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ABSTRACT 
We present an optimized Blue Gene implementation of Reverse 
Time Migration, a seismic imaging algorithm widely used in the 
petroleum industry today.  Our implementation is novel in that it 
uses large communication bandwidth and low latency to convert 
an embarrassingly parallel problem into one that can be efficiently 
solved using massive domain partitioning.  The success of this 
seemingly counterintuitive approach is the result of several key 
aspects of the imaging problem, including very regular and local 
communication patterns, balanced compute and communication 
requirements, scratch data handling, multiple-pass approaches, 
and most importantly, the fact that partitioning the problem allows 
each sub-problem to fit in cache, dramatically increasing locality 
and bandwidth and reducing latency.  This approach can be easily 
extended to next-generation imaging algorithms currently being 
developed.  In this paper we present details of our 
implementation, including application-scaling results on Blue 
Gene/P. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization.  D.2.8 [Software 
Engineering]: Metrics – performance measures.  J.2 [Physical 
Sciences and Engineering]: Earth and atmospheric sciences.  
G.1.8 [Numerical Analysis]: Partial Differential Equations – 
Finite difference methods. 
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1. Introduction 
This paper represents a dramatic departure from common high 
performance computing practice: we show that in certain 
circumstances, recasting embarrassingly parallel problems as 
domain partitioned ones can dramatically improve performance.  
This statement might border on sacrilege for some because of the 
many advantages embarrassing parallelism has to offer, including 
better Amdahl’s Law scaling, minimal inter-process 
communication and synchronization, freedom from frequent 
checkpointing and ease of recovery from the loss of individual 

processes.  These advantages make embarrassingly parallel 
implementations extremely compelling when possible.  Why then 
would we choose to go against this received wisdom?  The answer 
is that, due to various architectural constraints, the benefits of data 
locality and massive local bandwidth can sometimes be crafted to 
outweigh the benefits of embarrassing parallelism. 
In this paper, we explore these ideas in the context of production 
seismic imaging: physics-based signal processing used by the 
energy industry to find oil and gas reservoirs.  We begin with an 
introduction to the problem of seismic imaging and a description 
of the widely used Reverse Time Migration (RTM) method, 
comparing and contrasting our approach to the one commonly 
used in the industry.  We then describe our implementation of 
RTM, the optimizations that were performed, the experimental 
setup and the performance results, comparing where appropriate 
to other RTM implementations. 

2. Seismic Imaging  
Seismic imaging is the process of converting acoustic 
measurements of the Earth into images of the Earth’s interior, 
much like ultrasound for medical imaging.  It is widely used in oil 
and gas exploration and production to identify regions that are 
likely to contain hydrocarbon reservoirs and to help characterize 
known reservoirs to maximize production.  These methods have 
become critical to the energy industry as known reserves are used 
up and new reserves become increasingly difficult (and 
expensive) to find and are increasingly in technically challenging 
areas, like the deep sea. 
For the past several decades, the energy industry has tried to 
balance the need to image quickly and the need to image 
accurately.  The need for accuracy is driven by the high cost of 
drilling a “dry” well due to poor imaging (a deep sea well can cost 
over $100 million) and the need for quick imaging is driven by the 
cost of not finding new reserves (i.e., bankruptcy).  To minimize 
these costs, the industry relies on supercomputing clusters and 
regularly increases compute power, enabling both faster imaging 
on existing algorithms and the practical implementation of more 
accurate imaging.  Thus, the development of fast, efficient 
methods for imaging is of high importance to the industry. 

2.1 Seismic Data 
Seismic imaging data varies widely depending on how and where 
the data is collected (e.g., on land, at sea, at the ocean surface, at 
the ocean floor, below ground, electromagnetically, etc).  We 
focus here on the data collection method that is most relevant to 
the RTM algorithm analyzed in this paper: towed hydrophone 
receiver arrays for ocean seismic data collection.  The basic idea 
is shown in Figure 1.  A ship is shown towing a 2D array of 
hydrophones spaced about every 25m on 1 to 16 trailed streamers.  
Every 15 or so seconds, an air cannon is fired into the water, 
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creating an acoustic wave that propagates through the water and 
into the Earth.  Reflections from various surface and subsurface 
boundaries cause echoes that reflect back and are recorded by 
each hydrophone in the array.  The recording of a single 
hydrophone in time as a trace and the collection of traces for a 
single firing of the air cannon is called a common shot gather, or 
shot.  As the ship moves, a large set of spatially overlapping shots 
is recorded.  Depending on the size of the survey region to be 
imaged, this data collection can take a month or more and is 
designed to get the maximal coverage of the area to be imaged.  
For our purposes, we need to know that we have lots of shots, 
potentially hundreds of thousands, and that the receiver data 
collected is the result of some source data at a particular location.  
A sample of artificial shot data is shown in Figure 2. 

 
Figure 1: A ship collecting seismic data using a towed 

hydrophone receiver array 

 
Figure 2: Sample shot data for a 1D array of hydrophones 
showing time on the Y-axis and spatial offset on the X-axis.  

The direct source signal propagates out linearly in time (from 
the center of the array) and appears as straight lines.  The 

recorded reflections appear as curved lines. 

2.2 The RTM Algorithm 
The Reverse Time Migration (RTM) algorithm is widely used in 
the industry because of its superior imaging accuracy for difficult 
subsurface structures like salt domes which are poorly imaged by 
other algorithms but which are very effective at trapping oil and 
gas. Several variants of RTM exist with differing degrees of 

approximation to reality, all of which use single-precision 
arithmetic.  For this paper we implemented isotropic, acoustic 
RTM which assumes the wave velocity is independent of wave 
direction and that no energy is absorbed by the medium. 
The RTM algorithm arises from the observation that pressure 
waves should be correlated at reflection boundaries; so RTM 
proceeds by correlating two pressure waves (called the forward 
and backward waves) to find those boundaries.  To generate the 
waves for correlation, RTM simulates wave propagation using the 
wave equation below for a wave U(x,y,z,t) with a source term 
S(x,y,z,t):  
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The forward wave is the wave generated from the air cannon 
firing and propagating forward in time using a “velocity model” 
represented by C(x,y,z), which specifies the wave velocity at each 
point in space and represents the various material properties and 
boundaries of the volume being imaged.  The air cannon firing is 
treated as a wavelet impulse localized in time and space.  The 
backward wave is generated by using the shot data recorded by 
the hydrophone array as the source term for the wave equation 
and propagating that backward in time.  These two waves are then 
multiplied point-wise at each time step to generate an image, 
using the following “imaging condition”: 

(2)  

This process is repeated for all shots in the seismic survey and the 
images generated are summed to create a final image of the 
reflecting boundaries, which represent the subsurface structure.  It 
is important to note that the time summation in the imaging 
condition implies that the first time step of the forward wave 
needs to be correlated with the last time step of the backward 
wave.  This constraint is typically handled in one of two ways: 
either the forward wave is saved to disk (called a “snapshot”) 
every several time steps and read in for imaging when the 
backward wave is computed, or the forward propagation is run 
twice – once forward in time and once in reverse time using 
boundary data saved from the forward pass to recreate the forward 
pass in reverse – and then imaging proceeds with the backward 
wave and the reverse forward wave.  The first method requires 
significant disk storage and can be bottlenecked on disk I/O, while 
the second requires 50% more computation and additional 
memory space to save the boundary data.  
Following standard practice in the industry [2], we simulate the 
wave propagation of Equation (1) using the finite difference 
approximation in Equation (3) where we select the coefficients to 
implement 2nd order accuracy in time and 8th order accuracy in 
space.  These coefficients are scaled to satisfy the CFL condition 
[5].  This approach gives rise to the 25-point stencil shown in 
Figure 3. 

(3)  
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In practice, the size of production RTM models varies widely, but 
the universal desire is to grow models larger to get more 
resolution and to run the models longer to enable deeper imaging 
since echoes take longer to reflect from deeper structures.  



Typically, velocity models for individual shots are 5123 to 10243 
elements or larger and the number of time steps can be 10,000 or 
more in both the forward and backward propagation phases. 

Seismic imaging is typically computed using single precision 
arithmetic and we take that approach here.  Some practitioners 
believe that the RTM method described above, that avoids the 
need to save snapshots, must be run in double precision; however, 
we do not implement that version here. 

 
Figure 3: 25-Point spatial stencil with 8th order accuracy 

shown in isolation on the left and as it moves along the stride-1 
dimension of the model 

2.3 Embarrassingly Parallel RTM 
Industrial implementations of RTM are embarrassingly parallel.  
They typically run individual shots on one to two nodes of a 
compute cluster and run many shots in parallel (see Figure 4).  
These clusters have minimal network connectivity because it is 
not needed:  the individual shots run independently and 
asynchronously. A simple work queue is used to manage runs and 
if a run for a shot fails, it is simply re-run, as it doesn’t impact any 
of the other runs.  A master process of some kind is needed to 
manage the work queue and to merge the partial images that are 
generated from each shot.  Additionally, other image processing 
might be included in this process, but for our purposes here we 
ignore these details as the RTM calculation is the main 
computational workload. 

 

Figure 4: Embarrassingly parallel RTM implementation 
RTM compute clusters have significant per-node scratch disk 
requirements for saving snapshot data, which for a 10243 model 
and 10,000 time steps would require 40TB of snapshot storage – 
per shot!  In practice, snapshot subsampling is used to reduce both 
disk requirements and disk I/O bottlenecks; however subsampling 
results in image degradation and must be balanced with 
performance.  Compression can be used to trade computation for 
disk I/O, but if lossy, compression can also degrade image quality.   

As FLOPS per processor increase, the embarrassingly parallel 
implementations become disk I/O bound [2].  It is possible to 
improve performance by partitioning single shot gathers over 
multiple nodes; however, such implementations typically use only 
a handful of nodes.  We have developed an RTM implementation 
that extends domain partitioning over thousands of nodes on a 
Blue Gene/P supercomputer and results in dramatic performance 
improvements. 

2.4 Domain-Partitioned RTM 
We have developed, implemented and tested a 3D isotropic RTM 
code that uniformly partitions the wave equation domain in blocks 
over thousands of nodes (see Figure 5).  The partitioning over so 
many nodes means that the size of the model on each node is 
about 1000 times smaller than for standard RTM on a handful of 
nodes and provides five main benefits: (1) all forward wave 
snapshots can be stored in main memory, removing the need for 
disk and thereby improving per-node data bandwidth from 
hundreds of MB/s (for disk) to tens of GB/s (for main memory), 
effectively removing the disk I/O performance bottleneck; (2) the 
partitioned models can fit in processor cache, allowing processing 
to proceed at the speed of the cache memory bandwidth instead of 
main memory bandwidth which can be an order of magnitude 
larger on some systems; (3) we can load entire 3D seismic surveys 
into memory on one or more racks, enabling “in-memory” 
processing of algorithms that require multiple passes through the 
data set, such as Full Waveform Inversion (FWI), and thereby 
avoiding additional disk I/O bottlenecks and enabling better 
performance; (4) keeping the models in the processor’s cache 
means that snapshot reading/writing has full access to main 
memory bandwidth and is not a bottleneck; and (5) this method 
can run an entire velocity model instead of a subset, as is typically 
done in standard RTM, allowing us to easily extend this method to 
include multisource processing with minimal code changes and 
significant potential performance gains [4]. 

Figure 5: Domain-partitioned RTM Implementation 
A critical aspect of domain-partitioned RTM is that current wave 
data from neighboring sub-domain boundaries is required for 
stencil calculations at each time step.  Since this boundary data 
transfer grows with the amount of partitioning and with the size of 
the stencil used, it can easily become a performance bottleneck.  
To avoid communication bottlenecks, we implemented our 
partitioned RTM on a Blue Gene/P supercomputer, which is 
designed specifically for extremely efficient inter-node 
communication. 



3. Blue Gene Architecture 
Our performance measurements were all performed on subsets of 
two racks of Blue Gene/P.  It is beyond the scope of this paper to 
give a full description of these machines.  Instead we focus on 
those features that are relevant.  More details can be found 
elsewhere [1]. 
The Blue Gene/P (BGP) supercomputer has 1024 nodes per rack 
running at 0.85GHz.  Each node has 4 single-threaded cores, 4GB 
of RAM per node (4TB per rack) and an extremely high-
bandwidth, low-latency, nearest-neighbor 3D torus topology 
network in which each node is connected to each of its 6 nearest 
neighbor nodes by 850MB/s of send+receive bandwidth (i.e., 
5.1GB/s per node and 5.22TB/s of communication bandwidth per 
rack).  Because of this massive bandwidth, BGP is ideally suited 
for physical modelling involving extensive nearest-neighbor 
communication and synchronization – like RTM.  The nearest 
neighbor latency for 32B data transfers is about 0.1 microseconds 
and is essentially amortized away for larger block transfers 
required by RTM.  Each compute node core has a 32KB L1 cache 
with a 32B cacheline and a shared 8MB L3 cache with a 128B 
cacheline.  Each node has two memory channels with an 
aggregate bandwidth of 13.6 GB/sec to main memory.  BGP 
compute notes are connected via dedicated I/O nodes to a GPFS 
file system based on three DDN S2A9900 couplets attached to the 
BGP I/O nodes via 10 Gigabit Ethernet connections, providing 
~16GB/s of disk I/O bandwidth per rack.  Each node can operate 
in SMP mode as a unit, or as four “virtual” nodes.  The Virtual 
Node (VN) model avoids the need to explicitly use multithreading 
at the node level and thereby eases programmability.  Each core 
has a 2-way SIMD unit. 

4. Implementation Details 
In this section we describe various implementation details that 
were important to our performance optimization. 

4.1 Ping-Pong Buffering 
Equation (3) uses four 3D data objects: the past, present and 
future waves and the velocity model.  To increase the locality of 
our model, we use a ping-pong buffer pair, holding the current 
wave in one buffer and the future and past waves in the second 
buffer.  This buffering is possible because once the future wave 
point is calculated, the past wave point is no longer needed and 
can be overwritten with the future value.  This buffering reduces 
RTM’s cache size requirements by 25% and thereby allows for 
processing larger models more efficiently. 

4.2 Trade-Off Analysis 
An analysis of the various trade-offs made in this implementation 
of RTM is helpful in guiding the choice of operational parameters.  
This analysis shows that various system constraints prevent us 
from running at the theoretically optimal operational parameters. 
Consider a cubic velocity model of size N3 elements which is 
uniformly partitioned over K3 nodes such that each node is 
responsible for processing a sub-volume of size V=N3/K3.  For 
any sub-volume, we can estimate the time required to compute the 
stencil over all the elements of the corresponding sub-volume and 
the time required to communicate boundary data to and from its 
nearest neighbors.  An ideal balanced implementation would have 
equal time for these tasks so as to efficiently utilize all the 
machine’s resources.  In practice this is not possible for a variety 
of reasons; however we can still use this goal to guide our system 
design. 

The 2nd order in time and 8th order in space finite difference 
method used in Equation (3) to approximate wave propagation 
gives rise to ~32 floating-point operations for each stencil 
calculation (depending on the details of the assembly 
implementation), if one precomputes the spatial and temporal 
deltas into the stencil parameters.  This precomputation is possible 
here since the deltas are constant for RTM.  If we let F be the peak 
number of FLOPS per node, then the total time to compute each 
sub-volume is bounded below by TCompute = 32(N/K)3/F. 
For each pass of the stencil over a wave sub-volume, the boundary 
regions need to be communicated between nearest neighbor 
nodes.  Since the Blue Gene torus network allows nodes to send 
and receive simultaneously, and since it has independent paths for 
each of the spatial dimensions, we can assume that these transfers 
all happen at approximately the same time for each node.  Further, 
since the algorithm sends the same amount of data between all 
nearest-neighbor nodes, we only need to consider the time of a 
single boundary transfer to characterize the communication 
behavior of the node. 
The amount of data transferred for each finite difference time step 
is 4 bytes per element, 4 elements per stencil calculation and one 
stencil calculation for each element on a face of the sub-volume.  
Dividing this data by the peak torus send bandwidth, D, between 
each node gives a total time of TData = 16(N/K)2/D. 
This analysis shows that TCompute /TData = 2N/KFD.  For an ideal 
balanced system, this ratio would be one, and getting there would 
simply be a matter of choosing appropriate N and K.  However, 
we have additional constraints that prevent us from choosing N 
and K arbitrarily.  In particular, we would like to store all of the 
RTM models (velocity and two time steps of wave volume) in 
cache because complete cache locality gives a dramatic 
performance advantage over systems that need to use main 
memory.  This means that for this RTM implementation, we need 
to fix 3 sub-volumes of size V in cache.  This means V<8/3 
Mbytes for BGP.  Since V=N3/K3, we see that N/K<89 which 
implies N/K<56 per core.  For a rack, this means a model of size 
8803 fits in cache. 
In practice, there are several additional constraints on the block 
dimensions. The L1 cache line length imposes a preferred 
granularity in the stride-one (z) dimension of 8 floats (32B). The 
cache can be used more effectively if the number of cache lines in 
the z dimension is not a factor or multiple of the number of sets in 
the set-associative cache (16 for BGP), since otherwise memory 
accesses will be concentrated in some portions of the cache while 
other portions remain unused.  Cache tiling, described below, 
makes it convenient to have each dimension of the block be a 
multiple of the corresponding tile dimension.  Such considerations 
suggest that better performance may be achieved with a block size 
of 54x54x56 rather than 553.  Choices of this nature trade kernel 
performance and MPI performance since asymmetry to favor 
stride-one dimension efficiency leads to higher communication 
requirements.  We can use this choice to help balance our 
implementation. 
Additionally, we have designed our RTM implementation to save 
snapshots to main memory to avoid disk I/O bottlenecks.  This 
choice imposes another constraint on the data:  the model in cache 
has to be small enough to allow a sufficient number of snapshots 
to be saved.  Typically production RTM runs can be on the order 
of five to ten thousand forward iterations, however due to disk 
storage and bandwidth constraints, practitioners typically 
subsample the data in time, saving only a fraction of the wave 
fields according to a pre-specified “snapshot” frequency.  



Common snapshot frequencies range from 3-10 iterations per 
snapshot, depending on the RTM imaging requirements.  For Blue 
Gene, this implies that one can save at most 1500 snapshots 
(=memory size / one-third the cache size), which imposes a 
snapshot frequency range of 3-7 iterations per snapshot.  If one 
wants to save more snapshots (e.g., for higher image quality or 
more time iterations) then one can reduce the size of V and run on 
more nodes; or reduce the size and/or number of snapshots (e.g., 
by sub-sampling and/or compressing snapshots); or save some of 
the snapshots to disk.  Our implementation includes all of these 
options except compression; however, simple lossy 4x 
compression is easy to implement and can provide adequate 
image quality [2]. 
Note that this analysis also shows that for practical values of N 
and K, TData is much larger that the MPI latency of both Blue 
Gene systems.  So we are not MPI latency bound. 
Our domain partitioning allows us to partition the domain over 
different numbers of computing nodes and thus take advantage of 
the cache structure of the platform.  When the partitioned sub-
volume can fit in processor cache, it allows processing to proceed 
at the speed of the cache memory bandwidth instead of main 
memory bandwidth.  We evaluate the effect of the sub-volume 
sizes on the main memory bandwidth requirement on BGP, which 
has 32KB L1 Cache and 8MB L3 Cache.  As shown in Figure 6, 
the main memory bandwidth requirement is minimized when the 
sub-volume is 643 or less in size.  With a larger sub-volume size, 
data will spill to main memory and thus data access will be 
conducted at main memory bandwidth and latency.  Note that 
Figure 6 is for a single core, assuming linear scaling to 4 cores per 
node brings the bandwidth requirement to only ~1GB/s, which is 
well within the 13.6GB/s peak bandwidth available.  Thus we are 
very far from being bandwidth bound.  This result implies that we 
can easily extend our isotropic model to more accurate RTM 
versions which increase the model size by a factor of 4 or more 
due to additional auxiliary data volumes. 

 
Figure 6: Effect of sub-volume size on memory bandwidth 

requirements 
An important implication of the observation in Figure 6 is that we 
can extend our isotropic RTM to more sophisticated versions 
(e.g., VTI [2] and TTI [8]) which require larger data models 
without becoming bandwidth bound. 

4.3 Stencil Kernel Analysis 
Stencil computation is the core computational kernel in RTM 
seismic imaging. As the stencil computation kernel is 
computationally expensive, it is important to have a good 
understanding of the workload characteristics for performance 
optimization. The RTM compute kernel, which is an 8th order in 

space and 2nd order in time FDTD for advancing the pressure 
wave, was analyzed for various combinations of model size (2563, 
5123 and 10243), BGP node count (64 and 128), and operation 
mode (VN and SMP).  The full application was run but only the 
RTM computational kernel was analyzed. We will use the number 
of stencils computed per unit time as our RTM application 
performance metric because it normalizes for a variety of run-
dependent configuration parameters (e.g., size of the velocity 
model, number of time steps, number of shots, etc.) which would 
otherwise complicate the comparison of raw run times.  As shown 
in Figure 7, we find that our RTM application (end-to-end, not 
just the stencil kernel) achieves 6-7B stencils/sec on 128 BGP 
nodes using virtual node mode, which is ~22% of peak flops on 
BGP.  Figure 7 shows baseline and optimized performance.  Our 
optimization techniques are described below. 

 
Figure 7: RTM performance 

4.3.1 Cache Tiling 
We studied the memory bandwidth requirement and L1 cache 
miss ratio from the RTM runs with different configurations.  A 
cache tiling technique was then used to improve the reuse of data 
already available in cache.  As shown in Figure 8, we studied the 
cache tiling performance using different tile sizes on a 5123 model 
using 128 BGP nodes.  We see that small tiles, such as 4x4x4, 
have a negative impact on performance.  There are two major 
reasons for this: 1) the cache reuse is not effectively realized in 
the stride-one dimension; 2) the overhead added from the 
additional tiling for loops diminishes the benefit from a small tile 
size.  The study also shows that, given a fixed cache tile, it is 
better to have a longer tile length on the stride-one dimension in 
order to make effective use of the prefetched cacheline, e.g., a tile 
of size 8x8x64 is better than 16x16x16.  Figures 9 and 10 show 
the L1 miss ratio and bandwidth requirement.  The kernel requires 
less than 10% of peak memory bandwidth and has an L1 miss 
ratio of ~9%.    



 
Figure 8: Tiling performance 

 
Figure 9: L1 Miss Ratio 

 
Figure  10: Memory bandwidth requirement 

To further analyze the stencil kernel for optimization, we studied 
the instruction mix of the stencil kernel, focusing on floating point 
operations, as they form the core of the stencil kernel.  The study 
showed that the stencil kernel employed around 45% of 
instructions in load operations, which indicated that data is not 
reused effectively at the instruction level.  This brings us to the 
next level of candidates for performance optimization: instruction 
level optimization.  We looked into the technique of loop 
unrolling as well as the use of SIMD operations to take advantage 
of the architecture’s processing power.  As shown in Figure 11, 
we achieve about 22% of instructions using fused multiply-add 
for better processor utilization.  The percentage of load operations 
also dropped from 45% to 36%, achieving better data reuse. 

 
Figure 11: Floating point operation usage 

4.3.2 Absorbing Boundary Conditions 
In production runs, RTM algorithms use various processing 
methods to minimize the effect of wave reflection from the (non-
physical) model boundaries.  In our study, we employed Higdon’s 
absorbing boundary condition [3], which predicts pressure field 
values at the absorbing boundaries based on the known pressure 
field values from the previous time step.  As seen in Equation (4), 
these conditions are applied per dimension and can be tuned 
absorb plane waves incident with the boundary at various angles, 
alpha.  These constraints are discretized in the usual way and for 
our purposes we used a single angle per dimension chosen to 
minimize image noise. 
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These methods add overhead for stencil computations at the 
model boundaries, leading to load imbalance between nodes.  This 
imbalance can be significant, causing the maximum and minimum 
kernel time to vary by as much as 1.5x.  Future work will attempt 
workload balancing with non-uniform partitioning – making 
nodes working on the model boundary process less data. 

4.3.3 SIMD Considerations 
Exploitation of BGP’s 2-way SIMD instructions is a key element 
in the efficiency of our code. To use the SIMD instructions 
efficiently, the z (stride-one) dimension of each partition must 
contain a multiple of 2 elements, with the beginning of each z line 
aligned on at least a 8-byte boundary.  In preparation for the next 
generation of Blue Gene technology, we have designed our 
partitioning code to be slightly more restrictive by assuming that 
the problem size is a multiple of 4 in the z dimension.  The 
addition of some special-case code to pad along one edge could 
remove this limitation.  The stencil-processing loop in the kernel 
was then rewritten to use SIMD operations. 
For the four-byte-thick boundaries we are using, SIMD can also 
be applied to the absorbing boundary condition computations. 
Some additional improvement was achieved by pre-calculating 
the coefficients used in updating the outer boundary layer. These 
are functions of position; they are independent of the time step. 
We pre-calculated seven coefficients for each point (the eighth is 
a constant). This gives us an improvement in speed at a small cost 
in storage. It replaces somewhat scattered references to the 
velocity field with sequential reads of a (larger) array of 
coefficients, improving storage locality; and it removes 
computations and the operands they require from the loop, saving 
time and freeing up registers.  On BGP, these two changes 



combined give a 29% improvement in the time required for 
boundary processing in the 256x256x256 case on 64 cores, which 
translates into an overall improvement of 5.8% for that case. 

4.3.4 Loop Unrolling 
In our first attempt of stencil kernel SIMDization, we computed 
two elements simultaneously using the BGP two-way SIMD unit 
for each inner loop iteration. To effectively use the instruction 
pipeline and reduce loop management overhead, we employed 
loop unrolling inside the inner loop iterations. In our study, we 
unrolled the inner loop so that four elements can be computed in 
each inner loop using SIMD operations. Based on the instruction 
mix analysis, we were able to increase the fused multiply-add 
instructions from 19% to 22% and reduce the other non-
computation-related instructions from 20% to 12%.  This enables 
better efficiency in stencil kernel computation from instructions. 
We optimized our RTM stencil kernel computation using a variety 
of techniques, including partitioning, cache tiling, SIMDization, 
loop unrolling, etc.  Figure 12 shows the contribution of 
performance improvement from different optimization techniques.  
Overall, these techniques gave a 1.7-1.9x performance gain. 

 
Figure 12: RTM performance improvement from different 

techniques 

5. Experimental Setup and Results  
We implemented a full, 3D isotropic RTM using a 25-point (8th-
order) stencil in the compute kernel.  Absorbing boundary 
conditions were applied to the model boundaries to reduce 
artificial reflections.  RTM imaging performance analysis was 
conducted on two different velocity model sizes, 5123 and 10243, 
using 1408 trace samples in each receiver trace and 1408 time 
steps in both the forward and backward passes.  The velocity 
models were partitioned evenly on the X, Y and Z axes so that 
each node processed an equal-size, contiguous, 3D sub-block of 
the whole.  Due to the 25-point stencil, each node had to read and 
write four 2D sheets of data from and to the set of nearest 
neighbor sub-block nodes.  Our code has been SIMDized, can be 
run with one core per node (SMP mode) or four cores per node 
(VN mode) and does not overlap MPI with computation.  
We demonstrate the performance of our method with emphasis on 
scalability.  Performance was measured on one and two racks of 
BGP varying the number of compute nodes (from 128 to 2048 
nodes or, equivalently, 512 to 8196 virtual nodes).  We also 
compare the performance impact of SIMD versus non-SIMD as 
well as one core per node versus virtual node (VN) mode (four 
cores per node).  
Previously [6], we have shown that storing the snapshots in main 
memory provides a significant performance advantage over 

storing them to disk. In this paper, we continue to use main 
memory storage for snapshots. 

5.1 Profiling Analysis 
For performance profiling purposes, the total run time of the 
application falls into several categories: (1) A one-time 
initialization phase (which was not optimized) and which in 
practice would be amortized over potentially hundreds of 
thousands of shots; (2) a per-shot forward processing time 
composed of boundary data exchange, core computation and 
boundary condition computation; (3) a per-shot backward 
processing time which is similar to the forward but with the 
addition of an imaging condition computation; and (4) a per-shot 
image writing time.  Our profiling analysis measured the critical 
components of the code, including the forward pass loop, the 
backward pass loop, and the final image write.  We further break 
down the forward pass into forward stencil calculation, boundary 
calculation, and boundary exchanges.  Likewise, we break down 
the backward pass into backward stencil calculation, boundary 
calculation, boundary exchanges, and imaging condition 
calculation.  Figure 14 shows an example of the profiling output, 
which is well balanced with the exception of the absorbing 
boundary condition calculations (FwdABC and BwdABC). 

 
Figure 14: Per core profiling time (in seconds) for the first 512 

cores of a 4096 core RTM run on a 5123 model 
Figure 14 shows that compute time and communication time are 
well balanced.  We are currently working to implement 
overlapping between computes and communication.  Optimally, 
overlapping will result in another performance factor of ~2x.  
Note that the code for image writing (to disk) has not been 
optimized as it represents a checkpointing operation and can be 
amortized over multiple RTM imaging runs.  Furthermore, there 
is an initialization time (not shown in Figure 14) which grows 
with the number of nodes (~12 seconds for 1024 nodes) but which 
has not been optimized as it is only invoked once for an entire 
RTM survey (hundreds of thousands of shots) and is therefore 
negligible. 

5.2 Impact of Snapshot Frequency 
We have previously shown [6] that relying on disk I/O for RTM 
snapshot storage becomes a bottleneck that prevents scaling.  For 
the purposes of this paper, we therefore consider only snapshot 
storage in main memory.  Note that our RTM implementation is 
largely insensitive to snapshot frequency because BGP has 
sufficient main memory bandwidth to save a snapshot every time 
step without it becoming a bottleneck even for the largest models 
that fit in cache.  This fact can be seen by comparing the snapshot 
size and compute time for a single iteration with the main memory 
bandwidth, and it has been measured experimentally. 



5.3 Scaling Performance 
To analyze our optimization results and evaluate the performance 
of our RTM implementation, we conducted tests varying velocity 
model size, number of compute nodes used and the number of 
cores per node.  We tested our RTM code on two sizes of velocity 
models: a 5123 cubic model and a 10243 cubic model.  To 
evaluate the scaling performance of our RTM implementation, we 
conducted the tests on different numbers of computing nodes 
ranging from 128 nodes up to 2048 nodes.  We also conducted 
tests and evaluated corresponding performances on SIMD vs. 
non-SIMD on different number of cores per node.  
Figures 15 to 18 provide the time performance plots and scaling 
performance of test results.  For example, our end-to-end RTM 
implementation can process about 3000 iteration of a 5123 model 
in 9.71 seconds, a 10243 model in 42.97 seconds, achieves 40M 
stencils per node per second, and can easily handle models as big 
as 20483 or larger.  The figures also show that our RTM 
implementation scales very well across the number of computing 
nodes, especially in the larger model case.  Experimentally, on-
node scaling of the RTM computational kernel (with and without 
SIMD and 1 to 4 cores) approaches the theoretical maximum of 
4x. 

 
Figure 15: RTM performance for a 5123 model 

 
Figure 16: RTM performance for a 10243 model 

 
Figure 17: RTM scaling performance for a 5123 model 

 

Figure 18: RTM scaling performance for a 10243 model 

5.4 Performance Comparison 
In [7], a rack of 8 Tesla S1070 (32 GPUs) and 16 Harpertown 
CPU nodes achieved a processing rate of 232 shots per day per 
rack on a velocity model of size 560x560x905 with 22760 time 
steps (forward+backward).  For comparison, the GPU rate is 
equivalent to about 17B stencil calculations per second 
(=(232x560x560x905x22760 stencils/day) / (24x60x60 sec/day)) 
while the equivalent number for BGP is 40B stencils/second 
(=1024x1024x1024x2816 stencils / 75 sec, where the 75 sec run 
time comes from a one rack BGP measurement).  Note that our 
implementation includes the additional computation of absorbing 
boundary conditions while the GPU implementation does not.  
Since we are currently well balanced between computes and 
communication on BGP and we have yet to optimize our MPI 
implementation, we are optimistic that performance can be 
improved further.   
In [9], an efficient 25-point, RTM kernel implementation achieved 
an impressive 10.8B stencils per second on a Tesla S1070 with 
four GPUs.  However, this result is not for an end-to-end 
application.  It has no imaging condition, no snapshot I/O, no 
image write, no absorbing boundary condition, no disk I/O and 
requires host CPU systems to operate the GPUs.  If we assume 1U 
for the S1070 server, 1U for the host systems and 1U for the disks 
required to keep the process from becoming disk I/O 
bottlenecked, then we could put 14 of these in a 42U rack (e.g., 
compare to the 8 S1070’s used in [7]).  Such a rack using 
embarrassingly parallel scaling might achieve 151G stencils per 



second.  An apples-to-oranges comparison of this kernel estimate 
to our end-to-end RTM application on a much larger data model 
(40B stencils/second) shows a 4x performance advantage.  Using 
[7] as a guide, it is likely all of this advantage and more 
disappears when moving from kernel to full application. 
Furthermore, GPU implementations are more limited by their 
available memory.  This problem becomes especially important 
when advancing to VTI and TTI RTM, which require 
considerably larger models.  The option is to continue scaling to 
more GPUs; however this is not easily done.  In [9], scaling 
stopped at 4 GPUs on a single S1070.  In [10], a heroic effort was 
made to scale to 120 GPUs using S1070’s and 3D domain 
partitioning; however, it was found that communication became a 
bottleneck.  The 56GF/s measure on 1 GPU scaled to 2.2 TF/s on 
120 – equivalent to 30% of theoretical maximum.  This compares 
poorly to the excellent BGP scaling shown in Figure 18.   

6. Conclusions 
This paper presents what at first sight might seem like a counter-
intuitive idea: replace a straightforward embarrassingly parallel 
implementation of a difficult real-world problem with a more 
sophisticated, synchronized, communication intense, massive 
domain-partitioned approach.  However, we have shown that on 
BGP, this new approach can lead to performance that is 
competitive with today’s industry standard approach.  Clearly, this 
is a commentary on the ability of the BGP system, which is over 4 
years old; but it is equally a commentary on the risk of leaving 
established industrial practices unquestioned.  In this case, we 
have demonstrated that at some point the advantages of cache and 
communication locality can overcome the advantages of 
embarrassingly parallel implementations. 
The results presented here are especially encouraging when one 
considers the potential performance boost possible when moving 
to the next generation of Blue Gene technology. 
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