
Linux on POWER Application

Performance Optimization

Matthew Davis

Chakarat Skawratananond

Ramesh Chitor

Nikolay Yevik

IBM (e)Server Enablement

Special Notices
This publication/presentation was produced in the United States. IBM may not offer the products,
programs, services or features discussed herein in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the products, programs,
services, and features available in your area. Any reference to an IBM product, program, service, or feature
is not intended to state or imply that only IBM's product, program, service, or feature may be used. Any
functionally equivalent product, program, service, or feature that does not infringe on IBM's intellectual
property rights may be used instead.

Information in this presentation concerning non-IBM products was obtained from the suppliers of these
products, published announcement material or other publicly available sources. Sources for non-IBM list
prices and performance numbers are taken from publicly available information including D.H. Brown,
vendor announcements, vendor WWW Home Pages, SPEC Home Page, GPC (Graphics Processing
Council) Home Page and TPC (Transaction Processing Performance Council) Home Page. IBM has not
tested these products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to suppliers of those products. IBM
may have patents or pending patent applications covering subject matter in this presentation. Furnishing this
presentation does not give you any license to these patents. Send license inquiries, in writing, to IBM
Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA. All statements
regarding IBM's future direction and intent are subject to change or withdrawal without notice, and
represent goals and objectives only. Contact your local IBM office or IBM authorized reseller for the full
text of a specific Statement of General Direction.

The information contained in this presentation has not been submitted to any formal IBM test and is
distributed "AS IS." While each item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere. The use of this information
or the implementation of any techniques described herein is a customer responsibility and depends on the
customer's ability to evaluate and integrate them into the customer's operational environment. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

The information contained in this document represents the current views of IBM on the issues discussed as
of the date of publication. IBM cannot guarantee the accuracy of any information presented after the date of
publication. The following terms are registered trademarks of International Business Machines Corporation
in the United States and/or other countries: AIX, AIX 5L, AIX/6000, IBM, RS/6000, VisualAge, e-business
(logo), POWER2 Architecture, PowerPC (logo), PowerPC 604, pSeries, SP, iSeries, OS/400, AS/400,
POWER3, POWER4, RS64IV, POWER. A full list of U.S. trademarks owned by IBM may be found at
http://ibm.com/legal/copy/trade.html. UNIX is a registered trademark of The Open Group. Java and all
Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and other
countries. Lotus, Lotus Domino and Lotus Notes are trademarks or registered trademarks of Lotus
Development Corporation. Tivoli, TME, TME 10 and TME 10 Global Enterprise Manager are trademarks
or registered trademarks of Tivoli Systems, Inc. Other company, product and service names, which may be
denoted by a double asterisk (**), may be trademarks or service marks of others. Linux is a registered
trademark of Linus Torvalds. HP-UX and Tru64 are trademarks of HPQ in the United States and other
countries. Solaris is a registered trademark of Sun Microsystems in the United States and other countries.

Table of Contents
Introduction..5
GNU Compiler Collection...5
IBM VisualAge Compiler Set..6

Optimization levels...6
Recommended approach to using –O2 and –O3:...6

Optimizing for a particular processor architecture: target machine options...................7
Recommended approach to using target machine options:..7

High-Order transformations (-qhot)..7

Recommended approach to using –qhot...8
Interprocedural analysis (-qipa)...8

Recommended approach to using –qipa...8
Share-memory parallelism (-qsmp)...8

Recommended approach to using –qsmp...8
Profile-directed feedback (PDF)...9

IBM Java Virtual Machine...9
General guidelines on writing performance-efficient Java code.....................................9

Avoiding object creation and garbage collection...9
Java Native Interface (JNI)...10
Synchronization..10
Data structures..10

Compilation options to increase performance...10
Java code compilation..10
JNI code compilation..11

Environment settings to increase JVM performance..11
Spinloop..11
Sysctl..11
Paths...11

User limits settings..11
Garbage Collector and Java Heap...12
JIT..12
Monitoring JVM..12
Note on Linux Threading Models and JVM...13
Note for users of SLES 8 and IBM JDK 1.4.1..13

IBM DB2..13
DB2 Utilities...13

Runstats..13
Reorgchk...13
Reorg..13

Memory Settings...14
DB2 agents...14
System Memory..14

Oracle 9i Database...14
Network..15

Network File System...15
RPC Size...15
Gigabit Ethernet..15
TCP vs UDP...15
NFS Threads...15
NFS increasing...16
Sync vs Async...16

Miscellaneous Network Tuning..16
E1000 Adapter..16

Interrupt Throttling Rate (ITR)..16
Rx/Tx Descriptors..16
Kernel Performance Tunning:..17
txqueuelen..17

tcp_window_scaling, tcp_timestamps, and tcp_sack..17
Web Applications...17
Linux Threading Models..18
Summary..18

Introduction
Linux on POWER provides a high performance platform for execution of Linux
applications. 64 bit, large memory addresses, world-class vertical scaling and i/o
performance are among the features of the POWER architecture, but developers must
know how to optimized their applications both in compile time and runtime contexts to
take full advantage of the opportunity offered. This document addresses a review of
application performance optimization tips, specifically addressing C/C++ compilers,
Java, and database performance.

GNU Compiler Collection
Currently, the GNU Compiler Collection is undergoing a massive renovation regarding
performance optimization for the POWER architecture. In the upcoming release, GCC
3.4, improved scheduling, signal handling, and architecture specific optimizations (e.g.
VMX/Altivec support on PPC970 chips featured in the IBM JS20 BladeCenter) will
deliver a dramatic performance advantage to compiled code. However, both SLES8 and
RHEL3 currently employ GCC 3.2 versions, and a review of performance optimization
for these versions of GCC is provided here.

GCC 3.2 lacks architecture specific optimizations for POWER processors. Therefore, it
is not recommended to compile with architecture specific flags, e.g. -mpower. These
options are available, but often offer no performance advantage. In contrast to GCC
implementations on x86, the -fPIC flag is not implied. In order to generate dynamically
linked binaries, -fPIC should be included in all makefiles. This is especially of note to
developers porting a codebase from Linux on x86, since this flag may not be explicitly
used in existing makefiles.

In addition to awareness of flags not utilized by current releases of GCC for POWER
architecture, developers should be aware of common flags available to both x86 and
POWER architecture. These include compile flags dealing with relocation, table of
contents sizes, floating point options, bit alignment, etc. For a review of these, see
standard GCC documentation packaged with source.

The same guildlines for optimization apply to POWER development as elsewhere. When
beginning a project or porting effort, use no optimization. Then step to -O2 optimization
to take advantage of common optimization routines guaranteed not to vary across
architecture. Then step to -O3, using specific flags to accommodate your specific code
base.

For further reference, review these documents on GCC development with RHEL and
Apple G5 workstations (PPC970 processor), respectively.

http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/gcc/optimize-
options.html

http://developer.apple.com/performance/g5optimization.html

IBM VisualAge Compiler Set
VisualAge provides a portfolio of the optimization options tailored to the IBM hardware.
For Linux on POWER, applications compiled with VisualAge in many cases have shown
significant performance improvements over those compiled with GNU GCC. It should
be noted that not all optimizations are beneficial for all applications. A trade-off usually
has to be made between the degree of optimization done by the compiler and an increase
in compile time accompanied by reduced debugging capability.

Optimization levels
Optimization levels are specified by compiler options. The following table summarizes
the compiler behavior at each optimization level.

Option Behavior
-qnoopt Fast compilation, full debugging support.
-O2 (same as –O) Performs comprehensive low-level

optimization. Only partial debugging is
supported.

-O3 Performs more extensive optimization
than at –O2 and requires large amount of
compile time or space. Some precision
trade-offs are made.

-O4 In addition to –O3, performs
Interprocedural analysis, High-order
transformations, and Hardware-specific
optimization (-qarch=auto, -qtune-=auto,
-qcache=auto).

-O5 In addition to –O4, performs more
detailed Interprocedural analysis.

Recommended approach to using –O2 and –O3:
1. Test and Debug your code without optimization before using –O2.
2. Ensure that your code complies with its language standard. In C code, generic pointers

should be char* or void*. All shared variables and pointers to shared variables are
marked volatile.

3. Compiles with –O2 as much as possible.
4. Consider using –qalias=noansi rather than turning off optimization if you encounter

problems with –O2.
5. Next, use –O3 on as much code as possible.
6. If you encounter problems or performance degradations, consider using –qstrict or –

qcompact along with –O3 where necessary.
7. If you still have problems with –O3, switch to –O2 for a subset of files, but consider

using –qmaxmem=-1 or –qnostrict, or both.

Optimizing for a particular processor architecture: target
machine options
Target machine options are options that instruct the compiler to generate code for optimal
execution on a given microprocessor or architecture family. By selecting appropriate
target machine options, you can optimize to suit the broadest possible selection of target
processors, a range of processors within a given family of processor architectures, or a
specific processor. The following options control optimizations affecting individual
aspects of the target machine.

Options Behavior
-qarch Selects a family of processor architectures for which instruction code

should be generated. The default is -qarch=ppc. The following
suboptions also available: auto, pwr3,pwr4, ppc64, ppcgr, rs64b,
rs64c.

-qtune Biases optimization toward execution on a given microprocessor,
without implying anything about the instruction set architecture to use as a
target. The default on Linux is -qtune=pwr3. Available suboptions
include auto, pwr3, pwr4, rs64b, rs64c.

-qcache Defines a specific cache or memory geometry. If –qcache is used, use
–qhot or –qsmp along with it.

Recommended approach to using target machine options:
To get the most out of target machine options, you should try to specify with –qarch the
smallest family of machines possible that will be expected to run your code well. Try to
specify with –qtune the machine where performance should be best. For example, if your
application will only be supported on POWER4 systems, use -O3 -qarch=pwr4
-qtune=pwr4. Setting –qarch=auto will generate code that may take advantage of
instructions available only on the compiling machine. Modification of cache geometry
(-qcache) may be useful in cases where the systems have configurable L2 or L3 cache
options or where the execution mode reduces the effective size of a shared level of cache
(for example, two-core-per-chip SMP execution on POWER4).

POWER platforms support machine instructions not available on other platforms.
VisualAge provides a set of built-in functions that directly map to certain POWER
instructions. By using these functions, function call return costs, parameter passing, stack
adjustment and all the additional costs related with function invocations are eliminated.
For the complete list of the supported built-in functions, please see VisualAge C++ for
Linux on pSeries Compiler Reference.

High-Order transformations (-qhot)
High-Order transformations are optimizations designed to improve the performance of
loops through techniques such as interchange, fusion, and unrolling. The option
-qhot=vector is the default when -qhot is specified. When the code is compiled
with –qhot=vector, some loops are transformed to exploit optimized versions of
functions rather than the standard versions.

Recommended approach to using –qhot
Try using -qhot along with -O2 and -O3. It is designed to have a neutral effect when no
opportunities for transformation exist. If you experience significantly long compile times
or performance degradations with the use of –qhot, try using –qhot=novector, or –qstrict
or –qcompact along with –qhot. If necessary, use –qhot selectively, allowing it to improve
some of your code.

Interprocedural analysis (-qipa)
With Interprocedural analysis, the compiler performs optimization across different files. It
can be specified on the compile step only, or on both compile and link steps (“entire
program” mode). Consult the manual for the detailed information of –qipa.

Recommended approach to using –qipa
It is not necessary to compile everything with –qipa.

Always compile main and exported functions with –qipa.

When compiling and linking separately, use –qipa=noobject on the compile step for faster
compilation.

Ensure that there is enough space in /tmp (at least 200MB), or use the TMPDIR variable
to specify a different directory with sufficient free space.

Try varying level suboption if link time is too long.

To determine if too few or too many functions are inlined, look at the generated code
after compiling with –qlist or –qipa=list.

Share-memory parallelism (-qsmp)
Compiling with –qsmp generates the threaded code needed to exploit capability of
shared-memory parallel processing supported by some IBM pSeries systems. The default
setting of –qsmp is –qsmp=auto:noomp:opt

Recommended approach to using –qsmp
Use –qsmp=omp:noauto if you are using OpenMP, and do not want automatic
parallelization.

Before using –qsmp with automatic parallelization, test your programs using optimization
and –qhot in a single-threaded manner.

Always use the reentrant compiler invocation (the “_r” invocations) when using
–qsmp.

By default, the runtime uses all available processors.

If you are using a dedicated machine or node, consider setting the SPINS and YIELDS
variables (suboptions of XLSMPOPTS) to 0. Doing so prevents the operating system

from intervening in the scheduling of threads across synchronization boundaries such as
barriers.

When debugging an OpenMP program, try using –qsmp=noopt (without –O) to make the
debugging information produced by the compiler more precise.

Profile-directed feedback (PDF)
PDF consists of two stages: Stage 1 is a regular compilation using an arbitrary set of
optimization options and –qpdf1, that produces an executable or shared object that can be
run in a number of different scenarios for an arbitrary amount of time. Stage2 is a
recompilation using the same option, except –qpdf2 is used instead of –qpdf1, during
which the compiler consumes previously collected data for the purpose of path-biased
optimization.

Consult the VisualAge manual for more information.

IBM Java Virtual Machine
At the time of this writing IBM provides JDK 1.3.1 32-bit and JDK 1.4.1, in both 32-bit
and 64-bit flavors, for Linux on IBM iSeries and pSeries.

The following discussion applies to IBM JDK 1.3.1 and JDK 1.4.1 for Linux on IBM
iSeries and pSeries but specifically targets JDK 1.4.1 SR1 as the latest IBM JDK release
at the time of this writing. The IBM JVM Diagnostics Guides for JDK 1.3.1 and JDK
1.4.1 (hereafter JVM Diagnostics Guide) is heavily referenced in this section. It is
available in its whole at http://www-106.ibm.com/developerworks/java/jdk/diagnosis/

General guidelines on writing performance-efficient Java code

Avoiding object creation and garbage collection
Whenever possible, creating objects should be avoided to prevent associated performance
costs of calling the constructor and subsequent cost of the garbage collecting when an
object reaches the end of its lifecycle. Consider these guidelines:

Use the primitive variable types instead of the object types whenever possible. For
example, use int instead of Integer.

Cache frequently used short-lived objects to avoid the need to repeatedly recreate the
same objects over and over again and therefore invoke the garbage collector.

When manipulating strings use StringBuffer instead of string concatenation due to
immutable nature of string objects and therefore the need to create an extra String object
that eventually must undergo garbage collection.

Avoid excessive writing to the Java console to reduce the cost of string manipulations,
text formatting, and output.

Implement connection pools to the database and reuse connection objects rather than
repeatedly open and close connections.

Use thread pooling, that is, avoid incessant creation and discarding of Thread objects
especially if using threads in abundance.

Avoid calling garbage collector from within your code though System.gc() call. Garbage
collection is a “Stop the World” event; meaning that all threads of execution will be
suspended except for the Garbage Collector threads themselves. If you must call GC do
it during non-critical or idle phase.

Avoid allocating objects within loops which keeps the object alive on the Java Heap
longer than necessary.

Java Native Interface (JNI)
Writing portions of the application, especially heavily used portions, in native code and
linking it with Java is usually intended to improve performance. However,
communication between JVM and native code is generally slow, thus too many JNI calls
can degrade performance. Therefore, native operations should be grouped together
whenever possible to reduce the number of JNI calls.

Handling exceptions natively in the JNI code itself, though unavoidable sometimes, leads
to performance degradation. In such cases ExceptionCheck() function should be used as
it is less computationally expensive than ExceptionOccurred(). The latter has to create an
object to be referred to as well as a local reference.

Synchronization
To reduce contention in the JVM and operating system use synchronized methods only
when feasible. Do not include synchronized methods into a loop structure.

Data structures
As a general rule, avoid using a more complex data structure where simpler one will
suffice. For example, instead of vectors use arrays. Use the most efficient way to search
and insert elements into a data structure. For example, add and delete from the end of a
vector for better performance.

Compilation options to increase performance

Java code compilation
Compile your Java code with ‘-O’ optimization flag. Code optimization provides several
benefits:

1. obfuscates the code and makes it harder to reverse-engineer
2. significantly enhances source code security;
3. significantly decreases the size of your Java program;
4. improves run-time performance.

JNI code compilation
Compile your JNI C/C++ code using optimization flags intended to increase performance
as covered in the section IBM VisualAge Compiler Set above.

Environment settings to increase JVM performance

Spinloop
Currently, adjusting the SPINLOOP variables and the timeslice values sees the biggest
performance gains. The IBM_LINUX_SPIINLOOP time is the number of times that a
process can spin on a busy lock before blocking. There are 3 SPINLOOP variables
available for adjustment (a number from 0 to 100):

IBM_LINUX_SPINLOOP1
IBM_LINUX_SPINLOOP2
IBM_LINUX_SPINLOOP3

The benchmark testing performed on a 16-way LPAR suggests the following settings to
be optimal:

IBM_LINUX_SPINLOOP1=96
IBM_LINUX_SPINLOOP2=85
IBM_LINUX_SPINLOOP3=85

As with any other global variable these global variables need to be set in the shell
instance where JVM process will run, so that settings can be read by JVM into its global
variables table.

Sysctl
As of SLES8, running kernel 2.4.19, there is an option for setting the minimum and
maximum for CPU timeslices in the Linux kernel. These are set via the sysctl command.
It is highly recommended that the sysctl value sched_yield_scale be set to 1 for Java
performance.

Paths
The CLASSPATH variable should have the most often used Java libraries in front of the
search path. Same applies to LIBPATH and LD_LIBRARY_PATH variables for most
often used JNI shared libraries.

User limits settings
To achieve the best performance it is important that the user that runs JVM process has
the user settings appropriately configured. These parameters can be set either temporarily
for the duration of login shell session with ulimit command or permanently by either
adding corresponding ulimit statement to one of the files read by login shell (e.g.
~/.profile) or shell specific user resource files; or editing /etc/security/limits.conf.

Some of the most important settings to be set to unlimited as recommended:

Data segment size: ulimit –d unlimited
Maximum memory size: ulimit –m unlimited
Stack size: ulimit –s unlimited
CPU time: ulimit –t unlimited
Virtual memory: ulimit –v unlimited

For Java applications that do a lot of socket connections and keep them open it is
preferable to set the number of file descriptors for a user to a higher than default value by
using ulimit –n or by setting nofile parameter in /etc/security/limits.conf.

Garbage Collector and Java Heap
Garbage Collector is one of the most important JVM components influencing JVM
performance. General IBM JVM discussion, as outlined in IBM JVM Diagnostics
Guides for JDK 1.3.1 and JDK 1.4.1, on Garbage Collector and Heap Size tuning applies
to IBM JVM on Linux including Linux on POWER with the exception of some IBM
JVM on Linux specifics discussed below.

The maximum heap size that is controlled by –Xmx can be set to a higher number on 32-
bit IBM JVM for Linux than on 32-bit IBM JVM for AIX, due to differences in memory
models between the two operating systems. If –Xmx option is not specified than the
default setting applies - half of the real storage with a minimum of 16 MB and a
maximum of 512 MB.

If initial heap size is not specified explicitly with –Xms option, it defaults to 4 MB.
For more information on Garbage Collector and Java Heap tuning please see “Debugging
Performance Problems: JVM Performance” in the IBM JVM Diagnostics Guides for
JDK 1.3.1 and JDK 1.4.1. The chapters “Understanding the Garbage Collector” and
“Garbage Collector Diagnostics” in this document may be of additional value.

JIT
JIT is the most important JVM component in terms of performance. For general IBM
JVM JIT discussion please refer to the “Understanding the JIT” section of the JVM
Diagnostics Guide. For Linux specific details on JIT performance please see “JIT”
section of “Linux Problem Determination” chapter and chapter “JIT Diagnostics”.

Monitoring JVM
IBM JVM for Linux performance problem determination, JVM monitoring and tools are
discussed in detail in the “Linux Problem Determination” chapter of the JVM Diagnostics
Guide.

The following chapters may be of additional value:

Tracing Java Applications and the JVM;
Using the JVM monitoring interface (JVMMI);
Using the Reliability, Availability, and Serviceability interface;
Using the JVMPI;
Using third-party tools.

Note on Linux Threading Models and JVM
There are some specifics in threading models implementations that influence JVM
performance on different Linux distributions as discussed in the “Linux Problem
Determination” chapter of the JVM Diagnostics Guide.

At the time of this writing, IBM JVMs for Linux, including Linux on POWER are not
supported on distributions implementing new, enhanced threading library Native POSIX
Threads Library for Linux (NPTL).

Another issue to be aware of is thread floating stack limitation on Linux as discussed in
“Floating Stacks Limitation” subsection of the JVM Diagnostics Guide.

Note for users of SLES 8 and IBM JDK 1.4.1
Users of SLES 8 Linux distribution should be aware of performance issue with SLES 8
kernel scheduler and JDK 1.4.1 for Linux from IBM due to specifics of SLES 8 scheduler
internal implementation. Please read more on the issue in chapter “Linux Problem
Determination”, section “Known Limitations on Linux” in the JVM Diagnostics Guide.

IBM DB2

DB2 Utilities
Tuning for IBM DB2 is simplified by the Configuration Advisor wizard, which is run
from the Contorl Center. DB2 also provides various utilities, such as RUNSTATS,
REORG and REORGCHK, to improve database performance.

Runstats
RUNSTATS is a utility that updates the statistics in the system catalog tables to help with
the query optimization process. With these statistics, the information database manager
can make decisions that increase the performance of SQL statements. Use RUNSTATS
after massive changes to the data and possibly after running REORG.

Reorgchk
REORGCHK examines the data in the system tables and applies formulas to determine
whether to reorganize the table and its indexes. REORGCHK can also invoke
RUNSTATS before examining the statistics. Run REORGCHK periodically, or when
users notice degraded performance.

Reorg
REORG eliminates fragmentation in tables and indexes and may optionally order the
rows of a table according to the order of the index. Use the REORG utility after
REORGCHK has indicated that REORG is needed. REORG should also be used after
performance has suffered following a lengthy succession of data inserts, updates, and
deletes, which cause the clustering or space utilization to degrade.

Memory Settings

DB2 agents
Memory allocation for varies for the agent's operating system. Use a minimum of 1 MB
for UNIX/Linux and 500 KB for Windows for each DB2 agent. If fenced stored
procedures are used, then each user connection has two DB2 agents, in addition to the
memory required to run the stored procedure application. The amount of memory
required by each agent depends on the nature of the SQL statements performed by the
application, such as the number of concurrent cursors opened and the amount of sorting
and temp space required. For OLTP applications, there should be less sorting and temp
space required and only a handful of concurrent cursors opened at a time.

System Memory
For a 32-bit system, use at least 512 MB of RAM per CPU, up to 4 GB per machine, to
support the buffer pools, DB2 agents, and other shared memory objects required for a
large number of concurrent users (see Buffer pool size, BUFFPAGE, for more
information on buffer pools). More memory may be needed to support applications that
run locally or as stored procedures.

For a 64-bit system, the buffer pool can be practically any size. However, for most
eCommerce OLTP applications that use a large database, the buffer pool doesn't really
need to be more than 8 GB. Bigger is still better, but at some point you'll experience
diminishing returns as the buffer pool hit ratio approaches the 98% range. The number of
concurrent users (with its impact on the number of agents) determines how much more
memory is required.

Oracle 9i Database
Oracle 9i tuning depends heavily on the virtual memory performance of Linux. The
virtual memory subsystem is configured using the file /etc/sysctl.conf. This file can be
altered to adjust the virtual memory settings for bdfllush. Below is a recommended
setting:

vm.bdflush = 100 1200 128 512 15 5000 500 1884 2

These parameters for bdflush are documented extensively in the Linux kernel
documentation at Documentation/sysctl/vm.txt, which is partially reproduced here:

nfract [100]: governs the maximum number of dirty buffers in the buffer cache. Dirty
means that the contents of the buffer still have to be written to disk as opposed to a clean
buffer, which can just be forgotten about. Setting this to a high value means that Linux
can delay disk writes for a long time, but it also means that it will have to do a lot of I/O
at once when memory becomes short. A low value will spread out disk I/O more evenly.

ndirty [1200]: gives the maximum number of dirty buffers that bdflush can write to the
disk in one time. A high value will mean delayed, bursty I/O, while a small value can
lead to memory shortage when bdflush isn't woken up often enough.

nrefill [128]: the number of buffers that bdflush will add to the list of free buffers when
refill_freelist() is called. It is necessary to allocate free buffers beforehand, as the buffers
often are of a different size than the memory pages, and some bookkeeping needs to be
done beforehand. The higher the number, the more memory will be wasted and the less
often refill_freelist() will need to run.

refill_freelist [512]: when this comes across more than nref_dirt dirty buffers, it will
wake up bdflush.

age_buffer 50*HZ, age_super parameters 5*HZ: govern the maximum time Linux waits
before writing out a dirty buffer to disk. The value is expressed in jiffies (clockticks); the
number of jiffies per second is 100. Thus, x*HZ is x seconds. Age_buffer is the
maximum age for data blocks, while age_super is for filesystem metadata.

The parameters not discussed explicitly here are not relevant to Oracle performance. For
more information on bdflush, see Linux kernel documentation provided in source.

The performance improvements with these bdflush settings were 26% for loads and 7%
for TPS.

Network

Network File System
Poor NFS performance is a result of numerous causes. The Optimizing NFS Performance
chapter of the Linux NFS How-To at http://nfs.sourceforge.net/nfs-
howto/performance.html is considered fundamental reading. Some highlights of this
document are outlined here.

RPC Size
Since Linux-2.4.21, RPC size is no longer limited to 8k for NFSv3. The new Limit is
32k. There is some evidence from Linux 2.6 suggesting that larger RPC size increases
throughput for sequential reads and writes.

Gigabit Ethernet
If connecting a client and a server through gigabit ethernet, an mtu size of 9000 on both
the client and server will increase performance.

TCP vs UDP
TCP performance is better in some cases, UDP is better at others. TCP is recommended
for stability; UDP is notoriously unstable for NFS on many platforms.

NFS Threads
8 threads per CPU is the best rule. Testing has shown that a large number of NFSd
threads do not significantly affect performance; running 32 treads on a 4-way gives
almost the same performance as running 128 treads under normal loads.

NFS increasing
256k per processor is a good number to start with, but experiementation with this number
for specific workloads is suggested.

Sync vs Async
Always run sync. NFS async operations are not part of the RFC specifications for NFSv2
or NFSv3.

Miscellaneous Network Tuning

E1000 Adapter
For a detailed documentation see Documentation/networking/e1000.txt in the Linux
kernel source.

Interrupt Throttling Rate (ITR)

By default, the driver sets the ITR value dynamically depending on the workload. A
completely symmetric Tx/Rx gets a reduced ITR (ITR=2000). A completely asymmetric
Tx/Rx runs at ITR=8000, and as the ratio mediates the extremes, the driver adjusts
between ITR=2000 and ITR=8000.

During performance analysis work conducted within IBM, setting the ITR rate to 8000
statically improved TCP_RR (response/request) and Full-Duplex performance by around
300%. However, the comes at a trade off of increased CPU utilization.

To adjust the ITR setting on the driver:

ifconfig down all the INTEL gigabit adapters
rmmod e1000
insmod e1000 InterruptThrottlingRate=8000,8000,…

Rx/Tx Descriptors

If the user load is dropping packets on the send or receive side, and memory is not an
issue, it is suggested that RxDescriptors and TxDescriptors be set to 1024. This can be
checked through “netstat –i” for the Rx fields, but not Tx fields. This is because the
e1000 does not account for any Tx errors or drops.

To adjust the Rx/Tx Descriptors:

ifconfig down all the INTEL gigabit adapters
rmmod e1000
insmod e1000 RxDescriptors=1024,1024,… TxDescriptors=1024,1024,…

Kernel Performance Tunning:

txqueuelen

This is the Tx software queue and each Ethernet adapter gets one. The default is 100.
This can be checked and configured with ifconfig.

If the network performance is suffering as a result of dropped packets, this should be set
to 1000 with ifconfig:
ifconfig eth0 txqueuelen=1000

Monitor the txqueuelen for dropped packets using tc:

tc qdisc add dev etddh0 root pfifo limit 100
tc –s –d qdisc show dev eth0
tc qdisc del dev eth0 root

tcp_window_scaling, tcp_timestamps, and tcp_sack

By default, Linux turns these setting on, though they conflict with optimal performance.
The MSS (message size) is reported as 1415 on “tcpdump” when it should be 1460. To
resolve, it is suggested that the user turn off these three settings:

sysctl –w net.ipv4.tcp_window_scaling=0
sysctl –w net.ipv4.tcp_timestamps=0
sysctl –w net.ipv4.tcp_sack=0

Note that this is strictly for MTU1500.

Web Applications
For a workload similiar to SPECweb99, the following parameters will improve
performance:

ulimit -n 10000 This command sets number of open files; the default is 1024.

Bind only one NIC IRQ per CPU.

Set each NIC TX queue length to 20000 using ifconfig; the default is 100.

File systems should be mounted with noatime and nodiratime. This is for no inode
access time updating.

The following kernel arguments augment web application performance:

net.ipv4.nonlocal_bind = 1. This allows processes to bind to non-local IP adresses.
net.ipv4.tcp_timestamps = 0. This turns TCP timestamp support off; the default is on.
net.ipv4.tcp_max_tw_buckets = 2000000. This sets the TCP time-wait buckets pool size;
the default is 180000.

net.ipv4.tcp_rmem = 10000000 10000000 10000000. This sets the min/default/max TCP
read buffer; the defaults are 4096, 87380, and 174760.
net.ipv4.tcp_wmem = 10000000 10000000 10000000. This sets the min/pressure/max
TCP write buffer; the defaults are 4096, 16384, and 131072.
net.ipv4.tcp_mem = 10000000 10000000 10000000. This sets the min/pressure/max TCP
buffer space; the defaults are 31744, 32256, and 32768.
net.ipv4.tcp_sack = 0. This turns SACK support off; the default is on.
net.ipv4.tcp_window_scaling = 0. This turns TCP window scaling support off; The
default is on.
net.core.hot_list_length = 20000. This is the maximum number of skb-heads to be
cached; the default is 128.
net.core.rmem_max = 10000000. This is the maximum receive socket buffer size; the
default is 131071.
net.core.wmem_max = 10000000. This is the maximum send socket buffer size; the
default is 131071.
net.core.rmem_default = 10000000. This is the default receive socket buffer size; the
default is 65535.
net.core.wmem_default = 10000000. This is the default send socket buffer size; the
default is 65535.
net.core.optmem_max = 10000000. This is the maximum amount of option memory
buffers; the default is 10240.
net.core.netdev_max_backlog = 300000. This is the number of unprocessed input
packets before kernel starts dropping them; the default is 300.

Linux Threading Models
The release of the Linux 2.6 kernel in January, 2004 brought with it widespread
implementation of the new Native POSIX Threads for Linux (NPTL) threading model.
Like it's predecessor, Linux Threads, NPTL is a 1:1 threading model, but due to new
efficiency gained in a complete rewrite, NPTL is remarkably faster than the old model.
SLES8 Service Pack 3 currently features a 2.4.21 Linux kernel without support for NPTL,
though this functionality will arrive in SUSE's soon to be released SLES9 with a 2.6
kernel. In contrast, RHEL3 features a 2.4.21 kernel with NPTL support backported from
Linux 2.6. Though this discrepancy is sometimes a thorn with regards to binary
compatability between these two Linux distributions, NPTL can provide a windfall of
performance. This is especially true with regards to thread intensive Java applications,
where testing on NPTL an enabled JVM suggests up to 800% of the expected
performance on a Linux Threads system. However, the performance enhancement of
NPTL is not limited to Java. Any application that heavily utilizes threading will see a
tremendous increase in performance both in terms of startup time and overall
performance.

Summary
A platform providing a highly optimized application environment the simultaneous
execution of 32 and 64 bit applications across robust vertically and horizontally scalable
hardware, Linux on POWER brings the amiable Linux OS to the time tested POWER
architecture. Application tuning allows access to the full advantage of this platoform, be
it with a choice of compiler sets for C, C++ and Java, tuned enterprise middleware like

IBM DB2, IBM Websphere and Oracle 9i Database Server, traditional high performance
UNIX features such as NFS, or cutting edge development from leading Linux
distributors.

