
ibm.com/redbooks

Introduction to the New
Mainframe:
Large-Scale Commercial
Computing

Mike Ebbers
Frank Byrne

Pilar Gonzalez Adrados
Rodney Martin

Jon Veilleux

Learn why mainframes process much
of the world’s commercial workload

Find out why mainframes are so
reliable

Understand mainframe
popularity

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Introduction to the New Mainframe: Large-Scale
Commercial Computing

December 2006

International Technical Support Organization

SG24-7175-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2006)

Note: Before using this information and the product it supports, read the information in
“Notices” on page 207.

Contents

Preface . ix
How this text is organized . x
How each chapter is organized. x
About the authors . x
Acknowledgements . xi
Reviewers . xi

Chapter 1. The new mainframe . 1
1.1 What is a mainframe? . 2
1.2 An evolving architecture . 3
1.3 Mainframes in our midst . 4
1.4 Who uses mainframe computers?. 5
1.5 Factors contributing to mainframe use . 6

1.5.1 Capacity . 7
1.5.2 Scalability . 7
1.5.3 Integrity and security . 8
1.5.4 Availability . 8
1.5.5 Access to large amounts of data. 9
1.5.6 Systems management . 10
1.5.7 Autonomic capabilities . 10

1.6 Typical mainframe workloads . 10
1.6.1 Batch processing. 11
1.6.2 Online transaction processing. 14

1.7 Summary . 17
1.8 Questions for review . 18
1.9 Topics for further discussion . 18

Chapter 2. Capacity . 19
2.1 Introduction . 20
2.2 What do we mean by capacity? . 20
2.3 Elements of a system required for capacity . 21
2.4 A few servers versus many servers . 21

2.4.1 Many servers. 22
2.4.2 Few servers - the IBM System z approach . 22

2.5 Mixed workloads . 23
2.6 Service level agreement . 24
2.7 Managing the system to the SLA . 25

2.7.1 Managing CPU . 25
© Copyright IBM Corp. 2006. All rights reserved. iii

2.7.2 Managing disk . 25
2.7.3 Storage concepts: the address space. 26
2.7.4 Real storage management . 28

2.8 Architecture, running work, and capacity . 28
2.9 Several servers on one physical machine. 32

2.9.1 The LPAR . 32
2.9.2 Planning for downtime. 33

2.10 Parallel Sysplex. 34
2.11 Measurements. 34
2.12 Summary . 35
2.13 Questions for review . 36
2.14 Topics for further discussion . 36

Chapter 3. Scalability . 37
3.1 Introduction to scalability . 38
3.2 Scalability concepts. 39

3.2.1 Scalability approaches . 39
3.2.2 Scalability influences. 40
3.2.3 Provisioning. 42

3.3 Scalability implementation on IBM System z. 42
3.3.1 Hardware scalability . 42
3.3.2 Operating system scalability . 46
3.3.3 Parallel Sysplex. 48
3.3.4 Provisioning. 54
3.3.5 Capacity on Demand. 55
3.3.6 Workload Manager (WLM) . 56

3.4 Summary . 64
3.5 Questions for review . 64

Chapter 4. Integrity and security . 65
4.1 Introduction to integrity . 66
4.2 Integrity . 66

4.2.1 Serialization. 67
4.2.2 Data Facility Storage Management Subsystem (DFSMS) 70
4.2.3 Auditing . 73
4.2.4 Resource Recovery Services (RRS). 73
4.2.5 Data backup and recovery . 75
4.2.6 Performance . 78

4.3 Security . 79
4.3.1 Introduction . 79
4.3.2 U.S. Government certification . 80
4.3.3 Enforced isolation . 81
4.3.4 The accessor environment element . 81
iv Introduction to the New Mainframe: Large-Scale Commercial Computing

4.3.5 Authorized program facility (APF) . 81
4.3.6 Program states . 82
4.3.7 Storage protection keys . 82
4.3.8 Supervisor call. 83
4.3.9 System Authorization Facility . 83

4.4 Summary . 84
4.5 Questions for review . 85

Chapter 5. Availability . 87
5.1 Introduction to availability . 88
5.2 What is availability?. 88

5.2.1 Outages - planned and unplanned . 89
5.3 Inhibitors to availability . 90
5.4 Redundancy . 91

5.4.1 Concurrent maintenance and upgrades . 94
5.4.2 Accessing peripheral devices . 95
5.4.3 Continuous availability of mainframes using clustering. 98

5.5 z/OS elements for availability . 100
5.5.1 z/OS components . 101
5.5.2 Error recording . 102
5.5.3 Recovery . 103

5.6 Disaster recovery (DR) . 104
5.7 Summary . 107
5.8 Questions for review . 108

Chapter 6. Accessing large amounts of data . 109
6.1 Introduction . 110
6.2 Channel subsystem. 111
6.3 Control units . 112
6.4 DASD CKD architecture . 112
6.5 Mapping for access to devices . 114
6.6 DASD subsystem . 115
6.7 Redundant Array of Independent Disks (RAID) 116
6.8 Reducing the number of logical volumes . 117
6.9 Multiple Allegiance/Parallel Access Volumes . 118
6.10 Random access to data. 120
6.11 Databases . 120
6.12 Data sharing . 121
6.13 Data Facility Storage Management System . 121
6.14 Data placement and management . 122
6.15 Summary . 124
6.16 Questions for review . 125
6.17 Topics for further discussion . 125
 Contents v

Chapter 7. Systems management . 127
7.1 Introduction to systems management . 128
7.2 System data . 129
7.3 Configuration management . 131

7.3.1 System software configuration management 132
7.3.2 Hardware configuration management . 134
7.3.3 Application configuration management . 135

7.4 Workload management . 135
7.5 Operations management. 136

7.5.1 Batch scheduling. 137
7.5.2 Console operations . 137

7.6 Network management . 139
7.7 Storage management . 139
7.8 Security management . 139
7.9 Performance management . 140

7.9.1 z/OS implementation. 141
7.10 Problem management . 143

7.10.1 Trend reporting . 143
7.10.2 Operator console. 143

7.11 Change management . 143
7.12 Summary . 144

Chapter 8. Autonomic computing . 145
8.1 Introduction . 146

8.1.1 Autonomic computing principles . 146
8.1.2 Autonomic computing concepts . 148

8.2 z/OS implementation of autonomic computing . 154
8.3 Self-healing . 154
8.4 Self-configuring . 156
8.5 Self-protecting . 157
8.6 Self-optimizing. 157
8.7 Summary . 158

Appendix A. Architecture summary . 161
Interrupt processing . 162
The program status word . 162

New and old PSWs . 164
Security . 165

Appendix B. Glossary . 167

Notices . 207
Trademarks . 208
vi Introduction to the New Mainframe: Large-Scale Commercial Computing

Related publications . 209
IBM Redbooks . 209
IBM white papers . 210
Other publications . 210
Online resources . 211
How to get IBM Redbooks . 212
Help from IBM . 212

Index . 213
 Contents vii

viii Introduction to the New Mainframe: Large-Scale Commercial Computing

Preface

Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations. While other forms of computing are used in
business in various capacities, the mainframe occupies a prominent place in
today’s e-business environment. In banking, finance, health care, insurance,
utilities, government, and a multitude of other public and private enterprises, the
mainframe computer continues to provide the foundation of large-scale
computing to modern business.

The reasons for mainframe use are many, but generally fall into one or more of
the following categories:

� Capacity
� Scalability
� Integrity and security
� Availability
� Access to large amounts of data
� System management
� Autonomic capabilities

The mainframe owes much of its popularity and longevity to its inherent reliability
and stability, a result of continuous technological advances since the introduction
of the IBM® System/360™ in 1964. No other computer architecture in existence
can claim as much continuous, evolutionary improvement, while maintaining
compatibility with existing applications.

This IBM Redbook is designed for readers who already possess a basic
knowledge of mainframe computing, but need a clearer understanding of how the
concepts ranging from capacity through to autonomic capabilities relate to
mainframe planning, implementation, and operation.

For readers who need more introductory information about mainframe concepts,
usage, and architecture, we recommend that you complete Introduction to the
New Mainframe: z/OS Basics, SG24-6366, prior to starting this book. And for
more detailed information about z/OS programming topics, refer to the 11-volume
IBM Redbook series ABCs of z/OS System Programming. All of these
publications are available at the following site:

http://www.redbooks.ibm.com
© Copyright IBM Corp. 2006. All rights reserved. ix

http://www.redbooks.ibm.com

How this text is organized
In this document, we use simplified examples and focus mainly on basic system
functions. Hands-on exercises are provided to help you explore the mainframe
style of computing

How each chapter is organized
Each chapter follows a common format:

� Objectives for the reader

� Topics that teach a central theme related to mainframe computing

� Summary of the main ideas of the chapter

� A list of key terms introduced in the chapter

� Questions for review to help readers verify their understanding of the material

About the authors
Mike Ebbers has worked for IBM for 33 years, specializing in mainframe
technology. He produces textbooks and IBM Redbooks™ about mainframes,
which are available at the following site:

http://www.ibm.com/mainframes/

Frank Byrne is a Senior IT Specialist in the United Kingdom who provides
day-to-day technical guidance and advice on the usage of z/OS and associated
products. He has 39 years of experience in large systems support. His areas of
expertise include Parallel Sysplex implementation and DFSMS. Frank has written
extensively about Parallel Sysplex usage.

Pilar Gonzalez Adrados is an IT Specialist with IBM in Spain, and has more
than 25 years of experience in mainframe technology. She has been an IT
Education Specialist as well as a System Engineer. Pilar’s areas of expertise
include z/OS® system management, mainframe hardware, and Parallel
Sysplex®.

Rodney Martin is a Senior Infrastructure Operator with IBM in Sydney, Australia.
He joined IBM eight years ago, and has been operationally involved with MVS™
and z/OS systems for 18 years. Rodney has developed operating procedures
and training plans for both IBM Australia and other Australian commercial
companies.

Jon Veilleux is a Senior Systems Engineer at Aetna Inc. in Middletown, CT. He
has 26 years of experience in z/OS installation, support, and problem resolution.
Jon’s responsibilities include training junior systems programmers and
x Introduction to the New Mainframe: Large-Scale Commercial Computing

http://www.ibm.com/mainframes/

participating in the problem resolution swat team. Jon is Aetna's infrastructure
representative to the IBM zSeries® Business Leaders Council.

Acknowledgements
Edward Baker is a Senior Software Engineer with IBM Systems and Technology
Group Lab Services. He has more than 28 years of experience in z/OS software
development. Ed’s areas of expertise include DFSMS, DFSMShsm™, and
DFSMSdss™, as well as various IBM storage hardware and software products.

Myriam Duhamel is an IT Specialist in Belgium. She has 20 years of experience
in application development and has worked at IBM for 15 years. Her areas of
expertise include development in different areas of IBM System z™. Myriam
currently teaches courses in DB2® and WebSphere® MQ.

Andreas Gallus is an Advisory IT Architect for IBM Global Business Services in
Hamburg, Germany. He more than seven years of experience with mainframe
technology, along with Linux® for zSeries and z/OS. His areas of expertise
include infrastructure architectures and server consolidation.

Michael Grossmann is a Systems Engineer and IT Education Specialist in
Germany. He has 12 years of experience as a z/OS Systems Programmer and
Instructor. Michael’s areas of expertise include z/OS education for beginners,
z/OS operations, automation, mainframe hardware and Parallel Sysplex.

John Kettner is a Consulting Software Architect in the zSeries Advanced
Architecture Group. He has 30 years of mainframe experience and holds a BS in
Computer Science from L.I.U. His areas of expertise include zSeries internals,
WebSphere product integration, and capacity planning. John has written several
IBM Redbooks and contributes to various education programs throughout IBM.

Bianca Potthast is a Systems Programmer at LVM Versicherungen, Germany.
She has 14 years of experience with z/OS and Storage Systems. Bianca’s areas
of expertise include installation and configuration of hardware and storage.

Reviewers
Olegario Hernandez, Chile

Seymour Metz, New York, USA

Joe Macera, California, USA
 Preface xi

xii Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 1. The new mainframe

1

Objective:

This chapter explains what the term mainframe means and describes how
they are used.

After completing this chapter, you will be able to do the following:

� Explain why 60% of the world’s business data resides on mainframes
� List typical uses of mainframes
� Describe the benefits of mainframe computing
� Outline the major types of workloads for which mainframes are best suited
© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 What is a mainframe?
Today, the term mainframe can be used to describe a style of operation,
applications, and operating system facilities. Here is a working definition: “A
mainframe is what businesses use to host their commercial databases,
transaction servers, and applications that require a greater degree of security
and availability than is commonly found on smaller-scale machines.”

A mainframe is the central data repository or hub in a corporation’s data
processing center, linked to users through less powerful devices such as
workstations or terminals. The presence of a mainframe often implies a
centralized form of computing, rather than a distributed form of computing.
Having data centralized in a single mainframe repository saves users from
having to manage updates to more than one copy of their business data. This
increases the likelihood that the data is current and has integrity, because there
is only one version of data.

Early mainframe systems were housed
in enormous, room-filling metal boxes or
frames, and this is probably how the
term “mainframe” originated. The
mainframe required large amounts of
electrical power and air-conditioning,
and the room was occupied mostly by
input/output (I/O) devices. Also, a
typical installation had several

mainframes installed with most of the I/O devices connected to all of the
mainframes. During their largest period in terms of physical size, a typical
mainframe occupied 2,000 to 10,000 square feet (600 to 3,000 square meters),
with some installations being much larger than this.

Starting around 1990, mainframe processors and most of
the I/O devices became physically smaller, while their
functionality and capacity continued to grow. Mainframe
systems today are much smaller than earlier
ones—about the size of a large refrigerator. Furthermore,
it is now possible in some cases to run a mainframe
operating system on a personal computer that emulates
an IBM System z processor. Such emulators are useful
for developing and testing business applications before
moving them to a mainframe production system.

Clearly, the term mainframe has expanded beyond merely describing the
physical characteristics of a system. Instead, the word typically applies to some
combination of the following attributes:

Mainframe
Hosts the
databases,
transaction
servers, and
applications
that require a
great degree of
security and
availability.
2 Introduction to the New Mainframe: Large-Scale Commercial Computing

� Compatibility with mainframe operating systems, applications, and data.

� Centralized control of resources.

� Hardware and operating systems that can share access to disk drives with
other systems, with automatic locking and protection against destructive
simultaneous use of disk data.

� A style of operation, often involving dedicated operations staff who use highly
organized procedures for backup and recovery, training, and disaster
recovery at an alternate site.

� Hardware and operating systems that routinely work with hundreds or
thousands of simultaneous I/O operations.

� Clustering technologies that allow the client to operate multiple copies of the
operating system as a single system.

This configuration, known as Parallel Sysplex, is analogous in concept to a
UNIX® cluster, but allows for systems to be added or removed as needed
while applications continue to run. This flexibility allows mainframe clients to
introduce new applications, or discontinue using existing applications, in
response to changes in business activity.

� Additional data and resource-sharing capabilities; in a Parallel Sysplex, for
example, it is possible for users across multiple systems to access the same
databases concurrently.

Advances in hardware pave the way for improvements in operating systems and
applications. Likewise, software requirements influence the next generation of
hardware development. So the mainframe architecture continues to evolve.

1.2 An evolving architecture
An architecture is a set of defined terms and rules used as a blueprint to build
products. In computer science, an architecture describes the organizational
structure of a system. An architecture can be reduced to parts that interact
through interfaces, relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces include classes,
components, and subsystems.

Starting with the first large machines, which arrived on the scene in the 1950s
and became known as “Big Iron” (in contrast to smaller departmental systems),
each new generation of mainframe computers has added improvements in one
or more of the following areas of its architecture1:

1 Since the introduction of S/360™ in 1964, IBM has significantly extended the platform roughly every
ten years: System/370™ in 1970, System/370 Extended Architecture (370-XA) in 1983, Enterprise
Systems Architecture/390® (ESA/390) in 1990, and z/Architecture™ in 2000.

Architecture
The
organizational
structure of a
system.
 Chapter 1. The new mainframe 3

� More and faster processors

� More physical memory and greater virtual memory addressing capability

� Dynamic capabilities for upgrading both hardware and software

� More sophisticated automated hardware error-checking and recovery

� Enhanced devices for input/output (I/O) and more and faster paths (channels)
between I/O devices and processors

� Sophisticated I/O attachments, such as LAN adapters with extensive inboard
processing

� Increased ability to divide the resources of one machine into multiple, logically
independent and isolated systems, each running its own operating system

� Enhanced clustering technologies, such as Parallel Sysplex, and the ability to
share data among multiple systems.

Despite the continual change, mainframe computers remain the most stable,
secure, and compatible of all computing platforms. The latest models can handle
the most advanced and demanding client workloads, yet continue to run
applications that were written in the 1970s or earlier.

With the expanded functions and added tiers of data processing capabilities such
as Web-serving, autonomic computing, disaster recovery, and grid computing,
mainframe manufacturers are seeing a growth in annual sales.

While the mainframe computer has retained its traditional, central role in the
information technology (IT) organization, that role is now defined to include being
the primary hub in the largest distributed networks. In fact, the Internet itself is
based largely on numerous interconnected mainframe computers serving as
major hubs and routers.

As the image of the mainframe computer continues to change, you might ask: Is
the mainframe computer a self-contained computing environment, or one part of
the puzzle in distributed computing? The answer is both: A self-contained
processing center, powerful enough to process the largest workloads in one
secure “footprint,” but one that is also just as effective when implemented as the
primary server in a corporation’s distributed server farm. In effect, the mainframe
computer is the ultimate server in the client-server model of computing.

1.3 Mainframes in our midst
Mainframes tend to be hidden from the public eye. They do their jobs dependably
and with almost total reliability. They are highly resistant to most forms of
insidious abuse that afflict personal computers, such as e-mail-borne viruses,

“I predict that
the last
mainframe will
be unplugged
on March 15,
1996.”

--Stewart
Alsop,
Infoworld,
March 1991
4 Introduction to the New Mainframe: Large-Scale Commercial Computing

Trojan horses, and the like. By performing stably, quietly, and with negligible
downtime, mainframes set the standard by which all other computers should be
judged. But at the same time, this lack of attention tends to allow them to fade
into the background.

So, how can we explore the mainframe’s capabilities in the real world? How can
we learn to interact with a mainframe, learn its capabilities, and understand its
importance to the business world? Major corporations are eager to hire new
mainframe professionals, but there’s a catch: some previous experience would
help.

You would not know this from monitoring the general trends that computer
professionals publicize, but mainframe computers play a central role in the daily
operations of most of the world’s largest corporations. While other forms of
computing are also used in business in various capacities, the mainframe
occupies a coveted place in today’s environment, where e-business reigns. In
banking, finance, health care, insurance, public utilities, government, and a
multitude of other public and private enterprises, the mainframe computer
continues to form the foundation of modern business.

Why has this one form of computing taken hold so strongly among the world’s
largest corporations? In this chapter, we look at the reasons why mainframe
computers continue to be the popular choice for large-scale business computing.

1.4 Who uses mainframe computers?
Just about everyone has used a mainframe computer at one point or another,
whether they realize it or not. For example, if you have ever used an automated
teller machine (ATM) to interact with your bank account, you have used a
mainframe.

In fact, until the mid-1990s, mainframes provided the only acceptable way of
handling the data processing requirements of a large business. These
requirements were then (and are often now) based on large and complex batch
jobs, such as payroll and general ledger processing.

The mainframe owes much of its popularity and longevity to its inherent reliability
and stability, a result of careful and steady technological advances since IBM
introduced System/360 in 1964. No other computer architecture can claim as
much continuous improvement while maintaining compatibility with previous
releases.

Because of these design strengths, the mainframe is often used by IT
organizations to host their important mission-critical applications. These
 Chapter 1. The new mainframe 5

applications typically include client order processing, financial transactions,
production and inventory control, payroll, as well as many other types of work.

Many of today’s busiest Web sites store their production databases on a
mainframe host. New mainframe hardware and software are ideal for Web
transactions because they are designed to allow huge numbers of users and
applications to rapidly and simultaneously access the same data without
interfering with each other. This security, scalability, and reliability is critical to the
efficient and secure operation of contemporary information processing.

Corporations use mainframes for applications that depend on scalability and
reliability. For example, a banking institution could use a mainframe to host the
database of its client accounts, for which transactions can be submitted from any
of thousands of ATM locations worldwide.

Businesses today rely on the mainframe to:

� Perform large-scale transaction processing (up to thousands of transactions
per second)

� Support thousands of users and application programs concurrently accessing
numerous resources

� Manage terabytes of information in databases
� Handle large-bandwidth communications

The roads of the information superhighway often lead to a mainframe.

1.5 Factors contributing to mainframe use
The reasons for the use of mainframes are many, but most generally fall into one
or more of the following categories:

� Capacity
� Scalability
� Integrity and security
� Availability
� Access to large amounts of data
� Systems management
� Autonomic capabilities

In the following sections we highlight each of these categories. They are covered
in more detail later in this publication.
6 Introduction to the New Mainframe: Large-Scale Commercial Computing

1.5.1 Capacity
As computing power has increased, with a corresponding decrease in cost, the
services provided by large commercial organizations have changed dramatically.
The banking industry was an early user of computers, but the functions they
performed—such as check clearing—were not visible to the client. The industry
now has ATMs that replace tellers and allow 24-hour banking, and Internet
banking, which enables clients to directly manage their accounts from the
comfort of their homes. By establishing profiles of their clients, banks are able to
target products to specific individuals, which is very cost effective.

In order to provide these services to clients, generate the reports required to run
the business, and to profile clients, you have to use a system with sufficient
capacity. The problem is how to define capacity in terms of the hardware and
software of a computing system.

The following analogy with a water supply system will help you identify some
aspects of “capacity” as used in the computer industry. The capacity of a
reservoir is obviously the amount of water that it can contain. However, this is
merely a definition of its storage capacity. In order to supply homes and
businesses with water, pipes and pumps need to be added. The capacity of a
pump is the amount of liquid water that can be moved in a particular time. The
capacity of a pipe is the amount of liquid that can be passed through it. The
number of clients that can be served by the reservoir, that is, its capacity, is
determined by how much water can be supplied and how quickly. If the demand
is greater than the capability to supply, then the pressure will drop.

The reservoir in a large-scale computing system is the corporate data and the
clients for this data are programs.

The z/OS software and IBM System z server hardware combine to provide the
necessary power to store and transmit large volumes of data and process that
data as required, in a timely manner.

1.5.2 Scalability
By scalability, we mean the ability of the hardware, software, or a distributed
system to continue to function well as it is changed in size or volume; for
example, the ability to retain performance levels when adding processors,
memory, and storage. A scalable system can efficiently adapt to work, with larger
or smaller networks performing tasks of varying complexity.

As a company grows in employees, clients, and business partners, it usually
needs to add computing resources to support business growth. One approach is
to add more processors of the same size, with the resulting overhead in
managing this more complex setup. Alternatively, a company can consolidate its

Scalability
The ability of a
system to retain
performance
levels when
adding
processors,
memory, and
storage.
 Chapter 1. The new mainframe 7

many smaller processors into fewer, larger systems. Using a mainframe system,
many companies have significantly lowered their total cost of ownership (TCO),
which includes not only the cost of the machine (its hardware and software) but
also the cost to run it.

IBM System z mainframes exhibit scalability characteristics in both hardware and
software, with the ability to run multiple copies of the operating system software
as a single entity called a system complex or sysplex.

1.5.3 Integrity and security
One of the most valuable resources of a company is its data: client lists,
accounting data, employee information, and so on. This critical data needs to be
securely managed and controlled, and simultaneously made available to users
authorized to see it. Mainframe computers have extensive capabilities to
simultaneously share the data among multiple users, and still protect it.

In an IT environment, data security is defined as protection against unauthorized
access, transfer, denial of service, modification, or destruction, whether
accidental or intentional. To protect data and to maintain the resources
necessary to meet the security objectives, clients typically add a sophisticated
security manager product to their mainframe operating system. The client’s
security administrator often bears the overall responsibility for using the available
technology to transform the company’s security policy into a usable plan.

A secure computer system prevents users from accessing or changing any
objects on the system, including user data, except through system-provided
interfaces that enforce authority rules. Mainframe computers can provide a very
secure system for processing large numbers of heterogeneous (or mixed)
applications that access critical data. The “z” in the name of IBM System z stands
for zero downtime, indicating that it is always available.

1.5.4 Availability
Reliability, Availability, and Serviceability (often grouped together as RAS) have
always been important in data processing. When we say that a particular
computer system “exhibits RAS characteristics,” we mean that its architecture
places a high priority on the system remaining in service at all times. Ideally, RAS
is a central design feature of all aspects of a computer system, including the
applications.

RAS has become accepted as a collective term for many qualities of hardware
and software that are prized by users of mainframes. The terms are defined as
follows:
8 Introduction to the New Mainframe: Large-Scale Commercial Computing

Reliability The system’s hardware components have extensive
self-checking and self-recovery. The system’s software reliability
results from extensive testing and the ability to make quick
updates for detected problems.

Availability The system can recover from a failed component without
impacting the rest of the running system. This applies to
hardware recovery (by automatically replacing failed elements
with spares) and software recovery (layers of error recovery
provided by the operating system).

Serviceability The system can determine why a failure occurred. This allows for
the replacement of elements (hardware and software), while
impacting as little of the operational system as possible. It also
implies well-defined units of replacement, either hardware or
software.

A computer system is “available when its applications are available. An available
system is one that is reliable, that is, it rarely requires downtime for upgrades or
repairs. And, if the system is brought down by an error condition, it must be
serviceable—easy to fix—within a relatively short period of time.

Mean time between failures (MTBF) refers to the availability of a computer
system. The mainframe and its associated software have evolved to the point
that clients often experience years of system availability between system
downtimes. Moreover, when the system is unavailable because of an unplanned
failure or a scheduled upgrade, this period is typically very short. The remarkable
availability of the system for processing the organization’s mission-critical
applications is vital in today’s 24-hour, global economy. Along with the hardware,
mainframe operating systems exhibit RAS through such features as storage
protection and a controlled maintenance process.

Beyond RAS, a state-of-the-art mainframe system might be said to provide high
availability and fault tolerance. Redundant hardware components in critical
paths, enhanced storage protection, a controlled maintenance process, and
system software designed for unlimited availability all help to ensure a consistent,
highly available environment for business applications in the event that a system
component fails. Such an approach allows the system designer to minimize the
risk of having a single point of failure undermine the overall RAS of a computer
system.

1.5.5 Access to large amounts of data
The capacity to store data does not necessarily equate to the ability to process it
in a timely manner. Tape media is capable of supporting sequential processing of
data, but is of no value for random processing.
 Chapter 1. The new mainframe 9

Disk media is capable of supporting sequential or random processing, but there
are other considerations when high volumes of requests to read or write data are
made. Very large disks are not generally a good solution because this usually
results in the access mechanism being overloaded and queuing to occur. A
larger number of smaller disks gives better response times to I/O requests.

In all cases, there has to be sufficient bandwidth to allow data to be transferred
between main storage and the I/O device. The size of the volumes depends also
on the kind of data to be stored and the kind of application that needs access to
the data. A very careful investigation about the best disk layout should be made
for each individual installation.

1.5.6 Systems management
Systems management is a collection of disciplines to monitor and control a
system’s behavior. These cover such areas as performance, workload,
configuration, operations, problem management, network, storage, security, and
change management techniques. Some of these functions are performed by the
operating system or appropriate subsystems, which are provided in specialized
tools marketed by various software companies. Good systems management
plays a vital part in the reliability of mainframes.

1.5.7 Autonomic capabilities
The term “autonomic” comes from an analogy to the autonomic central nervous
system in the human body, which adjusts to many situations automatically
without any external help. Similarly, a good way to handle IT complexity is to
create computer systems that can respond to changes in their environment, so
the systems can adapt, heal, and protect themselves. Only then will the need be
reduced for constant human maintenance, fixing, and debugging of computer
systems.

1.6 Typical mainframe workloads
Most mainframe workloads fall into one of two categories: batch processing, or
online transaction processing, including Web-based applications (see Figure 1-1
on page 11).
10 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 1-1 Typical mainframe workloads

These workloads are discussed in several chapters in this document; the
following sections provide an overview.

1.6.1 Batch processing
A key advantage of mainframe systems is the ability to process terabytes of data
from high-speed storage devices and produce valuable output. For example,
mainframe systems make it possible for banks and other financial institutions to
produce end-of-quarter processing in an acceptable time frame (runtime) when
such reporting is necessary to clients (such as quarterly stock statements or
pension statements) or to the government (financial results). With mainframe
systems, retail stores can generate and consolidate nightly sales reports for
review by regional sales managers.

An equivalent concept can be found in a UNIX script file or Windows® CMD file,
but these facilities do not provide the same level of control and I/O performance
that is available on a z/OS system.

The applications that produce these statements are batch applications—they are
processed on the mainframe without user interaction. A batch job is submitted on
the computer, which reads and processes data in bulk—perhaps terabytes of
data. A batch job may be part of a group of batch jobs that need to process in

Batch job

Application Program

Output Data

Application Program

Input
Data

Process data to
perform a

particular task

Online (interactive) transaction

Query

Reply

Access shared
data on behalf of

online user
 Chapter 1. The new mainframe 11

sequence to create a desired outcome. This outcome may be output such as
client billing statements.

z/OS provides a robust suite of scheduling and control software that is not
generally available on other platforms. This software, along with built-in workload
management, gives z/OS the ability to run and prioritize mixed workloads (batch
and online) efficiently, based on user-specified criteria.

While batch processing is possible on distributed systems, it is not as
commonplace as on mainframes, because distributed systems often lack the
following elements:

� Sufficient data storage
� Available processor capacity (cycles)
� I/O bandwidth
� Sysplex-wide management of system resources and job scheduling

Mainframe operating systems are usually equipped with sophisticated job
scheduling software that allows data center staff to submit, manage, and track
the execution and output of batch jobs2.

Batch processes usually have the following characteristics:

� Large amounts of input data are processed and stored (perhaps terabytes or
more), large numbers of records are accessed and updated, and a large
volume of output is produced.

� Interactive response time is usually not the primary requirement. However,
batch jobs often must complete within a “batch window,” which is a period that
typically has less intensive online activity prescribed by a service level
agreement.

� Information is generated about large numbers of users or data entities (for
example, client orders or a retailer’s stock on hand).

� A scheduled batch process can consist of the execution of hundreds or
thousands of jobs in a pre-established sequence.

During batch processing, multiple types of work can be generated. Consolidated
information such as profitability of investment funds, scheduled database
back-ups, processing of daily orders, and updating of inventories are common
examples. Figure 1-2 on page 13 shows a number of batch jobs running in a
typical mainframe environment.

2 In the early days of the mainframe, punched cards were often used to enter jobs into the system for
execution. “Keypunch operators” used card punches to enter data, and decks of cards (or batches)
were produced. These were fed into card readers, which read the jobs and data into the system. As
you can imagine, this process was cumbersome and error-prone. Today, it is possible to do a file
transfer (FTP), the equivalent of punched card data to the mainframe in a PC text file, or to enter the
data directly on the mainframe.

Batch work
Data is
processed on
the mainframe
without user
interaction.
12 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 1-2 Typical batch use

In Figure 1-2, consider the following elements at work in the scheduled batch
process in a banking application:

1. At night, numerous batch jobs executing programs and utilities are processed.
These jobs consolidate the results of the online transactions executed during
the day.

2. The batch jobs generate reports of business statistics.

3. Backups of critical files and databases are made before and after the batch
window.

Disk Storage
databases

Tape Storage
Sequential

data sets

Partners
and clients
exchange

information

Reports

Backups

Data
update

Reports

Statistics,
summaries,
exceptions

Account balances
bills, etc

Processing
reports

Mainframe
Processing batch jobs

44

55
Reports

22

1010

11

88

66

33

CREDIT CARD

1234 5678 90121234 5678 9012
VALID FROM GOOD THRU

XX/XX/XX XX/XX/XX
PAUL FISCHER
XX/XX/XX XX/XX/XX
PAUL FISCHER

77

99

System
Operator

Production
Control

Residence Main office
 Chapter 1. The new mainframe 13

4. Reports with business statistics are sent to a specific area for analysis during
the following day.

5. Reports with exceptions are sent to the branch offices for follow-up actions.

6. Monthly account balance reports are generated and sent to all bank clients.

7. Reports with processing summaries are sent to the partner credit card
company.

8. A credit card transaction report is received from the partner company.

9. In the Production Control department, the System Operator is monitoring
messages presented on the system console or an automation interface.
Appropriate actions are then taken to ensure the successful execution of the
batch jobs.

10.Jobs and transactions are reading or updating the database (the same
database used by online transactions) and many files are written to tape.

1.6.2 Online transaction processing
Online transaction processing (OLTP) is transaction processing that occurs
interactively with the end user. Mainframes serve a vast number of transaction
systems. These are often mission-critical applications that businesses depend on
for their core functions. Transaction systems must be able to support an
unpredictable number of concurrent users and transaction types. Most
transactions are executed in short time periods—fractions of a second, in some
cases.

One of the main characteristics of a transaction system is that the interactions
between the user and the system are very brief. The user will perform a complete
business transaction through brief interactions, with an acceptable response time
required for each interaction. These systems are currently supporting
mission-critical applications; therefore, continuous availability, high performance,
and data protection and integrity are required.

Online transactions are familiar to most people. Examples include:

� ATM machine transactions such as deposits, withdrawals, inquiries, and
transfers

� Supermarket payments with debit or credit cards
� Purchase of merchandise over the Internet

For example, whether from a bank branch office or using Internet banking, clients
are using online services when checking an account balance or redirecting
funds.

In fact, an online system has many of the characteristics of an operating system:

Online
transaction
processing
(OLTP)
Transaction
processing that
occurs
interactively
with the end
user. It requires
a system with
fast response
time, continuous
availability,
security, and
data integrity.
14 Introduction to the New Mainframe: Large-Scale Commercial Computing

� Managing and dispatching tasks
� Controlling user access authority to system resources
� Managing the use of memory
� Managing and controlling concurrent access to data files
� Providing device independence

Some industry uses of mainframe-based online systems include:

� Banks - ATMs, teller systems for client service
� Insurance - Agent systems for policy management and claims processing
� Travel and transport - Airline reservation systems
� Manufacturing - Inventory control, production scheduling
� Government - Tax processing, license issuance and management

Multiple factors can influence the design of a company’s transaction processing
system, including:

� Number of users interacting with the system at any one time.
� Number of transactions per second (TPS).
� Availability requirements of the application (for example, must the application

be available 24 hours a day, seven days a week, or can it be brought down
briefly one night each week?)

So how might users in such industries interact with their mainframe system?
Before personal computers and intelligent workstations became popular, the
most common way to communicate with online mainframe applications was with
3270 terminals. Sometimes known as “dumb” terminals, they had enough
intelligence to collect and display a full screen of data rather than interacting with
the computer for each key stroke, thereby saving processor cycles. The
characters were displayed as green text on a black screen, so the mainframe
applications were nicknamed “green screen” applications. This application
remains today, even though terminals with color text have been in common use
for several decades.

Based on these factors, user interactions vary from installation to installation.
Many installations are now reworking their existing mainframe applications to
include Web browser-based interfaces for users. This work sometimes requires
new application development, but it can often be done with vendor software
purchased to “re-face” the application. In such cases, the end user often does not
realize that there is a mainframe behind the scenes.

Note: There is no need to describe the process of interacting with the mainframe
through a Web browser in this document, because it is exactly the same as any
interaction a user would have through the Web. The only difference is the
machine at the other end!

Online transactions usually have the following characteristics:
 Chapter 1. The new mainframe 15

� Small amount of input data, few stored records accessed and processed, and
small amount of data as output

� Rapid response time, usually less than one second
� Large numbers of users involved in concurrent transactions
� Round-the-clock availability of the transactional interface to the user
� Assurance of security for transactions and user data

In a bank branch office, for example, clients use online services when checking
account balances or making an investment.

Figure 1-3 illustrates a series of common online transactions using a mainframe.

Figure 1-3 Typical online use

1. A client uses an ATM, which presents a user-friendly interface for various
functions: withdrawal, query account balance, deposit, transfer, or cash
advance from a credit card account.

2. Elsewhere in the same private network, a bank employee in a branch office
performs operations such as consulting, fund applications, and money
ordering.

3. At the bank’s central office, business analysts tune transactions for improved
performance. Other staff use specialized online systems for office automation

Disk
storage

controller
Stores

database
files

Queries
and

updates

Account
activities

Office
automation

systems

Mainframe
Accesses
database

Requests

ATMs

Branch
offices

Business analysts Inventory control

Branch office
automation
systems

network
(e.g. TCP/IP or SNA)

55

66

33
22

44
11

Central office
16 Introduction to the New Mainframe: Large-Scale Commercial Computing

to perform client relationship management, budget planning, and stock
control.

4. All requests are directed to the mainframe computer for processing, and a
returned response.

5. Programs running on the mainframe computer perform updates and inquires
to the database management system (for example, DB2).

6. Specialized disk storage systems store the database files.

1.7 Summary
Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations. While other forms of computing are used in
business in various capacities, the mainframe occupies a vital place in today’s
e-business environment. In banking, finance, health care, insurance, utilities,
government sectors, and in a multitude of other public and private enterprises,
the mainframe computer continues to provide the foundation for modern
business transaction processing.The mainframe owes much of its popularity and
longevity to its inherent reliability and stability, a result of continuous
technological advances since the introduction of the IBM System/360 in 1964.
No other computer architecture in existence can claim as much continuous,
evolutionary improvement, while maintaining compatibility with existing
applications.

The term mainframe has evolved from a physical description of large IBM
computers to the categorization of a style of computing. One defining
characteristic of mainframes has been continuing compatibility spanning
decades.The roles and responsibilities found in a mainframe IT organization are
wide-ranging and varied. It takes skilled personnel to keep a mainframe
computer running smoothly and reliably. It might seem that there are far more
resources needed in a mainframe environment than with small, distributed
systems. But if roles are fully identified on the distributed systems side, a number
of the same roles exist there, as well.

Key terms in this chapter

Architecture Data integrity Infrastructure Punched card Security

Batch
processing

High
availability

Mainframe RAS Systems
management

Compatibility IBM System z OLTP Scalability Transactions
per second
 Chapter 1. The new mainframe 17

1.8 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. Explain how businesses make use of mainframe processing power, the
typical uses of mainframes, and how mainframe computing differs from other
forms of computing.

2. Outline the major types of workloads for which mainframes are best suited.

1.9 Topics for further discussion
1. What is a mainframe today? How did the term arise? Is it still appropriate?

2. What characteristics, positive or negative, exist in a mainframe processing
environment because of the roles that are present in a mainframe
installation? (Efficiency? Reliability? Scalability?)

3. Most mainframe installations have implemented very rigorous systems
management, security, and operational procedures. Have these same
procedures been implemented in distributed system environments? Why or
why not?
18 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 2. Capacity

2

Objectives:

This chapter describes how the factors that determine the capacity
requirements of a large scale commercial computing environment are
addressed by the IBM System z platform.

After completing this chapter, you will be able to describe the following:

� Mixed workloads

� SLA

� PR/SM™ and LPAR

� Parallel Sysplex

� Storage concepts and management

� Measuring capacity
© Copyright IBM Corp. 2006. All rights reserved. 19

2.1 Introduction
A large-scale commercial computing environment is one that exists to process
very large volumes of corporate data. The following topics will use the example of
the banking industry where data relating to client accounts may be processed for
many reasons, including:

� Cash withdrawal from an ATM
� Check processing
� Online inquiry
� Telephone inquiry
� Statement printing
� Overnight accounting
� Data mining
� Money laundering legislation

Much of the data is also subject to regulatory controls that determine how long
information must be kept.

2.2 What do we mean by capacity?
The term capacity has several definitions, including:

1. The potential or suitability for holding, storing, or accommodating

2. The facility or power to produce, perform, deploy, or simply process

A large bank most likely will have millions of clients. Many of these may hold
several accounts, and the data relating to these accounts has to be available to
multiple functions, which may be reading or updating it.

In order to meet the first definition, there needs to be sufficient disk storage to
allow fast access—and a less expensive and secure media for long-term storage.
An example of such a media is a tape, which is usually used because of its lower
cost per byte and its portability.

To meet the second definition, there needs to be sufficient computing capacity to
run the programs that will process the data. The data could be stored and
processed on a single server—or dispersed and stored on many servers—as
discussed in 2.4, “A few servers versus many servers” on page 21.
20 Introduction to the New Mainframe: Large-Scale Commercial Computing

2.3 Elements of a system required for capacity
Any computer system, from a single user personal computer to a multi-thousand
user IBM System z mainframe, performs work in the following stages:

1. Load a program from a storage device (normally a disk) to main storage.

2. Process the instructions in the program.

3. Load any required data from disk or tape into main storage.

4. Process the data and send the results to the desired endpoint.

This requires the following elements of hardware:

� Processors

� main storage

� Access input/output storage (for example, disk or tape). This includes also the
connection to that device (channels or network).

For maximum capacity, these three elements must be in balance and have
software capable of exploiting their capabilities. Because commercial
environments are dynamic, with new function often being introduced, the
challenge is to keep these three elements in balance. In other words, they play
their roles according to the scheme illustrated in Figure 1-2 on page 13.

The relationship between the elements
A program needs a central processor (CP) to execute its instructions. If additional
CPs are added, more programs can run concurrently. Programs require main
storage for themselves and their data. If more programs are to be run, more main
storage is required.

Commercial programs typically process large volumes of data. The more
programs that are running, the greater the bandwidth required to access that
data, but also the more main storage is needed to load and process that data.

2.4 A few servers versus many servers
In the banking example, the storing of information relating to only one client’s
accounts usually will not be particularly large and could just as easily be stored
and retrieved from a small distributed system as from a large central system.
 Chapter 2. Capacity 21

2.4.1 Many servers
If data can be stored and processed on a single server, a large number of small
servers could be a more appropriate solution than a centralized data store. If
data needs to be accessed and updated from different servers, however, the
following problems have to be addressed:

� Data retention may be required by law. When data is changed, does the
owning system or the updating system create a copy?

� Because the data may need to be processed for both reading and updating, a
data locking mechanism has to be implemented and all servers processing
the data need to participate in this locking scheme.

� Connectivity has to be established between the various servers.

The system management of such a setup can be problematic and it often
impacts many people.

2.4.2 Few servers - the IBM System z approach
To circumvent the problems concerning distributed data and system
management, a more centralized approach is used in most mainframe
computing centers. The IBM System z philosophy is that the best utilization of the
capacity of a server is obtained by running mixed workloads.

The IBM System z architecture has evolved over many years. The design has
had to adhere to the following criteria:

� Large volumes of commercial data are best held in one place.

� Applications should not need to be rewritten as new technology is introduced.

� The total system—that is, hardware, system software, and
applications—must be extremely robust in the areas of reliability and
availability.

The concept of running a mixed workload on a single system derives from the
fact that, with modern processor chips, it is very unlikely in a commercial
environment that one program could keep a processor fully utilized over a long
period of time.

There are several approaches to achieving better processor utilization, such as:

� Level 1 (internal) and level 2 (external) processor cache

� Preloading of programs into main storage

� Preloading of data into main storage

� Running several copies of an application
22 Introduction to the New Mainframe: Large-Scale Commercial Computing

IBM System z input/output architecture
If large amounts of data are to be held in one place, then enough bandwidth must
be provided to enable that data to be accessed in a timely manner.

The communication bus between a IBM System z server and its input/output
(I/O) devices uses a channel architecture. This architecture is implemented in
dedicated microprocessors that communicate across fiber optic cables (the
channel) to the control units that operate the I/O devices without affecting the
server.

Note that the I/O devices are not directly connected to the channel; one or more
of them are connected to a control unit. This design allows new function to be
introduced in just the microprocessor and control units. Additionally, the design
has implications for scalability, as discussed in Chapter 3, “Scalability” on
page 37.

The performance of an I/O control unit, such as a disk control unit, has an impact
on capacity. The design and evolution of these units is discussed in Chapter 6,
“Accessing large amounts of data” on page 109.

2.5 Mixed workloads
If large amounts of data are to be stored in one place, a large-scale commercial
computing environment can be expected to provide service to the following:

� Online clients
� Online in-house users
� Batch jobs

All of these have the same basic requirement, which is to have access to
processors, main storage, and disk or tape storage. The time frame in which a
unit of work must be completed is the distinguishing factor.

Online clients, such as Internet users, have an expectation of fast response time.
If that expectation is not met, they could switch to a competitor’s site. In-house
users, such as application developers, require a responsive system in order to be
productive, but their needs will not take precedence over those of the clients.

Batch jobs are generally the least demanding regarding a specific completion
time, as long as they are completed at a certain time. They can usually give up
resources to the work in the previous two categories.

The relationship between capacity, workload, and response time demands of
each of the categories should be defined in a service level agreement, as
described in the following section.
 Chapter 2. Capacity 23

2.6 Service level agreement
A service level agreement (SLA) is an agreement between a service provider
and a recipient, generally the server owner and a business unit. There should be
several SLAs in place to cover the various aspects of the business that will be
run on the server. For capacity management, having correct and precise
definitions of SLAs is very important, because these SLAs are the baseline
against which the capacity demands are measured and compared.

For example, an Internet application may have an SLA that defines the maximum
allowable response time for an online transaction, and one that defines the time
at which daily trading reports have to be available. The first of these SLAs
requires sufficient capacity on the server to be able to respond to peak traffic,
while the second allows the workload to run when resources are available.

Examples of terms from a service level agreement are:

� 95% of ATM transactions are completed in less than one second.

� 90% of daily reports are completed by 6 a.m.

A SLA has wider implications than just the performance of the server. Take, for
example, the requirements of an ATM transaction. For a client who is
withdrawing cash, the processing consists of:

1. Insert the card.
2. Type in the PIN number.
3. Select from the menu.
4. Enter the amount.
5. Collect the cash.
6. Collect the card.
7. Print a receipt.

The processing of this request involves the ATM validating the card, prompting
for input, and sending the request to the server. The server has to check if the
card is lost or stolen, implement a cryptographic process, and then check the
account to verify whether funds are available. The withdrawal is noted but no
action is taken to update the account, because the cash has not yet been
dispensed. When the ATM signals that the money has been dispensed, then the
account can be debited.

So for this SLA, the ATM and the communications network are involved, as well
as the server.
24 Introduction to the New Mainframe: Large-Scale Commercial Computing

2.7 Managing the system to the SLA
The SLA for a batch job is generally an agreement as to when the output from the
job will be available. The earliest start time will be when the data to be processed
is available.

The 24x7 applications, such as for Internet processing, should be available at all
times, and the SLA will apply to the response to each client enquiry, referred to
as a transaction.

Both the batch program and the 24x7 transaction server application are run in
the same environment. Each has an address space on the same System z
server. Therefore, it is important to manage the system or server resources in the
most efficient way to achieve both SLAs.

2.7.1 Managing CPU
The z/OS Operating System provides for a sophisticated feature called Workload
Manager (WLM). WLM supplies the means for managing CPU usage to meet
goals or Service Level Objectives (SLOs).

Through Service Class definitions written in a rule-based policy, the client
selects which workload is important over others. The importance of the workload
will allow the job request to obtain more or less CPU. The CPU management for
a job or workload in incorporated in the policy.

CPU usage is defined within the Service Class as Service Units (SUs). Using the
policy definition, the WLM administrator can put in place the rules for managing
the minimum and maximum CPU consumption for a job or workload. The WLM
Policy is the overall method used to manage resource usage for a sysplex.

2.7.2 Managing disk
There is a unique element of z/OS called Data Facility Storage Management
Subsystem (DFSMS). DFSMS provides all essential disk, storage and device
management functions of the system. In a system-managed storage
environment, DFSMS automates and centralizes storage administration based
on the policies that an installation defines for availability, performance, space
utilization, and security.

Storage management policies reduce the need for users to make multiple
detailed decisions that are unrelated to their business objectives. DFSMS
provides functions that reduce the occurrence of system outages, and enhance
disaster recovery capabilities and system security. DFSMS also improves
 Chapter 2. Capacity 25

business efficiency by providing better system performance and throughput, as
well as usability enhancements that increase storage administration productivity.

For more information about disk management, refer to Chapter 6, “Accessing
large amounts of data” on page 109.

2.7.3 Storage concepts: the address space
The z/OS software was designed to provide security and integrity, while also
allowing communication between functions and access to common services. To
help achieve this goal, the memory of the mainframe is divided into address
spaces. Each program or subsystem of the z/OS operating system is loaded into
its own private address space.

A program can be located in the physical memory of the system or on DASD
storage. The combination of the two is called virtual memory or virtual storage.
Here is a definition of virtual storage from Wikipedia, the free encyclopedia:

“Virtual storage is the storage space that may be regarded as addressable main
storage by the user of a computer system in which virtual addresses are mapped
into real addresses. The size of virtual storage is limited by the addressing
scheme of the computer system and by the amount of auxiliary storage available,
and not by the actual number of main storage locations.”1

The virtual storage available to a program is known as an address space, as
shown in Figure 2-1 on page 27. This provides an environment for each batch
job, interactive user, and transaction server.

Each address space has the potential to address up to 16 exabytes of virtual
storage, but the installation standard is more likely to be about 32 megabytes
(MB). Virtual storage is managed in units of 4 kilobytes (KB), known as pages.
Pages can have attributes associated with them for security purposes. For more
information about this topic, refer to Chapter 4, “Integrity and security” on
page 65.

Note: DFSMS provides functions that reduce the occurrence of system
outages, and enhance disaster recovery capabilities and system security.
DFSMS also improves business efficiency by providing better system
performance and throughput, and usability enhancements that increase
storage administrator productivity.

1 See http://en.wikipedia.org/wiki/Virtual_storage
26 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 2-1 An address space showing the “Bar” and the “Line”

The mechanism used for associating a real address to a virtual address allows
each function to have the unique use of all of the storage—apart from that
marked as common. The common areas allow data to be viewed from every
address space, and provide a way to communicate between address spaces.

The divisions of the storage must be viewed from a historical perspective in order
to be meaningful. As previously mentioned, the IBM System z has evolved over
many years and through many technological advances, which have increased
storage addressability by many orders of magnitude. It has been a hallmark of
the platform that programs which ran on the early systems will run without
alteration on the most current systems.

The milestones in virtual storage addressing have been:

24-bit
31-bit
64-bit

The earliest ancestor of z/OS supported a 224 addressing structure; the common
areas were positioned at the topmost addressable storage, known as the line.
The next technology leap introduced 231 addressability (bit 0 was used for

16 megabyte The “Line”

The “Bar” 2 gigabytes

2 terabytes

512 terabytes

16 exabytes

0
User Private Area

User Extended
Private Area

Shared Area

User Extended
Private Area

Common

Area
 Chapter 2. Capacity 27

compatibility with the previous architecture, for example z/VSE™ runs in 231
addressability); the common areas extended above the line.

The latest advance has been the introduction of addressability to 264 and the
topmost 31-bit address became referred to as the bar. The 24-bit and 31-bit
architectures allow both program instructions and data to be in any part of the
storage.

In 64-bit addressing, however, only data can reside above the bar. The rationale
for this is to allow more data to be held in main storage, which will decrease the
time to access it, and therefore increase the capacity of the system.

This may appear to restrict the combined size of programs in the address space
to somewhat less than 2 gigabytes. However, the architecture also allows for
programs to be executed, subject to security rules, in other address spaces,
which lifts this restriction.

2.7.4 Real storage management
main storage, in this context referred to as real storage, is managed by a Real
Storage Manager (RSM™) in elements of 4 kilobytes, known as frames. Each
frame of real storage holds a page of virtual storage.

Real storage is not directly addressed by application programs. RSM uses tables
to establish a link between a virtual address and a real address. A hardware
mechanism known as Dynamic Address Translation (DAT) converts the virtual
addresses seen by a program into real addresses that the CPs can access.

The majority of programs have sections that are frequently executed and have
data objects that they refer to on a regular basis. The RSM, in common with other
systems, tries to keep as many of the pages of programs and data that have
been used in storage, as a performance aid. Eventually, all of real storage will be
full of virtual pages. To accommodate new ones, the pages that have not been
used recently are copied to a disk file. This is referred to as a page-out, and if the
virtual page is referred to at a later time, it will be paged in. Avoiding page-in and
page-out activity aids the performance of a program and it is therefore a capacity
requirement to have sufficient real storage to achieve this.

2.8 Architecture, running work, and capacity
A z/OS system is capable of driving the servers’ processors at 100% for
sustained periods of time. This is not difficult on any system if there is sufficient
resources for workload. The problem is to make sure that the high-importance
units of work achieve their objectives.
28 Introduction to the New Mainframe: Large-Scale Commercial Computing

One technique for achieving this is to allow the high-importance work to run until
it must give up control of the CP (for example, while waiting for an I/O operation).
The I/O is considered an interrupt and at this point a context switch occurs. A
context switch is where the executing unit of work status is kept in special hold
areas called register save areas (RSA). After the executing work status is saved
off, the interrupt processing can begin. The RSA is used to provide a return point
back to the executing program to pick up execution where it left off after the
interrupt is processed.

In the case of an I/O interrupt, the I/O request may have been to retrieve a record
from a data set. The return data from the I/O can then be used by the executing
program and continue execution to process the information. The interrupt
provides the means to give up control to other executing work so that their
instruction requests can be processed; this is known as multi-tasking.

z/OS is able to achieve balance between processor utilization and allowing as
many units of work as possible to meet their objectives, defined in WLM. z/OS
does so by exploiting the hardware architecture of the IBM System z server.

The significant architectural elements of the IBM System z server are the
Program Status Word (PSW) and six types of interrupts. The combination of
these allows control of the work that runs on the CPs, as well as being the focal
point for system security. In the following sections, we describe these elements
in more detail.

Program status word (PSW)
The program status word (PSW) is the heart of the interface between the z/OS
software and the IBM System z hardware. It represents a program running on a
central processor (CP), and as such, there is one PSW per active CP.

One function of the PSW is to hold the address of the instruction that is currently
being executed on a CP. A program is given access to a CP by z/OS issuing a
special instruction, the LOAD PSW. After this has occurred, the program is
allowed to run until it loses control either voluntarily or involuntarily—either way
involves an interrupt.

Interrupts
As mention, the z/OS architecture supports six types of interrupts:

� Machine check
� Restart
� Program check
� I/O
� Supervisor call (SVC)
� External
 Chapter 2. Capacity 29

Each of these interrupts indicates an event that requires action on the part of the
z/OS system software.

Machine check Indicates a problem with the server hardware

Restart z/OS use only, rarely seen

Program check An error or other event has occurred in a program

I/O An I/O operation has ended

SVC A supervisor call has been issued (the detail of this will be
discussed later)

External Caused by an event such as a time period expiring

To pass control to the z/OS software, the hardware uses architecture-defined
storage locations to do the following:

� Store the current PSW, which allows z/OS to resume the program at the point
of the interrupt

� Store any other relevant information, such as the device associated with an
I/O interrupt

� Load a new PSW, which gives control to the function in z/OS that will deal with
the interrupt

Supervisor call (SVC)
It is part of the architecture that some of the IBM System z instructions can only
be executed if a particular authority level is in place, which is indicated in the
PSW. This means that there are functions that a normal program is unable to
perform (for example, starting I/O operations).

A supervisor call (SVC) is a form of application program interface (API). SVCs
contribute to the overall integrity of the system, because only an SVC can
perform functions that could possibly harm the operating system.

To request one of these restricted functions, the supervisor call is used. It has
both a hardware and software component. In the hardware, the SVC is an
instruction that any program is allowed to issue. It causes an SVC interrupt. The
numerical parameter associated with it allows z/OS to identify the function
required.

An example of this is SVC 0, which is a request to perform I/O. The program that
handles SVC 0 requests verifies that the calling program is allowed to access the
device, and then starts the I/O operation on the behalf of the calling program.
30 Introduction to the New Mainframe: Large-Scale Commercial Computing

Selection of work to run on a CP
Before explaining how CP resources are allocated, we need to explain how a unit
of work in an address space is represented.

When the first program is loaded into an address space, a Task Control Block
(TCB) is created to represent it. The TCB indicates whether the program is
waiting for work to do, or has work and requires a CP to execute instructions.

When a task has work to do, its TCB is put on a queue and a z/OS function
known as the Dispatcher allocates it to a CP. A program can call other programs
that are represented by the same TCB, or a new TCB can be created. With this
mechanism, a single address space can have units of work running concurrently
on multiple CPs.

Dispatching priority
The standard management of the z/OS system is based on a priority system,
which is determined by the initial importance of a unit of work. This means that a
TCB is placed on a queue based on its priority, which works well for the 24x7
transaction server because it starts at a high priority. However, lower priority units
of work can struggle to get CP resources at busy times.

If an SLA sets the target for a transaction response time at two seconds and one
second is being achieved, then the transaction server could run at a lower
priority. If the response times go over the two-second target, then the transaction
server would need an increase in priority.

To dynamically alter priorities, the Workload Manager (WLM) is used (see 3.3.6,
“Workload Manager (WLM)” on page 56, for more detailed information about this
topic). WLM has information relating to the SLA, and it keeps track of how
successful the unit of work is in meeting its objectives. Based on this information,
the WLM can alter the dispatching priorities and allow lower importance work
access to the CPs.

How CP utilization is balanced
In order to balance processor utilization between high importance and low
importance work, the system needs to be able to interrupt a unit of work.

As mentioned, a program is allowed to run until it loses control either voluntarily
or involuntarily. The voluntary method is to inform z/OS by issuing an SVC
code 1; z/OS will then look for other work that is ready to run on the CP.

Involuntary loss of control occurs if an I/O interrupt occurs. This allows z/OS to
evaluate the performance of the units of work in the system. However, an I/O
interrupt will affect the internal caching of the CP, which can reduce its
effectiveness. z/OS can set indicators that determine whether a CP can be
 Chapter 2. Capacity 31

interrupted by I/O interrupts, and therefore not all CPs will be interrupted in this
manner.

This creates the potential for a low-priority unit of work to have the use of a CP
even though more important tasks need to run in order to meet their objectives.
The z/OS solution to this is to make use of the external interrupt facility. There are
several reasons for this interrupt occurring, one of which is associated with a
timed event. Before a task is dispatched, a timed event is set up, and if the task
has not lost control before the time period has elapsed, it will do so when the
associated external interrupt occurs.

By using this mechanism, WLM is able to allow low importance work to run when
the high importance work is achieving its objectives.

2.9 Several servers on one physical machine
As previously mentioned, the optimum use of processor resources in a
commercial environment is obtained by having a mixed workload. This was not
possible on the early generations of mainframes, because they did not have
sufficient processor power or memory to run multiple or very large workloads at
the same time. Dedicated machines were the norm.

However, as processor speed and storage density increased, combined with a
decrease in cost, this higher capacity allowed for the merging of workloads.
Additionally, with fewer physical machines the infrastructure costs are reduced
and connectivity is simplified. However, although it is possible to run enterprise’s
workloads on a single operating system, it is not necessarily the preferred
method.

2.9.1 The LPAR
Most online environments need to have sufficient capacity to handle their peak
workload volumes and are therefore sized such that they are not, generally, fully
utilizing the resources that they are allocated. For reasons such as systems
management and security, it is often preferable to have separate environments
for system testing, application development, and production systems. In order to
meet the requirement for function separation and to optimize processor
utilization, the logical partition (LPAR) was introduced.

An LPAR is a subdivision of a machine’s resources, which shares use of the
central processors (CPs) with other LPARs but has main storage dedicated for its
use. From the point of view of the programs running in an LPAR, the other LPARs
do not exist (unless you connect them using a Coupling Facility, channel,
hiperpipe, OSA or shared DASD). There is no common storage for them to use
32 Introduction to the New Mainframe: Large-Scale Commercial Computing

for communications. A hardware interface allows the definition of the amount of
main storage to be allocated to an LPAR and the number of processors that it can
use concurrently. We refer to a processor as the resources assigned and
operating system running in the LPAR.

Each LPAR can access one or all of the processors installed on the machine and
is given a relative weight. The weight is used by a microcoded supervisor
function, the Processor Resource/Systems Manager™ (PR/SM), to determine
which LPAR has use of a CP and for how long. The weight given to an LPAR and
the number of CPs it is allowed to use usually has a relationship to the SLAs
associated with the workload running on it.

The channel architecture, mentioned in 2.4.2, “Few servers - the IBM System z
approach” on page 22, allows for LPARs to share the use of a channel.
Therefore, the LPARs sharing a workload do not need their own cables to access
the I/O devices, and the configuration is simplified.

2.9.2 Planning for downtime
All large systems must have the capacity for planned or unplanned outages, as
rare as they may be in a mainframe environment.

Software
All software systems require maintenance activity at some time, either to
implement new levels or to fix problems in an existing level. There is also the
possibility of failure.

Continuity of service can be provided by sharing the critical workload across two
or more LPARs, on one or more physical machines. A careful choice of the time
to take the system down (a scheduled downtime) should make it possible to meet
the SLAs from the remaining systems. In the event of an unscheduled outage the
service can still be provided, although possibly degraded, until the failing system
is recovered.

Hardware
Two or more physical machines are required to provide continuity of service in
the event of a machine loss due to failure, maintenance, or repair, that requires
the whole machine. In such a configuration, the LPARs sharing the critical
workload have to be placed on different physical machines.
 Chapter 2. Capacity 33

2.10 Parallel Sysplex
While the combination of IBM System z hardware and software provides
excellent availability and reliability characteristics, both planned and unplanned
outages can occur. If 24x7 availability is required, then more than one LPAR must
be configured to share the critical workload; this is known as a Parallel Sysplex,

Parallel Sysplex has aspects that relate to capacity, availability, and scalability,
and it is described in more detail under those topics. Briefly, it is a form of
clustering that allows up to 32 systems to be linked together and share data. The
components required to do this, in addition to the servers and I/O devices, are a
time source and a Coupling Facility.

Coupling Facility
The Coupling Facility (CF) is either a standalone server or an LPAR that runs a
specialized operating system and provides facilities to control data sharing. A CF
has high speed links to the LPARs in the Parallel Sysplex, and can store selected
data in its main storage. This ability to make shared data available quickly is the
major contribution of the Coupling Facility to capacity.

Common time source
Transaction processing software writes log entries about the actions taken to
update data, including timestamps. This is why a common time signal is needed
in a clustered eComputing environment. In a Parallel Sysplex, a single high
resolution time source is used to ensure that every subsystem of the Parallel
Sysplex uses exactly the same time.

2.11 Measurements
As stated in 2.3, “Elements of a system required for capacity” on page 21,
capacity requires that the CPs, main storage, and data access must be in
balance, and it is essential that regular measurements are taken to detect
imbalance before performance is impacted.

Both the IBM System z hardware and software produce information that may be
recorded and processed by batch jobs to produce reports. The reports need to
be read in the context of the SLAs, because the SLAs determine whether or not
the capacity is sufficient. If elements of work are missing the SLA targets, then
the causative factors must be addressed.
34 Introduction to the New Mainframe: Large-Scale Commercial Computing

Central Processor (CP) usage
Because the workload can be a mix of high and low importance, a CP utilization
of 100% does not necessarily mean that capacity has been exceeded. In fact, it
is not unusual for the CPs on IBM System z servers to be utilized at 100% for
long periods of time. However, if the reports indicate that the reason for the
failure to meet the SLA was due to waiting for CP resources, then a closer look is
warranted. Delays due to waiting for CP resources do not necessarily mean that
more CPs are required. Perhaps running part of the workload at a different time
might be all that is needed.

Main storage usage
Delays can be caused if the ratio of virtual storage to real storage is such that
workloads are competing for the real storage. As with the CPs, it is not
necessarily required to add more resources—there might be too many address
spaces running concurrently, and an alteration to the scheduling will be all that is
required.

Access to disk storage
Delays due to elongated response times from disk storage can be the most
difficult to identify. This is due to the interrelationship between the components
involved, as described in Chapter 6, “Accessing large amounts of data” on
page 109. Possible solutions are to add more channels, move data to different
volumes, or change the workload mix.

2.12 Summary
Capacity is not a simple concept when running a mixed workload in a large-scale
commercial computing environment. Different workloads have significantly
different requirements. A well-defined set of service level agreements (SLAs) is
the bedrock that allows maximum system throughput. SLAs are also helpful for
the measurement of capacity bottlenecks and for the planning of capacity
upgrades.

Key terms in this chapter

24-bit CP LPAR PSW SVC

64-bit Interrupt Mixed workload Real storage Virtual storage

Address space I/O Parallel Sysplex SLA SVC

Bar Line
 Chapter 2. Capacity 35

2.13 Questions for review
1. Explain the advantages of a mixed workload.

2. Explain the difference between a single server approach (mainframe
philosophy) and a multiple server approach. List the advantages and
disadvantages of each.

3. List at least three elements of a system required for capacity planning and
estimation.

4. Define the term “virtual storage”.

5. How much virtual storage does an address space offer under the latest z/OS
version?

6. List the six interrupts of a z/OS system.

7. Explain what an SVC is and how it is used.

8. Explain the dependency between an SLA and capacity.

2.14 Topics for further discussion
1. Define some SLAs and discuss the implication of these SLAs to business and

capacity planning or systems management.

2. Contrast the LPAR concept to VMware and other virtualization techniques.

3. Explain the differences between parallel sysplex and clustering (for example,
Linux clusters).

4. Discuss the dependencies between SLAs and WLM definitions.
36 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 3. Scalability

3

Objectives:

After completing this chapter, you will be able to describe the following:

� What scalability means

� Differences between scaling in and scaling out

� The relationship between mainframe hardware and scalability

� Software scalability levels

� The relationship between Parallel Sysplex and scalability

� Main workload management concepts
© Copyright IBM Corp. 2006. All rights reserved. 37

3.1 Introduction to scalability
Scalability is one of the main characteristics of a large-scale commercial
operating system configuration. It is related to the ability of the operating system
and its associated infrastructure, such as hardware and software, to expand as
the business dictates.

We begin with some definitions:

Scale To change the size of an object while maintaining its shape.1

Scalability The hardware capability of a system to increase performance
under an increased load when resources are added.2

Scalability The software ability to grow with your needs. A “scalable
software package” means that you only buy the parts you
need, and that the software package has the ability to grow by
adding on as you grow.3

Scalability is a characteristic that must be taken into account when designing and
implementing a large -scale commercial operating system environment.

The IBM System z server family offers the described scalability. These machines
are capable of enormous growth within each series, by making use of advanced
clustering technology.

The advanced clustering technology within the IBM System z servers is more
commonly referred to as a systems complex (sysplex). A sysplex is basically a
collection of z/OS systems that cooperate, using certain hardware and software
products to process work. This type of clustering technology can provide
near-continuous availability and scalability.

The next step up from a basic sysplex is a Parallel Sysplex. This is a sysplex that
uses multisystem data-sharing technology. A Parallel Sysplex relies on one or
more Coupling Facilities.

A basic description of a Coupling Facility is a mainframe processor, with memory
and special channels, and a built-in operating system. The Coupling Facility (CF)
has no I/O devices, other than the special channels, and the operating system is
very small. The operating system within the CF is nothing like z/OS and has no
direct user interfaces.

1 From Wikipedia Encyclopedia http://en.wikipedia.org/wiki/Scale
2 From Wikipedia Encyclopedia http://en.wikipedia.org/wiki/Scalability
3 From The Concise Tech Encyclopedia:http://www.tech-encyclopedia.com/term/scalability
38 Introduction to the New Mainframe: Large-Scale Commercial Computing

http://en.wikipedia.org/wiki/Scale
http://en.wikipedia.org/wiki/Scalability
http://www.tech-encyclopedia.com/term/scalability

3.2 Scalability concepts
By scalability we mean the ability of the hardware, software, or a distributed
system to deliver the same functionality and to obey the same service level
agreements (SLAs) as it is changed in size or volume. For example, the system
needs the ability to retain or improve performance levels when adding
processors, memory, and storage. A scalable system can efficiently adapt to its
workload, with larger or smaller networks performing tasks of varying complexity.

3.2.1 Scalability approaches
Scalability is a highly significant issue in electronic systems, databases, routers,
networking, and so on, and it implies performance. A system whose performance
improves after adding hardware, proportionally (or at least predictably) to the
capacity added, is said to be a “scalable system”.

Scalability can be measured in three different dimensions:

� Load scalability - A system able to expand and contract its resource pool to
accommodate heavier or lighter loads.

� Geographic scalability - A geographically scalable system is one that
maintains its usefulness and usability, regardless of how far apart its users or
resources are.

� Administrative scalability - No matter how many different organizations need
to share a single distributed system, it should still be easy to use and
manage.

For example, a scalable online transaction processing system or database
management system is one that can be upgraded to process more transactions
by adding new processors, devices, and storage, and which can be upgraded
easily and transparently without shutting it down. It maintains its performance;
that is, it is able to deliver transactions at a rate that grows nearly linearly with the
capacity that has been added.

A routing protocol is considered scalable with respect to network size, if the size
of the necessary routing table on each node grows as a function of log N, where
N is the number of nodes in the network.

Scalability can be achieved in different ways, as follows:

� To scale vertically or scale up means to add resources to a single node in a
system, such as adding memory or a faster hard drive to a computer.

� To scale horizontally or scale out means to add more nodes to a system, such
as adding a new computer to a clustered software application.
 Chapter 3. Scalability 39

A more detailed discussion on what scalability means and why it is important can
be found in the paper entitled “Scaling—Up and Out”, which is available at the
following site:

http://www.redbooks.ibm.com/abstracts/redp0436.html

The workload management function is a software piece that plays an important
role in the management of these different workload types, and thus on the
scalability of a system.

3.2.2 Scalability influences
Scalability refers to the ability of a system to provide nondisruptive growth path in
order to handle the projected explosion in computing demand. Scalability
includes not only processor power, but also processor memory, I/O bandwidth,
the ability to attach to large number of peripherals, the ability of the software to
exploit large systems and the ability to manage a large system.

Almost all platforms today are positioned as scalable systems. The IBM System z
server family has the proven capability to support tens of thousands of users,
while processing hundreds or even thousands of transactions per second.

There are two broad approaches to processor scalability—vertical and horizontal
growth. These are explained in more detail here.

Vertical growth
Vertical growth is the ability to upgrade the installed server processor capacity to
a larger one within the same family, for example, by adding further processor
engines to a Symmetric Multiprocessor (SMP).

The IBM System z multiprocessing design is a mature technology with decades
of expertise behind it. In order to reduce interprocessor interference, IBM has
improved both the hardware design and the software algorithms of the operating
systems that support the IBM System z. This means that there is a greater
scalability in model upgrades for IBM System z than for other platforms. This
design also means that the IBM System z family of processors offers clear,
simple upgrade paths between models.

Horizontal growth through Parallel Sysplex
Horizontal growth is the ability to add processor capacity by adding more servers
in a cluster. The IBM System z unique Parallel Sysplex share-all, clustering
technology offers near-linear scalability and a capacity far exceeding any single
commercial workload, by allowing you to connect up to 32 IBM System z servers
and to operate and manage them as a single image.
40 Introduction to the New Mainframe: Large-Scale Commercial Computing

http://www.redbooks.ibm.com/abstracts/redp0436.htm
http://www.redbooks.ibm.com/abstracts/redp0436.htm

Figure 3-1 Linear growth compared to Sublinear Performance

Figure 3-1 shows linear growth compared to sublinear performance. The
performance number is based on real-world test results. Nways® represents the
number of processors. By “sublinear” we mean that the real (measured)
performance growth is less than one would expect from drawing a straight line
that is defined by the first two measurement points (in mathematics, sublinear
means “less than linear”4).

In Figure 3-1 that line is also shown, so the nth CP of a Parallel Sysplex adds
less computing power to the system than the one before (n-1). In a linear growth
(top line), all CP would add the same amount of computing power.

Clusters, or scale out systems, replicate complete systems interconnected via a
variety of interconnect mechanisms. In scale out systems, the performance and
scalability are limited by both the speed and efficiency of the intra-node
communication and by the effectiveness of the sharing scheme implemented at
the software level.

There are many clustering schemes, depending on the machine type used. The
IBM System z cluster technology is called Parallel Sysplex, and is described in
detail Chapter 5, “Availability” on page 87.

4 From Wikipedia Encyclopedia http://en.wikipedia.org/wiki/Sublinear

IBM System z

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Nways

R
el

at
iv

e
Pe

rf
or

m
an

ce
Sublinear
Performance
Sublinear
Performance

Linear
growth
 Chapter 3. Scalability 41

3.2.3 Provisioning
Traditionally, to provision meant to stock needed materials or supplies; especially
a stock of food.

In information technology, the provisioning concept can be aligned to the
scalability concept. It refers to how adaptable a system can be, to add more
resources when needed, without disruption.

Provisioning is the end-to-end capability to automatically deploy and dynamically
optimize resources in response to business objectives in heterogeneous
environments. Provisioning helps to respond to changing business conditions by
enabling the ability to dynamically allocate resources to the processes that most
need them, as driven by business policies. Provisioning of individual elements,
such as identities, storage, servers, applications, operating systems, and
middleware, is a critical step to being able to then orchestrate the entire
environment to respond to business needs on demand.

3.3 Scalability implementation on IBM System z
Here we introduce various concepts of how IBM System z is implemented to
support scalability.

3.3.1 Hardware scalability
z/OS systems base their scalability on the way central processors (CPs) and
memory are connected, and on the size and use of the cache memory.

The performance of the IBM System z servers is measured in terms of
“throughput”, the amount of work the server does in a given period of time. To
isolate the processor unit performance from that of other subsystems necessary
to make a complete server system, the Internal Throughput Rate (ITR) is
measured.

The ITR is the amount of work done during the period in which the processor is
actually performing work (rather than waiting for external devices to respond).
The ITR is a measure of the number of completed transactions divided by the
amount of time the central processor is busy.

As an example, Figure 3-2 shows a comparison between different models of IBM
System z processors. You can see the balanced growth in all the axes.
42 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 3-2 Balanced growth

Internal Throughput rate (ITR) is computed as:

A Unit of Work (UoW) is normally expressed as a job (or job-step) for batch
workloads, and as a transaction or command for online workloads. To be useful,
the UoW measured must represent a large and repeatable amount of the total
workload, in order to best represent the average. Processor busy time is normally
expressed in seconds.

For the purpose of computing an ITR, processor busy time should include all
processing time to do work, including the operating system related overhead. On
an N-way processor, processor busy time must represent the entire complex of
engines as though there were a single resource. Therefore, processor busy time
is the sum of the busy times of each individual engine, divided by the total

System I/O Bandwidth

CPUs

GBs
ITRs for 1-way

System z9 109*

zSeries 990

zSeries 900

Generation 6

Generation 5

172.8 GB/sec

96 GB/sec

24 GB/sec

256 GB 64 GB 288.15 450 ~ 600

16-way

32-way

54-way

512 GB

Balanced System
CPU, nWay, Memory,

I/O Bandwidth*

*z9-109 exploits a subset of its designed I/O capability
ITR = Internal Throughput Rate

ITR =
Unit of Work

Processor busy time
ITR =

Unit of Work

Processor busy time

Unit of Work

Processor busy time
 Chapter 3. Scalability 43

number of engines. Since all processor time is included, “captured” and
“un-captured” time considerations are unnecessary.

ITR characterizes processor capacity, since it is a CPU-busy time measurement.
As such, ITR lends itself to the “processor comparison methodology”.

To ensure that the processor is the primary point of focus, you must configure it
with all necessary external resources (including main storage, expanded storage,
channels, control units, I/O devices) in adequate quantities so that they do not
become constraints.

One additional point needs to be made regarding processor utilization. When two
processors are to be compared for capacity purposes, they should both be
viewed at the same loading point—in other words, at equal utilization. It is
imprecise to asses relative capacity when one processor is running at lower
utilization and the other is running at high utilization.5

IBM System z processors
The IBM System z processors support a highly scalable standard of performance
and integration by expanding on the balanced system approach of IBM z/Archi-
tecture. By a “balanced system”, we mean similar capacity growth in the three
resource areas:

� CP (number of CPs and Cycle Time)

� Memory (size)

� I/O bandwidth (Gbps)6

Without such balance, performance can be degraded because of bottlenecks in
one or more of these resources.

IBM System z machines are designed to eliminate bottlenecks and, through their
64-bit addressing capability (16 exabyte addresses; this is 16 * 264), provide
plenty of “headroom” to anticipate (predicted and unpredictable) growth in
enterprise applications. zSeries introduces a packaging concept based on
books. A book contains processor units (PUs), memory, and connectors to I/O
cages that contain the I/O channels.

A IBM System z has at least one book, but may have up to four books installed. A
full installed system, with four books and its components, is illustrated in
Figure 3-3.

5 Also see “Large Systems Performance Reference”, SC28-1187
6 Bandwidth in IBM System z is usually measured in bytes per second, as opposed to the
Telecommunications Bandwidth, which is usually measured as bits per second.
44 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 3-3 Books and I/O structure in IBM System z

Each book contains the following:

� 12 (16 on the higher models) processor units (PUs7), including up to 8 (12 on
the higher models) Central Processors (CPs8), 2 System Assistant
Processors (SAPs9) and 2 spares per IBM System z.

The book contains a multi-chip module (MCM), which hosts the processor
units, memory, and high speed connectors for I/O. A PU is the generic term
for the z/Architecture processor on the Multichip Module (MCM) that can be
characterized as:10

– A Central Processor (CP) to be used by the operating system.
– An Internal Coupling Facility (ICF) to be used by the Control Facility

Control code (CFCC).
– An Integrated Facility for Linux (IFL).

Z9 Model 38 Configuration
Processor Book 3

FICON Express2

I/O Ports

OSA-Express2

I/O Ports

STIs @ 2.7 GB/sec

Memory Cards

L2 Cache

16 STIs

PU PU PU PU

PU PU PU PU

Memory Cards

L2 Cache

16 STIs

PU PU PU PU

PU PU PU PU

Ring
Structure

8 MBA Fanout

Processor Book 0

I/O
Card

Processor Book 1

ESCON

I/O Ports

Crypto Express2

ICB-4
2 GB/sec

Memory Cards

L2 Cache

16 STIs

PU PU PU PU

PU PU PU PU

Memory Cards

L2 Cache

16 STIs

PU PU PU PU

PU PU PU PU

Ring
Structure

Processor Book 2

1 GB/sec
500 MB/sec
333 MB/sec
Speed set
based on
I/O type

8 MBA Fanout 8 MBA Fanout 8 MBA Fanout

Note:
Each MBA Fanout card has 2 STI ports. STI connectivity is normally balanced across all installed Books
MBA supports 2 GB/sec for ICB3 and ICB-4 and 2.7 GB/sec for I/O channels. ICB-3 actually run at 1GB/sec

STI-MP
&

STI-A8

STI-MP
&

STI-A8

STI-MP
&

STI-A8

STI-MP
&

STI-A8

STI-MP
&

STI-A8

STI-MP
&

STI-A8

STI-MP
&

STI-A8

STI-MP
&

STI-A8

I/O Cage I/O Cage

7 A processing unit is the base chip. It is the engine that executes instructions.
8 CP is the most used flavor of PU. It is used for non-special processing.
9 SAPs are used to execute I/O.
10 Refer to the IBM Redbook IBM System z9 109 Technical Guide, SG24-7124, for more details.
 Chapter 3. Scalability 45

• An additional System Assist Processor (SAP®) to be used by the
channel subsystem.

• A System z9™ Application Assist Processor (zAAP).
• A System z9 Integrated Information Processor (zIIP), which will allow

certain functions of DB2 database processing to be off-loaded.

� 16 GB to 128 GB of physical memory. The memory grows in 16 GB
increments.

� Four memory bus adapters, supporting up to 16 self-timed interconnects to
the I/O cages, with a maximum bandwidth of 43.2 GB per second.

IBM System z has the memory bandwidth required for running large diverse
workloads typical with large-scale commercial needs, or with server
consolidation.

Each PU has 512 KB of L1 cache and each book has 40 MB of shared level 2
cache. As a result, no matter which PU work is dispatched upon, recent context
will most likely be in the shared level 2 cache, thus eliminating the need for an
expensive memory fetch.

Other architectures typically do not have this size of shared cache, opting instead
for larger level 1 caches on individual PUs. This approach fits well for
mono-application servers, but in a multiapplication environment with high levels
of context switching, work is constantly being moved between physical
processors, and thus cache contexts are constantly invalidated, requiring
time-consuming memory fetches.

When additional books are installed, the shared level 2 caches in the additional
books are linked together in two concentric high-speed rings, to allow level 2
caches to be interconnected. Thus, a 32-way IBM System z is truly an SMP
environment, where level 2 cache (4x40 MB = 160 MB of cache) is available to all
32 PUs, allowing for efficient processing of large diverse workloads.

So, at the time of writing, a IBM System z processor can scale from 1 CP, 16 GB
of physical memory and a bandwidth of 43.2 Gbps to a maximum configuration of
54 CPs, 512 GB of physical memory, and an I/O bandwidth of 172.8 Gbps.

3.3.2 Operating system scalability
z/OS operating systems have many characteristics related to scalability that
allow them to scale up to 16, or even 32, CPs on a single operating system
instance. Scaling efficiency is very close to linear, proving full power for each
processor that is added.
46 Introduction to the New Mainframe: Large-Scale Commercial Computing

Three levels acquiring resources for an application to grow
The addressing scheme in z/OS allows a theoretical limit of 16 exabytes. As
explained in Chapter 2, “Capacity” on page 19, each task or group of associated
tasks is executed in an address space (AS). Even though there is a 16-exabyte
limit, no single task is able to use the whole extent, and the use of multiple
address spaces is more related to integrity issues than to capacity ones.

However, from a scalability viewpoint, this addressing scheme means that for a
task running in a single address space, there is plenty of room to grow. Data
sharing inside an address space can be done directly (every piece of code has
the same addressing) or by means of specialized middleware (for example,
DB2). Database Manager (DB2) is an example of a heavy storage user. DB2
handles its largest tables (up to 128 TB) in buffers residing in a single address
space.

Multiple Virtual Storages
Figure 3-4 shows the layout of a zOS system.

Figure 3-4 Address spaces in a z/OS system

The use of multiple address spaces provides a means for security and isolation,
as well as a means of adapting the operating system size to the size of the
machine it is running on. The number of address spaces that can be started is

z/OS Structurez/OS Structure

Interactive
System
Users

Base Operating System

User

User

User

User

DB2

Batch
Control

Domino

LIC (LPAR, etc)

zSeries hardware

User

User

User

User

User

User

User

User

WEB-
SPHERE

Interactive
Trans.
Users

Interactive
Trans.
Users

TCP/IP

Network
Support

A d d r e s s S p a c e s

System
Task

Batch
Job

Batch
Job

Batch
Job
 Chapter 3. Scalability 47

limited by the available storage. Data can be shared using buffers in the Common
Area or using specialized middleware (such as DB2).

Multiple Instances of OS running Single Image (Parallel Sysplex)
Running more than one system (up to 32) sharing the same data can increase
the capacity of the zSeries. Data is shared using either external storage or
external memory (Coupling Facility). Usually data is shared by means of
middleware that uses such facilities.

3.3.3 Parallel Sysplex
A conventional large computer system uses hardware and software products that
cooperate to process work. A major difference between a sysplex and a
conventional large computer system is the improved scalability and level of
availability in a sysplex. Sysplex technology increases the number of CPs that
can realize common work. A single operating system can use 16 or 32 CPs,
depending on the version. A Parallel Sysplex can have up to 32 members, that
makes 16 times 32 CP in one single system. Figure 3-5 shows a Parallel
Sysplex.

Figure 3-5 Scalability of IBM System z - Parallel Sysplex

To facilitate this cooperation, there are specialized hardware and software
technologies that have been added to the standard software to enable sysplex
capabilities. The hardware technology is covered in 2.10, “Parallel Sysplex” on
page 34.

ESCON/FICON

Coupling Facility

SYSPLEX Timer

Shared Data

Z9 BC

Z9 EC

Z9 EC

Z9 BCESCON/FICON

Coupling Facility

SYSPLEX Timer

Shared Data

Z9 BC

Z9 EC

Z9 EC

Z9 BC
48 Introduction to the New Mainframe: Large-Scale Commercial Computing

One of the key hardware components of this enabling technology is the Coupling
Facility (CF) which makes high-performance multisystem data sharing possible.
The CF provides high-speed locking, caching and message list services between
the zSeries servers and the z/OS systems within a sysplex using coupling link
technology.

Parallel Sysplex technology
There are technologies related to Parallel Sysplex that allow it to be seen as a
single system, resulting in better scalability. 11

Serialization
In a multitasking, multiprocessing environment, resource serialization is the
technique used to coordinate access to resources that are used by more than
one application. In a sysplex, in order for resources to be available to more than
one system, serialization is maintained using an extension of the traditional
mainframe serialization scheme. Programs that change data (or other serially
reusable resource) need exclusive access to the data. Otherwise, if several
programs were to update the same data at the same time, the data could be
corrupted (also referred to as a loss of data integrity). On the other hand,
programs that need only to read data can safely share access to the same data
at the same time.

The most common techniques for serializing the use of resources are enqueuing
and locking. These techniques allow for orderly access to system resources
needed by more than one user in a multiprogramming or multiprocessing
environment.

In the operating system, a serialization component processes the resource
requests that programs issue. This component in z/OS is called Global Resource
Serialization (GRS). It serializes access to resources to protect their integrity. An
installation can connect two or more z/OS systems to form a complex in which
the use of the resources shared among the systems is serialized.

When a program requests access to a reusable resource, the access can be
requested as exclusive or shared. When the system grants shared access to a
resource, exclusive users cannot obtain access to the resource. Likewise, when
the system grants exclusive access to a resource, all other requestors for the
resource wait until the exclusive requestor frees the resource.

It is important to note that this scheme is based in two conventions:

� Every resource user uses the same name to name a resource.

� Every resource user asks permission before using a resource.

11 Refer to Cluster architectures and S/390 Parallel Sysplex scalability by G. M. King, D. M. Dias, and
P. S. Yu, IBM System Journal Volume 36, Number 2, 1997.
 Chapter 3. Scalability 49

There are several separate but complementary serialization approaches in z/OS.
Locking is extremely fast (very short path length), but should be used for only a
small number of locks. Enqueuing (ENQ) is slightly slower, but can be used for a
great number of resources. These two serialization approaches are explained in
more detail here:

� Locking

Locking serializes the use of system resources by authorized routines and, in
a Parallel Sysplex, by processors. A lock is simply a named field in storage
that indicates whether a resource is being used and who is using it. In z/OS,
there are two kinds of locks: global locks, for resources related to more than
one address space, and local locks, for resources assigned to a particular
address space. Global locks are provided for nonreusable or nonsharable
routines and various resources.

To use a resource protected by a lock, a routine must first request the lock for
that resource. If the lock is unavailable (that is, if it is already held by another
program or processor), the action taken by the program or processor that
requested the lock depends on whether the lock is a spin lock or a suspend
lock:

– If a spin lock is unavailable, the requesting processor continues testing the
lock until the other processor releases it. As soon as the lock is released,
the requesting processor can obtain the lock and, thus, get control of the
protected resource. Most global locks are spin locks.

– If a suspend lock is unavailable, the unit of work requesting the lock is
delayed until the lock is available. Other work is dispatched on the
requesting processor. All local locks are suspend locks.

To avoid deadlocks, locks are arranged in a hierarchy, and a processor or
routine can unconditionally request only locks higher in the hierarchy than
locks it currently holds.

For example, a deadlock could occur if Processor 1 held Lock A and required
Lock B; and Processor 2 held Lock B and required Lock A. This situation
cannot occur because locks must be acquired in hierarchical sequence.

Assume, in this example, that Lock A precedes Lock B in the hierarchy.
Processor 2, then, cannot unconditionally request Lock A while holding Lock
B. It must, instead, release Lock B, request Lock A, and then request Lock B.

Because of this hierarchy, a deadlock cannot occur on the acquisition of locks
as it can occur in the enqueue scheme. This scheme is less scalable than the
enqueue one and that is the reason why it is much less used.

Theoretically its use is open, there is a published interface, but in the real
word it is used by systems and subsystems (DB2, transaction managers, and
so on). Those represent a controlled number of users.
50 Introduction to the New Mainframe: Large-Scale Commercial Computing

� Enqueuing (Enq)

Enqueuing is accomplished by an external and published interface. If the
resources are to be modified, the user must request exclusive control; if the
resources are not to be modified, the user should request shared control,
which allows the resource to be shared by others who do not require
exclusive control. If the resource is not available, the requestor is suspended
until it becomes available. This can lead to deadlocks that must be detected
and in some circumstances solved by the system operator or an automated
operator.

This serialization mechanism is able to scale quite well. In this context, to be
scalable means being able to cope with a growth in the number of users
without becoming a bottleneck. The enqueuing scheme is scalable for two
reasons:

– Granularity

The scope of the resource can be as little as needed to prevent too many
users from competing for the same entity. This can be better understood
with an example. User A wants to update a field Z in record Y on file X on
volume V. The enqueue can be done from the more general (volume) to
the more particular (field). The users of the ENQ mechanism (DB2,
Dataset Management, Security, and so on) use the granularity they need
to be scalable.

– Star configuration

The queue is in a common area—in the OS Common System Area if there
is only one system—or in the external Common Area (CF structure) in a
sysplex. The communication is always with a central point so no other
member can interfere. The only concern is how many members are
queued for the same resource, but this is controlled by means of the
granularity.

Communication
The cross-system Coupling Facility (XCF) component of the z/OS operating
system provides simplified multisystem management services within a base
sysplex configuration. In a base sysplex environment, that is, a system
configuration that does not include a Coupling Facility, the various z/OS systems
on the same zSeries server communicate using hardware technology known as
Channel-to-channel (CTC) connections.

The Cross-System Extended Services® (XES) component of the z/OS operating
system is used to access the Coupling Facility environment.

These services allow authorized programs on one system to communicate with
programs on the same system or on other systems. If a system fails, system
 Chapter 3. Scalability 51

services also provide the capability for batch jobs and other tasks to be restarted
on another eligible system in the sysplex.

XCF uses an external file that contains “heartbeat” information: related data
about the sysplex, systems, groups, members, and general status information.
This file is required to run a Parallel Sysplex with more than one system, and
must be duplexed. Another file is required that contains relevant information
about the CF including its name, and what structure(s), including their size, are
defined in the CF.

These authorized programs can be any program using a published interface with
the communication mechanism. There are many operating system components
that use it, for example GRS, the serialization software. It uses the provided
communication interface between systems to coordinate the requests.

Other users are console support to provide a single point of control, and most of
the components that run instances in more than one system of the sysplex
(database subsystem, messaging subsystem, security subsystem, and so on).

Communication capability (bandwidth and speed) among members is often one
of the more important aids or inhibitors to scalability. As with serialization, the
use of common external storage, accessed with links that have a capacity of up
to 2 Gbps each, provides better performance.

Data sharing and Coupling Facility structures
Data is shared in a sysplex using an external storage called the Coupling Facility
(CF). In the Coupling Facility, storage is dynamically partitioned into structures,
as illustrated in Figure 3-6.

Figure 3-6 Coupling Facility structures
52 Introduction to the New Mainframe: Large-Scale Commercial Computing

z/OS services manipulate data within the structures. There are three types of
structure:

Cache structure Supplies a mechanism called buffer invalidation to ensure
consistency of cached data. The cache structure can also be
used as a high-speed buffer for storing shared data with
common read/write access.

List structure Enables authorized applications to share data that is
organized in a set of lists, for implementing functions such as
shared work queues and shared status information.

Lock structure Supplies shared and exclusive locking capability for
serialization of shared resources down to a very small unit of
data.

The Coupling Facility can be used by any authorized program. Most operating
system components and subsystems, such as database manager or messaging
manager, have a copy of their data in the Coupling Facility.

The sysplex scalability depends on how efficient the use of the CF is, and this
efficiency basically consists of the access time to the data in the Coupling
Facility.

When running a sysplex, two main factors affect performance:

Access time To get the data from internal memory takes less time than to
get it from external memory.

Access queuing When there is only one database manager accessing a
database, there is no queuing for a piece of data, except for
the internal competence within the DB application, because
the database manager is the only user. One of the main
reasons to build a sysplex is to split transactional loads
involving database access between two or more sysplex
members. Because each of them have their own instance of
the database manager, access to the data buffer must now
be serialized.

Workload distribution
By workload distribution, we mean the piece of software able to distribute work
among the various application servers. This capability is a key factor affecting
scalability of a system. The database servers, as well as the transaction servers,
usually have more than one application server serving the same set of
transactions.

The better the workload distribution, the less demand for increasing hardware
resources to achieve workload growth. There are different techniques used to
 Chapter 3. Scalability 53

achieve workload distribution. We list them here, from the simplest to the more
sophisticated.

Manually The network is divided into subnetworks and each of them is
served by an application server. This approach is a fixed one
and can end in an overloaded server next to an underloaded
one.

Round robin There are also workload distributors that are connected to
more than one server and can send a request in a more
balanced way. Even in this approach the balance is not always
even, because the units of work, or transactions, can be of
many different sizes.

These workload distributors can be external machines that are
connected to different IP addresses, each corresponding to a
server, or they can be internal workload distributors. These
communicate with the application servers and receive all
requests, sending them to the servers with a “one each”
algorithm.

Dynamic workload distribution
The request reaches the workload distributor, which asks
workload management for the relative load of each of the
application servers. Depending on the answer, it drives the
request to the application server best suited to it.

Workload Management-driven application servers
Application Environments allow WLM to start new servant
address spaces in order to meet transactions performance
goals. WLM will start a new servant region address space or
stop a servant region address space as the workload varies.

WLM may start additional server regions to meet performance
goals, based on the prioritization of its work compared to other
work in the system, the availability of system resources needed
to satisfy those objectives, and a determination by WLM
whether starting more address spaces will help achieve the
objectives.

3.3.4 Provisioning
As previously stated, provisioning has became a concept related to scalability. It
refers to how easily a system can receive more resources when needed, without
disruption.

One of the components in z/OS responsible for the management of system
resources is the Workload Manager (WLM) component. WLM manages the
54 Introduction to the New Mainframe: Large-Scale Commercial Computing

processing of workloads in the system according to the company's business
goals, such as response time. WLM also manages the use of system resources,
such as processors and storage, to accomplish these business goals.

Provisioning often appears in the context of virtualization orchestration, and other
dynamic datacenter concepts, and there are tools in the market to help with the
creation of a dynamic datacenter. But each component of an IT infrastructure has
its own capabilities. The capabilities related to provisioning in IBM System z are:

– Dynamic resource distribution.

– A IBM System z server can be partitioned into as many as 60 logical
partitions.

– Each logical partition is completely isolated and protected from other
LPARs.

– The processors can be shared among LPARs as a percentage of the total
capacity. Each LPAR is given its minimum number of CPUs, as defined by
the system administrator—although under specific conditions, an LPAR
can acquire additional CPU resources if processors are not being used by
other executing LPARs. Therefore, CPs can move among the executing
LPARs as long as all Service Level Objectives (SLO) are being met by all
workloads.

– The I/O bandwidth (channel cards and paths to externally attached
devices) can be shared among the LPARs under WLM control (WLM
needs to be defined prior to using it here).

3.3.5 Capacity on Demand
Capacity on Demand (CoD) encompasses the various capabilities available for
you to dynamically activate one or more resources on your server as your
business peaks dictate. You can activate inactive processors or memory units
that are already installed on your server on a temporary or permanent basis.

Also called Nondisruptive hardware addition, it is a special hardware contract
used to provide CPU resource flexibility. Hardware is delivered in full
configurations with a microcode limit on the size that has been purchased. But
the hardware is there, so it can be made active with a microcode update. CPU
and memory can be added this way.

This feature is usually used to cope with unexpected workload growth for any
reason (maintenance, failure, growth in demand, seasonal peaks, and so on).
 Chapter 3. Scalability 55

There are different CoD options:

� Capacity Upgrade on Demand (CUoD)

CUoD allows for the non-disruptive addition of Central Processors (CPs) and
Speciality Engines. CUoD can add capacity up to the maximum number of
available inactive Processing Units (PUs). For certain configurations, 8 GB
memory increments can be added by CUoD, and also dynamic upgrade of all
I/O cards in the I/O cage is possible.

� Customer Initiated Upgrade (CIU)

CIU is designed to allow you to respond to sudden increased capacity
requirements by downloading and applying a processor unit (PU) or memory
upgrade via the Internet (using the IBM Resource Link™ and the Remote
Support Facility options). With the Express option for CIU, an upgrade may be
installed within a few hours after order submission.

� On/Off Capacity on Demand

The On/Off CoD server offering allows you to pay a fee to enable and use
temporary server capacity, such as a nondisruptive temporary addition of
CPs, IFL, ICFs, zAAPs, and zIIPs. It also includes nondisruptive removal
when the added capacity is no longer wanted.

3.3.6 Workload Manager (WLM)
Can your enterprise server handle the following?

� Manage resources, based on your business objectives?

� Run diverse mixed workloads without experiencing a loss in critical business
throughput or response time?

� Help protect your most critical work from “killer” applications and “monster”
queries?

� Dynamically alter work and capacity as business requirements change?

� Respond instantly to shifts in business priorities?

If your answers are yes, then it is very likely that your enterprise server is IBM
System z. IBM System z and z/OS are able to achieve this and much more
through its industry-unique, policy-driven Workload Manager (WLM). In short,
WLM ensures that critical application response times are met.

One of IBM System z's greatest strengths is its ability to function under high
server utilization, while efficiently balancing the use of system resources and the
need to deliver quality service to your most important workloads.
56 Introduction to the New Mainframe: Large-Scale Commercial Computing

The ability to dynamically manage very diverse workloads running concurrently is
a unique attribute of zOS. You specify your business goals and WLM takes care
of the rest. WLM is unique in offering system administrators the capability to
specify goals for work in the system in business terms, rather than using
low-level parameters.

The operative principle is that the system is responsible for implementing
resource allocation algorithms that allow these goals to be met. WLM offers
externals that capture business importance and goals and implements them on
behalf of the system administrator.

Also, through the use of “periods” (time intervals for a given service
consumption), WLM allows business objectives to change, based on the
variation of the resource demands of the work requests. This addresses the
fundamental problem that the resource demands of most work requests are
unknown at the outset and can vary, depending on factors that may be known
only at execution time.

The installation defines performance goals and assigns a business importance to
each goal. These goals are specified in business terms and the z/OS WLM
decides how much resource, such as CPU and memory, should be given to the
task or work request to meet its business goal.

Thus, WLM is unique in the fact that it provides what can be called “just-in-time
computing”, meaning that it adjusts dynamically the amount of CPU and memory
available to work requests.

In simple terms, WLM has three objectives:

1. To achieve the business goals that are defined by the installation, by
automatically assigning sysplex resources to workloads based on their
importance and goals; this objective is known as goal achievement.

2. To achieve optimal use of the system resources from the system point of view;
this objective is known as throughput.

3. To achieve optimal use of the system resources from the point of view of the
individual address space; this objective is known as response and turnaround
time.

Goal achievement is the first and most important task of WLM. Optimizing
throughput and minimizing turnaround times of address spaces come after that.

Often, these latter two objectives are contradictory. Optimizing throughput means
keeping resources busy. Optimizing response and turnaround time, however,
requires resources to be available when they are needed. Achieving the goal of
an important address space might result in worsening the turnaround time of a
 Chapter 3. Scalability 57

less important address space. Thus, WLM must make decisions that represent
trade-offs between conflicting objectives.

To balance throughput with response and turnaround time, WLM does the
following:

� Monitors the use of resources by the various address spaces.

� Monitors the system-wide use of resources to determine whether they are
fully utilized.

� Determines which address spaces to swap out, and when.

� Inhibits the creation of new address spaces or steals pages when certain
shortages of main storage exist.

� Changes the dispatching priority of address spaces, which controls the rate at
which the address spaces are allowed to consume system resources.

� Selects the devices to be allocated, if a choice of devices exists, in order to
balance the use of I/O devices

� Other z/OS components, transaction managers, and database managers can
communicate to WLM a change in status for a particular address space (or for
the system as a whole), or to invoke WLM's decision-making power.

For example, WLM is notified when:

� main storage is configured into or out of the system.
� An address space is to be created.
� An address space is deleted.
� A swap-out starts or completes.
� Allocation routines can choose the devices to be allocated to a request.
� The processor capacity of a IBM System z server has changed via the

Capacity on Demand capability.

WLM is particularly well-suited to a sysplex environment. It keeps track of system
utilization and workload goal achievement across all systems in the Parallel
Sysplex and data sharing environments. For example, WLM can decide the z/OS
system on which a batch job should run, based on the availability of resources to
process the job quickly.

Workload Manager components
All the business performance requirements of an installation are stored in a
Service Definition. There is one Service Definition for the entire sysplex.
58 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 3-7 WLM components

The Service Definition contains the elements that WLM uses to manage the
workloads, as shown in Figure 3-7 for this. These include:

� One or more service policies.

� Workloads: These are arbitrary names used to group various Service Classes
together for reporting purposes. At least one Workload is required.

� Service Classes: There are where you define the goal for a specific type of
work.

� Report classes: This is an aggregate set of work for reporting purposes.

� Performance goals: This is the desired level of service that WLM uses to
determine the amount of resource to give to a unit of work.

� Classification rules and classification groups: These are used to assign the
incoming work to a Service Class and, if needed, to a report class.

� Resource Groups: These are used to assign a minimum and a maximum
amount of CPU SU/sec to one or more Service Classes.

� Application Environments: A set of application functions requested by a client
and executed in a server address space. WLM can dynamically manage the
number of server address spaces to meet the performance goals of the work
making the requests.

� Scheduling Environments: A list of resource names and their required state.
The Scheduling Environment allows you to manage the scheduling of work in
 Chapter 3. Scalability 59

an asymmetric sysplex, where the systems differ in installed applications or
installed hardware features.

Work unit identification
The identification of work requests is supported by middleware and the operating
system, which tells WLM when a new unit of work enters the system and when it
leaves the system. WLM provides constructs to separate the work into distinct
classes. This is called work classification and allows an installation to deal with
different types of work.

One of the strengths of WLM is its ability to recognize and manage units of work
being executed by important middleware applications running on z/OS.

Figure 3-8 depicts the general structure of transaction processing on z/OS.
Depending on the middleware or subsystem, one or multiple address spaces
provide a connection to external clients. These address spaces are usually called
regions, from the early days when programs were allocated pieces (regions) of
the available storage.

Figure 3-8 Transaction structure

The region that receives the work request on z/OS checks its authority and
resource requirements. If the application can process it, the region sends it to an
application processing region.

Note that there may be more than one application processing region. For CICS®,
these are named Application Owning Regions (AOR) and for IMS™, these are
called Message Processing Regions. The application region starts a program
which processes the request and the program invokes other middleware,
operating system services or services from other subsystems to complete the
request. A typical example is that the request accesses a database, in many
cases DB2 on z/OS.
60 Introduction to the New Mainframe: Large-Scale Commercial Computing

What we can see from this example is that a client work request spans across
multiple address spaces on z/OS. In order to manage these requests, it is
necessary to recognize the transaction flow and based on this, to manage the
address spaces and requests to meet the end-user expectation.12

WLM developed a set of programming interfaces which allow middleware and
subsystems to identify work requests to WLM, to help WLM to trace the work
through the system and to identify the time the requests stay on z/OS.

Over time, WLM developed various techniques to recognize work on the system
and to manage it independently from or together with the address space where
the programs run to process them, as described here:

� The most basic variant is the address space. The start of an address space is
known to WLM and if no more information is available about the work in the
address space, WLM can manage it based on its resource consumption and
demand. Address spaces are started and classified as started tasks and the
only goals that are applicable for them are execution velocity goals or
discretionary.

� Batch work re-uses already started address spaces. These are called
initiators and they select work from the Job Entry Subsystems (JES). The
beginning and end of each new batch job is signaled through a system
interface to WLM. This allows WLM to recognize its duration, provide
classification rules for them, and manage the initiators based on the currently
active job.

� Time Sharing Option (TSO) uses a different technique. After a TSO user
address space has been started, it waits on input from the TSO user terminal.
When the user presses Enter, a new TSO transaction starts and its end is
defined when the result is returned to the terminal.

The begin and end of TSO transaction is signaled to WLM so that it is able to
recognize the individual transactions and to manage the TSO address spaces
based on them. UNIX System Services (OMVS) uses the same interface to
inform WLM about the beginning and the end of end-user requests.

� CICS and IMS regions register as work managers to WLM and create control
information (performance blocks) for all work which can be executed in
parallel in the region.

When a work request enters the TOR or IMS Control Region, it is classified
and associated with a performance block. State conditions are recorded in the
performance block during execution and when the request is passed from a
TOR to an AOR, the continuation is maintained and information is provided to
WLM to understand the relationship.

12 For more information about this topic, refer to:
http://www.ibm.com/servers/eserver/zseries/zos/wlm/pdf/zWLM.pdf
 Chapter 3. Scalability 61

Defining the service level
In 2.6, “Service level agreement” on page 24, there is the definition of a Service
Level Agreement (SLA). SLAs must be adhered to, and in z/OS the way to do so
is by defining a service level for each workload. This is done in the service class
definition.

A service level (a goal objective in the WLM scheme) can be measured in two
different ways, depending basically on how long a request for work stays in the
system and on how repeatable the request is. As an example, you cannot use the
same measurement unit with a request for work that is to execute a transaction
named ABC to consult the credit in a bank’s account with a request for work that
represents a task that runs without end (for example, a database manager) or a
batch job.

Importance of a goal
While the goal type depends on the kind of work, its importance depends on how
work is treated by the system. It indicates which among the “unhappy” service
class should receive resources in order to achieve the target goal. The values
can be 1 to 5, with 1 being the most important and 5 the least important.

Adjustment routine
Every 10 seconds, the WLM policy adjustment routine gains control in one z/OS.
It summarizes the system state information sampled (every 250 milliseconds)
and combines it with measured data (response time, CPU usage, paging rate,
and so on). At this point WLM learns the behavior of the workloads and the
system.

Everything WLM does is based on measured and sampled data, which is
combined with WLM’s learning of the relationship between workloads and
resources in the system.

Workload Management controls
WLM performs the following main management control activities:

CPU management Access to the CPU is controlled through dispatching
priorities. The dispatcher maintains a queue of
ready work units, which is sorted in priority order.
This queue is managed by WLM, assigns
dispatching priorities to service classes.

I/O management WLM plays with I/O priority with the I/O requests
generated by the units of work executing
transaction code, as a procedure to honor the
installation goals. It is also possible to dynamically
62 Introduction to the New Mainframe: Large-Scale Commercial Computing

vary the number of parallel accesses to, for
example, a 3390 volume (PAV).

Transaction management This kind of work usually spans multiple address
spaces on z/OS. In order to manage such requests
it is necessary to recognize the transaction flow
and, based on this, to manage the address spaces
and requests to meet the end user expectation. An
enclave is used to keep the priority and the account
information for a unit of work independent of the
address space‘s priority and account. As a
consequence, this transaction can have priorities
and account information only for itself, independent
from others located in the address space.

We can summarize WLM with two statements:

� The work classification and workload management observation of how the
work uses the resources provide the basis for managing the system.

� In the case where several service classes do not achieve their target goals,
the importance will help in deciding which service class should be prioritized
for getting resources.

WLM extensions
WLM controls are developing in two directions: to better control workload
distribution sysplex-wide and to be able to control server behavior in a
multiplatform infrastructure.

Intelligent Resource Director (IRD)
WLM has control over the resources on a single LPAR. There is an extension that
can achieve better resource distribution among LPARs. It is called Intelligent
Resource Director (IRD), and has three components:

� CPU LPAR management - WLM and LPAR scheduler can dynamically
change the number of logical CPs and the weight of each logical partition.

� Dynamic channel path management, which allows dynamic connection of
channels with I/O controllers when there is a surge in the demand. The
connection is implemented via channels connected through switches only.

� I/O Priority, which allows the I/O requests to be ordered by the I/O priority
decided by WLM.
 Chapter 3. Scalability 63

3.4 Summary
In this chapter, we explained what scalability means. We also defined important
terms and functions. We described how scalability is implemented on an IBM
System z mainframe, and discussed hardware and software scalability levels.
Finally, the relationship between Parallel Sysplex and scalability was covered,
along with the concepts of Workload Manager were covered.

3.5 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. Describe the two different directions of scalability.

2. Describe a “balanced system” approach in the z/Series architecture.

3. Describe a “book” in reference to a z/Series machine. State the built-in
advantages of a book.

4. State your understanding of a Coupling Facility in a sysplex installation, and
include a discussion of the three types of structures.

5. State your understanding of “scaling in” and “scaling out”.

6. Show your understanding of “serialization of resources”.

7. State your understanding of Workload Management.

8. Explain the Intelligent Resource Director.

Key terms in this chapter

Access time Coupling
Facility

ITR Provision Serialization

CF CP Locking Scalability SLA

CoD Enqueuing LPAR Scale in WLM

Communication IRD Parallel Sysplex Scale out Workload
64 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 4. Integrity and security

4

Objective:

After completing this chapter, you will be able to:

� Describe the security and integrity needs of a large-scale operating
environment

� Describe the methods for serialization in a multi-user environment

� Describe the built-in features that enable integrity and security

� Describe the two-phase commit process and why it is needed

� Describe the features needed from an add-on security package
© Copyright IBM Corp. 2006. All rights reserved. 65

4.1 Introduction to integrity
One of the ways the z/OS operating system provides data integrity is through
Data Facility Storage Management Subsystem (DFSMS), which helps to
automate and centralize the management of storage. To manage storage,
DFSMS, also called SMS (for Storage Management Subsystem), provides the
storage administrator with control over data class, storage class, management
class, storage group, and automatic class selection routine definitions.

In this chapter we first discuss the ways in which z/OS contributes to the integrity
of the data that it processes and the facilities it provides for frequent backups,
auditing access to data, and logging changes to the data. Then we discuss
security in 4.3, “Security” on page 79.

4.2 Integrity
Here we define two types of integrity:

Data integrity This is primarily concerned with the accidental damage
and recovery of data.

One of the ways in which the operating system insures
data integrity is by providing facilities for timely backup of
the data. Data Facility Storage Management Subsystem
(DFSMS) controls the creation and placement of data,
provides a policy-based life-cycle management of data,
and provides data backup facilities.

System integrity This ensures there is no way for any unauthorized
program to:

�Bypass store or fetch protection

�Bypass store or fetch protection

�Obtain control in an authorized state

Auditing access to data is critical to ensuring the integrity of the data. The
System Management Facilities (SMF) component tracks and creates audit
records for every critical function of the operating system. SMF has many
features, but here we focus on those related to data access.

Security products can prevent unauthorized read or write access to data, while
creating logs that can be used to audit access to critical system resources.
66 Introduction to the New Mainframe: Large-Scale Commercial Computing

4.2.1 Serialization
Serialization means make a resource to be used on a one-at-a-time basis. In a
multi-user environment, it is possible for two or more tasks to attempt to update
the same data at the same time. This would jeopardize the integrity of the data.
z/OS has several methods for preventing tasks from concurrent updates:
enqueue, reserve, lock, and global resource serialization services.

Enqueue
Enqueues (ENQs) are designed as a protocol for sharing resources. Resources
to be shared are given names that all users of the resource agree to use when
they wish to access that resource. A request can be issued for shared or
exclusive use, depending on whether or not the requester plans to make changes
to the resource.

If someone has an exclusive ENQ, then no one else can have access to the
resource and all other requesters will queue up and wait for the owner to free up
the resource. If someone has a shared ENQ, other requesters who specify a
shared ENQ can also access the resource. If someone requests an exclusive
ENQ while there are one or more outstanding shared ENQs, then the requester,
and any requesters that follow (shared and exclusive), must wait until all current
shared ENQs have been released. In z/OS, ENQs are used to serialize on
individual data sets (files).

ENQs can have a scope of step, system, or systems, as explained here:

� An ENQ with a scope of step prevents other tasks within the same unit of work
from accessing the resource. Other users on the same system can access
the resource.

� An ENQ with a scope of system takes effect for one system. Other systems
can still access the resource even though a user has an exclusive ENQ for
that resource.

� If a resource needs to be serialized across all systems that share it, then you
can request an ENQ with a scope of systems. ENQs with a systems scope are
propagated (passed) to all other systems that share the resource by Global
Resource Serialization (GRS).

Reserve
Reserves are used for serializing updates to DASDs that are shared between
multiple z/OS images. A system that has a need to update control information
about a DASD will issue a reserve against the device. If it is not reserved by
another system, the requesting system is given a reserve against the device.
 Chapter 4. Integrity and security 67

Reserve gives exclusive control of the device to the requesting system and locks
all other systems out. More than one task on the owning system can access the
device, and any updates to a data set on that system should be controlled by
ENQing on the data set.

The use of reserve has performance implications, because it prevents all other
systems that are sharing a device from accessing any file on the reserved device.
Inappropriate use of reserve can cause systems to stop, waiting for access to a
critical DASD unit. Some products, such as GRS, attempt to lessen the impact of
reserves by changing reserves to global ENQs, which are less restrictive.

Lock
A lock serializes the use of system resources by operating system routines and
by processors. A lock is simply a named field in storage that indicates whether a
resource is being used and by whom. Because locks use storage for
serialization, they are much faster than ENQs, which is why they are used by
system level tasks for resources that tend to be held for very short amounts of
time.

Locks must be obtained in a certain order, also called the lock hierarchy. The
purpose of the hierarchy is to try and prevent deadlocks. A deadlock occurs if
one routine holds a lock and is looking for a lock that another routine is holding,
while the second routine is looking for a lock that the first routine is holding. By
requiring that locks be obtained in a specific order, the chances of deadlocks are
greatly diminished, but not totally removed.
68 Introduction to the New Mainframe: Large-Scale Commercial Computing

Global Resource Serialization (GRS)

Figure 4-1 Global Resource Serialization (GRS)

In a multisystem sysplex, z/OS provides a set of services that applications and
subsystems can exploit. Multisystem applications reside on more than one
system and give a single system image to the users. This requires serialization
services that extend across systems.

GRS provides the services to ensure the integrity of resources in a multisystem
environment. Combining the systems that access shared resources into a global
resource serialization complex enables serialization across multiple systems.

GRS expands the scope of ENQ serialization beyond a single system. Instead of
ENQs serializing a resource on only one system, ENQs can be propagated by
GRS to all of the systems that share that resource, as shown in Figure 4-1.

In particular, GRS can replace the need to use reserve to serialize on DASD
volumes that are shared across systems. Instead of reserving the whole volume
in order to update data contained in a data set on the volume, GRS can
propagate the ENQ that was obtained for a data set. Because GRS enables
users to serialize resources at the data set level, it can reduce contention for
these resources and minimize the chance of an interlock occurring between
systems.1

1 Refer to IBM Redbook ABCs of z/OS System Programming - Volume 5, SG24-6985.
 Chapter 4. Integrity and security 69

4.2.2 Data Facility Storage Management Subsystem (DFSMS)
DFSMS, or SMS for short, is the component of the operating system that controls
all data set allocation and provides automatic backup for the data. Data Facility
Product (DFSMSdfp™) is the heart of the storage management subsystem; it
provides the logical and physical input and output for z/OS storage, keeps track
of all data and programs managed within z/OS, and provides data access both
for native z/OS applications and other platforms.

By controlling the devices on which data can be allocated, SMS can control the
characteristics of the data. By moving critical data to devices with faster access,
SMS can improve the performance characteristics of the data. By moving data to
highly protected storage devices, SMS can provide extra security. By controlling
data set management classes, SMS can provide automatic backup of the data.

SMS accomplishes these tasks through the use of Data classes, Storage
classes, and Management classes, and by defining Automatic Class Selection
(ACS) routines. Security products can provide different levels of access to
different storage devices. Users requiring high levels of data security can use
ACS routines, which are maintained by systems programmers, to define the
storage devices on which a data set can be allocated, put critical data sets on
highly protected volumes, and keep less critical data sets off these volumes.

To implement policies for managing storage, the storage administrator defines a
set of SMS constructs that can apply different data placement and management
policies based on the specific requirements of the data. Once defined, the
storage administrator then can save those definitions in a central repository
called the SMS Control Data Set.

The storage administrator can then write automatic class selection (ACS)
routines that use naming conventions, or other criteria to automatically assign the
classes that have been defined to data as it is created. The constructs that are
assigned to the data at creation will then be used to manage that data throughout
its life cycle.
70 Introduction to the New Mainframe: Large-Scale Commercial Computing

Figure 4-2 SMS constructs

The following is a brief description of each of the SMS constructs2, shown in
Figure 4-2.

Data class
Data classes define allocation and space attributes that the system uses when
creating a data set.

Storage class
Storage classes define performance goals and device availability requirements
that will be associated with the data set. Storage class is a required part of an
SMS-managed environment. A storage class provides the criteria that SMS uses
in determining an appropriate location to place a data set or object.

SMS uses the storage class to select a device according to the following criteria:
device performance, the amount of space available on the volume, and how
available a data set or object can be on that device.

2 Refer to the IBM Redbook DFSMShsm Fast Replication Technical Guide, SG24-7069.
 Chapter 4. Integrity and security 71

Management class
Management classes define attributes that are used to manage the data set.
These attributes are used to control retention, migration, backup, and release of
allocated but unused space. Using the characteristics defined by the
management classes, SMS can automatically back up data at whatever level of
criticality is needed. Data can be backed up on any time schedule—nightly,
weekly, monthly, and so on. In addition, copies of the backup tapes can be
automatically shipped to offsite storage for disaster backup and recovery.

Storage Group
A Storage group represents the physical storage that SMS manages. This
storage can be collections of DASD volumes, tape volumes in tape libraries or
optical volumes in optical libraries. The storage administrator groups the volumes
to meet a specific service or business requirements.

ACS routines
ACS routines pull it all together. They are used by system administrators to
automatically associate SMS classes to data sets based on their space,
performance, and availability needs. Numerous selection criteria are available for
the ACS routine to determine how to associate particular SMS classes to a given
data set.

There are two other specifications of SMS known as aggregate group and copy
pool, which are described here:

Aggregate group
The aggregate group defines a collection of data that will be handled as a single
entity for disaster recovery, application transfer, application archiving, or data
migration and defines a set of management characteristics to this data collection.

Often the aggregate group encompasses all the data belonging to a specific
application, such as payroll. This allows all the data in the payroll application to
be backed up for disaster recovery or be transferred from one location to another.

Copy pool
A copy pool is a defined set of storage groups that contain data that can be
backed up and recovered collectively using functions of the disk subsystem that
allows a large amount of data to be copied very rapidly.
72 Introduction to the New Mainframe: Large-Scale Commercial Computing

4.2.3 Auditing
Auditing is the process of ensuring that the information processing system
(hardware, software, liveware, middleware, policies, and procedures) complies
with the installation security policy. Auditing may be:

� A one-time project, such as a snap inspection, or

� An ongoing process, pursuant to policies

The two types of information security audits can be termed preemptive and
reactive. As their names indicate, preemptive audits test security controls, and
reactive audits respond to potential security breach events. Incident Response is
an integral part of the security management plan.

Some companies resist implementing information security controls because they
believe the costs are prohibitive. The cost in reactive audits, information
compromise, lawsuits and fines for non-compliance and loss of business are
such that it is becoming ever more painfully clear that an information security
program is part of the normal cost of doing business.

System Management Facilities (SMF)
System Management Facilities (SMF) is a system component that writes audit
records to DASD for every access or attempted access to a resource. These
records can be offloaded to tape automatically when the SMF data set fills up.
Detailed information about the access is recorded so that, in the event that it is
needed, systems programmers can determine who accessed (or attempted to
access) critical resources.

System logger
In order to be able to back out erroneous changes or to restore data up to the
point of failure, it is necessary to log changes to the data. The operating system
provides logging services through the system logger. It provides interfaces to
define and update log files for applications and operating system components,
and can synchronize the logging of updates to data sets across a sysplex. It is
also necessary to log data for billing and reporting. Thus other user-written logs
can now be recorded by the logger.

In the event that a data set must be restored from a backup tape, the log provides
a means for reapplying all the updates to the data set since the last backup was
taken.

4.2.4 Resource Recovery Services (RRS)
With the increasing number of resource managers (for example CICS, IMS, DB2,
Websphere MQSeries®, and so on) now available on z/OS, there was clearly a
 Chapter 4. Integrity and security 73

need for a general sync point manager on z/OS that any resource manager could
exploit. This is the role of Resource Recovery Services (RRS), a component of
z/OS. RRS provides a global sync point manager that any resource manager on
z/OS can exploit. It enables transactions to update protected resources managed
by many resource managers.

Data does not reside in only one place. When data is updated, it generally is
necessary to update more than one file at the same time. These files may reside
on different systems and be managed by different applications. For instance,
when you move money from your savings account to your checking account, the
changes to the two files must be coordinated so that the balances are correct. If
the update to the checking account fails for some reason, then the update to the
savings account must be backed out. This coordination is accomplished by a
protocol called “two-phase commit.” This protocol assures that all updates are
coordinated correctly and that data integrity is maintained.

RRS assists in the two-phase commit process by acting as the sync point
manager, coordinating the commit or backout process for the various
applications; see Figure 4-3. Note that the applications must still perform the
commit or backout themselves—RRS only acts as a mediator between the
applications.

Two-phase commit

Figure 4-3 Two-phase commit

Resource
Manager 3Application

Resource
Recovery

Services (RRS)

Resource
Manager 1

Resource
Manager 2

Resource
Manager 3Application

Resource
Recovery

Services (RRS)

Resource
Manager 1

Resource
Manager 2
74 Introduction to the New Mainframe: Large-Scale Commercial Computing

The two-phase commit protocol, as shown in Figure 4-3, is a set of actions used
to make sure that an application program either makes all the changes to the
resources represented by a single unit of recovery (UR), or makes no changes at
all. This protocol verifies that either all changes or no changes are applied even if
one of the elements (such as the application, the system, or the resource
manager) fails. The protocol allows for restart and recovery processing to take
place after system or subsystem failure.

The two-phase commit protocol is initiated when the application is ready to
commit or back out its changes. The application program that initiates the commit
or backout does not need to know who the sync point manager is or how
two-phase commit works. This is hidden from the application; a program simply
calls a commit or backout service and receives a return code indicating whether
this has been successfully completed.

When the application issues the commit request, the coordinating recovery
manager, also called the sync point manager, gives each resource manager
participating in the unit of recovery an opportunity to vote on whether its part of
the UR is in a consistent state and can be committed.

If all participants vote yes, the sync point manager instructs all the resource
managers to commit the changes. If any participants vote no, the sync point
manager instructs them to back out the changes.

4.2.5 Data backup and recovery
The z/OS operating system and its associated disk and tape subsystems provide
a robust suite of tools that provide for data backup utilities to meet a wide range
of data backup requirements, from disaster recovery to local recovery.

Installations need to choose the backup and recovery solution that best fits their
needs. The choice that an installation makes will be based on factors such as:

1. Is the backup being performed in order to recover from local outages, or for
disaster recovery?

2. Does the backup and recovery need to be device-independent?

3. What level of granularity is required: single data set, volume, application or
site?

4. What is my recovery time objective? That is, how much time do I have to
recover the data after an outage?

5. What is my recovery point objective? At what points in time do I make the
backup, so that when recovery is performed, the processing of the data can
resume where it left off at this chosen point in time.
 Chapter 4. Integrity and security 75

6. How much money is the company willing to spend on a solution? This would
be equivalent to you buying an insurance policy: the larger the negative
economic impact to the company or individual, the more they are will to pay
for the insurance policy. The same holds true for backup and recovery
solutions.

This following sections introduce some of the backup and recovery tools that are
available in the IBM System z hardware and z/OS operating systems. The
toolbox contains a full complement of tools, so it is up to your installation to select
the right tool to match its needs.3

FlashCopy - (local to one subsystem)
FlashCopy® is a function available on some DASD subsystems. DFSMS uses
this function to quickly copy data from source volumes to target volumes that are
within the same physical subsystem. Flashcopy makes use of the internal
structure of Redundant Array of Independent Disks (RAID) devices to increase
the speed of the copy function.

The data is not actually copied; only the control information that points to the data
in the RAID device is copied. If the data is changed using the source volume, the
changed data is written to a different location on the RAID device, leaving the
original version unchanged and still accessible using the target volume.

After the copy has been made, the copy can be accessed for creating tape
backups without impacting any applications using the original copy of the data.

Remote Copy
Remote copy in the z/OS operating system environment is a set of
storage-based disaster recovery, business continuance and workload migration
solutions that allows the copying of data to a remote location in real time. Having
a copy of the data in a remote location protects business data from both local and
regional disasters that could render the original processing location inoperable.

Remote copy refers to the four main copy services functions provided in z/OS
that are called Advanced Copy Services functions. They are:

1. Metro Mirror (also known as synchronous Peer-to-Peer Remote Copy or
PPRC)

2. Global Mirror (also known as asynchronous PPRC)

3. Global Copy (also known as PPRC-Extend Distance or PPRC-XD)

4. Global Mirror for IBM System z (also known as Extended Remote Copy or
XRC)

3 Refer to the IBM Redbook The IBM TotalStorage DS6000 Series: Copy Services with IBM eServer
zSeries, SG24-6782.
76 Introduction to the New Mainframe: Large-Scale Commercial Computing

There are other remote copy functions which combine elements of those listed
above, including:

1. Metro/Global Copy (Metro Mirror and Global Copy)

2. Metro/Global Mirror (Metro Mirror and Global Mirror)

Metro Mirror
Metro Mirror is a hardware solution that provides rapid and accurate disaster
recovery, as well as a solution for workload movement and device migration.
DASD volumes residing on different physical subsystems are paired. Updates
made to the primary DASD volumes are synchronously duplicated on the
secondary DASD volumes.

Note that, because the operating system has to wait while the updates are
synchronized, there is a performance penalty for using Metro Mirror over
distances greater than 10 km. The local storage subsystem and the remote
storage subsystem are connected through a communications link.

By providing a duplicate set of volumes in a remote location, Metro Mirror can be
used for disaster recovery. In the event of a disaster at your primary site, you can
switch to your remote site without losing any data.

Global Copy
Global Copy is a hardware solution similar to Metro Mirror, except that the
primary and secondary sites can be separated by greater distances through the
use of channel extenders and telecommunications lines. In this solution, the
primary site’s disk subsystem updates the secondary site’s disk subsystem
incrementally, thus reducing the bandwidth requirements.

Global Mirror
Global Mirror combines Global Copy with Flashcopy to provide backup at a
remote secondary site. The key to this solution is that the update of the
secondary site is asynchronous from the updates at the primary site, and there is
minimal impact to the application performance, even at greater distances.

Global Mirror for IBM System z
Global Mirror for IBM System z (also known as Extended Remote Copy or XRC)
is similar to Metro Mirror in that it maintains a copy of DASD data at a remote
location. However, since it is asynchronous, it can be used over greater
distances. With Global Mirror the data is not kept quite as up-to-date as with
Metro Mirror.

Global Mirror for IBM System z is a hardware and software solution that relies on
a function called the system data mover, which is part of DFSMS. It is a
 Chapter 4. Integrity and security 77

high-speed data movement program that efficiently and reliably moves large
amounts of data between storage devices. Global Mirror for IBM System z is a
continuous copy operation, capable of operating over long distances. It runs
unattended, without involvement by the application users. If an unrecoverable
error occurs at your primary site, the only data that is lost is data that is in transit
between the time when the primary system fails and the recovery at the recovery
site.

Other backup and recovery solutions
Rather than using one of the hardware or hardware or software-based solutions
mentioned in the previous sections, your installation might decide that a
software-only solution would best suit their backup and recovery needs.
Software-only solutions tend to be less costly than some of the solutions
mentioned, but again the cost of the solution needs to be measured against the
financial impact of the data loss. The solutions discussed here can create
backups and allow recovery at various levels of data aggregation.

� Data set level backup and recovery - This allows for backing up and
recovering a single data set.

In some cases the data backup can be a physical process or it can be a
logical process. The advantage of a logical process is that it can be
device-independent; that is, the data could be backed up from one type of
disk or tape subsystem and recovered to a disk or tape subsystem with totally
different device characteristics and device geometry.

� Volume level backup and recovery - This allows for backing up and
recovering data at a volume level.

All the data on a disk or tape volume gets backed up in a single process. In
some instances only a single data set or group of data sets can be restored
from the volume that was backed up, or the entire contents of the volume can
be restored in a single process.

� Application level backup and recovery - This provides backup and recovery at
an aggregate level.

Data for an entire application or group of applications could be backed up and
restored as a single entity. This allows an enterprise to identify only those
applications that are critical to the continuance of their business if an outage
occurs, and only back up and recover those applications. This can be a very
cost-effective strategy since only a subset of the data in the installation is
backed up, rather than all the data that exists are their location.

4.2.6 Performance
DFSMS works with the operating system to monitor performance characteristics
of each DASD volume on the system. Users, in conjunction with system
78 Introduction to the New Mainframe: Large-Scale Commercial Computing

programmers, can specify the performance and availability needs for individual
data sets. These needs are defined via Storage classes. SMS uses Storage
classes, along with system performance statistics, to determine if data accesses
are meeting the goals defined for the storage class. If they are not meeting goals,
then SMS can automatically move the data set to a DASD that will provide the
necessary performance for the data.

4.3 Security
This leads us into a discussion on security. The first step in providing for data
integrity is to adequately secure access to the operating system. If unauthorized
users cannot log into the operating system, they cannot access the data. By
providing a robust set of security features, the operating system insures that data
is accessed and updated only by authorized users.

Access to data is tracked by several components of the operating system:
System Management Facilities (SMF), System Authorization Facility (SAF), and
Resource Access Control Facility (RACF®). These components provide an audit
trail that can be used to detect attempts at unauthorized access to data, and can
detect patterns of access by authorized users that are beyond the scope of their
valid use of the data.

4.3.1 Introduction
z/OS is among the most secure operating systems in the world. Since its
inception, z/OS has put security at the forefront, often sacrificing performance
and ease of use in order to assure the integrity of the system. Security methods
are buried deep within the components of the operating system, providing the
highest level of security possible. Operating system components work together
with security products to accomplish this goal:

� The U.S. Government Common Criteria Program certifies IBM Software at the
highest rankings

– z/OS and RACF are at the highest level of certification (EAL4+).

� Enforced Isolation

– Each user has its own unique address space.

– Each LPAR provides total isolation executing as a separate server.

– Each address space within an LPAR is isolated from the others.

� The Access Control Environment Element

– The z/OS Security Control Block is protected by the operating system.
 Chapter 4. Integrity and security 79

� The Authorized Program Facility (APF) assures that system-level services
can only be accessed by programs that are authorized to use those services.

� Program States assure that user programs cannot access resources that
belong to the operating system.

� Storage protect keys assure that programs cannot access storage that does
not belong to them.

� The z/OS supervisor call (SVC) instruction provides a facility for user-written
programs to get access to system-level functions, without being able to
perform those functions themselves.

� System Authorization Facility (SAF) provides the framework for security in the
operating system. It works in conjunction with external security software
packages (RACF, TOP SECRET, ACF2, and so on) to provide access
services for all resources available in the complex.

4.3.2 U.S. Government certification
The Evaluation Assurance Level of a computer product or computer system is a
numerical grade assigned following the completion of a Common Criteria
security evaluation, which is an international standard in effect since 1999. The
computer system must meet specific assurance requirements involving design
documentation, design analysis, functional testing or penetration testing. The
higher the EAL, the more the stringent qualifications are imposed.

The United States Government has rated the mainframe secured, certifying it
with the Evaluation Assurance Level (EAL4+). That is, the mainframe as a
platform offers EAL4 certification, while the logical partition under PR/SM
contains a rating of EAL5 certification.

EAL4 permits a developer to gain maximum assurance from positive security
engineering based on disciplined commercial development practices which,
though rigorous, do not require substantial specialist knowledge, skills and other
resources. EAL4 is the highest level at which it is likely to be economically
feasible to retrofit to an existing product line.

EAL5 permits a developer to gain maximum assurance from security engineering
based upon rigorous commercial development practices supported by judicious
application of special security engineering techniques. EAL5 is therefore
applicable in those circumstances where developers or users require a high level
of independently-assured security in a rigorous development approach, without
incurring unreasonable cost attributable to extraordinary security engineering
methods.

Important: Only the IBM mainframe partitions have attained an EAL5 rating.
80 Introduction to the New Mainframe: Large-Scale Commercial Computing

4.3.3 Enforced isolation

Unique address space
The range of virtual addresses that the operating system uniquely assigns to
users or programs is the address space. This is an area of contiguous virtual
addresses available for executing instructions and storing data. Using address
spaces provides the means for distinction between the programs and data
executing within a logical partition. This is the method z/OS uses to establish a
private container for processing each end-user request, and therefore ensures
runtime protection by the operating system’s architecture.

LPAR as a separate server
Among the system control functions is the capability to divide the system into
logical partitions (LPARs). An LPAR is a subset of processor hardware that is
defined to support an operating system. An LPAR contains resources (processor,
memory and input/output devices) and operates as an independent system.
Multiple logical partitions can exist within a mainframe hardware system.

LPARs provide the means for high availability employing cloning techniques by
which an LPAR, during failure or due to maintenance schedules, can switch to
another executing partition without end-user disruption.

LPARs are, in practice, equivalent to separate mainframes. Each LPAR runs a
copy of the operating system and is IPLed separately from other active LPARs.
This can be any operating system and at different version and release levels.

4.3.4 The accessor environment element
In z/OS there is a credential control feature known as the accessor environment
element (ACEE), which accompanies a logical process or user request within the
operating system. It is available to identify the authenticated user access control
authorization checking to z/OS Resource, and is used by various auditing
methods.

The user process is assigned an ACEE credential, which embodies the “identity”
that has previously been assigned to the user by a security administrator. Note
that this is not a programming interface and is used by the operating system on
behalf of the user.

4.3.5 Authorized program facility (APF)
In z/OS, APF is a facility that permits the identification of programs that are
authorized to use restricted functions. APF was designed to restrict access to
sensitive, or privileged, system instructions in order to avoid integrity exposures
 Chapter 4. Integrity and security 81

that might occur as a result of the use of these instructions. Privileged
instructions allow a high level of access to powerful system functions and can,
therefore, cause security or integrity problems if they are used inappropriately.

In order for a program to run authorized:

� It must have the APF attribute assigned to it.

� It must also reside in a library that has been defined by the system
programmer as being authorized.

If a program fulfills both of these requirements, then it can access privileged
instructions.

APF libraries are always given a high level of protection by whichever security
software is being used on the system, in order to prevent their misuse.

4.3.6 Program states
Every program running in the system runs in a particular program state. System
resources are protected by only allowing programs running in supervisor state to
have access to them. This provides an extra layer of protection for system
resources. In order to run in supervisor state, a program must be APF-authorized
and loaded from an APF-authorized load library.

Operating system programs run in supervisor state, which gives them access to
all of the resources on the system. This is somewhat analogous to running as a
superuser in UNIX or Linux.

Programs that have been loaded from non-APF-authorized libraries can only run
in problem program state, which gives them very little access to system
resources. If they need to access a protected resource, they must request that an
operating system program that is running in supervisor state access the resource
on their behalf. The problem state program never gets access to the resource. All
access is by the operating system program.

4.3.7 Storage protection keys
Mainframe (real) storage is divided into frames, which are 4096-byte chunks of
storage. Every frame of real storage has a field that defines the storage
protection key for that frame. (They are often called “storage protect keys.”)

Protection keys are numeric, 0 through 15. Keys 0 through 7 are system keys and
can only be accessed by operating system programs running in supervisor state.
Keys 8 through 15 are user keys and can be accessed by programs running in
problem state. Most user-written programs use Key 8.
82 Introduction to the New Mainframe: Large-Scale Commercial Computing

If a program attempts to access storage in a key that is different than the one it
has been designated to use, the operating system will abend (Abnormal END)
the program. The storage protection key for a program is defined in the program
status word (PSW), which is an operating system element that controls program
execution. See “The program status word” on page 162 for more information
about this topic.

4.3.8 Supervisor call
A supervisor call (SVC) is a special privileged instruction that interrupts the
program being run and passes control to the supervisor so that it can perform the
specific service indicated by the instruction. The supervisor can be called by
other programs, such as problem state programs, to perform specific
system-level functions that the calling program is not authorized to perform.

For instance, if a problem state program wants to access a data set, it must issue
an SVC, since problem state programs are not allowed to access data sets
directly. SVCs are highly protected and must be loaded from a specific set of
program libraries that are defined by the systems programmer.

Use of SVCs can be restricted by requiring that the calling program be
APF-authorized. By isolating system functions from problem state programs,
SVCs provide another layer of protection for operating system resources.

4.3.9 System Authorization Facility
System Authorization Facility (SAF) is the function of the operating system
whose sole purpose is to provide security for resources. The operating system
calls SAF whenever a user is going to access a protected resource, such as a
data set, a program, or the system itself. SAF, in turn, will call an external security
product, if one has been installed, to either authorize or deny the access. If the
user is not authorized to access the resource, the request is denied.

All users of the operating system must be defined to the security product and
granted access to the operating system before they can attempt to access any
resource.

External security products such as RACF and TOP SECRET are used to define
users of resources and their levels of access, or non-access, to the resources.

Packaged security - Resource Access Control Facility (RACF)
As previously mentioned, some security functions are provided in the base
operating system and various add-on z/OS products. Others are packaged in an
 Chapter 4. Integrity and security 83

optional Security Server feature. Chief among the functions packaged within the
Security Server is the Resource Access Control Facility (RACF).

RACF incorporates various elements of security, such as user identification and
authentication along with access control. You use RACF to protect resources and
information by controlling access to those resources.

RACF identifies you when you log on to the operating system. It does so by
requiring a user identification, the user ID that is a unique identification string.
RACF then verifies that you are the user you say you are by requesting and
checking passwords for personal accountability.

RACF also enables an installation to define what authorities you have, or what
authorities a group to which you belong has. It controls what you can do on the
system. Some individuals have a great degree of authority, while other have little
authority. The degree of authority you are given is based on what you need to
perform your job role.

Besides defining user and group authorities, RACF protects resources. A
resource is considered your organization’s information stored in its computer
system, such as datasets or databases.

RACF stores all this information about users, groups and resources in profiles. A
profile is a record of RACF information that has been defined by the security
administrator. There are user, group, and resource profiles.

Using information in its profiles, RACF authorizes access to certain resources,
therefore RACF applies user attributes, group authorities and resource
authorities to control use of the system.

4.4 Summary
System z mainframes are considered the most secure systems because their
architecture has integrated data integrity and security throughout its hardware
and software components.

We have seen how System z manages the concept of serialization. It can lock a
single piece of data (rather than an entire file), mainly for update cases when one
user must have sole access to that specific data.

Through mechanisms like ENQs, locking, reserve, and global resource
serialization, for example, the information is protected providing security and data
integrity.
84 Introduction to the New Mainframe: Large-Scale Commercial Computing

We described how SMS works through the use of data classes, storage classes,
and management classes. We have seen that SMS uses automatic class
selection (ACS) routines to control and improve performance characteristics of
the data, giving extra security and automatic backup of the data.

System resources are protected by allowing programs to run in supervisor state
only if they are loaded from an APF-authorized library. We have seen that an
SVC can be called to ask the system to perform actions that are not allowed by a
general user.

Finally, we have seen how system storage is protected through the internal use
of storage protection keys in the PSW that controls program execution.4

4.5 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. What is the difference between integrity and security?

2. What facilities can be used to back up data in a mainframe environment?

3. What are some of the questions that facilities must address in order to select
the correct backup and recovery solution to meet their needs?

4. How do ENQs, reserves, and locks differ? What is each used for?

5. How do the various SMS constructs such as Data classes, Management
classes, and Storage classes work together to define data set attributes?

6. Explain how two-phase commit works to keep data in sync across different
applications.

4 For more information about integrity and security, refer to IBM Redbook Introduction to the New
Mainframe: Security, SG24-6776.

Key terms in this chapter

ACEE EAL GRS Remote copy SMF

APF ENQ Integrity RRS Storage
protect key

Audit Remote Copy Lock SAF SVC

Backup FlashCopy Program
states

Security System logger

DFSMS Global Mirror RACF Serialization Two-phase
commit
 Chapter 4. Integrity and security 85

7. How does APF work to protect the operating system?

8. What is an SVC? How do SVCs aid security?

9. What is the purpose of SAF?
86 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 5. Availability

5

Objective:

After completing this chapter, you will be able to:

� Understand what availability means to a commercial enterprise

� Describe the inhibitors to availability

� Describe operating system facilities that improve availability

� Describe the major components of Parallel Sysplex
© Copyright IBM Corp. 2006. All rights reserved. 87

5.1 Introduction to availability
In simplest terms, availability means how much the computer system is
available to its users, and the ideal is 100% of the time. This chapter discusses
the availability needs of commercial data processing and the evolution of the
hardware and operating system to fulfill these needs.

The transition of businesses to an online 24/7 environment is briefly discussed
here, along with the forces that are driving this requirement: the World Wide
Web, a worldwide client base, and regulatory requirements. However, our
primary focus is on the inhibitors to system availability and the changes to the
operating environment that enable it to overcome these problems. We discuss
the evolution from single CP systems to Parallel Sysplex, and the changes to
hardware and software that made this evolution possible.

Commercial data processing has evolved from an environment where updates
were gathered during normal daytime business hours and run overnight in a
mass update mode (batch), to an online, real-time, worldwide, 24-hour a day
environment where updates need to be made immediately. Clients want their
transactions to be handled as soon as they are entered, and government
regulations in certain industries, such as banking, mandate high levels of
availability.

These changes have forced the operating system to evolve as well. Businesses
can no longer tolerate operating system downtime due to software and hardware
errors or upgrades.

5.2 What is availability?
Webster’s Dictionary defines availability as “being accessible for use”1. In a
computer processing environment, however, availability is not always so
clear-cut. If the operating system is running, is that availability? What if the
network is unavailable and the end user cannot connect? What if all of the
hardware components are running up but the application is down? Availability is
dependent on who the end user is. If a user connected via the intranet can
access a particular application, then it is available to that user. The same
application may not be accessible via the Internet due to a bad connection, so to
an Internet user the application is not available.

Availability is the state of an application being accessible to the end user. In the
mainframe world there are additional definitions for different level of availability,
as described here.

1 http://www.websters-online-dictionary.org/definition/AVAILABILITY
88 Introduction to the New Mainframe: Large-Scale Commercial Computing

Continuous Availability (CA)
This refers to the attribute of a system to deliver nondisruptive service to the end
user 7 days a week, 24 hours a day (there are no planned or unplanned
outages).

High Availability (HA)
This refers to the attribute of a system to provide service during defined periods,
at acceptable or agreed-upon levels, and mask unplanned outages from end
users. It employs Fault Tolerance, Automated Failure Detection, Recovery,
Bypass Reconfiguration, Testing, Problem and Change Management.

Disaster Recovery (DR)
This refers to recovery after a disaster, such as a fire, that destroys or otherwise
disables a system. Disaster Recovery techniques typically involve restoring data
to a second (recovery) system, then using the recovery system in place of the
destroyed or disabled application system.

5.2.1 Outages - planned and unplanned
An outage (unavailability or “downtime”) is the amount of time a system is not
available to an end user. Outages may be planned or unexpected (unplanned).
Planned outages include causes like database reorganization, release changes,
and network reconfiguration. Unplanned outages are caused by some kind of a
hardware, software or data problem. While planned outages can be scheduled,
they still are disruptive. The modern trend is to try to avoid planned outages
altogether. This requires extensive hardware and software facilities.

Cost of an outage
In today’s computer environment an outage, whether planned or unplanned, is
not only unwelcome—it is also costly. Downtime statistics are staggering and
range from tens of thousands of dollars to multiple millions of dollars per hour of
downtime; see Table 5-1.

Table 5-1 Financial Impact of Downtime Per Hour (by various Industries)

Industry Cost of Downtime $ per hour

Brokerage Retail 6.5 million

Credit Card Sales Authorization 2.6 million

Airline Reservation Centers 90,000

Package Shipping Services 28,250

Manufacturing Industry 26,761
 Chapter 5. Availability 89

Source: ©Eagle Rock Alliance, Ltd. All Rights Reserved. Reprinted by Permission.

And although the financial impact is significant, the damage can extend well
beyond the financial realm into key areas of client loyalty, market
competitiveness, and regulatory compliance.

5.3 Inhibitors to availability
Factors that can cause loss of availability include hardware failure, software
failure, and environmental problems. Computers, even the most reliable, may
occasionally fail. Programs may have errors that cause them to fail. Cables may
accidentally become disconnected or cut.

Availability comes in many forms on the mainframe. The mainframe has the
distinction of the five 9s (see Myth of the nines2) of availability (99.999%) for up
time of annual service for both software and hardware. This translates to
5.3 minutes of downtime yearly, which can likely be shortened further due to the
means of applying maintenance and upgrades concurrently while the system is
running.

Although known for its resilience in availability, application inhibitors can affect
the mainframe’s inherent capability for uptime. The mainframe is architected with
redundant components, but application designers may overlook this form of
planning and instead rely on other methods such as rebooting a server instance.

In order to ensure infrastructure and application availability, the mainframe using
z/OS provides for cloned LPAR images to work as a single instance for an
application environment. This is referred to as a Parallel Sysplex, where two or
more LPARs are copies of one another running the same applications. This is
also known as a cluster-type solution.

Parallel Sysplex provides the means to operationally continue the workload in
the executing partition in the event the other image fails. The key to a transparent
failover is to ensure application inhibitors are not employed in the design.

Note the considerations for the following areas:

� Affinities

Banking Industry 17,093

Transportation Industry 9,435

Industry Cost of Downtime $ per hour

2 http://en.wikipedia.org/wiki/Myth_of_the_nines
90 Introduction to the New Mainframe: Large-Scale Commercial Computing

• Either inter-transaction or system-image affinity may have a
consequence for failover integrity, such as using a component
(physical) or name (logical) unique to a specific system or runtime
environment.

� Using a memory counter.

� Time stamps between server environments (timers and expiration events).

� Parallel execution may have a consequence in that you cannot assume the
next transaction will always run on the same system:

– Keeping working storage or temporary areas specific to a system (pinned
memory) may cause unpredictable results in the event another image
needs to run the workload.

– Do not assume the execution of work will always be the same as the order
of arrival.

– Do not design an application associated to a particular version or software
level.

– Design for data sharing, where a single data instance can be used by
multiple applications.

There is no way to totally avoid failures in any single component, but there are
ways to lessen the impact of these failures. Redundancy, error detection and
recovery, and continuous monitoring of critical resources are some of the ways to
achieve high availability.

5.4 Redundancy
The IBM mainframe product line offers layer upon layer of fault tolerance and
error checking. If a failure occurs, the built-in redundancy of the IBM System z
shifts work from failing components to components that work in order to prevent
the end-user service from being interrupted. The failed components may be
removed and replaced while the processor is still active, so service may continue.

Hardware failures have been reduced by engineering redundancy into each of
the major components to avoid any single point of failure. Modern direct access
storage devices (DASD) have been architected with hardware redundancy and
built-in error correction microcode.

The IBM mainframe strategy employing reliability, availability, and serviceability
(RAS) is focused on a recovery design that is necessary to mask errors and
make them “transparent” to client operations. An extensive hardware recovery
design has been implemented to detect and correct array faults. In cases where
 Chapter 5. Availability 91

total transparency cannot be achieved, the capability exists for the client to
restart the server with the maximum possible capacity.

IBM System z computers have backups for all of critical components, and new
functions regarding redundancy continue to evolve.

Power supplies The IBM System z has dual power supplies with separate
power cords. Should one power supply fail, the other can
handle the power requirements for the whole computer.
The server can continue operation after a failure of one of
the two power units. The power units are designed so that
the server will continue to operate after a failure of one
phase of a three-phase feed.

Internal battery In the event of an interruption to the input power, the
Internal Battery Feature (IBF) will provide sustained
server operation for a short period of time. The duration of
the battery support is highly dependent upon the server
model and I/O cages installed. The IBF is optional.

Note: Many power interruptions are due to the temporary
loss of a single phase on the three-phase input line. The
IBM System z can tolerate loss of a single phase even
with no battery backup. This capability, coupled with the
Internal Battery Feature and full operation from either of
the dual independent line cords, gives a very high degree
of resilience to transient power dropouts. When coupled
with an Uninterruptible Power Supply (UPS) capability,
the internal battery ensures that there is no loss of power
during startup of the emergency supply.

Cooling The current IBM System z is an air-cooled system
assisted by two Modular Refrigeration Units (MRU). If one
of the MRUs fails, backup Motor Scroll Assemblies
(MSAs) are switched in to compensate for the lost
refrigeration capability with additional air cooling. At the
same time, the oscillator card is set to a slower cycle time,
slowing the system down by up to 10% of its maximum
capacity, to allow the degraded cooling capacity to
maintain the proper temperature range. Running at a
slower cycle time, the MCMs produce less heat. The
slowdown process is done in steps, based on the
temperature in the books.

Oscillator IBM System z has two oscillator cards: a primary and a
backup. In the event of a failure of the primary oscillator
card, the backup is designed to detect the failure, switch
92 Introduction to the New Mainframe: Large-Scale Commercial Computing

over dynamically, and provide the clock signal to the
server transparently.

Processor Early mainframe computers were uniprocessors with only
one central processor (CP). If the processor failed, all of
the work being run on the system was lost. Users needed
more reliability and more processing power than a
uniprocessor could offer, so multiprocessors (MP) were
introduced.

Having more than one processor gave the hardware
designers the ability to write code that could self-monitor
the health of the mainframe. CPs signaled each other to
make sure that they were still in operation. If one CP
failed, the others could take action to recover or isolate
the failing CP. This greatly enhanced the reliability of the
hardware, but since work was confined to an individual
mainframe, there was still the possibility of a system
failure causing downtime.

Today, mainframe computers have spare CPs built into
the framework of the Multiple Chip Module (MCM). This is
known as CP sparing. Should one CP fail, others can
automatically be brought online to take over the workload.
This concept will also work for the speciality engines.

Memory There are spare memory chips on every memory card.
The memory cards are continuously being checked to
clean correctable errors and detect uncorrectable ones.

If an error cannot be corrected, the chip is made
unavailable and a spare is used instead. This results in
four spares per processor memory array (PMA) with
Chipkill™. (Chipkill memory is a design feature that packs
memory in such a way that in the event of a chip failure
only one bit in an Error Correction Code (ECC) chain will
be affected.)

On machines having more than one book sharing their L2
memory, another source of error can be the access path.
To prevent this, there are two parallel paths.

Books In newer mainframe computers, processors and memory
have been componentized into modules referred to as
books. Each book is manufactured with several CPs
(including spares), memory, high-speed cache, and
input/output (I/O) interfaces.
 Chapter 5. Availability 93

While books communicate with other books in the
mainframe, they are separate entities and, for the most
part, can be replaced without needing to bring down the
whole system.

Support Elements Two ThinkPad Support Elements (SEs) are mounted
behind the CPCs cover. One ThinkPad acts as the
primary (active) SE and the other acts as an alternate
(spare).

The primary SE is used for all interactions with the
System z server. The alternate SE has a special
workplace with limited tasks available.

Both SEs are connected to the CPC, via the Power
Service and Control Network (PSCN). For certain SE
errors, an automatic switch-over is made to assign the
formerly alternate SE as the primary. Automatic mirroring
copies critical configuration and log files from the primary
SE to the alternate SE two times a day.

To learn more technical details about IBM System z redundancy, refer to the IBM
Redbook IBM System z9 Enterprise Class Technical Guide, SG24-7124.

5.4.1 Concurrent maintenance and upgrades
In addition to the hardware redundancy aspects, the IBM System z server has
the ability to permit a variety of concurrent maintenance and upgrades:

Duplex units Duplexed units, such as power supplies, allow one unit to
be replaced while the other is operational.

Microcode update In many cases, new levels of driver code may be installed
concurrently with server operation.

I/O cards When slots are available on the installed I/O cages,
additional I/O cards can be added. For some special I/O
cards, there are spare ports on the card which can be
activated.

Memory Concurrent memory upgrade or replacement is allowed.
Memory can be upgraded concurrently using LIC-CC if
physical memory is available on the books.

PU Conversion Concurrent conversion between different PU types (CPs,
ICFs, IFLs, zAAPs, zIIPs) is allowed, providing flexibility
to meet changing business environments.

Capacity upgrade The IBM System z provides concurrent, on-demand
upgrades for the server hardware. With operating system
94 Introduction to the New Mainframe: Large-Scale Commercial Computing

support and appropriate planning, concurrent upgrades
can also be nondisruptive to the operating system. Such
upgrades provide additional capacity (memory,
processors) without a server outage.

Capacity upgrades can be either permanent or temporary:

Permanent
- Capacity Upgrade on Demand (CUoD)
- Customer Initiated Upgrade (CIU)

Temporary
- On/Off Capacity on Demand (On/Off CoD)
- Capacity BackUp (CBU)

Refer to 3.3.6, “Workload Manager (WLM)” on page 56 to
learn more about CUoD, CIU, and OOCoD. Concepts
such as dynamic, nondisruptive addition of processor
resources like processors, memory and I/O for permanent
use reduce the need for planned outages.

Capacity Backup (CBU)
Capacity Backup (CBU) is the temporary activation of CPs, IFLs, ICFs, zAAPs
and zIIPs for robust disaster recovery. The CBU features provide the ability to
concurrently increment the CP or specialty engine capacity of your System z
server, using Licensed Internal Code, Control Code (LIC-CC), in the event of an
unforeseen loss of substantial System z computing capacity at one or more sites.
The CBU features contain additional resources and alter the target server to an
agreed-upon configuration for up to a 90-day period.

5.4.2 Accessing peripheral devices
In a continuous availability environment, keep the following points in mind when
configuring the peripherals.

� Create a configuration that will survive the loss of any single component
within the subsystem.

� Configure your storage subsystem such that you can survive, or at least
recover from, a complete loss of the whole subsystem.

� Mirror your data such you can survive even if you lost a storage subsystem, or
even a complete data center.
 Chapter 5. Availability 95

Create a redundant I/O configuration
Chapter 6, “Accessing large amounts of data” on page 109, explains the main
concept of accessing data through the channel subsystem. Figure 5-1 on
page 96 illustrates how to create an I/O configuration to meet availability goals.

Figure 5-1 Example redundant I/O configuration

Configure the storage subsystem
Features in today’s storage subsystems that are used by mainframe servers
support this. Note, however, that although some are standard features, others
are optional, and some are not available on all storage subsystem types. They
are:

� Independent dual power feeds
� N+1 power supply technology/hot swappable power supplies, fans
� N+1 cooling
� Battery backup
� Non-Volatile Subsystem cache, to protect writes that have not been hardened

to DASD yet
� Non disruptive maintenance
� Concurrent LIC activation
� Concurrent repair and replace actions
� RAID architecture
� Redundant microprocessors and data paths
� Concurrent upgrade support (that is, ability to add disks while subsystem is

online)
� Redundant shared memory

LP
AR

1

LP
AR

n

LP
AR

2

CSS /
CHPID

LP
AR

1

LP
AR

n

LP
AR

2
Director
(Switch)

....

DASD CUDASD CUDASD CUDASD CU
96 Introduction to the New Mainframe: Large-Scale Commercial Computing

� Spare disk drives
� Remote Copy to a second storage subsystem

– Synchronous - Peer-to-Peer Remote Copy (PPRC)
– Asynchronous - Extended Remote Copy (XRC)

Explaining the details of storage subsystems is beyond the scope of this
document. However, an example is the current high-end IBM System Storage™
DS8000™; for details about this system, visit:

http://www.ibm.com/servers/storage/disk/ds8000/

Mirroring data
For backup, recovery and disaster recovery scenarios, you need to mirror your
data, not only by using the internal RAID functions of the storage subsystem, but
also a second storage subsystem. Refer to 4.2.5, “Data backup and recovery” on
page 75, for more details about this topic.

Figure 5-2 Disk mirroring using PPRC and XRC

Figure 5-2 illustrates disk mirroring PPRC and XRC. Peer-to-Peer Remote Copy
(PPRC) is a synchronous copy technology. As soon as data is written to the
Primary disk subsystem, the control unit forwards it to the secondary subsystem.
The secondary writes it and sends an acknowledgement back to the primary. At
this point, the primary lets the application know that the I/O completed. Because
the control unit does not care where the I/O request came from, PPRC supports
any operating system.

Extended Remote Copy (XRC) is an asynchronous copy technology. The System
Data Mover (SDM) is a component of z/OS. It reads data from the primary control
units, and coordinates applying them to the secondary volumes. Note: XRC only
works with z/OS data.

System zSystem z
z/OSz/OS

1 4

3

2

PPRC

System zSystem z
z/OSz/OS

1 4

3

2

PPRC

1 4 3 2

SDMSDM

XRC

1 4 3 2

SDMSDM

XRC
 Chapter 5. Availability 97

http://www.ibm.com/servers/storage/disk/ds8000/

5.4.3 Continuous availability of mainframes using clustering
Even with the improvement in reliability of newer mainframe systems, there
remained the possibility of an outage due to hardware failure or the need to
upgrade the hardware. To handle situations where hardware outages were
unavoidable, and to provide for vertical expansion of applications, the sysplex
(SYStems comPLEX) was developed.

“A sysplex is a collection of z/OS systems that cooperate, using certain hardware
and software and microcode, to process workloads, provide higher availability,
easier systems management, and improved growth potential over a conventional
computer system of comparable processing power.” 3

Parallel Sysplex technology is an enabling technology, allowing highly reliable,
redundant, and robust mainframe technologies to achieve near-continuous
availability. A properly configured Parallel Sysplex cluster is designed to remain
available to its users and applications with minimal downtime.

Parallel Sysplex is a way of managing such a multi-system environment,
providing such benefits as:

� No single points of failure
� Capacity and scaling
� Dynamic workload balancing

These benefits are detailed in the following sections.

No single points of failure
In a Parallel Sysplex cluster, it is possible to construct a parallel processing
environment with no single points of failure. Because all of the systems in the
Parallel Sysplex can have concurrent access to all critical applications and data,
the loss of a system due to either hardware or software failure does not
necessitate loss of application availability to the end user.

Capacity and scaling
The Parallel Sysplex environment can scale nearly linearly from 2 to 32 systems.
This scaling can be a mix of any servers that support the Parallel Sysplex
environment.

Dynamic workload balancing
The entire Parallel Sysplex cluster can be viewed as a single logical resource to
end users and business applications. And just as work can be dynamically
distributed across the individual processors within a single SMP server, so too

3 Refer to the IBM Redbook ABCs of z/OS System Programming, Volume 5, SG24-6985.
98 Introduction to the New Mainframe: Large-Scale Commercial Computing

http://www.ibm.com/redbooks

can work be directed to any node in a Parallel Sysplex cluster having available
capacity.

Base sysplex
A base sysplex is a group of LPARs or Central Processor Complexes (CPCs) that
communicate via a high-speed connection, namely XCF (cross-system Coupling
Facility), and are managed by a single z/OS system console. Applications are
limited to running on a single LPAR, but they can communicate via XCF with
applications on other systems. Workload is managed on a system-by-system
basis.

Figure 5-3 Parallel Sysplex configuration

Parallel Sysplex
The evolution of Parallel Sysplex has been a quantum leap in operating system
availability. A Parallel Sysplex, as illustrated in Figure 5-3, is a group of LPARs or
CPCs that share a workload, share data over a Coupling Facility (CF), have a
single time source (Sysplex Timer®), and are managed as one entity.

IBM System z

IBM System zIBM System z

IBM System z

IBM System zIBM System z
 Chapter 5. Availability 99

The Coupling Facility is central to the operation of Parallel Sysplex. It is an LPAR
or standalone CPC with a specialized operating system, called the Coupling
Facility Control Code (CFCC), which is a Licensed Internal Code (LIC). The CF is
connected via high-speed links to all systems, and it acts as a shared data
repository for all members of the sysplex.

The Sysplex Timer is a hardware device that is connected to all members of the
sysplex. It provides a common time source for synchronizing time among the
members of a sysplex.

How Parallel Sysplex works
If an LPAR fails in a Parallel Sysplex, the other systems can take over the
workload of the failing system using a component called WorkLoad Manager
(WLM), which manages work running on all the systems in a sysplex. WLM acts
as a load balancer, routing work to whichever system in the sysplex can best
handle the new workload. WLM allows the systems in a sysplex to work together
as though they were a single system.

Using CBU, the hardware on the running systems in a sysplex can be
dynamically and nondisruptively upgraded with more processor power.

The System Logger is a facility that merges the information from logs on
individual systems in the sysplex, and from individual subsystems operating on
different systems in the sysplex, into coherent structures that represent a
sysplex-wide view of the contents of each log.

For more information about Parallel Sysplex, refer to 3.3.3, “Parallel Sysplex” on
page 48.

5.5 z/OS elements for availability
With IBM mainframes, the availability design-point focuses on the application.
Why? Because applications do not simply rely on server hardware. Instead, they
require an integrated environment in which hardware, firmware, operating
systems and middleware work together to provide application and data
availability.

Approximately one-third of the z/OS code base provides rich RAS functionality
delivering reliability, availability and serviceability–often resulting in outage
events being completely masked from applications—and in severe cases,
resulting in graceful degradation rather than complete failure. And concurrent
maintenance capabilities, supported by both the hardware as well as operating
systems, help to mask planned outage events from the application as well.
100 Introduction to the New Mainframe: Large-Scale Commercial Computing

5.5.1 z/OS components

Workload Manager (WLM)
With symmetry and dynamic workload balancing, your applications can remain
continuously available across changes, and your sysplex remains resilient
across failures. Adding a system, changing a system, or losing a system should
have little or no impact on overall availability. With symmetry and data sharing,
using the Parallel Sysplex Coupling Facility, you also have enhanced database
availability.

Automation
Automation plays a key role in availability. Typically, automation routines are
responsible for bringing up applications, and if something goes wrong,
automation handles the application's restart. The need for automation is quite
important in the sysplex, both for availability and other reasons.

Automatic Restart Manager (ARM)
A facility of z/OS called Automatic Restart Manager (ARM) provides a fast restart
and automatic capability for failed subsystems, components, and applications.
Automatic Restart Manager plays an important part in the availability of key z/OS
components and subsystems, which in turn affects the availability of data.

For example, when a subsystem such as CICS, IMS DB, or DB2 fails, it might be
holding resources, such as locks, that prevent other applications from accessing
the data they need. Automatic Restart Manager quickly restarts the failed
subsystem so the subsystem can then resume processing and release the
resources, making data available once again to other applications.

Health Checker
The IBM Health Checker for z/OS component can be used by installations to
gather information about their system environment and system parameters to
help identify potential configuration problems before the problems impact
availability or cause outages. Individual products, z/OS components, or
Independent Software Vendors (ISV) software can provide checks that take
advantage of the IBM Health Checker for z/OS framework.

Resource Recovery Services (RRS)
Resource Recovery Services (RRS) assists in the two-phase commit process by
acting as the sync point manager, coordinating the commit or backout process
for various applications. The applications must still perform the commit or
backout themselves, however, as RRS only acts as a mediator between the
applications. Refer to 4.2.4, “Resource Recovery Services (RRS)” on page 73,
for more information about this topic.
 Chapter 5. Availability 101

System Modification Program Extended (SMP/E)
System Modification Program Extended (SMP/E) is the name of the software that
is used in z/OS to manage system software configuration and to add and remove
system modifications like Program Temporary Fixes (PTFs). Refer to 7.3.1,
“System software configuration management” on page 132, for more information
about this topic.

Alternate CPU recovery
If a processor receives a machine check that indicates it needs to be repaired
before it is used again, the machine check handler can reassign the task it was
running to an alternate processor.

Alternate consoles
The definition of each system console can indicate an alternate console. In the
event of an recurring error on a console, multiple console support (MCS) will
automatically reroute messages from the failing console to its alternate.

5.5.2 Error recording
If you do not know you have a problem, then how can you fix it? z/OS provides
robust facilities for detecting and reporting on errors.

System log (SYSLOG)
The system log (SYSLOG) provides a repository for all messages generated by
the operating system and software running on the operating system. Messages
produced by z/OS generally contain a great deal of information and can be used
by the operations staff to monitor the system, and by automation software to
respond to problems without the need for human intervention.

LOGREC
Whenever there is a system-level abend (ABnormal END of program), a record is
written to the LOGREC data set with environmental information concerning the
abend, such as registers and the program status word (PSW) at the time of the
abend. Symptom information such as the abending load module and the name of
the CSECT (program section) is also included.

When hardware errors occur, most hardware writes symptom records to
LOGREC containing the details of the error. Often the information contained in
LOGREC records is enough to allow the systems programmer to open a problem
record with the software or hardware vendor.
102 Introduction to the New Mainframe: Large-Scale Commercial Computing

Traces
System trace
For every interrupt that happens in the operating system, for every I/O event, and
for certain program branch instructions, the operating system writes an entry in
the system trace. The system trace provides a useful overview of all the events
that have happened on the system, and can be invaluable in detecting program
loops. The system trace can be started and stopped, but it generally runs all the
time.

Generalized Trace Facility (GTF)
GTF traces the same type of information as the system trace, but can provide
much more detail. In combination with Serviceability Level Indication Processing
(SLIP), it can be invaluable for debugging system-level problems.

Component trace
A more recent development is the component trace. Most operating system
components now write trace records to their own trace data set. These
component-specific records can be used for debugging or performance
purposes. They offer detailed information to help vendor support personnel
resolve problems.

5.5.3 Recovery
Because availability is so important in a large-scale business environment, a
large portion of the operating system code pertains to recovery. When the
operating system is running thousands of different tasks for hundreds of users, it
is not feasible to restart the operating system in order to fix a problem with one
user’s tasks or with one component of the system.

For this reason, z/OS and its predecessors have placed the highest priority on
keeping the system running by incorporating very robust recovery routines into
the fabric of the operating system. Facilities such as RTM, ESTAE, and FRR
provide the highest level of system availability possible, as described here:

� Recovery Termination Manager (RTM)

RTM monitors all terminating tasks and passes control to the appropriate
recovery routines. RTM determines if the terminating program has an
associated recovery routine, and whether to pass control to that routine.

� Extended Specify Task Abnormal Exit (ESTAE)

An ESTAE is a recovery routine that provides recovery for programs running
enabled, unlocked, and in task mode. Programmers can code ESTAE routines
to provide cleanup and retry for tasks that have abended.
 Chapter 5. Availability 103

Typically, ESTAE routines free system resources and provide problem
determination information for debugging purposes.

� Functional Recovery Routine (FRR)

A Functional Recovery Routine performs many of the same functions as
ESTAEs. It is written for a system-level program that is running disabled,
locked, or in service request block (SRB) mode.

� Associated Recovery Routine (ARR)

An Associated Recovery Routine is a more structured alternative to an
ESTAE and FRR.

5.6 Disaster recovery (DR)
Disaster recovery (DR) is a discipline that has existed in the mainframe arena for
many years. In addition to the existing ability to recover from a disaster, many
businesses now look for a greater level of availability, covering a wider range of
events and scenarios. This larger requirement is also called IT Resilience.

A set of tiers exists for disaster recovery readiness, as listed in Table 5-2 on
page 105. The tiers range from the least expensive to the most expensive. They
start at Tier 0 (No Disaster Recovery plan), where all data is lost and recovery is
not possible. At the upper position is Tier 7, which provides total IT business
recovery through the management of processors, systems, and storage
resources across multiple sites.

The only known Tier 7 system is the IBM mainframe Geographically Dispersed
Parallel Sysplex™ (GDPS®) system. GDPS manages not just the physical
resources, but also the application environment and the consistency of the data,
providing full data integrity (across volumes, subsystems, operating system
platforms, and sites), while providing the ability to perform a normal restart in the
event of a site switch. Thus, it helps to keep the duration of the recovery window
to a minimum.4

4 For more information, refer to the IBM Redbook GDPS Family - An Introduction to Concepts and
Capabilities, SG24-6374, and to the following site:
http://www.ibm.com/servers/eserver/zseries/gdps
104 Introduction to the New Mainframe: Large-Scale Commercial Computing

Table 5-2 Disaster recovery tiers

Examples for disaster recovery
The following examples present the general concept of disaster recovery using
the high-end technology of IBM mainframe, Parallel Sysplex, Mirroring Data
using PPRC and the automate GDPS procedures.

Tier Description Data loss
(hours)

Recovery time
(hours)

0 No DR plan All n/a

1 PTAM (Pickup
Truck Access
Method)

24-48 > 48

2 PTAM and hot site 24-48 24-48

3 Electronic vaulting < 24 < 24

4 Active second site Minutes to hours <24 (<2)

5 Second site
2-phase commit

Seconds <2

6 Zero data loss None/seconds <2

7 GDPS None/seconds 1-2
 Chapter 5. Availability 105

Figure 5-4 Example for a multi-site datacenter

Figure 5-4 illustrates a high-level view of GDPS/PPRC topology. Based on the
concept of “Mirroring data” on page 97, the physical topology of a GDPS/PPRC
consists of a Parallel Sysplex cluster spread across two sites (known as site 1
and site 2) with one or more z/OS systems at each site, separated by up to 62
miles or 100 kilometers (km).

The multi-site sysplex must be configured with redundant hardware (for example,
a Coupling Facility and a Sysplex Timer in each site), and the cross-site
connections must also be redundant. All critical data is mirrored from the primary
site (site 1, in Figure 5-4) to the secondary site (site 2).

GDPS manages unplanned reconfigurations as well as planned. It supports
automated site failover and manages planned actions required on a day-to-day
basis with standard actions.

With a multi-site Parallel Sysplex, this provides a continuous availability (CA) and
disaster recovery (DR) solution. In addition, GDPS provides a set of panels for
standard actions, and you can customize your own scripts as well.

Refer to the following site for more information about GDPS:

http://www.ibm.com/servers/eserver/zseries/gdps

SITE 1

NETWORK

1
12

2

3

4

5
6

7

8

9

10

11

SITE 2

NETWORK

1
12

2

3

4

5
6

7

8

9

10

11

Multi-site base or Parallel Sysplex environment
Remote data mirroring using PPRC
Manages unplanned reconfigurations

• z/OS, CF, disk, tape, site
• Designed to maintain data consistency and integrity

across all volumes
• Supports fast, automated site failover
• No or limited data loss - (customer business policies)

Single point of control for
• Standard actions

Stop, Remove, IPL system(s)
• Parallel Sysplex Configuration management
• User defined script (e.g. Planned Site Switch)
• PPRC Configuration management

100 km
106 Introduction to the New Mainframe: Large-Scale Commercial Computing

5.7 Summary
Being “available” is the state of an application being accessible to the end user.
The ideal for availability is 100% of the time. Businesses can no longer tolerate
downtime from software and hardware errors, or even from system upgrades.

There is no way to totally avoid failures in any single component, but there are
ways to lessen the impact of these failures. Redundancy, error detection and
recovery, as well as continuous monitoring of critical resources, are some of the
ways to achieve high availability. To handle situations where hardware outages
are unavoidable, and to provide for vertical expansion of applications, the sysplex
(SYStems comPLEX) was developed.

Figure 5-5 Summary - achieving high availability

z/OS provides robust facilities for detecting and reporting on errors. To
complement the hardware availability, a large portion of the operating system
code pertains to recovery. z/OS includes facilities such as RTM, ESTAE, FRR,
RRS, and GDPS to provide the highest level of system availability possible.

Key terms in this chapter

ARM Data sharing HA Recover Sysplex Timer

Automate Disaster LPAR SMP/E System log

Availability Disk mirroring MTBF SPOF Trace

CA GDPS N+1 Sysplex

Addresses Planned/Unplanned
Hardware and Software Outages

Flexible, Nondisruptive Growth
Capacity beyond largest CEC
Scales better than SMPs

Dynamic Workload/Resource
Management

Built In Redundancy

Capacity Upgrade on
Demand

Capacity Backup

Hot Pluggable I/O

Addresses Site
Failure/Maintenance
Sync/Async Data Mirroring

Eliminates Tape/Disk SPOF
No/Some Data Loss

Application Independent

Single System Parallel Sysplex GDPS

1 to 32 Systems

121234567891011
Site 1 Site 2

121234567891011 121234567891011
 Chapter 5. Availability 107

5.8 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. Define availability.

2. Give examples of redundancy built into modern computer hardware.

3. How do multiprocessors aid in system availability?

4. What are the main differences between a base sysplex and a Parallel
Sysplex?

5. What error detection facilities are available on the mainframe?

6. What is the purpose of RTM?

7. What is the difference between an ESTAE and a FRR?
108 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 6. Accessing large amounts
of data

6

Objective:

The objective of this chapter is to discuss the characteristics of data storage
and management in a large-scale computing environment.

After completing this chapter, you should be able to describe the concepts of:

� Channel subsystems
� Control Units
� DASD
� RAID
� Multiple allegiance/PAV
� Random access to data
� Databases
� Data sharing
� DFSMS
© Copyright IBM Corp. 2006. All rights reserved. 109

6.1 Introduction
The core function of a large-scale computing environment is to process
corporate data. In order for this function to be performed in an efficient manner,
access to the data is the most important consideration. This chapter discusses
the design of disk input/output (I/O) devices and how they are accessed from an
IBM System z server.

Figure 6-1 I/O connectivity

For any data processing, the program acting on it must reside in the processor’s
main storage. As shown in Figure 6-1, I/O operations result in the transfer of
information between main storage and an I/O device. Data is normally stored
separately from the program on an external storage device such as Direct
Access Storage Device (DASD), tape or printer.

Between main storage and the devices (where data resides or is intended to be),
there are other hardware components. These components, such as the channel
subsystem, potentially ESCON/FICON® directors (switches), and control units
and channel paths (ESCON® or FICON), are needed to connect the external
storage device to the processor.

CHANNEL SUBSYSTEM

CONTROL
UNIT

PRINTER DASD

CONTROL
UNIT

CPU CPU

CHANNEL SUBSYSTEM

CONTROL
UNIT

PRINTER DASD

CONTROL
UNIT

CPU CPU
110 Introduction to the New Mainframe: Large-Scale Commercial Computing

6.2 Channel subsystem

Figure 6-2 Channel subsystem

It is a common hardware technique to increase performance by using specialized
microprocessors, such as for graphics in a personal computer. An IBM System z
server has the potential for thousands of I/O operations a second. To manage
them, one or more dedicated microprocessors, known as Channel Subsystems
(CSSs), are used. At the time of writing the largest IBM System z could have
1024 channels spread across four CSSs.

The CSS provides the server communications to external devices using channel
connections. The channels allow transfer of data between main storage and I/O
devices or other servers under the control of a “special” channel program.

A CSS accepts requests, generated by the programs executing on a CP, to start
I/O operations to a specific device address. Once the request is accepted, the
CP can continue running programs. So the speciality processor System Assist
Processors (SAPs) provide the internal I/O assistance processing between the
CPU and the channel subsystem, as shown schematically in Figure 6-2.

A SAP is a processing unit (PU) that runs the channel Subsystem Licensed
Internal Code to control I/O operations. All SAPs perform I/O operations for all
logical partitions and all attached I/Os in an IBM System z.

S to r a g e

C P U C P U

S A P
S A P

C h a n n e l S u b s y s te m
E s c o n a n d F ic o n

C U

C U C U

C U
S w itc h S w itc h
 Chapter 6. Accessing large amounts of data 111

6.3 Control units
The channel design requires devices to be connected to a control unit.

The function from a control unit is to execute channel commands. The channel
protocol consists of channel command words (CCWs), which represent actions
that the device has to perform. An operation can consist of more than one CCW,
referred to as a chain. The control unit is responsible for making sure that an
operation is complete before requesting the next CCW in the chain from the
channel.

For example, adding data to the end of an existing file on tape requires the
following operations:

1. Position the tape at the end of the existing data

2. Write the new data

3. Indicate that the writing of the new data has ended

4. Rewind the tape

These actions are carried out without the intervention of the CPU or the
operating system. The inclusion of a control unit in the architecture allowed the
designers to create functionality that would have been beyond the power of the
early mainframe processors. In fact, this illustrates an early use of dedicated
microprocessors.

The early design of disk devices allowed a device to be connected to only one
control unit. For performance and resilience reasons, later designs allowed a
device to be connected to more than one control unit.

6.4 DASD CKD architecture
A direct access storage device (DASD) is a term derived from the early
mainframe environments referring to disks and drums. Early disks were
manufactured in a similar way to the modern PC disks with recording surfaces
and read/write (R/W) heads.

The R/W heads were mounted on a single assembly and therefore had to move
together, which led to the concept of tracks and cylinders, as explained here:

� A track is the surface area that one head can read from or write to while
stationary.

� A cylinder is the area that all heads in the assembly can read from or write to
while stationary.
112 Introduction to the New Mainframe: Large-Scale Commercial Computing

The movement of the heads, being a mechanical action, was time-consuming
and was best avoided. Therefore, writing the data to an entire cylinder was the
most effective thing to do. When the cylinder was full, the head assembly was
moved to the next cylinder.

A personal computer disk uses a fixed block architecture (FBA) in which the data
is written in a standard way and interpreted by software when it is read from the
disk. The IBM System z uses a count key and data (CKD) architecture, which
allows for a degree of processing by the control unit.

The term record, somewhat confusingly, is used differently in software and
hardware contexts—although both see it as a discrete piece of information.

A software record is a minimum piece of information. However, for more efficient
I/O operations, records may be combined to form a block for writing to disk. From
a hardware point of view, the block is a record. The CKD format on a disk track is
shown in Figure 6-3.

Figure 6-3 Count key and data architecture (CKD)

The count field and the data are always present, but the key field is only present
in some circumstances. The count field identifies the position of the record on the
disk and includes the cylinder and track number. It also contains the length of the
key, if present, and the length of the data.

The key field can be used to identify which records a block contains. There are
specialized CCWs that search the key fields. When a match is found, they read
the associated data. This reduced the need to read all records to find a specific
record, before relational databases came into common use.

Count, Key, Data (CKD) Format

Gap, Sync

countkeycountkeycount data datadata key

record i-1 record i record i+1
start
record

start
record

start
record

start
record
 Chapter 6. Accessing large amounts of data 113

6.5 Mapping for access to devices
This document does not cover the internal operation of the z/OS platform.
However, it simplifies the following topics to briefly mention three elements,
referred to as control blocks. These are the Unit Control Block (UCB), the Unit
Control Word (UCW) and the Control Unit Control Block (CUCB), as explained in
more detail here:

UCB The UCB is used by z/OS to represent every device that may be used
for an I/O operation. It contains state information and queues of
requests to access the device.

UCW The UCW is equivalent to the UCB in representing a device, but it is
used by the hardware. It contains state indicators and points to one
or more CUCBs.

CUCB As mentioned, a device may be connected to several control units,
which in turn may be connected to several channels. A CUCB is
present to represent each control unit defined to the system. It
contains the pointers to the channels it is connected to.

Figure 6-4 Mapping for access to devices

z/OS
UCB

CUESCDESCD

Unit
address '0A'

Device
number

200A

ESCON/FICON
I/O interface

Unit adress

UA=0A

1A

2A

8A

9A

ESCDESCD

ESCDESCD

ESCDESCD

CHANNEL
SUBSYSTEM

UCW

CU

CU

CU

 sub
channel
number
114 Introduction to the New Mainframe: Large-Scale Commercial Computing

As illustrated in Figure 6-4, the CSS uses the UCW to find the CUCBs, and
decides which is the best channel/control unit pair to use for the operation. After
this decision is made, the relevant channel microprocessor is signalled to start
the I/O. When the I/O operation is complete, the channel notifies the CSS, which
in turn notifies a CP.

6.6 DASD subsystem

Figure 6-5 DASD subsystem

The combination of a control unit and a number of disk drives is referred to as a
DASD subsystem, shown in Figure 6-5. The control unit allows the use of devices
that may not have been designed for a channel architecture.

For example, a disk could be designed to be attached to a SCSI interface and the
control unit will therefore convert to and from the channel architecture. The
control unit also provides a caching facility, which allows data to be stored prior to
being written and prestaged for sequential reading.

FF00

FF01

FF02

FF03

2000
2001
2002
2003
2004
2005
2006
2007

2008
2009
200A
200B
200C
200D
200E

200F

CU

CU

disk drives

ESCON/FICON Directors
 Chapter 6. Accessing large amounts of data 115

A control unit may be connected to several channels, and a device may be
connected to several control units. This capability contributes to operational
availability and resilience; that is, the I/O operation can have alternate paths to
reach the device. Additionally, an ESCON or FICON director can be connected in
between the control unit and the IBM System z, thereby increasing system
stability and scalability.

Each device has a unique address that is used by z/OS to start an I/O operation,
no matter how many channels and control units the device can be accessed
through.

This original DASD design makes the surface or R/W heads a single point of
failure. Moreover, only one read or write operation can take place at any time,
which causes performance bottlenecks when multiple LPARs are sharing data.
The solution to the single point of failure was the development of Redundant
Array of Independent Disks (RAID). This technology also allowed the “single
operation at a time” bottleneck to be addressed, as discussed in the following
sections.

6.7 Redundant Array of Independent Disks (RAID)

Figure 6-6 Example RAID-5

Redundant Array of Independent (earlier, “Inexpensive”) Disks (RAID) is a direct
access storage architecture where data is recorded across multiple physical
disks with parity separately recorded, so that no loss of access to data results
from the loss of any one disk in the array. In the event of a failure of one of the
disks, it can be replaced and the data rebuilt from the remaining disks. From the

data 1
data 2
data 3
data 4
data 5
data 6
data 7
data 8

data 1

data 5

data 2

data 3

data 4

data 6

data 7

data 8

RAID 5

party 4-7

party 3-6

party1-8
116 Introduction to the New Mainframe: Large-Scale Commercial Computing

point of view of the server the data resides on a single physical disk, referred to in
z/OS as a volume.

There is a variety of common and insignificant RAID-levels. RAID-5 has a high
I/O rate and a medium data rate. In Figure 6-6 you see that RAID-5 (just like
RAID-10) is used by the IBM DS8000 controller in the majority of configurations.1

To help performance, the control unit is equipped with a large storage cache of
non-volatile storage, which is used for both read and write operations. A write
operation is seen by the server to be completed when the data is in the cache
(not when it is written to the internal disks). For read operations, the data is
assembled in the cache and kept there in case of future reference, providing that
the cache capacity is sufficient.

6.8 Reducing the number of logical volumes
The disks internal to a RAID subsystem are industry-standard FBA format, and
therefore the control unit has to emulate CKD. Because the CKD architecture is
emulated by the RAID subsystem, a logical volume could in theory be of any
size—al though in practice the DFSMS software limited the sizes to the DASD
being emulated (refer to 6.14, “Data placement and management” on page 122,
and 4.2.2, “Data Facility Storage Management Subsystem (DFSMS)” on page 70
for more information about this topic).

With the steadily increasing amount of data to be stored and processed, the
number of logical volumes to manage became a problem. This problem was
addressed by DFSMS, allowing substantially larger logical volumes to be defined
and therefore reducing the total number of volumes.

However, larger volumes meant more data per volume, and therefore more I/O
requests were made to each volume. Access to volumes in z/OS was originally
designed with the assumption that only one operation is permitted at a time. The
UCB representing the logical volume only permits one active I/O operation; any
others have to be queued, which delays processing.

The RAID design means that the operation perceived by the server as being on a
single volume is, in reality, either taking place in cache or across several internal
disks. Because the physical and logical operations are not directly related, a
RAID-based DASD subsystem permits multiple operations to a logical volume.

The features that allow multiple access are described in the following section.

1 Refer to the IBM Redbook ABCs of z/OS System Programming Volume 3, SG24-6983, for more
information about this topic.
 Chapter 6. Accessing large amounts of data 117

6.9 Multiple Allegiance/Parallel Access Volumes
Two enhancements are available with the RAID-based DASD subsystem. These
are Multiple Allegiance (MA) and Parallel Access Volumes (PAV), which have
similar functionality. Let’s look at these enhancements in more detail.

Multiple Allegiance (MA)

Figure 6-7 Multiple Allegiance

MA is a hardware feature that allows LPARs on one or more physical machines to
have concurrent access to a logical volume, as shown in Figure 6-7. Each I/O
operation indicates whether the intent is to read or write data, and the control unit
serializes any operations that are in conflict.
118 Introduction to the New Mainframe: Large-Scale Commercial Computing

Parallel Access Volume (PAV)

Figure 6-8 Parallel Access Volume (PAV)

Parallel Access Volume is a methodology for allowing multiple I/O operations to a
logical volume from a single z/OS system, as shown in Figure 6-8. The function
is split between the hardware and the software.

The UCB architecture still said that only one I/O was allowed to a disk, and PAV
was introduced to address this limitation. The concept behind PAV is that every
disk has its normal base UCB and also a number of alias UCBs, all of which
connect to the logical disk. This means that it is possible to schedule concurrent
I/Os to a disk: one through the base UCB, and the rest through the alias UCBs.

If z/OS detects that delays are occurring because requests are being queued on
a base UCB, checks are made to see if concurrent I/O operations would reduce
the queue. This may not always be the case, because the delays could be due to
overloading of the control unit or channels.

If concurrent I/O is appropriate, however, then an alias address is selected to be
used as another route to the logical volume. This association is communicated to
the DASD subsystem. It maps I/O operations made to the alias addresses onto
the base logical volume. If this is not sufficient to reduce the delays, then more
aliases can be assigned to the base.
 Chapter 6. Accessing large amounts of data 119

6.10 Random access to data
The RAID design provides a much greater capability for processing data than the
previous generation of DASD. However, the first request to read a data record
requires the component parts to be retrieved from the internal disks, and this is a
relatively long operation. After the first reference is complete, the data will be in
cache and therefore subject to high-speed retrieval. The problem with this,
however, can be illustrated with an example from the banking industry.

The key piece of information relating to a client account is the account number,
and a large bank will potentially have millions of these numbers. An increasing
number of clients are using Internet access to their accounts, and this requires
the reading of the account record. However, this type of access is likely to be only
once or twice a day and no advantage is gained from the RAID technology
because the data is not in cache. Therefore, the technique of predictive loading
can be considered in such cases, as described in the following section.

Predictive loading
If data is known to be infrequently referenced but is important for the
performance of a function, then preloading it can be considered. In the case of
the bank account numbers, a program could be used which reads, without
processing, all of the numbers. This has the effect of loading the data into the
control unit cache for fast retrieval later. A variation of this technique is to load the
data into virtual storage, which gives significantly faster access.

6.11 Databases
Databases could be the subject of a complete course in their own right. They are
mentioned here because they are one of the reasons for holding data in one
place.

In a large commercial environment, data is likely to be held on relational
databases. In theory, each database could be held on a separate server, but this
can lead to problems in synchronizing updates.

An alternative solution is to have all of the related databases on a single large
server that only manages the reading and updating requests from clients. This
arrangement gives good data integrity but usually poor processor utilization.

The z/OS solution of having the clients and database manager on the same
server gives high processor utilization. It also reduces the complexity of
communication and therefore the exposure to failure between the client and
server.
120 Introduction to the New Mainframe: Large-Scale Commercial Computing

6.12 Data sharing
The ability to share data for both reading and updating, from multiple programs
that can be running on different physical machines, is a key requirement for
capacity, scalability, and availability. The problem to be solved in any environment
is how to indicate an interest in a piece of data and lock it for updating, without
impacting performance.

To achieve data sharing in z/OS, Parallel Sysplex is required, with structures in
the Coupling Facility (CF) providing the necessary mechanisms. Parallel Sysplex
is described in more detail in 5.4.3, “Continuous availability of mainframes using
clustering” on page 98 and 3.3.3, “Parallel Sysplex” on page 48.

6.13 Data Facility Storage Management System
In addition to internal storage, external storage devices (for example, tape
volumes) are still used as well. The use of tape subsystems is generally applied
for sequential, archiving, or backup processing (see 4.2.5, “Data backup and
recovery” on page 75).

One component of the DFSMS, the base of the storage management system
(SMS) of DFSMS, is the Object Access Method (OAM). OAM uses the concepts
of system-managed storage, introduced by SMS, to manage, maintain, and verify
tape volumes and tape libraries within a tape storage environment.

In general, a tape library is a set of tape volumes and the set of tape drives
where those volumes may be mounted. The relationship between tape drives
and tape volumes is exclusive; a tape volume residing in a library
(library-resident tape volume) can only be mounted on a tape drive contained in
that library (library-resident tape drive), and a library-resident tape drive can only
be used to mount a tape volume which resides in the same library.

A tape library can consist of one or more tape systems. When a volume is
entered into a tape library, it is assigned to a tape storage group. A tape library
can contain volumes from multiple storage groups, and a storage group can
reside in up to eight libraries.

As new tape data sets are created, the installation allocates data sets to tape
volumes in an SMS-managed tape library by associating one or more tape
storage group names (using the SMS storage group ACS routine) with the
allocation request. DFSMS ensures that only tape devices within the tape
libraries associated with the tape storage groups are allocated to the request.
Existing tape data sets on library-resident volumes are allocated to tape drives
within the library where the volume resides.
 Chapter 6. Accessing large amounts of data 121

SMS is used to define a storage hierarchy for objects and the parameters for
managing those objects. OAM uses this hierarchy definition and management
parameters to place user-accessible objects anywhere in the SMS storage
hierarchy. The object storage hierarchy can consist of:

� Direct access storage device (DASD)

� Tape volumes associated with a tape library device (SMS-managed,
library-resident tape volumes), and tape volumes outside of a library device
(non-SMS-managed, shelf-resident tape volumes)

� Optical volumes inside a library device (SMS-managed, library-resident
optical volumes), and optical volumes outside of a library device
(SMS-managed, shelf-resident optical volumes)

Information related to tape volumes is kept in the tape configuration database
(TCDB), which is an Integrated Catalog Facility user catalog that contains tape
volume and tape library records. The TCDB can be used to maintain information
about an IBM tape library and the volumes that reside there.

Tape drives, depending on the type and model, can use the channel subsystem,
potentially ESCON/FICON Directors (switches), control unit and channel path
(ESCON or FICON) to connect to the processor. 2

6.14 Data placement and management
In the type of environment discussed here, there can be terabytes of data to be
managed. The DASD subsystems may have different performance
characteristics, such as having more cache. Regulatory requirements might
determine how many copies of the data need to exist and for how long. To
manage these types of requirements, automation tools are necessary.

In z/OS, the DFSMS component provides the tools to perform these actions. The
name given to the tool will indicate its characteristics, which can refer to:

� Performance
� Space
� Backup

Performance
Data can be placed on disk subsystems based on the performance requirements
for that class of data. If the data has a high reference rate, then it may be placed
on a disk subsystem that has plenty of available cache. The data could also be

2 Refer to the IBM publication z/OS DFSMS Object Access Method Planning, Installation, and
Storage Administration Guide for Tape Libraries, SC35-0427.
122 Introduction to the New Mainframe: Large-Scale Commercial Computing

striped across multiple disk assemblies so that different parts of the data can be
read concurrently. Data used for batch processing tends to be processed
sequentially, and the preloading of data to the RAID control unit cache could
provide the needed performance.

Online processing tends to process data in a random fashion and demands a
higher level of performance. In this case the data would most likely be placed on
disk subsystems with greater performance characteristics or facilities, such as
Parallel Access Volumes, that allow multiple readers to the same volume
concurrently.

Space
z/OS does not allow files to be of unlimited size. A primary and secondary space
scheme is used. The primary space is made available on a volume, and then a
secondary space, up to a limit, is allowed if the former is used up. Rules can be
established to make sure that sufficient space is available under most
circumstances so that the user does not need to take any action.

Backup
As any personal computer user is aware, disk failure or accidental damage to
data can cause major disruption. In a large-scale environment, where data can
be interrelated, recovery can be a lengthy process unless a strict regime of
backing up data is in force.

DFSMS provides a full complement of backup and recovery solutions as
previously discussed in 4.2.5 “Data Backup”. The solution could be for local
recovery or disaster recovery, it could be a software, hardware or a hybrid
solution and it could be at the data set, volume, application and site level.

Migration
All media for storing data has a cost. DFSMS provides the capability to move
infrequently used files from the more expensive high performance disk
subsystems to a less expensive disk or tape subsystems. This data movement is
called migration.

During migration, DFSMS can compress the data to reduce its size and can
release space in those data sets that were initially over-allocated and not all the
allocated space has been used. Migration is usually an automatic process that is
invoked when a file has not been referenced for a set time, usually at least a few
days or data can be migrated by command. When data is in its migrated state, it
is not readable by an end user or application and must be recalled back to the
original disk subsystem in order to be accessed.
 Chapter 6. Accessing large amounts of data 123

In DFSMS, there can be multiple migration levels. These are known as migration
level one (ML1) and migration level two (ML2). In most cases, data that has gone
unreferenced for a period of time is migrated to ML1. If the data remains
unreferenced on ML1 for a preset period of time, then migration to ML2 occurs
and the data is moved to an even lower cost per byte medium such as tape.

If a particularly aggressive view is taken, then a file can go straight to ML2 status,
bypassing ML1. If the data is referenced while in either ML1 or ML2 status, then it
is automatically returned to the user disk volume (recalled) where it can be
accessed by a user or application. Recall can invoked automatically, such as
when a data set is referenced by a user or application, or it can be recalled by
command.

6.15 Summary
Accessing large amounts of data can be done on almost any commercial
computing system. In a large-scale commercial environment, access to data can
be required for a variety of applications, which might involve updating of the data.
Having all of the data in a single environment simplifies its management and
allows high processor utilization.

However, extremely high levels of reliability are necessary in the hardware and
software. When running multiple applications, restarting the system to recover
one of them is a serious event. The combination of z/OS software, an IBM
System z, and well-tested application software should be able to run for months
and only be restarted for maintenance activities.

Tape media has a high capacity and relatively low cost for storing data, but it is
only practical for data archiving or data that will be processed sequentially. Data
that will be accessed for online applications, where performance is an important
consideration, needs to be stored on disk.

Data transfer rates are usually expressed in terms of bits per second. The IBM
System z channel data rates are expressed in bytes per second. At the time of
writing, the fastest channel has a transfer rate of 4 Gbit per second.
124 Introduction to the New Mainframe: Large-Scale Commercial Computing

6.16 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. What are Control units?

2. Can you explain RAID?

3. What is “random access to data”?

4. Why is data sharing needed?

5. What is the difference between MA and PAV?

6. Why don’t we place all our data on tape? It is less costly. What do we use?

6.17 Topics for further discussion
1. By today’s standards, what constitutes a large amount of data?

Key terms in this chapter

Channel
subsystem

Control unit DFSMS Migration Tape library

CKD DASD FBA PAV

Control block Data sharing Logical
address

RAID
 Chapter 6. Accessing large amounts of data 125

126 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 7. Systems management

7

Objective:

After completing this chapter, you will be able to:

� Understand systems management disciplines

� Understand the different data types that /OS uses

� Understand how errors are handled
© Copyright IBM Corp. 2006. All rights reserved. 127

7.1 Introduction to systems management
Systems management is a general term that is widely used, and whose meaning
is dependent on the context. In some cases systems management means the
operator interface, while in others, it means provisioning capacity.

In a large-scale commercial system, systems management usually is considered
to be “A collection of disciplines aimed to monitor and control a system’s
behavior.” The disciplines usually included in systems management are:

Configuration management The techniques, resources, and tools used to
maintain an accurate inventory of the hardware
and software (system and application).

Workload management Techniques, resources, and tools used to define,
monitor, and maintain the levels of service the
unit of work needs.

Operations management Techniques, resources, and tools used to have
more effective and error-free operator
communication.

Network management Techniques, resources, and tools used to
monitor the network status, availability, and
performance, and taking corrective action if
needed.

Storage management Techniques and tools used to manage external
storage (disk and cartridge storage).

Security management Techniques, resources, and tools used to define,
monitor, and maintain the security standards.

Performance management Techniques, resources, and tools used to define,
monitor and, eventually, act upon the overall
system performance.

Problem management Techniques, resources, and tools used to open,
follow, resolve, and close any problem
(hardware, software or application).

Change management Techniques, resources, and tools used to track
and manage changes, and their dependencies
and implications. Changes can be hardware,
software, configuration, and so on.

Some of these functions are performed by the operating system or appropriate
subsystems, while others are provided in specialized tools marketed by various
software companies.
128 Introduction to the New Mainframe: Large-Scale Commercial Computing

Many businesses concentrate more on running their day-by-day operations than
on planning for or anticipating critical situations. Thus, the implementation of
these systems management disciplines is frequently driven by critical situations
such as unacceptable response time, client complaints, problems that are not
being solved in a timely manner, changes in software or hardware that create
problems, changes in the business environment that require more computational
resources, and so on.

However, most of the information about how a system is performing, which is
needed for systems management, already exists. z/OS monitors, collects, logs
and registers a great deal of valuable system information. Reporter systems can
then order it in a way that is readable and significant to people, so that immediate
decisions can be made or the appropriate planning can be done to
accommodate or provide new resources.

7.2 System data
In a z/OS environment, the operating system is responsible for the collection and
maintenance of the data, even if the data is generated by different components
(the system itself, the batch manager, transaction manager, database manager,
security manager, workload manager, and so on).

Data collection for accounting, reporting, and managing a system is described
here:

� Accounting

Large-scale commercial operating systems are usually run on behalf of many
different users, departments, and even companies. They need an accounting
system to be able to know the costs (at least in resource usage) of each piece
of work. But as a prerequisite for an accounting system, there must be data
collected.

� Reporting

As on any other platform, the two main tasks of the operations staff is to be
able to run the system with the best performance possible, and to be able to
resolve any error that might prevent achieving the level of service stipulated in
the SLA.

– Performance

The performance manager monitors the system’s performance and keeps
data about it. This data is the base for producing performance reports.
 Chapter 7. Systems management 129

– Errors

System and subsystems must keep an error log to help in problem
determination.

The usual flow of information is that the system or subsystem gets the data
and puts it in a common repository. This data is usually raw data that must be
“cooked.” Usually, every manager that writes data into the central repository
has some software to read it and report about it. There are also tools that
allow this data to be loaded into a standard data base, in order to be able to
use a standard database interface for querying and reporting.

Data collection in z/OS
The implementation of data collection in z/OS is summarized in Figure 7-1.

Figure 7-1 System data repository

The z/OS component System Management Facilities (SMF) has the function of
being a repository. It uses a set of files in an alternating fashion; when one file
fills, it overflows onto the second, and then the third, and so on. Usually there are
three or four of these files.

This data is retained and subsequently used to provide a range of user-specified
reports. In many installations, the data is copied to a daily file, then periodically
the SMF data is copied to a weekly or monthly file for long-term storage and
subsequent retrieval.

Routines (SMF,
system, product,
installation-written)
collect and format
data into records
and then pass the
records to the SMF
writer
Routines Providing
Data to SMF

SMF Writer
Routines and
Buffers

SMF
Data
sets

Dump
data
set

User-written
Analysis/Report
Routines

Routines (SMF,
system, product,
installation-written)
collect and format
data into records
and then pass the
records to the SMF
writer
Routines Providing
Data to SMF

SMF Writer
Routines and
Buffers

SMF
Data
sets

Dump
data
set

User-written
Analysis/Report
Routines
130 Introduction to the New Mainframe: Large-Scale Commercial Computing

The operating system provides the facility to automatically switch the SMF
capture onto the next data set. Automation operational tools are also employed to
delete the data sets at various times, or under certain conditions.

The z/OS component System Management Facilities (SMF) collects and records
system and job-related information that the installation can use in:

� Billing users
� Reporting reliability
� Analyzing the configuration
� Scheduling jobs
� Summarizing direct access volume activity
� Evaluating data set activity
� Profiling system resource use
� Maintaining system security

SMF formats the information that it gathers into system-related records (or
job-related records). System-related SMF records include information about the
configuration, paging activity, and workload. Job-related records include
information about the CPU time, SYSOUT activity, and data set activity of each
job step, job, APPC/MVS transaction program, and TSO/E session.

As illustrated in Figure 7-1 in a simplified fashion, several routines of SMF
(system, program-product and installation-written) collect and format data into
records and then pass the records to the SMF writer. SMF routines copy records
to SMF buffers and transfer records from the SMF buffers to the SMF data sets.
SMF has a dump program that copies data from SMF data sets to dump data
sets for permanent storage.

Analysis and report routines, either user-written or program products, process
information records. Analysis routines read the SMF data set, list the dumped
SMF data set, use a sort/merge program to order the SMF-recorded information,
or perform a detailed investigation of one particular SMF data item, such as job
CPU time under TCBs. Report routines usually format and print the statistics and
results of the analysis routines.1

7.3 Configuration management
In large-scale commercial systems, there are always a large number of hardware
devices, system software items (such as compiled modules, source modules,
data items and so on), and application software items to manage.

1 More information can be found in the IBM publication z/OS: MVS System Management Facilities
(SMF), SA22-7630.
 Chapter 7. Systems management 131

The Worldwide Project Management Method (WWPMM) defines configuration
management as the process of defining, monitoring, and controlling the status
and versions of the components of a system, which together constitute a
consistent whole for a period of time.2

Capability Maturity Model (CMM) defines configuration management as a
discipline applying technical and administrative direction and surveillance to
identify and document the functional and physical characteristics of a
configuration item, control changes to those characteristics, record and report
change processing and implementation status, and verify compliance with
specific requirements.3

The first definition is more general, and the second definition is more
application-oriented. Following is a brief description of how these three areas
(hardware, system software, and application software) are managed in z/OS.
Hardware and system software tools are integrated in the operating system, and
application software configuration can be controlled with various vendor tools.

7.3.1 System software configuration management
System Modification Program Extended (SMP/E) is the name of the software that
is used in z/OS to manage system software configuration. It is used for the
installation of software products on the z/OS system, and for tracking the
modifications made to those products.

Usually, it is the responsibility of the systems programmers to ensure that all
software products and their modifications are properly installed on the system.
Systems programmers must also ensure that all products are installed at the
proper level so that all elements of the system can work together.

System software development in this environment has characteristics that have
determined the development direction of the configuration management tools.
These characteristics are:

� Large number of components.

� Great packing flexibility, meaning that Installation X may need Module A but
not Module B, or vice versa. This flexibility has always been important in
allowing installations to build customized environments.

� Backward compatibility requirement. The investment of large-scale
commercial operating systems in software must be preserved, so there is a
need for backward compatibility (that is, every new software version must
support everything the previous version did).

2 Standard IBM Worldwide Project Management Method (WWPMM)
3 IBM Capability Maturity Model Integration Model
132 Introduction to the New Mainframe: Large-Scale Commercial Computing

� Different software developers and vendors.

� Long-supported versions.

SMP/E supports an inventory of each single software piece and, more
importantly, the relationship between the pieces. Each modification set (including
one or more piece of software) is called a SYSMOD and is the actual package
containing information that SMP/E needs to install and track system
modifications.

There are four types of SYSMODs4 as described here:

� Program Temporary Fix (PTF)

These SYSMODs prevent or fix problems with an element, or introduce new
elements.

� Authorized Program Analysis Report (APAR)

These SYSMODs correct a defect in a current release of an IBM-supplied
program.

� FUNCTION

These SYSMODs introduce the elements for a product.

� User Modifications (USERMOD)

These SYSMODs customize an element.

It is useful to understand the following terminology when dealing with SMP/E:

� Prerequisites

The minimum maintenance level necessary to be able to safely install the
modification set. This is expressed with the names of the sysmods (usually
PTFs) that must be present in the system.

� Corequisites

The modifications to the maintenance level that are dependent on the
installed software. This is expressed as: If PTF abc is present, then PTF xyz
must also be present.

� IF requisite

This a modification control statement (MCS) used to specify requisites that
must be installed for a given SYSMOD if a specified function is also installed.

� HOLDDATA

This is an MCS used to indicate that a given SYSMOD contains errors or
requires special processing before it can be installed. Examples include holds
for errors, documentation updates, workstation downloads, IPLs, and specific

4 Refer to the IBM publication IBM SMP/E for z/OS User's Guide, SA22-7773, for more information.
 Chapter 7. Systems management 133

actions that must be taken before or after APPLY processing, ACCEPT
processing, or both.

� Installation instructions and restrictions

Hardware prerequisites, special instruction, operation needs, new or changed
messages, and so on.

7.3.2 Hardware configuration management
An I/O configuration consists of the hardware resources available to the
operating system, and the connections between these resources. When you
define a configuration, you need to provide both physical and logical information
about these resources. For example, when defining a device you provide physical
information (such as its type and model), as well as logical information (such as
the identifier you will assign in the configuration definition).

The resources to be managed are channels, switches, control units, and devices
that are connected and can be accessed from the LPARs that are configured in
the sysplex. These LPARs can reside in one or more separated IBM System z
machines.

It is necessary to define an I/O configuration to the operating system (software)
and the channel subsystem (hardware). The Hardware Configuration Definition
(HCD) element of z/OS consolidates the hardware and software I/O configuration
processes under a single interactive end-user interface. The validation checking
that HCD does when data is being entered helps to eliminate errors before you
attempt to use the I/O configuration.

The output of HCD is an I/O definition file (IODF) that contains I/O configuration
data. An IODF is used to define multiple hardware and software configurations to
the z/OS operating system.

These actions must be completed in order for a hardware configuration to
become usable:

1. It has to be written in a system file.

2. It has to be split between the hardware and the software. As stated in
Chapter 6, “Accessing large amounts of data” on page 109, an I/O operation
involves both operating system routines as well as channel subsystem work.

3. It has to be tested to ensure that this configuration will not cause a problem
when activated.

4. It has to be activated sysplex-wide, to ensure that there are no conflicts in
accessing the devices.
134 Introduction to the New Mainframe: Large-Scale Commercial Computing

This scheme is meant to provide security, integrity, and flexibility to a large-scale
operating system environment, as explained here:

� Security

The definition of the hardware is centralized. Only users that need to use it
must be authorized, and the activation action can be protected.

� Integrity

Only LPARs that need to be able to share the same device are given access
to it. LPARs in the same production sysplex usually see the same devices in
order to be able to access the same data—but there may be other LPARs on
the same channel subsystem that must be allowed to see only their own
devices. This is the case of a testing or development system. There also may
be LPARS running different operating systems, for example, the case of many
LPARs running Linux.

� Flexibility

The granularity is at a single-device level. Besides that, LPARs are only
affected by the modifications on the I/O devices they see.

7.3.3 Application configuration management
Application configuration management is a discipline that is common to any
platform. On a IBM System z platform, these tools must be able to manage
Java™ (WebSphere Application Server) as well as COBOL applications. The
IBM tool for application configuration management is know as Software
Configuration and Library Manager (SCLM).

7.4 Workload management
The Workload Manager (WLM), whose functions are described in Chapter 3,
“Scalability” on page 37, is responsible for the distribution of resources among
the units of work that are executing over a given period of time.

As previously mentioned, the units of work are classified in service classes.
There are report classes, too, which are intended to group work not on a
performance basis, but on a reporting basis.

WLM writes summarized data over a period of time (usually half an hour) for both
classes. WLM retains the following data, which can subsequently be requested in
a report:

� CPU time used
� Memory used and pages/sec from this class
� I/Os done and I/O rate
 Chapter 7. Systems management 135

� Transaction rate (if it is a transactional class)
� How the goal was achieved in the last period

Figure 7-2 is an example of an RMF 5.1.0 Workload Activity Report. It shows a
CICS DBCTL workload with CICS/ESA® 4.1 and IMS/ESA® 4.1.

Figure 7-2 A WLM RMF report example

Note that waiting on a another product is the largest component of the CICS
execution phase of processing. In this example, the other product is
IMS/ESA 4.1.

7.5 Operations management
Operations in a large-scale commercial operating system is crucial for
performance and availability. The term operations usually refers to two related
activities:

� Batch scheduling

This is the operator’s control over the flow of batch jobs, which usually must
be run in a dependent way. This dependency tree is what is managed by the
batch scheduling tools.

� Console operations

This is the operator’s control over the various tasks that are running in the
system. These functions include starting, stopping, cancelling, and managing
priorities of every task active in the system.

Now let’s take a closer look at these activities.
136 Introduction to the New Mainframe: Large-Scale Commercial Computing

7.5.1 Batch scheduling
A major task facing large-scale commercial operating systems is dealing with a
huge number of batch jobs. Having thousands of batch jobs a day is quite normal
for a medium to large sysplex system, and it usually represents between 50%
and 70% of the total work. The heavy contribution of batch jobs to the overall
system workload is what drove the development of tools to automate the
scheduling and execution control of batch jobs.

The z/OS implementation of such tools range from a relatively simple solution
based on direct relations and deadlines implemented by the Job Entry
Subsystem (JES2 or JES3), to more sophisticated tools that specialized vendors
(including IBM) have developed.

A batch scheduling tool must have most of these capabilities:

� The capacity to run multiplatform with a single administrative console.
Centralized operations are useful to maintain single scheduling for that site’s
work, and to decrease administration activity.

� Obtain information about job status and statistics.

� Rules-based and event-based processing. Any tool must be able to:

– Schedule batch on a specific time basis (for example, run batch job BBB at
3 a.m.).

– Schedule on an if-then-else basis (if batch job ABC runs successfully, then
run batch job XXX, else run batch job ZZZ).

– Schedule on an event-driven basis (when file A is created, execute batch
job EEE).

� Provide automated failure alerting for the operations staff.

� Perform automatic recovery and restart for failed jobs.

7.5.2 Console operations
A console is one of the communication channels between the operating system
and subsystems and the outside world. Consoles in z/OS must be present for the
system to run. Today’s technology allows the console to be:

� A keyboard/display unit, attached to a controller or communications link. This
can be monochrome (“green screen”) or color (four colors or seven colors).

� A simulated keyboard/display unit attached to a controller or communications
link; in particular, a TN3270 client on a TCP/IP network.

� A programmable console interface:
 Chapter 7. Systems management 137

– Subsystem consoles, which are console interfaces used by automated
operations tools and components of the operating system.

– EMCS console interfaces, which are tools available to any program if the
user has suitable authorization from SAF.

� A hardware management console (HMC), which is a special function that is
optimized for control of the entire processor complex. In emergencies, the
HMC is available for use as a system console.

Large-scale commercial operating systems must offer enough information
through messages to adequately inform the operator about what is happening in
the system. As the messages appear on the screen and then scroll off, they are
retained in a logfile called the system log (SYSLOG).

Let’s look at some of the characteristics of messages:

� Every component has its own identifier, which is associated with the first three
letters of the message. For instance, IGCxxxxxT is from the data manager,
and IRRxxxxT comes from the security manager.

� The last letter of the message (T) indicates whether it is:

– An information message (I)

– A decision message (D) - An operator has to choose an action

– An action message (A) - An operator is instructed to do something

– A warning error message (W)

– A critical error message (E)

� The components of the system that control consoles are known as multiple
console support (MCS) and device independent operator console support
(DIDOCS). The definition of each console controls the messages that go to it,
by type of message and by the system originating the message.

� Every system component sends messages to the consoles. Therefore, in
medium to large installations, the consoles can be flooded with them. This
flood can be reduced by using a filter. What is filtered is up to the user.
Generally all error messages are kept, but the filter screens informational
messages. However, messages are not lost because they are all recorded in
the system log.

� The consoles can be defined as sysplex-wide, so that the sysplex has a
single point of control. Sysplex-wide means that messages from all systems
appear on the same console, and the scope of the messages can be
controlled. A system operator can issue commands that apply to only one
system, commands that apply to some of the systems, or commands that
apply to all systems in the sysplex.
138 Introduction to the New Mainframe: Large-Scale Commercial Computing

Note: Most decision messages, some error messages, and even some
information message must be followed by an operator command.

There are automation tools to automate console operations. System Automation
(SA) for z/OS is an IBM product that can be tailored to capture all messages
requiring an action, as well as to automate repetitive tasks. SA captures the
event, and if coded to do so, performs an action automatically.

An example of this automation may be to attempt to restart a network node that
has become inactive. It may be coded to do this an additional three times (or
three passes) within the next three minutes. If the node does not become active,
SA may be coded to generate an alert to Operations for immediate action.

Another example is the automated restart of an application subsystem, upon
certain abend conditions. These captured actions can also be delivered
immediately to a system or batch operator for follow-up. SA can also interface
with a scheduling package to initiate an automated procedure within the
scheduling package. For example, a job may be triggered to run when a certain
event occurs.

7.6 Network management
z/OS participates like any other node in the network and complies to the
standards in this area (SNMP communication, for instance). On such networks,
the z/OS network management subsystem usually acts as the focal point.

7.7 Storage management
In z/OS, the software that manages the external storage devices is known as
DFSMS. It is discussed in 4.2.2, “Data Facility Storage Management Subsystem
(DFSMS)” on page 70.

7.8 Security management
Security and integrity are discussed in Chapter 4, “Integrity and security” on
page 65.

In addition, z/OS can use a firewall as one of its address spaces, joining the
general security scheme. An example of such a scheme is shown in Figure 7-3.
 Chapter 7. Systems management 139

Figure 7-3 A sample enterprise security layout

7.9 Performance management
Performance management is a key discipline in the systems management area.
It includes measuring, analyzing, reporting, and tuning the performance of IT
resources. Performance management falls into two categories:

� Real-time monitoring, alerting, problem identification, and problem resolution

� Bench marking, modeling, rerunning problem scenarios, and trending
performance metrics feeding capacity planning

IT resources include:

� Hardware
� Software
� Applications

Capacity planning is another discipline very tightly coupled to performance
management. It can be considered as a long-term performance management
activity, or as another discipline where business requirements are modelled
according to hardware/software requirements.

IBM System z IBM System z

TIVOLITIVOLI
SecureWaySecureWay DirectoryDirectory

INTERNET

Users

FireWallFireWall

LPARLPAR
DMZ InternetDMZ Internet

LPARLPAR
DMZ DMZ BtBBtB

LPARLPAR
DMZ IntranetDMZ Intranet

PolicyPolicy
ManagerManager

INTRANET

Intrusion Intrusion
DetectionDetection
System System

WebSealWebSeal

BtB
Users

IDS
......

Policy Policy
Director Director
ManagerManager

Switch

WebSealWebSeal

Production LPARProduction LPAR

WebSealWebSeal

SwitchSwitch

FireWallFireWall

Legend

FireWallFireWall

Web Services Web Services Web Services

VPNVPN
140 Introduction to the New Mainframe: Large-Scale Commercial Computing

Different methods can be used for capacity planning. The method and tool
selected will depend on the time, cost, skill, and level of detail and accuracy that
are available.

LPAR Capacity Estimator (LPAR/CE), CP2000 Quick Sizer, as well as Processor
Capacity Reference (PCR) and zProcessor Capacity Reference (both based on
Large Systems Performance Reference (LSPR) data) are examples of tools that
can help you estimate various configurations and workloads using a
spreadsheet-like approach.

These tools are based on previous IBM comparisons among models of
mainframes, resulting in an Internal Throughput Ratio (ITR) for each machine
and an Internal Throughput Rate Ratio (ITRR) when comparing to a base model
in terms of performance capacity.5

Performance management objectives usually include the following:

� Optimize response time and throughput of IT resources

� Take corrective actions to alerts and problem requests

To realize these objectives, the performance management discipline includes
some or all of the following activities:

� Define and maintain performance alerts

� Define performance report formats

� Balance and tune IT resources and workloads

� Analyze change requests from a performance management perspective

� Collect performance statistics

� Respond to alerts (real-time by operations management - trended by
performance management)

� Manage the resolution of performance problems

� Automate performance tuning and alerts

7.9.1 z/OS implementation
There are many tools in the system performance arena that deal with
performance management issues. In general, they monitor performance in one
or more of the “flavors” that include the monitoring flavor used by the Resource
Measurement Facility (RMF) or Omegamon (IBM tools) tools.

5 Refer to the IBM Redbook ABCs of z/OS System Programming Volume 11, SG24-6327, for more
information about this topic.
 Chapter 7. Systems management 141

Resource Measurement Facility
Resource Measurement Facility (RMF) monitors performance data in three
flavors:

� Batch monitoring

There is a collector address space that collects performance data and writes
it onto a general repository, to be processed afterwards. The collection is
done on a seconds basis, while the writing in the repository is done on a
minutes basis (usually from 5 to 30 minutes). There is always a compromise
between the granularity (and therefore, the accurancy) of the measurements
and the overhead required to collect more detailed data.

This kind of monitoring is often used to gain a historical view of the behavior
of the performance indicators. The kind of data that can be found there is as
follows:

– CPU Statistics - PR/SM, CF(general and detail), cryptographic hardware
activity

– Storage - Paging activity, page data set activity, virtual storage activity

– Workload activity - Service given to the classes, transactions ended, goal
attainment

– I/O Activity - Channel path activity, device activity, switch analysis, disk
statistics

– Other - Enqueue activity

� Online monitoring

RMF can take a snapshot of system behavior at a point in time. RMF is
usually started when needed to allow the Operations staff to determine how a
system (or systems, if in a sysplex) is behaving at a given moment.

RMF deals with the same kind of data as batch monitoring, but in addition to
general values, online monitoring allows for more granularity and values can
be seen in a unit of work basis. In this area, there are many tools from
different vendors that allow this kind of performance monitoring.

� Delay monitoring

“Performance” deals with how many resources are allocated to a given user,
as well as with how long the user is delayed. This delay is analyzed by
sampling every second and averaging over a minute or two to see how the
users are delayed waiting to use the resources. It is an online tool, so a
resource bottleneck can be detected and corrected at that point in time.
142 Introduction to the New Mainframe: Large-Scale Commercial Computing

7.10 Problem management
Problem management is a discipline that can be viewed from various angles:

� How problems are solved
� How problems are reported
� How problems are tracked

Chapter 4, “Integrity and security” on page 65, describes the first case: how the
operating system tries to solve the problems it finds. Problem tracking is a
general issue in IT, and large-systems commercial operating systems usually
integrate on the general problem tracking circuit. There are many tools that can
be used to track problems from the moment they appear to the moment they are
solved.

In the following section we explain what aspect of problem management is
system-managed. With system management, a problem symptom is sent to the
system console for an immediate action. Problems related to hardware or system
software are also recorded in an error logging file (LOGREC), as described in
“LOGREC” on page 102.

7.10.1 Trend reporting
z/OS has a utility program known as EREP that is used to print LOGREC
records. LOGREC data is usually gathered on a daily or weekly basis. This data
can then be analyzed to help in problem determination, or to highlight trends in
order to apply preventive maintenance (hardware errors).

7.10.2 Operator console
A system operator console is another place where error information is displayed.
The consoles are usually sysplex-wide in scope, and problems originating from
any sysplex members come to a single console, thus allowing a single point of
control. A hardware management console (HMC) is available for use in case a
system enters a disabled wait state and loses contact with the system console.

7.11 Change management
Change management is a discipline that is meant for the whole infrastructure.
z/OS helps to manage changes applied to software through SMP/E, asking for
prerequisites and logging changes. A similar task is performed for
hardware-related changes by the hardware configuration definition (HCD)
product.
 Chapter 7. Systems management 143

7.12 Summary
In this chapter, we discussed nine different disciplines of systems management:
configuration management, workload management, operations management,
network management, storage management, security management,
performance management, problem management, and change management.
Keep in mind that a given computing environment could have fewer disciplines,
or even more systems management disciplines, depending on its requirements.
For example, security management has permanent technical and business
requirements in many environments.

It is important to realize that ultimately, the systems management disciplines
described here implicitly relate to service level management; that is, to meeting
the committed service level. For example, efforts to improve system performance
in order to meet SLA commitments may involve isolating and resolving problems
in the network, storage, workload balancing, device or channel configuration or
operations.

We have seen how z/OS provides and uses tools to obtain and process the
information required for better system management. The generated system
information is collected and formatted in a way that is understandable to humans
so it can be analyzed and used to improve overall system behavior.

Effective systems management allows you to monitor the system components,
be aware of circumstances that may lead to unexpected results, and apply
appropriate correct action, solutions, and improvements.

Key terms in this chapter

APAR HCD Problem
management

SMP/E Workload
management

Change
management

Network
management

PTF Storage
management

Configuration
management

Operations
management

RMF System data

FUNCTION Performance
management

Security
management

USERMOD
144 Introduction to the New Mainframe: Large-Scale Commercial Computing

Chapter 8. Autonomic computing

8

Objective:

After completing this chapter, you will be able to:

� Understand autonomic computing capabilities

� Understand the autonomic computing framework

� Know the autonomic capabilities of large-scale commercial systems

� Know the autonomic computing tool
© Copyright IBM Corp. 2006. All rights reserved. 145

8.1 Introduction
Technology has permeated so many aspects of our lives today that it is almost
expected. Because technology appears in even the simplest tasks, it seems
routine. However, along with the evolution of a larger technical infrastructure
comes the task of maintaining and managing it.

The very technology that makes our life easier—it automates a set of business
processes and integrates applications and data across an enterprise—should be
“smart” enough to manage itself. And this principle is the basis upon which
autonomic computing is built.

The term “autonomic” comes from an analogy to the autonomic central nervous
system in the human body, which adjusts to many situations automatically
without any external help. We walk up a flight of stairs and our heart rate
increases. When it is hot, we perspire. When it is cold, we shiver. We do not tell
ourselves to do these things; they just happen.

8.1.1 Autonomic computing principles
Similarly, the way to handle the complexity problem is to create computer
systems and software that can respond to changes in the digital environment, so
the systems can adapt, heal, and protect themselves. Only then will the need be
reduced for constant human maintenance, fixing, and debugging of computer
systems.

In a self-managing autonomic environment, system components—from hardware
(such as storage units, desktop computers, and servers) to software (such as
operating systems, middleware, and business applications)—can include
embedded control loop functionality. Although these control loops consist of the
same fundamental parts, their functions can be divided into four broad
embedded control loop categories.

Autonomic computing systems must follow four principles (have four categories
of attributes). The systems must be:

Self-configuring This means that they can adapt dynamically to changing
environments. Self-configuring components adapt
dynamically to changes in the environment, using policies
provided by the IT professional. Such changes could include
the deployment of new components, the removal of existing
ones, or dramatic changes in the system characteristics.
Dynamic adaptation helps ensure continuous strength and
productivity of the IT infrastructure, resulting in business
growth and flexibility.
146 Introduction to the New Mainframe: Large-Scale Commercial Computing

Self-healing This means that they can discover, diagnose and react to
disruptions. Self-healing components can detect system
malfunctions and initiate policy-based corrective action
without disrupting the IT environment. Corrective action
could involve a product altering its own state or effecting
changes in other components in the environment. The IT
system as a whole becomes more resilient because
day-to-day operations are less likely to fail.

Self-optimizing This means that they can monitor and tune resources
automatically. Self-optimizing components can tune
themselves to meet end-user or business needs. The tuning
actions could mean reallocating resources—such as in
response to dynamically changing workloads—to improve
overall utilization, or ensuring that particular business
transactions can be completed in a timely fashion.

Self-optimization helps provide a high standard of service for
both the system’s end users and a business’s clients.
Without self-optimizing functions, there is no easy way to
divert excess server capacity to lower priority work when an
application does not fully use its assigned computing
resources. In such cases, clients must buy and maintain a
separate infrastructure for each application to meet that
application’s most demanding computing needs.

Self-protecting This means they can anticipate, detect, identify, and protect
against threats from anywhere. Self-protecting components
can detect hostile behaviors as they occur and take
corrective actions to make themselves less vulnerable. The
hostile behaviors can include unauthorized access and use,
virus infection and proliferation, and denial-of-service
attacks. Self-protecting capabilities allow businesses to
consistently enforce security and privacy policies.

By enabling computers to take care of themselves, autonomic computing is
expected to have many benefits for business systems, such as reduced
operating costs, lower failure rates, and better security.

This definition is based on a paper titled Autonomic Computing: an architectural
blueprint for autonomic computing that can be found on an Autonomic Computing
site at:

http://www.ibm.com/autonomic
 Chapter 8. Autonomic computing 147

http://www.ibm.com/autonomic
http://www.ibm.com/autonomic

8.1.2 Autonomic computing concepts
The architectural concepts presented here define a common approach and
terminology for describing self-managing autonomic computing systems. The
autonomic computing architecture concepts provide a mechanism for discussing,
comparing, and contrasting the approaches that different vendors use to deliver
self-managing capabilities in an IT system.

Autonomic computing system
An autonomic computing system can be defined as a computing system that
senses its operating environment, models its behavior in that environment, and
takes action to change the environment or its behavior.1 It has, to various extents
depending on the implementation, properties of self-configuration, self-healing,
self-optimization and self-protection. The base loop is the so-called control loop
shown in Figure 8-1.

Figure 8-1 Standard control loop

The autonomic computing manager and control loop is a never-ending process. It
is derived from control theory and manufacturing, which is quite advanced, yet
simple.

1 See the IBM Redbook A Practical Guide to the IBM Autonomic Computing Toolkit, SG24-6635, for
more information about this topic.

Knowledge

Plan

ExecuteMonitor

Analyze

Data Action

Diagnose
Symptom

Assess
Impact

Plan
Action

Take
Action

Sense
Symptom

Autonomic Manager
148 Introduction to the New Mainframe: Large-Scale Commercial Computing

Autonomic manager
The autonomic manager is a component that implements the control loop going
through four parts that share knowledge: monitor, analyze, plan, and execute2,
as described here.

1. The monitor part provides the mechanisms that collect, aggregate, filter,
manage, and report details collected from an element.

2. The analyze part provides the mechanisms that correlate and model complex
situations.

3. The plan part provides the mechanisms that structure the action needed to
achieve goals and objectives. The planning mechanism uses policy
information to guide its work.

4. The execute part provides the mechanisms that control the execution of a
plan.

Each iteration captures relevant information to allow for smarter decisions the
next time around and continually keep looking at it—that is really the central
paradigm of autonomic computing.

These control loops are spread over system components. The autonomic
computing framework in Figure 8-2 illustrates the various layers and components
of a “model” autonomic system.

2 Refer to IBM Redbook Problem Determination Using Self-Managing Autonomic Technology,
SG24-6665, for more information about this topic.
 Chapter 8. Autonomic computing 149

Figure 8-2 Autonomic computing framework

These parts are connected using patterns that allow the components to
collaborate using standard mechanisms such as Web services.

Managed resources
A managed resource is a hardware or software component that can be managed.
It could be a server, storage unit, database, application server, service,
application, or some other entity. A managed resource might contain its own
embedded self-management control loop. These embedded control loops are
one way to offer self-managing autonomic capability. The control loop might be
deeply embedded in a resource so that it is not visible through the manageability
interface.

The managed resource can be a single resource, or a collection of resources.
The managed resource is controlled through its sensors and effectors, as
described here:

� The sensors provide mechanisms to collect information about the state and
state transitions of an element.
150 Introduction to the New Mainframe: Large-Scale Commercial Computing

� The effectors are mechanisms that change the state (configuration) of an
element. In other words, the effectors are a collection of set commands or
application programming interfaces (APIs) that change the configuration of
the managed resource in some way.

As shown in Figure 8-2, the combination of sensors and effectors form the
manageability interface, referred to as the touchpoint, which is available to an
autonomic manager.

Touchpoints
A touchpoint is an autonomic computing system building block that implements
sensor and effector behavior for one or more of a managed resource’s
manageability mechanisms.

It also provides a standard manageability interface. Deployed managed
resources are accessed and controlled through these manageability interfaces.
Manageability interfaces employ mechanisms such as log files, events,
commands, application programming interfaces (APIs), and configuration files.
These mechanisms are meant to gather details about the resource (sensor) or to
change the behavior of the managed resources (effector).

Touchpoint autonomic managers
Touchpoint autonomic managers work directly with the managed resources
through their touchpoints. They can perform various self-management tasks, so
they embody different intelligent control loops. Examples of such control loops,
using the four self-managing categories introduced in 8.1.1, “Autonomic
computing principles” on page 146, include:

� Performing a self-configuring task such as installing software when it detects
that some prerequisite software is missing

� Performing a self-healing task such as correcting a configured path so
installed software can be correctly located

� Performing a self-optimizing task such as adjusting the workload control
settings when it observes an increase or decrease in capacity

� Performing a self-protecting task such as taking resources offline if it detects
an intrusion attempt

Most autonomic managers use policies (goals or objectives) to govern the
behavior of intelligent control loops. Touchpoint autonomic managers use these
policies to determine what actions should be taken for the managed resources
that they manage.

A touchpoint autonomic manager can manage one or more managed resources
directly, using the managed resource’s touchpoint or touchpoints. These
 Chapter 8. Autonomic computing 151

managers are meant to provide control on a superior level. There are four typical
scopes of resources controlled by a single touchpoint autonomic manager:

� A single resource scope is the base.

It implements a control loop that accesses and controls a single managed
resource, such as a network router, a server, a storage device, an application,
a middleware platform, or a personal computer.

� A homogeneous group scope aggregates resources of the same type.

An example of a homogeneous group is a pool of servers that an autonomic
manager can dynamically optimize to meet certain performance and
availability thresholds.

� A heterogeneous group scope organizes resources of different types.

An example of a heterogeneous group is a combination of heterogeneous
devices and servers, such as databases, Web servers, and storage
subsystems that work together to achieve common performance and
availability targets. Another example of this kind of group would be WLM in
z/OS. It deals with a combination of heterogeneous resources (CPU, storage
resources, and I/O resources).

� A business system scope organizes a collection of heterogeneous resources
so an autonomic manager can apply its intelligent control loop to the service
that is delivered to the business.

Some examples are a client care system or an electronic auction system. The
business system scope requires autonomic managers that can comprehend
the optimal state of business processes—based on policies, schedules, and
service levels—and drive the consequences of process optimization back
down to the resource groups (both homogeneous and heterogeneous) and
even to individual resources.

These resource scopes define a set of decision-making contexts that are used to
classify the purpose and role of a control loop within the autonomic computing
architecture.

Orchestrating autonomic managers
A single touchpoint autonomic manager acting in isolation can achieve
autonomic behavior only for the resources that it manages. The self-managing
autonomic capabilities delivered by touchpoint autonomic managers need to be
coordinated to deliver system-wide autonomic computing behavior. Orchestrating
autonomic managers provide this coordination function.

There are two common configurations:

� Orchestrating within a discipline
152 Introduction to the New Mainframe: Large-Scale Commercial Computing

An orchestrating autonomic manager coordinates multiple touchpoint
autonomic managers of the same type (one of self-configuring, self-healing,
self-optimizing, or self-protecting).

� Orchestrating across disciplines

An orchestrating autonomic manager coordinates touchpoint autonomic
managers that are a mixture of self-configuring, self-healing, self-optimizing,
and self-protecting.

An example of an orchestrating autonomic manager is a workload manager. An
autonomic management system for workload might include self-optimizing
touchpoint autonomic managers for particular resources, as well as orchestrating
autonomic managers that manage pools of resources. A touchpoint autonomic
manager can optimize the utilization of a particular resource based on
application priorities. Orchestrating autonomic managers can optimize resource
utilization across a pool of resources, based on transaction measurements and
policies. The philosophy behind workload management is one of policy-based,
goal-oriented management.

Tuning servers individually using only touchpoint autonomic managers cannot
ensure the overall performance of applications that span a mix of platforms.
Systems that appear to be working well on their own may not, in fact, be
contributing to optimal system-wide end-to-end processing.

Manual managers
A manual manager provides a common system management interface for the IT
professional using an integrated solutions console. Self-managing autonomic
systems can use common console technology to create a consistent
human-facing interface for the autonomic managers of IT infrastructure
components.

The primary goal of a common console is to provide a single platform that can
host all the administrative console functions in server, software, and storage
products to allow users to manage solutions rather than managing individual
components or products. Administrative console functions range from setup and
configuration to solution run-time monitoring and control.

The common console architecture is based on standards (such as standard Java
APIs and extensions including JSR168, JSR127, and others), so that it can be
extended to offer new management functions or to enable the development of
new components for products in an autonomic system.
 Chapter 8. Autonomic computing 153

8.2 z/OS implementation of autonomic computing
z/OS systems have many autonomic features built in. There are many control
loops embedded on the base components (hardware and software), and there
are autonomic manager implementations as well (Workload Manager or Storage
Manager).

Most second-level orchestration autonomic managers (AC managers) are
provided by tools developed by various vendors. One of these vendors is the
IBM Tivoli® family of products.

8.3 Self-healing
The characteristics of z/OS that can be considered as self-healing address many
different aspects of the system’s health.

� Some of them are related to the capability of the hardware to detect a failure
and solve it. The solution can be:

– Repair - as in the Error Correction Code (ECC) scheme.

ECC is an arrangement for correction of failures of one order and for
detection of failures of a higher order. Commonly, ECC allows correction of
single-bit failures and detection of double-bit failures; it is used in every
place some data is read (Level 1 Cache has Parity controls, Level 2 cache
has ECC).

– IBM System z Hardware has spare units on many components. This is
called N+1 design.

This design provides fault-tolerant capabilities, allowing:

• Use of spare PUs

As stated before, IBM System z has at least two spare PUs on each
system. There can be more if the book is not used at its full capacity.
Hardware microcode is able to detect a permanent CPU failure and
substitute for it. z/OS uses logical CPs, so the use of the spare CP, or
even the loss of one of them, is transparent.

• Use of spare memory chips

There are spare chips (for example, eight chips on IBM zSeries z990)
on every memory card. The memory cards are continuously being
checked to clean correctable errors and detect uncorrectable ones.
When an error cannot be corrected, the chip is made unavailable and a
spare is used instead. There are also error thresholds that trigger a
“call home” procedure.
154 Introduction to the New Mainframe: Large-Scale Commercial Computing

On machines having more than one book sharing their Level 2
memory, another source of error can be the access path. To prevent
this, there are two parallel paths.

• I/O has multipath access

As seen in Chapter 6, “Accessing large amounts of data” on page 109,
multiple I/O paths help prevent an I/O operation from failing on the IBM
System z side. Even though I/O operations can be recovered, a
threshold is established. When the threshold is reached, a “call home”
occurs.

For more information about hardware availability, refer to Chapter 5.4,
“Redundancy” on page 91.

� There are also design points that allow these schemes to work, for instance
the Chipkill memory design.

� Electronic Service Agent™ - this offers “call home” support. Every IBM
System z machine can, and usually does, have a phone connection with the
nearest plant. This link is used to report errors that will lead, or will probably
lead, to a replacement of a failing component.

� Concurrent updates

– Most maintenance can be done while the systems are up and running.
Nevertheless, updates are usually done during periods of low activity
using System Modification Program/E, which manages the system
software configuration and checks for pre-requisites and co-requisites.

– As stated in 3.3.4, “Provisioning” on page 54, the way hardware is packed
allows users to have more capacity (CPs and memory) than needed.
When the resources are to be brought online, a concurrent microcode
update is all that is needed. In the case where a new book must be added,
the time required will be longer, but in most cases the update can still be
concurrent.

� System software

There are self-healing capacities in system software, as well. These
capacities fall into three main areas, dealing with data replication, automation
tools, and virtualization techniques:

– Data replication

• Coupling Facility (CF) structure duplexing

As described, the Coupling Facility is the heart of data-sharing
technology. Data in CF can be replicated to allow recovery in case of a
failure. To recover, there is usually a procedure to follow that should be
automated.

• Synchronous copy
 Chapter 8. Autonomic computing 155

The system could make a synchronous copy of data before returning
control to the user or application program. This ensures that there are
two identical copies of the data prior to the user or application moving
to the next step in processing. The synchronous copy of the data could
be local or might even be at a remote site.

– Automation engines

• System automation for z/OS

• Geographically Dispersed Parallel Sysplex (see 5.6, “Disaster recovery
(DR)” on page 104)

– Virtualization

• Dynamic Virtual IP takeover and takeback

• Dynamic disk balancing

DFSMS spreads data over the disks on the same storage group
depending on the load. This is a sort of virtualization. If a disk fails,
systems eliminate it from the pool, switching new allocations to the
rest.

� Health checking

The system may be able to check the status of its own health by having
automated health checks. It may provide such checks as ensuring that
critical control data has valid backups or that system parameters are
not set such that they contradict each other. These checks can be
performed automatically at a particular point in processing, or each
time the system is started.

8.4 Self-configuring
Software tools, disciplines, and automatic with or without manual intervention
can be applied to help for a self-configuring process:

� msys for setup simplifies the management tasks for z/OS software setup.

� z/OS Wizards are Web-based dialogs that assist in z/OS customization.

� Capacity upgrade CPU provides instant access to additional processors or
servers, memory, I/O.

� Customer-initiated upgrade.

� Automatic hardware detection/configuration.

� Automatic communication configuration.
156 Introduction to the New Mainframe: Large-Scale Commercial Computing

8.5 Self-protecting
Self-protecting features include:

� LPAR

� Intrusion detection IDS, PKI

� Hardware cryptographic (coprocessors, accelerators and CP assist) adapters

� Digital certificates providing identity authentication

� SSL and TLS (manages Internet transmission security), Kerberos
(authenticates requests for service in a network), VPN, encryption

� Tivoli Policy Director

� LDAP (aids in the location of network resources)

HiperSockets™ Intrusion Detection Services (IDS) enables the detection of
attacks and the application of defensive mechanisms on the z/OS server.

Public Key Infrastructure (PKI) is embedded in z/OS. PKI consists of a certificate
authority (CA) that provides digital credentials to participants and a public key
cryptographic system that uses these digital credentials to help ensure overall
message integrity, data privacy, signature verification, and user authentication.

In IBM System z systems, there are hardware and software components that are
certified by security standards like FIPS 140-2 Level 4 (IBM CEX2 Cryptographic
coprocessor and accelerator), Common Criteria EAL4 (IBM Tivoli Directory
Server, IBM WebSphere Application Server, between others), ICSA Labs (the
crypto algorithms in S/390® Virtual Private Network (VPN) support), and ZKA,
the security standard for the financial industries in Germany (IBM 4758 PCI
Cryptographic Coprocessor).3

8.6 Self-optimizing
Self-optimizing features include:

� Intelligent Resource Director (IRD) extensions (non-z/OS partitions - CPU
(Linux), I/O, server-wide) - allows dynamic resource allocation on IBM
System z servers

� Dynamic LPAR, WLM LPAR extensions for Linux

� Parallel Sysplex Extensions - Sysplex Distributor, CP Coupling

� BIND9 DNS-DNS BIND Version 9.0 on z/OS

3 For more details on security standards for IBM products, refer to the following site:
http://www.ibm.com/security/standards/st_evaluations.shtml
 Chapter 8. Autonomic computing 157

� z/OS Workload Manager (CPU, memory, I/O, TCP/IP QOS, Web request
management, and batch initiator balancing)

The unique workload and self-management capabilities provided by z/OS
Workload Manager (WLM) and the IBM System z IRD allow z/OS to handle
unpredictable workloads and meet response goals through effective use of CPU
and I/O resources with minimal human intervention for setup and operation,
making it the most advanced self-managing system. IBM System z workload
management also allows workload balancing of non-z/OS partitions, in particular
Linux images.

8.7 Summary
Ideally, we want computers to behave somewhat like a person in reacting to and
correcting malfunctions and taking preventive and anticipative actions in avoid
undesirable results. This behavior is known as autonomic computing.

In this chapter we described the principles from which autonomic computing is
derived, namely self-configuring, self-healing, self-optimizing and self-protecting.
These principles are based on the implementation of the concept of a control
loop. The control loop is a never-ending process that is always going through
four stages or steps (monitoring, analyzing, planning, and execution). These
stages constitute the knowledge base needed to be continuously aware of what
is happening, and to take the corrective actions needed to have the process
perform optimally.

The principles and concepts of autonomic computing have led to the creation of
the Autonomic Computing framework. Within this framework we put the
management and control elements needed to observe and act directly on the
computing resources, or in the combination of the computing resources to
enhance their performance. Thus, the framework goes from the resource itself
(which can be a server, storage, network, database or application), up to human
intervention to manage the resource.

We saw what is in the middle of the framework: the touchpoints while collecting
information; the touchpoint autonomic managers going through the control loop
according to the principles; and the orchestrating part, which applies the same
principles for a particular discipline and to the whole system.

Finally, we mentioned the z/OS products that support these principles, concepts,
and the framework. This hardware and software support of autonomic computing
has contributed to making IBM System z an extremely reliable mainframe.
158 Introduction to the New Mainframe: Large-Scale Commercial Computing

Key terms in this chapter

Autonomic Control loop Monitoring Self-healing Sensor

Autonomic
computing
control loop

ECC msys for Setup Self-optimizing SMP/E

Autonomic
computing
framework

Effector Self-configuring Self-protecting Touchpoint
 Chapter 8. Autonomic computing 159

160 Introduction to the New Mainframe: Large-Scale Commercial Computing

Appendix A. Architecture summary

A

Objective:

This appendix consolidates the information given about interrupt handling and
the role of the program status word (PSW).
© Copyright IBM Corp. 2006. All rights reserved. 161

Interrupt processing
An interrupt is an event that alters the sequence in which the processor executes
instructions. An interrupt might be planned (specifically requested by the
currently running program) or unplanned (caused by an event that might or might
not be related to the currently running program). z/OS uses six types of
interrupts, as explained here:

� Supervisor call or SVC interrupts - occur when the program issues an SVC
instruction. An SVC is a request for a particular system service.

� I/O interrupts - occur when the channel subsystem signals a change of
status. For example, an I/O operation completes, an error occurs, or an I/O
device (such as a printer) becomes ready.

� External interrupts - indicate any of several events, such as a time interval
expires or the CP receives a signal from another CP.

� Restart interrupts - occur when the operator selects the restart function at
the console or when a restart signal processor (SIGP) instruction is received
from another CP.

� Program interrupts - occur when an event occurs that requires additional
processing. This could be when the program attempts to perform an invalid
operation and might have to be ended. It might be a legal operation that
references a virtual address that is not in real storage and z/OS intervention is
required.

� Machine check interrupts - caused by machine malfunctions.

When an interrupt occurs, the CP saves pertinent information about the program
that was interrupted and then routes control to the appropriate interrupt handler
routine. The program status word, or PSW, is a key resource in this process.

The program status word
The program status word (PSW) is a 128-bit data area in the processor that
provides details crucial to both the hardware and the software. Although each
processor has only one PSW, it is useful to think of three types of PSWs in order
to understand interrupt processing. The three PSWs are the current PSW, the
new PSW, and the old PSW.

The unit of work running on a CP is represented by the current PSW, which
includes the address of the next program instruction and control information
about the program that is running (every application running on z/OS has its own
control information). The PSW controls the order in which instructions are fed to
the processor, and indicates the status of the system in relation to the currently
162 Introduction to the New Mainframe: Large-Scale Commercial Computing

running program. The current PSW indicates the next instruction to be executed.
It also indicates whether the processor is enabled or disabled for I/O interrupts,
external interrupts, machine check interrupts, and certain program interrupts.
When the processor is enabled, these interrupts can occur. When the processor
is disabled, these interrupts are ignored or remain pending.

The format of the PSW is shown in Figure A-1.

Figure A-1 Overview of fields in PSW

The bit positions indicated with a zero (0) do not have a function, at present. The
following list describes the function of each non-zero bit, working from left to
right:

� Bit 1 indicates that tracing is taking place, which will cause a program
interrupt to occur when certain conditions are met.

� Bit 5 indicates that virtual-to-real address translation will take place (this is
rarely set off).

� Bit 6 indicates that I/O interrupts can occur on this CP.

� Bit 7 indicates that external interrupts, such as a timed event, can occur on
this CP.

� Bits 8 to 11 inclusive contain a storage key. A program running in a key other
than zero is only allowed to alter storage with a matching key.
 Appendix A. Architecture summary 163

� Bit 13 indicates that machine check interrupts can occur on this CP. This is
only off when a machine check is being handled.

� Bit 14 indicates that there is no more work to run on the CP and it should wait
for an interrupt.

� Bit 15 indicates the problem state. When this is off, the CP is running in
supervisor state and restricted instructions are allowed to be executed.

� Bits 16 and 17 indicate the translation mode for cross-memory functions.

� Bits 18 and 19 are a condition code. They indicate the outcome of an
instruction. For example, if two values are compared, the condition code
indicates high, low, or equal.

� Bits 20 to 23, when set off, prevent certain program checks from occurring. An
example of this is fixed point overflow, which may be of no significance to a
program processing certain types of scientific data.

� Bits 31 and 32 control the addressing mode of the CP. Both off means 24-bit
addressing, both on indicates 64-bit addressing. Bit 31 off and bit 32 on
indicates 31-bit addressing, and the fourth combination is invalid.

� Bits 64 to 95 contain the address of the next instruction to be executed by the
CP.

New and old PSWs
There is a new PSW and an old PSW associated with each of the six types of
interrupts. The new PSW contains the address of the routine that can process its
associated interrupt. The old and new PSWs are held in storage locations that
are defined by the architecture. There is an old/new pair for each interrupt type.

If the processor is enabled for interrupts when an interrupt occurs, PSWs are
switched through the following technique:

1. Storing the current PSW in the old PSW location associated with the type of
interrupt that occurred

2. Loading the contents of the new PSW for the type of interrupt that occurred
into the current PSW

The current PSW, which indicates the next instruction to be executed, now
contains the address of the appropriate routine to handle the interrupt.

The new PSW always has the wait and program bits set off, and processing on
the CP starts from the address in the PSW. This means that when an interrupt
occurs, a z/OS routine gets control in supervisor state.
164 Introduction to the New Mainframe: Large-Scale Commercial Computing

Security
The PSW is the focal point for architected security. The program state bit
restricts the instructions that can be issued and the protect key restricts the
storage that may be altered. To request restricted services, a program in problem
state issues an SVC. The SVC interrupt loads a new PSW, which switches to
supervisor state.
 Appendix A. Architecture summary 165

166 Introduction to the New Mainframe: Large-Scale Commercial Computing

Appendix B. Glossary

A

abend. abnormal end.

abnormal end. End of a task, a job, or a subsystem
because of an error condition that cannot be
resolved by recovery facilities while the task is
performed. See also abnormal termination.

abnormal termination. (1) The end of processing
prior to scheduled termination. (2) A system failure
or operator action that causes a job to end
unsuccessfully. Synonymous with abend, abnormal
end.

ACB. access control block.

ACCEPT. The SMP/E command used to install
SYSMODs in the distribution libraries.

accept. In SMP/E, to install SYSMODs in the
distribution libraries. This is done with the ACCEPT
command.

accepted SYSMOD. A SYSMOD that has been
successfully installed by the SMP/E ACCEPT
command. Accepted SYSMODs do not have the
ERROR flag set and are found as SYSMOD entries
in the distribution zone.

access authority. An authority that relates to a
request for a type of access to protected resources.
In RACF, the access authorities are NONE, READ,
UPDATE, ALTER, and EXECUTE.

access list. A list within a profile of all authorized
users and their access authorities.

access method. A technique for moving data
between main storage and I/O devices.
© Copyright IBM Corp. 2006. All rights reserved.
ACID properties. The properties of a transaction:
atomicity, consistency, isolation, and durability. In
CICS, the ACID properties apply to a unit of work
(UoW).

address. The unique code assigned to each device,
workstation or system connected to a network.

address space. The complete range of addresses
available to a program. In z/OS, an address space
can range up to 16 exabytes of contiguous virtual
storage addresses that the system creates for the
user. An address space contains user data and
programs, as well as system data and programs,
some of which are common to all address spaces.
See also virtual address space.

addressing mode (AMODE). A program attribute
that refers to the address length that is expected to
be in effect when the program is entered. In z/OS,
addresses can be 24, 31, or 64 bits in length.

administrator. A person responsible for
administrative tasks such as access authorization
and content management. Administrators can also
grant levels of authority to users.

allocate. To assign a resource for use in performing
a specific task.

ALLOCATE command. In z/OS, the TSO/E
command that serves as the connection between a
file's logical name (the ddname) and the file's
physical name (the data set name).

alphanumeric character. A letter or a number.

AMODE. addressing mode.

ANSI. American National Standards Institute.

AOR. application-owning region.

APAR. authorized program analysis report.
 167

APAR fix. A temporary correction of a defect in an
IBM system control program or licensed program
that affects a specific user. An APAR fix is usually
replaced later by a permanent correction called a
PTF. APAR fixes are identified to SMP/E by the
++APAR statement.

APF. authorized program facility.

API. application programming interface.

APPC. Advanced Program-to-Program
Communications.

application. A program or set of programs that
performs a task; some examples are payroll,
inventory management, and word processing
applications.

application-owning region (AOR). In a
CICSPlex® configuration, a CICS region devoted to
running applications.

application program. A collection of software
components used to perform specific types of work
on a computer, such as a program that does
inventory control or payroll.

APPLY. The SMP/E command used to install
SYSMODs in the target libraries.

apply. In SMP/E, to install SYSMODs in the target
libraries. This is done with the APPLY command.

APPN. Advanced Peer-to-Peer Network.

ARM. Automatic Restart Manager.

ASCII. American Standard Code for Information
Interchange.

ASID. address space identifier.

ASSEM entry. An SMP/E entry containing
assembler statements that can be assembled to
create an object module.

assembler. A computer program that converts
assembler language instructions into binary
machine language (object code).

assembler language. A symbolic programming
language that comprises instructions for basic
computer operations which are structured according
to the data formats, storage structures, and registers
of the computer.

asynchronous processing. A series of operations
that are done separately from the job in which they
were requested; for example, submitting a batch job
from an interactive job at a work station.

ATM. automated teller machine.

audit. To review and examine the activities of a data
processing system mainly to test the adequacy and
effectiveness of procedures for data security and
data accuracy.

authority. The right to access objects, resources, or
functions.

authorization checking. The action of determining
whether a user is permitted access to a
RACF-protected resource.

authorized program analysis report (APAR). A
request for correction of a problem caused by a
defect in a current unaltered release of a program.
The correction is called an APAR fix.

authorized program facility (APF). A facility that
permits identification of programs authorized to use
restricted functions.

automated operations. Automated procedures to
replace or simplify actions of operators in both
systems and network operations.

automatic call. The process used by the linkage
editor to resolve external symbols left undefined
after all the primary input has been processed. See
also automatic call library.
168 Introduction to the New Mainframe: Large-Scale Commercial Computing

automatic call library. Contains load modules or
object decks that are to be used as secondary input
to the linkage editor to resolve external symbols left
undefined after all the primary input has been
processed.
The automatic call library may be:
� Libraries containing object decks, with or

without linkage editor control statements
� Libraries containing load modules
� The library containing Language Environment®

run-time routines.

automatic library call. Automatic call. See also
automatic call library.

automatic restart. A restart that takes place during
the current run, that is, without resubmitting the job.
An automatic restart can occur within a job step or at
the beginning of a job step. Contrast with deferred
restart.

automatic restart management. A z/OS recovery
function that improves the availability of batch jobs
and started tasks. When a job fails, or the system on
which it is running unexpectedly fails, z/OS can
restart the job without operator intervention.

auxiliary storage. All addressable storage other
than processor storage.

B

background. (1) In multiprogramming, the
environment on which low-priority programs are
executed. (2) Under TSO/E, the environment on
which jobs submitted through the SUBMIT
command or SYSIN are executed. One job step at a
time is assigned to a region of main storage, and it
remains in main storage to completion. Contrast with
foreground.

background job. (1) A low-priority job, usually a
batched or non-interactive job. (2) Under TSO, a job
entered through the SUBMIT command or through
SYSIN. Contrast with foreground job.

backout. A request to remove all changes to
resources since the last commit or backout or, for the
first unit of recovery, since the beginning of the
application. Backout is also called rollback or abort.

backup. The process of creating a copy of a data set
to ensure against accidental loss.

BAL. Basic Assembler Language.

base function. In SMP/E, a SYSMOD defining
elements of the base z/OS system or other products
that were not previously present in the target
libraries. Base functions are identified to SMP/E by
the ++FUNCTION statement. SMP/E itself is an
example of a base function of z/OS.

base level system. In SMP/E, the level of the target
system modules, macros, source, and DLIBs
created by system generation, to which function and
service modifications are applicable.

batch. A group of records or data processing jobs
brought together for processing or transmission.
Pertaining to activity involving little or no user action.
Contrast with interactive.

batch job. A predefined group of processing actions
submitted to the system to be performed with little or
no interaction between the user and the system.

batch message processing (BMP) program. An
IMS batch processing program that has access to
online databases and message queues. BMPs run
online, but like programs in a batch environment,
they are started with job control language (JCL).

batch processing. A method of running a program
or a series of programs in which one or more records
(a batch) are processed with little or no action from
the user or operator.

BCP. base control program.

big endian. A format for the storage of binary data
in which the most significant byte is placed first. Big
endian is used by most hardware architectures
including the z/Architecture. Contrast with little
endian.
Appendix B. Glossary 169

binary data. (1) Any data not intended for direct
human reading. Binary data may contain unprintable
characters, outside the range of text characters. (2)
A type of data consisting of numeric values stored in
bit patterns of 0s and 1s. Binary data can cause a
large number to be placed in a smaller space of
storage.

bind. (1) To combine one or more control sections or
program modules into a single program module,
resolving references between them. (2) In SNA, a
request to activate a session between two logical
units (LUs).

binder. The z/OS program that processes the output
of the language translators and compilers into an
executable program (load module or program
object). It replaces the linkage editor and batch
loader used in earlier forms of the z/OS operating
system, such as MVS and OS/390®.

BLK. A subparameter of the SPACE parameter in a
DD statement. It specifies that space is allocated by
blocks.

BLKSIZE. block size.

BLOB. binary large object.

block size. (1) The number of data elements in a
block. (2) A measure of the size of a block, usually
specified in units such as records, words, computer
words, or characters. (3) Synonymous with block
length. (4) Synonymous with physical record size.

BPAM. basic partitioned access method.

BSAM. basic sequential access method.

buffer. A portion of storage used to hold input or
output data temporarily.

bypass. In SMP/E, to circumvent errors that would
otherwise cause SYSMOD processing to fail. This is
done by using the BYPASS operand on an SMP/E
command.

byte. The basic unit of storage addressability. It has
a length of 8 bits.

byte stream. A simple sequence of bytes stored in
a stream file. See also record data.

C

C language. A high-level language used to develop
software applications in compact, efficient code that
can be run on different types of computers with
minimal change.

cabinet. Housing for panels organized into port
groups of patchports, which are pairs of fibre
adapters or couplers. Cabinets are used to organize
long, complex cables between processors and
controllers, which may be as far away as another
physical site. Also known as fiber management
cabinets.

cable “in inventory.” Unused cables.

cache. A random access electronic storage in
selected storage controls used to retain frequently
used data for faster access by the channel.

cache structure. A coupling facility structure that
enables high-performance sharing of cached data
by multisystem applications in a sysplex.
Applications can use a cache structure to implement
several different types of caching systems, including
a store-through or a store-in cache.

called routine. A routine or program that is invoked
by another.

carriage control character. An optional character
in an input data record that specifies a write, space,
or skip operation.

carriage return (CR). (1) A key stroke generally
indicating the end of a command line. (2) In text data,
the action that indicates to continue printing at the
left margin of the next line. (3) A character that will
cause printing to start at the beginning of the same
physical line in which the carriage return occurred.

CART. command and response token.
170 Introduction to the New Mainframe: Large-Scale Commercial Computing

case-sensitive. Pertaining to the ability to
distinguish between uppercase and lowercase
letters.

catalog. (1) A directory of files and libraries, with
reference to their locations. (2) To enter information
about a file or a library into a catalog. (3) The
collection of all data set indexes that are used by the
control program to locate a volume containing a
specific data set.

cataloged data set. A data set that is represented
in an index or hierarchy of indexes that provide the
means for locating it.

cataloged procedure. A set of job control language
(JCL) statements placed in a library and retrievable
by name.

CCW. channel command word.

CEMT. The CICS-supplied transaction that allows
checking of the status of terminals, connections, and
other CICS entities from a console or from CICS
terminal sessions.

central processor (CP). The part of the computer
that contains the sequencing and processing
facilities for instruction execution, initial program
load, and other machine operations.

central processor complex (CPC). A physical
collection of hardware that includes main storage,
one or more central processors, timers, and
channels.

central processing unit (CPU). Synonymous with
processor.

main storage. (1) In z/OS, the storage of a
computing system from which the central processing
unit can directly obtain instructions and data, and to
which it can directly return results. (Formerly
referred to as “real storage”.) (2) Synonymous with
processor storage.

CF. Coupling Facility

CFRM. Coupling Facility resource management.

CGI. Common Gateway Interface.

channel adapter. A device that groups two or more
controller channel interfaces electronically.

channel connection address (CCA). The
input/output (I/O) address that uniquely identifies an
I/O device to the channel during an I/O operation.

channel interface. The circuitry in a storage control
that attaches storage paths to a host channel.

channel path identifier. The logical equivalent of
channels in the physical processor.

channel subsystem (CSS). A collection of
subchannels that directs the flow of information
between I/O devices and main storage. Logical
partitions use subchannels to communicate with I/O
devices. The maximum number of CSSs supported
by a processor also depends on the processor type.
If more than one CSS is supported by a processor,
each CSS has a processor unique single
hexadecimal digit CSS identifier (CSS ID).

channel-to-channel (CTC). The communication
(transfer of data) between programs on opposite
sides of a channel-to-channel adapter (CTCA).

channel-to-channel adapter (CTCA). An
input/output device that is used a program in one
system to communicate with a program in another
system.

channel-to-channel (CTC) connection. A
connection between two CHPIDs on the same or
different processors, either directly or through a
switch. When connecting through a switch, both
CHPIDs must be connected through the same or a
chained switch.

character. A letter, digit, or other symbol. A letter,
digit, or other symbol that is used as part of the
organization, control, or representation of data. A
character is often in the form of a spatial
arrangement of adjacent or connected strokes.
Appendix B. Glossary 171

checkpoint. (1) A place in a routine where a check,
or a recording of data for restart purposes, is
performed. (2) A point at which information about the
status of a job and the system can be recorded so
that the job step can be restarted later.

checkpoint data set. A data set in which
information about the status of a job and the system
can be recorded so that the job step can be restarted
later.

checkpoint write. Any write to the checkpoint data
set. A general term for the primary, intermediate,
and final writes that update any checkpoint data set.

CHPID. channel path identifier.

CI. control interval.

CICS. Customer Information Control System.

CICSplex. A configuration of interconnected CICS
systems in which each system is dedicated to one of
the main elements of the overall workload. See also
application owning region and terminal owning
region.

CKD. count-key data.

client. A functional unit that receives shared
services from a server. See also client-server.

client-server. In TCP/IP, the model of interaction in
distributed data processing in which a program at
one site sends a request to a program at another site
and awaits a response. The requesting program is
called a client; the answering program is called a
server.

CLIST. command list.

CLOB. character large object.

CLPA. create link pack area.

CMOS. Complementary Metal Oxide
Semiconductor.

CMS. Conversational Monitor System.

COBOL. Common Business-Oriented Language.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a
7-bit code. (2) A particular assignment of
hexadecimal identifiers to graphic characters.

code point. A 1-byte code representing one of 256
potential characters.

coexistence. Two or more systems at different
levels (for example, software, service or operational
levels) that share resources. Coexistence includes
the ability of a system to respond in the following
ways to a new function that was introduced on
another system with which it shares resources:
ignore a new function; terminate gracefully; support
a new function.

command. A request to perform an operation or run
a program. When parameters, arguments, flags, or
other operands are associated with a command, the
resulting character string is a single command.

command and response token (CART). A
parameter on WTO, WTOR, MGCRE, and certain
TSO/E commands and REXX execs that allows you
to link commands and their associated message
responses.

command prefix. A one- to eight-character
command identifier. The command prefix
distinguishes the command as belonging to an
application or subsystem rather than to z/OS.

COMMAREA. A communication area made
available to applications running under CICS.

commit. A request to make all changes to resources
since the last commit or backout or, for the first unit
of recovery, since the beginning of the application.

Common Business-Oriented Language
(COBOL). A high-level language, based on English,
that is primarily used for business applications.
172 Introduction to the New Mainframe: Large-Scale Commercial Computing

common service area (CSA). In z/OS, a part of the
common area that contains data areas that are
addressable by all address spaces.

compatibility. Ability to work in the system or ability
to work with other devices or programs.

compilation unit. A portion of a computer program
sufficiently complete to be compiled correctly.

compiler. A program that translates a source
program into an executable program (an object
deck).

compiler options. Keywords that can be specified
to control certain aspects of compilation. Compiler
options can control the nature of the load module
generated by the compiler, the types of printed
output to be produced, the efficient use of the
compiler, and the destination of error messages.
Also called compiler-time options.

complementary metal oxide semiconductor
(CMOS). A technology that combines the electrical
properties of positive and negative voltage
requirements to use considerably less power than
other types of semiconductors.

component. A functional part of an operating
system; for example, the scheduler or supervisor.

condition code. A code that reflects the result of a
previous input/output, arithmetic, or logical
operation.

configuration. The arrangement of a computer
system or network as defined by the nature, number,
and chief characteristics of its functional units.

connection. In TCP/IP, the path between two
protocol applications that provides reliable data
stream delivery service. In Internet communications,
a connection extends from a TCP application on one
system to a TCP application on another system.

consistent copy. A copy of data entity (for example,
a logical volume) that contains the contents of the
entire data entity from a single instant in time.

console. Any device from which operators can enter
commands or receive messages.

console group. In z/OS, a group of consoles
defined in CNGRPxx, each of whose members can
serve as an alternate console in console or
hardcopy recovery or as a console to display
synchronous messages.

control block. A storage area used by a computer
program to hold control information.

control interval (CI). A fixed-length area or disk in
which VSAM stores records and creates distributed
free space. Also, in a key-sequenced data set or file,
the set of records that an entry in the sequence-set
index record points to. The control interval is the unit
of information that VSAM transmits to or from disk. A
control interval always includes an integral number
of physical records.

control region. The main storage region that
contains the subsystem work manager or
subsystem resource manager control program.

control section (CSECT). The part of a program
specified by the programmer to be a relocatable unit,
all elements of which are to be loaded into adjoining
main storage locations.

control statement. In programming languages, a
statement that is used to alter the continuous
sequential execution of statements; a control
statement can be a conditional statement, such as
IF, or an imperative statement, such as STOP. In
JCL, a statement in a job that is used in identifying
the job or describing its requirements to the
operating system.

control unit (CU). Each physical controller contains
one or more control units, which translate high level
requests to low level requests between processors
and devices. Synonymous with device control unit.

control unit address. The high order bits of the
storage control address, used to identify the storage
control to the host system.
Appendix B. Glossary 173

controller. A device that translates high level
requests from processors to low level requests for
I/O devices, and vice versa. Each physical controller
contains one or more logical control units, channel
and device interfaces, and a power source.
Controllers can be divided into segments, or
grouped into subsystems.

conversation. A logical connection between two
programs over an LU type 6.2 session that allows
them to communicate with each other while
processing a transaction.

conversational. Pertaining to a program or a
system that carries on a dialog with a terminal user,
alternately accepting input and then responding to
the input quickly enough for the user to maintain a
train of thought.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and
program development capabilities, and operates
only under the control of the VM/370 control
program.

CORBA. Common Object Request Broker
Architecture.

corequisite SYSMODs. SYSMODs each of which
can be installed properly only if the other is present.
Corequisites are defined by the REQ operand on the
++VER statement.

corrective service. Any SYSMOD used to
selectively fix a system problem. Generally,
corrective service refers to APAR fixes.

count-key data. A disk storage device for storing
data in the format: count field normally followed by a
key field followed by the actual data of a record. The
count field contains, in addition to other information,
the address of the record in the format: CCHHR
(where CC is the two-digit cylinder number, HH is the
two-digit head number, and R is the record number)
and the length of the data. The key field contains the
record's key.

couple data set. A data set that is created through
the XCF couple data set format utility and,
depending on its designated type, is shared by some
or all of the z/OS systems in a sysplex. See also
sysplex couple data set.

Coupling Facility. A special logical partition that
provides high-speed caching, list processing, and
locking functions in a sysplex.

Coupling Facility channel. A high bandwidth fiber
optic channel that provides the high-speed
connectivity required for data sharing between a
coupling facility and the central processor
complexes directly attached to it.

coupling services. In a sysplex, the functions of
XCF that transfer data and status between members
of a group residing on one or more z/OS systems in
the sysplex.

CP. central processor.

CPC. central processor complex.

CPU. central processing unit.

create link pack area (CLPA). An option that is
used during IPL to initialize the link pack pageable
area.

crossbar switch. A static switch that can connect
controllers to processors with parallel (bus and tag)
interfaces. The crossbar contains a number of
channel interfaces on its top, which can connect to
objects above it such as processors or other
crossbars. The crossbar switch also contains a
number of control unit interfaces on its side, which
can connect to objects below it such as controllers or
other crossbars.

cross-memory linkage. A method for invoking a
program in a different address space. The invocation
is synchronous with respect to the caller.

cross-system coupling facility (XCF). A
component of z/OS that provides functions to
support cooperation between authorized programs
running within a sysplex.
174 Introduction to the New Mainframe: Large-Scale Commercial Computing

cross-system extended services (XES). A set of
z/OS services that allow multiple instances of an
application or subsystem, running on different
systems in a sysplex environment, to implement
high-performance, | high-availability data sharing by
using a coupling facility.

cross-system restart. If a system fails, automatic
restart management restarts elements on another
eligible system in the sysplex.

cryptographic key. A parameter that determines
cryptographic transformations between plaintext
and ciphertext.

cryptography. The transformation of data to
conceal its meaning.

CSA. common service area.

CSI. consolidated software inventory data set. See
SMPCSI.

CSS. channel subsystem.

CSECT. control section.

CTC. channel-to-channel.

CTC connection. channel-to-channel connection.

cumulative service tape. A tape sent with a new
function order, containing all current PTFs for that
function.

Customer Information Control System (CICS).
An online transaction processing (OLTP) system
that provides specialized interfaces to databases,
files and terminals in support of business and
commercial applications. CICS enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs.

D

daemon. In UNIX systems, a long-lived process
that runs unattended to perform continuous or
periodic system-wide functions, such as network
control. Some daemons are triggered automatically
to perform their task; others operate periodically. An
example is the cron daemon, which periodically
performs the tasks listed in the crontab file. The
z/OS equivalent is a started task.

DASD. direct access storage device.

DASD volume. A DASD space identified by a
common label and accessed by a set of related
addresses. See also volume.

data class. A collection of allocation and space
attributes, defined by the storage administrator, that
are used that are used when allocating a new
SMS-managed data set.

data control block (DCB). A control block used by
access method routines in storing and retrieving
data.

data definition name (ddname). (1) The name of a
data definition (DD) statement that corresponds to a
data control block that contains the same name. (2)
The symbolic representation for a name placed in
the name field of a data definition (DD) statement.

data definition (DD) statement. A job control
statement that describes a data set associated with
a particular job step.

data definition name. See ddname.

data definition statement. A JCL control statement
that serves as the connection between a file's logical
name (the ddname) and the file's physical name (the
data set name).

data division. In COBOL, the part of a program that
describes the files to be used in the program and the
records contained within the files. It also describes
any WORKING-STORAGE data items, LINKAGE
SECTION data items, and LOCAL-STORAGE data
items that are needed.
Appendix B. Glossary 175

Data Facility Sort (DFSORT™). An IBM licensed
program that is a high-speed data-processing utility.
DFSORT provides a method for sorting, merging,
and copying operations, as well as providing
versatile data manipulation at the record, field, and
bit level.

data in transit. The update data on application
system DASD volumes that is being sent to the
recovery system for writing to DASD volumes on the
recovery system.

data integrity. The condition that exists when
accidental or intentional destruction, alteration, or
loss of data does not occur.

data set. In z/OS, a named collection of related data
records that is stored and retrieved by an assigned
name. Equivalent to a file.

data set backup. Backup to protect against the loss
of individual data sets.

data set label. (1) A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set. (2) A
general term for data set control blocks and tape
data set labels.

data sharing. The ability of concurrent subsystems
(such as DB2 or IMS DB) or application programs to
directly access and change the same data, while
maintaining data integrity.

data stream. (1) All information (data and control
commands) sent over a data link usually in a single
read or write operation. (2) A continuous stream of
data elements being transmitted, or intended for
transmission, in character or binary-digit form, using
a defined format.

data type. The properties and internal
representation that characterize data.

data warehouse. A system that provides critical
business information to an organization. The data
warehouse system cleanses the data for accuracy
and currency, and then presents the data to decision
makers so that they can interpret and use it
effectively and efficiently.

database. A collection of tables, or a collection of
table spaces and index spaces.

database administrator (DBA). An individual who
is responsible for designing, developing, operating,
safeguarding, maintaining, and using a database.

database management system (DBMS). A
software system that controls the creation,
organization, and modification of a database and the
access to the data that is stored within it.

DBCS. double-byte character set.

DBMS. database management system.

DB2. DATABASE 2; generally, one of a family of IBM
relational database management systems and,
specifically, the system that runs under z/OS.

DB2 data sharing group. A collection of one or
more concurrent DB2 subsystems that directly
access and change the same data while maintaining
data integrity.

DCB. data control block.

DCLGEN. declarations generator.

ddname. data definition name.

DD statement. data definition statement.

deadlock. (1) An error condition in which processing
cannot continue because each of two elements of
the process is waiting for an action by or a response
from the other. (2) Unresolvable contention for the
use of a resource. (3) An impasse that occurs when
multiple processes are waiting for the availability of a
resource that does not become available because it
is being held by another process that is in a similar
wait state.
176 Introduction to the New Mainframe: Large-Scale Commercial Computing

deallocate. To release a resource that is assigned
to a specific task.

declarations generator (DCLGEN). A
subcomponent of DB2 that generates SQL table
declarations and COBOL, C, or PL/I data structure
declarations that conform to the table. The
declarations are generated from DB2 system
catalog information.

dedicated. Pertaining to the assignment of a system
resource—a device, a program, or a whole
system—to an application or purpose.

default. A value that is used or an action that is
taken when no alternative is specified by the user.

deferred restart. A restart performed by the system
when a user resubmits a job. The operator submits
the restart deck to the system through a system
input reader. See also checkpoint restart. Contrast
with automatic restart.

deleted function. In SMP/E, a function that was
removed from the system when another function
was installed. This is indicated by the DELBY
subentry in the SYSMOD entry for the deleted
function.

destination. A combination of a node name and one
of the following: a user ID, a remote printer or punch,
a special local printer, or LOCAL (the default if only
a node name is specified).

destination node. The node that provides
application services to an authorized external user.

device. A computer peripheral or an object that
appears to the application as such.

device address. The field of an ESCON
device-level frame that selects a specific device on a
control unit image. The one or two left-most digits
are the address of the channel to which the device is
attached. The two rightmost digits represent the unit
address.

device control unit. A hardware device that
controls the reading, writing, or displaying of data at
one or more I/O devices or terminals.

device number. A four-hexadecimal-character
identifier, for example 13A0, that you associate with
a device to facilitate communication between the
program and the host operator. The device number
that you associate with a subchannel.

Device Support Facilities program (ICKDSF). A
program used to initialize DASD volumes at
installation and perform media maintenance.

DFSMS. Data Facility Storage Management
Subsystem.

DFSMShsm. An IBM product used for backing up
and recovering data, and managing space on
volumes in the storage hierarchy.

device type. The general name for a kind of device;
for example, 3390.

DFS™. Distributed File Service.

DFSORT. Data Facility Sort.

dialog. An interactive pop-up window containing
options that allow you to browse or modify
information, take specific action relating to selected
objects, or access other dialogs. For example, HCM
provides a series of dialogs to help you create, edit,
delete, and connect objects, as well as manipulate
the configuration diagram.

direct access storage device (DASD). A device in
which the access time is effectively independent of
the location of the data.
Appendix B. Glossary 177

directory. (1) A type of file containing the names
and controlling information for other files or other
directories. Directories can also contain
subdirectories, which can contain subdirectories of
their own. (2) A file that contains directory entries.
No two directory entries in the same directory can
have the same name. (POSIX.1). (3) A file that
points to files and to other directories. (4) An index
used by a control program to locate blocks of data
that are stored in separate areas of a data set in
direct access storage.

disaster recovery. Recovery after a disaster, such
as a fire, that destroys or otherwise disables a
system. Disaster recovery techniques typically
involve restoring data to a second (recovery)
system, then using the recovery system in place of
the destroyed or disabled application system. See
also recovery, backup, and recovery system.

DISP. Disposition (JCL DD parameter).

display console. In z/OS, an MCS console whose
input/output function you can control.

distributed computing. Computing that involves
the cooperation of two or more machines
communicating over a network. Data and resources
are shared among the individual computers.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that
supports the development, use, and maintenance of
distributed applications. DCE is independent of the
operating system and network; it provides
interoperability and portability across
heterogeneous platforms.

distributed data. Data that resides on a DBMS
other than the local system.

Distributed File Service (DFS). A DCE component.
DFS joins the local file systems of several file server
machines making the files equally available to all
DFS client machines. DFS allows users to access
and share files stored on a file server anywhere in
the network, without having to consider the physical
location of the file. Files are part of a single, global
namespace, so that a user can be found anywhere
in the network by means of the same name.

distribution library (DLIB). A library that contains
the master copy of all the elements in a system. A
distribution library can be used to create or back up
a target library.

distribution zone. In SMP/E, a group of records in
a CSI data set that describes the SYSMODs and
elements in a distribution library.

DLIB. distribution library.

DLL. dynamic link library.

double-byte character set (DBCS). A set of
characters in which each character is represented
by a two-bytes code. Languages such as Japanese,
Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require
double-byte character sets. Because each character
requires two bytes, the typing, display, and printing
of DBCS characters requires hardware and
programs that support DBCS. Contrast with
single-byte character set.

doubleword. A sequence of bits or characters that
comprises eight bytes (two 4-byte words) and is
referenced as a unit.

downwardly compatible. The ability of applications
to run on previous releases of z/OS.

drain. Allowing a printer to complete its current work
before stopping the device.

driving system. The system used to install the
program. Contrast with target system.

dsname. data set name.
178 Introduction to the New Mainframe: Large-Scale Commercial Computing

DSORG. Data set organization (parameter of DCB
and DD and in a data class definition).

dump. A report showing the contents of storage.
Dumps are typically produced following program
failures, for use as diagnostic aids.

dynamic allocation. Assignment of system
resources to a program at the time the program is
executed rather than at the time it is loaded into main
storage.

dynamic link library (DLL). A file containing
executable code and data bound to a program at
load time or run time. The code and data in a
dynamic link library can be shared by several
applications simultaneously.

dynamic reconfiguration. The ability to make
changes to the channel subsystem and to the
operating system while the system is running.

E

e-business. (1) The transaction of business over an
electronic medium such as the Internet. (2) The
transformation of key business processes through
the use of Internet technologies.

EB. See exabyte.

EBCDIC. Extended Binary Coded Decimal
Interchange Code.

EC. engineering change.

ECSA. extended common service area.

EDT. eligible device table.

element. In SMP/E, part of a product, such as a
macro, module, dialog panel, or sample code.

eligible device table (EDT). An installation defined
representation of the devices that are eligible for
allocation. The EDT defines the esoteric and generic
relationship of these devices. During IPL, the
installation identifies the EDT that z/OS uses. After
IPL, jobs can request device allocation from any of
the esoteric device groups assigned to the selected
EDT. An EDT is identified by a unique ID (two digits),
and contains one or more esoterics and generics.

enclave. A transaction that can span multiple
dispatchable units (SRBs and tasks) in one or more
address spaces and is reported on and managed as
a unit.

encrypt. To systematically encode data so that it
cannot be read without knowing the coding key.

endian. An attribute of data representation that
reflects how certain multi-octet data is stored in
memory. See big endian and little endian.

enterprise. The composite of all operational
entities, functions, and resources that form the total
business concern.

Enterprise Systems Connection (ESCON). A set
of products and services that provides a dynamically
connected environment using optical cables as a
transmission medium.

entry area. In z/OS, the part of a console screen
where operators can enter commands or command
responses.

entry name. In assembler language, a
programmer-specified name within a control section
that identifies an entry point and can be referred to
by any control section. See also entry point.

entry point. The address or label of the first
instruction that is executed when a routine is entered
for execution. Within a load module, the location to
which control is passed when the load module is
invoked.

entry point name. The symbol (or name) that
represents an entry point. See also entry point.
Appendix B. Glossary 179

esoteric. Esoteric (or esoteric device group) is an
installation-defined and named grouping of I/O
devices of usually the same device group. Eligible
device tables (EDTs) define the esoteric and generic
relationship of these devices. The name you assign
to an esoteric is used in the JCL DD statement. The
job then allocates a device from that group instead
of a specific device number or generic device group.

EOF. End of file.

ESCON. Enterprise Systems Connection.

ETR. External Time Reference. See also Sysplex
Timer.

exabyte. For processor, real and virtual storage
capacities and channel volume: 1 152 921 504 606
846 976 bytes or 2(60).

exception SYSMOD. A SYSMOD that is in error or
that requires special processing before it can be
installed. ++HOLD and ++RELEASE statements
identify exception SYSMODs.

EXCP. execute channel programs.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable program. (1) A program in a form
suitable for execution by a computer. The program
can be an application or a shell script. (2) A program
that has been link-edited and can therefore be run in
a processor. (3) A program that can be executed as
a self-contained procedure. It consists of a main
program and, optionally, one or more subprograms.
(4) See also executable file, load module.

Extended Binary-Coded Decimal Interchange
Code (EBCDIC). An encoding scheme that is used
to represent character data in the z/OS environment.
Contrast with ASCII and Unicode.

extended MCS console. In z/OS, a console other
than an MCS console from which operators or
programs can issue system commands and receive
messages. An extended MCS console is defined
through an OPERPARM segment.

Extended Remote Copy (XRC). A hardware- and
software-based remote copy service option that
provides an asynchronous volume copy across
storage subsystems for disaster recovery, device
migration, and workload migration.

external reference. In an object deck, a reference
to a symbol, such as an entry point name, defined in
another program or module.

F

feature. A part of an IBM product that may be
ordered separately by a client.

feature code. A four-digit code used by IBM to
process hardware and software orders.

fetch. The dynamic loading of a procedure.

Fiber Connection Environment (FICON). An
optical fiber communication method offering
channels with high data rate, high bandwidth,
increased distance and a large number of devices
per control unit for mainframe systems. It can work
with, or replace, ESCON links.

fiber link. The physical fiber optic connections and
transmission media between optical fiber
transmitters and receivers. A fiber link can comprise
one or more fiber cables and patchports in fiber
management cabinets. Each connection in the fiber
link is either permanent or mutable.

FICON. Fiber Connection Environment.

FIFO. first in, first out.

file. A named collection of related data records that
is stored and retrieved by an assigned name.
Equivalent to a z/OS data set.

FILEDEF. file definition statement.

first in, first out. A queuing technique in which the
next item to be retrieved is the oldest item in the
queue.
180 Introduction to the New Mainframe: Large-Scale Commercial Computing

firewall. An intermediate server that functions to
isolate a secure network from an insecure network.

fix. A correction of an error in a program, usually a
temporary correction or bypass of defective code.

fixed-length record. A record having the same
length as all other records with which it is logically or
physically associated. Contrast with variable-length
record.

FlashCopy. A point-in-time copy services function
that can quickly copy data from a source location to
a target location.

FMID. function modification identifier.

foreground. (1) In multiprogramming, the
environment on which high-priority programs are
executed. (2) Under TSO, the environment on which
programs are swapped in and out of main storage to
allow CPU time to be shared among terminal users.
All command processor programs execute in the
foreground. Contrast with background.

foreground job. (1) A high-priority job, usually a
real-time job. (2) Under TSO, any job executing in a
swapped region of main storage, such as a
command processor or a terminal user's program.
Contrast with background job.

foreign key. A column or set of columns in a
dependent table of a constraint relationship. The key
must have the same number of columns, with the
same descriptions, as the primary key of the parent
table. Each foreign key value must either match a
parent key value in the related parent table or be
null.

fork. To create and start a child process. Forking is
similar to creating an address space and attaching.
It creates a copy of the parent process, including
open file descriptors.

Fortran. A high-level language used primarily for
applications involving numeric computations. In
previous usage, the name of the language was
written in all capital letters, that is, FORTRAN.

frame. For a mainframe microprocessor cluster, a
frame contains one or two central processor
complexes (CPCs), support elements, and AC
power distribution.

FTP. File Transfer Protocol.

fullword. A sequence of bits or characters that
comprises four bytes (one word) and is referenced
as a unit.

fullword boundary. A storage location whose
address is evenly divisible by 4.

function. In SMP/E, a product (such as a system
component or licensed program) that can be
installed in a user's system if desired. Functions are
identified to SMP/E by the ++FUNCTION statement.
Each function must have a unique FMID.

function modification identifier (FMID). A code
that identifies the release levels of a z/OS licensed
program.

G

gateway node. A node that is an interface between
networks.

GB. gigabyte (1 073 741 824 bytes).

GDG. generation data group.

generalized trace facility (GTF). Like system trace,
gathers information used to determine and diagnose
problems that occur during system operation. Unlike
system trace, however, GTF can be tailored to
record very specific system and user program
events.

generation data group (GDG). A collection of
historically related non-VSAM data sets that are
arranged in chronological order; each data set is
called a generation data set.
Appendix B. Glossary 181

generic. A z/OS-defined grouping of devices with
similar characteristics. For example: the device
types 3270-X, 3277-2, 3278-2, -2A, -3, -4, and
3279-2a, -2b, -2c, -3a, -3b belong to the same
generic. Every generic has a generic name that is
used for device allocation in the JCL DD statement.
z/OS interprets this name as “take any device in that
group.” In a given z/OS configuration, each eligible
device table (EDT) has the same list of generics.

Geographically Dispersed Parallel Sysplex
(GDPS). An application that integrates Parallel
Sysplex technology and remote copy technology to
enhance application availability and improve
disaster recovery. GDPS topology is a Parallel
Sysplex cluster spread across two sites, with all
critical data mirrored between the sites. GDPS
manages the remote copy configuration and storage
subsystems; automates Parallel Sysplex operational
tasks; and automates failure recovery from a single
point of control.

gigabyte. 230 bytes, 1 073 741 824 bytes. This is
approximately a billion bytes in American English.

global access checking. The ability to allow an
installation to establish an in-storage table of default
values for authorization levels for selected
resources.

global resource serialization. A function that
provides a z/OS serialization mechanism for
resources (typically data sets) across multiple z/OS
images.

global resource serialization complex. One or
more z/OS systems that use global resource
serialization to serialize access to shared resources
(such as data sets on shared DASD volumes).

global zone. A group of records in a CSI data set
used to record information about SYSMODs
received for a particular system. The global zone
also contains information that (1) enables SMP/E to
access target and distribution zones in that system,
and (2) enables you to tailor aspects of SMP/E
processing.

Gregorian calendar. The calendar in use since
Friday, 15 October 1582 throughout most of the
world.

group. A collection of RACF users who can share
access authorities for protected resources.

H

hardcopy log. In systems with multiple console
support or a graphic console, a permanent record of
system activity.

hardware. Physical equipment, as opposed to the
computer program or method of use; for example,
mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

hardware configuration dialog (HCD). In z/OS, a
panel program that is part of the hardware
configuration definition. The program allows an
installation to define devices for z/OS system
configurations.

Hardware Management Console (HMC). A
console used to monitor and control hardware such
as the mainframe microprocessors.

hardware unit. A central processor, storage
element, channel path, device, and so on.

HASP. Houston Automatic Spooling Priority.

HCD. Hardware Configuration Definition.

head of string. The first unit of devices in a string. It
contains the string interfaces which connect to
controller device interfaces.

hexadecimal. A base 16 numbering system.
Hexadecimal digits range from 0 through 9 (decimal
0 to 9) and uppercase or lowercase A through F
(decimal 10 to 15) and A through F, giving values of
0 through 15.

HFS. hierarchical file system.
182 Introduction to the New Mainframe: Large-Scale Commercial Computing

hierarchical file system (HFS). A data set that
contains a POSIX-compliant file system, which is a
collection of files and directories organized in a
hierarchical structure, that can be accessed using
z/OS UNIX System Services.

hierarchical file system (HFS) data set. A data set
that contains a POSIX-compliant hierarchical file
system, which is a collection of files and directories
organized in a hierarchical structure, that can be
accessed using z/OS UNIX System Services
facilities.

high-level language (HLL). A programming
language above the level of assembler language
and below that of program generators and query
languages. Examples are C, C++, COBOL, Fortran,
and PL/I.

HLL. high-level language.

highly parallel. Refers to multiple systems
operating in parallel, each of which can have multiple
processors. See also n-way.

HMC. Hardware Management Console.

HOLDDATA. In SMP/E, one or more MCSs used to
indicate that certain SYSMODs contain errors or
require special processing before they can be
installed. ++HOLD and ++RELEASE statements are
used to define HOLDDATA. SYSMODs affected by
HOLDDATA are called exception SYSMODs.

Houston Automatic Spooling Priority (HASP). A
computer program that provides supplementary job
management, data management, and task
management functions, such as: control of job flow,
ordering of tasks, and spooling. See also JES2.

I

I/O. Input/output.

I/O cluster. A sysplex that owns a managed channel
path for a logically partitioned processor
configuration.

I/O device. A printer, tape drive, hard disk drive, and
so on. Devices are logically grouped inside units,
which are in turn grouped into strings. The first unit,
known as the head of string, contains string
interfaces which connect to controller device
interfaces and eventually to processor CHPIDs.
Devices are represented as lines of text within the
appropriate unit object in the configuration diagram.

IBM Support Center. The IBM organization
responsible for software service.

IBM systems engineer (SE). An IBM service
representative who performs maintenance services
for IBM software in the field.

ICSF. Integrated Cryptographic Service Facility.

IDCAMS. An IBM program used to process access
method services commands. It can be invoked as a
job or jobstep, from a TSO terminal, or from within a
user's application program.

image. A single instance of the z/OS operating
system.

IMS. Information Management System.

IMS DB. Information Management System
Database Manager.

IMS DB data sharing group. A collection of one or
more concurrent IMS DB subsystems that directly
access and change the same data while maintaining
data integrity.

Information Management System (IMS). IBM
product that supports hierarchical databases, data
communication, translation processing, and
database backout and recovery.

initial program load (IPL). The initialization
procedure that causes the z/OS operating system to
begin operation. During IPL, system programs are
loaded into storage and z/OS is made ready to
perform work. Synonymous with boot, load.
Appendix B. Glossary 183

initial storage allocation. The amount of central
and expanded storage to be assigned to a logical
partition.

initiator. That part of an operating system that reads
and processes operation control language
statements from the system input device.

initiator/terminator. The job scheduler function that
selects jobs and job steps to be executed, allocates
input/output devices for them, places them under
task control, and at completion of the job, supplies
control information for writing job output on a system
output unit.

input/output configuration data set (IOCDS). A
file that contains different configuration definitions
for the selected processor. Only one IOCDS is used
at a time. The IOCDS contains I/O configuration data
for the files associated with the processor controller
on the host processor, as it is used by the channel
subsystem. The channel subsystem (CSS) uses the
configuration data to control I/O requests. The
IOCDS is built from the production IODF.

input/output definition file (IODF). A VSAM linear
data set that contains I/O definition information,
including processor I/O definitions and operating
system I/O definitions, including all logical objects
and their connectivity in the hardware configuration.

install. In SMP/E, to apply a SYSMOD to the target
libraries or to accept a SYSMOD into the distribution
libraries.

installation exit. The means by which an IBM
software product may be modified by a client's
systems programmers to change or extend the
functions of the product.

instruction line. In z/OS, the part of the console
screen that contains messages about console
control and input errors.

interactive. Pertaining to a program or system that
alternately accepts input and responds. In an
interactive system, a constant dialog exists between
user and system. Contrast with batch.

interactive problem control system (IPCS). A
component of z/OS that permits online problem
management, interactive problem diagnosis, online
debugging for dumps, problem tracking, and
problem reporting.

Interactive System Productivity Facility (ISPF). A
dialog manager for interactive applications. It
provides control and services to permit execution of
dialogs.

internal reader. A facility that transfers jobs to JES.

interrupt. A suspension of a process, such as the
execution of a computer program, caused by an
event external to that process, and performed in
such a way that the process can be resumed.

IOCDS. input/output configuration data set.

IODF. input/output definition file.

IPCS. Interactive Problem Control System.

IPL. initial program load.

IPv6. Internet Protocol Version 6.

ISMF. interactive storage management facility.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

IVP. installation verification procedure.

J

JCL. job control language.

JES. job entry subsystem.
184 Introduction to the New Mainframe: Large-Scale Commercial Computing

JES2. A z/OS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In an installation with
more than one processor, each JES2 processor
independently controls its job input, scheduling, and
output processing. Contrast with JES3.

JES3. A z/OS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In complexes that
have several loosely-coupled processing units, the
JES3 program manages processors so that the
global processor exercises centralized control over
the local processors and distributes jobs to them via
a common job queue. Contrast with JES2.

job. A unit of work for an operating system. Jobs are
defined by JCL statements.

job class. Any one of a number of job categories
that can be defined. With the classification of jobs
and direction of initiator/terminators to initiate
specific classes of jobs, it is possible to control the
mixture of jobs that are performed concurrently.

job control language (JCL). A sequence of
commands used to identify a job to an operating
system and to describe a job's requirements.

job control language (JCL) statements.
Statements placed into an input stream to define
work to be done, methods to be used, and the
resources needed.

job entry subsystem (JES). A system facility for
spooling, job queuing, and managing I/O.

job entry subsystem 2. See JES2.

job entry subsystem 3. See JES3.

job priority. A value assigned to a job that is used
as a measure of the job's relative importance while
the job contends with other jobs for system
resources.

job separator pages. Those pages of printed
output that delimit jobs.

job step. The job control (JCL) statements that
request and control execution of a program and that
specify the resources needed to run the program.
The JCL statements for a job step include one EXEC
statement, which specifies the program or
procedure to be invoked, followed by one or more
DD statements, which specify the data sets or I/O
devices that might be needed by the program.

Julian date. A date format that contains the year in
positions 1 and 2, and the day in positions 3 through
5. The day is represented as 1 through 366,
right-adjusted, with zeros in the unused high-order
position.

jumper cable. Fiber used to make mutable
connections between patchports.

K

kernel. The part of an operating system that
performs basic functions such as allocating
hardware resources.

key-sequenced data set (KSDS). A VSAM file or
data set whose records are loaded in ascending key
sequence and controlled by an index. Records are
retrieved and stored by keyed access or by
addressed access, and new records are inserted in
key sequence by means of distributed free space.
Relative byte addresses can change because of
control interval or control area splits.

keyword. A part of a command operand that
consists of a specific character string (such as
DSNAME=).

KSDS. key-sequenced data set.

L

LAN. local area network.
Appendix B. Glossary 185

Language Environment. Short form of z/OS
Language Environment. A set of architectural
constructs and interfaces that provides a common
run-time environment and run-time services for C,
C++, COBOL, Fortran, PL/I, VisualAge® PL/I, and
Java applications compiled by Language
Environment-conforming compilers.

last in, first out (LIFO). A queuing technique in
which the next item to be retrieved is the item most
recently placed in the queue.

LCSS. logical channel subsystem.

LCU. logical control unit.

LDAP. Lightweight Directory Access Protocol.

library. A partitioned data set (PDS) that contains a
related collection of named members. See
partitioned data set.

LIC. Licensed Internal Code.

licensed internal code (LIC). Microcode that IBM
does not sell as part of a machine, but licenses to the
client. LIC is implemented in a part of storage that is
not addressable by user programs. Some IBM
products use it to implement functions as an
alternative to hard-wired circuitry.

licensed program. A software package that can be
ordered from the program libraries, such as IBM
Software Distribution (ISMD). IMS and CICS are
examples of licensed programs.

Lightweight Directory Access Protocol (LDAP).
An Internet protocol standard, based on the TCP/IP
protocol, which allows the access and manipulation
of data organized in a Directory Information Tree
(DIT).

LIFO. last in, first out.

link library. A data set containing link-edited object
modules.

link pack area (LPA). An area of virtual storage that
contains reenterable routines that are loaded at IPL
(initial program load) time and can be used
concurrently by all tasks in the system.

linkage editor. An operating system component
that resolves cross-references between separately
compiled or assembled modules and then assigns
final addresses to create a single relocatable load
module. The linkage editor then stores the load
module in a load library on disk.

linked list. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonymous with
chained list.

link-edit. To create a loadable computer program by
means of a linkage editor or binder.

list structure. A Coupling Facility structure that
enables multisystem applications in a sysplex to
share information organized as a set of lists or
queues. A list structure consists of a set of lists and
an optional lock table, which can be used for
serializing resources in the list structure. Each list
consists of a queue of list entries.

little endian. A format for storage of binary data in
which the least significant byte is placed first. Little
endian is used by the Intel® hardware architectures.
Contrast with big endian.

LMOD. In SMP/E, an abbreviation for load module.

load module. An executable program stored in a
partitioned data set program library. See also
program object.

local area network (LAN). A network in which
communication is limited to a moderate-sized
geographical area (1 to 10 km) such as a single
office building, warehouse, or campus, and which
does not generally extend across public
rights-of-way. A local network depends on a
communication medium capable of moderate to high
data rate (greater than 1 Mbps), and normally
operates with a consistently low error rate.
186 Introduction to the New Mainframe: Large-Scale Commercial Computing

local system queue area (LSQA). In z/OS, one or
more segments associated with each virtual storage
region that contain job-related system control
blocks.

lock structure. A Coupling Facility structure that
enables applications in a sysplex to implement
customized locking protocols for serialization of
application-defined resources. The lock structure
supports shared, exclusive, and application-defined
lock states, as well as generalized contention
management and recovery protocols.

logical control unit (LCU). A single control unit
(CU) with or without attached devices, or a group of
one or more CUs that share devices. In a channel
subsystem (CSS), an LCU represents a set of CUs
that physically or logically attach I/O devices in
common.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned (LPAR) mode.

logical partitioning. A function of an operating
system that enables the creation of logical partitions.

logical subsystem. The logical functions of a
storage controller that allow one or more host I/O
interfaces to access a set of devices. The controller
aggregates the devices according to the addressing
mechanisms of the associated I/O interfaces. One or
more logical subsystems exist on a storage
controller. In general, the controller associates a
given set of devices with only one logical subsystem.

logical unit (LU). In SNA, a port through which an
end user accesses the SNA network in order to
communicate with another end user, and through
which the end user accesses the functions provided
by system services control points (SSCPs).

logical unit type 6.2. The SNA logical unit type that
supports general communication between programs
in a cooperative processing environment.

logically partitioned (LPAR) mode. A central
processor complex (CPC) power-on reset mode that
enables use of the PR/SM feature and allows an
operator to allocate CPC hardware resources
(including central processors, main storage,
expanded storage, and channel paths) among
logical partitions.

logoff. (1) The procedure by which a user ends a
terminal session. (2) In VTAM®, a request that a
terminal be disconnected from a VTAM application
program.

logon. (1) The procedure by which a user begins a
terminal session. (2) In VTAM, a request that a
terminal be connected to a VTAM application
program.

loop. A situation in which an instruction or a group
of instructions execute repeatedly.

loosely coupled. A multisystem structure that
requires a low degree of interaction and cooperation
between multiple z/OS images to process a
workload. See also tightly coupled.

LP. logical partition.

LPA. link pack area.

LPAR. logically partitioned (mode).

LRECL. logical record length.

LSQA. local system queue area

LU. logical unit.

M

machine check interruption. An interruption that
occurs as a result of an equipment malfunction or
error.

machine readable. Pertaining to data a machine
can acquire or interpret (read) from a storage device,
a data medium, or other source.
Appendix B. Glossary 187

macro. An instruction in a source language that is to
be replaced by a defined sequence of instructions in
the same source language.

main task. In the context of z/OS multitasking, the
main program in a multitasking environment.

MAS. multi-access spool configuration.

master catalog. A catalog that contains extensive
data set and volume information that VSAM requires
to locate data sets, to allocate and deallocate
storage space, to verify the authorization of a
program or operator to gain access to a data set,
and to accumulate usage statistics for data sets.

master IODF. A centrally kept IODF containing I/O
definitions for several systems or even for a
complete enterprise structure. Master IODFs help to
maintain consistent I/O data and can provide
comprehensive reports.

master trace. A centralized data tracing facility of
the master scheduler, used in servicing the
message processing portions of z/OS.

MB. megabyte.

MCS. (1) Multiple console support. (2) Modification
control statement (in SMP/E).

MCS console. A non-SNA device defined to z/OS
that is locally attached to a z/OS system and is used
to enter commands and receive messages.

megabyte (MB). 220 bytes, 1 048 576
bytes.,048,576 bytes.

member. A partition of a partitioned data set (PDS)
or partitioned data set extended (PDSE).

message processing facility (MPF). A facility used
to control message retention, suppression, and
presentation.

message queue. A queue of messages that are
waiting to be processed or waiting to be sent to a
terminal.

message text. The part of a message consisting of
the actual information that is routed to a user at a
terminal or to a program.

microcode. Stored microinstructions, not available
to users, that perform certain functions.

microprocessor. A processor implemented on one
or a small number of chips.

migration. Refers to activities, often performed by
the system programmer, that relate to the installation
of a new version or release of a program to replace
an earlier level. Completion of these activities
ensures that the applications and resources on a
system will function correctly at the new level.

mixed complex. A global resource serialization
complex in which one or more of the systems in the
global resource serialization complex are not part of
a multisystem sysplex.

modification control statement (MCS). An SMP/E
control statement used to package a SYSMOD.
MCSs describe the elements of a program and the
relationships that program has with other programs
that may be installed on the same system.

modification level. A distribution of all temporary
fixes that have been issued since the previous
modification level. A change in modification level
does not add new functions or change the
programming support category of the release to
which it applies. Contrast with release and version.
Whenever a new release of a program is shipped,
the modification level is set to 0. When the release is
reshipped with the accumulated services changes
incorporated, the modification level is incremented
by 1.

module. The object that results from compiling
source code. A module cannot be run. To be run, a
module must be bound into a program.

monoplex. A sysplex consisting of one system that
uses a sysplex couple data set.
188 Introduction to the New Mainframe: Large-Scale Commercial Computing

multi-access spool configuration. Multiple
systems sharing the JES2 input, job and output
queues (through a checkpoint data set or coupling
facility).

multiple console support (MCS). The operator
interface in a z/OS system.

Multiple Virtual Storage (MVS). An earlier form of
the z/OS operating system.

multiprocessing. The simultaneous execution of
two or more computer programs or sequences of
instructions. See also parallel processing.

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor
complexes.

multisystem application. An application program
that has various functions distributed across z/OS
images in a multisystem environment.

multisystem console support. Multiple console
support for more than one system in a sysplex.
Multisystem console support allows consoles on
different systems in the sysplex to communicate with
each other (send messages and receive
commands)

multisystem environment. An environment on
which two or more z/OS images reside in one or
more processors, and programs on one image can
communicate with programs on the other images.

multisystem sysplex. A sysplex in which two or
more z/OS images are allowed to be initialized as
part of the sysplex.

multitasking. Mode of operation that provides for
the concurrent, or interleaved, execution of two or
more tasks, or threads. Synonymous with
multithreading.

mutable connection. Connections made with fiber
jumper cables between patchports in a cabinet or
between cabinets and active objects such as
CHPIDs, switches, converters and controllers with
ESCON or FICON interfaces. Mutable connections
are broken when the patchports they connect are
not in use.

MVS. Multiple Virtual Storage.

MVS/ESA™. Multiple Virtual Storage/Enterprise
Systems Architecture.

N

n-way. The number (n) of CPs in a CPC. For
example, a 6-way CPC contains six CPs.

NCP. Network Control Program.

network. A collection of data processing products
connected by communications lines for exchanging
information between stations.

Network File System. A component of z/OS that
allows remote access to z/OS host processor data
from workstations, personal computers, or any other
system on a TCP/IP network that is using client
software for the Network File System protocol.

network job entry (NJE). A JES2 facility that
provides for the passing of selected jobs, system
output data, operator commands, and messages
between communicating job entry subsystems
connected by binary-synchronous communication
lines, channel-to-channel adapters, and shared
queues.

network operator. (1) The person responsible for
controlling the operation of a telecommunication
network. (2) A VTAM application program authorized
to issue network operator commands.

next sequential instruction. The next instruction to
be executed in the absence of any branch or transfer
of control.
Appendix B. Glossary 189

NIP. nucleus initialization program

nonpageable region. In MVS, a subdivision of the
nonpageable dynamic area that is allocated to a job
step or system task that is not to be paged during
execution. In a nonpageable region, each virtual
address is identical to its real address. Synonymous
with V=R region.

nonreentrant. A type of program that cannot be
shared by multiple users.

nonstandard labels. Labels that do not conform to
American National Standard or IBM System/370
standard label conventions.

nucleus. That portion of a control program that
always remains in main storage.

nucleus initialization program (NIP). The stage of
z/OS that initializes the control program; it allows the
operator to request last minute changes to certain
options specified during initialization.

null. Empty; having no meaning.

O

object deck. A collection of one or more control
sections produced by an assembler or compiler and
used as input to the linkage editor or binder. Also
called object code or simply OBJ.

object module. A module that is the output from a
language translator (such as a compiler or an
assembler). An object module is in relocatable
format with machine code that is not executable.
Before an object module can be executed, it must be
processed by the link-edit utility.

offline. Pertaining to equipment or devices not
under control of the processor.

offset. The number of measuring units from an
arbitrary starting point in a record, area, or control
block, to some other point.

online. Pertaining to a user's ability to interact with
a computer.

operating system. Software that controls the
running of programs; in addition, an operating
system may provide services such as resource
allocation, scheduling, I/O control, and data
management. Although operating systems are
predominantly software, partial hardware
implementations are possible.

operations log. In z/OS, the operations log is a
central record of communications and system
problems for each system in a sysplex.

operator commands. Statements that system
operators may use to get information, alter
operations, initiate new operations, or end
operations.

operator message. A message from an operating
system directing the operator to perform a specific
function, such as mounting a tape reel; or informing
the operator of specific conditions within the system,
such as an error condition.

OS/390. An earlier form of the z/OS operating
system.

output group. A set of a job's output data sets that
share output characteristics, such as class,
destination, and external writer.

output writer. A part of the job scheduler that
transcribes specified output data sets onto a system
output device independently of the program that
produced the data sets.

overlay. To write over existing data in storage.

P

page. (1) In virtual storage systems, a fixed-length
block of instructions, data, or both, that can be
transferred between main storage and external page
storage. (2) To transfer instructions, data, or both,
between main storage and external page storage.
190 Introduction to the New Mainframe: Large-Scale Commercial Computing

page fault. In z/OS or S/390 virtual storage
systems, a program interruption that occurs when a
page that is marked “not in main storage” is referred
to by an active page.

pageable region. In MVS, a subdivision of the
pageable dynamic area that is allocated to a job step
or a system task that can be paged during execution.
Synonymous with V=V region.

paging. In z/OS, the process of transferring pages
between main storage and external page storage.

paging device. In z/OS, a direct access storage
device on which pages (and possibly other data) are
stored.

parallel processing. The simultaneous processing
of units of work by many servers. The units of work
can be either transactions or subdivisions of large
units of work (batch). See also highly parallel.

Parallel Sysplex. A sysplex that uses one or more
coupling facilities.

parameter. Data item that is received by a routine.

parmlib. All the members in the SYS1.PARMLIB
PDS that contain parameters setting the limits and
controlling the behavior of z/OS.

parmlib member. One of the members in the
SYS1.PARMLIB PDS that contain parameters
setting the limits and controlling the behavior of
z/OS.

partially qualified data set name. A data set name
in which the qualifiers are not spelled out. Asterisks
and percent signs are used in place of the undefined
qualifiers.

partitionable CPC. A CPC that can be divided into
two independent CPCs. See also physical partition,
single-image mode, side.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. Synonymous with program
library. Contrast with sequential data set.

partitioned data set extended (PDSE). A
system-managed data set that contains an indexed
directory and members that are similar to the
directory and members of partitioned data sets. A
PDSE can be used instead of a partitioned data set.

partitioning. The process of forming multiple
configurations from one configuration.

password. A unique string of characters known to a
computer system and to a user, who must specify
the character string to gain access to a system and
to the information stored within it.

patchport. A pair of fibre adapters or couplers. Any
number of patchports can participate in a fiber link.
To determine the total number of patchports in a
cabinet, you must add the number of patchports of
each defined panel of the cabinet.

PC. personal computer.

PCHID. physical channel identifier.

PE. See program error PTF.

Peer-to-Peer Remote Copy (PPRC). Direct
connection between DASD controller subsystems
that is used primarily to provide a hot standby
capability. These connections can be point-to-point
from one DASD controller to another, or they can
pass through switches, just as connections from
CHPIDs to control units can.

percolate. The action taken by the condition
manager when the returned value from a condition
handler indicates that the handler could not handle
the condition, and the condition will be transferred to
the next handler.
Appendix B. Glossary 191

performance administration. The process of
defining and adjusting workload management goals
and resource groups based on installation business
objectives.

permanent connection. Permanent connections
are usually made between cabinets with fiber trunk
cables. Patchports that are permanently connected
remain so even when they are not in use.

permanent data set. A user-named data set that is
normally retained for longer than the duration of a
job or interactive session. Contrast with temporary
data set.

PFK capability. On a display console, indicates that
program function keys are supported and were
specified at system generation.

physical channel identifier (PCHID). The physical
address of a channel path in the hardware. Logical
CHPIDs have corresponding physical channels.
Real I/O hardware is attached to a processor
through physical channels. Channels have a
physical channel identifier (PCHID) which
determines the physical location of a channel in the
processor. The PCHID is a three hexadecimal digit
number and is assigned by the processor.

physical partition. Part of a CPC that operates as
a CPC in its own right, with its own copy of the
operating system.

physical unit (PU). (1) The control unit or cluster
controller of an SNA terminal. (2) The part of the
control unit or cluster controller that fulfills the role of
a physical unit as defined by systems network
architecture (SNA).

physically partitioned (PP) mode. The state of a
processor complex when its hardware units are
divided into two separate operating configurations or
sides. The A-side of the processor controller
controls side 0; the B-side of the processor controller
controls side 1. Contrast with single-image (SI)
configuration.

PL/I. A general purpose scientific/business
high-level language. PL/I is a powerful
procedure-oriented language especially well suited
for solving complex scientific problems or running
lengthy and complicated business transactions and
record-keeping applications.

platform. The operating system environment on
which a program runs

PLPA. pageable link pack area.

pointer. An address or other indication of location.

portability. The ability to transfer an application
from one platform to another with relatively few
changes to the source code.

Portable Operating System Interface (POSIX).
Portable Operating System Interface for computing
environments, an interface standard governed by
the IEEE and based on UNIX. POSIX is not a
product. Rather, it is an evolving family of standards
describing a wide spectrum of operating system
components ranging from C language and shell
interfaces to system administration.

POSIX. Portable Operating System Interface.

PPRC. Peer-to-Peer Remote Copy.

PPT. In z/OS, the program properties table.

preprocessor. A routine that examines application
source code for preprocessor statements that are
then executed, resulting in the alteration of the
source.

preventive service. (1) The mass installation of
PTFs to avoid rediscoveries of the APARs fixed by
those PTFs. (2) The SYSMODs delivered on the
program update tape.

preventive service planning (PSP). Installation
recommendations and HOLDDATA for a product or a
service level. PSP information can be obtained from
the IBM Support Center.
192 Introduction to the New Mainframe: Large-Scale Commercial Computing

primary key. One or more characters within a data
record used to identify the data record or control its
use. A primary key must be unique.

printer. A device that writes output data from a
system on paper or other media.

procedure. A set of self-contained high-level
language (HLL) statements that performs a
particular task and returns to the caller. Individual
languages have different names for this concept of a
procedure. In C, a procedure is called a function. In
COBOL, a procedure is a paragraph or section that
can only be performed from within the program. In
PL/I, a procedure is a named block of code that can
be invoked externally, usually through a a call.

processor. The physical processor, or machine, has
a serial number, a set of channels, and a logical
processor associated with it. The logical processor
has a number of channel path IDs, or CHPIDs, which
are the logical equivalent of channels. The logical
processor may be divided into a number of logical
partitions.

processor storage. See main storage.

program error PTF (PE-PTF). A PTF that has been
found to contain an error. A PE-PTF is identified on
a ++HOLD ERROR statement, along with the APAR
that first reported the error.

program fetch. A program that prepares programs
for execution by loading them at specific storage
locations and readjusting each relocatable address
constant.

program library. A partitioned data set or PDSE
that always contains named members.

program management. The task of preparing
programs for execution, storing the programs, load
modules, or program objects in program libraries,
and executing them on the operating system.

program module. The output of the binder. A
collective term for program object and load module.

program object. All or part of a computer program
in a form suitable for loading into virtual storage for
execution. Program objects are stored in PDSE
program libraries and have fewer restrictions than
load modules. Program objects are produced by the
binder.

processor controller. Hardware that provides
support and diagnostic functions for the central
processors.

Processor Resource/Systems Manager (PR/SM).
The feature that allows the processor to use several
z/OS images simultaneously and provides logical
partitioning capability. See also LPAR.

profile. Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources.

program function key (PFK). A key on the
keyboard of a display device that passes a signal to
a program to call for a particular program operation.

program interruption. The interruption of the
execution of a program due to some event such as
an operation exception, an exponent-overflow
exception, or an addressing exception.

program level. The modification level, release,
version, and fix level.

program management. The functions within the
system that provide for establishing the necessary
activation and invocation for a program to run in the
applicable run-time environment when it is called.

program mask. In bits 20 through 23 of the program
status word (PSW), a 4-bit structure that controls
whether each of the fixed-point overflow, decimal
overflow, exponent-overflow, and significance
exceptions should cause a program interruption.
The bits of the program mask can be manipulated to
enable or disable the occurrence of a program
interruption.

program number. The seven-digit code (in the
format xxxx-xxx) used by IBM to identify each
licensed program.
Appendix B. Glossary 193

program object. All or part of a computer program
in a form suitable for loading into virtual storage for
execution. Program objects are stored in PDSE
program libraries and have fewer restrictions than
load modules. Program objects are produced by the
binder.

program status word (PSW). A 64-bit structure in
main storage used to control the order in which
instructions are executed, and to hold and indicate
the status of the computing system in relation to a
particular program. See also program mask.

program temporary fix (PTF). A temporary solution
or bypass of a problem diagnosed by IBM as
resulting from a defect in a current unaltered release
of the program.

PSP. preventive service planning.

PSW. program status word.

PTF. program temporary fix.

Q

QSAM. queued sequential access method.

qualified name. A data set name consisting of a
string of names separated by periods; for example,
"TREE.FRUIT.APPLE" is a qualified name.

qualifier. A modifier in a qualified name other than
the rightmost name. For example, “TREE” and
“FRUIT” are qualifiers in “TREE.FRUIT.APPLE.”

queue. A line or list formed by items in a system
waiting for processing.

queued sequential access method (QSAM). An
extended version of the basic sequential access
method (BSAM). Input data blocks awaiting
processing or output data blocks awaiting transfer to
auxiliary storage are queued on the system to
minimize delays in I/O operations.

R

RACF. Resource Access Control Facility.

RAS. Reliability, availability, serviceability.
Long-standing characteristics of mainframes.

RDW. record descriptor word.

read access. Permission to read information.

reader. A program that reads jobs from an input
device or data base file and places them on the job
queue.

real address. In virtual storage systems, the
address of a location in main storage.

real storage. See main storage.

reason code. A return code that describes the
reason for the failure or partial success of an
attempted operation.

receive. In SMP/E, to read SYSMODs and other
data from SMPPTFIN and SMPHOLD and store
them on the global zone for subsequent SMP/E
processing. This is done with the RECEIVE
command.

RECEIVE. The SMP/E command used to read in
SYSMODs and other data from SMPPTFIN and
SMPHOLD.

RECEIVE processing. An SMP/E process
necessary to install new product libraries. During
this process, the code, organized as unloaded
partition data sets, is loaded into temporary
SMPTLIB data sets. SMP/E RECEIVE processing
automatically allocates the temporary partitioned
data sets that correspond to the files on the tape,
and loads them from the tape.

RECFM. record format.
194 Introduction to the New Mainframe: Large-Scale Commercial Computing

record. (1) A group of related data, words, or fields
treated as a unit, such as one name, address, and
telephone number. record. (2) A self-contained
collection of information about a single object. A
record is made up of a number of distinct items,
called fields. A number of shell programs (for
example, awk, join, and sort) are designed to
process data consisting of records separated by
newlines, where each record contains a number of
fields separated by spaces or some other character.
awk can also handle records separated by
characters other than newlines. See fixed-length
record, variable-length record.

record data. Data sets with a record-oriented
structure that are accessed record by record. This
data set structure is typical of data sets on z/OS and
other mainframe operating systems. See also byte
stream.

recording format. For a tape volume, the format of
the data on the tape, for example, 18, 36, 128, or 256
tracks.

recovery. The process of rebuilding data after it has
been damaged or destroyed, often by restoring a
backup version of the data or by reapplying
transactions recorded in a log.

recovery system. A system that is used in place of
a primary application system that is no longer
available for use. Data from the application system
must be available for use on the recovery system.
This is usually accomplished through backup and
recovery techniques, or through various DASD
copying techniques, such as remote copy.

recursive routine. A routine that can call itself or be
called by another routine that it has called.

redundant array of independent disk (RAID). A
disk subsystem architecture that combines two or
more physical disk storage devices into a single
logical device to achieve data redundancy.

reenterable. The reusability attribute that allows a
program to be used concurrently by more than one
task. A reenterable module can modify its own data
or other shared resources, if appropriate
serialization is in place to prevent interference
between using tasks. See reusability. reentrant.

reentrant. The attribute of a routine or application
that allows more than one user to share a single
copy of a load module.

refreshable. The reusability attribute that allows a
program to be replaced (refreshed) with a new copy
without affecting its operation. A refreshable module
cannot be modified by itself or any other module
during execution. See reusability.

register. An internal computer component capable
of storing a specified amount of data and accepting
or transferring this data rapidly.

register save area (RSA). Area of main storage in
which contents of registers are saved.

related installation materials (RIMs). In IBM
custom-built offerings, task-oriented documentation,
jobs, sample exit routines, procedures, parameters,
and examples developed by IBM.

release. A distribution of a new product or new
function and APAR fixes for an existing product.
Contrast with modification level and version.

remote copy. A storage-based disaster recovery
and workload migration function that can copy data
in real time to a remote location. Two options of
remote copy are available. See Peer-to-Peer
Remote Copy and Extended Remote Copy.

remote job entry (RJE). Submission of job control
statements and data from a remote terminal,
causing the jobs described to be scheduled and
executed as though encountered in the input stream.

remote operations. Operation of remote sites from
a host system.
Appendix B. Glossary 195

reserved storage allocation. The amount of
central and expanded storage that you can
dynamically configure online or offline to a logical
partition.

residency mode (RMODE). The attribute of a
program module that specifies whether the module,
when loaded, must reside below the 16 MB virtual
storage line or may reside anywhere in virtual
storage.

Resource Access Control Facility (RACF). An
IBM security manager product that provides for
access control by identifying and verifying the users
to the system, authorizing access to protected
resources, logging the detected unauthorized
attempts to enter the system and logging the
detected accesses to protected resources.

resource recovery services (RRS). The z/OS
system component that provides the services that a
resource manager calls to protect resources. RRS is
the z/OS system level sync point manager.

RESTORE. The SMP/E command used to remove
applied SYSMODs from the target libraries.

restore. In SMP/E, to remove applied SYSMODs
from the target libraries by use of the RESTORE
command.

restructured extended executor (REXX). A
general-purpose, procedural language for end-user
personal programming, designed for ease by both
casual general users and computer professionals. It
is also useful for application macros. REXX includes
the capability of issuing commands to the underlying
operating system from these macros and
procedures.

resynchronization. A track image copy from the
primary volume to the secondary volume of only the
tracks which have changed since the volume was
last in duplex mode.

return code. A code produced by a routine to
indicate its success or failure. It may be used to
influence the execution of succeeding instructions or
programs.

reusability. The attribute of a module or section that
indicates the extent to which it can be reused or
shared by multiple tasks within the address space.
See refreshable, reenterable, and serially reusable.

RIM. related installation material.

RJE. remote job entry.

RMF. Resource Measurement Facility.

RMODE. residency mode.

rollback. The process of restoring data changed by
an application to the state at its last commit point.

routine. (1) A program or sequence of instructions
called by a program. Typically, a routine has a
general purpose and is frequently used. CICS and
programming languages use routines. (2) A
database object that encapsulates procedural logic
and SQL statements, is stored on the database
server, and can be invoked from an SQL statement
or by using the CALL statement. The three main
classes of routines are procedures, functions, and
methods. (3) In REXX, a series of instructions called
with the CALL instruction or as a function. A routine
can be either internal or external to a user's
program. (4) A set of statements in a program that
causes the system to perform an operation or a
series of related operations.

routing. The assignment of the communications
path by which a message will reach its destination.

routing code. A code assigned to an operator
message and used to route the message to the
proper console.

RSA. register save area.

run. To cause a program, utility, or other machine
function to be performed.
196 Introduction to the New Mainframe: Large-Scale Commercial Computing

run time. Any instant at which a program is being
executed. Synonymous with execution time.

run-time environment. A set of resources that are
used to support the execution of a program.
Synonymous with execution environment.

S

SAF. system authorization facility.

SAP. System Assistance Processor.

save area. Area of main storage in which contents
of registers are saved.

SDSF. System Display and Search Facility.

security administrator. A programmer who
manages, protects, and controls access to sensitive
information.

sequential data set. (1) A data set whose records
are organized on the basis of their successive
physical positions, such as on magnetic tape.
Contrast with direct data set. (2) A data set in which
the contents are arranged in successive physical
order and are stored as an entity. The data set can
contain data, text, a program, or part of a program.
Contrast with partitioned data set (PDS).

serially reusable. The reusability attribute that
allows a program to be executed by more than one
task in sequence. A serially reusable module cannot
be entered by a new task until the previous task has
exited. See reusability.

server. (1) In a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. (2) The party
that receives remote procedure calls. Contrast with
client.

server address space. Any address space that
does work on behalf of a transaction manager or a
resource manager. For example, a server address
space could be a CICS AOR, or an IMS control
region.

service. PTFs and APAR fixes.

service level. The FMID, RMID, and UMID values
for an element. The service level identifies the owner
of the element, the last SYSMOD to replace the
element, and all the SYSMODs that have updated
the element since it was last replaced.

service level agreement (SLA). A written
agreement of the information systems (IS) service to
be provided to the users of a computing installation.

service processor. The part of a processor
complex that provides for the maintenance of the
complex.

service unit. The amount of service consumed by a
work request as calculated by service definition
coefficients and CPU, SRB, I/O, and storage service
units.

session. (1) The period of time during which a user
of a terminal can communicate with an interactive
system; usually, the elapsed time from when a
terminal is logged on to the system until it is logged
off the system. (2) The period of time during which
programs or devices can communicate with each
other. (3) In VTAM, the period of time during which a
node is connected to an application program.

severity code. A part of operator messages that
indicates the severity of the error condition (I, E, or
S).

shared DASD option. An option that enables
independently operating computing systems to
jointly use common data residing on shared direct
access storage devices.
Appendix B. Glossary 197

shared storage. An area of storage that is the same
for each virtual address space. Because it is the
same space for all users, information stored there
can be shared and does not have to be loaded in the
user region.

side. One of the configurations formed by physical
partitioning.

SIGP. signal processor.

simultaneous peripheral operations online
(spool). The reading and writing of input and output
streams on auxiliary storage devices, concurrently
while a job is running, in a format convenient for later
processing or output operations.

single point of control. The characteristic a
sysplex displays when you can accomplish a given
set of tasks from a single workstation, even if you
need multiple IBM and vendor products to
accomplish that particular set of tasks.

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function
as one CPC. By definition, a uniprocessor (UP)
operates in single-image mode. Contrast with
physically partitioned (PP) configuration.

single-processor complex. A processing
environment on which only one processor
(computer) accesses the spool and comprises the
entire node.

single system image. The characteristic a product
displays when multiple images of the product can be
viewed and managed as one image.

single-system sysplex. A sysplex in which only
one z/OS system is allowed to be initialized as part
of the sysplex. In a single-system sysplex, XCF
provides XCF services on the system but does not
provide signalling services between z/OS systems.
See also multisystem sysplex.

SLA. service level agreement.

small computer system interface (SCSI). A
standard hardware interface that enables a variety of
peripheral devices to communicate with one
another.

SMF. system management facilities.

SMP/E. System Modification Program/Extended.

SMPCSI. The SMP/E data set that contains
information about the structure of a user's system as
well as information needed to install the operating
system on a user's system. The SMPCSI DD
statement refers specifically to the CSI that contains
the global zone. This is also called the master CSI.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

software. (1) All or part of the programs,
procedures, rules, and associated documentation of
a data processing system. (2) A set of programs,
procedures, and, possibly, associated
documentation concerned with the operation of a
data processing system. For example, compilers,
library routines, manuals, circuit diagrams. Contrast
with hardware.

sort/merge program. A processing program that
can be used to sort or merge records in a prescribed
sequence.

source code. The input to a compiler or assembler,
written in a source language.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run.

spin data set. A data set that is deallocated
(available for printing) when it is closed. Spin off data
set support is provided for output data sets just prior
to the termination of the job that created the data set.

spool. simultaneous peripheral operations online.

spooled data set. A data set written on an auxiliary
storage device and managed by JES.
198 Introduction to the New Mainframe: Large-Scale Commercial Computing

spooling. The reading and writing of input and
output streams on auxiliary storage devices,
concurrently with job execution, in a format
convenient for later processing or output operations.

SPUFI. SQL Processing Using File Input.

SQA. system queue area.

SQL. Structured Query Language.

SREL. system release identifier.

SRM. system resources manager.

SSID. subsystem identifier.

started task. In z/OS, an address space that runs
unattended as the result of a START command.
Started tasks are generally used for critical
applications. The UNIX equivalent is a daemon.

status-display console. An MCS console that can
receive displays of system status but from which an
operator cannot enter commands.

step restart. A restart that begins at the beginning
of a job step. The restart may be automatic or
deferred, where deferral involves resubmitting the
job. Contrast with checkpoint restart.

storage administrator. A person in the data
processing center who is responsible for defining,
implementing, and maintaining storage
management policies.

storage class. A collection of storage attributes that
identify performance goals and availability
requirements, defined by the storage administrator,
used to select a device that can meet those goals
and requirements.

storage group. A collection of storage volumes and
attributes, defined the storage administrator. The
collections can be a group of DASD volume or tape
volumes, or a group of DASD, optical, or tape
volumes treated as single object storage hierarchy.

storage management. The activities of data set
allocation, placement, monitoring, migration,
backup, recall, recovery, and deletion. These can be
done either manually or by using automated
processes. The Storage Management Subsystem
automates these processes for you, while optimizing
storage resources. See also Storage Management
Subsystem.

Storage Management Subsystem (SMS). A facility
used to automate and centralize the management of
storage. Using SMS, a storage administrator
describes data allocation characteristics,
performance and availability goals, backup and
retention requirements, and storage requirements to
the system through data class, storage class,
management class, storage group, and ACS routine
definitions.

string. A collection of one or more I/O devices. The
term usually refers to a physical string of units, but
may mean a collection of I/O devices which are
integrated into a control unit.

structure. A construct used by z/OS to map and
manage storage on a Coupling Facility. See cache
structure, list structure, and lock structure.

subchannel set. Installation-specified structure that
defines the placement of devices either relative to a
channel subsystem or to an operating system.

subpool storage. All of the storage blocks allocated
under a subpool number for a particular task.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a
controlling system. Examples are CICS and IMS.

subsystem interface (SSI). A component that
provides communication between z/OS and its job
entry subsystem.
Appendix B. Glossary 199

subtask. In the context of z/OS multitasking, a task
that is initiated and terminated by a higher order task
(the main task). Subtasks run the parallel functions,
those portions of the program that can run
independently of the main task program and each
other.

superuser. (1) A system user who operates without
restrictions. A superuser has the special rights and
privileges needed to perform administrative tasks.
The z/OS equivalent is a user in privileged, or
supervisor, mode. (2) A system user who can pass
all z/OS UNIX security checks. A superuser has the
special rights and privileges needed to manage
processes and files.

superuser authority. The unrestricted ability to
access and modify any part of the operating system,
usually associated with the user who manages the
system.

supervisor. The part of z/OS that coordinates the
use of resources and maintains the flow of
processing unit operations.

supervisor call (SVC). An instruction that interrupts
a program being executed and passes control to the
supervisor so that it can perform a specific service
indicated by the instruction.

support element. A hardware unit that provides
communications, monitoring, and diagnostic
functions to a central processor complex (CPC).

suspended state. When only one of the devices in
a dual copy or remote copy volume pair is being
updated because of either a permanent error
condition or an authorized user command. All writes
to the remaining functional device are logged. This
allows for automatic resynchronization of both
volumes when the volume pair is reset to the active
duplex state.

SVC. supervisor call instruction.

SVC interruption. An interruption caused by the
execution of a supervisor call instruction, causing
control to be passed to the supervisor.

SVC routine. A control program routine that
performs or begins a control program service
specified by a supervisor call instruction.

SWA. scheduler work area.

swap data set. A data set dedicated to the swapping
operation.

swapping. A z/OS paging operation that writes the
active pages of a job to auxiliary storage and reads
pages of another job from auxiliary storage into main
storage.

switch. A device that provides connectivity
capability and control for attaching any two ESCON
or FICON links together.

synchronous messages. WTO or WTOR
messages issued by a z/OS system during certain
recovery situations.

sync point manager. A function that coordinates
the two-phase commit process for protected
resources, so that all changes to data are either
committed or backed out. In z/OS, RRS can act as
the system level sync point manager. A sync point
manager is also known as a transaction manager,
sync point coordinator, or a commit coordinator.

syntax. The rules governing the structure of a
programming language and the construction of a
statement in a programming language.

SYSIN. A system input stream; also, the name used
as the data definition name of a data set in the input
stream.

SYSLIB. (1) A subentry used to identify the target
library in which an element is installed. (2) A
concatenation of macro libraries to be used by the
assembler. (3) A set of routines used by the link-edit
utility to resolve unresolved external references.

SYSLOG. system log.

SYSMOD. system modification.
200 Introduction to the New Mainframe: Large-Scale Commercial Computing

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a
data set is to be written on a system output unit.

SYSOUT class. A category of output with specific
characteristics and written on a specific output
device. Each system has its own set of SYSOUT
classes, designated by a character from A to Z, a
number from 0 to 9, or a *.

sysplex. A set of z/OS systems communicating
and cooperating with each other through certain
multisystem hardware components and software
services to process client workloads. See also
Parallel Sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups,
and members that use XCF services. All z/OS
systems in a sysplex must have connectivity to the
sysplex couple data set. See also couple data set.

Sysplex Timer. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides.

SYSRES. system residence disk.

system. The combination of a configuration
(hardware) and the operating system (software).
Often referred to simply as the z/OS system.

system abend. An abend caused by the operating
system's inability to process a routine; may be
caused by errors in the logic of the source routine.

system console. In z/OS, a console attached to
the processor controller used to initialize a z/OS
system.

system control element (SCE). Hardware that
handles the transfer of data and control information
associated with storage requests between the
elements of the processor.

system data. The data sets required by z/OS or its
subsystems for initialization.

system library. A collection of data sets or files in
which the parts of an operating system are stored.

system-managed data set. A data set that has
been assigned a storage class.

system-managed storage. Storage managed by
the Storage Management Subsystem (SMS) of
z/OS.

system management facilities (SMF). A z/OS
component that provides the means for gathering
and recording information for evaluating system
usage.

system modification (SYSMOD). The input data to
SMP/E that defines the introduction, replacement, or
updating of elements in the operating system and
associated distribution libraries to be installed. A
system modification is defined by a set of MCS.

System Modification Program Extended
(SMP/E). An IBM program product, or an element of
OS/390 or z/OS, used to install software and
software changes on z/OS systems. SMP/E
consolidates installation data, allows more flexibility
in selecting changes to be installed, provides a
dialog interface, and supports dynamic allocation of
data sets. SMP/E is the primary means of controlling
changes to the z/OS operating system.

Systems Network Architecture (SNA). A
description of the logical structure, formats,
protocols, and operational sequences for
transmitting information units through, and
controlling the configuration and operation of
networks.

system queue area (SQA). In z/OS, an area of
virtual storage reserved for system-related control
blocks.
Appendix B. Glossary 201

T

tape volume. Storage space on tape, identified by a
volume label, which contains data sets or objects
and available free space. A tape volume is the
recording space on a single tape cartridge or reel.
See also volume.

target library. In SMP/E, a collection of data sets in
which the various parts of an operating system are
stored. These data sets are sometimes called
system libraries.

target zone. In SMP/E, a collection of VSAM
records describing the target system macros,
modules, assemblies, load modules, source
modules, and libraries copied from DLIBs during
system generation, and the SYSMODs applied to
the target system.

task. In a multiprogramming or multiprocessing
environment, one or more sequences of instructions
treated by a control program as an element of work
to be accomplished by a computer.

task control block (TCB). A data structure that
contains information and pointers associated with
the task in process.

TCB. task control block.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

temporary data set. A data set that is created and
deleted in the same job.

terminal. A device, usually equipped with a
keyboard and some kind of display, capable of
sending and receiving information over a link.

terminal owning region (TOR). A CICS region
devoted to managing the terminal network.

TGTLIB. target library.

tightly coupled. Multiple CPs that share storage
and are controlled by a single copy of z/OS. See also
loosely coupled, tightly coupled multiprocessor.

tightly coupled multiprocessing. Two computing
systems operating simultaneously under one control
program while sharing resources.

tightly coupled multiprocessor. Any CPU with
multiple CPs.

Time Sharing Option/Extensions (TSO/E). The
facility in z/OS that allows users to interactively
share computer time and resources.

timeout. The time in seconds that the storage
control remains in a “long busy” condition before
physical sessions are ended.

TLIB. target library.

transaction. A unit of work performed by one or
more transaction programs, involving a specific set
of input data and initiating a specific process or job.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A hardware independent communication
protocol used between physically separated
computers. It was designed to facilitate
communication between computers located on
different physical networks.

Transport Layer Security (TLS). A protocol that
provides communications privacy over the Internet.

TRK. A subparameter of the SPACE parameter in a
DD statement. It specifies that space is to be
allocated by tracks.

trunk cable. Cables used to make permanent
connections between cabinets and which remain in
place even when not in use.

TSO. Time-sharing option. See Time Sharing
Option/ Extensions (TSO/E).

TSO/E. Time Sharing Option/Extensions.

U

UCB. unit control block.
202 Introduction to the New Mainframe: Large-Scale Commercial Computing

UCLIN. In SMP/E, the command used to initiate
changes to SMP/E data sets. Actual changes are
made by subsequent UCL statements.

UIM. unit information module.

Unicode Standard. A universal character encoding
standard that supports the interchange, processing,
and display of text that is written in any of the
languages of the modern world. It can also support
many classical and historical texts and is continually
being expanded.

uniprocessor (UP). A processor complex that has
one central processor.

unit of recovery (UR). A set of changes on one
node that is committed or backed out as part of an
ACID transaction. A UR is implicitly started the first
time a resource manager touches a protected
resource on a node. A UR ends when the two-phase
commit process for the ACID transaction changing it
completes.

UNIX. See z/OS UNIX System Services.

UNIX file system. A section of the UNIX file tree that
is physically contained on a single device or disk
partition and that can be separately mounted,
dismounted, and administered. See also
hierarchical file system.

UNLOAD. The SMP/E command used to copy data
out of SMP/E data set entries in the form of UCL
statements.

unload. In SMP/E, to copy data out of SMP/E data
set entries in the form of UCL statements, by use of
the UNLOAD command.

unused cable. Physical cables that have been
recently disconnected, but not yet placed in
inventory.

upwardly compatible. The ability for applications to
continue to run on later releases of z/OS, without the
need to recompile or relink.

user abend. A request made by user code to the
operating system to abnormally terminate a routine.
Contrast with system abend.

user catalog. An optional catalog used in the same
way as the master catalog and pointed to by the
master catalog. It also lessens the contention for the
master catalog and facilitates volume portability.

user exit. A routine that takes control at a specific
point in an application. User exits are often used to
provide additional initialization and termination
functions.

user ID. user identification.

user identification (user ID). A 1-8 character
symbol identifying a system user.

user modification (USERMOD). A change
constructed by a user to modify an existing function,
add to an existing function, or add a user-defined
function. USERMODs are identified to SMP/E by the
++USERMOD statement.

USERMOD. user modification.

V

V=R region. Synonymous with nonpageable region.

V=V region. Synonymous with pageable region.

variable-length record. A record having a length
independent of the length of other records with
which it is logically or physically associated. Contrast
with fixed-length record.

VB. Variable blocked.

vendor. A person or company that provides a
service or product to another person or company.

version. A separate licensed program that is based
on an existing licensed program and that usually has
significant new code or new functions. Contrast with
release and modification level.
Appendix B. Glossary 203

VIO. virtual input/output.

virtual address space. In virtual storage systems,
the virtual storage assigned to a job, terminal user,
or system task. See also address space.

virtual input/output (VIO). The allocation of data
sets that exist in paging storage only.

Virtual Storage Access Method (VSAM). An
access method for direct or sequential processing of
fixed-length and varying-length records on direct
access devices. The records in a VSAM data set or
file can be organized in logical sequence by a key
field (key sequence), in the physical sequence in
which they are written on the data set or file
(entry-sequence), or by relative-record number.

virtual storage. (1) The storage space that can be
regarded as addressable main storage by the user
of a computer system in which virtual addresses are
mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations. (2) An addressing scheme that
allows external disk storage to appear as main
storage.

virtual telecommunications access method
(VTAM). A set of programs that maintain control of
the communication between terminals and
application programs running under z/OS.

VM. Virtual Machine.

VOLSER. volume serial number.

volume. (1) The storage space on DASD, tape or
optical devices, which is identified by a volume label.
(2) That portion of a single unit of storage which is
accessible to a single read/write mechanism, for
example, a drum, a disk pack, or part of a disk
storage module. (3) A recording medium that is
mounted and demounted as a unit, for example, a
reel of magnetic tape or a disk pack.

volume backup. Backup of an entire volume to
protect against the loss of the volume.

volume serial number. A number in a volume label
that is assigned when a volume is prepared for use
in the system.

volume table of contents (VTOC). A table on a
direct access storage device (DASD) volume that
describes the location, size, and other
characteristics of each data set on the volume.

VPN. virtual private network.

VSAM. virtual storage access method.

VTAM. Virtual Telecommunications Access Method.

VTOC. volume table of contents.

W

WAP. wireless access point.

wait state. Synonymous with waiting time.

waiting time. (1) The condition of a task that
depends on one or more events in order to enter the
ready condition. (2) The condition of a processing
unit when all operations are suspended.

wild carding. The use of an asterisk (*) as a multiple
character replacement in classification rules.

WLM. workload manager. A subsystem that
optimizes z/OS application throughput based on
your requirements.

workload. A group of work to be tracked, managed
and reported as a unit.

work request. A piece of work, such as a request for
service, a batch job, an APPC, CICS, or IMS
transaction, a TSO LOGON, or a TSO command.
204 Introduction to the New Mainframe: Large-Scale Commercial Computing

wrap mode. The console display mode that allows
a separator line between old and new messages to
move down a full screen as new messages are
added. When the screen is filled and a new message
is added, the separator line overlays the oldest
message and the newest message appears
immediately before the line.

write-to-operator (WTO) message. A message
sent to an operator console informing the operator of
errors and system conditions that may need
correcting.

write-to-operator-with-reply (WTOR) message.
A message sent to an operator console informing
the operator of errors and system conditions that
may need correcting. The operator must enter a
response.

WTO. write-to-operator.

WTOR. write-to-operator-with-reply.

X

XA. Extended Architecture.

XCF. cross-system coupling facility.

Z

zAAP. zSeries Application Assist Processor.

z/Architecture. An IBM architecture for mainframe
computers and peripherals. The zSeries family of
servers uses the z/Architecture.

zFS. zSeries file system.

z/OS. A widely used operating system for IBM
mainframe computers that uses 64-bit main storage.

z/OS Language Environment. An IBM software
product that provides a common run-time
environment and common run-time services for
conforming high-level language compilers.

z/OS UNIX System Services (z/OS UNIX). z/OS
services that support a UNIX-like environment.
Users can switch between the traditional TSO/E
interface and the shell interface. UNIX-skilled users
can interact with the system, using a familiar set of
standard commands and utilities. z/OS-skilled users
can interact with the system, using familiar TSO/E
commands and interactive menus to create and
manage hierarchical file system files and to copy
data back and forth between z/OS data sets and
files. Application programmers and users have both
sets of interfaces to choose from and, by making
appropriate trade-offs, can choose to mix these
interfaces.

zSeries Application Assist Processor (zAAP). A
specialized processing assist unit configured for
running Java programming on selected zSeries
machines.

zSeries File System (zFS). A z/OS UNIX file
system that stores files in VSAM linear data sets.

Numerics

3270 pass-through mode. A mode that lets a
program running from the z/OS shell send and
receive a 3270 data stream or issue TSO/E
commands.
Appendix B. Glossary 205

206 Introduction to the New Mainframe: Large-Scale Commercial Computing

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. 207

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
eServer™
ibm.com®
z/Architecture™
z/OS®
z/VSE™
zSeries®
z9™
AIX®
Chipkill™
CICS/ESA®
CICS®
CICSPlex®
DB2®
DFS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSORT™
DS6000™
DS8000™
Electronic Service Agent™

Enterprise Systems
Architecture/390®

Extended Services®
ESCON®
FlashCopy®
FICON®
Geographically Dispersed

Parallel Sysplex™
GDPS®
HiperSockets™
IBM®
IMS™
IMS/ESA®
Language Environment®
MQSeries®
MVS™
MVS/ESA™
NetView®
Nways®
OS/390®
Parallel Sysplex®
Processor Resource/Systems

Manager™
PR/SM™
Redbooks™
Resource Link™
RACF®
RMF™
S/360™
S/390®
Sysplex Timer®
System p™
System z™
System z9™
System Storage™
System/360™
System/370™
Tivoli®
TotalStorage®
VisualAge®
VTAM®
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Java, RSM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
208 Introduction to the New Mainframe: Large-Scale Commercial Computing

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 212. Note that some of the documents referenced here may
be available in softcopy only.

� GDPS Family - An Introduction to Concepts and Capabilities, SG24-6374

� IBM System z9 and eServer zSeries Connectivity Handbook, SG24-5444

� IBM zSeries 990 Technical Guide, SG24-6947

� IBM System z9 Business Class Technical Introduction, SG24-7241

� IBM System z9 Enterprise Class Technical Guide, SG24-7124

� IBM System z9 109 Technical Guide, SG24-7124

� IBM System z9 and eServer zSeries Connectivity Handbook, SG24-5444

� OS/390 Workload Manager Implementation and Exploitation, SG24-5326

� ABCs of z/OS System Programming Volume 3 - Introduction to DFSMS, data
set basics, storage management hardware and software, VSAM,
System-managed storage, catalogs, and DFSMStvs, SG24-6983

� ABCs of z/OS System Programming Volume 5 - Base and Parallel Sysplex,
GRS, RRS; System Logger, z/OS system operations; ARM, GDPS, zSeries
availability, SG24-6985

� ABCs of z/OS System Programming Volume 10 - Introduction to
z/Architecture, zSeries processor design, zSeries connectivity, LPAR
concepts, HCD, and DS8000, SG24-6990

� ABCs of z/OS System Programming Volume 11 - Capacity planning,
performance management, WLM, RMF, SMF, SG24-6327

� Introduction to the New Mainframe: z/OS Basics, SG24-6366

� Introduction to the New Mainframe: Security, SG24-6776

� The IBM TotalStorage DS8000 Series: Concepts and Architecture,
SG24-6452

� DFSMShsm Fast Replication Technical Guide, SG24-7069
© Copyright IBM Corp. 2006. All rights reserved. 209

� The IBM TotalStorage® DS6000™ Series: Copy Services with IBM Eserver
zSeries, SG24-6782

� A Practical Guide to the IBM Autonomic Computing Toolkit, SG24-6635

� Problem Determination Using Self-Managing Autonomic Technology,
SG24-6665

� S/390 Time Management and IBM 9037 Sysplex Timer, SG24-2070

IBM white papers
These documents can be found on the Web at:

http://www.ibm.com/support/techdocs/

This site provides access to the Technical Sales Support organization's technical
information databases. It gives you access to the most current installation,
planning and technical support information available from IBM pre-sales support,
and is constantly updated. You can browse or search these databases by date,
document number, product, platform, keywords, and so on.

� Autonomic Computing: An architectural blueprint for autonomic computing

http://www.ibm.com/autonomic

Other publications
These publications are also relevant as further information sources:

� z/OS V1R1.0 Parallel Sysplex Application Migration, SA22-7662

� z/OS V1R1.0 Parallel Sysplex Overview: An Introduction to Data Sharing and
Parallelism, SA22-7661

� z/OS V1R7.0 MVS Setting Up a Sysplex, SA22-7625

� Large Systems Performance Reference, SC28-1187

� Security on z/OS: Comprehensive, current, and flexible, Guski et al.

IBM Systems Journal, Vol.40, No.3, 2001, pp.696-720, G321-0142

http://www.research.ibm.com/journal/sj/403/guski.html

� IBM eServer zSeries Security Leadership for the On Demand World,
GM13-0644

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/Security
_TL.pdf
210 Introduction to the New Mainframe: Large-Scale Commercial Computing

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/Security_TL.pdf
http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/Security_TL.pdf
http://www.ibm.com/autonomic
http://www.research.ibm.com/journal/sj/403/guski.html
http://www.ibm.com/support/techdocs/
http://www.research.ibm.com/journal/sj/403/guski.html
http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/Security_TL.pdf
http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/Security_TL.pdf

� IBM eServer z990, IBM Journal Research and Development, Vol. 48, No. 3/4,
2004

� Cluster architectures and S/390 Parallel Sysplex scalability by G. M. King, D.
M. Dias, and P. S. Yu, IBM System Journal Volume 36, Number 2, 1997

� z/OS: MVS System Management Facilities (SMF), SA22-7630

� IBM SMP/E for z/OS User's Guide, SA22-7773

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM terminology

http://www.ibm.com/ibm/terminology

� General information about IBM System z

http://www.ibm.com/systems/z

� IBM Geographically Dispersed Parallel Sysplex

http://www.ibm.com/servers/eserver/zseries/gdps

� IBM Storage Solutions: Overview - IBM System Storage

http://www.ibm.com/servers/storage/solutions/

� Parallel Sysplex home page

http://www.ibm.com/servers/eserver/zseries/pso/

� z/OS basic skills information center

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

� General mainframe information

http://www.mainframe.typepad.com/

� Scaling - us or out

http://www.redbooks.ibm.com/abstracts/redp0436.html

� z/OS Workload Manager - how it works and how to use it

http://www.ibm.com/servers/eserver/zseries/zos/wlm/pdf/zWLM.pdf

� The Autonomic Computing home page

http://www.ibm.com/autonomic
 Related publications 211

http://www.ibm.com/ibm/terminology
http://www.ibm.com/systems/z
http://www.ibm.com/servers/eserver/zseries/gdps
http://www.ibm.com/servers/storage/solutions/
http://www.ibm.com/servers/eserver/zseries/pso
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp
http://www.mainframe.typepad.com/
http://www.redbooks.ibm.com/abstracts/redp0436.html
http://www.ibm.com/servers/eserver/zseries/zos/wlm/pdf/zWLM.pdf
http://www.ibm.com/autonomic

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
212 Introduction to the New Mainframe: Large-Scale Commercial Computing

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
24x7 25

A
accessor environment element (ACEE) 81
address space 26
affinity 91
aggregate group 72
application

24x7 25
application program interface (API) 30
architecture 3
Associated Recovery Routine (ARR) 104
auditing 73
automated teller machine (ATM) 5
automatic class selection (ACS) 70
autonomic computing 4, 10, 146
availability 8, 88

B
backup 123
backup and recovery 75
bandwidth 21
bar, the 28
batch job 11
batch jobs 23
batch processing 11–12
big iron 3
book 44

C
cache 22, 53
capacity 7, 20, 28
Capacity BackUp (CBU) 95
Capacity on Demand (CoD) 55
Capacity Upgrade on Demand (CUoD) 56, 95
central processor (CP) 21

usage 35
central storage 21, 28

usage 35
centralized 2
change management 143
© Copyright IBM Corp. 2006. All rights reserved.
channel 4
channel command words (CCWs) 112
channel subsystem (CSS) 111
channel-to-channel (CTC) 51
client-server 4
clustering 3, 38, 98

see Parallel Sysplex 34
common area 48
common areas 28
compatibility 3
continuous availability (CA) 89
control unit 112
Control Unit Control Block (CUCB) 114
copy pool 72
count key data (CKD) 113
Coupling Facility (CF) 34, 38, 52
cross-system Coupling Facility (XCF) 51
cross-system extended services (XES) 51
cryptographic 24
Customer Initiated Upgrade (CIU) 56, 95
cylinder 112

D
DASD

subsystem 115
data

backup and recovery 75
data class 71
Data Facility Product (DFSMSdfp) 70
Data Facility Storage Management Subsystem (DF-
SMS) 25, 66, 121
data integrity 66
data security 8
data sharing 121
database

two-phase commit 75
deadlock 51
departmental systems 3
direct access storage device (DASD) 112
disaster

recovery 104
disaster recovery 4, 75
disaster recovery (DR) 89
 213

disk storage
accessing 35

dispatcher 31
dispatching priority 31
distributed systems 12
downtime 33
dynamic address translation (DAT) 28

E
EAL4 80
EAL5 80
e-business 5
eComputing 34
emulator 2
enqueues (ENQs) 67
enqueuing (ENQ) 50
EREP 143
error recording 102
exabyte 44
exabytes 26
Extended Remote Copy (XRC) 77, 97
Extended Specify Task Abnormal Exit (ESTAE)
103
external interrupt 30

F
fault tolerance 9
fixed block architecture (FBA) 113
FlashCopy 76
footprint 4
Functional Recovery Routine (FRR) 104

G
Generalized Trace Facility (GTF) 103
gigabytes 28
Global Mirror 77
global resource serialization (GRS) 49, 69
goal 62
grid computing 4

H
Health Checker 101
high availability (HA) 9, 89

I
information technology (IT) 4
input/output operation (I/O) 30

Integrated Facility for Linux (IFL) 45
integrity 8, 66
Intelligent Resource Director (IRD) 63
internal throughput rate (ITR) 42
Internet 4

user 23
interrupt 29
interrupt processing 162

K
kilobytes (KB) 26

L
large-scale commercial computing 20
large-scale usage 6
line, the 27
LOAD PSW 29
locking 50, 68

spin lock 50
suspend lock 50

logical partition (LPAR) 55, 81
logical volume 117
LOGREC 102
LPAR 32, 55

M
machine check 30
mainframe 2, 17
management class 72
mean-time-between-failures (MTBF) 9
megabytes (MB) 26
memory 4, 21, 26
Metro Mirror 77
migration 123
mission-critical 5
mixed workloads 22–23
Modular Refrigeration Units (MRU) 92
Motor Scroll Assemblies (MSAs) 92
multi-chip module (MCM) 45
Multiple Allegiance (MA) 118
Multiple Chip Module (MCM) 93
multi-tasking 29

O
Object Access Method (OAM) 121
On/Off Capacity on Demand (On/Off CoD) 56, 95
online transaction processing (OLTP) 14
214 Introduction to the New Mainframe: Large-Scale Commercial Computing

operator 14
oscillator card 92
outage 33, 89

P
page-out 28
pages 26
Parallel Access Volumes (PAV) 118
Parallel Sysplex 3, 34, 38, 48, 98
Peer-to-Peer Remote Copy (PPRC) 97
performance 78, 122

management 140
power 7
processor 21
Processor Resource/Systems Manager (PR/SM)
33
program check 30
program state 80, 82
program status word (PSW) 29
provisioning 42, 54

R
real storage 28
real storage manager (RSM) 28
recovery 103
Recovery Termination Manager (RTM) 103
Redbooks Web site 212
Redundant Array of Independent Disks (RAID) 116
register save area (RSA) 29
reliability, availability, and serviceability (RAS) 8, 91
reserves 67
Resource Access Control Facility (RACF) 84
Resource Measurement Facility (RMF) 142
Resource Recovery Services (RRS) 74
resource serialization 49
resource-sharing 3
restart 30
retail 11

S
scalability 7, 38

horizontal 39
scalabilty

vertical 39
security 8, 79

data 8
self-optimizing 157

serialization 49, 67
server

farm 4
service class definitions 25
service definition 58
service level 62
service level agreement (SLA) 24
service level objectives (SLOs) 25
service units (SUs) 25
serviceability 8
single point of failure 9
spin lock 50
storage

central 21
storage class 71
storage group 72
storage protect keys 80
subnetwork 54
supervisor call (SVC) 80, 83, 162
supervisor state 82
suspend lock 50
SVC 30
SVC 0 30
SVC 1 31
symmetric multiprocessor (SMP) 40
sysplex 38, 98
System Authorization Facility (SAF) 80, 83
system log (SYSLOG) 102
system logger 73
system management 22
System Management Facilities (SMF) 66, 130
System Modification Program Extended (SMP/E)
132
system operator 14
System z9 Application Assist Processor (zAAP) 46
System z9 Integrated Information Processor (zIIP)
46
System/360 5, 17
systems management 6, 10, 128

T
task control block (TCB) 31
terabytes 11
the bar 28
the line 27
total cost of ownership (TCO) 8
traces 103
track 112
 Index 215

transaction processing 14
two-phase commit 75

U
Unit Control Block (UCB) 114
Unit Control Word (UCW) 114
UNIX 3

V
virtual memory 26
virtual storage 26
VMware 36

W
Web-serving 4
Windows 11
WLM administrator 25
WLM policy 25
work classification 60
workload 10

mixed 22–23
workload distribution 53
Workload Manager (WLM) 25, 31
workload manager (WLM) 56
216 Introduction to the New Mainframe: Large-Scale Commercial Computing

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Introduction to the New
 M

ainfram
e: Large-Scale Com

m
ercial Com

puting

®

SG24-7175-00 ISBN 0738496626

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Introduction to the New
Mainframe:
Large-Scale Commercial
Computing
Learn why
mainframes process
much of the world’s
commercial
workload

Find out why
mainframes are so
reliable

Understand
mainframe
popularity

Today, mainframe computers play a central role in the daily
operations of most of the world’s largest corporations. While
other forms of computing are used in business in various
capacities, the mainframe occupies a prominent place in
today’s e-business environment. In banking, finance, health
care, insurance, utilities, government, and a multitude of
other public and private enterprises, the mainframe computer
continues to provide the foundation of large-scale computing
to modern business.
The reasons for mainframe use are many, but generally fall
into one or more of the following categories: capacity,
scalability, integrity and security, availability, access to large
amounts of data, system management, and autonomic
capabilities. This IBM Redbook is designed for readers who
already possess a basic knowledge of mainframe computing,
but need a clearer understanding of how these concepts
relate to mainframe planning, implementation, and operation.
For readers who need more introductory information about
mainframe concepts, usage, and architecture, we
recommend that you complete Introduction to the New
Mainframe: z/OS Basics, SG24-6366, prior to starting this
book. And for more detailed information about z/OS
programming topics, refer to the 11-volume IBM Redbook
series ABCs of z/OS System Programming.

Back cover

http://www.redbooks.ibm.com
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com

	Front cover
	Contents
	Preface
	How this text is organized
	How each chapter is organized
	About the authors
	Acknowledgements
	Reviewers

	Chapter 1. The new mainframe
	1.1 What is a mainframe?
	1.2 An evolving architecture
	1.3 Mainframes in our midst
	1.4 Who uses mainframe computers?
	1.5 Factors contributing to mainframe use
	1.5.1 Capacity
	1.5.2 Scalability
	1.5.3 Integrity and security
	1.5.4 Availability
	1.5.5 Access to large amounts of data
	1.5.6 Systems management
	1.5.7 Autonomic capabilities

	1.6 Typical mainframe workloads
	1.6.1 Batch processing
	1.6.2 Online transaction processing

	1.7 Summary
	1.8 Questions for review
	1.9 Topics for further discussion

	Chapter 2. Capacity
	2.1 Introduction
	2.2 What do we mean by capacity?
	2.3 Elements of a system required for capacity
	2.4 A few servers versus many servers
	2.4.1 Many servers
	2.4.2 Few servers - the IBM System z approach

	2.5 Mixed workloads
	2.6 Service level agreement
	2.7 Managing the system to the SLA
	2.7.1 Managing CPU
	2.7.2 Managing disk
	2.7.3 Storage concepts: the address space
	2.7.4 Real storage management

	2.8 Architecture, running work, and capacity
	2.9 Several servers on one physical machine
	2.9.1 The LPAR
	2.9.2 Planning for downtime

	2.10 Parallel Sysplex
	2.11 Measurements
	2.12 Summary
	2.13 Questions for review
	2.14 Topics for further discussion

	Chapter 3. Scalability
	3.1 Introduction to scalability
	3.2 Scalability concepts
	3.2.1 Scalability approaches
	3.2.2 Scalability influences
	3.2.3 Provisioning

	3.3 Scalability implementation on IBM System z
	3.3.1 Hardware scalability
	3.3.2 Operating system scalability
	3.3.3 Parallel Sysplex
	3.3.4 Provisioning
	3.3.5 Capacity on Demand
	3.3.6 Workload Manager (WLM)

	3.4 Summary
	3.5 Questions for review

	Chapter 4. Integrity and security
	4.1 Introduction to integrity
	4.2 Integrity
	4.2.1 Serialization
	4.2.2 Data Facility Storage Management Subsystem (DFSMS)
	4.2.3 Auditing
	4.2.4 Resource Recovery Services (RRS)
	4.2.5 Data backup and recovery
	4.2.6 Performance

	4.3 Security
	4.3.1 Introduction
	4.3.2 U.S. Government certification
	4.3.3 Enforced isolation
	4.3.4 The accessor environment element
	4.3.5 Authorized program facility (APF)
	4.3.6 Program states
	4.3.7 Storage protection keys
	4.3.8 Supervisor call
	4.3.9 System Authorization Facility

	4.4 Summary
	4.5 Questions for review

	Chapter 5. Availability
	5.1 Introduction to availability
	5.2 What is availability?
	5.2.1 Outages - planned and unplanned

	5.3 Inhibitors to availability
	5.4 Redundancy
	5.4.1 Concurrent maintenance and upgrades
	5.4.2 Accessing peripheral devices
	5.4.3 Continuous availability of mainframes using clustering

	5.5 z/OS elements for availability
	5.5.1 z/OS components
	5.5.2 Error recording
	5.5.3 Recovery

	5.6 Disaster recovery (DR)
	5.7 Summary
	5.8 Questions for review

	Chapter 6. Accessing large amounts of data
	6.1 Introduction
	6.2 Channel subsystem
	6.3 Control units
	6.4 DASD CKD architecture
	6.5 Mapping for access to devices
	6.6 DASD subsystem
	6.7 Redundant Array of Independent Disks (RAID)
	6.8 Reducing the number of logical volumes
	6.9 Multiple Allegiance/Parallel Access Volumes
	6.10 Random access to data
	6.11 Databases
	6.12 Data sharing
	6.13 Data Facility Storage Management System
	6.14 Data placement and management
	6.15 Summary
	6.16 Questions for review
	6.17 Topics for further discussion

	Chapter 7. Systems management
	7.1 Introduction to systems management
	7.2 System data
	7.3 Configuration management
	7.3.1 System software configuration management
	7.3.2 Hardware configuration management
	7.3.3 Application configuration management

	7.4 Workload management
	7.5 Operations management
	7.5.1 Batch scheduling
	7.5.2 Console operations

	7.6 Network management
	7.7 Storage management
	7.8 Security management
	7.9 Performance management
	7.9.1 z/OS implementation

	7.10 Problem management
	7.10.1 Trend reporting
	7.10.2 Operator console

	7.11 Change management
	7.12 Summary

	Chapter 8. Autonomic computing
	8.1 Introduction
	8.1.1 Autonomic computing principles
	8.1.2 Autonomic computing concepts

	8.2 z/OS implementation of autonomic computing
	8.3 Self-healing
	8.4 Self-configuring
	8.5 Self-protecting
	8.6 Self-optimizing
	8.7 Summary

	Appendix A. Architecture summary
	Interrupt processing
	The program status word
	New and old PSWs
	Security

	Appendix B. Glossary
	Notices
	Trademarks

	Related publications
	IBM Redbooks
	IBM white papers
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

