

# FIPER Application in Bombardier One Year Later

Tim Ambridge, Bombardier Aerospace

Mike Sheh Engineous Software Inc.

Engineering Software Proprietary



#### Agenda

- March 2006
- FIPER Implementation a year later
  - September 2006 (Yohohama, JAPAN)
  - March 2007 (Orlando)
- Other materials
  - Pratt & Whitney
  - Airbus/RollsRoyce

## The Role of CAE in an Extended Aerospace Enterprise



Tim Ambridge Director, PLM Business Processes, Bombardier Aerospace IBM CAE Conference, March 2006

#### BOMBARDIER

#### **Bombardier Aircraft**



#### Nine Models of Business Aircraft



Bombardier\* Global Express\* Global 5000\* Global XRS

**Bombardier\*** 

Challenger\* 604

4



Bombardier\* Challenger\* 300



Learjet 40\* Learjet 45\*/45XR\* Learjet 60\*



#### Six Models of Regional Aircraft

- •Over 2,000 in Service
- •Canadair Regional Jet\* Series
- •Dash 8\*/Q\* Series Turboprops

\* Trademark(s) of Bombardier Inc. or its subsidiaries.

#### **Industry Challenges: The need for collaboration**

- High Cost/Low Volume
  - Multi-billion dollar 3 5 year development programs
  - Multi-million dollar products with only 300 400 units delivered per year
- Large amount of customization and change even after delivery
- Highly regulated environment including after sales service
- Aircraft are high maintenance and long life items
- <u>No Aerospace company alone has all the resources</u> required to cover the cost nor the range of expertise needed to bring a new aircraft to market and provide support
- OEMs have become integrators, suppliers are now Partners in sharing financial and technical risks

 $\rightarrow$  We needed to re-engineer the way we do engineering



#### **World Class Engineering – Shifting our Focus**

# Shifting our focus from producing analysis reports to developing innovative products



*"It wasn't easy but I finally found the analysis tool used to substantiate this part.* But then I wasn't sure it was really the version used for the official certification report. I recall they had to do a last minute change to the analysis approach before signing off the report. Getting the tool is one thing, but reusing it is another, especially since Mr. X is no longer here."

#### BOMBARDIER

6

## Why Fiper Engineering Process Infrastructure ?

- Drag-and-drop for building process models
- Links any application (CAD, Excel, Word, MatLab, ...)
- Controls process versions and keeps trace of data generated
- Built-in design driver components (DOE, Optimize, Monte Carlo, cost, ...)
- Integration with PLM, CAD, Document Mgt System, etc
- Web-based, secure, collaborative environment, inter- or intra-enterprise





#### **Engineous' Value Proposition:**



#### **iSIGHT-FD** Desktop Process Capturing



Engineering Software Proprietary

Engineous





#### **FIPER Processes in the PLM Landscape**





#### **Stress Department Achievement: Process for generating internal loads**



#### Intangible gains

- Allows Multiple Optimization Loops with Suppliers
  - Weight & product Optimization
  - Ability to review impact to loads change very quickly
- Facilitates management of multiple models, load sets and work packages
- More robust process  $\rightarrow$  Eliminates manual tasks
- Automated quality checking



#### **Stress Department Achievement: Damage Tolerance Analysis**

Same analysis process applies to each Principle Structural Elements (PSE)



- **Benefits** 
  - 75% cycle time reduction in running damage tolerance analyses (DTA)
  - Quick turnaround for disposition to discrepancies
  - Ability to review impact to loads change very quickly
  - Eliminates manual tasks in analyses  $\rightarrow$  More robust process
  - Standardization of processes



#### Where we are going





#### FIPER Implementation, A Year Later

Engineering Software Proprietary

## The Role of CAE in an Extended Aerospace Enterprise



Tim Ambridge Director, PLM Business Processes, Bombardier Aerospace September 2006

#### BOMBARDIER



#### **Advanced Aerodynamics FIPER Model**





Source: FORTRAN

#### **Loads Process Map - BEFORE**



#### **Loads FIPER Model - AFTER**





#### **Stress FIPER Model - AFTER**





#### **Weights FIPER Model**



## **Creating an Innovation Culture**



Tim Ambridge Director, PLM Business Processes, Bombardier Aerospace 2007-March-14

#### BOMBARDIER

#### Ten easy steps to introducing change! Step 1: Start with Change in Mind

#### Build in change management from the beginning

- Make change management an integral part of the project plan
- Get the sponsors involved right away
- Be clear about the deliverables
- Know which change methods you are going to use with each audience from the start
- Be clear about the timeline
- Build up to implementation, don't wait for deployment to get started





#### A Final word: "The Evolution of Species"

- The technical stuff is the easy stuff, the real work is in getting people to use it, under pressure people revert to the familiar
- Continuous improvement requires continuous change
- People are the only source of long-term competitive advantage
- Companies can longer promise employees life time employment, but companies can provide marketable skills

*"It is not the strongest, the fastest or the smartest of the species that survive, it is those most adaptable to change"* 

- Charles Darwin

#### 29 BOMBARDIER

#### **Lessons learned**

- Integration within PLM architecture shouldn't be underestimated
- Integration with legacy applications shouldn't be underestimated
- Use as much "out of the box" as you can, customize as a last resort
- Don't try to automate your "As-Is"; rethink the process
- People are ultimately more adaptable than software
- Standardize across industry: "Is everybody really different ?"
- Exchange data rather than documents
- Supplier Compatibility : "Will they change with us?"
- Never, ever underestimate the difficulty in getting people to change, under stress, people revert to what they know
- Continuous improvement requires continuous change, try to implement a culture that wants change

Why we are changing is more important than what is changing

#### 30 BOMBARDIER





## Pratt & Whitney iSIGHT/FIPER Experience

## **Engineous 2007 Conference**

J. Brent Staubach Pratt & Whitney Manager & Chief of Systems Optimization March 13, 2007

# Pratt & Whitney Is A Division Of United Technologies Corporation

40,000 employees

\$ 11.1 billion sales

30,000 engines world wide on 600 airlines & 70 airforces

Headquarters in East Hartford Connecticut



System

# ESI Product History At Pratt & Whitney



- Initial pilot project with *Engineous started* in 1995, V1.2
- 1996 PW purchased 20 seats, v2.0
- 2001 UTC corporate agreement

90 seats + 1000 parallel seats, v6.0

- 2004 UTC site license
- 2005 initial FIPER Purchase

# Local Optimization : Turbine Airfoil Film Cooling



System

# Part Systems Optimization : Airfoil Systems MDO

Michael Gottschalk, Propulsion Safety, Affordability, and Readiness Conference, 2006





J. Brent Staubach

# **Engine Systems Optimization**



PMDO, Preliminary Multidisciplinary Design Optimization FIPER Integration FIPER DOE & Execution Space Filling DOE Parametric Vehicle Parametric Cycle Ě Parametric 1D Aero Parametric Τ4 Layout Engline Layour. SAS/JMP Response Surface Modeling Parametric Cost & Weight R=b\_+\_0x iSIGHT Optimization on RSMs Load RSMs Into ISIGHT Persto Optimei Lower Sullage Optina Fuel Engine Weicht Burned West 37 Τ4 Specific fuel consumption

## Scalable Approach To MDO





V alue
I mprovement through a
V irtual
A eronautical
C ollaborative
E nterprise

EC Funded in FP6 65 Partners, 11 countries 75 M euros, 4 years, 2004-2007



# **VIVACE** Partnership

| <b>TVACE</b>                                                           | Aero Companies (20)      | Vendors (10)              | Research Centres (5) | Universities (14)             |
|------------------------------------------------------------------------|--------------------------|---------------------------|----------------------|-------------------------------|
|                                                                        | Airbus                   | Dassault Systèmes         | CERFACS (F)          | Cranfield University          |
|                                                                        | Ajilon                   | Eurostep Group            | DLR (D)              | Imperial College, London      |
|                                                                        | Alenia                   | Engineous                 | EADS CCR (F), EADS D | Luleaa Univ. of Technology    |
|                                                                        | Avio S.p.A               | EPM Technology            | NLR (NL)             | Univ.of Manchester Institute  |
|                                                                        | BAESYSTEMS               | Hew lett-Packard          | ONERA (F)            | of Science and Technology     |
|                                                                        | CENAERO                  | I-Sight Softw are         |                      | Nottingham University         |
|                                                                        | Dassault Aviation        | Leuven Measure. and Syst. |                      | National Tech. Univ of Athens |
|                                                                        | Eurocopter               | MSC Softw are             |                      | Politecnico di Milano         |
| Plus 3 <sup>rd</sup><br>tier<br>Suppliers:<br>INBIS,<br>ESOCE,<br>Etc. | Hydro-Control            | Samtech<br>Xerox          |                      | Politecnico di Torino         |
|                                                                        | Ind. de Turbopropulsores |                           |                      | Queen's University, Belfast   |
|                                                                        | Messier-Dow ty           |                           |                      | Stuttgart University          |
|                                                                        | MTU Aero Engines         |                           |                      | Tech. Univ. of Hamburg        |
|                                                                        | Operator                 | HACT                      |                      | UNINOVA. Lisbon               |
|                                                                        | Rolls-Royce              |                           |                      | Warw ick University           |
|                                                                        | Snecma Moteurs           |                           |                      |                               |
|                                                                        | Techspace Aero           |                           |                      |                               |
|                                                                        | Thales Avionics          |                           |                      |                               |
|                                                                        | Thales Avionics ES       |                           |                      |                               |
|                                                                        | Turbomeca                |                           |                      |                               |
|                                                                        | Volvo Aero Corporation   |                           |                      |                               |
|                                                                        |                          |                           |                      |                               |

© 2006 VIVACE Consortium Members. All rights reserved Page: 40

24, 25, 26 Oct. 2006



## The key VIVACE objectives

Achieve a 5% cost reduction in aircraft development Contribution to 30 % lead time reduction in engine development

Contribution to 50 % cost reduction in engine development



## **VIVACE** Story

## **Distributed engine design process**



© 2006 VIVACE Consortium Members. All rights reserved Page: 42



## Design Groups and VEC-Hub (Oct 2006)

## **Processes are running at different locations**



© 2006 VIVACE Consortium Members. All rights reserved Page: 43





## Expanded Workflow





#### Summary

#### Aerospace industry is moving rapidly towards:

- Simulation-based Development Process
- Workflow-based Standard Work
- Multi-disciplinary, Multi-Objective, Stochastic
- Collaborative System Engineering

# Systems Optimizations Have Grown To Encompass Major Engineering Functions



#### 6 Organizations, 14 disciplines, 50 Instantiations of models, 1000's of parameters



J. Brent Staubach

# FIPER Enables Team Collaboration To Setup Models and Review Results



System