
.

© Copyright IBM Corporation, 2007. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

Technical report:
Microsoft SQL Server and IBM System

Storage N series with SnapDrive
Integration Guide

Document NS3247-0

September 24, 2007

Microsoft SQL Server and IBM System Storage N series with SnapDrive

2

Table of contents
Abstract..4
Introduction ...4
Supported SQL Server versions..5
Installing SnapDrive 2.0.1 and SQL Server...5
Dependencies..5

Starting and stopping SQL Server ... 5
Creating virtual disks using SnapDrive ..6

Volume creation and sizing.. 6
Create a virtual disk ... 8

Sizing the virtual disks to be created... 8
When to use more than one data file and device.. 8
Reserve space for snapshots.. 9

Using VLD.. 9
Using fiber channel-connected LUNs .. 9
Converting VLD to LUN ... 9
VLD or LUN.. 9

Database creation ...10
How much space is needed for the database files? .. 11
Creating a database using T-SQL and Query Analyzer .. 11

Create database with one file group.. 12
Database using file groups.. 12

Creating a database using Enterprise Manager .. 14
Physical layout of databases ... 17

Physical layout of OLTP databases .. 17
Physical layout of data warehouse databases .. 17

Migrating databases ...18
System databases ... 18

Moving System Databases.. 18
Master... 18
Tempdb... 19
Msdb... 19
Model .. 20

User databases.. 20
Using snapshots with SQL Server 2000 ...21

Creating snapshots with SnapDrive 2.0.1.. 21
SQL Server mode and database modes ... 21
SQL Server crash recovery ... 22
Snapshots of databases in a single volume .. 22
Snapshot of databases using virtual disks in several volumes ... 22
Snapshot batch program of online databases ... 23
CRE_SNAPSHOT.BAT.. 23

Microsoft SQL Server and IBM System Storage N series with SnapDrive

3

CR_CHECKPOINT.SQL.. 23
Configure SQL Server Agent ... 23

Restoring databases on virtual disks ...24
Attach SQL Server to database in snapshot ... 24
Connecting virtual disks in snapshot using read and write access ... 24

Disaster recovery and high availability...24
Asynchronous mirroring for disaster recovery ... 25
Local synchronous mirroring for high availability... 25
Cluster failover ... 25

SnapDrive and MSCS configurations..26
Trademarks and special notices..27

Microsoft SQL Server and IBM System Storage N series with SnapDrive

4

Abstract
IBM System Storage N series with SnapDrive integrates Windows OS-based applications with
IBM N series storage systems. This tight integration makes it quick to implement Microsoft SQL
Server solutions on IBM N series storage systems and to easily utilize IBM N series enterprise-
class file storage solutions. SnapDrive 2.0 is the second generation of the SnapDrive product
with enhanced functionality and a more user-friendly integration utilizing a single storage
system’s volume for multiple devices. This guide describes how to integrate SnapDrive 2.0.1
with SQL Server and how to utilize IBM N series storage system functionalities such as IBM
System Storage N series with Snapshot, IBM System Storage N series with SnapRestore, and
IBM System Storage N series with SnapMirror.

Introduction
IBM® System Storage™ N series with SnapDrive® has evolved to utilize more I/O protocols and integrates
with more IBM N series filer features, but even so, it is extremely easy to integrate Microsoft® SQL Server
with IBM N series storage system technology. SnapDrive 2.0.1 use of qtrees has increased the flexibility
when multiple devices utilize a single IBM N series storage system volume. Support for asynchronous
mirroring has made it much easier to create a robust SQL Server environment for disaster recovery.
Support of the new Fibre Channel (FC) I/O protocol has drastically increased the I/O throughput
SnapDrive can support and it has made it easier to integrate into existing data-center infrastructures, but
it has also made it more complicated to determine which I/O protocol to implement. The different
protocols will be discussed when appropriate, but the focus of this document is not the I/O protocols.

SnapDrive manages virtual disks that use different I/O protocols that functionally don’t influence SQL
Server in any way; therefore, the term “SnapDrive” or “device” will be used whenever the subject matter is
not dependent on the I/O protocol. Only if the behavior changes with the protocol will the specific protocol
be mentioned.

This technical report will describe all integration aspects influenced by SnapDrive 2.0.1, its functionalities,
or supported virtual disk I/O protocols. How to install SnapDrive will not be described in this report (see
the section entitled “Migrating databases” in this document, for SnapDrive installation resources) nor will it
describe how to install SQL Server, which is described in SQL Server product documentation. This report
will focus on integration of SQL Server with the use of virtual disks that are stored on the storage system,
IBM System Storage N series with Snapshot™ creation of these virtual disks and restoring these virtual
disks from a snapshot, multiple virtual disks utilizing one single volume, and how to utilize IBM System
Storage N series with SnapMirror®. Use of virtual disks as Microsoft Cluster Services physical disk
resources will also be discussed in this document.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

5

Supported SQL Server versions
SnapDrive 2.0.1 or newer is application independent and all SQL Server versions are supported.
Supported Microsoft Windows platforms are described in the section entitled “Migrating databases” in this
document.

Installing SnapDrive 2.0.1 and SQL Server
Installation of SnapDrive is straightforward and has few special requirements. Detailed descriptions of the
installation process of SnapDrive 2.0.1 can be found in the section entitled “Migrating databases” in this
report. Installation of SQL Server is described in the SQL Server reference set delivered with the SQL
Server CD or see the section entitled “Installing SnapDrive 2.0.1 and SQL Server” in this report.

Dependencies
There are no dependencies among SQL Server, its installation process, or any SnapDrive components.
Therefore, the installation of SQL Server and SnapDrive components can occur independently from each
other. If the goal is to install SQL Server’s system database on virtual disk, then it is easiest to install
SnapDrive and create the virtual disk before installing SQL Server. It is easiest to specify the storage
location during the installation process for all system databases; it is not possible to specify different
locations for each system database. Each system database can be moved individually to a new storage
location after installation (see the section of this report entitled “Migrating databases” for more details).
SnapDrive 2.0.1 is supported under Windows 2000 Server or Advanced Server (while not available at the
time of this report writing, SnapDrive 2.0 and later versions also are supported under Windows 2003).

Starting and stopping SQL Server

The recommendation is to locate all SQL Server system databases on a virtual disk, but special
considerations have to be taken when user databases are located both on virtual disks and on other non-
IBM N series storage products.

Without access to its master database SQL Server will not be able to start. All global objects are
described in the master database, like database names and their paths to the databases’ primary files.
Therefore, if the master database is located on an IBM N series virtual disk, but the virtual disk on the
storage system is unavailable due to lack of Gigabit or FC network connectivity, then SQL Server will not
be able to start. The same is true for tempdb, which is created when SQL Server is started. When
Microsoft SQL Server Agent is used, its database msdb has to be accessible or it can’t start up.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

6

Creating virtual disks using SnapDrive
Prior to the creation of virtual disks using SnapDrive, the storage system environment has to be prepared
and SnapDrive has to be installed according to the recommendations described in the section entitled
“Migrating databases.” The main difference between the supported SnapDrive I/O protocols is the
transport layer and the I/O protocol.

Creating virtual disks using SnapDrive requires only a few steps after the system environment has been
set up and configured correctly.

Volume creation and sizing

Creation of storage system volumes is described in the section entitled “Migrating databases”; this
document will briefly mention areas related to sizing a volume for SQL Server application or basic
performance implications derived from the physical layout. The main issue that has to be decided is the
number of disk devices in a volume and the number of data files used by a database table. You must
consider the following when sizing a volume:

 The initial database size is the initial starting point for any sizing project.
 The database growth rate is important for sizing the volume(s) correctly or the volume(s) will need

to be expanded too soon and too often.
 The change rate of the current database is important for estimating the snapshot space

requirements.
 Free space requirements for snapshots are at least equal to the size of the virtual LAN drive

(VLD) or logical unit number (LUN) plus changed file blocks.
 The recommendation is to use the default redundant array of inexpensive disks (RAID) group

size.
 It is also recommended to operate with extra free volume space⎯maintaining extra free volume

space will decrease a possible volume fragmentation rate and will also prevent sudden “out of
space” events; also, when a volume’s free space is very limited then I/O performance could
suffer.

 Depending on the access pattern, a single disk drive can support about 150 I/O operations per
second (IOPS) with current disk technology; therefore, it is important to understand the I/O rate
during peak load to estimate the number of disk drives needed to support the I/O load⎯a RAID
group size of eight disk drives (seven data and one parity) can at most support 7 * 150 IOPS =
1,050 (4KB) IOPS.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

7

This is an example of a fictive customer with the following requirements:

 Initial database size is 100GB.
 Database growth rate is estimated to be 10% per month.
 Change rate of the current database is estimated to be 15% per month.
 Snapshot requirement is four snapshots per day with a total of 12 snapshots (three days).
 Default RAID group size is 72GB * 8 devices using RAID 4.
 The administrator wants to expand the volume only every six months.
 The growth and change rates are estimates, so extra volume space has been requested, and the

customer realizes that a volume always has to operate with some free space to decrease the
possible fragmentation rate, or I/O performance could suffer; therefore, an extra 20% free space
per disk drive will be allocated as a free-space buffer.

 The average I/O rate is about 1.5MB per second and the peak rate is about 3MB per second.
1. The database size after six months will be about 180GB.
2. About 2GB of the database will change every month after six months, which is equal to

0.15GB per four hours.
3. The minimum space requirement after six months will be (180GB * 2) + (0.15GB * 12) =

362GB.
4. A 72GB disk drive has 68GB usable file space, and since 20% is allocated as extra free

space, only 55GB is usable per disk drive. Hence, six disk drives are needed for data and
one disk drive for parity (RAID4), for a total of seven disk drives. However, it is important
for performance reasons to always configure complete RAID groups; therefore, the volume
will be created with eight disk drives. If the rate of growth is consistent over time then the
volume will have to be expanded with another RAID group after six or seven months.

5. The estimated peak load was 3MB per second, which is equal to about 770 IOPS. Since
seven data disk drives can support 1,050 IOPS, a RAID group size of eight will be
sufficient to support both space requirements and I/O load requirements.

The calculation didn’t include the size of system databases. Except for tempdb, all system databases are
fairly small. Tempdb is a work area for all SQL Server’s temporary storage requirements. The size of
tempdb depends exclusively on the operations executed by database applications, number of databases,
and number of users, and it can become very large. It is very hard to predict how big tempdb can
become, but the I/O load can become very high. Since it is re-created every time SQL Server starts up
and is never reused, the tempdb shouldn’t be located in a volume where snapshots are created, but on
another volume with no snapshots.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

8

Create a virtual disk

The Installation and Administration Guide for SnapDrive (see the section entitled “Migrating databases” in
this report) explains in detail how to create virtual disks. This section will discuss areas that are in some
way related to SQL Server functionality.

The main issues are:

 How large should the virtual disk be?
 How much space should be reserved for snapshots? (A detailed description of space reservation

is found in the section entitled “Migrating databases”)
 How many devices should be created?
 How much space is needed for the initial database size?
 How much space is needed for future growth?
 Should SQL Server’s system database be located on a storage system device or on local

devices?

Sizing the virtual disks to be created

Storage requirements were calculated in the section of this report that is entitled “Volume creation
and sizing”; use this size for sizing the device. One question that has to be answered is how many
files to spread the database over and in how many devices. The answer in most cases is one data file
and one log file in one device. But in some cases it will make sense to use several data files in one or
several devices.

When to use more than one data file and device

If the database application is an OLTP application then the access pattern is mostly random access
and one single data file is appropriate, except if the database is big, in which case the bigger tables
ought to be spread over several data files in one SQL Server defined file group (see the section of
this report entitled “Database using file groups”). There is no objective answer to when to use one
single file in a file group or several files; it mostly depends on I/O rate, sequential access, and access
pattern (see the section of this report entitled “Physical layout of databases” for more details). All data
files in a SQL Server file group can be located in one single device, but if the application generates a
high load of serial read I/O requests then the performance would probably increase if the data files
were located in several devices. A data warehouse application has high serial read requirements and
is a good candidate for using file groups with several devices.

Another good reason for using more than one data file in several devices is if the database consists
of several tables and some of the tables almost never change while other tables change all the time,
in which case it make sense to locate tables with a high rate of change in a file(s) located in one
device utilizing a volume and the other more static tables in another device utilizing another volume.

Two excellent references for capacity planning and performance tuning are sections of this report
entitled “Dependencies” and “Creating virtual disks using SnapDrive.”

Microsoft SQL Server and IBM System Storage N series with SnapDrive

9

Reserve space for snapshots

If snapshots will be used for backup or other purposes, space has to be allocated for snapshot
creation. Free volume space equal to the size of the virtual disk has to be available for SnapDrive to
create a snapshot. A detailed description of space reservation is found in the section of this report
entitled “Migrating databases.”

It is easy to expand the volume if there isn’t enough free space to allow for snapshot creation as long
as hot-spare disks are available on the storage system. Remember to expand the volume in
accordance with the RAID group size; otherwise performance could suffer severely.

Using VLD

VLD is implemented in software; it uses Gigabit Ethernet transport layer and CPU power for all its
processing requirements. VLD is an excellent solution when the goal is to implement a stable, reliable
environment when high-end I/O performance is not a major requirement. VLD can sustain fairly high I/O
throughput and excellent service times, but a FC−connected LUN is able to deliver higher performance.

Using fiber channel-connected LUNs

LUN uses FC infrastructure and does not use the CPU power as much as VLD. In system environments
where I/O performance is a major requirement, LUN is an excellent choice; it delivers high-end I/O
throughput and servicing times. LUN is as stable and reliable as VLD and will deliver greater maximum
I/O throughput and shorter I/O latencies.

Converting VLD to LUN

It is straightforward to convert a VLD device to LUN, but it is a one-way conversion and can’t be reversed.
The conversion consists of three steps:

1. Disconnect the VLD device. In SnapDrive Manager, highlight the VLD to convert and right click.
Select actions disconnect.

2. Convert the VLD to a LUN. From the right panel select and highlight SnapDrive. Select action
“Convert VLD to LUN…” and follow the instructions.

3. Connect to the LUN. Highlight SnapDrive and select action “Connect disk…” and follow the
instructions.

VLD or LUN

LUN is for system environments with high-end performance requirements, but the decision is often based
on which transport layer is already in place at the customer site. Most customer sites already have some
Gigabit Ethernet infrastructure configured and available for the new SQL Server environment. Even when
a new Gigabit Ethernet infrastructure has to be created, it is very cost efficient and reliable, and it will in
most cases satisfy system requirements. If a FC infrastructure is already in place and it can be used with
IBM N series SAN technology then it makes sense to use the LUN technology. In cases where the
performance requirements are not well understood, start by testing with VLD and if that environment
doesn’t fulfill expectations then convert to LUN.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

10

Database creation
Device size(s) and therefore the size(s) of the NT file system(s) (NTFS) is already known from the
material presented in the section of this report entitled “Create a virtual disk.” In this section we will
discuss how many log and data files to use for the database and how to create a database. Databases
can be created from either Query Analyzer (using T-SQL) or from Enterprise Manager (a SQL graphical
interface tool); both possibilities will be illustrated.

SQL Server views all log files belonging to a database as one single logical log file. This doesn’t change
with the number of physical files the log consists of. The only reason to have more than one log file is if a
single device is not big enough to contain the complete log file; therefore, smaller files on different
devices have to be used. SQL Server will use only one physical file at a time; when all space in one file is
used then SQL Server will move on to the next file. Data files are different: when the SQL Server
database engine detects that a table or index is located on several files in a file group it will use that
knowledge to concurrently read from several files at the same time, which is the case when a table or
index has to be scanned.

Section “Create a Virtual Disk” discussed in general terms sizing requirements for a database but it did
not discuss how many data files to use and how many devices. It is very hard to give concrete guidelines;
most known customer cases use just one single data file for a database. Using more data files and
storage system groups makes the database layout more flexible, and it will make it easier to move part of
a database to another device for performance reasons. This will especially be true in the future, when the
database and the performance requirements will, most likely, be very different compared to today. As the
database size increases the I/O characteristic changes and so does the transaction rate. Therefore,
flexibility and a flexible physical layout are important.

Each database table object or index object can be located in its own file group. A file group is a logical
grouping of physical files. A file in a file group can’t be moved to another file group, but files can be added
to a file group. A table, or index, that is created in a file group with more than one data file will be
allocated in a round-robin fashion across all files in that file group relative to each file’s size. Hence, it is
important with an IBM N series storage system to create all files with equal sizes. When a database’s
physical layout utilizes several file groups and if in the future the storage is overutilized resulting in poor
performance, then it will be fairly easy to move a heavily loaded file group or to move one of its files to
another volume.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

11

How much space is needed for the database files?

The initial space and future growth requirements have to be known at the time of volume(s) creation; of
more concern at this point is the size of the database files. It is necessary to first clarify the difference
between extending a database table space and growing a database file. A table is always extended in
fixed allocation sizes (eight database pages) and can’t be changed. When a table has to be extended and
there is not enough free file space then the file will grow if the “automatically grow file” property is
configured. In other words, tables will extend on already allocated and initialized database files whereas
files will automatically physically grow and initialize database files when there is no more free space to
extend tables. File growth can be set to fixed allocation sizes or a percentage relative to the current size.
When growth size is set to a percentage the actual growth size will increase over time as the file size
increases, which can become a problem with very large files. A fixed growth size is easier to control and
can always be changed through Enterprise Manager.

Data files contain table data and/or table indexes, whereas log files contain transaction log records. The
size of a log file depends mostly on transaction arrival rate and the database’s recovery mode. A SQL
Server database can be in one of three recovery model types:

 The full recovery model provides the least risk of losing transactions in the case that the backup
has to be used for recovering a database because of lost media.

 Bulk logged doesn’t fully log certain bulk operations (like BULK INSERT, BCP, and CREATE
INDEX); only minimal information is logged in the log file. The minimal logging can still fully
recover the database. The tradeoff is that bulk operations execute faster compared with the full
recovery model, but it will take longer to back up the log file because all database pages modified
by a bulk operation have to be backed up together with the log file. Hence, the transaction log is
smaller but the backed up transaction log is much bigger.

 Simple means that logging of transactions are disabled and only full or differentiable backups can
be used (no backup of the transaction log).

When full or bulk logged is used then the transaction log file will grow until either there is no more free
space on the log device or the log file has reached its maximum size as defined during database creation,
in which case transaction processing will stop until the log file has been backed up or more space has
been allocated to the device. After the transaction log has been backed up then it is logically truncated
and the space can be reused for new transaction records.

When space is estimated for a database’s transaction log, it has to be based on the recovery mode,
transaction arrival rate, and how often the log is backed up if the recovery mode is either full or bulk
logged.

Creating a database using T-SQL and Query Analyzer

Two different database creation examples will be given. The first example will create a basic database
with one data file and one log file. The second example will create a more complex physical layout of a
database with several file groups and data files. The storage protocol can be VLD or FC; this does not
affect the creation of a database.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

12

Create database with one file group

Figure 1 shows Query Analyzer’s execution and result screens. The CREATE DATABASE statement
creates a SALE database consisting of one data file in the PRIMARY file group. Both the data and log
file can grow unlimited until the device is full. Both the data file and the log file are located on the “Y”
device.

Figure 1. Create Database with Query Analyzer

Database using file groups

This example creates a database named SALES with three file groups and one log file:

 The primary file group with the files named Spri1_dat and Spri2_dat; both files’ initial file
sizes are 100MB with a growth size of 10MB; both files are located on the same device.

 A file group named SALESGROUP1 with the files SGrp1Fi1 and SGrp1Fi2; the file’s initial
size is 150GB with a growth size of 5GB; the two files are located on two different devices,
“Y” and “Q.”

 A file group named SALESGROUP2 with the file named SGrp2Fi1, which is located on its
own “X” device.

 The log file is located together with the primary file group on device “Z”; the maximum size of
the log file is 150MB with an initial size of 50MB and a growth size of 5 MB.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

13

The physical layout of a database and the reasons to use several devices and files were
discussed in sections “Volume Creation and Sizing” and “Create a virtual disk.”

USE MASTER
 GO
CREATE DATABASE SALES
ON PRIMARY
(NAME = SPRI1_DAT,
 FILENAME = 'Z:\\MSSQL\SPRI1DAT.MDF',
 SIZE = 100MB,
 FILEGROWTH = 10MB),
(NAME = SPRI2_DAT,
 FILENAME = 'Z:\ MSSQL\SPRI2DT.NDF',
 SIZE = 100MB,
 FILEGROWTH = 10MB),
FILEGROUP SALESGROUP1
(NAME = SGRP1FI1_DAT,
 FILENAME = 'Y:\MSSQL\SG1FI1DT.NDF',
 SIZE = 150GB,
 FILEGROWTH = 5GB),
(NAME = SGRP1FI2_DAT,
 FILENAME = 'Q:\MSSQL\SG1FI2DT.NDF',
 SIZE = 150GB,
 FILEGROWTH = 5GB),
FILEGROUP SALESGROUP2
(NAME = SGRP2FI1_DAT,
 FILENAME = 'X:\MSSQL\SG2FI1DT.NDF',
 SIZE = 1 GB,
 FILEGROWTH = 50MB)
LOG ON
(NAME = 'SALES_LOG',
 FILENAME = 'Z:\MSSQL\SALELOG.LDF',
 SIZE = 50MB,
 MAXSIZE = 150MB,
 FILEGROWTH = 5MB)
` GO

Microsoft SQL Server and IBM System Storage N series with SnapDrive

14

Creating a database using Enterprise Manager

An alternative to using a T-SQL statement for creating a database is Enterprise Manager. It is fairly easy
to use, and it is not necessary to know either Query Analyzer or T-SQL.

Start Enterprise Manager and browse to Databases in the right panel. Right-click Databases, select New
Databases, and name the database to be created in the General tab (Figure 2).

Figure 2. Create Database General Tab

Go to the Data File tab and fill in all information related to all data files. File growth is by default set to
10% auto increase; so remember to change it if a fixed growth size will be used (Figure 3).

Microsoft SQL Server and IBM System Storage N series with SnapDrive

15

Figure 3. Create Data File Tab

Figure 4 shows definition of the transaction log file. (The log file doesn’t belong to any file group.)

Microsoft SQL Server and IBM System Storage N series with SnapDrive

16

Figure 4. Create Transaction Log Tab

Microsoft SQL Server and IBM System Storage N series with SnapDrive

17

Physical layout of databases

Most SQL Server environments will perform to satisfaction when all database files are located in one
single volume. However, some environments that require high performance levels need dedicated
attention to the physical layout of the database files. The physical layout is influenced by the database
type and the I/O load generated by the user of the application. This paper distinguishes between
applications generating mostly random database access (OLTP, online transaction processing) and
applications that generate mostly sequential database access (data warehouse). The database creation
examples in 7.1.2 and 7.2 show a physical layout over three devices and the possibility for tables and/or
indexes to be allocated over two files in different file groups.

Physical layout of OLTP databases

OLTP types of applications usually execute workloads with mostly random access patterns to the
database files and read mostly one database page at a time. Most OLTP applications also execute
some very limited sequential access. A high level of sequential reads usually means that an index is
missing or created incorrectly or the application is not a “clean” OLTP application.

The main performance goal of an OLTP database is to limit disk access latency by physically
distributing the database over as many disk drives as possible and not to have any I/O hot spots.

It is easiest to locate all files belonging to a database in one single volume (see the use of snapshots
in the section of this report entitled “Using snapshots with SQL Server 2000”). If initial testing of a
database shows performance problems then begin by moving the transaction log file to another
volume. Additionally, if tempdb is located in the same volume as the user database, then move
tempdb to another volume. If that doesn’t help then locate the data files in different volumes (see 6.1
and 6.2), which is especially important if a database table is very big.

Physical layout of data warehouse databases

Data warehouse applications usually generate a database I/O load that consists mainly of sequential
I/O read access. Distributing a database table over several files in file groups will enhance the
possible maximum read throughput. How much the throughput will increase depends on the
application’s access pattern, but allocating a table over several files will in general improve the
performance.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

18

Migrating databases
When an IBM N series storage system is introduced into an existing SQL Server environment then
databases have to be migrated from the current storage location to the new storage system storage. It is
not complicated to migrate system databases to the new storage, but different methodologies have to be
used for each system database. Tempdb is critical to the performance of all SQL Server’s databases, and
it is recommended to move this system database to a storage system volume. The migration described in
this section is concerned only with migrating from a third-party disk subsystem or from a universal naming
convention (UNC) path.

System databases

SQL Server has five system databases:

 The master database is the main database of all SQL Server system databases; many activities
modify the content of the master database, for example, information about user-created
databases such as their location, creation, alteration, and removal.

 The model database is used as a template when user databases are created; the system
administrator can change the properties of the model database to adapt it to the specific needs of
the local database environment.

 The tempdb is used for temporary storage and is re-created every time SQL Server is started.
 Information needed by the SQL Server Agent is stored in msdb, e.g., alerts and jobs.
 The distribution database is used for replication and will be visible only if replication is active.

Moving System Databases

It is fairly easy to move system databases, but different methodology is needed for each system
database.

Master

 There may be reasons to move the master database, but one has to be careful not to
corrupt the entire SQL Server environment; moving the master database involves two
steps: assigning the new location within the SQL Server configuration and moving the
associated files.

 Run DBCC CHECKDB prior to migrating the database.
 From Enterprise Manager, right click the SQL Server and select Properties.
 Click the Startup Parameters button at the bottom of the General properties page.
 There are usually three parameters, two parameters referencing the database files and

one parameter referencing the message log location; highlight each of the existing
parameters, remove them, and add the new paths.

 Stop SQL Server.
 Move or copy the files to new location.
 Restart SQL Server.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

19

Tempdb

All temporary information is stored in tempdb, which is re-created each time SQL Server is
started. How much tempdb is used is application dependent, but in general SQL Server generally
heavily uses tempdb.

Since tempdb is re-created every time SQL Server is restarted, there is no reason to create
snapshots of it; therefore, locate it in a VLD that will not be taken snapshots of.

The database command “alter database” is used for moving the tempdb (see SQL Server Online
Help for a detailed description of the “alter database” statement):

 Move data file. Alter database tempdb modify file (name=’tempdev’,
filename=’newpath\newfilename’)

 Move log file. Alter database tempdb modify file (name=’templog’,
filename=’newpath\newfilename’)

 Stop and restart SQL Server.

Msdb

The msdb is used by SQL Server Agent to manage alerts, jobs, and scheduling. Follow these
steps to easily move msdb:

 Stop SQL Server Agent
 From Query Analyzer detach the database
 USE master
 GO
 Sp_detach_db ‘msdb’
 GO
 Move the data and log files to the new location
 USE master
 Sp_attach_db ‘msb’ (see 7.2)
 GO
 Start SQL Server Agent

Microsoft SQL Server and IBM System Storage N series with SnapDrive

20

Model

In order to move the model database to a new location, SQL Server has to be started with Trace
flag 3608, which prevents recovery of any database except master. Follow these steps:

 From Enterprise Manager, right-click the SQL Server and select Properties
 Click the Startup Parameters button
 Add the startup parameter –T3608
 Stop and restart SQL Server
 Detach the database from Query Analyzer (see 7.2)
 Move the data and log files to the new location
 Reattach the model database (see 7.2)
 Remove the trace flag from the startup parameters
 Stop and restart SQL Server

User databases

SQL Server functionality makes it easy to move databases from an UNC path to a storage system or third
party directly attached disk to IBM N series virtual disk. Detach the database(s) from the undesired
location, copy the data files to the new location, and reattach the databases files to the new location. The
steps can be implemented from the Query Analyzer as follows:

1. Detach current database files:
sp_detach '[database name]'
GO

2. Copy files:
copy *.MDF E: /* copy data files */
copy *.LDF E: /* copy log files */

3. Attach new database files:
USE master
GO
sp_attach_db '',
 'E:\[folder]\[name].MDF',
 'E:\[folder]\[name].LDF',

 GO

Microsoft SQL Server and IBM System Storage N series with SnapDrive

21

Using snapshots with SQL Server 2000

Snapshots have to be created and restored through the SnapDrive Microsoft Management Console
(MMC) snap-in or command line interface (SDCLI.exe). This section will describe how to create
snapshots of SQL Server databases. The methodology used when creating snapshots depends on
several factors: number of databases, database stored on one or several devices over how many
volumes, or whether the database engine can be shut down for a short duration. Snapshot creation
depends on SnapDrive functionality, which has to be well understood.

A snapshot can only be used as a point-in-time backup and recovery.

Creating snapshots with SnapDrive 2.0.1

Creating snapshots depends on SnapDrive functionality. SnapDrive manages snapshot creation of virtual
disks. The snapshot creation takes place on the storage system. Snapshots are created per volume, but
SnapDrive prepares individual virtual disks for snapshot creation. SnapDrive will not recognize virtual disk
snapshots that are not created by SnapDrive. In addition, snapshot creation of virtual disks must be
initiated by a SnapDrive instance that is running on a Windows host that owns the virtual disks.

SnapDrive creates snapshots of a volume and not a device, whereas SnapDrive restores a VLD or LUN
device and not the volume. It is essential to understand the effect this has when a database utilizes
several devices in one single volume. When a snapshot is created of a device in a volume, all other
devices will be snapshot at the same time. This is not a big issue but it is important to understand that all
devices used by a single database have to be restored at the same time; if one device is not restored the
database will probably not be able to go online because of inconsistencies.

SQL Server mode and database modes

As long as only one volume is utilized by a database, it doesn't matter which mode SQL Server is
executing in or if the database is online or offline; snapshots can just be created and SQL Server will
crash recover after devices (VLD or LUN) have been restored using IBM System Storage N series with
SnapRestore®. When the database utilizes more than one volume, then special care has to be taken.
Before planning how to create snapshots one has to understand the different SQL Server execution
modes. It is preferable to stop SQL Server or to take the database(s) offline while creating snapshots. If
the database(s) utilizes more than one device in more than one volume, special care has to be taken:

 The normal execution mode for SQL Server is active, multiuser mode, and databases are online;
new transactions can arrive and be committed at any time.

 When SQL Server is stopped, all databases are checkpointed and all users are disconnected.
 When a database is in single-user mode, then only one single user can access the database; that

user can still execute new transactions.
 A database that is taken offline is checkpointed in the process, and the database can't be

accessed while it is offline.
 While a database is online, users can access it and execute transactions.

The different SQL Server execution modes are necessarily to understand what discussing SQL Server's
crash recovery in the next section.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

22

SQL Server crash recovery

When SQL Server stops, normally a checkpoint is executed for all databases. A checkpoint is implicitly
executed when a database is taken offline. A checkpoint synchronizes a database's data files with the in-
memory images, and a checkpoint marker is written to the log file and data files. If SQL Server suddenly
crashes, the data files are not synchronized with the memory image, and there are both committed and
uncompleted transactions in the log file. The uncommitted transactions must be rolled back and
committed transactions must be rolled forward, which is done during SQL Server's crash recovery.

SQL Server's crash recovery processing logically executes the following steps:

 Find the last checkpoint in the database's log and data files.
 Roll back all open transactions that have not been committed.
 Roll forward all committed transactions.
 Write a synchronization marker to all files.

The first point is central to understanding how to create snapshots while a database is online and utilizes
more than one volume. Hence, if a checkpoint is executed while a set of snapshots is being created, SQL
Server will not be able to crash recover since the marker for the last checkpoint in the log file is newer
than the marker in the data file(s). Therefore, it is crucial to control how often a checkpoint is created,
which can be done with the recovery interval database settings that are set from Enterprise Manager.

Snapshots of databases in a single volume

As long as a database utilizes only one volume, then it doesn’t really matter which mode SQL Server is in
or if the database is online or offline, one can just create a snapshot. After a SnapRestore SQL Server will
crash recover the database.

Snapshot of databases using virtual disks in several volumes

If the customer environment allows for taking the database offline or stopping SQL Server while
snapshots are created, that is the preferred methodology. But this is often not possible and snapshots
have to be created while the database is online. In this case, great care must be taken to prevent the
database engine from running any checkpoints while snapshots are created. The database administrator
(DBA) has to be certain how to control the frequency of running checkpoints and how to create the
snapshot of the VLD containing the log file last. It is fairly easy to implement this functionality in a batch
program. Execution of the batch program can automatically be executed from SQL Server Agent.

SQL Server’s recovery interval together with the arrival rate of new transactions (transactions in the log
file) determines how often checkpoints occur. Set SQL Server's recovery interval long enough to
guarantee that no checkpoint will be executed while the snapshot is being created. One of SQL Server's
performance counters is a good tool to monitor how often a checkpoint is executed. From the
Performance Monitor add counter "SQLServer:Buffer Manager; checkpoint pages/sec."

The recovery interval can be set from Enterprise Manager: open the console root and highlight and right-
click on the Server instance. Click Database Settings and adjust the recovery interval. The batch job
outlined in the section of this report entitled “CRE_SNAPSHOT.BAT” can easily be expanded to set a
very long recovery interval in the beginning of the batch job and reset it after all checkpoints and
snapshots have been created.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

23

Snapshot batch program of online databases

The following batch job begins with executing a checkpoint per database (checkpoints are database
dependent), renaming current snapshots, and creating the new snapshot. The isql statement in the batch
job executes an isql input file.

For the script to work correctly, the system path has to include the path to SnapDrive Manager's
command line interface, default <driver>:\Program Files\SnapDrive.

CRE_SNAPSHOT.BAT

It is easiest to control and to understand if one batch job is created per database.

When several devices utilize one volume then only one single snapshot should be created per volume
(see the section of this report entitled “Using snapshots with SQL Server 2000”).

isql -Usa -P -S<SQL Server> -i cr_checkpoint.sql
SDCLI snap delete –d <drive letter 1> -s <oldest_data_1>
SDCLI snap rename -d <mount point 1> -o <oldest-1_data_1> –n <oldest_data_1 >
SDCLI snap rename –d <mount point 1> -o <oldest-2_data_1> –n <oldest-1_data_1 >
SDCLI snap rename –d <mount point 1> -o <oldest-3_data_1> -n <oldest-2_data_1>

// Continue all current snapshots on all mount points

SDCLI snap delete –d <mount point 2> -s <oldest_data_2 >
SDCLI snap rename –d <mount point 2> -o <oldest-1_data_2> -n <oldest_data_2>
SDCLI snap rename –d <mount point 2> -o <oldest-2_data_2> -n <oldest-1_data_2>
SDCLI snap rename –d <mount point 2> -o <oldest-3_data_2> -n <oldest-2_data_2>

SDCLI snap delete –d <mount point 3> -s <oldest_log>
SDCLI snap rename –d <mount point 3> -o <oldest-1_log> -n <oldest_log>
SDCLI snap rename –d <mount point 3> -o <oldest-2_log> -n <oldest-1_log>
SDCLI snap rename –d <mount point 3> -o <oldest-3_log> -n <oldest-2_log>

// Continue creating new snapshots of all data files and then

SDCLI snap create -s <newest_data1> -D <mount point 1>
SDCLI snap create –s <newest_data2> -D <mount point 2>
SDCLI snap create –s <newest_data2> -D <mount point 3>

CR_CHECKPOINT.SQL
\\ Checkpoint all databases that utilize files in any volume utilized by a used device.
cre_snapshot.bat

Checkpoint <database>
Go

Configure SQL Server Agent

SQL Server Agent has a scheduler that can execute the batch job in 7.7. The scheduler is flexible and
can execute the job as frequently as needed, every day or on certain days. Remember, when SQL Server
is stopped, the SQL Server Agent is also stopped; therefore, be certain to also start SQL Server Agent
after stopping SQL Server. From Enterprise Manager:

Microsoft SQL Server and IBM System Storage N series with SnapDrive

24

 Open the Console Root
 Open Microsoft SQL Server
 Open SQL Server Group
 Open the server
 Open Management
 Highlight Jobs and go to New Job
 Update the four tabs: General, Steps, Schedule, and Notification.

Restoring databases on virtual disks
Before a database can be restored using SnapRestore it has to be taken offline or SQL Server has to be
stopped. SnapRestore has to be executed from the SnapDrive MMC snap-in or SDCLI. After a restored
database has been brought online or the SQL Server engine has to be started, the database engine will
replay all transactions in the log since the last checkpoint. SnapDrive restores a virtual disk from a
specified snapshot copy. The virtual disk is the minimum unit of restoration. All devices utilized by the
database to be restored have to be restored before the database is taken online. If one of the devices
utilized by the database is not restored then the database will probably be prevented from coming online.

Attach SQL Server to database in snapshot

SQL Server can utilize databases in snapshots for reporting or for recovering from soft database errors.
Before SQL Server can access the database, the devices in the snapshots have to be connected and
SQL Server has to attach the database’s files:

 Use SnapDrive MMC snap-in or SDCLI to connect to the device(s) in the snapshot(s).
 Use Query Analyzer (see 8.2) or Enterprise Manager to attach to a database in the mounted

snapshot(s); when the database is mounted in read-only mode SQL Server will not be able to
replay transactions committed since the last checkpoint, and not all completed transactions after
the last checkpoint will be rolled back.

A snapshot of a VLD can be mounted in read-only or read-and-write mode, whereas a snapshot of a LUN
can be mounted only in read-and-write mode.

Connecting virtual disks in snapshot using read and write access

Snapshots can be mounted in writable mode. Snapshots mounted in writable mode are excellent for
testing or other short-term use. However, it should never be used as the base for a new database image.
All data written to a virtual disk in a snapshot that is connected in read/write mode will be lost as soon as
this virtual disk is disconnected. Avoid creating snapshots of a virtual disk that is on a storage system
volume where a virtual disk in a snapshot is connected in read/write mode. It is easy to run out of free
space if snapshots are created of writable snapshots.

Disaster recovery and high availability
SnapDrive 2.0.1 actively supports asynchronous SnapMirror and local synchronous mirroring. SnapDrive
is integrated with SnapMirror functionality, whereas local synchronous mirroring is storage system-level
mirroring transparent to SnapDrive.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

25

Asynchronous mirroring for disaster recovery

Asynchronous SnapMirror is an excellent solution for disaster recovery of SQL Server databases. The
recommendation is to use rolling snapshots (see the section of this report entitled “Migrating databases”)
for disaster recovery. Each time a snapshot has been created SnapDrive initiates the replication of the
source volume to the target mirrored volume if SnapMirror is turned on. Snapshots in a mirror can be
used in read-only mode as explained in section of this report entitled “Restoring databases on virtual
disks.” (Setup and configuration of SnapMirror is explained in the section of this report entitled “Migrating
databases.”)

Local synchronous mirroring for high availability

Local synchronous mirror (LSM) is a single storage system-level mirroring and is transparent for
SnapDrive and SQL Server. LSM creates a volume consisting of two duplexes where each duplex is an
exact copy of the other at any point in time. LSM is one component of a high-availability system
environment, which makes it very unlikely that a volume will fail because of multiple disk failures in a
duplex RAID group. (For more information about LSM see the section of this report entitled “Using
snapshots with SQL Server 2000.”)

Cluster failover

Storage system cluster failover (CFO) together with LSM is an important component of high availability.
CFO safeguards against single storage system head failure and LSM safeguards against double disk
failure in a single RAID group. Both CFO and LSM are transparent for both SQL Server and SnapDrive.
(For more CFO information see the sections of this report entitled “Supported SQL Server versions” and
“Using snapshots with SQL Server 2000.”)

Microsoft SQL Server and IBM System Storage N series with SnapDrive

26

SnapDrive and MSCS configurations
SnapDrive supports MSCS configurations. The simplest SQL Server configuration with MSCS is an
active/passive configuration, which means one active SQL Server instance executing on one of the
cluster nodes. If the cluster is configured with two active SQL Server instances executing on each cluster
node then this setup is called an active/active configuration. It is also possible to configure several SQL
Server instances to execute on each node, which is still an active/active configuration. Possible
configurations are summarized below:

 One single SQL Server instance is executing on one cluster node. The other cluster node is only
used for failover if the active node fails. This is an active/passive configuration.

 Two SQL Server instances with one SQL Server instance executing on each node. Each node is
the failover node for the other node. This configuration is an active/active configuration.

 Multiple SQL Server instances executing on each node is an active/active configuration.

Each SQL Server instance utilizing MSCS has to be located in its own cluster group with all its resources.

The quickest MSCS setup with SQL Server is to follow the basic instructions in the section of this report
entitled “Migrating databases” before installing SQL Server. After installing MSCS and testing that both
nodes function correctly, install SQL Server:

1. Create a new MSCS-aware device and locate this device in a new cluster group (a SnapDrive
option during device creation).

2. Install SQL Server and point to the new device in the new cluster group.
3. If the installation is an active/active configuration then repeat Steps 1 and 2 from the other MSCS

node.
4. If several SQL Server instances will be executing on each cluster node then repeat Steps 1 and 2

for each SQL Server instance.

Microsoft SQL Server and IBM System Storage N series with SnapDrive

27

 Trademarks and special notices
© International Business Machines 1994-2007. IBM, the IBM logo, System Storage, and other referenced
IBM products and services are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them
available in every country.

Network Appliance, the Network Appliance logo, Data ONTAP, SnapDrive, SnapMirror and SnapRestore
are trademarks or registered trademarks of Network Appliance, Inc., in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

