
z/OS

DFSORT: Getting Started

SC26-7527-01

���

z/OS

DFSORT: Getting Started

SC26-7527-01

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

163.

Second Edition, March 2005

This edition applies to Version 1 Release 6 of z/OS (5694-A01), Version 1 Release 6 of z/OS.e (5655-G52), and to all

subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC26–7527–00.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you may address your comments to the following address:

v International Business Machines Corporation

v Department 55JA

v Mail Station P384

v 2455 South Road

v Poughkeepsie, NY 12601-5400

v United States of America

v

v FAX (United States & Canada): 1+845+432-9405

v FAX (Other Countries):

v Your International Access Code +1+845+432-9405

v

v IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

v Internet e-mail: mhvrcfs@us.ibm.com

v World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures v

Tables vii

About this document ix

How to use this document ix

Required product knowledge x

Accessing z/OS DFSORT documents on the Internet x

Using LookAt to look up message explanations . . xi

Accessing z/OS licensed documents on the Internet xi

Part 1. Introduction 1

Chapter 1. What is DFSORT? 3

DFSORT on the World Wide Web 3

DFSORT FTP Site 3

Data Sets, Records and Fields 3

Sorting Data Sets 4

Merging Data Sets 5

Copying Data Sets 5

What Else Can You Do with DFSORT? 5

Creating and Running DFSORT Jobs 6

Writing Jobs 6

Summary of DFSORT Control Statements 6

Running Jobs 7

Creating and Using the Sample Data Sets 7

Part 2. Learning to Write JCL and

DFSORT Control Statements 11

Chapter 2. Sorting, Merging, and

Copying Data Sets 13

Sorting Data Sets 13

Sorting by Multiple Fields 15

Continuing a Statement 17

Comment Statements 17

JCL for Sorting Data Sets Directly 17

Merging Data Sets 19

Writing the MERGE Control Statement 20

JCL for Merging Data Sets Directly 21

VB Data Set Considerations 22

Starting Positions 22

Short Control Fields 22

Copying Data Sets 23

Specifying COPY on the SORT, MERGE, or

OPTION Statement 23

JCL for Copying Data Sets Directly 23

Chapter 3. Including or Omitting

Records 25

Writing the INCLUDE Statement 26

Writing the OMIT Statement 28

Allowable Comparisons for INCLUDE and OMIT 28

Writing Constants 30

Character Strings 30

Hexadecimal Strings 30

Decimal Numbers 30

Substring Search for INCLUDE and OMIT 30

VB Data Set Considerations 31

Starting Positions 31

Short Control Fields 31

Chapter 4. Summing Records 33

Writing the SUM Statement 33

Suppressing Records with Duplicate Control Fields 35

Handling Overflow 36

VB Data Set Considerations 36

Starting Positions 36

Short Summary Fields 36

Chapter 5. Reformatting Records . . . 37

Reformatting Records After Sorting with BUILD or

FIELDS 38

Reordering Fields to Reserve Space 39

Inserting Binary Zeros 39

Inserting Blanks 40

Inserting Strings 41

Character Strings 41

Hexadecimal Strings 42

Setting Up a Basic Report 42

Changing Uppercase to Lowercase 43

Converting Numeric Fields to Different Formats . . 44

Editing Numeric Fields 45

Displaying Data in Hexadecimal 48

Performing Arithmetic with Numeric Fields and

Constants 48

Doing Lookup and Change 49

Reformatting Records with OVERLAY 51

Extending Records with OVERLAY 52

Reformatting Records with IFTHEN 54

Reformatting Records Before Sorting 56

Using Other Statements with INREC 56

Preventing Overflow When Summing Values . . . 57

Inserting Sequence Numbers 58

VB Data Set Considerations 61

RDW 61

Starting Positions and Columns 62

Variable Data 62

Chapter 6. Creating Multiple Output

Data Sets and Reports 65

Creating Multiple Identical Copies 66

Selecting and Sampling by Relative Record Number 67

Including, Omitting, and Saving Discards 68

Reformatting 70

Repeating 72

Splitting 73

© Copyright IBM Corp. 1983, 2005 iii

 |
 | |

 | |
 | |
 | |

Creating Reports: OUTFIL vs ICETOOL 74

Creating Reports with OUTFIL 74

Data 75

Headers 76

Trailers and Statistics 78

No Data or Carriage Control Characters 79

VB Data Set Considerations for Headers and

Trailers 80

Sections 80

Converting FB to VB 83

Converting VB to FB 84

Chapter 7. Calling DFSORT from a

Program 87

Passing Control Statements 87

Calling DFSORT from a COBOL Program 87

Sorting Records 88

Merging Records 90

Sorting with COBOL FASTSRT 93

Calling DFSORT from a PL/I Program 93

Chapter 8. Overriding Installation

Defaults 95

Specifying PARM Parameters on a JCL EXEC

Statement 96

Specifying an OPTION Control Statement in

DFSPARM 96

Chapter 9. Using DFSORT Efficiently 99

Be Generous with Main Storage 99

Allow Memory Object Sorting, Hipersorting and

Dataspace Sorting 99

Use High–Speed Disks for Work Data Sets 99

Eliminate Unnecessary Fields with INREC 100

Eliminate Unnecessary Records with INCLUDE or

OMIT 100

Eliminate Unnecessary Records with STOPAFT and

SKIPREC 100

Consolidate Records with SUM 100

Create Multiple Output Data Sets with OUTFIL 101

Replace Program Logic with DFSORT Control

Statements 101

Use FASTSRT with COBOL 101

Avoid Options That Might Degrade Performance 101

Part 3. Learning to Use ICETOOL 103

Chapter 10. Using the ICETOOL Utility 105

ICETOOL Operators 105

Sample Input Data Sets 106

Writing Required JCL Statements 106

ICETOOL Comment and Blank Statements . . . 107

Printing Statistics For Numeric Fields 108

Continuing an Operator Statement 110

Statistics For VB Data Set Record Lengths . . . 110

Creating Identical Sorted Data Sets 110

Creating Different Subsets of a Sorted Data Set . . 113

Creating Multiple Unsorted Data Sets 115

Counting Values in a Range 116

Printing Simple Reports 117

Printing Tailored Reports 119

Using Formatting Items 120

Edit Masks 120

Leading Zeros 122

Edit Patterns 122

No Statistics 123

Division 123

Leading, Floating and Trailing Characters . . . 124

Printing Sectioned Reports 124

Printing How Many Times Fields Occur 126

Selecting Records by Field Occurrences 128

Joining Fields from Different Data Sets 131

Matching Records from Different Data Sets . . . 134

Complete ICETOOL Job and TOOLMSG Output 137

Part 4. Learning to Use Symbols 143

Chapter 11. Defining and Using

Symbols 145

Creating the SYMNAMES Data Set 145

Defining Symbols for Fields 145

Using Symbols for Fields in DFSORT Statements 147

Using Symbols for Fields in ICETOOL Operators 148

Defining and Using Symbols for Constants . . . 149

Part 5. Appendixes 151

Appendix A. Creating the Sample Data

Sets 153

Appendix B. Descriptions of the

Sample Data Sets 155

Appendix C. Processing Order of

Control Statements 159

Appendix D. Accessibility 161

Using assistive technologies 161

Keyboard navigation of the user interface 161

z/OS information 161

Notices 163

Programming Interface Information 164

Trademarks 164

Index 165

iv z/OS V1R6.0 DFSORT: Getting Started

Figures

1. Comparison Operators 26

2. Sample COBOL Program with SORT

Commands 89

3. Sample COBOL Program with MERGE

Commands 92

4. Sample PL/I Program with SORT Commands 94

5. Complete ICETOOL Job 137

6. Complete TOOLMSG Data Set. 139

7. Processing Order of Control Statements 159

© Copyright IBM Corp. 1983, 2005 v

vi z/OS V1R6.0 DFSORT: Getting Started

Tables

 1. Related documents x

 2. DFSORT Arranges Information in Ascending

and Descending Order 4

 3. Commonly Used Data Formats 5

 4. DFSORT Merges Two Data Sets into One Data

Set 5

 5. Sample Bookstore Data Set Sorted by Course

Department in Ascending Order 8

 6. Steps to Create the SORT Statement to Sort by

Department 13

 7. Sample Bookstore Data Set Sorted by Course

Department in Ascending Order 14

 8. Sample Bookstore Data Set Sorted by Price in

Descending Order 15

 9. Sample Bookstore Data Set Sorted by Multiple

Fields 16

10. Sample Bookstore Data Set Sorted by Course

Department and Book Title 19

11. Five New Records Sorted by Course

Department and Book Title 20

12. Sample Bookstore Data Set Merged with Five

New Records 20

13. Steps to Create the INCLUDE Statement for

Books You Need to Order 26

14. Books for which Number Sold is greater than

Number in Stock 27

15. COR Books for which Number Sold is greater

than Number in Stock 27

16. Sorted Data Set without Books Not Required

for Classes 28

17. Allowable Field-to-Field Comparisons 29

18. Allowable Field-to-Constant Comparisons 29

19. Steps to Create the SUM Statement for Prices 33

20. Sum of Prices for English Department . . . 34

21. Sum of Prices for English Department . . . 34

22. Sum of Number in Stock and Number Sold for

Each Publisher 35

23. List of Publishers, Deleting Duplicates . . . 35

24. Steps to Create the OUTREC Statement for

Reformatting Records 38

25. Writing Only Publisher, Number In Stock, and

Number Sold Fields 38

26. Reordering the Fields 39

27. Inserting Binary Zeros 40

28. Output After Inserting Blanks 40

29. Output of a Report 42

30. Converting from BI to ZD 44

31. Converting from BI to FS 45

32. Input records with PD values 45

33. Edit Mask Patterns 46

34. Books with Course Department and Price

Changes 52

35. New and Old Prices 53

36. Proposed discounts for books 54

37. Using INREC to Write Only Publisher,

Number in Stock, and Number Sold 57

38. Padding Summary Fields 58

39. Padding Summary Fields 58

40. Total book prices by course 58

41. Total Book Prices by Course with Sequence

Numbers 59

42. Creating the OUTFIL Statement for the

Multiple Output Data Set Job 66

43. Relative Records Numbers for Copy 67

44. Relative Records Numbers for Sort 67

45. Output records in ENGLOUT data set . . . 69

46. Output records in HISTOUT data set 69

47. Output records in PSYCHOUT data set 69

48. Output records in RESTOUT data set 70

49. Control Statement and Corresponding

Records with INREC 100

50. Steps to Create a Blank Statement and a

Comment Statement 107

51. Steps to Create the STATS Operator 108

52. Steps to Create the SORT Operator 111

53. Steps to Create JCL Statements for the SORT

Operator 112

54. Books from publishers VALD and WETH 112

55. Steps to Create the SORT Operator 113

56. Steps to Create JCL Statements for the SORT

Operator 114

57. Records for California Sorted by City 114

58. Records for Colorado Sorted by City 115

59. Edit Mask Patterns 121

60. Books from Publishers with More than Four

Books in Use 129

61. REGION.IN1 data set for join 132

62. REGION.IN2 data set for join 132

63. REGION.OUT data set for join 132

64. T1 data set fields from REGION.IN1 133

65. T2 data set fields from REGION.IN2 133

66. T1 data set fields from SORT.SAMPIN 135

67. T2 data set fields from SORT.SAMPADD 135

68. COURSE.MATCH output 136

69. COURSE.INONLY output 136

70. COURSE.ADDONLY output 136

71. Steps to Define Symbols for Fields 146

72. Steps to Define Symbols for Constants 149

73. SORT.SAMPIN and SORT.SAMPADD Field

Descriptions 155

74. SORT.BRANCH Field Descriptions 155

© Copyright IBM Corp. 1983, 2005 vii

||

|
||

 | |
 | |

viii z/OS V1R6.0 DFSORT: Getting Started

About this document

z/OS DFSORT: Getting Started is a user’s guide and tutorial for DFSORT™ (Data

Facility Sort). You should read it if you are new to z/OS V1R5, and need to learn

the many ways you can use DFSORT and DFSORT’s ICETOOL utility to process

data sets. Both new and experienced DFSORT users can use this document as a

general guide to the many features available with DFSORT and ICETOOL. This

document introduces you to the JCL, control statements and features of DFSORT

and ICETOOL with numerous examples. z/OS DFSORT: Getting Started can help

you get the most out of z/OS DFSORT Application Programming Guide, which has

the complete details on all of the topics introduced in this document.

The chapters in this document assume that you have used job control language

(JCL) and understand how to work with data sets. You should also know what

data sets are available at your site.

How to use this document

This document gives you all of the information and instructions you need to build

and submit DFSORT jobs. You can use DFSORT by writing JCL and DFSORT

program control statements, or by entering values on interactive, full-screen panels.

This document describes the first method of creating DFSORT jobs. The second

method is detailed in DFSORT Panels Guide.

Restriction: DFSORT Panels only support a subset of the functions available with

DFSORT.

New users should work through z/OS DFSORT: Getting Started from cover to cover.

Each task explained in this document builds on knowledge gained in previous

tasks. The Table of Contents lists the main tasks, and summaries are included in

the chapters. If you have previous experience with these tasks, you can proceed

from here directly to the tutorials that begin in Chapter 2, “Sorting, Merging, and

Copying Data Sets,” on page 13.

Chapter 1, “What is DFSORT?” is an overview of the basic principles of sorting,

merging, and copying, and explains how to create and use the sample data sets for

the examples in this document.

Chapter 2, “Sorting, Merging, and Copying Data Sets,” on page 13 through

Chapter 9, “Using DFSORT Efficiently,” on page 99 show you how to create and

process DFSORT jobs by writing JCL and DFSORT program control statements (for

example, SORT, MERGE, OPTION, INCLUDE, OMIT, INREC, OUTREC, SUM, and

OUTFIL) to create sorted, merged or copied output data sets while performing

various operations on records such as subsetting, reformatting, summing, and

reporting.

Chapter 10, “Using the ICETOOL Utility,” on page 105 shows you how to create

and process ICETOOL jobs by writing JCL and ICETOOL statements. ICETOOL is

a multipurpose DFSORT utility that uses the capabilities of DFSORT to perform

multiple operations on one or more data sets in a single step. ICETOOL’s thirteen

operators (COPY, COUNT, DEFAULTS, DISPLAY, MODE, OCCUR, RANGE,

SELECT, SORT, SPLICE, STATS, UNIQUE and VERIFY) expand DFSORT’s

capabilities significantly.

© Copyright IBM Corp. 1983, 2005 ix

Chapter 11, “Defining and Using Symbols,” on page 145 shows you how to define

symbols for fields and constants and use them in your DFSORT control statements

and ICETOOL operators.

Several appendixes and an index follow the chapters.

Required product knowledge

To use this document effectively, you should be familiar with the following

information:

v Job control language (JCL)

v Data management

You should also be familiar with the information presented in the following related

documents:

 Table 1. Related documents

Document Title Document Order Number

z/OS DFSORT Application Programming Guide SC26-7523

z/OS MVS JCL Reference SA22-7597

z/OS MVS JCL User’s Guide SA22-7598

z/OS DFSMS: Using Data Sets SC26-7410

z/OS DFSORT: Getting Started is a part of a more extensive DFSORT library. These

documents can help you work with DFSORT more effectively.

 Task Publication Title Order Number

Application Programming z/OS DFSORT Application

Programming Guide

SC26-7523

Planning For and Customizing

DFSORT

z/OS DFSORT Installation and

Customization

SC26-7524

Learning to Use DFSORT Panels DFSORT Panels Guide GC26-7037

Diagnosing Failures and

Interpreting Messages

z/OS DFSORT Messages, Codes

and Diagnosis Guide

SC26-7525

Tuning DFSORT z/OS DFSORT Tuning Guide SC26-7526

Accessing z/OS DFSORT documents on the Internet

In addition to making softcopy documents available on CD-ROM, IBM provides

access to unlicensed z/OS softcopy documents on the Internet. To find z/OS

documents on the Internet, first go to the z/OS home page:

http://www.ibm.com/servers/eserver/zseries/zos

From this Web site, you can link directly to the z/OS softcopy documents by

selecting the Library icon. You can also link to the IBM Publications Center to

order printed documentation.

x z/OS V1R6.0 DFSORT: Getting Started

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the

IBM® messages you encounter, as well as for some system abends and codes.

Using LookAt to find information is faster than a conventional search because in

most cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message

explanations for z/OS® elements and features, z/VM®, and VSE:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System

Services running OMVS).

v Your Windows® workstation. You can install code to access IBM message

explanations on the z/OS Collection (SK3T-4269), using LookAt from a Windows

DOS command line.

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

You can obtain code to install LookAt on your host system or Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

Accessing z/OS licensed documents on the Internet

z/OS licensed documentation is available on the Internet in PDF format at the IBM

Resource Link™ Web site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to

these documents requires an IBM Resource Link user ID and password, and a key

code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that

includes this key code.

1

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered

for access to them and received an e-mail confirmation informing you that

your request has been processed.

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

About this document xi

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or

IBM Resource Link to print licensed documents.

xii z/OS V1R6.0 DFSORT: Getting Started

Part 1. Introduction

Chapter 1. What is DFSORT? 3

DFSORT on the World Wide Web 3

DFSORT FTP Site 3

Data Sets, Records and Fields 3

Sorting Data Sets 4

Merging Data Sets 5

Copying Data Sets 5

What Else Can You Do with DFSORT? 5

Creating and Running DFSORT Jobs 6

Writing Jobs 6

Summary of DFSORT Control Statements 6

Running Jobs 7

Creating and Using the Sample Data Sets 7

© Copyright IBM Corp. 1983, 2005 1

2 z/OS V1R6.0 DFSORT: Getting Started

Chapter 1. What is DFSORT?

DFSORT is IBM’s high-performance sort, merge, copy, analysis, and reporting

product for z/OS.

With DFSORT, you can sort, merge, and copy data sets. You can use DFSORT to do

simple tasks such as alphabetizing a list of names, or you can use it to aid complex

tasks such as taking inventory or running a billing system. DFSORT gives you

versatile data handling capabilities at the record, field and bit level.

DFSORT on the World Wide Web

For articles, online documents, news, tips, techniques, examples, and more, visit

the DFSORT home page at URL:

http://www.ibm.com/storage/dfsort

DFSORT FTP Site

You can obtain DFSORT articles and examples by anonymous FTP to:

ftp.software.ibm.com/dfsort/mvs/

Data Sets, Records and Fields

The information you manipulate with DFSORT is contained in data sets. The term

data set refers to a file that contains one or more records. Any named group of

records is called a data set. The terms data set and file are synonymous, and are

used interchangeably in this document.

A data set contains the information that you want to sort, copy, or merge. For most

of the processing done by DFSORT, the whole data set is affected. However, some

forms of DFSORT processing involve only certain individual records in that data

set.

Data sets can be cataloged, which permits the data set to be referred to by name

without specifying where the data set is stored. A cataloged data set should not be

confused with a cataloged procedure. A cataloged procedure is a named collection

of JCL stored in a data set, and a cataloged data set is a data set whose name is

recorded by the system.

Throughout this document, the term record refers to a collection of related

information used as a unit, such as one item in a data base or personnel data

about one member of a department. The term field refers to a specific portion of a

record used for a particular category of data, such as an employee’s name or

department.

DFSORT can sort, copy or merge fixed-length or variable-length records. The type

and length of a data set is defined by its record format (RECFM) and logical record

length (LRECL). Fixed-length data sets have a RECFM of F, FB, FBS, and so on.

Variable-length data sets have a RECFM of V, VB, VBS, and so on. For simplicity in

this document, the terms ″FB data set″ and ″FB records″ are used as short-hand for

© Copyright IBM Corp. 1983, 2005 3

fixed-length data sets and records, respectively, and the terms ″VB data set″ and

″VB records″ are used as short-hand for variable-length record data sets and

variable-length records, respectively.

A data set with RECFM=FB and LRECL=25 is a fixed-length (FB) data set with a

record length of 25-bytes (the B is for blocked). For an FB data set, the LRECL tells

you the length of each record in the data set; all of the records are the same length.

The first data byte of an FB record is in position 1. A record in an FB data set with

LRECL=25 might look like this:

Positions 1-3: Country Code = ’USA’

Positions 4-5: State Code = ’CA’

Positions 6-25: City = ’San Jose’ padded with 12 blanks on the right

A data set with RECFM=VB and LRECL=25 is a variable-length (VB) data set with

a maximum record length of 25-bytes. For a VB data set, different records can have

different lengths. The first four bytes of each record contain the Record Descriptor

Word or RDW, and the first two bytes of the RDW contain the length of that

record (in binary). The first data byte of a VB record is in position 5, after the

4-byte RDW in positions 1-4. A record in a VB data set with LRECL=25 might look

like this:

Positions 1-2: Length in RDW = hex 000E = decimal 14

Positions 3-4: Zeros in RDW = hex 0000 = decimal 0

Positions 5-7: Country Code = ’USA’

Positions 8-9: State Code = ’CA’

Positions 10-17: City = ’San Jose’

Unless otherwise noted, the examples in this document process FB data sets, which

are easier to work with and describe. However, special considerations for

processing VB data sets are discussed throughout this document whenever

appropriate.

Sorting Data Sets

You can use DFSORT to rearrange the records in your data sets. Sorting is

arranging records in either ascending or descending order within a file. Table 2

shows a sample data set of names, first sorted in ascending order, then in

descending order.

 Table 2. DFSORT Arranges Information in Ascending and Descending Order

Unsorted

Data Set

Sorted

Ascending

Sorted

Descending

Andy

Edward

Carol

Dan

Betty

Andy

Betty

Carol

Dan

Edward

Edward

Dan

Carol

Betty

Andy

You can sort data in many different formats. Table 3 shows the most commonly

used DFSORT data formats and the format identifiers you use to specify them.

What is DFSORT?

4 z/OS V1R6.0 DFSORT: Getting Started

Table 3. Commonly Used Data Formats

Data Format Format Identifier

EBCDIC (Character)

Binary (Unsigned Numeric)

Fixed-point (Signed Numeric)

Zoned Decimal (Signed Numeric)

Packed Decimal (Signed Numeric)

Floating Sign (Signed Numeric)

Free Form (Unsigned Numeric)

Free Form (Signed Numeric)

CH

BI

FI

ZD

PD

FS

UFF

SFF

Refer to z/OS DFSORT Application Programming Guide for complete details of the

available formats.

Merging Data Sets

You can also use DFSORT to merge data sets. DFSORT merges data sets by

combining two or more files of sorted records to form a single data set of sorted

records.

 Table 4. DFSORT Merges Two Data Sets into One Data Set

Data Set 1 Data Set 2 Merged Data Set

Andy

Betty

Carol

Dan

Edward

Amy

Chris

Sue

Amy

Andy

Betty

Carol

Chris

Dan

Edward

Sue

The data sets you merge must be previously sorted into the same order (ascending

or descending).

Copying Data Sets

DFSORT can also copy data sets without any sorting or merging taking place. You

copy data sets in much the same way that you sort or merge them.

What Else Can You Do with DFSORT?

While sorting, merging, or copying data sets, you can also perform other tasks

such as the following:

v Select a subset of records from an input data set. You can include or omit

records that meet specified criteria. For example, when sorting an input data set

containing records of course documents from many different school

departments, you can sort the documents for only one department.

v Reformat records in a variety of ways. You can build your records one item at a

time, only overlay specific columns, or reformat different records in different

ways. You can edit, change, add or delete fields. You can also insert blanks,

zeros, strings, current date, current time, sequence numbers, decimal constants,

and the results of arithmetic instructions before, between, and after input fields.

For example, you can create an output data set that contains character strings

and only certain edited fields from the input data set, arranged differently.

What is DFSORT?

Chapter 1. What is DFSORT? 5

|
|

|
|
|

v Sum the values in selected records while sorting or merging (but not while

copying). In the example of a data set containing records of course books, you

can use DFSORT to add up the dollar amounts of books for one school

department.

v Create multiple output data sets and simple or complex reports from a single

pass over an input data set. For example, you can create a different output data

set for the records of each department.

v Convert VB data sets to FB data sets, or convert FB data sets to VB data sets.

v Sample or repeat records.

v Sort, merge, include or omit records according to the collating rules defined in a

selected locale.

v Alter the collating sequence when sorting or merging records (but not while

copying). For example, you can have the lowercase letters collate after the

uppercase letters.

v Sort, merge, or copy Japanese data if the IBM Double Byte Character Set

Ordering Support (DBCS Ordering) (5665-360 Licensed Program, Release 2.0 or

an equivalent product) is used with DFSORT to process the records.

Creating and Running DFSORT Jobs

Processing data sets with DFSORT involves two steps:

1. Creating a DFSORT job

2. Running a DFSORT job

You can run a DFSORT job by invoking processing in a number of ways:

v With a JCL EXEC statement, using the name of the program or the name of the

cataloged procedure

v With interactive panels supported under ISPF and ISMF

v Within programs written in COBOL, PL/I, or basic Assembler language

In this document, the phrases directly or JCL-invoked mean that the DFSORT

program is initiated by a JCL EXEC statement with PGM=SORT or

PGM=ICEMAN. The phrases called by a program or dynamically invoked mean that

the DFSORT program is initiated from another program.

Writing Jobs

You can use DFSORT by writing JCL and DFSORT control statements no matter

how your site has installed DFSORT. Part 1 contains instructions on writing JCL

and DFSORT program control statements.

Unless you use DFSORT Panels to prepare and submit your job, you must prepare

JCL statements and DFSORT program control statements to invoke DFSORT

processing. JCL statements are processed by your operating system. They describe

your data sets to the operating system, and initiate DFSORT processing. DFSORT

program control statements are processed by DFSORT. They describe and initiate

the processing you want to do.

Summary of DFSORT Control Statements

The functions of the most important DFSORT control statements can be

summarized briefly as follows:

SORT Describes the fields for a sort application, or requests a copy

application.

What is DFSORT?

6 z/OS V1R6.0 DFSORT: Getting Started

MERGE Describes the fields for a merge application, or requests a copy

application.

OPTION Overrides installation defaults, or requests optional features or a

copy application.

INCLUDE Describes the criteria to be used to include records before they are

sorted, copied or merged.

OMIT Describes the criteria to be used to omit records before they are

sorted, copied or merged.

INREC Describes how records are to be reformatted before they are sorted,

copied or merged.

OUTREC Describes how records are to be reformatted after they are sorted,

copied or merged.

SUM Describes how fields are to be summed after sorting or merging.

OUTFIL Describes various types of processing to be performed for one or

more output data sets after sorting, copying or merging.

The functions of the less important DFSORT control statements can be summarized

briefly as follows:

ALTSEQ Describes changes to the normal translation table.

MODS Describes user exit routines.

RECORD Supplies data set record type and length information when needed.

DEBUG Requests diagnostic features.

END Marks the end of the control statements.

Running Jobs

You can run DFSORT jobs directly with a JCL EXEC statement that uses

PGM=SORT or PGM=ICEMAN. Or, you can call DFSORT dynamically from a

COBOL, Assembler, PL/I, or other type of program.

Creating and Using the Sample Data Sets

Many of the examples in this document refer to the sample data sets

SORT.SAMPIN, SORT.SAMPADD, SORT.BRANCH and SORT.SAMPOUT.

Appendix A, ″Creating the Sample Data Sets″ shows you how to create your own

copies of these data sets if you want to try the examples in this document that use

them.

Note: Some of the examples use data sets other than SORT.SAMPIN,

SORT.SAMPOUT, SORT.SAMPADD, and SORT.BRANCH. You can either

create data sets from scratch to match the ones used in the text, or else

perform a similar exercise on data sets you already have.

Before you begin, turn to Appendix B, “Descriptions of the Sample Data Sets,” on

page 155. Many of the examples in this document refer to the sample bookstore

data sets as the input data sets, so you should become familiar with them. The

input data sets contain the data that you want arranged or sorted. You must

specify an input data set for every DFSORT job you run. The sample bookstore

data set is named SORT.SAMPIN and the additional bookstore data set is named

SORT.SAMPADD.

What is DFSORT?

Chapter 1. What is DFSORT? 7

Each record in the bookstore data sets has 12 fields (book title, author’s last name,

and so on). A record can be represented by one horizontal row on the page. A field

can be represented by one vertical column on the page.

To sort a data set, you choose one or more fields that you want to use to order the

records (arrange in ascending or descending order). These fields are called control

fields (or, in COBOL, keys).

As you work through the exercises on the following pages, remember that each

entire record is sorted, not just the control field. However, for the sake of simplicity,

the figures in the text show only the control fields being discussed. The sorted

records actually contain all of the fields, but one page is not wide enough to show

them. Appendix B, “Descriptions of the Sample Data Sets,” shows all of the fields

in each record. It is also arranged with headings and numbers that show the byte

positions of each field. The numeric fields are in binary format (see Table 3 on page

5) and therefore will not appear on most displays as they do in this document.

Methods you can use to arrange and view the data are explained in the chapters

on DFSORT functions that follow.

Table 5 shows an example of sorted fields. Notice the line of numbers above the

sorted fields. These numbers represent the byte positions of those fields. You use

byte positions to identify fields to DFSORT. The examples show the byte positions

to help you while you are learning to use DFSORT. The byte positions do not

actually appear in any of your processed data sets.

In Table 5, the first two records, which show nothing in the course department

fields, are general purpose books not required for a particular course. For this

example, the control field is the Course Department field.

 Table 5. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title Course Department Price

1 75 110 114 170 173

LIVING WELL ON A SMALL BUDGET

PICK’S POCKET DICTIONARY

INTRODUCTION TO BIOLOGY

SUPPLYING THE DEMAND

STRATEGIC MARKETING

COMPUTER LANGUAGES

VIDEO GAME DESIGN

COMPUTERS: AN INTRODUCTION

NUMBERING SYSTEMS

SYSTEM PROGRAMMING

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

EDITING SOFTWARE MANUALS

MODERN ANTHOLOGY OF WOMEN POETS

THE COMPLETE PROOFREADER

SHORT STORIES AND TALL TALES

THE INDUSTRIAL REVOLUTION

EIGHTEENTH CENTURY EUROPE

CRISIS OF THE MIDDLE AGES

INTRODUCTION TO PSYCHOLOGY

ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL

BUSIN

BUSIN

COMP

COMP

COMP

COMP

COMP

ENGL

ENGL

ENGL

ENGL

ENGL

HIST

HIST

HIST

PSYCH

PSYCH

 9900

 295

 2350

 1925

 2350

 2600

 2199

 1899

 360

 3195

 595

 1450

 450

 625

 1520

 795

 1790

 1200

 2200

 2600

What is DFSORT?

8 z/OS V1R6.0 DFSORT: Getting Started

Also notice that records in Table 5 on page 8 with equally collating control fields (in

this case,the same department) appear in their original order. For example, within

the Computer Science department (COMP), the title Video Game Design still appears

before Computers: An Introduction.

You can control whether records with equally collating control fields appear in

their original order or whether DFSORT orders them randomly. The system

programmer sets defaults at installation time that you can change with some

DFSORT options at run time. The examples in this document assume that the

default is for records with equally collating control fields to appear in their original

order.

Summary

So far in Getting Started you covered the following concepts:

v You can sort, copy, or merge data sets using DFSORT.

v You can write JCL and DFSORT program control statements to create and

process DFSORT jobs.

v You can run DFSORT jobs directly or call DFSORT from a program.

In addition, this chapter covered how to use and read the sample data sets

provided with DFSORT. Now continue with tutorials on how to write

DFSORT control statements.

What is DFSORT?

Chapter 1. What is DFSORT? 9

What is DFSORT?

10 z/OS V1R6.0 DFSORT: Getting Started

Part 2. Learning to Write JCL and DFSORT Control

Statements

Chapter 2. Sorting, Merging, and Copying Data

Sets 13

Sorting Data Sets 13

Sorting by Multiple Fields 15

Continuing a Statement 17

Comment Statements 17

JCL for Sorting Data Sets Directly 17

Merging Data Sets 19

Writing the MERGE Control Statement 20

JCL for Merging Data Sets Directly 21

VB Data Set Considerations 22

Starting Positions 22

Short Control Fields 22

Copying Data Sets 23

Specifying COPY on the SORT, MERGE, or

OPTION Statement 23

JCL for Copying Data Sets Directly 23

Chapter 3. Including or Omitting Records . . . 25

Writing the INCLUDE Statement 26

Writing the OMIT Statement 28

Allowable Comparisons for INCLUDE and OMIT 28

Writing Constants 30

Character Strings 30

Hexadecimal Strings 30

Decimal Numbers 30

Substring Search for INCLUDE and OMIT 30

VB Data Set Considerations 31

Starting Positions 31

Short Control Fields 31

Chapter 4. Summing Records 33

Writing the SUM Statement 33

Suppressing Records with Duplicate Control Fields 35

Handling Overflow 36

VB Data Set Considerations 36

Starting Positions 36

Short Summary Fields 36

Chapter 5. Reformatting Records 37

Reformatting Records After Sorting with BUILD or

FIELDS 38

Reordering Fields to Reserve Space 39

Inserting Binary Zeros 39

Inserting Blanks 40

Inserting Strings 41

Character Strings 41

Hexadecimal Strings 42

Setting Up a Basic Report 42

Changing Uppercase to Lowercase 43

Converting Numeric Fields to Different Formats . . 44

Editing Numeric Fields 45

Displaying Data in Hexadecimal 48

Performing Arithmetic with Numeric Fields and

Constants 48

Doing Lookup and Change 49

Reformatting Records with OVERLAY 51

Extending Records with OVERLAY 52

Reformatting Records with IFTHEN 54

Reformatting Records Before Sorting 56

Using Other Statements with INREC 56

Preventing Overflow When Summing Values . . . 57

Inserting Sequence Numbers 58

VB Data Set Considerations 61

RDW 61

Starting Positions and Columns 62

Variable Data 62

Chapter 6. Creating Multiple Output Data Sets

and Reports 65

Creating Multiple Identical Copies 66

Selecting and Sampling by Relative Record Number 67

Including, Omitting, and Saving Discards 68

Reformatting 70

Repeating 72

Splitting 73

Creating Reports: OUTFIL vs ICETOOL 74

Creating Reports with OUTFIL 74

Data 75

Headers 76

Trailers and Statistics 78

No Data or Carriage Control Characters 79

VB Data Set Considerations for Headers and

Trailers 80

Sections 80

Converting FB to VB 83

Converting VB to FB 84

Chapter 7. Calling DFSORT from a Program . . 87

Passing Control Statements 87

Calling DFSORT from a COBOL Program 87

Sorting Records 88

Merging Records 90

Sorting with COBOL FASTSRT 93

Calling DFSORT from a PL/I Program 93

Chapter 8. Overriding Installation Defaults . . . 95

Specifying PARM Parameters on a JCL EXEC

Statement 96

Specifying an OPTION Control Statement in

DFSPARM 96

Chapter 9. Using DFSORT Efficiently 99

Be Generous with Main Storage 99

Allow Memory Object Sorting, Hipersorting and

Dataspace Sorting 99

Use High–Speed Disks for Work Data Sets 99

© Copyright IBM Corp. 1983, 2005 11

|
||

 | |
 | |
 | |

Eliminate Unnecessary Fields with INREC 100

Eliminate Unnecessary Records with INCLUDE or

OMIT 100

Eliminate Unnecessary Records with STOPAFT and

SKIPREC 100

Consolidate Records with SUM 100

Create Multiple Output Data Sets with OUTFIL 101

Replace Program Logic with DFSORT Control

Statements 101

Use FASTSRT with COBOL 101

Avoid Options That Might Degrade Performance 101

12 z/OS V1R6.0 DFSORT: Getting Started

Chapter 2. Sorting, Merging, and Copying Data Sets

This tutorial shows you how to sort, merge, and copy data sets by writing

DFSORT program control statements that are processed with JCL.

DFSORT program control statements are input in the JCL used to run DFSORT. To

keep the instructions simple, the program control statements are covered first and

the related JCL statements are explained afterward. For most of the tutorials you

will concentrate on JCL-invoked DFSORT, that is, running DFSORT with JCL.

Information on calling DFSORT from a program (dynamic invocation) is presented

in Chapter 7, “Calling DFSORT from a Program,” on page 87.

Sorting Data Sets

To use DFSORT directly (JCL-invoked), write a SORT control statement to describe

the control fields, and the order in which you want them sorted. The control

statements you write are part of the SYSIN data set in the JCL. The SYSIN data set

is typically specified as //SYSIN DD * followed by ″inline″ control statements (as

shown in the examples in this document). However, a sequential data set, or a

member of a partitioned data set, with the control statements as records can also

be used for the SYSIN data set.

You can use SORT with all of the other DFSORT control statements.

A SORT statement that sorts the bookstore records by the course department field

(as shown in Table 7 on page 14) looks like this:

SORT FIELDS=(110,5,CH,A)

Ascending order

Character data

Length of department field

Beginning of department field

1 802 71

Make sure that the statement is coded between columns 2 and 71.

Here are the steps for writing this SORT statement:

 Table 6. Steps to Create the SORT Statement to Sort by Department

Step Action

1 Leave at least one blank, and type SORT

2 Leave at least one blank and type FIELDS=

© Copyright IBM Corp. 1983, 2005 13

Table 6. Steps to Create the SORT Statement to Sort by Department (continued)

Step Action

3 Type, in parenthesis and separated by commas:

1. Where the course department field begins, relative to the beginning of the

record in the bookstore data set (the first position is byte 1). The course

department field begins at byte 110.

2. The length of the department field in bytes. The department field is 5

bytes long.

3. A format identifier for the data format. The department field contains

character data, which you specify as CH. (Table 3 on page 5 shows the

codes for the most commonly used data formats.)

4. The letter A, for ascending order.

Remember that although Table 7 shows only certain fields, the displayed fields are

not the only ones in the output data set. Your output data set will more closely

resemble the fold-out of the sample bookstore data set.

 Table 7. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title Course Department

1 75 110 114

LIVING WELL ON A SMALL BUDGET

PICK’S POCKET DICTIONARY

INTRODUCTION TO BIOLOGY

SUPPLYING THE DEMAND

STRATEGIC MARKETING

COMPUTER LANGUAGES

VIDEO GAME DESIGN

COMPUTERS: AN INTRODUCTION

NUMBERING SYSTEMS

SYSTEM PROGRAMMING

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

EDITING SOFTWARE MANUALS

MODERN ANTHOLOGY OF WOMEN POETS

THE COMPLETE PROOFREADER

SHORT STORIES AND TALL TALES

THE INDUSTRIAL REVOLUTION

EIGHTEENTH CENTURY EUROPE

CRISES OF THE MIDDLE AGES

INTRODUCTION TO PSYCHOLOGY

ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL

BUSIN

BUSIN

COMP

COMP

COMP

COMP

COMP

ENGL

ENGL

ENGL

ENGL

ENGL

HIST

HIST

HIST

PSYCH

PSYCH

14 z/OS V1R6.0 DFSORT: Getting Started

To sort the records in descending order, specify D instead of A. For example, to

sort the prices for each book in descending order, type:

SORT FIELDS=(170,4,BI,D)

Descending order

Price

The sort order is bytes 170 through 173 as binary data in descending sequence.

Table 8 shows the results of the sort in descending order.

 Table 8. Sample Bookstore Data Set Sorted by Price in Descending Order

Book Title Price

1 75 170 173

LIVING WELL ON A SMALL BUDGET

SYSTEM PROGRAMMING

COMPUTER LANGUAGES

ADVANCED TOPICS IN PSYCHOANALYSIS

STRATEGIC MARKETING

INTRODUCTION TO BIOLOGY

INTRODUCTION TO PSYCHOLOGY

VIDEO GAME DESIGN

SUPPLYING THE DEMAND

COMPUTERS: AN INTRODUCTION

EIGHTEENTH CENTURY EUROPE

SHORT STORIES AND TALL TALES

EDITING SOFTWARE MANUALS

CRISES OF THE MIDDLE AGES

THE INDUSTRIAL REVOLUTION

THE COMPLETE PROOFREADER

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

MODERN ANTHOLOGY OF WOMEN POETS

NUMBERING SYSTEMS

PICK’S POCKET DICTIONARY

 9900

 3195

 2600

 2600

 2350

 2350

 2200

 2199

 1925

 1899

 1790

 1520

 1450

 1200

 795

 625

 595

 450

 360

 295

Sorting by Multiple Fields

You can further sort the records in the bookstore data set by specifying multiple

control fields. When you specify two or more control fields, you specify them in

the order of greater to lesser priority. Note that control fields might overlap or be

contained within other control fields.

Table 9 on page 16 shows how the records would be sorted if you specified the

following control fields in the order they are listed:

1. Course department

2. Course number

3. Instructor's last name

4. Instructor's initials

5. Book title.

So, if two records have the same department, they are sorted by course number. If

they also have the same course number, they are sorted by instructor's last name. If

they also have the same last name, they are sorted by initials. Finally, if they also

have the same initials, they are sorted by title.

Chapter 2. Sorting, Merging, and Copying Data Sets 15

Specify the location, length, data format, and order for each of the control fields, as

follows:

The records are sorted as shown in Table 9.

 Table 9. Sample Bookstore Data Set Sorted by Multiple Fields

Book Title

Course

Department

Course

Number

Instructor’s

Last Name

Instructor’s

Initials

1 75 110 114 115 119 145 159 160 161

LIVING WELL ON A SMALL BUDGET

PICK’S POCKET DICTIONARY

INTRODUCTION TO BIOLOGY

STRATEGIC MARKETING

SUPPLYING THE DEMAND

NUMBERING SYSTEMS

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

SYSTEM PROGRAMMING

VIDEO GAME DESIGN

SHORT STORIES AND TALL TALES

EDITING SOFTWARE MANUALS

THE COMPLETE PROOFREADER

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

MODERN ANTHOLOGY OF WOMEN POETS

THE INDUSTRIAL REVOLUTION

CRISES OF THE MIDDLE AGES

EIGHTEENTH CENTURY EUROPE

INTRODUCTION TO PSYCHOLOGY

ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL

BUSIN

BUSIN

COMP

COMP

COMP

COMP

COMP

ENGL

ENGL

ENGL

ENGL

ENGL

HIST

HIST

HIST

PSYCH

PSYCH

80521

70124

70251

00032

00032

00032

00103

00205

10054

10347

10347

10856

10856

50420

50521

50632

30016

30975

GREENBERG

LORCH

MAXWELL

CHATTERJEE

CHATTERJEE

CHATTERJEE

SMITH

NEUMANN

BUCK

MADRID

MADRID

FRIEDMAN

FRIEDMAN

GOODGOLD

WILLERTON

BISCARDI

ZABOSKI

NAKATSU

HC

HH

RF

AN

CL

CL

DC

LB

GR

MM

MM

KR

KR

ST

DW

HR

RL

FL

You can often shorten the length of control statements. You can specify fields

together whenever they are next to each other in the record and have the same

data format and order. You can shorten this last statement by specifying the

department and course number together as one field, and the instructor's last name

and initials together as one field.

SORT FIELDS= (110,5,CH,A,115,5,CH,A,145,15,CH,A,160,2,CH,A,1,75,CH,A)

Book title

Instructor's
initials

Instructor's
last name

Course number

Department

16 z/OS V1R6.0 DFSORT: Getting Started

Also, if all of the control fields have the same data format, you can specify the data

format just once, using the FORMAT=f parameter. For example:

 SORT FORMAT=CH,FIELDS=(110,10,A,145,17,A,1,75,A)

If some of the control fields have the same data format, but others don’t, you can

specify the FORMAT=f parameter along with the individual data formats. For

example:

 SORT FORMAT=CH,FIELDS=(110,10,A,170,4,BI,D,145,17,A,1,75,A)

is equivalent to:

 SORT FIELDS=(110,10,CH,A,170,4,BI,D,145,17,CH,A,1,75,CH,A)

Continuing a Statement

If you cannot fit your SORT statement (or any other DFSORT control statement)

between columns 2 through 71, you can continue it on the next line. If you end a

line with a comma followed by a blank, DFSORT treats the next line as a

continuation. The continuation can begin anywhere between columns 2 through 71.

For example:

Comment Statements

You can mix comment statements with your control statements by starting them

with an asterisk (*) in column 1. DFSORT prints comment statements, but

otherwise ignores them.

For example:

* Sort by department and course number

 SORT FIELDS=(110,10,CH,A)

JCL for Sorting Data Sets Directly

The job control language (JCL) you need to do a sort depends on whether you run

DFSORT directly or call DFSORT from a program. For now, concentrate on running

DFSORT directly. Information on calling DFSORT from a program is presented in

Chapter 7, “Calling DFSORT from a Program,” on page 87.

Your operating system uses the JCL you supply with your DFSORT program

control statements to:

v Identify you as an authorized user

v Allocate the necessary resources to run your job

v Run your job

v Return information to you about the results

v Terminate your job

SORT FIELDS=(110,10,CH,A,145,17,CH,A,1,75,CH,A)

Title

Instructor's last name and initials

Department and course number

 SORT FORMAT=CH,FIELDS=(110,10,A,145,17,A,

 1,75,A)

Chapter 2. Sorting, Merging, and Copying Data Sets 17

Unless you create your jobs with the interactive DFSORT Panels facility, you must

supply JCL with every DFSORT job you submit.

Required JCL includes a JOB statement, an EXEC statement, and several DD

statements. The statements you need and their exact form depend upon whether

you:

v Invoke DFSORT with an EXEC statement in the input job stream, or with a

system macro instruction within another program

v Choose to use EXEC statement cataloged procedures to invoke DFSORT

v Choose to specify PARM options on the EXEC statement

v Choose to specify PARM options or control statements in a DFSPARM data set

v Choose to specify control statements in a SYSIN data set

v Want to use program exits to activate routines of your own

Information on when you would choose each of the above options is detailed in

z/OS DFSORT Application Programming Guide.

The JCL statements you need for most jobs are described below.

//jobname JOB Signals the beginning of a job. At your site, you

might be required to specify information such as

your name and account number on the JOB

statement.

//stepname EXEC Signals the beginning of a job step and tells the

operating system what program to run. To run

DFSORT, write the EXEC statement like this:

//stepname EXEC PGM=SORT

//STEPLIB DD The DFSORT program would typically be in a

library known to the system, so the //STEPLIB DD

statement would not be needed. However, if

DFSORT is not in a library known to the system,

the //STEPLIB DD statement defines the library

containing the DFSORT program

//SYSOUT DD Defines the data set in which DFSORT messages

and control statements are listed.

//SORTIN DD Defines the input data set or concatenated input

data sets.

//SORTWKdd DD Defines a work data set for a sort. Typically not

needed, because DFSORT can allocate work data

sets for a sort dynamically.

//SORTOUT DD Defines the output data set.

//SYSIN DD Precedes or contains the DFSORT program control

statements.

Below is a typical example of JCL to run DFSORT.

18 z/OS V1R6.0 DFSORT: Getting Started

z/OS DFSORT Application Programming Guide contains additional information on

running DFSORT directly.

So Far

So far in this chapter you covered how to write a SORT program control

statement and how to run that sort with JCL statements. The next tutorial

explains how to use the MERGE program control statement to merge two

data sets.

Merging Data Sets

Generally, the reason for merging data sets is to add more records to a data set

that is already sorted.

For example, assume that the bookstore data set is already sorted by course

department and book title (as shown in Table 10), and you want to update it by

merging it with a data set that contains five new records, also sorted by course

department and book title.

 Table 10. Sample Bookstore Data Set Sorted by Course Department and Book Title

Book Title Course Department

1 75 110 114

LIVING WELL ON A SMALL BUDGET

PICK’S POCKET DICTIONARY

INTRODUCTION TO BIOLOGY

STRATEGIC MARKETING

SUPPLYING THE DEMAND

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

NUMBERING SYSTEMS

SYSTEM PROGRAMMING

VIDEO GAME DESIGN

EDITING SOFTWARE MANUALS

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

MODERN ANTHOLOGY OF WOMEN POETS

SHORT STORIES AND TALL TALES

THE COMPLETE PROOFREADER

CRISES OF THE MIDDLE AGES

EIGHTEENTH CENTURY EUROPE

THE INDUSTRIAL REVOLUTION

ADVANCED TOPICS IN PSYCHOANALYSIS

INTRODUCTION TO PSYCHOLOGY

BIOL

BUSIN

BUSIN

COMP

COMP

COMP

COMP

COMP

ENGL

ENGL

ENGL

ENGL

ENGL

HIST

HIST

HIST

PSYCH

PSYCH

For this example, use a new data set such as the one shown in Table 11 on page 20.

//EXAMP JOB A492,PROGRAMMER

//SORT EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD

//SYSIN DD *

 SORT FORMAT=CH,

 FIELDS=(110,10,A,145,17,A,1,75,A)

/*

Chapter 2. Sorting, Merging, and Copying Data Sets 19

Table 11. Five New Records Sorted by Course Department and Book Title

Book Title Course Department

1 75 110 114

INTERNATIONAL COOKBOOK

WORLD JOURNEYS BY TRAIN

ARTS AND CRAFTS OF ASIA

BIOCHEMISTRY

BEHAVIORAL ANALYSIS

ART

BIOL

PSYCH

To merge data sets, you write a MERGE control statement and several JCL

statements. Whenever you merge data sets, you must make sure that their records

have the same format and that they have been previously sorted by the same

control fields. You can merge up to 100 data sets at a time.

You can use MERGE with all of the other DFSORT control statements.

Writing the MERGE Control Statement

The format of the MERGE statement is the same as that of the SORT statement. To

merge the bookstore master data set with the data set containing the five new

records, write:

MERGE FORMAT=CH, FIELDS=(110,5,A,1,75,A)

Title

Department

Table 12 shows the merged output.

 Table 12. Sample Bookstore Data Set Merged with Five New Records

Book Title Course Department

1 75 110 114

20 z/OS V1R6.0 DFSORT: Getting Started

Table 12. Sample Bookstore Data Set Merged with Five New Records (continued)

Book Title Course Department

INTERNATIONAL COOKBOOK

LIVING WELL ON A SMALL BUDGET

PICK’S POCKET DICTIONARY

WORLD JOURNEYS BY TRAIN

ARTS AND CRAFTS OF ASIA

BIOCHEMISTRY

INTRODUCTION TO BIOLOGY

STRATEGIC MARKETING

SUPPLYING THE DEMAND

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

NUMBERING SYSTEMS

SYSTEM PROGRAMMING

VIDEO GAME DESIGN

EDITING SOFTWARE MANUALS

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

MODERN ANTHOLOGY OF WOMEN POETS

SHORT STORIES AND TALL TALES

THE COMPLETE PROOFREADER

CRISES OF THE MIDDLE AGES

EIGHTEENTH CENTURY EUROPE

THE INDUSTRIAL REVOLUTION

ADVANCED TOPICS IN PSYCHOANALYSIS

BEHAVIORAL ANALYSIS

INTRODUCTION TO PSYCHOLOGY

ART

BIOL

BIOL

BUSIN

BUSIN

COMP

COMP

COMP

COMP

COMP

ENGL

ENGL

ENGL

ENGL

ENGL

HIST

HIST

HIST

PSYCH

PSYCH

PSYCH

JCL for Merging Data Sets Directly

As in a sort, the JCL you need depends on whether you run DFSORT directly or

call it from a program. This chapter only discusses running DFSORT directly.

The JCL needed for a merge is the same as that for a sort, with the following

exceptions:

v You do not need dynamic allocation of work data sets or SORTWKdd DD

statements.

v Instead of the SORTIN DD statement, you use SORTINnn DD statements to

define the input data sets. The SORTINnn DD statements name the input data

sets, and tell how many data sets will be merged. You need one SORTINnn DD

statement for each data set being merged. nn in SORTINnn is a number from 00

to 99. Thus, if you wanted to merge 5 data sets, you would typically use DD

statements for SORTIN01, SORTIN02, SORTIN03, SORTIN04 and SORTIN05.

To merge the pre-sorted bookstore data set and the data set containing the new

records, code the following JCL statements for this example. The new data set is

called A123456.NEW and the sorted version of the bookstore data set is called

A123456.MASTER. For this example, it is assumed that the input data sets are

cataloged and that the output data set will be cataloged.

Chapter 2. Sorting, Merging, and Copying Data Sets 21

In Chapter 7, “Calling DFSORT from a Program,” on page 87, you learn how to

merge data sets when calling DFSORT from a program.

So Far

So far in this chapter you covered how to write both the SORT and MERGE

program control statements and how to process those control statements

using JCL statements. Now you continue with the tutorial on COPY.

VB Data Set Considerations

A record in a VB data set looks like this:

 RDW Fixed data Variable data

The RDW (Record Descriptor Word) is a 4-byte binary field with the length of the

record in the first two bytes. Fixed data consists of data bytes that are present in

every record. Variable data consists of one or more data bytes that may or may not

be present in every record, so different records can have different lengths up to the

maximum logical record length (LRECL) for the data set.

Starting Positions

For FB data sets, the first data byte starts in position 1. However, for VB data sets,

the RDW is in positions 1-4, so the first data byte starts in position 5. So when you

code your control fields for sorting or merging VB data sets, remember to add 4 to

the starting position to account for the 4-byte RDW. For example, the following

SORT statement specifies a CH control field in the third through fifth data bytes of

a VB record:

 SORT FIELDS=(7,3,CH,A)

Short Control Fields

Because VB records have a fixed part and a variable part, it is possible for part of a

control field to be missing. Consider this SORT statement:

 SORT FIELDS=(21,12,CH,A)

The control field is in positions 21-32. If your VB records have 25 fixed data bytes

and LRECL=45, the records can vary in length from 29 bytes (4-byte RDW, 25 bytes

of fixed data, and 0 bytes of variable data) to 45 bytes (4-byte RDW, 25 bytes of

fixed data, and 16 bytes of variable data). Records 32 bytes or longer include the

entire control field. But records less than 32 bytes have ″short″ control fields, that

is, they are missing some of the bytes at the end of the control field. You cannot

validly sort or merge on control fields with missing bytes because missing bytes

have no values.

//EXAMP JOB A492,PROGRAMMER

//MERGE EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SORTIN01 DD DSN=A123456.MASTER,DISP=SHR

//SORTIN02 DD DSN=A123456.NEW,DISP=SHR

//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD

//SYSIN DD *

 MERGE FIELDS=(110,5,CH,A,1,75,CH,A)

/*

22 z/OS V1R6.0 DFSORT: Getting Started

If you know you have VB records with short control fields, you can specify the

VLSHRT option, if appropriate, to prevent DFSORT from terminating. For example:

 OPTION VLSHRT

 SORT FIELDS=(21,12,CH,A)

VLSHRT tells DFSORT that you want to temporarily replace any missing control

field bytes with binary zeros (the zeros are not kept for the output record), thus

allowing DFSORT to validly sort or merge on the short control fields.

 Attention: If NOVLSHRT is in effect, DFSORT terminates if it finds a short

control field in any VB record.

For more information on DFSORT’s VLSHRT option, see z/OS DFSORT Application

Programming Guide.

Copying Data Sets

With DFSORT you can copy data sets directly without performing a sort or merge.

You can use COPY with all of the other DFSORT control statements except SUM.

DFSORT can select and reformat the specific data sets you want to copy by using

the control statements covered in later chapters.

You write a copy statement by specifying COPY on the SORT, MERGE, or OPTION

statement.

Specifying COPY on the SORT, MERGE, or OPTION Statement

The SORT and MERGE statements change very little when you specify COPY. Just

replace the information you usually put in parentheses with the word COPY:

 You can also specify COPY on the OPTION statement:

 All three of these statements have identical results.

JCL for Copying Data Sets Directly

The JCL for a copy application is the same as for a sort, except that you do not

need dynamic allocation of work data sets or SORTWKdd DD statements.

This sample JCL will copy the SORT.SAMPIN data set to a temporary output data

set using the OPTION COPY statement:

 You can use SORT FIELDS=COPY or MERGE FIELDS=COPY instead of OPTION

COPY to produce the same results.

 SORT FIELDS=COPY

 MERGE FIELDS=COPY

 OPTION COPY

//EXAMP JOB A492,PROGRAMMER

//COPY EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//SORTOUT DD DSN=&&TEMP,DISP=(,PASS),SPACE=(CYL,(5,5)),UNIT=SYSDA

//SYSIN DD *

 OPTION COPY

/*

Chapter 2. Sorting, Merging, and Copying Data Sets 23

Summary

In this chapter, you covered the following concepts:

v Writing the SORT, COPY, or MERGE program control statements

v Using JCL statements to process your sort, copy, or merge

As you continue with the tutorials, you will cover two methods of obtaining

subsets of your input data set for your output data set. Chapter 3, “Including

or Omitting Records,” on page 25 covers allowable comparison operators,

various types of constants, substring search, and padding and truncation

rules for INCLUDE and OMIT.

24 z/OS V1R6.0 DFSORT: Getting Started

Chapter 3. Including or Omitting Records

Often, you need only a subset of the records in a data set for an application. This

chapter explains how to include or omit only specific records from the input data

set for sorting, copying or merging to the output data set.

By removing unneeded records with an INCLUDE or OMIT statement before

sorting, copying or merging, you can increase the speed of the sort, copy or

merge. The fewer the records, the less time it takes to process them.

You select a subset of the records in an input data set by:

v Using an INCLUDE control statement to collect wanted records

v Using an OMIT control statement to exclude unwanted records

v Using an INCLUDE or OMIT parameter on an OUTFIL statement to collect

wanted records or exclude unwanted records, respectively. Different INCLUDE

and OMIT parameters can be used on different OUTFIL statements.

Your choice of an INCLUDE or OMIT statement depends on which is easier and

more efficient to write for a given application. You cannot use both statements

together.

The information presented in this chapter for the INCLUDE and OMIT statements

also applies to the INCLUDE and OMIT parameters of the OUTFIL statement,

except that:

v OUTFIL is processed after sorting, copying or merging

v The FORMAT=f parameter cannot be used for OUTFIL

OUTFIL is discussed later in Chapter 6, “Creating Multiple Output Data Sets and

Reports,” on page 65.

You select the records you want included or omitted by comparing the contents of

a field with either:

Another field

For example, you can select records for which the author’s last name is the

same as the instructor’s last name.

A constant

The constant can be a character string, a decimal number, a hexadecimal

string, or the current date. For example, you can select records that have

the character string “ HIST” in the department field.

You can also combine two or more conditions with logical ANDs and ORs. For

example, you can select records that have either “HIST” or “PSYCH” in the

department field.

INCLUDE and OMIT both offer powerful substring search capabilities.

In addition, INCLUDE and OMIT allow you to select records based on the results

of bit logic tests and two-digit year date comparisons. These two features are not

discussed in this document, but details can be found in z/OS DFSORT Application

Programming Guide.

© Copyright IBM Corp. 1983, 2005 25

Writing the INCLUDE Statement

Suppose it is the end of the year and you want to sort, by title, only the books that

you need to reorder for the coming year. If the number of copies sold this year for

a particular book is greater than the number in stock, you can assume you need to

order more copies.

An INCLUDE statement that selects only the books you need to order looks like

this:

INCLUDE COND=(166,4,GT,162,4),FORMAT=BI

Number in stock

Number sold

Here are the steps for writing this INCLUDE statement:

 Table 13. Steps to Create the INCLUDE Statement for Books You Need to Order

Step Action

1 Leave at least one blank and type INCLUDE

2 Leave at least one blank and type COND=

3 Type, in parentheses, and separated by commas:

1. The location, length, and data format of the number sold field

2. The comparison operator GT (comparison operators are shown in

Figure 1) for greater than

3. The location, length, and data format of the number in stock field.

You can select from the following comparison operators:

 You can place the SORT statement either before or after the INCLUDE statement.

Control statements do not have to be in any specific order. However, it is good

documentation practice to code them in the order in which they are processed. For

a flowchart showing the order in which all the control statements are processed,

see Appendix C, “Processing Order of Control Statements,” on page 159.

 INCLUDE COND=(166,4,BI,GT,162,4,BI)

 SORT FIELDS=(1,75,CH,A)

Comparison Operator Meaning

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

Figure 1. Comparison Operators

Including or Omitting Records

26 z/OS V1R6.0 DFSORT: Getting Started

This sorts the selected subset of the input records by title in ascending order.

Table 14 shows the sorted data set.

 Table 14. Books for which Number Sold is greater than Number in Stock

Book Title Number In Stock Number Sold

1 75 162 165 166 169

ADVANCED TOPICS IN PSYCHOANALYSIS

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

CRISES OF THE MIDDLE AGES

EDITING SOFTWARE MANUALS

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

INTRODUCTION TO BIOLOGY

MODERN ANTHOLOGY OF WOMEN POETS

NUMBERING SYSTEMS

STRATEGIC MARKETING

SUPPLYING THE DEMAND

SYSTEM PROGRAMMING

THE COMPLETE PROOFREADER

 1

 5

 20

 14

 13

 2

 6

 1

 6

 3

 0

 4

 7

 12

 29

 26

 17

 32

 32

 11

 26

 27

 35

 32

 23

 19

Suppose you want to reduce the subset of input records even further, to sort only

the books you need to order from COR publishers. In this case, two conditions

must be true:

v The number sold is greater than the number in stock.

v The book is published by COR.

To add the second condition, expand the INCLUDE statement by adding a logical

AND, and compare the contents of the publisher field to the character string “

COR” (see “Writing Constants” on page 30 for details how to specify constants).

Because the publisher field is 4 bytes long, “COR” will be padded on the right

with one blank.

 Table 15 shows the result.

 Table 15. COR Books for which Number Sold is greater than Number in Stock

Book Title Publisher Number In Stock Number Sold

1 75 106 109 162 165 166 169

CRISES OF THE MIDDLE AGES

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

MODERN ANTHOLOGY OF WOMEN POETS

SUPPLYING THE DEMAND

COR

COR

COR

COR

 14

 2

 1

 0

 17

 32

 26

 32

As another example, you might sort only the books for courses 00032 and 10347 by

writing the INCLUDE and SORT statements as follows:

Note: In the previous example, you cannot substitute C'32' for C'00032', because

character constants are padded on the right with blanks. DFSORT uses the

following rules for padding and truncation:

 INCLUDE COND=(166,4,BI,GT,162,4,BI,AND,106,4,CH,EQ,C’COR’)

 SORT FIELDS=(1,75,CH,A)

 INCLUDE COND=(115,5,CH,EQ,C’00032’,OR,115,5,CH,EQ,C’10347’)

 SORT FIELDS=(115,5,CH,A)

Including or Omitting Records

Chapter 3. Including or Omitting Records 27

Padding adds fillers in data, usually zeros or blanks

Truncation deletes or omits a leading or trailing portion of a string

In comparisons, the following rules apply:

v In a field-to-field comparison, the shorter field is padded as appropriate

(with blanks or zeros).

v In a field-to-constant comparison, the constant is padded or truncated to

the length of the field. Decimal constants are padded or truncated on the

left. Character and hexadecimal constants are padded or truncated on the

right.

Writing the OMIT Statement

Suppose that you want to sort, by title, all the books used for courses but not those

for general reading. In this case, you can use an OMIT statement that excludes

records containing a blank in the course department field.

The format of the OMIT statement is the same as that of the INCLUDE statement.

To exclude the general reading books, write:

 Table 16 shows the sorted data set.

 Table 16. Sorted Data Set without Books Not Required for Classes

Book Title Course Department

1 75 110 114

ADVANCED TOPICS IN topCHOANALYSIS

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

CRISES OF THE MIDDLE AGES

EDITING SOFTWARE MANUALS

EIGHTEENTH CENTURY EUROPE

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

INTRODUCTION TO BIOLOGY

INTRODUCTION TO PSYCHOLOGY

MODERN ANTHOLOGY OF WOMEN POETS

NUMBERING SYSTEMS

SHORT STORIES AND TALL TALES

STRATEGIC MARKETING

SUPPLYING THE DEMAND

SYSTEM PROGRAMMING

THE COMPLETE PROOFREADER

THE INDUSTRIAL REVOLUTION

VIDEO GAME DESIGN

PSYCH

COMP

COMP

HIST

ENGL

HIST

ENGL

BIOL

PSYCH

ENGL

COMP

ENGL

BUSIN

BUSIN

COMP

ENGL

HIST

COMP

Allowable Comparisons for INCLUDE and OMIT

Table 17 on page 29 and Table 18 on page 29 show the allowable field-to-field and

field-to-constant comparisons for the data formats most commonly used with

INCLUDE and OMIT. Refer to z/OS DFSORT Application Programming Guide for

complete details of all of the data formats you can use with INCLUDE and OMIT.

 OMIT COND=(110,5,CH,EQ,C’ ’)

 SORT FIELDS=(1,75,CH,A)

Including or Omitting Records

28 z/OS V1R6.0 DFSORT: Getting Started

Table 17. Allowable Field-to-Field Comparisons

Field

Format BI FI CH ZD PD FS UFF SFF

BI U U

FI U

CH U U

ZD U U

PD U U

FS U U U

UFF U U U

SFF U U U

 Table 18. Allowable Field-to-Constant Comparisons

Field Format Character String Hexadecimal String Decimal Number

BI U U U

FI U

CH U U

ZD U

PD U

FS U

UFF U

SFF U

For example, if you want to sort by author’s name and include only those books

whose author’s last name begins with “M,” you can compare the contents of byte

76 (the first byte of the author’s last name), which is in character format, with

either a character or hexadecimal string:

 or

 Also, if you want to sort by number in stock only the books for which the number

in stock is less than 10, you can compare the contents of the number in stock field,

which is in binary format, to a decimal constant or a hexadecimal string:

 INCLUDE COND=(76,1,CH,EQ,C’M’)

 SORT FIELDS=(76,15,CH,A)

 INCLUDE COND=(76,1,CH,EQ,X’D4’)

 SORT FIELDS=(76,15,CH,A)

 INCLUDE COND=(162,4,BI,LT,10)

 SORT FIELDS=(162,4,BI,A)

or

 INCLUDE COND=(162,4,BI,LT,X’0000000A’)

 SORT FIELDS=(162,4,BI,A)

Including or Omitting Records

Chapter 3. Including or Omitting Records 29

||

|
|||||||||

|||||||||

|||||||||

|||||||||

|||||||||

|||||||||

|||||||||

|||||||||

|||||||||
|

||||

||||

For the hexadecimal constant, remember the padding and truncation rules. If you

specify X'0A', the string is padded on the right instead of the left. For the decimal

constant, you can use 10 or +10, and you do not have to worry about padding or

truncation.

Writing Constants

The formats for writing character strings, hexadecimal strings, and decimal

numbers are shown below.

Character Strings

The format for writing a character string is:

where x is an EBCDIC character. For example, C'FERN'.

If you want to include a single apostrophe in the string, you must specify it as two

single apostrophes. For example, O’NEILL must be specified as C'O''NEILL'.

You can use special keywords to specify a character string for the date of the run

in various forms, as detailed in z/OS DFSORT Application Programming Guide. For

example, if you want to select records in which a 10-character date in the form

C’yyyy/mm/dd’ starting in position 42 equals today’s date, write:

 INCLUDE COND=(42,10,CH,EQ,DATE1(/))

Hexadecimal Strings

The format for writing a hexadecimal string is:

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

Decimal Numbers

The format for writing a decimal number is:

where n is a decimal digit. Examples are 24, +24, and -24.

Decimal numbers must not contain commas or decimal points.

You can use special keywords to specify a decimal number for the date of the run

in various forms, as detailed in z/OS DFSORT Application Programming Guide. For

example, if you want to select records in which a 4-byte packed decimal date of

P’yyyyddd’ (hex yyyydddC) starting in position 28 equals today’s date, write:

 INCLUDE COND=(28,4,PD,EQ,DATE3P)

Substring Search for INCLUDE and OMIT

Suppose you want to select only the books for the Biology, History, Business and

Psychology departments. Based on what you learned earlier, you can select those

books using this INCLUDE statement:

C’x...x’

X'yy...yy'

n...n or ±n...n

Including or Omitting Records

30 z/OS V1R6.0 DFSORT: Getting Started

INCLUDE COND=(106,5,CH,EQ,C’BIOL’,OR,

 106,5,CH,EQ,C’HIST’,OR,

 106,5,CH,EQ,C’BUSIN’,OR,

 106,5,CH,EQ,C’PSYCH’)

But the more departments you want to include, the more typing you have to do.

Instead, you can use one of the substring search capabilities of INCLUDE and

OMIT to write the statement in a simpler form as:

 INCLUDE COND=(106,5,SS,EQ,C’BIOL ,HIST ,BUSIN,PSYCH’)

With substring search (SS format), you only write the field once and write the

character constant so it includes all of the strings you want to search for. If the

value in the field matches any of the strings (for example, ″BUSIN″), the record is

included. If the value in the field does not match any of the strings, the record is

omitted.

The length of each string must match the length of the field. Because the

Department field is 5 characters, you must add a blank at the end of ″BIOL″ and

″HIST″, which are each four characters, but not for ″BUSIN″ and ″PSYCH″, which

are each five characters.

The other way to use substring search is by searching for a constant within a field.

For example, if you wanted to select only the books with ″INTRODUCTION″ in

their Title, you could use the following INCLUDE statement:

 INCLUDE COND=(1,75,SS,EQ,C’INTRODUCTION’)

The books selected for output would be:

COMPUTERS: AN INTRODUCTION

INTRODUCTION TO PSYCHOLOGY

INTRODUCTION TO BIOLOGY

VB Data Set Considerations

The same VB data set considerations you learned about previously for the SORT

and MERGE statements also apply to the INCLUDE and OMIT statements.

Starting Positions

When you code your compare fields for including or omitting VB records,

remember to add 4 to the starting position to account for the 4-byte RDW. For

example, the following INCLUDE statement compares a PD field in the third

through fifth data bytes of a VB record to a PD field in the sixth through eighth

bytes of a VB record.

 INCLUDE COND=(7,3,PD,EQ,10,3,PD)

Short Control Fields

If you know you have VB records with short compare fields, you can specify the

VLSCMP option, if appropriate, to prevent DFSORT from terminating. For

example:

 OPTION COPY,VLSCMP

 INCLUDE COND=(21,8,CH,EQ,C’Type 200’)

VLSCMP tells DFSORT that you want to temporarily replace any missing compare

field bytes with binary zeros, thus allowing the short fields to be validly compared

(the zeros are not kept for the output records). In the example above, records less

Including or Omitting Records

Chapter 3. Including or Omitting Records 31

than 28 bytes are not included because the binary zeros added for the missing

bytes in the field prevent it from being equal to 'Type 200'.

Another way you can prevent DFSORT from terminating for VB records with short

compare fields, if appropriate, is by specifying the VLSHRT option. For example:

 OPTION COPY,VLSHRT

 INCLUDE COND=(21,8,CH,EQ,C’Type 200’)

VLSHRT tells DFSORT to treat any comparison involving a short field as false. In

the example above, any records less than 28 bytes are not included.

 Attention: If NOVLSCMP and NOVLSHRT are in effect, DFSORT terminates if it

finds a short compare field in any VB record.

For more information on DFSORT’s VLSCMP and VLSHRT options, see z/OS

DFSORT Application Programming Guide.

Summary

This chapter covered two ways to select only a subset of the input records to

make processing more efficient. You wrote INCLUDE and OMIT statements

and learned about allowable comparison operators, various types of

constants, and substring search.

Including or Omitting Records

32 z/OS V1R6.0 DFSORT: Getting Started

|
|

Chapter 4. Summing Records

Suppose that the English department wants to know the total price of books for all

its courses. You can include just the records for the English department by using

the INCLUDE statement, and add the book prices together by using the SORT and

SUM statements.

On the SUM control statement, you specify one or more numeric fields that are to

be summed whenever records have equally collating control fields (control fields

are specified on the SORT statement). The data formats you can specify on the

SUM statement are binary (BI), fixed-point (FI), packed decimal (PD), zoned

decimal (ZD) and floating-point (FL).

To sum the prices for just the records for the English department, specify the price

field on the SUM statement and the department field on the SORT statement. The

INCLUDE statement selects just the records for the English department before

SUM and SORT are processed, making the department field equal for all of the

included records, and allowing the prices to be summed. (For a flowchart showing

the order in which the INCLUDE, SUM, and SORT statements are processed, see

Appendix C, “Processing Order of Control Statements,” on page 159.)

When you sum records, keep in mind that two types of fields are involved:

Control fields

specified on the SORT statement

Summary fields

specified on the SUM statement

The contents of the summary fields are summed for groups of records with the

same control fields (often called ″duplicate″ records).

Writing the SUM Statement

A SUM statement that sums the prices would look like this:

SUM FIELDS=(170,4,BI)

Price

Here are the steps for writing this SUM statement:

 Table 19. Steps to Create the SUM Statement for Prices

Step Action

1 Leave at least one blank and type SUM

2 Leave at least one blank and type FIELDS=

3 Type, in parentheses and separated by commas, the location, length, and data

format of the price field.

The INCLUDE, SORT, and SUM statements are shown below:

© Copyright IBM Corp. 1983, 2005 33

INCLUDE COND=(110,5,CH,EQ,C’ENGL’)

 SORT FIELDS=(110,5,CH,A)

 SUM FIELDS=(170,4,BI)

When the prices are summed, the final sum appears in the price field of one

record, and the other records are deleted. Therefore, the result (shown in Table 20)

is only one record, containing the sum. You can control which record appears if

you specify that records keep their original order. For the examples, the default is

for records with equally collating control fields to appear in their original order

(EQUALS in effect). When summing records keeping the original order, DFSORT

chooses the first record to contain the sum.

 Table 20. Sum of Prices for English Department

Book Title Course Department Price

1 75 110 114 170 173

INKLINGS: AN ANTHOLOGY OF YOUNG POETS1 ENGL2

 46403

Note:

1 Some of the fields in your summation record might not be meaningful, such as the book title field in Table 20. In the next chapter,

you will learn two ways to leave out fields that are not meaningful.

2 Specified as a control field.

3 Specified as a summary field.

Suppose now that the English department wants to know the total price of books

for each of its courses. In this case, you still select only the English department’s

records using INCLUDE, and specify the price field on the SUM statement, but

you specify the course number on the SORT statement.

INCLUDE COND=(110,5,CH,EQ,C'ENGL')
SORT FIELDS=(115,5,CH,A)
SUM FIELDS=(170,4,BI)

Price

Table 21 shows the result, one record per course.

 Table 21. Sum of Prices for English Department

Book Title Course Number Price

1 75 115 119 170 173

SHORT STORIES AND TALL TALES

EDITING SOFTWARE MANUALS

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

 10054

 10347

 10856

 1520

 2075

 1045

For an example using two summary fields, assume that for inventory purposes

you want to sum separately the number of books in stock and the number sold for

each of the publishers.

For this application, specify the publisher as the control field on the SORT

statement and the number in stock and number sold as summary fields on the

SUM statement. You want to use all of the records in the input data set this time,

Summing Records

34 z/OS V1R6.0 DFSORT: Getting Started

so you don’t need to code an INCLUDE or OMIT statement. (SORT and SUM can

be used with or without an INCLUDE or OMIT statement.)

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,166,4),FORMAT=BI

Number sold

Number in stock

Table 22 shows the result, one record per publisher.

 Table 22. Sum of Number in Stock and Number Sold for Each Publisher

Book Title Publisher Number In Stock Number Sold

 1 75 106 109 162 165 166 169

LIVING WELL ON A SMALL BUDGET

COMPUTER LANGUAGES

VIDEO GAME DESIGN

COMPUTERS: AN INTRODUCTION

COR

FERN

VALD

WETH

 103

 19

 42

 62

 161

 87

 97

 79

Suppressing Records with Duplicate Control Fields

Apart from summing values, you can also use SUM to delete records with

duplicate control fields (often called ″duplicate records″).

For example, you might want to list the publishers in ascending order, with each

publisher appearing only once. If you use only the SORT statement, COR appears

seven times (because seven books in the file are published by COR), FERN appears

four times, VALD five times, and WETH four times.

By specifying FIELDS=NONE on the SUM statement, as shown below, DFSORT

writes only one record per publisher:

 Table 23 shows the result.

 Table 23. List of Publishers, Deleting Duplicates

Book Title Publisher

 1 75 106 109

LIVING WELL ON A SMALL BUDGET

COMPUTER LANGUAGES

VIDEO GAME DESIGN

COMPUTERS: AN INTRODUCTION

COR

FERN

VALD

WETH

In Chapter 10, “Using the ICETOOL Utility,” on page 105, you will learn how to

use ICETOOL’s powerful SELECT, OCCUR and SPLICE operators to perform

many more functions involving duplicate and non-duplicate records.

 SORT FIELDS=(106,4,CH,A)

 SUM FIELDS=NONE

Summing Records

Chapter 4. Summing Records 35

Handling Overflow

When a sum becomes larger than the space available for it, overflow occurs. For

example, if a 2-byte binary field (unsigned) contains X'FFFF' and you add X'0001'

to it, overflow occurs, because the sum requires more than two bytes.

 FFFF

 0001

 10000

If overflow occurs, the summary fields in the two records involved are not added

together. That is, the records are kept unchanged; neither record is deleted.

In some cases, you can correct overflow by padding the summary fields with

zeros, using the INREC control statement. “Preventing Overflow When Summing

Values” on page 57 shows you how to do this.

VB Data Set Considerations

The same VB data set considerations you learned about previously for the SORT,

MERGE, INCLUDE and OMIT statements also apply to the SUM statement.

Starting Positions

When you code your summary fields for VB records, remember to add 4 to the

starting position to account for the 4-byte RDW. For example, the following SUM

statement specifies a PD summary field in the third through fifth data bytes of a

VB record:

 SUM FIELDS=(7,3,PD)

Short Summary Fields

If you know you have VB records with short summary fields, you can specify the

VLSHRT option, if appropriate, to prevent DFSORT from terminating. For example:

 OPTION VLSHRT

 SORT FIELDS=(6,2,CH,A)

 SUM FIELDS=(21,8,ZD)

VLSHRT tells DFSORT to leave records with short summary fields unsummed.

That is, when one of the two records involved in a summary operation has a short

summary field, the records are kept unchanged; neither record is deleted.

 Attention: If NOVLSHRT is in effect, DFSORT terminates if it finds a short

summary field in any VB record.

For more information on DFSORT’s VLSHRT option, see z/OS DFSORT Application

Programming Guide.

Summary

This chapter covered summing records in your data set. It explained how to

use the SUM statement to sum records with equal control fields, and how to

suppress any records with duplicate control fields. Now, you continue with

tutorials about using OUTREC and INREC to reformat your data sets.

Summing Records

36 z/OS V1R6.0 DFSORT: Getting Started

Chapter 5. Reformatting Records

You can reformat records in your data sets by using the INREC, OUTREC, and

OUTFIL control statements. You can use these statements separately or together.

With INREC, OUTREC, and OUTFIL, you can perform a wide variety of tasks

while sorting, copying, or merging, including the following:

v Delete fields.

v Reorder fields.

v Insert separators (blanks, zeros, strings, current date, and current time).

v Convert data to its hexadecimal representation.

v Convert lowercase characters to uppercase characters, and uppercase characters

to lowercase characters.

v Convert numeric values to many different types of printable formats with or

without thousands separators, decimal point, leading or suppressed zeros, and

signs.

v Convert numeric values from one format to another format.

v Perform arithmetic using numeric values and decimal constants.

v Change values using a lookup table.

v Insert sequence numbers.

You can reformat records in one of the following three ways:

v BUILD: Reformat each record by specifying all of its items one by one. Build

gives you complete control over the items you want in your reformatted records

and the order in which they appear. You can delete, rearrange and insert fields

and constants.

Note: For INREC and OUTREC, you can use either the BUILD parameter or the

FIELDS parameter. For OUTFIL, you can use either the BUILD parameter

or the OUTREC parameter.

v OVERLAY: Reformat each record by specifying just the items that overlay

specific columns. Overlay lets you change specific existing columns without

affecting the entire record.

v IFTHEN clauses: Reformat different records in different ways by specifying how

build or overlay items are applied to records that meet given criteria. IFTHEN

clauses let you use sophisticated conditional logic to choose how different record

types are reformatted.

The INREC, OUTREC, and OUTFIL statements can all perform the same functions.

However:

v The INREC statement reformats records before they are sorted, copied or

merged. See “Using Other Statements with INREC” on page 56 for information

about how INREC affects other control statements.

v The OUTREC statement reformats records after they are sorted, copied or

merged.

v The OUTFIL statement can reformat records for OUTFIL output data sets after

they are sorted, copied or merged. Different reformatting parameters can be

used for different OUTFIL data sets. The information presented in this Chapter

for the INREC and OUTREC statements also applies to the OUTFIL statement.

OUTFIL is discussed later in Chapter 6, “Creating Multiple Output Data Sets

and Reports,” on page 65.

© Copyright IBM Corp. 1983, 2005 37

|
|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|

Reformatting Records After Sorting with BUILD or FIELDS

In the last chapter, you used the SUM statement to sum the price of the books in

stock and the books sold for each publisher. Now, using the FIELDS or BUILD

parameter of the OUTREC statement, you can delete all the fields that are not

needed for the application; in other words, fields whose contents are not

meaningful in a summation record. Only the publisher, number-in-stock, and

number-sold fields are written, reducing the output record length to 12 bytes.

The OUTREC statement looks like this:

OUTREC FIELDS=(106,4,162,4,166,4)

Number sold

Number in stock

Publisher

Here are the steps for writing this OUTREC statement:

 Table 24. Steps to Create the OUTREC Statement for Reformatting Records

Step Action

1 Leave at least one blank, and type OUTREC

2 Leave at least one blank, and type FIELDS= (or BUILD=)

3 Type, in parentheses, and separated by commas:

1. The location and length of the publisher field

2. The location and length of the number in stock field

3. The location and length of the number sold field.

The SORT, SUM and OUTREC statements are shown below:

 SORT FIELDS=(106,4,CH,A)

 SUM FIELDS=(162,4,BI,166,4,BI)

 OUTREC FIELDS=(106,4,162,4,166,4)

Table 25 shows the output.

 Table 25. Writing Only Publisher, Number In Stock, and Number Sold Fields

Publisher

Number

In Stock

Number

Sold

1 4 5 8 9 12

COR

FERN

VALD

WETH

 103

 19

 42

 62

 161

 87

 97

 79

The number in stock and number sold fields are binary values which would

actually be unreadable if you printed or displayed the output records shown in

Table 25. Later in this chapter, you’ll learn how binary and other unreadable

numeric values can be converted to various readable forms.

Reformatting Records

38 z/OS V1R6.0 DFSORT: Getting Started

|

|
|

|

Suppose you use this SORTOUT DD statement for your output data set:

//SORTOUT DD DSN=MY.OUTPUT,DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,SPACE=(CYL,(5,5))

DFSORT automatically sets the LRECL of your new output data set (MY.OUTPUT)

to the reformatted output record length, so LRECL=12 would be set in this case.

You do not need to specify the LRECL on your SORTOUT DD statement, because

DFSORT will set it appropriately for you.

If your SORTOUT data set already has an LRECL value (OLD data set), or you

choose to specify an LRECL value on the SORTOUT DD statement, that value

overrides the value DFSORT would set for the LRECL. This can result,

intentionally or unintentionally, in padding or truncating your output records if the

calculated length of the reformatted record does not match your specified LRECL.

In general, it is best to let DFSORT set the RECFM, LRECL and BLKSIZE for your

NEW SORTOUT data sets, unless you have a particular reason to override these

values. For OLD SORTOUT data sets, ensure that the existing RECFM, LRECL and

BLKSIZE values are appropriate for the control statements you use.

Reordering Fields to Reserve Space

The fields always appear in the order in which you specify them. Therefore, if you

want the number sold to appear before the number in stock, as shown in Table 26,

you reverse their order on the OUTREC statement.

 Table 26. Reordering the Fields

Publisher Number Sold Number In Stock

1 4 5 8 9 12

COR

FERN

VALD

WETH

 161

 87

 97

 79

 103

 19

 42

 62

Inserting Binary Zeros

Building on the last example, assume you want to reformat the records to include

a new 4-byte binary field after the number in stock (beginning at byte 13). In this

case, you can insert binary zeros as place holders for the new field (to be filled in

with data at a later date). You can use Z or 1Z to specify a single binary zero. You

can use nZ to specify n binary zeros.

To insert four binary zeros, write 4Z after the last field:

 SORT FIELDS=(106,4,CH,A)

 SUM FIELDS=(162,4,BI,166,4,BI)

 OUTREC FIELDS=(106,4,166,4,162,4)

 SORT FIELDS=(106,4,CH,A)

 SUM FIELDS=(162,4,BI,166,4,BI)

 OUTREC FIELDS=(106,4,166,4,162,4,4Z)

Reformatting Records

Chapter 5. Reformatting Records 39

Table 27 shows the result.

 Table 27. Inserting Binary Zeros

Publisher Number Sold Number In Stock X'0...0'

1 4 5 8 9 12 13 16

COR

FERN

VALD

WETH

 161

 87

 97

 79

 103

 19

 42

 62

 0...0

 0...0

 0...0

 0...0

Inserting Blanks

If an output data set contains only character data, you can print it by writing the

SORTOUT DD statement as follows:

 You can make the printout more readable by using the OUTREC statement to

separate the fields with blanks and to create margins. You can insert blanks before,

between, or after fields. You can use X or 1X to specify a single blank. You can use

nX to specify n blanks.

For example, assume you want to print just the publisher and title fields, with the

publisher field appearing first. Because most of the publishers’ names fill up the

entire 4-byte publisher field, the publishers’ names will run into the titles if you do

not separate the two fields with blanks. Also, without a margin, the publishers’

names will begin at the edge of the paper.

The printout can be made more readable by creating a left margin of 20 blanks and

by separating the fields with 10 blanks.

To insert 20 blanks, write 20X before the first field. To insert 10 blanks, write 10X

between the two fields. The SORT statement sorts the records by title in ascending

order (remember that SORT, COPY, or MERGE is always required).

 SORT FIELDS=(1,75,CH,A)

 OUTREC BUILD=(20X,106,4,10X,1,75)

Table 28 shows the result.

 Table 28. Output After Inserting Blanks

 Publisher Book Title

1 20 21 24 25 34 35 190

//SORTOUT DD SYSOUT=A

Reformatting Records

40 z/OS V1R6.0 DFSORT: Getting Started

|
|

Table 28. Output After Inserting Blanks (continued)

 Publisher Book Title

(20 Blanks)

FERN

FERN

WETH

COR

VALD

WETH

COR

VALD

COR

COR

COR

FERN

COR

VALD

VALD

COR

WETH

FERN

WETH

VALD

(10 Blanks)

ADVANCED TOPICS IN PSYCHOANALYSIS

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

CRISES OF THE MIDDLE AGES

EDITING SOFTWARE MANUALS

EIGHTEENTH CENTURY EUROPE

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

INTRODUCTION TO BIOLOGY

INTRODUCTION TO PSYCHOLOGY

LIVING WELL ON A SMALL BUDGET

MODERN ANTHOLOGY OF WOMEN POETS

NUMBERING SYSTEMS

PICK’S POCKET DICTIONARY

SHORT STORIES AND TALL TALES

STRATEGIC MARKETING

SUPPLYING THE DEMAND

SYSTEM PROGRAMMING

THE COMPLETE PROOFREADER

THE INDUSTRIAL REVOLUTION

VIDEO GAME DESIGN

If you know the columns you want your fields to start in, you can specify them

directly instead of figuring out how many blanks to use. For example, if you want

the publisher field to start in column 21 and the title field to start in column 35, as

above, you can write the OUTREC statement as:

 OUTREC BUILD=(21:106,4,35:1,75)

c: causes DFSORT to fill in blanks from the last field with data (or column 1) up to

the column before c. So 21: puts blanks in columns 1-20 and 35: puts blanks in

column 25-34.

Specifying c:X as your last field is an easy way to increase the record length of

your output records to c bytes. For example, if you want to create 80-byte output

records containing the first 30 bytes of your input records padded with blanks, you

can use this OUTREC statement:

 OUTREC BUILD=(1,30,80:X)

DFSORT automatically sets LRECL=80 for the SORTOUT data set if you do not

override the LRECL.

Inserting Strings

In addition to making the printout more readable, OUTREC can also be used to set

up a very basic report format by inserting strings. ICETOOL’s DISPLAY operator

or the OUTFIL control statement can be used to create complex reports, as you will

see later in this document. The formats for writing strings are shown below.

Character Strings

The format for repeating a character string is:

C’x...x’

Reformatting Records

Chapter 5. Reformatting Records 41

|

|

where x is an EBCDIC character. For example, C'FERN'.

The format for repeating a character string is:

 where n can be from 1 to 4095; n repetitions of the character string (C'x...x') are

inserted into the reformatted records. If n is omitted, 1 is used instead.

If you want to include a single apostrophe in the string, you must specify it as two

single apostrophes. For example, O’NEILL must be specified as C'O''NEILL'.

You can use special keywords to insert a character string for the date or time of the

run in various forms, as detailed in z/OS DFSORT Application Programming Guide.

For example, suppose you want to insert the following at the end of an 80 byte

record:

v the string ’Timestamp: ’

v the date of the run in the form C’yyyy/mm/dd’,

v a blank, and

v the time of the run in the form C’hh:mm’

Here’s the OUTREC statement:

 OUTREC FIELDS=(1,80,C’Timestamp: ’,DATE1(/),X,TIME2(:))

Hexadecimal Strings

The format for writing a hexadecimal string is:

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

The format for repeating a hexadecimal string is:

where n can be from 1 to 4095. n repetitions of the hexadecimal string (X'yy...yy')

are inserted in the reformatted records. If n is omitted, 1 is used.

Setting Up a Basic Report

To produce a very basic report of the publisher’s names and author’s names from

the bookstore data set, you can use the following OUTREC statement to put in

“Publisher is” and “Author is” as character separators.

 OPTION COPY

 OUTREC FIELDS=(11:C’Publisher is ’,106,4,

 31:C’Author is ’,91,15,X,76,15)

The result is shown in Table 29.

 Table 29. Output of a Report

 Publisher

Author’s First

Name

Author’s Last

Name

1 10 11 22 24 27 31 39 41 55 57 71

nC’x...x’

X'yy...yy'

X'yy...yy'

Reformatting Records

42 z/OS V1R6.0 DFSORT: Getting Started

Table 29. Output of a Report (continued)

 Publisher

Author’s First

Name

Author’s Last

Name

(10 blanks) Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

Publisher is

FERN

COR

COR

VALD

COR

WETH

COR

VALD

FERN

VALD

WETH

COR

COR

FERN

WETH

VALD

VALD

FERN

WETH

COR

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

Author is

 ROBERT

 FRANK

 TOM

 LORI

 KAREN

 JOKHI

 CAROL

 VICTOR

 WILLIAM

 MARK

 DON

 PETER

 LINDA

 ANN

 RAUL

 LILIANA

 CHIEN

 DIANNE

 ALICE

 GREG

MURRAY

DEWAN

MILLER

RASMUSSEN

WILDE

DINSHAW

GUSTLIN

OJALVO

BAYLESS

YAEGER

GROSS

COWARD

DUZET

GREEN

CAUDILLO

AVRIL

WU

OSTOICH

MUNGER

BENDER

So Far

So far this chapter has covered how the BUILD or FIELDS parameter of the

OUTREC statement can reformat the records of your output data set to

contain only the fields and constants you specify. This chapter also covered

inserting binary zeros as place holders, and using blanks and strings to make

a printout of the output data set more readable. In the following sections, you

will learn how to use other reformatting features to change input fields in

various ways for output.

Changing Uppercase to Lowercase

You could use the following statements to show all of the authors for the books

used in computer courses:

 INCLUDE COND=(110,5,CH,EQ,C’COMP’)

 SORT FIELDS=(76,15,CH,A,91,15,CH,A)

 OUTREC FIELDS=(91,15,X,76,15)

The results produced for these statements are:

WILLIAM BAYLESS

RAUL CAUDILLO

JOKHI DINSHAW

ROBERT MURRAY

LORI RASMUSSEN

The author’s first and last names are displayed as uppercase letters, because they

are stored that way in the bookstore data set. If you wanted to display these names

with an initial uppercase letter and subsequent lower case letters, you could use

the following OUTREC statement:

 OUTREC FIELDS=(91,1,92,14,TRAN=UTOL,X,76,1,77,14,TRAN=UTOL)

The results produced for this OUTREC statement are:

Reformatting Records

Chapter 5. Reformatting Records 43

|
|
|
|
|
|
|

William Bayless

Raul Caudillo

Jokhi Dinshaw

Robert Murray

Lori Rasmussen

p,m,TRAN=UTOL changes each uppercase letter (A-Z) in the field to the

equivalent lowercase letter (a-z). In our example, p,m,TRAN=UTOL changes

uppercase letters to lowercase letters starting with the second letter of the author’s

first name and the second letter of the author’s last name. The first letter of each

name is not included in the TRAN=UTOL field; these uppercase letters are moved

to the output record unchanged.

p,m,TRAN=LTOU is similar to p,m,TRAN=UTOL, but changes each lowercase

letter (a-z) in a field to the equivalent uppercase letter (A-Z).

p,m,TRAN=ALTSEQ can be used to change characters in a field to other characters

as specified by an ALTSEQ statement. For example, a ″null″ character (hex 00) can

be changed to a blank character (hex 40).

For detailed information on all of the TRAN parameters, see z/OS DFSORT

Application Programming Guide.

Converting Numeric Fields to Different Formats

Suppose you want the summed binary values in Table 25 on page 38 be readable

so you can print or display them. You can use the following statements to convert

the BI values to readable ZD values:

 OPTION COPY

 OUTREC FIELDS=(1,4,X,

 5,4,BI,TO=ZD,LENGTH=6,X,

 9,4,BI,TO=ZD,LENGTH=6)

p,m,BI,TO=ZD converts the BI values to ZD values. By default, a 4-byte BI value

produces a 10-byte ZD value, but LENGTH=6 overrides the default length to

produce a 6-byte ZD value.

Table 30 shows the output, which is readable:

 Table 30. Converting from BI to ZD

Publisher Number In Stock Number Sold

1 4 6 11 13 18

COR

FERN

VALD

WETH

000103

000019

000042

000062

000161

000087

000097

000079

Alternatively, you can use the following OUTREC statement to convert the BI

values to readable FS values:

 OUTREC FIELDS=(1,4,X,

 5,4,BI,TO=FS,LENGTH=6,X,

 9,4,BI,TO=FS,LENGTH=6)

p,m,BI,TO=FS converts the BI values to FS values. By default, a 4-byte BI value

produces an 11-byte FS value, but LENGTH=6 overrides the default length to

produce a 6-byte FS value.

Reformatting Records

44 z/OS V1R6.0 DFSORT: Getting Started

Table 31 shows the output, which is readable:

 Table 31. Converting from BI to FS

Publisher Number In Stock Number Sold

1 4 6 11 13 18

COR

FERN

VALD

WETH

 103

 19

 42

 62

 161

 87

 97

 79

You can use p,m,f,TO=f or p,m,f,f to convert from various numeric formats to

various other numeric formats. You can use LENGTH=n to override the default

output length.

For detailed information on DFSORT’s numeric conversion parameters, see z/OS

DFSORT Application Programming Guide.

Editing Numeric Fields

Suppose you have input records with numeric values stored in PD format that you

want to display or print so they can be easily interpreted. PD values are stored as

integers in a compressed internal format that is actually unreadable if you print or

display the values.

However, you know that:

v The first PD field represents a number with two decimal places.

v The second PD field represents a number with three decimal places.

v The third PD field represents a date in the form mmddyyyy.

You can use the edit features of the OUTREC statement to display the digits of the

PD values as readable characters. Furthermore, you can use the edit features to

insert signs, commas, decimal points and hyphens, as appropriate, to make the PD

values easy to interpret.

Table 32 shows the relevant input fields in the records. The PD fields are

represented as readable numbers in Table 32, but they are really stored in an

unreadable format.

 Table 32. Input records with PD values

CH field First PD field Second PD field Third PD field

1 8 11 16 31 37 41 45

WEST

EAST

NORTH

SOUTH

+1524900810

−0065781053

+0000000000

−0000003562

+0000000020000

+0721500532006

−0000982630735

−0003826254999

+05122003

+11292003

+02152004

+12032003

You can use the following OUTREC statement to make the PD values meaningful:

 OUTREC FIELDS=(1,8,

 5X,

 11,6,PD,M4,

 5X,

 31,7,PD,EDIT=(SI,III,III,IIT.TTT),SIGNS=(,-),

 5X,

 41,5,PD,EDIT=(TT-TT-TTTT))

Reformatting Records

Chapter 5. Reformatting Records 45

M4 is one of DFSORT’s 27 pre-defined edit masks (see Table 33 below). It edits a

numeric field according to the pattern SI,III,III,III,IIT.TT. EDIT=(SI,III,III,IIT.TTT) is

a user-defined edit mask. It edits a numeric field according to the pattern

SI,III,III,IIT.TTT. EDIT=(TT-TT-TTTT) is another user-defined edit mask. It edits a

numeric field according to the pattern TT-TT-TTTT.

In the patterns:

v I indicates a leading insignificant digit to be displayed as 1-9, or as blank for a

leading 0.

v T indicates a significant digit to be displayed as 0-9.

v S before the digits indicates a leading sign. S after the digits indicates a trailing

sign. For M4, the leading sign is to be displayed as + for a positive value or as −

for a negative value. For EDIT=(SI,III,III,IIT.TTT),SIGNS=(,−), the leading sign is

to be displayed as blank for a positive value or as − for a negative value.

v Any other character (for example, comma, decimal point or hyphen) is just

displayed as appropriate.

The results produced for the OUTREC statement are:

WEST +15,249,008.10 20.000 05-12-2003

EAST -657,810.53 3,721,500,532.006 11-29-2003

NORTH +0.00 -982,630.735 02-15-2004

SOUTH -35.62 -3,826,254.999 12-03-2003

Pre-defined and user-defined edit masks give you a great deal of flexibility in how

you format your numeric fields for output. You can use p,m,f,Mnn or

p,m,f,EDIT=(pattern) to edit various numeric fields according to various output

patterns. You can use SIGNS=(a,b,c,d) to override or set the output signs (leading

positive, leading negative, trailing positive and trailing negative). You can use

LENGTH=n to override or set the output length.

See z/OS DFSORT Application Programming Guide for complete details about

DFSORT’s numeric editing parameters. For easy reference, Table 33 shows the

patterns for the 27 pre-defined edit masks (M0-M26) as well as examples of the

output for each mask.

 Table 33. Edit Mask Patterns

Mask Pattern Examples

Value Result

M0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIITS +01234 1234

−00001 1−

M1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTS −00123 00123−

+00123 00123

M2 II,III,III,III,III,III,III,III,III,IIT.TTS +123450 1,234.50

−000020 0.20−

M3 II,III,III,III,III,III,III,III,III,IIT.TTCR −001234 12.34CR

+123456 1,234.56

M4 SII,III,III,III,III,III,III,III,III,IIT.TT +0123456 +1,234.56

−1234567 −12,345.67

M5 SII,III,III,III,III,III,III,III,III,IIT.TTS −001234 (12.34)

+123450 1,234.50

Reformatting Records

46 z/OS V1R6.0 DFSORT: Getting Started

|

|

|

|

|

|

Table 33. Edit Mask Patterns (continued)

Mask Pattern Examples

Value Result

M6 III-TTT-TTTT 00123456 012-3456

12345678 1-234-56788

M7 TTT-TT-TTTT 00123456 000-12-3456

12345678 012-34-5678

M8 IT:TT:TT 030553 3:05:53

121736 12:17:36

M9 IT/TT/TT 123004 12/30/04

083104 8/31/04

M10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIT 01234 1234

00000 0

M11 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 00010 00010

01234 01234

M12 SI,III,III,III,III,III,III,III,III,III,IIT +1234567 1,234,567

−0012345 −12,345

M13 SI.III.III.III.III.III.III.III.III.III.IIT +1234567 1.234.567

−0012345 −12.345

M14 SI III III III III III III III III III IITS +1234567 1 234 567

−0012345 (12 345)

M15 I III III III III III III III III III IITS +1234567 1 234 567

−0012345 12 345−

M16 SI III III III III III III III III III IIT +1234567 1 234 567

−0012345 −12 345

M17 SI’III’III’III’III’III’III’III’III’III’IIT +1234567 1’234’567

−0012345 −12’345

M18 SII,III,III,III,III,III,III,III,III,IIT.TT +0123456 1,234.56

−1234567 −12,345.67

M19 SII.III.III.III.III.III.III.III.III.IIT,TT +0123456 1.234,56

−1234567 −12.345,67

M20 SI III III III III III III III III IIT,TTS +0123456 1 234,56

−1234567 (12 345,67)

M21 II III III III III III III III III IIT,TTS +0123456 1 234,567

−1234567 12 345,67−

M22 SI III III III III IIII III III III IIT,TT +0123456 1 234,56

−1234567 −12 345,67

M23 SII’III’III’III’III’III’III’III’III’IIT.TT +0123456 1’234.56

−1234567 −12’345.67

M24 SII’III’III’III’III’III’III’III’III’IIT,TT +0123456 1’234,56

−1234567 −12’345,67

Reformatting Records

Chapter 5. Reformatting Records 47

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Table 33. Edit Mask Patterns (continued)

Mask Pattern Examples

Value Result

M25 SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIT +01234 1234

−00001 −1

M26 STTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 1234 +01234

−1 −00001

Displaying Data in Hexadecimal

If you are curious about how the CH and PD values in Table 32 on page 45 are

actually stored, you can use this OUTREC statement to display hexadecimal

representations of these fields:

 OUTREC FIELDS=(1,8,HEX,

 2X,

 11,6,HEX,

 2X,

 31,7,HEX,

 2X,

 41,5,HEX)

The results produced for this OUTREC statement are:

E6C5E2E340404040 01524900810C 0000000020000C 005122003C

C5C1E2E340404040 00065781053D 3721500532006C 011292003C

D5D6D9E3C8404040 00000000000C 0000982630735D 002152004C

E2D6E4E3C8404040 00000003562D 0003826254999D 012032003C

Performing Arithmetic with Numeric Fields and Constants

Suppose you want to display the results of subtracting the second PD field in

Table 32 on page 45 from the first PD field in Table 32 on page 45. As discussed

previously, the PD fields are stored as integers, but we know that:

v The first PD field is 6 bytes and represents a signed number with 11 digits

including two decimal places.

v The second PD field is 7 bytes and represents a signed number with 13 digits

including three decimal places.

In order to do arithmetic on these fields, you must ensure that the integer and

decimal parts of the numbers match up correctly. For example, in the first record,

the first PD value is +1524900810 representing +15249008.10 and the second PD

value is +20000 representing +20.000. In order to subtract the second PD value

from the first PD value, you need to put them in the following forms:

+15249008.100

+00000020.000

You could use the following OUTREC statement to handle the subtraction

correctly:

 OUTREC FIELDS=(1,8,

 5X,

 ((11,6,PD,MUL,+10),SUB,31,7,PD),

 EDIT=(SI,III,III,IIT.TTT),SIGNS=(,-))

Reformatting Records

48 z/OS V1R6.0 DFSORT: Getting Started

|

|

11,6,PD,MUL,+10 multiples the first PD field by 10 to match up the decimal places.

SUB,31,7,PD subtracts the second PD field from the results of the 11,6,PD,MUL,+10

operation.

EDIT and SIGNS are used to make the results more meaningful.

The results produced for this OUTREC statement are:

WEST 15,248,988.100

EAST −3,722,158,342.536

NORTH 982,630.735

SOUTH 3,826,219.379

You can do arithmetic with numeric fields and decimal constants (+n and −n)

using the operators MIN (minimum), MAX (maximum), DIV (division), MUL

(multiplication), MOD (modulus), ADD (addition) and SUB (subtraction). The

order of evaluation precedence for the operators is as follows, but can be changed

by using parentheses:

1. MIN and MAX

2. MUL, DIV and MOD

3. ADD and SUB

You can use p,m,f, MIN, MAX, MUL, DIV, MOD, ADD, SUB, +n, −n and

parentheses to do a wide variety of arithmetic operations for various numeric

formats. The result of an arithmetic operation is a 15-digit ZD value that can be

converted to a different numeric format, or edited using pre-defined edit masks

(M0-M26) or user-defined edit masks, as discussed earlier.

For complete details on arithmetic operations, see z/OS DFSORT Application

Programming Guide.

Doing Lookup and Change

You can use the following statements to show all of the course departments and

the publishers whose books they use:

 SORT FIELDS=(110,5,CH,A,106,4,CH,A)

 SUM FIELDS=NONE

 OUTREC FIELDS=(110,5,X,106,4)

The results produced for these statements are:

 COR

BIOL VALD

BUSIN COR

BUSIN VALD

COMP FERN

COMP VALD

COMP WETH

ENGL COR

ENGL FERN

ENGL VALD

HIST COR

HIST WETH

PSYCH COR

PSYCH FERN

This list is rather cryptic as everything is abbreviated. You can use the following

OUTREC statement to make the list more meaningful by substituting descriptive

words for the abbreviations.

Reformatting Records

Chapter 5. Reformatting Records 49

OUTREC FIELDS=(110,5,CHANGE=(16,

 C’HIST’,C’History’,

 C’BUSIN’,C’Business’,

 C’COMP’,C’Computer Science’,

 C’ENGL’,C’English’,

 C’BIOL’,C’Biology’,

 C’PSYCH’,C’Psychology’),

 NOMATCH=(C’Unaffiliated’),

 C’ | ’,

 106,4,CHANGE=(20,

 C’FERN’,C’Fernall Brothers’,

 C’COR’,C’Cornish Limited’,

 C’VALD’,C’Valdern and Co.’,

 C’WETH’,C’Wethman, Inc.’))

The results produced for this OUTREC statement are:

Unaffiliated | Cornish Limited

Biology | Valdern and Co.

Business | Cornish Limited

Business | Valdern and Co.

Computer Science | Fernall Brothers

Computer Science | Valdern and Co.

Computer Science | Wethman, Inc.

English | Cornish Limited

English | Fernall Brothers

English | Valdern and Co.

History | Cornish Limited

History | Wethman, Inc.

Psychology | Cornish Limited

Psychology | Fernall Brothers

Table lookup and change allows you to find an input field value in a table of

character, hexadecimal or bit constants, and set a corresponding character constant,

hexadecimal constant, or input field in the output record.

You use p, m,CHANGE=(v,find,set,...) to give the position and length of the input

field, the length of the output field, and the ″table″ consisting of pairs of find

constants, and set constants or set fields. For example, for the first field in the

OUTREC statement above:

v The input field starts in position 110.

v The length of the input field and find constants is 5.

v The length of the output field and set constants is 16.

v The first find constant is ’HIST’ (padded with a blank at the end to 5 characters).

v The first set constant is ’History’ (padded with blanks at the end to 16

characters).

Whenever the course department contains ’HIST’, the output field is set to

’History’. Whenever the course department contains ’BUSIN’, the output field is set

to ’Business’, and so on.

You can use NOMATCH=(set) to set the output value when an input field value

does not match any of the find constants. NOMATCH=(C’string’) sets a character

string constant. NOMATCH=(X’string’) sets a hexadecimal string constant.

NOMATCH=(q,n) sets an input field value. For example, in the OUTREC

statement above, an input field value of blanks results in an output field value of

’Unaffiliated’ (padded with blanks at the end to 16 characters). If you do not

specify NOMATCH=(set), DFSORT terminates with an error message when an

input field value does not match any of the find constants.

Reformatting Records

50 z/OS V1R6.0 DFSORT: Getting Started

|
|
|

|
|

|
|
|
|
|
|
|
|

For complete details on lookup and change, see z/OS DFSORT Application

Programming Guide.

So Far

Now you know how to use the many features available with the BUILD or

FIELDS parameter of the OUTREC statement to reformat your input records

in many ways for output. Keep in mind that you can use all of these

reformatting features with the BUILD or FIELDS parameter of the INREC

statement and with the BUILD or OUTREC parameter of the OUTFIL

statement, as well as with the OUTREC statement. In fact, you can use all of

these statements together, when appropriate. Next, you will learn how to use

the OVERLAY parameter of the OUTREC statement to change one or more

fields without affecting the rest of your record.

Reformatting Records with OVERLAY

With the BUILD or FIELDS parameter of the OUTREC statement, you build your

reformatted output record one item at a time. You must specify each item

(unedited, edited or converted input field, blanks, string, and so on) you want in

the output record in the order in which you want it to appear.

But if you only want to change one or a few items and keep the rest of the record

in its original form, there’s an easier way: the OVERLAY parameter of the

OUTREC statement. You can use the same items with the OVERLAY parameter we

discussed earlier for the BUILD or FIELDS parameter.

Suppose you want to change the course department to lowercase and discount the

price of each book by 10%. You can use the following statements to create an

output data set with the new price instead of the old price in each output record:

 OPTION COPY

 OUTREC BUILD=(1,109,

 110:110,5,TRAN=UTOL,

 115:115,55,

 170:170,4,BI,SUB,(170,4,BI,DIV,+10),

 TO=BI,LENGTH=4)

The arithmetic expression in the OUTREC parameter gives you a new 4-byte BI

price as follows:

new price = old price - (old price / 10)

With the BUILD parameter, you must build the entire record, so you must specify

the following:

v 1,109 to keep the bytes before the course department

v 110,5,TRAN=UTOL to change the course department from uppercase to

lowercase

v 115,55 to keep the bytes between the course department and the price

v 170:170,4,BI,SUB,(170,4,BI,DIV,+10),TO=BI,LENGTH=4 to replace price with

price=price-(price/10)

But since you are not changing the bytes before the course department or between

the course department and the price, it’s easier to use the OVERLAY parameter to

just overlay the bytes you want to change as follows:

Reformatting Records

Chapter 5. Reformatting Records 51

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|
|
|

OPTION COPY

 OUTREC OVERLAY=(110:110,5,TRAN=UTOL,

 170:170,4,BI,SUB,(170,4,BI,DIV,+10),

 TO=BI,LENGTH=4)

Table 34 shows the copied data set.

 Table 34. Books with Course Department and Price Changes

Book Title Department Price

1 75 110 114 170 173

COMPUTER LANGUAGES

LIVING WELL ON A SMALL BUDGET

SUPPLYING THE DEMAND

VIDEO GAME DESIGN

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

COMPUTERS: AN INTRODUCTION

PICK’S POCKET DICTIONARY

EDITING SOFTWARE MANUALS

NUMBERING SYSTEMS

STRATEGIC MARKETING

THE INDUSTRIAL REVOLUTION

MODERN ANTHOLOGY OF WOMEN POETS

INTRODUCTION TO PSYCHOLOGY

THE COMPLETE PROOFREADER

SYSTEM PROGRAMMING

SHORT STORIES AND TALL TALES

INTRODUCTION TO BIOLOGY

ADVANCED TOPICS IN PSYCHOANALYSIS

EIGHTEENTH CENTURY EUROPE

CRISES OF THE MIDDLE AGES

comp

busin

comp

engl

comp

engl

comp

busin

hist

engl

psych

engl

comp

engl

biol

psych

hist

hist

2340

8910

1733

1980

0536

1710

0266

1305

0324

2115

0716

0405

1980

0563

2876

1368

2115

2340

1611

1080

With the OVERLAY parameter, you don’t have to figure out or specify 1,109 or

115,55. Instead you just specify each output starting column (110: and 170:) and its

replacement item. Any column you don’t overlay remains the same. In addition, in

contrast to BUILD items, OVERLAY items can overlap each other and can be

specified in any order. In our case, the following OUTREC statement would give

the same results as the previous OUTREC statement:

 OPTION COPY

 OUTREC OVERLAY=(170:170,4,BI,SUB,(170,4,BI,DIV,+10),

 TO=BI,LENGTH=4,

 110:110,5,TRAN=UTOL)

Extending Records with OVERLAY

You can also use the OVERLAY parameter to extend your output record without

affecting the rest of the record.

Suppose you want to replace the old price with a new price discounted by 10%,

but also extend the record with a new field containing the original price. You can

use the following statements:

 OPTION COPY

 OUTREC OVERLAY=(174:170,4,

 170:170,4,BI,SUB,(170,4,BI,DIV,+10),

 TO=BI,LENGTH=4)

Reformatting Records

52 z/OS V1R6.0 DFSORT: Getting Started

|
|
|
|

|

||

|||

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

Table 35 shows the copied data set.

 Table 35. New and Old Prices

New Price Old Price

170 173 174 177

2340

8910

1733

1980

0536

1710

0266

1305

0324

2115

0716

0405

1980

0563

2876

1368

2115

2340

1611

1080

2600

9900

1925

2199

0595

1899

0295

1450

0360

2350

0795

0450

2200

0625

3195

1520

2350

2600

1790

1200

Since you added a new field at positions 174-177, DFSORT automatically increases

the record length from 173 bytes to 177 bytes.

In this case, the order in which you specify the two overlay items is important

because you are using the old price for both items. So you must make the copy of

the old price before you modify it. Thus, in the OUTREC statement above, the first

overlay item copies the old price to the new field, and the second overlay item

replaces the old price with the new price. If you used this OUTREC statement:

 OUTREC OVERLAY=(170:170,4,BI,SUB,(170,4,BI,DIV,+10),

 TO=BI,LENGTH=4,

 174:170,4)

you would inadvertently replace the old price with the new price and then copy

the new price to the new field. Thus, you would have the new price in both fields

instead of having the new price in one field and the old price in the other field.

Since OVERLAY allows overlapping items, you must be careful not to destroy a

field with an earlier overlay item that you want to use in a later overlay item.

So Far

Now you know how to use the OVERLAY parameter of the OUTREC

statement to overlay specified columns with reformatting items, without

affecting the rest of your reformatted record. Keep in mind that you can use

all of these reformatting features with the OVERLAY parameter of the INREC

statement and OUTFIL statement, as well as with the OUTREC statement.

Next, you will learn how to use IFTHEN clauses with the OUTREC statement

to reformat different records in different ways.

Reformatting Records

Chapter 5. Reformatting Records 53

|

||

||

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
||||

Reformatting Records with IFTHEN

The OVERLAY and BUILD or FIELDS parameters discussed in previous sections

let you use the same reformatting items for every output record. IFTHEN clauses

for the OUTREC statement let you select subsets of the output records and apply

different BUILD or OVERLAY items to them. So you can apply a set of BUILD

items to ″type 1″ records, a set of OVERLAY items to ″type 2″ records, another set

of BUILD items to ″type 3″ records, and a different set of OVERLAY items (or no

items) to other types of records.

You can use four types of IFTHEN clauses as follows:

v WHEN=INIT: Use one or more WHEN=INIT clauses to apply BUILD or

OVERLAY items to all of your input records. WHEN=INIT clauses are processed

before any of the other IFTHEN clauses.

v WHEN=(logexp): Use one or more WHEN=(logexp) clauses to apply BUILD or

OVERLAY items to the subset of your records that satisfy a specified logical

expression. You can use any logical expression for WHEN=(logexp) that you can

use for the COND=(logexp) parameter of an INCLUDE statement as previously

discussed in Chapter 3, “Including or Omitting Records,” on page 25. A

WHEN=(logexp) clause is satisfied when the logical expression evaluates as true.

v WHEN=ANY: Use a WHEN=ANY clause after multiple WHEN=(logexp) clauses

to apply additional BUILD or OVERLAY items to your records if they satisfied

the criteria for any of the preceding WHEN=(logexp) clauses.

v WHEN=NONE: Use one or more WHEN=NONE clauses to apply BUILD or

OVERLAY items to your records that did not meet the criteria for any of the

WHEN=(logexp) clauses. WHEN=NONE clauses are processed after any of the

other IFTHEN clauses. If you do not specify a WHEN=NONE clause, only the

WHEN=INIT changes (if any) are applied to input records that do not meet the

criteria for any of the WHEN=(logexp) clauses.

Suppose you want to produce a report showing the title, publisher, edited price

and % discount if you:

v discount the price of books from publisher COR that cost more than $20.00 by

20%

v discount the price of books from publisher COR that cost $20.00 or less by 10%

v discount the price of all books from publisher VALD by 25%

v discount the price of all books from the other publishers by 15%

You can use the following statements:

 OPTION COPY

 OUTREC IFTHEN=(WHEN=INIT,

 BUILD=(1:1,40,50:106,4,60:170,4,BI,EDIT=(TT.TT),70:170,4)),

 IFTHEN=(WHEN=(50,4,CH,EQ,C’COR’,AND,70,4,BI,GT,+2000),

 OVERLAY=(70:C’20%’,X)),

 IFTHEN=(WHEN=(50,4,CH,EQ,C’COR’,AND,70,4,BI,LE,+2000),

 OVERLAY=(70:C’10%’,X)),

 IFTHEN=(WHEN=(50,4,CH,EQ,C’VALD’),OVERLAY=(70:C’25%’,X)),

 IFTHEN=(WHEN=NONE,OVERLAY=(70:C’15%’,X))

Table 36 shows the copied data set.

 Table 36. Proposed discounts for books

Book Title Publisher Price Discount

1 40 50 53 60 64 70 73

Reformatting Records

54 z/OS V1R6.0 DFSORT: Getting Started

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

||

||||

||||

Table 36. Proposed discounts for books (continued)

Book Title Publisher Price Discount

COMPUTER LANGUAGES

LIVING WELL ON A SMALL BUDGET

SUPPLYING THE DEMAND

VIDEO GAME DESIGN

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

COMPUTERS: AN INTRODUCTION

PICK’S POCKET DICTIONARY

EDITING SOFTWARE MANUALS

NUMBERING SYSTEMS

STRATEGIC MARKETING

THE INDUSTRIAL REVOLUTION

MODERN ANTHOLOGY OF WOMEN POETS

INTRODUCTION TO PSYCHOLOGY

THE COMPLETE PROOFREADER

SYSTEM PROGRAMMING

SHORT STORIES AND TALL TALES

INTRODUCTION TO BIOLOGY

ADVANCED TOPICS IN PSYCHOANALYSIS

EIGHTEENTH CENTURY EUROPE

CRISES OF THE MIDDLE AGES

FERN

COR

COR

VALD

COR

WETH

COR

VALD

FERN

VALD

WETH

COR

COR

FERN

WETH

VALD

VALD

FERN

WETH

COR

26.00

99.00

19.25

21.99

05.95

18.99

02.95

14.50

03.60

23.50

07.95

04.50

22.00

06.25

31.95

15.20

23.50

26.00

17.90

12.00

15%

20%

10%

25%

10%

15%

10%

25%

15%

25%

15%

10%

20%

15%

15%

25%

25%

15%

15%

10%

The first IFTHEN clause is a WHEN=INIT clause that uses BUILD to initialize

every record with the title, publisher, edited price and a placeholder for the

discount. Notice that the publisher field is copied to positions 50-53 and the 4-byte

BI price field is copied to positions 70-73. Subsequent IFTHEN clauses are

processed for all records and must refer to these fields at their new positions.

The second IFTHEN clause is a WHEN=(logexp) clause that uses OVERLAY to set

the discount field to ’20%’ for the subset of records with ’COR ’ as the publisher

and more than 2000 as the price. Subsequent IFTHEN clauses are not processed for

records that satisfy this logical expression. Subsequent IFTHEN clauses are

processed for records that do not satisfy this logical expression.

The third IFTHEN clause is a WHEN=(logexp) clause that uses OVERLAY to set

the discount field to ’10%’ for the subset of records with ’COR ’ as the publisher

and 2000 or less as the price. Subsequent IFTHEN clauses are not processed for

records that satisfy this logical expression. Subsequent IFTHEN clauses are

processed for records that do not satisfy this logical expression.

The fourth IFTHEN clause is a WHEN=(logexp) clause that uses OVERLAY to set

the discount field to ’25%’ for the subset of records with ’VALD’ as the publisher.

Subsequent IFTHEN clauses are not processed for records that satisfy this logical

expression. Subsequent IFTHEN clauses are processed for records that do not

satisfy this logical expression.

The fifth IFTHEN clause is a WHEN=NONE clause that uses OVERLAY to set the

discount field to ’15%’ for the subset of records that did not satisfy the logical

expression for the second, third and fourth IFTHEN clauses.

DFSORT determines an appropriate reformatted output record length from the

IFTHEN clauses you specify. However, you can use the IFOUTLEN=n parameter to

tell DFSORT the length you want it to use for the reformatted records. For

example, suppose you had 80 byte input records, and this DFSORT statement:

Reformatting Records

Chapter 5. Reformatting Records 55

|

||||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

OUTREC IFTHEN=(WHEN=INIT,OVERLAY=(81:SEQNUM,8,ZD)),

 IFTHEN=(WHEN=(81,8,ZD,EQ,+5),OVERLAY=(21:C’J82’)),

 IFTHEN=(WHEN=(81,8,ZD,EQ,+10),OVERLAY=(21:C’M72’))

By default, DFSORT would set the reformatted output record length to 88 to

accommodate the 8-byte ZD sequence number you added. If you’re only using the

8-byte sequence number for the WHEN comparisons, and you don’t want the

sequence number as part of the reformatted output record, you could use this

statement instead to tell DFSORT to use 80 for the reformatted output record

length instead of 88:

 OUTREC IFTHEN=(WHEN=INIT,OVERLAY=(81:SEQNUM,8,ZD)),

 IFTHEN=(WHEN=(81,8,ZD,EQ,+5),OVERLAY=(21:C’J82’)),

 IFTHEN=(WHEN=(81,8,ZD,EQ,+10),OVERLAY=(21:C’M72’)),

 IFOUTLEN=80

For detailed information on using IFTHEN clauses and IFOUTLEN, see z/OS

DFSORT Application Programming Guide.

So Far

Now you know how to use IFTHEN clauses with the OUTREC statement to

reformat different records in different ways. Keep in mind that you can use

IFTHEN clauses with the INREC statement and OUTFIL statement, as well as

with the OUTREC statement. Next, you will learn about some Special

considerations for using the INREC statement.

Reformatting Records Before Sorting

The INREC statement has the same format as the OUTREC statement. Therefore, in

the first example of “Reformatting Records After Sorting with BUILD or FIELDS”

on page 38, where you used OUTREC to write only the publisher, number in stock,

and number sold fields, you can use INREC instead.

INREC FIELDS=(106,4,162,4,166,4)

Number sold

Number in stock

Publisher

Using Other Statements with INREC

Because INREC reformats the records before they are sorted, the SORT and SUM

statements must refer to the reformatted records as they will appear in the output

data set.

Thus, after INREC, the input records for the control statement in the previous

section are 12 bytes long (see Table 25 on page 38 for an example).

You write the SORT and SUM statements to process the byte positions in the

reformatted records:

Reformatting Records

56 z/OS V1R6.0 DFSORT: Getting Started

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
||||

|

* Move input positions 106-109 to reformatted record positions 1-4.

* Move input positions 162-169 to reformatted record positions 5-12.

 INREC FIELDS=(106,4,162,8)

* Sort reformatted record positions 1-4.

 SORT FIELDS=(1,4,CH,A)

* Sum reformatted record positions 5-8 and 9-12.

 SUM FIELDS=(5,4,BI,9,4,BI)

Table 37 shows the result.

 Table 37. Using INREC to Write Only Publisher, Number in Stock, and Number Sold

Publisher

Number

In Stock

Number

Sold

1 4 5 8 9 12

COR

FERN

VALD

WETH

 103

 19

 42

 62

 161

 87

 97

 79

As the flowchart in Appendix C, “Processing Order of Control Statements,” on

page 159 shows, DFSORT processes the INREC statement before SORT, SUM, and

OUTREC, but after INCLUDE and OMIT. Therefore, when used with the INREC

statement, SORT, SUM, and OUTREC must refer to the reformatted records, and

INCLUDE and OMIT must refer to the original records.

DFSORT processes the OUTFIL statements after the INREC and OUTREC

statements. Therefore, OUTFIL must refer to the reformatted records produced by

OUTREC if specified, or to the reformatted records produced by INREC if it is

specified without OUTREC. You will learn about OUTFIL statements in Chapter 6,

“Creating Multiple Output Data Sets and Reports,” on page 65.

The control statements below illustrate how the INREC and OUTREC statements

affect the positions you specify for various other statements:

 INCLUDE COND=(110,5,CH,EQ,C’ENGL’,OR,110,5,CH,EQ,C’PSYCH’)

 INREC FIELDS=(1:1,75,76:170,4,80:110,5)

 SORT FIELDS=(76,4,BI,D)

 OUTREC FIELDS=(1:1,75,85:76,4,BI,EDIT=($IT.TT),95:80,5)

 OUTFIL FNAMES=ENGL,INCLUDE=(95,5,CH,EQ,C’ENGL’)

 OUTFIL FNAMES=PSYCH,INCLUDE=(95,5,CH,EQ,C’PSYCH’)

The INCLUDE and INREC statements refer to fields as they appear in the input

records. The SORT and OUTREC statements refer to fields as they appear in the

reformatted INREC records. The OUTFIL statements refer to fields as they appear

in the reformatted OUTREC records.

Preventing Overflow When Summing Values

In some cases, you can prevent overflow by using INREC to pad summary fields

with zeros. However, this method cannot be used for negative fixed-point binary

data, because padding with zeros rather than with ones would change the sign.

If the summary fields in Table 37 were overflowing, you could pad each of them

on the left with 4 bytes (binary fields must be 2, 4, or 8 bytes long), as shown in

Table 38.

Reformatting Records

Chapter 5. Reformatting Records 57

Table 38. Padding Summary Fields

Publisher X'0...0'

Number In

Stock X'0...0' Number Sold

1 4 5 8 9 12 13 16 17 20

COR

FERN

VALD

WETH

 103

 19

 42

 62

 161

 87

 97

 79

INREC FIELDS=(106,4,4Z,162,4,4Z,166,4)
SORT FIELDS=(1,4,CH,A)
SUM FIELDS=(5,8,BI,13,8,BI)

New number sold field

New number in stock field

Table 39 shows the output records, each 20 bytes long.

 Table 39. Padding Summary Fields

Publisher Number In Stock Number Sold

1 4 5 12 13 20

COR

FERN

VALD

WETH

 103

 19

 42

 62

 161

 87

 97

 79

 Attention: You cannot use the OUTREC statement to prevent overflow, because it

is processed after summarization.

Inserting Sequence Numbers

Suppose you want to show the total price for all of the books associated with each

course department, but you need the list in its original course department order

rather than sorted by course department. In order to get the totals, you need to

SORT by the department field, and SUM the price field, using the following

statements:

 INREC FIELDS=(110,5,170,4)

 SORT FIELDS=(1,5,CH,A)

 SUM FIELDS=(6,4,BI)

Table 40 shows the result of these statements.

 Table 40. Total book prices by course

Department Total Price

1 5 6 9

Reformatting Records

58 z/OS V1R6.0 DFSORT: Getting Started

|
|

Table 40. Total book prices by course (continued)

Department Total Price

BIOL

BUSIN

COMP

ENGL

HIST

PSYCH

10195

 2350

 4275

10253

 4640

 3785

 4800

Because you had to SORT in order to SUM (remember that you cannot SUM with

COPY), the list is in sorted order by course department instead of the original

order of COMP, blank, BUSIN, ENGL, HIST, PSYCH, and BIOL you need. To get

back the original order, you can add a sequence number to each record before the

records are sorted, and use a second step to sort the records back into their

original order by that sequence number. You can remove the sequence numbers at

the end of the second step.

You can use the previous statements with a slightly modified INREC statement to

add the sequence number for the first step:

 INREC FIELDS=(110,5,170,4,SEQNUM,8,ZD)

 SORT FIELDS=(1,5,CH,A)

 SUM FIELDS=(6,4,BI)

The sequence numbers start at 00000001 for the first record and are incremented by

00000001 for each subsequent record. This allows you to sort the summed records

back into their original course department order by the sequence number.

Table 41 shows the result of this first step. The output records are stored in a

temporary data set.

 Table 41. Total Book Prices by Course with Sequence Numbers

Department Total Price Sequence Number

1 5 6 9 10 17

BIOL

BUSIN

COMP

ENGL

HIST

PSYCH

10195

 2350

 4275

10253

 4640

 3785

 4800

00000002

00000017

00000003

00000001

00000005

00000011

00000013

You can use the following statements for the second step to sort by the sequence

number, display the data in a meaningful way, and remove the sequence numbers.

The input for this second step is the temporary data set you created in the first

step.

 SORT FIELDS=(10,8,CH,A)

 OUTREC FIELDS=(1,5,CHANGE=(16,

 C’HIST’,C’History’,

 C’BUSIN’,C’Business’,

 C’COMP’,C’Computer Science’,

 C’ENGL’,C’English’,

 C’BIOL’,C’Biology’,

Reformatting Records

Chapter 5. Reformatting Records 59

C’PSYCH’,C’Psychology’),

 NOMATCH=(C’Unaffiliated’),

 C’ | ’,

 6,4,BI,EDIT=($III,IIT.TT))

The output records from this second step are:

Computer Science | $102.53

Unaffiliated | $101.95

Business | $42.75

English | $46.40

History | $37.85

Psychology | $48.00

Biology | $23.50

You can use SEQNUM,m,f to create sequence numbers of various lengths in

various formats. You can use START=j to start the sequence numbers at j instead of

1. You can use INCR=i to increment each sequence number by i instead of 1. You

can use RESTART=(p,m) to start the sequence number at the starting value again

each time the value in a particular field changes.

Suppose you have the following input records:

New York Albany

California Morgan Hill

New York Buffalo

Arizona Tuscon

California San Jose

New York Poughkeepsie

Arizona Phoenix

California Davis

New York Armonk

If you wanted to sort the records by the State field in positions 1-15 and by the

City field in positions 16-30, and add a third field with a sequence number starting

from 1000 and incrementing by 10, you could use START=1000 and INCR=10 as

shown in the following statements:

 SORT FIELDS=(1,30,CH,A)

 OUTREC OVERLAY=(32:SEQNUM,5,ZD,START=1000,INCR=10)

The output records would look like this:

Arizona Phoenix 01000

Arizona Tuscon 01010

California Davis 01020

California Morgan Hill 01030

California San Jose 01040

New York Albany 01050

New York Armonk 01060

New York Buffalo 01070

New York Poughkeepsie 01080

Note that each record has a different sequence number.

If you wanted to start the sequence number over at 1000 again each time the State

changed, you could add RESTART=(1,15) as shown in the following statements:

 SORT FIELDS=(1,30,CH,A)

 OUTREC OVERLAY=(32:SEQNUM,5,ZD,START=1000,INCR=10,

 RESTART=(1,15))

The output records would look like this:

Reformatting Records

60 z/OS V1R6.0 DFSORT: Getting Started

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|

Arizona Phoenix 01000

Arizona Tuscon 01010

California Davis 01000

California Morgan Hill 01010

California San Jose 01020

New York Albany 01000

New York Armonk 01010

New York Buffalo 01020

New York Poughkeepsie 01030

Note that the sequence number starts over at 1000 again each time the State

changes.

If you specify an IFTHEN clause with a sequence number, the sequence number is

only incremented for the subset of records selected by that IFTHEN clause. For

example, if you specified the following statements for the input records shown

above:

 OPTION COPY

 OUTREC IFTHEN=(WHEN=(1,15,CH,EQ,C’Arizona’),

 OVERLAY=(32:SEQNUM,2,ZD)),

 IFTHEN=(WHEN=(1,15,CH,EQ,C’California’),

 OVERLAY=(32:SEQNUM,4,ZD)),

 IFTHEN=(WHEN=(1,15,CH,EQ,C’New York’),

 OVERLAY=(32:SEQNUM,3,ZD))

The output records would look like this:

New York Albany 001

California Morgan Hill 0001

New York Buffalo 002

Arizona Tuscon 01

California San Jose 0002

New York Poughkeepsie 003

Arizona Phoenix 02

California Davis 0003

New York Armonk 004

For complete details about creating sequence numbers with INREC, OUTREC and

OUTFIL OUTREC, see z/OS DFSORT Application Programming Guide.

VB Data Set Considerations

Some of the same VB data set considerations you learned about previously for the

SORT, MERGE, INCLUDE, OMIT and SUM statements also apply to the INREC

and OUTREC statements, but some additional considerations apply as well

RDW

If you use the BUILD, FIELDS, or IFTHEN BUILD parameter, you must begin your

INREC or OUTREC statement fields by specifying 1,4 (starting position is 1 and

length is 4) to represent the RDW in your VB records. For example:

 INREC FIELDS=(1,4,8,25)

If you want your first field to include input data bytes immediately after the RDW

(that is, starting with position 5), you can use 1,n (starting position is 1 and length

is n, with n greater than 4) instead of 1,4. For example:

 OUTREC BUILD=(1,10,21,30)

If you want to display the record length (from positions 1-2 in the RDW), you can

use 1,4 to represent the RDW followed by 1,2 for the record length. For example:

Reformatting Records

Chapter 5. Reformatting Records 61

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|

INREC FIELDS=(1,4,C’Record length is ’,1,2,BI,M11)

If you use the OVERLAY or IFTHEN OVERLAY parameter of INREC or OUTREC,

you must not overlay the RDW in positions 1-4. So all of your items must start at

or after position 5. For example:

 INREC OVERLAY=(5:5,3,TRAN=UTOL,21:18,2,11:C’***’)

converts the input field at positions 5-7 to lowercase. If you forget to specify c: for

the first item, c will default to 1 which will result in an error message because you

would be overlaying the RDW. For example:

 INREC OVERLAY=(5,3,TRAN=UTOL) Results in an error message

is interpreted as overlaying output positions 1-3 with the lowercase conversion of

input positions 5-7. Since you cannot overlay positions 1-4, you will get an error

message .

Be careful not to use 1:, 2:, 3: or 4: for any OVERLAY item. For example, the

following will also result in an error message, since the second item would overlay

the RDW:

 OUTREC OVERLAY=(8:5,3,TRAN=UTOL, ok

 2:18,2) Results in an error message

Starting Positions and Columns

When you code your input fields for the BUILD, FIELDS, OVERLAY, IFTHEN

BUILD, or IFTHEN OVERLAY parameters, remember to add 4 to the starting

position to account for the 4-byte RDW. Likewise, when you code your output

columns. For example, the following OUTREC statement puts the field in the first

through sixth data byte of the VB input record into positions 21-26 of the VB

output record.

 OUTREC FIELDS=(1,4,21:5,6)

Variable Data

If you want to include the variable data at the end of each VB input record in the

VB output record with the BUILD, FIELDS, or IFTHEN BUILD parameter, specify

the starting position of the variable input data without the length. For example:

 OUTREC FIELDS=(1,4,C’Fixed data ’,5,10,C’ Variable data ’,15)

You can also use the following for the variable data at the end of each VB record:

v p,HEX - hexadecimal display

v p,TRAN=UTOL - uppercase to lowercase

v p,TRAN=LTOU - lowercase to uppercase

v p,TRAN=ALTSEQ - conversion using the ALTSEQ table

For example, the following OUTREC statement displays the entire contents of the

VB record in hexadecimal:

 OUTREC FIELDS=(1,4,1,4,HEX,5,HEX)

You must not specify a starting positions without a length with the OVERLAY or

IFTHEN parameters. DFSORT will issue an error message if you specify any of the

following with OVERLAY or IFTHEN OVERLAY:

v p

v p,HEX

v p,TRAN=UTOL

Reformatting Records

62 z/OS V1R6.0 DFSORT: Getting Started

|
|
|

|

|
|
|

|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

v p,TRAN=LTOU

v p,TRAN=ALTSEQ .

For example:

 INREC OVERLAY=(5:C’***’,

 21:21,HEX) Results in an error message

Summary

This chapter covered using the BUILD, FIELDS, OVERLAY, and IFTHEN

parameters of the OUTREC statement and INREC statement to reformat input

records in a variety of ways for output. It explained how you can delete

fields, reorder fields, overlay fields, insert separators and sequence numbers,

convert character and numeric data to various forms, perform arithmetic

operations, and change different records in different ways, with the OUTREC

and INREC statements, as well as with the OUTFIL statement.

Reformatting Records

Chapter 5. Reformatting Records 63

|
|

|

|
|
|

|
|
|
|
|
|
|
|

Reformatting Records

64 z/OS V1R6.0 DFSORT: Getting Started

Chapter 6. Creating Multiple Output Data Sets and Reports

You can create one or more output data sets and reports from a single pass over

sorted, merged, or copied input using OUTFIL control statements. You can use

different OUTFIL parameters on different OUTFIL statements, so the output data

sets you create in a single DFSORT application can be identical or very different.

You can perform a wide variety of tasks with each OUTFIL statement, including

the following:

v Select a sequential subset of records with the STARTREC and ENDREC

parameters.

v Select a sample of records with the SAMPLE parameter.

v Select a subset of records with the INCLUDE and OMIT parameters. These

parameters have all of the capabilities of the INCLUDE and OMIT statements.

v Select ″discarded″ records with the SAVE parameter. This parameter saves any

records that are not selected as a result of STARTREC, ENDREC, SAMPLE,

INCLUDE or OMIT parameters.

v Reformat records using the BUILD, OUTREC, OVERLAY, or IFTHEN

parameters. These parameters have all of the capabilities of the BUILD, FIELDS,

OVERLAY, or IFTHEN parameters on the OUTREC statement, and also allow

you to create multiple output records and blank output records from each input

record.

v Repeat records with the REPEAT parameter.

v Split records between output data sets using the SPLIT and SPLITBY parameters.

v Create detailed reports with up to three levels (report, page, and section) using

the BUILD, OUTREC, OVERLAY, IFTHEN, HEADERn, TRAILERn, SECTIONS,

LINES, NODETAIL, and REMOVECC parameters. Your reports can contain

elements such as headers, data, blank lines, trailers, statistics, sections,

timestamps, page numbers, and counts.

v Convert FB records to VB records with the FTOV parameter, or convert VB

records to FB records with the VTOF parameter.

You can use OUTFIL statements with any of the other DFSORT statements (for

example, INCLUDE, OMIT, INREC, SORT, MERGE, OPTION, SUM and OUTREC).

OUTFIL processing is performed last, after all of the processing for the other

statements, as shown in Appendix C, “Processing Order of Control Statements,” on

page 159. Thus, the output records created by the processing for the other

statements are the input records for OUTFIL processing. For example, OUTFIL

processes the sorted records if the SORT statement is specified, or the copied

records if the OPTION COPY statement is specified.

Combining the various DFSORT statements in different ways gives you a lot of

flexibility. You can actually use an INREC statement, an OUTREC statement, and

an OUTFIL statement to reformat your input records three times. You can also use

an INCLUDE or OMIT statement to keep a subset of the input records, and use

OUTFIL statements with different INCLUDE or OMIT and OUTREC, OVERLAY, or

IFTHEN parameters to write different subsets of the remaining records into

different OUTFIL data sets reformatted in different ways

© Copyright IBM Corp. 1983, 2005 65

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Creating Multiple Identical Copies

Suppose you want to create backups for your data set; on disk for the local site

and on tapes for the remote sites. You can do this by using OUTFIL and the

FNAMES parameter with an OPTION COPY statement. The FNAMES parameter

identifies the DD statements in your JCL for your output data sets by their DD

names. Sample JCL and DFSORT control statements are shown below.

Note: The JCL above includes two tape data sets. Substitute your own tape data

set information if you want to run this example.

Here are the steps for writing the OUTFIL statement:

 Table 42. Creating the OUTFIL Statement for the Multiple Output Data Set Job

Step Action

1 Leave at least one blank and type OUTFIL

2 Leave at least one blank and type FNAMES=

3 Type, in parentheses and separated by commas, each output data set DD

name. In this example, they are BACKUP, NEWYORK, and SANJOSE.

This OUTFIL statement creates three backup copies of your data set: one on-site

disk data set, and two tapes that can be sent to remote sites.

You can also complete this task using the FILES parameter of OUTFIL. With FILES,

you assign SORTOFd or SORTOFdd DD statements instead of naming unique DD

statements. Sample JCL and DFSORT control statements using FILES are shown

below.

 Both FNAMES and FILES create the same output, but FNAMES lets you use

descriptive names of up to 8 characters for your OUTFIL DD statements instead of

one or two cryptic suffix characters. FNAMES is recommended and is used in all

of the multiple output examples in the rest of this chapter.

//COPY JOB A492,PROGRAMMER

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//BACKUP DD DSN=A123456.BOOKS.BACKUP,DISP=OLD

//NEWYORK DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT1,LABEL=(,SL)

//SANJOSE DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT2,LABEL=(,SL)

//SYSIN DD *

 OPTION COPY

 OUTFIL FNAMES=(BACKUP,NEWYORK,SANJOSE)

/*

//COPY JOB A492,PROGRAMMER

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//SORTOF1 DD DSN=A123456.BOOKS.BACKUP,DISP=OLD

//SORTOF2 DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT1

//SORTOF3 DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT2

//SYSIN DD *

 OPTION COPY

 OUTFIL FILES=(1,2,3)

/*

Using OUTFIL

66 z/OS V1R6.0 DFSORT: Getting Started

Note: If you do not specify a FNAMES or FILES parameter for an OUTFIL

statement, the OUTFIL ddname is SORTOUT by default.

Selecting and Sampling by Relative Record Number

When you copy, sort or merge input records, the resulting output records have

implicit relative record numbers starting from 1 for the first record and ending at n

(the total number of copied, sorted or merged records) for the last record.

Table 43 shows the City field of the output records created by copying the

SORT.BRANCH data set, along with the relative record number (abbreviated RRN)

for each record (the relative record numbers do not actually appear in the output

data set).

 Table 43. Relative Records Numbers for Copy

City RRN

1 15

Los Angeles

San Francisco

Fort Collins

Sacramento

Sunnyvale

Denver

Boulder

Morgan Hill

Vail

San Jose

San Diego

Aspen

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

Table 44 shows the City field of the output records created by sorting the

SORT.BRANCH data set on the City field, along with the RRN for each record.

Note that the RRNs for the copied output data set and the sorted output data set

are different because the order of the output records is different (for example, the

record containing ’Denver’ has a relative record number of 6 for the copied data

set and 3 for the sorted data set).

 Table 44. Relative Records Numbers for Sort

City RRN

1 15

Aspen

Boulder

Denver

Fort Collins

Los Angeles

Morgan Hill

Sacramento

San Diego

San Francisco

San Jose

Sunnyvale

Vail

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

You can use these relative record numbers to select groups of sequential records to

be written to different OUTFIL data sets. STARTREC=n tells DFSORT to start

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 67

OUTFIL processing at relative record n. ENDREC=m tells DFSORT to end OUTFIL

processing at relative record m. The following statements show how this works:

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=OUT1,ENDREC=4

 OUTFIL FNAMES=OUT2,STARTREC=2,ENDREC=6

 OUTFIL FNAMES=OUT3,STARTREC=7,ENDREC=9

 OUTFIL FNAMES=OUT4,STARTREC=10

Because STARTREC is not specified for OUT1, DFSORT starts at RRN 1 and ends

at RRN 4. For OUT2, DFSORT starts at RRN 2 and ends at RRN 6. (Note that

RRNs 2, 3 and 4 are written to both OUT1 and OUT2.) For OUT3, DFSORT starts

at RRN 7 and ends at RRN 9. Because ENDREC is not specified for OUT4,

DFSORT starts at RRN 10 and ends at the last record (RRN 12). The RRNs in each

OUTFIL data set are as follows:

OUT1: 1, 2, 3, 4

OUT2: 2, 3, 4, 5, 6

OUT3: 7, 8, 9

OUT4: 10, 11, 12

You can also use relative record numbers to take a ″sample″ of your records.

SAMPLE=n tells DFSORT to process every nth record, starting at the record

indicated by STARTREC=x and ending at or before the record indicated by

ENDREC=y. SAMPLE=(n,m) tells DFSORT to process m records every nth record,

starting at the record indicated by STARTEC=x and ending at or before the record

indicated by ENDREC=y. The following statements show how this works:

 OPTION COPY

 OUTFIL FNAMES=OUT1,SAMPLE=3

 OUTFIL FNAMES=OUT2,STARTREC=4,SAMPLE=2,ENDREC=10

 OUTFIL FNAMES=OUT3,STARTREC=2,SAMPLE=(5,3)

For OUT1, DFSORT starts at RRN 1 and writes every third record up to RRN 10

(RRN 13 would be the next record, but there are only 12 records). For OUT2,

DFSORT starts at RRN 4 and writes every other record up to RRN 10. For OUT3,

DFSORT writes 3 records starting at RRN 2, and writes three records starting at

every fifth record after record 2, up to RRN 12. The records in each OUTFIL data

set are as follows:

 OUT1: 1, 4, 7, 10

 OUT2: 4, 6, 8, 10

 OUT3: 2, 3, 4, 7, 8, 9, 12

Including, Omitting, and Saving Discards

In Chapter 3, “Including or Omitting Records,” on page 25, you learned how to

use the INCLUDE and OMIT statements to select only a subset of the input

records for sorting, copying or merging. You can also select subsets of records for

your individual OUTFIL output data sets in the same way using the INCLUDE

and OMIT parameters. Different INCLUDE or OMIT parameters can be used for

different OUTFIL statements.

All of the logical expressions that are valid for the COND parameter of the

INCLUDE and OMIT statements are also valid for the INCLUDE and OMIT

parameters of OUTFIL. However, you cannot specify the FORMAT parameter with

the OUTFIL statement as you can with the INCLUDE and OMIT statements. VB

data set considerations for the INCLUDE and OMIT statements also apply to the

INCLUDE and OMIT parameters.

Using OUTFIL

68 z/OS V1R6.0 DFSORT: Getting Started

Suppose you wanted to sort the bookstore data set by title, and create separate

output data sets for the English, History and Psychology departments. You could

use the following OUTFIL statements to create these three output data sets:

 SORT FIELDS=(1,75,CH,A)

 OUTFIL FNAMES=ENGLOUT,INCLUDE=(110,5,CH,EQ,C’ENGL’)

 OUTFIL FNAMES=HISTOUT,INCLUDE=(110,5,CH,EQ,C’HIST’)

 OUTFIL FNAMES=PSYCHOUT,INCLUDE=(110,5,CH,EQ,C’PSYCH’)

The SORT statement sorts the input records by the title field.

The first OUTFIL statement writes the records for the English department to the

ENGLOUT data set. The result is shown in Table 45.

 Table 45. Output records in ENGLOUT data set

Book Title Course Department

1 75 110 114

EDITING SOFTWARE MANUALS

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

MODERN ANTHOLOGY OF WOMEN POETS

SHORT STORIES AND TALL TALES

THE COMPLETE PROOFREADER

ENGL

ENGL

ENGL

ENGL

ENGL

The second OUTFIL statement writes the records for the History department to the

HISTOUT data set. The result is shown in Table 46.

 Table 46. Output records in HISTOUT data set

Book Title Course Department

1 75 110 114

CRISES OF THE MIDDLE AGES

EIGHTEENTH CENTURY EUROPE

THE INDUSTRIAL REVOLUTION

HIST

HIST

HIST

The third OUTFIL statement writes the records for the Psychology department to

the PYSCHOUT data set. The result is shown in Table 47.

 Table 47. Output records in PSYCHOUT data set

Book Title Course Department

1 75 110 114

ADVANCED TOPICS IN PSYCHOANALYSIS

INTRODUCTION TO PSYCHOLOGY

PSYCH

PSYCH

The previous example creates output data sets for the English, History and

Psychology department’s books. If you wanted to create an additional output data

set (RESTOUT) containing the rest of the books, you could use the following

statements:

 SORT FIELDS=(1,75,CH,A)

 OUTFIL FNAMES=ENGLOUT,INCLUDE=(110,5,CH,EQ,C’ENGL’)

 OUTFIL FNAMES=HISTOUT,INCLUDE=(110,5,CH,EQ,C’HIST’)

 OUTFIL FNAMES=PSYCHOUT,INCLUDE=(110,5,CH,EQ,C’PSYCH’)

 OUTFIL FNAMES=RESTOUT,

 INCLUDE=(110,5,CH,NE,C’ENGL’,AND,

 110,5,CH,NE,C’HIST’,AND,

 110,5,CH,NE,C’PSYCH’)

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 69

This is not too bad for only three departments, but the INCLUDE statement for

RESTOUT would get more involved as the number of departments increased.

DFSORT’s SAVE parameter gives you an easy way to keep the records discarded

by a group of OUTFIL statements. The SAVE parameter selects records for its

OUTFIL data set that are not selected for any other OUTFIL data set as a result of

the INCLUDE, OMIT, STARTREC, ENDREC or SAMPLE parameters. So instead of

the preceding statements, you could use the following statements to accomplish

the same thing

 SORT FIELDS=(1,75,CH,A)

 OUTFIL FNAMES=ENGLOUT,INCLUDE=(110,5,CH,EQ,C’ENGL’)

 OUTFIL FNAMES=HISTOUT,INCLUDE=(110,5,CH,EQ,C’HIST’)

 OUTFIL FNAMES=PSYCHOUT,INCLUDE=(110,5,CH,EQ,C’PSYCH’)

 OUTFIL FNAMES=RESTOUT,SAVE

The fourth OUTFIL statement writes the records not used for English, History or

Psychology to the RESTOUT data set. The result is shown in Table 48.

 Table 48. Output records in RESTOUT data set

Book Title Course Department

1 75 110 114

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION

INTRODUCTION TO BIOLOGY

LIVING WELL ON A SMALL BUDGET

NUMBERING SYSTEMS

PICK’S POCKET DICTIONARY

STRATEGIC MARKETING

SUPPLYING THE DEMAND

SYSTEM PROGRAMMING

VIDEO GAME DESIGN

COMP

COMP

BIOL

COMP

BUSIN

BUSIN

COMP

COMP

So far

So far, you have learned how to create multiple identical copies of an input

data set; select and sample input records by relative record number for

output; and include, omit or save selected input records for output. Next, you

will learn about reformatting records with OUTFIL.

Reformatting

In Chapter 5, “Reformatting Records,” on page 37, you learned how to use the

INREC and OUTREC statements to reformat your input records in various ways

while sorting, copying or merging. You can also reformat your individual OUTFIL

output data sets in the same ways using the BUILD, OUTREC, OVERLAY, or

IFTHEN parameters. VB data set considerations for the INREC and OUTREC

statements also apply to the BUILD, OUTREC, OVERLAY and IFTHEN parameters

of OUTFIL statements.

Different BUILD, OUTREC, OVERLAY or IFTHEN parameters can be used for

different OUTFIL statements. You can use these parameters to perform the same

wide variety of tasks as for the INREC and OUTREC statements, as described in

Chapter 5, “Reformatting Records,” on page 37.

Using OUTFIL

70 z/OS V1R6.0 DFSORT: Getting Started

|
|
|
|
|
|
|

|
|
|
|

In addition, you can use the BUILD, OUTREC, or IFTHEN BUILD parameters to

create one, two or more output records from each input record, and insert blank

lines before, between or after your records.

Suppose you wanted to create separate data sets for publishers FERN and WETH.

For WETH, you want the number of copies sold and the instructor’s name on one

line. For FERN, you want the course number on one line and the price on another

line. You also want two blank lines to separate the information for each book. You

can use the following statements to create these two output data sets:

 OPTION COPY

 OUTFIL FNAMES=WETHBKS,

 INCLUDE=(106,4,CH,EQ,C’WETH’),

 OUTREC=(C’Sold ’,166,4,BI,EDIT=(IIT),

 C’ copies of Wethman, Inc. book for instructor ’,

 160,2,X,145,15)

 OUTFIL FNAMES=FERNBKS,

 INCLUDE=(106,4,CH,EQ,C’FERN’),

 OUTREC=(3:C’Fernall Brothers book #’,SEQNUM,2,ZD,

 C’ for course ’,115,5,/,

 5:C’costs ’,170,4,BI,EDIT=($IIT.TT),2/)

The first OUTFIL statement uses an INCLUDE parameter to select the books for

publisher WETH, and an OUTREC parameter to create the output records for each

book with the needed information. The second OUTFIL statement uses an

INCLUDE parameter to select the books for publisher FERN, and a different

OUTREC parameter to create the output records for each book, with the needed

information. Fields, constants, sequence numbers, and numeric editing are used in

the OUTREC parameters as previously explained for the INREC and OUTREC

statements.

/, n/ and /.../ can be used in the BUILD, OUTREC, or IFTHEN BUILD

parameters of the OUTFIL statement, but not in the OVERLAY or IFTHEN

OVERLAY parameters of the OUTFIL statement, or in any parameters of the

INREC and OUTREC statements. If n/ is used at the start or end of the BUILD,

OUTREC or IFTHEN BUILD parameters, n blank lines are inserted. If n/ is used in

the middle of the BUILD, OUTREC or IFTHEN parameters, n-1 blanks lines are

inserted.

Thus, in the OUTREC parameter for FERNBKS, the / (0 blank lines) in the middle

after 115,5 is used to create two output records from each FERN input record, and

the 2/ (two blank lines) at the end is used to insert two blank lines after the

information for each FERN book.

The results produced for WETHBKS are:

Sold 26 copies of Wethman, Inc. book for instructor CL CHATTERJEE

Sold 9 copies of Wethman, Inc. book for instructor ST GOODGOLD

Sold 23 copies of Wethman, Inc. book for instructor DC SMITH

Sold 21 copies of Wethman, Inc. Book for instructor HR BISCARDI

The results produced for FERNBKS are:

 Fernall Brothers book #01 for course 00032

 costs $26.00

 Fernall Brothers book #02 for course 00032

 costs $3.60

 Fernall Brothers book #03 for course 10347

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 71

|
|
|

|
|
|
|
|
|
|

costs $6.25

 Fernall Brothers book #04 for course 30975

 costs $26.00

DFSORT automatically sets the LRECL of each OUTFIL data set to the reformatted

output record length. If n/ is used to create multiple output records from each

input record, the LRECL is set to the longest output record.

For WETHBKS, the output record is 71 bytes long, so DFSORT sets the LRECL to

71. For FERNBKS, the first output record is 44 bytes long and the second output

record is 17 bytes long, so DFSORT sets the LRECL to 44. If your reformatted

length is shorter than you want for the LRECL, you can use c:X to increase the

LRECL to c. For example, if you want the LRECL for FERNBKS to be 80 instead of

44, you can change the last line of the OUTREC parameter for FERNBKS to:

 5:C’costs ’,170,4,BI,EDIT=($IIT.TT),80:X,2/)

Repeating

OUTFIL’s REPEAT=n parameter lets you repeat each output record n times. If you

specify the BUILD, OUTREC, OVERLAY, or IFTHEN parameters with a sequence

number, the sequence numbers are incremented for each repeated record, but

otherwise the repeated records are identical. For example, you could use the

following statements to create two output data sets with repeated records; one

with just the course name and the other with the course name and a sequence

number.

 OPTION COPY

 INCLUDE COND=(110,5,CH,EQ,C’PSYCH’)

 OUTFIL FNAMES=OUT1,

 REPEAT=3,

 BUILD=(120,25)

 OUTFIL FNAMES=OUT2,

 REPEAT=3,

 BUILD=(120,25,X,SEQNUM,4,ZD)

The results produced for OUT1 are:

PSYCHOLOGY I

PSYCHOLOGY I

PSYCHOLOGY I

PSYCHOANALYSIS

PSYCHOANALYSIS

PSYCHOANALYSIS

The results produced for OUT2 are:

PSYCHOLOGY I 0001

PSYCHOLOGY I 0002

PSYCHOLOGY I 0003

PSYCHOANALYSIS 0004

PSYCHOANALYSIS 0005

PSYCHOANALYSIS 0006

If you specify an IFTHEN clause with a sequence number, the sequence number is

only incremented for the subset of records selected by the IFTHEN clause. For

example, if you specified the following statements:

 OPTION COPY

 INCLUDE COND=(110,5,CH,EQ,C’PSYCH’)

 OUTFIL REPEAT=3,

Using OUTFIL

72 z/OS V1R6.0 DFSORT: Getting Started

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

IFTHEN=(WHEN=(120,7,CH,EQ,C’PSYCHOL’),

 BUILD=(120,25,X,SEQNUM,4,ZD)),

 IFTHEN=(WHEN=NONE,BUILD=(120,25,X,SEQNUM,2,ZD))

The results produced for SORTOUT are:

PSYCHOLOGY I 0001

PSYCHOLOGY I 0002

PSYCHOLOGY I 0003

PSYCHOANALYSIS 01

PSYCHOANALYSIS 02

PSYCHOANALYSIS 03

Splitting

Suppose you don’t know how many records are in a data set, but you want to

divide the records as equally as possible between two output data sets. You can

use OUTFIL’s SPLIT parameter to put the first record into OUTPUT1, the second

record into OUTPUT2, the third record into OUTPUT1, the fourth record into

OUTPUT2, and so on until you run out of records. SPLIT splits the records one at

a time among the data sets specified by FNAMES. The following statements split

the records between two OUTFIL data sets:

 OPTION COPY

 OUTFIL FNAMES=(OUTPUT1,OUTPUT2),SPLIT

With 17 input records, the results produced for OUTPUT1 are:

Record 01

Record 03

Record 05

Record 07

Record 09

Record 11

Record 13

Record 15

Record 17

The results produced for OUTPUT2 are:

Record 02

Record 04

Record 06

Record 08

Record 10

Record 12

Record 14

Record 16

Similarly, OUTFIL’s SPLITBY=n parameter splits the records n at a time among the

data sets specified by FNAMES. The following statements split the records four at

a time between three OUTFIL data sets:

 OPTION COPY

 OUTFIL FNAMES=(OUT1,OUT2,OUT3),SPLITBY=4

With 17 input records, the results produced for OUT1 are:

Record 01

Record 02

Record 03

Record 04

Record 13

Record 14

Record 15

Record 16

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 73

|
|
|

|

|
|
|
|
|
|

The results produced for OUT2 are:

Record 05

Record 06

Record 07

Record 08

Record 17

The results produced for OUT3 are:

Record 09

Record 10

Record 11

Record 12

So far

So far, you have learned how to create multiple identical copies of an input

data set; select and sample input records by relative record number for

output; include, omit or save selected input records for output; and reformat,

repeat and split input records for output. Next, you will learn about creating

various types of reports.

Creating Reports: OUTFIL vs ICETOOL

Both the OUTFIL statement and ICETOOL’s DISPLAY operator can be used to

create reports. While each performs some reporting functions that the other does

not, in general the difference between them is one of control and effort. With

OUTFIL, you have more control over the appearance of reports, but considerable

effort may be required on your part to specify in detail where every piece of

information is to appear in the report and how it is to look. With ICETOOL, much

of the work of determining where information is to appear in the report and how

it is to look is done for you, but you have somewhat less control over the

appearance of the reports.

ICETOOL should be your primary choice for creating reports, because it is easier to

use than OUTFIL. But remember that OUTFIL is available if you need any of its

specific reporting features, or more control of the appearance of reports than

ICETOOL gives you. Next, you will learn about using OUTFIL to create reports.

See Chapter 10, “Using the ICETOOL Utility,” on page 105 for tutorials on using

ICETOOL’s DISPLAY operator to create reports.

Creating Reports with OUTFIL

You can use OUTFIL to create one or more detailed reports using the OUTFIL

parameters BUILD, OUTREC, OVERLAY, IFTHEN, HEADERn, TRAILERn,

SECTIONS, LINES, NODETAIL and REMOVECC. You can include any or all of

these in your reports:

v A cover sheet (report header)

v A header at the top of each page (page header)

v A trailer at the bottom of each page (page trailer)

v A header at the start of each section (section header)

v A trailer at the end of each section (section trailer)

v A summary sheet (report trailer)

Using OUTFIL

74 z/OS V1R6.0 DFSORT: Getting Started

|

Your reports can contain a variety of elements you specify such as current date,

current time, edited or converted page numbers, character strings, and blank lines.

Your reports can also contain a variety of elements you derive from the input

records such as character fields, unedited, edited, or converted numeric input

fields, edited or converted record counts, and edited or converted totals,

maximums, minimums, and averages for numeric input fields.

Data

The data for your report consists of the OUTFIL output records. You can use the

INCLUDE, OMIT, INREC, SUM and OUTREC statements, and the OUTFIL

parameters STARTREC, SAMPLE, ENDREC, INCLUDE, OMIT, SAVE, BUILD,

OUTREC, OVERLAY, and IFTHEN to determine which data records appear in your

report and what they look like.

The following statements show the simplest possible type of OUTFIL report you

can produce:

 OPTION COPY

 OUTFIL FNAMES=RPT1,LINES=10

LINES=10 indicates you want a report with 10 lines per page. These statements

might produce the following two page result for RPT1:

1Data line 01

 Data line 02

 Data line 03

 Data line 04

 Data line 05

 Data line 06

 Data line 07

 Data line 08

 Data line 09

 Data line 10

1Data line 11

 Data line 12

 Data line 13

 Data line 14

 Data line 15

Note: In some of the examples below, small LINES values are used to illustrate a

point. However, the default for LINES is 60 and you would generally want

to use either that value or one close to it.

For reports, OUTFIL places an ANSI carriage control character in the first byte of

each output line to tell a printer what action to take for that line. The ’1’ for Data

line 01 and Data line 11 tells the printer that these lines each start on a new page.

This is the way DFSORT translates LINES=10 into 10 lines per page for the printer.

Other ANSI carriage control characters that DFSORT uses for OUTFIL reports are:

blank for single space (no blank lines before the output line), ’0’ for double space

(one blank line before the output line), and ’-’ for triple space (two blank lines

before the output line).

When you view a report on your display, the ANSI carriage control is not

meaningful, and is usually not displayed even though it’s actually in the record. If

you don’t want ANSI carriage control characters in your output records, you can

use OUTFIL’s REMOVECC parameter to remove them (more on this later).

In general, you will want to use the BUILD, OUTREC, OVERLAY, or IFTHEN

parameters to reformat the data records for your report. Suppose you want to print

a report from the SORT.BRANCH data set showing each branch’s revenue and

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 75

|
|
|
|
|
|

|
|

|
|

profit or loss, with 9 lines per page. You can use the following statements to show

the branches in sorted order, along with their revenue and profit fields in readable

form:

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=RPT2,LINES=9,

 OUTREC=(1,15,X,

 22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,

 28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-))

The two page result produced for RPT2 is:

1Aspen 25,800 5,200

 Boulder 33,866 7,351

 Denver 31,876 6,288

 Fort Collins 12,300 -2,863

 Los Angeles 22,530 -4,278

 Morgan Hill 18,200 3,271

 Sacramento 42,726 8,276

 San Diego 32,940 8,275

 San Francisco 42,820 6,832

1San Jose 27,225 8,264

 Sunnyvale 16,152 -978

 Vail 23,202 5,027

Headers

The preceding output for RPT2 does not look much like a report, but you can fix

that by adding page headings with OUTFIL’s HEADER2 parameter. This

parameter (as well as the HEADER1 and HEADER3 parameters discussed later),

lets you specify multi-line headings with character strings, hexadecimal strings,

input fields, the current date, the current time, page numbers and blank lines.

The following statements create a report with page headings:

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=RPT3,LINES=15,

 HEADER2=(/,3:’Branch Revenue Report’,

 30:’Page’,PAGE,45:DATE=(MD4-),2/,

 3:’Branch ’,25:’ Revenue’,50:’ Profit’,/,

 3:’---------------’,25:’--------’,50:’--------’),

 OUTREC=(3:1,15,X,

 25:22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,

 50:28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-))

All of the elements in the HEADER2 parameter should be familiar from the

previous discussions of the OUTREC statement, except for the PAGE and

DATE=(MD4-) parameters.

PAGE tells DFSORT to print a 6-character page number with leading blanks

starting at 1 for the first page and incrementing by 1 for each subsequent page. For

page 3, PAGE would give you ’ 3’. If you wanted to print a 3-character page

number with leading zeros, you could use PAGE=(EDIT=(TTT)) or

PAGE=(M11,LENGTH=3) or PAGE=(TO=ZD,LENGTH=3). For page 10, these

would all give you ’010’. See “Converting Numeric Fields to Different Formats” on

page 44 and “Editing Numeric Fields” on page 45, for more information on

conversion and editing.

DATE=(MD4-) tells DFSORT to print the date in the form mm-dd-yyyy. See z/OS

DFSORT Application Programming Guide for more information on the different forms

of the date you can print in headers and trailers.

Using OUTFIL

76 z/OS V1R6.0 DFSORT: Getting Started

|

|
|
|
|
|
|
|
|

You do not need to start character strings in headers (HEADERn parameters) or

trailers (TRAILERn parameters) with C as you do for the BUILD, OUTREC,

OVERLAY, or IFTHEN parameters, although you can if you want to.

If n/ is used at the start or end of a header or trailer, n blank lines are printed. If

n/ is used in the middle of a header or trailer, n-1 blanks lines are printed.

The two-page result produced for RPT3 is shown below:

1

 Branch Revenue Report Page 1 07-16-2004

0 Branch Revenue Profit

 --------------- -------- --------

 Aspen 25,800 5,200

 Boulder 33,866 7,351

 Denver 31,876 6,288

 Fort Collins 12,300 -2,863

 Los Angeles 22,530 -4,278

 Morgan Hill 18,200 3,271

 Sacramento 42,726 8,276

 San Diego 32,940 8,275

 San Francisco 42,820 6,832

 San Jose 27,225 8,264

1

 Branch Revenue Report Page 2 07-16-2004

0 Branch Revenue Profit

 --------------- -------- --------

 Sunnyvale 16,152 -978

 Vail 23,202 5,027

If you print this report, the ANSI carriage control characters tell the printer to eject

a page when it sees ’1’ in the first byte, and to insert a blank line before the lines

with ’0’ in the first byte. So you get a blank line between the ’Branch Revenue

Report″ line and the ″Branch″ line in your headers, corresponding to the 2/ in

your OUTREC parameter. However, if you view this report on a display, the ANSI

carriage control characters are ignored, so the ’0’ line does not have a blank line

before it on the display. To force the blank line to appear whether you print the

report or view it on a display, you can change the second line of HEADER2 to:

 30:’Page’,PAGE,45:DATE=(MD4-),/,X,/,

This forces DFSORT to write an additional blank output line instead of using the

’0’ ANSI carriage control character to insert a blank line for the printer. The blank

line appears on the printer or display.

OUTFIL’s HEADER1 parameter is very similar to the HEADER2 parameter, except

that it produces a report heading on a separate page before the first page of data.

You can add the following HEADER1 parameter to your OUTFIL statement:

 HEADER1=(20:’Cover sheet for Branch Revenue Report’,3/,

 20:’Printed on ’,DATE=(MD4/),’ at ’,TIME),

This separate page is printed at the beginning of the report for RPT3, before the

other two pages shown previously:

1 Cover sheet for Branch Revenue Report

- Printed on 07/16/2004 at 16:42:20

Here are sample JCL statements and control statements for the report using

HEADER1 and HEADER2:

//HDRPT JOB A492,PROGRAMMER

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 77

|
|
|

//SORTIN DD DSN=A123456.SORT.BRANCH,DISP=SHR

//RPT3 DD SYSOUT=A

//SYSIN DD *

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=RPT3,LINES=15,

 HEADER1=(20:’Cover sheet for Branch Revenue Report’,3/,

 20:’Printed on ’,DATE=(MD4/),’ at ’,TIME),

 HEADER2=(/,3:’Branch Revenue Report’,

 30:’Page’,PAGE,45:DATE=(MD4-),2/,

 3:’Branch ’,25:’ Revenue’,50:’ Profit’,/,

 3:’---------------’,25:’--------’,50:’--------’),

 OUTREC=(3:1,15,X,

 25:22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,

 50:28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-))

/*

Of course, you could use a temporary or permanent data set for RPT3 instead of

SYSOUT=A. For example:

//RPT3 DD DSN=&&&MYRPT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA

Trailers and Statistics

You can add trailers to your report with OUTFIL’s TRAILER1 (report trailer) and

TRAILER2 (page trailer) parameters. You can use any combination of headers and

trailers you need.

Like the HEADERn parameters, the TRAILER1 and TRAILER2 parameters (as well

as the TRAILER3 parameter discussed later), let you specify multi-line headings

with character strings, hexadecimal strings, input fields, the current date, the

current time, page numbers and blank lines. In addition, you can include edited or

converted record counts, and edited or converted totals, maximums, minimums,

and averages for numeric fields, in your trailers.

The following statements create a report with a separate report trailer page

containing the overall record count and various overall statistics for the revenue

brought in by the branches.

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=RPT4,

 HEADER2=(1:’BRANCH’,18:’REVENUE’,28:’PROFIT’),

 OUTREC=(1,15,X,

 22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,

 28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),

 50:X),

 TRAILER1=(2/,

 3:’Overall results for branches on ’,DATE=(MD4/),’:’,2/,

 3:COUNT=(EDIT=(IIT)),’ branches are included’,2/,

 5:’Total revenue = ’,

 TOT=(22,6,PD,M12,LENGTH=10),/,

 5:’Average revenue = ’,

 AVG=(22,6,PD,M12,LENGTH=10),/,

 5:’Lowest revenue = ’,

 MIN=(22,6,PD,M12,LENGTH=10),/,

 5:’Highest revenue = ’,

 MAX=(22,6,PD,M12,LENGTH=10))

For OUTFIL reports, DFSORT terminates if any header or trailer record is longer

than the data records. In this case, the TRAILER1 line with DATE=(MD4/) is 46

bytes long, so the data records must be at least 46 bytes long. To increase the data

length set by the OUTREC parameter from 42 bytes to 50 bytes, you can put 50:X

at the end of the OUTREC parameter as shown.

Using OUTFIL

78 z/OS V1R6.0 DFSORT: Getting Started

|
|
|

COUNT=(EDIT=(IIT)) shows the count of data records as three digits with leading

zeros suppressed. TOT=(22,6,PD,M12,LENGTH=10) shows the total revenue as ten

bytes of the M12 pattern (that is, SI,III,IIT). Similarly, AVG, MIN and MAX show

the average, minimum and maximum, respectively, as ten bytes of the M12 pattern.

See “Converting Numeric Fields to Different Formats” on page 44 and “Editing

Numeric Fields” on page 45, for more information on conversion and editing.

Because LINES=n is not specified, the default of 60 lines per page is used.

The two page result produced for RPT4 is:

1BRANCH REVENUE PROFIT

 Aspen 25,800 5,200

 Boulder 33,866 7,351

 Denver 31,876 6,288

 Fort Collins 12,300 -2,863

 Los Angeles 22,530 -4,278

 Morgan Hill 18,200 3,271

 Sacramento 42,726 8,276

 San Diego 32,940 8,275

 San Francisco 42,820 6,832

 San Jose 27,225 8,264

 Sunnyvale 16,152 -978

 Vail 23,202 5,027

1

0 Overall results for branches on 07/16/2004:

0 12 branches are included

0 Total revenue = 329,637

 Average revenue = 27,469

 Lowest revenue = 12,300

 Highest revenue = 42,820

The second page is the report trailer page produced for TRAILER1, which always

starts on a new page.

No Data or Carriage Control Characters

If you want your report to contain the overall statistics page, but not the actual

data lines, you can add OUTFIL’s NODETAIL parameter to your OUTFIL

statement. NODETAIL tells DFSORT to process the data records in the usual way,

but not to write them to the report data set.

If you do not want the ANSI carriage control characters in your report, you can

add OUTFIL’s REMOVECC parameter to your OUTFIL statement. REMOVECC

tells DFSORT to remove the carriage control character from the first byte of each

record. As a result, the data starts in column 1 of the report rather than in column

2.

Suppose you want to produce two output data sets. The first data set should have

a single output record with the total count of records in your input data set. The

second data set should have a single output record with today’s date in the form

ddmmyyyy. The following statements would produce these two output data sets:

 OPTION COPY

 OUTFIL FNAMES=BRANCHCT,NODETAIL,REMOVECC,

 TRAILER1=(COUNT=(TO=ZD,LENGTH=10))

 OUTFIL FNAMES=CURDT,NODETAIL,REMOVECC,

 HEADER1=(DATENS=(DM4))

If the input data set has 12 records, the single record produced for BRANCHCT

with the count in columns 1-10 is:

0000000012

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 79

|
|

|
|
|
|
|

If the job is run on July 15th, 2004, the single record produced for CURDT with the

ddmmyyyy date in columns 1-8 is:

15072004

VB Data Set Considerations for Headers and Trailers

When you specify an output column in a HEADERn or TRAILERn parameter, you

must not add 4 for the RDW to the column, as you must for the BUILD, OUTREC,

or IFTHEN OUTREC parameters. Consider this OUTFIL statement:

 OUTFIL REMOVECC,

 HEADER2=(1:C’PAGE HEADER’),

 OUTREC=(1,4,5:C’OUTREC FOR DATA’)

Both the ’PAGE HEADER’ string and the ’OUTREC FOR DATA’ string start in

position 5 of their respective output records. For HEADER2, you use 1: because 4

must not be added to the output column for the RDW, even though the RDW

appears in the header record. For OUTREC, you use 5: because 4 must be added to

the output column for the RDW. Just be aware of this difference and specify your

output columns accordingly.

When you specify an input field in a HEADERn or TRAILERn parameter, you

must add 4 for the RDW to the starting position as you do for a BUILD, OUTREC,

OVERLAY, or IFTHEN parameter. However, you cannot specify the variable part of

the input record (that is, position without length) in a HEADERn or TRAILERn

parameter, as you can for a BUILD, OUTREC, OVERLAY, or IFTHEN parameter.

Sections

Suppose you want to print one page with information about the Computer

department’s books, one page with information about the English department’s

books, and one page about the History department’s books. For each department’s

books, you want to show their course numbers, number in stock, number sold year

to date, and price, as well as totals by department for each of the three numeric

(BI) fields. The following statements create a report with all of this information:

 INCLUDE COND=(110,4,SS,EQ,C’COMP,ENGL,HIST’)

 INREC FIELDS=(1:110,4, Course Department

 CHANGE=(16,

 C’COMP’,C’Computer Science’,

 C’ENGL’,C’English’,

 C’HIST’,C’History’),

 17:115,5, Course Number

 22:162,4, Number in Stock

 26:166,4, Number Sold Y-to-D

 30:170,4, Price

 50:X) Ensure data length greater than header/trailer length

 SORT FIELDS=(1,16,CH,A,17,5,CH,A)

 OUTFIL FNAMES=RPT5,

 SECTIONS=(1,16,SKIP=P,

 HEADER3=(3:X,/,

 3:’Department: ’,1,16,/,X,/,

 3:’Number’,12:’In Stock’,23:’Sold YTD’,34:’ Price’,/,

 3:’------’,12:’--------’,23:’--------’,34:’-------’),

 TRAILER3=(3:’======’,12:’========’,23:’========’,34:’=======’,/,

 3:’Totals’,

 15:TOT=(22,4,BI,EDIT=(IIIIT)),

 26:TOT=(26,4,BI,EDIT=(IIIIT)),

 34:TOT=(30,4,BI,EDIT=(IIIT.TT)))),

 OUTREC=(3:17,5,

 15:22,4,BI,EDIT=(IIIIT),

 26:26,4,BI,EDIT=(IIIIT),

 34:30,4,BI,EDIT=(IIIT.TT))

Using OUTFIL

80 z/OS V1R6.0 DFSORT: Getting Started

|
|

|
|

|

The INCLUDE statement and INREC statement remove the unneeded records and

fields before sorting. The INREC statement also changes department identifiers

(COMP, ENGL, HIST) to more readable strings. As you learned previously, the

INREC statement changes the starting positions of various fields, so you must use

those new positions for the statements that are processed after INREC (SORT and

OUTFIL in this case).

OUTFIL’s SECTION parameter is used to divide the report up into sections by the

course department. 1,16 tells DFSORT to start a new section every time the

department value in columns 1-16 changes. The SORT statement sorts on the

department field to bring all of the records for each department value together, so

only one section is produced for each department value. If your records are not

already sorted by the section field, use the SORT statement to sort them that way.

You can sort by other fields as well, but the first sort field must be the section

field.

SKIP=P tells DFSORT to start each section on a new page. Alternatively, you can

use SKIP=nL if you want your sections to appear on the same page, when possible,

with n lines between them.

HEADER3 creates section headers in the same way that HEADER1 and HEADER2

create report and page headers, respectively. TRAILER3 creates section trailers in

the same way that TRAILER 1 and TRAILER2 create report and page trailers,

respectively.

OUTFIL’s OUTREC parameter is used to reformat the data records for the report.

The three page result produced for RPT5 is:

1

 Department: Computer Science

 Number In Stock Sold YTD Price

 ------ -------- -------- -------

 00032 5 29 26.00

 00032 6 27 3.60

 00032 20 26 18.99

 00103 4 23 31.95

 00205 10 10 21.99

 ====== ======== ======== =======

 Totals 45 115 102.53

1

 Department: English

 Number In Stock Sold YTD Price

 ------ -------- -------- -------

 10054 10 9 15.20

 10347 7 19 6.25

 10347 13 32 14.50

 10856 1 26 4.50

 10856 2 32 5.95

 ====== ======== ======== =======

 Totals 33 118 46.40

1

 Department: History

 Number In Stock Sold YTD Price

 ------ -------- -------- -------

 50420 15 9 7.95

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 81

50521 14 17 12.00

 50632 23 21 17.90

 ====== ======== ======== =======

 Totals 52 47 37.85

Suppose you want to create a second report showing the totals for each

department, but not the data lines. To accomplish this, you can use a second

OUTFIL statement with the NODETAIL (no data), HEADER2 (page headers),

SECTIONS (sections) and TRAILER3 (section trailers) parameters. In this case,

because the data lines are not printed, you do not need to reformat them with the

OUTREC parameter. The JCL and control statements for the complete job to

produce your two reports is:

//SCTNRPT JOB A492,PROGRAMMER

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//RPT5 DD SYSOUT=A

//RPT6 DD SYSOUT=A

//SYSIN DD *

 INCLUDE COND=(110,4,SS,EQ,C’COMP,ENGL,HIST’)

 INREC FIELDS=(1:110,4, Course Department

 CHANGE=(16,

 C’COMP’,C’Computer Science’,

 C’ENGL’,C’English’,

 C’HIST’,C’History’),

 17:115,5, Course Number

 22:162,4, Number in Stock

 26:166,4, Number Sold Y-to-D

 30:170,4, Price

 50:X) Ensure data length greater than header/trailer length

 SORT FIELDS=(1,16,CH,A,17,5,CH,A)

 OUTFIL FNAMES=RPT5,

 SECTIONS=(1,16,SKIP=P,

 HEADER3=(3:X,/,

 3:’Department: ’,1,16,/,X,/,

 3:’Number’,12:’In Stock’,23:’Sold YTD’,34:’ Price’,/,

 3:’------’,12:’--------’,23:’--------’,34:’-------’),

 TRAILER3=(3:’======’,12:’========’,23:’========’,34:’=======’,/,

 3:’Totals’,

 15:TOT=(22,4,BI,EDIT=(IIIIT)),

 26:TOT=(26,4,BI,EDIT=(IIIIT)),

 34:TOT=(30,4,BI,EDIT=(IIIT.TT)))),

 OUTREC=(3:17,5,

 15:22,4,BI,EDIT=(IIIIT),

 26:26,4,BI,EDIT=(IIIIT),

 34:30,4,BI,EDIT=(IIIT.TT))

 OUTFIL FNAMES=RPT6,

 NODETAIL,

 HEADER2=(3:’Department ’,22:’In Stock’,

 31:’Sold YTD’,42:’ Price’,/,

 3:’----------------’,22:’--------’,

 31:’--------’,42:’-------’),

 SECTIONS=(1,16,SKIP=0L,

 TRAILER3=(3:1,16,

 25:TOT=(22,4,BI,EDIT=(IIIIT)),

 34:TOT=(26,4,BI,EDIT=(IIIIT)),

 42:TOT=(30,4,BI,EDIT=(IIIT.TT))))

/*

The three page report produced for RPT5 is the same as shown previously. The one

page result produced for RPT6 is:

Using OUTFIL

82 z/OS V1R6.0 DFSORT: Getting Started

1 Department In Stock Sold YTD Price

 ---------------- -------- -------- -------

 Computer Science 45 115 102.53

 English 33 118 46.40

 History 52 47 37.85

So Far

So far, you have learned how to create multiple identical copies of an input

data set; select and sample input records by relative record number for

output; include, omit or save selected input records for output; reformat,

repeat and split input records for output; and create various types of reports.

Next, you will learn about converting between fixed and variable records.

Converting FB to VB

You can convert an FB data set to a VB data set with OUTFIL’s FTOV parameter.

Each VB output record has a 4-byte RDW followed by the corresponding data from

the FB input record, and the length in the RDW is the length of the FB record plus

4.

The following JCL and DFSORT control statements convert the bookstore data set

records from FB to VB.

//FBVB JOB A92,PROGRAMMER

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//VBOUT DD DSN=A123456.SORT.VSAMP,DISP=(NEW,CATLG,DELETE),

// UNIT=3390,SPACE=(CYL,(5,5))

//SYSIN DD *

 OPTION COPY

 OUTFIL FNAMES=VBOUT,FTOV

/*

Because the LRECL of SORT.SAMPIN is 173 bytes, each VB record in

SORT.VSAMP is 177 bytes (the FB record length of 173 plus 4 for the RDW) and

SORT.VSAMP is given an LRECL of 177.

You can also use BUILD, OUTREC, OVERLAY or IFTHEN parameters with FTOV

on the OUTFIL statement. All of the reformatting features are available (input

fields, strings, editing, and so on). With FTOV, you specify the input positions, and

output columns, for the BUILD, OUTREC, OVERLAY or IFTHEN parameters as

you would for an FB record (without the RDW). DFSORT adds the RDW after the

FB record is reformatted

Here is an example of using FTOV with BUILD:

 OUTFIL FTOV,BUILD=(1:120,25,32:C’in ’,110,5)

The VB output records look like this:

Positions 1-2: Length (in RDW) = hex 002B = 43

Positions 3-4: Zeros (in RDW) = hex 0000 = 0

Positions 5-29: Input positions 120-144

Positions 30-35: Blanks

Positions 36-38: ’in ’

Positions 39-43: Input positions 110-114

Each VB output record is 43 bytes long and the output data set is given an LRECL

of 43.

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 83

|
|
|
|
|
|

|

|

For the previous examples, the VB output records are all the same length. You can

use OUTFIL’S VLTRIM parameter to create VB output records of different lengths

from FB input records. Suppose you have an FB input data set with LRECL=20

and 20-byte records like this:

ABC

ABCDEF

AC

ABCDEFGHI

These statements change each 20-byte FB input record to a 24-byte VB output

record and set LRECL=24 for the VB output data set:

 OPTION COPY

 OUTFIL FTOV

The VB output records look like this:

Length X’0000’ Data

1 2 3 4 5 24

 24 0 ABC

 24 0 ABCDEF

 24 0 AC

 24 0 ABCDEFGHI

To remove the trailing blanks from the end of each VB output record, use

VLTRIM=C’ ’ (or VLTRIM=X’40’) like this:

 OUTFIL FTOV,VLTRIM=C’ ’

LRECL=24 is still set for the resulting VB output data set, indicating that the

maximum record length is 24, but the VB output records are not padded on the

right with blanks; they now have different record lengths like this.

Length X’0000’ Data

1 2 3 4 5 24

 7 0 ABC

 10 0 ABCDEF

 6 0 AC

 13 0 ABCDEFGHI

You can use any character or hexadecimal byte value for VLTRIM. For example,

VLTRIM=C’*’ removes trailing asterisks, and VLTRIM=X’00’ removes trailing

binary zeros.

Converting VB to FB

You can convert a VB data set to an FB data set with OUTFIL’s VTOF and BUILD

or OUTREC parameters. All of the BUILD or OUTREC features are available (input

fields, strings, editing, and so on). For VTOF, you specify the input positions of the

VB input record (with the RDW), and the output columns of the FB output record

(without the RDW). DFSORT does not include the RDW in the FB output records.

 Attention: You cannot specify OVERLAY or IFTHEN with VTOF.

The following JCL and DFSORT control statements convert a VB data set with

LRECL=104 to an FB data set with LRECL=100:

Using OUTFIL

84 z/OS V1R6.0 DFSORT: Getting Started

|
|

|

//VBFB JOB A92,PROGRAMMER

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

//SORTIN DD DSN=A123456.VBIN,DISP=SHR

//FBOUT DD DSN=A123456.FBOUT,DISP=(NEW,CATLG,DELETE),

// UNIT=3390,SPACE=(CYL,(5,5))

//SYSIN DD *

 OPTION COPY

 OUTFIL FNAMES=FBOUT,VTOF,OUTREC=(5,100)

/*

Up to 100 bytes of data starting at position 5 (after the RDW) of the VB input

record appears in the FB output record starting at position 1. The FB output

records are all 100 bytes long. By default, if a VB input record has less than 100

data bytes, DFSORT pads the output data with blanks on the right to 100 bytes.

However, you can change the padding character to anything you like with

OUTFIL’s VLFILL parameter. For example, VLFILL=C’*’ pads with asterisks and

VLFILL=X’00’ pads with binary zeros:

 SORT FIELDS=(25,10,CH,A)

* Pad short fields on the right with blanks (default is VLFILL=C’ ’)

 OUTFIL FNAMES=PADB,VTOF,

 OUTREC=(41,40,C’Blank padding’,11,20)

* Pad short fields on the right with asterisks

 OUTFIL FNAMES=PADA,VTOF,

 OUTREC=(5,60,C’Asterisk padding’,61,40),VLFILL=C’*’.

* Pad short fields on the right with binary zeros

 OUTFIL FNAMES=PADZ,VTOF,

 OUTREC=(21,60,C’Binary zero padding’),VLFILL=X’00’

LRECL=73 is set for the PADB output data set, which has 73 byte FB records.

Short input fields are padded with blanks on the right as needed.

LRECL=116 is set for the PADA output data set, which has 116 byte FB records.

Short input fields are padded with asterisks on the right as needed.

LRECL=79 is set for the PADZ output data set, which has 79 byte FB records.

Short input fields are padded with binary zeros on the right as needed.

Summary

This chapter covered the many ways you can use the OUTFIL statement and

its various parameters to create multiple output data sets and reports.

The next chapter will cover methods of calling DFSORT from a program.

Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports 85

Using OUTFIL

86 z/OS V1R6.0 DFSORT: Getting Started

Chapter 7. Calling DFSORT from a Program

This chapter contains Programming Interface information.

In addition to processing your DFSORT program control statements directly with

PGM=SORT or PGM=ICEMAN, you can call DFSORT from COBOL, PL/I,

Assembler, or other programs. In this chapter, you will concentrate on sorting and

merging using COBOL and sorting using PL/I. The examples in this chapter

assume that the COBOL environment is available.

For information on restrictions when using these languages and on calling

DFSORT from an assembler program, see z/OS DFSORT Application Programming

Guide.

Passing Control Statements

When you use COBOL or PL/I to call DFSORT, these program products create and

pass a SORT or MERGE control statement and a RECORD control statement for

you. You can use other DFSORT control statements, such as INCLUDE, OMIT,

SUM, INREC, OUTREC and OUTFIL with your COBOL or PL/I programs. Use a

SORTCNTL or DFSPARM data set for these DFSORT statements in the same way

you would use a SYSIN data set. For example, you can use the SORTCNTL DD

statement to pass the INCLUDE control statement that selects only the English

department books:

 Either a SYSIN data set or a DFSPARM data set, or both, can be used for DFSORT

control statements when DFSORT is invoked directly, that is, by PGM=SORT or

PGM=ICEMAN. Either a SORTCNTL data set or a DFSPARM data set, or both, can

be used for DFSORT control statements when DFSORT is called from a program.

If you use DFSORT with COBOL, you should be familiar with the

SORT-CONTROL and SORT-RETURN special registers. For complete details, see

the COBOL Programmer’s Guide that describes the compiler version available at

your site.

Calling DFSORT from a COBOL Program

To call DFSORT from a COBOL program, use the COBOL statements SORT and

MERGE. This section shows sample programs that use the COBOL SORT and

MERGE statements. For complete information, see the COBOL Programmer’s

Guide describing the compiler version available at your site.

//EXAMP JOB A492,PROGRAMMER

 .

 .

 .

//SORTCNTL DD *

 INCLUDE COND=(110,5,CH,EQ,C’ENGL’)

/*

© Copyright IBM Corp. 1983, 2005 87

Sorting Records

The sample COBOL program in Figure 2 on page 89 calls DFSORT to sort the

bookstore master file (MASTER-FILE) by title in ascending order. The sorted

master file is written to SORTED-MASTER-FILE.

Following is the JCL that calls the sample COBOL program:

 In contrast to the JCL for executing DFSORT by using a JCL EXEC statement with

PGM=SORT or PGM=ICEMAN (see “JCL for Sorting Data Sets Directly” on page

17) the above JCL has these differences:

v The program name on the EXEC statement is that of the COBOL program.

v The STEPLIB DD statement defines the library containing the COBOL program.

v The name of the DD statement for the input file need not be SORTIN.

v The name of the DD statement for the output file need not be SORTOUT.

Notice that the control field and order for the sort are specified in the COBOL

program itself rather than with a SORT control statement. Figure 2 on page 89

shows the sample COBOL program.

//EXAMP JOB A492,PROGRAMMER

//BOOKS EXEC PGM=COBOLPGM

//STEPLIB DD DSN=USER.PGMLIB,DISP=SHR

//SYSOUT DD SYSOUT=A

//MASTIN DD DSN=A123456.MASTER,DISP=OLD

//MASTOUT DD DSN=A123456.OUTB,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(1,1)),UNIT=SYSDA

//PRINTFL DD SYSOUT=A

Calling DFSORT from a Program

88 z/OS V1R6.0 DFSORT: Getting Started

IDENTIFICATION DIVISION.

 PROGRAM-ID.

 COBOLPGM.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT SD-FILE ASSIGN TO

 DUMMYNM.

 SELECT MASTER-FILE ASSIGN TO

 MASTIN.

 SELECT SORTED-MASTER-FILE ASSIGN TO

 MASTOUT.

 SELECT PRINT-FILE ASSIGN TO

 PRINTFL.

 DATA DIVISION.

 FILE SECTION.

 SD SD-FILE

 DATA RECORD IS SD-RECORD.

 01 SD-RECORD.

 05 TITLE-IN PICTURE X(75).

 05 AUTH-LN-IN PICTURE X(15).

 05 AUTH-FN-IN PICTURE X(15).

 05 PUB-IN PICTURE X(4).

 05 COUR-DEPT-IN PICTURE X(5).

 05 COUR-NO-IN PICTURE X(5).

 05 COUR-NAM-IN PICTURE X(25).

 05 INST-LN-IN PICTURE X(15).

 05 INST-INIT-IN PICTURE X(2).

 05 NO-STOCK-IN PICTURE 9(8) BINARY.

 05 NO-SOLD-IN PICTURE 9(8) BINARY.

 05 PRICE-IN PICTURE 9(8) BINARY.

Figure 2. Sample COBOL Program with SORT Commands (Part 1 of 2)

Calling DFSORT from a Program

Chapter 7. Calling DFSORT from a Program 89

Merging Records

The sample COBOL program in Figure 3 on page 92 calls DFSORT to merge the

presorted bookstore master file (MASTER-FILE) with another presorted file

(NEW-BOOKS-FILE) to create a new master file (MERGED-FILE).

The JCL for the program is as follows:

 FD MASTER-FILE

 DATA RECORD IS MASTER-RECORD.

 01 MASTER-RECORD.

 05 FILLER PICTURE X(173).

 FD SORTED-MASTER-FILE

 DATA RECORD IS SORTED-MASTER-RECORD.

 01 SORTED-MASTER-RECORD.

 05 FILLER PICTURE X(173).

 FD PRINT-FILE

 DATA RECORD IS OUTPUT-REPORT-RECORD.

 01 OUTPUT-REPORT-RECORD.

 05 REPORT-OUT PICTURE X(120).

 .

 .

 .

 PROCEDURE DIVISION.

 .

 .

 .

 SORT-ROUTINE SECTION.

 SORT SD-FILE

 ASCENDING KEY TITLE-IN

 USING MASTER-FILE

 GIVING SORTED-MASTER-FILE.

 IF SORT-RETURN > 0

 DISPLAY "SORT FAILED".

 .

 .

 .

SORT-REPORT SECTION.

 print a report on PRINT-FILE using SORTED-MASTER-FILE.

 .

 .

 .

 STOP RUN.

Figure 2. Sample COBOL Program with SORT Commands (Part 2 of 2)

Calling DFSORT from a Program

90 z/OS V1R6.0 DFSORT: Getting Started

Figure 3 on page 92 shows the sample COBOL program.

//EXAMP JOB A492,PROGRAMMER

//BOOKS EXEC PGM=COBOLP

//STEPLIB DD DSN=USER.PGMLIB,DISP=SHR

//SYSOUT DD SYSOUT=A

//MASTERFL DD DSN=A123456.MASTER,DISP=OLD

//NEWBOOKS DD DSN=A123456.NEW,DISP=OLD

//MERGEDFL DD DSN=A123456.OUTC,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(1,1)),UNIT=SYSDA

Calling DFSORT from a Program

Chapter 7. Calling DFSORT from a Program 91

IDENTIFICATION DIVISION.

 PROGRAM-ID.

 COBOLP.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT SD-FILE ASSIGN TO

 DUMMYNM.

 SELECT MASTER-FILE ASSIGN TO

 MASTERFL.

 SELECT NEW-BOOKS-FILE ASSIGN TO

 NEWBOOKS.

 SELECT MERGED-FILE ASSIGN TO

 MERGEDFL.

 DATA DIVISION.

 FILE SECTION.

 SD SD-FILE

 DATA RECORD IS SD-RECORD.

 01 SD-RECORD.

 05 TITLE-KEY PICTURE X(75).

 05 FILLER PICTURE X(98).

 FD MASTER-FILE

 DATA RECORD IS MASTER-RECORD.

 01 MASTER-RECORD.

 05 FILLER PICTURE X(173).

 FD NEW-BOOKS-FILE

 DATA RECORD IS NEW-BOOKS-RECORD.

 01 NEW-BOOKS-RECORD.

 05 FILLER PICTURE X(173).

 FD MERGED-FILE

 DATA RECORD IS MERGED-RECORD.

 01 MERGED-RECORD.

 05 FILLER PICTURE X(173).

 .

 .

 .

 PROCEDURE DIVISION.

 .

 .

 .

 MERGE-ROUTINE SECTION.

 MERGE SD-FILE

 ASCENDING KEY TITLE-KEY

 USING MASTER-FILE NEW-BOOKS-FILE

 GIVING MERGED-FILE.

 IF SORT-RETURN > 0

 DISPLAY "MERGE FAILED".

 STOP RUN.

Figure 3. Sample COBOL Program with MERGE Commands

Calling DFSORT from a Program

92 z/OS V1R6.0 DFSORT: Getting Started

Sorting with COBOL FASTSRT

With the COBOL program for sorting records in Figure 2 on page 89, the input

(from MASTER-FILE) and the output (to SORTED-MASTER-FILE) qualify for the

COBOL FASTSRT option. With this compile-time FASTSRT option, your sort runs

considerably faster, because DFSORT does the input and output processing, rather

than COBOL. For complete details on FASTSRT, refer to z/OS DFSORT Application

Programming Guide and the COBOL Programmer’s Guide that describes the

compiler version available at your site.

Note: COBOL evaluates sort input and output independently to see if it qualifies

for FASTSRT. If either the input or the output of your sort does not qualify

because of the presence of an input or output procedure, you might be able

to replace such a procedure and use DFSORT control statements to

accomplish the same thing. For example, you can use a control statement

(OUTREC) to indicate how records will be reformatted before being written

to the output data set.

Calling DFSORT from a PL/I Program

When calling DFSORT, a PL/I program must pass a SORT control statement, a

RECORD control statement, and the amount of main storage to be available to

DFSORT. On the RECORD control statement, you specify the record type and

length for the input data set. Following the RECORD control statement, you

specify the main storage value for DFSORT either as MAX, or as a value in bytes.

(DFSORT performs best when MAX is specified as the main storage value.)

You can also specify DFSORT control statements in a SORTCNTL or DFSPARM

data set.

This JCL is for the program shown in Figure 4 on page 94. A SORTCNTL data set

is used to specify an INCLUDE control statement that selects only the English

department books.

 The sample PL/I program shown in Figure 4 on page 94 calls DFSORT to sort the

bookstore file by title. It specifies appropriate SORT and RECORD control

statements, and a DFSORT main storage value of MAX.

//EXAMP JOB A492,PROGRAMMER

//BOOKS EXEC PGM=PLIPGM

//STEPLIB DD DSN=USER.PGMLIB,DISP=SHR

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD

//SORTCNTL DD *

 INCLUDE COND=(110,5,CH,EQ,C’ENGL’)

/*

//SYSPRINT DD SYSOUT=A

Calling DFSORT from a Program

Chapter 7. Calling DFSORT from a Program 93

Summary

This chapter covered methods of calling DFSORT from COBOL, and PL/I.

PLIPGM: PROC OPTIONS(MAIN);

 DCL 1 MASTER_RECORD,

 5 TITLE_IN CHAR(75),

 5 AUTH_LN_IN CHAR(20),

 .

 .

 .

 5 PRICE_IN BIN FIXED(31);

 DCL RETURN_CODE FIXED BIN(31,0);

 DCL MAXSTOR FIXED BIN(31,0);

 UNSPEC(MAXSTOR)=’00000000’B||UNSPEC(’MAX’);

 .

 .

 .

 CALL PLISRTA (’ SORT FIELDS=(1,75,CH,A) ’,

 ’ RECORD TYPE=F,LENGTH=(173) ’,

 MAXSTOR,

 RETURN_CODE);

 IF RETURN_CODE ¬= 0 THEN DO;

 PUT SKIP EDIT (’SORT FAILED’)(A);

 CALL PLIRETC(RETURN_CODE);

 END;

 .

 .

 .

 CALL OUTPUT;

 .

 .

 .

 OUTPUT: PROCEDURE;

 .

 .

 .

 . Print a report from the sorted master file (SORTOUT)

 .

 .

 .

 END;

END PLIPGM;

Figure 4. Sample PL/I Program with SORT Commands

Calling DFSORT from a Program

94 z/OS V1R6.0 DFSORT: Getting Started

Chapter 8. Overriding Installation Defaults

IBM ships DFSORT with pre-set defaults. During installation, your system

programmer can change these defaults. For example, one IBM-supplied default is

to list DFSORT control statements in the DFSORT message data set. However, at

your site, the default might be to not list DFSORT control statements.

Furthermore, your system programmer can establish separate defaults for jobs with

DFSORT executed directly and for jobs with DFSORT called from a program. So,

when you execute DFSORT directly, the default might be to list DFSORT control

statements, and when you call DFSORT from a program, the default might be to

not list DFSORT control statements.

In many cases, if a particular installation default is not appropriate for your job,

you can temporarily override it in one of several ways:

v as a PARM parameter in a DFSPARM data set

v as an OPTION, ALTSEQ or DEBUG parameter in a DFSPARM data set

v as a PARM parameter on the JCL EXEC statement

v as an OPTION, ALTSEQ or DEBUG parameter in a SYSIN or SORTCNTL data

set

v as an OPTION, ALTSEQ or DEBUG parameter in a parameter list passed from a

calling program

OPTION, ALTSEQ and DEBUG parameters in a DFSPARM data set are a good

way to override installation defaults regardless of whether you execute DFSORT

directly or call it from a program.

In this chapter, you will learn how to override some of the many available

defaults, concentrating on PARM parameters in the JCL EXEC statement, and the

OPTION control statement in a DFSPARM data set.

You can list all of the installation defaults selected at your site using an ICETOOL

DEFAULTS job like the following:

//S1 EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=A

//DFSMSG DD SYSOUT=A

//DFLTS DD SYSOUT=A

//TOOLIN DD *

 DEFAULTS LIST(DFLTS)

/*

You’ll learn more about ICETOOL in Chapter 10, ″Using the ICETOOL Utility″.

For detailed information on all of the parameters you can override and the various

ways in which you can override them, refer to z/OS DFSORT Application

Programming Guide. In particular, see Appendix C, ″Specification/Override of

DFSORT Options″.

© Copyright IBM Corp. 1983, 2005 95

Specifying PARM Parameters on a JCL EXEC Statement

When you execute DFSORT directly, you can use the PARM parameter in the JCL

EXEC statement to override certain defaults for your job. For example, if the

default at your site is to list DFSORT statements (installation parameter LIST=YES),

but you do not want them listed for your job, you can specify NOLIST in the

PARM field

 On the other hand, if the default is not to list the DFSORT statements (installation

parameter LIST=NO), but you do want them listed, you can specify LIST in the

PARM field:

 You can also specify more than one PARM parameter. For example, if you want to

list the DFSORT statements, have DFSORT set a return code of 4 if SUM fields

overflow, use six dynamically allocated SYSDA work data sets, and have DFSORT

ABEND if it detects an error, you can specify:

 //S1 EXEC PGM=SORT,PARM=’LIST,OVFLO=RC4,DYNALLOC=(SYSDA,6),ABEND’

Specifying an OPTION Control Statement in DFSPARM

Whether you execute DFSORT directly or call it from a program, you can use an

OPTION statement in a DFSPARM data set to override certain defaults for your

job. To do so, you can place the OPTION statement after a //DFSPARM DD *

statement, either by itself or with other DFSORT control statements.

A particular default that you may want to override with the OPTION statement is

the EQUALS=NO installation option that specifies whether equally collating

records are to be written in their original order.

If your site has EQUALS=NO as the default (recommended) and you want to

temporarily override it (so that equally collating records are written in their

original order for your job), you can specify EQUALS on the OPTION statement:

 Or, if your site has established EQUALS=YES as the installation default and you

want to temporarily override it (so that equally collating records can be written in

random order for your job), you can specify NOEQUALS on the OPTION

statement:

 You can also specify more than one parameter on the OPTION statement, as well

as additional control statements, in a DFSPARM data set. For example, if you want

to list the DFSORT statements, have DFSORT set a return code of 4 if SUM fields

overflow, use six dynamically allocated SYSDA work data sets, and have DFSORT

ABEND if it detects an error, you can specify:

//S1 EXEC PGM=SORT,PARM=’NOLIST’

//S1 EXEC PGM=SORT,PARM=’LIST’

//DFSPARM DD *

 OPTION EQUALS

/*

//DFSPARM DD *

 OPTION NOEQUALS

/*

Overriding Installation Defaults

96 z/OS V1R6.0 DFSORT: Getting Started

//DFSPARM DD *

 OPTION LIST,OVFLO=RC4,DYNALLOC=(SYSDA,6)

 DEBUG ABEND

/*

Summary

This chapter covered methods of overriding selected DFSORT installation

defaults using PARM parameters on the JCL EXEC statement, or an OPTION

control statement.

Overriding Installation Defaults

Chapter 8. Overriding Installation Defaults 97

Overriding Installation Defaults

98 z/OS V1R6.0 DFSORT: Getting Started

Chapter 9. Using DFSORT Efficiently

You will get the best performance from DFSORT if you follow these guidelines:

v Be generous with main storage.

v Allow memory object sorting, hipersorting and dataspace sorting.

v Use high-speed disks for work space.

v Eliminate unnecessary fields with INREC.

v Eliminate unnecessary records with INCLUDE or OMIT.

v Eliminate unnecessary records with STOPAFT and SKIPREC.

v Consolidate records with SUM.

v Create multiple output data sets with OUTFIL

v Replace program logic with DFSORT control statements.

v Use FASTSRT with COBOL.

v Avoid options that might degrade performance.

Additional suggestions can be found in z/OS DFSORT Application Programming

Guide and z/OS DFSORT Tuning Guide.

Be Generous with Main Storage

By default, DFSORT can use 6 megabytes of main memory for sort, merge and

copy applications, or even more when appropriate. If your site does not have an

installation default of SIZE=MAX, we recommend setting the MAINSIZE=MAX

parameter for your job. As an example, you can set MAINSIZE=MAX like this:

//DFSPARM DD *

 OPTION MAINSIZE=MAX

/*

Alternatively, you can specify the MAINSIZE=nM parameter (n megabytes) to give

DFSORT more or less storage for your job, but we do not recommend this unless

you have a specific reason for using MAINSIZE=nM rather than MAINSIZE=MAX.

As an example, you can set MAINSIZE=2M like this:

//DFSPARM DD *

 OPTION MAINSIZE=2M

/*

Allow Memory Object Sorting, Hipersorting and Dataspace Sorting

By default, DFSORT can use memory objects, hiperspaces or data spaces, when

appropriate, instead of or along with disk work data sets, to improve the

performance of sort applications. If your site has an installation default of

MOSIZE=0, HIPRMAX=0 or DSPSIZE=0, you might want to specify the

MOSIZE=MAX, HIPRMAX=OPTIMAL and DSPSIZE=MAX parameters when you

sort large data sets. As an example, you can set these parameters like this:

//DFSPARM DD *

 OPTION MOSIZE=MAX,HIPRMAX=OPTIMAL,DSPSIZE=MAX

/*

Use High–Speed Disks for Work Data Sets

Using high-speed disks, such as the IBM 3390, for work data sets offers the best

performance. You should avoid using tapes for work data sets whenever possible.

© Copyright IBM Corp. 1983, 2005 99

Eliminate Unnecessary Fields with INREC

If you need to reformat your records, using INREC to significantly shorten them

can result in faster processing.

Remember that INREC reformats records before they are processed, and OUTREC

reformats them after they are processed. Therefore, you should use INREC to

shorten records and OUTREC to lengthen records. For a summary of the control

statements and the corresponding record positions to refer to when using INREC,

see Table 49.

 Table 49. Control Statement and Corresponding Records with INREC

Control Statement Original Records Reformatted Records

SORT U

MERGE U

SUM U

OUTREC U

OUTFIL U

INCLUDE U

OMIT U

For details on INREC, see Chapter 5, “Reformatting Records,” on page 37.

Eliminate Unnecessary Records with INCLUDE or OMIT

Naturally, the number of input records affects the amount of time processing will

take. The fewer the records, the faster the DFSORT application. You can improve

performance by using INCLUDE or OMIT whenever possible to select only the

records pertaining to your application.

For details on INCLUDE and OMIT, see Chapter 3, “Including or Omitting

Records,” on page 25.

Eliminate Unnecessary Records with STOPAFT and SKIPREC

You can also use the STOPAFT and SKIPREC options to reduce the number of

input records you process.

v Use STOPAFT to specify the maximum number of records to be accepted for

sorting or copying.

v Use SKIPREC to specify the number of records to be skipped before sorting or

copying begins.

For information on how to use these options, see z/OS DFSORT Application

Programming Guide.

Consolidate Records with SUM

You can improve performance for sorting or merging by using the SUM statement,

if appropriate for your job, to:

v add the contents of fields whenever two records with equal control fields are

found. DFSORT places the result in one record and deletes the other, reducing

the number of output records, or

v delete records with duplicate control fields by specifying FIELDS=NONE.

Using DFSORT Efficiently

100 z/OS V1R6.0 DFSORT: Getting Started

For details on SUM, see Chapter 4, “Summing Records,” on page 33.

Create Multiple Output Data Sets with OUTFIL

If you need to create multiple output data sets from the same input data set, you

can use OUTFIL to read the input data set only once, thus improving performance.

OUTFIL can be used for sort, merge, and copy applications to provide

sophisticated filtering, editing, conversion, lookup and replace, and report features.

For details on OUTFIL, see Chapter 6, “Creating Multiple Output Data Sets and

Reports,” on page 65.

Replace Program Logic with DFSORT Control Statements

As a rule, using appropriate DFSORT control statements is more efficient than

program logic. Whenever possible, use DFSORT control statements INCLUDE,

OMIT, INREC, OUTREC, SUM and OUTFIL instead of doing the same functions

with program code.

Use FASTSRT with COBOL

With COBOL, you can enhance DFSORT performance by using the FASTSRT

compile-time option. With FASTSRT, DFSORT does the input and output

processing, rather than COBOL. For more information on the FASTSRT option, see

the COBOL Programmer’s Guide that describes the compiler version available at

your site.

Avoid Options That Might Degrade Performance

The parameters and options listed below might adversely affect DFSORT

performance. Use them only when necessary. For a complete description of what

these parameters and options are and how they affect performance, see z/OS

DFSORT Application Programming Guide and z/OS DFSORT Tuning Guide.

v VERIFY parameter

v EQUALS parameter

v NOBLKSET parameter

v CKPT parameter

v EQUCOUNT parameter

v NOCINV parameter

v LOCALE parameter

v BSAM parameter

v NOASSIST parameter

v NOCFW parameter

v Tape work data sets

v User exit routines

v EFS program

v Dynamic link-edit of user exit routines

v Small values for the MOSIZE, HIPRMAX, DSPSIZE, or MAINSIZE parameters

Summary

This chapter covered methods for improving DFSORT performance, including

the effective use of various control statements and parameters.

Using DFSORT Efficiently

Chapter 9. Using DFSORT Efficiently 101

Using DFSORT Efficiently

102 z/OS V1R6.0 DFSORT: Getting Started

Part 3. Learning to Use ICETOOL

Chapter 10. Using the ICETOOL Utility 105

ICETOOL Operators 105

Sample Input Data Sets 106

Writing Required JCL Statements 106

ICETOOL Comment and Blank Statements . . . 107

Printing Statistics For Numeric Fields 108

Continuing an Operator Statement 110

Statistics For VB Data Set Record Lengths . . . 110

Creating Identical Sorted Data Sets 110

Creating Different Subsets of a Sorted Data Set . . 113

Creating Multiple Unsorted Data Sets 115

Counting Values in a Range 116

Printing Simple Reports 117

Printing Tailored Reports 119

Using Formatting Items 120

Edit Masks 120

Leading Zeros 122

Edit Patterns 122

No Statistics 123

Division 123

Leading, Floating and Trailing Characters . . . 124

Printing Sectioned Reports 124

Printing How Many Times Fields Occur 126

Selecting Records by Field Occurrences 128

Joining Fields from Different Data Sets 131

Matching Records from Different Data Sets . . . 134

Complete ICETOOL Job and TOOLMSG Output 137

© Copyright IBM Corp. 1983, 2005 103

104 z/OS V1R6.0 DFSORT: Getting Started

Chapter 10. Using the ICETOOL Utility

ICETOOL is a multipurpose DFSORT utility that uses the capabilities of DFSORT

to perform multiple operations on one or more data sets in a single step.

This chapter introduces you to ICETOOL’s thirteen ″operators″, which allow you

to do a wide variety of tasks. You will learn about ICETOOL’s JCL and control

statements while writing a large ″main″ ICETOOL job that uses many of the

ICETOOL operators, as well as several additional smaller ICETOOL jobs that

illustrate specific points. To fully use the capabilities of ICETOOL, you should

become familiar with all of its operators, operands, and methods of invocation, as

described in z/OS DFSORT Application Programming Guide.

Note: Most likely, you would do unrelated tasks in different ICETOOL jobs. But

you can do unrelated tasks in the same ICETOOL job. The ICETOOL jobs

constructed in this chapter take both approaches as a convenient way to

illustrate the use of various ICETOOL operators.

ICETOOL Operators

The thirteen ICETOOL operators listed below can be used to perform a variety of

functions. By using various combinations of the thirteen ICETOOL operators, you

can easily create applications that perform many complex tasks.

COPY

Copies a data set to one or more output data sets.

COUNT

Prints a message containing the count of records in a data set. COUNT can

also be used to set RC=12, RC=4, or RC=0 based on meeting criteria for the

number of records in a data set (for example, empty, not empty, less than,

equal to, or greater than 5000 records, and so on).

DEFAULTS

Prints the DFSORT installation defaults in a separate list data set.

DISPLAY

Prints the values or characters of specified numeric or character fields in a

separate list data set. Simple, tailored, or sectioned reports can be produced.

MODE

Three modes are available, which can be set or reset for groups of operators:

v STOP mode (the default) stops subsequent operations if an error is detected.

v CONTINUE mode continues with subsequent operations if an error is

detected.

v SCAN mode allows ICETOOL statement checking without actually

performing any operations.

OCCUR

Prints each unique value for specified numeric or character fields and how

many times it occurs in a separate list data set. Simple or tailored reports can

be produced. The values printed can be limited to those for which the value

count meets specified criteria (for example, only duplicate values or only

non-duplicate values).

© Copyright IBM Corp. 1983, 2005 105

|

RANGE

Prints a message containing the count of values in a specified range for a

specified numeric field in a data set.

SELECT

Selects records from a data set for inclusion in an output data set based on

meeting criteria for the number of times specified numeric or character field

values occur (for example, only duplicate values or only non-duplicate values).

Records that are not selected can be saved in a separate output data set.

SORT

Sorts a data set to one or more output data sets.

SPLICE

Splices together specified fields from records that have the same specified

numeric or character field values (that is, duplicate values), but different

information. Specified fields from two or more records can be combined to

create an output record. The fields to be spliced can originate from records in

different data sets, so you can use SPLICE to do various ″join″ and ″match″

operations.

STATS

Prints messages containing the minimum, maximum, average, and total for

specified numeric fields in a data set.

UNIQUE

Prints a message containing the count of unique values for a specified numeric

or character field.

VERIFY

Examines specified decimal fields in a data set and prints a message

identifying each invalid value found for each field.

Sample Input Data Sets

Each ICETOOL operator (except DEFAULTS and MODE) requires an input data

set. The input data set used by one operator can be the same or different from the

input data set used by another operator. Thus, ICETOOL can process many data

sets in a single step.

This chapter uses the branch data set SORT.BRANCH, the bookstore data set

SORT.SAMPIN, and the additional bookstore data set SORT.SAMPADD as input

data sets. See Appendix A, “Creating the Sample Data Sets,” on page 153 and

Appendix B, “Descriptions of the Sample Data Sets,” on page 155 for additional

information about these sample data sets. Two temporary data sets created by

ICETOOL from SORT.BRANCH are also used as input.

Note: This chapter also uses data sets other than SORT.BRANCH, SORT.SAMPIN

and SORT.SAMPADD. You can either create data sets from scratch to match

the ones used in the text, or else perform a similar exercise on data sets you

already have.

Writing Required JCL Statements

An ICETOOL job consists of:

1. The JCL statements that are required for every ICETOOL job.

2. The operator statements indicating the operations to be performed by the

ICETOOL job.

106 z/OS V1R6.0 DFSORT: Getting Started

3. The JCL statements that are required as a result of the specified operator

statements.

The first step in creating any ICETOOL job is to write the JCL that is always

required. Here is a skeleton of the JCL for an ICETOOL job:

v The JOB statement signals the beginning of the job.

v The EXEC statement signals the beginning of the job step and tells the operating

system to run the ICETOOL program.

v The TOOLMSG statement defines the output data set for ICETOOL messages.

v The DFSMSG statement defines the output data set for DFSORT messages.

v The TOOLIN statement precedes the ICETOOL statements (comment, blank, and

operator statements). The ICETOOL statements you write must appear after

TOOLIN. The additional JCL statements you write can appear before the

TOOLIN statement or after the ICETOOL statements. In the main ICETOOL job,

the additional JCL statements will be placed after the ICETOOL statements.

ICETOOL Comment and Blank Statements

Comment statements and blank statements can be placed anywhere among the

ICETOOL operator statements.

v Comment statements start with an asterisk (*) in column 1 and are printed along

with the ICETOOL operator statements.

v Blank statements contain blanks in columns 1-72 and are ignored because

ICETOOL prints blank lines where appropriate.

A blank statement and a comment statement for our example looks like this:

* Statistics from all branches

Here are the steps for writing these statements:

 Table 50. Steps to Create a Blank Statement and a Comment Statement

Step Action

1 After the TOOLIN DD statement, skip one line.

2 Type an asterisk (*) in column 1 followed by the comment.

When complete, the TOOLIN statements look like this:

//TOOLIN DD *

* Statistics from all branches

/*

For the main ICETOOL job, a comment statement will be placed before each

operator to describe its function. Although not required, this is a good practice to

follow.

//EXAMP JOB A492,PROGRAMMER

//TOOL EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=A

//DFSMSG DD SYSOUT=A

//TOOLIN DD *

 <ICETOOL statements go here>

/*

<Additional JCL statements go here>

Chapter 10. Using the ICETOOL Utility 107

So Far

So far, you have been introduced to the basics of the ICETOOL utility. Now,

using the following tutorials, you can learn about many of the ICETOOL

operators. The following sections contain parts of the main ICETOOL job, so

that by the end of the chapter, you will have created the complete main

ICETOOL job. At the end of the chapter, there is a section that contains the

complete main ICETOOL job and its resulting messages.

Printing Statistics For Numeric Fields

When working with data sets containing numeric fields, you may want statistical

information about one or more of those fields. You can use the STATS operator to

find the minimum, maximum, average, and total values of up to 10 specific

numeric fields.

A STATS operator that prints statistics for the employees, profit, and revenue fields

of the branch office data set looks like this:

STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

Revenue

Profit

Employees

ddname of input data set

Here are the steps for writing this STATS operator.

 Table 51. Steps to Create the STATS Operator

Step Action

1 Type STATS after the comment statement (you can leave one or more blanks

before STATS if you like).

2 Leave at least one blank and type FROM(ALL)

FROM specifies the ddname (that is, the name of the DD statement) for the

input data set from which you want to print statistics. In this case ALL is the

ddname chosen, but you can use any valid 1-8 character ddname you like.

3 Leave at least one blank and type ON

ON defines a field for which you want to print statistics.

4 Type in parentheses, and separated by commas:

1. Where the employees field begins relative to the beginning of the input

record (the first position is byte 1). The employees field begins at byte 18.

2. The length of the employees field in bytes. The employees field is 4 bytes

long.

3. A code for the data format. The employees field contains zoned decimal

data, which you specify as ZD.

108 z/OS V1R6.0 DFSORT: Getting Started

Table 51. Steps to Create the STATS Operator (continued)

Step Action

5 Leave at least one blank and type ON

ON defines another field for which you want to print statistics. You can print

statistics for up to 10 fields with one STATS statement. Specify the ON fields

in the same order in which you want their statistics to be printed.

6 Type in parentheses, and separated by commas the location (28), length (6),

and format (PD for packed decimal) of the profit field.

7 Leave at least one blank and type ON. Type in parentheses and separated by

commas, the location (22), length (6), and format (PD) of the revenue field.

Make sure that the statement is coded between columns 1 and 72.

You must also write a DD statement for the A123456.SORT.BRANCH data set

using the ddname ALL and place it at the end of the job:

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

When complete the TOOLIN statements and ALL statement look like this:

//TOOLIN DD *

* Statistics from all branches

STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

/*

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

When this STATS operation is run, the results are placed in the TOOLMSG data

set. If you ran the ICETOOL job you created so far, the TOOLMSG output would

look like this:

 Looking at the output, you will notice that:

v Message ICE628I gives the count of records processed.

v Messages ICE607I, ICE608I, and ICE609I give the numerical statistics for each

ON field specified in the order in which they were specified.

v A return code for each operator is given in message ICE602I and the highest

operator return code is given in message ICE601I.

ICE600I 0 DFSORT ICETOOL UTILITY RUN STARTED

ICE650I 0 VISIT http://www.ibm.com/storage/dfsort FOR ICETOOL PAPERS, EXAMPLES AND MORE

ICE632I 0 SOURCE FOR ICETOOL STATEMENTS: TOOLIN

ICE630I 0 MODE IN EFFECT: STOP

 * Statistics from all branches

 STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

ICE627I 0 DFSORT CALL 0001 FOR COPY FROM ALL TO E35 EXIT COMPLETED

ICE628I 0 RECORD COUNT: 000000000000012

ICE607I 0 STATISTICS FOR (18,4,ZD) :

ICE608I 0 MINIMUM: +000000000000015, MAXIMUM: +000000000000035

ICE609I 0 AVERAGE: +000000000000024, TOTAL : +000000000000298

ICE607I 0 STATISTICS FOR (28,6,PD) :

ICE608I 0 MINIMUM: -000000000004278, MAXIMUM: +000000000008276

ICE609I 0 AVERAGE: +000000000004222, TOTAL : +000000000050665

ICE607I 0 STATISTICS FOR (22,6,PD) :

ICE608I 0 MINIMUM: +000000000012300, MAXIMUM: +000000000042820

ICE609I 0 AVERAGE: +000000000027469, TOTAL : +000000000329637

ICE602I 0 OPERATION RETURN CODE: 00

ICE601I 0 DFSORT ICETOOL UTILITY RUN ENDED - RETURN CODE: 00

Chapter 10. Using the ICETOOL Utility 109

Continuing an Operator Statement

If you cannot fit your STATS statement (or any other ICETOOL operator statement)

between columns 1 and 72 of a single line, you can continue it across multiple

lines. If you end a line with a hyphen (-) after the operator or any operand, the

next line is treated as a continuation. Any characters specified after the hyphen are

ignored.

Note that the operator and each operand must be completely specified on one line

(between columns 1 and 72).

For example:

STATS - this is the operator

 FROM(ALL) - ALL is the ddname for SORT.BRANCH

 ON(18,4,ZD)-

 ON(28,6,PD)-

 ON(22,6,PD)

Statistics For VB Data Set Record Lengths

When working with variable length record data sets, you can use the STATS

operator to easily obtain the following information:

v The shortest record in the data set (minimum)

v The longest record in the data set (maximum)

v The average length of records in the data set (average)

v The total number of bytes in the data set (total)

ICETOOL provides the special ON(VLEN) field for printing these statistics. Specify

ON(VLEN) as you would any other ON field.

When you code ON(p,m,f) fields for VB records, remember to add 4 to the starting

position to account for the 4-byte RDW, in the same way discussed earlier for

DFSORT control statement fields.

The following STATS operator reports the minimum, maximum, total and average

values for the record length and for a PD field in the first two data bytes:

STATS FROM(VBIN) ON(VLEN) ON(5,2,PD)

So far

Now you know how to use ICETOOL’s STATS operator to print statistics for

numeric fields and VB record lengths. In the next section, you will learn how

to use ICETOOL’s SORT operator.

Creating Identical Sorted Data Sets

You can use ICETOOL’s SORT operator to create sorted output data sets. A single

SORT operator can be used to create one output data set or up to 10 identical

output data sets. Using INCLUDE or OMIT statements, you can select a subset of

the input records. Using INREC or OUTREC statements, you can rearrange the

fields of the input records. Using OUTFIL statements, you can create any number

of output data sets with different subsets of records or arrangements of fields.

For this example, we will use both the sample bookstore data set (SORT.SAMPIN)

and the additional bookstore data set (SORT.SAMPADD) as input.

110 z/OS V1R6.0 DFSORT: Getting Started

A SORT operator that selects the books from publishers VALD and WETH, sorts

them by publisher and title, and writes them to disk and print data sets, looks like

this:

SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)

First four chars of ddname
of DFSORT control data set

ddname of second output data set

ddname of first output data set

ddname of input data set

Here are the steps for writing this SORT operator:

 Table 52. Steps to Create the SORT Operator

Step Action

1 Write a comment statement (optional):

* Books from VALD and WETH

2 Type SORT after the comment statement

3 Leave at least one blank and type FROM(BKS)

BKS specifies the ddname for the input data sets you want to sort.

4 Leave at least one blank and type TO(DAPUBS,PRPUBS)

TO specifies the ddnames for the output data sets to contain the sorted subset

of records. You can create up to 10 identical output data sets of any type that

DFSORT allows (permanent, temporary, disk, tape, print, etc).

In this case, DAPUBS is the ddname chosen for the temporary disk data set

and PRPUBS is the ddname chosen for the print data set. You can use any

valid 1-8 character ddnames you like.

ICETOOL will automatically use OUTFIL to create both output data sets from

a single pass over the input data set.

5 Leave at least one blank and type USING(SPUB)

USING specifies the first four characters of the ddname for the data set

containing the DFSORT control statements. In this case, the four characters

chosen are SPUB, but you can use any four characters you like as long as

they are valid for a ddname. The last four characters of the ddname are

always CNTL, so in this case the full ddname is SPUBCNTL.

For the SORT operator, you must specify a SORT control statement in the

DFSORT control statement data set (SPUBCNTL) in order to tell DFSORT

how to sort the input data set. You can also specify additional DFSORT

control statements, like INCLUDE, OMIT, INREC, OUTREC and OUTFIL, as

appropriate.

Chapter 10. Using the ICETOOL Utility 111

To write the JCL statements that go with the SORT operator:

 Table 53. Steps to Create JCL Statements for the SORT Operator

Step Action

1 Write DD statements for the input data sets and place them at the end of the

job. In order to ″concatenate″ the two input data sets together, you must leave

the ddname field blank in the second DD statement:

//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR

// DD DSN=A123456.SORT.SAMPADD,DISP=SHR

2 Write DD statements for the disk and print output data sets and place them

at the end of the job:

//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA

//PRPUBS DD SYSOUT=A

3 Write a DD statement for the DFSORT control statement data set and place it

at the end of the job:

//SPUBCNTL DD *

4 Write the SORT control statement to sort the input data sets by publisher and

title, and the INCLUDE statement to select only the books by publishers

VALD and WETH, and place them after the SPUBCNTL statement:

 SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH

 INCLUDE COND=(106,4,EQ,C’VALD’,OR,106,4,EQ,C’WETH’),

 FORMAT=CH

When complete, the TOOLIN statements and DD statements for this SORT

operator look like this:

 Tip: Instead of writing the INCLUDE statement above using two conditions joined

by OR, you could write it with one condition using INCLUDE’s substring search

feature, as you learned in “Substring Search for INCLUDE and OMIT” on page 30,

like this:

 INCLUDE COND=(106,4,SS,EQ,C’VALD,WETH’)

Table 54 shows the Book Title and Publisher fields for the records as they would

appear in the resulting output data sets. The actual records contain all of the fields.

 Table 54. Books from publishers VALD and WETH

Book Title Publisher

1 75 106 109

* Books from VALD and WETH

SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)

/*

//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR

// DD DSN=A123456.SORT.SAMPADD,DISP=SHR

//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA

//PRPUBS DD SYSOUT=A

//SPUBCNTL DD *

 SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH

 INCLUDE COND=(106,4,EQ,C’VALD’,OR,106,4,EQ,C’WETH’),

 FORMAT=CH

/*

112 z/OS V1R6.0 DFSORT: Getting Started

Table 54. Books from publishers VALD and WETH (continued)

Book Title Publisher

CELLS AND HOW THEY WORK

COMPLETE SPANISH DICTIONARY

EDITING SOFTWARE MANUALS

FREUD’S THEORIES

INTRODUCTION TO BIOLOGY

NOVEL IDEAS

SHORT STORIES AND TALL TALES

STRATEGIC MARKETING

VIDEO GAME DESIGN

ZEN BUSINESS

ANTICIPATING THE MARKET

CIVILIZATION SINCE ROME FELL

COMPUTERS: AN INTRODUCTION

EIGHTEENTH CENTURY EUROPE

GUIDE TO COLLEGE LIFE

GUNTHER’S GERMAN DICTIONARY

REBIRTH FROM ITALY

SYSTEM PROGRAMMING

THE INDUSTRIAL REVOLUTION

VALD

VALD

VALD

VALD

VALD

VALD

VALD

VALD

VALD

VALD

WETH

WETH

WETH

WETH

WETH

WETH

WETH

WETH

WETH

Creating Different Subsets of a Sorted Data Set

If you want to create subsets of records from the same input data set, you can use

OUTFIL statements with a SORT or COPY operator. The OUTFIL statements

specify the ddnames of the output data sets, so the TO operand is not needed. All

of the features of OUTFIL are available through the SORT and COPY operators.

A SORT operator that creates separate disk and tape data sets for the branch

offices in California, and those in Colorado, sorted by city looks like this:

SORT FROM(ALL) USING(CACO)

First four chars of ddname
of DFSORT control data set

ddname of input data set

Here are the steps for writing this SORT operator:

 Table 55. Steps to Create the SORT Operator

Step Action

1 Write a comment statement (optional):

* Separate output for California and Colorado branches

2 Type SORT after the comment statement

3 Leave at least one blank and type FROM(ALL)

ALL specifies the ddname for the input data set you want to sort. You can

use the same ddname that you used for A123456.SORT.BRANCH in the

STATS operator.

4 Leave at least one blank and type USING(CACO)

The CACOCNTL data set contains the SORT and OUTFIL statements.

Chapter 10. Using the ICETOOL Utility 113

To write the JCL statements that go with the SORT operator follow these steps:

 Table 56. Steps to Create JCL Statements for the SORT Operator

Step Action

1 Write a DD statement for the DFSORT control statement data set and place it

at the end of the job:

//CACOCNTL DD *

2 Write the SORT control statement to sort the input data set by city, the

OUTFIL statement to select only the California branches, and the OUTFIL

statement to select only the Colorado branches, and place them after the

CACOCNTL statement:

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C’CA’)

 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C’CO’)

3 Write DD statements for the disk and tape output data sets and place them at

the end of the job:

//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390

//CATAPE DD DSN=CA.BRANCH,UNIT=3480,VOL=SER=111111,

// DISP=(NEW,KEEP),LABEL=(,SL)

//CODASD DD DSN=&& CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390

//COTAPE DD DSN=CO.BRANCH,UNIT=3480,VOL=SER=222222,

// DISP=(NEW,KEEP),LABEL=(,SL)

When complete, the TOOLIN statements and DD statements for this SORT

operator look like this:

 Table 57 shows the records as they would appear in the CADASD data set (&&CA)

and the CATAPE data set (CA.BRANCH) as a result of using the first OUTFIL

statement.

 Table 57. Records for California Sorted by City

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Los Angeles CA 32 22530 −4278

Morgan Hill CA 15 18200 3271

Sacramento CA 29 42726 8276

San Diego CA 22 32940 8275

San Francisco CA 35 42820 6832

San Jose CA 21 27225 8264

Sunnyvale CA 18 16152 −978

* Separate output for California and Colorado branches

SORT FROM(ALL) USING(CACO)

/*

//CACOCNTL DD *

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C’CA’)

 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C’CO’)

/*

//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390

//CATAPE DD DSN=CA.BRANCH,UNIT=3480,VOL=SER=111111,

// DISP=(NEW,KEEP),LABEL=(,SL)

//CODASD DD DSN=&&CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390

//COTAPE DD DSN=CO.BRANCH,UNIT=3480,VOL=SER=222222,

// DISP=(NEW,KEEP),LABEL=(,SL)

114 z/OS V1R6.0 DFSORT: Getting Started

Table 58 shows the records as they would appear in the CODASD data set (&&CO)

and the COTAPE data set (CO.BRANCH) as a result of using the second OUTFIL

statement.

 Table 58. Records for Colorado Sorted by City

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Aspen CO 20 25800 5200

Boulder CO 32 33866 7351

Denver CO 33 31876 6288

Fort Collins CO 22 12300 −2863

Vail CO 19 23202 5027

Figure 6 on page 139 shows the complete TOOLMSG output.

So Far

So far in this tutorial, you have learned how to print statistics for numeric

fields using ICETOOL’s STATS operator, and how to sort an input data set

and create multiple output data sets using ICETOOL’s SORT operator. Next,

you will learn about ICETOOL’s COPY operator.

Creating Multiple Unsorted Data Sets

If you want to create unsorted copies of an input data set, you can use ICETOOL’s

COPY operator. The COPY operator does not require any DFSORT statements.

However, you can supply DFSORT statements (for example, INCLUDE, OMIT,

INREC, OUTREC, or OUTFIL) if appropriate.

Here are a couple of examples of COPY operator statements with their

accompanying JCL statements:

//TOOLIN DD *

 COPY FROM(ALL) TO(D1,D2,D3)

 COPY FROM(ALL) TO(P1) USING(COPY)

/*

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

//D1 DD DSN=A123456.SORT.COPY1,DISP=OLD

//D2 DD DSN=A123456.SORT.COPY2,DISP=OLD

//D3 DD DSN=A123456.SORT.COPY3,DISP=OLD

//P1 DD SYSOUT=*

//COPYCNTL DD *

 INCLUDE COND=(16,2,CH,EQ,C’CA’)

/*

The first COPY operator creates identical copies of A123456.SORT.BRANCH in

A123456.SORT.COPY1, A123456.SORT.COPY2, and A123456.SORT.COPY3.

The second COPY operator prints the A123456.SORT.BRANCH records for the

branches in California. Note that only the character fields in the resulting printed

output will be readable. You will learn how to display numeric fields in readable

format later in this chapter.

Because copying is more efficient than sorting, you should use the COPY operator

rather than the SORT operator when possible.

Chapter 10. Using the ICETOOL Utility 115

So Far

So far in this chapter you have learned about STATS, SORT, and COPY, three

important ICETOOL operators. The next tutorial shows you how to use

ICETOOL’s RANGE operator.

Counting Values in a Range

You can use ICETOOL’s RANGE operator to count the number of values for a

particular numeric field that fall within a range you define. The range can be

defined with:

Operand Comparison

EQUAL Equal to a value

NOTEQUAL Not equal to a value

LOWER Less than a value

HIGHER Greater than a value

HIGHER and LOWER Greater than a value, but less than another value

To print a count of the number of California branches with profit greater than

−1500, but less than +8000, write the following RANGE statement:

RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)

Upper limit
for range

Lower limit
for range

Profit

ddname of
input data set

The input data set defined by CADASD is the same data set you created earlier

(with the SORT operator) for the California branches. HIGHER(−1500) indicates

that you want to count values in the profit field that are greater than −1500, while

LOWER(+8000) indicates that you want to count values in the profit field that are

less than +8000. For a negative limit, you must specify a minus (−) sign before the

number. For a positive limit, you either specify a plus (+) sign before the number

or leave it out, therefore, HIGHER(8000) is the same as HIGHER(+8000).

To print a count of the number of branches (in California and Colorado) with less

than 32 employees, write the following RANGE statement:

RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

Upper limit for range

Employees

ddname of input data set

116 z/OS V1R6.0 DFSORT: Getting Started

Because CADASD and ALL were previously defined, you don’t need to add any

new JCL statements to the ICETOOL job.

When these RANGE operators are run, the results are placed in the TOOLMSG

data set. The TOOLMSG output produced for these RANGE operators would look

like this:

 * California branches profit analysis

 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)

 ICE627I 0 DFSORT CALL 0004 FOR COPY FROM CADASD TO E35 EXIT COMPLETED

 ICE628I 0 RECORD COUNT: 000000000000007

 ICE631I 0 NUMBER OF VALUES IN RANGE FOR (28,6,PD) : 000000000000003

 ICE602I 0 OPERATION RETURN CODE: 00

 * Branches with less than 32 employees

 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

 ICE627I 0 DFSORT CALL 0005 FOR COPY FROM ALL TO E35 EXIT COMPLETED

 ICE628I 0 RECORD COUNT: 000000000000012

 ICE631I 0 NUMBER OF VALUES IN RANGE FOR (18,4,ZD) : 000000000000008

 ICE602I 0 OPERATION RETURN CODE: 00

Looking at the output, you will notice that:

v Message ICE628I gives the count of records processed.

v Message ICE631I gives the count of values in the specified range. There were 3

California branches with profit greater than −1500, but less than +8000, and 8

branches in all with less than 32 employees.

v A return code for each operator is given in message ICE602I.

So Far

You have now learned how to count the number of values in a range for a

particular field using ICETOOL’s RANGE operator. Next, you will learn

about ICETOOL’s DISPLAY operator.

Printing Simple Reports

Numeric fields are often in a format (binary, fixed-point, or decimal) that is not

readable when printed. You can use ICETOOL’s DISPLAY operator to print simple

reports showing up to 20 numeric and character fields from an input data set in

readable form. The specified fields are printed in a list data set that you define. For

numeric fields, appropriate plus (+) and minus (−) signs are printed along with the

decimal value of each number.

To print a list data set showing the profit, employees, and city fields for the

Colorado branches, write the following DISPLAY operator:

Chapter 10. Using the ICETOOL Utility 117

|

DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)

City

Employees

Profit

ddname of
list data set

ddname of
input data set

The input data set defined by CODASD is the same data set you created earlier

(with the SORT operator) for the Colorado branches. LIST specifies the ddname for

the list data set you want the fields to be printed in. In this case, OUT is the

ddname chosen for the list data set, but you can use any valid 1-8 character

ddname you like. Specify the ON fields in the same order in which you want their

values to be printed in the list data set.

Because OUT has not been defined previously, you must add a JCL statement for it

to the end of the job:

//OUT DD SYSOUT=A

When this DISPLAY operator is run, the OUT data set looks like this:

 (28,6,PD) (18,4,ZD) (1,15,CH)

 +000000000005200 +000000000000020 Aspen

 +000000000007351 +000000000000032 Boulder

 +000000000006288 +000000000000033 Denver

 -000000000002863 +000000000000022 Fort Collins

 +000000000005027 +000000000000019 Vail

Note: The output actually contains ANSI carriage control characters in the first

byte of the report, as explained previously in “Creating Reports with

OUTFIL” on page 74. However, ICETOOL always inserts actual blank lines

in your report rather than using the ’0’ and ’-’ ANSI carriage control

characters to print blank lines. So you do not have to do anything to force

blank lines to be displayed when you view an ICETOOL report, as you do

for an OUTFIL report. The ANSI carriage control characters are not shown

in this section, although they are present in the reports.

The values for profit, employees, and city are printed in separate columns across

the page with a header for each column at the top. If more than one page is

printed, DISPLAY puts the header at the top of each page. If you do not want the

header printed, you can use DISPLAY’s NOHEADER operand to suppress it.

DISPLAY also has two special ON fields you can use:

v ON(VLEN) can be used for variable length record data sets to print the length

of each record.

v ON(NUM) can be used to print a relative record number for each record

(starting with 1).

Use the ON(VLEN) or ON(NUM) field just as you would any other ON field.

118 z/OS V1R6.0 DFSORT: Getting Started

Printing Tailored Reports

The previous tutorial showed you how to print a simple listing of numeric and

character fields using the DISPLAY operator. By using additional operands of

DISPLAY, you can create list data sets showing character and numeric fields in a

variety of tailored report formats. You can specify:

v title elements (TITLE, DATE, PAGE, and TIME operands)

v one, two or three line field headings (HEADER operand)

v spacing for columns (INDENT, BETWEEN, and STATLEFT operands)

v field formatting (BLANK and PLUS operands), and formatting items for

individual ON fields

v statistics (TOTAL, AVERAGE, MAXIMUM and MINIMUM operands)

v lines per page (LINES operand)

Refer to z/OS DFSORT Application Programming Guide for complete details on these

and other operands you can use with DISPLAY.

To print a report for the Colorado branches showing the city, profit and employee

fields with a title line, field headings, totals, averages and minimums, write the

following DISPLAY operator:

* Print a report for the Colorado branches
DISPLAY FROM(CODASD) LIST(RPT) -

DATE TITLE('Colorado Branches Report') PAGE -

HEADER('City') HEADER('Profit') HEADER('Employees') -

ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK BETWEEN(5) -

TOTAL('Total') AVERAGE('Average') MINIMUM ('Lowest')

ddnames of data sets

Title line elements

Field headings

Statistics

Alternate print format

Fields

Spaces between columns

CODASD is the ddname for the previously created Colorado branches data set.

RPT is the ddname for the list data set in which you want the report to be printed.

DATE, TITLE and PAGE indicate the elements to be included in the title line and

their placement. Specify these operands in the same order in which you want them

to be printed in the list data set.

Each HEADER indicates a heading to be used for the corresponding field. Specify

the ON fields and their corresponding HEADER strings in the same order in which

you want their values to be printed in the list data set.

BLANK specifies that numeric values are printed with blank for plus sign, - for

minus sign and no leading zeros. BETWEEN specifies the number of spaces

between columns (overriding the default of 3). HEADER, BLANK and BETWEEN

Chapter 10. Using the ICETOOL Utility 119

|

change the justification and column width for the fields, and the spacing between

them, to produce a more report-like format.

TOTAL, AVERAGE and MINIMUM cause the indicated statistics to be produced at

the end of the report, identified by the specified strings.

Because RPT has not been defined previously, you must add a JCL statement for it

at the end of the job:

//RPT DD SYSOUT=A

When this DISPLAY operator is run, the RPT data set that results looks like:

10/21/03 Colorado Branches Report - 1 -

City Profit Employees

--------------- ---------------- ----------------

Aspen 5200 20

Boulder 7351 32

Denver 6288 33

Fort Collins -2863 22

Vail 5027 19

Total 21003 126

Average 4200 25

Lowest -2863 19

The title line and heading line are printed at the top of each page. The character

data is left-justified and the numeric data is right-justified with zeros suppressed.

The statistics are printed after the columns of data.

Using Formatting Items

The previous tutorial used the BLANK operand to change the way all numeric

values in the report are displayed. You can use formatting items to change the

appearance of individual numeric fields and their related statistics in the report,

with respect to separators, number of digits, decimal point, decimal places, signs,

leading zeros, division, leading strings, floating strings, and trailing strings.

Formatting items can also be used to insert leading strings or trailing strings for

character fields.

Formatting items are written as part of the ON operand, separated by commas, as

follows: ON(p,m,f,formatting), ON(VLEN,formatting) and ON(NUM,formatting).

Edit Masks

You can select from thirty-three pre-defined edit masks. The table below describes

the available masks and shows how the values 12345678 and -1234567 would be

printed for each mask. In the pattern:

v d is used to represent a decimal digit (0-9)

v w is used to represent a leading sign that will be blank for a positive value or -

for a negative value

v x is used to represent a trailing sign that will be blank for a positive value or -

for a negative value

v y is used to represent a leading sign that will be blank for a positive value or (

for a negative value

120 z/OS V1R6.0 DFSORT: Getting Started

v z is used to represent a trailing sign that will be blank for a positive value or)

for a negative value

 Table 59. Edit Mask Patterns

Mask Pattern 12345678 -1234567

A0 wddddddddddddddddddddddddddddddd 12345678 -1234567

A1 wd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd 12,345,678 -1,234,567

A2 wd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd 12.345.678 -1.234.567

A3 wd ddd ddd ddd ddd ddd ddd ddd ddd ddd ddd 12 345 678 -1 234 567

A4 wd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd 12’345’678 -1’234’567

A5 d ddd ddd ddd ddd ddd ddd ddd ddd ddd dddx 12 345 678 1 234 567-

B1 wddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.d 1,234,567.8 -123,456.7

B2 wddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,d 1.234.567,8 -123.456,7

B3 wddd ddd ddd ddd ddd ddd ddd ddd ddd ddd,d 1 234 567,8 -123 456,7

B4 wddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd.d 1’234’567.8 -123’456.7

B5 wddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd,d 1’234’567,8 -123’456,7

B6 ddd ddd ddd ddd ddd ddd ddd ddd ddd ddd,dx 1 234 567,8 123 456,7-

C1 wdd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.dd 123,456.78 -12,345.67

C2 wdd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,dd 123.456,78 -12.345,67

C3 wdd ddd ddd ddd ddd ddd ddd ddd ddd ddd,dd 123 456,78 -12 345,67

C4 wdd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd.dd 123’456.78 -12’345.67

C5 wdd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd,dd 123’456,78 -12’345,67

C6 dd ddd ddd ddd ddd d ddd ddd ddd ddd,ddx 123 456,78 12 345,67-

D1 wd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.ddd 12,345.678 -1,234.567

D2 wd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,ddd 12.345,678 -1.234,567

D3 wd ddd ddd ddd ddd ddd ddd ddd ddd ddd,ddd 12 345,678 -1 234,567

D4 wd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd.ddd 12’345.678 -1’234.567

D5 wd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd,ddd 12’345,678 -1’234,567

D6 d ddd ddd ddd ddd ddd ddd ddd ddd ddd,dddx 12 345,678 1 234,567-

E1 yd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,dddz 12,345,678 (1,234,567)

E2 yd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.dddz 12.345.678 (1.234.567)

E3 yd ddd ddd ddd ddd ddd ddd ddd ddd ddd dddz 12 345 678 (1 234 567)

E4 yd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’dddz 12’345’678 (1’234’567)

F1 ydd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.ddz 123,456.78 (12,345.67)

F2 ydd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,ddz 123.456,78 (12.345,67)

F3 ydd ddd ddd ddd ddd ddd ddd ddd ddd ddd,ddz 123 456,78 (12 345,67)

F4 ydd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd.ddz 123’456.78 (12’345.67)

F5 ydd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd,ddz 123’456,78 (12’345,67)

G1 wddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.dddd 1,234.5678 -123.4567

Chapter 10. Using the ICETOOL Utility 121

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 59. Edit Mask Patterns (continued)

Mask Pattern 12345678 -1234567

G2 wddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,dddd 1.234,5678 -123,4567

G3 wddd ddd ddd ddd ddd ddd ddd ddd ddd,dddd 1 234,5678 -123,4567

G4 wddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd.dddd 1’234.5678 -123.4567

G5 wddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd’ddd,dddd 1’234,5678 -123,4567

G6 ddd ddd ddd ddd ddd ddd ddd ddd ddd,ddddx 1 234,5678 123,4567-

To use the E1 edit mask for the Profit field in the previous report, just change

ON(28,6,PD) to ON(28,6,PD,E1). The RPT data set looks like this:

10/21/03 Colorado Branches Report - 1 -

City Profit Employees

--------------- --------------------- ----------------

Aspen 5,200 20

Boulder 7,351 32

Denver 6,288 33

Fort Collins (2,863) 22

Vail 5,027 19

Total 21,003 126

Average 4,200 25

Lowest (2,863) 19

Leading Zeros

By default, leading zeros are not displayed when you use an edit mask, but you

can change that by adding LZ to your formatting items as in the second ON field

below:

HEADER(’No leading zeros’,’(without LZ)’) ON(28,6,PD,E1) -

HEADER(’Leading zeros’,’(with LZ)’) ON(28,6,PD,E1,LZ)

The resulting report shows the difference in the way the Profit values from

SORT.BRANCH are displayed with the E1 edit mask and without and with LZ.

Note the use of HEADER(’string1’,’string2’) to produce a two line heading.

No leading zeros Leading zeros

 (without LZ) (with LZ)

---------------- ----------------

 (4,278) (00,000,004,278)

 6,832 00,000,006,832

 (2,863) (00,000,002,863)

 8,276 00,000,008,276

 (978) (00,000,000,978)

 6,288 00,000,006,288

 7,351 00,000,007,351

 3,271 00,000,003,271

 5,027 00,000,005,027

 8,264 00,000,008,264

 8,275 00,000,008,275

 5,200 00,000,005,200

Edit Patterns

The edit masks are not particularly useful for unsigned numeric data such as

telephone numbers, dates, time-of-day, identification numbers, and so on. Instead,

122 z/OS V1R6.0 DFSORT: Getting Started

|

||||

||||

||||

||||

||||

||||

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

you can use edit patterns to change the way these types of numeric values are

displayed in your report. E’pattern’ is used to specify an edit pattern. You use a 9

in the pattern where you want a digit (0-9) from the numeric value to appear, and

any other characters anywhere you want them to appear.

If you have an 8-byte ZD date in the form mmddyyyy in positions 21-28, you can

display it as mm/dd/yyyy using ON(21,8,ZD,E’99/99/9999’). An 8-byte value of

03122004 is displayed as 03/12/2004.

If you have a 10-byte ZD telephone number in the form aaapppnnnn in positions

31-40, you can display it as (aaa)-ppp-nnnn using ON(31,10,ZD, E’(999)-999-9999’).

A 10-byte value of 0123456789 is displayed as (012)-345-6789.

No Statistics

By default, any statistics you request using TOTAL, MAXIMUM, MINIMUM, and

AVERAGE (as well as BTOTAL, BMINIMUM, BMAXIMUM and BAVERAGE,

which you will learn about later) are displayed for every numeric ON field. You

can use the NOST formatting item to suppress statistics for numeric fields, such as

telephone numbers, for which they are meaningless. The following DISPLAY

operator prints a report from the SORT.BRANCH data set with totals for the

Revenue and Profit fields, but not for the Employees field.

DISPLAY FROM(IN) LIST(RPT3) -

 HEADER(’City’) ON(1,15,CH) -

 HEADER(’Employees’) ON(18,4,ZD,NOST) -

 HEADER(’Revenue’) ON(22,6,PD) -

 HEADER(’Profit’) ON(28,6,PD) -

 TOTAL(’Totals’)

The RPT3 data set looks like this:

City Employees Revenue Profit

--------------- --------- ---------------- ----------------

Los Angeles 32 22530 -4278

San Francisco 35 42820 6832

Fort Collins 22 12300 -2863

Sacramento 29 42726 8276

Sunnyvale 18 16152 -978

Denver 33 31876 6288

Boulder 32 33866 7351

Morgan Hill 15 18200 3271

Vail 19 23202 5027

San Jose 21 27225 8264

San Diego 22 32940 8275

Aspen 20 25800 5200

Totals 329637 50665

Division

You can select from ten division items as follows:

v /D - divide by 10

v /C - divide by 100

v /K - divide by 1000

v /DK - divide by 10000 (10*1000)

v /CK - divide by 100000 (100*1000)

v /M - divide by 1000000 (1000*1000)

v /G - divide by 1000000000 (1000*1000*1000)

v /KB - divide by 1024

v /MB - divide by 1048576 (1024*1024)

v /GB - divide by 1073741824 (1024*1024*1024)

Chapter 10. Using the ICETOOL Utility 123

The Profit values from SORT.BRANCH look as follows with

HEADER(’Profit/(Loss) in K$’) and ON(28,6,PD,E1,/K):

Profit/(Loss) in K$

 (4)

 6

 (2)

 8

 0

 6

 7

 3

 5

 8

 8

 5

Leading, Floating and Trailing Characters

You can add floating characters to your numeric fields and add leading and

trailing characters to your numeric and character fields as follows:

v F’string’ - a floating string to appear to the left of the first non-blank character

of the formatted numeric data.

v L’string’ - a leading string to appear at the beginning of the character or

numeric data column.

v T’string’ - a trailing string to appear at the end of the character or numeric data

column.

The Profit values from SORT.BRANCH look as follows with HEADER(’Profit’) and

ON(28,6,PD,A1,F’$’,T’**’):

 Profit

 $-4,278**

 $6,832**

 $-2,863**

 $8,276**

 $-978**

 $6,288**

 $7,351**

 $3,271**

 $5,027**

 $8,264**

 $8,275**

 $5,200**

Printing Sectioned Reports

The previous tutorial showed you how to print tailored reports using the DISPLAY

operator. By using the BREAK operand of DISPLAY, you can create reports divided

into sections by a character or numeric break field on which you have previously

sorted. You can use formatting items with BREAK(p,m,f,formatting) in the same

way you can use them with ON(p,m,f,formatting). You can also specify a string for

the break title (BTITLE operand) and statistics for the individual sections (BTOTAL,

BAVERAGE, BMAXIMUM and BMINIMUM operands).

For this example, we will use the data set with books from publishers VALD and

WETH, sorted by publisher and title, that we created previously. To print a report

with sections by publisher showing the title and price fields with a title line, field

headings, break title, break averages and totals, and overall averages and totals,

write the following DISPLAY operator:

124 z/OS V1R6.0 DFSORT: Getting Started

* Print a report of books for individual publishers

DISPLAY FROM(DAPUBS) LIST(SECTIONS) -

TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -

BAVERAGE('AVERAGE FOR THIS PUBLISHER') -

BTOTAL('TOTAL FOR THIS PUBLISHER') -

AVERAGE('AVERAGE FOR ALL PUBLISHERS') -

TOTAL('TOTAL FOR ALL PUBLISHERS') -

HEADER('TITLE OF BOOK') ON(1,35,CH) -

HEADER('PRICE OF BOOK') ON(1704,BI,C1,F'$') -

BTITLE('PUBLISHER:') BREAK(106,4,CH) -

ddnames of data sets

Title line elements

Section average

Section total

Overall average

Overall total

Heading and field

Heading and field

Break field

Break title

DAPUBS is the ddname for the previously created VALD and WETH data set.

SECTIONS is the ddname for the list data set in which you want the report to be

printed.

TITLE and PAGE indicate the elements to be included in the title line and their

placement.

Each HEADER and ON pair indicate a field to be included in the report and the

heading to be used for it.

BTITLE indicates a string to be used for the break title and its placement (before or

after the break field). BREAK indicates the break field to be used to create sections.

BAVERAGE and BTOTAL indicate section statistics to be produced at the end of

each section.

AVERAGE and TOTAL indicate overall statistics to be produced at the end of the

report.

Because SECTIONS has not been defined previously, you must add a JCL

statement for it at the end of the job:

//SECTIONS DD SYSOUT=A

When this DISPLAY operator is run, it produces a three-page report for the

SECTIONS data set that looks like this:

Chapter 10. Using the ICETOOL Utility 125

BOOKS FOR INDIVIDUAL PUBLISHERS - 1 -

PUBLISHER: VALD

TITLE OF BOOK PRICE OF BOOK

----------------------------------- ----------------------

CELLS AND HOW THEY WORK $24.95

COMPLETE SPANISH DICTIONARY $6.50

EDITING SOFTWARE MANUALS $14.50

FREUD’S THEORIES $12.50

INTRODUCTION TO BIOLOGY $23.50

NOVEL IDEAS $24.50

SHORT STORIES AND TALL TALES $15.20

STRATEGIC MARKETING $23.50

VIDEO GAME DESIGN $21.99

ZEN BUSINESS $12.00

AVERAGE FOR THIS PUBLISHER $17.91

TOTAL FOR THIS PUBLISHER $179.14

BOOKS FOR INDIVIDUAL PUBLISHERS - 2 -

PUBLISHER: WETH

TITLE OF BOOK PRICE OF BOOK

----------------------------------- ----------------------

ANTICIPATING THE MARKET $20.00

CIVILIZATION SINCE ROME FELL $13.50

COMPUTERS: AN INTRODUCTION $18.99

EIGHTEENTH CENTURY EUROPE $17.90

GUIDE TO COLLEGE LIFE $20.00

GUNTHER’S GERMAN DICTIONARY $10.88

REBIRTH FROM ITALY $25.60

SYSTEM PROGRAMMING $31.95

THE INDUSTRIAL REVOLUTION $7.95

AVERAGE FOR THIS PUBLISHER $18.53

TOTAL FOR THIS PUBLISHER $166.77

BOOKS FOR INDIVIDUAL PUBLISHERS - 3 -

TITLE OF BOOK PRICE OF BOOK

----------------------------------- ----------------------

AVERAGE FOR ALL PUBLISHERS $18.20

TOTAL FOR ALL PUBLISHERS $345.91

So Far

You have now learned how to print simple, tailored and sectioned reports

using ICETOOL’s DISPLAY operator. Next, you will learn about ICETOOL’s

OCCUR operator.

Printing How Many Times Fields Occur

You can use ICETOOL’s OCCUR operator to print a simple or tailored report

showing how many times different ON field values occur, sorted by those ON field

values. Values that occur only once are called ″non-duplicate″ values. Values that

occur more than once are called ″duplicate″ values.

126 z/OS V1R6.0 DFSORT: Getting Started

You can list all of the values in the data set, or list different combinations of

duplicate and non-duplicate values, using the following operands:

v ALLDUPS - only list duplicate values

v NODUPS - only list non-duplicate values

v EQUAL - only list values that occur a specified number of times

v HIGHER - only list values that occur more than a specified number of times

v LOWER - only list values that occur less than a specified number of times

Setting up an OCCUR report is similar to setting up a DISPLAY report. Specify ON

fields for OCCUR in the same order you want their values to be printed in the list

data set. OCCUR also has two special ON fields you can use:

v ON(VALCNT) can be used to print the number of times each field value occurs.

v ON(VLEN) can be used for the record length of variable length records.

You can use up to 10 ON fields; all of the ON field values, except ON(VALCNT)

and ON(VLEN), are used for sorting and counting occurrences. For example, if you

use ON(1,4,CH), ’ABCD+01’ and ’ABCD-01’ are sorted in that order (by 1,4,CH)

and counted as two occurrences of ’ABCD’. However, if you use ON(1,4,CH) and

ON(5,3,FS), ’ABCD-01’ is sorted before ’ABCD+01’ (by 1,4,CH,A and 5,3,FS,A) and

counted as one occurrence of ’ABCD-01’ and one occurrence of ’ABCD+01’.

You can use the following for an OCCUR report in the same way you use them for

a DISPLAY report:

v title elements (TITLE, DATE, PAGE, and TIME operands)

v field headings (HEADER operand)

v spacing for columns (INDENT and BETWEEN operands)

v field formatting (BLANK and PLUS operands), and formatting items for

individual ON fields as follows: ON(p,m,f,formatting), ON(VALCNT,formatting)

and ON(VLEN,formatting)

v lines per page (LINES operand)

Refer to z/OS DFSORT Application Programming Guide for complete details on these

and other operands you can use with OCCUR.

For this example, we will use the sample bookstore data set as input. To print a

report showing the number of different books in use from each publisher, write the

following OCCUR statement:

* Print the count of books in use from each publisher
OCCUR FROM(BKIN) LIST(PUBCT) BLANK -

TITLE('Books from Publishers') DATE(DMY.) -

HEADER('Publisher') HEADER('Books Used’) -

ON(106,4,CH) ON(VALCNT,N05)

Alternate print format

ddnames of data sets

Title line elements

Field headings

Publisher and Count

Chapter 10. Using the ICETOOL Utility 127

|
|
|
|
|
|

BKIN is the ddname for the sample bookstore data set. PUBCT is the ddname for

the list data set in which you want the report to be printed. BLANK specifies the

field format to be used.

TITLE indicates the title string to appear in the title line. DATE indicates the

format in which the date is to appear in the title line (dd.mm.yy where dd is the

two-digit day, mm is the two- digit month and yy is the last two digits of the

year).

The HEADER strings correspond to the ON fields. ON(VALCNT,N05) is a special

ON field used with OCCUR to print the count of occurrences. N05 is a formatting

item used to set the number of digits for the count to 5, overriding the default of

15 digits for VALCNT.

Write DD statements for the A123456.SORT.SAMPIN and PUBCT data sets and

place them at the end of the job:

//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//PUBCT DD SYSOUT=A

When this OCCUR operator is run, the PUBCT data set looks like this:

Books from Publishers 21.10.03

Publisher Books Used

--------- ----------

COR 7

FERN 4

VALD 5

WETH 4

The name of each publisher is printed along with the number of times that

publisher appeared in the sample bookstore data set, which is equivalent to the

number of different books from that publisher.

So Far

You have now learned how use ICETOOL’s OCCUR operator to print a

simple or tailored report showing how many times different field values

occur. Next, you will learn how to use ICETOOL’s SELECT operator.

Selecting Records by Field Occurrences

You can use ICETOOL’s SELECT operator to create an output data set with records

selected according to how many times different ON field values occur, sorted by

those ON field values. As with the OCCUR operator, values that occur only once

are called non-duplicate values, and values that occur more than once are called

duplicate values.

You can use up to 10 ON fields; all of the ON field values are used for sorting and

counting occurrences. For example, if you use ON(1,4,CH), ’ABCD+01’ and

’ABCD-01’ are sorted in that order (by 1,4,CH,A) and counted two occurrences of

(’ABCD’). However, if you use ON(1,4,CH) and ON(5,3,FS), ’ABCD-01’ is sorted

before ’ABCD+01’ (by 1,4,CH,A and 5,3,FS,A) and counted as one occurrence of

’ABCD-01’ and one occurrence of ’ABCD+01’.

You can select different combinations of records with duplicate and non-duplicate

values using the following operands:

128 z/OS V1R6.0 DFSORT: Getting Started

|
|
|
|
|
|

v FIRST - keep only the first record for each value (that is, records with

non-duplicate values, and the first record for duplicate values)

v LAST - keep only the last record for each value (that is, records with

non-duplicate values, and the last record for duplicate values)

v FIRSTDUP - only keep the first record for duplicate values

v LASTDUP - only keep the last record for duplicate values

v ALLDUPS - only keep records with duplicate values

v NODUPS - only keep records with non-duplicate values

v EQUAL - only keep records with values that occur a specified number of times

v HIGHER - only keep records with values that occur more than a specified

number of times

v LOWER - only keep records with values that occur less than a specified number

of times

The selected records are written to the output data set identified by the TO

operand. If appropriate, you can use the DISCARD operand with any of the other

operands above to save the records that are not selected in a separate output data

set identified by the DISCARD operand. You can create just the TO data set, just

the DISCARD data set, or both.

You can use a USING data set to specify DFSORT INCLUDE, OMIT and OUTFIL

statements for your SELECT operation. INCLUDE or OMIT statement processing is

performed before SELECT processing. OUTFIL statement processing is performed

after SELECT processing.

To create an output data set containing records for publishers with more than four

different books in use, write the following SELECT statement:

* Separate output containing records for publishers
* with more than 4 books in use
SELECT FROM(BKIN) TO(BKOUT) ON(106,4,CH) HIGHER(4)

Criteria for selecting records

Publisher

ddname of output data set

ddname of input data set

BKIN is the ddname for the sample bookstore data set. BKOUT is the ddname of

the output data set that will contain the records for each publisher field value that

occurs more than 4 times (all of the records for COR and VALD in this case).

Write a DD statement for the A123456.BOOKS1 data sets and place it at the end of

the job:

//BKOUT DD DSN=A123456.BOOKS1,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(3,3)),UNIT=3390

Table 60 shows the Book Title and Publisher fields for the records in the resulting

output data set. The actual records contain all of the fields.

 Table 60. Books from Publishers with More than Four Books in Use

Book Title Publisher

1 75 106 109

Chapter 10. Using the ICETOOL Utility 129

Table 60. Books from Publishers with More than Four Books in Use (continued)

Book Title Publisher

LIVING WELL ON A SMALL BUDGET

SUPPLYING THE DEMAND

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

PICK’S POCKET DICTIONARY

MODERN ANTHOLOGY OF WOMEN POETS

INTRODUCTION TO PSYCHOLOGY

CRISES OF THE MIDDLE AGES

VIDEO GAME DESIGN

EDITING SOFTWARE MANUALS

STRATEGIC MARKETING

SHORT STORIES AND TALL TALES

INTRODUCTION TO BIOLOGY

COR

COR

COR

COR

COR

COR

COR

VALD

VALD

VALD

VALD

VALD

To create separate output data sets containing records with only the course name

and author’s last name, both for courses that use more than one book, and for

courses that use only one book, write the following SELECT statement:

* Course name and author’s last name for courses with more than one book
* and only one book
SELECT FROM(BKIN) TO(DUP) DISCARD(NODUP)

ddname of nodup output data set

ddname of dup output data set

ddname of input data set

ON(120,25,CH) ALLDUPS USING(CTL1)

First four chars of DFSORT control data set

Criteria for selecting records

Course name

BKIN is the ddname for the sample bookstore data set. DUP is the ddname of the

output data set to contain the records for courses with more than one book.

NODUP is the ddname of the output data set to contain the records for courses

with only one book.

Here is the complete JCL for the job, including control statements:

//SEL2 JOB A492,PROGRAMMER

//EXTRACT EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//TOOLIN DD *

* Course name and author’s last name for courses with more than one book

* and only one book

 SELECT FROM(BKIN) TO(DUP) DISCARD(NODUP) -

 ON(120,25,CH) ALLDUPS USING(CTL1)

/*

//CTL1CNTL DD *

 OMIT COND=(120,25,CH,EQ,C’ ’)

 OUTFIL FNAMES=DUP,OUTREC=(120,25,2X,145,15)

 OUTFIL FNAMES=NODUP,OUTREC=(120,25,2X,145,15)

/*

//DUP DD SYSOUT=*

//NODUP DD SYSOUT=*

130 z/OS V1R6.0 DFSORT: Getting Started

The OMIT statement removes records with a blank course name before SELECT

processing. The OUTFIL statement for DUP reformats the selected records for

courses with more than one book to have just the course name and author’s last

name. The OUTFIL statement for NODUP reformats the selected records for

courses with only one book to have just the course name and author’s last name.

Here are the DUP records exactly as they would appear:

INTRO TO COMPUTERS CHATTERJEE

INTRO TO COMPUTERS CHATTERJEE

INTRO TO COMPUTERS CHATTERJEE

MODERN POETRY FRIEDMAN

MODERN POETRY FRIEDMAN

WORLD HISTORY GOODGOLD

WORLD HISTORY WILLERTON

Here are the NODUP records exactly as they would appear:

ADVANCED MARKETING LORCH

BIOLOGY I GREENBERG

DATA MANAGEMENT SMITH

EUROPEAN HISTORY BISCARDI

FICTION WRITING BUCK

MARKETING MAXWELL

PSYCHOANALYSIS NAKATSU

PSYCHOLOGY I ZABOSKI

TECHINCAL EDITING MADRID

TECHNICAL EDITING MADRID

VIDEO GAMES NEUMANN

Note that ″TECHINCAL EDITING″ and ″TECHNICAL EDITING″ are both

included in the NODUP data set because they are different (″TECHINCAL″ is

spelled incorrectly).

So Far

So far in this chapter you have learned how to print statistics for numeric

fields, create sorted and unsorted data sets, obtain a count of numeric fields

in a range for a particular field, print fields from an input data set, print

reports, print a count of field occurrences and select output records based on

field occurrences. Next, you will learn how to use ICETOOL’s SPLICE

operator.

Joining Fields from Different Data Sets

You can use ICETOOL’s SPLICE operator to create output records in a variety of

ways by splicing together up to 50 fields from records that have the same ON field

values, but different information. The output records are sorted by the ON field

values. The records to be spliced can originate from different input data sets,

making it possible to perform various ″join″ and ″match″ operations.

You can use up to 10 ON fields; all of the ON field values are used for sorting and

splicing. For example, if you use ON(1,4,CH), ’ABCD+01’ and ’ABCD-01’ are

sorted in that order (by 1,4,CH,A) and counted as two occurrences of ’ABCD’.

However, if you use ON(1,4,CH) and ON(5,3,FS), ’ABCD-01’ is sorted before

’ABCD+01’ (by 1,4,CH,A and 5,3,FS,A) and counted as one occurrence of

’ABCD-01’ and one occurrence of ’ABCD+01’.

Chapter 10. Using the ICETOOL Utility 131

|

|
|
|
|
|
|

To do a join or match operation on two input data sets, you need to have the fields

aligned appropriately for each pair of records to be spliced. Typically, you

accomplish that by copying and reformatting one or both input data sets to

temporary data sets, so you can splice the temporary data sets together.

Suppose you have two input data sets, REGION.IN1 and REGION.IN2, as shown

in Table 61 and Table 62.

 Table 61. REGION.IN1 data set for join

Region Headquarters Regional Director

1 5 6 20 21 35

East

West

North

South

Philadelphia

San Jose

Boston

Charlotte

C. Kent

B. Wayne

P. Parker

D. Prince

 Table 62. REGION.IN2 data set for join

Office Region Employees Evaluation Established

 1 4 5 9 10 13 14 23 24 27

0001

0001

0002

0002

0001

0003

0002

0003

0001

0004

East

South

South

East

West

East

West

South

North

South

0050

0023

0068

0125

0052

0028

0105

0054

0200

0070

Fair

Good

Fair

Excellent

Good

Good

Excellent

Fair

Fair

Good

1983

1976

1978

1986

1995

1994

2001

1992

1991

2002

From these two input data sets, you want to create an output data set,

REGION.OUT. For each record in REGION.IN2, you want to look up the

corresponding Region in REGION.IN1, and combine fields from the two records

into one output record in REGION.OUT, as shown in Table 63.

 Table 63. REGION.OUT data set for join

Office Region Regional Director Employees Evaluation Headquarters

1 4 5 9 10 24 25 28 29 38 39 53

0001

0002

0003

0001

0001

0002

0003

0004

0001

0002

East

East

East

North

South

South

South

South

West

West

C. Kent

C. Kent

C. Kent

P. Parker

D. Prince

D. Prince

D. Prince

D. Prince

B. Wayne

B. Wayne

0050

0125

0028

0200

0023

0068

0054

0070

0052

0105

Fair

Excellent

Good

Fair

Good

Fair

Fair

Good

Good

Excellent

Philadelphia

Philadelphia

Philadelphia

Boston

Charlotte

Charlotte

Charlotte

Charlotte

San Jose

San Jose

Write the following ICETOOL statements and JCL statements to create

REGION.OUT from REGION.IN1 and REGION.IN2:

132 z/OS V1R6.0 DFSORT: Getting Started

* Reformat REGION.IN1 to T1 so it can be spliced

 COPY FROM(REGNIN1) TO(T1) USING(CTL1)

* Reformat REGION.IN2 to T2 so it can be spliced

 COPY FROM(REGNIN2) TO(T2) USING(CTL2)

* Splice records in T1 and T2 with matching ON fields

 SPLICE FROM(CONCT1) WITHALL -

 ON(5,5,CH) - Region

 WITH(1,4) - Office

 WITH(25,4) - Employees

 WITH(29,10) - Evaluation

 TO(REGNOUT)

/*

//REGNIN1 DD DSN=A123456.REGION.IN1,DISP=SHR

//REGNIN2 DD DSN=A123456.REGION.IN2,DISP=SHR

//T1 DD DSN=&&&T1,UNIT=3390,SPACE=(CYL,(5,5)),DISP=(,PASS)

//T2 DD DSN=&&&T2,UNIT=3390,SPACE=(CYL,(5,5)),DISP=(,PASS)

//CONCT1 DD DSN=*.T1,VOL=REF=*.T1,DISP=(OLD,PASS)

// DD DSN=*.T2,VOL=REF=*.T2,DISP=(OLD,PASS)

//REGNOUT DD DSN=A123456.REGION.OUT,DISP=(NEW,CATLG,DELETE),UNIT=3390,

// SPACE=(CYL,(5,5))

//CTL1CNTL DD *

* Move REGION.IN1 fields to their locations for the

* output data set

 OUTREC FIELDS=(5:1,5, Region

 10:21,15, Regional Director

 39:6,15) Headquarters

/*

//CTL2CNTL DD *

* Move REGION.IN2 fields to their locations for the

* output data set

 OUTREC FIELDS=(1:1,4, Office

 5:5,5, Region

 25:10,4, Employees

 29:14,10, Evaluation

 53:X)

/*

The first COPY operator creates temporary data set T1 with the fields from

REGION.IN1 as shown in Table 64.

 Table 64. T1 data set fields from REGION.IN1

Blanks Region Regional Director Blanks Blanks Headquarters

1 4 5 9 10 24 25 28 29 38 39 53

The second COPY operator creates temporary data set T2 with the fields from

REGION.IN2 as shown in Table 65.

 Table 65. T2 data set fields from REGION.IN2

Office Region Blanks Employees Evaluation Blanks

1 4 5 9 10 24 25 28 29 38 39 53

Because the Region field is the ON field you want SPLICE to use to match your

records, you must move it to the same location in both temporary data sets

(positions 5-9). You must move all of the other fields that you want in your output

records to the locations in which you want them to appear in the combined record.

Put blanks in the records of the other temporary data set for the corresponding

fields. For example, the Regional Director field from REGION.IN1 appears in

positions 10-24 of T1 while blanks appear in the corresponding positions 10-24 for

T2, and the Office field from REGION.IN2 appears in positions 1-4 of T2 while

blanks appear in the corresponding positions 1-4 for T2.

Chapter 10. Using the ICETOOL Utility 133

The TO(CONCT1) operand tells DFSORT that the input for the SPLICE operation

is the concatenation of the T1 and T2 records, in that order. The order of the

concatenated input data sets is important, because the first record for each

matching ON field acts as the base record on to which the second or subsequent

record is spliced.

In this case, because the order of concatenation is T1 followed by T2, all of the T1

records come before all of the T2 records. So the SPLICE operator splices the WITH

fields from the T2 records to the T1 record whenever their ON fields match.

WITHALL tells SPLICE to splice the first record with every other record for which

the ON fields match. Without WITHALL, only the first and last records are spliced.

This is just one example of the many types of join operations you can do with

SPLICE, using some of its available operands.

You can also use a USING data set to specify DFSORT INCLUDE, OMIT and

OUTFIL statements for your SPLICE operation. INCLUDE or OMIT statement

processing is performed before SPLICE processing. OUTFIL statement processing is

performed after SPLICE processing.

For complete details of all of the operands you can use with SPLICE, as well as

many more examples of join operations, see z/OS DFSORT Application Programming

Guide.

Matching Records from Different Data Sets

SPLICE can be used for match operations as well as join operations. Suppose you

want to look at the courses in SORT.SAMPIN and SORT.SAMPADD and produce

three output data sets as follows:

v COURSE.MATCH to show the courses that appear in both SORT.SAMPIN and

SORT.SAMPADD

v COURSE.INONLY to show the courses that appear only in SORT.SAMPIN

v COURSE.ADDONLY to show the courses that appear only in SORT.SAMPADD

The following JCL and ICETOOL statements create these three data sets:

//S1 EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//F1IN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//F2IN DD DSN=A123456.SORT.SAMPADD,DISP=SHR

//T1 DD DSN=&&&T1,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)

//T2 DD DSN=&&&T2,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)

//CONCT DD DSN=*.T1,VOL=REF=*.T1,DISP=(OLD,DELETE)

// DD DSN=*.T2,VOL=REF=*.T2,DISP=(OLD,DELETE)

//MATCH DD DSN=COURSE.MATCH,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(5,5)),UNIT=3390

//F1ONLY DD DSN=COURSE.INONLY,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(5,5)),UNIT=3390

//F2ONLY DD DSN=COURSE.ADDONLY,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(5,5)),UNIT=3390

//TOOLIN DD *

* Copy needed File1 fields to T1 and add ’11’ id

 COPY FROM(F1IN) TO(T1) USING(MATA)

* Copy needed File2 fields to T2 and add ’22’ id

 COPY FROM(F2IN) TO(T2) USING(MATB)

* Splice second id character from T2 to T1 for

* matching course numbers. Use resulting spliced or

* unspliced id to write records to MATCH, F1ONLY

* or F2ONLY as appropriate.

134 z/OS V1R6.0 DFSORT: Getting Started

SPLICE FROM(CONCT) TO(MATCH) ON(1,5,CH) -

 WITH(32,1) KEEPNODUPS USING(MATC)

/*

//MATACNTL DD *

* Extract needed File1 fields and add ’11’ id

 OUTREC FIELDS=(1:115,5, Course number

 6:120,25, Course name

 31:C’11’) ’11’ id for File1 records

/*

//MATBCNTL DD *

* Extract needed File2 fields and add ’22’ id

 OUTREC FIELDS=(1:115,5, Course number

 6:120,25, Course name

 31:C’22’) ’22’ id for File2 records

/*

//MATCCNTL DD *

* A ’12’ id indicates a match between File1 and File2.

* Remove the ’12’ id and write the records to MATCH.

 OUTFIL FNAMES=MATCH,INCLUDE=(31,2,CH,EQ,C’12’),OUTREC=(1,30)

* A ’11’ id indicates a record in File1 only.

* Remove the ’11’ id and write the records to F1ONLY.

 OUTFIL FNAMES=F1ONLY,INCLUDE=(31,2,CH,EQ,C’11’),OUTREC=(1,30)

* A ’22’ id indicates a record in File2 only.

* Remove the ’22’ id and write the records to F2ONLY.

 OUTFIL FNAMES=F2ONLY,INCLUDE=(31,2,CH,EQ,C’22’),OUTREC=(1,30)

/*

The first COPY operator creates temporary data set T1 consisting of the course

number and course name fields from SORT.SAMPIN, and an id of ’11’, as shown

in Table 66.

 Table 66. T1 data set fields from SORT.SAMPIN

Course Number Course Name ’11’

1 5 6 30 31 32

The second COPY operator creates temporary data set T2 consisting of the course

number and course name fields from SORT.SAMPADD, and an id of ’22’, as shown

in Table 67.

 Table 67. T2 data set fields from SORT.SAMPADD

Course Number Course Name ’22’

1 5 6 30 31 32

The SPLICE operator matches the course numbers (ON field). When a match is

found, the second id character is spliced into the base record. Because WITHALL is

not specified, only the last record for each match is spliced with the first record for

each match. KEEPNODUPS tells DFSORT to keep records that are not spliced.

Without KEEPNODUPS, records for course numbers that appear once in one data

set, but not in the other data set, would be deleted instead of being written to

COURSE.INONLY or COURSE.ADDONLY.

Here’s what happens for all of the possible types of matches and non-matches:

v For a course number that appears one or more times in T1 (id is ’11’) and one or

more times in T2 (id is ’22’), the second ’2’ from the last T2 record is spliced into

the first T1 record to get an id of ’12’. Thus an id of ’12’ represents a course

number that appears in both SORT.SAMPIN and SORT.SAMPADD.

Chapter 10. Using the ICETOOL Utility 135

v For a course number that appears only once in T1 (and not in T2), the id of ’11’

is not changed. For a course number that appears more than once in T1 (and not

in T2), the second ’1’ from the last T1 record is spliced into the first T1 record to

get an id of ’11’. Thus an id of ’11’ represents a course number that only appears

in SORTIN.SAMPIN.

v For a course number that appears only once in T2 (and not in T1), the id of ’22’

is not changed. For a course number that appears more than once in T2 (and not

in T1), the second ’2’ from the last T2 record is spliced into the first T2 record to

get an id of ’22’. Thus an id of ’22’ represents a course number that only appears

in SORTIN.SAMPADD.

The output created for COURSE.MATCH containing the information for course

numbers that appear in both SORT.SAMPIN and SORT.SAMPADD is shown in

Table 68.

 Table 68. COURSE.MATCH output

Course Number Course Name

1 5 6 30

00103

00205

10054

30016

30975

50420

50521

50632

70124

70251

DATA MANAGEMENT

VIDEO GAMES

FICTION WRITING

PSYCHOLOGY I

PSYCHOANALYSIS

WORLD HISTORY

WORLD HISTORY

EUROPEAN HISTORY

ADVANCED MARKETING

MARKETING

The output created for COURSE.INONLY containing the information for course

numbers that appear only in SORT.SAMPIN is shown in Table 69.

 Table 69. COURSE.INONLY output

Course Number Course Name

1 5 6 30

00032

10347

10856

80521

INTRO TO COMPUTERS

TECHNICAL EDITING

MODERN POETRY

BIOLOGY I

The output created for COURSE.ADDONLY containing the information for course

numbers that appear only in SORT.SAMPADD is shown in Table 70.

 Table 70. COURSE.ADDONLY output

Course Number Course Name

1 5 6 30

70255

80522

80523

BUSINESS THEORY

BIOLOGY II

INTRO TO GENETICS

136 z/OS V1R6.0 DFSORT: Getting Started

So Far

So far in this chapter you have learned how to print statistics for numeric

fields, create sorted and unsorted data sets, obtain a count of numeric fields

in a range for a particular field, print fields from an input data set, print

reports, print a count of field occurrences, select output records based on field

occurrences, join fields from different data sets, and match records from

different data sets. The last part of this chapter shows the complete main

ICETOOL job and its resulting TOOLMSG output.

Complete ICETOOL Job and TOOLMSG Output

Here is the complete ICETOOL job you created in this chapter:

//EXAMP JOB A492,PROGRAMMER

//TOOL EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=A

//DFSMSG DD SYSOUT=A

//TOOLIN DD *

* Statistics from all branches

STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

* Books from VALD and WETH

SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)

* Separate output for California and Colorado branches

SORT FROM(ALL) USING(CACO)

* California branches profit analysis

 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)

* Branches with less than 32 employees

 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

* Print profit, employees, and city for each Colorado branch

DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)

* Print a report for the Colorado branches

DISPLAY FROM(CODASD) LIST(RPT) -

 DATE TITLE(’Colorado Branches Report’) PAGE -

 HEADER(’City’) HEADER(’Profit’) HEADER(’Employees’) -

 ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK BETWEEN(5) -

 TOTAL(’Total’) AVERAGE(’Average’) MINIMUM(’Lowest’)

* Print a report of books for individual publishers

DISPLAY FROM(DAPUBS) LIST(SECTIONS) -

 TITLE(’BOOKS FOR INDIVIDUAL PUBLISHERS’) PAGE -

 HEADER(’TITLE OF BOOK’) ON(1,35,CH) -

 HEADER(’PRICE OF BOOK’) ON(170,4,BI,C1,F’$’) -

 BTITLE(’PUBLISHER:’) BREAK(106,4,CH) -

 BAVERAGE(’AVERAGE FOR THIS PUBLISHER’) -

 BTOTAL(’TOTAL FOR THIS PUBLISHER’) -

 AVERAGE(’AVERAGE FOR ALL PUBLISHERS’) -

 TOTAL(’TOTAL FOR ALL PUBLISHERS’)

Figure 5. Complete ICETOOL Job (Part 1 of 3)

Chapter 10. Using the ICETOOL Utility 137

* Print the count of books in use from each publisher

OCCUR FROM(BKIN) LIST(PUBCT) BLANK -

 TITLE(’Books from Publishers’) DATE(DMY.) -

 HEADER(’Publisher’) HEADER(’Books Used’) -

 ON(106,4,CH) ON(VALCNT,N05)

* Separate output containing records for publishers

* with more than 4 books in use

SELECT FROM(BKIN) TO(BKOUT) ON(106,4,CH) HIGHER(4)

* Reformat REGION.IN1 to T1 so it can be spliced

 COPY FROM(REGNIN1) TO(T1) USING(CTL1)

* Reformat REGION.IN2 to T2 so it can be spliced

 COPY FROM(REGNIN2) TO(T2) USING(CTL2)

* Splice records in T1 and T2 with matching ON fields

 SPLICE FROM(CONCT1) WITHALL -

 ON(5,5,CH) - Region

 WITH(1,4) - Office

 WITH(25,4) - Employees

 WITH(29,10) - Evaluation

 TO(REGNOUT)

/*

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR

// DD DSN=A123456.SORT.SAMPADD,DISP=SHR

//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA

//PRPUBS DD SYSOUT=A

//SPUBCNTL DD *

 SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH

 INCLUDE COND=(106,4,EQ,C’VALD’,OR,106,4,EQ,C’WETH’),

 FORMAT=CH

/*

//CACOCNTL DD *

 SORT FIELDS=(1,15,CH,A)

 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C’CA’)

 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C’CO’)

/*

//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390

//CATAPE DD DSN=CA.BRANCH,UNIT=3480,VOL=SER=111111,

// DISP=(NEW,KEEP),LABEL=(,SL)

//CODASD DD DSN=&&CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390

//COTAPE DD DSN=CO.BRANCH,UNIT=3480,VOL=SER=222222,

// DISP=(NEW,KEEP),LABEL=(,SL)

//OUT DD SYSOUT=A

//RPT DD SYSOUT=A

//SECTIONS DD SYSOUT=A

//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//PUBCT DD SYSOUT=A

//BKOUT DD DSN=A123456.BOOKS1,DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(3,3)),UNIT=3390

//REGNIN1 DD DSN=A123456.REGION.IN1,DISP=SHR

//REGNIN2 DD DSN=A123456.REGION.IN2,DISP=SHR

//T1 DD DSN=&&&T1,UNIT=3390,SPACE=(CYL,(5,5)),DISP=(,PASS)

//T2 DD DSN=&&&T2,UNIT=3390,SPACE=(CYL,(5,5)),DISP=(,PASS)

//CONCT1 DD DSN=*.T1,VOL=REF=*.T1,DISP=(OLD,PASS)

// DD DSN=*.T2,VOL=REF=*.T2,DISP=(OLD,PASS)

//REGNOUT DD DSN=A123456.REGION.OUT,DISP=(NEW,CATLG,DELETE),UNIT=3390,

// SPACE=(CYL,(5,5))

//CTL1CNTL DD *

* Move REGION.IN1 fields to their locations for the

* output data set

 OUTREC FIELDS=(5:1,5, Region

 10:21,15, Regional Director

 39:6,15) Headquarters

/*

Figure 5. Complete ICETOOL Job (Part 2 of 3)

138 z/OS V1R6.0 DFSORT: Getting Started

Here is the complete TOOLMSG data set produced by running this job:

//CTL2CNTL DD *

* Move REGION.IN2 fields to their locations for the

* output data set

 OUTREC FIELDS=(1:1,4, Office

 5:5,5, Region

 25:10,4, Employees

 29:14,10, Evaluation

 53:X)

/*

Figure 5. Complete ICETOOL Job (Part 3 of 3)

ICE600I 0 DFSORT ICETOOL UTILITY RUN STARTED

ICE650I 0 VISIT http://www.ibm.com/storage/dfsort FOR ICETOOL PAPERS, EXAMPLES AND MORE

ICE632I 0 SOURCE FOR ICETOOL STATEMENTS: TOOLIN

ICE630I 0 MODE IN EFFECT: STOP

 * Statistics from all branches

 STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

ICE627I 0 DFSORT CALL 0001 FOR COPY FROM ALL TO E35 EXIT COMPLETED

ICE628I 0 RECORD COUNT: 000000000000012

ICE607I 0 STATISTICS FOR (18,4,ZD) :

ICE608I 0 MINIMUM: +000000000000015, MAXIMUM: +000000000000035

ICE609I 0 AVERAGE: +000000000000024, TOTAL : +000000000000298

ICE607I 0 STATISTICS FOR (28,6,PD) :

ICE608I 0 MINIMUM: -000000000004278, MAXIMUM: +000000000008276

ICE609I 0 AVERAGE: +000000000004222, TOTAL : +000000000050665

ICE607I 0 STATISTICS FOR (22,6,PD) :

ICE608I 0 MINIMUM: +000000000012300, MAXIMUM: +000000000042820

ICE609I 0 AVERAGE: +000000000027469, TOTAL : +000000000329637

ICE602I 0 OPERATION RETURN CODE: 00

 * Books from VALD and WETH

 SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)

ICE606I 0 DFSORT CALL 0002 FOR SORT FROM BKS TO OUTFIL USING SPUBCNTL COMPLETED

ICE602I 0 OPERATION RETURN CODE: 00

 * Separate output for California and Colorado branches

 SORT FROM(ALL) USING(CACO)

ICE606I 0 DFSORT CALL 0003 FOR SORT FROM ALL TO OUTFIL USING CACOCNTL COMPLETED

ICE602I 0 OPERATION RETURN CODE: 00

 * California branches profit analysis

 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)

ICE627I 0 DFSORT CALL 0004 FOR COPY FROM CADASD TO E35 EXIT COMPLETED

ICE628I 0 RECORD COUNT: 000000000000007

ICE631I 0 NUMBER OF VALUES IN RANGE FOR (28,6,PD) : 000000000000003

ICE602I 0 OPERATION RETURN CODE: 00

 * Branches with less than 32 employees

 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

ICE627I 0 DFSORT CALL 0005 FOR COPY FROM ALL TO E35 EXIT COMPLETED

ICE628I 0 RECORD COUNT: 000000000000012

ICE631I 0 NUMBER OF VALUES IN RANGE FOR (18,4,ZD) : 000000000000008

ICE602I 0 OPERATION RETURN CODE: 00

Figure 6. Complete TOOLMSG Data Set. (Part 1 of 3)

Chapter 10. Using the ICETOOL Utility 139

* Print profit, employees, and city for each Colorado branch

 DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)

ICE643I 0 WIDTH OF REPORT IS 0121 BYTES

ICE627I 0 DFSORT CALL 0006 FOR COPY FROM CODASD TO E35 EXIT COMPLETED

ICE603I 0 INFORMATION PRINTED IN OUT DATA SET

ICE628I 0 RECORD COUNT: 000000000000005

ICE602I 0 OPERATION RETURN CODE: 00

 * Print a report for the Colorado branches

 DISPLAY FROM(CODASD) LIST(RPT) -

 DATE TITLE(’Colorado Branches Report’) PAGE -

 HEADER(’City’) HEADER(’Profit’) HEADER(’Employees’) -

 ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK BETWEEN(5) -

 TOTAL(’Total’) AVERAGE(’Average’) MINIMUM(’Lowest’)

ICE643I 0 WIDTH OF REPORT IS 0121 BYTES

ICE627I 0 DFSORT CALL 0007 FOR COPY FROM CODASD TO E35 EXIT COMPLETED

ICE603I 0 INFORMATION PRINTED IN RPT DATA SET

ICE628I 0 RECORD COUNT: 000000000000005

ICE602I 0 OPERATION RETURN CODE: 00

 * Print a report of books for individual publishers

 DISPLAY FROM(DAPUBS) LIST(SECTIONS) -

 TITLE(’BOOKS FOR INDIVIDUAL PUBLISHERS’) PAGE -

 HEADER(’TITLE OF BOOK’) ON(1,35,CH) -

 HEADER(’PRICE OF BOOK’) ON(170,4,BI,C1,F’$’) -

 BTITLE(’PUBLISHER:’) BREAK(106,4,CH) -

 BAVERAGE(’AVERAGE FOR THIS PUBLISHER’) -

 BTOTAL(’TOTAL FOR THIS PUBLISHER’) -

 AVERAGE(’AVERAGE FOR ALL PUBLISHERS’) -

 TOTAL(’TOTAL FOR ALL PUBLISHERS’)

ICE643I 0 WIDTH OF REPORT IS 0121 BYTES

ICE627I 0 DFSORT CALL 0008 FOR COPY FROM DAPUBS TO E35 EXIT COMPLETED

ICE603I 0 INFORMATION PRINTED IN SECTIONS DATA SET

ICE628I 0 RECORD COUNT: 000000000000019

ICE602I 0 OPERATION RETURN CODE: 00

 * Print the count of books in use from each publisher

 OCCUR FROM(BKIN) LIST(PUBCT) BLANK -

 TITLE(’Books from Publishers’) DATE(DMY.) -

 HEADER(’Publisher’) HEADER(’Books Used’) -

 ON(106,4,CH) ON(VALCNT)

ICE643I 0 WIDTH OF REPORT IS 0121 BYTES

ICE627I 0 DFSORT CALL 0009 FOR SORT FROM BKIN TO E35 EXIT COMPLETED

ICE603I 0 INFORMATION PRINTED IN PUBCT DATA SET

ICE628I 0 RECORD COUNT: 000000000000020

ICE638I 0 NUMBER OF RECORDS RESULTING FROM CRITERIA: 000000000000004

ICE602I 0 OPERATION RETURN CODE: 00

 * Separate output containing records for publishers

 * with more than 4 books in use

 SELECT FROM(BKIN) TO(BKOUT) ON(106,4,CH) HIGHER(4)

ICE627I 0 DFSORT CALL 0010 FOR SORT FROM BKIN TO BKOUT COMPLETED

ICE628I 0 RECORD COUNT: 000000000000020

ICE638I 0 NUMBER OF RECORDS RESULTING FROM CRITERIA: 000000000000012

ICE602I 0 OPERATION RETURN CODE: 00

 * Reformat REGION.IN1 to T1 so it can be spliced

 COPY FROM(REGNIN1) TO(T1) USING(CTL1)

ICE606I 0 DFSORT CALL 0011 FOR COPY FROM REGNIN1 TO T1 USING CTL1CNTL COMPLETED

ICE602I 0 OPERATION RETURN CODE: 00

ICE601I 0 DFSORT ICETOOL UTILITY RUN ENDED - RETURN CODE: 00

Figure 6. Complete TOOLMSG Data Set. (Part 2 of 3)

140 z/OS V1R6.0 DFSORT: Getting Started

Summary

This chapter introduced the thirteen ICETOOL operators, and showed some

of the ways you can use them to perform various tasks. For complete

information on DFSORT’s ICETOOL, refer to z/OS DFSORT Application

Programming Guide.

 * Reformat REGION.IN2 to T2 so it can be spliced

 COPY FROM(REGNIN2) TO(T2) USING(CTL2)

ICE606I 0 DFSORT CALL 0012 FOR COPY FROM REGNIN2 TO T2 USING CTL2CNTL COMPLETED

ICE602I 0 OPERATION RETURN CODE: 00

 * Splice records in T1 and T2 with matching ON fields

 SPLICE FROM(CONCT1) WITHALL -

 ON(5,5,CH) - Region

 WITH(1,4) - Office

 WITH(25,4) - Employees

 WITH(29,10) - Evaluation

 TO(REGNOUT)

ICE627I 0 DFSORT CALL 0013 FOR SORT FROM CONCT1 TO REGNOUT COMPLETED

ICE628I 0 RECORD COUNT: 000000000000014

ICE638I 0 NUMBER OF RECORDS RESULTING FROM CRITERIA: 000000000000010

ICE602I 0 OPERATION RETURN CODE: 00

Figure 6. Complete TOOLMSG Data Set. (Part 3 of 3)

Chapter 10. Using the ICETOOL Utility 141

142 z/OS V1R6.0 DFSORT: Getting Started

Part 4. Learning to Use Symbols

Chapter 11. Defining and Using Symbols . . . 145

Creating the SYMNAMES Data Set 145

Defining Symbols for Fields 145

Using Symbols for Fields in DFSORT Statements 147

Using Symbols for Fields in ICETOOL Operators 148

Defining and Using Symbols for Constants . . . 149

© Copyright IBM Corp. 1983, 2005 143

144 z/OS V1R6.0 DFSORT: Getting Started

Chapter 11. Defining and Using Symbols

A symbol is a name (preferably something meaningful) you can use to represent a

field or a constant. Sets of symbols, also called mappings, can be used to describe a

group of related fields and constants such as the information in a particular type of

record. Such mappings allow you to refer to fields and constants by their symbols,

freeing you from having to know the position, length and format of fields or the

values of constants you want to use.

DFSORT’s symbol processing feature allows you or your site to create symbols for

the fields in your own records and for constants associated with those fields. You

can then use those symbols in DFSORT control statements and ICETOOL

operators.

In addition, you can obtain predefined sets of symbols to use for the records

created by other products such as RACF®, DCOLLECT and DFSMSrmm™. Visit the

DFSORT home page at the following URL for information about obtaining

DFSORT symbol mappings for records produced by other products, and examples

that use these symbols:

 http://www.ibm.com/storage/dfsort

The chapter in this section explains how to define symbols for the bookstore data

set and use them in several DFSORT control statements and ICETOOL operators.

For a full description of how symbols can be used with DFSORT and ICETOOL,

see z/OS DFSORT Application Programming Guide.

Creating the SYMNAMES Data Set

DFSORT and ICETOOL obtain the symbols to be used from the data set specified

in a SYMNAMES DD statement. Create the SYMNAMES data set you want to use

with RECFM=FB and LRECL=80 in the same way you would create a data set

containing DFSORT JCL and control statements. Then use an editor, such as ISPF

EDIT, to write the SYMNAMES statements defining your symbols, as described

below.

After you create the SYMNAMES data set, you can use it in any DFSORT or

ICETOOL application for which you want to use the symbols you defined. You can

add, delete and change SYMNAMES statements in the SYMNAMES data set at any

time using the editor.

For this chapter, we will assume you have created a data set called

SORT.SYMBOLS to put your SYMNAMES statements in.

Defining Symbols for Fields

Appendix B, “Descriptions of the Sample Data Sets,” on page 155 shows the fields

of the bookstore data set. To define the symbols for these fields, write a

SYMNAMES statement for each one in SORT.SYMBOLS. The SYMNAMES

statements for the symbols Title and Author_Last_Name look like this:

* Symbols for fields

Title,1,75,CH

Author_Last_Name,*,15,CH

© Copyright IBM Corp. 1983, 2005 145

To write these SYMNAMES statements that define the symbol Title for the Title

field and the symbol Author_Last_Name for the Author’s Last Name field, follow

these steps:

 Table 71. Steps to Define Symbols for Fields

Step Action

1 Write a comment statement (optional):

* Symbols for fields

2 Type Title followed by a comma.

This is the symbol you will use for the Title field. A symbol can be 1 to 50

characters consisting of uppercase letters (A-Z), lowercase letters (a-z),

numbers (0-9), the number sign (#), the dollar sign ($), the commercial at sign

(@), the underscore(_), and the hyphen (-). However, the first character must

not be a number. Title, TITLE, and title are three different symbols.

3 Type the position of the Title field followed by a comma.

The position of the Title field is 1.

4 Type the length of the Title field followed by a comma.

The length of the Title field is 75.

5 Type the format of the Title field followed by a blank.

The format of the Title field is CH.

6 Type Author_Last_Name followed by a comma.

This is the symbol you will use for the Author’s Last Name field.

7 Type * for the position followed by a comma.

An asterisk (*) for the position shows that this field immediately follows the

previous field. The * here will automatically assign 76 as the position of the

Author_Last_Name symbol. You could specify 76 instead of *, but * is

preferable when fields are adjacent. * allows symbols for fields to be inserted

without changes to symbols for other fields.

8 Type the length of the Author’s Last Name field followed by a comma.

The length of the Author’s Last Name field is 15.

9 Type the format of the Author’s Last Name field followed by a blank.

The format of the Author’s Last Name field is CH.

The SYMNAMES statements to define the symbols for the other fields in the

bookstore data set look like this:

Author_First_Name,*,15,CH

Publisher,*,4,CH

Course_Department,*,5,CH

Course_Number,*,5,CH

Course_Name,*,25,CH

Instructor_Last_Name,*,15,CH

Instructor_Initials,*,2,CH

Number_in_Stock,*,4,BI

Number_Sold_YTD,*,4,BI

Price,*,4,BI

146 z/OS V1R6.0 DFSORT: Getting Started

So Far

So far, you have learned how to create a SYMNAMES data set and use it to

define symbols for your fields. Now you will learn how to use the symbols

for the fields you defined.

Using Symbols for Fields in DFSORT Statements

Now that you have your symbols for the bookstore data set defined in

SORT.SYMBOLS, you can use those symbols in DFSORT control statements

wherever fields can appear.

Here’s an example of a DFSORT application that uses symbols. It selects the books

for courses 00032 and 10347 from SORT.SAMPIN and sorts them by title, instructor

and price:

//SYM1 JOB A492,PROGRAMMER

//SORTIT EXEC PGM=SORT

//SYSOUT DD SYSOUT=A

//SYMNAMES DD DSN=A123456.SORT.SYMBOLS,DISP=SHR

//SYMNOUT DD SYSOUT=*

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=SHR

//SYSIN DD *

 INCLUDE COND=(Course_Number,EQ,C’00032’,OR,

 Course_Number,EQ,C’10347’)

 SORT FIELDS=(Title,A,

 Instructor_Last_Name,A,Instructor_Initials,A,

 Price,A)

/*

The SYMNAMES DD statement specifies the SYMNAMES data set to be used for

this application.

The SYMNOUT DD statement specifies a data set in which you want DFSORT to

list your original SYMNAMES statements and the symbol table constructed from

them. You can omit the SYMNOUT data set if you don’t want to see that

information. For this SYMNAMES data set, the SYMNOUT listing looks like this:

------- ORIGINAL STATEMENTS FROM SYMNAMES -------

* Symbols for fields

Title,1,75,CH

Author_Last_Name,*,15,CH

Author_First_Name,*,15,CH

Publisher,*,4,CH

Course_Department,*,5,CH

Course_Number,*,5,CH

Course_Name,*,25,CH

Instructor_Last_Name,*,15,CH

Instructor_Initials,*,2,CH

Number_in_Stock,*,4,BI

Number_Sold_YTD,*,4,BI

Price,*,4,BI

------------------ SYMBOL TABLE -----------------

Title,1,75,CH

Author_Last_Name,76,15,CH

Author_First_Name,91,15,CH

Publisher,106,4,CH

Course_Department,110,5,CH

Course_Number,115,5,CH

Chapter 11. Defining and Using Symbols 147

Course_Name,120,25,CH

Instructor_Last_Name,145,15,CH

Instructor_Initials,160,2,CH

Number_in_Stock,162,4,BI

Number_Sold_YTD,166,4,BI

Price,170,4,BI

The INCLUDE and SORT statements use symbols for the fields instead of position,

length and format.

Using Symbols for Fields in ICETOOL Operators

You can also use the symbols from SORT.SYMBOLS in ICETOOL operators and

their associated DFSORT control statements wherever fields can appear. Here’s an

example of an ICETOOL application that uses symbols for fields. It does what the

DFSORT example in “Using Symbols for Fields in DFSORT Statements” on page

147 does, but also shows the number of selected books priced below 7 dollars and

the number priced above 20 dollars:

//SYM2 JOB A492,PROGRAMMER

//TOOL EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=A

//DFSMSG DD SYSOUT=A

//SYMNAMES DD DSN=A123456.SORT.SYMBOLS,DISP=SHR

//SYMNOUT DD SYSOUT=*

//IN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

//OUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD

//TOOLIN DD *

 SORT FROM(IN) TO(OUT) USING(CTL1)

 RANGE FROM(OUT) ON(Price) LOWER(+700)

 RANGE FROM(OUT) ON(Price) HIGHER(+2000)

//CTL1CNTL DD *

 INCLUDE COND=(Course_Number,EQ,C’00032’,OR,

 Course_Number,EQ,C’10347’)

 SORT FIELDS=(Title,A,

 Instructor_Last_Name,A,Instructor_Initials,A,

 Price,A)

/*

The SYMNAMES DD statement specifies the SYMNAMES data set to be used for

this application.

The SYMNOUT DD statement specifies a data set in which you want ICETOOL to

list your original SYMNAMES statements and the symbol table constructed from

them. Because the SYMNAMES data set is the same as for the DFSORT application

shown in “Using Symbols for Fields in DFSORT Statements” on page 147, the

SYMNOUT listing will be the same as well.

The RANGE operators and the INCLUDE and SORT statements use symbols for

the fields instead of position, length and format.

So Far

You have now learned how to use symbols for fields in DFSORT control

statements and ICETOOL operators. Next, you will learn how to define and

use symbols for your constants.

148 z/OS V1R6.0 DFSORT: Getting Started

Defining and Using Symbols for Constants

You can use symbols wherever decimal constants, character constants, hexadecimal

constants or bit constants can appear in DFSORT control statements and ICETOOL

operators.

The ICETOOL example in “Using Symbols for Fields in ICETOOL Operators” on

page 148 uses the following RANGE operators:

 RANGE FROM(OUT) ON(Price) LOWER(+700)

 RANGE FROM(OUT) ON(Price) HIGHER(+2000)

and the following INCLUDE statement:

 INCLUDE COND=(Course_Number,EQ,C’00032’,OR,

 Course_Number,EQ,C’10347’)

+700 and +2000 are decimal constants. C’00032’ and C’10347’ are character

constants. You can use symbols for these constants to make them more

understandable in the ICETOOL operators and DFSORT control statements you

write. The SYMNAMES statements for these constants look like this:

* Symbols for constants

Discount,+700

Premium,+2000

Beginning_Economics,C’00032’

Advanced_Sociology,C’10347’

To add these symbols for the four constants to the SORT.SYMBOLS data set, follow

these steps:

 Table 72. Steps to Define Symbols for Constants

Step Action

1 Write a comment statement (optional):

* Symbols for constants

2 Type Discount followed by a comma.

This is the symbol you will use for the decimal constant +700.

3 Type the constant followed by a blank.

The constant is +700. You can also use 700, but we recommend using a + sign

for positive decimal constants.

4 Type Premium followed by a comma.

This is the symbol you will use for the decimal constant +2000.

5 Type the constant followed by a blank.

The constant is +2000. You can also use 2000, but we recommend using a +

sign for positive decimal constants.

6 Type Beginning_Economics followed by a comma.

This is the symbol you will use for the character constant C’00032’.

7 Type the constant followed by a blank.

The constant is C’00032’. You can also use ’00032’ or c’00032’.

8 Type Advanced_Sociology followed by a comma.

This is the symbol you will use for the character constant C’10347’.

Chapter 11. Defining and Using Symbols 149

Table 72. Steps to Define Symbols for Constants (continued)

Step Action

9 Type the constant followed by a blank.

The constant is C’10347’. You can also use ’10347’ or c’10347’.

The RANGE operators can now be written as:

 RANGE FROM(OUT) ON(Price) LOWER(Discount)

 RANGE FROM(OUT) ON(Price) HIGHER(Premium)

The INCLUDE statement can now be written as:

 INCLUDE COND=(Course_Number,EQ,Beginning_Economics,OR,

 Course_Number,EQ,Advanced_Sociology)

Summary

This chapter covered how to define and use symbols for fields and constants

in DFSORT control statements and ICETOOL operators. For more information

on DFSORT symbols, please refer to z/OS DFSORT Application Programming

Guide.

This completes the z/OS DFSORT: Getting Started tutorials. The appendixes

that follow contain important information about the Sample Data Sets and the

order in which DFSORT processes its various control statements.

150 z/OS V1R6.0 DFSORT: Getting Started

Part 5. Appendixes

© Copyright IBM Corp. 1983, 2005 151

152 z/OS V1R6.0 DFSORT: Getting Started

Appendix A. Creating the Sample Data Sets

Many of the examples in this document use A123456.SORT.SAMPIN,

A123456.SORT.SAMPADD, and A123456.SORT.BRANCH as input data sets, and

A123456.SORT.SAMPOUT as an output data set. If you want to try the examples in

this document that use these data sets, create your own userid.SORT.SAMPIN,

userid.SORT.SAMPADD, userid.SORT.BRANCH and userid.SORT.SAMPOUT data

sets with your own userid by running the ICEDCRE job below.

Substitute your own JOB statement for the ICEDCRE JOB statement. Substitute

your own userid for ’userid’ in the four DD statements.

If you use a JOBLIB or STEPLIB to run DFSORT jobs, add it to the ICEDCRE job. If

you prefer a value for UNIT other than SYSALLDA, change that parameter in the

DD statements. Add a VOL=SER=vvvvvv parameter to the DD statements, if

appropriate.

//ICEDCRE JOB A492,PROGRAMMER

//SAMPCOPY EXEC PGM=ICESAMP,PARM=(BOOKS)

//SYSPRINT DD SYSOUT=*

//SAMPLE DD DSN=userid.SORT.SAMPIN,DISP=(NEW,CATLG),

// SPACE=(TRK,(1,1),RLSE),

// DCB=(RECFM=FB,LRECL=173,BLKSIZE=1730),

// UNIT=SYSALLDA

//*

//ADD DD DSN=userid.SORT.SAMPADD,DISP=(NEW,CATLG),

// SPACE=(TRK,(1,1),RLSE),

// DCB=(RECFM=FB,LRECL=173,BLKSIZE=1730),

// UNIT=SYSALLDA

//*

//OUTPUT DD DSN=userid.SORT.SAMPOUT,DISP=(NEW,CATLG),

// SPACE=(TRK,(1,1),RLSE),

// DCB=(RECFM=FB,LRECL=173,BLKSIZE=1730),

// UNIT=SYSALLDA

//*

//BRANCH DD DSN=userid.SORT.BRANCH,DISP=(NEW,CATLG),

// SPACE=(TRK,(1,1),RLSE),

// DCB=(RECFM=FB,LRECL=33,BLKSIZE=330),

// UNIT=SYSALLDA

//*

//SYSIN DD DUMMY

Once you run this job successfully, you can substitute your userid for A123456 in

the data set names of these four data sets. For example, if you see a DD statement

like this:

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

you can use your own DD statement like this:

//SORTIN DD DSN=userid.SORT.SAMPIN,DISP=SHR

Note: Some of the examples use data sets other than A123456.SORT.SAMPIN,

A123456.SORT.SAMPOUT, A123456.SORT.SAMPADD, and

A123456.SORT.BRANCH. You can either create data sets from scratch to

match the ones used in the text, or else perform a similar exercise on data

sets you already have.

© Copyright IBM Corp. 1983, 2005 153

Using Sample Data Sets

154 z/OS V1R6.0 DFSORT: Getting Started

Appendix B. Descriptions of the Sample Data Sets

The fields in the records of the sample data sets SORT.SAMPIN, SORT.SAMPADD

and SORT.BRANCH are described on this page, and the contents of the records are

described on the following pages.

Table 73 shows the length and data format of each field in the sample bookstore

data set SORT.SAMPIN, and in the additional bookstore data set SORT.SAMPADD.

Both of these data sets have fixed-length records (RECFM=FB) that are 173 bytes

long (LRECL=133).

 Table 73. SORT.SAMPIN and SORT.SAMPADD Field Descriptions

Field Length Data Format

Title 75 CH

Author’s Last Name 15 CH

Author’s First Name 15 CH

Publisher 4 CH

Course Department 5 CH

Course Number 5 CH

Course Name 25 CH

Instructor’s Last Name 15 CH

Instructor’s Initials 2 CH

Number In Stock 4 BI

Number Sold Y-to-D 4 BI

Price 4 BI

Table 74 shows the length and data format of each field in the sample branch data

set SORT.BRANCH. This data set has fixed-length records (RECFM=FB) that are 33

bytes long (LRECL=33).

 Table 74. SORT.BRANCH Field Descriptions

Field Length Data Format

City 15 CH

State 2 CH

Employees 4 ZD

Revenue 6 PD

Profit 6 PD

The contents of the records in the sample data sets are shown on the following

pages. Each horizontal line represents a record, and each column represents a field.

Headings show the field names and the starting and ending position of each field.

Of course, these headings do not actually appear in the data sets. Numeric fields

(BI, ZD, PD) would not actually be readable if displayed, but are shown as their

equivalent readable values.

© Copyright IBM Corp. 1983, 2005 155

Sample Data Set - SORT.SAMPIN

Book Title

Author’s

Last Name

Author’s

First Name Publisher

Course

Department

1 75 76 90 91 105 106 109 110 114

COMPUTER LANGUAGES

LIVING WELL ON A SMALL BUDGET

SUPPLYING THE DEMAND

VIDEO GAME DESIGN

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

COMPUTERS: AN INTRODUCTION

PICK’S POCKET DICTIONARY

EDITING SOFTWARE MANUALS

NUMBERING SYSTEMS

STRATEGIC MARKETING

THE INDUSTRIAL REVOLUTION

MODERN ANTHOLOGY OF WOMEN POETS

INTRODUCTION TO PSYCHOLOGY

THE COMPLETE PROOFREADER

SYSTEM PROGRAMMING

SHORT STORIES AND TALL TALES

INTRODUCTION TO BIOLOGY

ADVANCED TOPICS IN PSYCHOANALYSIS

EIGHTEENTH CENTURY EUROPE

CRISES OF THE MIDDLE AGES

MURRAY

DEWAN

MILLER

RASMUSSEN

WILDE

DINSHAW

GUSTLIN

OJALVO

BAYLESS

YAEGER

GROSS

COWARD

DUZET

GREEN

CAUDILLO

AVRIL

WU

OSTOICH

MUNGER

BENDER

ROBERT

FRANK

TOM

LORI

KAREN

JOKII

CAROL

VICTOR

WILLIAM

MARK

DON

PETER

LINDA

ANN

RAUL

LILIANA

CHIEN

DIANNE

ALICE

GREG

FERN

COR

COR

VALD

COR

WETH

COR

VALD

FERN

VALD

WETH

COR

COR

FERN

WETH

VALD

VALD

FERN

WETH

COR

COMP

BUSIN

COMP

ENGL

COMP

ENGL

COMP

BUSIN

HIST

ENGL

PSYCH

ENGL

COMP

ENGL

BIOL

PSYCH

HIST

HIST

Sample Data Set - SORT.SAMPADD

Book Title

Author’s

Last Name

Author’s

First Name Publisher

Course

Department

1 75 76 90 91 105 106 109 110 114

GUNTHER’S GERMAN DICTIONARY

COMPLETE SPANISH DICTIONARY

ANOTHER ITALIAN DICTIONARY

FRENCH TO ENGLISH DICTIONARY

GUIDE TO COLLEGE LIFE

THE ANIMAL KINGDOM

A SMALLER WORLD: MICROBES

DNA: BLUEPRINT FOR YOU

CELLS AND HOW THEY WORK

KNOW YOUR CONSUMER

ANTICIPATING THE MARKET

ZEN BUSINESS

THE ART OF TAKEOVERS

THE TOY STORE TEST

NOVEL IDEAS

POLITICS AND HISTORY

CIVILIZATION SINCE ROME FELL

REBIRTH FROM ITALY

FREUD’S THEORIES

MAP OF THE HUMAN BRAIN

QUEUE THEORY

DESIGNING APPLICATIONS

WILLIS

ROBERTS

UNDER

JONES

LAMB

YOUNG

BEESLY

IAVERS

JETTS

ZANE

ALLEN

WILLIAMS

HUNT

LITTLE

PETERS

TOMPSOM

PIERCE

FISH

GOOLE

WINTER

FOX

STEVENS

GUNTER

ANGEL

JOAN

JACK

CHARLENE

KEVIN

GEORGE

ILSE

PETER

JENNIFER

CLYDE

KATIE

ROBERT

MARIE

SETH

KEN

NICOLE

JOHN

APRIL

POLLY

THAD

NOAH

WETH

VALD

COR

FERN

WETH

COR

FERN

FERN

VALD

COR

WETH

VALD

FERN

COR

VALD

FERN

WETH

WETH

VALD

COR

FERN

COR

BIOL

BIOL

BIOL

BIOL

BUSIN

BUSIN

BUSIN

BUSIN

COMP

ENGL

HIST

HIST

HIST

PSYCH

PSYCH

BUSIN

COMP

Sample Bookstore Data Sets

156 z/OS V1R6.0 DFSORT: Getting Started

Sample Data Set - SORT.SAMPIN (continued)

 Course

Number

Course

Name

Instructor’s

Last Name

Instructor’s

Initials

Number

In Stock

Number Sold

Year-to-Date Price

115 119 120 144 145 159 160 161 162 165 166 169 170 173

00032

70251

00205

10856

00032

10347

00032

70124

50420

10856

30016

10347

00103

10054

80521

30975

50632

50521

INTRO TO COMPUTERS

MARKETING

VIDEO GAMES

MODERN POETRY

INTRO TO COMPUTERS

TECHNICAL EDITING

INTRO TO COMPUTERS

ADVANCED MARKETING

WORLD HISTORY

MODERN POETRY

PSYCHOLOGY I

TECHINCAL EDITING

DATA MANAGEMENT

FICTION WRITING

BIOLOGY I

PSYCHOANALYSIS

EUROPEAN HISTORY

WORLD HISTORY

CHATTERJEE

MAXWELL

NEUMANN

FRIEDMAN

CHATTERJEE

MADRID

CHATTERJEE

LORCH

GOODGOLD

FRIEDMAN

ZABOSKI

MADRID

SMITH

BUCK

GREENBERG

NAKATSU

BISCARDI

WILLERTON

CL

RF

LB

KR

CL

MM

AN

MH

ST

KR

RL

MM

DC

GR

HC

FL

HR

DW

 5

14

 0

10

 2

20

46

13

 6

 3

15

 1

26

 7

 4

10

 6

 1

23

14

29

 1

32

10

32

26

38

32

27

35

 9

26

15

19

23

 9

11

12

21

17

2600

9900

1925

2199

 595

1899

 295

1450

 360

2350

 795

 450

2200

 625

3195

1520

2350

2800

1790

1200

Sample Data Set - SORT.SAMPADD (continued)

 Course

Number

Course

Name

Instructor’s

Last Name

Instructor’s

Initials

Number

In Stock

Number Sold

Year-to-Date Price

115 119 120 144 145 159 160 161 162 165 166 169 170 173

80522

80522

80523

80523

70251

70124

70255

70255

00205

10054

50521

50420

50632

30975

30016

70255

00103

BIOLOGY II

BIOLOGY II

INTRO TO GENETICS

INTRO TO GENETICS

MARKETING

ADVANCED MARKETING

BUSINESS THEORY

BUSINESS THEORY

VIDEO GAMES

FICTION WRITING

WORLD HISTORY

WORLD HISTORY

EUROPEAN HISTORY

PSYCHOANALYSIS

PSYCHOLOGY I

BUSINESS THEORY

DATA MANAGEMENT

HAROLD

HAROLD

ABRAHAM

ABRAHAM

MAXWELL

LORCH

SCHOFFE

SCHOFFE

NEUMANN

BUCK

WILLERTON

GOODGOLD

BISCARDI

NAKATSU

ZABOSKI

SCHOFFE

SMITH

LM

LM

NG

NG

RF

MH

KN

KN

LB

GR

DW

ST

HR

FL

RL

KN

DC

 3

 8

26

 7

20

 2

 9

15

 8

16

20

12

17

15

11

 3

 6

10

12

 6

 2

 7

16

 4

 6

17

 1

30

20

21

46

 3

25

12

15

12

25

17

15

20

15

 9

20

15

1088

 650

 925

1100

2000

3000

1955

2195

2495

4500

2000

1200

 615

2600

2450

 995

1350

2560

1250

 895

1500

1435

Sample Bookstore Data Sets

Appendix B. Descriptions of the Sample Data Sets 157

Sample Data Set - SORT.BRANCH

 City State Employees Revenue Profit

 1 15 16 17 18 21 22 27 28 33

Los Angeles

San Francisco

Fort Collins

Sacramento

Sunnyvale

Denver

Boulder

Morgan Hill

Vail

San Jose

San Diego

Aspen

CA

CA

CO

CA

CA

CO

CO

CA

CO

CA

CA

CO

32

35

22

29

18

33

32

15

19

21

22

20

22530

42820

12300

42726

16152

31876

33866

18200

23202

27225

32940

25800

−4278

 6832

−2863

 8276

 −978

 6288

 7351

 3271

 5027

 8264

 8275

 5200

Sample Bookstore Data Sets

158 z/OS V1R6.0 DFSORT: Getting Started

Appendix C. Processing Order of Control Statements

The flowchart below shows the order in which control statements are processed.

(SUM is processed at the same time as SORT or MERGE. It is not used with

COPY.)

Although you can write the statements in any order, DFSORT always processes the

statements in the order shown below.

INCLUDE
OMIT

INREC

SORT
MERGE
OPTION COPY
SUM

OUTREC

OUTFIL

Figure 7. Processing Order of Control Statements

© Copyright IBM Corp. 1983, 2005 159

160 z/OS V1R6.0 DFSORT: Getting Started

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guidefor information about

accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E

and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each

guide includes the default settings for the PF keys and explains how to modify

their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

One exception is command syntax that is published in railroad track format;

screen-readable copies of z/OS books with that syntax information are separately

available in HTML zipped file form upon request to mhvrcfs@us.ibm.com.

© Copyright IBM Corp. 1983, 2005 161

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

162 z/OS V1R6.0 DFSORT: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

© Copyright IBM Corp. 1983, 2005 163

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Programming Interface Information

This publication primarily documents information that is NOT intended to be used

as Programming Interfaces of DFSORT.

This publication also documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of DFSORT. This information is

identified where it occurs, either by an introductory statement to a chapter or

section or by the following marking:

Programming Interface information

End of Programming Interface information

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 DFSORT

Hipersorting

Hiperspace

IBM

IBMLink

RACF

z/OS

z/VM

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices

164 z/OS V1R6.0 DFSORT: Getting Started

Index

Special characters
 47, 48

A
accessibility 161

allowable comparisons 28

Arithmetic 48

ascending order
example 4

sorting 14

ASCII data format code 5

B
BI format 5

binary data 5

binary zeros 39

blanks 40

C
calling DFSORT

COBOL program 87

PL/I program 93

carriage control, ANSI 75, 77, 79

CH format 5

character data 5

character strings, format 41

COBOL
calling DFSORT 87

FASTSRT compile-time option 101

MERGE statement 87

passing DFSORT statements 87

sample program 88, 90

SORT statement 87

comparison
allowable 28

field-to-constant 25, 28

field-to-field 25, 28

operators 26

constant
comparisons 30

reformatting 41

continuing a statement
DFSORT 17

ICETOOL 110

control fields
combining 16

deleting duplicate records 35

duplicate 33

equally collating 9, 33

general information 7

multiple 15

overlapping 15

reordering 39

summing 33

control statements
DFSORT 6

control statements (continued)
ordering 26

processing order flowchart 159

converting numeric fields 44

COPY operator (ICETOOL) 115

COPY option 23

copying records 23

COUNT operator (ICETOOL) 105

creating a DFSORT job 6

D
data formats 5

data set
copying

definition 5

with DFSORT 23

with ICETOOL 115

making multiple copies 66

merging
definition 5

with DFSORT 19

sorting
ascending order 14

by multiple control fields 15

definition 4

descending order 14

with DFSORT 13

with ICETOOL 110

dataspace sorting 99

defaults
order of equal records 9

overriding 95

using OPTION statement 96

using PARM parameter 96

DEFAULTS operator (ICETOOL) 105

deleting fields 38

deleting records 33

descending order
example 4

sorting 14

DFSORT FTP site 3

DFSORT web site 3

DFSPARM 18

disability 161

discards, saving 68

DISPLAY operator (ICETOOL) 117

documents, licensed xi

duplicate fields
OCCUR operator (ICETOOL) 126

SELECT operator (ICETOOL) 128

SPLICE operator (ICETOOL) 131

SUM statement 93

UNIQUE operator (ICETOOL) 106

E
EBCDIC data format code 5

edit masks
ICETOOL 120

edit masks (continued)
OUTFIL 46

editing fields 37, 120

equal control fields 9

excluding records 28

F
FASTSRT

COBOL 93

compile-time option 101

FB to VB 83

FI format 5

field-to-constant comparison 25, 28

field-to-field comparison 25, 28

fields
character and numeric, printing 117

deleting unnecessary fields 38

editing 39, 120

printing statistics for numeric 108

reformatting 39

Fixed-point data 5

Floating sign data 5

formats 5

formats for writing constants 30

formatting fields 37, 120

FS format 5

FTP site 3

H
hexadecimal display 48

hexadecimal strings, format 41

high-speed disk 99

Hipersorting 99

I
ICETOOL

complete sample job 137

COPY operator 115

COUNT operator 105

creating a job 106

DEFAULTS operator 105

definition 105

DISPLAY operator 117

JCL statements 107

job
elements 106

sample 137

MODE operator 105

OCCUR operator 126

operator summary 105

RANGE operator 116

requirements
input data sets 106

JCL 107

SELECT operator 128

SPLICE operator 131

© Copyright IBM Corp. 1983, 2005 165

ICETOOL (continued)
statements

blank 107

comment 107

operator, continuing 110

STATS operator 108

symbols 148

TOOLMSG output, sample 137

UNIQUE operator 106

VERIFY operator 106

improving performance
allocating main storage 99

FASTSRT compile-time option 101

high-speed disk 99

Hiperspace 99

INCLUDE statement 100

INREC statement 100

JCL (job control language) 101

OMIT statement 100

options to avoid 101

SKIPREC option 100

STOPAFT option 100

SUM statement 100

INCLUDE statement 25

INREC statement 37

installation defaults, overriding 95

ISCII data format code 5

J
JCL (job control language) 101

calling DFSORT from a program 88,

90, 93

executing a copy 23

executing a merge 21

executing a sort 17

general information 18

ICETOOL 107

selecting input data sets 18

selecting output data sets 18

statements 18

JOB statement 17

joining 131

K
keyboard 161

L
licensed documents xi

LookAt message retrieval tool xi

lookup and change 49

lowercase to uppercase 43

M
main storage, allocating 99

making multiple data set copies 66

mapping
symbols 145

matching 134

memory object sorting 99

MERGE statement 20

MERGE statement, COBOL 87

merging records 19

message retrieval tool, LookAt xi

MODE operator (ICETOOL) 105

multiple control fields 15

multiple data sets 66

N
non-duplicate fields

OCCUR operator (ICETOOL) 126

SELECT operator (ICETOOL) 128

SPLICE operator (ICETOOL) 131

SUM statement 93

UNIQUE operator (ICETOOL) 106

O
OCCUR operator (ICETOOL) 126

occurrences
OCCUR operator (ICETOOL) 126

SELECT operator (ICETOOL) 128

SPLICE operator (ICETOOL) 131

OMIT statement 25

OPTION COPY 23

OPTION statement 23, 96

order of control statements 26

ordering
ascending order 4

control statements 26

descending order 4

DFSORT defaults 9

OUTFIL
edit mask patterns 46

OUTFIL statement 65

output records, reformatting 37

OUTREC statement 37

overflow
explanation 36

preventing 57

overriding installation defaults 95

P
packed decimal data 5

PARM parameter 96

passing DFSORT statements
from a COBOL program 87

from a PL/I program 87

PD format 5

PL/I
calling DFSORT 93

passing DFSORT statements 87

sample program 93

printing reports
DISPLAY operator (ICETOOL) 117

OUTFIL statement 74

processing order
differences between INREC and

OUTREC 37

flowchart 159

special considerations for INREC 56,

57

R
RANGE operator (ICETOOL) 106, 116

record length, changing 38

RECORD statement 93

records
considerations when reordering with

INREC and OUTREC 56, 57

copying
definition 5

writing the COPY statement 23

merging
definition 5

using program control

statements 19

reformatting with OUTREC 25

reordering and reformatting with

OUTREC 39

reordering with OUTREC 25

selecting by occurrences 128

sorting
ascending order 14

by multiple control fields 15

definition 4

descending order 14

writing the SORT statement 13

summing 33

reformatting records 37

reordering fields 39

repeating 72

reports
DISPLAY operator (ICETOOL) 117

OUTFIL statement 74

running a DFSORT job 6

S
sample data sets 7, 67, 106, 153, 155

sampling 67

saving discards 68

sections 80, 124

SELECT operator (ICETOOL) 128

selecting records 128

sequence numbers 58

SFF format 5

short fields 22, 31, 36

shortcut keys 161

SKIPREC option 100

SORT operator (ICETOOL) 110

SORT statement 13

SORT statement, COBOL 87

SORT-CONTROL special register

(COBOL) 88

SORT-RETURN special register

(COBOL) 88

sorting records
DFSORT 13

ICETOOL 110

specifying COPY
COPY operator (ICETOOL) 115

MERGE statement 23

OPTION statement 23

SORT statement 23

SPLICE operator (ICETOOL) 131

splitting 73

statistics, printing for numeric fields 78,

108, 119

166 z/OS V1R6.0 DFSORT: Getting Started

STATS operator (ICETOOL) 108

STOPAFT option 100

substring search 30

SUM statement 33

summary fields 33

symbols 145

U
UFF format 5

UNIQUE operator (ICETOOL) 106

uppercase to lowercase 43

V
VB data sets 22, 31, 36, 61, 80, 83, 84,

110

VB to FB 84

VERIFY operator (ICETOOL) 106

W
web site 3

work storage data sets
devices for efficient use 99

number needed 17

Z
ZD format 5

zeros 39

zoned decimal data 5

Index 167

168 z/OS V1R6.0 DFSORT: Getting Started

Readers’ Comments — We’d Like to Hear from You

z/OS

DFSORT: Getting Started

 Publication No. SC26-7527-01

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC26-7527-01

SC26-7527-01

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SC26-7527-01

	Contents
	Figures
	Tables
	About this document
	How to use this document
	Required product knowledge
	Accessing z/OS DFSORT documents on the Internet
	Using LookAt to look up message explanations
	Accessing z/OS licensed documents on the Internet

	Part 1. Introduction
	Chapter 1. What is DFSORT?
	DFSORT on the World Wide Web
	DFSORT FTP Site
	Data Sets, Records and Fields
	Sorting Data Sets
	Merging Data Sets
	Copying Data Sets
	What Else Can You Do with DFSORT?
	Creating and Running DFSORT Jobs
	Writing Jobs
	Summary of DFSORT Control Statements
	Running Jobs

	Creating and Using the Sample Data Sets

	Part 2. Learning to Write JCL and DFSORT Control Statements
	Chapter 2. Sorting, Merging, and Copying Data Sets
	Sorting Data Sets
	Sorting by Multiple Fields
	Continuing a Statement
	Comment Statements
	JCL for Sorting Data Sets Directly

	Merging Data Sets
	Writing the MERGE Control Statement
	JCL for Merging Data Sets Directly

	VB Data Set Considerations
	Starting Positions
	Short Control Fields

	Copying Data Sets
	Specifying COPY on the SORT, MERGE, or OPTION Statement
	JCL for Copying Data Sets Directly

	Chapter 3. Including or Omitting Records
	Writing the INCLUDE Statement
	Writing the OMIT Statement
	Allowable Comparisons for INCLUDE and OMIT
	Writing Constants
	Character Strings
	Hexadecimal Strings
	Decimal Numbers

	Substring Search for INCLUDE and OMIT
	VB Data Set Considerations
	Starting Positions
	Short Control Fields

	Chapter 4. Summing Records
	Writing the SUM Statement
	Suppressing Records with Duplicate Control Fields
	Handling Overflow
	VB Data Set Considerations
	Starting Positions
	Short Summary Fields

	Chapter 5. Reformatting Records
	Reformatting Records After Sorting with BUILD or FIELDS
	Reordering Fields to Reserve Space
	Inserting Binary Zeros
	Inserting Blanks
	Inserting Strings
	Character Strings
	Hexadecimal Strings
	Setting Up a Basic Report

	Changing Uppercase to Lowercase
	Converting Numeric Fields to Different Formats
	Editing Numeric Fields
	Displaying Data in Hexadecimal
	Performing Arithmetic with Numeric Fields and Constants
	Doing Lookup and Change
	Reformatting Records with OVERLAY
	Extending Records with OVERLAY
	Reformatting Records with IFTHEN
	Reformatting Records Before Sorting
	Using Other Statements with INREC
	Preventing Overflow When Summing Values
	Inserting Sequence Numbers
	VB Data Set Considerations
	RDW
	Starting Positions and Columns
	Variable Data

	Chapter 6. Creating Multiple Output Data Sets and Reports
	Creating Multiple Identical Copies
	Selecting and Sampling by Relative Record Number
	Including, Omitting, and Saving Discards
	Reformatting
	Repeating
	Splitting
	Creating Reports: OUTFIL vs ICETOOL
	Creating Reports with OUTFIL
	Data
	Headers
	Trailers and Statistics
	No Data or Carriage Control Characters
	VB Data Set Considerations for Headers and Trailers
	Sections

	Converting FB to VB
	Converting VB to FB

	Chapter 7. Calling DFSORT from a Program
	Passing Control Statements
	Calling DFSORT from a COBOL Program
	Sorting Records
	Merging Records

	Sorting with COBOL FASTSRT
	Calling DFSORT from a PL/I Program

	Chapter 8. Overriding Installation Defaults
	Specifying PARM Parameters on a JCL EXEC Statement
	Specifying an OPTION Control Statement in DFSPARM

	Chapter 9. Using DFSORT Efficiently
	Be Generous with Main Storage
	Allow Memory Object Sorting, Hipersorting and Dataspace Sorting
	Use High–Speed Disks for Work Data Sets
	Eliminate Unnecessary Fields with INREC
	Eliminate Unnecessary Records with INCLUDE or OMIT
	Eliminate Unnecessary Records with STOPAFT and SKIPREC
	Consolidate Records with SUM
	Create Multiple Output Data Sets with OUTFIL
	Replace Program Logic with DFSORT Control Statements
	Use FASTSRT with COBOL
	Avoid Options That Might Degrade Performance

	Part 3. Learning to Use ICETOOL
	Chapter 10. Using the ICETOOL Utility
	ICETOOL Operators
	Sample Input Data Sets
	Writing Required JCL Statements
	ICETOOL Comment and Blank Statements
	Printing Statistics For Numeric Fields
	Continuing an Operator Statement
	Statistics For VB Data Set Record Lengths

	Creating Identical Sorted Data Sets
	Creating Different Subsets of a Sorted Data Set
	Creating Multiple Unsorted Data Sets
	Counting Values in a Range
	Printing Simple Reports
	Printing Tailored Reports
	Using Formatting Items
	Edit Masks
	Leading Zeros
	Edit Patterns
	No Statistics
	Division
	Leading, Floating and Trailing Characters

	Printing Sectioned Reports
	Printing How Many Times Fields Occur
	Selecting Records by Field Occurrences
	Joining Fields from Different Data Sets
	Matching Records from Different Data Sets
	Complete ICETOOL Job and TOOLMSG Output

	Part 4. Learning to Use Symbols
	Chapter 11. Defining and Using Symbols
	Creating the SYMNAMES Data Set
	Defining Symbols for Fields
	Using Symbols for Fields in DFSORT Statements
	Using Symbols for Fields in ICETOOL Operators
	Defining and Using Symbols for Constants

	Part 5. Appendixes
	Appendix A. Creating the Sample Data Sets
	Appendix B. Descriptions of the Sample Data Sets
	Appendix C. Processing Order of Control Statements
	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

