statistics-0.16.2.1: A library of statistical types, data, and functions
Copyright(c) 2009 Bryan O'Sullivan
LicenseBSD3
Maintainerbos@serpentine.com
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Statistics.Distribution.Normal

Contents

Description

The normal distribution. This is a continuous probability distribution that describes data that cluster around a mean.

Synopsis

Documentation

data NormalDistribution #

The normal distribution.

Instances

Instances details
FromJSON NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

ToJSON NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Data NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NormalDistribution -> c NormalDistribution

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NormalDistribution

toConstr :: NormalDistribution -> Constr

dataTypeOf :: NormalDistribution -> DataType

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NormalDistribution)

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NormalDistribution)

gmapT :: (forall b. Data b => b -> b) -> NormalDistribution -> NormalDistribution

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NormalDistribution -> r

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NormalDistribution -> r

gmapQ :: (forall d. Data d => d -> u) -> NormalDistribution -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> NormalDistribution -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution

Generic NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Associated Types

type Rep NormalDistribution :: Type -> Type

Read NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Show NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

showsPrec :: Int -> NormalDistribution -> ShowS

show :: NormalDistribution -> String

showList :: [NormalDistribution] -> ShowS

Binary NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Eq NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

ContDistr NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

density :: NormalDistribution -> Double -> Double #

logDensity :: NormalDistribution -> Double -> Double #

quantile :: NormalDistribution -> Double -> Double #

complQuantile :: NormalDistribution -> Double -> Double #

ContGen NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

genContVar :: StatefulGen g m => NormalDistribution -> g -> m Double #

Distribution NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

cumulative :: NormalDistribution -> Double -> Double #

complCumulative :: NormalDistribution -> Double -> Double #

Entropy NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

entropy :: NormalDistribution -> Double #

MaybeEntropy NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

maybeEntropy :: NormalDistribution -> Maybe Double #

MaybeMean NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

maybeMean :: NormalDistribution -> Maybe Double #

MaybeVariance NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

maybeVariance :: NormalDistribution -> Maybe Double #

maybeStdDev :: NormalDistribution -> Maybe Double #

Mean NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

mean :: NormalDistribution -> Double #

Variance NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

variance :: NormalDistribution -> Double #

stdDev :: NormalDistribution -> Double #

FromSample NormalDistribution Double #

Variance is estimated using maximum likelihood method (biased estimation).

Returns Nothing if sample contains less than one element or variance is zero (all elements are equal)

Instance details

Defined in Statistics.Distribution.Normal

Methods

fromSample :: Vector v Double => v Double -> Maybe NormalDistribution #

type Rep NormalDistribution # 
Instance details

Defined in Statistics.Distribution.Normal

type Rep NormalDistribution = D1 ('MetaData "NormalDistribution" "Statistics.Distribution.Normal" "statistics-0.16.2.1-98mJfW1HOHt8aIUJHLREex" 'False) (C1 ('MetaCons "ND" 'PrefixI 'True) ((S1 ('MetaSel ('Just "mean") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "stdDev") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double)) :*: (S1 ('MetaSel ('Just "ndPdfDenom") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "ndCdfDenom") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double))))

Constructors

normalDistr #

Arguments

:: Double

Mean of distribution

-> Double

Standard deviation of distribution

-> NormalDistribution 

Create normal distribution from parameters.

IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.

normalDistrE #

Arguments

:: Double

Mean of distribution

-> Double

Standard deviation of distribution

-> Maybe NormalDistribution 

Create normal distribution from parameters.

IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.

normalDistrErr #

Arguments

:: Double

Mean of distribution

-> Double

Standard deviation of distribution

-> Either String NormalDistribution 

Create normal distribution from parameters.

standard :: NormalDistribution #

Standard normal distribution with mean equal to 0 and variance equal to 1