate and
automate business

processes

Manages diverse
data and content in a

unified manner

Manages diverse
data and content in a

unified manner

Connect with trading
partners

Connect with trading
partners

Build on a robust,
scaleable, and secure
services environment

Build on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

Facilitates interactions
with existing information
and application assets

ESBFacilitates communication between servicesESBESBFacilitates communication between servicesFacilitates communication between services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Optimizes throughput,
availability and performance

Optimizes throughput,
availability and performance
 The Role of IBM System z in the design of a Service Oriented Architecture 21

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
of most production SOA and infrastructure implementations, the high degree of
scalability, reliability and security of the mainframe is key to providing robust
infrastructure for the applications deployed in the SOA. For example, the z/OS
Security Server, including RACF, etc., is considered the premier security
implementation on any platform10. Resource Recovery Services (RRS) provides
a native z/OS-based transaction syncpoint manager for support of two-phase
commit transactions that access multiple z/OS back-end systems.

Linux on System z also participates in this component. For customers that wish
to use Linux as their primary run-time operating system, most other components
of the SOA infrastructure can be hosted on a Linux on System z base and
provide some of the same QoS advantages that are gained from running on
z/OS.

Development Services
The Model and Assemble phases of the SOA Lifecycle make extensive use of
the Development Services portion of the architecture. Development Services
includes the tools that are used for the modeling and assembly of the business
services. Modeling consists of the modeling of the business process and the
modeling of the actual services and the business logic within them. The tools
may be higher-level tools suitable for business analysts and/or architects, or
lower-level tools such as those used for object-oriented development. The
output from these tools consists of artifacts such as UML models, actual
application source code in a variety of languages from Java to COBOL, and also
markup languages including XML and Business Process Execution Language
(BPEL).11

From the System z perspective, most code development and modeling tools
don't run on the mainframe, unless you count ISPF and TSO. However, if the
client wishes to build new services or reuse existing services already on the
mainframe, tooling such as the WebSphere Integration Developer or the
WebSphere Developer for zSeries are used to build and/or integrate services
that will be deployed to the mainframe. For modeling, Development Services
contains tools like the WebSphere Business Modeler for modeling high-level
business processes, and the Rational Software Architect for creating UML
models of services and other components. The artifacts produced by these tools
are deployed to the runtime servers that host and orchestrate the execution of
the business services.

10 See http://www-03.ibm.com/servers/eserver/zseries/zos/racf/ychooseracf.html for more details.
11 This is not intended to be a detailed description of technologies such as BPEL. For more

information on BPEL, see http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ .
22 The Role of IBM System z in the design of a Service Oriented Architecture

http://www-03.ibm.com/servers/eserver/zseries/zos/racf/ychooseracf.html

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
IT Service Management
The SOA infrastructure components consist primarily of middleware software.
Like traditional application architectures, an SOA implementation requires
adequate levels of monitoring and management of the middleware and
applications to ensure proper levels of system performance and security. The IT
Service Management component in the SOA Reference Architecture includes
those monitoring, management, and security tools. This is particularly important
in an SOA-based system, because the infrastructure required to support an SOA
is significantly more complex than traditional mainframe transaction systems like
CICS, which are relatively self-contained. The SOA has more "moving parts,"
making the monitoring and management tasks more complex. For example, a
composite application in an SOA may span several computing platforms, span
networks, and may require security and transactional contexts to be carried from
one server/operating system to another. Debugging errors and/or performance
problems in such an environment requires good monitoring and management
tools.

Many tools in the Tivoli portfolio provide the IT Service Management functionality.
A few examples: for end-to-end performance monitoring, IBM Tivoli Composite
Application Manager for SOA and the Tivoli Omegamon monitoring tools provide
comprehensive monitoring of all the components in a multi-tier application that
spans distributed and mainframe systems. For security across SOA
components, Tivoli Access Manager and Tivoli Identity Manager provide
functionality to give access control and authentication for SOA applications. IT
Service Management encompasses far more than is listed here. More
information on ITSM, including its relationship to ITIL can be found at:

http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/index.html

Business Innovation and Optimization Services
While the IT infrastructure is monitored and managed through the IT Service
Management components, what about the business services? An organization
can ensure proper levels of system and application performance, but what about
business performance? The Business Innovation and Optimization Services
component provides the functionality to effectively monitor and record what is
going on in the enterprise from a purely business perspective. How many <insert
product name here> were sold in the last hour/day/month/year? How long is it
taking to execute the process to service a customer? How many customers did a
particular team serve yesterday? This component provides the tools necessary
to monitor these kinds of business functions, report the results, and feed results
to the modeling tools (used in the Development Services component) so
processes can be modeled more accurately, simulations can be run, and
 The Role of IBM System z in the design of a Service Oriented Architecture 23

http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/index.html.

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
modifications can be made to business processes to further improve the
execution of the business.

The WebSphere Business Monitor provides a monitor that watches business
services and accumulates and reports statistics about how the business
functions themselves are performing. Again, this is not a question such as "how
fast is this transaction executing?," but it asks and answers "how many of these
business functions are we performing and how efficiently are we doing them?"

Interaction Services
The Interaction Services component provides the user interface to the SOA
application. A key principle of SOA is the abstraction of application layers. In
this case, the application's user interface (UI) is exposed in a separate layer from
the business logic. Interaction Services is commonly thought of as the portal
layer, since the UI for many SOA applications is provided by a portal, although
this component is not mandatory. The portal not only provides abstraction for the
UI, but it also provides a standard set of services to give the end-user a
customized, personalized user experience. With new standards such as Web
Services for Remote Portlets (WSRP)12 , portal applications (portlets) can be
more easily bound to services to ease the integration between the UI and the
business logic service.

WebSphere Portal Server is the primary component for providing Interaction
Services. WebSphere Portal Server is available on either z/OS or Linux on
System z (as well as on distributed platforms). As mentioned above, in an SOA
design, proximity to services, transactions and data is a primary architectural
design principle. Placing a portal on-platform close to the services being invoked
reduces communication overhead and points of failure. However, over the last
few years it has become commonplace to put user interface components,
including fixed content HTTP servers and portal servers on distributed platforms.
WebSphere Portal Server provides both options, as it is platform-agnostic.

Process Services
A key attribute of an application in an SOA is that it is often a "composite
application" - one that is constructed from several discrete services, all
connected via some sort of orchestration engine. Process Services provides the
orchestration and workflow services that are required to meld multiple services
into a single, composite business application. This application may be a single

12 See the WSRP Oasis standard for further information:
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.p
df
24 The Role of IBM System z in the design of a Service Oriented Architecture

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
transaction, or it may be a series of transactions joined together into a business
process.

The WebSphere Process Server (WPS), and to a lesser extent, the WebSphere
Message Broker (WMB), act as process choreography servers. WPS provides
orchestration of multiple services, driven by a "script" expressed in Business
Process Execution Language (BPEL). WPS is the "BPEL runtime." WMB
executes "message flows" triggered by inbound messages, and can invoke
multiple functions and/or services (more on Message Broker message
processing in a bit). WMB would be used to aggregate services into a single,
short-running transaction, whereas WPS can be used to run short or
long-running, workflow-oriented transactions.

z/OS and Linux on System z can be used to host the Process Services
components on the mainframe. Placement of these components on z/OS and/or
Linux on System z satisfies the architectural principle of proximity to
data/transactions.

Information Services
Data is everywhere. Over decades, enterprises have collected vast amounts of
data in various repositories around the business. The Information Services
component provides SOA-based access to the data repositories through
techniques such as accessing stored procedures as Web services, providing
standardized interfaces to non-relational data repositories, and other access
mechanisms that return "Information As A Service" (IAAS). Since
data/information itself isn't "executable," infrastructure is required to expose that
data to applications that use SOA standards like SOAP.

Much of the critical heritage data in the enterprise lives on the mainframe. IBM
provides a number of System z-based tools to expose IAAS including the DB2
UDB for z/OS engine itself, and WebSphere Information Integrator, Classic
Federation for z/OS (IICF). IICF provides an SQL interface to a number of
heritage data formats, such as VSAM, IMS DB, and third party databases
including CA-Datacom, CA-IDMS, and Software AG's Adabas.

Partner Services
The Partner Services component is the interface to outside business partners.
Exposing enterprise services to the outside world and invoking external services
poses challenges to the integrity and security of the SOA. Services must be
exposed in a manner that maintains the security and scalability of the service,
since this makes the usage patterns for the service much less predictable and
controllable than if they were in-house. Historically, much of the partner
interaction has been done through mechanisms such as EDI.
 The Role of IBM System z in the design of a Service Oriented Architecture 25

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
Partner Services is provided on the mainframe via traditional channels such as
the WebSphere Data Interchange, for EDI translation. External interfaces such
as those provided in Partner Services, are usually exposed via distributed
systems that are dedicated to these kinds of functions. The WebSphere Partner
Gateway products serve as the face to the outside world for services and can be
hosted on a variety of distributed servers, including Windows®, Unix and Linux.

Business Application Services
Newly-developed services reside in Business Application Services. These new
services are generally deployed on servers such as IBM's WebSphere
Application Server (WAS), which is a transaction manager for Java 2 Enterprise
Edition (J2EE) applications. The WAS can be used for full-function applications
(presentation, business logic, and data logic), or it can host business services
that have the other functions abstracted to other portions of the Reference
Architecture (see Interaction Services and Information Services).

WebSphere Application Server is available on both z/OS and Linux for System z
on the mainframe. The Linux on System z version is identical to the WAS
product that executes on distributed Windows and Linux platforms. However, the
WebSphere Application Server for z/OS is slightly different - as mentioned in
“Deploying services to an IBM System z runtime server” on page 18 under “Java
transaction management”. WAS on z/OS exploits the underlying z/OS operating
system functions, without sacrificing application portability, since there is a very
high level (well over 90%) of cross-platform product compatibility.

Access Services
Of particular interest to most mainframe customers is the Access Services
component, which is the linkage to existing applications, both on and off the
mainframe. The functionality here provides the connectivity to applications on
IMS, CICS, SAP, PeopleSoft, etc. by using various connector and adapter
technologies.

The third facet of IBM's System z SOA strategy is integrating existing mainframe
applications, and the Access Services component is directly related to this topic;
detailed discussion about this topic is found in the next section, “Enterprise
Service Bus” on page 26.

Enterprise Service Bus
While the Enterprise Service Bus (ESB) is the last topic on the list, it is actually
the critical item across all of the Reference Architecture. Back in Figure 4 on
page 21, it is apparent that the ESB is literally at the center of the SOA
26 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Reference Architecture, and it is that important to any SOA implementation. The
ESB provides the abstraction layer between the service requester and service
provider. In older, non-SOA applications, linkages between applications are
frequently hard-coded and may be difficult to manage and maintain. To change
relationships between programs, application changes may be necessary as
business or technology evolves.

IBM's definition of an Enterprise Service Bus is that of an architectural construct
rather than a specific product. The ESB should support four primary functions:

� Routing of messages between services - removing the direct one:one
relationship between endpoints.

� Conversion of transport protocols between requester and service - for
example, SOAP to MQ, FTP to EXCI, etc.

� Transformation of message formats - transformation of XML to binary, etc.

� Handling of events from disparate sources - Events are received from the
ESB endpoints and correlated to trigger new events based upon decisions in
the ESB.

Any product or products that perform those requisite functions can be classified
as an ESB implementation.

The WebSphere Enterprise Service Bus and WebSphere Message Broker
products are the core ESB products in IBM's portfolio. They provide the four
primary ESB functions, and when combined with the WebSphere Process Server
for orchestration and WebSphere MQ for connectivity, IBM clients have a very
robust infrastructure for an SOA. WebSphere Message Broker is available on
z/OS and Linux on System z, and as of March, 2006, WebSphere ESB became
available on Windows, Linux, and Unix, and is planned on z/OS in June, 2006.

The System z platform is the ideal location to place an ESB. Most IBM clients
have many existing assets/applications on the mainframe and, considering the
principle of proximity to transactions/data, locating the ESB close to the assets
makes sense. In addition, the high reliability, availability and security of System
z are key attributes for an ESB. The ESB is the lynchpin of the architecture. It
routes service calls for all SOA transactions. It does not make sense to put the
most critical part of the architecture on a platform that does not possess the
highest quality of service characteristics.

A more complete analysis of the various components of the IBM SOA Reference
Architecture (also known as the Integration Reference Architecture) can be found
at:

http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons
/0508_simmons.html
 The Role of IBM System z in the design of a Service Oriented Architecture 27

http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
Integrating existing mainframe applications in an SOA
Most mainframe clients have a keen interest in the method used to integrate
existing applications into an SOA. This generally means that they intend to
expose existing transactions and/or data via a service interface. Some IBM
customers have been following SOA design principles for a long time but have
not used current standards such as SOAP in their implementations.

Exposing applications as services is the primary goal of the bottom-up SOA
design model. As mentioned previously, this approach has one inherent
drawback - the existing applications may not have the granularity that matches
the business service model developed through processes such as CBM. This
can sometimes be corrected by means such as service aggregation, wrapping
existing applications with a J2EE veneer, or other similar methods.

But if there are drawbacks to the bottom-up style, why pursue that rather than
simply rewriting existing applications? A common concern is that existing
applications are often written in supposedly dead languages like COBOL or PL/I,
and clients should be eliminating them. However, many studies have shown that
significant savings may be realized by reusing that existing code rather than
rewriting. An often quoted statistic shows that it is up to five times It is more
expensive to rewrite an application than to reuse existing code to achieve the
same functionality. With an estimated 200-250 billion lines of COBOL code in
existence today (and no sign of that number declining) and potentially several
billion new lines of COBOL being being developed every year, programmers will
be maintaining and developing new code far into the future. Reuse becomes a
very attractive strategy to harvest existing code assets and save money during
an SOA implementation.

IBM’s enterprise transformation strategy is a path to follow that will assist in
integrating mainframe applications in SOA.

IBM's Enterprise Transformation Strategy: Improve, Adapt, Innovate
As discussed previously, SOA focuses on the concept of reusability, which
means that application components should be built in a way that facilitates reuse
and avoids re-creation of components from scratch when existing assets could
satisfy the requirements. The combination of existing data and applications on
the mainframe and the concept of reuse through transformation leads to a fast
start-up into the SOA model. This is the concept of Enterprise Transformation.

Enterprise transformation and application modernization are critical to an
enterprise's application development strategy, as the high cost and risk of
rewriting existing applications is often an inhibitor. If a company could reuse
existing well-tuned and proven code that has been implementing business
28 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
function satisfactorily for years, savings can be significant. Aside from the high
cost and risk of migration of these applications, performance, reliability and
scalability requirements often make the current environment the best choice.
When considering reuse of existing assets, developers experienced in traditional
languages must be considered an important part of the overall e-business
development team. As availability of these development skills continues to
tighten in the marketplace, it becomes more critical to create a development
environment where existing assets can be maintained and extended using
current development approaches and available skills.

SOA has particular importance in the enterprise transformation practice because
it has the power of unlocking existing applications and data and exposing them
as services, which provides extended value to the business. Considering the
investments that companies have made in developing applications and the
importance those applications represent to the core business, service
enablement using standards-based interfaces helps to extend the life cycle of
those applications and leverages existing investments.

The move towards SOA is not going to happen overnight. It is not an appliance
to be installed on top of an existing infrastructure, thus making it SOA ready. The
implementation process is a set of granular changes applied to the existing
architecture and the exploitation of new technologies that will gradually make the
environment SOA-ready.

IBM's Enterprise Transformation strategy supports this gradual, granular process
that will help to enable existing assets as services. It defines three solution
frameworks, sometimes referred to as styles of transformation, to help
customers move IT assets from siloed applications, to become shared resources
and then to be interdependent software components and services.

The strategic goal is to innovate by enabling the creation of new software
components that have strategic business value and support an on-demand
environment. But that takes time, effort and money. So, more immediate
(tactical) solutions are required as well. For example, the ability to transform
siloed applications to shared resources can enable better ways of interacting
with customers, partners, and suppliers. Some changes to applications will
require immediate solutions that can drive business value, but may not be as
flexible in adapting to changes in the business process. The three transformation
styles - Improve, Adapt, and Innovate - address both tactical and strategic
service enablement solutions.

While IBM identifies these three approaches for modernizing a client's
enterprise, an IT organization will likely not use just one style. Businesses often
choose multiple styles of modernization for different types of solutions, so the
deployment scenario is determined case by case.
 The Role of IBM System z in the design of a Service Oriented Architecture 29

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
The Discovery Phase
A key question, therefore, is: where do we start? A good place to start is in what
is known as the “Discovery Phase”. Many existing applications lack
documentation, or the documentation is out of date, or it is in someone's head
and they have left the company. In such situations, before modernization
activities begin, it is necessary to find out the location of the application code,
what it does, which applications and components it interacts with, and so forth.
This is the "Discovery Phase” of the modernization process, and IBM has
specific tools, listed below, that will support the activities in this phase. These
discovery tools are designed to assist in documenting relationships among
applications and sub-routines and create visual representations that show asset
relationships effectively and efficiently. These tools are intended to extract
components and associated data items from existing code, simplifying the
difficult and time-consuming task of building components manually. They can
also perform impact analysis to understand data movement and application
interaction during run time and record the results for use in future application
development and test. Both static (code based) and dynamic (runtime based)
analysis are supported.

� WebSphere Studio Asset Analyzer (WSAA) is a static analysis tool which is
designed to assist in maintaining and extending existing assets through
impact analysis, connector builder assistance, and graphical application
understanding. WSAA is designed to help enterprise customers on their
journey to e-business by providing knowledge about their static environment
(finding and reusing application code and the components that connects that
code). It also helps them to understand their dynamic environment
(understanding what code is executing in runtime environments).

� CICS Interdependency Analyzer is a dynamic run-time analysis tool that gives
developers and operations staff information about CICS applications and their
components. It is used by developers when trying to deconstruct and
decompose an application into services and by operations teams in the
analysis and movement of workloads across a distributed CICS environment.

� Asset Transformation Workbench is a workstation-based tool that is more
suitable for application reengineering, code extraction and Web service
generation. It supports traditional programming languages, such as COBOL,
as well some 4GL style languages, like Natural.

Once a client understands existing business assets and the impacts of changes
to those assets, IBM's development tools can be used to more effectively
develop new e-business applications. These tools support extending existing
applications to e-business without modifying existing code. This rapid
development and deployment capability enables quick return on investment
while more substantial development projects are under way that might involve
creation of a more complete SOA. WebSphere development tools provide
30 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
support for J2EE development and traditional language development, and they
also support a mixed workload environment. Mixed workloads include the J2EE
and Java support provided by WebSphere, and the back-end business
applications written with COBOL and PL/I and running in CICS and IMS.

Transformation styles examined
As stated earlier, the three transformation styles of improve, adapt and innovate
cover both tactical and strategic service-enablement solutions.This section
presents a more detailed look at these styles.

Improve
The Improve style is characterized by the use of new technologies to Web- or
service-enable applications at the user interface level, without changing those
applications and with minor changes or additions to the middleware
infrastructure. Improve is often the first step towards SOA, where clients simply
enable existing applications with SOAP or MQ protocols to facilitate integration.
This style concentrates on transforming the user experience by providing a more
sophisticated and productive user interface for applications.

With Improve, companies can quickly enter the SOA model and achieve a rapid
return on investment by extending existing applications using SOA standards
(such as SOAP and XML), but without delving into all facets of SOA. This is a
tactical approach intended to help clients achieve fast results with low investment
that leverages existing skills while preparing the infrastructure and skills for more
complex scenarios. Referring back to the three different SOA
development/design approaches mentioned before, this follows a bottom-up
approach to service enablement.

Product solutions that support the Improve style:
� IBM's Host Access Transformation Services (HATS) product is a common

implementation tool for this phase. HATS has the ability to service-enable a
3270 or 5250 application by exposing it via the SOAP protocol, in addition to
its traditional function of Web-enablement of host applications. HATS
intercepts the application's data stream and converts it into either HTML or
Web services formats. It is a WebSphere application and can be deployed on
multiple server platforms, including z/OS and Linux on System z. To create
HATS applications, the HATS Studio, an Eclipse-based application that runs
 The Role of IBM System z in the design of a Service Oriented Architecture 31

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
within the Rational Application Developer family, is used to walk through the
existing host applications and develop the Web or service interface. The
HATS architecture is shown in Figure 5.

Figure 5 The HATS architecture

� The CICS Service Flow Runtime (CICS SFR), a new feature of CICS
Transaction Server Version 3.1, provides a similar function to HATS, but it is
self-contained within the CICS server. While CICS SFR does not provide the
Web-enablement that HATS does, it does provide the choreography of CICS
terminal transactions and can expose a single transaction or multiple
orchestrated transactions as a service or services. The CICS Service Flow
Modeler, a feature of the WebSphere Developer for zSeries, is the tool used
to define the flows and service interfaces exposed via the CICS SFR.

� The WebSphere Portal Server. Another approach that provides an Improve
solution at the user interface is a portal. Portals can provide a new face to
applications that were previously difficult to use or not integrated with others.
In addition, new standards for SOA integration in portals, such Web Services
for Remote Portlets (WSRP), make it easier to include a portal in an SOA
implementation. The WebSphere Portal Server is IBM's solution for providing
a unified user interface for integration of SOA applications "at the glass."

Adapt
Adapt is a further step in sophistication beyond Improve. It goes a bit farther in
the application transformation and enhancement of the existing infrastructure.
Adapt comes closer to full SOA architecture, but requires more investment in
business componentization and in IT services. The result is more flexibility to the
business and the value this represents.

Adapting existing connectivity enables broader application integration and
provides the ability to incorporate core applications into more modern
applications flows. This allows customers to leverage existing applications to

CICS TS

3270
Flow

Transaction
Web
client

WebSphere App Server

Web HATS HOD
Connector

TN3270

HATS
Studio

DBP

IMS TM

B DIMS
TransactionP

3270
Flow

CICS TS

3270
Flow

Transaction
Web
client

WebSphere App Server

Web HATS HOD
Connector

TN3270

HATS
Studio

DBBPP

IMS TM

B DIMS
TransactionP

3270
Flow
32 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
develop better customer, partner and supplier relationships. But the connection
of many different existing applications to new applications and new architectures
poses a compatibility problem - data formats, communication protocols, and
existing programs frequently cannot communicate without some sort of
intermediary. So, the requirement emerges for an intermediate broker to be
used for data mediation, protocol transformation, messages routing, etc. This
functionality is where the requirement for an Enterprise Service Bus (ESB)
usually emerges. The ESB is not a direct component of the Adapt transformation
style, but it does serve as the hub to connect the
applications/transactions/services that are transformed using the Adapt
techniques.

Other elements of the SOA Reference Architecture are also involved in this
phase, including Information and Access Services. The Service Management
infrastructure is often planned and designed during this phase.

Examples: a CICS application consumes services provided by a Microsoft®
.NET application, where applications are to be SOAP-enabled and connected via
the ESB for data transformation; an IMS transaction exposed as a service to be
invoked by a WebSphere application through use of the Java 2 Connectivity
(J2C) protocol; a DB2 table to be accessed via a Web service request as part of
a composite business application.

There are many technical ways to implement the Adapt style. Some of the
common technologies used are:

� Native SOAP access to transactions or data - CICS provides a native SOAP
interface in CICS Transaction Server V2 and V3 via the SOAP for CICS (V2)
or CICS Web Services (V3) features. With these features, CICS can be a
Web services provider OR consumer. IMS Version 9 now includes the IMS
SOAP Gateway13 which exposes IMS transactions to SOAP-based Web
services consumers, but IMS cannot itself act as a Web service consumer - it
is only a provider. Also, DB2 can expose its data to external SOAP
requesters using the DB2 WORF14 feature.

� Java 2 Connectivity (J2C) - As of IMS Version 9, the IMS Connect feature is
now included with IMS Transaction Manager for providing direct invocation of
IMS transactions from Java 2 applications. CICS transactions are accessed
with J2C using the CICS Transaction Gateway, which serves as the
intermediary between J2C and the CICS transaction.

� Messaging - WebSphere MQ and Java Messaging Services (JMS) can also
be used to invoke transactions and access data from existing sources. Both
IMS and CICS have bridge programs that permit a messaging-enabled caller
to place a message on a queue that triggers the invocation of an existing IMS

13 See http://www-306.ibm.com/software/data/ims/soap/ for more information on this topic.
14 http://www-128.ibm.com/developerworks/db2/zones/webservices/worf/
 The Role of IBM System z in the design of a Service Oriented Architecture 33

http://www-306.ibm.com/software/data/ims/soap/
http://www-128.ibm.com/developerworks/db2/zones/webservices/worf/

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
or CICS transaction. And DB2 can interact with the WebSphere MQ system
via user-defined functions invoked through SQL15. See Figure 6 for a
diagram showing how MQ or JMS can be used to access existing
transactions.

Figure 6 Messaging access to CICS transactions

� Information Integration - A common requirement is to adapt connectivity to
existing information sources. There are a number of federated data tools on
the market; IBM provides the WebSphere Information Integrator Classic
Federation for z/OS (IICF) product to build a consolidated view of disparate
data sources. IICF provides a consolidated SQL interface to many different
relational and non-relational data stores on z/OS, including DB2, VSAM, IMS
DB, and several non-IBM database systems including CA Datacom, CA
IDMS, and Software AG's Adabas.

Product solutions that support the Adapt style:
– CICS Transaction Gateway

– IMS Connect (and equivalent functionality included in IMS Version 9)

– WebSphere Adapters

– WebSphere MQ

– WebSphere Information Integrator Classic Federation for z/OS

– SOAP for CICS / CICS Web Services feature

– WebSphere ESB

– WebSphere Message Broker

Innovate
The Innovate style of modernization is characterized by the creation of new
applications which are fully compliant with SOA model. Accordingly, with SOA

15 See http://www-128.ibm.com/developerworks/db2/library/techarticle/wolfson/0108wolfson.html for
more details.
34 The Role of IBM System z in the design of a Service Oriented Architecture

http://www-128.ibm.com/developerworks/db2/library/techarticle/wolfson/0108wolfson.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/wolfson/0108wolfson.html

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
strategic approaches this style would be mostly Top-Down, where business
processes are modeled using a modeling tool such as the WebSphere Business
Modeler. Deployed applications would invoke a service or services
(applications) that make up the composite business application(s) and/or
processes. This may require a totally new service/application to be developed or
may involve the transformation and reuse of an existing application to meet the
business requirements.

Transforming the application structure and architecture requires the highest
degree of investment, but pays off with the greatest business value and process
flexibility. In this Innovate style of transformation, core applications are
restructured to provide the greatest amount of business benefit. This allows
customers to more rapidly innovate and change their business processes using
existing IT applications to create new and differentiated market solutions.

In order to innovate, tools are required to design and deploy new applications,
and a server is needed to orchestrate and direct the newly created business
processes. The WebSphere Process Server orchestrates the invocation of
multiple services in the SOA by taking a process model that is represented in
Business Process Execution Language (BPEL) and executing that model by
directing the invocation of the various services in the composite application
(flow). The flows are built using the WebSphere Business Modeler for high-level
process modeling, and WebSphere Integration Developer for lower-level IT
implementation of the process.

Another significant value that SOA brings to companies is a
programming-language-neutral architecture, allowing companies to continue to
develop new applications using traditional languages which leverages existing
skills, tools and investments. This is important to mainframe shops where senior
application developers can continue to use preferred languages and tools, which
provides improvements in productivity and economics.

But, there is room for improvement in productivity beyond the traditional tools
and techniques. New development tools can be used to further improve the
productivity of traditional language developers. The WebSphere Developer for
zSeries (WDz) gives COBOL, PL/I and System z assembler developers an
integrated development environment (IDE) for building host applications and
improves productivity through more efficient editing, interactive debug tools, and
helpers for developers that are not completely familiar with traditional language
constructs. WDz can also be used for building newer Java applications, using the
same familiar (Eclipse-based) IDE. WDz also provides the ability to build
applications using the Enterprise Generation Language (EGL), which is a
4GL-style language that simplifies the coding task and can generate application
artifacts in either Java or COBOL.
 The Role of IBM System z in the design of a Service Oriented Architecture 35

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
The discovery and code harvest tools described previously in, “The Discovery
Phase” on page 30 are also key to the Innovate style. These tools are used to
identify existing code that can be reused when constructing new services and
composite applications. The WebSphere Studio Asset Analyzer and CICS
Interdependency Analyzer can provide much assistance in identifying existing
assets that can be extracted and reused in new SOA-compliant applications and
services.

Product solutions that support the Innovate style:
– WebSphere Developer for zSeries

– WebSphere Business Modeler

– WebSphere Integration Developer

– WebSphere Studio Asset Analyzer

– CICS Interdependency Analyzer

The SOA Maturity Model and System z
After examining the principles of SOA and the technologies that are involved in
its implementation, it is tempting to believe that SOA is too complicated and stick
with existing architecture and infrastructure. However, it would be a mistake to
assume that an organization must leap directly to a full SOA implementation, all
at once. IT organizations are at many different levels of maturity, and each will
take a different path to a fully-realized Service Oriented Architecture.

IBM has identified various entry points to building an SOA. Figure 7, “SOA "Entry
Points"” on page 37 shows these entry points and how they not only involve
increasing complexity of implementation but also in realizing increasing business
value from bottom to top. A client can choose to jump in at any/all of those entry
points.
36 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Figure 7 SOA "Entry Points"

IBM is not the only company or organization to identify differing levels of maturity
in SOA implementation. CBDi, a consulting firm in the UK that specializes in
SOA and Web services, has also identified a four-step path to SOA maturity16:

� Phase 1: Early Learning - Exploratory activities that center primarily on
application integration. Service deployments are low-risk and primarily
internal to the organization.

� Phase 2: Integration - Begins to consider business drivers in the SOA
implementation. Still internally-focused, but concentrates more on business
processes than in the "Early Learning" phase.

� Phase 3: Reengineering - Moves to an enterprise-level in scope. Focus on
management, measurement and monitoring of services. Centers on
"Business product" thinking, where the service becomes the business
product.

� Phase 4: Maturity - Ubiquitous, federated services. Many providers of the
services, inside and outside the enterprise.

System z customers who are working on a bottom-up approach to SOA are often
very interested in the technical aspects of SOA. Their maturity can be accurately
defined by other more IT-focused maturity characterizations. David Linthicum,
an IT consultant and author of many books on Enterprise Application Integration

16 Source: http://roadmap.cbdiforum.com/reports/maturity/maturity2.php Reprinted with permission
of......
 The Role of IBM System z in the design of a Service Oriented Architecture 37

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
and SOA, wrote an article that was published in the SOA WebServices Journal in
late 200417 that does an excellent job of describing the various levels of maturity
that we often see in our zSeries SOA engagements. Linthicum categorizes the
levels of maturity as follows:

� Level 0 SOA: Sends SOAP messages from system to system.

1. Leverages Web services technology for integration.

2. No real notion of services

� Level 1 SOA: Level 0 + messaging/queuing system.

1. A rudimentary ESB that moves information via queues.

2. Still no real notion of services, although the messaging interface resembles a
service interface

� Level 2 SOA: Level 1 + transformation and routing.

1. A more complete ESB that enables a higher degree of abstraction between
services.

� Level 3 SOA: Level 2 + a common directory service.

1. An ESB-centric architecture that enables dynamic binding of service
interactions through a business service directory.

2. Often includes directory standards such as LDAP or UDDI.

� Level 4 SOA: Level 3 + brokering and managing true services.

1. More dynamic connectivity between services, enabled by the directory
service.

2. Also includes more robust management of the service
architecture/infrastructure - service discovery, access, and management.

� Level 5 SOA: Level 4 + process orchestration.

1. Enables the creation of composite applications (meta-applications) to solve
business problems.

2. Addresses problems of persistence and user interaction.Should provide a
mechanism for services to interact with users via portals

17 Source: Reprinted by permission of the publisher, from
http://webservices.sys-con.com/read/47277.htm , Published Dec. 2, 2004

Copyright © 2006 SYS-CON Media. All Rights Reserved.
38 The Role of IBM System z in the design of a Service Oriented Architecture

http://webservices.sys-con.com/read/47277.htm

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
This progression represents many of the System z customers that are involved
with building an SOA. For mainframe customers, we often simplify Linthicum's
model with the following "maturity model":

1. Service enablement: use integration technologies (described in the prior
section - Integrating existing applications in an SOA) to expose mainframe
transactions as services.

2. Service integration: use ESB technologies to provide the integration
abstraction layer that links the services. Tools most often used at this stage
include WebSphere Message Broker, WebSphere ESB, and the underlying
transports. This step often includes information (data) integration and would
bring in tools such as the WebSphere Information Integrator Classic
Federation for z/OS.

3. Process integration: use process choreography/orchestration tools and
technologies to link services into composite applications and business
processes. Tools often used here are WebSphere Process Server and
WebSphere Portal Server for user interaction.

The notion of a maturity model for SOA provides a useful framework for
assessing the sophistication of an SOA implementation. Clients should realize
that it is not necessary to start at any particular point in the progression. IBM's
SOA Entry Points approach does a good job of demonstrating this - an enterprise
can enter at any (or multiple) point(s) in the hierarchy and expand their SOA
implementation over time. The last item - the simplification of the Linthicum
"Levels" model - provides a very basic way to explain the major inflection points
in an SOA infrastructure implementation.

Conclusion
We have examined the basics of SOA and how a customer might approach
placing services on System z, hosting SOA infrastructure on System z, and
integrating existing mainframe applications through Enterprise Transformation.
Each of these leverages several key strengths of employing System z and z/OS
in an SOA implementation:

� Security

� Reliability

� Scalability

� Cost-of-ownership

� Reuse of assets

� and many others…
 The Role of IBM System z in the design of a Service Oriented Architecture 39

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
The vast majority of IBM’s software portfolio is fully supported on System z, and
takes advantage of the key strengths mentioned in this Redpaper. Figure 8
shows how the products on System z fit into the SOA Reference Architecture.

Figure 8 SOA Reference Architecture with System z Products

What is the next step? Some clients are already well along the SOA maturity
path. Others are just getting started. Others have mainframe organizations that
are being asked to expose existing applications as services as part of a larger IT
effort. IBM provides many different service offerings to help our clients in their
path towards SOA. A System z Infrastructure Architecture Workshop (zIAW) is
an easy way for our clients to gain a better understanding of IBM's offerings for
SOA on the mainframe, and in particular how these offerings would benefit a
specific application of their choosing. Contact your local System z Software
Sales Representative for further information on holding a zIAW
40 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world
working with the International Technical Support Organization, Poughkeepsie
Center.

Bill Seubert is a Certified zSeries Software Architect in the United States. He
has over 20 years experience in mainframe and distributed computing. He holds
a Bachelors of Science degree in Computer Science from the University of
Missouri--Columbia. His areas of expertise include z/OS, WebSphere integration
software, and software architecture. Bill speaks frequently to IBM clients on the
topics of zSeries basics, integration architecture and SOA, and Enterprise
Modernization. He also works with IBM's Academic Initiative in building
university curriculum for students new to the mainframe, and he has presented
on how IBM is helping revitalize the mainframe workforce. Bill lives in St. Louis,
Missouri but works with clients across the Americas.

Daniel Raisch is a Senior Certified IT Architect. He has 25 years of experience
in IT, mostly related to Mainframe. He holds a degree in Mathematics and
Computer Science from Universidade Federal do Rio de Janeiro, Brazil.Daniel
has extensively worked with customers extending core applications to new
technologies and has written several redbooks. He can be reached by e-mail at
raisch@br.ibm.com.

 Thanks to the following people for their contributions to this project:

Lydia Parziale
International Technical Support Organization, Poughkeepsie Center

Patti Schatz, Timothy Sipples, Mike Benson, Bob Liburdi
IBM Sales & Distribution, Software Sales
 The Role of IBM System z in the design of a Service Oriented Architecture 41

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
Appendix 1- An overview of Service Oriented
Architecture

In 2002, IBM's Chief Executive Officer, Sam Palmisano, began to articulate a
new vision of how business and IT could be more dynamic and responsive. This
model, now referred to as "On Demand Business," has been discussed in many
contexts, including "utility computing," "autonomic computing," and others. The
IBM On Demand Glossary defines "On Demand Business" as:

A company whose business processes-integrated end-to-end across the
company and with key partners, suppliers and customers-can respond with
flexibility and speed to any customer demand, market opportunity or external
threat. An on demand business has four key attributes: it is responsive, variable,
focused and resilient. 18

The key words in that definition are "integrated," "flexibility," and "speed." These
words describe what makes Service Oriented Architecture (SOA) relevant to the
IBM On Demand strategy. On Demand is about a tighter affinity between the
interests of the business and how IT supports those interests. In Figure 9 we see
that linkage represented as "Business and IT processes." It is important for IT to
adopt an architectural approach that facilitates that synergy between business
and IT. For many enterprises, SOA is that approach.

Figure 9 The on-demand relationship between business and IT.

18 Source: IBM On demand glossary -
http://www-306.ibm.com/e-business/ondemand/us/toolkit/glossary_o.shtml
42 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper.fm
Service Oriented Architecture is a term that has many definitions, and
fortunately, all are relatively similar. There is general acceptance in the IT
industry about the nature of SOA, but there is not a consensus about some of the
underlying technologies within SOA.

For the purposes of this paper, SOA is defined by the IBM developerWorks Web
site (http://www-128.ibm.com/developerworks/webservices/newto/) as follows:

Service-Oriented Architecture (SOA) is a component model that inter-relates an
application's different functional units, called services, through well-defined
interfaces and contracts between these services. The interface is defined in a
neutral manner that should be independent of the hardware platform, the
operating system, and the programming language in which the service is
implemented. This allows services, built on a variety of such systems, to interact
with each other in a uniform and universal manner.

This is a good technical definition, but the same article makes a more relevant
statement about SOA with respect to On Demand business:

The need for loosely-coupled systems rose from the need for business
applications to become more agile based upon the needs of the business to
adapt to its changing environment such as changing policies, business strengths,
business focus, partnerships, industry standing, and other business-related
factors that influence the very nature of the business. You can refer to a business
that can act flexibly in relation to its environment an on demand business, where
change occurs in how things are done or work as necessary on demand.

This quote illustrates the critical nature of the relationship between SOA and On
Demand - SOA provides an architectural foundation for IT applications that
provide the "flexibility" and "speed" that are referred to in the definition of On
Demand Business. For businesses that are seeking to become On Demand
businesses, the SOA approach for application development and deployment
makes sense. An application design/development model that allows architects
and developers to design and build composite applications from assembled and
orchestrated services makes faster and more flexible development possible.
Changes to application business rules can be accelerated, and the reuse of
application resources is improved dramatically.
 The Role of IBM System z in the design of a Service Oriented Architecture 43

http://www-128.ibm.com/developerworks/webservices/newto/

4190paper.fm Draft Document for Review June 16, 2006 10:29 am
44 The Role of IBM System z in the design of a Service Oriented Architecture

Draft Document for Review June 16, 2006 10:29 am 4190paper-spec.fm
© Copyright International Business Machines Corporation 2006. All rights reserved.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 45

4190paper-spec.fm Draft Document for Review June 16, 2006 10:29 am
This document created or updated on June 16, 2006.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099, 2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
z/OS®
z/VM®
zSeries®
z9™
CICS®
Domino®

DB2 Universal Database™
DB2®
Geographically Dispersed

Parallel Sysplex™
GDPS®
IBM®
IMS™
MQSeries®
Parallel Sysplex®
Rational Unified Process®

Rational®
Redbooks™
RACF®
System z™
System z9™
System/360™
Tivoli®
VisualAge®
WebSphere®

The following terms are trademarks of other companies:

Java, JDBC, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

®

46 Service Oriented Architecture and the IBM System z

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	The Role of IBM System z in the design of a Service Oriented Architecture
	Introduction
	The IBM SOA Lifecycle - the center of IBM's SOA strategy
	More on reuse and governance
	Choosing a development and design approach
	Service Oriented Architecture on IBM System z
	Standards in SOA
	Design Considerations for an SOA with IBM System z
	The Three Facets of IBM's SOA on System z Strategy
	Deploying services to an IBM System z runtime server
	Java transaction management
	Traditional transaction management

	Hosting the SOA infrastructure on System z
	Infrastructure Services
	Development Services
	IT Service Management
	Business Innovation and Optimization Services
	Interaction Services
	Process Services
	Information Services
	Partner Services
	Business Application Services
	Access Services
	Enterprise Service Bus

	Integrating existing mainframe applications in an SOA
	IBM's Enterprise Transformation Strategy: Improve, Adapt, Innovate
	The Discovery Phase

	Transformation styles examined
	Improve
	Adapt
	Innovate

	The SOA Maturity Model and System z
	Conclusion
	The team that wrote this Redpaper
	Appendix 1- An overview of Service Oriented Architecture

	Notices
	Trademarks

