GAP

Release 4.3
06 May 2002

Reference Manual

The GAP Group
http://www.gap-system.org

Acknowledgement

We would like to thank the many people who have made contributions of

various kinds to the development of GAP since 1986, in particular:

Isabel M. Araujo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,
Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,
Volkmar Felsch, Franz Géhler, Greg Gamble, Willem de Graaf,

Burkhard Hofling, Jens Hollmann, Derek Holt, Erzsébet Horvath,

Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,

Frank Liibeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,
Wolfgang Merkwitz, Jiirgen Mnich, Robert F. Morse, Scott Murray,

Joachim Neubiiser, Max Neunhoffer, Werner Nickel,

Alice Niemeyer, Dima Pasechnik, Go6tz Pfeiffer, Udo Polis,

Ferenc Rakéczi, Sarah Rees, Edmund Robertson, Ute Schiffer,

Martin Schonert, Akos Seress, Andrew Solomon,

Heiko Theiflen, Rob Wainwright, Alex Wegner, Chris Wensley and Charles Wright.

The following list gives the authors, indicated by A, who designed the code in the first place as well as the
current maintainers, indicated by M of the various modules of which GAP is composed.

Since the process of modularization was started only recently, there might be omissions both in scope and
in contributors. The compilers of the manual apologize for any such errors and promise to rectify them in
future editions.

Kernel
Frank Celler (A), Steve Linton (AM), Frank Liibeck (AM), Werner Nickel (AM), Martin Schénert (A)

Automorphism groups of finite pc groups
Bettina Eick (AM)

Binary Relations
Robert Morse (AM), Andrew Solomon (A)

Classes in nonsolvable groups
Alexander Hulpke (AM)

Classical Groups
Thomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank Liibeck (AM), Heiko Theiflen (A)

Congruences of magmas, semigroups and monoids
Robert Morse (AM), Andrew Solomon (A)

4 Acknowledgement

Cosets and Double Cosets
Alexander Hulpke (AM)

Cyclotomics
Thomas Breuer (AM)

Dixon-Schneider Algorithm
Alexander Hulpke (AM)

Documentation Utilities
Frank Celler (A), Heiko Theiflen (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A),
Werner Nickel (A), Greg Gamble (AM)

Factor groups
Alexander Hulpke (AM)

Finitely presented groups
Volkmar Felsch (AM), Alexander Hulpke (AM), Martin Schoenert (A)

Finitely presented monoids and semigroups
Isabel Araijo (AM), Derek Holt (A), Alexander Hulpke (A), Gtz Pfeiffer (A), Andrew Solomon (AM)

Group actions
Heiko Theiflen (A) and Alexander Hulpke (AM)

Homomorphism search
Alexander Hulpke (AM)

Homomorphisms for finitely presented groups
Alexander Hulpke (AM)

Intersection of subgroups of finite pc groups
Frank Celler (A), Bettina Eick (AM)

Irreducible Modules over finite fields for finite pc groups
Bettina Eick (AM)

Isomorphism testing with random methods
Hans Ulrich Besche (AM), Bettina Eick (AM)

Multiplier and Schur cover
Werner Nickel (AM), Alexander Hulpke (AM)

One-Cohomology and Complements
Frank Celler (A) and Alexander Hulpke (AM)

Partition Backtrack algorithm
Heiko Theiflen (A), Alexander Hulpke (M)

Permutation group composition series
Akos Seress (AM)
Permutation group homomorphisms

Akos Seress (AM), Heiko Theifien (A), Alexander Hulpke (M)

Permutation Group Pcgs
Heiko Theiflen (A), Alexander Hulpke (M)

Primitive groups library
Heiko Theiflen (A), Alexander Hulpke (M)

Properties and attributes of finite pc groups
Frank Celler (A), Bettina Eick (AM)

Random ,Schreier-Sims
Akos Seress (AM)

Acknowledgement

Rational Functions
Frank Celler (A) and Alexander Hulpke (AM)

Semigroup relations
Isabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)

Special Pcgs for finite pc groups
Bettina Eick (AM)

Stabilizer Chains
Akos Seress (AM), Heiko TheiBen (A), Alexander Hulpke (M)

Strings and Characters
Martin Schonert (A), Frank Celler (A), Thomas Breuer (A), Frank Liibeck (AM)

Subgroup lattice
Martin Schonert (A), Alexander Hulpke (AM)

Subgroup lattice for solvable groups
Alexander Hulpke (AM)

Subgroup presentations
Volkmar Felsch (AM)

The Help System
Frank Celler (A), Frank Liibeck (AM)

Tietze transformations
Volkmar Felsch (AM)

Transformation semigroups
Isabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)

Transitive groups library
Alexander Hulpke (AM)

Two-cohomology and extensions of finite pc groups
Bettina Eick (AM)

Lie algebras
Thomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)

GAP for MacOS
Burkhard Hofling (AM)

1.1
1.2

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

Copyright Notice

About the GAP Reference
Manual

Manual Conventions

Credit

The Help System
Invoking the Help

Browsing through the Sections
Changing the Help Viewer
The Pager Command
Running GAP

Command Line Options
Advanced Features of GAP
Running GAP under MacOS
The .gaprec file

Completion Files

The Compiler

Suitability for Compilation
Compiling Library Code
CRC Numbers

Saving and Loading a Workspace

The Programming Language

Language Overview
Lexical Structure
Symbols
Whitespaces

19

21
21
22
23
23
23
24
26
28
28
30
32
34
35
35
36
36
37
37
39
39
40
40
41

4.5

4.6

4.7

4.8

4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2

5.3
0.4

Contents

Keywords
Identifiers
Expressions
Variables

More About Global Variables
Function Calls
Comparisons
Arithmetic Operators
Statements
Assignments
Procedure Calls

If

While

Repeat

For

Break

Continue

Function

Return

The Syntax in BNF
Functions

Information about a function

Calling a function with a list argument
that is interpreted as several arguments

Functions that do nothing

Function Types

41
42
42
43
44
46
47
48
49
50
50
o1
52
52
53
55
55
95
58
59
61
61

62
63

Contents

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Main Loop and Break Loop
Main Loop

View and Print

Break Loops

Variable Access in a Break Loop
Error

ErrorCount

Leaving GAP

Line Editing

Editing Files

Editor Support

SizeScreen

Debugging and Profiling Facilities
Recovery from NoMethodFound-Errors
ApplicableMethod

Tracing Methods

Info Functions

Assertions

Timing

Profiling

Information about the version used
Test Files

Debugging Recursion

Options Stack

Files and Filenames
Portability

GAP Root Directory

Directories

Filename

Special Filenames

File Access

File Operations

64
64
65
67
71
72
73
73
73
75
75
76
77
7
78
79
80
81
81
82
84
84
84
87
89
89
89
90
91
92
92
93

10
10.1

10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
11
11.1
11.2
12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

13
13.1
13.2
13.3
13.4
13.5
13.6
13.7

Streams

Categories for Streams and the
StreamsFamily

Operations applicable to All Streams
Operations for Input Streams
Operations for Output Streams

File Streams

User Streams

String Streams

Input-Output Streams

Dummy Streams

96

96
97
98
100
102
103
103
104
105

Handling of Streams in the Background 105

Processes

Process

Exec

Objects and Elements
Objects

Elements as equivalence classes
Sets

Domains

Identical Objects
Mutability and Copyability
Duplication of Objects

Other Operations Applicable to any
Object

Types of Objects

Families

Filters

Categories

Representation

Attributes

Setter and Tester for Attributes

Properties

107
107
108

109
109
109
110
110
110
111
113

114
115
115
116
117
119
120
121
123

13.8
13.9

14
14.1
14.2
14.3
14.4

15
15.1
15.2

15.3
15.4
15.5

16
16.1

17
17.1
17.2

17.3
17.4

18
18.1
18.2
18.3
18.4
18.5
18.6

19

20
20.1
20.2

Other Filters

Types

Integers

Elementary Operations for Integers
Quotients and Remainders

Prime Integers and Factorization
Residue Class Rings

Number Theory

Prime Residues

Primitive Roots and Discrete
Logarithms

Roots Modulo Integers
Multiplicative Arithmetic Functions
Miscellaneous

Rational Numbers

Elementary Operations for Rationals
Combinatorics

Combinatorial Numbers

Combinations, Arrangements and
Tuples

Fibonacci and Lucas Sequences
Permanent of a Matrix
Cyclotomic Numbers
Operations for Cyclotomics
Infinity

Comparisons of Cyclotomics
ATLAS Irrationalities

Galois Conjugacy of Cyclotomics
Internally Represented Cyclotomics
Unknowns

Booleans

Fail

Comparisons of Booleans

124
124
125
126
128
130
132
134
134

135
136
138
139
141
141
143
143

145
151
152
153
153
156
157
157
160
162
163
165
165
165

20.3
21
21.1
21.2
21.3
214
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12

21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21
21.22
21.23
22
22.1
22.2
22.3
224
23
23.1

Contents

Operations for Booleans
Lists

List Categories

Basic Operations for Lists
List Elements

List Assignment

IsBound and Unbind for Lists
Identical Lists

Duplication of Lists
Membership Test for Lists

Enlarging Internally Represented Lists

Comparisons of Lists
Arithmetic for Lists

Filters Controlling the Arithmetic
Behaviour of Lists

Additive Arithmetic for Lists

Multiplicative Arithmetic for Lists

Mutability Status and List Arithmetic

Finding Positions in Lists
Properties and Attributes for Lists
Sorting Lists

Sorted Lists and Sets

Operations for Lists

Advanced List Manipulations
Ranges

Enumerators

Boolean Lists

Boolean Lists Representing Subsets
Set Operations via Boolean Lists
Function that Modify Boolean Lists
More about Boolean Lists

Row Vectors

Operators for Row Vectors

166
168
168
170
170
172
174
174
176
177
177
178
178

179
180
182
184
185
188
189
191
193
200
201
203
204
204
205
206
207
208
208

Contents

23.2
23.3
234
23.5
23.6

24
24.1
24.2
24.3
244
24.5
24.6

24.7
24.8
24.9
24.10
24.11
24.12
24.13
24.14
25
25.1
25.2
25.3
254
26
26.1
26.2
26.3
26.4
26.5

210
211

Row Vectors over Finite Fields
Coefficient List Arithmetic
Shifting and Trimming Coefficient Lists 212

Functions for Coding Theory 212
Vectors as coefficients of polynomials 213
Matrices 215
Categories of Matrices 215
Operators for Matrices 216
Properties and Attributes of Matrices 218
Matrix Constructions 219
Random Matrices 222

Matrices Representing Linear Equations

and the Gaussian Algorithm 222
Eigenvectors and eigenvalues 223
Elementary Divisors 224
Echelonized Matrices 224
Matrices as Basis of a Row Space 225
Triangular Matrices 226
Matrices as Linear Mappings 227
Matrices over Finite Fields 228
Block Matrices 230
Integral matrices and lattices 232
Normal Forms over the Integers 232
Decompositions 235
Lattice Reduction 237
Orthogonal Embeddings 238
Strings and Characters 240
Special Characters 242
Internally Represented Strings 243
Recognizing Characters 244
Comparisons of Strings 244
Operations to Produce or Manipulate

Strings 245

26.6
26.7

27
27.1
27.2
27.3
274
27.5
27.6

28
28.1
28.2
28.3

28.4
28.5
28.6
28.7

29
29.1
29.2
29.3

30
30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8
30.9

Operations to Evaluate Strings
Calendar Arithmetic

Records

Accessing Record Elements
Record Assignment

Identical Records

Comparisons of Records
IsBound and Unbind for Records
Record Access Operations
Collections

Collection Families

Lists and Collections

Attributes and Properties for
Collections

Operations for Collections
Membership Test for Collections
Random Elements

Iterators

Orderings

Building new orderings
Properties and basic functionality

Orderings on families of associative
words

Domains and their Elements
Operational Structure of Domains
Equality and Comparison of Domains
Constructing Domains

Changing the Structure

Changing the Representation
Domain Categories

Parents

Constructing Subdomains

Operations for Domains

247
249
251
252
252
253
254
255
256
257
257
258

261
263
264
265
266
269
269
270

271
275
275
276
276
277
278
278
279
280
280

10

30.10
30.11
30.12
30.13
30.14
30.15

31
31.1
31.2

31.3
314
31.5

31.6

31.7
31.8
31.9
31.10
31.11
31.12
31.13

32
32.1
32.2

32.3
324

32.5
32.6

Attributes and Properties of Elements
Comparison Operations for Elements
Arithmetic Operations for Elements
Relations Between Domains

Useful Categories of Elements

Useful Categories for all Elements of a
Family

Mappings
Creating Mappings

Properties and Attributes of (General)
Mappings

Images under Mappings
Preimages under Mappings

Arithmetic Operations for General
Mappings

Mappings which are Compatible with
Algebraic Structures

Magma Homomorphisms

Mappings that Respect Multiplication
Mappings that Respect Addition
Linear Mappings

Ring Homomorphisms

General Mappings

Technical Matters Concerning General
Mappings

Relations
General Binary Relations

Properties and Attributes of Binary
Relations

Binary Relations on Points

Closure Operations and Other
Constructors

Equivalence Relations

Attributes of and Operations on
Equivalence Relations

281
284
285
285
288

290
292
293

294
295
296

298

298
298
299
300
300
301
301

301
303
303

303
305

305
306

306

32.7

33
33.1
33.2
33.3

33.4
34

34.1

34.2
34.3
34.4
34.5

35
35.1
35.2
35.3
35.4
35.5

35.6
35.7

35.8
35.9

36
36.1
36.2
36.3
36.4

37
37.1

Contents

Equivalence Classes 307
Magmas 308
Magma Categories 308
Magma Generation 309

Magmas Defined by Multiplication
Tables 310

Attributes and Properties for Magmas 311

Words 314
Categories of Words and Nonassociative
Words 314
Comparison of Words 316
Operations for Words 316
Free Magmas -)
External Representation for

Nonassociative Words -)
Associative Words 319
Categories of Associative Words . . 319

Free Groups, Monoids and Semigroups 320
Comparison of Associative Words . 322
Operations for Associative Words . 323

Operations for Associative Words by
their Syllables 324

Representations for Associative Words 325

The External Representation for

Associative Words 327
Straight Line Programs 327
Straight Line Program Elements . 331
Rewriting Systems 332
Operations on rewriting systems . 332

Operations on elements of the algebra 333

Properties of rewriting systems . . 334
Developing rewriting systems . . . 334
Groups 335
Group Elements - 1215

Contents

37.2
37.3
37.4
37.5

37.6
37.7
37.8
37.9
37.10
37.11
37.12
37.13

37.14
37.15
37.16
37.17
37.18
37.19
37.20

37.21
37.22
37.23
37.24
38
38.1
38.2
38.3
38.4
38.5
38.6

Creating Groups
Subgroups
Closures of (Sub)groups

335
337
338

Expressing Group Elements as Words in

Generators

Cosets
Transversals
Double Cosets
Conjugacy Classes

Normal Structure

Specific and Parametrized Subgroups
Sylow Subgroups and Hall Subgroups

Subgroups characterized by prime

powers
Group Properties

Numerical Group Attributes
Subgroup Series

Factor Groups

Sets of Subgroups

Subgroup Lattice

Specific Methods for Subgroup Lattice

Computations

Special Generating Sets
1-Cohomology

Schur Covers and Multipliers

Tests for the Availability of Methods

Group Homomorphisms

Creating Group Homomorphisms

Operations for Group Homomorphisms

Efficiency of Homomorphisms

Homomorphism for very large groups

Nice Monomorphisms

Group Automorphisms

339
340
341
342
343
345
346
348

349
349
352
352
355
356
358

360
363
363
366
366
368
368
370
371
372
373
373

38.7
38.8

38.9
38.10

39
39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8

39.9
39.10
39.11
39.12

40

40.1

40.2

40.3

40.4

41

41.1

41.2

41.3
414
41.5
41.6

11
Groups of Automorphisms 375
Calculating with Group
Automorphisms 376
Searching for Homomorphisms . . 377
Representations for Group
Homomorphisms 379
Group Actions 380
About Group Actions 380
Basic Actions 381
Orbits 383
Stabilizers S 1
Elements with Prescribed Images . 385

The Permutation Image of an Action 386

Action of a group on itself 387
Permutations Induced by Elements and

Cycles 388
Tests for Actions 389
Block Systems 390
External Sets e e 392
Legacy Operations . 1 2t
Permutations 396
Comparison of Permutations . . . 397
Moved Points of Permutations . . 397
Sign and Cycle Structure 398
Creating Permutations 398
Permutation Groups 400
The Natural Action 400

Computing a Permutation
Representation 401

Symmetric and Alternating Groups 401
Primitive Groups 402
Stabilizer Chains 403

Randomized Methods for Permutation
Groups 404

12

41.7
41.8
41.9
41.10

41.11
41.12

42
42.1

42.2
42.3
424
42.5
42.6

43
43.1
43.2
43.3
43.4
43.5

43.6
43.7

43.8

43.9

43.10

43.11
43.12
43.13

Construction of Stabilizer Chains 406
Stabilizer Chain Records 407
Operations for Stabilizer Chains 409
Low Level Routines to Modify and

Create Stabilizer Chains 410
Backtrack 411

Working with large degree permutation

groups 412
Matrix Groups 414
Attributes and Properties for Matrix
Groups 414
Actions of Matrix Groups 415
GL and SL 415
Invariant Forms 416
Matrix Groups in Characteristic 0 417
Acting OnRight and OnLeft 419
Polycyclic Groups 420
Polycyclic Generating Systems 420
Computing a Pcgs 421
Defining a Pcgs Yourself 421
Elementary Operations for a Pcgs 422
Elementary Operations for a Pcgs and

an Element 423
Exponents of Special Products 424
Subgroups of Polycyclic Groups -

Induced Pcgs 425
Subgroups of Polycyclic Groups -
Canonical Pcgs 426
Factor Groups of Polycyclic Groups -
Modulo Pcgs 427
Factor Groups of Polycyclic Groups in
their Own Representation 428
Pcgs and Normal Series 429
Sum and Intersection of Pcgs 430
Special Pcgs 430

43.14
43.15

43.16

43.17
44
44.1
44.2
44.3
44.4
44.5
44.6
44.7
44.8
44.9
44.10
45
45.1
45.2

45.3
454

45.5
45.6
45.7

45.8
45.9
45.10

45.11

Contents

Action on Subfactors Defined by a Pcgs 432

Orbit Stabilizer Methods for Polycyclic

Groups 434

Operations which have Special Methods

for Groups with Pcgs 434
Conjugacy Classes in Solvable Groups 434
Pc Groups 436
The family pcgs 437
Elements of pc groups 437
Pc groups versus fp groups 438
Constructing Pc Groups 438
Computing Pc Groups 440
Saving a Pc Group 441
Operations for Pc Groups 441
2-Cohomology and Extensions 441
Coding a Pc Presentation 444
Random Isomorphism Testing 445
Finitely Presented Groups 446
Creating Finitely Presented Groups 447
Comparison of Elements of Finitely
Presented Groups 448
Preimages in the Free Group 448
Operations for Finitely Presented

Groups 449
Coset Tables and Coset Enumeration 450
Standardization of coset tables 453
Coset tables for subgroups in the whole
group 454

Augmented Coset Tables and Rewriting 454

Low Index Subgroups 455
Converting Groups to Finitely

Presented Groups 456
New Presentations and Presentations

for Subgroups 458

Contents

45.12

45.13
45.14
45.15

46

46.1
46.2
46.3
46.4
46.5
46.6
46.7
46.8
46.9

46.10

46.11
46.12
47
47.1
47.2
47.3
474
47.5

48
48.1
48.2
48.3
48.4

Preimages under Homomorphisms from

an FpGroup 459
Quotient Methods 460
Abelian Invariants for Subgroups 461

Testing Finiteness of Finitely Presented

Groups 462
Presentations and Tietze
Transformations 464
Creating Presentations 464
SimplifiedFpGroup 466
Subgroup Presentations 467
Relators in a Presentation 470
Printing Presentations 470
Changing Presentations 472
Tietze Transformations 472
Elementary Tietze Transformations 475
Tietze Transformations that introduce

new Generators 477
Tracing generator images through

Tietze transformations 480
DecodeTree 482
Tietze Options 485
Group Products 487
Direct Products 487
Semidirect Products 488
Subdirect Products 489
Wreath Products 490

Embeddings and Projections for Group

Products 491
Group Libraries 492
Basic Groups 492
Classical Groups 494

Conjugacy Classes in Classical Groups 498

Constructors for Basic Groups 498

48.5
48.6
48.7
48.8
48.9
48.10
48.11

49
49.1
49.2
49.3
49.4
49.5
49.6

50

51

51.1
51.2

51.3
51.4
51.5

51.6
52
53

53.1

53.2

53.3

53.4

13
Selection Functions 499
Transitive Permutation Groups 500
Small Groups 501
Finite Perfect Groups 504
Primitive Permutation Groups 508
Irreducible Solvable Matrix Groups 510
Irreducible Maximal Finite Integral
Matrix Groups 511
Semigroups 520
Making transformation semigroups 522
Ideals of semigroups 522
Congruences for semigroups 523
Quotients 523
Green’s Relations 523
Rees Matrix Semigroups 525
Monoids 527
Finitely Presented Semigroups
and Monoids 529

Creating Finitely Presented Semigroups 531

Comparison of Elements of Finitely

Presented Semigroups 532
Preimages in the Free Semigroup 532
Finitely presented monoids 533
Rewriting Systems and the

Knuth-Bendix Procedure 534
Todd-Coxeter Procedure 535
Transformations 536
Additive Magmas (preliminary) 539
(Near-)Additive Magma Categories 539
(Near-)Additive Magma Generation 540
Attributes and Properties for
(Near-)Additive Magmas 541
Operations for (Near-)Additive

Magmas 542

14

54
54.1
54.2
54.3
54.4
54.5
54.6
54.7

55
95.1
95.2
55.3

56
96.1
56.2
56.3

57
o7.1
57.2
57.3
o7.4
97.5

58

58.1

58.2
58.3

58.4

59
99.1
59.2

Rings

Generating Rings

Ideals in Rings

Rings With One
Properties of Rings

Units and Factorizations
Euclidean Rings

Ged and Lem

Modules (preliminary)
Generating modules
Submodules

Free Modules

Fields and Division Rings
Generating Fields
Subfields of Fields

Galois Action

Finite Fields

Finite Field Elements

Operations for Finite Field Elements

Creating Finite Fields
FrobeniusAutomorphism
Conway Polynomials

Abelian Number Fields
(preliminary)

Integral Bases for Abelian Number
Fields

Operations for Abelian Number Fields

Galois Groups of Abelian Number
Fields

Gaussians
Vector Spaces

Constructing Vector Spaces

Operations and Attributes for Vector

Spaces

543
543
545
047
548
549
551
552

555
555
556
557

559
559
561
561

565
565
566
567
568
569

570

570
071

571
572
573
973

574

59.3
59.4
59.5
59.6
59.7
59.8
59.9
59.10
59.11

60
60.1
60.2
60.3

60.4
60.5
60.6
60.7
60.8
60.9
60.10
61
61.1
61.2
61.3
61.4
61.5
61.6
61.7

61.8
61.9

Contents

Domains of Subspaces of Vector Spaces 575
Bases of Vector Spaces 575
Operations for Vector Space Bases . 577
Operations for Special Kinds of Bases 579

Mutable Bases 580
Row and Matrix Spaces 581
Vector Space Homomorphisms . . 584

Vector Spaces Handled By Nice Bases 586

How to Implement New Kinds of Vector

Spaces b87
Algebras 589
Constructing Algebras by Generators 589
Constructing Algebras as Free Algebras 590

Constructing Algebras by Structure

Constants 591
Some Special Algebras 593
Subalgebras 594
Ideals 59

Categories and Properties of Algebras 596
Attributes and Operations for Algebras 597

Homomorphisms of Algebras . . . 602
Representations of Algebras . . . 606
Lie Algebras 613
Lie objects 613
Constructing Lie algebras 614
Distinguished Subalgebras 616
Series of Ideals 617
Properties of a Lie Algebra . . . 618
Direct Sum Decompositions . . . 619

Semisimple Lie Algebras and Root

Systems T N ¢
Restricted Lie algebras 623
The Adjoint Representation . . . 625

Contents

61.10
61.11
61.12

61.13
61.14

62
63
63.1
63.2
63.3

63.4
63.5

63.6

64

64.1
64.2
64.3
64.4

64.5
64.6

64.7
64.8
64.9
64.10
64.11
64.12
64.13

Universal Enveloping Algebras
Finitely Presented Lie Algebras

Modules over Lie Algebras and Their

Cohomology

Modules over Semisimple Lie Algebras

Tensor Products and Exterior and

Symmetric Powers

Finitely Presented Algebras
Magma Rings

Free Magma Rings

Elements of Free Magma Rings

Natural Embeddings related to Magma

Rings

Magma Rings modulo Relations

Magma Rings modulo the Span of a

Zero Element

Technical Details about the
Implementation of Magma Rings

Polynomials and Rational
Functions

Indeterminates

Operations for Rational Functions
Comparison of Rational Functions

Properties and Attributes of Rational

Functions

Univariate Polynomials

Polynomials as Univariate Polynomials

in one Indeterminate
Multivariate Polynomials
Minimal Polynomials
Cyclotomic Polynomials
Polynomial Factorization
Polynomials over the Rationals
Laurent Polynomials

Univariate Rational Functions

626
626

628
630

633
635
636

637

638

638
639

640

640

642
642
644
644

645
647

648
649
650
650
650
651
652
652

64.14
64.15
64.16
64.17
64.18

64.19

64.20
64.21

64.22

65
65.1
65.2

66
66.1
66.2

67
67.1
67.2
67.3
67.4
67.5
67.6
67.7
67.8
67.9

68
68.1
68.2
68.3
68.4

Polynomial Rings
Univariate Polynomial Rings
Polynomial Reduction
Rational Function Families

The Representations of Rational
Functions

The Defining Attributes of Rational

Functions

Creation of Rational Functions

15

653
654
654
655

656

656
657

Arithmetic for External Representations

of Polynomials

Cancellation Tests for Rational
Functions

Algebraic extensions of fields

Creation of Algebraic Extensions

Elements in Algebraic Extensions

p-adic Numbers (preliminary)

Pure p-adic Numbers

Extensions of the p-adic Numbers

The MeatAxe

MeatAxe Modules

Selecting a Different MeatAxe
Accessing a Module
Irreducibility Tests

Finding Submodules

Induced Actions

Module Homomorphisms

The Smash MeatAxe

Smash MeatAxe Flags
Tables of Marks

More about Tables of Marks
Table of Marks Objects in GAP
Constructing Tables of Marks
Printing Tables of Marks

658

659
660
660
660
662
662
663
665
665
665
666
666
666
667
668
668
669
670
670
671
671
673

16

68.5
68.6

68.7
68.8
68.9
68.10
68.11

68.12

68.13

68.14
69
69.1

69.2

69.3
69.4
69.5
69.6

69.7
69.8

69.9
69.10
69.11
69.12

69.13
69.14

Sorting Tables of Marks 674
Technical Details about Tables of

Marks 675
Attributes of Tables of Marks 675
Properties of Tables of Marks 679
Other Operations for Tables of Marks 679
Standard Generators of Groups 682
Accessing Subgroups via Tables of

Marks 685

The Interface between Tables of Marks

and Character Tables 688
Generic Construction of Tables of

Marks 689
The Library of Tables of Marks 690
Character Tables 691

Some Remarks about Character Theory

in GAP 691
History of Character Theory Stuff in

GAP 692
Creating Character Tables 692
Character Table Categories 695
Conventions for Character Tables 696

The Interface between Character Tables

and Groups 696

Operators for Character Tables 699

Attributes and Properties of Character

Tables 699
Operations Concerning Blocks 706
Other Operations for Character Tables 709
Printing Character Tables 712
Computing the Irreducible Characters

of a Group 715
The Dixon-Schneider Algorithm v

Advanced Methods for Dixon-Schneider

Calculations 718

69.15
69.16

69.17

69.18
69.19

69.20
69.21
69.22
70
70.1
70.2
70.3
70.4

70.5
70.6

70.7
70.8
70.9
70.10
70.11
70.12
70.13
70.14

70.15
70.16
71

71.1

Contents

Components of a Dixon Record 719
An Example of Advanced

Dixon-Schneider Calculations 720
Constructing Character Tables from

Others 721
Sorted Character Tables 724
Automorphisms and Equivalence of
Character Tables 726
Interface to the CAS System 728
Interface to the MOC System 729

Storing Normal Subgroup Information 733

Class Functions 735
Why Class Functions? 735
Basic Operations for Class Functions 737
Comparison of Class Functions 738
Arithmetic Operations for Class

Functions 739
Printing Class Functions 741
Creating Class Functions from Values

Lists 742

Creating Class Functions using Groups 743

Operations for Class Functions 744
Restricted and Induced Class Functions 748
Reducing Virtual Characters 750
Symmetrizations of Class Functions 756
Molien Series 758
Possible Permutation Characters 760
Computing Possible Permutation

Characters 763
Operations for Brauer Characters 767

Domains Generated by Class Functions 768

Maps Concerning Character

Tables 769

Power Maps 769

Contents

71.2
71.3
71.4

71.5

72
72.1
72.2
72.3
72.4

73
73.1
73.2
73.3
73.4
73.5

73.6
73.7
73.8
73.9
73.10
73.11
73.12
73.13
73.14
73.15
73.16
73.17
73.18
73.19
74

Class Fusions between Character Tables 773

Parametrized Maps

Subroutines for the Construction of
Power Maps

Subroutines for the Construction of
Class Fusions

Monomiality Questions

Character Degrees and Derived Length

Primitivity of Characters
Testing Monomiality

Minimal Nonmonomial Groups
Installing GAP

Installation for the Impatient
Getting GAP

GAP for UNIX

Installation of GAP for UNIX

Known Problems of the Configure
Process

Problems on Particular Systems
Optimization and Compiler Options
GAP for Windows

Copyright of GAP for Windows
Installation of GAP for Windows
Expert Windows installation

GAP for MacOS

Copyright of GAP for MacOS
Installation of GAP for MacOS
Testing for the System Architecture
Porting GAP

The Documentation

HTML Font Setup

If Things Go Wrong

GAP Packages

778

785

788
790
791
791
793
796
797
797
798
800
800

805
805
806
806
807
807
810
811
811
812
814
815
816
817
817
819

74.1
74.2

74.3
74.4

Installing GAP Packages

Installing a GAP Package in your home
directory

Loading a GAP Package
Functions for GAP Packages
Bibliography

Index

17

819

820
821
822
825
831

Copyright Notice

Copyright © (1987-2002) by the GAP Group,

incorporating the Copyright (©) 1999, 2000 by School of Mathematical and Computational Sciences, Univer-
sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright (© 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany, transferred
to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In particular, the
copyright of packages distributed with GAP is usually with the package authors or their institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. For details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address
gap@dcs.st-and.ac.uk, containing your full name and address. This allows us to keep track of the number
of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would
cite another paper that you used (see below for sample citation). Also we would appreciate if you could
inform us about such a paper.

Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.3; 2002
(http://www.gap-system.org)

(Should the reference style require full addresses please use: “Centre for Interdisciplinary Research in Compu-
tational Algebra, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland; Lehrstuhl
D fiir Mathematik, Rheinisch Westfalische Technische Hochschule, Aachen, Germany”)

GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute
GAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,
you assume the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may modify and redistribute
GAP as permitted above, be liable to you for damages, including lost profits, lost monies or other special,
incidental or consequential damages arising out of the use or inability to use GAP.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.
That is to say proprietary modifications will not be allowed. We want all versions of GAP to remain free.

20 Copyright Notice

If you modify any part of GAP and redistribute it, you must supply a README document. This should
specify what modifications you made in which files. We do not want to take credit or be blamed for your
modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improve-
ments and new functions. So again we would appreciate it if you would inform us about all modifications
you make.

About the GAP
Reference Manual

This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner’s
introduction to GAP, Programming in GAP and Extending GAP, which provide information for those
who want to write their own GAP extensions.

This manual, the GAP reference manual contains the official definitions of GAP functions. It should give
all information to someone who wants to use GAP as it is. It is not intended to be read cover-to-cover.

This manual is divided into chapters. Each chapter is divided into sections and, within each section, impor-
tant definitions are numbered. References are therefore triples.

Chapter 2 describes the help system, which provides online access to the information of the manual.
Chapter 3 gives technical advice for running GAP. Chapter 4 introduces the GAP language, while the next
chapters deal with the environment provided by GAP for the user. These are followed by the main bulk of
chapters which is devoted to various mathematical structures that GAP can handle.

Pages are numbered consecutively in each of the four manuals.

1.1 Manual Conventions

The printed manual uses different text styles for several purposes. Note that the online help may use other
symbols to express the meanings listed below.

text

Text printed in boldface is used to emphasize single words or phrases.

text

Text printed in italics is used for arguments in the descriptions of functions and for other place holders. It
means that you should not actually enter this text into GAP but replace it by appropriate text depending
on what you want to do. For example when we write that you should enter 7section to see the section with
the name section, section serves as a place holder, indicating that you can enter the name of the section
that you want to see at this place.

text

Text printed in a monospaced (all characters have the same width) typewriter font is used for names of
variables and functions and other text that you may actually enter into your computer and see on your
screen. Such text may contain place holders printed in italics as described above. For example when the
information for IsPrime says that the form of the call is IsPrime(n) this means that you should actually
enter the strings “IsPrime(” and “)”, without the quotes, but replace the n with the number (or expression)
that you want to test.

Oper(argl, arg2[, opt]) F

starts a subsection on the command Oper that takes two arguments arg! and arg2 and an optional third
argument opt. As in the above example, the letter F at the end of a line that starts with a little black
triangle in the left margin indicates that the command is a simple function. Other possible letters at the

22 Chapter 1. About the GAP Reference Manual

end of such a line are A, P, 0, C, R, and V; they indicate “Attribute”, “Property”, “Operation”, “Category”,
“Representation” (see Chapter 13), or “Variable”, respectively.

In the printed manual, mathematical formulas are typeset in italics (actually math italics), and subscripts
and superscripts are actually lowered and raised.

Longer examples are usually paragraphs of their own. Everything on the lines with the prompts gap> and
> except the prompts themselves of course, is the input you have to type; everything else is GAP’s response.
In the printed manual, examples are printed in a monospaced typewriter font.

1.2 Credit

The manual tries to give credit to designers and implementors of major parts of GAP. For many parts of the
GAP code it is impossible to give detailed credit, because over the time of its development many persons have
contributed from first ideas, even in prerunners of GAP such as CAS or SOGOS, via first implementations,
improvements, and even total reimplementations. The documentation of the code gives further details, but
again, it suffers from the same problem. We have attempted to give attributions with the different chapters
of the manual where this seemed to be possible, but we apologise for all (unavoidable) shortcomings of this
attempt.

1»

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation interactively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.
? [book :] [7] topic

For an explanation and some examples see 2.7.

Note that the first question mark must appear in the first position after the gap> prompt. The search
strings book and topic are normalized in a certain way (see the end of this section for details) before the
search starts. This makes the search case insensitive and there can be arbitrary white space after the first
question mark.

When there are several manual sections that match the query a numbered list of topics is displayed. These
matches can be accessed with ?number.

There are some further specially handled commands which start with a question mark. They are explained
in section 2.2.

As default GAP shows the help sections as text in the terminal (window), page by page if the shown text
does not fit on the screen. But there are several other choices to read (other formats of) the documents:
via a viewer for dvi-files (produced by TEX) or files in Acrobat’s pdf-format or via a Web-browser. This is
explained in section 2.3.

Details of the string normalization process

Here now is precisely how the search strings book and topic are normalized before a search starts: backslashes
and double or single quotes are removed, parentheses and braces are substituted by blanks, non-ASCII
characters are considered as ISO-latinl characters and the accented letters are substituted by their non-
accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections and subsections. There are a few special commands
starting with a question mark (in the first position after the gap> prompt) which allow browsing a book
section or chapter wise.

7>

7<

The two help commands ?< and 7> allow to browse through a whole help book. ?< displays the section
preceding the previously shown section, and 7> takes you to the section following the previously shown one.

2»

4»

24 Chapter 2. The Help System

7>>
7<<

7<< takes you back to the first section of the current chapter, which gives an overview of the sections
described in this chapter. If you are already in this section 7<< takes you to the first section of the previous
chapter. 7>> takes you to the first section of the next chapter.

?_

7+

GAP remembers the last few sections that you have read. 7- takes you to the one that you have read before
the current one, and displays it again. Further applications of ?- take you further back in this history. 7+

reverses this process, i.e., it takes you back to the section that you have read after the current one. It is
important to note that 7- and 7+ do not alter the history like the other help commands.

?books

This command shows a list of books which are currently known to the help system. For each book there
is a short name which is used with the book part of the basic help query and there is a long name which
hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is loaded but
which needs a call of RequirePackage (see 74.3.1) before you can use the described functions.

?[book :1sections
?[book :] [chapters]

These commands show tables of content for all available, respectively the matching books.

?
&

These commands redisplay the last shown help section. In the form ?7& the next preferred help viewer is used
for the display (provided one has chosen several viewers), see 2.3.1 below.

2.3 Changing the Help Viewer

Books of the GAP help system can be available in several formats. Currently the following formats occur
(not all of them may be available for all books):

text
This is used for display in the terminal window in which GAP is running. Complicated mathematical
expressions may not be well readable in this format.

dvi
The standard output format of TEX. Only useful if TEX is installed on your system. Can be used
for printing a help book and onscreen reading. Some books include hyperlink information in this
format which can be useful for onscreen reading.

ps
Postscript format. Can be printed on most systems and also be used with an onscreen viewer.

pdf

Adobe’s pdf-format. Can also be used for printing and onscreen reading on most current systems
(with freely available software). Some books have hyperlink information included in this format.

HTML
The format of Web-pages. Can be used with any Web-browser. There may be hyperlink information
available which allows a convenient browsing through the book via cross-references. This format
also has the problem that complicated formulae may be not well readable since there is no syntax

1»

Section 3. Changing the Help Viewer 25

for formulae in HTML. Some books use special symbol fonts for formulae and need an appropriate
Web-browser for correct display.

Depending on your operating system and available additional software you can use several of these formats
with GAP’s online help. This is configured with the following command.

SetHelpViewer (wviewerl, viewer2, ...)

This command takes an arbitrary number of arguments which must be strings describing a viewer. The
recognized viewer are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the format
needed by viewerl, this viewer is used. If not, availability of the format for viewer2 is checked and so on.
Recall that the command 7& displays the last seen section again but with the next possible viewer in your
list, see 2.2.6.

The viewer "screen" (see below) is always silently appended since we assume that each help book is available
in text format.

If you want to change the default setting you will probably put a call of SetHelpViewer into your .gaprc
file (see 3.4).

"screen"
This is the default setting. The help is shown in text-format using the Pager command explained
in the next section 2.4.1. (Hint: Some formatting procedures assume that your terminal displays at
least 80 characters per line, if this is not the case some sections may look very bad. Furthermore
the terminal (window) should use a fixed width font and we suggest to take one with IS0-8859-1
(also called latinl) encoding.

"netscape"
If a book is available in HTML-format this is shown using the (already running) netscape Web-
browser. Note, that for some books the browser must be configured to use symbol fonts.

lllynxll
If a book is available in HTML-format this is shown using the text based 1ynx Web-browser inside
the terminal running GAP. Formulae which use symbol fonts may be unreadable.

"internet config"

(for Apple Macintosh with MacOS) If a book is available in HTML-format this is shown in a
Web browser. The web browser used is the program set to handle the file protocol in the program
Internet Config (System 7 and 8) resp. the Internet control panel (System 9 and System X). For
some browsers (e.g., Internet Explorer), you may have enter the GAP command HELP_MAC_PROTOCOL
:= "file:/"; for this to work correctly. If you wish to use the online html version of the manual, you
may use HELP_EXTERNAL_URL := "http://www.gap-system.org/";. Note that HELP_EXTERNAL_URL
:= ""; gswitches back to the local html files. It may be a good idea to put the relevant line in the
gap.rc file (see 3.4).

"xdvi"
(on X-windows systems) If a book is available in dvi-format it is shown with the onscreen viewer
program xdvi. (Of course, xdvi and TEX must be installed on your system.) This program doesn’t
allow remote commands, so usually for each shown topic a new xdvi is launched. You can try to
compile the program GAPPATH/etc/xrmtcmd.c and to put the executable xrmtcmd into your PATH.
Then this viewer tries to reuse one running xdvi for each help book.

"xpdf"

(on X-windows systems) If a book is available in pdf-format it is shown with the onscreen viewer
program xpdf (which must be installed on your system). This is a nice program, once it is running it
is reused by GAP for the next displays of help sections. (Hint: On many systems xpdf shows a very

1»

26 Chapter 2. The Help System

bad display quality, this is due to a wrong or missing font configuration. One needs to set certain
X-resources; for more details follow the Problems link at

http://www.foolabs.com/xpdf/

"acroread"
If a book is available in pdf-format it is shown with the onscreen viewer program acroread (which
must be available on your system). This program doesn’t allow remote commands or startup with
a given page. Therefore the page numbers you have to visit are just printed on the screen. When
you are looking at several sections of the same book, this viewer assumes that the acroread window
still exists. When you go to another book a new acroread window is launched.

"less" or "more"
This is the same as "screen" but additionally the PAGER and PAGER_OPTIONS variables are set, see
the next section 2.4 for more details.

Please, send ideas for further viewer commands to Gap-Trouble@dcs.st-and.ac.uk

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which doesn’t fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there are
powerful external standard programs which do this job.

Pager (lines)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by page.
There is a default builtin pager in GAP which has very limited capabilities but should work on any system.

At least on a UNIX system one should use an external pager program like less or more. GAP assumes that
this program has a command line option +nr which starts the display of the text with line number nr.

Which pager is used can be controlled by setting the variable PAGER. The default setting is PAGER :=
"builtin"; which means that the internal pager is used.

On UNIX systems you probably want to set PAGER := "less"; or PAGER := "more";, you can do this for
example in your .gaprec file. In that case you can also tell GAP a list of standard options for the external
pager. These are specified as list of strings in the variable PAGER_OPTIONS.

Example:
PAGER := "less";
PAGER_OPTIONS .= [u_fu’ "—I'", n_an, "—i", "—M", "_j2"];

The argument lines can have one of the following forms:

(1) a string (i.e., lines are separated by newline characters)
(2) a list of strings (without newline characters) which are interpreted as lines of the text to be shown

(3) a record with component .lines as in (1) or (2) and optional further components

In case (3) currently the following additional components are used:

.formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAPs automatic line breaking)

.start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

Section 4. The Pager Command 27

The Pager command is used by GAP’s help system for displaying help sections in text-format. But, of course,
it may be used for other purposes as well.

gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> 1 := List(s6, p-> Permuted(words, p));;

gap> Pager(List(1l, a-> JoinStringsWithSeparator(a," ")));;

Running GAP

This chapter informs about command line options for GAP under UNIX (see 3.1, 3.2), options and features
of GAP on the Macintosh (see 3.3), the .gaprc file (see 3.4), completion files (see 3.5), the GAP compiler
(see 3.6, 3.7, 3.8), and how to save and load a GAP workspace (see 3.10).

3.1 Command Line Options

When you start GAP under UNIX, you may specify a number of options on the command-line to change
the default behaviour of GAP. All these options start with a hyphen -, followed by a single letter. Options
must not be grouped, e.g., gap -gq is illegal, use gap -g -q instead. Some options require an argument,
this must follow the option and must be separated by a space, e.g., gap -m 256k, it is not correct to say
gap -m256k instead.

GAP for UNIX will distinguish between upper and lower case options.

As is described in Chapter 73 (see 73.4), usually you will not execute GAP directly. Instead you will call a
shell script, with the name gap, which in turn executes GAP. This shell script sets some options which are
necessary to make GAP work on your system. This means that the default settings mentioned below may
not be what you experience when you execute GAP on your system.

-h
tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits after
printing the summary, all other options are ignored.

-b
tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This is
useful when, after a while, you get tired of the banner.

-q
tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>. This
is useful if you want to run GAP as a filter with input and output redirection and want to avoid the
banner and the prompts appearing in the output file.

-e
tells GAP not to quit when receiving a ctr-D on an empty input line (see 6.3.1). This option should
not be used when the input is a file or pipe.

-f
tells GAP to enable the line editing and history (see 6.8).
In general line editing will be enabled if the input is connected to a terminal. There are rare
circumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -f in this case to enable line editing.

-n

tells GAP to disable the line editing and history (see 6.8).
You may want to do this if the command line editing is incompatible with another program that is
used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n should be

Section 1. Command Line Options 29

used since otherwise every input line will be echoed twice, once by Emacs and once by GAP.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when to split
long lines. After starting GAP you may use SizeScreen (see 6.11.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which is
the right value if you have a standard ASCII terminal. If you have a larger monitor, or use a smaller
font, or redirect the output to a printer, you may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to decide
after how many lines of on-line help it should wait. After starting GAP you may use SizeScreen
(see 6.11.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which is
the right value if you have a standard ASCII terminal. If you have a larger monitor, or use a smaller
font, or redirect the output to a printer, you may want to increase this value.

)

tells GAP to print a information message every time a full garbage collection is performed.
#G TFULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage collection,
that 57304 unused objects were reclaimed by it, and that 734 KBytes from a total allocated memory
of 4096 KBytes are available afterwards.

g -8
If you give the option -g twice, GAP prints a information message every time a partial or full garbage
collection is performed. The message,

#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 KBytes from a total allocated memory of 4096 KBytes are available
afterwards.

-m memory
tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it is
taken as KBytes, if the last character is m or M memory is taken as MBytes and if it is g’ or G’ it
is taken as Gigabytes.
Under UNIX the default amount of memory allocated by GAP is 24 MBytes. The amount of memory
should be large enough so that computations do not require too many garbage collections. On the
other hand, if GAP allocates more virtual memory than is physically available, it will spend most of
the time paging.

-0 memory
tells GAP to allocate at most memory bytes. If the last character of memory is k or K it is taken as
KBytes, if the last character is m or M memory is taken as MBytes and if it is g’ or G’ it is taken
as Gigabytes.
Under UNIX the default amount is 256 MBytes. If more than this amount is required during the
GAP session, GAP prints an error messages and enters a break loop.

-K memory

is like -0 above. But while the latter actually allocates more memory if the system allows it and
then prints a warning inside a break loop the -K options tells GAP not even to try to allocate more

30

Chapter 3. Running GAP

memory. Instead GAP just exits with an appropriate message. The default is that this feature is
switched off. You have to set it explicitly when you want to enable it.

-1 path_list

gap:

can be used to modify GAP’s list of root directories (see 9.2). Before the option -1 is used for the
first time, the only root directory is ./, i.e., GAP has only one root directory which is the current
directory. Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -1 option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how several
root paths can be used to do this.

path_list should be a list of directories separated by semicolons. No whitespace is permitted before
or after a semicolon. Each directory name should end with a pathname separator, i.e., /, but GAP
will silently add one if it is missing. If path_list does not start or end with a semicolon, then path_list
replaces the existing list of root directories. If path_list starts with a semicolon, then path_list is
appended to the existing list of root directories. If path_list ends with a semicolon (and does not
start with one), then the new list of root directories is the concatenation of path_list and the existing
list of root directories. After GAP has completed its startup procedure and displays the prompt, the
list of root directories can be viewed in the variable GAP_ROOT_PATHS.

GAP will attempt to read the file root_dir/1ib/init.g during startup where root_dir is one of the
directories in its list of root directories. If GAP cannot find init.g it will print the following warning

hmm, I cannot find ’lib/init.g’ maybe use option ’-1 <gaproot>’?

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -1 option.

The option -r tells GAP not to read the user supplied ~/.gaprc files.

-L filename

-R

The option -L tells GAP to load a saved workspace. See section 3.10.

The option -R tells GAP not to load a saved workspace previously specified via the -L option.

filename ...

Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. The files are read in the
order in which they appear on the command line. GAP only accepts 14 filenames on the command
line. If a file cannot be opened GAP will print an error message and will abort.

3.2 Advanced Features of GAP

The following options are in general not needed for the normal operation of GAP. They are mostly used for
debugging.

-a memory

GASMAN, the storage manager of GAP uses sbrk to get blocks of memory from (certain) operating
systems and it is required that subsequent calls to sbrk produce adjacent blocks of memory in this
case because GAP only wants to deal with one large block of memory. If the C function malloc is
called for whatever reason, it is likely that sbrk will no longer produce adjacent blocks, therefore
GAP does not use malloc itself.

However some operating systems insist on calling malloc to create a buffer when a file is opened,
or for some other reason. In order to catch these cases GAP preallocates a block of memory with
malloc which is immediately freed. The amount preallocated can be controlled with the —a option.

Section 2. Advanced Features of GAP 31

If the last character of memory is k or X it is taken as KBytes and if the last character is m or M
memory is taken as MBytes.

By default, some GAP packages (see 74) are loaded, if present, into the GAP session when it starts.
This option disables (actually toggles) this behaviour, which can be useful for debugging or testing.

-B architecture

Executable binary files that form part of GAP or of a GAP package are kept in a subdirectory of
the bin directory with in the GAP or package root directory. The subdirectory name is determined
from the operating system, processor and compiler details when GAP (resp. the package) is installed.
Under rare circumstances, it may be necessary to override this name, and this can be done using
the -B option.

-D
The -D option tells GAP to print short messages when it is reading or completing files or loading
modules. The message,
#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file
tells you that GAP has started to read the library file 1ib/kernel.g.
#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically
tells you that GAP has used the compiled version of the library file 1ib/kernel.g. This compiled
module was statically linked to the GAP kernel at the time the kernel was created.
#I READ_GAP_ROOT: loading ’lib/kermel.g’ dynamically
tells you that GAP has loaded the compiled version of the library file 1ib/kernel.g. This compiled
module was dynamically loaded to the GAP kernel at runtime from a corresponding .so file.
#I completing ’lib/domain.gd’
tells you that GAP has completed the file 1ib/domain.gd. See 3.5 for more information about
completion of files.
-M
tells GAP not to check for, nor to use, compiled versions of library files.
-N
tells GAP not to check for, nor to use, completion files, see 3.5.
-0
enables a GAP 3 compatibility mode, in which (for instance) the values false and fail are identified.
Use of this mode is not recommended other than as a transitional step in porting GAP 3 code to
GAP 4, because the GAP 4 library may not work reliably in this mode.
-T
suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop. This is intended for automated testing of GAP.
-X
tells GAP to do a consistency check of the library file and the corresponding completion file when
reading the completion file.
-Y
tells GAP to do a consistency check of the library file and the corresponding completion file when
completing the library file.
-i filename

changes the name of the init file from the default init.g to filename.

Additional options, -C, -U, =P, -W and -z are used internally in the GAP compiler and/or on specific operating
systems.

32 Chapter 3. Running GAP

3.3 Running GAP under MacOS

This sections describes the features of GAP for MacOS that differ from those described earlier in this chapter.

Since you cannot enter command line options directly when you launch the GAP application on a Macintosh,
another mechanism is being used: Hold down any of the command (apple), option, control or shift keys or
space bar when launching the GAP application, e.g., by double-clicking on its icon. Please note that some
keys have side effects (e.g., pressing the option key usually closes Findeer windows), and that System X
behaves slightly differently from other systems.

A dialog box will open, into which you can enter the desired GAP command line options. as described in
3.1. For example, if you want GAP to start with a workspace of 32 megabytes, the dialog box should contain
the following text:

-m 32m

Note that the dialog box may already contain settings which you have previously saved. The 0K button
accepts the command line for the current GAP session, and the Save button can be used to save these options
for subsequent GAP sessions. The command line options will be saved in a text file called GAP options in
the Preferences folder in the system folder. You may also modify the file GAP options directly; note that
changes only take effect the next time you launch GAP.

There are three additional command line option on the Mac.

sets the time between checks for events (keystrokes, mouse clicks etc.) to n/60 second. Lower values
make GAP more responsive but computations are somewhat slower. A value greater than 60 is not
recommended, the default value for n is 6.

sets the amount of memory required for printing. The reason is that printer drivers may require
quite a bit of memory, and may even crash if not enough is found. To prevent this, GAP will not
print unless at least the specified amount of memory is available. The default value is 64 Kilobytes,
which is enough for the Apple LaserWriter printer driver. Setting the printing memory to 0 disables
printing altogether.

sets the size of the log window to m bytes. This means that if the text in the log window exceeds
this amount, then lines at the beginning of the log are deleted. The default value is 32 Kilobytes.

The following command line options work differently on the Mac.

-a
On the Mac, the -a option has a different meaning from the one described in 3.2. On the Mac, it
must be used to reserve memory for loading dynamic libraries into GAP. See 3.6 for details about
dynamic libraries (and note that the PPC version of GAP for MacOS can use dynamic libraries).

-f,-n
The -f and -n command line options do not have any effect on the Mac.

-e
The -e command line option enables ctr-D.

-0

The -o command line option should not normally be used on the Mac. The value set by the -o
option is only used if it is lower than the size of the workspace that would normally be available for
GAP.

Section 8. Running GAP under MacOS 33

The file called .gaprc on UNIX systems (see 3.4) is called gap.rc on the Mac; it must be in the same folder
as the GAP application.

All interaction between GAP and you takes place via the GAP log window: this is where GAP prints its
messages and waits for your input. The amount of text in this window is limited (see the -W command line
option above), so don’t be surprised if old GAP messages are deleted from the beginning of the text when
this limit is reached. The reason for deleting old lines is that otherwise GAP may run out of memory just
because of the messages it has printed.

GAP for the Mac now remembers the font and text size (which can be set choosing Format. .. in the Edit
menu) as well as the window position of the GAP log window from one session to the next.

Almost all of the GAP editing keys described in Section 6.8 work on the Mac. In addition, GAP for MacOS
also supports the usual editing keys on the Mac, such as Copy and Paste, Undo, arrow keys (also with shift,
option and command. Note that you can also move forward and backward in the command line history by
pressing ctri-arrow down and ctrl-arrow up.

Note that Quit in GAP’s file menu works differently from the quit GAP command (see 6.3.1): Quit in the
file menu always quits the GAP application, it cannot be used to quit from a break loop.

GAP for MacOS also contains a simple built-in text editor, which is mainly intended to create GAP files.
New, Open. . ., Save and Close from the File menu work in the usual way.

The Read. .. and LogTo commands in the File menu work basically like the corresponding GAP commands
(see 9.7). The only difference is that GAP will prompt you for the file with a standard Mac file opening
dialog, so you do not have to enter the path name yourself. (You will see the file’s path name in the log
window afterwards). Note that if a file you want to read is open in GAP’s built-in editor, then GAP will read
the file from the edit window, not from the disk.

If you press the shift key while choosing Read... from the File menu, the menu item will change to
Reread... which will then use the GAP command Reread (see 9.7.13) to read the chosen file.

The Read. .. command in the File menu changes to Read if the front window belongs to a file in GAP’s
built-in editor — choosing Read then makes GAP read that file — and while the file is being read, the File
menu item changes to Abort Read. You cannot close the file’s window while it is being read by GAP — choose
Abort Read first.

Garbage collection messages, which are switched on and off by the -g command line option (see 3.1) can also
be switched on and off by choosing Show garbage collections and Show partial collections from the
Window menu.

If Always scroll to printout is selected in the Window menu, GAP will always scroll the GAP log window
so that you can see what GAP is currently printing. Otherwise, the GAP log window is only scrolled to the
current print position when GAP prints its prompt and waits for you to enter a command. Note that you
may see text lines disappear even if Always scroll to printout is off — this happens if you are viewing
the text at the beginning of the log window and some lines are just being deleted from the log because it
has exceeded its 32000 character limit.

The contents of the Help menu should be quite self-explanatory. Note that, unlike in GAP 3 for the Mac, the
online help is not displayed in a separate window, nor is the online help available while GAP is computing.

Holding down the Command (Apple) key while selecting text does the same as selecting the text and choosing
Find selection in table of contents from the Help menu, holding down both Command and Option
keys while selecting tries to find the selection in the index.

When you want to refer to files or folders in GAP (for example in the Read, PrintTo, AppendTo, LogTo
commands), or have to specify files or folders for a command line option, these files must be identified by
UNIX style path names. (Presently, GAP for MacOS also supports Mac path names, but this may change
in the future.)

34 Chapter 3. Running GAP

Users who are familiar with UNIX path names may skip the rest of this section, noting that the working
directory (i.e., folder) is the one in which the GAP application resides, and that file names on the Mac are
not case sensitive.

Paths are strings used to describe where a file is stored on a hard disk. There are two ways for specifying
UNIX path names: absolute and relative paths. An absolute path starts with a /, then the name of the
disk where the file is located, another /, then a list of folders, each containing the next one, separated by
/, and finally the name of the file, which resides in the last folder in the list. For instance, if your hard disk
is called My HD, and your file program.g resides (or should be created) in the folder programs in the folder
documents on My HD, the absolute path name to that file is

/My HD/documents/programs/program.g

Relative path names work similarly, except that the starting point is not a disk but the folder in which the
GAP application program resides. Relative path names are formed like absolute ones, except that they do
not start with a /. Thus, if you want to access the file temp.g in the folder tmp in the GAP folder, you may
use the following path name: tmp/temp.g. It is also possible to move upward to a parent folder: suppose that
the folder containing GAP is called applications, which contains a folder editor which in turn contains
the file 'program.g’, then you could access this file by the path ../editor/program.g. The path ./ refers
to the GAP folder itself, and ../ refers to “the folder above”.

Note also that GAP for the Mac follows (resolves) aliases to folders and files.

3.4 The .gaprc file

When you start GAP, it looks for the file with the name .gaprc in your home directory (on UNIX systems).
On a Macintosh the equivalent to the .gaprc file is gap.rc, and for it to be read it must be in the same
folder as the GAP application. If such a file is found it is read after libname/init.g, but before any of the
files mentioned on the command line are read. You can use this file for your private customizations. For
example, if you have a file containing functions or data that you always need, you could read this from
.gaprc. Or if you find some of the names in the library too long, you could define abbreviations for those
names in .gaprc. The following sample .gaprc file does both.

Read (" /usr/you/dat/mygroups.grp");

Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

If you have already a .gaprc file for GAP 3, its settings might not be compatible with GAP 4. In this case it
has to be removed. On UNIX Systems the following .gaprc file can be used to load alternatively a .gap3rc
or a .gap4rc file from your home directory.

if IsBound(Permutations) then

GAP 3

Exec("echo \"READ(\\\"‘pwd ~‘/.gap3rc\\\");\" > /tmp/jJj");
else

GAP 4

Exec("echo \"READ(\\\"‘pwd ~¢/.gap4rc\\\");\" > /tmp/jJj");
fi;

Read("/tmp/jJji");

Section 6. The Compiler 35

3.5 Completion Files

The standard distribution of GAP already contains completion files so in general you do not need to
create these files by yourself.

When starting, GAP reads in the whole library. As this takes some time, library files are normally condensed
into completion files. These completion files contain the basic skeleton of the library but not the function
bodies. When a function body is required, for example because you want to execute the corresponding
function, the library file containing the function body is completed.

Completion files reduce the startup time of GAP drastically. However, this technique also means that the
information stored in the completion files and the library must be consistent. If you change a library file
without recreating the completion files disaster is bound to happen.

Bugfixes distributed for GAP will also update the completion files. Therefore you only need to update them
if you have changed the library by yourself.

However, if you are modifying a library file a more convenient way is to use the -X option (see 3.1) that
allows you (in most cases) to use the completion files for the unchanged parts of library files and avoids
using the completion files for the changed parts. After you have finished modifying the library files you can
recreate the completion files using:

CreateCompletionFiles() F
CreateCompletionFiles(path) F

To create completion files you must have write permissions to path, which defaults to the first root directory.
Start GAP with the -N option (to suppress the reading of any existing completion files), then execute the
command CreateCompletionFiles(path);, where path is a string giving a path to the home directory
of GAP (the directory containing the 1ib directory).

This produces, in addition to lots of informational output, the completion files.

$ gapd -N

gap> CreateCompletionFiles();

#I converting "gap4/lib/read2.g" to "gap4/lib/read2.co"
#I parsing "gap4/lib/process.gd"

#I parsing "gap4/lib/listcoef.gi"

3.6 The Compiler

The GAP compiler GAC creates C code from GAP code and then calls the system’s C compiler to produce
machine code from it. This can result in a speedup (see section 3.7 for more details).

To use the compiler to produce dynamically loadable modules, call it with the -d option:

M193 /home/ahulpke > gap4/bin/i386-ibm-linux-gcc2/gac -d test.g
gap4/bin/i386-ibm-linux-gcc2/gap -C /tmp/5827_test.c test.g Init_Dynamic
gcc —fpic -ansi -Wall -02 -o /tmp/5827_test.o -I
gap4/bin/i386-ibm-linux-gcc2/../../src -c /tmp/5827_test.c

1d -Bshareable -x -o test.so /tmp/5827_test.o

rm -f /tmp/5827_test.o

rm -f /tmp/5827_test.c

This produces a file file.so.

1»

36 Chapter 3. Running GAP

LoadDynamicModule(filename) F
LoadDynamicModule(filename, crc) F

To load a compiled file, the command LoadDynamicModule is used. This command loads filename as module.
If given, the CRC checksum crc¢ must match the value of the module (see 3.9).

gap> LoadDynamicModule("./test.so");

gap> CrcFile("test.g");

2906458206

gap> LoadDynamicModule("./test.so",1);

Error, <crc> mismatch (or no support for dynamic loading) called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

gap> LoadDynamicModule("./test.so",2906458206) ;

If you want to see or modify the intermediate C code, you can also instruct the compiler to produce only
the C files by using the option -C instead of -d.

On some operating systems, once you have loaded a dynamic module with a certain filename, loading another
with the same filename will have no effect, even if the file on disk has changed.

3.7 Suitability for Compilation

Typically algorithms spend large parts of their runtime only in small parts of the code. The design of GAP
reflects this situation with kernel methods for many time critical calculations such as matrix or permutation
arithmetic.

Compiling an algorithm whose time critical parts are already in the kernel of course will give disappointing
results: Compilation will only speed up the parts that are not already in the kernel and if they make us a
small part of the runtime, the overall gain is small.

Routines that benefit from compilation are those which do extensive operations with basic data types, such
as lists or small integers.

3.8 Compiling Library Code

The most tempting code to compile is probably the library. This section describes the mechanism used to
make GAP recognize compiled versions of library files. Note however that there is no point in compiling the
whole library as typically only few functions benefit from compilation as described in Section 3.7.

All files that come with GAP are read using the internal function READ_GAP_ROOT. This function then checks
whether a compiled version of the file exists and if its CRC number (see 3.9) matches the file. If it does,
the compiled version is loaded. Otherwise the file is read. You can start GAP with the -D -N option to see
information printed about this process.

To make GAP find the compiled versions, they must be put in the bin/systemname/compiled directory
(systemname is the name you gave for compilation, for example i386-ibm-1linux-gcc2). They have to be
called according to the following scheme: Suppose the file is humpty/dumpty.gi in the GAP home directory.
Then the compiled version will be bin/systemname/compiled/humpty/gi/dumpty.so. That is, the directory
hierarchy is mirrored under the compiled directory. A further directory level is added for the suffix of the
file, and the suffix of the compiled version of the file is set to .so (as produced by the compiler).

For example we show how to compile the combinat.gi file on a Linux machine. Suppose we are in the home
directory of the gap distribution.

1»

2»

Section 10. Saving and Loading a Workspace 37
bin/gac -d lib/combinat.gi

creates a file combinat.so. We now put it in the right place, creating also the necessary directories:

mkdir bin/i386-ibm-linux-gcc2/compiled

mkdir bin/i386-ibm-linux-gcc2/compiled/1ib

mkdir bin/i386-ibm-linux-gcc2/compiled/1ib/gi

mv combinat.so bin/i386-ibm-linux-gcc2/compiled/lib/gi

If you now start GAP and look, for example, at the function Binomial, defined in combinat.gi, you see it
is indeed compiled:

gap> Print(Binomial);

function (<<arg-1>>, <<arg-2>>)
<<compiled code>>

end

The command line option -M disables the loading of compiled modules and always reads code from the
library.

3.9 CRC Numbers

CRC (cyclic redundancy check) numbers provide a certain method of doing checksums. They are used by
GAP to check whether files have changed. Whenever files are “condensed” — for example for completion files
(see Section 3.5) or when compiling files (see Section 3.6) — such a checksum is computed implicitly and
stored within the condensed file.

When reading a condensed version of the file instead of the original one, the CRC checksum, which is
computed via CrcFile (see 9.7.11), can be used to check whether the original has been changed in the
meantime, e.g.

gap> CrcFile("lib/morpheus.gi");
2705743645

3.10 Saving and Loading a Workspace

SaveWorkspace(filename) F

will save a “snapshot” image of the current GAP workspace in the file filename. This image then can be
loaded by another copy of GAP which then will behave as at the point when SaveWorkspace was called.

gap> a:=1;

gap> SaveWorkspace("savefile");
true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of a loop or
function, or called from a break loop.

-L filename

A saved workspace can be loaded by starting GAP with the option -L (see 3.1). This will start GAP and
load the workspace.

38 Chapter 3. Running GAP

youQunix> gap -L savefile
gap> a;
1

Under UNIX, it is possible to compress savefiles using gzip. Compression typically reduces the size of a
workspace by a factor 3 or 4. If GAP is started with a compressed savefile (omit the .gz ending), it will try
to locate gzip on the system and uncompress the file automatically while reading it.

you@unix> gzip -9 savefile
you@unix> gap -L savefile
gap> a;

1

We cannot guarantee that saved workspaces are portable between different system architectures or over
different versions of GAP or its library.

If compiled modules had been loaded into GAP before the workspace was saved, they will be loaded into
the new GAP session during the workspace loading process. If they are not available then the load will fail.
Additional compiled modules will not be used, even if they are available, although they may be loaded later
using Reread (see 9.7.13). SaveWorkspace may sometimes produce warning messages, as in

gap> SaveWorkspace("b5");

#W bad bag id 4 found, O saved
#W bad bag id 20 found, O saved
true

A small number of such messages can probably be ignored (they arise because the garbage collector may
not always collect all dead objects, and dead objects may contain data that SaveWorkspace does not know
how to process).

The Programming
Language

This chapter describes the GAP programming language. It should allow you in principle to predict the result
of each and every input. In order to know what we are talking about, we first have to look more closely at
the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP is operating
system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a window, or read
from a file. The mechanism does not matter. This representation of expressions by characters is called the
external representation of the expression. Every expression has at least one external representation that
can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal repre-
sentation. At this point the input is analyzed and inputs that are not legal external representations, according
to the rules given below, are rejected as errors. Those rules are usually called the syntax of a programming
language.

The internal representation created by reading is called either an expression or a statement. Later we
will distinguish between those two terms. However for now we will use them interchangeably. The exact
form of the internal representation does not matter. It could be a string of characters equal to the external
representation, in which case the reading would only need to check for errors. It could be a series of machine
instructions for the processor on which GAP is running, in which case the reading would more appropriately
be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution. Later
we will distinguish between those two terms too, but for the moment we will use them interchangeably. The
name hints at the nature of this process, it replaces an expression with the value of the expression. This
works recursively, i.e., to evaluate an expression first the subexpressions are evaluated and then the value of
the expression is computed from those values according to rules given below. Those rules are usually called
the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a value is
represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an external
representation, i.e., a string of characters again. What you do with this external representation is up to you.
You can look at it, paste it with the mouse into another window, or write it to a file.

Lets look at an example to make this more clear. Suppose you type in the following string of 8 characters
1+ 2 % 3;

GAP takes this external representation and creates a tree-like internal representation, which we can picture
as follows

40 Chapter 4. The Programming Language

+

/ \

1 *
/ \
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3. Again, to
do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they are their own
value, we say that they are self-evaluating. After this has been done, the rule for * tells us that the value is
the product of the values of the two subexpressions, which in this case is clearly 6. Combining this with the
value of the left operand of the +, which is self-evaluating, too, gives us the value of the whole expression 7.
This is then printed, i.e., converted into the external representation consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that govern the
process of reading and the semantic rules that tell us for every expression how its value is computed in
terms of the values of the subexpressions. The syntactic rules are given in sections 4.2, 4.3, 4.4, 4.5, 4.6, and
4.24, the semantic rules are given in sections 4.7, 4.8, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19,
4.22.1, and the chapters describing the individual data types.

4.2 Lexical Structure

The input of GAP consists of sequences of the following characters.

Digits, uppercase and lowercase letters, space, tab, newline, and the special characters

" ¢ () * + , _ #
. / : ; < = > - &
[\] - _ { } !

Other characters will be signalled as illegal. Inside strings (see section 4.3 and chapter 26) and comments
(see 4.4) the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scanning,
that assembles the characters into symbols. A symbol is a sequence of characters that form a lexical unit.
The set of symbols consists of keywords, identifiers, strings, integers, and operator and delimiter symbols.

A keyword is a reserved word consisting entirely of lowercase letters (see 4.5). An identifier is a sequence
of letters and digits that contains at least one letter and is not a keyword (see 4.6). An integer is a sequence
of digits (see 14). A string is a sequence of arbitrary characters enclosed in double quotes (see 26).

Operator and delimiter symbols are

- * / - ~ I,
= <> < <= > >= I [
1= . .. -> s ; 1{
[] { } () :

Note also that during the process of scanning all whitespace is removed (see 4.4).

Section 5. Keywords 41

4.4 Whitespaces

The characters space, tab, newline, and return are called whitespace characters. Whitespace is used as
necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example Thorondor is a
single identifier, while Th or ondor is the keyword or between the two identifiers Th and ondor. Whitespace
may occur between any two symbols, but not within a symbol. Two or more adjacent whitespace characters
are equivalent to a single whitespace. Apart from the role as separator of symbols, whitespace characters
are otherwise insignificant. Whitespace characters may also occur inside a string, where they are significant.
Whitespace characters should also be used freely for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to the
end of the line on which the comment character appears. The whole comment, including # and the newline
character is treated as a single whitespace. Inside a string, the comment character # loses its role and is just
an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if 1 < 0 then # if i is negative

a = -i; # take its additive inverse
else # otherwise

a := 1i; # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the first statement is
not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then and a,
and else and a must be separated.

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The keywords are

and do elif else end fi
for function if in local mod
not od or repeat return then
until while quit QUIT break rec
continue

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For example
only else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must not contain
whitespace, for example el if is not the same as elif.

Note: A number of tokens that appear to be normal identifiers representing functions or literals of various
kinds are actually implemented as keywords for technical reasons. The only consequence of this is that those
identifiers cannot be re-assigned, and do not actually have function objects bound to them, which could be
assigned to other variables or passed to functions. These keywords are:

false true IsBound Unbind TryNextMethod
Info Assert SaveWorkspace fail

1»

42 Chapter 4. The Programming Language

4.6 ldentifiers

An identifier is used to refer to a variable (see 4.8). An identifier consists of letters, digits, and underscores
_, and must contain at least one letter or underscore. An identifier is terminated by the first character not
in this class. Examples of valid identifiers are

a foo alongIdentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed by a character
is equivalent to the character, except that this escape sequence is considered to be an ordinary letter. For
example

G\ (2\,5\)
is an identifier, not a call to a function G.
An identifier that starts with a backslash is never a keyword, so for example * and \mod are identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The escape
sequence \newline is ignored, making it possible to split long identifiers over multiple lines.

IsValidIdentifier(str) F

returns true if the string str would form a valid identifier consisting of letters, digits and underscores;
otherwise it returns false. It does not check whether str contains characters escaped by a backslash \.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.13). Expressions appear as right hand sides
of assignments (see 4.14), as actual arguments in function calls (see 4.10), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose value is
the integer 12. The external representation of this integer is the character sequence 12, i.e., this sequence
is output if the integer is printed. This sequence is another expression whose value is the integer 12. The
process of finding the value of an expression is done by the interpreter and is called the evaluation of the
expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals (see 4.8, 4.10,
14, 40, 26, 4.22.1s, 21, 27), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with the operators to
form more complex expressions. Of course those expressions can then be combined further with the operators
to form even more complex expressions. The operators fall into three classes. The comparisons are =, <>,
<, <=, > >= and in (see 4.11 and 28.5). The arithmetic operators are +, -, *, /, mod, and ~ (see 4.12).
The logical operators are not, and, and or (see 20.3).

gap> 2 * 2; # a very simple expression with value

4
gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true # a more complex expression

For the precedence of operators, see 4.11.

Section 8. Variables 43

4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by assigning
this value to the variable (see 4.14). Because of this we sometimes say that a variable that is not bound to
any value has no assigned value. Assignment is in fact the only way by which a variable, which is not an
argument of a function, can be bound to a value. After a variable has been bound to a value an assignment
can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other variables,
except they are bound to the value of the actual arguments upon a function call (see 4.10).

Each variable has a name that is also called its identifier. This is because in a given scope an identifier
identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There is the global
scope that encloses the entire program text, and there are local scopes that range from the function
keyword, denoting the beginning of a function definition, to the corresponding end keyword. A local scope
introduces new variables, whose identifiers are given in the formal argument list and the local declaration
of the function (see 4.22.1). Usage of an identifier in a program text refers to the variable in the innermost
scope that has this identifier as its name. Because this mapping from identifiers to variables is done when
the program is read, not when it is executed, GAP is said to have lexical scoping. The following example
shows how one identifier refers to different variables at different points in the program text.

g := 0; # global variable g
x := function (a, b, c)
local vy;
g 1= c¢C; # c refers to argument c of function x

y := function (y)
local d, e, f;
d :=y; # y refers to argument y of function
e := b; # b refers to argument b of function x
f :=g; # g refers to global variable g
return d + e + £f;

end;

return y(a); # y refers to local y of function x

end;

~<

It is important to note that the concept of a variable in GAP is quite different from the concept of a variable
in programming languages like PASCAL.

In those languages a variable denotes a block of memory. The value of the variable is stored in this block. So
in those languages two variables can have the same value, but they can never have identical values, because
they denote different blocks of memory. Note that PASCAL has the concept of a reference argument. It
seems as if such an argument and the variable used in the actual function call have the same value, since
changing the argument’s value also changes the value of the variable used in the actual function call. But
this is not so; the reference argument is actually a pointer to the variable used in the actual function call,
and it is the compiler that inserts enough magic to make the pointer invisible. In order for this to work
the compiler needs enough information to compute the amount of memory needed for each variable in a
program, which is readily available in the declarations PASCAL requires for every variable.

In GAP on the other hand each variable just points to a value, and different variables can share the same
value.

1»

1»

2>

3>

44 Chapter 4. The Programming Language

Unbind (ident) F

deletes the identifier ident. If there is no other variable pointing to the same value as ident was, this value
will be removed by the next garbage collection. Therefore Unbind can be used to get rid of unwanted large
objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chapters 27 and
21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used to
access functions and other objects created either in the GAP library or in the user’s code. Certain special
facilities are provided for manipulating these variables which are not available for other types of variable
(such as local variables or function arguments).

First, such variables may be marked read-only. In which case attempts to change them will fail. Most of
the global variables defined in the GAP library are so marked.

IsReadOnlyGlobal(name) F
returns true if the global variable named by the string name is read-only and false otherwise (the default).
MakeReadOnlyGlobal(name) F
marks the global variable named by the string name as read-only.

A warning is given if name has no value bound to it or if it is already read-only.

MakeReadWriteGlobal(name) F
marks the global variable named by the string name as read-write.

A warning is given if name is already read-write.

gap> xx := 17;

17

gap> IsReadOnlyGlobal ("xx");
false

gap> xx := 15;

15

gap> MakeReadOnlyGlobal ("xx");

gap> xx := 16;

Variable: ’xx’ is read only

not in any function

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can return after making it writable to continue
brk> quit;

gap> IsReadOnlyGlobal ("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> xx := 16;

16

gap> IsReadOnlyGlobal ("xx");

false

A group of functions are also supplied for accessing and altering the values assigned to global variables. Use
of these functions differs from the use of assignment, Unbind and IsBound statements, in two ways. First,

4 »

5»

6>

7>

8>

9»

10»

Section 9. More About Global Variables 45

these functions always affect global variables, even if local variables of the same names exist. Second, the
variable names are passed as strings, rather than being written directly into the statements.

ValueGlobal(name) F

returns the value currently bound to the global variable named by the string name. An error is raised if no
value is currently bound.

IsBoundGlobal(name) F
returns true if a value currently bound to the global variable named by the string name and false otherwise.
UnbindGlobal(name) F

removes any value currently bound to the global variable named by the string name. Nothing is returned.

A warning is given if name was not bound. The global variable named by name must be writable, otherwise
an error is raised.

BindGlobal(name, wval) F

sets the global variable named by the string name to the value val, provided it is writable, and makes it
read-only. If name already has a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as Operations and
Categories).

Caution should be exercised in using these functions, especially BindGlobal and UnbindGlobal as unex-
pected changes in global variables can be very confusing for the user.

gap> xx := 16;

16

gap> IsReadOnlyGlobal ("xx");
false

gap> ValueGlobal("xx");

16

gap> IsBoundGlobal("xx");
true

gap> BindGlobal("xx",17);

#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> xx;

17

gap> IsReadOnlyGlobal ("xx");
true

Finally, there are a group of functions dealing with the global namespace.

NamesGVars () F

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable names known
to the system. This includes names of variables which were bound but have now been unbound and some
other names which have never been bound but have become known to the system by various routes.

NamesSystemGVars () F

This function returns an immutable sorted list of all the global variable names created by the GAP library
when GAP was started.

NamesUserGVars () F

This function returns an immutable sorted list of the global variable names created since the library was
read, to which a value is currently bound.

11»

46 Chapter 4. The Programming Language

TemporaryGlobalVarName([prefiz]) F

returns a string that can be used as the name of a global variable that is not bound at the time when
TemporaryGlobalVarName () is called. The optional argument prefiz can specify a string with which the
name of the global variable starts.

4.10 Function Calls

1» function-var ()
> function-var (arg-expr(, arg-expr, ...1)

The function call has the effect of calling the function function-var. The precise semantics are as follows.

First GAP evaluates the function-var. Usually function-var is a variable, and GAP does nothing more than
taking the value of this variable. It is allowed though that function-var is a more complex expression, such
as a reference to an element of a list (see Chapter 21) list-var [int-expr], or to a component of a record
(see Chapter 27) record-var .ident. In any case GAP tests whether the value is a function. If it is not, GAP
signals an error.

Next GAP checks that the number of actual arguments arg-ezprs agrees with the number of formal argu-
ments as given in the function definition. If they do not agree GAP signals an error. An exception is the
case when there is exactly one formal argument with the name arg, in which case any number of actual
arguments is allowed (see 4.22.1 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers in the local
declaration) a new variable. Remember that a variable is a location in a GAP program that points to a value.
Thus for each formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created variables
corresponding to the formal arguments. Of course the first value is assigned to the new variable corresponding
to the first formal argument, the second value is assigned to the new variable corresponding to the second
formal argument, and so on. However, GAP does not make any guarantee about the order in which the
arguments are evaluated. They might be evaluated left to right, right to left, or in any other order, but each
argument is evaluated once. An exception again occurs if the function has only one formal argument with
the name arg. In this case the values of all the actual arguments are stored in a list and this list is assigned
to the new variable corresponding to the formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So trying to
evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the formal
arguments or formal locals appears in the body of the function it refers to the new variable that was
allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see 4.23) is
executed, execution of the body is terminated and the value of the function call is the value of the expression
of the return. If during the execution of the body a return statement without an expression is executed,
execution of the body is terminated and the function call does not produce a value, in which case we call
this call a procedure call (see 4.15). If the execution of the body completes without execution of a return
statement, the function call again produces no value, and again we talk about a procedure call.

gap> Fibonacci(11);
a call to the function ‘Fibonacci’ with actual argument ‘11’
89

gap> RightCosets(G, Intersection(U, V));;
a call to the operation ‘RightCosets’
where the second actual argument is another function call

2»

Section 11. Comparisons 47

function-var C arg-expr[, arg-expr, ...1[: [option-expr L[,option-expr,111)

As well as passing arguments to a function, providing the mathematical input to its calculation, it is some-
times useful to supply “hints” suggesting to GAP how the desired result may be computed more quickly, or
specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have much
the same syntax as the components of a record expression. The one exception to this is that a component
name may appear without a value, in which case the value true is silently inserted.

gap> Size(fpgrp : hard, tcselection := "external");
a call to ‘Size’ passing the options ‘hard’ (value ‘true’) and
‘tcselection’ (value the string "extermal")

Options supplied with function calls in this way are passed down using the global options stack described
in chapter 8, so that the call above is exactly equivalent to

gap> PushOptions(rec(hard := true, tcselection := "external"));
gap> Size(fpgrp);
gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning for that
function, or any function called by it. The system provides no safeguard against misspelled option names.

4.11 Comparisons

left-expr = right-expr
left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and to false
otherwise. Likewise <> tests for inequality of its two operands. Note that any two objects can be compared,
i.e., = and <> will never signal an error. For each type of objects the definition of equality is given in the
respective chapter. Objects in different families (see 13.1) are never equal, i.e., = evaluates in this case to
false, and <> evaluates to true.

left-expr < right-expr
left-expr > right-expr
left-expr <= right-expr
left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two operands.
For each kind of objects the definition of the ordering is given in the respective chapter.

Ounly for the following kinds of objects, an ordering via < of objects in different families (see 13.1) is
supported. Rationals (see 16.1.1) are smallest, next are cyclotomics (see 18.1.3), followed by finite field
elements (see 57.1.1); finite field elements in different characteristics are compared via their characteristics,
next are permutations (see 40), followed by the boolean values true, false, and fail (see 20), characters
(such as ’a’, see 26), and lists (see 21.1.1) are largest; note that two lists can be compared with < if and
only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total ordering of all
GAP objects would be hard to maintain when new kinds of objects are introduced, and such a total ordering
is hardly used in its full generality.

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For example,
one can form sorted lists containing integers and nested lists of integers, and then search in them using
PositionSorted (see 21.16).

vVVyVYyVYVYVYYVYY

48 Chapter 4. The Programming Language

Of course it would in principle be possible to define an ordering via < also for certain other objects, by
installing appropriate methods for the operation \<. But this may lead to problems at least as soon as one
loads GAP code in which the same is done, under the assumption that one is completely free to define an
ordering via < for other objects than the ones for which the “official” GAP provides already an ordering via
<.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not allowed
to write @ = b <> ¢ = d, you must use (¢ = b) <> (¢ = d) instead. The comparison operators have
higher precedence than the logical operators (see 20.3), but lower precedence than the arithmetic operators
(see 4.12). Thus, for example, a * b = ¢ and d is interpreted as ((a * b) = ¢) and d).

gap> 2 * 2 + 9 = Fibonacci(7); # a comparison where the left
true # operand is an expression

For the underlying operations of the operators introduced above, see 30.11.

4.12 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr
left-expr - right-expr
left-expr * right-expr
left-expr / right-expr
left-expr mod right-expr
left-expr = right-expr

The arithmetic operators are +, -, *, /, mod, and ~. The meanings (semantics) of those operators generally
depend on the types of the operands involved, and, except for mod, they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.

a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined as follows.
If a and b are both integers, a mod b is the integer r in the integer range O .. |bl - 1 satisfying a =
r + bg, for some integer ¢ (where the operations occurring have their usual meaning over the integers, of
course).

If a is a rational number and b is a non-zero integer, and ¢« = m / n where m and n are coprime integers
with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such that m is congruent
to rn modulo b, and r is called the “modular remainder” of ¢ modulo b. Also, 1 / n mod b is called the
“modular inverse” of n modulo b. (A pair of integers is said to be coprime (or relatively prime) if their
ged is 1.)

With the above definition, 4 / 6 mod 32 equals2 / 3 mod 32 and hence exists (and is equal to 22), despite
the fact that 6 has no inverse modulo 32.

Note. For rational a, ¢ mod b could have been defined to be the non-negative rational c¢ less than |b| such
that ¢ - ¢ is a multiple of b. However this definition is seldom useful and not the one chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the additive
inverse of its operand; over the integers it is equivalent to multiplication by -1.

Section 13. Statements 49

~ denotes powering of a multiplicative element if the right operand is an integer, and is also used to denote
the action of a group element on a point of a set if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ~ has the highest precedence,
followed by the unary operators + and -, which are followed by the multiplicative operators *, /, and mod,
and the additive binary operators + and - have the lowest precedence. That means that the expression -2 ~
-2 * 3 + 1lisinterpreted as (-(2 =~ (-2)) * 3) + 1.If in doubt use parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ~ is not associative, i.e., it is illegal to write
27374, use parentheses to clarify whether you mean (2°3)~4 or 27(374). The unary operators + and -
are right associative, because they are written to the left of their operands. *, /, mod, +, and - are all left
associative, i.e., 1-2-3 is interpreted as (1-2)-3 not as 1-(2-3). Again, if in doubt use parentheses to clarify
your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.11 and 28.5) and the
logical operators (see 20.3). Thus, for example, a * b = ¢ and d is interpreted, ((a * b) = ¢) and d.

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced above,
see 30.12.

4.13 Statements

Assignments (see 4.14), Procedure calls (see 4.15), if statements (see 4.16), while (see 4.17), repeat (see
4.18) and for loops (see 4.19), and the return statement (see 4.23) are called statements. They can be
entered interactively or be part of a function definition. Every statement must be terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For example
an assignment has the effect of assigning a value to a variable, a for loop has the effect of executing a
statement sequence for all elements in a list and so on. We will talk about evaluation of expressions but
about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.

gap> if i <> O then k = 16/i; fi;
Syntax error: := expected
if i <> 0 then k = 16/1; fi;

gap>

As you can see from the example this warning does in particular address those users who are used to
languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead of a
single statement. There is nothing like PASCAL’s BEGIN-END, instead each construct is terminated by a
keyword. The simplest statement sequence is a single semicolon, which can be used as an empty statement
sequence. In fact an empty statement sequence as in for i in [1..2] do od is also permitted and is
silently translated into the sequence containing just a semicolon.

1»

1»

50 Chapter 4. The Programming Language

4.14 Assignments
var = erpr;

The assignment has the effect of assigning the value of the expressions ezpr to the variable var.

The variable var may be an ordinary variable (see 4.8), a list element selection list-var [int-expr] (see 21.4)
or a record component selection record-var . ident (see 27.2). Since a list element or a record component may
itself be a list or a record the left hand side of an assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable. For example a
variable with an integer value may be assigned a permutation or a list or anything else.

gap> data:= rec(numbers:= [1, 2, 3]);
rec(numbers := [1, 2, 3])

gap> data.string:= "string";; data;

rec(numbers := [1, 2, 3], string := "string")
gap> data.numbers[2]:= 4;; data;

rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function does not
return a value an error is signalled and you enter a break loop (see 6.3). As usual you can leave the break
loop with quit;. If you enter return return-expr; the value of the expression return-expr is assigned to
the variable, and execution continues after the assignment.

gap> fl:= function(x) Print("value: ", x, "\n"); end;;
gap> £2:= function(x) return f1(x); end;;

gap> f2(4);

value: 4

Function Calls: <func> must return a value at

return f1(x);

<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop, you can ’quit;’ to quit to outer loop,
or you can return a value for the result to continue

brk> return "hello";

"hello"

In the above example, the function £2 calls £1 with argument 4, and since £1 does not return a value (but
only prints a line “value: z”), the return statement of £2 cannot be executed. The error message says
that it is possible to return an appropriate value, and the returned string "hello" is used by f2 instead of
the missing return value of f1.

4.15 Procedure Calls

procedure-var () ;
procedure-var (arg-expr [,arg-expr, ...]1);

The procedure call has the effect of calling the procedure procedure-var. A procedure call is done exactly
like a function call (see 4.10). The distinction between functions and procedures is only for the sake of the
discussion, GAP does not distinguish between them. So we state the following conventions.

A function does return a value but does not produce a side effect. As a convention the name of a function
is a noun, denoting what the function returns, e.g., Length, Concatenation and Order.

A procedure is a function that does not return a value but produces some effect. Procedures are called
only for this effect. As a convention the name of a procedure is a verb, denoting what the procedure does,
e.g., Print, Append and Sort.

1»

Section 16. If 51

gap> Read("myfile.g"); # a call to the procedure Read
gap> 1 := [1, 2 1;;
gap> Append(1, [3,4,5]); # a call to the procedure Append

There are a few exceptions of GAP functions that do both return a value and produce some effect. An
example is Sortex which sorts a list and returns the corresponding permutation of the entries (see 21.18.3).

4.16 If

if bool-exprl then statementsl { elif bool-expr2 then statements?2 }[else statements3] fi;
The if statement allows one to execute statements depending on the value of some boolean expression. The
execution is done as follows.

First the expression bool-expr! following the if is evaluated. If it evaluates to true the statement sequence
statementsl after the first then is executed, and the execution of the if statement is complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may be any number
of elif parts, possibly none at all. As soon as an expression evaluates to true the corresponding statement
sequence statements? is executed and execution of the if statement is complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else part, which is
optional, its statement sequence statements3 is executed and the execution of the if statement is complete.
If there is no else part the if statement is complete without executing any statement sequence.

Since the if statement is terminated by the fi keyword there is no question where an else part belongs,
i.e., GAP has no “dangling else”. In

if exprl then if expr?2 then statsl else stats?2 fi; fi;

the else part belongs to the second if statement, whereas in
if exprl then if expr2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.

Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a value that
could be assigned to abs.

If one of the expressions bool-exprl, bool-expr? is evaluated and its value is neither true nor false an error
is signalled and a break loop (see 6.3) is entered. As usual you can leave the break loop with quit;. If you
enter return true;, execution of the if statement continues as if the expression whose evaluation failed
had evaluated to true. Likewise, if you enter return false;, execution of the if statement continues as if
the expression whose evaluation failed had evaluated to false.

gap> 1 := 10;;

gap> if 0 < i then

> s :=1;

> elif i < 0 then

> s := -1;

> else

> s :=0;

> fi;

gap> s;

1 # the sign of i

1»

1»

52 Chapter 4. The Programming Language
4.17 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates and the statement
immediately following the while loop is executed next. Otherwise if it evaluates to true the statements are
executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.18) is that the statements in the
repeat until loop are executed at least once, while the statements in the while loop are not executed at
all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.3) is entered.
As usual you can leave the break loop with quit;. If you enter return false;, execution continues with
the next statement immediately following the while loop. If you enter return true;, execution continues
at statements, after which the next evaluation of bool-expr may cause another error.

gap> i := 0;; s := 0;;
gap> while s <= 200 do

> i=1i+1; s =8+ i"2;
> od;
gap> s;

204 # sum of the first i squares larger than 200

A while loop may be left prematurely using break, see 4.20.

4.18 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat loop terminates
and the statement immediately following the repeat loop is executed next. Otherwise if it evaluates to false
the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.17) and the repeat until loop is that the statements in the
repeat until loop are executed at least once, while the statements in the while loop are not executed at
all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.3) is entered.
As usual you can leave the break loop with quit;. If you enter return true;, execution continues with the
next statement immediately following the repeat loop. If you enter return false;, execution continues at
statements, after which the next evaluation of bool-expr may cause another error.

gap> 1 := 0;; s := 0;;
gap> repeat

> i:=1i+1; s =8+ i"2;
> until s > 200;
gap> s;

204 # sum of the first i squares larger than 200

A repeat loop may be left prematurely using break, see 4.20.

1»

Section 19. For 53

419 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list list-expr.

The statement sequence statements is first executed with simple-var bound to the first element of the list
list-expr, then with simple-var bound to the second element of list-expr and so on. simple-var must be a
simple variable, it must not be a list element selection list-var [int-expr] or a record component selection
record-var . ident.

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop-list := list;

loop-index := 1;

while loop-index <= Length (loop-list) do
variable := loop-list [loop-index] ;
statements

loop-index := loop-index + 1;

od;

with the exception that loop-list and loop-index are different variables for each for loop, i.e., these variables
of different for loops do not interfere with each other.

The list list-expr is very often a range (see 21.22).
for wariable in [from..to] do statements od;
corresponds to the more common

for wariable from from to to do statements od;
in other programming languages.

gap> s := 0;;

gap> for i in [1..100] do
> s = s + 1i;

> od;

gap> s;

5050

Note in the following example how the modification of the list in the loop body causes the loop body also
to be executed for the new values.

gap> 1 := [1, 2, 3, 4, 5, 6 1;;

gap> for i in 1 do

> Print(i, " ");

> if i mod 2 = 0 then Add(1, 3 *x i / 2); fi;
> od; Print("\n");

123456360909

gap> 1;

[1, 2, 3, 4, 5, 6, 3, 6, 9, 91

Note in the following example that the modification of the variable that holds the list has no influence on
the loop.

3

4»

54 Chapter 4. The Programming Language

gap> 1 := [1, 2, 3, 4, 5, 6 1;;
gap> for i in 1 do

> Print(i, " ");

> 1 :=[1;

> od; Print("\n");

123456

gap> 1;

[1]

for wariable in iterator do statements od;

It is also possible to have a for-loop run over an iterator (see 28.7). In this case the for-loop is equivalent
to

while not IsDonelterator (iterator) do
variable := NextIterator (iterator)
statements

od;

for wariable in object do statements od;

Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will attempt
to evaluate the function call Iterator (object). If this is successful then the loop is taken to run over the
iterator returned.

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));

Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> count := 0;; sumord := 0;;

gap> for x in g do

> count := count + 1; sumord := sumord + Order(x); od;
gap> count;

120

gap> sumord;

471

The effect of
for wariable in domain do
should thus normally be the same as
for wariable in AsList(domain) do
but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 28.7 for details about iterators.

A for loop may be left prematurely using break, see 4.20. This combines especially well with a loop over
an iterator, as a way of searching through a domain for an element with some useful property.

Section 22. Function 55
4.20 Break

1» break;

The statement break; causes an immediate exit from the innermost loop enclosing it. It is an error to use
this statement other than inside a loop.

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> for x in g do

> if Order(x) = 3 then

> break;

> fi; od;

gap> X;

(1,4,3)(2,6,5)

gap> break;
A break statement can only appear inside a loop

4.21 Continue

1» continue;

The statement continue; causes the rest of the current iteration of the innermost loop enclosing it to be
skipped. The next iteration begins immediately. It is an error to use this statement other than inside a loop.

gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

O

(2,3)

(1,3)

(1,2)

gap> continue;
A continue statement can only appear inside a loop

4.22 Function

1» function([arg-ident {, arg-ident} 1)
[local loc-ident {, loc-ident} ; 1]
statements

end

A function is in fact a literal and not a statement. Such a function literal can be assigned to a variable or
to a list element or a record component. Later this function can be called as described in 4.10.

The following is an example of a function definition. It is a function to compute values of the Fibonacci
sequence (see 17.3.1).

56 Chapter 4. The Programming Language

gap> fib := function (n)

end;;
ap> List([1..10], fib);
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 1]

> local f1, f2, £3, i;
> f1 :=1; £2 := 1;
> for i in [3..n] do
> £3 := f1 + £2;

> f1 := £2;

> f2 := £3;

> od;

> return f2;

>

g

[

Because for each of the formal arguments arg-ident and for each of the formal locals loc-ident a new variable
is allocated when the function is called (see 4.10), it is possible that a function calls itself. This is usually
called recursion. The following is a recursive function that computes values of the Fibonacci sequence

gap> fib := function (n)

> if n < 3 then

> return 1;

> else

> return fib(n-1) + fib(n-2);
> fi;

> end;;

gap> List([1..10], fib);

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Note that the recursive version needs 2 * fib(n)-1 steps to compute £ib(n), while the iterative version of
fib needs only n-2 steps. Both are not optimal however, the library function Fibonacci only needs about
Log(n) steps.

As noted in Section 4.10, the case where a function is defined with exactly one formal argument with the
name arg, is special. It provides a way of defining a function with a variable number of arguments; the values
of all the actual arguments are stored in a list and this list is assigned to the new variable corresponding
to the formal argument arg. There are two typical scenarios for wanting such a possibility: having optional
arguments and having any number of arguments.

The following example shows one way that the function Position (see 21.16.1) might be encoded and

demonstrates the “optional argument” scenario.
gap> position := function (arg)
> local list, obj, pos;
> list := arg[1];
> obj := argl[2];
> if 2 = Length(arg) then
> pos := 0;
> else
> pos := argl3];
> fi;
> repeat
> pos := pos + 1;
> if pos > Length(list) then
> return fail;
> fi;

2»

Section 22. Function 57

> until list[pos] = obj;

> return pos;

> end;

function(arg) ... end

gap> position([1, 4, 21, 4);

2

gap> position([1l, 4, 2], 3);
fail

gap> position([1, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.

gap> sum := function (arg)

> local total, x;

total := O;

for x in arg do
total := total + x;

od;

return total;

end;

function(arg) ... end

gap> sumn(l, 2, 3);

6

gap> sum(1, 2, 3, 4);

10

gap> sum();

0

V V V V V V

The user should compare the above with the GAP function Sum (see 21.20.23) which, for example, may take
a list argument and optionally an initial element (which zero should the sum of an empty list return?).

Note that if a function f is defined as above with the single formal argument arg then NumberArguments-
Function(f) returns —1 (see 5.1.2).

The argument arg when used as the single argument name of some function f tells GAP that when it
encounters f that it should form a list out of the arguments of f. What if one wishes to do the “opposite”:
tell GAP that a list should be “unwrapped” and passed as several arguments to a function. The function
CallFuncLlist (see 5.2.1) is provided for this purpose.

Also see Chapter 5.
arg-ident -> expr
This is a shorthand for
function (arg-ident) return expr; end.

arg-ident must be a single identifier, i.e., it is not possible to write functions of several arguments this way.
Also arg is not treated specially, so it is also impossible to write functions that take a variable number of
arguments this way.

The following is an example of a typical use of such a function

gap> Sum(List([1..100], x -> x"2));
338350

When the definition of a function fun! is evaluated inside another function fun2, GAP binds all the identifiers
inside the function funl that are identifiers of an argument or a local of fun2 to the corresponding variable.

1»

58 Chapter 4. The Programming Language

This set of bindings is called the environment of the function funl. When fun! is called, its body is executed
in this environment. The following implementation of a simple stack uses this. Values can be pushed onto
the stack and then later be popped off again. The interesting thing here is that the functions push and
pop in the record returned by Stack access the local variable stack of Stack. When Stack is called, a new
variable for the identifier stack is created. When the function definitions of push and pop are then evaluated
(as part of the return statement) each reference to stack is bound to this new variable. Note also that the
two stacks A and B do not interfere, because each call of Stack creates a new variable for stack.

gap> Stack := function ()
local stack;
stack := [];
return rec(
push := function (value)
Add(stack, value);
end,
pop := function ()
local value;
value := stack[Length(stack)];
Unbind(stack[Length(stack)]);
return value;
end
)3
end; ;
A := Stack();;
gap> B := Stack(Q;;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);
gap> A.pop(); A.pop(); A.pop(O);

V VVVVVVVVVVYVVYV

%
el
\4

gap> B.pop(); B.pop(); B.pop();

This feature should be used rarely, since its implementation in GAP is not very efficient.

4.23 Return

return;

In this form return terminates the call of the innermost function that is currently executing, and control
returns to the calling function. An error is signalled if no function is currently executing. No value is returned
by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and returns
the value of the expression ezpr. Control returns to the calling function. An error is signalled if no function
is currently executing.

Both statements can also be used in break loops (see 6.3). return; has the effect that the computation
continues where it was interrupted by an error or the user hitting ctr-C. return expr; can be used to
continue execution after an error. What happens with the value ezpr depends on the particular error.

For examples of return statements, see the functions fib and Stack in Chapter 5.

Section 24. The Syntax in BNF 59

4.24 The Syntax in BNF

This section contains the definition of the GAP syntax in Backus-Naur form. A few recent additions to the
syntax may be missing from this definition. Also, the actual rules for identifier names implemented by the
system, are somewhat more permissive than those given below (see section 4.6).

A BNF is a set of rules, whose left side is the name of a syntactical construct. Those names are enclosed in
angle brackets and written in italics. The right side of each rule contains a possible form for that syntactic
construct. Each right side may contain names of other syntactic constructs, again enclosed in angle brackets
and written in dtalics, or character sequences that must occur literally; they are written in typewriter
style.

Furthermore each righthand side can contain the following metasymbols written in boldface. If the right
hand side contains forms separated by a pipe symbol (|) this means that one of the possible forms can occur.
If a part of a form is enclosed in square brackets ([]) this means that this part is optional, i.e. might be
present or missing. If part of the form is enclosed in curly braces ({ }) this means that the part may occur
arbitrarily often, or possibly be missing.

60

Ident
Var

List

Record

Permutation :

Function

Char
String
Int
Atom

Factor
Term
Arith
Rel
And
Logical
Ezxpr

Statement

Statements

al...|z|A|...|Z|- {a]...|z|A]|...|Z|0]...]9] -}
Ident

Var . Ident

Var . (Expr)

Var [Exzpr]

Var { Ezpr }

Var ([Expr { ,Expr }])

Var V. Ident

Var V. (Expr)

Var ‘[Ezxpr]

[Expr | {, [Ezpr]}]

{ Ezpr [, Ezpr] .. Expr]

List > List ¢

rec([Ident := Expr {, Ident := Expr }|)
(Expr {, Ezpr }) { (Expr {, Ezpr }) }
function ([Ident {, Ident }])
[local Ident {, Ident } ;]
Statements

end

Ident => Expr

“any character’

" { any character } "

ol1]...|9 {o]1]...|9}

Int

Var

(Expr)

Permutation

Char

String

Function

Lust

Record

{ not } true

{ not } false

[+]-} Atom [~ {+|-} Atom]
Factor { *|/|mod Factor }

Term { +|- Term }

{ not } Arith [=|<>|<|>|<=|>=|in Arith]
Rel { and Rel }

And { or And }

Logical

Var

FExpr

Var := FExpr

if FEzpr then Statements

{ elif Expr then Statements }

[else Statements | £i
for Var in Expr do Statements od
while Fxpr do Statements od
repeat Statements until Ezpr
return [Ezpr |

break

quit

QUIT

Statement ; }

’

Chapter 4. The Programming Language

Functions

The section 4.22.1 describes how to define a function. In this chapter we describe functions that give informa-
tion about functions, and various utility functions used either when defining functions or calling functions.

5.1 Information about a function

1» NameFunction(func) F

returns the name of a function. For operations, this is the name used in their declaration. For functions,
this is the variable name they were first assigned to. (For some internal functions, this might be a name
different from the name that is documented.) If no such name exists, "unknown" is returned.

gap> NameFunction(SylowSubgroup);
"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> NameFunction(Blubberflutsch);
"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);
"Blubberflutsch"

gap> NameFunction(x->x);
"unknown"

gap> NameFunction(NameFunction) ;
"NAME_FUNC"

2» NumberArgumentsFunction(func) F

returns the number of arguments the function func accepts. For functions that use arg to take a variable
number of arguments, as well as for operations, -1 is returned. For attributes, 1 is returned.

gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11

gap> NumberArgumentsFunction(Size) ;

1

gap> NumberArgumentsFunction(IsCollsCollsElms);

3

gap> NumberArgumentsFunction(Sum) ;

-1

1»

1»

2>

3>

4»

62 Chapter 5. Functions

5.2 Calling a function with a list argument that is interpreted as several arguments
CallFuncList(func, args) F

returns the result, when calling function func with the arguments given in the list args, i.e. args is “un-
wrapped” so that args appears as several arguments to func.

gap> CallFuncList(\+, [6, 71);
13

gap> #is equivalent to:

gap> \+(6, 7);

13

A more useful application of CallFuncList is for a function g that is called in the body of a function f with
(a sublist of) the arguments of f, where f has been defined with a single formal argument arg (see 4.22.1);
see the following code fragment.

f := function (arg)
CallFunclist(g, arg);

end;

In the body of f the several arguments passed to f become a list arg. If g were called instead via g(arg)
then g would see a single list argument, so that g would, in general, have to “unwrap” the passed list. The
following (not particularly useful) example demonstrates both described possibilities for the call to g.

gap> PrintNumberFromDigits := function (arg)
> CallFuncList(Print, arg);

> Print("\n");

> end;

function(arg) ... end

gap> PrintNumberFromDigits(1, 9, 7, 3, 2);
19732

gap> PrintDigits := function (arg)

> Print(arg);

> Print("\n");

> end;

function(arg) ... end

gap> PrintDigits(1, 9, 7, 3, 2);
[1, 9,7, 3, 21

5.3 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places when
the syntax requires a function, but actually no functionality is required. So ReturnTrue is often used as
family predicate in InstallMethod (see 2.2.1 in “Programming in GAP”).

ReturnTrue(...) F
This function takes any number of arguments, and always returns true.

ReturnFalse(...) F
This function takes any number of arguments, and always returns false.

ReturnFail(...) F
This function takes any number of arguments, and always returns fail.

IdFunc(obj) F

returns 0bj.

Section 4. Function Types

5.4 Function Types

Functions are GAP objects and thus have categories and a family.
1» IsFunction(obj)

is the category of functions.
2» IsOperation(obj)

is the category of operations. Every operation is a function, but not vice versa.
3» FunctionsFamily

is the family of all functions.

63

Main Loop and
Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you use GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that you type
an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print may be
confusing since there is a GAP function called Print (see 6.2) which is in fact not used in the read-eval-print
loop, but traditions are hard to break. In the following, whenever we want to express that GAP places some
characters on the standard output, we will say that GAP shows something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this, you know
that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter return (i.e., strike the
“return” key) before GAP starts to read and evaluate your input. (The “return” key may actually be marked
with the word Enter and a returning arrow on your terminal.) Because GAP does not do anything until you
enter return, you can edit your input to fix typos and only when everything is correct enter return and have
GAP take a look at it (see 6.8). It is also possible to enter several statements as input on a single line. Of
course each statement must be terminated by a semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered the beginning
of a statement, but the statement is not yet complete, and you enter return, GAP will show the partial
prompt >. When you see this, you know that GAP is waiting for the rest of the statement. This happens
also when you forget the semicolon ; that terminates every GAP statement. Note that when return has been
entered and the current statement is not yet complete, GAP will already evaluate those parts of the input
that are complete, for example function calls that appear as arguments in another function call which needs
several input lines. So it may happen that one has to wait some time for the partial prompt.

When you enter return, GAP first checks your input to see if it is syntactically correct (see Chapter 4 for
the definition of syntactically correct). If it is not, GAP prints an error message of the following form

gap> 1 * ;
Syntax error: expression expected
1 *

The first line tells you what is wrong about the input, in this case the * operator takes two expressions as
operands, so obviously the right one is missing. If the input came from a file (see 9.7.1), this line will also
contain the filename and the line number. The second line is a copy of the input. And the third line contains
a caret pointing to the place in the previous line where GAP realized that something is wrong. This need
not be the exact place where the error is, but it is usually quite close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically incorrect.
This is because GAP is so confused by your input, that it thinks that there is still something to follow. In

1»

2>

Section 2. View and Print 65

this case you should enter ;return repeatedly, ignoring further error messages, until you see the full prompt
again. When you see the full prompt, you know that GAP forgave you and is now ready to accept your next
— hopefully correct — input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required computations
(see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you can type
ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP has completed
the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed. Note that
not all statements produce a value, for example, if you enter a for loop, nothing will be printed, because
the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and now
want to assign the result to a variable, you probably do not want to see the value again. You can terminate
statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show the first one,
then read, evaluate, and show the second one, and so on. This means that the second statement will not
even be checked for syntactical correctness until GAP has completed the first computation.

After the result has been shown GAP will display another prompt, and wait for your next input. And the
whole process starts all over again. Note that if you have entered several statements on a single line, a new
prompt will only be printed after GAP has read, evaluated, and shown the last statement.

In each statement that you enter, the result of the previous statement that produced a value is available in
the variable last. The next to previous result is available in last2 and the result produced before that is
available in last3.

gap> 1; 2; 3;

1

2

3

gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value or not, is available
in the variable time. This is an integer that holds the number of milliseconds.

6.2 View and Print
View(objl, obj2...) F

View shows the objects objl, obj2... etc. in a short form on the standard output. View is called in the
read—eval-print loop, thus the output looks exactly like the representation of the objects shown by the main
loop. Note that no space or newline is printed between the objects.

Print(objl, obj2...) F

Also Print shows the objects 0bjI, 0bj2... etc. on the standard output. The difference compared to View is
in general that the shown form is not required to be short, and that in many cases the form shown by Print
is GAP readable.

3>
| 4

4»

66 Chapter 6. Main Loop and Break Loop

gap> z:= Z(2);

Z(2)°0

gap> v:= [z, z, z, 2z, z, z, z];
<a GF2 vector of length 7>

gap> Print(v);

[2(2)°0, Z(2)"0, Z(2)°0, Z(2)°0, Z(2)~0, Z(2)"0, Z(2)~0 lgap>

Another difference is that Print shows strings without the enclosing quotes, so Print can be used to produce
formatted text on the standard output (see also chapter 26). Some characters preceded by a backslash, such
as \n, are processed specially (see chapter 26.1). PrintTo can be used to print to a file (see 9.7.3).

gap> for i in [1..5] do
> Print(i, " n’ iAQ, " ||’ iﬂ3, u\nu);
od;

© D e
N 00

>
1
2
3 7

4 16 64

5 25 125

gap> g:= SmallGroup(12,5);

<pc group with 3 generators>
gap> Print(g);

Group([f1, f2, £3])gap>

gap> View(g);

<pc group with 3 generators>gap>

ViewObj(obj) o)
Print0bj(obj) 0

The functions View and Print actually call the operations ViewObj and Print0Obj, respectively, for each
argument. By installing special methods for these operations, it is possible to achieve special printing be-
havior for certain objects (see chapter 2 in the programmer’s manual). The only exceptions are strings (see
Chapter 26), for which the default Print0Obj and ViewObj methods as well as the function View print also
the enclosing doublequotes, whereas Print strips the doublequotes.

The default method for ViewObj is to call Print0bj. So it is sufficient to have a PrintObj method for an
object in order to View it. If one wants to supply a “short form” for View, one can install additionally a
method for ViewObj.

Display(obj) 0

Displays the object 0bj in a nice, formatted way which is easy to read (but might be difficult for machines
to understand). The actual format used for this depends on the type of obj. Each method should print a
newline character as last character.

gap> c:= CharacterTable("A5");
CharacterTable("A5")
gap> Display(c);

2 2 2

31 . 1 . .

51 . . 11

Section 3. Break Loops 67

la 2a 3a ba 5b
2P la la 3a 5b ba
3P 1a 2a la 5b ba
5P 1a 2a 3a la 1la

X.1 11 1 1 1
X.2 3-1 . A=A
X.3 3-1 . %A A
X.4 4 1-1-1
X.5 5 1-1

A

-E(5)-E(5)"4 = (1-ER(5))/2 = -b5

One can assign a string to an object that Print will use instead of the default used by Print, via SetName
(see 12.8.1). Also, Name (see 12.8.2) returns the string previously assigned to an object for printing, via
SetName. The following is an example in the current context of character tables.

gap> c:= CharacterTable("A5");
CharacterTable("A5")

gap> SetName(c, "tblA5"); c;
tblAb5

gap> Name(c);

"tblAB"

6.3 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting ctri-C) GAP enters a break loop,
that is in most respects like the main read eval print loop (see 6.1). That is, you can enter statements,
GAP reads them, evaluates them, and shows the result if any. However those evaluations happen within the
context in which the error occurred. So you can look at the arguments and local variables of the functions
that were active when the error happened and even change them. The prompt is changed from gap> to brk>
to indicate that you are in a break loop.

gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is indicated by
a number appended to brk:

brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop.

1»

2»

3>

68 Chapter 6. Main Loop and Break Loop
quit

The first is to quit the break loop. To do this you enter quit; or type the eof (end of file) character, which
is usually ctri-D except when using the -e option (see Section 3.1). Note that GAP code between quit; and
the end of the input line is ignored.

brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So iterated
break loops must be left iteratively. Note also that if you type quit; from a gap> prompt, GAP will exit
(see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though not very
likely) that data structures will be corrupted or incomplete data have been stored in objects. Therefore
no guarantee can be given that calculations afterwards will return correct results! If you have been using
options quitting a break loop generally leaves the options stack with options you no longer want. The
function ResetOptionsStack (see 8) removes all options on the options stack, and this is the sole intended
purpose of this function.

return [obj];

The other way is to return from a break loop. To do this you type return; or return expr;. If the break
loop was entered because you interrupted GAP, then you can continue by typing return;. If the break
loop was entered due to an error, you may have to modify the value of a variable before typing return;
(see the example for 21.1.2) or you may have to return a wvalue (by typing: return wvalue;) to continue
the computation; in any case, the message printed on entering the break loop will tell you which of these
alternatives is possible. For example, if the break loop was entered because a variable had no assigned value,
the value to be returned is often a value that this variable should have to continue the computation.

brk> return 9; # we had tried to enter the divisor 9 but typed O ...
1/9
gap>

OnBreak Vv

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands currently being
executed. This behaviour can be configured by changing the value of the global variable OnBreak. When a
break loop is entered, the value of OnBreak is checked. If it is a function, then it is called with no arguments.
By default, the value of OnBreak is Where (see 6.3.5).

gap> OnBreak := function() Print("Hello\n"); end;
function() ... end

gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chapter 8), a quit;
will also cause the options stack to be reset and an Info-ed warning stating this is emitted at InfoWarning
level 1 (see Chapter 7.4).

Section 3. Break Loops 69

Note that for break loops entered by a call to Error, the lines after “Entering break read-eval-print
loop ...” and before the brk> prompt can also be customised, namely by redefining OnBreakMessage
(see 6.3.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above, the default
value of OnBreak is Where. Thus, a call to Error (see 6.5.1) generally gives a trace back up to five levels of
calling functions. Conceivably, we might like to have a function like Error that does not trace back without
globally changing OnBreak. Such a function we might call ErrorNoTraceBack and here is how we might
define it. (Note ErrorNoTraceBack is not a GAP function.)

gap> ErrorNoTraceBack := function(arg) # arg is a special variable that GAP
> # knows to treat as a list of arg’ts
> local SavedOnBreak, ENTBOnBreak;

> SavedOnBreak := OnBreak; # save the current value of OnBreak
>

> ENTBOnBreak := function() # our ‘local’ OnBreak

> local s;

> for s in arg do

> Print(s);

> od;

> OnBreak := SavedOnBreak; # restore OnBreak afterwards

> end;

>

> OnBreak := ENTBOnBreak;

> Error();

> end;

function(arg) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.

gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

Now we call Error with the same arguments to show the difference.

gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However, we had changed
OnBreak from its default value; to restore OnBreak to its default value, we should do the following.

gap> OnBreak := Where;;

4» OnBreakMessage \%

When a break loop is entered by a call to Error (see 6.5.1) the message after the “Entering break read-
eval-print loop ...” lineis produced by the function OnBreakMessage, which just like OnBreak (see 6.3.3)
is a user-configurable global variable that is a function with no arguments.

70 Chapter 6. Main Loop and Break Loop

gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded. In this
case, you might wish to do the following (the first line just makes it easy to restore the default value later).

gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function() ... end

With OnBreak still set away from its default value, calling Error as we did above, now produces:

gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

However, suppose you are writing a function which detects an error condition and OnBreakMessage needs
to be changed only locally, i.e., the instructions on how to recover from the break loop need to be specific
to that function. The same idea used to define ErrorNoTraceBack (see 6.3.3) can be adapted to achieve
this. The function CosetTableFromGensAndRels (see 45.5.5) is an example in the GAP code where the idea
is actually used.

Where([nr]) F

shows the last nr commands on the execution stack during whose execution the error occurred. If not given,
nr defaults to 5. (Assume, for the following example, that after the last example OnBreak (see 6.3.3) has
been set back to its default value.)

gap> StabChain(SymmetricGroup(100)); # After this we typed °C
user interrupt at
bpt := S.orbit[1];
called from

SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S, Generators0fGroup(G), options); called from
StabChainOp(G, rec(

)) called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from
SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from

Note that the variables displayed even in the first line of the Where list (after the called from line) may
be already one environment level higher and DownEnv (see 6.4.1) may be necessary to access them.

Section 4. Variable Access in a Break Loop 71

At the moment this backtrace does not work from within compiled code (this includes the method selection
which by default is compiled into the kernel). If this creates problems for debugging, call GAP with the -M
option (see 3.2) to avoid loading compiled code.

(Function calls to Info and methods installed for binary operations are handled in a special way. In rare
circumstances it is possible therefore that they do not show up in a Where log but the log refers to the last
proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing purposes
and for special applications. If this option is given then errors simply cause GAP to return to the main loop.

6.4 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the same
variable name is used for different objects or if a function calls itself recursively, of course only the variable
at the lowest level can be accessed.

DownEnv([nr]) F
UpEnv([nr]) F

DownEnv moves up nr steps in the environment and allows one to inspect variables on this level; if nr is
negative it steps down in the environment again; nr defaults to 1 if not given. UpEnv acts similarly to
DownEnv but in the reverse direction. (The names of DownEnv and UpEnv are the wrong way 'round; I guess
it all depends on which direction defines is “up” — just use DownEnv and get used to that.)

gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop

gap> test:= function(n)

> if n > 3 then Error("!'\n"); fi; test(n+l); end;;

gap> test(1);

Error, !

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv () ;
brk> n;
3
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();

1»

72 Chapter 6. Main Loop and Break Loop

called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3
brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the break loop.
If you use return to continue a calculation GAP automatically jumps to the right environment level again.

Note also that search for variables looks first in the chain of outer functions which enclosed the definition
of a currently executing function, before it looks at the chain of calling functions which led to the current
invocation of the function.

gap> foo := function()

> local x; x := 1;

> return function() local y; y := x*x; Error("!!\n"); end;
> end;

function() ... end

gap> bar := foo();

function() ... end

gap> fun := function() local x; x := 3; bar(); end;
function() ... end

gap> fun();

Error, !!

called from
bar(); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused its execution.
Using DownEnv we can access the x from fun.

6.5 Error

Error(messages...) F

Error signals an error from within a function. First the messages messages are printed, this is done exactly
as if Print (see 6.2) were called with these arguments. Then a break loop (see 6.3) is entered, unless the
standard error output is not connected to a terminal. You can leave this break loop with return; to continue
execution with the statement following the call to Error.

1»

1»

3>

Section 8. Line Editing 73

6.6 ErrorCount

ErrorCount () F

ErrorCount returns a count of the number of errors (including user interruptions) which have occurred in
the GAP session so far. This count is reduced modulo 228 on 32 bit systems, 2°° on 64 bit systems. The
count is incremented by each error, even if GAP was started with the -T option to disable the break loop.

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an end-of-file
character (usually ctrl-D) at the gap> prompt in the main read eval print loop.

An emergency way to leave GAP is to enter

QUIT
at any gap> or brk> or brk_nn> prompt.

InstallAtExit (func) F
QUITTING \Y%

Before actually terminating, GAP will call (with no arguments) all of the functions that have been installed
using InstallAtExit. These typically perform tasks such as cleaning up temporary files created during the
session, and closing open files. If an error occurs during the execution of one of these functions, that function
is simply abandoned, no break loop is entered.

gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is exiting because
the user typed QUIT and false otherwise. Since QUIT is considered as an emergency measure, different action
may be appropriate.

SaveOnExitFile A\

If, when GAP is exiting due to a quit or end-of-file (ie not due to a QUIT) the variable SaveOnExitFile is
bound to a string value, then the system will try to save the workspace to that file.

6.8 Line Editing

GAP allows one you to edit the current input line with a number of editing commands. Those commands
are accessible either as control keys or as escape keys. You enter a control key by pressing the ctrl key,
and, while still holding the ctrl key down, hitting another key key. You enter an escape key by hitting esc
and then hitting another key key. Below we denote control keys by ctri-key and escape keys by esc-key. The
case of key does not matter, i.e., ctrl-A and ctril-a are equivalent.

Typing ctri-key or esc-key for characters not mentioned below always inserts ctri-key resp. esc-key at the
current cursor position.

The first few commands allow you to move the cursor on the current line.
ctrl-A move the cursor to the beginning of the line.

esc-B move the cursor to the beginning of the previous word.

ctrl-B move the cursor backward one character.

ctrl-F move the cursor forward one character.

74 Chapter 6. Main Loop and Break Loop

esc-F move the cursor to the end of the next word.
ctrl-E move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different position,
with the “yank” command ctri-Y.

ctrl-H or del delete the character left of the cursor.

ctrl-D delete the character under the cursor.

ctrl-X kill up to the end of the line.

esc-D Kkill forward to the end of the next word.

esc-del kill backward to the beginning of the last word.
ctrl-X kill entire input line, and discard all pending input.
ctrl-Y insert (yank) a just killed text.

The next commands allow you to change the input.
ctrl-T exchange (twiddle) current and previous character.
esc-U uppercase next word.

esc-L lowercase next word.

esc-C capitalize next word.

The tab character, which is in fact the control key ctril-I, looks at the characters before the cursor, interprets
them as the beginning of an identifier and tries to complete this identifier. If there is more than one possible
completion, it completes to the longest common prefix of all those completions. If the characters to the left
of the cursor are already the longest common prefix of all completions hitting tab a second time will display
all possible completions.

tab complete the identifier before the cursor.

The next commands allow you to fetch previous lines, e.g., to correct typos, etc. This history is limited to
about 8000 characters.

ctrl-L insert last input line before current character.

ctrl-P redisplay the last input line, another ctrl-P will redisplay the line before that, etc. If the cursor is not
in the first column only the lines starting with the string to the left of the cursor are taken.

ctrl-N Like ctrl-P but goes the other way round through the history.

esc-< goes to the beginning of the history.

esc-> goes to the end of the history.

ctrl-0 accepts this line and perform a ctri-N.

Finally there are a few miscellaneous commands.

ctrl-V enter next character literally, i.e., enter it even if it is one of the control keys.
ctrl-U execute the next line editing command 4 times.

esc-num execute the next line editing command num times.

esc-ctrl-L redisplay input line.

The four arrow keys (cursor keys) can be used instead of ctri-B, ctri-F, ctrl-P, and ctrl-N, respectively.

Section 10. Editor Support 75

6.9 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an editor,
and to read in the result via Read. Note that Read by default reads from the directory in which GAP was
started (respectively under Windows the directory containing the GAP binary), so you might hav eto give
an absolute path to the file.

If you cannot create several windows, the Edit command may be used to leave GAP, start an editor, and
read in the edited file automatically.

Edit (filename) F

Edit starts an editor with the file whose filename is given by the string filename, and reads the file back
into GAP when you exit the editor again. You should set the GAP variable EDITOR to the name of the editor
that you usually use, e.g., /usr/ucb/vi. This can for example be done in your .gaprec file (see the sections
on operating system dependent features in Chapter 73).

6.10 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editors vim and
emacs/xemacs.

vim is a powerful editor that understands the basic vi commands but provides much more functionality.
You can find more information about it (and download it) from

http://www.vim.org

To get support for GAP syntax in vim, create in your home directory a directory .vim and a subdirec-
tory .vim/indent (If you are not using Unix, refer to the vim documentation on where to place syntax
files). Then copy the file etc/gap.vim in this.vim directory and copy the file etc/gap_indent.vim to
.vim/indent/gap.vim.

Then edit the .vimrc file in your home directory. Add lines as in the following example:

if has("syntax")
syntax on " Default to no syntax highlightning
endif

" For GAP files
augroup gap
" Remove all gap autocommands
au!
autocmd BufRead,BufNewFile *.g,*.gi,*.gd source ~/.vim/gap.vim
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\ \ ,e:##\ \ b:#

" I'm using the external program ‘par’ for formating comment lines starting
" with ‘## ’. Include these lines only when you have par installed.
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"
autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"
augroup END

See the headers of the two mentioned files for additional comments. Adjust details according to your personal
taste.

Setup files for (x)emacs are contained in the etc/emacs subdirectory.

1»

76 Chapter 6. Main Loop and Break Loop

6.11 SizeScreen

SizeScreen() F
SizeScreen([z, y 1) F

With no arguments, SizeScreen returns the size of the screen as a list with two entries. The first is the
length of each line, the second is the number of lines.

With one argument that is a list, SizeScreen sets the size of the screen; z is the length of each line, y is
the number of lines. Either value 2 or y may be missing (i.e. left unbound), to leave this value unaffected.
It returns the new values. Note that those parameters can also be set with the command line options -x =
and -y y (see Section 3.1).

To check/change whether line breaking occurs for files and streams see 10.4.9 and 10.4.8.

The screen width must be between 20 and 256 characters (inclusive) and the depth at least 10 lines. Values
outside this range will be adjusted to the nearest endpoint of the range.

1»

2»

3>

Debugging and
Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

The sections 7.2.1 and 7.3 show how to get information about the methods chosen by the method selection
mechanism (see chapter 2 in the programmer’s manual).

The final sections describe functions for collecting statistics about computations (see 7.6.1, 7.7).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following example
occurs and a break loop is entered:

gap> IsNormal(2,2);

Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘IsNormal’ on 2 arguments called from
<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments and failed.
In this situation it is crucial to find out, why this happened. Therefore there are a few functions which can
display further information. Note that you can leave the break loop by the quit command (see 6.3.1) and
that the information about the incident is no longer accessible afterwards.

ShowArguments() F

This function is only available within a break loop caused by a “No Method Found”-error. It prints as a list
the arguments of the operation call for which no method was found.

ShowArgument (nr) F

This function is only available within a break loop caused by a “No Method Found”-error. It prints the nr-th
arguments of the operation call for which no method was found. ShowArgument needs exactly one argument
which is an integer between 0 and the number of arguments the operation was called with.

ShowDetails() F

This function is only available within a break loop caused by a “No Method Found”-error. It prints the
details of this error: The operation, the number of arguments, a flag which indicates whether the operation
is being traced, a flag which indicates whether the operation is a constructor method, and the number of
methods that refused to apply by calling TryNextMethod. The last number is called Choice and is printed as
an ordinal. So if exactly k£ methods were found but called TryNextMethod and there were no more methods
it says Choice: kth.

4»

vVvyvyvyyvyy

78 Chapter 7. Debugging and Profiling Facilities

ShowMethods () F
ShowMethods (wverbosity) F

This function is only available within a break loop caused by a “No Method Found”-error. It prints an
overview about the installed methods for those arguments the operation was called with (using Applica-
bleMethod, see 7.2.1). The verbosity can be controlled by the optional integer parameter verbosity. The
default is 2, which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of
installed methods and the methods matching, which can only be those that were already called but refused
to work by calling TryNextMethod. With verbosity 3 not only all installed methods but also the reasons why
they do not match are displayed.

ShowOtherMethods () F
ShowOtherMethods (wverbosity) F

This function is only available within a break loop caused by a “No Method Found”-error. It prints an
overview about the installed methods for a different number of arguments than the number of arguments
the operation was called with (using ApplicableMethod, see 7.2.1). The verbosity can be controlled by the
optional integer parameter verbosity. The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons, why
they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will normally not make
any sense, because the different numbers of arguments are simulated by supplying the corresponding number
of ones, for which normally no reasonable methods will be installed.

7.2 ApplicableMethod

ApplicableMethod(opr, args [, printlevel 1)
ApplicableMethod(opr, args, printlevel, nr)
ApplicableMethod(opr, args, printlevel, "all")
ApplicableMethodTypes(opr, args [, printlevel 1)
ApplicableMethodTypes(opr, args, printlevel, nr)
ApplicableMethodTypes(opr, args, printlevel, "all")

eSS Iies Mes es lies)

In the first form, ApplicableMethod returns the method of highest rank that is applicable for the operation
opr with the arguments in the list args. The default printlevel is 0. If no method is applicable then fail is
returned.

In the second form, if nr is a positive integer then ApplicableMethod returns the nr-th applicable method
for the operation opr with the arguments in the list args, where the methods are ordered according to
descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument is the string "all" then ApplicableMethod returns a list of all applicable methods
for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel, additional information is printed. Admissible values and their
meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,
4 also for each not applicable method all reasons why it is not applicable.
6

also the function body of the selected method(s)

Section 3. Tracing Methods 79

When a method returned by ApplicableMethod is called then it returns either the desired result or the
string TRY_NEXT_METHOD, which corresponds to a call to TryNextMethod in the method and means that the
method selection would call the next applicable method.

Note: The kernel provides special treatment for the infix operations \+, \-, *, \/, \~, \mod and \in. For
some kernel objects (notably cyclotomic numbers, finite field elements and vectors thereof) it calls kernel
methods circumventing the method selection mechanism. Therefore for these operations ApplicableMethod
may return a method which is not the kernel method actually used.

ApplicableMethod does not work for constructors (for example GeneralLinearGroupCons is a constructor).

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if only
filters are given of course family predicates cannot be tested).

7.3 Tracing Methods
1» TraceMethods(oprs) F

After the call of TraceMethods with a list oprs of operations, whenever a method of one of the operations
in oprs is called the information string used in the installation of the method is printed.

2» UntraceMethods(oprs) F
turns the tracing off for all operations in oprs.

gap> TraceMethods([Size]);
gap> g:= Group((1,2,3), (1,2));;
gap> Size(g);

#I Size: for a permutation group
#I Setter(Size): system setter
#I Size: system getter

#I Size: system getter

6

gap> UntraceMethods([Size]);

3» TraceImmediateMethods(flag) F

If flag is true, tracing for all immediate methods is turned on. If flag is false it is turned off. (There is no
facility to trace specific immediate methods.)

gap> TraceImmediateMethods(true);

gap> g:= Group((1,2,3), (1,2));;

#I immediate: Size

#I immediate: IsCommutative

#I immediate: IsTrivial

#I immediate: IsStabChainViaChainSubgroup
#I immediate: IsChainTypeGroup

gap> Size(g);

#I immediate: IsNonTrivial

#I immediate: Size

#I immediate: IsStabChainViaChainSubgroup
#I immediate: IsChainTypeGroup

#I immediate: IsNonTrivial

#I immediate: IsPerfectGroup

#I immediate: IsEmpty

6

gap> TraceImmediateMethods(false);

1»

2»

3>

4»

5»

80 Chapter 7. Debugging and Profiling Facilities

gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size. Namely, there are
immediate methods that access the known size of the group. Note that the group g was known to be finitely
generated already before the size was computed, the calls of the immediate method for IsFinitelyGener-
atedGroup after the call of Size have other arguments than g.

7.4 Info Functions

The Info mechanism permits operations to display intermediate results or information about the progress of
the algorithms. Information is always given according to one or more info classes. Each of the info classes
defined in the GAP library usually covers a certain range of algorithms, so for example InfoLattice covers
all the cyclic extension algorithms for the computation of a subgroup lattice.

The amount of information to be displayed can be specified by the user for each info class separately by a
level, the higher the level the more information will be displayed. Ab initio all info classes have level zero
except InfoWarning (see 7.4.6) which initially has level 1.

NewInfoClass(name) 0]
creates a new info class with name name.
DeclareInfoClass(name) F

creates a new info class with name name and binds it to the global variable name. The variable must
previously be writable, and is made readonly by this function.

SetInfoLevel(infoclass, level) O
Sets the info level for infoclass to level.

InfolLevel(infoclass) 0
returns the info level of infoclass.

Info(infoclass, level, info [,moreinfo . . .1)

If the info level of infoclass is at least level the remaining arguments (info and possibly moreinfo and so on)
are evaluated and viewed, preceded by '#I ’ and followed by a newline. Otherwise the third and subsequent
arguments are not evaluated. (The latter can save substantial time when displaying difficult results.)

gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one");Info(InfoExample,?2,"two");
gap> SetInfolevel (InfoExample,1);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
#I ome

gap> SetInfolevel (InfoExample,2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I two

gap> Infolevel(InfoExample);
2

gap> Info(InfoExample,3,Length(Combinations([1..9999]1)));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample causes
Info to ignore the last argument, which prevents Length (Combinations([1..9999])) from being evaluated;
note that an evaluation would be impossible due to memory restrictions.

6>

1»

2>

1»

Section 6. Timing 81

A set of info classes (called an info selector) may be passed to a single Info statement. As a shorthand,
info classes and selectors may be combined with + rather than Union. In this case, the message is triggered
if the level of any of the classes is high enough.

gap> InfoExample:=NewInfoClass("InfoExample");;
gap> SetInfolLevel (InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfolevel (InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");
#I hello

gap> Infolevel(InfoWarning);

1

InfoWarning \%

is an info class to which general warnings are sent at level 1, which is its default level. More specialised
warnings are Info-ed at InfoWarning level 2, e.g. information about the autoloading of GAP packages and
the initial line matched when displaying an on-line help topic.

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to required
conditions and issue an error if not.

SetAssertionLevel(lev) F
assigns the global assertion level to lev. By default it is zero.

AssertionLevel () F
returns the current assertion level.

Assert(lev, cond) F
Assert(lev, cond, message) F

With two arguments, if the global assertion level is at least lev, condition cond is tested and if it does not
return true an error is raised. Thus Assert(lev, cond) is equivalent to the code

if AssertionLevel() >= lev and not <cond> then
Error("Assertion failure");
fi;

With the message argument form of the Assert statement, if the global assertion level is at least lev,
condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code execution
significantly.

7.6 Timing

Runtime () F

Runtime returns the time spent by GAP in milliseconds as an integer. This is usually the cpu time, i.e., not
the wall clock time. Also time spent by subprocesses of GAP (see 11.1.1) is not counted.

time;

in the read-eval-print loop returns the time the last command took.

1»

2»

3>

4»

5»

82 Chapter 7. Debugging and Profiling Facilities

1.7 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been spent
during runtime.

ProfileOperations([true/false]) F

When called with argument true, this function starts profiling of all operations. Old profiling information
is cleared. When called with false it stops profiling of all operations. Recorded information is still kept, so
you can display it even after turning the profiling off.

When called without argument, profiling information for all profiled operations is displayed (see 7.7.8).
ProfileOperationsAndMethods([true/false]) F

When called with argument t¢rue, this function starts profiling of all operations and their methods. Old
profiling information is cleared. When called with false it stops profiling of all operations and their methods.
Recorded information is still kept, so you can display it even after turning the profiling off.

When called without argument, profiling information for all profiled operations and their methods is dis-
played (see 7.7.8).

ProfileMethods(ops) F
starts profiling of the methods for all operations in ops.
UnprofileMethods(ops) F

stops profiling of the methods for all operations in ops. Recorded information is still kept, so you can display
it even after turning the profiling off.

ProfileFunctions(funcs) F

turns profiling on for all function in funcs. You can use ProfileGlobalFunctions (see 7.7.7) to turn profiling
on for all globally declared functions simultaneously.

UnprofileFunctions(funcs) F

turns profiling off for all function in funcs. Recorded information is still kept, so you can display it even
after turning the profiling off.

ProfileGlobalFunctions(true) F
ProfileGlobalFunctions(false) F

ProfileGlobalFunctions (true) turns on profiling for all functions that have been declared via Declare-
GlobalFunction. A function call with the argument false turns it off again.

DisplayProfile() F
DisplayProfile(funcs) F

In the first form, DisplayProfile displays the profiling information for profiled operations, methods and
functions. If an argument funcs is given, only profiling information for the functions in funcs is given. The
information for a profiled function is only displayed if the number of calls to the function or the total time
spent in the function exceeds a given threshold (see 7.7.9).

Profiling information is displayed in a list of lines for all functions (also operations and methods) which are
profiled. For each function, “count” gives the number of times the function has been called. “self” gives the
time spent in the function itself, “child” the time spent in profiled functions called from within this function.
The list is sorted according to the total time spent, that is the sum “self” 4 “child”.

Section 7. Profiling

9» PROFILETHRESHOLD

This variable is a list [ent, time] of length two. DisplayProfile will only display lines for functions which
are called at least cnt times or whose total time (“self”+‘“child”) is at least time. The default value of

PROFILETHRESHOLD is [10000,30].

10» ClearProfile()

clears all stored profiling information.

gap> ProfileOperationsAndMethods (true);
gap> ConjugacyClasses(PrimitiveGroup(24,1));;
gap> ProfileOperationsAndMethods(false);
gap> DisplayProfile();
count self/ms chld/ms function
[the following is excerpted from a much longer list]
1620 170 90 CycleStructurePerm: default method
1620 20 260 CycleStructurePerm
114658 280 0 Size:
287 20 290 Meth(CyclesOp)
287 0 310 CyclesOp
26 0 330 Size: for a conjugacy class
2219 50 380 Size
2 0 670
32 0 670 IsSubset
48 10 670
2 20 730 Meth(ClosureGroup)
2 0 750 ClosureGroup
1 0 780 DerivedSubgroup
1 0 780 Meth(DerivedSubgroup)
4 0 810 Meth(StabChainMutable)
29 0 810 StabChainOp
3 700 110 Meth(StabChainOp)
1 0 820 Meth(IsSimpleGroup)
1 0 820 Meth(IsSimple)
552 10 830 Meth(StabChainImmutable)
26 490 480 CentralizerOp: perm group,elm
26 0 970 Meth(StabilizerOfExternalSet)
107 0 970 CentralizerQOp
926 10 970 Meth(CentralizerQOp)
819 2100 2340 Meth(IN)
1 10 4890 ConjugacyClasses: by random search
1 0 5720 ConjugacyClasses: perm group
2 0 5740 ConjugacyClasses
6920 TOTAL
gap> DisplayProfile(StabChainOp,DerivedSubgroup); # only two functions
count self/ms chld/ms function
1 0 780 DerivedSubgroup
29 0 810 StabChainOp
6920 OTHER
6920 TOTAL

Note that profiling (even the command ProfileOperationsAndMethods(true)) can take substantial time
and GAP will perform much more slowly when profiling than when not.

IsSubset: for two collections (loop over the elex

IN: for a permutation, and a permutation group

for a list that is a collection

11»

12 »

1»

1»

84 Chapter 7. Debugging and Profiling Facilities

DisplayCacheStats() F

displays statistics about the different caches used by the method selection.
ClearCacheStats() F

clears all statistics about the different caches used by the method selection.

7.8 Information about the version used
DisplayRevision() F

Displays the revision numbers of all loaded files from the library.

7.9 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of test
files for the library can be found in the tst directory of the GAP distribution.

ReadTest (name-file) O
reads a test file. A test file starts with a line

gap> START_TEST("arbitrary identifier string");

(Note that the gap> prompt is part of the line!) It continues by lines of GAP input and corresponding
output. The input lines again start with the gap> prompt (or the > prompt if commands exceed one line).
The output is exactly as would result from typing in the input interactively to a GAP session (on a screen
with 80 characters per line).

The test file stops with a line
gap> STOP_TEST("filename", 10000);

Here the string "filename" should give the name of the test file. The number is a proportionality factor
that is used to output a “GAPstone” speed ranking after the file has been completely processed. For the files
provided with the distribution this scaling is roughly equalized to yield the same numbers as produced by
combinat.tst.

7.10 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default, when-
ever this nesting reaches a multiple of 5000, GAP enters a break loop (6.3) allowing you to terminate the
calculation, or enter return; to continue it.

gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> dive(100);
gap> OnBreak:= function() Where(l); end; # shorter traceback
function() ... end
gap> dive(6000) ;
recursion depth trap (5000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Section 10. Debugging Recursion 85

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> dive(11000) ;
recursion depth trap (5000)

at
dive(depth - 1);

called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (10000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

gap>
This behaviour can be controlled using the procedure
1» SetRecursionTrapInterval(interval) F

interval must be a non-negative small integer (between 0 and 22%). An interval of 0 suppresses the monitoring
of recursion altogether. In this case excessive recursion may cause GAP to crash.

gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> SetRecursionTrapInterval(1000);
gap> dive(2500);
recursion depth trap (1000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (2000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Chapter 7. Debugging and Profiling Facilities

Entering break read-eval-print loop

you can ’quit;’ to quit to outer loop, or

you may ’return;’ to continue

brk> return;

gap> SetRecursionTrapInterval(-1);

SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return ();

SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return O;

gap> dive(20000) ;

gap> dive(2000000) ;

Segmentation fault

1»

2»

3>

Options Stack

GAP Supports a global Options system. This is intended as a way for the user to provide guidance to various
algorithms that might be used in a computation. Such guidance should not change mathematically the
specification of the computation to be performed, although it may change the algorithm used. A typical
example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure. An example
of something not suited to the options mechanism is the imposition of exponent laws in the p-Quotient
algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of as options
settings, and the effective setting of an option is given by the topmost record in which the relevant field is
bound.

The reason for the choice of a stack is the intended pattern of use:

PushOptions(rec(<stuff>));
DoSomething(<args>);
PopOptions();

This can be abbreviated, to DoSomething(args : stuff); with a small additional abbreviation of stuff
permitted. See 4.10.2 for details. The full form can be used where the same options are to run across several
calls, or where the DoSomething procedure is actually a binary operation, or other function with special
syntax.

At some time, an options predicate or something of the kind may be added to method selection.

An alternative to this system is the use of additional optional arguments in procedure calls. This is not felt
to be adequate because many procedure calls might cause, for example, a coset enumeration and each would
need to make provision for the possibility of extra arguments. In this system the options are pushed when
the user-level procedure is called, and remain in effect (unless altered) for all procedures called by it.

PushOptions(options record) F

This function pushes a record of options onto the global option stack. Note that PushOption(rec(opt :=
fail)) has the effect of resetting option opt, since an option that has never been set has the value fail
returned by ValueOptions.

Note that there is no check for misspelt or undefined options.

PopOptions() F
This function removes the top-most options record from the options stack.

ResetOptionsStack() F

unbinds (i.e. removes) all the options records from the options stack.

Note: ResetOptionsStack should not be used within a function. Its intended use is to clean up the options
stack in the event that the user has quit from a break loop, so leaving a stack of no-longer-needed options
(see 6.3.1).

88 Chapter 8. Options Stack

4» DisplayOptionsStack() F
This function prints a human-readable display of the complete options stack.
5» InfoOptions A%

This info class can be used to enable messages about options being changed (level 1) or accessed (level 2).

The example below shows simple manipulation of the Options Stack, first using PushOptions and PopOp-
tions and then using the special function calling syntax.

gap> foo := function()

> Print ("myoptl = ", ValueOption("myoptl"),

> " myopt2 = ",ValueOption("myopt2"),"\n");
> end;

function() ... end

gap> foo();

myoptl = fail myopt2 = fail
gap> PushOptions(rec(myoptl := 17));
gap> foo();
myoptl = 17 myopt2 = fail
gap> DisplayOptionsStack();
[rec(
myoptl := 17)]
gap> PopOptions();
gap> foo();
myoptl = fail myopt2 = fail
gap> foo(: myoptl, myopt2 := [Z(3),"aardvark"]);
myoptl = true myopt2 = [Z(3), "aardvark"]
gap> DisplayOptionsStack();
L]
gap>

1»

Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created directly
by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following functions. This
is done by first getting a directory object for the directory the file shall reside in, and then constructing the
filename. However, it is sometimes necessary to construct filenames of files in subdirectories relative to a
given directory object. In this case the directory separator is always ’/’ even under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system directories. Using
the command Filename described in section 9.4.1 it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical characters
optionally followed by a dot ’.’ and between 1 and 3 alphanumerical characters. Upper case letters should
be avoided because some operating systems do not make any distinction between case, so that NaMe, Name
and name all refer to the same file whereas some operating systems are case sensitive. To avoid problems
only lower case characters should be used.

Another function which is system-dependent is:

LastSystemError () F

LastSystemError returns a record describing the last system error that has occurred. This record contains at
least the component message which is a string. This message is, however, highly operating system dependent
and should only be used as an informational message for the user.

9.2 GAP Root Directory

When starting GAP it is possible to specify various directories as root directories. In GAP’s view of the world
these directories are merged into one meta-directory. This directory is called GAP root directory in the
following.

For example, if root1 ;root2; ... is passed as argument to -1 when GAP is started and GAP wants to locate
a file 1ib/group.gd in the GAP root directory it will first check if the file exists in root1, if not, it checks
root2, and so on.

This layout makes it possible to have one system-wide installation of GAP which is read-only but still allows
users to modify individual files. Therefore instead of constructing an absolute path name to a file you should
always use DirectoriesLibrary or DirectoriesPackageLibrary together with Filename to construct a
filename for a file in the GAP root directory.

Example

Suppose that the system-wide installation lives in /usr/local/lib/gap4 and you want to modify the file
lib/files.gd without disturbing the system installation.

1»

3>

90 Chapter 9. Files and Filenames

In this case create a new directory /home/myhome/gap containing a subdirectory 1ib which contains the
modified 1ib/files.gd.

The directory /file structure now looks like
/usr/local/lib/gap4/
/usr/local/lib/gap4/1ib/
/usr/local/lib/gap4/1lib/files.gd
/home/myhome/gap/
/home/myhome/gap/lib
/home/myhome/gap/lib/files.gd

If you start GAP using (under UNIX)

you@unix> gap -1 ’/home/myhome/gap;/usr/local/lib/gap4’
then the file /home/myhome/gap/lib/files.gd will be used whenever GAP references the file with filename
lib/files.gd in the GAP root directory.

This setup also allows one to easily install new GAP packages or bugfixes even if no access to the system
GAP installation is possible. Simply unpack the files into “/home/myhome/gap”.

9.3 Directories

Directory(string) 0]
returns a directory object for the string string. Directory understands . for “current directory”, that is,
the directory in which GAP was started. It also understands absolute paths.

If the variable USER_HOME is defined (this may depend on the operating system) then Directory understands
a string with a leading ~ character for a path relative to the user’s home directory.

Paths are otherwise taken relative to the current directory.

DirectoryTemporary(hint) F
DirectoryTemporary() F

returns a directory object in the category IsDirectory for a new temporary directory. This is guaranteed to
be newly created and empty immediately after the call to DirectoryTemporary. GAP will make a reasonable
effort to remove this directory either when a garbage collection collects the directory object or upon
termination of the GAP job that created the directory. hint can be used by DirectoryTemporary to construct
the name of the directory but DirectoryTemporary is free to use only a part of hint or even ignore it
completely.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case LastSystemError
can be used to get information about the error.

DirectoryCurrent () F

returns the directory object for the current directory.

DirectoriesLibrary() F
DirectoriesLibrary(name) F

returns the directory objects for the GAP library lib as a list. lib must be one of "1ib" (the default), "grp",
"prim", and so on. The string "" is also legal and with this argument DirectoriesLibrary returns the list
of GAP root directories; the return value of DirectoriesLibrary("") ; differs from GAP_ROOT_PATHS in that
the former is a list of directory objects and the latter a list of strings.

The directory lib must exist in at least one of the root directories, otherwise fail is returned.

5»

Section 4. Filename 91

As the files in the GAP root directory (see 9.2) can be distributed into different directories in the filespace
a list of directories is returned. In order to find an existing file in the GAP root directory you should pass
that list to Filename (see 9.4.1) as the first argument. In order to create a filename for a new file inside the
GAP root directory you should pass the first entry of that list. However, creating files inside the GAP root
directory is not recommended, you should use DirectoryTemporary instead.

DirectoriesSystemPrograms() F

DirectoriesSystemPrograms returns the directory objects for the list of directories where the system
programs reside as a list. Under UNIX this would usually represent $PATH.

9.4 Filename

Filename(dir, name) O
Filename (list-of-dirs, name) O

If the first argument is a directory object dir, Filename returns the (system dependent) filename as a string
for the file with name name in the directory dir. Filename returns the filename regardless of whether the
directory contains a file with name name or not.

If the first argument is a list list-of-dirs (possibly of length 1) of directory objects, then Filename searches
the directories in order, and returns the filename for the file name in the first directory which contains a file
name or fail if no directory contains a file name.

Examples

In order to locate the system program date use DirectoriesSystemPrograms together with the second
form of Filename.

gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary together with the second form of
Filename.

gap> path := DirectoriesLibrary();;
gap> Filename(path, "files.gd");
"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary together
with the first form of Filename.

gap> tmpdir := DirectoryTemporary();;
gap> Filename([tmpdir], "file.new");
fail

gap> Filename(tmpdir, "file.new");
"/var/tmp/tmp.0.021738.0001/file.new"

1»

2»

3>

4»

5»

92 Chapter 9. Files and Filenames

9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user enters
commands to GAP. The exact behaviour of reading from "*stdinx" is operating system dependent, but
usually the following happens. If GAP was started with no input redirection, statements are read from the
terminal stream until the user enters the end of file character, which is usually ctr-’D’. Note that terminal
streams are special, in that they may yield ordinary input after an end of file. Thus when control returns to
the main read-eval-print loop the user can continue with GAP. If GAP was started with an input redirection,
statements are read from the current position in the input file up to the end of the file. When control returns
to the main read eval view loop the input stream will still return end of file, and GAP will terminate.

The special filename "*errin*" denotes the stream connected to the UNIX stderr output. This stream
is usually connected to the terminal, even if the standard input was redirected, unless the standard error
stream was also redirected, in which case opening of "*errinx*" fails.

The special filename "*stdout*" can be used to print to the standard output.

The special filename "*errout*" can be used to print to the standard error output file, which is usually
connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (see 9.1.1) to find out the reason
(as provided by the operating system).

IsExistingFile(name-file) F

returns true if a file with the filename name-file exists and can be seen by the GAP process. Otherwise
false is returned.

IsReadableFile(name-file) F

returns true if a file with the filename name-file exists and the GAP process has read permissions for the
file, or false if this is not the case.

IsWritableFile(name-file) F

returns true if a file with the filename name-file exists and the GAP process has write permissions for the
file, or false if this is not the case.

IsExecutableFile(name-file) F

returns true if a file with the filename name-file exists and the GAP process has execute permissions for
the file, or false if this is not the case. Note that execute permissions do not imply that it is possible to
execute the file, e.g., it may only be executable on a different machine.

IsDirectoryPath(name-file) F

returns true if the file with the filename name-file exists and is a directory and false otherwise. Note that
this function does not check if the GAP process actually has write or execute permissions for the directory
(you can use IsWritableFile (see 9.6.3), resp. IsExecutableFile (see 9.6.4) to check such permissions).

Examples

Note, in particular, how one may use LastSystemError (see 9.1.1) to discover the reason a file access function
returns false.

1»

2»

Section 7. File Operations 93

gap> IsExistingFile("/bin/date"); # the file ‘/bin/date’ exists

true

gap> IsExistingFile("/bin/date.new"); # the file ‘/bin/date.new’ does not exist
false

gap> IsExistingFile("/bin/date/new"); # ‘/bin/date’ is not a directory

false

gap> LastSystemError () .message;
"Not a directory"

gap> IsReadableFile("/bin/date"); # the file ‘/bin/date’ is readable

true

gap> IsReadableFile("/bin/date.new"); # the file ‘/bin/date.new’ does not exist
false

gap> LastSystemError () .message;
"No such file or directory"

gap> IsWritableFile("/bin/date"); # the file ‘/bin/date’ is not writable ...
false

gap> IsExecutableFile("/bin/date"); # ... but executable

true

9.7 File Operations
Read(name-file) O

reads the input from the file with the filename name-file, which must be given as a string.

Read first opens the file name-file. If the file does not exist, or if GAP cannot open it, e.g., because of access
restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The reading and
evaluations happens exactly as described for the main loop (see 6.1).

If a statement in the file causes an error a break loop is entered (see 6.3). The input for this break loop is not
taken from the file, but from the input connected to the stderr output of GAP. If stderr is not connected to
a terminal, no break loop is entered. If this break loop is left with quit (or ctr-D), GAP exits from the Read
command, and from all enclosing Read commands, so that control is normally returned to an interactive
prompt. The QUIT statement (see 6.7) can also be used in the break loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. Le., eof (end-of-file) is not treated
as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before input is
again taken from the first file. There is an operating system dependent maximum on the number of files
that may be open simultaneously. Usually it is 15.

ReadAsFunction(name-file) 0)
reads the file with filename name-file as a function and returns this function.
Example
Suppose that the file /tmp/example.g contains the following
local a;

a := 10;
return a*10;

Reading the file as a function will not affect a global variable a.

3>

4»

5»

6»

g

9»

10»

11»

94 Chapter 9. Files and Filenames

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g") ();
100

gap> a;

1

PrintTo(name-file[, obji, ...]1) F

works like Print (see 6.2.2), except that the arguments obj1, ... (if present) are printed to the file with the
name name-file instead of the standard output. This file must of course be writable by GAP. Otherwise an
error is signalled. Note that PrintTo will overwrite the previous contents of this file if it already existed;
in particular, PrintTo with just the name-file argument empties that file. AppendTo can be used to append
to a file (see 9.7.4). There is an operating system dependent maximum on the number of output files that
may be open simultaneously, usually this is 14.

AppendTo(name-file[, objl, ...1) F

works like PrintTo (see 9.7.3), except that the output does not overwrite the previous contents of the file,
but is appended to the file.

LogTo(name-file) O

causes the subsequent interaction to be logged to the file with the name name-file, i.e., everything you see
on your terminal will also appear in this file. LogTo may also be used to log to a stream (see 10.4.5). This
file must of course be writable by GAP, otherwise an error is signalled. Note that LogTo will overwrite the
previous contents of this file if it already existed.

LogTo () M
In this form LogTo stops logging to a file or stream.
InputLogTo(name-file) Q)

causes the subsequent input to be logged to the file with the name name-file, i.e., everything you type on
your terminal will also appear in this file. Note that InputLogTo and LogTo cannot be used at the same
time while InputLogTo and OutputLogTo can. Note that InputLogTo will overwrite the previous contents
of this file if it already existed.

InputLogTo () M
In this form InputLogTo stops logging to a file or stream.
OutputLogTo(name-file) O

causes the subsequent output to be logged to the file with the name name-file, i.e., everything GAP prints
on your terminal will also appear in this file. Note that OutputLogTo and LogTo cannot be used at the same
time while InputLogTo and OutputLogTo can. Note that OutputLogTo will overwrite the previous contents
of this file if it already existed.

OutputLogTo () M
In this form OutputLogTo stops logging to a file or stream.

Note that one should be careful not to write to a logfile with PrintTo or AppendTo.

CrcFile(name-file) F

computes a checksum value for the file with filename name-file and returns this value as an integer. See
Section 3.9 for an example. The function returns fail if a system error occurred, say, for example, if name-
file does not exist. In this case the function LastSystemError (see 9.1.1) can be used to get information
about the error.

12»

13»

Section 7. File Operations 95

RemoveFile(name-file) F

will remove the file with filename name-file and returns true in case of success. The function returns fail
if a system error occurred, for example, if your permissions do not allow the removal of name-file. In this
case the function LastSystemError (see 9.1.1) can be used to get information about the error.

Reread(name-file) F
REREADING

In general, it is not possible to read the same GAP library file twice, or to read a compiled version after
reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters and methods
are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions RereadLib
etc.). Reread(name-file) sets the global variable REREADING to true, reads the file named by name-file
and then resets REREADING. Various system functions behave differently when REREADING is set to true. In
particular, assignment to read-only global variables is permitted, calls to NewRepresentation (see 3.2.1 in
“Programming in GAP”) and NewInfoClass (see 7.4.1) with parameters identical to those of an existing
representation or info class will return the existing object, and methods installed with InstallMethod (see
2.2.1 in “Programming in GAP”) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the super-
representation of a representation or the requirements of a method. In these cases, it is necessary to restart
GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language version had
previously been read (or perhaps was included in a saved workspace). See 3.6 and 3.10 for more information.

1»

2>

3>

4»

5»

Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes characters
from some source and delivers them to GAP which reads them from the stream. When an input stream has
delivered all characters it is at end-of-stream. An output stream receives characters from GAP which
writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and written using
Read and AppendTo, however the former only allows a complete file to be read as GAP input and the latter
imposes a high time penalty if many small pieces of output are written to a large file. Streams allow input
files in other formats to be read and processed, and files to be built up efficiently from small pieces of output.
Streams may also be used for other purposes, for example to read from and print to GAP strings, or to read
input directly from the user.

Any stream is either a text stream, which translates the end-of-line character (’\n’) to or from the
system’s representation of end-of-1line (e.g., new-line under UNIX, carriage-return under MacOS, carriage-
return-new-line under DOS), or a binary stream, which does not translate the end-of-line character.
The processing of other unprintable characters by text streams is undefined. Binary streams pass them
unchanged.

Note that binary streams are @not yet implemented@.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a limited number
can be open at any time, therefore it is necessary to close a stream as soon as possible using CloseStream
described in Section 10.2.1. If creating a stream failed then LastSystemError (see 9.1.1) can be used to get
information about the failure.

10.1 Categories for Streams and the StreamsFamily

IsStream(obj) C
Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.
IsClosedStream(obj) C

When a stream is closed, its type changes to lie in 'IsClosedStream’. This category is used to install methods
that trap accesses to closed streams.

IsInputStream(obj) C
All input streams lie in this category, and support input operations such as ReadByte (see 10.3)
IsInputTextStream(obj) C
All text input streams lie in this category. They translate new-line characters read.

IsInputTextNone(obj) C

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other distinctions
are usually made using representations

6>

i d

8>

9»

1»

2»

3>

Section 2. Operations applicable to All Streams 97

IsOutputStream(obj) C
All output streams lie in this category and support basic operations such as WriteByte (see 10.4)
IsOutputTextStream(obj) C
All text output streams lie in this category and translate new-line characters on output.
IsOutputTextNone(obj) C

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other distinctions
are usually made using representations

StreamsFamily A%

All streams lie in the StreamsFamily

10.2 Operations applicable to All Streams

CloseStream(stream) O

In order to preserve system resources and to flush output streams every stream should be closed as soon as
it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream tells
the GAP kernel and/or the operating system kernel that the file is no longer needed. This may be necessary
because the GAP kernel and/or the operating system may impose a limit on how many streams may be open
simultaneously.

FileDescriptorOfStream(stream) O

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect function
call (see 10.2.3). This is as of now only available on UNIX-like operating systems and only for streams to
local processes and local files.

UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) F

makes the UNIX C-library function select accessible from GAP for streams. The functionality is as described
in the man page (see man select). The first three arguments must be lists containing UNIX file descriptors
(integers) for streams. They can be obtained via FileDescriptorOfStream (see 10.2.2) for streams to local
processes and to local files. The argument timeoutsec is a timeout in seconds as in the struct timeval on
the C level. The argument timeoutusec is analogously in microseconds. The total timeout is the sum of both.
If one of those timeout arguments is not a small integer then no timeout is applicable (fail is allowed for
the timeout arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified. All file
descriptors in the three lists that are not yet ready are replaced by fail in this function. So the lists are
changed!

This function is not available on the Macintosh architecture and is only available if your operating system
has select, which is detected during compilation of GAP.

1»

2>

3>

4»

5»

98 Chapter 10. Streams

10.3 Operations for Input Streams

Three operations normally used to read files: Read, ReadAsFunction and ReadTest can also be used to read
GAP input from a stream. The input is immediately parsed and executed. When reading from a stream str,
the GAP kernel generates calls to ReadLine (str) to supply text to the parser.

Three further operations: ReadByte, ReadLine and ReadAll, support reading characters from an input
stream without parsing them. This can be used to read data in any format and process it in GAP.

Additional operations for input streams support detection of end of stream, and (for those streams for which
it is appropriate) random access to the data.

Read (input-text-stream) O
reads the input-text-stream as input until end-of-stream occurs. See 9.7 for details.

ReadAsFunction(input-text-stream) O
reads the input-text-stream as function and returns this function. See 9.7 for details.

ReadTest (input-text-stream) O

reads the input-text-stream as test input until end-of-stream occurs. See 9.7 for details.

Example

gap> # a function with local ‘a’ does not change the global one
gap> a := 1;;

gap> i := InputTextString("local a; a := 10; return a*x10;");;
gap> ReadAsFunction(i) ();

100

gap> a;

1

gap> # reading it via ‘Read’ does

gap> i := InputTextString("a := 10;");;
gap> Read(i);

gap> a;

10

ReadByte (input-stream) 0]
ReadByte returns one character (returned as integer) from the input stream stream-in. ReadByte returns
fail if there is no character available, in particular if it is at the end of a file.

If stream-in is the input stream of a input/output process, ReadByte may also return fail if no byte is
currently available.

ReadByte is the basic operation for input streams. If a ReadByte method is installed for a user-defined type
of stream which does not block, then all the other input stream operations will work (although possibly not
at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to another
process, it will wait for the process to output a byte.

ReadLine (input-stream) O

ReadLine returns one line (returned as string with the newline) from the input stream input-stream. Read-
Line reads in the input until a newline is read or the end-of-stream is encountered.

s

8»

Section 3. Operations for Input Streams 99

If input-stream is the input stream of a input/output process, ReadLine may also return fail or return an
incomplete line if the other process has not yet written any more. It will always wait (block) for at least one
byte to be available, but will then return as much input as is available, up to a limit of one line

A default method is supplied for ReadLine which simply calls ReadByte repeatedly. This is only safe for
streams that cannot block. The kernel uses calls to ReadLine to supply input to the parser when reading
from a stream.

ReadAll1(input-stream) O
ReadAl1(input-stream , limit) O

ReadAll returns all characters as string from the input stream stream-in. It waits (blocks) until at least one
character is available from the stream, or until there is evidence that no characters will ever be available
again. This last indicates that the stream is at end-of-stream. Otherwise, it reads as much input as it can
from the stream without blocking further and returns it to the user. If the stream is already at end of file,
so that no bytes are available, fail is returned. In the case of a file stream connected to a normal file (not
a pseudo-tty or named pipe or similar), all the bytes should be immediately available and this function will
read the remainder of the file.

With a second argument, at most limit bytes will be returned. Depending on the stream a bounded number
of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadA11l which simply calls ReadLine repeatedly. This is only really safe
for streams which cannot block. Other streams should install a method for Read All

Example

gap> i1 := InputTextString("1Hallo\nYou\nl");;
gap> ReadByte(i);

49

gap> CHAR_INT(last);
517

gap> ReadLine(i);
"Hallo\n"

gap> ReadLine(i);
"You\n"

gap> ReadLine(i);

||1l|

gap> ReadLine(i);

fail

gap> ReadAll(i);

gap> RewindStream(i);;
gap> ReadAll(i);
"{1Hallo\nYou\n1"

IsEnd0fStream(input-stream) O

IsEnd0fStream returns true if the input stream is at end-of-stream, and false otherwise. Note that IsEnd-
0fStream might return false even if the next ReadByte fails.

PositionStream(input-stream) O

Some input streams, such as string streams and file streams attached to disk files, support a form of random
access by way of the operations PositionStream, SeekPositionStream and RewindStream. Position-
Stream returns a non-negative integer denoting the current position in the stream (usually the number of
characters before the next one to be read.

9g»

10»

1»

2»

3>

4»
>

100 Chapter 10. Streams

If this is not possible, for example for an input stream attached to standard input (normally the keyboard),
then fail is returned

RewindStream(input-stream) O

RewindStream attempts to return an input stream to its starting condition, so that all the same characters
can be read again. It returns true if the rewind succeeds and fail otherwise

A default method implements RewindStream using SeekPositionStream.
SeekPositionStream(input-stream, pos) O

SeekPositionStream attempts to rewind or wind forward an input stream to the specified position. This is
not possible for all streams. It returns true if the seek is successful and fail otherwise.

10.4 Operations for Output Streams
WriteByte(output-stream, byte) O

writes the next character (given as integer) to the output stream output-stream. The function returns true
if the write succeeds and fail otherwise.

WriteByte is the basic operation for input streams. If a WriteByte method is installed for a user-defined type
of stream, then all the other output stream operations will work (although possibly not at peak efficiency).

WriteLine(output-stream, string) O

appends string to output-stream. A final newline is written. The function returns true if the write succeeds
and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte.

WriteAll(output-stream, string) O

appends string to output-stream. No final newline is written. The function returns true if the write succeeds
and fail otherwise. It will block as long as necessary for the write operation to complete (for example for
a child process to clear its input buffer)

A default method is installed which implements WriteAll by repeated calls to WriteByte.

When printing or appending to a stream (using PrintTo, or AppendTo or when logging to a stream), the
kernel generates a call to WriteAll for each line output.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> WriteByte(a,INT_CHAR(’H’));
true
gap> WriteLine(a,"allo");
true
gap> WriteAll(a,"You\n");
true

gap> CloseStream(a);
gap> Print(str);

Hallo

You
PrintTo(output-stream, argl, ...) F
AppendTo (output-stream, argl, ...) F

These functions work like Print, except that the output is appended to the output stream output-stream.

6>

L d

8»

9»

Section 4. Operations for Output Streams 101

Example

gap> str := "";; a := OutputTextString(str,true);;
gap> AppendTo(a, (1,2,3), ":", Z(3));

gap> CloseStream(a) ;

gap> Print(str, "\n");

(1,2,3):2(3)

LogTo(stream) O

causes the subsequent interaction to be logged to the output stream stream. It works in precisely the same
way as it does for files (see 9.7.5).

InputLogTo(stream) @)

causes the subsequent input to be logged to the output stream stream. It works just like it does for files
(see 9.7.7).

OutputLogTo(stream) 0]

causes the subsequent output to be logged to the output stream stream. It works just like it does for files
(see 9.7.9).

When text is being sent to an output text stream via PrintTo, AppendTo, LogTo, etc., it is, by default
formatted just as it would be were it being printed to the screen. Thus, it is broken into lines of reasonable
length at (where possible) sensible places, lines containing elements of lists or records are indented, and so
forth. This is appropriate if the output is eventually to be viewed by a human, and harmless if it to passed
as input to GAP, but may be unhelpful if the output is to be passed as input to another program. It is
possible to turn off this behaviour for a stream using the SetPrintFormattingStatus operation, and to
test whether it is on or off using PrintFormattingStatus.

SetPrintFormattingStatus(stream, newstatus) O

sets whether output sent to the output stream stream via PrintTo, AppendTo, etc. (but not WriteByte,
WriteLine or WriteAll) will be formatted with line breaks and indentation. If the second argument new-
status is true then output will be so formatted, and if false then it will not.

PrintFormattingStatus(stream) 0

returns true if output sent to the output stream stream via PrintTo, AppendTo, etc. (but not Write-
Byte, WriteLine or WriteAll) will be formatted with line breaks and indentation, and false otherwise
(see 10.4.8).

Example
gap> s := "";; str := OutputTextString(s,false);;
gap> PrintTo(str,Primes{[1..30]1});
gap> s;

"2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,\
\n 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

gap> SetPrintFormattingStatus(str, false);

gap> PrintTo(str,Primes{[1..30]});

gap> s;

"2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,\
\n 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1[2, 3, 5, 7, 11, 13, 17, 19\

, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103\

1»

2>

102 Chapter 10. Streams

, 107, 109, 113 1"

gap> Print(s,"\n");

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1[2, 3, 5, 7, 11, 13, 17, 19, 2\

3, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 1\

07, 109, 113 1]

gap>

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from a
file, an output file stream prints the characters it receives to a file. The following functions can be used to
create such streams. They return fail if an error occurred, in this case LastSystemError (see 9.1.1) can
be used to get information about the error.

InputTextFile(name-file) 0]

InputTextFile(name-file) returns an input stream in the category IsInputTextStream that delivers the
characters from the file name-file.

OutputTextFile(name-file, append) O

OutputTextFile(name-file, append) returns an output stream in the category IsOutputTextFile that
writes received characters to the file name-file. If append is false, then the file is emptied first, otherwise
received characters are added at the end of the list.

Example

use a temporary directory
gap> name := Filename(DirectoryTemporary(), "test");;

create an output stream, append output, and close again
gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "Hallo\n", "Youl\n");

gap> CloseStream(output) ;

create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));

Hallo

You

gap> CloseStream(input);

append a single line
gap> output := OutputTextFile(name, true);;
gap> AppendTo(output, "AppendLine\n");

close output stream to flush the output
gap> CloseStream(output) ;

1»

2»

1»

Section 7. String Streams 103

create an input, print complete contents of file, and close
gap> input := InputTextFile(name);;

gap> Print(ReadAll(input));

Hallo

You

AppendLine

gap> CloseStream(input) ;

10.6 User Streams

The following two commands create streams which accept characters from, or deliver characters to, the user,
via the keyboard or the GAP session display.

InputTextUser() F

returns an input text stream which delivers characters typed by the user (or from the standard input device
if it has been redirected). In normal circumstances, characters are delivered one by one as they are typed,
without waiting until the end of a line. No prompts are printed.

OutputTextUser() F

returns an output stream which delivers characters to the user’s display (or the standard output device if it
has been redirected). Each character is delivered immediately it is written, without waiting for a full line of
output. Text written in this way is not written to the session log (see 9.7.5).

10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it delivers
from a string, an output string stream appends the characters it receives to a string. The following functions
can be used to create such streams.

InputTextString(string) O

InputTextString(string)returns an input stream that delivers the characters from the string string. The
string is not changed when reading characters from it and changing the string after the call to Input-
TextString has no influence on the input stream.

OutputTextString(list, append) O

returns an output stream that puts all received characters into the list list. If append is false, then the list
is emptied first, otherwise received characters are added at the end of the list.

Example

read input from a string

gap> input := InputTextString("Hallo\nYou\n");;
gap> ReadLine(input) ;

"Hallo\n"

gap> ReadLine(input);

"You\n"

print to a string

gap> str := "";;

gap> out := OutputTextString(str, true);;

gap> PrintTo(out, 1, "\n", (1,2,3,4)(5,6), "\n");
gap> CloseStream(out) ;

gap> Print(str);

1

(1,2,3,4)(5,6)

1»

2»

104 Chapter 10. Streams

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either locally
or (@Qas yet unimplemented@) remotely.

Such streams support the basic operations of both input and output streams. They should provide some
buffering, allowing output date to be written to the stream, even when input data is waiting to be read, but
the amount of this buffering is operating system dependent, and the user should take care not to get too far
ahead in writing, or behind in reading, or deadlock may occur.

IsInputOutputStream(o0bj) C

IsInputOutputStreamn is the Category of Input-Output Streams; it returns true if the obj is an input-output
stream and false otherwise.

At present the only type of Input-Output streams that are implemented provide communication with a local
child process, using a pseudo-tty. They are only available on UNIX systems.

Like other streams, write operations are blocking, read operations will block to get the first character, but
not thereafter.

As far as possible, no translation is done on characters written to, or read from the stream, and no control
characters have special effects, but the details of particular pseudo-tty implementations may effect this.

InputOutputLocalProcess(dir, executable, args) F

starts up a slave process, whose executable file is executable, with “command line” arguments args in the
directory dir. (Suitable choices for dir are DirectoryCurrent () or DirectoryTemporary () (see Section 9.3);
DirectoryTemporary() may be a good choice when ezecutable generates output files that it doesn’t itself
remove afterwards.) InputOutputLocalProcess returns an InputOutputStream object. Bytes written to
this stream are received by the slave process as if typed at a terminal on standard input. Bytes written to
standard output by the slave process can be read from the stream.

When the stream if closed, the signal SIGTERM is delivered to the child process, which is expected to exit.

gap> d := DirectoryCurrent();

dir(ll ./ll)

gap> f := Filename(DirectoriesSystemPrograms(), "rev");
"/usr/bin/rev"

gap> s := InputOutputLocalProcess(d,f,[]1);
< input/output stream to rev >

gap> WritelLine(s,"The cat sat on the mat");
true

gap> Print(ReadLine(s));

tam eht no tas tac ehT

gap> x := ListWithIdenticalEntries(10000,°x’);;
gap> ConvertToStringRep(x);

gap> WriteLine(s,x);

true

gap> WriteByte(s,INT_CHAR(’\n’));

true

gap> y := ReadAll(s);;

gap> Length(y);

4095

gap> CloseStream(s);

gap> s;

< closed input/output stream to rev >

3>

1»

2»

1»

Section 10. Handling of Streams in the Background 105

ReadAllLine(iostream [, nofaill[, IsAllLinel) @)

For an input/output stream iostream ReadAllLine reads until a newline character if any input is found or
returns fail if no input is found, i.e. if any input is found ReadAl1Line is non-blocking.

If the argument nofail (which must be false or true) is provided and it is set to true then ReadAlllLine
will wait, if necessary, for input and never return fail.

If the argument IsAllLine (which must be a function that takes a string argument and returns either true
or false) then it is used to determine what constitutes a whole line. The default behaviour is equivalent to
passing the function

line -> O < Length(line) and line[Length(line)] = ’\n’

for the IsAllLine argument. The purpose of the IsAllLine argument is to cater for the case where the input
being read is from an external process that writes a “prompt” for data that does not terminate with a
newline.

If the first argument is an input stream but not an input/output stream then ReadAllLine behaves as if
ReadLine was called with just the first argument and any additional arguments are ignored.

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never deliver
one.

InputTextNone() F

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream. Its main
use is for calls to Process (see 11.1.1) when the started program does not read anything.

OutputTextNone() F

returns a dummy output stream, which discards all received characters. Its main use is for calls to Process
(see 11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams somehow
“in the background”. This is currently not available on the Macintosh architecture and only on operating
systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle streams
that are ready to be read or ready to be written. This means that GAP can handle these streams during user
input on the command line. Note that this does not work when GAP is in the middle of some calculation.

This feature is used in the following way. One can install handler functions for reading or writing streams.
This is done via:

InstallCharReadHookFunc(stream, mode, func) F

installs the function func as a handler function for the stream stream. The argument mode decides, for what
operations on the stream this function is installed. mode must be a string, in which a letter r means “read”,
w means “write” and x means “exception”, according to the select function call in the UNIX C-library (see
man select and 10.2.3). More than one letter is allowed in mode. As described above the function is called
in a situation when GAP is reading a character from the keyboard. Handler functions should not use much
time to complete.

This functionality does not work on the Macintosh architecture and only works if the operating system has
a select function.

2>

106 Chapter 10. Streams

Handlers can be removed via:
UnInstallCharReadHookFunc(stream, func) F

uninstalls the function func as a handler function for the stream stream. All instances are deinstalled,
regardless of the mode of operation (read, write, exception).

This functionality does not work on the Macintosh architecture and only works if the operating system has
a select function.

Note that handler functions must not return anything and get one integer argument, which refers to an
index in one of the following arrays (according to whether the function was installed for input, output or
exceptions on the stream). Handler functions usually should not output anything on the standard output
because this ruins the command line during command line editing.

1»

Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes: First
there are processes that are started, run and return a result, while GAP is suspended until the process termi-
nates. Then there are processes that will run in parallel to GAP as subprocesses and GAP can communicate
and control the processes using streams (see 10.8.2).

11.1 Process
Process(dir, prg, stream-in, stream-out, options) O

Process runs a new process and returns when the process terminates. It returns the return value of the
process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the usual UNIX
or MSDOS sense) when the program is run. This will only matter if the program accesses files (including
running other programs) via relative path names. In particular, it has nothing to do with finding the binary
to run.

In general the directory will either be the current directory, which is returned by DirectoryCurrent
(see 9.3.3) —this was the behaviour of GAP 3— or a temporary directory returned by DirectoryTempo-
rary (see 9.3.2). If one expects that the process creates temporary or log files the latter should be used
because GAP will attempt to remove these directories together with all the files in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched in a directory
relative to certain data libraries, then the first entry of DirectoryPackageLibrary should be used. The
argument of DirectoryPackageLibrary should be the path to the data library relative to the package
directory.

If a program calls other programs and needs to be launched in a directory containing the executables for
such a GAP package then the first entry of DirectoriesPackagePrograms should be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks accumu-
lating log or core files in the package directory.

Examples

gap> path := DirectoriesSystemPrograms();;

gap> 1ls := Filename(path, "1ls");;

gap> stdin := InputTextUser();;

gap> stdout := OutputTextUser();;

gap> Process(path[1], 1ls, stdin, stdout, ["-c"]);;
awk 1s mkdir

gap> # current directory, here the root directory

gap> Process(DirectoryCurrent(), ls, stdin, stdout, ["-c"]);;
bin 1ib trans tst CVS grp prim thr two
src dev etc tbl doc pkg small tom

1»

108 Chapter 11. Processes

gap> # create a temporary directory

gap> tmpdir := DirectoryTemporary();;

gap> Process(tmpdir, 1ls, stdin, stdout, ["-c"]);;
gap> PrintTo(Filename(tmpdir, "emil"));

gap> Process(tmpdir, 1ls, stdin, stdout, ["-c"]);;
emil

pryg is the filename of the program to launch, for portability it should be the result of Filename (see 9.4.1)
and should pass IsExecutableFile. Note that Process does no searching through a list of directories, this
is done by Filename.

stream-in is the input stream that delivers the characters to the process. For portability it should either be
InputTextNone (if the process reads no characters), InputTextUser, the result of a call to InputTextFile
from which no characters have been read, or the result of a call to InputTextString.
Process is free to consume all the input even if the program itself does not require any input at all.
stream-out is the output stream which receives the characters from the process. For portability it should
either be OutputTextNone (if the process writes no characters), OutputTextUser, the result of a call to
OutputTextFile to which no characters have been written, or the result of a call to OutputTextString.
options is a list of strings which are passed to the process as command line argument. Note that no substitu-
tions are performed on the strings, i.e., they are passed immediately to the process and are not processed by
a command interpreter (shell). Further note that each string is passed as one argument, even if it contains
space characters. Note that input/output redirection commands are not allowed as options.
Examples
In order to find a system program use DirectoriesSystemPrograms together with Filename.

gap> path := DirectoriesSystemPrograms();;

gap> date := Filename(path, "date");
"/bin/date"

Now execute date with no argument and no input, collect the output into a string stream.

gap> str := "";; a := OutputTextString(str,true);;
gap> Process(DirectoryCurrent(), date, InputTextNone(), a, [1);
0

gap> CloseStream(a);
gap> Print(str);
Fri Jul 11 09:04:23 MET DST 1997

11.2 Exec

Exec(c¢md, optionl, ..., optionN) F

Exec runs a shell in the current directory to execute the command given by the string ¢md with options
optionl, ..., optionN.

gap> Exec("date");
Thu Jul 24 10:04:13 BST 1997

cmd is interpreted by the shell and therefore we can make use of the various features that a shell offers as
in following example.

gap> Exec("echo \"GAP is great!\" > foo");
gap> Exec("cat foo");

GAP is great!

gap> Exec("rm foo");

Exec calls the more general operation Process (see 11.1.1). Edit (see 6.9.1) should be used to call an editor
from within GAP.

1»

Objects and
Elements

An object is anything in GAP that can be assigned to a variable, so nearly everything in GAP is an object.

[

Different objects can be regarded as equal with respect to the equivalence relation ‘=, in this case we say
that the objects describe the same element.

12.1 Objects

Nearly all things one deals with in GAP are objects. For example, an integer is an object, as is a list of
integers, a matrix, a permutation, a function, a list of functions, a record, a group, a coset or a conjugacy
class in a group.

Examples of things that are not objects are comments which are only lexical constructs, while loops which
are only syntactical constructs, and expressions, such as 1 + 1; but note that the value of an expression, in
this case the integer 2, is an object.

Objects can be assigned to variables, and everything that can be assigned to a variable is an object. Analo-
gously, objects can be used as arguments of functions, and can be returned by functions.

IsObject(obj) C

IsObject returns true if the object obj is an object. Obviously it can never return false.

It can be used as a filter in InstallMethod (see 2.2 in “Programming in GAP”) when one of the arguments
can be anything.

12.2 Elements as equivalence classes

The equality operation “=" defines an equivalence relation on all GAP objects. The equivalence classes are
called elements.

There are basically three reasons to regard different objects as equal. Firstly the same information may be
stored in different places. Secondly the same information may be stored in different ways; for example, a
polynomial can be stored sparsely or densely. Thirdly different information may be equal modulo a mathe-
matical equivalence relation. For example, in a finitely presented group with the relation a? = 1 the different
objects a and a® describe the same element.

As an example of all three reasons, consider the possibility of storing an integer in several places of the
memory, of representing it as a fraction with denominator 1, or of representing it as a fraction with any
denominator, and numerator a suitable multiple of the denominator.

1»

110 Chapter 12. Objects and Elements

12.3 Sets

In GAP there is no category whose definition corresponds to the mathematical property of being a set,
however in the manual we will often refer to an object as a set in order to convey the fact that mathematically,
we are thinking of it as a set. In particular, two sets A and B are equal if and only if, € A <= z € B.

There are two types of object in GAP which exhibit this kind of behaviour with respect to equality, namely
domains (see Section 12.4) and lists whose elements are strictly sorted see IsSSortedList (see 21.17.4). In
general, set in this manual will mean an object of one of these types.

More precisely: two domains can be compared with “=”, the answer being true if and only if the sets of
elements are equal (regardless of any additional structure) and; a domain and a list can be compared with
“="_ the answer being true if and only if the list is equal to the strictly sorted list of elements of the domain.

A discussion about sorted lists and sets can be found in the Reference Manual section “Sorted Lists and
Sets” 21.19.

12.4 Domains

An especially important class of objects in GAP are those whose underlying mathematical abstraction is
that of a structured set, for example a group, a conjugacy class, or a vector space. Such objects are called
domains. The equality relation between domains is always equality as sets, so that two domains are equal
if and only if they contain the same elements.

Domains play a central role in GAP. In a sense, the only reason that GAP supports objects such as integers
and permutations is the wish to form domains of them and compute the properties of those domains.

Domains are described in Chapter 30.

12.5 Identical Objects

Two objects that are equal as objects (that is they actually refer to the same area of computer memory)
and not only w.r.t. the equality relation ‘=’ are called identical. Identical objects do of course describe the
same element.

IsIdenticalObj(objl, o0bj2) F

IsIdenticalObj(objl, obj2) tests whether the objects objl and o0bj2 are identical (that is they are
either equal immediate objects or are both stored at the same location in memory.

If two copies of a simple constant object (see section 12.6) are created, it is not defined whether GAP will
actually store two equal but non-identical objects, or just a single object. For mutable objects, however, it
is important to know whether two value refer to identical or non-identical objects, and the documentation
of operations that return mutable values should make clear whether the values returned are new, or may be
identical to values stored elsewhere.

gap> IsIdenticalObj(1076, 1076);

true

gap> IsIdenticalObj(10712, 10712);
false

gap> IsIdenticalObj(true, true);
true

Generally, one may compute with objects but think of the results in terms of the underlying elements because
one is not interested in locations in memory, data formats or information beyond underlying equivalence
relations. But there are cases where it is important to distinguish the relations identity and equality. This

2»

Section 6. Mutability and Copyability 111

is best illustrated with an example. (The reader who is not familiar with lists in GAP, in particular element
access and assignment, is referred to Chapter 21.)

gap> 11:= [1, 2, 3 1;; 12:= [1, 2, 3 1;;
gap> 11 = 12;

true

gap> IsIdenticalObj(11, 12);

false

gap> 11[3]:= 4;; 11; 12;

[1, 2, 4]

[1, 2, 3]

gap> 11 = 12;

false

The two lists 11 and 12 are equal but not identical. Thus a change in 11 does not affect 12.

gap> 11:= [1, 2, 3 1;; 12:= 11;;
gap> 11 = 12;

true

gap> IsIdenticalObj(11, 12);
true

gap> 11[3]:= 4;; 11; 12;

[1, 2, 4]

[1, 2, 4]

gap> 11 = 12;

true

Here, 11 and 12 are identical objects, so changing 11 means a change to 12 as well.

The library also provides:
IsNotIdenticalObj(objl, obj2) F

tests whether the objects 0bjI and objs2 are not identical.

12.6 Mutability and Copyability

An object in GAP is said to be immutable if its mathematical value (as defined by =) does not change
under any operation. More explicitly, suppose a is immutable and O is some operation on a, then if a = b
evaluates to true before executing O(a), a = b also evaluates to true afterwards. (Examples for operations
O that change mutable objects are Add and Unbind which are used to change list objects, see Chapter 21.)
An immutable object may change, for example to store new information, or to adopt a more efficient
representation, but this does not affect its behaviour under =.

There are two points here to note. Firstly, “operation” above refers to the functions and methods which can
legitimately be applied to the object, and not the !. operation whereby virtually any aspect of any GAP
level object may be changed. The second point which follows from this, is that when implementing new
types of objects, it is the programmer’s responsibility to ensure that the functions and methods they write
never change immutable objects mathematically.

In fact, most objects with which one deals in GAP are immutable. For instance, the permutation (1,2)
will never become a different permutation or a non-permutation (although a variable which previously had
(1,2) stored in it may subsequently have some other value).

For many purposes, however, mutable objects are useful. These objects may be changed to represent
different mathematical objects during their life. For example, mutable lists can be changed by assigning
values to positions or by unbinding values at certain positions. Similarly, one can assign values to components
of a mutable record, or unbind them.

1»

2»

3>

4»

112 Chapter 12. Objects and Elements

IsCopyable(obj) C

If a mutable form of an object obj can be made in GAP, the object is called copyable. Examples of copyable
objects are of course lists and records. A new mutable version of the object can always be obtained by the
operation ShallowCopy (see 12.7).

Objects for which only an immutable form exists in GAP are called constants. Examples of constants are
integers, permutations, and domains. Called with a constant as argument, Immutable and ShallowCopy
return this argument.

IsMutable(obj) C

tests whether obj is mutable.

If an object is mutable then it is also copyable (see 12.6.1), and a ShallowCopy (see 12.7.1) method should
be supplied for it. Note that IsMutable must not be implied by another filter, since otherwise Immutable
would be able to create paradoxical objects in the sense that IsMutable for such an object is false but the
filter that implies IsMutable is true.

In many situations, however, one wants to ensure that objects are immutable. For example, take the
identity of a matrix group. Since this matrix may be referred to as the identity of the group in several
places, it would be fatal to modify its entries, or add or unbind rows. We can obtain an immutable copy of
an object with:

Immutable(obj) O

returns an immutable structural copy (see 12.7.2) of obj in which the subobjects are immutable copies of
the subobjects of obj. If 0bj is immutable then Immutable returns obj itself.

GAP will complain with an error if one tries to change an immutable object.
MakeImmutable(o0bj) F

One can turn the (mutable or immutable) object obj into an immutable one with MakeImmutable; note
that this also makes all subobjects of 0bj immutable, so one should call MakeImmutable only if 0bj and its
mutable subobjects are newly created. If one is not sure about this, Immutable should be used.

Note that it is not possible to turn an immutable object into a mutable one; only mutable copies can be
made (see 12.7).

Using Immutable, it is possible to store an immutable identity matrix or an immutable list of generators,
and to pass around references to this immutable object safely. Only when a mutable copy is really needed
does the actual object have to be duplicated. Compared to the situation without immutable objects, much
unnecessary copying is avoided this way. Another advantage of immutability is that lists of immutable objects
may remember whether they are sorted (see 21.19), which is not possible for lists of mutable objects.

Since the operation Immutable must work for any object in GAP, it follows that an immutable form of every
object must be possible, even if it is not sensible, and user-defined objects must allow for the possibility of
becoming immutable without notice.

Another interesting example of mutable (and thus copyable) objects is provided by iterators, see 28.7. (Of
course an immutable form of an iterator is not very useful, but clearly Immutable will yield such an object.)
Every call of NextIterator changes a mutable iterator until it is exhausted, and this is the only way to
change an iterator. ShallowCopy for an iterator iter is defined so as to return a mutable iterator that has
no mutable data in common with iter, and that behaves equally to iter w.r.t. IsDoneIterator and (if iter
is mutable) NextIterator. Note that this meaning of the “shallow copy” of an iterator that is returned by
ShallowCopy is not as obvious as for lists and records, and must be explicitly defined.

Many operations return immutable results, among those in particular attributes (see 13.5). Examples of
attributes are Size, Zero, AdditiveInverse, One, and Inverse. Arithmetic operations, such as the binary
infix operations +, -, *, /,) mod, the unary -, and operations such as Comm and LeftQuotient, return

1»

2>

Section 7. Duplication of Objects 113

mutable results, except if all arguments are immutable. So the product of two matrices or of a vector and
a matrix is immutable if and only if the two matrices or both the vector and the matrix are immutable
(see also 21.11). There is one exception to this rule, which arises where the result is less deeply nested that
at least one of the argument, where mutable arguments may sometimes lead to an immutable result. For
instance, a mutable matrix with immutable rows, multiplied by an immutable vector gives an immutable
vector result. The exact rules are given in 21.11.

It should be noted that 0 * 0bj is equivalent to ZeroSM(o0bj), —obj is equivalent to AdditiveInverseSM(
obj), 0bj~0 is equivalent to OneSM(obj), and obj~-1 is equivalent to InverseSM(o0bj). The “SM” stands
for “same mutability”, and indicates that the result is mutable if and only if the argument is mutable.

The operations ZeroOp, AdditiveInverseOp, OneOp, and InverseOp return mutable results whenever a
mutable version of the result exists, contrary to the attributes Zero, AdditiveInverse, One, and Inverse.

If one introduces new arithmetic objects then one need not install methods for the attributes One, Zero,
etc. The methods for the associated operations OneOp and ZeroOp will be called, and then the results made
immutable.

All methods installed for the arithmetic operations must obey the rule about the mutability of the result.
This means that one may try to avoid the perhaps expensive creation of a new object if both operands are
immutable, and of course no problems of this kind arise at all in the (usual) case that the objects in question
do not admit a mutable form, i.e., that these objects are not copyable.

In a few, relatively low-level algorithms, one wishes to treat a matrix partly as a data structure, and
manipulate and change its entries. For this, the matrix needs to be mutable, and the rule that attribute
values are immutable is an obstacle. For these situations, a number of additional operations are provided, for
example TransposedMatMutable constructs a mutable matrix (contrary to the attribute TransposedMat),
while TriangulizeMat modifies a mutable matrix (in place) into upper triangular form.

Note that being immutable does not forbid an object to store knowledge. For example, if it is found out that
an immutable list is strictly sorted then the list may store this information. More precisely, an immutable
object may change in any way, provided that it continues to represent the same mathematical object.

12.7 Duplication of Objects

ShallowCopy(obj) 0

If GAP supports a mutable form of the object 0bj (see 12.6) then this is obtained by ShallowCopy. Otherwise
ShallowCopy returns obj itself.

The subobjects of ShallowCopy(obj) are identical to the subobjects of obj. Note that if the object
returned by ShallowCopy is mutable then it is always a new object. In particular, if the return value is
mutable, then it is not identical with the argument obj, no matter whether obj is mutable or immutable.
But of course the object returned by ShallowCopy is equal to 0bj w.r.t. the equality operator =.

Since ShallowCopy is an operation, the concrete meaning of “subobject” depends on the type of obj. But
for any copyable object obj, the definition should reflect the idea of “first level copying”.

The definition of ShallowCopy for lists (in particular for matrices) can be found in 21.7.
StructuralCopy(obj) F

In a few situations, one wants to make a structural copy scp of an object 0bj. This is defined as follows. scp
and obj are identical if obj is immutable. Otherwise, scp is a mutable copy of 0bj such that each subobject
of scp is a structural copy of the corresponding subobject of obj. Furthermore, if two subobjects of obj are
identical then also the corresponding subobjects of scp are identical.

1»

2»

3»

114 Chapter 12. Objects and Elements

gap> obj:= [[0, 11 1;;

gap> obj[2]:= obj[1];;

gap> obj[3]:= Immutable(obj[1]);;
gap> scp:= StructuralCopy(obj);;
gap> scp = obj; IsIdenticalObj(scp, obj);
true

false

gap> IsIdenticalObj(scpl[1], objl[1]);
false

gap> IsIdenticalObj(scpl[3], obj[3]);
true

gap> IsIdenticalObj(scpl1], scpl2]);
true

That both ShallowCopy and StructuralCopy return the argument obj itself if it is not copyable is consistent
with this definition, since there is no way to change obj by modifying the result of any of the two functions,
because in fact there is no way to change this result at all.

12.8 Other Operations Applicable to any Object

There are a number of general operations which can be applied, in principle, to any object in GAP. Some of
these are documented elsewhere — see 26.5.1, 6.2.3 and 6.2.4. Others are mainly somewhat technical.

SetName(obj, name) F

for a suitable object obj sets that object to have name name (a string).
Name (obj) A

returns the name, a string, previously assigned to obj via a call to SetName (see 12.8.1). The name of an
object is used only for viewing the object via this name.

There are no methods installed for computing names of objects, but the name may be set for suitable objects,
using SetName.

gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1)

gap> SetName(g, "S3");

gap> g;

S3

gap> Name(g) ;

||SB"

IsInternallyConsistent(obj) 0

For debugging purposes, it may be useful to check the consistency of an object 0bj that is composed from
other (composed) objects.

There is a default method of IsInternallyConsistent, with rank zero, that returns true. So it is possible
(and recommended) to check the consistency of subobjects of 0bj recursively by IsInternallyConsistent.

(Note that IsInternallyConsistent is not an attribute.)

1»

1 3 Types of Objects

Every GAP object has a type. The type of an object is the information which is used to decide whether an
operation is admissible or possible with that object as an argument, and if so, how it is to be performed
(see Chapter 2 in “Programming in GAP”).

For example, the types determine whether two objects can be multiplied and what function is called to
compute the product. Analogously, the type of an object determines whether and how the size of the object
can be computed. It is sometimes useful in discussing the type system, to identify types with the set of
objects that have this type. Partial types can then also be regarded as sets, such that any type is the
intersection of its parts.

The type of an object consists of two main parts, which describe different aspects of the object.

The family determines the relation of the object to other objects. For example, all permutations form a
family. Another family consists of all collections of permutations, this family contains the set of permutation
groups as a subset. A third family consists of all rational functions with coefficients in a certain family.

The other part of a type is a collection of filters (actually stored as a bit-list indicating, from the complete
set of possible filters, which are included in this particular type). These filters are all treated equally by
the method selection, but, from the viewpoint of their creation and use, they can be divided (with a small
number of unimportant exceptions) into categories, representations, attribute testers and properties. Each
of these is described in more detail below.

This chapter does not describe how types and their constituent parts can be created. Information about this
topic can be found in “Programming in GAP” in Section 3.)

Note: Detailed understanding of the type system is not required to use GAP. It can be helpful, however, to
understand how things work and why GAP behaves the way it does.

A discussion of the type system can be found in [BL9S].

13.1 Families

The family of an object determines its relationship to other objects.

More precisely, the families form a partition of all GAP objects such that the following two conditions hold:
objects that are equal w.r.t. ‘=’ lie in the same family; and the family of the result of an operation depends
only on the families of its operands.

The first condition means that a family can be regarded as a set of elements instead of a set of objects.
Note that this does not hold for categories and representations (see below), two objects that are equal w.r.t.
‘=2 need not lie in the same categories and representations. For example, a sparsely represented matrix can
be equal to a densely represented matrix. Similarly, each domain is equal w.r.t. ‘=’ to the sorted list of its
elements, but a domain is not a list, and a list is not a domain.

FamilyObj(obj) F
returns the family of the object obj.
The family of the object 0bj is itself an object, its family is the FamilyOfFamilies.

>

1»

116 Chapter 13. Types of Objects

It should be emphasized that families may be created when they are needed. For example, the family of
elements of a finitely presented group is created only after the presentation has been constructed. Thus
families are the dynamic part of the type system, that is, the part that is not fixed after the initialisation of
GAP.

Families can be parametrized. For example, the elements of each finitely presented group form a family of
their own. Here the family of elements and the finitely presented group coincide when viewed as sets. Note
that elements in different finitely presented groups lie in different families. This distinction allows GAP to
forbid multiplications of elements in different finitely presented groups.

As a special case, families can be parametrized by other families. An important example is the family of
collections that can be formed for each family. A collection consists of objects that lie in the same family,
it is either a nonempty dense list of objects from the same family or a domain.

Note that every domain is a collection, that is, it is not possible to construct domains whose elements lie
in different families. For example, a polynomial ring over the rationals cannot contain the integer 0 because
the family that contains the integers does not contain polynomials. So one has to distinguish the integer
zero from each zero polynomial.

Let us look at this example from a different viewpoint. A polynomial ring and its coefficients ring lie in
different families, hence the coefficients ring cannot be embedded “naturally” into the polynomial ring in the
sense that it is a subset. But it is possible to allow, e.g., the multiplication of an integer and a polynomial
over the integers. The relation between the arguments, namely that one is a coefficient and the other a
polynomial, can be detected from the relation of their families. Moreover, this analysis is easier than in a
situation where the rationals would lie in one family together with all polynomials over the rationals, because
then the relation of families would not distinguish the multiplication of two polynomials, the multiplication
of two coeflicients, and the multiplication of a coefficient with a polynomial. So the wish to describe relations
between elements can be taken as a motivation for the introduction of families.

13.2 Filters

A filter is a special unary GAP function that returns either true or false, depending on whether or not
the argument lies in the set defined by the filter. Filters are used to express different aspects of information
about a GAP object, which are described below (see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8).

Presently any filter in GAP is implemented as a function which corresponds to a set of positions in the bitlist
which forms part of the type of each GAP object, and returns true if and only if the bitlist of the type of
the argument has the value true at all of these positions.

The intersection (or meet) of two filters filt1, filt2 is again a filter, it can be formed as
filt1 and filt2

See 20.3.3 for more details.

For example, IsList and IsEmpty is a filter that returns true if its argument is an empty list, and false
otherwise. The filter IsGroup is defined as the intersection of the category IsMagmaWithInverses and the
property IsAssociative.

A filter that is not the meet of other filters is called a simple filter. For example, each attribute tester
(see 13.6) is a simple filter. Each simple filter corresponds to a position in the bitlist currently used as part
of the data structure representing a type.

Every filter filt has a rank, which is used to define a ranking of the methods installed for an operation, see
Section 2.2 in “Programming in GAP”. The rank of a filter can be accessed as

RankFilter(filt) F

For simple filters, an incremental rank is defined when the filter is created, see the sections about the
creation of filters 3.1, 3.2, 3.3, 3.4; all in “Programming in GAP”. For an arbitrary filter, its rank is given by

2>

3>

Section 3. Categories 117

the sum of the incremental ranks of the involved simple filters; in addition to the implied filters, these are
also the required filters of attributes (again see the sections about the creation of filters). In other words, for
the purpose of computing the rank and only for this purpose, attribute testers are treated as if they would
imply the requirements of their attributes.

NamesFilter (filt) F

NamesFilter returns a list of names of the implied simple filters of the filter filt, these are all those simple
filters émp such that every object in filt also lies in imp. For implications between filters, see 13.2.3 as well
as sections 2.7, 3.1, 3.2, 3.3 in “Programming in GAP”

ShowImpliedFilters(filter) F

Displays information about the filters that may be implied by filter. They are given by their names. Show—
ImpliedFilters first displays the names of all filters that are unconditionally implied by filter. It then
displays implications that require further filters to be present (indicating by + the required further filters).
The function displays only first-level implications, implications that follow in turn are not displayed (though
GAP will do these).

gap> ShowImpliedFilters(IsRationalFunction) ;
Implies:
IsNearAdditiveElementWithInverse
IsAdditiveElement
IsMultiplicativeElementWithInverse

May imply with:

+IsZero

+Tester (IsZero)
IsConstantRationalFunction
Tester (IsConstantRationalFunction)

13.3 Categories

The categories of an object are filters (see 13.2) determine what operations an object admits. For example,
all integers form a category, all rationals form a category, and all rational functions form a category. An
object which claims to lie in a certain category is accepting the requirement that it should have methods
for certain operations (and perhaps that their behaviour should satisfy certain axioms). For example, an
object lying in the category IsList must have methods for Length, IsBound\ [\] and the list element access
operation \ [\].

An object can lie in several categories. For example, a row vector lies in the categories IsList and IsVector;
each list lies in the category IsCopyable, and depending on whether or not it is mutable, it may lie in the
category IsMutable. Every domain lies in the category IsDomain.

Of course some categories of a mutable object may change when the object is changed. For example, af-
ter assigning values to positions of a mutable non-dense list, this list may become part of the category
IsDenselist.

However, if an object is immutable then the set of categories it lies in is fixed.

All categories in the library are created during initialization, in particular they are not created dynamically
at runtime.

The following list gives an overview of important categories of arithmetic objects. Indented categories are
to be understood as subcategories of the non indented category listed above it.

118 Chapter 13. Types of Objects

IsObject
IsExtLElement
IsExtRElement
IsMultiplicativeElement
IsMultiplicativeElementWithOne
IsMultiplicativeElementWithInverse
IsExtAElement
IsAdditiveElement
IsAdditiveElementWithZero
IsAdditiveElementWithInverse

Every object lies in the category IsObject.

The categories IsExtLElement and IsExtRElement contain objects that can be multiplied with other objects
via * from the left and from the right, respectively. These categories are required for the operands of the
operation *.

The category IsMultiplicativeElement contains objects that can be multiplied from the left and from
the right with objects from the same family. IsMultiplicativeElementWithOne contains objects obj for
which a multiplicatively neutral element can be obtained by taking the zeroth power 0bj~0. IsMultiplica-
tiveElementWithInverse contains objects 0bj for which a multiplicative inverse can be obtained by forming
obj~-1.

Likewise, the categories IsExtAElement, IsAdditiveElement, IsAdditiveElementWithZero, and IsAddi-
tiveElementWithInverse contain objects that can be added via + to other objects, objects that can be
added to objects of the same family, objects for which an additively neutral element can be obtained by
multiplication with zero, and objects for which an additive inverse can be obtained by multiplication with
-1.

So a vector lies in IsExtLElement, IsExtRElement, and IsAdditiveElementWithInverse. A ring element
must additionally lie in IsMultiplicativeElement.

As stated above it is not guaranteed by the categories of objects whether the result of an operation with these
objects as arguments is defined. For example, the category IsMatrix is a subcategory of IsMultiplica-
tiveElementWithInverse. Clearly not every matrix has a multiplicative inverse. But the category IsMatrix
makes each matrix an admissible argument of the operation Inverse, which may sometimes return ’fail’.
Likewise, two matrices can be multiplied only if they are of appropriate shapes.

Analogous to the categories of arithmetic elements, there are categories of domains of these elements.

IsObject
IsDomain
IsMagma
IsMagmaWithOne
IsMagmaWithInversesIfNonzero
IsMagmaWithInverses
IsAdditiveMagma
IsAdditiveMagmaWithZero
IsAdditiveMagmaWithInverses
IsExtLSet
IsExtRSet

Of course IsDomain is a subcategory of IsObject. A domain that is closed under multiplication * is called
a magma and it lies in the category IsMagma. If a magma is closed under taking the identity, it lies in
IsMagmaWithOne, and if it is also closed under taking inverses, it lies in IsMagmaWithInverses. The category
IsMagmaWithInversesIfNonzero denotes closure under taking inverses only for nonzero elements, every
division ring lies in this category.

1»

Section 4. Representation 119

Note that every set of categories constitutes its own notion of generation, for example a group may be
generated as a magma with inverses by some elements, but to generate it as a magma with one it may be
necessary to take the union of these generators and their inverses.

CategoriesOfObject (object) O

returns a list of the names of the categories in which object lies.

gap> g:=Group((1,2),(1,2,3));;

gap> CategoriesOfObject(g);

["IsListOrCollection", "IsCollection", "IsExtLElement",
"CategoryCollections(IsExtLElement)", "IsExtRElement",
"CategoryCollections (IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)",
"CategoryCollections(IsMultiplicativeElementWithOne)",
"CategoryCollections(IsMultiplicativeElementWithInverse)",
"CategoryCollections(IsAssociativeElement)",
"CategoryCollections(IsFiniteOrderElement)", "CategoryCollections(IS_PERM)",
"IsGeneralizedDomain", "IsMagma", "IsMagmaWithOne",
"IsMagmaWithInversesIfNonzero", "IsMagmaWithInverses"]

13.4 Representation

The representation of an object is a set of filters (see 13.2) that determines how an object is actually
represented. For example, a matrix or a polynomial can be stored sparsely or densely; all dense polynomials
form a representation. An object which claims to lie in a certain representation is accepting the requirement
that certain fields in the data structure be present and have specified meanings.

GAP distinguishes four essentially different ways to represent objects. First there are the representations
IsInternalRep for internal objects such as integers and permutations, and IsDataObjectRep for other ob-
jects that are created and whose data are accessible only by kernel functions. The data structures underlying
such objects cannot be manipulated at the GAP level.

All other objects are either in the representation IsComponentObjectRep or in the representation IsPosi-
tionalObjectRep, see 3.9 and 3.10 in “Programming in GAP”.

An object can belong to several representations in the sense that it lies in several subrepresentations of
IsComponentObjectRep or of IsPositionalObjectRep. The representations to which an object belongs
should form a chain and either two representations are disjoint or one is contained in the other. So the
subrepresentations of IsComponentObjectRep and IsPositionalObjectRep each form trees. In the language
of Object Oriented Programming, we support only single inheritance for representations.

These trees are typically rather shallow, since for one representation to be contained in another implies that
all the components of the data structure implied by the containing representation, are present in, and have
the same meaning in, the smaller representation (whose data structure presumably contains some additional
components).

Objects may change their representation, for example a mutable list of characters can be converted into a
string.

All representations in the library are created during initialization, in particular they are not created dynam-
ically at runtime.

Examples of subrepresentations of IsPositionalObjectRep are IsModulusRep, which is used for residue
classes in the ring of integers, and IsDenseCoeffVectorRep, which is used for elements of algebras that are
defined by structure constants.

An important subrepresentation of IsComponentObjectRep is IsAttributeStoringRep, which is used for
many domains and some other objects. It provides automatic storing of all attribute values (see below).

1»

1»

120 Chapter 13. Types of Objects

RepresentationsOf0bject(object) O
returns a list of the names of the representations object has.

gap> g:=Group((1,2),(1,2,3));;
gap> Representations0fObject(g);
["IsComponentObjectRep", "IsAttributeStoringRep"]

13.5 Attributes

The attributes of an object are filters (see 13.2) that describe knowledge about it.
An attribute is a unary operation without side-effects.

An object may store values of its attributes once they have been computed, and claim that it knows these
values. Note that “store” and “know” have to be understood in the sense that it is very cheap to get such
a value when the attribute is called again.

The stored value of an attribute is in general immutable (see 12.6), except if the attribute had been specally
constructed as “mutable attribute”.

It depends on the representation of an object (see 13.4) which attribute values it stores. An object in
the representation IsAttributeStoringRep stores all attribute values once they are computed. Moreover,
for an object in this representation, subsequent calls to an attribute will return the same object; this
is achieved via a special method for each attribute setter that stores the attribute value in an object in
IsAttributeStoringRep, and a special method for the attribute itself that fetches the stored attribute
value. (These methods are called the “system setter” and the “system getter” of the attribute, respectively.)

Note also that it is impossible to get rid of a stored attribute value because the system may have drawn
conclusions from the old attribute value, and just removing the value might leave the data structures in an
inconsistent state. If necessary, a new object can be constructed.

Properties are a special form of attributes that have the value true or false, see section 13.7.

All attributes in the library are created during initialization, in particular they are not created dynamically
at runtime.

Examples of attributes for multiplicative elements are Inverse, One, and Order. Size is an attribute for
domains, Centre is an attribute for magmas, and DerivedSubgroup is an attribute for groups.

KnownAttributes0f0Object (object) O

returns a list of the names of the attributes whose values are known for object.

gap> g:=Group((1,2),(1,2,3));;8ize(g);;

gap> KnownAttributes0fObject(g);

["Size", "OneImmutable", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement", "Pcgs",
"StabChainMutable", "StabChainOptions"]

Several attributes have methods for more than one argument. For example IsTransitive (see 39.9.1) is
an attribute for a G-set that can also be called for the two arguments, being a group G and its operation
domain. If attributes are called with more than one argument then the return value is not stored in any of
the arguments.

1»

2>

3>

Section 6. Setter and Tester for Attributes 121

13.6 Setter and Tester for Attributes

For every attribute two further operations, the attribute setter and the attribute tester are defined.

To check whether an object belongs to an attribute attr, the tester
Tester(attr) O

of the attribute is used; this is a filter (see 13.2) that returns true or false, depending on whether or not
the value of attr for the object is known. For example, Tester(Size) (obj) is true if the size of the
object obj is known.

To store a value for the attribute attr in an object, the setter
Setter(attr) O

of the attribute is used. The setter is called automatically when the attribute value has been computed for
the first time. One can also call the setter explicitly, for example, Setter(Size) (obj, wval) sets val as
size of the object o0bj if the size was not yet known.

For each attribute attr that is declared with DeclareAttribute resp. DeclareProperty (see 3.15 in “Pro-
gramming in GAP”), tester and setter are automatically made accessible by the names Hasattr and Setatir,
respectively. For example, the tester for Size is called HasSize, and the setter is called SetSize.

gap> g:=Group((1,2,3,4),(1,2));;Size(g);
24

gap> HasSize(g);

true

gap> SetSize(g,99);

gap> Size(g);

24

For two properties propl and prop2, the intersection propl and prop2 (see 13.2) is again a property for
which a setter and a tester exist. Setting the value of this intersection to true for a GAP object means to
set the values of prop! and prop2 to true for this object.

gap> prop:= IsFinite and IsCommutative;
<Operation "<<and-filter>>">

gap> g:= Group((1,2,3), (4,5));;

gap> Tester(prop)(g);

false

gap> Setter(prop)(g, true);

gap> Tester(prop)(g); prop(g);
true

true

It is not allowed to set the value of such an intersection to false for an object.

gap> Setter(prop)(Rationals, false);

You cannot set an "and-filter" except to true

not in any function

Entering break read-eval-print loop, you can ’quit;’ to quit to outer loop,
or you can return true to set all components true,

but you might really want to reset just one component to continue

AttributeValueNotSet (attr, obj) F

If the value of the attribute attr is already stored for obj, AttributeValueNotSet simply returns this value.
Otherwise the value of attr(obj) is computed and returned without storing it in 0b;j. This can be useful

4»

5»

6>

122 Chapter 13. Types of Objects

when “large” attribute values (such as element lists) are needed only once and shall not be stored in the
object.

gap> HasAsSSortedList(g);

false

gap> AttributeValueNotSet (AsSSortedList,g);

L O, 4,5, (1,2,3), (1,2,3)4,5), (1,3,2), (1,3,2)(4,5) 1
gap> HasAsSSortedList(g);

false

The normal behaviour of attributes (when called with just one argument) is that once a method has been
selected and executed, and has returned a value the setter of the attribute is called, to (possibly) store the
computed value. In special circumstances, this behaviour can be altered dynamically on an attribute-by-
attribute basis, using the functions DisableAttributeValueStoring and EnableAttributeValueStoring.

In general, the code in the library assumes, for efficiency, but not for correctness, that attribute values will
be stored (in suitable objects), so disabling storing may cause substantial computations to be repeated.

InfoAttributes A%

This info class (together with InfoWarning; see 7.4.6) is used for messages about attribute storing being
disabled (at level 2) or enabled (level 3). It may be used in the future for other messages concerning changes
to attribute behaviour.

DisableAttributeValueStoring(attr) F

disables the usual call of Setter(attr) when a method for attr returns a value. In consequence the values
will never be stored. Note that atir must be an attribute and not a property.

EnableAttributeValueStoring(atir) F

enables the usual call of Setter(attr) when a method for attr returns a value. In consequence the values
may be stored. This will usually have no effect unless DisableAttributeValueStoring has previously been
used for attr. Note that attr must be an attribute and not a property.

gap> g := Group((1,2,3,4,5),(1,2,3));

Group([(1,2,3,4,5), (1,2,3) 1)

gap> KnownAttributes0fObject(g) ;

["LargestMovedPoint", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement"]

gap> SetInfoLevel (InfoAttributes,3);

gap> DisableAttributeValueStoring(Size);

#I Disabling value storing for Size

gap> Size(g);

60

gap> KnownAttributesOf0Object(g);

["OneImmutable", "LargestMovedPoint", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement",
"StabChainMutable", "StabChainOptions"]

gap> Size(g);

60

gap> EnableAttributeValueStoring(Size);

#I Enabling value storing for Size

gap> Size(g);

60

gap> KnownAttributesOfObject(g);

1»

2»

Section 7. Properties 123

["Size", "OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable", "StabChainOptions"]

13.7 Properties

The properties of an object are those of its attributes (see 13.5) whose values can only be true or false.

The main difference between attributes and properties is that a property defines two sets of objects, namely
the usual set of all objects for which the value is known, and the set of all objects for which the value is
known to be true.

(Note that it makes no sense to consider a third set, namely the set of objects for which the value of a
property is true whether or not it is known, since there may be objects for which the containment in this
set cannot be decided.)

For a property prop, the containment of an object obj in the first set is checked again by applying Tester (
prop) to obj, and obj lies in the second set if and only if Tester(prop)(obj) and prop(obj) is
true.

If a property value is known for an immutable object then this value is also stored, as part of the type of
the object. To some extent, property values of mutable objects also can be stored, for example a mutable
list all of whose entries are immutable can store whether it is strictly sorted. When the object is mutated
(for example by list assignment) the type may need to be adjusted.

Important properties for domains are IsAssociative, IsCommutative, IsAnticommutative, IsLDistribu-
tive, and IsRDistributive, which mean that the multiplication of elements in the domain satisfies (a *
b)xc=ax(bxc),axb=bxa,axb=—(bxa),ax(b+c)=axbt+axc,and (a+b)xc=ax*xc+bx*c,
respectively, for all a, b, ¢ in the domain.

KnownPropertiesOfObject (object) 0
returns a list of the names of the properties whose values are known for object.
KnownTrueProperties0f0bject (object) 0]

returns a list of the names of the properties known to be true for object.

gap> g:=Group((1,2),(1,2,3));;

gap> KnownPropertiesOfObject(g);

["IsFinite", "CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses", "IsAssociative",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsChainTypeGroup", "IsStabChainViaChainSubgroup"]

gap> Size(g);

6
gap> KnownProperties0fObject(g);
["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",

"CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",

"IsGeneratorsOfMagmaWithInverses", "IsAssociative",

"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",

"KnowsHowToDecompose", "IsPerfectGroup", "IsSolvableGroup",

"IsPolycyclicGroup", "IsChainTypeGroup", "IsStabChainViaChainSubgroup"]
gap> KnownTrueProperties0fObject(g);

["IsNonTrivial", "IsFinite", "CanEasilyCompareElements",
"CanEasilySortElements", "IsDuplicateFree",
"IsGeneratorsOfMagmaWithInverses", "IsAssociative",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsSolvableGroup", "IsPolycyclicGroup"]

124 Chapter 13. Types of Objects

13.8 Other Filters

There are situations where one wants to express a kind of knowledge that is based on some heuristic.

For example, the filters (see 13.2) CanEasilyTestMembership and CanEasilyComputePcgs are defined in
the GAP library. Note that such filters do not correspond to a mathematical concept, contrary to properties
(see 13.7). Also it need not be defined what “easily” means for an arbitrary GAP object, and in this case
one cannot compute the value for an arbitrary GAP object. In order to access this kind of knowledge as a
part of the type of an object, GAP provides filters for which the value is false by default, and it is changed
to true in certain situations, either explicitly (for the given object) or via a logical implication (see 2.7 in
“Programming in GAP”) from other filters.

For example, a true value of CanEasilyComputePcgs for a group means that certain methods are applicable
that use a pcgs (see 43.1) for the group. There are logical implications to set the filter value to true for
permutation groups that are known to be solvable, and for groups that have already a (sufficiently nice)
pcgs stored. In the case one has a solvable matrix group and wants to enable methods that use a pcgs, one
can set the CanEasilyComputePcgs value to true for this particular group.

A filter filt of the kind described here is different from the other filters introduced in the previous sections.
In particular, filt is not a category (see 13.3) or a property (see 13.7) because its value may change for a
given object, and filt is not a representation (see 13.4) because it has nothing to do with the way an object
is made up from some data. filt is similar to an attribute tester (see 13.6), the only difference is that filt does
not refer to an attribute value; note that filt is also used in the same way as an attribute tester; namely, the
true value may be required for certain methods to be applicable.

13.9 Types

We stated above (see 13) that, for an object obj, its type is formed from its family and its filters. There is
a also a third component, used in a few situations, namely defining data of the type.

1» TypeObj(obj) F

returns the type of the object 0bj.
The type of an object is itself an object.

Two types are equal if and only if the two families are identical, the filters are equal, and, if present, also
the defining data of the types are equal.

The last part of the type, defining data, has not been mentioned before and seems to be of minor importance.
It can be used, e.g., for cosets Ug of a group U, where the type of each coset may contain the group U as
defining data. As a consequence, two such cosets mod U and V can have the same type only if U = V. The
defining data of the type type can be accessed as

2» DataType(type) F

Integers

One of the most fundamental datatypes in every programming language is the integer type. GAP is no
exception.

GAP integers are entered as a sequence of decimal digits optionally preceded by a + sign for positive integers
or a - sign for negative integers. The size of integers in GAP is only limited by the amount of available
memory, so you can compute with integers having thousands of digits.

gap> -1234;

-1234

gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

Many more functions that are mainly related to the prime residue group of integers modulo an integer are
described in chapter 15, and functions dealing with combinatorics can be found in chapter 17.

Integers \%
PositiveIntegers \%
NonnegativeIntegers A%

These global variables represent the ring of integers and the semirings of positive and nonnegative integers,
respectively.

gap> Size(Integers); 2 in Integers;
infinity
true

IsIntegers(obj)

IsPositiveIntegers(obj)
IsNonnegativeIntegers(obj)

Qaa

are the defining categories for the domains Integers, PositiveIntegers, and NonnegativeIntegers.

gap> IsIntegers(Integers); IsIntegers(Rationals); IsIntegers(7);
true
false
false

Integers is a subset of Rationals, which is a subset of Cyclotomics. See Chapter 18 for arithmetic
operations and comparison of integers.

1»

3>

4»

5»

6 »

7>

126 Chapter 14. Integers

14.1 Elementary Operations for Integers
IsInt(obj) C
Every rational integer lies in the category IsInt, which is a subcategory of IsRat (see 16).

IsPosInt(obj) C

Every positive integer lies in the category IsPosInt.

Int(elm) A

Int returns an integer int whose meaning depends on the type of elm.

If elm is a rational number (see 16) then int is the integer part of the quotient of numerator and denominator
of elm (see 14.2.1).

If elm is an element of a finite prime field (see Chapter 57) then int is the smallest nonnegative integer such
that elm = int * One(elm).

If elm is a string (see Chapter 26) consisting of digits *0?, >1?, ..., ’9? and ’-’ (at the first position) then
int is the integer described by this string. The operation String (see 26.5.1) can be used to compute a string
for rational integers, in fact for all cyclotomics.

gap> Int(4/3); 1Int(-2/3);

1

0

gap> int:= Int(Z(5)); int * One(Z(5));

2

Z(5)

gap> Int("12345"); Int("-27"); Int("-27/3");
12345

=27

fail

IsEvenInt(n) F
tests if the integer n is divisible by 2.

Is0ddInt(n) F
tests if the integer n is not divisible by 2.

AbsInt(n) F
AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative and 0 if n is 0.

AbsInt is a special case of the general operation EuclideanDegree see 54.6.2).

See also 18.1.6.

gap> AbsInt(33);

33

gap> AbsInt(-214378);
214378

gap> AbsInt(0);

0

SignInt(n) F
SignInt returns the sign of the integer n, i.e., 1 if n is positive, -1 if n is negative and 0 if n is 0.

gap> SignInt(33);

8>

10»

11»

Section 1. Elementary Operations for Integers 127

1
gap> SignInt(-214378);
-1
gap> SignInt(0);
0
LogInt(n, base) F

LogInt returns the integer part of the logarithm of the positive integer n with respect to the positive integer
base, i.e., the largest positive integer exp such that base®? < n. LogInt will signal an error if either n or
base is not positive.

For base 2 this is very efficient because the internal binary representation of the integer is used.

gap> LogInt(1030, 2);

10 # 2710 = 1024

gap> LogInt(1, 10);

0
RootInt(n) F
RootInt(n, k) F

RootInt returns the integer part of the kth root of the integer n. If the optional integer argument k is not
given it defaults to 2, i.e., RootInt returns the integer part of the square root in this case.

If n is positive, RootInt returns the largest positive integer r such that r* < n. If n is negative and k is odd
RootInt returns -RootInt(-n, k). If n is negative and k is even RootInt will cause an error. RootInt
will also cause an error if k& is 0 or negative.

gap> RootInt(361);

19

gap> RootInt(2 * 10712);
1414213

gap> RootInt(17000, 5);
7 # 775 = 16807

SmallestRootInt(n) F

SmallestRootInt returns the smallest root of the integer n.

The smallest root of an integer n is the integer r of smallest absolute value for which a positive integer k

exists such that n = r*.

gap> SmallestRootInt(2730);

2

gap> SmallestRootInt(-(2730));

-4 # note that $(-2)7{30} = +(2°{301)%
gap> SmallestRootInt(279936);

6

gap> LogInt(279936, 6);

7

gap> SmallestRootInt(1001);

1001

Random(Integers)

Random for integers returns pseudo random integers between -10 and 10 distributed according to a binomial
distribution. To generate uniformly distributed integers from a range, use the construct 'Random([low ..
high])’. (Also see 28.6.1.)

1»

2»

4»

5»

128 Chapter 14. Integers

14.2 Quotients and Remainders
QuoInt(n, m) F

QuoInt returns the integer part of the quotient of its integer operands.

If n and m are positive QuoInt(n, m) is the largest positive integer ¢ such that ¢« m < n. If n or m or
both are negative the absolute value of the integer part of the quotient is the quotient of the absolute values
of n and m, and the sign of it is the product of the signs of n and m.

QuoInt is used in a method for the general operation EuclideanQuotient (see 54.6.3).

gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); QuoInt(-5,-3);
1
-1
-1
1

BestQuoInt(n, m) F

BestQuolInt returns the best quotient ¢ of the integers m and m. This is the quotient such that n—-g*m has
minimal absolute value. If there are two quotients whose remainders have the same absolute value, then the
quotient with the smaller absolute value is chosen.

gap> BestQuoInt(5, 3); BestQuolInt(-5, 3);
2
-2

RemInt(n, m) F

RemInt returns the remainder of its two integer operands.

If m is not equal to zero RemInt(n, m) = n - m * QuoInt(n, m). Note that the rules given for
QuoInt imply that RemInt(n, m) has the same sign as n and its absolute value is strictly less than the
absolute value of m. Note also that RemInt(n, m) = n mod m when both n and m are nonnegative.
Dividing by 0 signals an error.

RemInt is used in a method for the general operation EuclideanRemainder (see 54.6.4).

gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);
2

-2

2

-2

GedInt(m, n) F

GedInt returns the greatest common divisor of its two integer operands m and n, i.e., the greatest integer
that divides both m and n. The greatest common divisor is never negative, even if the arguments are. We
define GedInt(m, 0) = GedInt(0, m) = AbsInt(m) and GedInt(0, 0) = O.

GedInt is a method used by the general function Ged (see 54.7.1).

gap> GedInt(123, 66);
3

Gedex(m, n) F

returns a record ¢ describing the extended greatest common divisor of m and n. The component gcd is
this ged, the components coeffl and coeff2 are integer cofactors such that g.ged = g.coeffl * m +

6»

7>

8P

9>

10»

Section 2. Quotients and Remainders 129

g.coeff2 * n, and the components coeff3 and coeff4 are integer cofactors such that 0 = g.coeff3 *
m + g.coeffd *x n.

If m and n both are nonzero, AbsInt(g.coeffl) is less than or equal to AbsInt(n) / (2 * g.gcd) and
AbsInt(g.coeff2) is less than or equal to AbsInt(m) / (2 * g.gcd).

If m or n or both are zero coeff3is -n / g.gcd and coeffdis m / g¢.gcd.

The coefficients always form a unimodular matrix, i.e., the determinant g.coeffl * g.coeff4 - g.coeff3
* g.coeff2is 1 or —1.

gap> Gedex(123, 66);

rec(gcd := 3, coeffl := 7, coeff2 := -13, coeff3 := -22, coeffd := 41)
3 = 7%123 - 13%66, 0 = -22%123 + 41%66

gap> Gcdex(0, -3);

rec(gcd := 3, coeffl := 0, coeff2 := -1, coeff3 := 1, coeffd := 0)
gap> Gecdex(0, 0);
rec(gcd := 0, coeffl := 1, coeff2 := 0, coeff3 := 0, coeffd := 1)
LemInt(m, n) F

returns the least common multiple of the integers m and n.
LemInt is a method used by the general function Lem.

gap> LemInt(123, 66);
2706

CoefficientsQadic(i, ¢q) F
returns the g-adic representation of the integer ¢ as a list [of coefficients where i = Z]‘:o ¢ -5 +1].
CoefficientsMultiadic(ints, int) F

returns the multiadic expansion of the integer int modulo the integers given in ints (in ascending order). It
returns a list of coefficients in the reverse order to that in ints.

ChineseRem(moduli, residues) F

ChineseRem returns the combination of the residues modulo the moduli, i.e., the unique integer ¢ from
[0..Lecm(moduli)-1] such that ¢ = residues[i] modulo moduli [i] for all i, if it exists. If no such combi-
nation exists ChineseRem signals an error.

Such a combination does exist if and only if residues [i]=residues [k] mod Ged (moduli[i] , moduli[k]) for
every pair i, k. Note that this implies that such a combination exists if the moduli are pairwise relatively
prime. This is called the Chinese remainder theorem.

gap> ChineseRem([2, 3, 5, 71, [1, 2, 3, 41);
53

gap> ChineseRem([6, 10, 14 1, [1, 3, 51);
103

gap> ChineseRem([6, 10, 14 1, [1, 2, 31);
Error, the residues must be equal modulo 2 called from
. lines omitted here ...

PowerModInt(r, e, m) F

returns 7 (mod m) for integers r,e and m (e > 0). Note that using r ~ e mod m will generally be slower,
because it can not reduce intermediate results the way PowerModInt does but would compute r~e first and
then reduce the result afterwards.

PowerModInt is a method for the general operation PowerMod.

1»

2»

3>

130 Chapter 14. Integers

14.3 Prime Integers and Factorization
Primes v

Primes is a strictly sorted list of the 168 primes less than 1000.

This is used in IsPrimeInt and FactorsInt to cast out small primes quickly.

gap> Primes[1];

2

gap> Primes[100];

541
IsPrimeInt(n) F
IsProbablyPrimeInt(n) F

IsPrimeInt returns false if it can prove that n is composite and true otherwise. By convention Is-
PrimeInt(0) = IsPrimelInt(1) = false and we define IsPrimeInt(-n) = IsPrimeInt(n).

IsPrimeInt will return true for every prime n. IsPrimeInt will return false for all composite n < 10'3
and for all composite n that have a factor p < 1000. So for integers n < 10'3, IsPrimeInt is a proper
primality test. It is conceivable that IsPrimeInt may return true for some composite n > 10'3, but no
such n is currently known. So for integers n > 10'3, IsPrimeInt is a probable-primality test. Therefore
IsPrimeInt will issue a warning when called with an argument > 10'3. (The function IsProbablyPrimeInt
will do the same calculations but not issue a warning.)

If composites that fool IsPrimeInt do exist, they would be extremely rare, and finding one by pure chance
might be less likely than finding a bug in GAP. We would appreciate being informed about any example of
a composite number n for which IsPrimeInt returns true.

IsPrimeInt is a deterministic algorithm, i.e., the computations involve no random numbers, and repeated
calls will always return the same result. IsPrimeInt first does trial divisions by the primes less than 1000.
Then it tests that n is a strong pseudoprime w.r.t. the base 2. Finally it tests whether n is a Lucas
pseudoprime w.r.t. the smallest quadratic nonresidue of n. A better description can be found in the comment
in the library file integer.gi.

The time taken by IsPrimelInt is approximately proportional to the third power of the number of digits of
n. Testing numbers with several hundreds digits is quite feasible.

IsPrimeInt is a method for the general operation IsPrime.
gap> IsPrimeInt(2731 - 1);
true

gap> IsPrimeInt(10742 + 1);
false

IsPrimePowerInt(n) F

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.

n is a prime power if there exists a prime p and a positive integer i such that p’ = n. If n is negative the
condition is that there must exist a negative prime p and an odd positive integer ¢ such that p’ = n. 1 and
-1 are not prime powers.

Note that IsPrimePowerInt uses SmallestRootInt (see 14.1.10) and a probable-primality test (see 14.3.2).

4»

5»

Section 3. Prime Integers and Factorization 131

gap> IsPrimePowerInt(3175);

true

gap> IsPrimePowerInt(2731-1);

true # $2°{31}-1$ is actually a prime
gap> IsPrimePowerInt(2763-1);

false

gap> Filtered([-10..10], IsPrimePowerInt);
(-8, -7, -5, -3, -2, 2, 3, 4,5, 7,8, 91

NextPrimeInt(n) F
NextPrimeInt returns the smallest prime which is strictly larger than the integer n.
Note that NextPrimeInt uses a probable-primality test (see 14.3.2).

gap> NextPrimeInt(541); NextPrimeInt(-1);
547
2

PrevPrimeInt(n) F

PrevPrimeInt returns the largest prime which is strictly smaller than the integer n.

Note that PrevPrimeInt uses a probable-primality test (see 14.3.2).
gap> PrevPrimeInt(541); PrevPrimelInt(1);

523

-2
FactorsInt(n) F
FactorsInt(n : RhoTrials := trials) F

FactorsInt returns a list of prime factors of the integer n.

If the ith power of a prime divides n this prime appears i times. The list is sorted, that is the smallest
prime factors come first. The first element has the same sign as n, the others are positive. For any integer
n it holds that Product(FactorsInt(n)) = n.

Note that FactorsInt uses a probable-primality test (see 14.3.2). Thus FactorsInt might return a list
which contains composite integers.

The time taken by FactorsInt is approximately proportional to the square root of the second largest prime
factor of n, which is the last one that FactorsInt has to find, since the largest factor is simply what remains
when all others have been removed. Thus the time is roughly bounded by the fourth root of n. FactorsInt
is guaranteed to find all factors less than 10% and will find most factors less than 10'°. If n contains multiple
factors larger than that FactorsInt may not be able to factor n and will then signal an error.

FactorsInt is used in a method for the general operation Factors.

In the second form, FactorsInt calls FactorsRho with a limit of ¢rials on the number of trials is performs.
The default is 8192.

gap> FactorsInt(-Factorial(6));

[-2, 2,2, 2,3,3,5]1]

gap> Set(FactorsInt(Factorial(13)/11));

[2, 3,5, 7, 13]

gap> FactorsInt(2763 - 1);

L7, 7, 73, 127, 337, 92737, 649657]

gap> FactorsInt(10742 + 1);

#I beyond the guaranteed bound of the probabilistic primality test

7>

8>

9>

1»

v

132 Chapter 14. Integers

[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]
PrintFactorsInt(n) F
prints the prime factorization of the integer n in human-readable form.

gap> PrintFactorsInt(Factorial(7)); Print("\n");
274%372%5%7

PrimePowersInt(n) F
returns the prime factorization of the integer n as a list [p1, 1, ..., pa, €,] with n = [["_, pf".

gap> PrimePowersInt(Factorial(7));
[2, 4’ 3, 2’ 5’ 1, 7) 1]

DivisorsInt(n) F

DivisorsInt returns a list of all divisors of the integer n. The list is sorted, so that it starts with 1 and
ends with n. We define that Divisors(-n) = Divisors(n).
Since the set of divisors of 0 is infinite calling DivisorsInt(O) causes an error.

DivisorsInt may call FactorsInt to obtain the prime factors. Sigma and Tau (see 15.4.1 and 15.4.2)
compute the sum and the number of positive divisors, respectively.

gap> DivisorsInt(1); DivisorsInt(20); DivisorsInt(541);

(1]
[1, 2, 4, 5, 10, 20 1]
[1, 541 1]

14.4 Residue Class Rings

r / s mod n

If r, s and n are integers, r / s as a reduced fraction is p / ¢, and ¢ and n are coprime, then r / s mod
n is defined to be the product of p and the inverse of ¢ modulo n. See Section 4.12 for more details and
definitions.

With the above definition, 4 / 6 mod 32 equals2 / 3 mod 32 and hence exists (and is equal to 22), despite
the fact that 6 has no inverse modulo 32.

ZmodnZ(n)
ZmodpZ(p)
ZmodpZNC(p)

=

ZmodnZ returns a ring R isomorphic to the residue class ring of the integers modulo the positive integer n.
The element corresponding to the residue class of the integer 7 in this ring can be obtained by 4 * One(R),
and a representative of the residue class corresponding to the element x € R can be computed by Int(z).

ZmodnZ(n) is equivalent to Integers mod n.

ZmodpZ does the same if the argument p is a prime integer, additionally the result is a field. ZmodpZNC omits
the check whether p is a prime.

Each ring returned by these functions contains the whole family of its elements if n is not a prime, and is
embedded into the family of finite field elements of characteristic n if n is a prime.

3>

vyvyVvyVvyy

Section 4. Residue Class Rings 133

ZmodnZ0bj(Fam, 1) O
ZmodnZ0bj(r, n) O

If the first argument is a residue class family Fam then ZmodnZ0Obj returns the element in Fam whose coset is
represented by the integer r. If the two arguments are an integer r and a positive integer n then ZmodnZ0bj
returns the element in ZmodnZ(n) (see 14.4.2) whose coset is represented by the integer r.

gap> r:= ZmodnZ(15);

(Integers mod 15)

gap> fam:=ElementsFamily(FamilyObj(r));;
gap> a:= ZmodnZ0Obj(fam,9) ;

ZmodnZ0bj(9, 15)

gap> ata;

ZmodnZ0Obj(3, 15)

gap> Int(a+a);

3

IsZmodnZ0bj(obj)
IsZmodnZ0bjNonprime(obj)
IsZmodpZ0bj(obj)
IsZmodpZ0bjSmall(obj)
IsZmodpZ0ObjLarge(obj)

Qaaaa

The elements in the rings Z/nZ are in the category IsZmodnZ0bj. If n is a prime then the elements are of
course also in the category ISFFE (see 57.1.1), otherwise they are in IsZmodnZ0bjNonprime. IsZmodpZ0bj is
an abbreviation of IsZmodnZ0Obj and ISFFE. This category is the disjoint union of IsZmodpZObjSmall and
IsZmodpZ0ObjLarge, the former containing all elements with n at most MAXSIZE_GF_INTERNAL.

The reasons to distinguish the prime case from the nonprime case are

— that objects in IsZmodnZ0bjNonprime have an external representation (namely the residue in the range
[0,1,...,n—1]),

— that the comparison of elements can be defined as comparison of the residues, and

— that the elements lie in a family of type IsZmodnZ0bjNonprimeFamily (note that for prime n, the family
must be an IsFFEFamily).

The reasons to distinguish the small and the large case are that for small n the elements must be compat-
ible with the internal representation of finite field elements, whereas we are free to define comparison as
comparison of residues for large n.

Note that we cannot claim that every finite field element of degree 1 is in IsZmodnZ0Obj, since finite field
elements in internal representation may not know that they lie in the prime field.

The residue class rings are rings, thus all operations for rings (see Chapter 54) apply. See also Chapters 57
and 15.

1»

1»

2>

3

1 5 Number Theory

GAP provides a couple of elementary number theoretic functions. Most of these deal with the group of
integers coprime to m, called the prime residue group. ¢(m) (see 15.1.2) is the order of this group, A(m)
(see 15.1.3) the exponent. If and only if m is 2, 4, an odd prime power p¢, or twice an odd prime power
2p¢, this group is cyclic. In this case the generators of the group, i.e., elements of order ¢(m), are called
primitive roots (see 15.2.3, 15.2.4).

Note that neither the arguments nor the return values of the functions listed below are groups or group
elements in the sense of GAP. The arguments are simply integers.

InfoNumtheor Vv

InfoNumtheor is the info class (see 7.4) for the functions in the number theory chapter.

15.1 Prime Residues

PrimeResidues(m) F

PrimeResidues returns the set of integers from the range 0..Abs(m)-1 that are coprime to the integer m.

Abs (m) must be less than 228, otherwise the set would probably be too large anyhow.

gap> PrimeResidues(O); PrimeResidues(1); PrimeResidues(20);

L]
0]
[1, 3, 7,9, 11, 13, 17, 19]

Phi(m) F

Phi returns the number ¢(m) of positive integers less than the positive integer m that are coprime to m.
Suppose that m = p{*ps> -~ p*. Then ¢(m) is p{* ' (p1 —)pg2 (p2 — 1) - pH(pr — 1).

gap> Phi(12); Phi(2713-1); Phi(2715-1);

4

8190 # which proves that 27(13)-1 is a prime
27000

Lambda(m) F

Lambda returns the exponent A(m) of the group of prime residues modulo the integer m.

A(m) is the smallest positive integer [such that for every a relatively prime to m we have ! =1 (mod m).
Fermat’s theorem asserts a®™ =1 (mod m); thus A(m) divides ¢(m) (see 15.1.2).

Carmichael’s theorem states that A can be computed as follows: A(2) = 1, A\(4) = 2 and A(2°) = 2°72 if
3< e AMp®) = (p—1)pc ! (i.e. p(m)) if p is an odd prime and A(n * m) = Lem(A(n), A\(m)) if n, m are
coprime.

4»

1»

2>

Section 2. Primitive Roots and Discrete Logarithms 135

Composites for which A(m) divides m — 1 are called Carmichaels. If 6k + 1, 12k + 1 and 18% + 1 are primes
their product is such a number. There are only 1547 Carmichaels below 10'° but 455052511 primes.

gap> Lambda(10);

4

gap> Lambda(30);

4

gap> Lambda(561);

80 # 561 is the smallest Carmichael number

GeneratorsPrimeResidues(n) F

Let n be a positive integer. GeneratorsPrimeResidues returns a description of generators of the group of
prime residues modulo n. The return value is a record with components

primes:
a list of the prime factors of n,

exponents:
a list of the exponents of these primes in the factorization of n, and

generators:
a list describing generators of the group of prime residues; for the prime factor 2, either a primitive
root or a list of two generators is stored, for each other prime factor of n, a primitive root is stored.

gap> GeneratorsPrimeResidues(1);

rec(primes := [], exponents := [], generators := [])
gap> GeneratorsPrimeResidues(4x3);
rec(primes := [2, 3], exponents := [2, 1], generators := [7, 5])
gap> GeneratorsPrimeResidues(8*9%5);
rec(primes := [2, 3, 5], exponents := [3, 2, 1],
generators := [[271, 181 1, 281, 217])

15.2 Primitive Roots and Discrete Logarithms
OrderMod(n, m) F

OrderMod returns the multiplicative order of the integer n modulo the positive integer m. If n and m are
not coprime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive integer ¢ such
that n' = 1 (mod m). If the group of prime residues modulo m is cyclic then each element of maximal
order is called a primitive root modulo m (see 15.2.4).

OrderMod usually spends most of its time factoring m and ¢(m) (see 14.3.6).

gap> OrderMod(2, 7); OrderMod(3, 7);

3
6 # 3 is a primitive root modulo 7
LogMod(n, r, m) F

computes the discrete r-logarithm of the integer n modulo the integer m. It returns a number [such that

r'=n (mod m) if such a number exists. Otherwise fail is returned.

3>

4»

1»

2>

136 Chapter 15. Number Theory

At the moment only a very naive method has been implemented.

gap> 1:= LogMod(2, 5, 7); 571l mod 7 = 2;
4

true

gap> LogMod(1, 3, 3); LogMod(2, 3, 3);
0

fail

PrimitiveRootMod(m[, start]) F

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and fail if no such
primitive root exists. If the optional second integer argument start is given PrimitiveRootMod returns the
smallest primitive root that is strictly larger than start.

gap> PrimitiveRootMod(409); PrimitiveRootMod(541, 2);

21 # largest primitive root for a prime less than 2000
10
gap> PrimitiveRootMod(337, 327); PrimitiveRootMod(30);
fail # 327 is the largest primitive root mod 337
fail # there exists no primitive root modulo 30
IsPrimitiveRootMod(r, m) F

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive integer m and
false otherwise. If r is less than 0 or larger than m it is replaced by its remainder.

gap> IsPrimitiveRootMod(2, 541); IsPrimitiveRootMod(-539, 541);
true

true # same computation as above

gap> IsPrimitiveRootMod(4, 541);

false

gap> ForAny([1..29], r -> IsPrimitiveRootMod(r, 30));
false # there does not exist a primitive root modulo 30

15.3 Roots Modulo Integers
Jacobi(n, m) F

Jacobi returns the value of the Jacobi symbol of the integer n modulo the integer m.

Suppose that m = pyps - - - pi is a product of primes, not necessarily distinct. Then for n coprime to m the
Jacobi symbol is defined by J(n/m) = L(n/p1)L(n/p2)--- L(n/py), where L(n/p) is the Legendre symbol
(see 15.3.2). By convention J(n/1) = 1. If the ged of n and m is larger than 1 we define J(n/m) = 0.

If n is a quadratic residue modulo m, i.e., if there exists an r such that r> =n (mod m) then J(n/m) =
1. However, J(n/m) = 1 implies the existence of such an r only if m is a prime.

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean algorithm
(see 54.7.1).

gap> Jacobi(11, 35);

1 # 972 = 11 mod 35
gap> Jacobi(6, 35);
-1 # thus there is no r such that r"2 = 6 mod 35
gap> Jacobi(3, 35);
1 # even though there is no r with r"2 = 3 mod 35
Legendre(n, m) F

Legendre returns the value of the Legendre symbol of the integer n modulo the positive integer m.

3>

4»

5»

Section 3. Roots Modulo Integers 137

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e., if there exists
an integer r such that 7> =n (mod m) and —1 otherwise.

If a root of n exists it can be found by RootMod (see 15.3.3).

While the value of the Legendre symbol usually is only defined for m a prime, we have extended the definition
to include composite moduli too. The Jacobi symbol (see 15.3.1) is another generalization of the Legendre
symbol for composite moduli that is much cheaper to compute, because it does not need the factorization
of m (see 14.3.6).

A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in [Bak84].
gap> Legendre(5, 11);

1 # 472 = 5 mod 11
gap> Legendre(6, 11);
-1 # thus there is no r such that r"2 = 6 mod 11
gap> Legendre(3, 35);
-1 # thus there is no r such that r°2 = 3 mod 35
RootMod(nl[, k1, m) F

RootMod computes a kth root of the integer n modulo the positive integer m, i.e., a r such that r¥ = n
(mod m). If no such root exists RootMod returns fail. If only the arguments n and m are given, the default
value for k is 2.

In the current implementation £ must be a prime.

A square root of n exists only if Legendre(n,m) = 1 (see 15.3.2). If m has r different prime factors then
there are 2" different roots of n mod m. It is unspecified which one RootMod returns. You can, however, use
RootsMod (see 15.3.4) to compute the full set of roots.

RootMod is efficient even for large values of m, in fact the most time is usually spent factoring m (see 14.3.6).

gap> RootMod(64, 1009);

1001 # note ’RootMod’ does not return 8 in this case but -8
gap> RootMod(64, 3, 1009);
518
gap> RootMod(64, 5, 1009);
656
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x => x mod 1009);
[1001, 81 # set of all square roots of 64 mod 1009
RootsMod(n[, k1, m) F

RootsMod computes the set of kth roots of the integer n modulo the positive integer m, i.e., a r such that

r* =n (mod m). If only the arguments n and m are given, the default value for k is 2.

In the current implementation & must be a prime.
gap> RootsMod(1, 7*31); # the same as ‘RootsUnityMod(7%31)’

[1, 92, 125, 216]
gap> RootsMod(7, 7*31);

[21, 196]
gap> RootsMod(5, 7*31);
[]

gap> RootsMod(1, 5, 7*31);
[1, 8, 64, 78, 190]

RootsUnityMod([k, 1 m) F

RootsUnityMod returns the set of k-th roots of unity modulo the positive integer m, i.e., the list of all
solutions 7 of ¥ =n (mod m). If only the argument m is given, the default value for k is 2.

1»

2>

138 Chapter 15. Number Theory

In general there are k" such roots if the modulus m has n different prime factors p such that p =1 (mod k).
If k2 divides m then there are k"' such roots; and especially if k£ = 2 and 8 divides m there are 2”2 such
roots.

In the current implementation £ must be a prime.

gap> RootsUnityMod(7*31); RootsUnityMod(3, 7%31);

[1, 92, 125, 216]

(1, 25, 32, 36, 67, 149, 156, 191, 211]

gap> RootsUnityMod(5, 731);

[1, 8, 64, 78, 190]

gap> List(RootMod(64, 1009) * RootsUnityMod(1009),

> x -> x mod 1009);

[1001, 8] # set of all square roots of 64 mod 1009

15.4 Multiplicative Arithmetic Functions
Sigma(n) F

Sigma returns the sum of the positive divisors of the integer n.
Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have o(nm) = o(n)o(m).
Together with the formula o(p¢) = (p*™* —1)/(p — 1) this allows us to compute o(n).

Integers n for which o(n) = 2n are called perfect. Even perfect integers are exactly of the form 2"~1(2" — 1)
where 2" — 1 is prime. Primes of the form 2" — 1 are called Mersenne primes, the known ones are obtained
for n =2, 3,5, 7,13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941,
11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, and 859433. It is not known
whether odd perfect integers exist, however [BC89] show that any such integer must have at least 300
decimal digits.

Sigma usually spends most of its time factoring n (see 14.3.6).

gap> Sigma(0);

Error, Sigma: <n> must not be O called from
. 4 lines omitted here ...

brk> quit;

gap> Sigma(1); Sigma(1009); Sigma(8128) = 2%8128;

1
1010 # thus 1009 is a prime
true # thus 8128 is a perfect number
Tau(n) F

Tau returns the number of the positive divisors of the integer n.

Tau is a multiplicative arithmetic function, i.e., if n and m are relative prime we have 7(nm) = 7(n)7(m).
Together with the formula 7(p°®) = e + 1 this allows us to compute 7(n).

Tau usually spends most of its time factoring n (see 14.3.6).

Section 5. Miscellaneous 139

gap> Tau(0);

Error, Tau: <n> must not be O called from
. 4 lines omitted here ...

brk> quit;

gap> Tau(1); Tau(1013); Tau(8128); Tau(36);

1
2 # thus 1013 is a prime
14
9 # the result is odd if and only if the argument is a perfect square
3» MoebiusMu(n) F

1»

MoebiusMu computes the value of Moebius inversion function for the integer n. This is 0 for integers which
are not squarefree, i.e., which are divided by a square r2. Otherwise it is 1 if n has a even number and —1
if » has an odd number of prime factors.

The importance of u stems from the so called inversion formula. Suppose f(n) is a multiplicative arithmetic
function defined on the positive integers and let g(n) = >_,, f(d). Then f(n) = >-,, u(d)g(n/d). As a
special case we have ¢(n) =3_,, u(d)n/d since n =3, ¢(d) (see 15.1.2).

MoebiusMu usually spends all of its time factoring n (see 14.3.6).

gap> MoebiusMu(60); MoebiusMu(61); MoebiusMu(62);
0
-1
1

15.5 Miscellaneous

TwoSquares(n) F

TwoSquares returns a list of two integers x < y such that the sum of the squares of x and y is equal to
the nonnegative integer n, i.e., n = 22 4+ y2. If no such representation exists TwoSquares will return fail.
TwoSquares will return a representation for which the ged of z and y is as small as possible. It is not specified
which representation TwoSquares returns, if there is more than one.

Let a be the product of all maximal powers of primes of the form 4k + 3 dividing n. A representation of n
as a sum of two squares exists if and only if a is a perfect square. Let b be the maximal power of 2 dividing
n or its half, whichever is a perfect square. Then the minimal possible gcd of z and y is the square root ¢
of ab. The number of different minimal representation with z < y is 2'~1, where [is the number of different
prime factors of the form 4k + 1 of n.

The algorithm first finds a square root r of —1 modulo n/(ab), which must exist, and applies the Euclidean
algorithm to r and n. The first residues in the sequence that are smaller than y/n/(ab) times ¢ are a possible
pair = and y.

Better descriptions of the algorithm and related topics can be found in [Wag90] and [Zag90].
gap> TwoSquares(5); TwoSquares(11);

[1,2]

fail # no representation exists

gap> TwoSquares(16); TwoSquares(45);

[0, 4]

[3, 6] # 3 is the minimal possible gcd because 9 divides 45

gap> TwoSquares(125); TwoSquares(13*17);
[2, 11] # not [5, 10] because this has not minimal gcd

Chapter 15. Number Theory

140
[10,11] would be the other possible representation

[5, 14]
gap> TwoSquares(848654483879497562821) ;
#I beyond the guaranteed bound of the probabilistic primality test

[6305894639, 28440994650] # 848654483879497562821 is prime

1»

2»

1»

2»

Rational Numbers

16

The rationals form a very important field. On the one hand it is the quotient field of the integers (see
chapter 14). On the other hand it is the prime field of the fields of characteristic zero (see chapter 58).

The former comment suggests the representation actually used. A rational is represented as a pair of inte-
gers, called numerator and denominator. Numerator and denominator are reduced, i.e., their greatest
common divisor is 1. If the denominator is 1, the rational is in fact an integer and is represented as such.
The numerator holds the sign of the rational, thus the denominator is always positive.

Because the underlying integer arithmetic can compute with arbitrary size integers, the rational arithmetic
is always exact, even for rationals whose numerators and denominators have thousands of digits.

gap> 2/3;

2/3

gap> 66/123;

22/41 # numerator and denominator are made relatively prime

gap> 17/-13;

-17/13 # the numerator carries the sign

gap> 121/11;

11 # rationals with denominator 1 (after cancelling) are integers

Rationals V
gap> Size(Rationals); 2/3 in Rationals;
infinity
true

IsRationals(obj) C

Rationals is a subset of Cyclotomics, so see chapter 18 for arithmetic operations and comparison of
rationals. Functions for the field Rationals can be found in chapters 56 and 58.

16.1 Elementary Operations for Rationals
IsRat(obj) C
Every rational number lies in the category IsRat, which is a subcategory of IsCyc (see 18).

gap> IsRat(2/3);

true
gap> IsRat(17/-13);
true
gap> IsRat(11);
true
gap> IsRat(IsRat);
false # ‘IsRat’ is a function, not a rational
IsPosRat(obj) C

Every positive rational number lies in the category IsPosRat.

3>

4»

5»

6»

>

142 Chapter 16. Rational Numbers

IsNegRat (obj) C
Every negative rational number lies in the category IsNegRat.
NumeratorRat (rat) F

NumeratorRat returns the numerator of the rational rat. Because the numerator holds the sign of the rational
it may be any integer. Integers are rationals with denominator 1, thus NumeratorRat is the identity function
for integers.

gap> NumeratorRat(2/3);

2
gap> NumeratorRat(66/123);
22 # numerator and denominator are made relatively prime

gap> NumeratorRat(17/-13);

-17 # the numerator holds the sign of the rational
gap> NumeratorRat(11);

11 # integers are rationals with denominator 1

DenominatorRat(rat) F

DenominatorRat returns the denominator of the rational rat. Because the numerator holds the sign of the
rational the denominator is always a positive integer. Integers are rationals with the denominator 1, thus
DenominatorRat returns 1 for integers.

gap> DenominatorRat(2/3);

3
gap> DenominatorRat(66/123);
41 # numerator and denominator are made relatively prime

gap> DenominatorRat(17/-13);

13 # the denominator holds the sign of the rational
gap> DenominatorRat(11);

1 # integers are rationals with denominator 1

Rat(elm) A

Rat returns a rational number rat whose meaning depends on the type of elm.

If elm is a string consisting of digits >0’, *1”, ..., ’9? and ’-’ (at the first position), >/’ and the decimal
dot ? .’ then rat is the rational described by this string. The operation String (see 26.5.1) can be used to
compute a string for rational numbers, in fact for all cyclotomics.

gap> Rat("1/2"); Rat("35/14"); Rat("35/-27"); Rat("3.14159");
1/2

5/2

-35/27

314159/100000

Random(Rationals)

Random for rationals returns pseudo random rationals which are the quotient of two random integers. See
the description of Random for integers (14.1.11) for details. (Also see 28.6.1.)

1»

2>

1 7 Combinatorics

This chapter describes the functions that deal with combinatorics. We mainly concentrate on two areas. One
is about selections, that is the ways one can select elements from a set. The other is about partitions,
that is the ways one can partition a set into the union of pairwise disjoint subsets.

17.1 Combinatorial Numbers
Factorial(n) F

returns the factorial n! of the positive integer n, which is defined as the product 1-2-3---n.

n! is the number of permutations of a set of n elements. 1/n! is the coefficient of z™ in the formal series e”,
which is the generating function for factorial.

gap> List([0..10], Factorial);

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> Factorial(30);

265252859812191058636308480000000

PermutationsList (see 17.2.9) computes the set of all permutations of a list.
Binomial(n, k) F

returns the binomial coefficient (}) of integers n and k, which is defined as n!/(k!(n — k)!) (see 17.1.1).
We define (8) =1,(}) =0ifk<0orn <k, and (}) = (—1)’“(7"?71) if n < 0, which is consistent with
the equivalent definition (}) = (";") + (}71)

(Z) is the number of combinations with k£ elements, i.e., the number of subsets with k elements, of a set with
n elements. (Z) is the coefficient of the term z* of the polynomial (z 4+ 1)", which is the generating function
for ("), hence the name.

gap> List([0..4], k->Binomial(4, k));

[1, 4, 6, 4, 1] # Knuth calls this the trademark of Binomial
gap> List([0..6], n->List([0..6], k->Binomial(n, k)));;
gap> PrintArray(last);

[[1, 0, 0, 0, 0, 0, o0 1], # the lower triangle is
[1, 1, 0, 0, 0, 0, o0 1], # called Pascal’s triangle
[1, 2, 1, 0, 0, 0, 01,
[1, 3, 3, 1, 0, 0, 01,
[1, 4, 6, 4, 1, 0, 01,
[1, 5, 10, 10, 5, 1, 01,
[1, 6, 15, 20, 15, 6, 111

gap> Binomial(50, 10);
10272278170

NrCombinations (see 17.2.1) is the generalization of Binomial for multisets. Combinations (see 17.2.1)
computes the set of all combinations of a multiset.

3>

4»

5»

144 Chapter 17. Combinatorics

Bell(n) F

returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the recurrence B(n + 1) =
r=o (1) B(k).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty subsets (see

17.2.13). This implies of course that B(n) = >_,_, S2(n, k) (see 17.1.6). B(n)/n! is the coefficient of z" in

the formal series e¢ !, which is the generating function for B(n).

gap> List([0..6], n -> Bell(n));

[1, 1, 2, 5, 15, 52, 203]
gap> Bell(14);

190899322
Bernoulli(n) F
returns the n-th Bernoulli number B,, which is defined by By =1 and B, = — :;3 ("I By/(n +1).
B, /n! is the coefficient of 2" in the power series of z/e” — 1. Except for By = —1/2 the Bernoulli numbers

for odd indices are zero.

gap> Bernoulli(4);

-1/30

gap> Bernoulli(10);

5/66

gap> Bernoulli(12);

-691/2730 # there is no simple pattern in Bernoulli numbers
gap> Bernoulli(50);

495057205241079648212477525/66 # and they grow fairly fast

Stirlingl(n, k) F

returns the Stirling number of the first kind S;(n, k) of the integers n and k. Stirling numbers of the
first kind are defined by 51(0,0) = 1, S1(n,0) = S$1(0,k) = 0 if n,k # 0 and the recurrence Si(n,k) =
(n—=181(n—1,k)+ S (n—-1,k-1).

S1(n, k) is the number of permutations of n points with & cycles. Stirling numbers of the first kind appear
as coefficients in the series n'(i) = > p_oSi(n, k)z* which is the generating function for Stirling numbers of
the first kind. Note the similarity to 2" = 3" Sa(n, k)k!(}) (see 17.1.6). Also the definition of S; implies
S1(n, k) = Sa(—k,—n) if n,k < 0. There are many formulae relating Stirling numbers of the first kind to
Stirling numbers of the second kind, Bell numbers, and Binomial coefficients.

gap> List([0..4], k -> Stirlingl(4, k));

[0, 6, 11, 6, 1] # Knuth calls this the trademark of S_1
gap> List([0..6], n->List([0..6], k->Stirlingl(n, k)));;
gap> PrintArray(last);

[[1, 0, 0, 0, 0, 0, 01, # Note the similarity
[0, 1, 0, 0, 0, 0, 01, # with Pascal’s
[0, 1, 1, 0, 0, 0, o1, # triangle for the
[0, 2, 3, 1, 0, 0, 01, # Binomial numbers
[o, 6, 11, 6, 1, 0, 01,
[0, 24, 50, 35, 10, 1, 01,
[0, 120, 274, 225, 85, 15, 111

gap> Stirling1(50,10);
101623020926367490059043797119309944043405505380503665627365376

6>

1»

2»

3>

Section 2. Combinations, Arrangements and Tuples 145

Stirling2(n, k) F

returns the Stirling number of the second kind S;(n, k) of the integers n and k. Stirling numbers
of the second kind are defined by 59(0,0) = 1, Sa(n,0) = S2(0,k) = 0 if n,k # 0 and the recurrence
Sg(n, k’) = kSg(n —1, k’) + SQ(TL -1,k — 1).

So(n, k) is the number of ways to partition a set of n elements into k pairwise disjoint nonempty sub-
sets (see 17.2.13). Stirling numbers of the second kind appear as coefficients in the expansion of z" =
S ieo S2(n, k)E!(7). Note the similarity to n!(?) = >°;_, S1(n, k)z* (see 17.1.5). Also the definition of S,
implies S2(n, k) = S1(—k,—n) if n,k < 0. There are many formulae relating Stirling numbers of the second
kind to Stirling numbers of the first kind, Bell numbers, and Binomial coefficients.

gap> List([0..4], k->Stirling2(4, k));

[o, 1, 7,6, 11 # Knuth calls this the trademark of S_2
gap> List([0..6], n->List([0..6], k->Stirling2(n, k)));;
gap> PrintArray(last);

[[1, 0, 0, 0, 0, 0, 01, # Note the similarity with
[o, 1, 0, 0, 0, 0, 0 1], # Pascal’s triangle for
[o, 1, 1, 0, 0, 0, 0 1], # the Binomial numbers
L 0, 1, 3, 1, 0, 0, 01,
L 0, 1, 7, 6, 1, 0, 01,
[o, 1, 15, 25, 10, 1, 01,
[o, 1, 31, 90, 65, 15, 1]]

gap> Stirling2(50, 10);
26154716515862881292012777396577993781727011

17.2 Combinations, Arrangements and Tuples
Combinations(mset [, k]) F

returns the set of all combinations of the multiset mset (a list of objects which may contain the same object
several times) with & elements; if k is not given it returns all combinations of mset.

A combination of mset is an unordered selection without repetitions and is represented by a sorted sublist
of mset. If mset is a proper set, there are (‘m}ze”) (see 17.1.2) combinations with % elements, and the set

of all combinations is just the powerset of mset, which contains all subsets of mset and has cardinality
2\mset| .

NrCombinations(mset [, k]) F
returns the number of Combinations (mset,k).

gap> Combinations([1,2,2,3]);

tcc 1, c0+31,01,21,°(01,2,21,001,2,2,31,([1,2,31,10[1,31],
(21,[02,21,02,2,31,0[02,31,[31]1

gap> NrCombinations([1..52], 5);

2598960 # number of different hands in a game of poker

The function Arrangements (see 17.2.3) computes ordered selections without repetitions, UnorderedTu-
ples (see 17.2.5) computes unordered selections with repetitions and Tuples (see 17.2.7) computes ordered
selections with repetitions.

Arrangements(mset [, k]) F

returns the set of arrangements of the multiset mset that contain k elements. If k£ is not given it returns all
arrangements of mset.

4»

5»

6>

146 Chapter 17. Combinatorics

An arrangement of mset is an ordered selection without repetitions and is represented by a list that contains
only elements from mset, but maybe in a different order. If mset is a proper set there are |mset|!/(|mset| —k)!
(see 17.1.1) arrangements with &k elements.

NrArrangements(mset [, k]) F

returns the number of Arrangements (mset, k).

As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the six characters
of the word settle and you have to make a four letter word. Then the possibilities are given by

gap> Arrangements([llsll ,llell s Iltll , lltll , lllll s llell] , 4);
[[Ilell, IleII’ IIllI’ IISII]’ [Ilell, Ilell, IIllI’ Ilt"]’
[Ilell’ Ilell’ Ilsll’ Illll]’ [Ilell’ Ilell’ Ilsll’ Iltll]’
96 more possibilities
[Iltll’ Iltll’ Ilsll’ Ilell]’ [Iltll, Iltll’ Ilsll’ Illll :l]

Can you find the five proper English words, where lets does not count? Note that the fact that the list
returned by Arrangements is a proper set means in this example that the possibilities are listed in the same
order as they appear in the dictionary.

gap> NrArrangements(["s","e","t","t","l","e“]);
523

The function Combinations (see 17.2.1) computes unordered selections without repetitions, UnorderedTu-
ples (see 17.2.5) computes unordered selections with repetitions and Tuples (see 17.2.7) computes ordered
selections with repetitions.

UnorderedTuples(set, k) F

returns the set of all unordered tuples of length k of the set set.

An unordered tuple of length &k of set is a unordered selection with repetitions of set and is represented
by a sorted list of length k£ containing elements from set. There are (‘58”';]“_1) (see 17.1.2) such unordered
tuples.

Note that the fact that UnorderedTuples returns a set implies that the last index runs fastest. That means
the first tuple contains the smallest element from set k& times, the second tuple contains the smallest element
of set at all positions except at the last positions, where it contains the second smallest element from set
and so on.

NrUnorderedTuples(set, k) F

returns the number of UnorderedTuples (set, k).

As an example for unordered tuples think of a poker-like game played with 5 dice. Then each possible hand
corresponds to an unordered five-tuple from the set [1..6]

gap> NrUnorderedTuples([1..6], 5);
252

gap> UnorderedTuples([1..6], 5);
[[1’ 1, 1’ 1’ 1]’ [1’ 1, 1’ 1} 2]’ [1’ 1, 1’ 1, 3],
[1! 1’ 1’ 1’ 4]’ [1’ 1’ 1’ 1’ 5]’ [1’ 1’ 1’ 1, 6],

99 more tuples
1, 3,4,5,61, [1,3,4,6,61,I[1,3,5,5,51,
99 more tuples
3,3,4,4,51,0[03,3,4,4,61,10[3,3,4,5,5]1,
39 more tuples
5,5,6,6,61, [5,6,6,6,61, [6,6,6,6,61]

m H e H

i d

8>

9g»

10»

11»

Section 2. Combinations, Arrangements and Tuples 147

The function Combinations (see 17.2.1) computes unordered selections without repetitions, Arrangements
(see 17.2.3) computes ordered selections without repetitions and Tuples (see 17.2.7) computes ordered
selections with repetitions.

Tuples(set, k) F

returns the set of all ordered tuples of length k of the set set.

An ordered tuple of length k of set is an ordered selection with repetition and is represented by a list of
length k containing elements of set. There are |set|* such ordered tuples.

Note that the fact that Tuples returns a set implies that the last index runs fastest. That means the first
tuple contains the smallest element from set k times, the second tuple contains the smallest element of set
at all positions except at the last positions, where it contains the second smallest element from set and so
on.

NrTuples(set, k) F
returns the number of Tuples(set, k).

gap> Tuples([1,2,3], 2);

tft+, 11,011,271, 01,31,02,11,02,21,[2,31,1[3,11,
(3,21, [3,31]1

gap> NrTuples([1..10], 5);

100000

Tuples(set, k) can also be viewed as the k-fold cartesian product of set (see 21.20.14).

The function Combinations (see 17.2.1) computes unordered selections without repetitions, Arrangements
(see 17.2.3) computes ordered selections without repetitions, and finally the function UnorderedTuples (see
17.2.5) computes unordered selections with repetitions.

PermutationsList(mset) F

PermutationsList returns the set of permutations of the multiset mset.

A permutation is represented by a list that contains exactly the same elements as mset, but possibly in
different order. If mset is a proper set there are |mset|! (see 17.1.1) such permutations. Otherwise if the first
elements appears k; times, the second element appears ks times and so on, the number of permutations is
[mset|!/(ki!k2!. ..), which is sometimes called multinomial coefficient.

NrPermutationsList(mset) F
returns the number of PermutationsList (mset).

gap> PermutationsList([1,2,3]);

rri+ 2,31, 01,3,21,[2,1,31,[2,3,11,[3,1,21,
[3, 2,111

gap> PermutationsList([1,1,2,2]);

[rf1,1,2,213,01,2,1,21,[01,2,2,1],[2,1,1,21,
[2,1,2,1]1,[2,2,1,11]1

gap> NrPermutationsList([1,2,2,3,3,3,4,4,4,4]);

12600

The function Arrangements (see 17.2.3) is the generalization of PermutationsList that allows you to specify
the size of the permutations. Derangements (see 17.2.11) computes permutations that have no fixpoints.

Derangements(list) F

returns the set of all derangements of the list list.

12»

13»

14»

148 Chapter 17. Combinatorics

A derangement is a fixpointfree permutation of list and is represented by a list that contains exactly the
same elements as list, but in such an order that the derangement has at no position the same element as

list. If the list list contains no element twice there are exactly |list|!(1/2! — 1/31+ 1/41 — - + (=1)"/n!)
derangements.

Note that the ratio NrPermutationsList ([1..n])/NrDerangements([1..n]), which is n!/(n!(1/2!—1/3!+
1/4!—---4+(=1)"/n!)) is an approximation for the base of the natural logarithm e = 2.7182818285. . ., which
is correct to about n digits.

NrDerangements (list) F

returns the number of Derangements (list).

As an example of derangements suppose that you have to send four different letters to four different people.
Then a derangement corresponds to a way to send those letters such that no letter reaches the intended
person.

gap> Derangements([1,2,3,4]);

[r2,1,4,31,102,3,4,11,[2,4,1,31, [3,1, 4,21,
[3,4,1,21,[3,4,2,11,[4,1,2,31,10[4,3,1,21,
[4, 3,2, 111

gap> NrDerangements([1..10]);

1334961

gap> Int(10" 7*NrPermutationsList([1..10])/last);

27182816

gap> Derangements([1,1,2,2,3,3]);

[r[2,2,3,3,1,11,[2,3,1,3,1,21,[2,3,1,3,2,11,
[2,3,3,1,1,21,[2,3,3,1,2,11,[3,2,1,3,1, 21,
[3,2,1,3,2,11,[38,2,3,1, 1,21, 1[3,2,3,1,2,11,
[3,3,1,1,2, 211

gap> NrDerangements([1,2,2,3,3,3,4,4,4,4]);

338

The function PermutationsList (see 17.2.9) computes all permutations of a list.
PartitionsSet(set [, k]) F

returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If & is not
given it returns all unordered partitions of set for all k.

An unordered partition of set is a set of pairwise disjoint nonempty sets with union set and is represented

by a sorted list of such sets. There are B(|set|) (see 17.1.3) partitions of the set set and Sy(|set|, k) (see
17.1.6) partitions with k elements.

NrPartitionsSet(set [, k]) F
returns the number of PartitionsSet (set, k).

gap> PartitionsSet([1,2,3]);
ctft1+1, 021, 0311, [T[1

(1, 2,311, 001,31, I
gap> PartitionsSet([1,2,3,4], 2
L C1],[02,3,411, 1L
11, 1L
11
1

, 02,311, (01,21, [311,
111

[[l1,2,41,[3 ,
([1,41,0[02,3]
gap> NrPartitionsSet([1..6]);
203
gap> NrPartitionsSet([1..10], 3);

15»

16 »

17»

Section 2. Combinations, Arrangements and Tuples 149
9330

Note that PartitionsSet does currently not support multisets and that there is currently no ordered
counterpart.

Partitions(n [, k]) F

returns the set of all (unordered) partitions of the positive integer n into sums with £ summands. If k is not
given it returns all unordered partitions of set for all k.

An unordered partition is an unordered sum n = p; 4+ ps + - - - + p;, of positive integers and is represented
by the list p = [p1, p2, - - ., Pk), in nonincreasing order, i.e., p; >= py >= ... >= p;. We write p - n. There

are approximately e™V 2/3n / 44/3n such partitions.

It is possible to associate with every partition of the integer n a conjugacy class of permutations in the
symmetric group on n points and vice versa. Therefore p(n) := NrPartitions(n) is the number of conjugacy
classes of the symmetric group on n points.

Ramanujan found the identities p(5¢ +4) = 0 mod 5, p(7i 4+ 5) = 0 mod 7 and p(11i + 6) = 0 mod 11 and
many other fascinating things about the number of partitions.

Do not call Partitions with an n much larger than 40, in which case there are 37338 partitions, since the
list will simply become too large.

NrPartitions(n [, k]) F
returns the number of Partitions(set, k).

gap> Partitions(7);

(cat1,1,1, 1,1, 1,11, [2,1,1,1,1,11,[2,2,1,1, 11,
[2,2,2,11,[3,1,1,1,11,[3,2,1,11,[3,2,2]1,
(3,3,1]1, [4,1,1,1]1,[4,2,11,04,31]1,1[5,1,11, 1[5, 21,
e, 11, [71]1]1

gap> Partitions(8, 3);
(08,3,21,04,2,21,0[04,3,11,0[5,2,1]1,[6,1,11]1]
gap> NrPartitions(7);

15

gap> NrPartitions(100);

190569292

The function OrderedPartitions (see 17.2.17) is the ordered counterpart of Partitions.

OrderedPartitions(n [, k]) F

returns the set of all ordered partitions of the positive integer n into sums with & summands. If k£ is not
given it returns all ordered partitions of set for all k.

An ordered partition is an ordered sum n = p; + pa + ... + pi of positive integers and is represented by
the list [p1, p2, ..., py). There are totally 2"~! ordered partitions and (}}) (see 17.1.2) ordered partitions
with & summands.

Do not call OrderedPartitions with an n much larger than 15, the list will simply become too large.

150 Chapter 17. Combinatorics

18 » NrOrderedPartitions(n [, k]) F
returns the number of OrderedPartitions(set,k).

gap> OrderedPartitions(5);
rcst,1,1¢,1¢,121,0121,1,1,21,[1,1,2,11,[1,1,31,

[+, 2,111,121, 01,2,271,[01,3,11,[1,41,[2,1,1,11,

(2,1,21,02,2,11,02,31,[3,1,11,[3,21,[4,11,[51]1
gap> OrderedPartitions(6, 3);
(01,1,41,01,2,31,1

(2,2,21,[02,3,11,1
gap> NrOrderedPartitions(20);
524288

1, 3,21, [1, 4,11, [2 1,31,
3,1,21,[3,2,11, [4,1,11]

>

The function Partitions (see 17.2.15) is the unordered counterpart of OrderedPartitions.

19» PartitionsGreatestLE(n, m) F
returns the set of all (unordered) partitions of the integer n having parts less or equal to the integer m.

20» PartitionsGreatestEQ(n, m) F
returns the set of all (unordered) partitions of the integer n having greatest part equal to the integer m.

21 » RestrictedPartitions(n, set [, k]) F
In the first form RestrictedPartitions returns the set of all restricted partitions of the positive integer n

into sums with & summands with the summands of the partition coming from the set set. If k£ is not given
all restricted partitions for all k¥ are returned.

A restricted partition is like an ordinary partition (see 17.2.15) an unordered sum n = p; + pa + ... + py
of positive integers and is represented by the list p = [p1, po, ..., pg), in nonincreasing order. The difference
is that here the p; must be elements from the set set, while for ordinary partitions they may be elements
from [1..n].

22» NrRestrictedPartitions(n, set [, k]) F
returns the number of RestrictedPartitions(n,set,k).

gap> RestrictedPartitions(8, [1,3,5,7]);

rrs+, 1,121,121, 1,1, 1,11, 03,1, 1,1, 1,11, [3, 3,1, 11,
(5,1, 1,11, 5,31, [7,11]1

gap> NrRestrictedPartitions(50,[1,2,5,10,20,50]);

451

The last example tells us that there are 451 ways to return 50 pence change using 1,2,5,10,20 and 50 pence
coins.

23» SignPartition(pi) F
returns the sign of a permutation with cycle structure pi.

This function actually describes a homomorphism from the symmetric group S, into the cyclic group of
order 2, whose kernel is exactly the alternating group A, (see 40.3.1). Partitions of sign 1 are called even
partitions while partitions of sign —1 are called odd.

gap> SignPartition([6,5,4,3,2,1]1);

-1

24» AssociatedPartition(pi) F

AssociatedPartition returns the associated partition of the partition pi which is obtained by transposing
the corresponding Young diagram.

25>

26 >

27 »

1»

2»

Section 3. Fibonacci and Lucas Sequences 151

gap> AssociatedPartition([4,2,1]);
[3, 2,1, 1]

gap> AssociatedPartition([6]);

[1, 1, 1,1, 1, 1]

PowerPartition(pi, k) F
PowerPartition returns the partition corresponding to the k-th power of a permutation with cycle structure
Pi.
Each part [of pi is replaced by d = ged(l, k) parts I/d. So if pi is a partition of n then pi* also is a partition
of n. PowerPartition describes the powermap of symmetric groups.

gap> PowerPartition([6,5,4,3,2,1], 3);

[5,4,2,2,2,2,1,1,1, 1]
PartitionTuples(n, 7) F
PartitionTuples returns the list of all r-tuples of partitions which together form a partition of n.
r—tuples of partitions describe the classes and the characters of wreath products of groups with r conjugacy
classes with the symmetric group S,.
NrPartitionTuples(n, 7) F

returns the number of PartitionTuples(n, 7).

gap> PartitionTuples(3, 2);

(rcre,t,13,0 031, 00¢,23,0111,0011,01,111,
ct1,01,1,211, 002, 21,011, 0011, C0211,
cc21, 0111, CC 1, C02,¢+11,CC31,C 11, CC 1,0311]1

17.3 Fibonacci and Lucas Sequences

Fibonacci(n) F

returns the nth number of the Fibonacci sequence. The Fibonacci sequence F,, is defined by the initial
conditions F; = Fy = 1 and the recurrence relation F,;9 = F,41 + F,. For negative n we define F,, =
(—=1)"*1F_,, which is consistent with the recurrence relation.

Using generating functions one can prove that F, = ¢" — 1/¢", where ¢ is (v/5 + 1)/2, i.e., one root of
1?2 — 1 — 1 = 0. Fibonacci numbers have the property Ged(F,,, F,) = Fed(m,n)- But a pair of Fibonacci
numbers requires more division steps in Euclid’s algorithm (see 54.7.1) than any other pair of integers of
the same size. Fibonacci (k) is the special case Lucas(1,-1,k) [1] (see 17.3.2).

gap> Fibonacci(10);
55

gap> Fibonacci(35);
9227465

gap> Fibonacci(-10);
-55

Lucas(P, @, k) F

returns the k-th values of the Lucas sequence with parameters P and @, which must be integers, as a list
of three integers.

Let a, 3 be the two roots of z2 — Pz + @ then we define Lucas(P, Q
Lucas(P, Q, k)[2] = Vi = (a* + 8%) and as a convenience Lucas(P, Q

ol

B)[1] = Uy = (" — 8)/(a — B) and
k)38 = Q

=~

1»

152 Chapter 17. Combinatorics

The following recurrence relations are easily derived from the definition Uy =0, U; =1, U, = PU,_1— QUjy_o
and Vo =2,V; =P, Vi, = PVi_1 — QVj_o. Those relations are actually used to define Lucas if a = .

Also the more complex relations used in Lucas can be easily derived Us, = Ui Vi, Usg1 = (PUsg + Var)/2
and ng = V/? — 2Qk, V2k+1 = (<P2 — 4@) UQk + PVQk)/Q

Fibonacci(k) (see 17.3.1) is simply Lucas(1,-1,%) [1]. In an abuse of notation, the sequence Lucas(1,-
1,k) [2] is sometimes called the Lucas sequence.

gap> List([0..10], i->Lucas(1,-2,i)[1]);

o, 1,1, 3, 5, 11, 21, 43, 85, 171, 341] # 2°k - (-1)°k)/3
gap> List([0..10], i->Lucas(1,-2,i)[2]);

[2, 1,5, 7, 17, 31, 65, 127, 257, 511, 1025] # 2"k + (-1)°k
gap> List([0..10], i->Lucas(1,-1,i)[1]);

[o, 1,1, 2, 3, 5, 8, 13, 21, 34, 55] # Fibonacci sequence
gap> List([0..10], i->Lucas(2,1,i)[1]);
[o, 1,2, 3, 4,5,6, 7,8, 9, 10] # the roots are equal

17.4 Permanent of a Matrix
Permanent (mat) F
returns the permanent of the matrix mat. The permanent is defined by ZpESymm(n) 17—, mat[d][:?].

Note the similarity of the definition of the permanent to the definition of the determinant (see 24.3.4).
In fact the only difference is the missing sign of the permutation. However the permanent is quite unlike
the determinant, for example it is not multilinear or alternating. It has however important combinatorial
properties.

gap> Permanent([[0,1,1,1],

> [1,0,1,1],
> (1,1,0,1],
> [1,1,1,011);

9 # inefficient way to compute ‘NrDerangements([1..4])°
gap> Permanent([[1,1,0,1,0,0,0],

> 0,1,1,0,1,0,01,

(0,0,1,1,0,1,0],
(0,0,0,1,1,0,1],
[1,0,0,0,1,1,0],
[0,1,0,0,0,1,1],

[1,0,1,0,0,0,111);

24 # 24 permutations fit the projective plane of order 2

>

V V V VvV V

1»

2>

Cyclotomic
Numbers

GAP admits computations in abelian extension fields of the rational number field Q, that is fields with
abelian Galois group over Q. These fields are subfields of cyclotomic fields Q(e,) where e, = €>™/" is a
primitive complex n-th root of unity. The elements of these fields are called cyclotomics.

Information concerning operations for fields of cyclotomics, for example certain integral bases, can be found
in Chapter 58. For more general operations that take a field extension as a —possibly optional— argument,
e.g., Trace or Coefficients, see Chapter 56.

18.1 Operations for Cyclotomics

ECn) F

E returns the primitive n-th root of unity e, = e27"/". Cyclotomics are usually entered as sums of roots
of unity, with rational coefficients, and irrational cyclotomics are displayed in the same way. (For special
cyclotomics, see 18.4.)

gap> E(9); E(9)73; E(6); E(12) / 3;
-E(9)"4-E(9)"7

E(3)

-E(3)"2

-1/3*%E(12) "7

A particular basis is used to express cyclotomics, see 58.1; note that E(9) is not a basis element, as the
above example shows.

Cyclotomics \%
is the field of all cyclotomics (in GAP).

gap> E(9) in Cyclotomics; 37 in Cyclotomics; true in Cyclotomics;
true
true
false

As the cyclotomics are field elements the usual arithmetic operators +,-,% and / (and ~ to take powers
by integers) are applicable. Note that ~ does not denote the conjugation of group elements, so it is not
possible to explicitly construct groups of cyclotomics. (However, it is possible to compute the inverse and
the multiplicative order of a nonzero cyclotomic.) Also, taking the k-th power of a cyclotomic is a Galois
automorphism if and only if k is coprime to the conductor of the cyclotomic.

3>
>

4»

154 Chapter 18. Cyclotomic Numbers

gap> E(5) + E(3); (E(5) + E(5)74) ~ 2; E(5) / E(3); E(B) * E(3);
-E(15) "2-2*%E(15) "8-E(15) "11-E(15) "13-E(15) 14
-2*E(5)-E(5) "2-E(5) "3-2%E(5) "4

E(15)"13

E(15)°8

gap> Order(E(5)); Order(1+E(5));

5

infinity

IsCyclotomic(obj) C
IsCyc(obj) C

Every object in the family CyclotomicsFamily lies in the category IsCyclotomic. This covers integers,
rationals, proper cyclotomics, the object infinity (see 18.2.1), and unknowns (see Chapter 19). All these
objects except infinity and unknowns lie also in the category IsCyc, infinity lies in (and can be detected
from) the category IsInfinity, and unknowns lie in IsUnknown.

gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic(infinity);
true

true

true

gap> IsCyc(0); IsCyc(1/2*E(3)); IsCyc(infinity);

true

true

false

IsIntegralCyclotomic(obj) P

A cyclotomic is called integral or a cyclotomic integer if all coefficients of its minimal polynomial over the
rationals are integers. Since the underlying basis of the external representation of cyclotomics is an integral
basis (see 58.1), the subring of cyclotomic integers in a cyclotomic field is formed by those cyclotomics for
which the external representation is a list of integers. For example, square roots of integers are cyclotomic
integers (see 18.4), any root of unity is a cyclotomic integer, character values are always cyclotomic integers,
but all rationals which are not integers are not cyclotomic integers.

gap> r:= ER(5); # The square root of 5 is a cyclotomic integer.
E(5)-E(5) "2-E(5) "3+E(5) "4

gap> IsIntegralCyclotomic(r); # It has integral coefficients.
true

gap> r2:= 1/2 * r; # This is not a cyclotomic integer,
1/2%E(5)-1/2%E(5) "2-1/2*E(5) "3+1/2*E(5) "4

gap> IsIntegralCyclotomic(r2);

false

gap> r3:= 1/2 * r - 1/2; # ... but this is one.

E(5)+E(5)"4

gap> IsIntegralCyclotomic(r3);

true

The operation Int can be used to find a cyclotomic integer near to an arbitrary cyclotomic. For rationals,
Int returns the largest integer smaller or equal to the argument.

7>

>

Section 1. Operations for Cyclotomics 155

gap> Int(E(5)+1/2+E(5)"2); Int(2/3*E(7)+3/2*E(4));
E(5)
E(4)

The operation String returns for a cyclotomic a string corresponding to the way the cyclotomic is printed
by ViewObj and Print0Obj.

gap> String(E(5)+1/2+E(5)"2); String(17/3);
"E(B)+1/2+E(5) ~2"

||17/3||
Conductor(cyc) A
Conductor(C) A

For an element cyc of a cyclotomic field, Conductor returns the smallest integer n such that cyc is contained
in the n-th cyclotomic field. For a collection C' of cyclotomics (for example a dense list of cyclotomics or a
field of cyclotomics), Conductor returns the smallest integer n such that all elements of C are contained in
the n-th cyclotomic field.

gap> Conductor(0); Conductor(E(10)); Conductor(E(12));
1
5
12

AbsoluteValue(cyc) A

returns the absolute value of a cyclotomic number cyc. At the moment only methods for rational numbers
exist.

gap> AbsoluteValue(-3);
3

RoundCyc(cyc) 0]

is a cyclotomic integer z (see 18.1.4) near to the cyclotomic cyc in the sense that the i-th coefficient in
the external representation (see 18.1.8) of z is Int(c+1/2) where c is the i-th coefficient in the external
representation of cyc. Expressed in terms of the Zumbroich basis (see 58.1), the coefficients of cyc w.r.t. this
basis are rounded.

gap> RoundCyc(E(5)+1/2+E(5)"2); RoundCyc(2/3+E(7)+3/2+E(4));
E(5)+E(5) "2
-2+E(28) "3+E(28) "4-2*E(28) "11-2*E(28) "15-2xE(28) "19-2+E(28) "23-2+E(28) ~27

CoeffsCyc(cyc, N) F

Let cyc be a cyclotomic with conductor n. If N is not a multiple of n then CoeffsCyc returns fail because
cyc cannot be expressed in terms of N-th roots of unity. Otherwise CoeffsCyc returns a list of length N
with entry at position j equal to the coefficient of e270=1/N if this root belongs to the N-th Zumbroich
basis (see 58.1), and equal to zero otherwise. So we have cyc = CoeffsCyc(cyc, N) * List([1..N1, j
-> E(N)"(G-1)).

gap> cyc:= E(B)+E(5)"2;

E(5)+E(5)"2

gap> CoeffsCyc(cyc, 5); CoeffsCyc(cyc, 15); CoeffsCyc(cyc, 7);
[0, 1,1, 0, 0]

to, -1, 0, 0, 0,0,0,0, -1, 0,0, -1, 0, -1, 01

fail

9»

10»

11»

12»

13»

156 Chapter 18. Cyclotomic Numbers

DenominatorCyc(cyc) F

For a cyclotomic number cyc (see 18.1.3), this function returns the smallest positive integer n such that
n * cyc is a cyclotomic integer (see 18.1.4). For rational numbers cyc, the result is the same as that of
DenominatorRat (see 16.1.5).

ExtRep0f0bj (cyc)

gap> ExtRep0f0bj(E(5)); CoeffsCyc(E(5), 15);
[0, 1,0, 0, 0]
(o,o,o0,o0,0o0,0,0,0,-,0,0,0,0,-1,0
gap> CoeffsCyc(1+E(3), 9); CoeffsCyc(E(5), 7
(o, o0, 0,0,0,0,-1,0, 0]

fail

]
)

’

Description0fRoot0fUnity(root) F

Given a cyclotomic root that is known to be a root of unity (this is not checked), Description0fRoot0fU-
nity returns a list [n,] of coprime positive integers such that root = E(n)¢ holds.

gap> E(9); Description0fRoot0fUnity(E(9));
-E(9)"4-E(9 "7

[9, 1]

gap> DescriptionOfRoot0fUnity(-E(3));

[6, 5]

IsGaussInt(z) F

IsGaussInt returns true if the object x is a Gaussian integer and false otherwise. Gaussian integers are
of the form a + b*E(4), where a and b are integers.

IsGaussRat(z) F

IsGaussRat returns true if the object z is a Gaussian rational and false otherwise. Gaussian rationals are
of the form a + b*E(4), where a and b are rationals.

DefaultField (see 56.1.4) for cyclotomics is defined to return the smallest cyclotomic field containing the
given elements.

gap> Field(E(5)+E(5)"4); DefaultField(E(5)+E(5)"4);
NF(5,[1, 4 1)
CF(5)

18.2 Infinity

IsInfinity(obj) C
infinity \%
infinity is a special GAP object that lies in CyclotomicsFamily. It is larger than all other objects in

this family. infinity is mainly used as return value of operations such as Size and Dimension for infinite
resp. infinite dimensional domains.

Note that no arithmetic operations are provided for infinity, in particular there is no problem to define
what O * infinity or infinity - infinity means.

Often it is useful to distinguish infinity from “proper” cyclotomics. For that, infinity lies in the category
IsInfinity but not in IsCyc, and the other cyclotomics lie in the category IsCyc but not in IsInfinity.

vVVvyVYyVvyYVYyYYVYYyY

Section 4. ATLAS Irrationalities 157

gap> s:= Size(Rationals);

infinity

gap> s = infinity; IsCyclotomic(s); IsCyc(s); IsInfinity(s);
true

true

false

true

gap> s in Ratiomals; s > 17;

false

true

gap> Set([s, 2, s, E(17), s, 19]);
[2, 19, E(17), infinity]

18.3 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, > and <> can be used, the result will be true if the
first operand is smaller, smaller or equal, equal, larger or equal, larger, or unequal, respectively, and false
otherwise.

Cyclotomics are ordered as follows: The relation between rationals is the natural one, rationals are smaller
than irrational cyclotomics, and infinity is the largest cyclotomic. For two irrational cyclotomics with
different conductors, the one with smaller conductor is regarded as smaller. Two irrational cyclotomics with
same conductor are compared via their external representation.

For comparisons of cyclotomics and other GAP objects, see Section 4.11.

gap> E(5) < E(6); # the latter value has conductor 3

false

gap> E(3) < E(3)72; # both have conductor 3, compare the ext. repr.
false

gap> 3 < E(3); E(5) < E(7);

true

true

18.4 ATLAS Irrationalities

EB(n) F
EC(n) F
ED(n) F
EE(n) F
EF(n) F
EG(n) F
EH(n) F

For N a positive integer, let z = E(N) = exp(27i/N). The following so-called atomic irrationalities (see
Chapter 7, Section 10 of [CCN+85]) can be entered using functions. (Note that the values are not necessary
irrational.)

158 Chapter 18. Cyclotomic Numbers

EB(N) = by = $3'2°, N=1 (mod?2)
EC(N) = oy = 37", N=1 (mod3)
ED(N) = dy = 13"'2° N=1 (mod4)
EE(N) = ey = 1 ;v:_llzfs, N=1 (mod 5)
EF(N) = fv = & ;V:_llz]ﬁ, N=1 (mod 6)
EG(N) = gv = 1 ;vzllz-ﬂ, N=1 (mod7)
EH(N) = hy = $375'2°, N=1 (mod8)
(Note that in ¢y, ..., hy, N must be a prime.)
2» EIC n) F
» ER(n) F

For a rational number N, ER returns the square root v N of N, and EI returns v—N. By the chosen
embedding of cyclotomic fields into the complex numbers, ER returns the positive square root if N is positive,
and if N is negative then ER(N) = EI(-N). In any case, EI(N) = E(4) * ER(N).

ER is installed as method for the operation Sqrt (see 30.12.5) for rational argument.
From a theorem of Gauss we know that

- %(—1+\/N) if N=1 (mod 4)
N_{%(—1+i\/ﬁ) if N=-1 (mod 4)

So V/N can be computed from by (see 18.4.1).

3» EY(C n[, d]) F
» EX(nl[, d]) F
» EW(nl, d]) F
» EV(nl[, d]) F
» EUC n[, d]l) F
» ET(n[, d]) F
» ES(n[, d]l) F

For given N, let n; = ng(N) be the first integer with multiplicative order exactly k& modulo N, chosen in
the order of preference
1,-1,2,-2.3,-3,4,—4,....

We define

EY(N) Yo = z+ 2" (n=mng)

EX(N) = =z, = Z4 2"+ 2" (n = n3)

EW(N) = w, = 242" 42" 4" (n =ny)
2 3 4

EV(N) = v, = z+2"4+2z" 42" +2" (n=ns)
2 5

EUN) = u, = z+2"+2" +...4+2" (n=ng)
2 6

ET(N) = t, = z+2"+2" +...4+2" (n=ny7)
2 7

ES(N) S = z4+2"+2" +...4+2" (n=ng)

4» EM(n[, d]) F
» EL(n[, d]) F
» EK(nl, d]l) F
» EJ(nl, d]1) F

EM(NV) my, z—2" (n = ng)
EL(N) = I, = z—2"+2" —2" (n=m)
EK(N) = k, = z—=2"+...=2" (n=ng)
EJ(N) Jn = z—=2"4+...—2" (n=ng)

5»

6>

Section 4. ATLAS Irrationalities 159

NKC n, k, d) F

Let n,gd) = n,ﬁd)(N) be the d + 1-th integer with multiplicative order exactly £ modulo N, chosen in the

(0) 1) (

. 2
order of preference defined above; we write ny = n, ', n, = n,’, 0y = n,) and so on. These values can be

computed as NK(N ,k,d)= n,ﬁd)(N); if there is no integer with the required multiplicative order, NK returns
fail.

The algebraic numbers

1 2 g
v = 08U = U B B R T
are obtained on replacing n; in the above definitions by n;, n//,...; they can be entered as

EY(N,d) =y
EX(N,d) = z\"
T
EJ(N,d) = 35

AtlasIrrationality(irratname) F

Let irratname be a string that describes an irrational value as described in Chapter 6, Section 10 of [CCN+-85]]
that is, a linear combination of the atomic irrationalities introduced above. (The following definition is mainly
copied from [CCN+85].) If gy is such a value (e.g. y4,) then linear combinations of algebraic conjugates of
qy are abbreviated as in the following examples:

2gN + 3&5 — 4&7 + &9 means 2qy + 3¢ —4qi + i
4gN&3&5&7 — 3&4 means 4(qy + ¢ + ¢ + @) — 3¢t
49N * 3&5 + &7 means a2+ aiP) + af

To explain the “ampersand” syntax in general we remark that “&k” is interpreted as qj{,’“, where qy is the
most recently named atomic irrationality, and that the scope of any premultiplying coefficient is broken by
a + or — sign, but not by & or xk. The algebraic conjugations indicated by the ampersands apply directly
to the atomic irrationality gy, even when, as in the last example, ¢y first appears with another conjugacy
xk.

gap> EW(16,3); EW(17,2); ER(3); EI(3); EY(5); EB(9);
0

E(17)+E(17) "4+E(17) "13+E(17) " 16
-E(12)"7+E(12) 11

E(3)-E(3)"2

E(5)+E(5)"4

1

gap> AtlasIrrationality("b7*3");
E(7)"3+E(7)"5+E(7) "6

gap> AtlasIrrationality("y’’’24");
E(24)-E(24)"19

gap> AtlasIrrationality("-3y’’’24%13&5");
3+E(8)-3*E(8)"3

gap> AtlasIrrationality("3y’’’24%13-2&5");
—-3*%E(24)-2+E(24) "11+2*E(24) "17+3%E(24) "19
gap> AtlasIrrationality("3y’’’24%13-&5");
-3+E(24)-E(24) "11+E(24) "17+3*E(24) "19

gap> AtlasIrrationality("3y’’’24%13-4&5&7");
—T*E(24)-4*E(24) "11+4*E(24) "17+7*E(24) "19
gap> AtlasIrrationality("3y’’’24&7");
6+E(24)-6*E(24) 19

2»

3>

160 Chapter 18. Cyclotomic Numbers

18.5 Galois Conjugacy of Cyclotomics

GaloisCyc(cyc, k) O
GaloisCyc(list, k) O

For a cyclotomic cyc and an integer k, GaloisCyc returns the cyclotomic obtained by raising the roots
of unity in the Zumbroich basis representation of cyc to the k-th power. If k is coprime to the integer n,
GaloisCyc(., k) acts as a Galois automorphism of the n-th cyclotomic field (see 58.3); to get the Galois
automorphisms themselves, use GaloisGroup (see 56.3.1).

The complex conjugate of cyc is GaloisCyc(cyc, -1), which can also be computed using Complex-
Conjugate (see 58.2.4).

For a list or matrix list of cyclotomics, GaloisCyc returns the list obtained by applying GaloisCyc to the
entries of list.

gap> GaloisCyc(E(8) + E(5)74, 2);

E(5)"2+E(5)"3

gap> GaloisCyc(E(5), -1); # the complex conjugate
E(6)"4

gap> GaloisCyc(E(5) + E(5)"4, -1); # this value is real
E(5)+E(5)"4

gap> GaloisCyc(E(15) + E(15)74, 3);

E(5)+E(5)"4

gap> ComplexConjugate(E(7));

E(7)"6

StarCyc(cyc) F

If the cyclotomic cyc is an irrational element of a quadratic extension of the rationals then StarCyc returns
the unique Galois conjugate of cyc that is different from cyc, otherwise fail is returned. In the first case,
the return value is often called cycx (see 69.11).

gap> StarCyc(EB(5)); StarCyc(E(5));
E(5)"2+E(5)"3
fail

Quadratic(cyc) F

Let cyc be a cyclotomic integer that lies in a quadratic extension field of the rationals. Then we have
cyc = (a + by/n)/d for integers a, b, n, d, such that d is either 1 or 2. In this case, Quadratic returns a
record with the components a, b, root, d, ATLAS, and display; the values of the first four are a, b, n, and
d, the ATLAS value is a (not necessarily shortest) representation of cyc in terms of the ATLAS irrationalities
bin|s %n|s Tn|> and the display value is a string that expresses cyc in GAP notation, corresponding to the
value of the ATLAS component.

If cyc is not a cyclotomic integer or does not lie in a quadratic extension field of the rationals then fail is
returned.

If the denominator d is 2 then necessarily n is congruent to 1 modulo 4, and r,, 4, are not possible; we have
cyc = x +y * EB(root) withy =b,x=(Ca+b) /2

If d =1, we have the possibilities i,,| for n < —1, a + bx i for n = -1, a + b * 1, for n > 0. Furthermore if
n is congruent to 1 modulo 4, also cyc = (a+ b) 42 b * by,| is possible; the shortest string of these is taken
as the value for the component ATLAS.

Section 5. Galois Conjugacy of Cyclotomics 161

gap> Quadratic(EB(5)); Quadratic(EB(27));

rec(a := -1, b := 1, root := 5, d := 2, ATLAS := "b5",
display := "(-1+ER(5))/2")
rec(a := -1, b := 3, root := -3, d := 2, ATLAS := "1+3b3",
display := "(-1+3xER(-3))/2")
gap> Quadratic(0); Quadratic(E(5));
rec(a := 0, b :=0, root :=1, d := 1, ATLAS := "0", display := "O0")
fail
4» GaloisMat(mat) A

Let mat be a matrix of cyclotomics. GaloisMat calculates the complete orbits under the operation of the
Galois group of the (irrational) entries of mat, and the permutations of rows corresponding to the generators
of the Galois group.

If some rows of mat are identical, only the first one is considered for the permutations, and a warning will

be printed.

GaloisMat returns a record with the components mat, galoisfams, and generators.

mat:
a list with initial segment being the rows of mat (not shallow copies of these rows); the list consists
of full orbits under the action of the Galois group of the entries of mat defined above. The last rows
in the list are those not contained in mat but must be added in order to complete the orbits; so if
the orbits were already complete, mat and mat have identical rows.

galoisfams:
a list that has the same length as the mat component, its entries are either 1, 0, -1, or lists. galo-
isfams[i] = 1 means that mat[i] consists of rationals, i.e. [mat[i]] forms an orbit; galois-
fams[i] = -1 means that mat[i] contains unknowns (see Chapter 19); in this case [mat[i]] is
regarded as an orbit, too, even if mat [i] contains irrational entries; if galoisfams[i] = [}, k] is a
list then mat [i] is the first element of its orbit in mat, [; is the list of positions of rows that form
the orbit, and I is the list of corresponding Galois automorphisms (as exponents, not as functions),
so we have mat|l;[j]][k] = GaloisCyc(mat[i][k], k[j]); galoisfams[i] = O means that mat[i] is an
element of a nontrivial orbit but not the first element of it.

generators:

a list of permutations generating the permutation group corresponding to the action of the Galois
group on the rows of mat.

In the following example we temporarily increase the line length limit from its default value 80 to 84 in
order to get a nicer output format.

gap> SizeScreen([84, 1);;
gap> GaloisMat([[E(3), E(4) 1 1);

rec(
mat := [[E(3), E(4) 1, [E(3), -E(4) 1, [E(3)"2, E(4 1, [E@3)"2, -E4) 11,
galoisfams := [[[1,2, 3,471, [1,7,5,1111,0,0,01,
generators := [(1,2)(3,4), (1,3)(2,4) 1)

gap> SizeScreen([80, 1);;
gap> GaloisMat([[1, 1, 11, [1, E(3), E(3)"21] 1);
rec(mat := [[1, 1, 11, [1, E(Q), EB3)"2 1, [1, E(3)"2, E(3) 11,

galoisfams := [1, [[2, 3], [1, 211, 01, generators := [(2,3) 1)

5» RationalizedMat(mat) A

returns the list of rationalized rows of mat, which must be a matrix of cyclotomics. This is the set of sums
over orbits under the action of the Galois group of the entries of mat (see 18.5.4), so the operation may be
viewed as a kind of trace on the rows.

162 Chapter 18. Cyclotomic Numbers

Note that no two rows of mat should be equal.

gap> mat:=List(Irr(CharacterTable("A5")),ValuesOfClassFunction);

(ra,1,1,1,11, [3, -1, 0, -E(5)-E(5)"4, -E(5)"2-E(5)"3],
[3, -1, 0, -E(B)"2-E(5)"3, -E(B)-E(B)"4 1, [4, 0, 1, -1, -1 1,
[5, 1, -1, 0, 01 1]

gap> RationalizedMat(mat);

rras+,1,1,1,11, 06, 2,0, 1,171, [4, 0,1, -1, -117,
[5, 1, -1, 0, 01 1]

18.6 Internally Represented Cyclotomics

The implementation of an internally represented cyclotomic is based on a list of length equal to its
conductor. This means that the internal representation of a cyclotomic does not refer to the smallest number
field but the smallest cyclotomic field containing it. The reason for this is the wish to reflect the natural
embedding of two cyclotomic fields into a larger one that contains both. With such embeddings, it is easy
to construct the sum or the product of two arbitrary cyclotomics as an element of a cyclotomic field.

The disadvantage of this approach is that the arithmetical operations are quite expensive, so the use of
internally represented cyclotomics is not recommended for doing arithmetics over number fields, such as
calculations with matrices of cyclotomics. But internally represented cyclotomics are good enough for dealing
with irrationalities in character tables (see chapter 69).

For the representation of cyclotomics one has to recall that the n-th cyclotomic field Q(e,) is a vector space
of dimension ¢(n) over the rationals where ¢ denotes Euler’s phi-function (see 15.1.2).

A special integral basis of cyclotomic fields is chosen that allows one to easily convert arbitrary sums of
roots of unity into the basis, as well as to convert a cyclotomic represented w.r.t. the basis into the smallest
possible cyclotomic field. This basis is accessible in GAP, see 58.1 for more information and references.

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication is not the
multiplication of the group ring Q(e,); given a Q-basis of Q(e,) the result of the multiplication (computed
as multiplication of polynomials in e,, using (e,)” = 1) will be converted to the basis.

gap> E(8) * E(5)72; (E(B) + E(5)74) * E(5)72;
E(5)"3

E(5)+E(5)"3

gap> (E(6) + E(8)"4) * E(5);
-E(5)-E(5)"3-E(5)"4

An internally represented cyclotomic is always represented in the smallest cyclotomic field it is contained
in. The internal coefficients list coincides with the external representation returned by ExtRepOf0bj.

Since the conductor of internally represented cyclotomics must be in the category IsSmallIntRep, the
biggest possible (though not very useful) conductor is 65535. So the maximal cyclotomic field implemented
in GAP is not really the field Q®.

Unknowns

Sometimes the result of an operation does not allow further computations with it. In many cases, then an
error is signalled, and the computation is stopped.

This is not appropriate for some applications in character theory. For example, if a character of a group sill
be induced to a supergroup (see 70.9.3) but the class fusion is only a parametrized map (see Chapter 71),
there may be values of the induced character which are determined by the fusion map, whereas other values
are not known.

For this and other situations, GAP provides the data type unknown. An object of this type, further on
called an unknown, may stand for any cyclotomic (see Chapter 18), in particular its family (see 13.1) is
CyclotomicsFamily.

Unknowns are parametrized by positive integers. When a GAP session is started, no unknowns exist.

The only ways to create unknowns are to call the function Unknown or a function that calls it, or to do
arithmetical operations with unknowns.

GAP objects containing unknowns will contain fixed unknowns when they are printed to files, i.e., function
calls Unknown(7) instead of Unknown(). So be careful to read files printed in different GAP sessions, since
there may be the same unknown at different places.

The rest of this chapter contains information about the unknown constructor, the category, and comparison
of and arithmetical operations for unknowns; more is not known about unknowns in GAP.

Unknown() O
Unknown(n) O

In the first form Unknown returns a new unknown value, i.e., the first one that is larger than all unknowns
which exist in the current GAP session.

In the second form Unknown returns the n-th unknown; if it did not exist already, it is created.
LargestUnknown A%

LargestUnknown is the largest n that is used in any Unknown(n) in the current GAP session. This is used
in Unknown which increments this value when asked to make a new unknown.

IsUnknown(o0bj) C
is the category of unknowns in GAP.

gap> Unknown(); List([1 .. 201, i -> Unknown());;

Unknown (1)

gap> Unknown() ; # note that we have already created 21 unknowns.
Unknown (22)

gap> Unknown(2000); Unknown();

Unknown (2000)

Unknown (2001)

gap> LargestUnknown;

2001

164 Chapter 19. Unknowns

gap> IsUnknown(Unknown); IsUnknown(Unknown());
false
true

Unknowns can be compared via = and < with all cyclotomics and with certain other GAP objects (see 4.11).
We have Unknown(n) >= Unknown(m) if and only if n» >= m holds; unknowns are larger than all
cyclotomics that are not unknowns.

gap> Unknown() >= Unknown(); Unknown(2) < Unknown(3);
false

true

gap> Unknown() > 3; Unknown() > E(3);

true

true

gap> Unknown() > Z(8); Unknown() > [];

false

false

The usual arithmetic operations +, -, * and / are defined for addition, subtraction, multiplication and
division of unknowns and cyclotomics. The result will be a new unknown except in one of the following
cases.

Multiplication with zero yields zero, and multiplication with one or addition of zero yields the old unknown.
Note that division by an unknown causes an error, since an unknown might stand for zero.

As unknowns are cyclotomics, dense lists of unknowns and other cyclotomics are row vectors and they can be
added and multiplied in the usual way. Consequently, lists of such row vectors of equal length are (ordinary)
matrices (see 24.1.2).

1»

1»

Booleans

The two main boolean values are true and false. They stand for the logical values of the same name.
They appear as values of the conditions in if-statements and while-loops. Booleans are also important as
return values of filters (see 13.2) such as IsFinite and IsBool. Note that it is a convention that the name
of a function that returns true or false according to the outcome, starts with Is.

For technical reasons, also the value fail (see 20.1.1) is regarded as a boolean.
IsBool(obj) C
tests whether obj is true, false or fail.

gap> IsBool(true); IsBool(false); IsBool(17);
true
true
false

20.1 Fail
fail \%

The value fail is used to indicate situations when an operation could not be performed for the given
arguments, either because of shortcomings of the arguments or because of restrictions in the implementation
or computability. So for example Position (see 21.16.1) will return fail if the point searched for is not in
the list.

fail is simply an object that is different from every other object than itself.

For technical reasons, fail is a boolean value. But note that fail cannot be used to form boolean expressions
with and, or, and not (see 20.3 below), and fail cannot appear in boolean lists (see Chapter 22).

20.2 Comparisons of Booleans

booll = bool2
booll <> bool2

The equality operator = evaluates to true if the two boolean values booll and bool2 are equal, i.e., both are
true or both are false or both fail, and false otherwise. The inequality operator <> evaluates to true if
the two boolean values bool! and bool2 are different and false otherwise. This operation is also called the
exclusive or, because its value is true if exactly one of booll or bool2 is true.

You can compare boolean values with objects of other types. Of course they are never equal.

2»

1»

2>

166 Chapter 20. Booleans

gap> true = false;

false

gap> false = (true = fail);
true

gap> true <> 17;

true

booll < bool2

The ordering of boolean values is defined by true < false < fail. For the comparison of booleans with
other GAP objects, see Section 4.11.

gap> true < false; fail >= false;
true
true

20.3 Operations for Booleans

The following boolean operations are only applicable to true and false.
booll or bool2

The logical operator or evaluates to true if at least one of the two boolean operands booll and bool2 is
true and to false otherwise.

or first evaluates booll. If the value is neither true nor false an error is signalled. If the value is true,
then or returns true without evaluating bool2. If the value is false, then or evaluates bool2. Again, if
the value is neither true nor false an error is signalled. Otherwise or returns the value of bool2. This
short-circuited evaluation is important if the value of bool! is true and evaluation of bool2 would take
much time or cause an error.

or is associative, i.e., it is allowed to write b1 or b2 or b3, which is interpreted as (b1 or b2) or b3.
or has the lowest precedence of the logical operators. All logical operators have lower precedence than the
comparison operators =, <, in, etc.

gap> true or false;
true
gap> false or false;

false

gap> i := -1;; 1 := [1,2,3];;

gap> if i <= 0 or 1[i] = false then # this does not cause an error,

> Print("aha\n"); fi; # because ‘1[i]’ is not evaluated
aha

booll and bool2

The logical operator and evaluates to true if both boolean operands booll and bool2 are true and to false
otherwise.

and first evaluates booll. If the value is neither true nor false an error is signalled. If the value is false,
then and returns false without evaluating bool2. If the value is true, then and evaluates bool2. Again,
if the value is neither true nor false an error is signalled. Otherwise and returns the value of bool2. This
short-circuited evaluation is important if the value of bool! is false and evaluation of bool2 would take
much time or cause an error.

and is associative, i.e., it is allowed to write b1 and b2 and b3, which is interpreted as (b1 and b2) and
b3. and has higher precedence than the logical or operator, but lower than the unary logical not operator.
All logical operators have lower precedence than the comparison operators =, <, in, etc.

Section 3. Operations for Booleans 167

gap> true and false;

false

gap> true and true;

true

gap> false and 17; # this does not cause an error, because ‘17’ is never looked at
false

3» fill and fil2

4»

and can also be applied to filters. It returns a filter that when applied to some argument x, tests fil1 (x)
and fil2 (z).

gap> andfilt:= IsPosRat and IsInt;;
gap> andfilt(17); andfilt(1/2);
true
false

not bool

The logical operator not returns true if the boolean value bool is false and true otherwise. An error is
signalled if bool does not evaluate to true or false.

not has higher precedence than the other logical operators, or and and. All logical operators have lower
precedence than the comparison operators =, <, in, etc.

gap> true and false;
false

gap> not true;

false

gap> not false;

true

1»

2»

Lists

Lists are the most important way to treat objects together. A list arranges objects in a definite order. So
each list implies a partial mapping from the integers to the elements of the list. I.e., there is a first element
of a list, a second, a third, and so on. Lists can occur in mutable or immutable form, see 12.6 for the concept
of mutability, and 21.7 for the case of lists.

This chapter deals mainly with the aspect of lists in GAP as data structures. Chapter 28 tells more about
the collection aspect of certain lists, and more about lists as arithmetic objects can be found in the
chapters 23 and 24.

Lists are used to implement ranges (see 21.22), sets (see 21.19), strings (see 26), row vectors (see 23), and
matrices (see 24); Boolean lists (see 22) are a further special kind of lists.

Several operations for lists, such as Intersection and Random, will be described in Chapter 28, in particular
see 28.2.

21.1 List Categories

A list can be written by writing down the elements in order between square brackets [, 1, and separating
them with commas ,. An empty list, i.e., a list with no elements, is written as [].

gap> [1, 2, 3 1;

[1, 2, 3] # a list with three elements

gap> [[0, [11, [1,21 1;

LT 1,011, [1, 2711 # alist may contain other lists

Each list constructed this way is mutable (see 12.6).
IsList(obj) C
tests whether obj is a list.

gap> IsList([1, 3, 5, 71); IsList(1);
true
false

IsDenseList(obj) C

A list is dense if it has no holes, i.e., contains an element at every position. It is absolutely legal to have
lists with holes. They are created by leaving the entry between the commas empty. Holes at the end of a
list are ignored. Lists with holes are sometimes convenient when the list represents a mapping from a finite,
but not consecutive, subset of the positive integers.

3>

4»

5»

Section 1. List Categories 169

gap> IsDemselList([1, 2, 31);

true

gap> 1 := [, 4, 9,, 25,, 49,,,, 121 1;; IsDenseList(1);
false

gap> 1[3];

9

gap> 1[4];

List Element: <list>[4] must have an assigned value
not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ after assigning a value to continue

brk> 1[4] := 16;; # assigning a value

brk> return; # to escape the break-loop
16

gap>

Observe that requesting the value of 1[4], which was not assigned, caused the entry of a break-loop (see
Section 6.3). After assigning a value and typing return;, GAP is finally able to comply with our request
(by responding with 16).

IsHomogeneousList(obj) C

returns true if obj is a list and it is homogeneous, or false otherwise.

A homogeneous list is a dense list whose elements lie in the same family (see 13.1). The empty list is
homogeneous but not a collection (see 28), a nonempty homogeneous list is also a collection.

gap> IsHomogeneousList([1, 2, 3]); IsHomogeneousList([]);
true

true

gap> IsHomogeneousList([1, false, OO 1);

false

IsTable(obj) C

A table is a nonempty list of homogeneous lists which lie in the same family. Typical examples of tables
are matrices (see 24).

gap> IsTable([[1, 21, [3,411); # in fact a matrix
true
gap> IsTable([[11, [2,311); # not rectangular but a table
true
gap> IsTable([[1, 21, [O , (1,2) 11); # not homogeneous
false
IsConstantTimeAccessList (list) C

This category indicates whether the access to each element of the list list will take roughly the same time. This
is implied for example by IsList and IsInternalRep, so all strings, Boolean lists, ranges, and internally
represented plain lists are in this category.

But also other enumerators (see 21.23) can lie in this category if they guarantee constant time access to
their elements.

1»

2>

170 Chapter 21. Lists

21.2 Basic Operations for Lists

The basic operations for lists are element access (see 21.3), assignment of elements to a list (see 21.4),
fetching the length of a list (see 21.17.5), the test for a hole at a given position, and unbinding an element
at a given position (see 21.5).

The term basic operation means that each other list operation can be formulated in terms of the basic
operations. (But note that usually a more efficient method than this one is implemented.)

Any GAP object list in the category IsList (see 21.1.1) is regarded as a list, and if methods for the basic
list operations are installed for list then list can be used also for the other list operations.

For internally represented lists, kernel methods are provided for the basic list operations. For other lists, it
is possible to install appropriate methods for these operations. This permits the implementation of lists that
do not need to store all list elements (see also 21.23); for example, the elements might be described by an
algorithm, such as the elements list of a group. For this reduction of space requirements, however, a price
in access time may have to be paid (see 21.17.6).

\N[\] C list, pos)
IsBound\[\](list, pos)
\N[\I\:\=(list, pos, wal)
Unbind\ [\] (list, pos)

cloNoNe

These operations implement element access, test for element boundedness, list element assignment, and
removal of the element at position pos. In all cases, the index pos must be a positive integer.

Note that the special characters [,], :, and = must be escaped with a backslash \ (see 4.3); so \[\] denotes
the operation for element access in a list, whereas [] denotes an empty list. (Maybe the variable names
involving special characters look strange, but nevertheless they are quite suggestive.)

\[\]1(list, pos) is equivalent to list[pos], which clearly will usually be preferred; the former is useful
mainly if one wants to access the operation itself, for example if one wants to install a method for element
access in a special kind of lists.

Similarly, IsBound\ [\] is used explicitly mainly in method installations. In other situations, one can simply
call IsBound, which then delegates to IsBound\ [\] if the first argument is a list, and to IsBound\. if the
first argument is a record.

Analogous statements hold for \[\]\:\= and Unbind\ [\].

21.3 List Elements

list [pos]

The above construct evaluates to the pos-th element of the list list. pos must be a positive integer. List
indexing is done with origin 1, i.e., the first element of the list is the element at position 1.

gap> 1 := [2, 3, 5, 7, 11, 13 1;; 1[1]; 1[2]; 1I[6]1;
2
3
13

If list is not a list, or pos does not evaluate to a positive integer, or list [pos] is unbound an error is signalled.
list{ poss }

The above construct evaluates to a new list new whose first element is list [poss [1]], whose second element
is list [poss[2]1], and so on. poss must be a dense list of positive integers. However, it does not need to be
sorted and may contain duplicate elements. If for any ¢, list[poss[i]] is unbound, an error is signalled.

Section 3. List Elements 171

gap> 1 := [2, 3, 5, 7, 11, 13, 17, 19 1;;
gap> 1{[4..61}; 1{[1,7,1,8]};

(7, 11, 13]

[2, 17, 2, 19]

The result is a new list, that is not identical to any other list. The elements of that list, however, are
identical to the corresponding elements of the left operand (see 21.6).

It is possible to nest such sublist extractions, as can be seen in the following example.

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12] 1;; m{[1,2,31}{[3,2]};
(03 21,086,511, [9,81]1

gap> 1 := m{[1,2,31};; 1{[3,21};

(07,8 91, [4,5,61]1]

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from m and then
extracts the elements 3 and 2 from this list. The former extracts elements 1, 2, and 3 from m and then
extracts the elements 3 and 2 from each of those element lists.

To be precise: With each selector [pos] or {poss} we associate a level that is defined as the number of
selectors of the form {poss} to its left in the same expression. For example

1[pos1]{poss2}{poss3}[pos4]{poss5} [pos6]
level 0 0 1 1 1 2

Then a selector list [pos] of level level is computed as ListElement (list, pos,level), where ListElement is
defined as follows. (Note that ListElement is not a GAP function.)

ListElement := function (list, pos, level)

if level = O then

return list[pos];

else

return List(list, elm -> ListElement(elm,pos,level-1));
fi;
end;

and a selector list{poss} of level level is computed as ListElements (list, poss,level), where ListElements
is defined as follows. (Note that ListElements is not a GAP function.)

ListElements := function (list, poss, level)
if level = O then
return list{poss};
else
return List(list, elm -> ListElements(elm,poss,level-1));
fi;
end;

3» \{\}(list, poss) 0

This operation implements sublist access. For any list, the default method is to loop over the entries in

the list poss, and to delegate to the element access operation. (For the somewhat strange variable name,
cf. 21.2.)

1»

2>

172 Chapter 21. Lists
21.4 List Assignment

list[pos 1 := object;

The list element assignment assigns the object object, which can be of any type, to the list entry at the
position pos, which must be a positive integer, in the mutable (see 12.6) list list. That means that accessing
the pos-th element of the list list will return object after this assignment.

gap> 1 :=[1, 2, 31;;

gap> 1[1] := 3;; 1; # assign a new object
[3,2,3]

gap> 1[2] := [4, 5, 6];; 1; # <object> may be of any type
[3, [4 5,61, 31

gap> 1[1[1]] := 10;; 1; # <index> may be an expression

(3, [4,5,61],10]1]

If the index pos is larger than the length of the list list (see 21.17.5), the list is automatically enlarged to
make room for the new element. Note that it is possible to generate lists with holes that way.

gap> 1[4] := "another entry";; 1; # <list> is enlarged
[3, [4,5, 61, 10, "another entry"]
gap> 1[10] := 1;; 1; # now <list> has a hole

[3, [4, 5, 61, 10, "another entry",,,,,, 1]

The function Add (see 21.4.4) should be used if you want to add an element to the end of the list.

Note that assigning to a list changes the list, thus this list must be mutable (see 12.6). See 21.6 for subtleties
of changing lists.

If list does not evaluate to a list, pos does not evaluate to a positive integer or object is a call to a function
which does not return a value (for example Print) an error is signalled.

list{ poss } := objects;

The sublist assignment assigns the object objects [1], which can be of any type, to the list list at the position
poss[1], the object objects [2] to list [poss[2]], and so on. poss must be a dense list of positive integers,
it need, however, not be sorted and may contain duplicate elements. objects must be a dense list and must
have the same length as poss.

gap> 1 := [2, 3, 5, 7, 11, 13, 17, 19 1;;
gap> 1{[1..41} := [10..13];; 1;

[10, 11, 12, 13, 11, 13, 17, 19]

gap> 1{[1,7,1,10]1} := [1, 2, 3, 4 1;; 1;
[3, 11, 12, 13, 11, 13, 2, 19,, 4]

It is possible to nest such sublist assignments, as can be seen in the following example.

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12] 1;;
gap> m{[1,2,3]13{[3,2]} := [[11,12], [13,14], [15,16] 1;; m;
[r1, 12, 1121, [4, 14, 131, [7, 16, 1561, [10, 11, 12] 1]

The exact behaviour is defined in the same way as for list extractions (see 21.3). Namely with each selector
[pos] or {poss} we associate a level that is defined as the number of selectors of the form {poss} to its left
in the same expression. For example

3>

4»

Section 4. List Assignment 173

1[pos1]{poss2}{poss3}[pos4]{poss5} [pos6]

level 0 0 1 1 1 2
Then a list assignment list [pos] := wals; of level level is computed as ListAssignment (list, pos, wvals,
level), where ListAssignment is defined as follows. (Note that ListAssignment is not a GAP function.)
ListAssignment := function (list, pos, vals, level)
local i;
if level = O then
list[pos] := vals;
else

for i in [1..Length(list)] do
ListAssignment (list[i], pos, vals[i], level-1);
od;

fi;

end;

and a list assignment list{poss} := wals of level level is computed as ListAssignments(list, poss, wvals,
level), where ListAssignments is defined as follows. (Note that ListAssignments is not a GAP function.)

ListAssignments := function (list, poss, vals, level)
local i;
if level = O then
list{poss} := vals;
else
for i in [1..Length(list)] do
ListAssignments(list[i], poss, vals[i], level-1);
od;
fi;
end;

N\ :\=(list, poss, wal) 0

This operation implements sublist assignment. For any list, the default method is to loop over the entries

in the list poss, and to delegate to the element assignment operation. (For the somewhat strange variable
name, cf. 21.2.)

Add (list, obj) O

adds the element 0bj to the end of the mutable list list, i.e., it is equivalent to the assignment [list[
Length(list) + 1 1 := obj, see 21.4.1. Nothing is returned by Add, the function is only called for its side
effect.

gap> 1 := [2, 3, 51;; Add(1, 7); 1;
[2, 3: 5’ 7]

Append (listl, list2) O

adds the elements of the list list2 to the end of the mutable list list1, see 21.4.2. list2 may contain holes, in
which case the corresponding entries in list! will be left unbound. Append returns nothing, it is only called
for its side effect.

Note that Append changes its first argument, while Concatenation (see 21.20.1) creates a new list and leaves
its arguments unchanged.

gap> 1 := [2, 3, 5 1;; Append(1, [7, 11, 131); 1;
[2, 3,5, 7, 11, 13]

gap> Append(1, [17,, 23 1); 1;

(2,3,5,7, 11, 13, 17,, 23]

1»

2»

174 Chapter 21. Lists

21.5 IsBound and Unbind for Lists

IsBound(list[n]) M

IsBound returns true if the list list has a element at the position n, and false otherwise. list must evaluate
to a list, otherwise an error is signalled.

gap> 1 :=[, 2,3, ,5,,7,,,,111;;
gap> IsBound(1[7]);

true

gap> IsBound(1[4]);

false

gap> IsBound(1[101]);

false

Unbind(list[n]) M

Unbind deletes the element at the position n in the mutable list list. That is, after execution of Unbind, list
no longer has an assigned value at the position n. Thus Unbind can be used to produce holes in a list. Note
that it is not an error to unbind a nonexisting list element. list must evaluate to a list, otherwise an error
is signalled.

gap> 1 := [, 2,3,5,,7,,,,111;;
gap> Unbind(1[3]); 1;

L, 2,,5,, 7,,,, 111

gap> Unbind(1[4]); 1;

[, 2,,,, 7,,,, 111

Note that IsBound and Unbind are special in that they do not evaluate their argument, otherwise IsBound
would always signal an error when it is supposed to return false and there would be no way to tell Unbind
which component to remove.

21.6 ldentical Lists

With the list assignment (see 21.4) it is possible to change a mutable list. This section describes the semantic
consequences of this fact. (See also 12.5.)

First we define what it means when we say that “an object is changed”. You may think that in the following
example the second assignment changes the integer.

i = 3;
i+ 1;

But in this example it is not the integer 3 which is changed, by adding one to it. Instead the variable
i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing happens in the
following example

1 :
1 :

[1, 2]
[1, 2, 31;

The second assignment does not change the first list, instead it assigns a new list to the variable 1. On the
other hand, in the following example the list is changed by the second assignment.

1:=10[01, 217;
1[3] := 3;

To understand the difference, think of a variable as a name for an object. The important point is that a list
can have several names at the same time. An assignment var:=[list; means in this interpretation that var

Section 6. Identical Lists 175

is a name for the object list. At the end of the following example 12 still has the value [1, 2] as this list
has not been changed and nothing else has been assigned to it.

11 [1, 2 1];

12 := 11;
11 :=[1, 2, 31;

But after the following example the list for which 12 is a name has been changed and thus the value of 12
ismow [1, 2, 3 1.

11 := [1, 2];
12 := 11;
11[3] := 3;

We say that two lists are identical if changing one of them by a list assignment also changes the other one.
This is slightly incorrect, because if two lists are identical, there are actually only two names for one list.
However, the correct usage would be very awkward and would only add to the confusion. Note that two
identical lists must be equal, because there is only one list with two different names. Thus identity is an equiv-
alence relation that is a refinement of equality. Identity of objects can be detected using IsIdenticalObj,
see 12.5.

Let us now consider under which circumstances two lists are identical.

If you enter a list literal then the list denoted by this literal is a new list that is not identical to any other
list. Thus in the following example 11 and 12 are not identical, though they are equal of course.

[1, 21;
[1, 21;

11
12 :

Also in the following example, no lists in the list 1 are identical.

1 :=[1;
for i in [1..10] do 1[i] := [1, 2]; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable on the left hand
side and the list on the right hand side of the assignment are identical. So in the following example 11 and
12 are identical lists.

[1, 21;
11;

11
12 :

If you pass a list as an argument, the old list and the argument of the function are identical. Also if you
return a list from a function, the old list and the value of the function call are identical. So in the following
example 11 and 12 are identical lists:

11 :=[1, 21;
f := function (1) return 1; end;
12 := £(11);

If you change a list it keeps its identity. Thus if two lists are identical and you change one of them, you also
change the other, and they are still identical afterwards. On the other hand, two lists that are not identical
will never become identical if you change one of them. So in the following example both 11 and 12 are
changed, and are still identical.

11 [1, 217;
12 := 11;
11[1] := 2;

176 Chapter 21. Lists

21.7 Duplication of Lists

Here we describe the meaning of ShallowCopy and StructuralCopy for lists. For the general definition of
these functions, see 12.7.

The subobjects (see 12.7.1) of a list are exactly its elements.

This means that for any list list, ShallowCopy returns a mutable new list new that is not identical to any
other list (see 21.6), and whose elements are identical to the elements of list.

Analogously, for a mutable list list, StructuralCopy returns a mutable new list scp that is not identical
to any other list, and whose elements are structural copies (defined recursively) of the elements of list; an
element of scp is mutable (and then a new list) if and only if the corresponding element of list is mutable.

In both cases, modifying the copy new resp. scp by assignments (see 21.4) does not modify the original
object list.

ShallowCopy basically executes the following code for lists.

new := [];
for i in [1 .. Length(1list)] do
if IsBound(list[i]) then
new[i] := list[i];
fi;
od;

gap> listl := [[1, 2], [3, 41 1;; 1list2 := ShallowCopy(listl);;
gap> IsIdenticalObj(listl, list2);

false
gap> IsIdenticalObj(list1[1], 1list2[1]);
true
gap> list2[1] := 0;; 1listl; 1list2;
[l1,27,03,41]1

11

(o, [3, 4

StructuralCopy basically executes the following code for lists.

new := [];
for i in [1 .. Length(list)] do
if IsBound(list[i]) then
new[i] := StructuralCopy(list[i]);
fi;
od;

gap> listl := [[1, 21, [3, 41 1;; 1list2 := StructuralCopy(listl);;
gap> IsIdenticalObj(listl, 1list2);

false

gap> IsIdenticalObj(list1[1], 1list2[1]);

false

gap> 1list2[1]1[1] := O;
(01,21, 03,411
(fo,21, 03,411

; listl; 1list2;

H

The above code is not entirely correct. If the object list contains a mutable object twice this object is not
copied twice, as would happen with the above definition, but only once. This means that the copy new and
the object list have exactly the same structure when viewed as a general graph.

Section 9. Enlarging Internally Represented Lists 177

gap> sub := [1, 2];; listl := [sub, sub 1;;
gap> list2 := StructuralCopy(listl);
(01,273, 01,21]1

gap> list2[11[1] := 0;; list2;
tro,21,00,21]

gap> listil;

(1,21, 01,211

21.8 Membership Test for Lists

1» obj in list
tests whether there is a positive integer index such that list[index 1 = obj.

If the list list knows that it is strictly sorted (see 21.17.4), the membership test is much quicker, because a
binary search can be used instead of the linear search used for arbitrary lists.

gap> 1 in [2, 2, 1, 3]; 1in [4, -1, 0, 3 1;

true

false

gap> s := SSortedList([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> 17 in s;

false # uses binary search and only 4 comparisons

For finding the position of an element in a list, see 21.16.

21.9 Enlarging Internally Represented Lists

Section 21.4 told you (among other things) that it is possible to assign beyond the logical end of a mutable
list, automatically enlarging the list. This section tells you how this is done for internally represented lists.

It would be extremely wasteful to make all lists large enough so that there is room for all assignments,
because some lists may have more than 100000 elements, while most lists have less than 10 elements.

On the other hand suppose every assignment beyond the end of a list would be done by allocating new
space for the list and copying all entries to the new space. Then creating a list of 1000 elements by assigning
them in order, would take half a million copy operations and also create a lot of garbage that the garbage
collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct size. If a list is
enlarged, because of an assignment beyond the end of the list, it is enlarged by at least length/8 + 4 entries.
Therefore the next assignments beyond the end of the list do not need to enlarge the list. For example
creating a list of 1000 elements by assigning them in order, would now take only 32 enlargements.

The result of this is of course that the physical length of a list may be larger than the logical length,
which is usually called simply the length of the list. Aside from the implications for the performance you
need not be aware of the physical length. In fact all you can ever observe, for example by calling Length
(see 21.17.5), is the logical length.

Suppose that Length would have to take the physical length and then test how many entries at the end of
a list are unassigned, to compute the logical length of the list. That would take too much time. In order to
make Length, and other functions that need to know the logical length, more efficient, the length of a list
is stored along with the list.

1»

178 Chapter 21. Lists
21.10 Comparisons of Lists

list1 = list2
list1 <> list2

Two lists list] and list2 are equal if and only if for every index i, either both entries list1 [i] and list2 [i]
are unbound, or both are bound and are equal, i.e., list! [¢] = list2 [¢] is true.

gap> [1, 2,31 =1[1,2,31];

true

gap> [, 2,31 =1011,2,1;
false

gap> [1, 2,31 =103, 2, 117;
false

This definition will cause problems with lists which are their own entries. Comparing two such lists for
equality may lead to an infinite recursion in the kernel if the list comparison has to compare the list entries
which are in fact the lists themselves, and then GAP crashes.

list] < list2
list] <= list2

Lists are ordered lexicographically. Unbound entries are smaller than any bound entry. That implies the
following behaviour. Let ¢ be the smallest positive integer 7 such that list! and list2 at position i differ, i.e.,
either exactly one of list! [1], list2 [i] is bound or both entries are bound and differ. Then list! is less than
list2 if either list1 [4] is unbound (and list2 [4] is not) or both are bound and list [i] < list2[4] is true.

gap> [1, 2, 3,41 < [1, 2, 4, 81;

true # <list1>[3] < <1ist2>[3]

gap> [1, 2,31 <I[1,2,3,41;

true # <list1>[4] is unbound and therefore very small
gap> [1, , 3,41<T[1,2,317;

true # <1ist1>[2] is unbound and therefore very small

Note that for comparing two lists with < or <=, the (relevant) list elements must be comparable with <,
which is usually not the case for objects in different families, see 13.1. Also for the possibility to compare
lists with other objects, see 13.1.

21.11 Arithmetic for Lists

It is convenient to have arithmetic operations for lists, in particular because in GAP row vectors and matrices
are special kinds of lists. However, it is the wide variety of list objects because of which we prescribe arithmetic
operations not for all of them. (Keep in mind that “list” means just an object in the category IsList,
see 21.1.1.)

(Due to the intended generality and flexibility, the definitions given in the following sections are quite
technical. But for not too complicated cases such as matrices (see 24.2) and row vectors (see 23.1) whose
entries aren’t lists, the resulting behaviour should be intuitive.)

For example, we want to deal with matrices which can be added and multiplied in the usual way, via the
infix operators + and *; and we want also Lie matrices, with the same additive behaviour but with the
multiplication defined by the Lie bracket. Both kinds of matrices shall be lists, with the usual access to their
rows, with Length (see 21.17.5) returning the number of rows etc.

For the categories and attributes that control the arithmetic behaviour of lists, see 21.12.

1»

2»

3>

Section 12. Filters Controlling the Arithmetic Behaviour of Lists 179

For the definition of return values of additive and multiplicative operations whose arguments are lists in
these filters, see 21.13 and 21.14, respectively. It should be emphasized that these sections describe only
what the return values are, and not how they are computed.

For the mutability status of the return values, see 21.15. (Note that this is not dealt with in the sections
about the result values.)

Further details about the special cases of row vectors and matrices can be found in 23.1 and in 24.2, the
compression status is dealt with in 23.2 and 24.13.

21.12 Filters Controlling the Arithmetic Behaviour of Lists

The arithmetic behaviour of lists is controlled by their types. The following categories and attributes are
used for that.

Note that we distinguish additive and multiplicative behaviour. For example, Lie matrices have the usual
additive behaviour but not the usual multiplicative behaviour.

IsGeneralizedRowVector (list) C

For a list list, the value true for IsGeneralizedRowVector indicates that the additive arithmetic behaviour
of list is as defined in 21.13, and that the attribute NestingDepthA (see 21.12.4) will return a nonzero value
when called with [list.

IsMultiplicativeGeneralizedRowVector(list) C

For a list list, the value true for IsMultiplicativeGeneralizedRowVector indicates that the multiplicative
arithmetic behaviour of list is as defined in 21.14, and that the attribute NestingDepthM (see 21.12.5) will
return a nonzero value when called with list.

Note that these filters do not enable default methods for addition or multiplication (cf. 21.12.3).

gap> IsList("abc"); IsGeneralizedRowVector("abc");
true

false

gap> liemat:= LieObject([[1, 21, [3, 41 1);
LieObject([[1, 21, [3,411)

gap> IsGeneralizedRowVector(liemat);

true

gap> IsMultiplicativeGeneralizedRowVector(liemat);
false

gap> bas:= CanonicalBasis(FullRowSpace(Rationals, 3));
CanonicalBasis((Rationals”3))

gap> IsMultiplicativeGeneralizedRowVector(bas);

true

IsListDefault(list) C

For a list list, IsListDefault indicates that the default methods for arithmetic operations of lists, such as
pointwise addition and multiplication as inner product or matrix product, shall be applicable to list.

IsListDefault implies IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector.

All internally represented lists are in this category, and also all lists in the representations IsGF2VectorRep,
Is8BitVectorRep, IsGF2MatrixRep, and Is8BitMatrixRep (see 23.2 and 24.13). Note that the result of an
arithmetic operation with lists in IsListDefault will in general be an internally represented list, so most
“wrapped list objects” will not lie in IsListDefault.

4»

5»

180 Chapter 21. Lists

gap> v:i= [1, 2 1;; m:= [v, 2kv];;

gap> IsListDefault(v); IsListDefault(m);

true

true

gap> IsListDefault(bas); IsListDefault(liemat);
true

false

NestingDepthA(obj) A

For a GAP object obj, NestingDepthA returns the additive nesting depth of obj. This is defined recursively
as the integer 0 if obj is not in IsGeneralizedRowVector, as the integer 1 if obj is an empty list in
IsGeneralizedRowVector, and as 1 plus the additive nesting depth of the first bound entry in 0bj otherwise.

NestingDepthM(o0bj) A

For a GAP object 0bj, NestingDepthM returns the multiplicative nesting depth of obj. This is defined
recursively as the integer 0 if 0bj is not in IsMultiplicativeGeneralizedRowVector, as the integer 1 if
obj is an empty list in IsMultiplicativeGeneralizedRowVector, and as 1 plus the multiplicative nesting
depth of the first bound entry in obj otherwise.

gap> NestingDepthA(v); NestingDepthM(v);

1

1

gap> NestingDepthA(m); NestingDepthM(m);

2

2

gap> NestingDepthA(liemat); NestingDepthM(liemat);
2

0

gap> 11:= [[1, 27, 31;; 12:=[1, [2,31 I;;
gap> NestingDepthA(11); NestingDepthM(11);

2

2

gap> NestingDepthA(12); NestingDepthM(12);

1

1

21.13 Additive Arithmetic for Lists

In this general context, we define the results of additive operations only in the following situations. For unary
operations (zero and additive inverse), the unique argument must be in IsGeneralizedRowVector; for binary
operations (addition and subtraction), at least one argument must be in IsGeneralizedRowVector, and the
other either is not a list or also in IsGeneralizedRowVector.

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at least one
argument is a list not in IsGeneralizedRowVector, it shall be left to this argument whether the result in
question is defined and what it is.)

Zero

The zero (see 30.10.3) of a list = in IsGeneralizedRowVector is defined as the list whose entry at position
i is the zero of z[i] if this entry is bound, and is unbound otherwise.

Section 13. Additive Arithmetic for Lists 181

gap> Zero([1, 2, 31); Zero([[1, 21, 31); Zero(liemat);
[0, 0,01

[CLo0,01,0]1

LieObject([[0, 01, [0,01 1)

AdditiveInverse

The additive inverse (see 30.10.9) of a list = in IsGeneralizedRowVector is defined as the list whose entry
at position 4 is the additive inverse of z[i] if this entry is bound, and is unbound otherwise.

gap> AdditiveInverse([1, 2, 3]); Additivelnverse([[1, 21, 31);
[_1: _2: -3]
[[-1,-21, -31

Addition

If z and y are in IsGeneralizedRowVector and have the same additive nesting depth (see 21.12.4), the sum
x 4 y is defined pointwise, in the sense that the result is a list whose entry at position i is x[i] + y[¢] if
these entries are bound, is a shallow copy (see 12.7.1) of z[i] or y[i] if the other argument is not bound at
position ¢, and is unbound if both z and y are unbound at position i.

If x is in IsGeneralizedRowVector and y is in IsGeneralizedRowVector and has lower additive nesting
depth, or is neither a list nor a domain, the sum x + y is defined as a list whose entry at position ¢ is z[i]+y
if z is bound at position ¢, and is unbound if not. The equivalent holds in the reversed case, where the order
of the summands is kept, as addition is not always commutative.

gap> 1 + [1,2,3]; [1,2,31+[0,2,41; [1,2]1+1T[2®21;
[2,3, 4]

[1, 4, 71

[0xZ2(2), 2]

gap> 11:= [1, , 3, 4 1;; 12:= [, 2, 3, 4, 51;;
gap> 13:= [[1,21, ,[5,611;; 14:=[, [3,41, [5,611;;
gap> NestingDepthA(11); NestingDepthA(12);

1

1

gap> NestingDepthA(13); NestingDepthA(14);

2

2

gap> 11 + 12;

[1, 2,6, 8, 5]

gap> 11 + 13;

(2 2,3,41,, [6,6,3,41]1]

gap> 12 + 14;

(,[3,6,3,4,51,[5,8,3,4,51]1]

gap> 13 + 14;

(r01,21,03,41, [10, 12711

gap> 11 + [1;

[1,, 3, 4]

2
L

Subtraction

For two GAP objects z and y of which one is in IsGeneralizedRowVector and the other is also in IsGen-
eralizedRowVector or is neither a list nor a domain, z — y is defined as = + (—y).

182 Chapter 21. Lists

gap> 11 - 12;

[1, -2, 0, 0, -5]

gap> 11 - 13;

tco, -2,3,41,, [-4, -6, 3,411

gap> 12 - 14;

L, [-8 -2,3,4,51, [-5, -4, 3,4,51]1]
gap> 13 - 14;
(rf1,21,0-3,-41,00,01]1

gap> 11 - [1;

[1,, 3, 4]

21.14 Muiltiplicative Arithmetic for Lists

In this general context, we define the results of multiplicative operations only in the following situations.
For unary operations (one and inverse), the unique argument must be in IsMultiplicativeGeneral-
izedRowVector; for binary operations (multiplication and division), at least one argument must be in
IsMultiplicativeGeneralizedRowVector, and the other either not a list or also in IsMultiplicative-
GeneralizedRowVector.

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at least
one argument is a list not in IsMultiplicativeGeneralizedRowVector, it shall be left to this argument
whether the result in question is defined and what it is.)

One

The one (see 30.10.2) of a dense list z in IsMultiplicativeGeneralizedRowVector such that z has even
multiplicative nesting depth and has the same length as each of its rows is defined as the usual identity
matrix on the outer two levels, that is, an identity matrix of the same dimensions, with diagonal entries
One(z[1][1]) and off-diagonal entries Zero(z[1][1]).

gap> One([[1, 2], [3, 411);
[C1,01, [0, 111
gap> One([L L L2111, 002111, CCC311,[041111);
ctftrfcs+11, o111, L0111, 011111
Inverse

The inverse (see 30.10.8) of an invertible square table z in IsMultiplicativeGeneralizedRowVector whose
entries lie in a common field is defined as the usual inverse y, i.e., a square matrix over the same field such
that zy and yz is equal to One(z).

gap> Inverse([[1, 21, [3,411);
([-2,11, [3/2, -1/2 1]
Multiplication

There are three possible computations that might be triggered by a multiplication involving a list in Is-
MultiplicativeGeneralizedRowVector. Namely, z * y might be

(I) the inner product z[1] * y[1] + z[2] * y[2] + - - - + z[n] * y[n], where summands are omitted for which the
entry in z or y is unbound (if this leaves no summand then the multiplication is an error), or

(L) the left scalar multiple, i.e., a list whose entry at position i is z * y[i] if y is bound at position 7, and is
unbound if not, or

(R) the right scalar multiple, i.e., a list whose entry at position ¢ is z[i] % y if is bound at position ¢, and
is unbound if not.

Section 14. Multiplicative Arithmetic for Lists 183

Our aim is to generalize the basic arithmetic of simple row vectors and matrices, so we first summarize the
situations that shall be covered.

scl (L) (L)
vec (R) (D (D
mat (R) (R) (R)

This means for example that the product of a scalar (scl) with a vector (vec) or a matrix (mat) is computed
according to (L). Note that this is asymmetric.

Now we can state the general multiplication rules.

If exactly one argument is in IsMultiplicativeGeneralizedRowVector then we regard the other argument
(which is then neither a list nor a domain) as a scalar, and specify result (L) or (R), depending on ordering.

In the remaining cases, both z and y are in IsMultiplicativeGeneralizedRowVector, and we distinguish
the possibilities by their multiplicative nesting depths. An argument with odd multiplicative nesting depth
is regarded as a vector, and an argument with even multiplicative nesting depth is regarded as a scalar or
a matrix.

So if both arguments have odd multiplicative nesting depth, we specify result (I).

If exactly one argument has odd nesting depth, the other is treated as a scalar if it has lower multiplicative
nesting depth, and as a matrix otherwise. In the former case, we specify result (L) or (R), depending on
ordering; in the latter case, we specify result (L) or (I), depending on ordering.

We are left with the case that each argument has even multiplicative nesting depth. If the two depths are
equal, we treat the computation as a matrix product, and specify result (R). Otherwise, we treat the less
deeply nested argument as a scalar and the other as a matrix, and specify result (L) or (R), depending on
ordering.

gap> [O, (2,3), (1,2), (1,2,3), (1,3,2), (1,3) 1 * (1,4);
[(1,4, (1,4)(2,3, (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4)]
gap> [1, 2, , 41 * 2;

[2, 4,, 8]
gap> [1, 2,31 *1[1, 3,5, 71;
22
gap> m:= [[1, 27, 31;; m* m;
7,81, [[3,61,91]1
gap> m * m = [m[1] * m, m[2] * m];
true
gap> n:= [1, [2, 31 1;; n * n;
14
gap> n * n = n[1] * n[1] + n[2] * n[2];
true

Division

For two GAP objects and y of which one is in IsMultiplicativeGeneralizedRowVector and the other

is also in IsMultiplicativeGeneralizedRowVector or is neither a list nor a domain, z/y is defined as

zxy L

184 Chapter 21. Lists

gap> [1, 2,31 /2; [1,21/[[1,21]1,03,411;
[1/2, 1, 3/2]
[1, 0]

mod

If z and y are in IsMultiplicativeGeneralizedRowVector and have the same multiplicative nesting depth
(see 21.12.5), zmody is defined pointwise, in the sense that the result is a list whose entry at position 4 is
z[i]modyli] if these entries are bound, is a shallow copy (see 12.7.1) of z[i] or y[i] if the other argument is
not bound at position ¢, and is unbound if both z and y are unbound at position 3.

If z is in IsMultiplicativeGeneralizedRowVector and y is in IsMultiplicativeGeneralizedRowVector
and has lower multiplicative nesting depth or is neither a list nor a domain, zmody is defined as a list whose
entry at position 4 is z[i]mody if z is bound at position 4, and is unbound if not. The equivalent holds in the
reversed case, where the order of the arguments is kept.

gap> 4711 mod [2, 3,, 5, 7 1;

[1,1,, 1, 0]

gap> [2, 3, 4, 5, 6] mod 3;
[2,0,1,2,0]

gap> [10, 12, 14, 16 1 mod [3, 5, 7 1;
[1, 2, 0, 16]

Left Quotient

For two GAP objects and y of which one is in IsMultiplicativeGeneralizedRowVector and the other
is also in IsMultiplicativeGeneralizedRowVector or is neither a list nor a domain, LeftQuotient(z, y)
is defined as 7! x y.

gap> LeftQuotient([[1, 271, [3,411, [1,217]);
Lo, 1/2]

21.15 Mutability Status and List Arithmetic

Many results of arithmetic operations, when applied to lists, are again lists, and it is of interest whether
their entries are mutable or not (if applicable). Note that the mutability status of the result itself is already
defined by the general rule for any result of an arithmetic operation, not only for lists (see 12.6).

However, we do not define exactly the mutability status for each element on each level of a nested list
returned by an arithmetic operation. (Of course it would be possible to define this recursively, but since the
methods used are in general not recursive, in particular for efficient multiplication of compressed matrices,
such a general definition would be a burden in these cases.) Instead we consider, for a list z in IsGeneral-
izedRowVector, the sequence © = x1, a9, . . . 2, where z;¢; is the first bound entry in z; if exists (that is, if z;
is a nonempty list), and n is the largest i such that z; lies in IsGeneralizedRowVector. The immutability
level of z is defined as infinity if « is immutable, and otherwise the number of z; which are immutable. (So
the immutability level of a mutable empty list is 0.)

Thus a fully mutable matrix has immutability level 0, and a mutable matrix with immutable first row has
immutability level 1 (independent of the mutability of other rows).

The immutability level of the result of any of the binary operations discussed here is the minimum of the
immutability levels of the arguments, provided that objects of the required mutability status exist in GAP.

Moreover, the results have a “homogeneous” mutability status, that is, if the first bound entry at nesting
depth 4 is immutable (mutable) then all entries at nesting depth ¢ are immutable (mutable, provided that
a mutable version of this entry exists in GAP).

1»

1»

2»

Section 16. Finding Positions in Lists 185

Thus the sum of two mutable matrices whose first rows are mutable is a matrix all of whose rows are
mutable, and the product of two matrices whose first rows are immutable is a matrix all of whose rows are
immutable, independent of the mutability status of the other rows of the arguments.

For example, the sum of a matrix (mutable or immutable, i.e., of immutability level one of 0, 1, or 2) and a
mutable row vector (i.e., immutability level 0) is a fully mutable matrix. The product of two mutable row
vectors of integers is an integer, and since GAP does not support mutable integers, the result is immutable.

For unary arithmetic operations, there are three operations available, an attribute that returns an immutable
result (Zero, AdditiveInverse, One, Inverse), an operation that returns a result that is mutable (ZeroOp,
AdditiveInverseOp, OneOp, InverseOp), and an operation whose result has the same immutability level as
the argument (ZeroSM, AdditiveInverseSM, OneSM, InverseSM). The last kind of operations is equivalent
to the corresponding infix operations 0 * list, - list, list~0, and list"-1. (This holds not only for lists,
see 12.6.)

gap> IsMutable(11); IsMutable(2 * Immutable([1, 2, 31));
true

false

gap> IsMutable(12); IsMutable(13);

true

true

An example motivating the mutability rule is the use of syntactic constructs such as obj * list and - list
as an elegant and efficient way to create mutable lists needed for further manipulations from mutable lists.
In particular one can construct a mutable zero vector of length n by 0 * [1 .. m]. The latter can be
done also using ListWithIdenticalEntries.

ListWithIdenticalEntries(n, obj) F

is a list list of length n that has the object obj stored at each of the positions from 1 to n. Note that all
elements of lists are identical, see 21.6.

gap> ListWithIdenticalEntries(10, 0);
to,o,0,0,0,0,0,0,0,0]

21.16 Finding Positions in Lists

Position(list, obj[, from]) O
returns the position of the first occurrence obj in list, or fail if obj is not contained in list. If a starting
index from is given, it returns the position of the first occurrence starting the search after position from.

Each call to the two argument version is translated into a call of the three argument version, with third
argument the integer zero 0. (Methods for the two argument version must be installed as methods for the
version with three arguments, the third being described by IsZeroCyc.)

gap> Position([2, 2, 1, 31, 1);

3
gap> Position([2, 1, 1, 31, 1);
2
gap> Position([2, 1, 1, 31, 1, 2);
3
gap> Position([2, 1, 1, 31, 1, 3);
fail
PositionCanonical(list, obj) O

returns the position of the canonical associate of obj in list. The definition of this associate depends on list.
For internally represented lists it is defined as the element itself (and PositionCanonical thus defaults to

186 Chapter 21. Lists

Position, see 21.16.1), but for example for certain enumerators (see 21.23) other canonical associates can
be defined.

For example RightTransversal defines the canonical associate to be the element in the transversal defining
the same coset of a subgroup in a group.

gap> g:=Group((1,2,3,4),(1,2));;u:=Subgroup(g, [(1,2)(3,4),(1,3)(2,4)1);;
gap> rt:=RightTransversal(g,u);;AsList(rt);

[O, 3,4, (2,3), (2,3,4, (2,4,3), (2,4 1]

gap> Position(rt, (1,2));

fail
gap> PositionCanonical(rt, (1,2));
2
3» PositionNthOccurrence(list, obj, n) O

returns the position of the n-th occurrence of obj in list and returns fail if obj does not occur n times.

gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,1);
1

gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,2);
7

gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,3);
gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,4);
fail

4» PositionSorted(list, elm) O
» PositionSorted(list, elm, func) O

In the first form PositionSorted returns the position of the element elm in the sorted list list.

In the second form PositionSorted returns the position of the element elm in the list list, which must be
sorted with respect to func. func must be a function of two arguments that returns true if the first argument
is less than the second argument and false otherwise.

PositionSorted returns pos such that list[pos — 1] < elm and elm < list[pos]. That means, if elm appears
once in list, its position is returned. If elm appears several times in list, the position of the first occurrence
is returned. If elm is not an element of list, the index where elm must be inserted to keep the list sorted is
returned.

PositionSorted uses binary search, whereas Position can in general use only linear search, see the remark
at the beginning of 21.19. For sorting lists, see 21.18, for testing whether a list is sorted, see 21.17.3 and
21.17.4.

gap> PositionSorted([1,4,5,5,6,7], 0);
éap> PositionSorted([1,4,5,5,6,7]1, 2);
2ap> PositionSorted([1,4,5,5,6,7], 4);
2ap> PositionSorted([1,4,5,5,6,7]1, 5);
Zap> PositionSorted([1,4,5,5,6,7], 8);
7

5»

6 »

>

8>

9»

Section 16. Finding Positions in Lists 187
PositionSet(list, obj) F
PositionSet (list, obj, func) F

PositionSet is a slight variation of PositionSorted. The only difference to PositionSorted is that Po-
sitionSet returns fail if obj is not in list.

gap> PositionSet([1,4,5,5,6,7], 0);

fail

gap> PositionSet([1,4,5,5,6,7], 2);
fail

gap> PositionSet([1,4,5,5,6,7], 4);
2

gap> PositionSet([1,4,5,5,6,7], 5);
3

gap> PositionSet([1,4,5,5,6,7], 8);
fail

PositionProperty(list, func) O

returns the first position of an element in the list list for which the property tester function func returns
true.

gap> PositionProperty([1077..107°8], IsPrime);

20

gap> PositionProperty([1075..1076],

> n -> not IsPrime(n) and IsPrimePowerInt(n));
490

First (see 21.20.19) allows you to extract the first element of a list that satisfies a certain property.
PositionBound(list) O
returns the first index for which an element is bound in the list list. For the empty list it returns fail.

gap> PositionBound([1,2,3]);

1
gap> PositionBound([,1,2,3]);
2
PositionNot (list, wall, from-minus-onel) O

For a list list and an object val, PositionNot returns the smallest nonnegative integer n such that list[n] is
either unbound or not equal to val. If a nonnegative integer is given as optional argument from-minus-one
then the first position larger than from-minus-one with this property is returned.

PositionNonZero(wec) O

For a row vector wvec, PositionNonZero returns the position of the first non-zero element of wec, or
Length(wvec)+1 if all entries of vec are zero.

PositionNonZero implements a special case of PositionNot (see 21.16.8). Namely, the element to be avoided
is the zero element, and the list must be (at least) homogeneous because otherwise the zero element cannot
be specified implicitly.

10»

2>

188 Chapter 21. Lists

gap> 1:= [1, 1, 2, 3, 2];; PositionNot(1, 1);

3

gap> PositionNot(1, 1, 4); PositionNot(1, 2, 5);

5

6

gap> PositionNonZero(1); PositionNonZero([2, 3, 4, 51 * Z(2));
1

2
PositionSublist(list, sub) O
PositionSublist(list, sub, from) O

returns the smallest index in the list list at which a sublist equal to sub starts. If sub does not occur the
operation returns fail. The second version starts searching after position from.

To determine whether sub matches list at a particular position, use IsMatchingSublist instead (see 21.17.1).

21.17 Properties and Attributes for Lists

IsMatchingSublist(list, sub) O
IsMatchingSublist(list, sub, at) O

returns true if sub matches a sublist of list from position 1 (or position at, in the case of the second version),
or false, otherwise. If sub is empty true is returned. If list is empty but sub is non-empty false is returned.

If you actually want to know whether there is an at for which IsMatchingSublist(list, sub, at) istrue,
use a construction like PositionSublist(list, sub) fail instead (see 21.16.10); it’s more efficient.

Note: A list that contains mutable objects (like lists or records) cannot store attribute values that depend
on the values of its entries, such as whether it is homogeneous, sorted, or strictly sorted, as changes in any
of its entries could change such property values, like the following example shows.

gap> 1:=[[1]1,[2]1];
tf11, 0211
gap> IsSSortedList(1);

true

gap> 1[1][1]:=3;

3

gap> IsSSortedList(1);
false

For such lists these property values must be computed anew each time the property is asked for. For example,
if list is a list of mutable row vectors then the call of Position (see 21.16.1) with list as first argument
cannot take advantage of the fact that list is in fact sorted. One solution is to call explicitly PositionSorted
(see 21.16.4) in such a situation, another solution is to replace list by an immutable copy using Immutable
(see 12.6).

IsDuplicateFree(obj) P
IsDuplicateFreeList(obj) P

IsDuplicateFree(obj); returns true if 0bj is both a list or collection, and it is duplicate free; otherwise it
returns false. IsDuplicateFreelist is a synonym for IsDuplicateFree and IsList.

A list is duplicate free if it is dense and does not contain equal entries in different positions. Every domain
(see 12.4) is duplicate free.

3>

6>

Section 18. Sorting Lists 189

IsSortedList(obj) P

returns true if obj is a list and it is sorted, or false otherwise.

A list list is sorted if it is dense (see 21.1.2) and satisfies the relation list[i] < list[j] whenever i < j. Note
that a sorted list is not necessarily duplicate free (see 21.17.2 and 21.17.4).

Many sorted lists are in fact homogeneous (see 21.1.3), but also non-homogeneous lists may be sorted
(see 30.11).

IsSSortedList(obj) P
IsSet(obj) P

[134

returns true if obj is a list and it is strictly sorted, or false otherwise. IsSSortedList is short for “is

strictly sorted list”; IsSet is just a synonym for IsSSortedList.

A list list is strictly sorted if it is sorted (see 21.17.3) and satisfies the relation list[i] < list[j] whenever
i < j. In particular, such lists are duplicate free (see 21.17.2).

In sorted lists, membership test and computing of positions can be done by binary search, see 21.19.

(Currently there is no special treatment of lists that are sorted but not strictly sorted. In particular, internally
represented lists will not store that they are sorted but not strictly sorted.)

Length(list) A
returns the length of the list list, which is defined to be the index of the last bound entry in list.
ConstantTimeAccessList (list) A

ConstantTimeAccessList returns an immutable list containing the same elements as the list list (which
may have holes) in the same order. If list is already a constant time access list, ConstantTimeAccessList
returns an immutable copy of list directly. Otherwise it puts all elements and holes of list into a new list
and makes that list immutable.

21.18 Sorting Lists

Sort (list) O
Sort(list, func) O

sorts the list list in increasing order. In the first form Sort uses the operator < to compare the elements.
(If the list is not homogeneous it is the users responsibility to ensure that < is defined for all element pairs,
see 30.11) In the second form Sort uses the function func to compare elements. func must be a function
taking two arguments that returns true if the first is regarded as strictly smaller than the second, and false
otherwise.

Sort does not return anything, it just changes the argument list. Use ShallowCopy (see 12.7.1) if you want
to keep list. Use Reversed (see 21.20.7) if you want to get a new list sorted in decreasing order.

It is possible to sort lists that contain multiple elements which compare equal. It is not guaranteed that
those elements keep their relative order, i.e., Sort is not stable.

gap> list := [5, 4, 6, 1, 7, 5 1;; Sort(list); list;

[1, 4, 5, 5, 6, 71

gap> list := [[0,6], [1,2], [1,3], [1,5], [0,4], [3,4] 1;;

gap> Sort(list, function(v,w) return v*v < wkw; end); list;

(s, 21,011,831, 00,41, (3,41, [1,5], [0,61]1]
sorted according to the Euclidian distance from [0,0]

gap> list := [[0,6], [1,3], [3,4]1, [1,5], [1,2], [0,4], 1;;

gap> Sort(list, function(v,w) return v[1] < w[1]; end); list;

(to,e61,[0,4]1, 1,31, [1,5]1,[1,271,[3,41]1

190 Chapter 21. Lists

note the random order of the elements with equal first component

2» SortParallel(list, list2) O
» SortParallel(list, list2, func) O

sorts the list list! in increasing order just as Sort (see 21.18.1) does. In parallel it applies the same exchanges
that are necessary to sort list! to the list list2, which must of course have at least as many elements as list!

does.
gap> listl := [5, 4, 6, 1, 7, 5 1;;
gap> list2 := [2, 3, 5, 7, 8, 9 1;;
gap> SortParallel(listl, list2);

gap> listil;

[1, 4, 5, 5, 6, 71

gap> list2;

[7,3,2,9,5,81 #[7,3,9, 2,5, 8] is also possible

3» Sortex(list) O

sorts the list list via the operator< and returns the permutation that must be applied to list to obtain the

sorted list. (If the list is not homogeneous it is the users responsibility to ensure that < is defined for all
element pairs, see 30.11)

Permuted (see 21.20.15) allows you to rearrange a list according to a given permutation.

gap> listl := [5, 4, 6, 1, 7, 51;;
gap> list2 := ShallowCopy(listl);;
gap> perm := Sortex(listl);
(1,3,5,6,4)

gap> listil;

[1, 4, 5,5,6, 7]

gap> Permuted(list2, perm);

(1, 4, 5,5,6, 7]

4» SortingPerm(list) F

SortingPerm returns the same as Sortex(list) but does not change the argument.

gap> listl := [5, 4, 6, 1, 7, 5 1;;
gap> list2 := ShallowCopy(listl);;
gap> perm := SortingPerm(listl);
(1,3,5,6,4)

gap> listil;

[5, 4,6, 1,7,5]

gap> Permuted(list2, perm);
(1, 4, 5,5,6, 7]

Currently GAP uses shellsort.

1»

2»

3>

4»

Section 19. Sorted Lists and Sets 191

21.19 Sorted Lists and Sets

Searching objects in a list works much quicker if the list is known to be sorted. Currently GAP exploits
the sortedness of a list automatically only if the list is strictly sorted, which is indicated by the property
IsSSortedList, see 21.17.4.

Remember that a list of mutable objects cannot store that it is strictly sorted but has to test it anew
whenever it is asked whether it is sorted, see the remark in 21.17. Therefore GAP cannot take advantage of
the sortedness of a list if this list has mutable entries. Moreover, if a sorted list list with mutable elements
is used as an argument of a function that expects this argument to be sorted, for example UniteSet or
RemoveSet (see 21.19.6, 21.19.5), then it is checked whether list is in fact sorted; this check can have the
effect actually to slow down the computations, compared to computations with sorted lists of immutable
elements or computations that do not involve functions that do automatically check sortedness.

Strictly sorted lists are used to represent sets in GAP. More precisely, a strictly sorted list is called a proper
set in the following, in order to avoid confusion with domains (see 12.4) which also represent sets.

In short proper sets are represented by sorted lists without holes and duplicates in GAP. Note that we
guarantee this representation, so you may make use of the fact that a set is represented by a sorted list in
your functions.

In some contexts (for example see 17), we also want to talk about multisets. A multiset is like a set,
except that an element may appear several times in a multiset. Such multisets are represented by sorted
lists without holes that may have duplicates.

This section lists only those functions that are defined exclusively for proper sets. Set theoretic functions
for general collections, such as Intersection and Union, are described in Chapter 28. In particular, for the
construction of proper sets, see 28.2.5 and 28.2.8. For finding positions in sorted lists, see 21.16.4.

obj in list

The element test for strictly sorted lists uses binary search.

The following functions, if not explicitly stated differently, take two arguments, set and obj, where set must
be a proper set, otherwise an error is signalled; If the second argument obj is a list that is not a proper set
then Set (see 28.2.5) is silently applied to it first (see 28.2.5).

IsEqualSet(list1, list2) O

tests whether list! and list2 are equal when viewed as sets, that is if every element of list! is an element
of list2 and vice versa. Either argument of IsEqualSet may also be a list that is not a proper set, in which
case Set (see 28.2.5) is applied to it first.

If both lists are proper sets then they are of course equal if and only if they are also equal as lists. Thus
IsEqualSet(list!, list2) is equivalent to Set(list!) = Set(list2) (see 28.2.5), but the former is
more efficient.

gap> IsEqualSet([2,3,5,7,11], [11,7,5,3,2]);

true
gap> IsEqualSet([2,3,5,7,11], [2,3,5,7,11,13]);
false
IsSubsetSet (listl, list2) O

tests whether every element of list2 is contained in list!. Either argument of IsSubsetSet may also be a
list that is not a proper set, in which case Set (see 28.2.5) is applied to it first.

AddSet (set, obj) O

adds the element o0bj to the proper set set. If obj is already contained in set then set is not changed.
Otherwise obj is inserted at the correct position such that set is again a proper set afterwards.

192 Chapter 21. Lists

Note that obj must be in the same family as each element of set.

gap> s := [2,3,7,11];;
gap> AddSet(s, 5); s;
[2,3, 5,7, 11 1]

gap> AddSet(s, 13); s;
[2, 3,5, 7, 11, 13]
gap> AddSet(s, 3); s;
[2, 3,5, 7, 11, 13]

5» RemoveSet(set, obj) O

6>

s

8>

removes the element obj from the proper set set. If 0bj is not contained in set then set is not changed. If obj
is an element of set it is removed and all the following elements in the list are moved one position forward.

gap> s := [2, 3, 4, 5, 6, 7 1;;
gap> RemoveSet(s, 6); s;

[2, 3,4, 5, 71

gap> RemoveSet(s, 10); s;
[2,3,4,5,7]

UniteSet(set, list) O

unites the proper set set with list. This is equivalent to adding all elements of list to set (see 21.19.4).

gap> set := [2, 3, 5, 7, 11 1;;

gap> UniteSet(set, [4, 8, 9]); set;
[2,3,4,5,7,8,9, 11]

gap> UniteSet(set, [16, 9, 25, 13, 16]); set;
[2, 3, 4,5, 7, 8, 9, 11, 13, 16, 25]

IntersectSet(set, list) O

intersects the proper set set with list. This is equivalent to removing from set all elements of set that are
not contained in list.

gap> set := [2, 3, 4, 5, 7, 8, 9, 11, 13, 16 1;;

gap> IntersectSet(set, [3, 5, 7, 9, 11, 13, 15, 17 1); set;
[3,5, 7,9, 11, 13]

gap> IntersectSet(set, [9, 4, 6, 8]); set;

[9]

SubtractSet(set, list) O

subtracts list from the proper set set. This is equivalent to removing from set all elements of list.

gap> set := [2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1;;
gap> SubtractSet(set, [6, 10]); set;

[2, 3, 4,5, 7,8, 9, 111

gap> SubtractSet(set, [9, 4, 6, 81); set;
[2,3,5,7, 11]

There are nondestructive counterparts of the functions UniteSet, IntersectSet, and SubtractSet available
for proper sets. These are UnionSet, IntersectionSet, and Difference. The former two are methods for
the more general operations Union and Intersection (see 28.4.3, 28.4.2), the latter is itself an operation
(see 28.4.4).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to any other list.
The elements of that list however are identical to the corresponding elements of the first argument set. If

set is not a proper set it is not specified to which of a number of equal elements in set the element in the
result is identical (see 21.6).

2>

3>

4»
>

Section 20. Operations for Lists 193

21.20 Operations for Lists

Several of the following functions expect the first argument to be either a list or a collection (see 28),
with possibly slightly different meaning for lists and non-list collections. For these functions, the list case is
indicated by an argument named list, and the collection case by one named C'.

Concatenation(listl, lList2, ...) F
Concatenation(list) F

In the first form Concatenation returns the concatenation of the lists list1, list2, etc. The concatenation
is the list that begins with the elements of list!, followed by the elements of list2, and so on. Each list may
also contain holes, in which case the concatenation also contains holes at the corresponding positions.

In the second form list must be a dense list of lists list1, list2, etc., and Concatenation returns the
concatenation of those lists.

The result is a new mutable list, that is not identical to any other list. The elements of that list however
are identical to the corresponding elements of list1, list2, etc. (see 21.6).

Note that Concatenation creates a new list and leaves its arguments unchanged, while Append (see 21.4.5)
changes its first argument. For computing the union of proper sets, Union can be used, see 28.4.3 and 21.19.

gap> Concatenation([1, 2, 31, [4, 51);

(1,2, 3,4,5]

gap> Concatenation([2,3,,5,,7], [11,,13,,,,17,,19]);
[2,3,,5,, 7, 11,, 13,,,, 17,, 19]

gap> Concatenation([[1,2,3], [2,3,4], [3,4,5] 1);
(1,2, 3,2,3,4,3,4,5]

Compacted(list) 0]

returns a new mutable list that contains the elements of list in the same order but omitting the holes.

gap> 1:=[,1,,,3,,,4,[5,,,61,7];; Compacted(1);
[1’3’4)[5;)’6]’7]

Collected(list) O

returns a new list new that contains for each element elm of the list list a list of length two, the first element
of this is elm itself and the second element is the number of times elm appears in list. The order of those
pairs in new corresponds to the ordering of the elements elm, so that the result is sorted.

For all pairs of elements in list the comparison via < must be defined.

gap> Factors(Factorial(10));
[2,2,2,2,2,2,2,2,3,3,3,3,5,5, 7]

gap> Collected(last);

(r2,81,03,41,[5,21,[7,11]1

gap> Collected(last);
trctz,81,11, 003,411,111, [C[5,21,11, [[C7,11,11]

DuplicateFreelList (list) O
Unique(list) 0]

returns a new mutable list whose entries are the elements of the list list with duplicates removed. Dupli-
cateFreeList only uses the = comparison and will not sort the result. Therefore DuplicateFreeList can
be used even if the elements of list do not lie in the same family. Unique is an alias for DuplicateFreeList.

5»

6»

7>

8>

9>

10»

194 Chapter 21. Lists

gap> l:=[1yz(3))1,"abC"’Group((1’2s3)’(1:2)))2(3))Group((192)’(2:3))];;
gap> DuplicateFreeList(1);
[1, 2(3), "abc", Group([(1,2,3), (1,2) 1)]

AsDuplicateFreelList(list) A

returns the same result as DuplicateFreeList (see 21.20.4), except that the result is immutable.
Flat(list) Q)

returns the list of all elements that are contained in the list list or its sublists. That is, Flat first makes
a new empty list new. Then it loops over the elements elm of list. If elm is not a list it is added to new,
otherwise Flat appends Flat(elm) to new.

gap> Flat([1, [2, 3], [[1,21,311);
[1, 2, 3,1, 2, 31

gap> Flat([]);

[1]

(To reconstruct a matrix from a Flattened list, the sublist operator can be used:

gap> 1:=[9..14];;w:=2;; # w is the length of each row
gap> sub:=[1..w];;List([1..Length(1)/w],i->1{(i-1)*w+subl});
[[9, 101, [11,127, [13, 1411

)

Reversed(list) F

returns a new mutable list, containing the elements of the dense list list in reversed order.

The argument list is unchanged. The result list is a new list, that is not identical to any other list. The
elements of that list however are identical to the corresponding elements of the argument list (see 21.6).

Reversed implements a special case of list assignment, which can also be formulated in terms of the operator
(see 21.4).

gap> Reversed([1, 4, 9, 5, 6, 71);
[7,6, 5,9, 4, 1]

IsLexicographicallyLess(listl, list2) F

Let list! and list2 be two dense lists, but not necessarily homogeneous (see 21.1.2, 21.1.3), such that for
each ¢, the entries in both lists at position ¢+ can be compared via <. IsLexicographicallyLess returns
true if list! is smaller than list2 w.r.t. lexicographical ordering, and false otherwise.

Apply(list, func) F

Apply applies the function func to every element of the dense and mutable list list, and replaces each element
entry by the corresponding return value.

Apply changes its argument. The nondestructive counterpart of Apply is List (see 21.20.16).

gap> 1:= [1, 2, 3 1;; Apply(1l, i ->1i"2); 1;
(1,4, 9]

PermListList(list1, list2) F

returns a permutation p of [1 .. Length(list!)] such that list! [1"p] = list2[i]. It returns fail if
there is no such permutation.

11»
>

12»

13»

14 »

Section 20. Operations for Lists 195

gap> listl := [5, 4, 6, 1, 7, 51;;
gap> list2 := [4, 1, 7, 5, 5, 6 1;;
gap> perm := PermListList(listl, list2);
(1,2,4)(3,5,6)

gap> Permuted(list2, perm);

[5, 4,6, 1,7,5]

Maximum(objl, o0bj2 ...) F
Maximum(list) F

In the first form Maximum returns the maximum of its arguments, i.e., one argument obj for which obj >
obj1, obj > 0bj2 etc. In the second form Maximum takes a homogeneous list list and returns the maximum
of the elements in this list.

gap> Maximum(-123, 700, 123, 0, -1000);

700

gap> Maximum([-123, 700, 123, 0, -1000 1);

700

gap> Maximum([1, 21, [0, 1561, [1,51, [2, -11 1]);
[2, -11] # lists are compared elementwise

Minimum(objl, obj2 ...) F
Minimum(list) F

In the first form Minimum returns the minimum of its arguments, i.e., one argument obj for which obj < 0bj1,
obj < 0bj2 etc. In the second form Minimum takes a homogeneous list list and returns the minimum of the
elements in this list.

Note that for both Maximum and Minimum the comparison of the objects 0bj1, 0bj2 etc. must be defined; for
that, usually they must lie in the same family (see 13.1).

gap> Minimum(-123, 700, 123, 0, -1000);

-1000

gap> Minimum([-123, 700, 123, 0, -1000]);

-1000

gap> Minimum([1, 21, [0, 151, [1,51, [2, -11]);
[0, 15]

MaximumList (list) 0
MinimumList (list) O

return the maximum resp. the minimum of the elements in the list list. They are the operations called by
Maximum resp. Minimum. Methods can be installed for special kinds of lists. For example, there are special
methods to compute the maximum resp. the minimum of a range (see 21.22).

Cartesian(list1, list2 ...) F
Cartesian(list) F

In the first form Cartesian returns the cartesian product of the lists list1, list2, etc.

In the second form [list must be a list of lists list1, list2, etc., and Cartesian returns the cartesian product
of those lists.

The cartesian product is a list cart of lists tup, such that the first element of fup is an element of list!,
the second element of tup is an element of list2, and so on. The total number of elements in cart is the
product of the lengths of the argument lists. In particular cart is empty if and only if at least one of the
argument lists is empty. Also cart contains duplicates if and only if no argument list is empty and at least
one contains duplicates.

15»

16 »

17»

196 Chapter 21. Lists

The last index runs fastest. That means that the first element tupl of cart contains the first element from
list1, from list2 and so on. The second element tup2 of cart contains the first element from list!, the first
from list2, an so on, but the last element of tup?2 is the second element of the last argument list. This implies
that cart is a proper set if and only if all argument lists are proper sets (see 21.19).

The function Tuples (see 17.2.7) computes the k-fold cartesian product of a list.

1, 01,4,671,[0[2,3,51,
[2,3,61,[2,4,51, 12,]
gap> Cartesian([1,2,2], [1,1,2]);
tc+, 231, 01,21,01,21,02,11,[2,11,02,21,102,11,
(2,11, 02,211

61)

(r1,3,51,[1,3,61,[1,4,5
4, 6
)

Permuted(list, perm) O

returns a new list new that contains the elements of the list list permuted according to the permutation
perm. That is new[¢ ~ perm] = list[:].

Sortex (see 21.18.3) allows you to compute a permutation that must be applied to a list in order to get the
sorted list.

gap> Permuted([5, 4, 6, 1, 7, 51, (1,3,5,6,4));
[1, 4’ 5’ 5, 6’ 7]

List(list) F
List(C) F
List(list, func) F

In the first form, where list is a list (not necessarily dense or homogeneous), List returns a new mutable
list new that contains the elements (and the holes) of list in the same order; thus List does the same as
ShallowCopy (see 12.7.1) in this case.

In the second form, where C is a collection (see 28) that is not a list, List returns a new mutable list
new such that Length(new) is the number of different elements of C', and new contains the different
elements of C in an unspecified order which may change for repeated calls. new [pos] executes in constant
time (see 21.1.5), and the size of new is proportional to its length. The generic method for this case is
ShallowCopy(Enumerator(C')).

In the third form, for a dense list list and a function func, which must take exactly one argument, List
returns a new mutable list new given by new(i] = func(list[i]).

gap> List([1,2,3], i -> i"2);

[1, 4, 9]

gap> List([1..10], IsPrime);

[false, true, true, false, true, false, true, false, false, false]

Filtered(list, func) F
Filtered(C, func) F

returns a new list that contains those elements of the list list or collection C' (see 28), respectively, for which
the unary function func returns true.

If the first argument is a list, the order of the elements in the result is the same as the order of the
corresponding elements of list. If an element for which func returns true appears several times in list it will
also appear the same number of times in the result. list may contain holes, they are ignored by Filtered.

For each element of list resp. C, func must return either true or false, otherwise an error is signalled.

The result is a new list that is not identical to any other list. The elements of that list however are identical
to the corresponding elements of the argument list (see 21.6).

18»
>
>

19»

Section 20. Operations for Lists 197

List assignment using the operator (see 21.4) can be used to extract elements of a list according to indices
given in another list.

gap> Filtered([1..20], IsPrime);

[2, 3,5, 7, 11, 13, 17, 19]

gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);
[3, 4, 4, 71

gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6 1],

> n -> IsPrimePowerInt(n) and n mod 2 <> 0);

[3, 71

gap> Filtered(Group((1,2), (1,2,3)), x -> Order(x) = 2);
[(2,3), (1,2), (1,3)]

Number (list) F
Number (list, func) F
Number(C', func) F

In the first form, Number returns the number of bound entries in the list list. For dense lists Number, Length
(see 21.17.5), and Size (see 28.3.6) return the same value; for lists with holes Number returns the number
of bound entries, Length returns the largest index of a bound entry, and Size signals an error.

In the last two forms, Number returns the number of elements of the list list resp. the collection C' for which
the unary function func returns true. If an element for which func returns true appears several times in
list it will also be counted the same number of times.

For each element of list resp. C', func must return either true or false, otherwise an error is signalled.

Filtered (see 21.20.17) allows you to extract the elements of a list that have a certain property.

gap> Number([2, 3, 5, 71);

4
gap> Number([, 2, 3,, 5,, 7,,,, 11 1);
5
gap> Number([1..20], IsPrime);
8
gap> Number([1, 3, 4, -4, 4, 7, 10, 6 1, IsPrimePowerInt);
4
gap> Number([1, 3, 4, -4, 4, 7, 10, 6 1],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0);
2
gap> Number(Group((1,2), (1,2,3)), x => Order(x) = 2);
3
First(list, func) F

First returns the first element of the list list for which the unary function func returns true. list may
contain holes. func must return either true or false for each element of list, otherwise an error is signalled.
If func returns false for all elements of list then First returns fail.

PositionProperty (see 21.16.6) allows you to find the position of the first element in a list that satisfies a
certain property.

198 Chapter 21. Lists

gap> First([1077..1078], IsPrime);

10000019
gap> First([1075..1076],
> n -> not IsPrime(n) and IsPrimePowerInt(n));
100489
gap> First([1 .. 201, x -> x <0);
fail
gap> First([fail], x -> x = fail);
fail
20» ForAll(list, func) F
» ForAll(C, func) F

tests whether the unary function func returns true for all elements in the list list resp. the collection C.

gap> ForAll([1..20], IsPrime);

false
gap> ForAll([2,3,4,5,8,9], IsPrimePowerInt);
true
gap> ForAll([2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0);
true
gap> ForAll(Group((1,2), (1,2,3)), i -> SignPerm(i) =1);
false
21 » ForAny(list, func) F
» ForAny(C, func) F

22>

tests whether the unary function func returns true for at least one element in the list list resp. the collection

C.

gap> ForAny([1..20], IsPrime);

true

gap> ForAny([2,3,4,5,8,9], IsPrimePowerInt);

true

gap> ForAny([2..14],

> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n));

false

gap> ForAny(Integers, i -> i>0

> and ForAll([0,2..4], j -> IsPrime(i+j)));
true

Product (list[, init])
Product(C[, init])
Product (list, funcl[, init])
Product(C, funcl, init])

eSS s lies

In the first two forms Product returns the product of the elements of the dense list list resp. the collection
C (see 28). In the last two forms Product applies the function func, which must be a function taking one
argument, to the elements of the dense list list resp. the collection C', and returns the product of the results.
In either case Product returns 1 if the first argument is empty.

If an additional initial value init is given, Product returns the product of init and the elements of the first
argument resp. of their images under the function func. This is useful for example if the first argument is
empty and a different identity than 1 is desired, in which case init is returned.

23 »

24 »

25>

Section 20. Operations for Lists 199

gap> Product([2, 3, 5, 7, 11, 13, 17, 19]);

9699690

gap> Product([1..10], x->x"2);

13168189440000

gap> Product([(1,2), (1,3), (1,4), (2,3), (2,4, (3,4 1);
(1,4)(2,3)

gap> Product(GF(8));

0%Z(2)

Sum(list[, init])
Sum(CU[, init])
Sum(list, funcl, init]l)
Sum(C, funcl, nit])

eSS lies Bes!

In the first two forms Sum returns the sum of the elements of the dense list list resp. the collection C' (see 28).
In the last two forms Sum applies the function func, which must be a function taking one argument, to the
elements of the dense list list resp. the collection C, and returns the sum of the results. In either case Sum
returns O if the first argument is empty.

If an additional initial value init is given, Sum returns the sum of nit and the elements of the first argument
resp. of their images under the function func. This is useful for example if the first argument is empty and
a different zero than 0 is desired, in which case init is returned.

gap> Sum([2, 3, 5, 7, 11, 13, 17, 19]);

7
gap> Sum([1..10], x->x"2);
385
gap> Sum([[1,2], [3,4], [5,6] 1);
[9, 12]
gap> Sum(GF(8));
0*Z(2)
Iterated(list, func) O

returns the result of the iterated application of the function func, which must take two arguments, to
the elements of the list list. More precisely Iterated returns the result of the following application,

£ f(f(list[1], tist[2]), ist[3)), .. ., list[n]).

gap> Iterated([126, 66, 105], Gcd);
3

ListN(list1, list2, ..., listn, f) F

Applies the n-argument function func to the lists. That is, ListN returns the list whose ith entry is
f(list1][d], list2][il, . .., listn[i]).

gap> ListN([1,2], [3,4], \+);
[4, 61

1»

200 Chapter 21. Lists

21.21 Advanced List Manipulations

The following functions are generalizations of List (see 21.20.16), Set (see 28.2.5), Sum (see 21.20.23), and
Product (see 21.20.22).

ListX(argl, arg2, ... argn, func) O

ListX returns a new list constructed from the arguments.

Each of the arguments argl, arg2, ... argn must be one of the following:

a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements;

a function returning a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements, where the
loop-range depends on the values of the outer loop-variables; or

a function returning true or false
this introduces a new if-statement in the sequence of nested for-loops and if-statements.

The last argument func must be a function, it is applied to the values of the loop-variables and the results
are collected.

Thus ListX(list, func) is the same as List(list, func), and ListX(list, func, x -> x) is the
same as Filtered(list, func).

As a more elaborate example, assume arg! is a list or collection, arg2 is a function returning true or false,
argd is a function returning a list or collection, and arg4 is another function returning true or false, then

result := ListX(argl, arg2, arg3, arg4, func);
is equivalent to

result := [1;
for vl in argl do
if arg2(v1) then
for v2 in arg3(vl) do
if arg4/(vi, v2) then
Add(result, func(vi, v2));
fi;
od;
fi;
od;

2»

3

Section 22. Ranges 201

The following example shows how ListX can be used to compute all pairs and all strictly sorted pairs of
elements in a list.

gap> 1:= [1, 2, 3, 4 1;;
gap> pair:= function(x, y) return [x, y]; end;;
gap> ListX(1, 1, pair)

rf+, 121,011,271, 01,31, 01,471, 02,11,[2,21,0[2,31,
(2,41, 08,11, [3,271,03,31, 103,41, [4,11, 1[4, 21,
(4,31, [4,41]
In the following example, < is the comparison operation:
gap> ListX(1, 1, \<, pair);
trt+, 21,011,381, 01,41, [2,31,02,41,1[3,41]1
SetX(argl, arg2, ... func) O

The only difference between SetX and ListX is that the result list of SetX is strictly sorted.
SumX(argl, arg2, ... func) O

SumX returns the sum of the elements in the list obtained by ListX when this is called with the same
arguments.

ProductX(argl, arg2, ... func) O

ProductX returns the product of the elements in the list obtained by ListX when this is called with the
same arguments.

21.22 Ranges

A range is a dense list of integers in arithmetic progression (or degression). This is a list of integers such
that the difference between consecutive elements is a nonzero constant. Ranges can be abbreviated with the
syntactic construct [first, second .. last] or, if the difference between consecutive elements is 1, as [
first .. last].

If first > last, [first. .last] is the empty list, which by definition is also a range; also, if second > first > last
or second < first < last, then [first,second. .last] is the empty list. If first = last, [first,second. .last] is
a singleton list, which is a range, too. Note that last - first must be divisible by the increment second -
first, otherwise an error is signalled.

Note also that a range is just a special case of a list. Thus you can access elements in a range (see 21.3),
test for membership etc. You can even assign to such a range if it is mutable (see 21.4). Of course, unless
you assign last + second-first to the entry range [Length(range)+1], the resulting list will no longer be a
range.

gap> r := [10..20];

[10 .. 20]
gap> Length(r);
11

gap> r(3];

12

gap> 17 in r;
true

gap> r[12] := 25;; r;

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25] # is no longer a range
gap> r := [1,3..17];

[1, 3 ..17]

1»

2»

202 Chapter 21. Lists

gap> Length(r);

9

gap> rl4];

7

gap> r := [0,-1..-9];

[0, -1 .. -9]

gap> r[5];

-4

gap> r := [1, 4 .. 32];

Range: <last>-<first> (31) must be divisible by <inc> (3)

Most often ranges are used in connection with the for-loop (see 4.19). Here the construct
for war in [first..last] do statements od

replaces the

for wvar from first to last do statements od

which is more usual in other programming languages.

gap> s := [];; for i in [10..20] do Add(s, i"2); od; s;
[100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

Note that a range with last >= first is at the same time also a proper set (see 21.19), because it contains
no holes or duplicates and is sorted, and also a row vector (see 23), because it contains no holes and all
elements are integers.

IsRange(obj) C

tests if the object o0bj is a range, i.e. is a dense list of integers that is also a range (see 21.22 for a definition
of “range”).

gap> IsRange([1,2,3]); IsRange([7,5,3,1]);

true

true

gap> IsRange([1,2,4,5]); IsRange([1,,3,,5,,7]);
false

false

gap> IsRange([]); IsRange([1]);

true

true

ConvertToRangeRep(list) F

For some lists the GAP kernel knows that they are in fact ranges. Those lists are represented internally in a
compact way instead of the ordinary way.

If list is a range then ConvertToRangeRep changes the representation of list to this compact representation.

This is important since this representation needs only 12 bytes for the entire range while the ordinary
representation needs 4length bytes.

Note that a list that is represented in the ordinary way might still be a range. It is just that GAP does not
know this. The following rules tell you under which circumstances a range is represented in the compact
way, so you can write your program in such a way that you make best use of this compact representation
for ranges.

Lists created by the syntactic construct [first, second .. last] are of course known to be ranges and
are represented in the compact way.

1»

Section 23. Enumerators 203

If you call ConvertToRangeRep for a list represented the ordinary way that is indeed a range, the represen-
tation is changed from the ordinary to the compact representation. A call of ConvertToRangeRep for a list
that is not a range is ignored.

If you change a mutable range that is represented in the compact way, by assignment, Add or Append, the
range will be converted to the ordinary representation, even if the change is such that the resulting list is
still a proper range.

Suppose you have built a proper range in such a way that it is represented in the ordinary way and that you
now want to convert it to the compact representation to save space. Then you should call ConvertToRangeRep
with that list as an argument. You can think of the call to ConvertToRangeRep as a hint to GAP that this
list is a proper range.

gap> r:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1;
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1]

gap> ConvertToRangeRep(r); r;
[1..10]1]

gap> 1:= [1, 2, 4, 5 1;; ConvertToRangeRep(1); 1;
[1, 2, 4, 5]

> >

21.23 Enumerators

An enumerator is an immutable list that need not store its elements explicitly but knows, from a set of
basic data, how to determine the i-th element and the position of a given object. A typical example of this
is a vector space over a finite field with ¢ elements, say, for which it is very easy to enumerate all elements
using g¢-adic expansions of integers.

Using this enumeration can be even quicker than a binary search in a sorted list of vectors:
IsQuickPositionList(list) F

This filter indicates that a position test in list is quicker than about 5 or 6 element comparisons for “smaller”.
If this is the case it can be beneficial to use Position in list and a bit list than ordered lists to represent
subsets of list.

On the one hand, element access to an enumerator may take more time than element access to an internally
represented list containing the same elements. On the other hand, an enumerator may save a vast amount of
memory. Take for example a permutation group of size a few millions. Even for moderate degree it is unlikely
that a list of all its elements will fit into memory whereas it is no problem to construct an enumerator from
a stabilizer chain (see 41.5).

There are situations where one only wants to loop over the elements of a domain, without using the special
facilities of an enumerator, namely the particular order of elements and the possibility to find the position
of elements. For such cases, GAP provides iterators (see 28.7).

For constructing enumerators, see 28.2.2 and 28.2.3.

1»

1»

Boolean Lists

This chapter describes boolean lists. A boolean list is a list that has no holes and contains only the boolean
values true and false (see Chapter 20). In function names we call boolean lists blist for brevity.

IsBlist(obj) C

A boolean list (“blist”) is a list that has no holes and contains only true and false. If a list is known to
be a boolean list by a test with IsBlist it is stored in a compact form. See 22.4.

gap> IsBlist([true, true, false, false]);

true

gap> IsBlist([1);

true

gap> IsBlist([false,,true]); # has holes

false

gap> IsBlist([1,1,0,0]); # contains not only boolean values
false

gap> IsBlist(17); # is not even a list

false

Boolean lists are lists and all operations for lists are therefore applicable to boolean lists.

Boolean lists can be used in various ways, but maybe the most important application is their use for the
description of subsets of finite sets. Suppose set is a finite set, represented as a list. Then a subset sub of
set is represented by a boolean list blist of the same length as set such that blist [i] is true if set[:] is in
sub and false otherwise.

22.1 Boolean Lists Representing Subsets
BlistList(list, sub) F

returns a new boolean list that describes the list sub as a sublist of the dense list list. That is BlistList
returns a boolean list blist of the same length as list such that blist [i] is true if list[i] is in sub and false
otherwise.

list need not be a proper set (see 21.19), even though in this case BlistList is most efficient. In particular
list may contain duplicates. sub need not be a proper sublist of list, i.e., sub may contain elements that are
not in list. Those elements of course have no influence on the result of BlistList.

gap> BlistList([1..10], [2,3,5,7]);

[false, true, true, false, true, false, true, false, false, false]
gap> BlistList([1,2,3,4,5,2,8,6,4,10], [4,8,9,16]);

[false, false, false, true, false, false, true, false, true, false]

See also 22.3.2.

2»

3>

4»

Section 2. Set Operations via Boolean Lists 205

ListBlist(list, blist) @)

returns the sublist sub of the list list, which must have no holes, represented by the boolean list blist, which
must have the same length as list. sub contains the element list [¢] if blist [i] is true and does not contain
the element if blist [i] is false. The order of the elements in sub is the same as the order of the corresponding
elements in list.

gap> ListBlist([1..8],[false,true,true,true,true,false,true,truel);
[2, 3, 4,5, 7, 81

gap> ListBlist([1,2,3,4,5,2,8,6,4,10],

> [false,false,false,true,false,false,true,false,true,false]);

[4, 8, 4]

SizeBlist(blist) F

returns the number of entries of the boolean list blist that are true. This is the size of the subset represented
by the boolean list blist.

gap> SizeBlist([false, true, false, true, false]);
2

IsSubsetBlist (blistl, blist2) F

returns true if the boolean list blist2 is a subset of the boolean list listl, which must have equal length,
and false otherwise. blist2 is a subset of blist! if blist1 [i] = blist1 [i] or blist2 [:] for all i.

[true, true, false, false];;

gap> blistl

gap> blist2 := [true, false, true, false];;
gap> IsSubsetBlist(blistl, blist2);

false

gap> blist2 := [true, false, false, false];;
gap> IsSubsetBlist(blistl, blist2);

true

22.2 Set Operations via Boolean Lists

UnionBlist(blist1, blist2[, ...]) F
UnionBlist(list) F

In the first form UnionBlist returns the union of the boolean lists blist!, blist2, etc., which must have equal
length. The union is a new boolean list such that union [i] = blist! [] or blist2[i] or

The second form takes the union of all blists (which as for the first form must have equal length) in the list
list.

IntersectionBlist (blistl, blist2[, ...1) F
IntersectionBlist (list) F

In the first form IntersectionBlist returns the intersection of the boolean lists blist1, blist2, etc., which
must have equal length. The intersection is a new blist such that inter [¢] = blistl [i] and blist2 [i] and

In the second form list must be a list of boolean lists blist1, blist2, etc., which must have equal length, and
IntersectionBlist returns the intersection of those boolean lists.

DifferenceBlist (blistl, blist2) F

returns the asymmetric set difference (exclusive or) of the two boolean lists blist! and blist2, which must
have equal length. The asymmetric set difference is a new boolean list such that union[i] = blist1 [i]
and not blist2[i].

1»

2>

3>

4»

206 Chapter 22. Boolean Lists

gap> blistl [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> UnionBlist(blistl, blist2);

[true, true, true, false]

gap> IntersectionBlist(blistl, blist2);

[true, false, false, false]

gap> DifferenceBlist(blistl, blist2);

[false, true, false, false]

22.3 Function that Modify Boolean Lists
UniteBlist(blistl, blist2) F

UniteBlist unites the boolean list blist? with the boolean list blist2, which must have the same length.
This is equivalent to assigning blist1 [i] := blist! [i] or blist2[i] for all . UniteBlist returns nothing,
it is only called to change blist!.

gap> blistl [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> UniteBlist(blistl, blist2);

gap> blistl;

[true, true, true, false]

UniteBlistList(list, blist, sub) F

works like UniteBlist (blist ,BlistList (list,sub)). As no intermediate blist is created, the performance is
better than the separate function calls.

The function UnionBlist (see 22.2.1) is the nondestructive counterpart to the procedure UniteBlist.

IntersectBlist(blistl, blist2) F

intersects the boolean list blist! with the boolean list blist2, which must have the same length. This is
equivalent to assigning blist! [i] := blistl [i] and blist2 [:] for all 7. IntersectBlist returns nothing, it is
only called to change blist1.

gap> blistl := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IntersectBlist(blistl, blist2);

gap> blistl;

[true, false, false, false]

The function IntersectionBlist (see 22.2.2) is the nondestructive counterpart to the procedure Inter-
sectBlist.

SubtractBlist(blistl, blist2) F

subtracts the boolean list blist2 from the boolean list blist, which must have equal length. This is equivalent
to assigning blist! [4] := blistl [4] and not blist2[i] for all i. SubtractBlist returns nothing, it is only
called to change blist1.

gap> blistl := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> SubtractBlist(blistl, blist2);

gap> blisti;

[false, true, false, false]

The function DifferenceBlist (see 22.2.3) is the nondestructive counterpart to the procedure Subtract-
Blist.

Section 4. More about Boolean Lists 207

22.4 More about Boolean Lists

We defined a boolean list as a list that has no holes and contains only true and false. There is a special
internal representation for boolean lists that needs only 1 bit for each entry. This bit is set if the entry is
true and reset if the entry is false. This representation is of course much more compact than the ordinary
representation of lists, which needs (at least) 32 bits per entry.

Not every boolean list is represented in this compact representation. It would be too much work to test
every time a list is changed, whether this list has become a boolean list. This section tells you under which
circumstances a boolean list is represented in the compact representation, so you can write your functions
in such a way that you make best use of the compact representation.

The results of BlistList, UnionBlist, IntersectionBlist and DifferenceBlist are known to be boolean
lists by construction, and thus are represented in the compact representation upon creation.

If an argument of IsBlist, IsSubsetBlist, ListBlist, UnionBlist, IntersectionBlist, DifferenceB-
list, UniteBlist, IntersectBlist and SubtractBlist is a list represented in the ordinary representation,
it is tested to see if it is in fact a boolean list. If it is not, IsBlist returns false and the other functions
signal an error. If it is, the representation of the list is changed to the compact representation.

If you change a boolean list that is represented in the compact representation by assignment (see 21.4) or
Add (see 21.4.4) in such a way that the list remains a boolean list it will remain represented in the compact
representation. Note that changing a list that is not represented in the compact representation, whether it
is a boolean list or not, in such a way that the resulting list becomes a boolean list, will never change the
representation of the list.

1»

1»

Row Vectors

Just as in mathematics, a vector in GAP is any object which supports appropriate addition and scalar
multiplication operations (see Chapter 59). As in mathematics, an especially important class of vectors are
those represented by a list of coefficients with respect to some basis. These correspond roughly to the GAP
concept of row vectors.

IsRowVector(obj) C

A row vector is a vector (see 30.14.14) that is also a homogeneous list. Typical examples are lists of integers
and rationals, lists of finite field elements of the same characteristic, lists of polynomials from a common
polynomial ring, and matrices.

The additive operations of the vector must thus be compatible with that for lists, implying that the list
entries are the coefficients of the vector with respect to some basis.

Note that not all row vectors admit a scalar product via *; for example, matrices are row vectors but the
matrix product is defined in a different way. For the installation of a scalar product of row vectors, the
entries of the vector must be ring elements; note that the default method expects the row vectors to lie
in IsRingElementList, and this category may not be implied by IsRingElement for all entries of the row
vector (see the comment for IsVector in 30.14.14).

Note that methods for special types of row vectors really must be installed with the requirement IsRowVec—
tor, since IsVector may lead to a rank of the method below that of the default method for row vectors
(see file vecmat.gi).

gap> IsRowVector([1,2,3]);
true

Because row vectors are just a special case of lists, all operations and functions for lists are applicable to
row vectors as well (see Chapter 21). This especially includes accessing elements of a row vector (see 21.3),
changing elements of a mutable row vector (see 21.4), and comparing row vectors (see 21.10).

Note that, unless your algorithms specifically require you to be able to change entries of your vectors, it is
generally better and faster to work with immutable row vectors. See Section 12.6 for more details.

23.1 Operators for Row Vectors

The rules for arithmetic operations involving row vectors are in fact special cases of those for the arithmetic
of lists, as given in Section 21.11 and the following sections, here we reiterate that definition, in the language
of vectors.

Note that the additive behaviour sketched below is defined only for lists in the category IsGeneral-
izedRowVector, and the multiplicative behaviour is defined only for lists in the category IsMultiplica-
tiveGeneralizedRowVector (see 21.12).

vecl + vec? (@)

returns the sum of the two row vectors vec! and vec2. Probably the most usual situation is that vec! and
vec2 have the same length and are defined over a common field; in this case the sum is a new row vector
over the same field where each entry is the sum of the corresponding entries of the vectors.

v

5»

Section 1. Operators for Row Vectors 209

In more general situations, the sum of two row vectors need not be a row vector, for example adding an
integer vector vec! and a vector vec2 over a finite field yields the list of pointwise sums, which will be a
mixture of finite field elements and integers if vec! is longer than vec2.

scalar + wec O
vec + scalar (@)

returns the sum of the scalar scalar and the row vector vec. Probably the most usual situation is that the
elements of vec lie in a common field with scalar; in this case the sum is a new row vector over the same
field where each entry is the sum of the scalar and the corresponding entry of the vector.

More general situations are for example the sum of an integer scalar and a vector over a finite field, or the
sum of a finite field element and an integer vector.

gap> [1, 2, 31 + [1/2, 1/3, 1/4 1;
[3/2, 7/3, 13/4]
gap> [1/2, 3/2, 1/2 1 + 1/2;

[1, 2,11
vecl - wvec? O
scalar - wvec (@)
vec — scalar O

Subtracting a vector or scalar is defined as adding its additive inverse, so the statements for the addition
hold likewise.

gap> [1, 2, 31 - [1/2, 1/3, 1/4 1;
[1/2, 5/3, 11/4]
gap> [1/2, 3/2, 1/21 - 1/2;

Lo, 1,01
scalar * wvec O
vec * scalar O

returns the product of the scalar scalar and the row vector vec. Probably the most usual situation is that
the elements of vec lie in a common field with scalar; in this case the product is a new row vector over the
same field where each entry is the product of the scalar and the corresponding entry of the vector.

More general situations are for example the product of an integer scalar and a vector over a finite field, or
the product of a finite field element and an integer vector.

gap> [1, 2, 31 = [1/2, 1/3, 1/4 1;
23/12

gap> [1/2, 3/2, 1/2] * 2;

[1, 3, 1]

vecl * wec? O

returns the standard scalar product of vec! and wvec2, i.e., the sum of the products of the corresponding
entries of the vectors. Probably the most usual situation is that vec! and wec2 have the same length and
are defined over a common field; in this case the sum is an element of this field.

More general situations are for example the inner product of an integer vector and a vector over a finite
field, or the inner product of two row vectors of different lengths.

For the mutability of results of arithmetic operations, see 12.6.

Further operations with vectors as operands are defined by the matrix operations (see 24.2).

6>

v

210 Chapter 23. Row Vectors

NormedRowVector(v) A

returns a scalar multiple w = ¢ * v of the row vector v with the property that the first nonzero entry of w
is an identity element in the sense of IsOne.

gap> NormedRowVector([5,2,3]);
[1, 2/5, 3/5 1]

23.2 Row Vectors over Finite Fields

GAP can use compact formats to store row vectors over fields of order at most 256, based on those used by
the Meat-Axe [Rin93]. This format also permits extremely efficient vector arithmetic. On the other hand
element access and assignment is significantly slower than for plain lists.

The function ConvertToVectorRep is used to convert a list into a compressed vector, or to rewrite a com-
pressed vector over another field. Note that this function is much faster when it is given a field (or field
size) as an argument, rather than having to scan the vector and try to decide the field. Supplying the field
can also avoid errors and/or loss of performance, when one vector from some collection happens to have all
of its entries over a smaller field than the "natural” field of the problem.

ConvertToVectorRep(list) F
ConvertToVectorRep(list , field) F
ConvertToVectorRep(list , fieldsize) F

ConvertToVectorRep(list) converts list to an internal vector representation if possible.

ConvertToVectorRep(list , field) converts list to an internal vector representation appropriate for a
vector over field. It is forbidden to call this function unless list is a plain list or a vector, field a field, and
all elements of list lie in field, violation of this condition can lead to unpredictable behaviour or a system
crash.

Instead of a field also its size fieldsize may be given.

list may already be a compressed vector. In this case, if no field or fieldsize is given, then nothing happens.
If one is given then the vector is rewritten as a compressed vector over the given field unless it has the filter
IsLockedRepresentationVector, in which case it is not changed.

The return value is the size of the field over which the vector ends up written, if it is written in a compressed
representation. Otherwise it is true if the vector does consist entirely of elements of finite fields and fail
otherwise.

In this example, we first create a row vector and then ask GAP to rewrite it, first over GF(2) and then over

GF(4).

gap> v := [Z(2)70,Z2(2),Z2(2),0*%Z(2)];
[Z(2)"0, Z(2)"0, Z(2)"0, 0%Z(2)]
gap> Representations0fObject(v) ;

["IS_PLIST_REP", "IsInternalRep"]
gap> ConvertToVectorRep(v);

2

gap> v;

<a GF2 vector of length 4>

gap> ConvertToVectorRep(v,4);

4

gap> v;

[Z(2)"0, Z(2)"0, Z(2)"0, 0%Z(2)]
gap> Representations0fObject (v) ;

["IsDataObjectRep", "Is8BitVectorRep"]

2»

1»

4»

Section 8. Coefficient List Arithmetic 211

A vector in the special representation over GF(2) is always viewed as <a GF2 vector of length ...>.
Over fields of orders 3 to 256, a vector of length 10 or less is viewed as the list of its coefficients, but a longer
one is abbreviated.

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of row vectors
in the sense that if all arguments are compressed row vectors written over the same field and the result is a
row vector then also the result is a compressed row vector written over this field.

NumberFFVector(wvec, sz) O

returns an integer that gives the position of the finite field row vector (vec) in the sorted list of all row
vectors over the field with sz elements in the same dimension as vec. NumberFFVector returns fail if the
vector cannot be represented over the field with sz elements.

23.3 Coefficient List Arithmetic

The following operations all perform arithmetic on row vectors. given as homogeneous lists of the same
length, containing elements of a commutative ring.

There are two reasons for using AddRowVector in preference to arithmetic operators. Firstly, the three
argument form has no single-step equivalent. Secondly AddRowVector changes its first argument in-place,
rather than allocating a new vector to hold the result, and may thus produce less garbage.

AddRowVector (dst, src, [mul [, from, toll) 0)

Adds the product of src and mul to dst, changing dst. If from and to are given then only the index range
[from . .to] is guaranteed to be affected. Other indices MAY be affected, if it is more convenient to do so.
Even when from and to are given, dst and src must be row vectors of the same length.

If mul is not given either then this Operation simply adds src to dst.

AddCoeffs(listl, possl, list2, poss2, mul) O
AddCoeffs(listl, list2, mul) O
AddCoeffs(listl, list2) O

AddCoeffs adds the entries of list2{poss2}, multiplied by the scalar mul, to listI {possl}. Non-existing
entries in [list] are assumed to be zero. The position of the right-most non-zero element is returned.

If the ranges poss1 and poss2 are not given, they are assumed to span the whole vectors. If the scalar mul
is omitted, one is used as a default.

Note that it is the responsibility of the caller to ensure that the list2 has elements at position poss2 and
that the result (in list!) will be a dense list.

The function is free to remove trailing (right-most) zeros.
gap> 1:=[1,2,3,4];;m:=[5,6,7];;AddCoeffs(1,m);

4

gap> 1;

[6, 8, 10, 4]
MultRowVector(listl, possl, list2, poss2, mul) O
MultRowVector (list, mul) O

The five-argument version of this Operation replaces list! [possi [i1] by mul*list2 [poss2 [i]1] for i between
1 and Length(poss1).

The two-argument version simply multiplies each element of list, in-place, by mul.
CoeffsMod(listl, [lenl, 1 mod) O

returns the coefficient list obtained by reducing the entries in list! modulo mod. After reducing it shrinks
the list to remove trailing zeroes.

gap> 1:=[1,2,3,4];;CoeffsMod(1,2);

[1, 0, 1]

1»

2»

3>

4»

1»

2»

3>

4»

5»

6»

212 Chapter 23. Row Vectors

23.4 Shifting and Trimming Coefficient Lists

The following functions change coefficient lists by shifting or trimming.

LeftShiftRowVector(list, shift) O
changes list by assigning list [1] :=list [i+shift] and removing the last shift entries of the result.
RightShiftRowVector(list, shift, fill) O
changes list by assigning list [i+shift] :=list [1] and filling each of the shift first entries with fill.
ShrinkRowVector (list) O
removes trailing zeroes from the list list.

RemoveOuterCoeffs(list, coef) O
removes coef at the beginning and at the end of list and returns the number of elements removed at the
beginning.

gap> 1:=[1,1,2,1,2,1,1,2,1]; ;RemoveQuterCoeffs(1,1);
2

gap> 1;

[2,1, 2,1, 1, 21

23.5 Functions for Coding Theory

The following functions perform operations on Finite fields vectors considered as code words in a linear code.
WeightVecFFE(wvec) Q)
returns the weight of the finite field vector vec, i.e. the number of nonzero entries.

DistanceVecFFE(wvecl, wvec?) O

returns the distance between the two vectors vec! and vec2, which must have the same length and whose
elements must lie in a common field. The distance is the number of places where vec! and vec2 differ.

DistancesDistributionVecFFEsVecFFE(wvecs, wvec) 0]

returns the distances distribution of the vector vec to the vectors in the list vecs. All vectors must have the
same length, and all elements must lie in a common field. The distances distribution is a list d of length
Length (vec)+1, such that the value d [i] is the number of vectors in vecs that have distance i+1 to vec.

DistancesDistributionMatFFEVecFFE(mat, f, vec) 0]

returns the distances distribution of the vector vec to the vectors in the vector space generated by the rows
of the matrix mat over the finite field f. The length of the rows of mat and the length of vec must be equal,
and all elements must lie in f. The rows of mat must be linearly independent. The distances distribution
is a list d of length Length(wvec)+1, such that the value d[i] is the number of vectors in the vector space
generated by the rows of mat that have distance i+1 to vec.

AClosestVectorCombinationsMatFFEVecFFE(mat, f, wvec, I, stop) O

runs through the f-linear combinations of the vectors in the rows of the matrix mat that can be written as
linear combinations of exactly [rows (that is without using zero as a coefficient) and returns a vector from
these that is closest to the vector vec. The length of the rows of mat and the length of vec must be equal,
and all elements must lie in f. The rows of mat must be linearly independent. If it finds a vector of distance
at most stop, which must be a nonnegative integer, then it stops immediately and returns this vector.

CosetLeadersMatFFE(mat, [) O

returns a list of representatives of minimal weight for the cosets of a code. mat must be a check matrix
for the code, the code is defined over the finite field f. All rows of mat must have the same length, and all
elements must lie in f. The rows of mat must be linearly independent.

1»

2»

3>

5»

Section 6. Vectors as coefficients of polynomials 213

23.6 Vectors as coefficients of polynomials

A list of ring elements can be interpreted as a row vector or the list of coefficients of a polynomial. There
are a couple of functions that implement arithmetic operations based on these interpretations. GAP contains
proper support for polynomials (see 64), the operations described in this section are on a lower level.

The following operations all perform arithmetic on univariate polynomials given by their coefficient lists.
These lists can have different lengths but must be dense homogeneous lists containing elements of a com-
mutative ring. Not all input lists may be empty.

In the following descriptions we will always assume that list! is the coeflicient list of the polynomial poll
and so forth. If length parameter leni is not given, it is set to the length of listi by default.

ValuePol(coeff, x) F

Let coeff be the coefficients list of a univariate polynomial f, and z a ring element. Then ValuePol returns
the value f(z).

The coefficient of ! is assumed to be stored at position i + 1 in the coefficients list.

gap> ValuePol([1,2,3],4);
57

ProductCoeffs(listl, [lenl, 1 lst2 [, len2]) O

Let poll (and pol2) be polynomials given by the first len! (len2) entries of the coefficient list list2 (list2).
If len1 and len2 are omitted, they default to the lengths of list1 and list2. This operation returns the
coefficient list of the product of poll and pol2.

gap> 1:=[1,2,3,4];;m:=[5,6,7];;ProductCoeffs(1l,m);

[5, 16, 34, 52, 45, 28]

ReduceCoeffs(listl [, lenl], list2 [, len2]) O

changes list] to the coefficient list of the remainder when dividing poll by pol2. This operation changes
list1 which therefore must be a mutable list. The operations returns the position of the last non-zero entry
of the result but is not guaranteed to remove trailing zeroes.

gap> 1:=[1,2,3,4];;m:=[5,6,7]; ;ReduceCoeffs(1l,m);

2
gap> 1;
[64/49, -24/49, 0, 0]
ReduceCoeffsMod(list1, [leni, 1 list2, [len2, 1 mod) O

changes list1 to the coefficient list of the remainder when dividing poll by pol2 modulo mod. mod must
be a positive integer. This operation changes list] which therefore must be a mutable list. The operations
returns the position of the last non-zero entry of the result but is not guaranteed to remove trailing zeroes.

gap> 1:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffsMod(1,m,3);
1

gap> 1;

[1, 0, 0, O]

PowerModCoeffs(listl1 [, len1], exp, list2[, len2]) O

Let p; and ps be polynomials whose coefficients are given by the first len! resp. len2 entries of the lists list!
and list2, respectively. If lenl and len2 are omitted, they default to the lengths of list! and list2. Let exp
be a positive integer. PowerModCoeffs returns the coefficient list of the remainder when dividing the exp-th

6>

i d

214 Chapter 23. Row Vectors

power of p; by po. The coefficients are reduced already while powers are computed, therefore avoiding an
explosion in list length.

gap> 1:=[1,2,3,4];;m:=[5,6,7]; ;PowerModCoeffs(1,5,m) ;
[-839462813696/678223072849, -7807439437824/678223072849, 0]
ShiftedCoeffs(list, shift) O

produces a new coefficient list new obtained by the rule new [i+shift] :=list [i] and filling initial holes by
the appropriate zero.

gap> 1:=[1,2,3];;ShiftedCoeffs(1l,2);ShiftedCoeffs(1,-2);

[0, O’ 1’ 2, 3]
(3]

ShrinkCoeffs(list) (@)

removes trailing zeroes from [ist. It returns the position of the last non-zero entry, that is the length of list
after the operation.

gap> 1:=[1,0,0];;ShrinkCoeffs(1);1;
1
[1]

1»

1»

2»

Matrices

Matrices are represented in GAP by lists of row vectors (see 23). The vectors must all have the same length,
and their elements must lie in a common ring.

Because matrices are just a special case of lists, all operations and functions for lists are applicable to
matrices also (see chapter 21). This especially includes accessing elements of a matrix (see 21.3), changing
elements of a matrix (see 21.4), and comparing matrices (see 21.10).

Note that, since a matrix is a list of lists, the behaviour of ShallowCopy for matrices is just a special case
of ShallowCopy for lists (see 21.7); called with an immutable matrix mat, ShallowCopy returns a mutable
matrix whose rows are identical to the rows of mat. In particular the rows are still immutable. To get a
matrix whose rows are mutable, one can use List(mat, ShallowCopy).

InfoMatrix A\

The info class for matrix operations is InfoMatrix.

24.1 Categories of Matrices
IsMatrix(obj) C

A matrix is a list of lists of equal length whose entries lie in a common ring.

Note that matrices may have different multiplications, besides the usual matrix product there is for example
the Lie product. So there are categories such as IsOrdinaryMatrix and IsLieMatrix (see 24.1.2, 24.1.3)
that describe the matrix multiplication. One can form the product of two matrices only if they support the
same multiplication.

gap> mat:=[[1,2,3], [4,5,6],(7,8,91];
[[1,2,3]1,[4,5,61,[7,8, 911

gap> IsMatrix(mat);
true

Note also the filter IsTable (see section 21.1.4) which may be more appropriate than IsMatrix for some
purposes.

Note that the empty list ’[]’ and more complex “empty” structures such as [[1] are not matrices, although
special methods allow them be used in place of matrices in some situations. See 24.4.3 below.

gap> [[011*[[1];
(c 11

gap> IsMatrix([[11);
false

IsOrdinaryMatrix(obj) C

An ordinary matrix is a matrix whose multiplication is the ordinary matrix multiplication.

Each matrix in internal representation is in the category IsOrdinaryMatrix, and arithmetic operations with
objects in IsOrdinaryMatrix produce again matrices in IsOrdinaryMatrix.

3>

1»

216 Chapter 24. Matrices

Note that we want that Lie matrices shall be matrices that behave in the same way as ordinary matrices,
except that they have a different multiplication. So we must distinguish the different matrix multiplications,
in order to be able to describe the applicability of multiplication, and also in order to form a matrix of the
appropriate type as the sum, difference etc. of two matrices which have the same multiplication.

IsLieMatrix(mat) C

A Lie matrix is a matrix whose multiplication is given by the Lie bracket. (Note that a matrix with ordinary
matrix multiplication is in the category IsOrdinaryMatrix, see 24.1.2.)

Each matrix created by LieObject is in the category IsLieMatrix, and arithmetic operations with objects
in IsLieMatrix produce again matrices in IsLieMatrix.

24.2 Operators for Matrices

The rules for arithmetic operations involving matrices are in fact special cases of those for the arithmetic of
lists, given in Section 21.11 and the following sections, here we reiterate that definition, in the language of
vectors and matrices.

Note that the additive behaviour sketched below is defined only for lists in the category IsGeneral-
izedRowVector, and the multiplicative behaviour is defined only for lists in the category IsMultiplica-
tiveGeneralizedRowVector (see 21.12).

matl + mat2 O

returns the sum of the two matrices mat! and mat2, Probably the most usual situation is that mat! and
mat2 have the same dimensions and are defined over a common field; in this case the sum is a new matrix
over the same field where each entry is the sum of the corresponding entries of the matrices.

In more general situations, the sum of two matrices need not be a matrix, for example adding an integer
matrix mat! and a matrix mat2 over a finite field yields the table of pointwise sums, which will be a mixture
of finite field elements and integers if mat! has bigger dimensions than mat2.

scalar + mat O
mat + scalar O

returns the sum of the scalar scalar and the matrix mat. Probably the most usual situation is that the
entries of mat lie in a common field with scalar; in this case the sum is a new matrix over the same field
where each entry is the sum of the scalar and the corresponding entry of the matrix.

More general situations are for example the sum of an integer scalar and a matrix over a finite field, or the
sum of a finite field element and an integer matrix.

matl - mat?2
scalar - mat O
mat - scalar O

Subtracting a matrix or scalar is defined as adding its additive inverse, so the statements for the addition
hold likewise.

scalar * mat O
mat * scalar O

returns the product of the scalar scalar and the matrix mat. Probably the most usual situation is that the
elements of mat lie in a common field with scalar; in this case the product is a new matrix over the same
field where each entry is the product of the scalar and the corresponding entry of the matrix.

More general situations are for example the product of an integer scalar and a matrix over a finite field, or
the product of a finite field element and an integer matrix.

5»

6»

' d

9»

v

10»

11»

Section 2. Operators for Matrices 217

vec * mat O

returns the product of the row vector vec and the matrix mat. Probably the most usual situation is that
vec and mat have the same lengths and are defined over a common field, and that all rows of mat have the
same length m, say; in this case the product is a new row vector of length m over the same field which is
the sum of the scalar multiples of the rows of mat with the corresponding entries of vec.

More general situations are for example the product of an integer vector and a matrix over a finite field, or
the product of a vector over a finite field and an integer matrix.

mat * vec O

returns the product of the matrix mat and the row vector vec. (This is the standard product of a matrix
with a column vector.) Probably the most usual situation is that the length of vec and of all rows of mat
are equal, and that the elements of mat and vec lie in a common field; in this case the product is a new row
vector of the same length as mat and over the same field which is the sum of the scalar multiples of the
columns of mat with the corresponding entries of vec.

More general situations are for example the product of an integer matrix and a vector over a finite field, or
the product of a matrix over a finite field and an integer vector.

matl * mat2 O

This form evaluates to the (Cauchy) product of the two matrices mat! and mat2. Probably the most usual
situation is that the number of columns of mat! equals the number of rows of mat2, and that the elements
of mat and vec lie in a common field; if mat! is a matrix with m rows and n columns, say, and mat2 is a
matrix with n rows and o columns, the result is a new matrix with m rows and o columns. The element in
row 4 at position j of the product is the sum of mat1[i][l] * mat2[l][j], with ! running from 1 to n.

Inverse(mat) O

returns the inverse of the matrix mat, which must be an invertible square matrix. If mat is not invertible
then fail is returned.

matl / mat?2
scalar / mat
mat / scalar
vec / mat

QOO0

In general, left / right is defined as left * right™-1. Thus in the above forms the right operand must always
be invertible.

mat = int O
matl =~ mat? O
vec ~ mat O

Powering a square matrix mat by an integer int yields the int-th power of mat; if int is negative then mat
must be invertible, if int is 0 then the result is the identity matrix One (mat), even if mat is not invertible.

Powering a square matrix mat! by an invertible square matrix mat2 of the same dimensions yields the
conjugate of mat! by mat2, i.e., the matrix mat2°-1 * matl * mat2.

Powering a row vector vec by a matrix mat is in every respect equivalent to vec * mat. This operations
reflects the fact that matrices act naturally on row vectors by multiplication from the right, and that the
powering operator is GAP’s standard for group actions.

Comm(matl, mat2) O

returns the commutator of the square invertible matrices mat! and mat2 of the same dimensions and over
a common field, which is the matrix matl -1 * mat2°-1 * matl * mat2.

12»

vyVvyVvyVvyyvyy

13»

14 »

15»

1»

2»

218 Chapter 24. Matrices

The following cases are still special cases of the general list arithmetic defined in 21.11.

scalar + matlist
matlist + scalar
scalar - matlist
matlist - scalar
scalar * matlist
matlist * scalar
matlist / scalar

QOO0 O0O0

A scalar scalar may also be added, subtracted, multiplied with, or divided into a list matlist of matrices.
The result is a new list of matrices where each matrix is the result of performing the operation with the
corresponding matrix in matlist.

mat * matlist O
matlist * mat O

A matrix mat may also be multiplied with a list matlist of matrices. The result is a new list of matrices,
where each entry is the product of mat and the corresponding entry in matlist.

matlist / mat O
Dividing a list matlist of matrices by an invertible matrix mat evaluates to matlist * mat™-1.
vec * matlist O

returns the product of the vector vec and the list of matrices mat. The lengths [of vec and matlist must
be equal. All matrices in matlist must have the same dimensions. The elements of vec and the elements of
the matrices in matlist must lie in a common ring. The product is the sum over vec[i] * matlist [] with &
running from 1 to [.

For the mutability of results of arithmetic operations, see 12.6.

24.3 Properties and Attributes of Matrices

DimensionsMat(mat) A

is a list of length 2, the first being the number of rows, the second being the number of columns of the
matrix mat.

gap> DimensionsMat([[1,2,3],[4,5,611);
[2, 3]

DefaultFieldOfMatrix(mat) A

For a matrix mat, DefaultField0fMatrix returns either a field (not necessarily the smallest one) containing
all entries of mat, or fail.

If mat is a matrix of finite field elements or a matrix of cyclotomics, DefaultFieldOfMatrix returns the
default field generated by the matrix entries (see 57.3 and 18.1).

gap> DefaultFieldOfMatrix([[Z(4),Z(8)]11);

GF(276)
TraceMat(mat) F
Trace(mat) F

The trace of a square matrix is the sum of its diagonal entries.

5»

6»

7>

8»

9»

10»

1»

2>

Section 4. Matriz Constructions 219

gap> TraceMat([[1,2,3],[4,5,6],[7,8,9]11);

15
DeterminantMat (mat) A
Determinant (mat) F

returns the determinant of the square matrix mat.

These methods assume implicitly that mat is defined over an integral domain whose quotient field is imple-
mented in GAP. For matrices defined over an arbitrary commutative ring with one see 24.3.6.

DeterminantMatDestructive(mat) O

Does the same as DeterminantMat, with the difference that it may destroy its argument. The matrix mat
must be mutable.

gap> DeterminantMat([[1,2],[2,111);
-3

gap> mm:= [[1,2] B [2,1]] 3

gap> DeterminantMatDestructive(mm) ;
-3

gap> mm;

[f1,271, 00, -311
DeterminantMatDivFree(mat) O

returns the determinant of a square matrix mat over an arbitrary commutative ring with one using the
division free method of Mahajan and Vinay [MV97].

IsMonomialMatrix(mat) P
A matrix is monomial if and only if it has exactly one nonzero entry in every row and every column.

gap> IsMonomialMatrix([[0,1],[1,011);
true

IsDiagonalMat(mat) O
returns true if mat has only zero entries off the main diagonal, false otherwise.

IsUpperTriangularMat(mat) @)
returns true if mat has only zero entries below the main diagonal, false otherwise.
IsLowerTriangularMat(mat) @)

returns true if mat has only zero entries below the main diagonal, false otherwise.

24.4 Matrix Constructions
IdentityMat(m [, FJ) F

returns a (mutable) mxm identity matrix over the field given by F' (i.e. the smallest field containing the
element F or F itself if it is a field).

NullMat(m, n [, F]) F

returns a (mutable) mxn null matrix over the field given by F.

3>

4»

5»

vyvyVvyVvYyy

>

220 Chapter 24. Matrices

gap> IdentityMat(3,1);

([1,0,01, [0,1,01, [0,0,11]

gap> NullMat(3,2,Z(3));

[[0%xZ(3), 0%Z(3) 1, [0*Z(3), 0%Z(3) 1, [0*Z(3), 0%z(3) 1 1]

EmptyMatrix(char) F

is an empty (ordinary) matrix in characteristic char that can be added to or multiplied with empty lists
(representing zero-dimensional row vectors). It also acts (via ~) on empty lists.

gap> EmptyMatrix(5) ;
EmptyMatrix(5)
gap> AsList(last);
L]

DiagonalMat (wvector) F
returns a diagonal matrix mat with the diagonal entries given by wvector.

gap> DiagonalMat([1,2,3]);

tft, 0,071, [0,2,01, [0,0,31]
PermutationMat(perm, dim [, F]) F

returns a matrix in dimension dim over the field given by F' (i.e. the smallest field containing the element
F or F itself if it is a field) that represents the permutation perm acting by permuting the basis vectors as
it permutes points.

gap> PermutationMat((1,2,3),4,1);
(fo,10,01,[0,0,1,01,[1,0,0,01,[0,0,0,171]

TransposedMatImmutable(mat) A
TransposedMatAttr(mat) AM
TransposedMat (mat) AM
TransposedMatMutable(mat) 0]
TransposedMatOp(mat) 0O

These functions all return the transposed of the matrix mat, i.e., a matrix trans such that trans[i] [k] =
mat [k] [7] holds.

They differ only w.r.t. the mutability of the result.

TransposedMat is an attribute and hence returns an immutable result. TransposedMatMutable is guaranteed
to return a new mutable matrix.

TransposedMatImmutable and TransposedMatAttr are synonyms of TransposedMat, and Transposed-
MatOp is a synonym of TransposedMatMutable, in analogy to operations such as Zero (see 30.10.3).

TransposedMatDestructive(mat) 0]

If mat is a mutable matrix, then the transposed is computed by swapping the entries in mat. In this way
mat gets changed. In all other cases the transposed is computed by TransposedMat.

8>

10»

11»

12 »

Section 4. Matriz Constructions 221

gap> TransposedMat([[1,2,3],[4,5,61,[7,8,911);
(C1,4,7]1,02,5,81, [3,6,91]
gap> mm:= [[1,2,3],[4,5,6],[7,8,91];;

gap> TransposedMatDestructive(mm);

(C1, 4,71, [02,5,81, [3,6,91]1
gap> mm;

[, 4,71, [2,5,81, [3,6,91]1

KroneckerProduct(matl, mat2) O

The Kronecker product of two matrices is the matrix obtained when replacing each entry a of mat! by the
product a*mat2 in one matrix.

gap> KroneckerProduct([[1,2]1],[[5,7]1,[9,2]11);
L5, 7,10, 141, [9,2,18,4]]

ReflectionMat (coeffs)
ReflectionMat (coeffs, root)
ReflectionMat (coeffs, conj)
ReflectionMat (coeffs, comj, root)

eSS Mies Mes|

Let coeffs be a row vector. ReflectionMat returns the matrix of the reflection in this vector.

More precisely, if coeffs is the coefficients of a vector v w.r.t. a basis B (see 59.4.2), say, then the returned
matrix describes the reflection in v w.r.t. B as a map on a row space, with action from the right.

The optional argument root is a root of unity that determines the order of the reflection. The default is a
reflection of order 2. For triflections one should choose a third root of unity etc. (see 18.1.1).

conj is a function of one argument that conjugates a ring element. The default is ComplexConjugate.

The matrix of the reflection in v is defined as

— w
M=1I,+v" —— -0
thr

where w = root, n is the length of the coefficient list, and denotes the conjugation.

PrintArray(array) F
pretty-prints the array array.

MutableIdentityMat(m [, F1J) F

returns a (mutable) mxm identity matrix over the field given by F'. This is identical to IdentityMat and is
present in GAP 4.1 only for the sake of compatibility with beta-releases. It should not be used in new code.

MutableNullMat(m, n [, FJ) F

returns a (mutable) mxn null matrix over the field given by F. This is identical to NullMat and is present
in GAP 4.1 only for the sake of compatibility with beta-releases. It should not be used in new code.

1»

2>

3>

1»

2»

222 Chapter 24. Matrices

24.5 Random Matrices
RandomMat(m, n [, R]) F

RandomMat returns a new mutable random matrix with m rows and n columns with elements taken from
the ring R, which defaults to Integers.

RandomInvertibleMat(m [, R]) F

RandomInvertibleMat returns a new mutable invertible random matrix with m rows and columns with
elements taken from the ring R, which defaults to Integers.

RandomUnimodularMat(m) F

returns a new random mutable mxm matrix with integer entries that is invertible over the integers.

gap> RandomMat (2,3,GF(3));

[[270, 2(3), 2370 1, [2(3), 2(3)70, Z(3)70]]

gap> RandomInvertibleMat (4);

tc-t1,0,1,-11,02,1,3,01, [1,4,0,271,[-3,2,1,01]1

24.6 Matrices Representing Linear Equations and the Gaussian Algorithm

RankMat (mat) A

If mat is a matrix whose rows span a free module over the ring generated by the matrix entries and their
inverses then RankMat returns the dimension of this free module. Otherwise fail is returned.

Note that RankMat may perform a Gaussian elimination. For large rational matrices this may take very long,
because the entries may become very large.

gap> mat:=[[1,2,3],[4,5,61,[7,8,911;;
gap> RankMat (mat) ;
2

TriangulizeMat(mat) 0]

applies the Gaussian Algorithm to the mutable matrix mat and changes mat such that it is in upper
triangular normal form (sometimes called “Hermite normal form”).

gap> m:=TransposedMatMutable(mat) ;
[Ll1,4,71,[2,5,81,[3,6,91]1
gap> TriangulizeMat (m) ;m;
(rct,o0,-121,°00,1,21,00,0,01]1

NullspaceMat(mat) A
TriangulizedNullspaceMat(mat) A

returns a list of row vectors that form a basis of the vector space of solutions to the equation vec*mat=0.
The result is an immutable matrix. This basis is not guaranteed to be in any specific form.

The variant TriangulizedNullspaceMat returns a basis of the nullspace in triangulized form as is often
needed for algorithms.

NullspaceMatDestructive(mat) O
TriangulizedNullspaceMatDestructive(mat) Q)

This function does the same as NullspaceMat. However, the latter function makes a copy of mat to avoid
having to change it. This function does not do that; it returns the null space and may destroy mat; this
saves a lot of memory in case mat is big. The matrix mat must be mutable.

5p

6»

7>

3»

5»

Section 7. Figenvectors and eigenvalues 223

The variant TriangulizedNullspaceMatDestructive returns a basis of the nullspace in triangulized form.
It may destroy the matrix mat.

gap> mat:=[[1,2,3],[4,5,6],[7,8,911;;

gap> NullspaceMat (mat) ;

(f1,-2,11]1

gap> mm:=[[1,2,3],[4,5,6],[7,8,911;;

gap> NullspaceMatDestructive(mm);
[[1,-2,11]1

gap> mm;

(1, 2,31,00,-3,-61, [0,0,01]1

SolutionMat(mat, vec) O

returns a row vector x that is a solution of the equation z * mat = wvec. It returns fail if no such vector
exists.

SolutionMatDestructive(mat, wvec) O

Does the same as SolutionMat(mat, wvec) except that it may destroy the matrix mat. The matrix mat
must be mutable.

gap> mat:=[[1,2,3],[4,5,6],[7,8,91];;

gap> SolutionMat(mat,[3,5,7]);

[5/3, 1/3, 0]

gap> mm:=[[1,2,3],[4,5,6],[7,8,911;;

gap> SolutionMatDestructive(mm, [3,5,7]);
[5/3, 1/3, 0]

gap> mm;

(1, 2,31, (0, -3, -61, [0, 0, 011

BaseFixedSpace(mats) F

BaseFixedSpace returns a list of row vectors that form a base of the vector space V such that vM = v for
all v in V and all matrices M in the list mats. (This is the common eigenspace of all matrices in mats for
the eigenvalue 1.)

gap> BaseFixedSpace([[[1,2],[0,1111);

(fo, 111

24.7 Eigenvectors and eigenvalues

GeneralisedEigenvalues(F, A) O
GeneralizedEigenvalues(F, A) O
The generalised eigenvalues of the matrix A over the field F'.

GeneralisedEigenspaces(F, A) @)
GeneralizedEigenspaces(F, A) @)
The generalised eigenspaces of the matrix A over the field F.

Eigenvalues(F, A) O

The eigenvalues of the matrix A over the field F'.
Eigenspaces(F, A) 0
The eigenspaces of the matrix A over the field F'.
Eigenvectors(F, A) O
The eigenspaces of the matrix A over the field F.

1»

2»

1»

2»

3>

224 Chapter 24. Matrices

24.8 Elementary Divisors
ElementaryDivisorsMat([ring, 1 mat) O

ElementaryDivisors returns a list of the elementary divisors, i.e., the unique d with d[i] divides d [i+1]
and mat is equivalent to a diagonal matrix with the elements d[i] on the diagonal. The operations are
performed over the ring ring, which must contain all matrix entries. For compatibility reasons it can be
omitted and defaults to Integers.

gap> mat:=[[1,2,3],[4,5,6],[7,8,911;;
gap> ElementaryDivisorsMat (mat) ;
(1, 3,0]

DiagonalizeMat(ring, mat) O

brings the mutable matrix mat, considered as a matrix over ring, into diagonal form by elementary row and
column operations.

gap> m:=[[1,2]) [2’1]] 3
gap> DiagonalizeMat (Integers,m) ;m;

tf1,01, [0,31]1]

See also chapter 25

24.9 Echelonized Matrices
SemiEchelonMat (mat) A

A matrix over a field F' is in semi-echelon form if the first nonzero element in each row is the identity of F,
and all values exactly below these pivots are the zero of F.

SemiEchelonMat returns a record that contains information about a semi-echelonized form of the matrix
mat.

The components of this record are

vectors
list of row vectors, each with pivot element the identity of F,

heads
list that contains at position 7, if nonzero, the number of the row for that the pivot element is in
column 3.

SemiEchelonMatDestructive(mat) O

This does the same as SemiEchelonMat (mat), except that it may (and probably will) destroy the matrix
mat.

gap> mm:=[[1,2,3],[4,5,6],[7,8,911;;

gap> SemiEchelonMatDestructive(mm);

rec(heads := [1, 2, 0], vectors := [[1, 2,31, [0, 1,211)
gap> mm;

tf1 2,31, 00,111,271, [0, 0,011

SemiEchelonMatTransformation(mat) A

does the same as SemiEchelonMat but additionally stores the linear transformation T performed on the
matrix. The additional components of the result are

4»

5»

1»

2»

3»

Section 10. Matrices as Basis of a Row Space 225

coeffs
a list of coefficients vectors of the vectors component, with respect to the rows of mat, that is,
coeffs * mat is the vectors component.

relations
a list of basis vectors for the (left) null space of mat.

gap> SemiEchelonMatTransformation([[1,2,3]1,[0,0,1]11);
rec(heads := [1, 0, 2], vectors := [[1, 2,31, [0, 0,111,
coeffs := [[1, 01, [0, 111, relations :=[1)

SemiEchelonMats(mats) O

A list of matrices over a field F' is in semi-echelon form if the list of row vectors obtained on concatenating
the rows of each matrix is a semi-echelonized matrix (see 24.9.1).

SemiEchelonMats returns a record that contains information about a semi-echelonized form of the list mats
of matrices.

The components of this record are
vectors
list of matrices, each with pivot element the identity of F',

heads
matrix that contains at position [i,], if nonzero, the number of the matrix that has the pivot element
in this position

SemiEchelonMatsDestructive(mats) O

Does the same as SemiEchelonmats, except that it may destroy its argument. Therefore the argument must
be a list of matrices that re mutable.

24.10 Matrices as Basis of a Row Space
BaseMat (mat) A

returns a basis for the row space generated by the rows of mat in the form of an immutable matrix.

BaseMatDestructive(mat) O

Does the same as BaseMat, with the difference that it may destroy the matrix mat. The matrix mat must
be mutable.

gap> BaseMat (mat) ;
tf1,2,31,00,1,21]1

gap> mm:= [[1,2,3],[4,5,6],[5,7,91];;
gap> BaseMatDestructive(mm);
tr1,2,31,00,1,21]1

gap> mm;

(rC1,2,31,00,1,27, [0,0,01]1]

BaseOrthogonalSpaceMat (mat) A

Let V be the row space generated by the rows of mat (over any field that contains all entries of mat).
BaseOrthogonalSpaceMat (mat) computes a base of the orthogonal space of V.

The rows of mat need not be linearly independent.

4»

5»

1»

2>

3

226 Chapter 24. Matrices

SumIntersectionMat(M1, M2) O
performs Zassenhaus’ algorithm to compute bases for the sum and the intersection of spaces generated by
the rows of the matrices M1, M2.

returns a list of length 2, at first position a base of the sum, at second position a base of the intersection.
Both bases are in semi-echelon form (see 24.9).

gap> SumIntersectionMat (mat, [[2,7,6],[5,9,41]1);
[[[1,2:3]:[011,2],[0’0’1]]’[[1;_3/4a_5/2]]]

BaseSteinitzVectors(bas, mat) F

find vectors extending mat to a basis spanning the span of bas. Both bas and mat must be matrices of full
(row) rank. It returns a record with the following components:

subspace
is a basis of the space spanned by mat in upper triangular form with leading ones at all echelon
steps and zeroes above these ones.

factorspace
is a list of extending vectors in upper triangular form.

factorzero
is a zero vector.

heads
is a list of integers which can be used to decompose vectors in the basis vectors. The ith entry
indicating the vector that gives an echelon step at position i. A negative number indicates an
echelon step in the subspace, a positive number an echelon step in the complement, the absolute
value gives the position of the vector in the lists subspace and factorspace.

gap> BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]]);

rec(factorspace := [[0, 1, 15/13 1, [0, 0, 11 1,
factorzero := [0, 0, O], subspace := [[1, 13/11, 15/11] 1],
heads := [-1, 1, 2 1)

See also chapter 25

24.11 Triangular Matrices
DiagonalOfMat(mat) Q)
returns the diagonal of mat as a list.

gap> DiagonalOfMat([[1,2],[3,41]1);

[1, 4]
UpperSubdiagonal(mat, pos) 0]
returns a mutable list containing the entries of the posth upper subdiagonal of mat.

gap> UpperSubdiagonal (mat,1) ;

[2, 6]
DepthOfUpperTriangularMatrix(mat) A
If mat is an upper triangular matrix this attribute returns the index of the first nonzero diagonal.

gap> DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]]1);
1
gap> DepthOfUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]1]1);
2

2»

3>

4»

Section 12. Matrices as Linear Mappings 227

24.12 Matrices as Linear Mappings

CharacteristicPolynomial(mat) A
CharacteristicPolynomial([F', 1mat[, ind]) O

For a square matrix mat, CharacteristicPolynomial returns the characteristic polynomial of mat,
that is, the StandardAssociate of the determinant of the matrix mat — X - I, where X is an indeterminate
and [is the appropriate identity matrix.

If a field F is given as first argument then the characteristic polynomial of the F-linear mapping induced
by mat is computed. If F' contains the entries of mat then this is of course the same polynomial as the one
computed by the one argument version; if F' is a proper subfield of the default field (see 24.3.2) of mat then
the characteristic polynomial is computed using BlownUpMat (see 24.12.3).

The returned polynomials are expressed in the indeterminate number ind. If ind is not given, it defaults to
1.

The characteristic polynomial is a multiple of the minimal polynomial (see 64.8.1).

gap> CharacteristicPolynomial([[1, 1], [0, 11 1]);
1-2%x_1+x_172

gap> mat := [[0,1],[E(4)-1,E(4)1]1;;

gap> CharacteristicPolynomial(mat);
1-E(4)+-E(4)*x_1+x_1"2

gap> CharacteristicPolynomial(Rationals, mat);
2+2xx_1+3*x_1"2+x_174

gap> mat:= [[E(4), 11, [0, -E(4 1 1;;

gap> CharacteristicPolynomial(mat);

1+x_172

gap> CharacteristicPolynomial(Rationals, mat);
1+2%x_172+x_174

JordanDecomposition(mat) A

JordanDecomposition(mat) returns a list [S,N] such that S is a semisimple matrix and N is nilpotent.
Furthermore, S and N commute and mat=S+N.

gap> mat:=[[1,2,3],[4,5,6],[7,8,91];;

gap> JordanDecomposition(mat);

(rrt+,2,31,04,5,61,[7,8,911,
[0,0,01]1

tfto,0,01], [0,0,01,]

BlownUpMat(B, mat) F

> B

Let B be a basis of a field extension F'/K, and mat a matrix whose entries are all in F. (This is not
checked.) BlownUpMat returns a matrix over K that is obtained by replacing each entry of mat by its regular
representation w.r.t. B.

More precisely, regard mat as the matrix of a linear transformation on the row space F™ w.r.t. the F-basis
with vectors (vy, Idots, vy,), say, and suppose that the basis B consists of the vectors (by,..., b,); then the
returned matrix is the matrix of the linear transformation on the row space K™ w.r.t. the K-basis whose
vectors are (byv,...byuv1,. .., byvy).

Note that the linear transformations act on row vectors, i.e., each row of the matrix is a concatenation of
vectors of B-coefficients.

BlownUpVector(B, wector) F

Let B be a basis of a field extension F/K, and vector a row vector whose entries are all in F. BlownUpVector
returns a row vector over K that is obtained by replacing each entry of vector by its coefficients w.r.t. B.

5»

228 Chapter 24. Matrices

So BlownUpVector and BlownUpMat (see 24.12.3) are compatible in the sense that for a matrix mat over F,
BlownUpVector(B, mat * wvector) is equal to BlownUpMat(B, mat) * BlownUpVector(B, wvector
).

gap> B:= Basis(CF(4), [1, E(4) 1);;
gap> mat:= [[1, E(4) 1, [0, 11 17;; wvec:=1[1, E(4 I;;
gap> bmat:= BlownUpMat(B, mat);; bvec:= BlownUpVector(B, vec);;
gap> Display(bmat); bvec;
tt 1, o, o, 11,
[o 1, -1, 01,
[0, 0, 1, 01,
[o, o0, O, 111
(1, 0,0, 1]
gap> bvec * bmat = BlownUpVector(B, vec * mat);
true
CompanionMat (poly) F

computes a companion matrix of the polynomial poly. This matrix has poly as its minimal polynomial.

24.13 Matrices over Finite Fields

Just as for row vectors, (see section 23.2), GAP has a special representation for matrices over small finite
fields.

To be eligible to be represented in this way, each row of a matrix must be able to be represented as a compact
row vector of the same length over the same finite field.

gap> v := Z(2)*[1,0,0,1,1];

[Z(2)"0, 0%xZ(2), 0*Z(2), Z(2)"0, Z(2)"0]

gap> ConvertToVectorRep(v,2);

2

gap> v;

<a GF2 vector of length 5>

gap> m := [v];; ConvertToMatrixRep(m,GF(2));; m;

<a 1x5 matrix over GF2>

gap> m := [v,v];; ConvertToMatrixRep(m,GF(2));; m;

<a 2x5 matrix over GF2>

gap> m := [v,v,v];; ConvertToMatrixRep(m,GF(2));; m;
<a 3x5 matrix over GF2>

gap> v := Z(3)*[1..8];

[Z(3), Z(3)"0, 0%Z(3), Z(3), Z(3)"0, 0%Z(3), Z(3), Z(3)"0 1]
gap> ConvertToVectorRep(v);

3

gap> m := [v];; ConvertToMatrixRep(m,GF(3));; m;

[[z, 2(3)"0, 0%Z(3), Z(3), Z2(3)"0, 0*Z(3), Z(3), z(3)°01 1]
gap> Representations0fObject (m) ;

["IsPositionalObjectRep", "Is8BitMatrixRep"]

gap> m := [v,v,v,v];; ConvertToMatrixRep(m,GF(3));; m;
< mutable compressed matrix 4x8 over GF(3) >

All compressed matrices over GF(2) are viewed as <a nxm matrix over GF2>, while over fields GF(q) for
q between 3 and 256, matrices with 25 or more entries are viewed in this way, and smaller ones as lists of
lists.

1»

Section 13. Matrices over Finite Fields 229

Matrices can be converted to this special representation via the following functions.
ImmutableMatrix(field, matriz, [change]) F

returns an immutable matrix equal to matriz which is in the most compact representation possible over field.
The input matrix matriz or its rows might change the representation, however the result of ConvertedMatrix
is not necessarily identical to matriz if a conversion is not possible. If change is true, the rows of matrix
(or matrix itself) may be changed to become immutable (otherwise they are copied first).

ConvertToMatrixRep(list) F
ConvertToMatrixRep(list, field) F
ConvertToMatrixRep(list, fieldsize) F

ConvertToMatrixRep(list) converts list to an internal matrix representation if possible. ConvertToMa-
trixRep(list , field) converts list to an internal matrix representation appropriate for a matrix over
field. Tt is forbidden to call this function unless all elements of list are vectors with entries in field.

Instead of a field also its size fieldsize may be given.
list may already be a compressed matrix. In this case, if no field or fieldsize is given, then nothing happens.
list itself may be mutable, but its entries must be immutable.

The return value is the size of the field over which the matrix ends up written, if it is written in a compressed
representation. Otherwise it is fail.

Note that the main advantage of this special representation of matrices is in low dimensions, where various
overheads can be reduced. In higher dimensions, a list of compressed vectors will be almost as fast. Note
also that list access and assignment will be somewhat slower for compressed matrices than for plain lists.

In order to form a row of a compressed matrix a vector must accept certain restrictions. Specifically, it
cannot change its length or change the field over which it is compressed. The main consequences of this are:
that only elements of the appropriate field can be assigned to entries of the vector, and only to positions
between 1 and the original length; that the vector cannot be shared between two matrices compressed over
different fields.

This is enforced by the filter IsLockedRepresentationVector. When a vector becomes part of a compressed
matrix, this filter is set for it. Assignment, Unbind, ConvertToVectorRep and ConvertToMatrixRep are all
prevented from altering a vector with this filter.

gap> v := [Z2(2),Z(2)];; ConvertToVectorRep(v,GF(2));; v;

<a GF2 vector of length 2>

gap> m := [v,v];

[<a GF2 vector of length 2>, <a GF2 vector of length 2>]

gap> ConvertToMatrixRep(m,GF(2));

2

gap> m2 := [m[1], [Z(4),Z(4)]]; # now try and mix in some GF(4)

[<a GF2 vector of length 2>, [Z(272), Z(2°2)] 1]

gap> ConvertToMatrixRep(m2); # but m2[1] is locked

#I ConvertToVectorRep: locked vector not converted to different field
fail

gap> m2 := [ShallowCopy(m[1]), [Z(4),Z(4)1]; # a fresh copy of row 1
[<a GF2 vector of length 2>, [Z(272), Z(272)] 1]

gap> ConvertToMatrixRep(m2); # now it works

4

gap> m2;

[[2270, 2(2)70 1, [2(272), Z(272) 1]

gap> Representations0fObject(m2);

["IsPositionalObjectRep", "Is8BitMatrixRep"]

3>

4»

5»

1»

230 Chapter 24. Matrices

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of matrices in
the sense that if all arguments are compressed matrices written over the same field and the result is a matrix
then also the result is a compressed matrix written over this field.

There are also two operations that are only available for matrices written over finite fields.
ProjectiveOrder(mat) A

Returns an integer n and a finite field element e such that A"n = el. mat must be a matrix defined over a
finite field.

gap> ProjectiveOrder([[1,4],[5,2]11*Z(11)70);
[5,z11)75]

SimultaneousEigenvalues(matlist, expo) F

The matrices in matlist must be matrices over GF(q) for some prime ¢. Together, they must generate an
abelian p-group of exponent expo. Then the eigenvalues of mat in the splitting field GF (¢~ r) for some r are
powers of an element £ in the splitting field, which is of order ezpo. SimultaneousEigenvalues returns a
matrix of integers mod ezpo, say (a;;), such that the power £%v is an eigenvalue of the i-th matrix in matlist
and the eigenspaces of the different matrices to the eigenvalues £% for fixed j are equal.

Finally, there are two operations that deal with matrices over a ring, but only care about the residues of their
entries modulo some ring element. In the case of the integers and a prime number p, say, this is effectively
computation in a matrix over the prime field in characteristic p.

InverseMatMod(mat, obj) 0]

For a square matrix mat, InverseMatMod returns a matrix ¢nv such that inv * mat is congruent to the
identity matrix modulo obj, if such a matrix exists, and fail otherwise.

gap> mat:= [[1, 21, [3, 41];; inv:= InverseMatMod(mat, 5);
[L[3,11, 04, 211

gap> mat * inv;

[[11,571, [25, 1111

NullspaceModQ(E, ¢) F

E must be a matrix of integers and ¢ a prime power. Then NullspaceModQ returns the set of all vectors of
integers modulo ¢, which solve the homogeneous equation system given by £ modulo g¢.

gap>mat:= [[1, 31, [1,21, [1, 1] 1;; NullspaceModQ(mat, 5);
tfo,o0,01,01,3,11,[2,1,21]1,[4,2,41,1[3,4,31]1

24.14 Block Matrices

Block matrices are a special representation of matrices which can save a lot of memory if large matrices have
a block structure with lots of zero blocks. GAP uses the representation IsBlockMatrixRep to store block
matrices.

AsBlockMatrix(m, nrb, ncb) F
returns a block matrix with nrb row blocks and ncb column blocks which is equal to the ordinary matrix m.

BlockMatrix(blocks, nrb, ncb) F
BlockMatrix(blocks, nrb, ncb, rpb, cpb, zero) F

BlockMatrix returns an immutable matrix in the sparse representation IsBlockMatrixRep. The nonzero
blocks are described by the list blocks of triples, the matrix has nrb row blocks and ncb column blocks.

Section 14. Block Matrices 231

If blocks is empty (i.e., if the matrix is a zero matrix) then the dimensions of the blocks must be entered as
rpb and cpb, and the zero element as zero.

Note that all blocks must be ordinary matrices (see 24.1.2), and also the block matrix is an ordinary matrix.
3» MatrixByBlockMatrix(blockmat) A

returns a plain ordinary matrix that is equal to the block matrix blockmat.

1»

v

2 5 Integral matrices
and lattices
25.1 Normal Forms over the Integers

DiagonalizeIntMatNormDriven(mat) F

DiagonalizeIntMatNormDriven diagonalizes the integer matrix mat.
It tries to keep the entries small through careful selection of pivots.

First it selects a nonzero entry for which the product of row and column norm is minimal (this need not
be the entry with minimal absolute value). Then it brings this pivot to the upper left corner and makes it
positive.

Next it subtracts multiples of the first row from the other rows, so that the new entries in the first column
have absolute value at most pivot/2. Likewise it subtracts multiples of the 1st column from the other
columns.

If afterwards not all new entries in the first column and row are zero, then it selects a new pivot from those
entries (again driven by product of norms) and reduces the first column and row again.

If finally all offdiagonal entries in the first column and row are zero, then it starts all over again with the
submatrix mat [2..][2..].

The original idea is explained in [HMO97].

gap> DiagonalizeIntMatNormDriven(m) ;

gap> m;

[L[2,01, 00,311
SNFNormDriven(matl, trans]) O
SNFChouCollins(mat[, trans]) O
SNFLLLDriven(mat[, trans]) O

These operations have been superceded for most purposes by NormalFormIntMat (see 25.1.9) which should
in most cases be faster than any of them, and produce smaller transforming matrix entries.

These operations compute the Smith normal form of a matrix with integer entries, using the strategy specified
in the name. If no optional argument trans is given mat must be a mutable matrix which will be changed
by the algorithm.

If the optional integer argument trans is given, it determines which transformation matrices will be computed.
It is interpreted binary as:

1 Row transformations.

2 Inverse row transformations.

4 Column transformations.

8 Inverse column transformations.

3>

4»

v

5»

Section 1. Normal Forms over the Integers 233

The operation then returns a record with the component normal containing the computed normal form
and optional components rowtrans, rowinverse, coltrans, and invcoltrans which hold the computed
transformation matrices. Note, if trans is given the operation does not change mat.

This functionality is still to be fully implemented for SNF with transforms. However, NormalFormIntMat
performs this calculation.

SNFofREF(mat) O

Computes the Smith Normal Form of an integer matrix in row echelon (RE) form. Caveat — No testing is
done to ensure that mat is in RE form.

HNFNormDriven(mat[, trans[, reductionl]) O
HNFChouCollins(mat[, trans[, reduction]]) O
HNFLLLDriven(mat[, trans[, reduction]]) O

These operations have been superceded for most purposes by NormalFormIntMat (see 25.1.9) which should
in most cases be faster than any of them, and produce smaller transforming matrix entries.

These operations compute the Hermite normal form of a matrix with integer entries, using the strategy
specified in the name. If no optional argument trans is given mat must be a mutable matrix which will be
changed by the algorithm.

If the optional integer argument ¢rans is given, it determines which transformation matrices will be computed.
It is interpreted binary as for the Smith normal form (see 25.1.2) but note that only row operations are
performed. The function then returns a record with components as specified for the Smith normal form.

If the further optional argument reduction (a rational in the range [0..1]) is given, it specifies which
representatives are used for entries modulo ¢ when cleaning column entries to the top. Off-diagonal entries
are reduced to the range |c¢(r —1)]...|cr]|, where r is the value of reduction. If reduction is not given, a
value of 1 is assumed. Note, if trans is given the operation does not change mat.

gap> m:=[[14, 201, [6, 91 1;;
gap> HNFNormDriven (m) ;

(02, 21, 00,31]

gap> m;

(02,21, 00,31]1

gap> m:=[[14,20],[6,91];;

gap> HNFNormDriven(m,1);

rec(normal := [[2, 21, [0, 3] 1, rowtrans := [[1, -2 1, [-3, 71 1)
gap> m;

([14, 201, [6,91]1

gap> last2.rowtrans*m;

tf2,21, 00,311
TriangulizeIntegerMat(matl, trans]) 0]

Computes an upper triangular form of a matrix with integer entries. If no optional argument trans is given
mat must be a mutable matrix which will be changed by the algorithm.

If the optional integer argument trans is given, it determines which transformation matrices will be computed.
It is interpreted binary as for the Smith normal form (see 25.1.2) but note that only row operations are
performed. The function then returns a record with components as specified for the Smith normal form.
Note, if trans is given the operation does not change mat.

6>

234 Chapter 25. Integral matrices and lattices

SmithNormalFormIntegerMat (mat) O
SmithNormalFormIntegerMatTransforms(mat) O
SmithNormalFormIntegerMatInverseTransforms(mat) 0]

The Smith Normal Form,S, of an integer matrix A is the unique equivalent diagonal form with S; dividing
S; for ¢ < j. There exist unimodular integer matrices P, @) such that PAQ = S-

These operations compute the Smith normal form of a matrix mat with integer entries. The operations will
try to select a suitable strategy. The first operation returns a new immutable matrix in the Smith normal
form. The other operations also compute matrices for the row and column transformations or inverses thereof
respectively. They return a record with the component normal containing the computed normal form and
optional components rowtrans and coltrans, or invrowtrans and invcoltrans which hold the computed
transformation matrices.

gap> m:=[[14,20]1,[6,91];
([14,201]1, [6,9]]

gap> SmithNormalFormIntegerMat (m) ;
(f1,07], [0,61]

HermiteNormalFormIntegerMat(mat[, reduction]) Q)
HermiteNormalFormIntegerMatTransforms(matl, reduction]) Q)
HermiteNormalFormIntegerMatInverseTransforms(mat[, reduction]) O

The Hermite Normal Form, H of an integer matrix, A is a row equivalent upper triangular form such that all
off-diagonal entries are reduced modulo the diagonal entry of the column they are in. There exists a unique
unimodular matrix ¢ such that QA = H.

These operations compute the Hermite normal form of a matrix mat with integer entries. The operations
will try to select a suitable strategy. The first operation returns a immutable matrix which is the Hermite
normal form of mat.

The other two operations also compute matrices for the row transformations or inverses respectively. They
return a record with the component normal containing the computed normal form and optional components
rowtrans or 'invrowtrans’ which hold the computed transformation matrix.

If the optional argument reduction (a rational in the range [0..1]) is given, it specifies which representatives
are used for entries modulo ¢ when cleaning column entries to the top. Off-diagonal entries are reduced to
the range |c(r —1)]...|cr]| where r is the value of reduction. If reduction is not given, a value of 1 is
assumed.

gap> m;

(L [14,20], [6,91]]

gap> HermiteNormalFormIntegerMat (m) ;

(02 27, [00,31]

gap> HermiteNormalFormIntegerMatTransforms (m) ;

rec(normal := [[2,21, [0, 3] 1, rowtrans := [[1, -2 1, [-3, 71 1)

TriangulizedIntegerMat(mat[, trans]) 0]
TriangulizedIntegerMatTransform(mat[, trans]) 0]
TriangulizedIntegerMatInverseTransform(mat[, trans]) 0

The first operation computes a row equivalent upper triangular form of a matrix mat with integer entries.
It returns an immutable matrix in upper triangular form.

The other two operations also compute matrices for the row transformations or inverses respectively. They
return a record with the component normal containing the computed normal form and optional components
rowtrans or invrowtrans which hold the computed transformation matrix.

9»

Section 2. Decompositions 235

NormalFormIntMat(mat, options) O

This general operation for computation of various Normal Forms is probably the most efficient.

Options bit values:

0/1 Triangular Form / Smith Normal Form.
2 Reduce off diagonal entries.
4 Row Transformations.

8 Col Transformations.

Compute a Triangular, Hermite or Smith form of the n X m integer input matrix A. Optionally, compute
n X n and m X m unimodular transforming matrices @, P which satisfy QA = H or QAP = §S. The
routines used are based on work by Arne Storjohann and were implemented in GAP 4 by A. Storjohann and
R. Wainwright.

Note option is a value ranging from 0 - 15 but not all options make sense (eg reducing off diagonal entries
with SNF option selected already). If an option makes no sense it is ignored.

Returns a record with component normal containing the computed normal form and optional components
rowtrans and/or coltrans which hold the respective transformation matrix. Also in the record are com-
ponents holding the sign of the determinant, signdet, and the Rank of the matrix, rank.

gap> m:=[[14,20],[6,9]];;
gap> NormalFormIntMat(m,0); # Triangular, no transforms
rec(normal := [[2, 2], [0, 31 1], rank := 2, signdet := 1)

gap> NormalFormIntMat(m,6); # Hermite Normal Form with row transforms
rec(normal := [[2, 2], [0, 31 1], rank := 2, signdet := 1,
rowtrans := [[1, -2 1, [-3, 711)

gap> NormalFormIntMat(m,13); # Smith Normal Form with both transforming matrices
rec(normal := [[1, 0], [0, 61 1, rank := 2, signdet := 1,

rowtrans := [[-11, 261, [-15, 34 1 1],

coltrans := [[1, -6 1, [1, =41 1)
gap> last.rowtrans*m*last.coltrans;

tf1,01, 0,611

25.2 Decompositions

For computing the decomposition of a vector of integers into the rows of a matrix of integers, with integral
coefficients, one can use p-adic approximations, as follows.

Let A be a square integral matrix, and p an odd prime. The reduction of A modulo p is A, its entries are
chosen in the interval [—%, %} If A is regular over the field with p elements, we can form A’ = At

Now we consider the integral linear equation system xA = b, i.e., we look for an integral solution z. Define
bp = b, and then iteratively compute

1
z; = (biA") mod p, b1 =—(b; —xA),i=0,1,2,....
p

By induction, we get
i

pH_le.l + <Z pj:cj> A=0b.

J=0

2>

3>

5»

236 Chapter 25. Integral matrices and lattices

If there is an integral solution z then it is unique, and there is an index [such that b;11 is zero and
z = Zj‘:o P ;.

There are two useful generalizations of this idea. First, A need not be square; it is only necessary that there
is a square regular matrix formed by a subset of columns of A. Second, A does not need to be integral; the
entries may be cyclotomic integers as well, in this case one can replace each column of A by the columns
formed by the coefficients w.r.t. an integral basis (which are integers). Note that this preprocessing must be
performed compatibly for A and b.

GAP provides the following functions for this purpose (see also 24.13.5).

Decomposition(A, B, depth) F
Decomposition(A, B, "nonnegative") F

For a m x n matrix A of cyclotomics that has rank m < n, and a list B of cyclotomic vectors, each of
length n, Decomposition tries to find integral solutions of the linear equation systems z * A = B[il, by
computing the p-adic series of hypothetical solutions.

Decomposition(A, B, depth), where depth is a nonnegative integer, computes for each vector B[i]
the initial part ZZZ’éh’ xppF, with all z; vectors of integers with entries bounded by i%. The prime p is 83
first; if the reduction of A modulo p is singular, the next prime is chosen automatically.

A list X is returned. If the computed initial part for x * A = B[i] is a solution, we have X [i] = =z,
otherwise X [i] = fail.

Decomposition(A, B, "nonnegative") assumes that the solutions have only nonnegative entries, and
that the first column of A consists of positive integers. This is satisfied, e.g., for the decomposition of ordinary
characters into Brauer characters. In this case the necessary number depth of iterations can be computed;
the i-th entry of the returned list is fail if there exists no nonnegative integral solution of the system z *
A = BI[il, and it is the solution otherwise.

Note that the result is a list of fail if A has not full rank, even if there might be a unique integral solution
for some equation system.

LinearIndependentColumns(mat) F

Called with a matrix mat, LinearIndependentColumns returns a maximal list of column positions such
that the restriction of mat to these columns has the same rank as mat.

PadicCoefficients(A, Amodpinv, b, prime, depth) F

Let A be an integral matrix, prime a prime integer, Amodpinv an inverse of A modulo prime, b an integral
vector, and depth a nonnegative integer. PadicCoefficients returns the list [2g, 21, ..., z;, bj+1] describing
the prime-adic approximation of b (see above), where | = depth or [is minimal with the property that
bl+1 = O

IntegralizedMat(A) F
IntegralizedMat(A, inforec) F

IntegralizedMat returns for a matrix A of cyclotomics a record intmat with components mat and inforec.
Each family of algebraic conjugate columns of A is encoded in a set of columns of the rational matrix
intmat .mat by replacing cyclotomics in A by their coefficients w.r.t. an integral basis. intmat.inforec is a
record containing the information how to encode the columns.

If the only argument is A, the value of the component inforec is computed that can be entered as second
argument inforec in a later call of IntegralizedMat with a matrix B that shall be encoded compatibly with
A.

DecompositionInt(A, B, depth) F

DecompositionInt does the same as Decomposition (see 25.2.1), except that A and B must be integral
matrices, and depth must be a nonnegative integer.

1»

Section 3. Lattice Reduction 237
25.3 Lattice Reduction

LLLReducedBasis([L, Jwectors[, y][, "linearcomb"][, [llout]) F

provides an implementation of the LLL algorithm by Lenstra, Lenstra and Lovész (see [LLL82], [Poh87]).
The implementation follows the description on pages 94f. in [Coh93].

LLLReducedBasis returns a record whose component basis is a list of LLL reduced linearly independent
vectors spanning the same lattice as the list vectors. L must be a lattice, with scalar product of the vectors
v and w given by ScalarProduct(L, v, w). If no lattice is specified then the scalar product of vectors
given by ScalarProduct(v, w) is used.

In the case of the option "linearcomb", the result record contains also the components relations and
transformation, with the following meaning. relations is a basis of the relation space of vectors, i.e., of
vectors x such that z * wvectors is zero. transformation gives the expression of the new lattice basis in
terms of the old, i.e., transformation * wvectors equals the basis component of the result.

Another optional argument is y, the “sensitivity” of the algorithm, a rational number between i and 1 (the

default value is 2).

The optional argument [llout is a record with the components mue and B, both lists of length %k, with the
meaning that if lllout is present then the first £ vectors in wvectors form an LLL reduced basis of the lattice
they generate, and lllout .mue and [llout.B contain their scalar products and norms used internally in the
algorithm, which are also present in the output of LLLReducedBasis. So lllout can be used for “incremental”
calls of LLLReducedBasis.

The function LLLReducedGramMat (see 25.3.2) computes an LLL reduced Gram matrix.
gap> vectors:= [[9, 1, 0, -1, -1 1, [15, -1, 0, O, O 1],

> [16, 0, 1, 1, 11, [20, 0, -1, 0, 01,
> [25, 1,1, 0,01 1;;
gap> LLLReducedBasis(vectors, "linearcomb");; Display(last);
rec(
basis := [[1, 1,1, 1, 11,1, 1, -2,1, 117, [-1, 3, -1, -1, -1 17,
[-3,1,0,2,211,
relations := [[-1, 0, -1, 0, 1] 1,
transformation :=

rro, -1,1,0,01, [-1, -2,0,2,01, [1, -2,0, 1,01,
[-1, -2, 1,1, 011,
me := [[1, [2/5], [-1/5, 1/31, [2/5, 1/6, 1/6 11,
B :=[5, 36/5, 12, 50/3])

LLLReducedGramMat(G) F
LLLReducedGramMat(G, y) F

LLLReducedGramMat provides an implementation of the LLL algorithm by Lenstra, Lenstra and Lovéasz
(see [LLL8&2], [Poh87]). The implementation follows the description on pages 94f. in [Coh93].

Let G the Gram matrix of the vectors (by, bs, ..., b,); this means G is either a square symmetric matrix or
lower triangular matrix (only the entries in the lower triangular half are used by the program).

LLLReducedGramMat returns a record whose component remainder is the Gram matrix of the LLL reduced
basis corresponding to (by, ba, ..., b,). If G is a lower triangular matrix then also the remainder component
of the result record is a lower triangular matrix.

The result record contains also the components relations and transformation, which have the following
meaning.

1»

238 Chapter 25. Integral matrices and lattices

relations is a basis of the space of vectors (21, 2o, . . ., x,) such that Z?:l x; b; is zero, and transformation
gives the expression of the new lattice basis in terms of the old, i.e., transformation is the matrix T such
that T - G - T is the remainder component of the result.

The optional argument y denotes the “sensitivity” of the algorithm, it must be a rational number between
1 and 1; the default value is y = 2.

The function LLLReducedBasis (see 25.3.1) computes an LLL reduced basis.
gap> g:= [[4, 6,5,2,21, [6, 13,7, 4, 41,

> [5,7,11,2,01, [2,4,2,8, 41, [2, 4,0, 4,81 1;;
gap> LLLReducedGramMat(g);; Display(last);

rec(
remainder := [[4, 2, 1, 2, -1 1, [2,5, 0, 2,01, [1, 0, 5, 0, 21,
(2,2,0,8,21,[-1,0,2,2,711,
relations := [1],
transformation :=

[[1,0,0,0,01,[-1,1,0,0,01,[-1,0,1,0,01,
[0,0,0,1,01, [-2,0,1,0, 111,

mee := [[1, [1/2 1, [1/4, -1/8 1, [1/2, 1/4, -2/25 1,
[-1/4, 1/8, 37/75, 8/21 1 1,

B := [4, 4, 75/16, 168/25, 32/7 1)

25.4 Orthogonal Embeddings
OrthogonalEmbeddings(gram[, "positive"][, mazdim]) F

computes all possible orthogonal embeddings of a lattice given by its Gram matrix gram, which must be a
regular matrix. In other words, all solutions X of the problem

Xr.x = gram

are calculated (see [Ple90]). Usually there are many solutions X but all their rows are chosen from a small
set of vectors, so OrthogonalEmbeddings returns the solutions in an encoded form, namely as a record with
components

vectors
the list L = [x1, @9, . .., z,] of vectors that may be rows of a solution; these are exactly those vectors
that fulfill the condition z; - gram™1 - z/" < 1 (see 25.4.2), and we have gram = > /" - x;,
norms
1 tr

the list of values ; - gram™" - z;", and

solutions
a list S of lists; the i-th solution matrix is L S[i] , so the dimension of the i-th solution is the
length of S[:].

The optional argument "positive" will cause OrthogonalEmbeddings to compute only vectors z; with
nonnegative entries. In the context of characters this is allowed (and useful) if gram is the matrix of scalar
products of ordinary characters.

When OrthogonalEmbeddings is called with the optional argument mazdim (a positive integer), only solu-
tions up to dimension maxdim are computed; this will accelerate the algorithm in some cases.

Section 4. Orthogonal Embeddings 239

gap> b:= [[3, -1, -1 1, [-1,
gap> c:=0rthogonalEmbeddings(b
rec(

3, _1],[_1: _1)3]]”
);; Display(¢);

vectors := [[-1, 1,11, [1, -1, 1], [-1, -1,11, [-1,1,01,
(-1,0,11,[1,0,01,[0,-1,11,[0,1,01,[0,0,111,
norms := [1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2 1],
solutions := [[1, 2,31, [1,6,6, 7,71, [2,5,5, 8, 81,
[3, 4,4,9,9]1, [4,5,6,7,8,911)

gap> c.vectors{ c.solutions[1] };
[[_1,1,1];[1:_1’1]’[_1:_1’1]]

gram may be the matrix of scalar products of some virtual characters. From the characters and the embedding
given by the matrix X, Decreased (see 70.10.7) may be able to compute irreducibles, see 70.10.

2» ShortestVectors(G, m[, "positive"]) F

Let G be a regular matrix of a symmetric bilinear form, and m a nonnegative integer. ShortestVectors
computes the vectors z that satisfy z - G- 2% < m, and returns a record describing these vectors. The result

record has the components

vectors
list of the nonzero vectors z, but only one of each pair (z, —z),

norms
list of norms of the vectors according to the Gram matrix G.

If the optional argument "positive" is entered, only those vectors z with nonnegative entries are computed.

gap> g:= [[2,1,11,[1,2,11,[1,1,211;;
gap> ShortestVectors(g,4);; Display(last);
rec(
vectors := [[-1, 1, 11, [0, 0, 1
to,-1, 11, [0-1,-1,17, [0,
norms := [4, 2, 2, 4, 2, 4, 2, 2, 2

[-1,0, 1], [1, -1, 11,
O],[_l,lyo]:[lyo’o]],

]

1)

1»
>

2>

Strings and
Characters

IsChar(obj) C
IsCharCollection(obj) C
A character is simply an object in GAP that represents an arbitrary character from the character set of
the operating system. Character literals can be entered in GAP by enclosing the character in singlequotes

J

gap> x:= ’a’; IsChar(x);

Ja)
true
gap> Y%
’*7
IsString(obj) C

A string is a dense list (see 21.1.1, 21.1.2) of characters (see 26); thus strings are always homogeneous
(see 21.1.3).

A string literal can either be entered as the list of characters or by writing the characters between dou-
blequotes ". GAP will always output strings in the latter format. However, the input via the double quote
syntax enables GAP to store the string in an efficient compact internal representation. See 26.2.1 below for
more details.

Each character, in particular those which cannot be typed directly from the keyboard, can also be typed
in three digit octal notation. And for some special characters (like the newline character) there is a further
possibility to type them, see section 26.1.

gap> sl := [)HJ’)e7’)17,71),JO),7 ’,’w’,’o’,’r’,’l’,’d’,’.’];
"Hello world."

gap> IsString(s1);

true

gap> s2 := "Hello world.";

"Hello world."

gap> sl = s2;

true

gap> s3 :="";

" # the empty string

gap> s3 = [1;

true

gap> IsString([1);

true

gap> IsString("123"); IsString(123);
true

false

gap> IsString([’1°, ’27, 3’]);

241

true

gap> IsString([’1°, ’2°, , ’4> 1); IsString([’1°, ’2°, 31);
false # strings must be dense

false # strings must only contain characters

gap> s := "\0O7";

|l\oo7|l

gap> Print(s); # rings bell in many terminals

gap>

Note that a string is just a special case of a list. So everything that is possible for lists (see 21) is also possible
for strings. Thus you can access the characters in such a string (see 21.3), test for membership (see 28.5),
ask for the length, concatenate strings (see 21.20.1), form substrings etc. You can even assign to a mutable
string (see 21.4). Of course unless you assign a character in such a way that the list stays dense, the resulting
list will no longer be a string.

gap> Length(s2);

12

gap> s2[2];

Je)

gap> ’a’ in s2;

false

gap> s2[2] := ’a’;; s2;

"Hallo world."

gap> si{ [1..4] };

"Hell"

gap> Concatenation(si{ [1 .. 61 2}, st{ [1 .. 41 });
"Hello Hell"

If a string is displayed by View, for example as result of an evaluation (see 6.1), or by ViewObj and PrintObj,
it is displayed with enclosing doublequotes. (But note that there is an ambiguity for the empty string which
is also an empty list of arbitrary GAP objects; it is only printed like a string if it was input as empty string
or converted to a string with 26.2.2.) The difference between ViewObj and Print0bj is that the latter prints
all non-printable and non-ASCII characters in three digit octal notation, while ViewObj sends all printable
characters to the output stream. The output of PrintObj can be read back into GAP.

Strings behave differently from other GAP objects with respect to Print, PrintTo, or AppendTo. These
commands interpret a string in the sense that they essentially send the characters of the string directly to
the output stream/file. (But depending on the type of the stream and the presence of some special characters
used as hints for line breaks there may be sent some additional newline (or backslash and newline) characters.

gap> s4:= "abc\"def\nghi";;

gap> View(s4); Print("\n");
"abc\"def\nghi"

gap> ViewObj(s4); Print("\n");
"abc\"def\nghi"

gap> Print0Obj(s4); Print("\n");
"abc\"def\nghi"

gap> Print(s4); Print("\n");

abc"def
ghi
gap> s := "German uses strange characters: \344\366\374\337\n";

"German uses strange characters: \n"
gap> Print0bj(s);

242

Chapter 26. Strings and Characters

"German uses strange characters: \344\366\374\337\n"gap>

gap> Print(s);
German uses strange characters:

Note that only those line breaks are printed by Print that are contained in the string (\n characters,

see

26.1), as is shown in the example below.

gap> si;

"Hello world."

gap> Print(sl);

Hello world.gap> Print(s1, "\nnext line\n");
Hello world.

next line

gap>

26.1 Special Characters

There are a number of special character sequences that can be used between the singlequotes of a
character literal or between the doublequotes of a string literal to specify characters. They consist of two
characters. The first is a backslash \. The second may be any character. If it is an octal digit (from 0 to 7)
there must be two more such digits. The meaning is given in the following list

\n

\n

\7

\\

\b

\r

\c

\XYZ

other

newline character. This is the character that, at least on UNIX systems, separates lines in a text file.
Printing of this character in a string has the effect of moving the cursor down one line and back to the
beginning of the line.

doublequote character. Inside a string a doublequote must be escaped by the backslash, because it
is otherwise interpreted as end of the string.

singlequote character. Inside a character a singlequote must escaped by the backslash, because it is
otherwise interpreted as end of the character.

backslash character. Inside a string a backslash must be escaped by another backslash, because it is
otherwise interpreted as first character of an escape sequence.

backspace character. Printing this character should have the effect of moving the cursor back one
character. Whether it works or not is system dependent and should not be relied upon.

carriage return character. Printing this character should have the effect of moving the cursor back
to the beginning of the same line. Whether this works or not is again system dependent.

flush character. This character is not printed. Its purpose is to flush the output queue. Usually GAP
waits until it sees a newline before it prints a string. If you want to display a string that does not
include this character use \c.

with X, Y, Z three octal digits. This is translated to the character correponding to the number
X64+4Y8+7Z modulo 256. This can be used to specify and store arbitrary binary data as a string
in GAP.

For any other character the backslash is simply ignored.

Again, if the line is displayed as result of an evaluation, those escape sequences are displayed in the same
way that they are input.

Only Print, PrintTo, or AppendTo send the characters directly to the output stream.

1»

2»

3>

Section 2. Internally Represented Strings 243

gap> "This is one line.\nThis is another line.\n";
"This is one line.\nThis is another line.\n"

gap> Print(last);

This is one line.

This is another line.

Note in particular that it is not allowed to enclose a mewline inside the string. You can use the special
character sequence \n to write strings that include newline characters. If, however, an input string is too
long to fit on a single line it is possible to continue it over several lines. In this case the last character of
each input line, except the last line must be a backslash. Both backslash and newline are thrown away by
GAP while reading the string. Note that the same continuation mechanism is available for identifiers and
integers.

gap> "This is a very long string that does not fit on a line \

gap> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefore conti\
nued on the next line."

Note that the output is also continued, but at a different place that is determined by the value of SizeScreen
(see 6.11.1).

26.2 Internally Represented Strings

IsStringRep(obj) R

IsStringRep is a special (internal) representation of dense lists of characters. Dense lists of characters can be
converted into this representation using ConvertToStringRep. Note that calling IsString does not change
the representation.

ConvertToStringRep(obj) F

If obj is a dense internally represented list of characters then ConvertToStringRep changes the represen-
tation to IsStringRep. This is useful in particular for converting the empty list [1, which usually is in
IsPlistRep, to IsStringRep. If 0bj is not a string then ConvertToStringRep signals an error.

IsEmptyString(str) F

IsEmptyString returns true if str is the empty string in the representation IsStringRep, and false
otherwise. Note that the empty list [] and the empty string "" have the same type, the recommended way
to distinguish them is via IsEmptyString. For formatted printing, this distinction is sometimes necessary.

gap> 1:= [1;; IsString(1); IsEmptyString(1); IsEmpty(1);

true

false

true

gap> 1; ConvertToStringRep(1); 1;

L1

gap> IsEmptyString(1); IsEmptyString(""); IsEmptyString("abc");
true

true

false

gap> 11:= [’a’, ’b’]; IsStringRep(11); ConvertToStringRep(11);
Ilab"

false

4»

1»

2»

3>

4»

2»

244 Chapter 26. Strings and Characters

gap> 11; IsStringRep(11);
||ab"
true

CharsFamily A%

Each character lies in the family CharFamily, each nonempty string lies in the collections family of this
family. Note the subtle differences between the empty list [] and the empty string "" when both are
printed.

26.3 Recognizing Characters

IsDigitChar(¢) F
checks whether the character c is a digit, i.e., occurs in the string "0123456789".

IsLowerAlphaChar(c) F

checks whether the character ¢ is a lowercase alphabet letter, i.e., occurs in the string "abcdefghi-
jklmnopqrstuvwxyz".

IsUpperAlphaChar(c) F

checks whether the character c¢ is an uppercase alphabet letter, i.e., occurs in the string "ABCDEFGHI-
JKLMNOPQRSTUVWXYZ".

IsAlphaChar(c) F

checks whether the character c is either a lowercase or an uppercase alphabet letter.

26.4 Comparisons of Strings

stringl = string2
stringl <> string2

The equality operator = returns to true if the two strings string! and string2 are equal and false otherwise.
The inequality operator <> returns true if the two strings stringl and string2 are not equal and false
otherwise.

gap> "Hello world.\n" = "Hello world.\n";
true

gap> "Hello World.\n" = "Hello world.\n";
false # string comparison is case sensitive
gap> "Hello world." = "Hello world.\n";
false # the first string has no <newline>
gap> "Goodbye world.\n" = "Hello world.\n";
false

gap> [:a;’ 'p?] = "ab";

true

stringl < string2

The ordering of strings is lexicographically according to the order implied by the underlying, system depen-
dent, character set.

2»

3>

4 »

5p

6>

Section 5. Operations to Produce or Manipulate Strings 245

gap> "Hello world.\n" < "Hello world.\n";

false # the strings are equal

gap> "Hello World.\n" < "Hello world.\n";

true # in ASCII uppercase letters come before lowercase letters
gap> "Hello world." < "Hello world.\n";

true # prefixes are always smaller

gap> "Goodbye world.\n" < "Hello world.\n";

true # ‘G’ comes before ‘H’, in ASCII at least

Strings can be compared via < with certain GAP objects that are not strings, see 4.11 for the details.

26.5 Operations to Produce or Manipulate Strings

String(obj) A
String(obj, length) O
String returns a representation of obj, which may be an object of arbitrary type, as a string. This string
should approximate as closely as possible the character sequence you see if you print obj.

If length is given it must be an integer. The absolute value gives the minimal length of the result. If the
string representation of obj takes less than that many characters it is filled with blanks. If length is positive
it is filled on the left, if length is negative it is filled on the right.

In the two argument case, the string returned is a new mutable string (in particular not a part of any other
object); it can be modified safely, and MakeImmutable may be safely applied to it.

gap> String(123);String([1,2,31);
||123|l
ll[1’ 2, 3]ll

HexStringInt (int) F

returns a string which represents the integer int with hexa-decimal digits (using A-F as digits 10-15). The
inverse translation can be achieved with 26.6.1.

StringPP(int) F
returns a string representing the prime factor decomposition of the integer int.

gap> StringPP(40320);
"27T7x372%5xT7"

WordAlp(alpha, nr) F

returns a string that is the nr-th word over the alphabet list alpha, w.r.t. word length and lexicographical
order. The empty word is WordAlp(alpha, 0).

gap> List([0..5],i->WordAlp("abc",i));
[nn s llall s llbll s "C" s llaall , Ilabll]
LowercaseString(string) F

returns a lowercase version of the string string, that is, a string in which each uppercase alphabet character
is replaced by the corresponding lowercase character.

gap> LowercaseString("This Is UpperCase");
"this is uppercase"

SplitString(string, seps[, wspacel) O

This function accepts a string string and lists seps and, optionally, wspace of characters. Now string is split
into substrings at each occurrence of a character in seps or wspace. The characters in wspace are interpreted

>

8»

10 »

246 Chapter 26. Strings and Characters

as white space characters. Substrings of characters in wspace are treated as one white space character and
they are ignored at the beginning and end of a string.

Both arguments seps and wspace can be single characters.
Each string in the resulting list of substring does not contain any characters in seps or wspace.
A character that occurs both in seps and wspace is treated as a white space character.

A separator at the end of a string is interpreted as a terminator; in this case, the separator does not produce
a trailing empty string. Also see 26.5.11.

gap> SplitString("substrl:substr2::substr4", ":");
["substrl", "substr2", "", "substr4"]
gap> SplitString("a;b;c;d;", ";");

[llall’ llbll’ "C"’ lld"]
gap> SplitString("/home//user//dir/", "", "/");
["home", uuseru’ ngir"]

ReplacedString(string, old, new) F

replaces occurrences of the string old in string by new, starting from the left and always replacing the
first occurrence. To avoid infinite recursion, characters which have been replaced already, are not subject to
renewed replacement.

gap> ReplacedString("abacab","a","z1l");

"zlbzlczlb"

gap> ReplacedString("ababa", "aba","c");
n Cba"

gap> ReplacedString("abacab","a","ba");

"babbacbab"

NormalizeWhitespace(string) F

This function changes the string string in place. The characters (space), \n, \r and \t are considered as
white space. Leading and trailing white space characters in string are removed. Sequences of white space
characters between other characters are replaced by a single space character.

See 26.5.9 for a non-destructive version.

gap> s :=" x y \n\n\t\r z\n \n";
" x y \n\n\t\r z\n \n"

gap> NormalizeWhitespace(s);

gap> s;

"X y zll

NormalizedWhitespace(str) F

This function returns a copy of string str to which 26.5.8 was applied.

For the possibility to print GAP objects to strings, see 10.7.
JoinStringsWithSeparator(list[, sep]l) F

joins list (a list of strings) after interpolating sep (or "," if the second argument is omitted) between each
adjacent pair of strings; sep should be a string.

Examples

Section 6. Operations to Evaluate Strings 247

gap> list := List([1..10], String);
[lllll’ ll2ll’ l|3|l’ l|4|l’ "5"’ "6"’ |l7||’ |l8ll’ |l9l|’ "10"]
gap> JoinStringsWithSeparator(list);
"1,2,3,4,5,6,7,8,9,10"
gap> JoinStringsWithSeparator(["The", "quick", "brown", "fox"], " ");
"The quick brown fox"
gap> JoinStringsWithSeparator(["a", "b", "c", "d"]l, ",\n "),
"a,\n b,\n c,\n da"
gap> Print (" ", last, "\n");
a,

C,
d

Recall, last is the last expression output by GAP.
11» Chomp(str) F

Like the similarly named Perl function, Chomp removes a trailing newline character (or carriage-return line-
feed couplet) from a string argument str if present and returns the result. If str is not a string or does not
have such trailing character(s) it is returned unchanged. This latter property means that Chomp is safe to
use in cases where one is manipulating the result of another function which might sometimes return fail,
for example.

gap> Chomp("The quick brown fox jumps over the lazy dog.\n");
"The quick brown fox jumps over the lazy dog."

gap> Chomp("The quick brown fox jumps over the lazy dog.\r\n");
"The quick brown fox jumps over the lazy dog."

gap> Chomp("The quick brown fox jumps over the lazy dog.");
"The quick brown fox jumps over the lazy dog."

gap> Chomp(fail);

fail

gap> Chomp(32);

32

Note: Chomp only removes a trailing newline character from str. If your string contains several newline
characters and you really want to split str into lines at the newline characters (and remove those newline
characters) then you should use SplitString (see 26.5.6), e.g.

gap> str := "The quick brown fox\njumps over the lazy dog.\n";
"The quick brown fox\njumps over the lazy dog.\n"
gap> SplitString(str, "", "\n");

["The quick brown fox", "jumps over the lazy dog."]
gap> Chomp(str);
"The quick brown fox\njumps over the lazy dog."

26.6 Operations to Evaluate Strings

1» Int(str) A
» Rat(str) A
» IntHexString(str) F

return either an integer (Int and IntHexString), or a rational (Rat) as represented by the string str. Int
returns fail if non-digit characters occur in str. For Rat, the argument string may start with the sign

248 Chapter 26. Strings and Characters

character ’-’, followed by either a sequence of digits or by two sequences of digits that are separated by
one of the characters ’/’ or ’.’, where the latter stands for a decimal dot. (The methods only evaluate
numbers but do not perform arithmetic!)

IntHexString evaluates an integer written with hexa-decimal digits. Here the letters a-f or A-F are used
as digits 10-15. An error occurs when a wrong character is found in the string. This function can be used
(together with 26.5.2) for efficiently storing and reading large integers from respectively into GAP. Note
that the translation between integers and their hexa-decimal representation costs linear computation time
in terms of the number of digits, while translation from and into decimal representation needs substantial
computations.

gap> Int("12345")+1;

12346
gap> Int("123/45");
fail
gap> Int("1+2");
fail
gap> Int("-12");
-12
gap> Rat("123/45");
41/15
gap> Rat("123.45");
2469/20
gap> IntHexString("-abcdef0123456789") ;
-12379813738877118345
gap> HexStringInt(last);
"-ABCDEF0123456789"
2» Ordinal(n) F

returns the ordinal of the integer n as a string.

gap> Ordinal(2); Ordinal(21); Ordinal(33); Ordinal(-33);
||2nd|’

"21St n

||33rd||

"-33rq"

3» EvalString(expr) F

passes expr (a string) through an input text stream so that GAP interprets it, and returns the result. The
following trivial example demonstrates its use.

gap> a:=10;

10

gap> EvalString("a"2");
100

EvalString is intended for single expressions. A sequence of commands may be interpreted by using the
functions InputTextString (see 10.7.1) and ReadAsFunction (see 10.3.2) together; see 10.3 for an example.

1»

2»

3»

4»

5»

6>

i d

8»

9>

Section 7. Calendar Arithmetic 249

26.7 Calendar Arithmetic

All calendar functions use the Gregorian calendar.

DaysInYear(year) F
returns the number of days in a year.

DaysInMonth(month, year) F
returns the number of days in month number month of year (and fail if month is integer not in valid range.

gap> DaysInYear(1998);
365

gap> DaysInMonth(3,1998);
31

DMYDay (day) F
converts a number of days, starting 1-Jan-1970 to a list [day, month, year] in Gregorian calendar counting.
DayDMY(dmy) F

returns the number of days from 01-Jan-1970 to the day given by dmy. dmy must be a list of the form
[day , month ,year] in Gregorian calendar counting. The result is fail on input outside valid ranges.

Note that this makes not much sense for early dates like: before 1582 (no Gregorian calendar at all), or
before 1753 in many English countries or before 1917 in Russia.

WeekDay(date) F

returns the weekday of a day given by date. date can be a number of days since 1-Jan-1970 or a list
[day ,month , year].

StringDate(date) F

converts date to a readable string. date can be a number of days since 1-Jan-1970 or a list [day, month ,year].

gap> DayDMY([1,1,1970]) ;DayDMY([2,1,1970]);
0

1

gap> DMYDay(12345) ;

[20, 10, 2003 1]

gap> WeekDay([11,3,1998]);

||wed|’

gap> StringDate([11,3,1998]);

"11-Mar-1998"

HMSMSec (msec) F

converts a number msec of milliseconds into a list [hour,min, sec,milli].

SecHMSM(hmsm) F
is the reverse of HMSMSec.

StringTime(time) F

converts time (given as a number of milliseconds or a list [hour, min, sec, millil) to a readable string.

250 Chapter 26. Strings and Characters
gap> HMSMSec(Factorial(10));

[1, 0, 28, 800]

gap> SecHMSM([1,10,5,13]);

4205013

gap> StringTime([1,10,5,13]);

" 1:10:05.013"

10» SecondsDMYhms(DMYhms) F

returns the number of seconds from 01-Jan-1970, 00:00:00, to the time given by DM Yhms. DMYhms must
be a list of the form [day, month,year, hour, minute , second]. The remarks on the Gregorian calendar in
the section on 26.7.4 apply here as well. The last three arguments must lie in the appropriate ranges.

11 » DMYhmsSeconds(secs) F

This is the inverse function to 26.7.10.
gap> SecondsDMYhms([9, 9, 2001, 1, 46, 40 1);
1000000000

gap> DMYhmsSeconds (-1000000000) ;
[24, 4, 1938, 22, 13, 20]

1»

2>

Records

Records are next to lists the most important way to collect objects together. A record is a collection of
components. Each component has a unique name, which is an identifier that distinguishes this component,
and a value, which is an object of arbitrary type. We often abbreviate value of a component to element.
We also say that a record contains its elements. You can access and change the elements of a record using
its name.

Record literals are written by writing down the components in order between “rec(” and “)”, and separating
them by commas “,”. Each component consists of the name, the assignment operator :=, and the value.
The empty record, i.e., the record with no components, is written as rec().

gap> rec(a := 1, b := "2"); # a record with two components

rec(a :=1, b := "2")

gap> rec(a := 1, b :=rec(¢ := 2)); # record may contain records
rec(a:=1, b :=rec(c :=2))

We may use the Display function to illustrate the hierarchy of the record components.

gap> Display(last);

rec(
a =1,
b := rec(

c :=2))

Records usually contain elements of various types, i.e., they are usually not homogeneous like lists.

IsRecord(obj)
IsRecordCollection(obj)
IsRecordCol1Coll(obj)

Qaa

gap> IsRecord(rec(a :=1, b :=2));
true

gap> IsRecord(IsRecord);

false

RecNames(rec) A

returns a list of strings corresponding to the names of the record components of the record rec.

gap> r :=rec(a :=1, b :=2);;
gap> RecNames(r);
[llall, llbll]

Note that you cannot use the string result in the ordinary way to access or change a record component. You
must use the rec. (name) construct (see 27.1 and 27.2).

1»

2>

1»

252 Chapter 27. Records
27.1 Accessing Record Elements

rec.name O

The above construct evaluates to the value of the record component with the name name in the record rec.
Note that the name is not evaluated, i.e. it is taken literal.

gap> r :=rec(a =1, b :=2);;
gap> r.a;

1

gap> r.b;

2

rec.(name) O

This construct is similar to the above construct. The difference is that the second operand name is evaluated.
It must evaluate to a string or an integer otherwise an error is signalled. The construct then evaluates to
the element of the record rec whose name is, as a string, equal to name.

gap> old :=rec(a :=1, b := 2);;

gap> new := rec();
rec()
gap> for i in RecNames(old) do
> nmnew. (i) := old.(i);
> od;
gap> Display(new);
rec(
a =1,
b :=2)

27.2 Record Assignment

rec.name := obj O

The record assignment assigns the object obj, which may be an object of arbitrary type, to the record
component with the name name, which must be an identifier, of the record rec. That means that accessing
the element with name name of the record rec will return obj after this assignment. If the record rec has no
component with the name name, the record is automatically extended to make room for the new component.

gap> r :=rec(a :=1, b := 2);;
gap> r.a := 10;;
gap> Display(r);

rec(
a := 10,
b :=2)

gap> r.c := 3;;
gap> Display(r);

rec(

a := 10,
b := 2,
c :=3)

Note that assigning to a record changes the record.

The function IsBound can be used to test if a record has a component with a certain name, the function
Unbind (see 4.8.1) can be used to remove a component with a certain name again.

Section 3. Identical Records 253

gap> IsBound(r.a);
true
gap> IsBound(r.d);
false
gap> Unbind(r.b);
gap> Display(r);

rec(
a := 10,
c :=3)
2» rec. (name) := obj O

This construct is similar to the above construct. The difference is that the second operand name is evaluated.
It must evaluate to a string or an integer otherwise an error is signalled. The construct then assigns obj to
the record component of the record rec whose name is, as a string, equal to name.

27.3 ldentical Records

With the record assignment (see 27.2) it is possible to change a record. This section describes the semantic
consequences of this fact which are essentially the same as for lists (see 21.6).

r :=rec(a :=1);
r :=recCa:=1, b :=2);

The second assignment does not change the first record, instead it assigns a new record to the variable r.
On the other hand, in the following example the record is changed by the second assignment.

r :=rec(a :=1);

To understand the difference first think of a variable as a name for an object. The important point is that a
record can have several names at the same time. An assignment var := record means in this interpretation
that var is a name for the object record. At the end of the following example r2 still has the value rec(a
:= 1) as this record has not been changed and nothing else has been assigned to r2.

rl := rec(C a :=1);
r2 :=ril;
rl :=rec(Ca:=1, b :=2);

But after the following example the record for which r2 is a name has been changed and thus the value of

r2isnowrec(a := 1, b := 2).
rl :=rec(C a :=1);
r2 :=ri;
rl.b := 2;

We shall say that two records are identical if changing one of them by a record assignment also changes the
other one. This is slightly incorrect, because if two records are identical, there are actually only two names
for one record. However, the correct usage would be very awkward and would only add to the confusion.
Note that two identical records must be equal, because there is only one records with two different names.
Thus identity is an equivalence relation that is a refinement of equality.

Let us now consider under which circumstances two records are identical.

If you enter a record literal then the record denoted by this literal is a new record that is not identical to any
other record. Thus in the following example r1 and r2 are not identical, though they are equal of course.

254 Chapter 27. Records

rl := rec(C a :=1);
r2 :=rec(a:=1)

)

Also in the following example, no records in the list 1 are identical.

1 :=[1;

for i in [1..10] do
1[i] :=rec(a := 1);

od;

If you assign a record to a variable no new record is created. Thus the record value of the variable on the left
hand side and the record on the right hand side of the assignment are identical. So in the following example
r1 and r2 are identical records.

rl :=rec(a :=1);
r2 :=ri;

If you pass a record as argument, the old record and the argument of the function are identical. Also if you
return a record from a function, the old record and the value of the function call are identical. So in the
following example r1 and r2 are identical record

rl :=rec(C a :=1);
f := function (r) return r; end;
r2 := f(r1);

The functions StructuralCopy and ShallowCopy (see 12.7.2 and 12.7.1) accept a record and return a new
record that is equal to the old record but that is not identical to the old record. The difference between
StructuralCopy and ShallowCopy is that in the case of ShallowCopy the corresponding components of the
new and the old records will be identical, whereas in the case of StructuralCopy they will only be equal.
So in the following example r1 and r2 are not identical records.

rl :=rec(a :=1);
r2 := Copy(rl);

If you change a record it keeps its identity. Thus if two records are identical and you change one of them,
you also change the other, and they are still identical afterwards. On the other hand, two records that are
not identical will never become identical if you change one of them. So in the following example both r1
and r2 are changed, and are still identical.

rl :=rec(a :=1);
r2 :=ri;
rl.b := 2;

27.4 Comparisons of Records

recl = rec? O
recl <> rec2 O

Two records are considered equal, if for each component of one record the other record has a component of
the same name with an equal value and vice versa.

Section 5. IsBound and Unbind for Records 255

gap> rec(a := 1, b :=2) rec(b : 1);
true
gap> rec(a :
false
gap> rec(a :
false
gap> rec(a :

false

]
N
)

1]

1, b :=2)

I
N
o

I

rec(a : 1);

1) =recCa:=1, b :

]
N
~

1)

]
[

2% recl < rec? O
» recl <= rec2 O

To compare records we imagine that the components of both records are sorted according to their names.
Then the records are compared lexicographically with unbound elements considered smaller than anything
else. Precisely one record rec! is considered less than another record rec2 if rec2 has a component with
name name2 and either rec! has no component with this name or rec! .name2 < rec2.name2 and for each
component of rec! with name namel < name2 rec2 has a component with this name and rec! .namel =
rec? .namel.

gap> rec(a :=1, b :=2) <rec(b :=2, a:=1);

false # they are equal

gap> rec(a :=1, b :=2) <recCa:=2,b :=0);

true # the ‘a’ elements are compared first and 1 is less than 2
gap> rec(a :=1) <rec(a:=1, b :=2);

true # unbound is less than 2

gap> rec(a := 1) <rec(a :=0, b :=2);

false # the ‘a’ elements are compared first and O is less than 1
gap> rec(b :=1) <rec(b :=0, a :=2);

true # the ‘a’-s are compared first and unbound is less than 2

27.5 IsBound and Unbind for Records

» ‘IsBound(rec.name)’ 0

IsBound returns true if the record rec has a component with the name name (which must be an identifier)
and false otherwise. rec must evaluate to a record, otherwise an error is signalled.

gap> r :=rec(a :=1, b :=2);;
gap> IsBound(r.a);

true

gap> IsBound(r.c);

false

» ‘Unbind(rec.name)’ 0

Unbind deletes the component with the name name in the record rec. That is, after execution of Unbind,
rec no longer has a record component with this name. Note that it is not an error to unbind a nonexisting
record component. rec must evaluate to a record, otherwise an error is signalled.

gap> r :=rec(a :=1, b :=2);;
gap> Unbind(r.a); r;

rec(b :=2)

gap> Unbind(r.c); r;

rec(b :=2)

Note that IsBound and Unbind are special in that they do not evaluate their argument, otherwise IsBound
would always signal an error when it is supposed to return false and there would be no way to tell Unbind
which component to remove.

1»

256 Chapter 27. Records

27.6 Record Access Operations

Internally, record accesses are done using the operations listed in this section. For the records implemented
in the kernel, kernel methods are provided for all these operations but otherwise it is possible to install
methods for these operations for any object. This permits objects to simulate record behavior.

To save memory, records do not store a list of all component names, but only numbers identifying the
components. There numbers are called RNams. GAP keeps a list of all RNams that are used and provides
functions to translate RNams to strings that give the component names and vice versa.

NameRNam (nr) F
returns a string representing the component name corresponding to the RNam nr.

RNamQbj (str) F
RNamQbj (int) F

returns a number (the RNam) corresponding to the string str. It is also possible to pass a positive integer
int in which case the decimal expansion of int is used as a string.

gap> NameRNam(798) ;
"BravaisSupergroups"

gap> RNam0Obj ("blubberflutsch");
2075

gap> NameRNam(last) ;
"blubberflutsch"

The correspondence between Strings and RNams is not predetermined ab initio, but RNams are assigned to
component names dynamically on a “first come, first serve” basis. Therefore, depending on the version of the
library you are using and on the assignments done so far, the same component name may be represented
by different RNams in different runs of GAP.

The following operations are called for record accesses to arbitrary objects. If applicable methods are in-
stalled, they are called when the object is accessed as a record.

\. (obj ,rnam)
IsBound\. (0bj,rnam)
\.\:\=(Cobj, rnam)
Unbind\. Cobj, rnam)

cloNoNe©

These operations implement component access, test for element boundness, component assignment and
removal of the component represented by the RNam rnam.

The component identifier rnam is always declared as IsPosInt.

1»

1»

2»

3»

Collections

A collection in GAP consists of elements in the same family (see 13.1). The most important kinds of
collections are homogeneous lists (see 21) and domains (see 12.4). Note that a list is never a domain,
and a domain is never a list. A list is a collection if and only if it is homogeneous.

Basic operations for collections are Size (see 28.3.6) and Enumerator (see 28.2.2); for finite collections,
Enumerator admits to delegate the other operations for collections (see 28.3 and 28.4) to functions for lists
(see 21). Obviously, special methods depending on the arguments are needed for the computation of e.g. the
intersection of two infinite domains.

IsCollection(obj) C

tests whether an object is a collection.

Some of the functions for lists and collections have been described in the chapter about lists, mainly in
Section 21.20. In this chapter, we describe those functions for which the “collection aspect” seems to be
more important than the “list aspect”. As in Chapter 21, an argument that is a list will be denoted by list,
and an argument that is a collection will be denoted by C.

28.1 Collection Families
CollectionsFamily(Fam) A

For a family Fam, CollectionsFamily returns the family of all collections that consist of elements in Fam.

Note that families (see 13.1) are used to describe relations between objects. Important such relations are
that between an element elm and each collection of elements that lie in the same family as elm, and that
between two collections whose elements lie in the same family. Therefore, all collections of elements in the
family Fam form the new family CollectionsFamily(Fam).

IsCollectionFamily(Fam) C
is true if Fam is a family of collections, and false otherwise.

ElementsFamily(Fam) A

returns the family from which the collections family Fam was created by CollectionsFamily. The way
a collections family is created, it always has its elements family stored. If Fam is not a collections family
(see 28.1.2) then an error is signalled.

gap> fam:= FamilyObj((1,2));;

gap> collfam:= CollectionsFamily(fam);;

gap> fam = collfam; fam = ElementsFamily(collfam);
false

true

gap> collfam
true

true

gap> collfam = CollectionsFamily(collfam);

FamilyObj([(1,2,3) 1); collfam = FamilyObj(Group(O));

4»

1»

258 Chapter 28. Collections

false
CategoryCollections(filter) F

Let filter be a filter that is true for all elements of a family Fam, by construction of Fam. Then Catego-
ryCollections returns a category that is true for all elements in CollectionsFamily(Fam).

For example, the construction of PermutationsFamily guarantees that each of its elements lies in the filter
IsPerm, and each collection of permutations lies in the category CategoryCollections(IsPerm).

Note that this works only if the collections category is created before the collections family. So it is necessary
to construct interesting collections categories immediately after the underlying category has been created.

28.2 Lists and Collections

IsListOrCollection(obj) C

Several functions are defined for both lists and collections, for example Intersection (see 28.4.2), Iterator
(see 28.7.1), and Random (see 28.6.1). IsListOrCollection is a supercategory of IsList and IsCollection
(that is, all lists and collections lie in this category), which is used to describe the arguments of functions
such as the ones listed above.

The following functions take a list or collection as argument, and return a corresponding list. They differ
in whether or not the result is mutable or immutable (see 12.6), guaranteed to be sorted, or guaranteed to
admit list access in constant time (see 21.1.5).

Enumerator(C) A
Enumerator ([list) A

Enumerator returns an immutable list enum. If the argument is a list list (which may contain holes), then
Length(enum) is Length(list), and enum contains the elements (and holes) of list in the same order.
If the argument is a collection C' that is not a list, then Length(enum) is the number of different elements
of C, and enum contains the different elements of C' in an unspecified order, which may change for repeated
calls of Enumerator. enum[pos] may not execute in constant time (see 21.1.5), and the size of enum in
memory is as small as is feasible.

For lists list, the default method is Immutable. For collections C' that are not lists, there is no default
method.

EnumeratorSorted(C) A
EnumeratorSorted(list) A

EnumeratorSorted returns an immutable list enum. The argument must be a collection C or a list list which
may contain holes but whose elements lie in the same family (see 13.1). Length(enum) is the number
of different elements of C' resp. list, and enum contains the different elements in sorted order, w.r.t. <.
enum [pos] may not execute in constant time (see 21.1.5), and the size of enum in memory is as small as is
feasible.

gap> Enumerator([1, 3,, 2]);

[1, 3,, 2]

gap> enum:= Enumerator(Rationals);; elm:= enum[1076];
-69/907

gap> Position(enum, elm);

1000000

gap> IsMutable(enum); IsSortedList(enum);

false

false

gap> IsConstantTimeAccessList(enum);

5»

Section 2. Lists and Collections 259

false
gap> EnumeratorSorted([1, 3,, 21);
(1,2, 3]

List(C)
List(list)

This function is described in 21.20.16, together with the probably more frequently used version which takes
a function as second argument and returns the list of function values of the list elements.

gap> 1:= List(Group((1,2,3)));
[O, 1,3,2), (1,2,3)]
gap> IsMutable(1); IsSortedList(1); IsConstantTimeAccessList(1);

true

false

true
SortedList(C) O
SortedList (list) O

SortedList returns a new mutable and dense list new. The argument must be a collection C or a list list
which may contain holes but whose elements lie in the same family (see 13.1). Length(new) is the number
of elements of C' resp. list, and new contains the elements in sorted order, w.r.t. <=. new [pos] executes in
constant time (see 21.1.5), and the size of new in memory is proportional to its length.

gap> 1l:= SortedList(Group((1,2,3)));

[O, (1,2,3), (1,3,2)]

gap> IsMutable(1); IsSortedList(1); IsConstantTimeAccessList(1);
true

true

true

gap> SortedList([1, 2, 1,, 3, 2]);

[1, 1, 2, 2, 3]

SSortedList(C) O
SSortedList (list) (@)
Set(C) O

SSortedList (“strictly sorted list”) returns a new dense, mutable, and duplicate free list new. The argument
must be a collection C or a list list which may contain holes but whose elements lie in the same family
(see 13.1). Length(new) is the number of different elements of C resp. list, and new contains the different
elements in strictly sorted order, w.r.t. <. new [pos] executes in constant time (see 21.1.5), and the size of
new in memory is proportional to its length.

Set is simply a synonym for SSortedList.

gap> 1l:= SSortedList(Group((1,2,3)));

[O, (1,2,3), (1,3,2)]

gap> IsMutable(1); IsSSortedList(1); IsConstantTimeAccessList(1);
true

true

true

gap> SSortedList([1, 2, 1,, 3, 21);

[1, 2, 3]

6>

v

260 Chapter 28. Collections

AsList(C) A
AsList (list) A

AsList returns a immutable list imm. If the argument is a list list (which may contain holes), then Length(
imm) is Length(list), and imm contains the elements (and holes) of list in the same order. If the
argument is a collection C' that is not a list, then Length(¢mm) is the number of different elements of C,
and imm contains the different elements of C in an unspecified order, which may change for repeated calls
of AsList. imm[pos] executes in constant time (see 21.1.5), and the size of ¢mm in memory is proportional
to its length.

If you expect to do many element tests in the resulting list, it might be worth to use a sorted list instead,
using AsSSortedList.

gap> 1:= AsList([1, 3, 3,, 2]);

[1, 3, 3,, 2]

gap> IsMutable(1); IsSortedList(1); IsConstantTimeAccessList(1);
false

false

true

gap> AsList(Group((1,2,3), (1,2)));

[O, (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

AsSortedList(C) A
AsSortedList (list) A

AsSortedList returns a dense and immutable list ¢mm. The argument must be a collection C or a list
list which may contain holes but whose elements lie in the same family (see 13.1). Length(imm) is the
number of elements of C resp. list, and imm contains the elements in sorted order, w.r.t. <=. new [pos]
executes in constant time (see 21.1.5), and the size of émm in memory is proportional to its length.

The only difference to the operation SortedList (see 28.2.4) is that AsSortedList returns an immutable
list.

gap> 1l:= AsSortedList([1, 3, 3,, 2]);

[1, 2, 3, 3]

gap> IsMutable(1); IsSortedList(1); IsConstantTimeAccessList(1);
false

true

true

gap> IsSSortedList(1);

false

AsSSortedList(C) A
AsSSortedList (list) A
AsSet(C) A

AsSSortedList (“as strictly sorted list”) returns a dense, immutable, and duplicate free list imm. The
argument must be a collection C or a list list which may contain holes but whose elements lie in the same
family (see 13.1). Length(imm) is the number of different elements of C' resp. list, and imm contains the
different elements in strictly sorted order, w.r.t. <. imm[pos] executes in constant time (see 21.1.5), and
the size of imm in memory is proportional to its length.

Because the comparisons required for sorting can be very expensive for some kinds of objects, you should
use AsList instead if you do not require the result to be sorted.

The only difference to the operation SSortedList (see 28.2.5) is that AsSSortedList returns an immutable
list.

9»

1»

2»

3»

4»

Section 3. Attributes and Properties for Collections 261

AsSet is simply a synonym for AsSSortedList.

In general a function that returns a set of elements is free, in fact encouraged, to return a domain instead of
the proper set of its elements. This allows one to keep a given structure, and moreover the representation by
a domain object is usually more space efficient. AsSSortedList must of course not do this, its only purpose
is to create the proper set of elements.

gap> 1:= AsSSortedList(1);

[1, 2, 3]

gap> IsMutable(1); IsSSortedList(1); IsConstantTimeAccessList(1);
false

true

true

gap> AsSSortedList(Group((1,2,3), (1,2)));

[O, (2,3, (1,2, (1,2,3), (1,3,2), (1,3)]

Elements(C) F
Elements does the same as AsSSortedList (see 28.2.8), that is, the return value is a strictly sorted list of
the elements in the list or collection C'

Elements is only supported for backwards compatibility. In many situations, the sortedness of the “element
list” for a collection is in fact not needed, and one can save a lot of time by asking for a list that is not
necessarily sorted, using AsList (see 28.2.6). If one is really interested in the strictly sorted list of elements
in C then one should use AsSet or AsSSortedList instead.

28.3 Attributes and Properties for Collections

IsEmpty(C) P
IsEmpty(list) P

IsEmpty returns true if the collection C resp. the list list is empty (that is it contains no elements), and
false otherwise.

IsFinite(C) P

IsFinite returns true if the collection C is finite, and false otherwise.
The default method for IsFinite checks the size (see 28.3.6) of C.

Methods for IsFinite may call Size, but methods for Size must not call IsFinite.

IsTrivial(C) P
IsTrivial returns true if the collection C' consists of exactly one element.

IsNonTrivial(C) P
IsNonTrivial returns true if the collection C is empty or consists of at least two elements (see 28.3.3).

gap> IsEmpty([]); IsEmpty([1 .. 100]); IsEmpty(Group((1,2,3)));
true

false

false

gap> IsFinite([1 .. 100]); IsFinite(Integers);

true

false

gap> IsTrivial(Integers); IsTrivial(Group(()));

false

true

5»

6>
>

7>

8»

262 Chapter 28. Collections

gap> IsNonTrivial(Integers); IsNonTrivial(Group(()));
true
false

IsWholeFamily(C') P

IsWholeFamily returns true if the collection C' contains the whole family (see 13.1) of its elements.

gap> IsWholeFamily(Integers);

false # all rationals and cyclotomics lie in the family

gap> IsWholeFamily(Integers mod 3);

false # all finite field elements in char. 3 lie in this family

gap> IsWholeFamily(Integers mod 4);

true

gap> IsWholeFamily(FreeGroup(2));

true
Size(C) A
Size(list) A

Size returns the size of the collection C', which is either an integer or infinity. The argument may also
be a list list, in which case the result is the length of list (see 21.17.5).

The default method for Size checks the length of an enumerator of C.

Methods for IsFinite may call Size, but methods for Size must not call IsFinite.

gap> Size([1,2,3]); Size(Group(())); Size(Integers);
3

1

infinity

Representative(C) A

Representative returns a representative of the collection C.

Note that Representative is free in choosing a representative if there are several elements in C. It is not
even guaranteed that Representative returns the same representative if it is called several times for one
collection. The main difference between Representative and Random (see 28.6.1) is that Representative
is free to choose a value that is cheap to compute, while Random must make an effort to randomly distribute
its answers.

If C'is a domain then there are methods for Representative that try to fetch an element from any known
generator list of C, see 30. Note that Representative does not try to compute generators of C', thus
Representative may give up and signal an error if C' has no generators stored at all.

RepresentativeSmallest(C) A

returns the smallest element in the collection C, w.r.t. the ordering <. While the operation defaults to
comparing all elements, better methods are installed for some collections.

gap> Representative(Rationals);

1

gap> Representative([-1, -2 .. -100]);

-1

gap> RepresentativeSmallest([-1, -2 .. -100]);

-100

1»

v

Section 4. Operations for Collections 263

28.4 Operations for Collections
IsSubset(C1, C2) O

IsSubset returns true if C'2, which must be a collection, is a subset of C'1, which also must be a collection,
and false otherwise.

C?2 is considered a subset of C1 if and only if each element of C2 is also an element of C'1. That is IsSubset
behaves as if implemented as IsSubsetSet(AsSSortedList(C1), AsSSortedList(C2)), except
that it will also sometimes, but not always, work for infinite collections, and that it will usually work much
faster than the above definition. Either argument may also be a proper set (see 21.19).

gap> IsSubset(Rationals, Integers);

true

gap> IsSubset(Integers, [1, 2, 31);

true

gap> IsSubset(Group((1,2,3,4)), [(1,2,3) 1);
false

Intersection(C1, C2 ...) F
Intersection(list) F
Intersection2(C1, C2) O

In the first form Intersection returns the intersection of the collections C1, C2, etc. In the second form
list must be a nonempty list of collections and Intersection returns the intersection of those collections.
Each argument or element of list respectively may also be a homogeneous list that is not a proper set, in
which case Intersection silently applies Set (see 28.2.5) to it first.

The result of Intersection is the set of elements that lie in every of the collections C1, C2, etc.

Methods can be installed for the operation Intersection2 that takes only two arguments. Intersection
calls Intersection?2.

Methods for Intersection2 should try to maintain as much structure as possible, for example the intersec-
tion of two permutation groups is again a permutation group.

gap> Intersection(CyclotomicField(9), CyclotomicField(12));
CF(3) # ‘CF’ is a shorthand for ‘CyclotomicField’
this is one of the rare cases where the intersection
of two infinite domains works
gap> D12 := Group((2,6)(3,5), (1,2)(3,6)(4,5));;
gap> Intersection(D12, Group((1,2), (1,2,3,4,5)));
Group([(1,5)(2,4) 1)
gap> Intersection(D12, [(1,3)(4,6), (1,2)(3,4) 1);
[(1,3)(4,6)] # note that the second argument is not a proper set
gap> Intersection(D12, [(O, (1,2)(3,4), (1,3)(4,6), (1,4)(5,6) 1);
[O, (1,3)4,6) 1 # although the result is mathematically a
group it is returned as a proper set
because the second argument was not
regarded as a group
gap> Intersection(Group(()), [1,2,3]);

L]
gap> Intersection([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25]);
[] # two or more lists or collections as arguments are legal

gap> Intersection([[1,2,4], [2,3,4], [1,3,4] 1);
[4] # or one list of lists or collections

4»

264 Chapter 28. Collections

Union(C1, C2 ...) F
Union(list) F
Union2(C1, C2) O

In the first form Union returns the union of the collections C1, C2, etc. In the second form list must be a list
of collections and Union returns the union of those collections. Each argument or element of list respectively
may also be a homogeneous list that is not a proper set, in which case Union silently applies Set (see 28.2.5)
to it first.

The result of Union is the set of elements that lie in any of the collections C1, C2, etc.
Methods can be installed for the operation Union2 that takes only two arguments. Union calls Union2.

gap> Union([(1,2,3), (1,2,3,4) 1, Group((1,2,3), (1,2)));
L O, (2,3, (1,2), (1,2,3), (1,2,3,4), (1,3,2), (1,3)]
gap> Union([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25]);
(2,3, 4,5,6,8,9, 10, 12, 15, 20, 25]

two or more lists or collections as arguments are legal
gap> Union([[1,2,4], [2,3,4], [1,3,4]]);

[1, 2, 3, 4] # or one list of lists or collections
gap> Union([]);
[]
Difference(C1, C2) O

Difference returns the set difference of the collections C7 and C2. Either argument may also be a ho-
mogeneous list that is not a proper set, in which case Difference silently applies Set (see 28.2.5) to it
first.

The result of Difference is the set of elements that lie in C1 but not in C2. Note that C2 need not be a
subset of C1. The elements of C2, however, that are not elements of C1 play no role for the result.

gap> Difference([(1,2,3), (1,2,3,4) 1, Group((1,2,3), (1,2)));
[(1,2,3,4)]

28.5 Membership Test for Collections

obj in C
\in(obj, C) 0

returns true if the object obj lies in the collection C, and false otherwise.
The infix version of the command calls the operation \in, for which methods can be installed.

gap> 13 in Integers; [1, 2] in Integers;

true

false

gap> g:= Group((1,2));; (1,2) in g; (1,2,3) in g;
true

false

1»

Section 6. Random FElements 265
28.6 Random Elements

Random(C') 0]
Random([list) O
Random returns a (pseudo-)random element of the collection C respectively the list list.

The distribution of elements returned by Random depends on the argument. For a list list, all elements are
equally likely. The same holds usually for finite collections C' that are not lists. For infinite collections C'
some reasonable distribution is used.

See the chapters of the various collections to find out which distribution is being used.

For some collections ensuring a reasonable distribution can be difficult and require substantial runtime. If
speed at the cost of equal distribution is desired, the operation PseudoRandom should be used instead.

Note that Random is of course not an attribute.

gap> Random(Rationals) ;

-4

gap> g:= Group((1,2,3));; Random(g); Random(g);

O

(1,2,3)
StateRandom() F
RestoreStateRandom(o0bj) F

For debugging purposes, it can be desirable to reset the random number generator to a state it had before.
StateRandom returns a GAP object that represents the current state of the random number generator used
by RandomList.

By calling RestoreStateRandom with this object as argument, the random number is reset to this same
state.

(The same result can be obtained by accessing the two global variables R_N and R_X.)

(The format of the object used to represent the random generator seed is not guaranteed to be stable betweed
different machines or versions of GAP.

gap> seed:=StateRandom();;

gap> List([1..10],i->Random(Integers));
[-1, -3, -1, 1, 2,0, 1,1, -1, 1]
gap> List([1..10],i->Random(Integers));
[2, -2, -1, -4, -2, 1, -1, 1, -2, -3]
gap> RestoreStateRandom(seed) ;

gap> List([1..10],i->Random(Integers));
[-1, -3, -1, 1, 2,0, 1,1, -1, 1]

PseudoRandom(C) 0]
PseudoRandom(list) 0]

PseudoRandom returns a pseudo random element of the collection C' respectively the list list, which can be
roughly described as follows. For a list list, PseudoRandom returns the same as Random. For collections C that
are not lists, the elements returned by PseudoRandom are not necessarily equally distributed, even for finite
collections C'; the idea is that Random (see 28.6.1) returns elements according to a reasonable distribution,
PseudoRandom returns elements that are cheap to compute but need not satisfy this strong condition, and
Representative (see 28.3.7) returns arbitrary elements, probably the same element for each call.

The method used by GAP to obtain random elements may depend on the type object.

4»

266 Chapter 28. Collections

Many random methods in the library are eventually based on the function RandomList. As RandomList is
restricted to lists of up to 228 elements, this may create problems for very large collections. Also note that
the method used by RandomList is intended to provide a fast algorithm rather than to produce high quality
randomness for statistical purposes.

If you implement your own Random methods we recommend that they initialize their seed to a defined value
when they are loaded to permit to reproduce calculations even if they involved random elements.

RandomList (list) F

For a dense list list of up to 228 elements, RandomList returns a (pseudo-)random element with equal
distribution.

The algorithm used is an additive number generator (Algorithm A in section 3.2.2 of [Knu98| with lag 30)

This random number generator is (deliberately) initialized to the same values when GAP is started, so
different runs of GAP with the same input will always produce the same result, even if random calculations
are involved.

See StatusRandom for a description on how to reset the random number generator to a previous state.

28.7 lterators

Iterator(C) O
Iterator(list) O

Iterators provide a possibility to loop over the elements of a (countable) collection C' or a list list, without
repetition. For many collections C, an iterator of C need not store all elements of C, for example it is
possible to construct an iterator of some infinite domains, such as the field of rational numbers.

Iterator returns a mutable iterator iter for its argument. If this is a list list (which may contain holes),
then dter iterates over the elements (but not the holes) of list in the same order (see 28.7.6 for details). If
this is a collection C' but not a list then iter iterates over the elements of C' in an unspecified order, which
may change for repeated calls of Iterator. Because iterators returned by Iterator are mutable (see 12.6),
each call of Iterator for the same argument returns a new iterator. Therefore Iterator is not an attribute
(see 13.5).

The only operations for iterators are IsDonelterator, NextIterator, and ShallowCopy. In particular, it
is only possible to access the next element of the iterator with NextIterator if there is one, and this can be
checked with IsDoneIterator (see 28.7.5). For an iterator iter, ShallowCopy(iter) is a mutable iterator
new that iterates over the remaining elements independent of iter; the results of IsDonelterator for iter
and new are equal, and if iter is mutable then also the results of NextIterator for iter and new are equal,
note that = is not defined for iterators, so the equality of two iterators cannot be checked with =.

When Iterator is called for a mutable collection C' then it is not defined whether iter respects changes
to C occurring after the construction of iter, except if the documentation explicitly promises a certain
behaviour. The latter is the case if the argument is a mutable list list (see 28.7.6 for subtleties in this case).

It is possible to have for-loops run over mutable iterators instead of lists.

In some situations, one can construct iterators with a special succession of elements, see 59.5.6 for the
possibility to loop over the elements of a vector space w.r.t. a given basis.

For lists, Iterator is implemented by IteratorList(list). For collections that are not lists, the default
method is IteratorList(Enumerator(C)). Better methods depending on C' should be provided if
possible.

For random access to the elements of a (possibly infinite) collection, enumerators are used. See 21.23 for
the facility to compute a list from C, which provides a (partial) mapping from C to the positive integers.

3>

4»

6»

7>

Section 7. Iterators 267

gap> iter:= Iterator(GF(5));

<iterator>

gap> l:= [1;;

gap> for i in iter do Add(1, i); od; 1;
[0xZ(5), Z(5)"0, Z(5), Z(5)"2, Z(5)"3 1]
gap> iter:= Iterator([1, 2, 3, 41);; 1:= [1;;
gap> for i in iter do

> new:= ShallowCopy(iter);

> for j in new do Add(1, j); od;

> od; 1;

[2, 3, 4, 3, 4, 4]

IteratorSorted(C) 0]
IteratorSorted(list) 0]

IteratorSorted returns a mutable iterator. The argument must be a collection C or a list list that is not
necessarily dense but whose elements lie in the same family (see 13.1). It loops over the different elements
in sorted order.

For collections C' that are not lists, the generic method is IteratorList(EnumeratorSorted(C)).

IsIterator(obj) C

Every iterator lies in the category IsIterator.

IsDonelterator(iter) O

If iter is an iterator for the list or collection C then IsDonelterator(iter) is true if all elements of C'
have been returned already by NextIterator(iter), and false otherwise.

NextIterator(ter) O

Let iter be a mutable iterator for the list or collection C. If IsDonelterator(iter) is false then Nex-—
tIterator is applicable to iter, and the result is the next element of C', according to the succession defined
by iter.

If IsDonelterator(iter) is true then it is not defined what happens if NextIterator is called for iter;
that is, it may happen that an error is signalled or that something meaningless is returned, or even that
GAP crashes.

IteratorList (list) F

IteratorList returns a new iterator that allows iteration over the elements of the list list (which may have
holes) in the same order.

If list is mutable then it is in principle possible to change list after the call of IteratorList. In this case
all changes concerning positions that have not yet been reached in the iteration will also affect the iterator.
For example, if list is enlarged then the iterator will iterate also over the new elements at the end of the
changed list.

Note that changes of list will also affect all shallow copies of list.
TrivialIterator(elm) F

is a mutable iterator for the collection [elm] that consists of exactly one element elm (see 28.3.3).

268 Chapter 28. Collections

gap> iter:= Iterator([1, 2, 3, 41);
<iterator>

gap> sum:= 0;;

gap> while not IsDonelterator(iter) do

> sum:= sum + NextIterator(iter);
> od;

gap> IsDonelterator(iter); sum;

true

10

gap> ir:= Iterator(Rationals);;

gap> 1:= [1;; for i in [1..20] do Add(1, NextIterator(ir)); od; 1;

ro, 1, -1, t/2, 2, -1/2, -2, 1/3, 2/3, 3/2, 3, -1/3, -2/3, -3/2, -3, 1/4,
3/4, 4/3, 4, -1/4 1]

gap> for i in ir do

> if DenominatorRat(i) > 10 then break; fi;
> od;
gap> 1i;

1/11

1»

2>

Orderings

In GAP an ordering is a relation defined on a family, which is reflexive, anti-symmetric and transitive.
IsOrdering(ord) C
returns true if and only if the object ord is an ordering.

OrderingsFamily(fam) A

for a family fam, returns the family of all orderings on elements of fam.

29.1 Building new orderings

OrderingBylLessThanFunctionNC(fam, It) O
OrderingByLessThanFunctionNC(fam, It, [) @)

In the first form, OrderingByLessThanFunctionNC returns the ordering on the elements of the elements
of the family fam according to the LessThanFunction given by [, where It is a function that takes two
arguments in fam and returns true or false.

In the second form, for a family fam, a function it that takes two arguments in fam and returns true or
false, and a list [of properties of orderings, OrderingByLessThanFunctionNC returns the ordering on the
elements of fam with LessThanFunction given by [t and with the properties from [set to true.

OrderingByLessThanOrEqualFunctionNC(fam, lteq) 0]
OrderingByLessThanOrEqualFunctionNC(fam, lteq, [) O

In the first form, OrderingByLessThanOrEqualFunctionNC returns the ordering on the elements of the
elements of the family fam according to the LessThanOrEqualFunction given by lteq, where lteq is a
function that takes two arguments in fam and returns true or false.

In the second form, for a family fam, a function lteq that takes two arguments in fam and returns true or
false, and a list [of properties of orderings, OrderingByLessThanOrEqualFunctionNC returns the ordering
on the elements of fam with LessThanOrEqualFunction given by lteq and with the properties from [set to
true.

Notice that these functions do not check whether fam and It or lteq are compatible, and whether the
properties listed in [are indeed true.

gap> f := FreeSemigroup("a","b");;

gap> a := GeneratorsOfSemigroup(f) [1];;

gap> b := GeneratorsOfSemigroup(f)[2];;

gap> 1t := function(x,y) return Length(x)<Length(y); end;
function(x, y) ... end

gap> fam := FamilyObj(a);;

gap> ord := OrderingByLessThanFunctionNC(fam,1t);
Ordering

1»

2

3>

4»

5»

6>

7

8»

270 Chapter 29. Orderings

29.2 Properties and basic functionality
IsWellFoundedOrdering(ord) P

for an ordering ord, returns true if and only if the ordering is well founded. An ordering ord is well founded
if it admits no infinite descending chains. Normally this property is set at the time of creation of the ordering
and there is no general method to check whether a certain ordering is well founded.

IsTotalOrdering(ord) P

for an ordering ord, returns true if and only if the ordering is total. An ordering ord is total if any two
elements of the family are comparable under ord. Normally this property is set at the time of creation of
the ordering and there is no general method to check whether a certain ordering is total.

IsIncomparableUnder(ord, ell, el2) O

for an ordering ord on the elements of the family of el and el2, returns true if ell # el2 and IsLessTha-
nUnder(ord,ell ,el2), IsLessThanUnder(ord,el2,ell) are both false; and returns false otherwise.

FamilyForOrdering(ord) A
for an ordering ord, returns the family of elements that the ordering ord compares.
LessThanFunction(ord) A

for an ordering ord, returns a function f which takes two elements elf, el2 in the FamilyForOrdering(ord)
and returns true if el! is strictly less than el2 (with respect to ord) and returns false otherwise.

LessThanOrEqualFunction(ord) A

for an ordering ord, returns a function that takes two elements elf, el2 in the FamilyForOrdering(ord) and
returns true if ell is less than or equal to el2 (with respect to ord) and returns false otherwise.

IsLessThanUnder(ord, ell, el2) O

for an ordering ord on the elements of the family of el and el2, returns true if ell is (strictly) less than
el2 with respect to ord, and false otherwise.

IsLessThanOrEqualUnder(ord, ell, el2) Q)

for an ordering ord on the elements of the family of ell and el2, returns true if el is less than or equal to
el2 with respect to ord, and false otherwise.

gap> IsLessThanUnder (ord,a,a*b);

true

gap> IsLessThanOrEqualUnder (ord,ax*b,a*b);
true

gap> IsIncomparableUnder (ord,a,b);

true

gap> FamilyForOrdering(ord) = FamilyObj(a);
true

1»

2»

3>

4»

vyVvyVvyvyyy

Section 3. Orderings on families of associative words 271

29.3 Orderings on families of associative words

We now consider orderings on families of associative words.
IsOrderingOnFamilyOfAssocWords(ord) P

for an ordering ord, returns true if ord is an ordering over a family of associative words.

Examples of families of associative words are the families of elements of a free semigroup or a free monoid;
these are the two cases that we consider mostly. Associated with those families is an alphabet, which is
the semigroup (resp. monoid) generating set of the correspondent free semigroup (resp. free monoid). For
definitions of the orderings considered see Sims [Sim94].

IsTranslationInvariantOrdering(ord) P

for an ordering ord on a family of associative words, returns true if and only if the ordering is translation
invariant. This is a property of orderings on families of associative words. An ordering ord over a family fam,
with alphabet X is translation invariant if IsLessThanUnder(ord, u, v) implies that for any a,b € X*
IsLessThanUnder(ord, axu*xb,a*xv*b).

IsReductionOrdering(ord) P

for an ordering ord on a family of associative words, returns true if and only if the ordering is a reduction
ordering. An ordering ord is a reduction ordering if it is founded and translation invariant.

OrderingOnGenerators(ord) A

for an ordering ord on a family of associative words, returns a list alphabet in which the generators are
considered. This could be indeed the ordering of the generators in the ordering, but, for example, if a weight
is associated to each generator then this is not true anymore. See the example for WeightLexOrdering
(29.3.8).

LexicographicOrdering(fam)
LexicographicOrdering(fam, gensord)
LexicographicOrdering(fam, alphabet)
LexicographicOrdering(f)
LexicographicOrdering(f, alphabet)
LexicographicOrdering(f, gensord)

QOO0 0OO0

In the first form, for a family fam of associative words, LexicographicOrdering returns the lexicographic
ordering on the elements of fam.

In the second form, for a family fam of associate words and a list alphabet which is the actual list of
generators in the desired order, LexicographicOrdering returns the lexicographic ordering on the elements
of fam with the ordering on the alphabet as given.

In the third form, for a family fam of associative words and a list gensorder of the length of the alphabet,
LexicographicOrdering returns the lexicographic ordering on the elements of fam with the order on the
alphabet given by gensord.

In the fourth form, for a free semigroup of a free monoid f, LexicographicOrdering returns the lexicographic
ordering on the family of the elements of f with the order in the alphabet being the default one.

In the fifth form, for a free semigroup or a free monoid f and a list alphabet which is the actual list of
generators in the desired order, LexicographicOrdering returns the lexicographic ordering on the elements
of f with the ordering on the alphabet as given.

In the sixth form, for a free semigroup of a free monoid f, and a list gensorder, LexicographicOrdering
returns the lexicographic ordering on the elements of f with the order on the alphabet given by gensord.

vyVvyVvyVvyyvyy

i d

272 Chapter 29. Orderings

gap> f := FreeSemigroup(3);

<free semigroup on the generators [sl, s2, s3]>
gap> lex := LexicographicOrdering(f,[2,3,1]);
Ordering

gap> IsLessThanUnder(lex,f.2*f.3,f.3);

true

gap> IsLessThanUnder(lex,f.3,f.2);

false

ShortLexOrdering(fam)
ShortLexOrdering(fam, alphabet)
ShortLexOrdering(fam, gensord)
ShortLexOrdering(f)
ShortLexOrdering(f, alphabet)
ShortLexOrdering(f, gensord)

QOO0 0OO0

In the first form, for a family fam of associative words, ShortLexOrdering returns the ShortLex ordering
on the elements of fam with the order in the alphabet being the default one.

In the second form, for a family fam of associate words and a list alphabet which is the actual list of
generators in the desired order, ShortLexOrdering returns the ShortLex ordering on the elements of fam
with the ordering on the alphabet as given.

In the third form, for a family fam of associative words and a list gensorder of the length of the alphabet,
ShortLexOrdering returns the ShortLex ordering on the elements of fam with the order on the alphabet
given by gensord.

In the fourth form, for a free semigroup of a free monoid f, ShortLex0Ordering returns the ShortLex ordering
on the family of the elements of f with the order in the alphabet being the default one.

In the fifth form, for a free semigroup or a free monoid f and a list alphabet which is the actual list of
generators in the desired order, ShortLexOrdering returns the ShortLex ordering on the elements of f with
the ordering on the alphabet as given.

In the sixth form, for a free semigroup of a free monoid f, and a list gensorder, ShortLexOrdering returns
the ShortLex ordering on the elements of f with the order on the alphabet given by gensord.

IsShortLexOrdering(ord) P
for an ordering ord of a family of associative words, returns true if and only if ord is a ShortLex ordering.

gap> f := FreeSemigroup(3);

<free semigroup on the generators [sl, s2, s3]>
gap> sl := ShortLexOrdering(f,[2,3,1]);

Ordering

gap> IsLessThanUnder(sl,f.1,f.2);

false

gap> IsLessThanUnder(sl,f.3,f.2);

false

gap> IsLessThanUnder(sl,f.3,f.1);

true

WeightLexOrdering(fam, alphabet, wt)
WeightLexOrdering(fam, gensord, wt)
WeightLexOrdering(f, alphabet, wt)
WeightLexOrdering(f, gensord, wt)

QOO0

In the first form, for a family fam of associative words and a list wt, WeightLexOrdering returns the
WeightLex ordering on the elements of fam with the order in the alphabet being the default one and the
weights of the letters in the alphabet being given by wt.

9»

10»

11»

vvyyy

Section 3. Orderings on families of associative words 273

In the second form, for a family fam of associative words, a list wt and a list gensorder of the length of the
alphabet, WeightLexOrdering returns the WeightLex ordering on the elements of fam with the order on
the alphabet given by gensord and the weights of the letters in the alphabet being given by wt.

In the third form, for a free semigroup of a free monoid f and a list wt, WeightLexOrdering returns the
WeightLex ordering on the family of the elements of f with the order in the alphabet being the default one
and the weights of the letters in the alphabet being given by wt.

In the fourth form, for a free semigroup of a free monoid f, a list wt and a list gensorder of the length of
the alphabet, WeightLexOrdering returns the WeightLex ordering on the elements of f with the order on
the alphabet given by gensord and the weights of the letters in the alphabet being given by wt.

IsWeightLexOrdering(ord) P

for an ordering ord on a family of associative words, returns true if and only if ord is a WeightLex ordering.

WeightOfGenerators(ord) A

for a WeightLex ordering ord, returns a list [with length the size of the alphabet of the family. This list
gives the weight of each of the letters of the alphabet which are used for WeightLex orderings with respect
to the ordering given by OrderingOnGenerators (see 29.3.4).

gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>
gap> wtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);
Ordering

gap> IsLessThanUnder (wtlex,f.1,f.2);

true

gap> IsLessThanUnder(wtlex,f.3,f.2);

true

gap> IsLessThanUnder(wtlex,f.3,f.1);

false

gap> OrderingOnGenerators(wtlex);

[s2, 83, s1 1]

gap> WeightOfGenerators(wtlex);

[3,2,1]

BasicWreathProductOrdering(fam)
BasicWreathProductOrdering(fam, alphabet)
BasicWreathProductOrdering(fam, gensord)
BasicWreathProductOrdering(f)
BasicWreathProductOrdering(f, alphabet)
BasicWreathProductOrdering(f, gensord)

QOO0 0OO0

In the first form, for a family of associative words, BasicWreathProductOrdering returns the basic wreath
product ordering on the elements of fam with the order in the alphabet being the default one.

In the second form, for a family of associative words and a list alphabet, BasicWreathProductOrdering
returns the basic wreath product ordering on the elements of fam with the order on the alphabet given by
alphabet.

In the third form, for a family of associative words and a list gensorder of the length of the alphabet,
BasicWreathProductOrdering returns the basic wreath product ordering on the elements of fam with the
order on the alphabet given by gensord.

In the fourth form, for a free semigroup of a free monoid f, BasicWreathProductOrdering returns the basic
wreath product ordering on the family of the elements of f with the order in the alphabet being the default
one.

12»

13»

vvyyvyy

14 »

15 »

274 Chapter 29. Orderings

In the fifth form, for a free semigroup or a free monoid f, and a list alphabet of generators, BasicWreath-
ProductOrdering returns the basic wreath product ordering on the family of the elements of f with the
order on the alphabet given by alphabet.

In the sixth form, for a free semigroup or a free monoid f, and a list gensorder, BasicWreathProduc-
tOrdering returns the basic wreath product ordering on the family of the elements of f with the order on
the alphabet given by gensord.

IsBasicWreathProductOrdering(ord) P

gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>
gap> basic := BasicWreathProductOrdering(f,[2,3,1]);
Ordering

gap> IsLessThanUnder(basic,f.3,f.1);

true

gap> IsLessThanUnder(basic,f.3%f.2,f.1);

true

gap> IsLessThanUnder(basic,f.3%f.2*f.1,f.1xf.3);
false

WreathProductOrdering(fam, levels)
WreathProductOrdering(fam, alphabet, levels)
WreathProductOrdering(fam, gensord, levels)
WreathProductOrdering(f, levels)
WreathProductOrdering(f, alphabet, levels)
WreathProductOrdering(f, gensord, levels)

QOO0 0OO0

returns the wreath product ordering of the family fam of associative words or a free semigroup/monoid f.
The ordering on the generators may be omitted (in which case the default one is considered), or may be
given either by a list alphabet consisting of the alphabet of the family in the appropriate ordering, or by
a list gensord giving the permutation of the alphabet. It also needs a list levels giving the levels of each
generator. Notice that this list gives the levels of the generators in the new ordering (not necessarily the
default one), i.e. levels[i] is the level of the generator that comes i-th in the ordering of generators given
by alphabet or gensord.

IsWreathProductOrdering(ord) P

LevelsOfGenerators(ord) A

for a wreath product ordering ord, returns the levels of the generators as given at creation (with respect to
OrderingOnGenerators; see 29.3.4).

gap> f := FreeSemigroup(3);

<free semigroup on the generators [s1, s2, s3]>
gap> wrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]1);
Ordering

gap> IsLessThanUnder (wrp,f.3,f.1);

false

gap> IsLessThanUnder (wrp,f.3,f.2);

false

gap> IsLessThanUnder(wrp,f.1,f.2);

true

gap> LevelsOfGenerators (wrp) ;

[1,1, 2]

their El t
Domain is GAP’s name for structured sets. The ring of Gaussian integers Z[i] is an example of a domain,
the group Dio of symmetries of a regular hexahedron is another.

The GAP library predefines some domains. For example the ring of Gaussian integers is predefined as
GaussianIntegers (see 58.4) and the field of rationals is predefined as Rationals (see 16). Most domains
are constructed by functions, which are called domain constructors (see 30.3). For example the group
Ds5 is constructed by the construction Group((1,2,3,4,5,6), (2,6)(3,5)) (see 37.2.1) and the finite
field with 16 elements is constructed by GaloisField(16) (see 57.3.1).

The first place where you need domains in GAP is the obvious one. Sometimes you simply want to deal with
a domain. For example if you want to compute the size of the group D;s, you had better be able to represent
this group in a way that the Size function can understand.

The second place where you need domains in GAP is when you want to be able to specify that an operation
or computation takes place in a certain domain. For example suppose you want to factor 10 in the ring of
Gaussian integers. Saying Factors(10) will not do, because this will return the factorization [2, 5] in
the ring of integers. To allow operations and computations to happen in a specific domain, Factors, and many
other functions as well, accept this domain as optional first argument. Thus Factors(GaussianIntegers,
10) yields the desired result [1+E(4), 1-E(4), 2+E(4), 2-E(4)]. (The imaginary unit exp(27i/4) is
written as E(4) in GAP.)

The most important facts about domains are stated in Chapter 7 of the GAP Tutorial.

There are only few operations especially for domains (see 30.9), operations such as Intersection and
Random are defined for the more general situation of collections (see Chapter 28).

30.1 Operational Structure of Domains

Domains have an operational structure, that is, a collection of operations under which the domain is
closed. For example, a group is closed under multiplication, taking the zeroth power of elements, and taking
inverses of elements. The operational structure may be empty, examples of domains without additional
structure are the underlying relations of general mappings (see 31.2).

The operations under which a domain is closed are a subset of the operations that the elements of a domain
admit. It is possible that the elements admit more operations. For example, matrices can be multiplied and
added. But addition plays no role in a group of matrices, and multiplication plays no role in a vector space
of matrices. In particular, a matrix group is not closed under addition.

Note that the elements of a domain exist independently of this domain, usually they existed already before
the domain was created. So it makes sense to say that a domain is generated by some elements with respect
to certain operations.

Of course, different sets of operations yield different notions of generation. For example, the group generated
by some matrices is different from the ring generated by these matrices, and these two will in general be
different from the vector space generated by the same matrices, over a suitable field.

The other way round, the same set of elements may be obtained by generation w.r.t. different notions
of generation. For example, one can get the group generated by two elements g and h also as the monoid

1»

276 Chapter 30. Domains and their Elements

generated by the elements ¢, g~', h, h~!; if both g and h have finite order then of course the group generated
by g and h coincides with the monoid generated by g and h.

Additionally to the operational structure, a domain can have properties. For example, the multiplication of
a group is associative, and the multiplication in a field is commutative.

Note that associativity and commutativity depend on the set of elements for which one considers the mul-
tiplication, i.e., it depends on the domain. For example, the multiplication in a full matrix ring over a field
is not commutative, whereas its restriction to the set of diagonal matrices is commutative.

One important difference between the operational structure and the properties of a domain is that the
operational structure is fixed when the domain is constructed, whereas properties can be discovered later.
For example, take a domain whose operational structure is given by closure under multiplication. If it is
discovered that the inverses of all its elements also do (by chance) lie in this domain, being closed under taking
inverses is not added to the operational structure. But a domain with operational structure of multiplication,
taking the identity, and taking inverses will be treated as a group as soon as the multiplication is found out
to be associative for this domain.

The operational structures available in GAP form a hierarchy, which is explicitly formulated in terms of
domain categories, see 30.6.

30.2 Equality and Comparison of Domains

Equality and comparison of domains are defined as follows.

Two domains are considered equal if and only if the sets of their elements as computed by AsSSortedList
(see 28.2.8) are equal. Thus, in general = behaves as if each domain operand were replaced by its set
of elements. Except that = will also sometimes, but not always, work for infinite domains, for which of
course GAP cannot compute the set of elements. Note that this implies that domains with different algebraic
structure may well be equal. As a special case of this, either operand of = may also be a proper set (see 21.19),
i.e., a sorted list without holes or duplicates (see 28.2.8), and = will return true if and only if this proper
set is equal to the set of elements of the argument that is a domain.

No general ordering of arbitrary domains via < is defined in GAP 4. This is because a well-defined < for
domains or, more general, for collections, would have to be compatible with = and would need to be transitive
and antisymmetric in order to be used to form ordered sets. In particular, < would have to be independent of
the algebraic structure of its arguments because this holds for =, and thus there would be hardly a situation
where one could implement an efficient comparison method. (Note that in the case that two domains are
comparable with <, the result is in general not compatible with the set theoretical subset relation, which
can be decided with IsSubset.)

30.3 Constructing Domains

For several operational structures (see 30.1), GAP provides functions to construct domains with this struc-
ture. For example, Group returns groups, VectorSpace returns vector spaces etc.

Struct(argl, arg2, ...) F

The syntax of these functions may vary, dependent on the structure in question. Usually a domain is
constructed as the closure of some elements under the given operations, that is, the domain is given by its
generators. For example, a group can be constructed from a list of generating permutations or matrices or
whatever is admissible as group elements, and a vector space over a given field F' can be constructed from
F and a list of appropriate vectors.

The idea of generation and generators in GAP is that the domain returned by a function such as Group,
Algebra, or FreeLeftModule contains the given generators. This implies that the generators of a group
must know how they are multiplied and inverted, the generators of a module must know how they are added

2>

3>

4»

5»

6»

1»

Section 4. Changing the Structure 277

and how scalar multiplication works, and so on. Thus one cannot use for example permutations as generators
of a vector space.

The function Struct first checks whether the arguments admit the construction of a domain with the desired
structure. This is done by calling the operation

IsGenerators0fStruct ([info, 1gens) O

where arglist is the list of given generators and info an argument of Struct, for example the field of scalars
in the case that a vector space shall be constructed. If the check failed then Struct returns fail, otherwise
it returns the result of StructByGenerators (see below). (So if one wants to omit the check then one should
call StructByGenerators directly.)

Generators0fStruct(D) A

For a domain D with operational structure corresponding to Struct, the attribute Generators0fStruct
returns a list of corresponding generators of D. If these generators were not yet stored in D then D must
know some generators if Generators0f Struct shall have a chance to compute the desired result; for example,
monoid generators of a group can be computed from known group generators (and vice versa). Note that
several notions of generation may be meaningful for a given domain, so it makes no sense to ask for “the
generators of a domain”. Further note that the generators may depend on other information about D.
For example the generators of a vector space depend on the underlying field of scalars; the vector space
generators of a vector space over the field with four elements need not generate the same vector space when
this is viewed as a space over the field with two elements.

StructByGenerators([info, lgens) O

Domain construction from generators gens is implemented by operations StructByGenerators, which are
called by the simple functions Struct; methods can be installed only for the operations. Note that additional
information info may be necessary to construct the domain; for example, a vector space needs the underlying
field of scalars in addition to the list of vector space generators. The GeneratorsOfStruct value of the
returned domain need not be equal to gens. But if a domain D is printed as Struct([a, b, ...]) and
if there is an attribute Generators0f Struct then the list Generators0f Struct(D) is guaranteed to be
equalto [a, b, ...].

StructWithGenerators([info, lgens) O

The only difference between StructByGenerators and StructWithGenerators is that the latter guarantees
that the Generators0f Struct value of the result is equal to the given generators gens.

ClosureStruct(D, obj) O

For constructing a domain as the closure of a given domain with an element or another domain, one can
use the operation ClosureStruct. It returns the smallest domain with operational structure corresponding
to Struct that contains D as a subset and obj as an element.

30.4 Changing the Structure

The same set of elements can have different operational structures. For example, it may happen that a
monoid M does in fact contain the inverses of all of its elements; if M has not been constructed as a group
(see 30.6) then it is reasonable to ask for the group that is equal to M.

AsStruct(C [info, 1D) O

If D is a domain that is closed under the operational structure given by Struct then AsStruct returns a
domain E that consists of the same elements (that is, D = F) and that has this operational structure (that
is, IsStruct(E) is true); if D is not closed under the structure given by Struct then AsStruct returns
fail.

1»

1»

278 Chapter 30. Domains and their Elements

If additional information besides generators are necessary to define D then the argument info describes the
value of this information for the desired domain. For example, if we want to view D as a vector space over
the field with two elements then we may call AsVectorSpace(GF(2), D); this allows us to change the
underlying field of scalars, for example if D is a vector space over the field with four elements. Again, if D
is not equal to a domain with the desired structure and additional information then fail is returned.

In the case that no additional information info is related to the structure given by Struct, the operation
AsStruct is in fact an attribute (see 13.5).

See the index of the GAP Reference Manual for an overview of the available AsStruct functions.

30.5 Changing the Representation

Often it is useful to answer questions about a domain via computations in a different but isomorphic domain.
In the sense that this approach keeps the structure and changes the underlying set of elements, it can be
viewed as a counterpart of keeping the set of elements and changing its structure (see 30.4).

One reason for doing so can be that computations with the elements in the given domain are not very efficient.
For example, if one is given a solvable matrix group (see Chapter 42) then one can compute an isomorphism
to a polycyclicly presented group G, say (see Chapter 43); the multiplication of two matrices —which is
essentially determined by the dimension of the matrices— is much more expensive than the multiplication of
two elements in G —which is essentially determined by the composition length of G.

IsomorphismRepStruct(D) A

If D is a domain that is closed under the operational structure given by Struct then IsomorphismRepStruct
returns a mapping hom from D to a domain F having structure given by Struct, such that hom respects
the structure Struct and Rep describes the representation of the elements in E. If no domain F with the
required properties exists then fail is returned.

For example, IsomorphismPermGroup (see 41.2.1) takes a group as its argument and returns a group homo-
morphism (see 38) onto an isomorphic permutation group (see Chapter 41) provided the original group is
finite; for infinite groups, IsomorphismPermGroup returns fail. Similarly, IsomorphismPcGroup (see 44.5.2)
returns a group homomorphism from its argument to a polycyclicly presented group (see 44) if the argument
is polycyclic, and fail otherwise.

See the index of the GAP Reference Manual for an overview of the available IsomorphismRep Struct functions.

30.6 Domain Categories

As mentioned in 30.1, the operational structure of a domain is fixed when the domain is constructed. For
example, if D was constructed by Monoid then D is in general not regarded as a group in GAP, even if D is
in fact closed under taking inverses. In this case, IsGroup returns false for D. The operational structure
determines which operations are applicable for a domain, so for example SylowSubgroup is not defined for
D and therefore will signal an error.

IsStruct(D)

The functions IsStruct implement the tests whether a domain D has the respective operational structure
(upon construction). IsStruct is a filter (see 13) that involves certain categories (see 13.3) and usually also
certain properties (see 13.7). For example, IsGroup is equivalent to IsMagmaWithInverses and IsAsso-
ciative, the first being a category and the second being a property.

Implications between domain categories describe the hierarchy of operational structures available in GAP.
Here are some typical examples.
— IsDomain is implied by each domain category,

— IsMagma is implied by each category that describes the closure under multiplication *,

1»

Section 7. Parents 279

— IsAdditiveMagma is implied by each category that describes the closure under addition +,

— IsMagmaWithOne implies IsMagma; a magma-with-one is a magma such that each element (and thus
also the magma itself) can be asked for its zeroth power,

— IsMagmaWithInverses implies IsMagmaWithOne; a magma-with-inverses is a magma such that each
element can be asked for its inverse; important special cases are groups, which in addition are associa-
tive,

— aring is a magma that is also an additive group,
— a ring-with-one is a ring that is also a magma-with-one,
— a division ring is a ring-with-one that is also closed under taking inverses of nonzero elements,

— a field is a commutative division ring.

Each operational structure Struct has associated with it a domain category IsStruct, and operations
StructByGenerators for constructing a domain from generators, Generators0fStruct for storing and ac-
cessing generators w.r.t. this structure, ClosureStruct for forming the closure, and AsStruct for getting a
domain with the desired structure from one with weaker operational structure and for testing whether a
given domain can be regarded as a domain with Struct.

The functions applicable to domains with the various structures are described in the corresponding chapters
of the Reference Manual. For example, functions for rings, fields, groups, and vector spaces are described in
Chapters 54, 56, 37, and 59, respectively. More general functions for arbitrary collections can be found in
Chapter 28.

30.7 Parents

Parent(D) F
SetParent(D, P) O
HasParent(D) F

It is possible to assign to a domain D one other domain P containing D as a subset, in order to exploit
this subset relation between D and P. Note that P need not have the same operational structure as D, for
example P may be a magma and D a field.

The assignment is done by calling SetParent, and P is called the parent of D. If D has already a parent,
calls to SetParent will be ignored.

If D has a parent P —this can be checked with HasParent— then P can be used to gain information about
D. First, the call of SetParent causes UseSubsetRelation (see 30.13.1) to be called. Second, for a domain
D with parent, information relative to the parent can be stored in D; for example, there is an attribute
NormalizerInParent for storing Normalizer(P, D) in the case that D is a group. (More about such
parent dependent attributes can be found in 6.2 in “Extending GAP”.) Note that because of this relative
information, one cannot change the parent; that is, one can set the parent only once, subsequent calls to Set-
Parent for the same domain D are ignored. Further note that contrary to UseSubsetRelation (see 30.13.1),
also knowledge about the parent P might be used that is discovered after the SetParent call.

A stored parent can be accessed using Parent. If D has no parent then Parent returns D itself, and
HasParent will returns false also after a call to Parent. So Parent is not an attribute, the underlying
attribute to store the parent is ParentAttr.

Certain functions that return domains with parent already set, for example Subgroup, are described in
Section 30.8. Whenever a function has this property, the Reference Manual states this explicitly. Note that
these functions do not guarantee a certain parent, for example DerivedSubgroup (see 37.11.3) for a perfect
group G may return G itself, and if G had already a parent then this is not replaced by G. As a rule of
thumb, GAP avoids to set a domain as its own parent, which is consistent with the behaviour of Parent, at
least until a parent is set explicitly with SetParent.

1»

2»

3>

4»

280 Chapter 30. Domains and their Elements

gap> g:= Group((1,2,3), (1,2));; h:= Group((1,2));;
gap> HasParent(g); HasParent(h);
false

false

gap> SetParent(h, g);

gap> Parent(g); Parent(h);
Group([(1,2,3), (1,2) 1)

Group([(1,2,3), (1,2) 1)

gap> HasParent(g); HasParent(h);
false

true

30.8 Constructing Subdomains

For many domains D, there are functions that construct certain subsets S of D as domains with parent
(see 30.7) already set to D. For example, if G is a group that contains the elements in the list gens then
Subgroup(G, gens) returns a group S that is generated by the elements in gens and with Parent(S)
= G.

Substruct(D, gens) F
More general, if D is a domain whose algebraic structure is given by the function Struct (for example

Group, Algebra, Field) then the function Substruct (for example Subgroup, Subalgebra, Subfield) returns
domains with structure Struct and parent set to the first argument.

SubstructNC(D, gens) F

Each function Substruct checks that the Struct generated by gens is in fact a subset of D. If one wants to
omit this check then one can call SubstructNC instead; the suffix NC stands for “no check”.

AsSubstruct(D, S) F

first constructs Asstruct (Linfo, 15), where info depends on D and S, and then sets the parent (see 30.7)
of this new domain to D.

IsSubstruct(D, S) F

There is no real need for functions that check whether a domain S is a Substruct of a domain D, since this
is equivalent to the checks whether § is a Struct and S is a subset of D. Note that in many cases, only the
subset relation is what one really wants to check, and that appropriate methods for the operation IsSubset
(see 28.4.1) are available for many special situations, such as the test whether a group is contained in another
group, where only generators need to be checked.

If a function IsSubstruct is available in GAP then it is implemented as first a call to IsStruct for the second
argument and then a call to IsSubset for the two arguments.

30.9 Operations for Domains

For the meaning of the attributes Characteristic, One, Zero in the case of a domain argument, see 30.10.

IsGeneralizedDomain(D) C
IsDomain(D) C

For some purposes, it is useful to deal with objects that are similar to domains but that are not collections
in the sense of GAP because their elements may lie in different families; such objects are called general-
ized domains. An instance of generalized domains are “operation domains”, for example any G-set for a

2»

3

1»

vVVYyVYVYVYYVYYVYY

Section 10. Attributes and Properties of Elements 281

permutation group G consisting of some union of points, sets of points, sets of sets of points etc., under a
suitable action.

IsDomain is a synonym for IsGeneralizedDomain and IsCollection.
GeneratorsOfDomain(D) A

For a domain D, GeneratorsOfDomain returns a list containing all elements of D, perhaps with repetitions.
Note that if the domain D shall be generated by a list of some elements w.r.t. the empty operational structure
(see 30.1), the only possible choice of elements is to take all elements of D. See 30.3 and 30.4 for the concepts
of other notions of generation.

Domain([Fam,]generators) F
DomainByGenerators(Fam, generators) O

Domain returns the domain consisting of the elements in the homogeneous list generators. If generators is
empty then a family Fam must be entered as first argument, and the returned (empty) domain lies in the
collections family of Fam.

DomainByGenerators is the operation called by Domain.

30.10 Attributes and Properties of Elements

The following attributes and properties for elements and domains correspond to the operational structure.
Characteristic(obj) A

Characteristic returns the characteristic of 0bj, where 0bj must either be an additive element, a domain
or a family.

For a domain D, the characteristic is defined if D is closed under addition and has a zero element z = Zero(
D) (see 30.10.3); in this case, Characteristic(D) is the smallest positive integer p such that p * z =
z for all elements z in D, if such an integer exists, and the integer zero 0 otherwise.

If a family has a characteristic then this means that all domains of elements in this family have this charac-
teristic. In this case, also each element in the family has this characteristic. (Note that also the zero element
z of a finite field in characteristic p has characteristic p, although n % z = z for any integer n.)

OneImmutable(obj) A
OneAttr(obj) AM
One(obj) AM
Identity(obj) AM
OneMutable(obj) 0
OneOp(obj) O
OneSameMutability(obj) O
OneSM(obj) 0]

OneImmutable, OneMutable, and OneSameMutability return the multiplicative neutral element of the mul-
tiplicative element obj.

They differ only w.r.t. the mutability of the result. OneImmutable is an attribute and hence returns an
immutable result. OneMutable is guaranteed to return a new mutable object whenever a mutable version
of the required element exists in GAP (see 12.6.1). OneSameMutability returns a result that is mutable if
obj is mutable and if a mutable version of the required element exists in GAP; for lists, it returns a result
of the same immutability level as the argument. For instance, if the argument is a mutable matrix with
immutable rows, it returns a similar object.

If 0bj is a multiplicative element then OneSameMutability(obj) is equivalent to 0bj~0.

OneAttr, One, Identity, OneOp, and OneSM are synonyms as listed above.

vVVvyVvYyVYVvYYVvYyyYy

4»

282 Chapter 30. Domains and their Elements

If 0bj is a domain or a family then One is defined as the identity element of all elements in 0bj, provided
that all these elements have the same identity. For example, the family of all cyclotomics has the identity
element 1, but a collections family (see 28.1.1) may contain matrices of all dimensions and then it cannot
have a unique identity element. Note that One is applicable to a domain only if it is a magma-with-one
(see 33.1.2); use MultiplicativeNeutralElement (see 33.4.10) otherwise.

The identity of an object need not be distinct from its zero, so for example a ring consisting of a single
element can be regarded as a ring-with-one (see 54). This is particularly useful in the case of finitely presented
algebras, where any factor of a free algebra-with-one is again an algebra-with-one, no matter whether or not
it is a zero algebra.

The default method of One for multiplicative elements calls OneMutable (note that methods for OneMutable
must not delegate to One); so other methods to compute identity elements need to be installed only for
OneOp and (in the case of copyable objects) OneSameMutability.

For domains, One may call Representative (see 28.3.7), but Representative is allowed to fetch the identity
of a domain D only if HasOne(D) is true.

ZeroImmutable(obj) A
ZeroAttr(obj) AM
Zero(obj) AM
ZeroMutable(obj) O
ZeroOp(obj) 0]
ZeroSameMutability(obj) O
ZeroSM(obj) O

ZeroImmutable, ZeroMutable, and ZeroSameMutability all return the additive neutral element of the
additive element o0bj.

They differ only w.r.t. the mutability of the result. ZeroImmutable is an attribute and hence returns an
immutable result. ZeroMutable is guaranteed to return a new mutable object whenever a mutable version
of the required element exists in GAP (see 12.6.1). ZeroSameMutability returns a result that is mutable if
obj is mutable and if a mutable version of the required element exists in GAP; for lists, it returns a result
of the same immutability level as the argument. For instance, if the argument is a mutable matrix with
immutable rows, it returns a similar object.

ZeroSameMutability(obj) is equivalent to O * obj.
ZeroAttr, Zero, ZeroOp and ZeroSM are synonyms as listed above.

If 0bj is a domain or a family then Zero is defined as the zero element of all elements in 0bj, provided that
all these elements have the same zero. For example, the family of all cyclotomics has the zero element 0, but
a collections family (see 28.1.1) may contain matrices of all dimensions and then it cannot have a unique
zero element. Note that Zero is applicable to a domain only if it is an additive magma-with-zero (see 53.1.5);
use AdditiveNeutralElement (see 53.3.5) otherwise.

The default method of Zero for additive elements calls ZeroMutable (note that methods for ZeroMutable
must not delegate to Zero); so other methods to compute zero elements need to be installed only for
ZeroMutable and (in the case of copyable objects) ZeroSameMutability.

For domains, Zero may call Representative (see 28.3.7), but Representative is allowed to fetch the zero
of a domain D only if HasZero(D) is true.

MultiplicativeZeroOp(elt) O

returns the element z in the family F' of elt with the property that z * m = z = m x z holds for all m € F,
if such an element is known.

Families of elements in the category IsMultiplicativeElementWithZero often arise from adjoining a new zero
to an existing magma. See 33.2.12 for details.

5»

6»

7>

vVVYyVvYyVYVYYVYY

vVVvyVvyVvyVYVYYyY

Section 10. Attributes and Properties of Elements 283

IsOne(elm) P
is true if elm = One(elm), and false otherwise.

IsZero(elm) P
is true if elm = Zero(elm), and false otherwise.

IsIdempotent (elt) p

true iff elt is its own square. (Even if IsZero(elt) is also true.)

InverseImmutable(elm) A
InverseAttr(elm) AM
Inverse(elm) AM
InverseMutable(elm) O
InverseOp(elm) 0]
InverseSameMutability(elm) 0]
InverseSM(elm) O

InverseImmutable, InverseMutable, and InverseSameMutability all return the multiplicative inverse of
an element elm, that is, an element inv such that elm * inv = inv * elm = One(elm) holds; if elm is
not invertible then fail (see 20.1.1) is returned.

Note that the above definition implies that a (general) mapping is invertible in the sense of Inverse only if
its source equals its range (see 31.13). For a bijective mapping f whose source and range differ, InverseGen-
eralMapping (see 31.1.3) can be used to construct a mapping g with the property that f*g is the identity
mapping on the source of f and gxf is the identity mapping on the range of f.

The operations differ only w.r.t. the mutability of the result. InverseImmutable is an attribute and hence
returns an immutable result. InverseMutable is guaranteed to return a new mutable object whenever a
mutable version of the required element exists in GAP. InverseSameMutability returns a result that is
mutable if elm is mutable and if a mutable version of the required element exists in GAP; for lists, it returns
a result of the same immutability level as the argument. For instance, if the argument is a mutable matrix
with immutable rows, it returns a similar object.

InverseSameMutability(elm) is equivalent to elm~-1.
InverseAttr, Inverse, InverseOp and InverseSM are synonyms as listed above.

The default method of Inverse calls InverseMutable (note that methods for InverseMutable must not
delegate to Inverse); other methods to compute inverses need to be installed only for InverseMutable and
(in the case of copyable objects) InverseSameMutability.

AdditiveInverseImmutable(elm) A
AdditiveInverseAttr(elm) AM
AdditiveInverse(elm) AM
AdditivelInverseMutable(elm) O
AdditiveInverseOp(elm) 0
AdditiveInverseSameMutability(elm) 0
AdditiveInverseSM(elm) O

AdditiveInverseImmutable, AdditiveInverseMutable, and AdditiveInverseSameMutability all return
the additive inverse of elm.

They differ only w.r.t. the mutability of the result. AdditiveInverseImmutable is an attribute and hence
returns an immutable result. AdditiveInverseMutable is guaranteed to return a new mutable object when-
ever a mutable version of the required element exists in GAP (see 12.6.1). AdditiveInverseSameMutability
returns a result that is mutable if elm is mutable and if a mutable version of the required element exists

10 »

vy

284 Chapter 30. Domains and their Elements

in GAP; for lists, it returns a result of the same immutability level as the argument. For instance, if the
argument is a mutable matrix with immutable rows, it returns a similar object.

AdditiveInverseSameMutability(elm) is equivalent to -elm.

AdditivelInverseAttr, AdditiveInverse, AdditiveInverseOp and AdditiveInverseSM are synonyms as
listed above.

The default method of AdditiveInverse calls AdditiveInverseMutable (note that methods for Addi-
tiveInverseMutable must not delegate to AdditiveInverse); so other methods to compute additive in-
verses need to be installed only for AdditiveInverseMutable and (in the case of copyable objects) Addi-
tiveInverseSameMutability.

Order(elm) A

is the multiplicative order of elm. This is the smallest positive integer n such that elm~n = One(elm) if
such an integer exists. If the order is infinite, Order may return the value infinity, but it also might run
into an infinite loop trying to test the order.

30.11 Comparison Operations for Elements

Binary comparison operations have been introduced already in 4.11. The underlying operations for which
methods can be installed are the following.

\=(left-expr, right-expr) O
\<(left-expr, right-expr) O

Note that the comparisons via <>, <=, > and >= are delegated to the operations \= and \<.

In general, objects in different families cannot be compared with <. For the reason and for exceptions from
this rule, see 4.11.

For some objects a “normal form” is hard to compute and thus equality of elements of a domain might be
expensive to test. Therefore GAP provides a (slightly technical) property with which an algorithm can test
whether an efficient equality test is available for elements of a certain kind.

CanEasilyCompareElements(obj)
CanEasilyCompareElementsFamily(fam)
CanEasilySortElements(obj)
CanEasilySortElementsFamily(fam)

esliavilesliav

CanEasilyCompareElements indicates whether the elements in the family fam of obj can be easily compared
with =. (In some cases element comparisons are very hard, for example in cases where no normal forms for
the elements exist.)

The default method for this property is to ask the family of obj, the default method for the family is to
return false.

The ability to compare elements may depend on the successful computation of certain information. (For
example for finitely presented groups it might depend on the knowledge of a faithful permutation repre-
sentation.) This information might change over time and thus it might not be a good idea to store a value
false too early in a family. Instead the function CanEasilyCompareElementsFamily should be called for
the family of obj which returns false if the value of CanEasilyCompareElements is not known for the
family without computing it. (This is in fact what the above mentioned family dispatch does.)

If a family knows ab initio that it can compare elements this property should be set as implied filter and
filter for the family (the 3rd and 4th argument of NewFamily respectively). This guarantees that code which
directly asks the family gets a right answer.

The property CanEasilySortElements and the function CanEasilySortElementsFamily behave exactly
in the same way, except that they indicate that objects can be compared via <. This property implies
CanEasilyCompareElements, as the ordering must be total.

vvyVvyVvyy

2>

3>

4»

5»

Section 13. Relations Between Domains 285

30.12 Arithmetic Operations for Elements

Binary arithmetic operations have been introduced already in 4.12. The underlying operations for which
methods can be installed are the following.

\+(left-expr, right-expr)
\x(left-expr, right-expr)
\/ (left-expr, right-expr)
\"(left-expr, right-expr)
\mod (left-expr, right-expr)

[cloNoNoNe)

For details about special methods for \mod, consult the index entries for “mod”.
LeftQuotient(elml, elm2) O

returns the product elm1~(-1) * elm2. For some types of objects (for example permutations) this product
can be evaluated more efficiently than by first inverting elm! and then forming the product with elm2.

Comm(elml1, elm?2) O

returns the commutator of elm! and elm2. The commutator is defined as the product elml " * elm2 ™" «
elm1 x elm2.

gap> a:= (1,3)(4,6);; b:= (1,6,5,4,3,2);;
gap> Comm(a, b);

(1,5,3)(2,6,4)

gap> LeftQuotient(a, b);

(1,2)(3,6) (4,5)

LieBracket(elmi, elm2) O

returns the element elmi1 * elm2 - elm2 * elml.

The addition \+ is assumed to be associative but not assumed to be commutative (see 53.3.1). The multi-
plication * is not assumed to be commutative or associative (see 33.4.9, 33.4.7).

Sqrt(obj) ©

Sqrt returns a square root of obj, that is, an object z with the property that z - z = obj holds. If such an
x is not unique then the choice of x depends on the type of obj. For example, ER (see 18.4.2) is the Sqrt
method for rationals (see 16.1.1).

30.13 Relations Between Domains

Domains are often constructed relative to other domains. The probably most usual case is to form a subset
of a domain, for example the intersection (see 28.4.2) of two domains, or a Sylow subgroup of a given group
(see 37.12.1).

In such a situation, the new domain can gain knowledge by exploiting that several attributes are maintained
under taking subsets. For example, the intersection of an arbitrary domain with a finite domain is clearly
finite, a Sylow subgroup of an abelian group is abelian, too, and so on.

Since usually the new domain has access to the knowledge of the old domain(s) only when it is created
(see 30.8 for the exception), this is the right moment to take advantage of the subset relation.

Analogous relations occur when a factor structure is created from a domain and a subset, and when a
domain isomorphic to a given one is created.

1»

2»

3>

286 Chapter 30. Domains and their Elements

UseSubsetRelation(super, sub) O

Methods for this operation transfer possibly useful information from the domain super to its subset sub,
and vice versa.

UseSubsetRelation is designed to be called automatically whenever substructures of domains are con-
structed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the default
method must end with TryNextMethod (). This default method deals with the information that is available
by the calls of InstallSubsetMaintenance in the GAP library.

gap> g:= Group((1,2), (3,4), (5,6));; h:= Group((1,2), (3,4));;
gap> IsAbelian(g); HasIsAbelian(h);

true

false

gap> UseSubsetRelation(g, h);; HasIsAbelian(h); IsAbelian(h);
true

true

UseIsomorphismRelation(old, new) O

Methods for this operation transfer possibly useful information from the domain old to the isomorphic
domain new.

UseIsomorphismRelation is designed to be called automatically whenever isomorphic structures of domains
are constructed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the default
method must end with TryNextMethod (). This default method deals with the information that is available
by the calls of InstallIsomorphismMaintenance in the GAP library.

gap> g:= Group((1,2));; h:= Group([[-1 11);;

gap> Size(g); HasSize(h);

2

false

gap> UselsomorphismRelation(g, h);; HasSize(h); Size(h);
true

2

UseFactorRelation(numer, denom, factor) O

Methods for this operation transfer possibly useful information from the domain numer or its subset denom
to the domain factor that is isomorphic to the factor of numer by denom, and vice versa. denom may be
fail, for example if factor is just known to be a factor of numer but denom is not available as a GAP object;
in this case those factor relations are used that are installed without special requirements for denom.

UseFactorRelation is designed to be called automatically whenever factor structures of domains are con-
structed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the default
method must end with TryNextMethod (). This default method deals with the information that is available
by the calls of InstallFactorMaintenance in the GAP library.

4 »

5»

6>

Section 13. Relations Between Domains 287

gap> g:= Group((1,2,3,4), (1,2));; h:= Group((1,2,3), (1,2));;

gap> IsSolvableGroup(g); HasIsSolvableGroup(h);

true

false

gap> UseFactorRelation(g, Subgroup(g, [(1,2)(3,4), (1,3)(2,4) 1), h);;
gap> HasIsSolvableGroup(h); IsSolvableGroup(h);

true

true

The following functions are used to tell GAP under what conditions an attribute is maintained under taking
subsets, or forming factor structures or isomorphic domains. This is used only when a new attribute is
created, see 3.3 in “Programming in GAP”. For the attributes already available, such as IsFinite and
IsCommutative, the maintenances are already notified.

InstallSubsetMaintenance(opr, super_req, sub_req) F

opr must be a property or an attribute. The call of InstallSubsetMaintenance has the effect that for
a domain D in the filter super_req, and a domain S in the filter sub_req, the call UseSubsetRelation(
D, S) (see 30.13.1) sets a known value of opr for D as value of opr also for S. A typical example for
which InstallSubsetMaintenance is applied is given by opr = IsFinite, super_-req = IsCollection and
IsFinite, and sub_.req = IsCollection.

If opr is a property and the filter super_req lies in the filter opr then we can use also the following inverse
implication. If D is in the filter whose intersection with opr is super_req and if S is in the filter sub_req, S
is a subset of D, and the value of opr for S is false then the value of opr for D is also false.

InstallIsomorphismMaintenance(opr, old_-req, new_req) F

opr must be a property or an attribute. The call of InstallIsomorphismMaintenance has the effect that for
a domain D in the filter old_req, and a domain E in the filter new_req, the call UseIsomorphismRelation (
D, E) (see 30.13.2) sets a known value of opr for D as value of opr also for E. A typical example for
which InstallIsomorphismMaintenance is applied is given by opr = Size, old_req = IsCollection, and
new-req = IsCollection.

InstallFactorMaintenance(opr, numer_req, demom_req, factor_req) F

opr must be a property or an attribute. The call of InstallFactorMaintenance has the effect that for collec-
tions N, D, F in the filters numer_req, denom_req, and factor_req, respectively, the call UseFactorRelation(
N, D, F) (see 30.13.3) sets a known value of opr for N as value of opr also for F. A typical example
for which InstallFactorMaintenance is applied is given by opr = IsFinite, numer_req = IsCollection
and IsFinite, demom_req = IsCollection, and factor_req = IsCollection.

For the other direction, if numer_req involves the filter opr then a known false value of opr for F' implies
a false value for D provided that D lies in the filter obtained from numer_req by removing opr.

Note that an implication of a factor relation holds in particular for the case of isomorphisms. So one need
not install an isomorphism maintained method when a factor maintained method is already installed.
For example, UseIsomorphismRelation (see 30.13.2) will transfer a known IsFinite value because of the
installed factor maintained method.

1»

2»

3>

4»

5»

6>

i d

9>

10»

288 Chapter 30. Domains and their Elements

30.14 Useful Categories of Elements
This section and the following one are rather technical, and may be interesting only for those GAP users
who want to implement new kinds of elements.

It deals with certain categories of elements that are useful mainly for the design of elements, from the
viewpoint that one wants to form certain domains of these elements. For example, a domain closed under
multiplication * (a so-called magma, see Chapter 33) makes sense only if its elements can be multiplied, and
the latter is indicated by the category IsMultiplicativeElement for each element. Again note that the
underlying idea is that a domain is regarded as generated by given elements, and that these elements carry
information about the desired domain. For general information on categories and their hierarchies, see 13.3.

IsExtAElement (obj) C

An external additive element is an object that can be added via + with other elements (not necessarily
in the same family, see 13.1).

IsNearAdditiveElement (obj) C

A near-additive element is an object that can be added via + with elements in its family (see 13.1); this
addition is not necessarily commutative.

IsAdditiveElement (o0bj) C

An additive element is an object that can be added via + with elements in its family (see 13.1); this
addition is commutative.

IsNearAdditiveElementWithZero(obj) C

A near-additive element-with-zero is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operation Zero (see 30.10.3); this addition is not
necessarily commutative.

IsAdditiveElementWithZero(obj) C

An additive element-with-zero is an object that can be added via + with elements in its family (see 13.1),
and that is an admissible argument for the operation Zero (see 30.10.3); this addition is commutative.

IsNearAdditiveElementWithInverse(o0bj) C

A near-additive element-with-inverse is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operations Zero (see 30.10.3) and AdditiveInverse
(see 30.10.9); this addition is not necessarily commutative.

IsAdditiveElementWithInverse(o0bj) C

An additive element-with-inverse is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operations Zero (see 30.10.3) and AdditiveInverse
(see 30.10.9); this addition is commutative.

IsExtLElement (obj) C

An external left element is an object that can be multiplied from the left, via *, with other elements (not
necessarily in the same family, see 13.1).

IsExtRElement (obj) C

An external right element is an object that can be multiplied from the right, via *, with other elements
(not necessarily in the same family, see 13.1).

IsMultiplicativeElement(0bj) C

A multiplicative element is an object that can be multiplied via * with elements in its family (see 13.1).

11»

12»

13»

14 »

15»

16 »

17»

18 »

19»

20 »

Section 14. Useful Categories of Elements 289

IsMultiplicativeElementWithOne(obj) C

A multiplicative element-with-one is an object that can be multiplied via * with elements in its family
(see 13.1), and that is an admissible argument for the operation One (see 30.10.2).

IsMultiplicativeElementWithZero(elt) C
Elements in a family which can be the operands of the * and the operation MultiplicativeZero.
IsMultiplicativeElementWithInverse(obj) C

A multiplicative element-with-inverse is an object that can be multiplied via * with elements in its
family (see 13.1), and that is an admissible argument for the operations One (see 30.10.2) and Inverse
(see 30.10.8). (Note the word “admissible”: an object in this category does not necessarily have an inverse,
Inverse may return fail.)

IsVector(obj) C

A vector is an additive-element-with-inverse that can be multiplied from the left and right with other
objects (not necessarily of the same type). Examples are cyclotomics, finite field elements, and of course row
vectors (see below).

Note that not all lists of ring elements are regarded as vectors, for example lists of matrices are not vectors.
This is because although the category IsAdditiveElementWithInverse is implied by the join of its collec-
tions category and IsList, the family of a list entry may not imply IsAdditiveElementWithInverse for
all its elements.

IsNearRingElement (obj) C

IsNearRingElement is just a synonym for the join of IsNearAdditiveElementWithInverse and IsMulti-
plicativeElement.

IsRingElement (0bj) C

IsRingElement is just a synonym for the join of IsAdditiveElementWithInverse and IsMultiplica-
tiveElement.

IsNearRingElementWithOne(obj) C

IsNearRingElementWithOne is just a synonym for the join of IsNearAdditiveElementWithInverse and
IsMultiplicativeElementWithOne.

IsRingElementWithOne(obj) C

IsRingElementWithOne is just a synonym for the join of IsAdditiveElementWithInverse and IsMulti-
plicativeElementWithOne.

IsNearRingElementWithInverse(obj) C
IsRingElementWithInverse(obj) C
IsScalar(obj) C

IsRingElementWithInverse and IsScalar are just synonyms for the join of IsAdditiveElementWithIn-
verse and IsMultiplicativeElementWithInverse.

More special categories of this kind are described in the contexts where they arise, they are IsRowVector
(see 23), IsMatrix (see 24.1.1), IsOrdinaryMatrix (see 24.1.2), and IsLieMatrix (see 24.1.3).

v

2>

vy

v

4»

v

v

290 Chapter 30. Domains and their Elements

30.15 Useful Categories for all Elements of a Family

The following categories of elements are to be understood mainly as categories for all objects in a family,
they are usually used as third argument of NewFamily (see 3.6 in “Programming in GAP”). The purpose of
each of the following categories is then to guarantee that each collection of its elements automatically lies
in its collections category (see 28.1.4).

For example, the multiplication of permutations is associative, and it is stored in the family of permutations
that each permutation lies in IsAssociativeElement. As a consequence, each magma consisting of permu-
tations (more precisely: each collection that lies in the family CollectionsFamily(PermutationsFamily
), see 28.1.1) automatically lies in CategoryCollections(IsAssociativeElement). A magma in this
category is always known to be associative, via a logical implication (see 2.7 in “Programming in GAP”).

Similarly, if a family knows that all its elements are in the categories IsJacobianElement and IsZe-
roSquaredElement, then each algebra of these elements is automatically known to be a Lie algebra (see 60).

IsAssociativeElement(obj) C
IsAssociativeElementCollection(obj) C
IsAssociativeElementCo011Coll(obj) C

An element o0bj in the category IsAssociativeElement knows that the multiplication of any elements in
the family of obj is associative. For example, all permutations lie in this category, as well as those ordinary
matrices (see 24.1.2) whose entries are also in IsAssociativeElement.

IsAdditivelyCommutativeElement (obj)
IsAdditivelyCommutativeElementCollection(obj)
IsAdditivelyCommutativeElementCol1lColl(obj)
IsAdditivelyCommutativeElementFamily (obj)

Qaaa

An element obj in the category IsAdditivelyCommutativeElement knows that the addition of any elements
in the family of 0bj is commutative. For example, each finite field element and each rational number lies in
this category.

IsCommutativeElement (0bj) C
IsCommutativeElementCollection(obj) C
IsCommutativeElementCo0l11Coll(obj) C

An element 0bj in the category IsCommutativeElement knows that the multiplication of any elements in
the family of obj is commutative. For example, each finite field element and each rational number lies in
this category.

IsFiniteOrderElement (obj) C
IsFiniteOrderElementCollection(obj) C
IsFiniteOrderElementCo0l11Coll(obj) C

An element obj in the category IsFiniteOrderElement knows that it has finite multiplicative order. For
example, each finite field element and each permutation lies in this category. However the value may be
false even if obj has finite order, but if this was not known when 0bj was constructed.

Although it is legal to set this filter for any object with finite order, this is really useful only in the case that
all elements of a family are known to have finite order.

IsJacobianElement (0bj) C
IsJacobianElementCollection(obj) C
IsJacobianElementCol1Coll(obj) C

An element 0bj in the category IsJacobianElement knows that the multiplication of any elements in the
family F' of obj satisfies the Jacobi identity, that is, x * y * z + 2z *x x *x y + y x z * x is zero for all z, y, z in F.

Section 15. Useful Categories for all Elements of a Family 291

For example, each Lie matrix (see 24.1.3) lies in this category.

IsZeroSquaredElement (obj) C
IsZeroSquaredElementCollection(obj) C
IsZeroSquaredElementCol1Coll(obj) C

An element obj in the category IsZeroSquaredElement knows that 0bj~2 = Zero(obj). For example,
each Lie matrix (see 24.1.3) lies in this category.

Although it is legal to set this filter for any zero squared object, this is really useful only in the case that
all elements of a family are known to have square zero.

1»

Mappings

A mapping in GAP is what is called a “function” in mathematics. GAP also implements generalized
mappings in which one element might have several images, these can be imagined as subsets of the cartesian
product and are often called “relations”.

Most operations are declared for general mappings and therefore this manual often refers to “(general)
mappings”, unless you deliberately need the generalization you can ignore the “general” bit and just read
it as “mappings”.

A general mapping F in GAP is described by its source S, its range R, and a subset Rel of the direct product
S x R, which is called the underlying relation of F'. S, R, and Rel are generalized domains (see Chapter 12.4).
The corresponding attributes for general mappings are Source, Range, and UnderlyingRelation.

Note that general mappings themselves are not domains. One reason for this is that two general mappings
with same underlying relation are regarded as equal only if also the sources are equal and the ranges are
equal. Other, more technical, reasons are that general mappings and domains have different basic operations,
and that general mappings are arithmetic objects (see 31.5); both should not apply to domains.

Each element of an underlying relation of a general mapping lies in the category of tuples (see 31).

For each s € S, the set {r € R|(s,r) € Rel} is called the set of images of s. Analogously, for r € R, the set
{s € S|(s,r) € Rel} is called the set of preimages of r.

The ordering of general mappings via < is defined by the ordering of source, range, and underlying relation.
Specifically, if the Source and Range domains of map! and map2 are the same, then one considers the union
of the preimages of map! and map2 as a strictly ordered set. The smaller of map! and map2 is the one
whose image is smaller on the first point of this sequence where they differ.

For mappings which preserve an algebraic structure a kernel is defined. Depending on the structure preserved
the operation to compute this kernel is called differently, see section 31.6.

Some technical details of general mappings are described in section 31.12.
IsTuple(obj) C

IsTuple is a subcategory of the meet of IsDenseList (see 21.1.2), IsMultiplicativeElementWithIn-
verse (see 30.14.13), and IsAdditiveElementWithInverse (see 30.14.7), where the arithmetic operations
(addition, zero, additive inverse, multiplication, powering, one, inverse) are defined componentwise.

Note that each of these operations will cause an error message if its result for at least one component cannot
be formed.

The sum and the product of a tuple and a list in IsListDefault is the list of sums and products, respectively.
The sum and the product of a tuple and a non-list is the tuple of componentwise sums and products,
respectively.

1»

3»

4»

5»

6>

Section 1. Creating Mappings 293

31.1 Creating Mappings
GeneralMappingByElements(S, R, elms) F

is the general mapping with source S and range R, and with underlying relation consisting of the tuples
collection elms.

MappingByFunction(S, R, fun) F
MappingByFunction(S, R, fun, inufun) F
MappingByFunction(S, R, fun, ‘false, prefun)’ F

MappingByFunction returns a mapping map with source S and range R, such that each element s of § is
mapped to the element fun(s), where fun is a GAP function.

If the argument inufun is bound then map is a bijection between S and R, and the preimage of each element
r of R is given by inyfun(r), where inyfun is a GAP function.

In the third variant, a function prefun is given that can be used to compute a single preimage. In this case,
the third entry must be false.

MappingByFunction creates a mapping which IsNonSPGeneralMapping
InverseGeneralMapping(map) A

The inverse general mapping of a general mapping map is the general mapping whose underlying relation
(see 31.2.9) contains a pair (7, s) if and only if the underlying relation of map contains the pair (s, r).

See the introduction to Chapter 31 for the subtleties concerning the difference between InverseGeneralMap-
ping and Inverse.

Note that the inverse general mapping of a mapping map is in general only a general mapping. If map knows
to be bijective its inverse general mapping will know to be a mapping. In this case also Inverse(map)
works.

CompositionMapping(mapl, map2, ...) F

CompositionMapping allows one to compose arbitrarily many general mappings, and delegates each step to
CompositionMapping?2.

Additionally, the properties IsInjective and IsSingleValued are maintained; if the source of the ¢ + 1-th
general mapping is identical to the range of the i-th general mapping, also IsTotal and IsSurjective
are maintained. (So one should not call CompositionMapping?2 directly if one wants to maintain these
properties.)

Depending on the types of map! and map2, the returned mapping might be constructed completely new (for
example by giving domain generators and their images, this is for example the case if both mappings preserve
the same alagebraic structures and GAP can decompose elements of the source of map2 into generators) or
as an (iterated) composition (see 31.1.6).

CompositionMapping2(map2, mapl) O

CompositionMapping?2 returns the composition of map2 and map1, this is the general mapping that maps
an element first under map!, and then maps the images under map2.

(Note the reverse ordering of arguments in the composition via *.
IsCompositionMappingRep(map) R

Mappings in this representation are stored as composition of two mappings, (pre)images of elements are
computed in a two-step process. The constituent mappings of the composition can be obtained via Con-
stituentsCompositionMapping.

7>

8>

9»

10»

11»

12»

1»

2»

3>

294 Chapter 31. Mappings

ConstituentsCompositionMapping(map) F

If map is stored in the representation IsCompositionMappingRep as composition of two mappings mapl
and map2, this function returns the two constituent mappings in a list [map1,map2].

ZeroMapping(S, R) 0]
A zero mapping is a total general mapping that maps each element of its source to the zero element of its
range.

(Each mapping with empty source is a zero mapping.)
IdentityMapping(D) A

is the bijective mapping with source and range equal to the collection D, which maps each element of D to
itself.

Embedding(S, T) 0]
Embedding(S, i) 0

returns the embedding of the domain S in the domain T, or in the second form, some domain indexed by
the positive integer i. The precise natures of the various methods are described elsewhere: for Lie algebras,
see LieFamily (61.1.3); for group products, see 47.5 for a general description, or for examples see 47.1 for
direct products, 47.2 for semidirect products, or 47.4 for wreath products; or for magma rings see 63.3.

Projection(S, T) O
Projection(S, 7) 0
Projection(§) O

returns the projection of the domain S onto the domain 7', or in the second form, some domain indexed
by the positive integer ¢, or in the third form some natural subdomain of S. Various methods are defined
for group products; see 47.5 for a general description, or for examples see 47.1 for direct products, 47.2 for
semidirect products, 47.3 for subdirect products, or 47.4 for wreath products.

RestrictedMapping(map, subdom) 0]

If subdom is a subdomain of the source of the general mapping map, this operation returns the restriction
of map to subdom.

31.2 Properties and Attributes of (General) Mappings
IsTotal(map) P

is true if each element in the source S of the general mapping map has images, i.e., s™* £ () for all s € S,
and false otherwise.

IsSingleValued(map) P
is true if each element in the source S of the general mapping map has at most one image, i.e., [s"?| < 1
for all s € S, and false otherwise.

Equivalently, IsSingleValued(map) is true if and only if the preimages of different elements in R are
disjoint.

IsMapping(map) P
A mapping map is a general mapping that assigns to each element elm of its source a unique element
Image(map, elm) of its range.

Equivalently, the general mapping map is a mapping if and only if it is total and single-valued (see 31.2.1,
31.2.2).

4»

5»

6»

' d

8>

9»

10»

1»

2»

3»

4»

Section 3. Images under Mappings 295

IsInjective(map) P

is true if the images of different elements in the source S of the general mapping map are disjoint, i.e.,
™ N y™®P =@ for x # y € 9, and false otherwise.

Equivalently, IsInjective(map) is true if and only if each element in the range of map has at most one
preimage in S.

IsSurjective(map) P

is true if each element in the range R of the general mapping map has preimages in the source S of map,
ie,{se€S|xesm™}#(forall z € R, and false otherwise.

IsBijective(map) P

A general mapping map is bijective if and only if it is an injective and surjective mapping (see 31.2.3,
31.2.4, 31.2.5).

Range(map) A
Source(map) A
UnderlyingRelation(map) A

The underlying relation of a general mapping map is the domain of pairs (s, r), with s in the source and
r in the range of map (see 31.2.8, 31.2.7), and r €ImagesElm(map, s).

Each element of the underlying relation is a tuple (see 31).
UnderlyingGeneralMapping(map) A

attribute for underlying relations of general mappings

31.3 Images under Mappings

ImagesSource(map) A
is the set of images of the source of the general mapping map.

ImagesSource delegates to ImagesSet, it is introduced only to store the image of map as attribute value.
ImagesRepresentative(map, elm) 0]

If elm is an element of the source of the general mapping map then ImagesRepresentative returns either
a representative of the set of images of elm under map or fail, the latter if and only if elm has no images
under map.

Anything may happen if elm is not an element of the source of map.
ImagesElm(map, elm) 0

If elm is an element of the source of the general mapping map then ImagesElm returns the set of all images
of elm under map.

Anything may happen if elm is not an element of the source of map.
ImagesSet(map, elms) O

If elms is a subset of the source of the general mapping map then ImagesSet returns the set of all images
of elms under map.

Anything may happen if elms is not a subset of the source of map.

5»

v

1»

2»

296 Chapter 31. Mappings

ImageElm(map, elm) O

If elm is an element of the source of the total and single-valued mapping map then ImageElm returns the
unique image of elm under map.

Anything may happen if elm is not an element of the source of map.

Image(map) F
Image(map, elm) F
Image(map, coll) F

Image(map) is the image of the general mapping map, i.e., the subset of elements of the range of map
that are actually values of map. Note that in this case the argument may also be multi-valued.

Image(map, elm) is the image of the element elm of the source of the mapping map under map, i.e., the
unique element of the range to which map maps elm. This can also be expressed as elm =~ map. Note that
map must be total and single valued, a multi valued general mapping is not allowed (see 31.3.7).

Image(map, coll) is the image of the subset coll of the source of the mapping map under map, i.e., the
subset of the range to which map maps elements of coll. coll may be a proper set or a domain. The result
will be either a proper set or a domain. Note that in this case map may also be multi-valued. (If coll and
the result are lists then the positions of entries do in general not correspond.)

Image delegates to ImagesSource when called with one argument, and to ImageElm resp. ImagesSet when
called with two arguments.

If the second argument is not an element or a subset of the source of the first argument, an error is signalled.

Images(map) F
Images(map, elm) F
Images(map, coll) F

Images(map) is the image of the general mapping map, i.e., the subset of elements of the range of map
that are actually values of map.

Images(map, elm) is the set of images of the element elm of the source of the general mapping map
under map, i.e., the set of elements of the range to which map maps elm.

Images(map, coll) isthe set of images of the subset coll of the source of the general mapping map under
map, i.e., the subset of the range to which map maps elements of coll. coll may be a proper set or a domain.
The result will be either a proper set or a domain. (If coll and the result are lists then the positions of
entries do in general not correspond.)

Images delegates to ImagesSource when called with one argument, and to ImagesElm resp. ImagesSet when
called with two arguments.

If the second argument is not an element or a subset of the source of the first argument, an error is signalled.

31.4 Preimages under Mappings
PreImagesRange(map) A

is the set of preimages of the range of the general mapping map.

PreImagesRange delegates to PreImagesSet, it is introduced only to store the preimage of map as attribute
value.

PreImagesElm(map, elm) O

If elm is an element of the range of the general mapping map then PreImagesElm returns the set of all
preimages of elm under map.

Anything may happen if elm is not an element of the range of map.

3>

4»

5p

6»

v

7

v

Section 4. Preimages under Mappings 297

PreImageElm(map, elm) O

If elm is an element of the range of the injective and surjective general mapping map then PreImageElm
returns the unique preimage of elm under map.

Anything may happen if elm is not an element of the range of map.
PreImagesRepresentative(map, elm) O
If elm is an element of the range of the general mapping map then PreImagesRepresentative returns

either a representative of the set of preimages of elm under map or fail, the latter if and only if elm has
no preimages under map.

Anything may happen if elm is not an element of the range of map.
PreImagesSet(map, elms) O

If elms is a subset of the range of the general mapping map then PreImagesSet returns the set of all
preimages of elms under map.

Anything may happen if elms is not a subset of the range of map.

PreImage(map) F
PreImage(map, elm) F
PreImage(map, coll) F

PreImage(map) is the preimage of the general mapping map, i.e., the subset of elements of the source of
map that actually have values under map. Note that in this case the argument may also be non-injective or
non-surjective.

PreImage(map, elm) is the preimage of the element elm of the range of the injective and surjective
mapping map under map, i.e., the unique element of the source which is mapped under map to elm. Note
that map must be injective and surjective (see 31.4.7).

PreImage(map, coll) is the preimage of the subset coll of the range of the general mapping map under
map, i.e., the subset of the source which is mapped under map to elements of coll. coll may be a proper
set or a domain. The result will be either a proper set or a domain. Note that in this case map may also
be non-injective or non-surjective. (If coll and the result are lists then the positions of entries do in general
not correspond.)

PreImage delegates to PreImagesRange when called with one argument, and to PreImageElm resp. PreIm-
agesSet when called with two arguments.

If the second argument is not an element or a subset of the range of the first argument, an error is signalled.

PreImages(map) F
PreImages(map, elm) F
PreImages(map, coll) F

PreImages(map) is the preimage of the general mapping map, i.e., the subset of elements of the source
of map that have actually values under map.

PreImages(map, elm) is the set of preimages of the element elm of the range of the general mapping
map under map, i.e., the set of elements of the source which map maps to elm.

PreImages(map, coll) is the set of images of the subset coll of the range of the general mapping map
under map, i.e., the subset of the source which map maps to elements of coll. coll may be a proper set or a
domain. The result will be either a proper set or a domain. (If coll and the result are lists then the positions
of entries do in general not correspond.)

PreImages delegates to PreImagesRange when called with one argument, and to PreImagesElm resp. PreIm-
agesSet when called with two arguments.

If the second argument is not an element or a subset of the range of the first argument, an error is signalled.

1»

2>

3»

298 Chapter 31. Mappings

31.5 Arithmetic Operations for General Mappings

General mappings are arithmetic objects. One can form groups and vector spaces of general mappings
provided that they are invertible or can be added and admit scalar multiplication, respectively.

For two general mappings with same source, range, preimage, and image, the sum is defined pointwise, i.e.,
the images of a point under the sum is the set of all sums with first summand in the images of the first
general mapping and second summand in the images of the second general mapping.

Scalar multiplication of general mappings is defined likewise.

The product of two general mappings is defined as the composition. This multiplication is always asso-
ciative. In addition to the composition via *, general mappings can be composed —in reversed order— via
CompositionMapping.

General mappings are in the category of multiplicative elements with inverses. Similar to matrices, not
every general mapping has an inverse or an identity, and we define the behaviour of One and Inverse for
general mappings as follows. One returns fail when called for a general mapping whose source and range
differ, otherwise One returns the identity mapping of the source. (Note that the source may differ from the
preimage). Inverse returns fail when called for a non-bijective general mapping or for a general mapping
whose source and range differ; otherwise Inverse returns the inverse mapping.

Besides the usual inverse of multiplicative elements, which means that Inverse(g) * g = g * Inverse(
g) = One(g), for general mappings we have the attribute InverseGeneralMapping. If F' is a general
mapping with source S, range R, and underlying relation Rel then InverseGeneralMapping(F) has
source R, range S, and underlying relation {(r,s) | (s,r) € Rel}. For a general mapping that has an inverse
in the usual sense, i.e., for a bijection of the source, of course both concepts coincide.

Inverse may delegate to InverseGeneralMapping. InverseGeneralMapping must not delegate to Inverse,
but a known value of Inverse may be fetched. So methods to compute the inverse of a general mapping
should be installed for InverseGeneralMapping.

(Note that in many respects, general mappings behave similar to matrices, for example one can define left
and right identities and inverses, which do not fit into the current concepts of GAP.)

31.6 Mappings which are Compatible with Algebraic Structures

From an algebraical point of view, the most important mappings are those which are compatible with a
structure. For Magmas, Groups and Rings, GAP supports the following four types of such mappings:

1. General mappings that respect multiplication

2. General mappings that respect addition

3. General mappings that respect scalar mult.

4. General mappings that respect multiplicative and additive structure

(Very technical note: GAP defines categories IsSPGeneralMapping and IsNonSPGeneralMapping. The dis-
tinction between these is orthogonal to the Structure Compatibility described here and should not be con-
fused.)

31.7 Magma Homomorphisms

IsMagmaHomomorphism(mapp) P
A MagmaHomomorphism is a total single valued mapping which respects multiplication.
MagmaHomomorphismByFunctionNC(G, H, fn) F
Creates the homomorphism from G to H without checking that fn is a homomorphism.
NaturalHomomorphismByGenerators(f, s) Q)

returns a mapping from the magma f with n generators to the magma s with n generators, which maps the
ith generator of f to the ith generator of s.

1»

2>

3>

5»

6>

Section 8. Mappings that Respect Multiplication 299

31.8 Mappings that Respect Multiplication
RespectsMultiplication(mapp) P

Let mapp be a general mapping with underlying relation F C S x R, where S and R are the source and
the range of mapp, respectively. Then RespectsMultiplication returns true if S and R are magmas such
that (s1,71), (s2,72) € F implies (81 * so, 71 * 13) € F, and false otherwise.

If mapp is single-valued then RespectsMultiplication returns true if and only if the equation s ~mapp
x s2 mapp = (s1*s2) mapp holds for all s1, s2 in S.

RespectsOne(mapp) P

Let mapp be a general mapping with underlying relation ' C S x R, where S and R are the source and the
range of mapp, respectively. Then RespectsOne returns true if S and R are magmas-with-one such that
(One(S),0ne(R)) € F, and false otherwise.

If mapp is single-valued then RespectsOne returns true if and only if the equation One(S) “mapp = One(
R) holds.

RespectsInverses(mapp) P

Let mapp be a general mapping with underlying relation ' C S x R, where S and R are the source and the
range of mapp, respectively. Then RespectsInverses returns true if § and R are magmas-with-inverses
such that, for s € S and r € R, (s,7) € F implies (s7!,771) € F, and false otherwise.

If mapp is single-valued then RespectsInverses returns true if and only if the equation Inverse(s
)"mapp = Inverse(s mapp) holds for all s in §.

Mappings that are defined on a group and respect multiplication and inverses are group homomorphisms.
Chapter 38 explains them in more detail.

IsGroupGeneralMapping(mapp) P
IsGroupHomomorphism(mapp) P

A GroupGeneralMapping is a mapping which respects multiplication and inverses. If it is total and single
valued it is called a group homomorphism.

KernelOfMultiplicativeGeneralMapping(mapp) A

Let mapp be a general mapping. Then KernelOfMultiplicativeGeneralMapping returns the set of all
elements in the source of mapp that have the identity of the range in their set of images.

(This is a monoid if mapp respects multiplication and one, and if the source of mapp is associative.)
CoKernelOfMultiplicativeGeneralMapping(mapp) A

Let mapp be a general mapping. Then CoKernelOfMultiplicativeGeneralMapping returns the set of all
elements in the range of mapp that have the identity of the source in their set of preimages.

(This is a monoid if mapp respects multiplication and one, and if the range of mapp is associative.)

1»

2>

3>

4»

5»

6 »

1»

3>

300 Chapter 31. Mappings

31.9 Mappings that Respect Addition
RespectsAddition(mapp) P

Let mapp be a general mapping with underlying relation ' C S x R, where S and R are the source and the
range of mapp, respectively. Then RespectsAddition returns true if S and R are additive magmas such
that (s1,71), (s2,72) € F implies (s1 + s2,71 + 12) € F', and false otherwise.

If mapp is single-valued then RespectsAddition returns true if and only if the equation sf~mapp +
s2 mapp = (s1+s2) " mapp holds for all s1, s2 in §.

RespectsAdditiveInverses(mapp) P

Let mapp be a general mapping with underlying relation FF C § x R, where S and R are the source and
the range of mapp, respectively. Then RespectsAdditivelInverses returns true if S and R are additive-
magmas-with-inverses such that (s,r) € F implies (—s,—r) € F, and false otherwise.

If mapp is single-valued then RespectsAdditivelInverses returns true if and only if the equation Addi-
tiveInverse(s) “mapp = AdditiveInverse(s mapp) holds for all s in §.

RespectsZero(mapp) P

Let mapp be a general mapping with underlying relation ' C S x R, where S and R are the source and the
range of mapp, respectively. Then RespectsZero returns true if S and R are additive-magmas-with-zero
such that (Zero(S),Zero(R)) € F, and false otherwise.

If mapp is single-valued then RespectsZero returns true if and only if the equation Zero(S) “mapp =
Zero(R) holds.

IsAdditiveGroupGeneralMapping(mapp) P
IsAdditiveGroupHomomorphism(mapp) P
KernelOfAdditiveGeneralMapping(mapp) A

Let mapp be a general mapping. Then KernelOfAdditiveGeneralMapping returns the set of all elements
in the source of mapp that have the zero of the range in their set of images.

CoKernelOfAdditiveGeneralMapping(mapp) A

Let mapp be a general mapping. Then CoKernelOfAdditiveGeneralMapping returns the set of all elements
in the range of mapp that have the zero of the source in their set of preimages.

31.10 Linear Mappings

Also see Sections 31.8 and 31.9.
RespectsScalarMultiplication(mapp) P

Let mapp be a general mapping, with underlying relation FF C S x R, where S and R are the source and
the range of mapp, respectively. Then RespectsScalarMultiplication returns true if S and R are left
modules with the left acting domain D of S contained in the left acting domain of R and such that (s,r) € F
implies (¢ * s,c*r) € F for all ¢ € D, and false otherwise.

If mapp is single-valued then RespectsScalarMultiplication returns true if and only if the equation ¢ *
s~mapp = (¢ * s) “mapp holds for all ¢ in D and s in S.

IsLeftModuleGeneralMapping(mapp) P
IsLeftModuleHomomorphism(mapp) P
IsLinearMapping(F', mapp) O

For a field F' and a general mapping mapp, IsLinearMapping returns true if mapp is an F-linear mapping,
and false otherwise.

5»

1»

2»

3>

Section 13. Technical Matters Concerning General Mappings 301

A mapping f is a linear mapping (or vector space homomorphism) if the source and range are vector spaces
over the same division ring D, and if f(a + b) = f(a) + f(b) and f(s * a) = s * f(a) hold for all elements a,
b in the source of f and s € D.

See also KernelOfMultiplicativeGeneralMapping (31.8.5) and CoKernelOfMultiplicativeGeneralMap-
ping (31.8.6).
31.11 Ring Homomorphisms

IsRingGeneralMapping(mapp)
IsRingHomomorphism(mapp)

IsRingWithOneGeneralMapping(mapp)
IsRingWithOneHomomorphism(mapp)

IsAlgebraGeneralMapping(mapp)
IsAlgebraHomomorphism(mapp)

IsAlgebraWithOneGeneralMapping(mapp)
IsAlgebraWithOneHomomorphism(mapp)

¥ '"WwW WTW TWTW T

IsFieldHomomorphism(mapp)

A general mapping is a field homomorphism if and only if it is a ring homomorphism with source a field.

31.12 General Mappings
IsGeneralMapping(map) C

Each general mapping lies in the category IsGeneralMapping. It implies the categories IsMultiplica-
tiveElementWithInverse (see 30.14.13) and IsAssociativeElement (see 30.15.1); for a discussion of these
implications, see 31.5.

IsConstantTimeAccessGeneralMapping(map) P

is true if the underlying relation of the general mapping map knows its AsList value, and false otherwise.

In the former case, map is allowed to use this list for calls to ImagesElm etc.
IsEndoGeneralMapping(obj) P

If a general mapping has this property then its source and range are equal.

31.13 Technical Matters Concerning General Mappings

Source and Range are basic operations for general mappings. UnderlyingRelation is secondary, its default
method sets up a domain that delegates tasks to the general mapping. (Note that this allows one to handle
also infinite relations by generic methods if source or range of the general mapping is finite.)

The distinction between basic operations and secondary operations for general mappings may be a little bit
complicated. Namely, each general mapping must be in one of the two categories IsNonSPGeneralMapping,
IsSPGeneralMapping. (The category IsGeneralMapping is defined as the disjoint union of these two.)

For general mappings of the first category, ImagesElm and PreImagesElm are basic operations. (Note that
in principle it is possible to delegate from PreImagesElm to ImagesElm.) Methods for the secondary opera-
tions (Pre)ImageElm, (Pre)ImagesSet, and (Pre)ImagesRepresentative may use (Pre)ImagesElm, and
methods for (Pre)ImagesElm must not call the secondary operations. In particular, there are no generic
methods for (Pre)ImagesElm.

2»

3>

4»

6»

g

302 Chapter 31. Mappings

Methods for (Pre)ImagesSet must not use PreImagesRange and ImagesSource, e.g., compute the inter-
section of the set in question with the preimage of the range resp. the image of the source.

For general mappings of the second category (which means structure preserving general mappings), the situ-
ation is different. The set of preimages under a group homomorphism, for example, is either empty or can be
described as a coset of the (multiplicative) kernel. So it is reasonable to have (Pre)ImagesRepresentative
and Multplicative(Co)Kernel as basic operations here, and to make (Pre)ImagesElm secondary opera-
tions that may delegate to these.

In order to avoid infinite recursions, we must distinguish between the two different types of mappings.

(Note that the basic domain operations such as AsList for the underlying relation of a general mapping
may use either ImagesElm or ImagesRepresentative and the appropriate cokernel. Conversely, if AsList
for the underlying relation is known then ImagesElm resp. ImagesRepresentative may delegate to it, the
general mapping gets the property IsConstantTimeAccessGeneralMapping for this; note that this is not
allowed if only an enumerator of the underlying relation is known.)

Secondary operations are IsInjective, IsSingleValued, IsSurjective, IsTotal; they may use the basic
operations, and must not be used by them.

IsSPGeneralMapping(map)
IsNonSPGeneralMapping(map)

IsGeneralMappingFamily(obj)

> QO aQQa

FamilyRange(Fam)

is the elements family of the family of the range of each general mapping in the family Fam.
FamilySource(Fam) A
is the elements family of the family of the source of each general mapping in the family Fam.
FamiliesOfGeneralMappingsAndRanges(Fam) AM

is a list that stores at the odd positions the families of general mappings with source in the family Fam, at
the even positions the families of ranges of the general mappings.

GeneralMappingsFamily (sourcefam, rangefam) F

All general mappings with same source family F'S and same range family FR lie in the family GeneralMap-
pingsFamily(FS, FR).

TypeOfDefaultGeneralMapping(source, range, filter) F

is the type of mappings with IsDefaultGeneralMappingRep with source source and range range and addi-
tional categories filter.

Methods for the operations ImagesElm, ImagesRepresentative, ImagesSet, ImageElm, PreImagesElm,
PreImagesRepresentative, PreImagesSet, and PreImageElm take two arguments, a general mapping map
and an element or collection of elements elm. These methods must not check whether elm lies in the source
or the range of map. In the case that elm does not, fail may be returned as well as any other GAP object,
and even an error message is allowed. Checks of the arguments are done only by the functions Image, Images,
PrelImage, and PreImages, which then delegate to the operations listed above.

1»

2>

3>

1»

Relations

A binary relation R on a set X is a subset of X x X. A binary relation can also be thought of as a (general)
mapping from X to itself or as a directed graph where each edge represents a tuple of R.

In GAP, a relation is conceptually represented as a general mapping from X to itself. The category IsBina-
ryRelation is the same as the category IsEndoGeneralMapping (see 31.12.3). Attributes and properties of
relations in GAP are supported for relations, via considering relations as a subset of X x X, or as a directed
graph; examples include finding the strongly connected components of a relation, via StronglyConnected-
Components (see 32.4.5), or enumerating the tuples of the relation.

32.1 General Binary Relations

IsBinaryRelation(R) C
is exactly the same category as (i.e. a synonym for) IsEndoGeneralMapping (see 31.12.3).

We have the following general constructors.

BinaryRelationByElements(domain, elms) F

is the binary relation on domain and with underlying relation consisting of the tuples collection elms. This
construction is similar to GeneralMappingByElements (see 31.1.1) where the source and range are the same
set.

IdentityBinaryRelation(degree) F
IdentityBinaryRelation(domain) F

is the binary relation which consists of diagonal tuples i.e. tuples of the form (z,z). In the first form if a
positive integer degree is given then the domain is the integers {1,. .., degree}. In the second form, the tuples
are from the domain domain.

EmptyBinaryRelation(degree) F
EmptyBinaryRelation(domain) F

is the relation with R empty. In the first form of the command with degree an integer, the domain is the
points {1,..., degree}. In the second form, the domain is that given by the argument domain.

32.2 Properties and Attributes of Binary Relations
IsReflexiveBinaryRelation(R) P

returns true if the binary relation R is reflexive, and false otherwise.

A binary relation R (as tuples) on a set X is reflexive if for all z € X, (z,z) € R. Alternatively, R as a
mapping is reflexive if for all € X, z is an element of the image set R(z).

A reflexive binary relation is necessarily a total endomorphic mapping (tested via IsTotal; see 31.2.1).

2»

3>

4»

5»

6»

7>

9»

10 »

11»

304 Chapter 32. Relations

IsSymmetricBinaryRelation(R) P

returns true if the binary relation R is symmetric, and false otherwise.

A binary relation R (as tuples) on a set X is symmetric if (z,y) € R then (y,z) € R. Alternatively, R as
a mapping is symmetric if for all z € X, the preimage set of under R equals the image set R(z).

IsTransitiveBinaryRelation(R) P

returns true if the binary relation R is transitive, and false otherwise.

A binary relation R (as tuples) on a set X is transitive if (z,y), (y,2) € R then (z,2) € R. Alternatively,
R as a mapping is transitive if for all z € X, the image set R(R(z)) of the image set R(z) of z is a subset
of R(x).

IsAntisymmetricBinaryRelation(rel) P

returns true if the binary relation rel is antisymmetric, and false otherwise.

A binary relation R (as tuples) on a set X is antisymmetric if (z, y), (y, z) € R implies z = y. Alternatively,
R as a mapping is antisymmetric if for all z € X, the intersection of the preimage set of under R and the
image set R(z) is {z}.

IsPreOrderBinaryRelation(rel) P
returns true if the binary relation rel is a preorder, and false otherwise.

A preorder is a binary relation that is both reflexive and transitive.

IsPartialOrderBinaryRelation(el) P
returns true if the binary relation rel is a partial order, and false otherwise.

A partial order is a preorder which is also antisymmetric.

IsHasseDiagram(rel) P

returns true if the binary relation rel is a Hasse Diagram of a partial order, i.e. was computed via Hasse-
DiagramBinaryRelation (see 32.4.4).

IsEquivalenceRelation(R) P

returns true if the binary relation R is an equivalence relation, and false otherwise.
Recall, that a relation R on the set X is an equivalence relation if it is symmetric, transitive, and reflexive.

Successors(R) A

returns the list of images of a binary relation R. If the underlying domain of the relation is not [1..n] for
some positive integer n, then an error is signalled.

The returned value of Successors is a list of lists where the lists are ordered as the elements according to
the sorted order of the underlying set of R. Each list consists of the images of the element whose index is
the same as the list with the underlying set in sorted order.

The Successors of a relation is the adjacency list representation of the relation.
DegreeOfBinaryRelation(R) A

returns the size of the underlying domain of the binary relation R. This is most natural when working with
a binary relation on points.

PartialOrderOfHasseDiagram(HD) A

is the partial order associated with the Hasse Diagram HD i.e. the partial order generated by the reflexive
and transitive closure of HD.

2>

1»

3>

4»

5»

6»

Section 4. Closure Operations and Other Constructors 305

32.3 Binary Relations on Points

We have special construction methods when the underlying X of our relation is the set of integers {1,...,n}.
BinaryRelationOnPoints([list) F
BinaryRelationOnPointsNC(list) F
Given a list of n lists, each containing elements from the set {1,...,n}, this function constructs a binary

relation such that 1 is related to list[1], 2 to list[2] and so on. The first version checks whether the list
supplied is valid. The the NC version skips this check.

RandomBinaryRelationOnPoints(degree) F

creates a relation on points with degree degree.

AsBinaryRelationOnPoints(trans) F
AsBinaryRelationOnPoints(perm) F
AsBinaryRelationOnPoints(rel) F

return the relation on points represented by general relation rel, transformation trans or permutation perm.
If rel is already a binary relation on points then rel is returned.

Transformations and permutations are special general endomorphic mappings and have a natural represen-
tation as a binary relation on points.

In the last form, an isomorphic relation on points is constructed where the points are indices of the elements
of the underlying domain in sorted order.

32.4 Closure Operations and Other Constructors
ReflexiveClosureBinaryRelation(R) Q)

is the smallest binary relation containing the binary relation R which is reflexive. This closure inherents the
properties symmetric and transitive from R. E.g. if R is symmetric then its reflexive closure is also.

SymmetricClosureBinaryRelation(R) O

is the smallest binary relation containing the binary relation R which is symmetric. This closure inherents
the properties reflexive and transitive from R. E.g. if R is reflexive then its symmetric closure is also.

TransitiveClosureBinaryRelation(rel) 0

is the smallest binary relation containing the binary relation R which is transitive. This closure inerents the
properties reflexive and symmetric from R. E.g. if R is symmetric then its transitive closure is also.

TransitiveClosureBinaryRelation is a modified version of the Floyd-Warshall method of solving the all-
pairs shortest-paths problem on a directed graph. Its asymptotic runtime is O(n?®) where n is the size of the
vertex set. It only assumes there is an arbitrary (but fixed) ordering of the vertex set.

HasseDiagramBinaryRelation(partial-order) Q)

is the smallest relation contained in the partial order partial-order whose reflexive and transitive closure is
equal to partial-order.

StronglyConnectedComponents(R) O
returns an equivalence relation on the vertices of the binary relation R.
PartialOrderByOrderingFunction(dom, orderfunc) F

constructs a partial order whose elements are from the domain dom and are ordered using the ordering
function orderfunc. The ordering function must be a binary function returning a boolean value. If the
ordering function does not describe a partial order then fail is returned.

2>

4»

1»

2>

306 Chapter 32. Relations

32.5 Equivalence Relations

An equivalence relation F over the set X is a relation on X which is reflexive, symmetric, and transitive.
of the set X. A partition P is a set of subsets of X such that for all R, S € P RN S is the empty set
and UP = X. An equivalence relation induces a partition such that if (z,y) € E then z,y are in the same
element of P.

Like all binary relations in GAP equivalence relations are regarded as general endomorphic mappings (and
the operations, properties and attributes of general mappings are available). However, partitions provide
an efficient way of representing equivalence relations. Moreover, only the non-singleton classes or blocks are
listed allowing for small equivalence relations to be represented on infinite sets. Hence the main attribute of
equivalence relations is EquivalenceRelationPartition which provides the partition induced by the given
equivalence.

EquivalenceRelationByPartition(domain, list) F
EquivalenceRelationByPartitionNC(domain, list) F

constructs the equivalence relation over the set domain which induces the partition represented by list. This
representation includes only the non-trivial blocks (or equivalent classes). list is a list of lists, each of these
lists contain elements of domain and are pairwise mutually exclusive.

The list of lists do not need to be in any order nor do the elements in the blocks (see EquivalenceRela-
tionPartition). a list of elements of domain The partition list is a list of lists, each of these is a list of
elements of domain that makes up a block (or equivalent class). The domain is the domain over which the
relation is defined, and list is a list of lists, each of these is a list of elements of domain which are related
to each other. list need only contain the nontrivial blocks and singletons will be ignored. The NC version
will not check to see if the lists are pairwise mutually exclusive or that they contain only elements of the
domain.

EquivalenceRelationByRelation(rel) F
returns the smallest equivalence relation containing the binary relation rel.

EquivalenceRelationByPairs(D, elms) F
EquivalenceRelationByPairsNC(D, elms) F

return the smallest equivalence relation on the domain D such that every pair in elms is in the relation.
In the second form, it is not checked that elms are in the domain D.

EquivalenceRelationByProperty(domain, property) F

creates an equivalence relation on domain whose only defining datum is that of having the property property.

32.6 Attributes of and Operations on Equivalence Relations
EquivalenceRelationPartition(equiv) A

returns a list of lists of elements of the underlying set of the equivalence relation equiv. The lists are precisely
the nonsingleton equivalence classes of the equivalence. This allows us to describe “small” equivalences on
infinite sets.

GeneratorsOfEquivalenceRelationPartition(equiv) A

is a set of generating pairs for the equivalence relation equiv. This set is not unique. The equivalence equiv
is the smallest equivalence relation over the underlying set X which contains the generating pairs.

JoinEquivalenceRelations(equivi, equiv?) O
MeetEquivalenceRelations(equivl, equivZ) O

JoinEquivalenceRelations (equivl! , equiv2) returns the smallest equivalence relation containing both the
equivalence relations equiv! and equiv2.

MeetEquivalenceRelations(equivl,equiv2) returns the intersection of the two equivalence relations
equivl and equiv2.

1»

2»

3>

Section 7. Equivalence Classes 307

32.7 Equivalence Classes
IsEquivalenceClass(O) C

returns true if the object O is an equivalence class, and false otherwise.

An equivalence class is a collection of elements which are mutually related to each other in the associated
equivalence relation. Note, this is a special category of object and not just a list of elements.

EquivalenceClassRelation(C) A
returns the equivalence relation of which C is a class.
EquivalenceClasses(rel) A

returns a list of all equivalence classes of the equivalence relation rel. Note that it is possible for different
methods to yield the list in different orders, so that for two equivalence relations ¢l and ¢2 we may have
cl = ¢2 without having EquivalenceClasses(cl) = EquivalenceClasses(c2).

EquivalenceClass0fElement (rel, elt) O
EquivalenceClassOfElementNC(rel, elt) Q)

return the equivalence class of elt in the binary relation rel, where elt is an element (i.e. a pair) of the
domain of rel. In the second form, it is not checked that elt is in the domain over which rel is defined.

1»

2>

3»

4»

Magmas

This chapter deals with domains (see 30) that are closed under multiplication *. Following [Bou70], we call
them magmas in GAP. Together with the domains closed under addition +, (see 53), they are the basic
algebraic structures; every semigroup (see 49), monoid (see 50), group (see 37), ring (see 54), or field (see 56)
is a magma. In the cases of a magma-with-one or magma-with-inverses, additional multiplicative
structure is present, see 33.1. For functions to create free magmas, see 34.4.

33.1 Magma Categories
IsMagma(obj) C
A magma in GAP is a domain M with (not necessarily associative) multiplication *: M x M — M.

IsMagmaWithOne(obj) C

A magma-with-one in GAP is a magma M with an operation ~0 (or One) that yields the identity of M.

So a magma-with-one M does always contain a unique multiplicatively neutral element e, i.e., e * m =
m = m * e holds for all m € M (see 33.4.10). This element e can be computed with the operation One
(see 30.10.2) as One(M), and e is also equal to One(elm) and to elm~0 for each element elm in M.

Note that a magma may contain a multiplicatively neutral element but not an identity (see 30.10.2), and
a magma containing an identity may not lie in the category IsMagmaWithOne (see 30.6).

IsMagmaWithInversesIfNonzero(obj) C

An object in this GAP category is a magma-with-one M with an operation ~-1: M\ Z — M \ Z that maps
each element m of M \ Z to its inverse m~-1 (or Inverse(m), see 30.10.8), where Z is either empty or
consists exactly of one element of M.

This category was introduced mainly to describe division rings, since the nonzero elements in a division ring
form a group; So an object M in IsMagmaWithInversesIfNonzero will usually have both a multiplicative
and an additive structure (see 53), and the set Z, if it is nonempty, contains exactly the zero element
(see 30.10.3) of M.

IsMagmaWithInverses(obj) C

A magma-with-inverses in GAP is a magma-with-one M with an operation ~-1: M — M that maps each
element m of M to its inverse m~-1 (or Inverse(m), see 30.10.8).

Note that not every trivial magma is a magma-with-one, but every trivial magma-with-one is a magma-
with-inverses. This holds also if the identity of the magma-with-one is a zero element. So a magma-with-
inverses-if-nonzero can be a magma-with-inverses if either it contains no zero element or consists of a zero
element that has itself as zero-th power.

10»

Section 2. Magma Generation 309

33.2 Magma Generation

Magma(gens) F
Magma(Fam, gens) F

returns the magma M that is generated by the elements in the list gens, that is, the closure of gens under
multiplication *. The family Fam of M can be entered as first argument; this is obligatory if gens is empty
(and hence also M is empty).

MagmaWithOne(gens) F
MagmaWithOne(Fam, gens) F

returns the magma-with-one M that is generated by the elements in the list gens, that is, the closure of gens
under multiplication * and One. The family Fam of M can be entered as first argument; this is obligatory
if gens is empty (and hence M is trivial).

MagmaWithInverses(gens) F
MagmaWithInverses(Fam, gens) F

returns the magma-with-inverses M that is generated by the elements in the list gens, that is, the closure
of gens under multiplication *, One, and Inverse. The family Fam of M can be entered as first argument;
this is obligatory if gens is empty (and hence M is trivial).

The underlying operations for which methods can be installed are the following.

MagmaByGenerators(gens)
MagmaByGenerators(Fam, gens)

MagmaWithOneByGenerators(gens)
MagmaWithOneByGenerators(Fam, generators)

MagmaWithInversesByGenerators(generators)
MagmaWithInversesByGenerators(Fam, generators)

QO OO OO

Substructures of a magma can be formed as follows.

Submagma(D, gens) F
SubmagmaNC(D, gens) F

Submagma returns the magma generated by the elements in the list gens, with parent the domain D. Sub-
magmaNC does the same, except that it is not checked whether the elements of gens lie in D.

SubmagmaWithOne(D, gens) F
SubmagmaWithOneNC(D, gens) F

SubmagmaWithOne returns the magma-with-one generated by the elements in the list gens, with parent the
domain D. SubmagmaWithOneNC does the same, except that it is not checked whether the elements of gens
lie in D.

SubmagmaWithInverses(D, gens) F
SubmagmaWithInversesNC(D, gens) F

SubmagmaWithInverses returns the magma-with-inverses generated by the elements in the list gens, with
parent the domain D. SubmagmaWithInversesNC does the same, except that it is not checked whether the
elements of gens lie in D.

The following functions can be used to regard a collection as a magma.
AsMagma(C') A

For a collection C whose elements form a magma, AsMagma returns this magma. Otherwise fail is returned.

11»

12»

1»

2»

3>

5»

310 Chapter 33. Magmas

AsSubmagma(D, C) O

Let D be a domain and C' a collection. If C' is a subset of D that forms a magma then AsSubmagma returns
this magma, with parent D. Otherwise fail is returned.

The following function creates a new magma which is the original magma with a zero adjoined.
InjectionZeroMagma(M) A

The canonical homomorphism ¢ from the magma M into the magma formed from M with a single new
element which is a multiplicative zero for the resulting magma.

The elements of the new magma form a family of elements in the category IsMultiplicativeElement WithZero,
and the new magma is obtained as Range(4).

33.3 Magmas Defined by Multiplication Tables

The most elementary (but of course usually not recommended) way to implement a magma with only few
elements is via a multiplication table.

MagmaByMultiplicationTable(A) F

For a square matrix A with n rows such that all entries of A are in the range [1..n], MagmaByMultipli-
cationTable returns a magma M with multiplication * defined by A. That is, M consists of the elements
M1, M2, ..., My, and m; * m; = my(;)(;)-

The ordering of elements is defined by m; < mg < --- < m,, so m; can be accessed as MagmaElement (M,
1), see 33.3.4.

MagmaWithOneByMultiplicationTable(A) F

The only differences between MagmaByMultiplicationTable and MagmaWithOneByMultiplicationTable
are that the latter returns a magma-with-one (see 33.2.2) if the magma described by the matrix A has an
identity, and returns fail if not.

MagmaWithInversesByMultiplicationTable(A) F

MagmaByMultiplicationTable and MagmaWithInversesByMultiplicationTable differ only in that the
latter returns magma-with-inverses (see 33.2.3) if each element in the magma described by the matrix A has
an inverse, and returns fail if not.

MagmaElement(M, ¢) F

For a magma M and a positive integer i, MagmaElement returns the i-th element of M, w.r.t. the ordering
<. If M has less than i elements then fail is returned.

MultiplicationTable(elms) F

For a list elms of elements that form a magma M, MultiplicationTable returns a square matrix A of
positive integers such that A[i][j] = k holds if and only if elms[i]l * elms[j] = elms[k]. This matrix can
be used to construct a magma isomorphic to M, using MagmaByMultiplicationTable.

1»

2»

3>

v

Section 4. Attributes and Properties for Magmas 311

gap> 1:= [O, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) 1;;

gap> a:= MultiplicationTable(1);
([l1,2,3,41,[02,1,4,31, [3,4,1,2171, [4,3,2,1]]
gap> m:= MagmaByMultiplicationTable(a);

<magma with 4 generators>

gap> One(m);

ml

gap> elm:= MagmaElement(m, 2); One(elm); elm™2;
m2

ml

ml

gap> Inverse(elm);

m2

gap> AsGroup(m);

<group of size 4 with 2 generators>

gap> a:= [[1,21, [2,21 1;
(1,21, 02, 211
gap> m:= MagmaByMultiplicationTable(a);

<magma with 2 generators>

gap> One(m); Inverse(MagmaElement(m, 2));
ml

fail

33.4 Attributes and Properties for Magmas
GeneratorsOfMagma(M) A

is a list gens of elements of the magma M that generates M as a magma, that is, the closure of gens under
multiplication is M.

GeneratorsOfMagmaWithOne(M) A

is a list gens of elements of the magma-with-one M that generates M as a magma-with-one, that is, the
closure of gens under multiplication and One (see 30.10.2) is M.

GeneratorsOfMagmaWithInverses(M) A

is a list gens of elements of the magma-with-inverses M that generates M as a magma-with-inverses, that
is, the closure of gens under multiplication and taking inverses (see 30.10.8) is M.

Centralizer(M, elm) O
Centralizer(M, S) (@)
Centralizer(class) O

For an element elm of the magma M this operation returns the centralizer of elm. This is the domain of
those elements m € M that commute with elm.

For a submagma S it returns the domain of those elements that commute with all elements s of S.

If class is a class of objects of a magma (this magma then is stored as the ActingDomain of class) such
as given by ConjugacyClass (see 37.9.1), Centralizer returns the centralizer of Representative (class)
(which is a slight abuse of the notation).

6>

i d

>

10 »

11»

12»

312 Chapter 33. Magmas

gap> g:=Group((1,2,3,4),(1,2));;

gap> Centralizer(g,(1,2,3));

Group([(1,2,3) 1)

gap> Centralizer(g,Subgroup(g, [(1,2,3)]1));
Group([(1,2,3) 1)

gap> Centralizer (g,Subgroup(g, [(1,2,3),(1,2)1));

Group(())
Centre(M) A
Center(M) A

Centre returns the centre of the magma M, i.e., the domain of those elements m € M that commute with
all elements of M. Center is just a synonym for Centre.

We have Centre(M) = Centralizer(M, M), see 33.4.4.

The centre of a magma is always commutative (see 33.4.9). (When one installs a new method for Centre,
one should set the IsCommutative value of the result to true, in order to make this information available.)

Idempotents(M) A
The set of elements of M which are their own squares.
IsAssociative(M) P

A magma M is associative if for all elements a, b, ¢ € M the equality (a * b) * ¢ = a * (b * ¢)
holds.

An associative magma is called a semigroup (see 49), an associative magma-with-one is called a monoid
(see 50), and an associative magma-with-inverses is called a group (see 37).

IsCentral(M, obj) O

IsCentral returns true if the object 0bj, which must either be an element or a magma, commutes with all
elements in the magma M.

IsCommutative(M) P
IsAbelian(M) P

A magma M is commutative if for all elements a, b € M the equality a * b = b * @ holds. IsAbelian
is a synonym of IsCommutative.

Note that the commutativity of the addition + in an additive structure can be tested with IsAdditively-
Commutative, see 53.3.1.

MultiplicativeNeutralElement(M) A

returns the element e in the magma M with the property that e * m = m = m * e holds for all m €
M, if such an element exists. Otherwise fail is returned.

A magma that is not a magma-with-one can have a multiplicative neutral element e; in this case, e cannot
be obtained as One(M), see 30.10.2.

MultiplicativeZero(M) A

Returns the multiplicative zero of the magma which is the element z such that for all m in M, z * m = m
x 2 = z.

IsMultiplicativeZero(M, z) 0]

returns true iff z * m = m * z = z for all m in M.

13»

14 »

Section 4. Attributes and Properties for Magmas 313

SquareRoots(M, elm) O

is the proper set of all elements r in the magma M such that » * r = elm holds.

TrivialSubmagmaWithOne(M) A

is the magma-with-one that has the identity of the magma-with-one M as only element.

Note that IsAssociative and IsCommutative always refer to the multiplication of a domain. If a magma
M has also an additive structure, e.g., if M is a ring (see 54), then the addition + is always assumed to be
associative and commutative, see 30.12.

1»

Words

This chapter describes categories of words and nonassociative words, and operations for them. For
information about associative words, which occur for example as elements in free groups, see Chapter 35.

34.1 Categories of Words and Nonassociative Words

IsWord(obj) C
IsWordWithOne(obj) C
IsWordWithInverse(o0bj) C

Given a free multiplicative structure M that is freely generated by a subset X, any expression of an element
in M as an iterated product of elements in X is called a word over X.

Interesting cases of free multiplicative structures are those of free semigroups, free monoids, and free groups,
where the multiplication is associative (see 33.4.7), which are described in Chapter 35, and also the case of
free magmas, where the multiplication is nonassociative (see 34.1.3).

Elements in free magmas (see 34.4.1) lie in the category IsWord; similarly, elements in free magmas-with-one
(see 34.4.2) lie in the category IsWordWithOne, and so on.

IsWord is mainly a “common roof” for the two disjoint categories IsAssocWord (see 35.1.1) and IsNonas-
socWord (see 34.1.3) of associative and nonassociative words. This means that associative words are not
regarded as special cases of nonassociative words. The main reason for this setup is that we are interested
in different external representations for associative and nonassociative words (see 34.5 and 35.7).

Note that elements in finitely presented groups and also elements in polycyclic groups in GAP are not in
IsWord although they are usually called words, see Chapters 45 and 44.

Words are constants (see 12.6), that is, they are not copyable and not mutable.

The usual way to create words is to form them as products of known words, starting from generators of a
free structure such as a free magma or a free group (see 34.4.1, 35.2.1).

Words are also used to implement free algebras, in the same way as group elements are used to implement
group algebras (see 60.2 and Chapter 63).

gap> m:= FreeMagmaWithOne(2);; gens:= GeneratorsOfMagmaWithOne(m);
[x1, x2 1]
gap> wl:= gens[1] * gens[2] * gens[1];

((x1*x2)*x1)

gap> w2:= gens[1] * (gens[2] * gens[1]);

(x1*(x2*x1))

gap> wl = w2; IsAssociative(m);

false

false

gap> IsWord(wl); IsAssocWord(wl); IsNonassocWord(wil);
true

false

2>

Section 1. Categories of Words and Nonassociative Words 315

true

gap> s:= FreeMonoid(2);; gens:= GeneratorsOfMagmaWithOne(s);
[m1, m2]

gap> ul:= (gens[1] * gens[2]) * gens[1];

ml*m2*ml

gap> u2:= gens[1] * (gens[2] * gens[1]);

ml*m2*ml

gap> ul = u2; IsAssociative(s);

true

true

gap> IsWord(ul); IsAssocWord(ul); IsNonassocWord(ul);
true

true

false

gap> a:= (1,2,3);; b:= (1,2);;

gap> w:= a*b*a;; IsWord(w);

false

IsWordCollection(obj) C

IsWordCollection is the collections category (see 28.1.4) of IsWord.

gap> IsWordCollection(m); IsWordCollection(s);
true

true

gap> IsWordCollection(["a", "b" 1);

false

IsNonassocWord(obj) C
IsNonassocWordWithOne(obj) C

A nonassociative word in GAP is an element in a free magma or a free magma-with-one (see 34.4).

The default methods for ViewObj and PrintObj (see 6.2) show nonassociative words as products of letters,
where the succession of multiplications is determined by round brackets.

In this sense each nonassociative word describes a “program” to form a product of generators. (Also asso-
ciative words can be interpreted as such programs, except that the exact succession of multiplications is not
prescribed due to the associativity.) The function MappedWord (see 34.3.1) implements a way to apply such
a program. A more general way is provided by straight line programs (see 35.8).

Note that associative words (see Chapter 35) are not regarded as special cases of nonassociative words
(see 34.1.1).

IsNonassocWordCollection(obj) C
IsNonassocWordWithOneCollection(obj) C

IsNonassocWordCollection is the collections category (see 28.1.4) of IsNonassocWord, and IsNonassoc-
WordWithOneCollection is the collections category of IsNonassocWordWithOne.

1»

2

1»

316 Chapter 34. Words

34.2 Comparison of Words
wl = w2

Two words are equal if and only if they are words over the same alphabet and with equal external represen-
tations (see 34.5 and 35.7). For nonassociative words, the latter means that the words arise from the letters
of the alphabet by the same sequence of multiplications.

wl < w2

Words are ordered according to their external representation. More precisely, two words can be compared
if they are words over the same alphabet, and the word with smaller external representation is smaller. For
nonassociative words, the ordering is defined in 34.5; associative words are ordered by the shortlex ordering
via < (see 35.7).

Note that the alphabet of a word is determined by its family (see 13.1), and that the result of each call
to FreeMagma, FreeGroup etc. consists of words over a new alphabet. In particular, there is no “universal”
empty word, every families of words in IsWordWithOne has its own empty word.

gap> m:= FreeMagma("a", "b");;
gap> x:= FreeMagma("a", "b");;
gap> mgens:= GeneratorsOfMagma(m);
[a, b]

gap> xgens:= Generators0fMagma(x);
[a, b]

gap> a:= mgens[1];; b:= mgens[2];;
gap> a = xgens[1];

false

gap> ax(axa) = (a*xa)*a; a*b = b*a; a*a = axa;
false

false

true

gap> a < b; b < a; a < axb;

true

false

true

34.3 Operations for Words

Two words can be multiplied via * only if they are words over the same alphabet (see 34.2).
MappedWord(w, gens, imgs) O

MappedWord returns the object that is obtained by replacing each occurrence in the word w of a generator
in the list gens by the corresponding object in the list imgs. The lists gens and imgs must of course have
the same length.

MappedWord needs to do some preprocessing to get internal generator numbers etc. When mapping many
(several thousand) words, an explicit loop over the words syllables might be faster.

(For example, If the elements in imgs are all associative words (see Chapter 35) in the same family as
the elements in gens, and some of them are equal to the corresponding generators in gens, then those may
be omitted from gens and imgs. In this situation, the special case that the lists gens and imgs have only
length 1 is handled more efficiently by EliminatedWord (see 35.4.6).)

vVvyvVvyVvyy

vyvyVvyVvyy

Section 4. Free Magmas 317

gap> m:= FreeMagma("a", "b");; gens:= GeneratorsOfMagma(m);;

gap> a:= gens[1]; b:= gens[2];
a

b

gap> w:= (a*b)*((b*a)*a)*b;

(((axb) *((b*a)*a))*b)

gap> MappedWord(w, gens, [(1,2), (1,2,3,4) 1);
(2,4,3)

gap> a:= (1,2);; b:= (1,2,3,4);; (axb)*((b*xa)*a)*b;
(2,4,3)

gap> f:= FreeGroup("a", "b");;

gap> a:= Generators0fGroup(f) [1];; b:= GeneratorsOfGroup(f) [2];;
gap> w:= a"bxb*a~2/b"4x*a;

a”bxbxa”2*b"-4x*a

gap> MappedWord(w, [a, b1, [(1,2), (1,2,3,4) 1);

(1,3,4,2)

gap> (1,2)75%(1,2,3,4)*(1,2)°2/(1,2,3,4)"4x(1,2);

(1,3,4,2)

gap> MappedWord(w, [a1, [a"2 1);

a~10*bxa”4*xb~-4*xa”2

34.4 Free Magmas

The easiest way to create a family of words is to construct the free object generated by these words. Each
such free object defines a unique alphabet, and its generators are simply the words of length one over this
alphabet; These generators can be accessed via GeneratorsOfMagma in the case of a free magma, and via
GeneratorsOfMagmaWithOne in the case of a free magma-with-one.

FreeMagma(rank)

FreeMagma(rank, name)
FreeMagma(namel, name2, ...)
FreeMagma(names)

FreeMagma(infinity, name, init)

eSS Biesles Mes|

Called in the first form, FreeMagma returns a free magma on rank generators. Called in the second form,
FreeMagma returns a free magma on rank generators, printed as namel, name2 etc., that is, each name is
the concatenation of the string name and an integer from 1 to range. Called in the third form, FreeMagma
returns a free magma on as many generators as arguments, printed as namel, name2 etc. Called in the
fourth form, FreeMagma returns a free magma on as many generators as the length of the list names, the
i-th generator being printed as names[i]. Called in the fifth form, FreeMagma returns a free magma on
infinitely many generators, where the first generators are printed by the names in the list init, and the other
generators by name and an appended number.

FreeMagmaWithOne (rank)
FreeMagmaWithOne(rank, name)
FreeMagmaWithOne(namel, name2, ...)
FreeMagmaWithOne(names)
FreeMagmaWithOne(infinity, name, init)

eSS liesMeslies

Called in the first form, FreeMagmaWithOne returns a free magma-with-one on rank generators. Called in
the second form, FreeMagmaWithOne returns a free magma-with-one on rank generators, printed as namel,
name?2 etc. Called in the third form, FreeMagmaWithOne returns a free magma-with-one on as many gen-
erators as arguments, printed as namel, name2 etc. Called in the fourth form, FreeMagmaWithOne returns

318 Chapter 34. Words

a free magma-with-one on as many generators as the length of the list names, the i-th generator being
printed as names[i]. Called in the fifth form, FreeMagmaWithOne returns a free magma on infinitely many
generators, where the first generators are printed by the names in the list init, and the other generators by
name and an appended number.

gap> FreeMagma(3);

<free magma on the generators [x1, x2, x3 1>
gap> FreeMagma("a", "b");

<free magma on the generators [a, b 1>

gap> FreeMagma(infinity);

<free magma with infinity generators>

gap> FreeMagmaWithOne(3);

<free magma-with-one on the generators [x1, x2, x3 1>
gap> FreeMagmaWithOne("a", "b");

<free magma-with-one on the generators [a, b 1>
gap> FreeMagmaWithOne(infinity);

<free magma-with-one with infinity generators>

Remember that the names of generators used for printing do not necessarily distinguish letters of the
alphabet; so it is possible to create arbitrarily weird situations by choosing strange letter names.

gap> m:= FreeMagma("x", "x"); gens:= GeneratorsOfMagma(m);;
<free magma on the generators [x, x 1>

gap> gens[1] = gens[2];

false

34.5 External Representation for Nonassociative Words

The external representation of nonassociative words is defined as follows. The i-th generator of the family of
elements in question has external representation 4, the identity (if exists) has external representation 0, the
inverse of the i-th generator (if exists) has external representation —i. If v and w are nonassociative words
with external representations e, and e,, respectively then the product v * w has external representation
[ey, €w]- So the external representation of any nonassociative word is either an integer or a nested list of
integers and lists, where each list has length two.

One can create a nonassociative word from a family of words and the external representation of a nonasso-
ciative word using ObjByExtRep.

gap> m:= FreeMagma(2);; gens:= GeneratorsOfMagma(m);
[x1, x2 1]

gap> w:= (gens[1] * gens[2]) * gens[1];
((x1*x2)*x1)

gap> ExtRep0f0bj(w); ExtRep0f0bj(gens([1]);
[rt1,21,11

1

gap> ExtRep0f0bj(wkw);

tfrf1,21,11, 001,271,171

gap> 0ObjByExtRep(FamilyObj(w), 2);

x2

gap> ObjByExtRep(FamilyObj(w), [1, [2, 111);
(x1*(x2*x1))

v

3 5 Associative Words

35.1 Categories of Associative Words

Associative words are used to represent elements in free groups, semigroups and monoids in GAP (see 35.2).
An associative word is just a sequence of letters, where each letter is an element of an alphabet (in the
following called a generator) or its inverse. Associative words can be multiplied; in free monoids also the
computation of an identity is permitted, in free groups also the computation of inverses (see 35.4).

IsAssocWord(obj) C
IsAssocWordWithOne(obj) C
IsAssocWordWithInverse(obj) C

IsAssocWord is the category of associative words in free semigroups, IsAssocWordWithOne is the category
of associative words in free monoids (which admit the operation One to compute an identity), IsAssocWord-
WithInverse is the category of associative words in free groups (which have an inverse). See 34.1.1 for more
general categories of words.

Different alphabets correspond to different families of associative words. There is no relation whatsoever
between words in different families.

gap> f:= FreeGroup("a", "b", "c");

<free group on the generators [a, b, ¢]>

gap> gens:= GeneratorsO0fGroup(f);

[a, b, c]

gap> w:= gens[1]*gens[2]/gens[3]*gens[2] *gens[1]/gens[1]*gens[3]/gens[2];
axbxc~-1xb*c*b”~-1

gap> w -1;

b*c™-1%b"-1*cxb"-1xa"-1

Words are displayed as products of letters. The letters are usually printed like £1, £2, ..., but it is possible
to give user defined names to them, which can be arbitrary strings. These names do not necessarily identify
a unique letter (generator), it is possible to have several letters —even in the same family— that are displayed
in the same way. Note also that there is no relation between the names of letters and variable
names. In the example above, we might have typed

gap> a:= f.1;; b:= £.2;; c:= £.3;;
(Interactively, the function AssignGeneratorVariables (see 35.2.5) provides a shorthand for this.) This
allows us to define w more conveniently:

gap> w := axb/cxbxa/a*c/b;

a*b*c -1xb*c*b”-1

Using homomorphisms it is possible to express elements of a group as words in terms of generators, see 37.5.

vyvyVvyVvVyy

2>

vvyvyVvyy

vvyyvyVvVvyy

320 Chapter 35. Associative Words

35.2 Free Groups, Monoids and Semigroups

Usually a family of associative words will be generated by constructing the free object generated by them.

FreeGroup([wfilt, Jrank)

FreeGroup([wfilt, Jrank, name)
FreeGroup([wfilt, 1namel, name2, ...)
FreeGroup([wfilt, Jnames)

FreeGroup([wfilt, Jinfinity, name, init)

eSS liesMes les

Called in the first form, FreeGroup returns a free group on rank generators. Called in the second form,
FreeGroup returns a free group on rank generators, printed as namel, name2 etc. Called in the third form,
FreeGroup returns a free group on as many generators as arguments, printed as namel, name2 etc. Called
in the fourth form, FreeGroup returns a free group on as many generators as the length of the list names,
the i-th generator being printed as names[i]. Called in the fifth form, FreeGroup returns a free group on
infinitely many generators, where the first generators are printed by the names in the list init, and the other
generators by name and an appended number.

If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.

IsFreeGroup(obj) C

Any group consisting of elements in IsAssocWordWithInverse lies in the filter IsFreeGroup; this holds in
particular for any group created with FreeGroup (see 35.2.1), or any subgroup of such a group.

Also see Chapter 45.

FreeMonoid([wfilt, lrank)

FreeMonoid([wfilt, Jrank, name)
FreeMonoid([wfilt, Jnamel, name2, ...)
FreeMonoid([wfilt, 1names)

FreeMonoid([wfilt, linfinity, name, init)

e BesBieoles Mes|

Called in the first form, FreeMonoid returns a free monoid on rank generators. Called in the second form,
FreeMonoid returns a free monoid on rank generators, printed as namel, name?2 etc., that is, each name is
the concatenation of the string name and an integer from 1 to range. Called in the third form, FreeMonoid
returns a free monoid on as many generators as arguments, printed as namel, name2 etc. Called in the
fourth form, FreeMonoid returns a free monoid on as many generators as the length of the list names, the
i-th generator being printed as names[i]. Called in the fifth form, FreeMonoid returns a free monoid on
infinitely many generators, where the first generators are printed by the names in the list init, and the other
generators by name and an appended number.

If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.

Also see Chapter 50.

FreeSemigroup([wfilt, 1rank)

FreeSemigroup([wfilt, Irank, name)
FreeSemigroup([wfilt, Jnamel, name2, ...)
FreeSemigroup([wfilt, 1names)
FreeSemigroup([wfilt, linfinity, name, init)

e es eolies Mes|

Called in the first form, FreeSemigroup returns a free semigroup on rank generators. Called in the second
form, FreeSemigroup returns a free semigroup on rank generators, printed as namel, name2 etc., that is,

Section 2. Free Groups, Monoids and Semigroups 321

each name is the concatenation of the string name and an integer from 1 to range. Called in the third form,
FreeSemigroup returns a free semigroup on as many generators as arguments, printed as namel, name2
etc. Called in the fourth form, FreeSemigroup returns a free semigroup on as many generators as the length
of the list names, the i-th generator being printed as names[i]. Called in the fifth form, FreeSemigroup
returns a free semigroup on infinitely many generators, where the first generators are printed by the names
in the list init, and the other generators by name and an appended number.

If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.

Also see Chapter 49 and 49.

Each free object defines a unique alphabet (and a unique family of words). Its generators are the letters of
this alphabet, thus words of length one.

gap> FreeGroup(5);

<free group on the generators [f1, f2, £3, f4, £f5 1>

gap> FreeGroup("a", "b");

<free group on the generators [a, b 1>

gap> FreeGroup(infinity);

<free group with infinity generators>

gap> FreeSemigroup("x", "y");

<free semigroup on the generators [x, y 1>

gap> FreeMonoid(7);

<free monoid on the generators [ml, m2, m3, m4, m5, m6, m7 1>

Remember that names are just a help for printing and do not necessarily distinguish letters. It is possible
to create arbitrarily weird situations by choosing strange names for the letters.

gap> f:= FreeGroup("x", "x"); gens:= GeneratorsOfGroup(f);;
<free group on the generators [x, x]>

gap> gens[1] = gens[2];

false

gap> f:= FreeGroup("fixf2", "f2°-1", "Group([f1, £f2])");
<free group on the generators [fi1xf2, £2°-1, Group([f1, £f2 1) 1>
gap> gens:= GeneratorsOfGroup(f);;

gap> gens[1]*gens[2];

f1x£2xf27-1

gap> gens[1]/gens[3];

f1*£2xGroup([£f1, f2 1)~-1

gap> gens[3]/gens[1]/gens[2];

Group([f1, £2])*f1xf2"-1xf27-1"-1

5» AssignGeneratorVariables(G) F

If G is a group, whose generators are represented by symbols (for example a free group, a finitely presented
group or a pc group) this function assigns these generators to global variables with the same names.

The aim of this function to make it easy in interactive use to work with (for example) a free group. It is a
shorthand for a sequence of assignments of the form

gap> varl:=Generators0fGroup(G) [1];
gap> var2:=Generators0fGroup(G) [2];

gap> varn:=Generators0fGroup(G) [n];

However, since overwriting global variables can be very dangerous, it is not permitted to use this
function within a function. (If — despite this warning — this is done, the result is undefined.)

1»

2»

3>

4»

322 Chapter 35. Associative Words

If the assignment overwrites existing variables a warning is given, if any of the variables if write protected,
or any of the generator names would not be a proper variable name, an error is raised.

35.3 Comparison of Associative Words
wl = w2

Two associative words are equal if they are words over the same alphabet and if they are sequences of the
same letters. This is equivalent to saying that the external representations of the words are equal, see 35.7
and 34.2.

There is no “universal” empty word, every alphabet (that is, every family of words) has its own empty word.

gap> f:= FreeGroup("a", "b", "b");;
gap> gens:= Generators0fGroup(f);

[a, b, b]
gap> gens[2] = gens[3];
false
gap> x:= gens[1]+*gens[2];
ax*b
gap> y:= gens[2]/gens[2]*gens[1]*gens[2];
ax*b
gap> X = y;
true
gap> z:= gens[2]/gens[2]*gens[1]*gens[3];
ax*b
gap> x = z;
false
wl < w2

The ordering of associative words is defined by length and lexicography (this ordering is called short-lex
ordering), that is, shorter words are smaller than longer words, and words of the same length are compared
w.r.t. the lexicographical ordering induced by the ordering of generators. Generators are sorted according
to the order in which they were created. If the generators are invertible then each generator ¢ is larger than
its inverse ¢~-1, and ¢~-1 is larger than every generator that is smaller than g.

gap> f:= FreeGroup(2);; gens:= Generators0fGroup(f);;

gap> a:= gens[1];; b:= gens[2];;

gap> One(f) < a™-1; a"-1 < a; a<b’-1; Db™-1 < b; b < a’2; a2 < ax*b;
true

true

true
true
true
true

IsShortLexLessThanOrEqual(u, v) F

returns IsLessThanOrEqualUnder(ord, w, v) where ord is the short less ordering for the family of u and
v. (This is here for compatibility with GAP 4.2.)

IsBasicWreathLessThanOrEqual(w, v) F

returns IsLessThanOrEqualUnder(ord, w, v) where ord is the basic wreath product ordering for the
family of u and v. (This is here for compatibility with GAP 4.2.)

1»

2»

3>

4»

Section 4. Operations for Associative Words 323

35.4 Operations for Associative Words

The product of two given associative words is defined as the freely reduced concatenation of the words;
so adjacent pairs of a generator and its inverse never occur in words. Besides the multiplication *, the
arithmetical operators One (if the word lies in a family with identity) and (if the generators are invertible)
Inverse, /,, Comm, and LeftQuotient are applicable to associative words (see 30.12).

For the operation MappedWord, which is applicable to arbitrary words, see 34.3.1.

There are two internal representations of associative words: By letters and by syllables (see 35.6). Unless
something else is specified, words are stored in the letter representation. Note, however, that operations to
extract or act on parts of words (letter or syllables) can carry substantially different costs, depending on the
representation the words are in.

Length(w) A

For an associative word w, Length returns the number of letters in w.

gap> f := FreeGroup("a","b");; gens := Generators0fGroup(f);;
gap> a := gens[1];; b := gens[2];;w := a~b*b*a"2*b"-4x*a;;
gap> w; Length(w); Length(a”17); Length(w™0);
a”~bxbxa”2%b"-4x*a

13

17

0

ExponentSumWord(w, gen) Q)

For an associative word w and a generator gen, ExponentSumWord returns the number of times gen appears
in w minus the number of times its inverse appears in w. If both gen and its inverse do not occur in w then
0 is returned. gen may also be the inverse of a generator.

gap> w; ExponentSumWord(w, a); ExponentSumWord(w, b);
a"5*b*a"2xb"-4*a

8

-3

gap> ExponentSumWord((axb*a”-1)"3, a); ExponentSumWord(w, b™-1);
0

3

Subword(w, from, to) O

For an associative word w and two positive integers from and to, Subword returns the subword of w that
begins at position from and ends at position to. Indexing is done with origin 1.

gap> w; Subword(w, 3, 7);

a"b*b*a"2xb"-4%*a
a”3*b*a

PositionWord(w, sub, from) O

Let w and sub be associative words, and from a positive integer. PositionWord returns the position of the
first occurrence of sub as a subword of w, starting at position from. If there is no such occurrence, fail is
returned. Indexing is done with origin 1.

In other words, PositionWord(w, sub, from) is the smallest integer i larger than or equal to from such
that Subword(w, ¢, i+Length(sub)-1) = sub, see 35.4.3.

5p
>

6>

1»

324 Chapter 35. Associative Words

gap> w; PositionWord(w, a/b, 1);
a”~5xb*a~2*%b"-4x*a

8

gap> Subword(w, 8, 9);

a*b~-1

gap> PositionWord(w, a~2, 1);

1

gap> PositionWord(w, a"2, 2);

2

gap> PositionWord(w, a"2, 6);

7

gap> PositionWord(w, a"2, 8);

fail
SubstitutedWord(w, from, to, by) O
SubstitutedWord(w, sub, from, by) O

Let w be an associative word.

In the first form, SubstitutedWord returns the associative word obtained by replacing the subword of w
that begins at position from and ends at position to by the associative word by. from and to must be
positive integers, indexing is done with origin 1. In other words, SubstitutedWord(w, from, to, by)
is the product of the three words Subword(w, 1, from-1), by, and Subword(w, to+l, Length(w)
), see 35.4.3.

In the second form, SubstitutedWord returns the associative word obtained by replacing the first occurrence
of the associative word sub of w, starting at position from, by the associative word by; if there is no such
occurrence, fail is returned.

gap> w; SubstitutedWord(w, 3, 7, a~19);
a“5*b*a"2xb"-4x*a

a~22xb"-4x*a

gap> SubstitutedWord(w, a, 6, b"7);
a"“bxb~8*a*xb"-4*a

gap> SubstitutedWord(w, axb, 6, b7);
fail

EliminatedWord(w, gen, by) O

For an associative word w, a generator gem, and an associative word by, EliminatedWord returns the
associative word obtained by replacing each occurrence of gen in w by by.

gap> w; EliminatedWord(w, a, a"2); EliminatedWord(w, a, b"™-1);
a~bxb*xa~2%b"-4*a

a”~10xb*xa~4xb~-4%a”2

b™-11

35.5 Operations for Associative Words by their Syllables

For an associative word w = 2" z,? - - - 2;* over an alphabet containing i, 2, ..., z;, such that z; # xzf_ll for

1 <4 < k-1, the subwords z;" are uniquely determined; these powers of generators are called the syllables
of w.

NumberSyllables(w) A

NumberSyllables returns the number of syllables of the associative word w.

2»

3>

4»

1»

2»

Section 6. Representations for Associative Words 325

ExponentSyllable(w, i) O

ExponentSyllable returns the exponent of the i-th syllable of the associative word w.

GeneratorSyllable(w, %) O

GeneratorSyllable returns the number of the generator that is involved in the i-th syllable of the associative
word w.

SubSyllables(w, from, to) O

SubSyllables returns the subword of the associative word w that consists of the syllables from positions
from to to, where from and to must be positive integers, and indexing is done with origin 1.

gap> w; NumberSyllables(w);
a"b*xb*a"2xb"-4*a

5

gap> ExponentSyllable(w, 3);
2

gap> GeneratorSyllable(w, 3);
1

gap> SubSyllables(w, 2, 3);
b*a~2

There are two internal representations of associative words: By letters and by syllables (see 35.6). Unless
something else is specified, words are stored in the letter representation. Note, however, that operations to
extract or act on parts of words (letter or syllables) can carry substantially different costs, depending on the
representation the words are in.

35.6 Representations for Associative Words

GAP provides two different internal kinds of representations of associative words. The first one are “syllable
representations” in which words are stored in syllable (i.e. generator,exponent) form. (Older versions of GAP
only used this representation.) The second kind are “letter representations” in which each letter in a word is
represented by its index number. Negative numbers are used for inverses. Unless the syllable representation
is specified explicitly when creating the free group/monoid or semigroup, a letter representation is used by
default.

Depending on the task in mind, either of these two representations will perform better in time or in memeory
use and algorithms that are syllable or letter absed (for example GeneratorSyllable and Subword) perform
substantially better in the corresponding representation. For example when creating pc groups (see 44), it
is advantageous to use a syllable representation while calculations in free groups usually benefit from using
a letter representation.

IsLetterAssocWordRep(obj) R

A word in letter representation stores a list of generator/inverses numbers (as given by LetterRepAssoc-
Word). Letter access is fast, syllable access is slow for such words.

IsLetterWordsFamily(obj) C

A letter word family stores words by default in letter form.

Internally, there are letter representations that use integers (4 Byte) to represent a generator and letter
representations that use single bytes to represent a character. The latter are more memory efficient, but can
only be used if there are less than 128 generators (in which case they are used by default).

3>

5»

6»

9g»

326 Chapter 35. Associative Words

IsBLetterAssocWordRep(obj) R
IsWLetterAssocWordRep(obj) R

these two subrepresentations of IsLetterAssocWordRep indicate whether the word is stored as a list of bytes
(in a string) or as a list of integers)

IsBLetterWordsFamily (obj) C
IsWLetterWordsFamily(obj) C

These two subcategories of IsLetterWordsFamily specify the type of letter representation to be used.
IsSyllableAssocWordRep(obj) R

A word in syllable representation stores generator/exponents pairs (as given by ExtRep0£f0bj. Syllable access
is fast, letter access is slow for such words.

IsSyllableWordsFamily(obj) C

A syllable word family stores words by default in syllable form.

There are also different versions of syllable representations, which compress a generator exponent pair in
8,16 or 32 bits or use a pair of integers. Internal mechanisms try to make this as memory efficient as possible.

Is8BitsFamily(obj)

Is16BitsFamily(obj)
Is32BitsFamily(obj)
IsInfBitsFamily(obj)

Qaaa

Regardless of the internal representation used, it is possible to convert a word in a list of numbers in letter
or syllable representation and vice versa:

LetterRepAssocWord(w) Q)
LetterRepAssocWord(w, gens) O

The letter representation of an associated word is as a list of integers, each entry corresponding to a
group generator. Inverses of the generators are represented by negative numbers. The generator numbers
are as associated to the family.

This operation returns the letter representation of the associative word w.
In the second variant, the generator numbers correspond to the generator order given in the list gens.

(For words stored in syllable form the letter representation has to be comnputed.)
AssocWordByLetterRep(Fam, Ilrep [, gens]) O

takes a letter representation lrep (see LetterRepAssocWord, section 35.6.8) and returns an associative word
in family fam. corresponding to this letter representation.

If gens is given, the numbers in the letter rerpresentation correspond to gens.
gap> w:=AssocWordByLetterRep(FamilyObj(a), [-1,2,1,-2,-2,-2,1,1,1,1]);
a”-1xbxa*xb~-3*a”~4
gap> LetterRepAssocWord(w™2);
[-1, 2,1, -2, -2, -2, 1, 1,1, 2,1, -2, -2, -2, 1, 1, 1, 1]

The external representation (see section 35.7) can be used if a syllable representation is needed.

1»

2»

vy

Section 8. Straight Line Programs 327

35.7 The External Representation for Associative Words

The external representation of the associative word w is defined as follows. If w = g;' * g * -+~ x g;* is a

word over the alphabet g1, g2, ..., i.e., g; denotes the i-th generator of the family of w, then w has external
representation [i, €1, 42, €2, . . ., i, €;]. The empty list describes the identity element (if exists) of the family.
Exponents may be negative if the family allows inverses. The external representation of an associative word
is guaranteed to be freely reduced; for example, g1 * g2 * g5 1'% g1 has the external representation [1, 2 1.

Regardless of the family preference for letter or syllable representations (see 35.6), ExtRep0f0bj and Ob-
jByExtRep can be used and interface to this “syllable”-like representation.

gap> w:= 0bjByExtRep(FamilyObj(a), [1,5,2,-7,1,3,2,4,1,-2]);
a"bxb"-7*xa"3%b"4*xa”"-2

gap> ExtRep0f0bj(w™2);

[1, 5,2, -7, 1, 3,2, 4,1, 3,2, -7,1, 3, 2,4, 1, -21]

35.8 Straight Line Programs

Straight line programs describe an efficient way for evaluating an abstract word at concrete generators,
in a more efficient way than with MappedWord (see 34.3.1). For example, the associative word ababbab of
length 7 can be computed from the generators a, b with only four multiplications, by first computing ¢ = ab,
then d = ¢b, and then cdc; Alternatively, one can compute ¢ = ab, e = be, and aee. In each step of these
computations, one forms words in terms of the words computed in the previous steps.

A straight line program in GAP is represented by an object in the category IsStraightLineProgram
(see 35.8.1) that stores a list of “lines” each of which has one of the following three forms.

1. a nonempty dense list [of integers,

2. a pair [I,4] where [is a list of form 1. and ¢ is a positive integer,

3. alist [h, ko, ..., l;] where each [; is a list of form 1.; this may occur only for the last line of the program.

The lists of integers that occur are interpreted as external representations of associative words (see 35.7);
for example, the list [1, 3,2, —1] represents the word g¢; g, ! with g; and gy the first and second abstract
generator, respectively.

Straight line programs can be constructed using StraightLineProgram (see 35.8.2).

Defining attributes for straight line programs are NrInputsOfStraightLineProgram (see 35.8.4) and Line-
sO0fStraightLineProgram (see 35.8.3). Another operation for straight line programs is Result0fStraight-
LineProgram (see 35.8.5).

Special methods applicable to straight line programs are installed for the operations Display, IsInternal-
lyConsistent, Print0bj, and ViewObj.

For a straight line program prog, the default Display method prints the interpretation of prog as a sequence
of assignments of associative words; a record with components gensnames (with value a list of strings) and
listname (a string) may be entered as second argument of Display, in this case these names are used, the
default for gensnames is [gl1,g2,...], the default for 1istname is 7.

IsStraightLineProgram(obj) C
Each straight line program in GAP lies in the category IsStraightLineProgram.

StraightLineProgram(lines[, nrgens])
StraightLineProgram(string, gens)
StraightLineProgramNC(lines[, nrgens])
StraightLineProgramNC(string, gens)

0 ==Y

In the first form, lines must be a list of lists that defines a unique straight line program (see 35.8.1); in this
case StraightLineProgram returns this program, otherwise an error is signalled. The optional argument

3>

4»

5»

328 Chapter 35. Associative Words

nrgens specifies the number of input generators of the program; if a line of form 1. (that is, a list of integers)
occurs in lines except in the last position, this number is not determined by lines and therefore must be
specified by the argument nrgens; if not then StraightLineProgram returns fail.

In the second form, string must be a string describing an arithmetic expression in terms of the strings in the
list gens, where multiplication is denoted by concatenation, powering is denoted by ~, and round brackets
(,) may be used. Each entry in gens must consist only of (uppercase or lowercase) letters (i.e., letters
in IsAlphaChar, see 26.3.4) such that no entry is an initial part of another one. Called with this input,
StraightLineProgramNC returns a straight line program that evaluates to the word corresponding to string
when called with generators corresponding to gens.

StraightLineProgramNC does the same as StraightLineProgram, except that the internal consistency of
the program is not checked.

LinesOfStraightLineProgram(prog) A

For a straight line program prog, Lines0fStraightLineProgram returns the list of program lines. There is
no default method to compute these lines if they are not stored.

NrInputs0OfStraightLineProgram(prog) A

For a straight line program prog, NrInputsOfStraightLineProgram returns the number of generators that
are needed as input.

If a line of form 1. (that is, a list of integers) occurs in the lines of prog except the last line then the number
of generators is not determined by the lines, and must be set in the construction of the straight line program
(see 35.8.2). So if prog contains a line of form 1. other than the last line and does not store the number of
generators then NrInputsOfStraightLineProgram signals an error.

ResultOfStraightLineProgram(prog, gens) O

Result0fStraightLineProgram evaluates the straight line program (see 35.8.1) prog at the group elements
in the list gens.

The result of a straight line program with lines p1, po, ..., pr when applied to gens is defined as follows.

(a) First a list r of intermediate results is initialized with a shallow copy of gens.

(b) For i < k, before the i-th step, let r be of length n. If p; is the external representation of an associative
word in the first n generators then the image of this word under the homomorphism that is given by
mapping r to these first n generators is added to r; if p; is a pair [[, j], for a list /, then the same element
is computed, but instead of being added to r, it replaces the j-th entry of r.

(¢) For i = k, if py is the external representation of an associative word then the element described in (b)
is the result of the program, if py is a pair [I,j], for a list [, then the result is the element described
by I, and if py, is a list [k, b, ..., l] of lists then the result is a list of group elements, where each I; is
treated as in (b).

Here are some examples.

gap> f:= FreeGroup("x", "y");; gens:= Generators0fGroup(f);;
gap> x:= gens[1];; y:= gens[2];;

gap> prg:= StraightLineProgram([[]]);

<straight line program>

gap> ResultOfStraightLineProgram(prg, []1);

L1

The above straight line program prg returns —for any list of input generators— an empty list.

Section 8. Straight Line Programs 329

gap> StraightLineProgram([[1,2,2,3], [3,-1]]);

fail

gap> prg:= StraightLineProgram([[1,2,2,3], [3,-1]1 1, 2);
<straight line program>

gap> LinesO0fStraightLineProgram(prg);
(r1,2,2,31,[3,-111

gap> prg:= StraightLineProgram("(a"2b~3)"-1", ["a", "b"]);
<straight line program>

gap> LinesOfStraightLineProgram(prg);
(rrrf1,2,2,31,31, [[3,-11,41]1

gap> res:= ResultOfStraightLineProgram(prg, gens);

yT-3%x"-2

gap> res = (x°2 * y~3)°-1;

true

gap> NrInputsOfStraightLineProgram(prg);
2

gap> Print(prg, "\n");

StraightLineProgram([[[1, 2, 2, 31,31, [[3,-11,411,2)
gap> Display(prg);

input:

r:= [gl, g2 1;

program:

r[3]:= r[1]-2*r[2]"3;

r[4]:= r(3]°-1;

return value:

r[4]

gap> IsInternallyConsistent(StraightLineProgramNC([[1,2] 1));
true

gap> IsInternallyConsistent(StraightLineProgramNC([[1,2,3]1 1));
false

gap> prgl:= StraightLineProgram([[1,1,2,2], [3,3,1,1]1 1, 2);;
gap> prg2:= StraightLineProgram([[[1,1,2,2], 21, [2,3,1,1] 1);;
gap> resl:= ResultOfStraightLineProgram(prgl, gens);

XKy T 2%0ky T 2%k XKy T 2%X

gap> resl = (x*y~2) " 3#*x;

true

gap> res2:= ResultOfStraightLineProgram(prg2, gens);

XKy T 2k0ky T2k xky T 2%

gap> res2 = (x*y~2) " 3x*x;

true

gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,11 11, 2);;
gap> res:= ResultOfStraightLineProgram(prg, gens);

[y73*x~4, x"2xy~3]

6» StringOfResultOfStraightLineProgram(prog, gensnames[, "LaTeX"]) F

String0fResult0fStraightLineProgram returns a string that describes the result of the straight line pro-
gram (see 35.8.1) prog as word(s) in terms of the strings in the list gensnames. If the result of prog is a
single element then the return value of StringOfResultOfStraightLineProgram is a string consisting of
the entries of gensnames, opening and closing brackets (and), and powering by integers via ~. If the result
of prog is a list of elements then the return value of String0OfResult0fStraightLineProgram is a comma
separated concatenation of the strings of the single elements, enclosed in square brackets [, 1.

i d

&>

330 Chapter 35. Associative Words

gap> prg:= StraightLineProgram([[1, 2, 2, 31, [3, -1 11, 2);;
gap> StringOfResult0fStraightLineProgram(prg, ["a", "b" 1);
"(a~2b~3)"-1"

gap> StringOfResult0fStraightLineProgram(prg, ["a", "b"], "LaTeX");
"(a~{2}p~ {3} ~{-1}"

CompositionOfStraightLinePrograms(prog2, progl) F

For two straight line programs prog! and prog2, CompositionOfStraightLinePrograms returns a straight
line program prog with the properties that prog! and prog have the same number of inputs, and the result
of prog when applied to given generators gens equals the result of prog2 when this is applied to the output
of progl applied to gens.

(Of course the number of outputs of prog! must be the same as the number of inputs of prog2.)

gap> prgl:= StraightLineProgram("a"2b", ["a","b" 1);;

gap> prg2:= StraightLineProgram("c“5", ["c" 1);;

gap> comp:= CompositionOfStraightLinePrograms(prg2, prgl);
<straight line program>

gap> StringOfResultOfStraightLineProgram(comp, ["a", "b" 1);
"(a"2b) 5"

gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,11 11, 2);;
gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"]);
"[b"3a"4, a™2b~3]"

gap> comp:= CompositionOfStraightLinePrograms(prg, prg);
<straight line program>

gap> StringOfResultOfStraightLineProgram(comp, ["a", "b" 1);
"[(a"2b~3)"3(b"3a"4)"4, (b"3a"4)"2(a"2b"3)"3 1"

IntegratedStraightLineProgram([listofprogs) F

For a nonempty dense list listofprogs of straight line programs that have the same number n, say, of inputs
(see 35.8.4) and for which the results (see 35.8.5) are single elements (i.e., not lists of elements), Integrat-
edStraightLineProgram returns a straight line program prog with n inputs such that for each n-tuple gens
of generators, Result0fStraightLineProgram(prog, gens) is equal to the list List (listofprogs, p —->
ResultOfStraightLineProgram(p, gens).

gap> f:= FreeGroup("x", "y");; gens:= Generators0fGroup(f);;

gap> prgl:= StraightLineProgram([[[1, 271, 1], [1,2, 2, -111, 2);;
gap> prg2:= StraightLineProgram([[[2, 21, 31, [1,3, 3,211, 2);;
gap> prg3:= StraightLineProgram([[2, 21, [1, 3, 3, 211, 2);;

gap> prg:= IntegratedStraightLineProgram([prgl, prg2, prg3 1);;

gap> ResultOfStraightLineProgram(prg, gens);

[x"4xy~-1, x"3*y~4, x"3xy~4]

gap> prg:= IntegratedStraightLineProgram([prg2, prg3, prgl 1);;
gap> ResultOfStraightLineProgram(prg, gens);

[x73%y~4, x"3%xy~4, x"4*xy~-1]

gap> prg:= IntegratedStraightLineProgram([prg3, prgl, prg2]);;
gap> ResultOfStraightLineProgram(prg, gens);

[x"3xy~4, x"4xy~-1, x"3xy~4]

1»

3>

4»

Section 9. Straight Line Program Elements 331

35.9 Straight Line Program Elements

When computing with very large (in terms of memory) elements, for example permutations of degree a
few hundred thousands, it can be helpful (in terms of memory usage) to represent them via straight line
programs in terms of an original generator set. (So every element takes only small extra storage for the
straight line program.)

A straight line program element has a seed (a list of group elements) and a straight line program on the
same number of generators as the length of this seed, its value is the value of the evaluated straight line
program.

At the moment, the entries of the straight line program have to be simple lists (i.e. of the first form).
Straight line program elements are in the same categories and families as the elements of the seed, so they
should work together with existing algorithms.

Note however, that due to the different way of storage some normally very cheap operations (such as testing

for element equality) can become more expensive when dealing with straight line program elements. This is
essentially the tradeoff for using less memory.

IsStraightLineProgElm(obj) R

A straight line program element is a group element given (for memory reasons) as a straight line program.
Straight line program elements are positional objects, the first component is a record with a component
seeds, the second component the straight line program. we need to rank higher than default methods

StraightLineProgElm(seed, prog) F
Creates a straight line program element for seed seed and program prog.
StraightLineProgGens(gens[, base]) F

returns a set of straight line program elements corresponding to the generators in gens. If gens is a set of
permutations then base can be given which must be a base for the group generated by gens. (Such a base
will be used to speed up equality tests.)

EvalStraightLineProgElm(sipel) F
evaluates a straight line program element sipel from its seeds.
StretchImportantSLPElement (elm) O

If elm is a straight line program element whose straight line representation is very long, this operation
changes the representation of elm to a straight line program element, equal to elm, whose seed contains the
evaluation of elm and whose straight line program has length 1.

For other objects nothing happens.

This operation permits to designate “important” elements within an algorithm (elements that wil be referred
to often), which will be represented by guaranteed short straight line program elements.

gap> gens:=StraightLineProgGens([(1,2,3,4),(1,2)]1);

[<C[2,1]111(1,2,3,8)>, <L [1,1]111,2)>]

gap> g:=Group(gens);;

gap> (gens[1]°3)~gens[2];

<L [1, -1,2,3,1,11]1I(,2,4,3)>

gap> Size(g);

24

gap> Random(g) ;

<1, 1,2, -1,1,1,2, -1, 1, -1,2,1,1,1,2,1,1, -1, 2, 2,1, 117,
(3 -2,2, 2,1, -1,2, -2,1,1,2, -1, 3, -2,1, -1, 2, -2, 1
| (1,4,3,2)>

= .

See also Section 41.12.

1»

2»

4»

360

Rewriting systems in GAP are a framework for dealing with the very general task of rewriting elements of a
free (or term) algebra in some normal form. Although most rewriting systems currently in use are string
rewriting systems (where the algebra has only one binary operation which is associative) the framework in
GAP is general enough to encompass the task of rewriting algebras of any signature from groups to semirings.

Rewriting Systems

Rewriting systems are already implemented in GAP for finitely presented semigroups and for pc groups. The
use of these particular rewriting systems is described in the corresponding chapters. We describe here only
the general framework of rewriting systems with a particular emphasis on material which would be helpful
for a developer implementing a rewriting system.

We fix some definitions and terminology for the rest of this chapter. Let T be a term algebra in some
signature. A term rewriting system for 7T is a set of ordered pairs of elements of T of the form (I, 7).
Viewed as a set of relations, the rewriting system determines a presentation for a quotient algebra A of T.

When we take into account the fact that the relations are expressed as ordered pairs, we have a way of
reducing the elements of T. Suppose an element « of T has a subword [and (I,r) is a rule of the rewriting
system, then we can replace the subterm [of u by the term r and obtain a new word v. We say that we
have rewritten u as v. Note that u and v represent the same element of A. If u can not be rewritten using
any rule of the rewriting system we sat that u is reduced.

36.1 Operations on rewriting systems

IsRewritingSystem(obj) C
This is the category in which all rewriting systems lie.

Rules(rws) A

The rules comprising the rewriting system. Note that these may change through the life of the rewriting
system, however they will always be a set of defining relations of the algebra described by the rewriting
system.

OrderOfRewritingSystem(rws) A
OrderingOfRewritingSystem(rws) A

return the ordering of the rewriting system rws.
ReducedForm(rws, u) O

Given an element in the free (or term) algebra over which rws is defined, rewrite u by successive applications
of the rules of rws until no further rewriting is possible, and return the resulting element of T'.

IsConfluent(rws) P
IsConfluent(A) P

return true if and only if the rewriting system rws is confluent. A rewriting system is confluent if, for
every two words u and v in the free algebra T' which represent the same element of the algebra A defined

A

8>

9»

10»

11»

12»

13»

1»

3>

4»

5»

6>

i d

8»

9

10»

11»

12»

13»

Section 2. Operations on elements of the algebra 333

by rws, ReducedForm(rws,u) = ReducedForm(rws,v) as words in the free algebra T. This element is the
unique normal form of the element represented by u.

In its second form, if A is an algebra with a canonical rewriting system associated with it, IsConfluent
checks whether that rewriting system is confluent.

Also see 44.4.7.

ConfluentRws(rws) A
Return a new rewriting system defining the same algebra as rws which is confluent.

IsReduced(rws) P
A rewriting system is reduced if for each rule (I,), [and r are both reduced.

ReduceRules(rws) O
Reduce rules and remove redundant rules to make rws reduced.

AddRule(rws, Tule) 0)
Add rule to a rewriting system rws.
AddRuleReduced(rws, rule) O

Add rule to rewriting system rws. Performs a reduction operation on the resulting system, so that if rws is
reduced it will remain reduced.

MakeConfluent (rws) O
Add rules (and perhaps reduce) in order to make rws confluent

GeneratorsOfRws(rws) A
AddGenerators(rws, gens) 0

36.2 Operations on elements of the algebra

In this section let u denote an element of the term algebra T representing [u/ in the quotient algebra A.
ReducedProduct(rws, w, v) O

The result is w where [w] = [u][v] in A and w is in reduced form.

The remaining operations are defined similarly when they are defined (as determined by the signature of
the term algebra).

ReducedSum(rws, left, right)
ReducedOne(rws)
ReducedAdditiveInverse(rws, obj)
ReducedComm(rws, left, right)
ReducedConjugate(rws, left, right)
ReducedDifference(rws, left, right)
ReducedInverse(rws, obj)
ReducedLeftQuotient (rws, left, right)
ReducedPower (rws, obj, pow)
ReducedQuotient (rws, left, right)

ReducedScalarProduct(rws, left, right)

© O 0O o0 o o o o o o oo

ReducedZero(rws)

1»

2>

3

4»

5»

6>

334 Chapter 36. Rewriting Systems

36.3 Properties of rewriting systems

The following properties may be used to identify the type of term algebra over which the rewriting system
is defined.

IsBuiltFromAdditiveMagmaWithInverses(obj)
IsBuiltFromMagma(obj)
IsBuiltFromMagmaWithOne(obj)
IsBuiltFromMagmaWithInverses(obj)

IsBuiltFromSemigroup(obj)

~ ®™W ™© W T ™

IsBuiltFromGroup(obj)

36.4 Developing rewriting systems

The key point to note about rewriting systems is that they have properties such as IsConfluent and
attributes such as Rules, however they are rarely stored, but rather computed afresh each time they are
asked for, from data stored in the private members of the rewriting system object. This is because a rewriting
system often evolves through a session, starting with some rules which define the algebra A as relations, and
then adding more rules to make the system confluent. For example, in the case of Knuth-Bendix rewriting
systems (see Chapter 51), the function CreateKnuthBendixRewritingSystem creating the rewriting system
(in kbsemi.gi) uses

kbrws := Objectify(NewType(rwsfam,
IsMutable and IsKnuthBendixRewritingSystem and
IsKnuthBendixRewritingSystemRep),
rec(family:= fam,
reduced:=false,
tzrules:=List(relwco,i—>
[LetterRepAssocWord(i[1]) ,LetterRepAssocWord(i[2])1),
pairs2check:=CantorList (Length(r)),
ordering:=wordord,
freefam:=freefam));

In particular, since we don’t use the filter IsAttributeStoringRep in the Objectify, whenever IsConflu-
ent is called, the appropriate method to determine confluence is called.

v

Groups

This chapter explains how to create groups and defines operations for groups, that is operations whose
definition does not depend on the representation used. However methods for these operations in most cases
will make use of the representation.

If not otherwise specified, in all examples in this chapter the group g will be the symmetric group Sy acting
on the letters {1,...,4}.

37.1 Group Elements

Groups in GAP are written multiplicatively. The elements from which a group can be generated must permit
multiplication and multiplicative inversion (see 30.14).

gap> a:=(1,2,3);;b:=(2,3,4);;
gap> One(a);
O
gap> Inverse(b);
(2,4,3)
gap> axb;
(1,3)(2,4)
gap> Order (a*Db) ;
2
gap> Order([[1, 11, [0, 111);
infinity
The next example may run into an infinite loop because the given matrix in fact has infinite order.
gap> Order([[1, 1], [0, 11] * Indeterminate(Rationals));

#I Order: warning, order of <mat> might be infinite

Since groups are domains, the recommended command to compute the order of a group is Size (see 28.3.6).
For convenience, group orders can also be computed with Order.

The operation Comm (see 30.12.3) can be used to compute the commutator of two elements, the operation
LeftQuotient (see 30.12.2) computes the product z~1y.

37.2 Creating Groups

When groups are created from generators, this means that the generators must be elements that can be
multiplied and inverted (see also 30.3). For creating a free group on a set of symbols, see 35.2.1.

Group(gen, ...) F
Group(gens) F
Group(gens, id) F

Group(gen, ...) is the group generated by the arguments gen, ...

2>

3>

4»

5»

6»

7>

336 Chapter 37. Groups

If the only argument gens is a list that is not a matrix then Group(gens) is the group generated by the
elements of that list.

If there are two arguments, a list gens and an element id, then Group(gens, id) is the group generated
by the elements of gens, with identity id.

Note that the value of the attribute Generators0fGroup need not be equal to the list gens of generators
entered as argument. Use GroupWithGenerators (see 37.2.2) if you want to be sure that the argument gens
is stored as value of Generators0fGroup.

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])

GroupWithGenerators(gens) 0
GroupWithGenerators(gens, id) O

GroupWithGenerators returns the group G generated by the list gens. If a second argument id is present
then this is stored as the identity element of the group. The value of the attribute Generators0fGroup of
G is equal to gens.

Generators0fGroup(G) A

returns a list of generators of the group G. If G has been created by the command GroupWithGenerators
(see 37.2.2), with argument gens, then the list returned by Generators0fGroup will be equal to gens.

gap> g:=GroupWithGenerators([(1,2,3,4),(1,2)]);
Group([(1,2,3,4), (1,2) 1)

gap> Generators0fGroup(g);

[(1,2,3,4), (1,2)]

While in this example GAP displays the group via the generating set stored in the attribute Generators0f-
Group, the methods installed for View (see 6.2.1) will in general display only some information about the
group which may even be just the fact that it is a group.

AsGroup(D) A
if the elements of the collection D form a group the command returns this group, otherwise it returns fail.

gap> AsGroup([(1,2)]1);
fail
gap> AsGroup([(),(1,2)]1);
Group([(1,2) 1)
ConjugateGroup(G, obj) 0O

returns the conjugate group of G, obtained by applying the conjugating element obj. To form a conjugate
(group) by any object acting via ~, one can use the infix operator ~.

gap> ConjugateGroup(g, (1,5));
Group([(2,3,4,5), (2,5 1)

IsGroup(obj) C

A group is a magma-with-inverses (see 33.1.4) and associative (see 33.4.7) multiplication.

IsGroup tests whether the object obj fulfills these conditions, it does not test whether obj is a set of
elements that forms a group under multiplication; use AsGroup (see 37.2.4) if you want to perform such a
test. (See 13.3 for details about categories.)

gap> IsGroup(g);
true

InfoGroup \

is the info class for the generic group theoretic functions (see 7.4).

3>

4»

5»

6>

Section 3. Subgroups 337

37.3 Subgroups

For the general concept of parents and subdomains, see 30.7 and 30.8. More functions that construct certain
subgroups can be found in the sections 37.10, 37.11, 37.12, and 37.13.

Subgroup(G, gens) F
SubgroupNC(G, gens) F

creates the subgroup U of G generated by gens. The Parent of U will be G. The NC version does not check,
whether the elements in gens actually lie in G.

gap> u:=Subgroup(g, [(1,2,3),(1,2)1);
Group([(1,2,3), (1,2) 1)

Index(G, U) 0
IndexNC(G, U) O

For a subgroup U of the group G, Index returns the index [G : U] = % of U in G. The NC version does

not test whether U is contained in G.

gap> Index(g,u);
4

IndexInWholeGroup(G) A
If the family of elements of G itself forms a group P, this attribute returns the index of G in P.
AsSubgroup(G, U) 0]
creates a subgroup of G which contains the same elements as U

gap> v:=AsSubgroup(g,Group((1,2,3),(1,4)));
Group([(1,2,3), (1,4) 1)

gap> Parent (v);

Group([(1,2,3,4), (1,2) 1)

IsSubgroup(G, U) F

IsSubgroup returns true if U is a group that is a subset of the domain G. This is actually checked by
calling IsGroup(U) and IsSubset(G, U); note that special methods for IsSubset (see 28.4.1) are
available that test only generators of U if G is closed under the group operations. So in most cases, for
example whenever one knows already that U is a group, it is better to call only IsSubset.

gap> IsSubgroup(g,u);

true

gap> v:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1D
gap> u=v;

true

gap> IsSubgroup(g,v);

true

IsNormal(G, U) O

returns true if the group G normalizes the group U and false otherwise.

A group G normalizes a group U if and only if for every g € G and u € U the element 49 is a member of
U. Note that U need not be a subgroup of G.

' d

8>

9>

10 »

1»

3>

338 Chapter 37. Groups

gap> IsNormal(g,u);
false

IsCharacteristicSubgroup(G, N) 0O
tests whether N is invariant under all automorphisms of G.

gap> IsCharacteristicSubgroup(g,u);
false

ConjugateSubgroup(G, ¢)
ConjugateSubgroups(G, U)

returns a list of all images of the group U under conjugation action by G.

IsSubnormal(G, U) O

A subgroup U of the group G is subnormal if it is contained in a subnormal series of G.

gap> IsSubnormal(g,Group((1,2,3)));
false

gap> IsSubnormal(g,Group((1,2)(3,4)));
true

If a group U is created as a subgroup of another group G, G becomes the parent of U. There is no universal
parent group, parent-child chains can be arbitrary long. GAP stores the result of some operations (such as
Normalizer) with the parent as an attribute.

37.4 Closures of (Sub)groups
ClosureGroup(G, obj) @)

creates the group generated by the elements of G and obj. 0bj can be either an element or a collection of
elements, in particular another group.

gap> g:=SmallGroup(24,12);;u:=Subgroup(g, [g.3,g.4]1);
Group([£3, 4 1)

gap> ClosureGroup(u,g.2);

Group([£2, £3, f4 1)

gap> ClosureGroup(u,[g.1,g.2]);

Group([f1, f2, £3, f4 1)

gap> ClosureGroup (u,Group(g.2*g.1));

Group([fi1xf2°2, £3, f4 1)

ClosureGroupAddElm(G, elm) F
ClosureGroupCompare(G, elm) F
ClosureGroupIntest(G, elm) F

These three functions together with ClosureGroupDefault implement the main methods for ClosureGroup
(see 37.4.1). In the ordering given, they just add elm to the generators, remove duplicates and identity
elements, and test whether elm is already contained in G.

ClosureGroupDefault(G, elm) F

This functions returns the closure of the group G with the element elm. If G has the attribute AsSSortedList
then also the result has this attribute. This is used to implement the default method for Enumerator
(see 28.2.2) and EnumeratorSorted (see 28.2.3).

4»

Section 5. Fxpressing Group Elements as Words in Generators 339

ClosureSubgroup(G, obj) F
ClosureSubgroupNC(G, obj) F

For a group G that stores a parent group (see 30.7), ClosureSubgroup calls ClosureGroup (see 37.4.1) with
the same arguments; if the result is a subgroup of the parent of G then the parent of G is set as parent
of the result, otherwise an error is raised. The check whether the result is contained in the parent of G is
omitted by the NC version. As a wrong parent might imply wrong properties this version should be used
with care.

37.5 Expressing Group Elements as Words in Generators

Using homomorphisms (see chapter 38) is is possible to express group elements as words in given generators:
Create a free group (see 35.2.1) on the correct number of generators and create a homomorphism from this
free group onto the group G in whose generators you want to factorize. Then the preimage of an element of
G is a word in the free generators, that will map on this element again. The following example shows how
to decompose elements of Sy in the generators (1,2,3,4) and (1,2):

gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2) 1)

gap> f:=FreeGroup("x","y");

<free group on the generators [x, y 1>

gap> hom:=GroupHomomorphismByImagesNC(f,g,Generators0fGroup(f),
> Generators0fGroup(g));

[x,y]1l—>10,23,4, (1,2)]

gap> PrelmagesRepresentative (hom, (1,4));

xky T -1*x"-1

The following example stems from a real request to the GAP Forum. In September 2000 a GAP user working
with puzzles wanted to express the permutation (15,16) as a word as short as possible in the generators of
a particular permutation group of degree 16.

gap> perms := [(1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),
> (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10) 1;;

gap> puzzle := Group(perms);;

gap> Size(puzzle);

20922789888000

gap> F := FreeGroup(nan’ "b", "C", ngn);;

gap> gens := GeneratorsOfGroup(F);;

gap> hom := GroupHomomorphismByImages(F, puzzle, gens, perms);;
gap> word := PreIlmagesRepresentative(hom, (15,16));;
gap> Length(word);

113

Because of the random methods involved in the function GroupHomomorphismByImages we may even get
shorter words for the given permutation if we try it a few more times.

gap> words := [];;

gap> for 1 in [1 .. 10] do

> hom := GroupHomomorphismByImages(F, puzzle, gens, perms);
> word := PreImagesRepresentative(hom, (15,16));

> Add(words, word);

> od;

gap> List(words, word -> Length(word));

[33, 61, 53, 33, 33, 33, 49, 53, 75, 33]

1»

1»

2»

340 Chapter 37. Groups

gap> words[1];
c"—1*d " -1*cxb*d*b~-1*a"~-1xb"—1*a”~2xc*a”~-1*d " -1*b*c —-1*b"-1*cxd*a~-1*b"~
—1xaxd*xa*xc —1*a"-1*b*d " -1*b"—-1xd " -1*b*c " -1*b~-1%c

Factorization(G, elm) F

returns a factorization of elm as word in the generators of G given in the attribute GeneratorsOfGroup.
(The corresponding free generators can be obtained via the family fam of the result as CollectionsFam-
ily(fam)!.wholeGroup.)

The algorithm used computes all elements of the group to ensure a short word is found. Therefore this
function should not be used when the group G has more than a few thousand elements. Because of this,
one should not call this function within algorithms, but use homomorphisms instead.

gap> G:=SymmetricGroup(6);;
gap> r:=(3,4); s:=(1,2,3,4,5,6);
(3,4)

(1,2,3,4,5,6)

gap> # create a subgroup to force the system to use the generators r and s.
gap> H:= Subgroup(G, [r, s 1);
Group([(3,4), (1,2,3,4,5,6) 1)
gap> Factorization(H, (1,2,3));
x2*x1*x2*x1%x274

gap> s*r*s*rxs”4;

(1,2,3)

37.6 Cosets

RightCoset(U, ¢) O

returns the right coset of U with representative g, which is the set of all elements of the form ug for all
u € U. g must be an element of a larger group G which contains U. For element operations such as in a
right coset behaves like a set of group elements.

Right cosets are external orbits for the action of U which acts via OnLeftInverse. Of course the action of
a larger group G on right cosets is via OnRight.

gap> u:=Group((1,2,3), (1,2));;

gap> c:=RightCoset(u,(2,3,4));

RightCoset (Group([(1,2,3), (1,2) 1),(2,3,4))
gap> ActingDomain(c);

Group([(1,2,3), (1,2) 1)

gap> Representative(c);

(2,3,4)

gap> Size(c);

6

gap> AsList(c);

[(2,3,4), (1,4,2), (1,3)(2,4), (2,4, (1,4,2,3), (1,3,4,2)]

RightCosets(G, U) F
RightCosetsNC(G, U) @)

computes a duplicate free list of right cosets Ug for ¢ € G. A set of representatives for the elements in this
list forms a right transversal of U in G. (By inverting the representatives one obtains a list of representatives
of the left cosets of U.) The NC version does not check whether U is a subgroup of G.

3>

4»

1»

Section 7. Transversals 341

gap> RightCosets(g,u);

[RightCoset(Group([(1,2,3), (1,2) 1),0),
RightCoset (Group([(1,2,3), (1,2) 1),(1,3)(2,4)),
RightCoset (Group([(1,2,3), (1,2) 1),(1,4)(2,3)),
RightCoset (Group([(1,2,3), (1,2) 1),(1,2)(3,4))]

CanonicalRightCosetElement(U, g) O

returns a “canonical” representative of the coset Ug which is independent of the given representative g. This
can be used to compare cosets by comparing their canonical representatives. The representative chosen to
be the “canonical” one is representation dependent and only guaranteed to remain the same within one GAP
session.

gap> CanonicalRightCosetElement (u, (2,4,3));
(3,4

IsRightCoset(obj) C

The category of right cosets.

GAP does not provide left cosets as a separate data type, but as the left coset gU consists of exactly the
inverses of the elements of the right coset Ug~! calculations with left cosets can be emulated using right
cosets by inverting the representatives.

37.7 Transversals
RightTransversal(G, U) O

A right transversal t is a list of representatives for the set U\ G of right cosets (consisting of cosets Ug) of
Uin G.

The object returned by RightTransversal is not a plain list, but an object that behaves like an immutable
list of length [G: U], except if U is the trivial subgroup of G in which case RightTransversal may return
the sorted plain list of coset representatives.

The operation PositionCanonical(t,g), called for a transversal ¢ and an element g of G, will return the
position of the representative in ¢ that lies in the same coset of U as the element g does. (In comparison,
Position will return fail if the element is not equal to the representative.) Functions that implement group
actions such as Action or Permutation (see Chapter 39) use PositionCanonical, therefore it is possible
to “act” on a right transversal to implement the action on the cosets. This is often much more efficient than
acting on cosets.

gap> g:=Group((1,2,3,4),(1,2));;

gap> u:=Subgroup(g, [(1,2,3),(1,2)1);;

gap> rt:=RightTransversal(g,u);

RightTransversal (Group([(1,2,3,4), (1,2) 1),Group([(1,2,3), (1,2) 1))
gap> Length(rt);

4

gap> Position(rt, (1,2,3));

fail

Note that the elements of a right transversal are not necessarily “canonical” in the sense of Canonical-
RightCosetElement (see 37.6.3), but we may compute a list of canonical coset representatives by calling
that function.

1»

2>

3>

4»

342 Chapter 37. Groups

gap> List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));
[O, (2,3,9, (1,2,3,4), 3,4]

The operation PositionCanonical is described in section 21.16.2.

gap> PositionCanonical(rt,(1,2,3));
1

gap> rt[1];

O

37.8 Double Cosets

DoubleCoset(U, g, V) O

The groups U and V must be subgroups of a common supergroup G of which g is an element. This command
constructs the double coset UgV which is the set of all elements of the form ugv for any v € U, v € V. For
element operations such as in, a double coset behaves like a set of group elements. The double coset stores
U in the attribute LeftActingGroup, ¢ as Representative, and V as RightActingGroup.

RepresentativesContainedRightCosets(D) A

A double coset UgV can be considered as an union of right cosets Uh;. (it is the union of the orbit of Uy
under right multiplication by V.) For a double coset D=UgV this returns a set of representatives h; such
that D = (J, Uh;. The representatives returned are canonical for U (see 37.6.3) and form a set.

gap> u:=Subgroup(g, [(1,2,3),(1,2)]);;v:=Subgroup(g, [(3,4)]);;
gap> c:=DoubleCoset(u, (2,4),v);

DoubleCoset (Group([(1,2,3), (1,2) 1),(2,4),Group([(3,4) 1))
gap> (1,2,3) in c;

false

gap> (2,3,4) in c;

true

gap> LeftActingGroup(c);

Group([(1,2,3), (1,2) 1

gap> RightActingGroup(c);

Group([(3,4) 1)

gap> RepresentativesContainedRightCosets(c) ;

[(2,3,4) 1]
DoubleCosets(G, U, V) O
DoubleCosetsNC(G, U, V) O

computes a duplicate free list of all double cosets UgV for g € G. U and V must be subgroups of the group
G. The NC version does not check whether U and V are both subgroups of G.

gap> dc:=DoubleCosets(g,u,v);

[DoubleCoset(Group([(1,2,3), (1,2) 1), ,Group([(3,4) 1)),
DoubleCoset (Group([(1,2,3), (1,2) 1),(1,3)(2,4),Group([(3,4) 1)),
DoubleCoset (Group([(1,2,3), (1,2) 1),(1,4)(2,3),Group([(3,4) 1)) 1

gap> List(dc,Representative);

[O, 1,3(2,4, (1,H(2,3)]

IsDoubleCoset(obj) C

The category of double cosets.

Section 9. Conjugacy Classes 343

5» DoubleCosetRepsAndSizes(G, U, V) O

returns a list of double coset representatives and their sizes, the entries are lists of the form [rep, size]. This
operation is faster that DoubleCosetsNC because no double coset objects have to be created.

gap> dc:=DoubleCosetRepsAndSizes(g,u,v);
(O, 1271, [(1,3(2,4, 61, [(1,4(2,3), 6]]

6» InfoCoset A\

The information function for coset and double coset operations is InfoCoset.

37.9 Conjugacy Classes
1» ConjugacyClass(G, ¢) C

creates the conjugacy class in G with representative g. This class is an external set, so functions such as
Representative (which returns g), ActingDomain (which returns G), StabilizerOfExternalSet (which
returns the centralizer of ¢g) and AsList work for it.

A conjugacy class is an external orbit (39.11.9) of group elements with the group acting by conjugation on
it. Thus element tests or operation representatives can be computed. The attribute Centralizer gives the
centralizer of the representative (which is the same result as StabilizerOfExternalSet). (This is a slight
abuse of notation: This is not the centralizer of the class as a set which would be the standard behaviour
of Centralizer.)

2» ConjugacyClasses(G) A

returns the conjugacy classes of elements of G as a list of ConjugacyClasses of G (see ConjugacyClass
(37.9.1) for details). It is guaranteed that the class of the identity is in the first position, the further
arrangement depends on the method chosen (and might be different for equal but not identical groups).
For very small groups (of size up to 500) the classes will be computed by the conjugation action of G on
itself (see 37.9.4). This can be deliberately switched off using the “noaction” option shown below.

For solvable groups, the default method to compute the classes is by homomorphic lift (see section 43.17).
For other groups the method of [Hul00] is employed.

ConjugacyClasses supports the following options that can be used to modify this strategy:

random

The classes are computed by random search. See ConjugacyClassesByRandomSearch (37.9.3) below.
action

The classes are computed by action of G on itself See ConjugacyClassesByOrbits (37.9.4) below.
noaction

Even for small groups ConjugacyClassesByOrbits (37.9.4) is not used as a default. This can be

useful if the elements of the group use a lot of memory.

gap> g:=SymmetricGroup(4);;

gap> cl:=ConjugacyClasses(g);

[O°G, (1,2)°G, (1,2)(3,4)°G, (1,2,3)°G, (1,2,3,4)°G]
gap> Representative(cl[3]);Centralizer(cl[3]);
(1,2)(3,4)

Group([(1,2), (1,3)(2,4), (3,4 1

gap> Size(Centralizer(cl[5]));

4

gap> Size(cl[2]);

6

3» ConjugacyClassesByRandomSearch(G) F

computes the classes of the group G by random search. This works very efficiently for almost simple groups.

4»

5»

6»

7>

8>

344 Chapter 37. Groups

This function is also accessible via the option random to ConjugacyClass.
ConjugacyClassesByOrbits(G) F

computes the classes of the group G as orbits of G on its elements. This can be quick but unsurprisingly
may also take a lot of memory if G becomes larger. All the classes will store their element list and thus a
membership test will be quick as well.
This function is also accessible via the option action to ConjugacyClass.

gap> h:=Group((4,6)(5,7),(1,2,4)(3,6,5));;ConjugacyClasses(h:noaction);;time;

190

gap> h:=Group((4,6)(5,7),(1,2,4)(3,6,5));;ConjugacyClasses(h:random) ; ;time;

130

gap> h:=Group((4,6)(5,7),(1,2,4)(3,6,5));;ConjugacyClasses(h:action);;time;

70

NrConjugacyClasses(G) A

returns the number of conjugacy classes of G.

gap> g:=Group((1,2,3,4),(1,2));;
gap> NrConjugacyClasses(g);
5

RationalClass(G, g) C

creates the rational class in G with representative g. A rational class consists of all elements that are
conjugate to g or to a power g° where i is coprime to the order of g. Thus a rational class can be interpreted
as a conjugacy class of cyclic subgroups. A rational class is an external set (39.11.1) of group elements with
the group acting by conjugation on it, but not an external orbit.

RationalClasses(G) A
returns a list of the rational classes of the group G. (See 37.9.6.)
gap> RationalClasses(DerivedSubgroup(g));

[RationalClass(AlternatingGroup([1 .. 41), O),
RationalClass(AlternatingGroup([1 .. 41), (1,2)(3,4)),
RationalClass(AlternatingGroup([1 .. 41), (1,2,3))]
GaloisGroup(ratel) A

Suppose that ratcl is a rational class of a group G with representative g. The exponents i for which ¢° lies
already in the ordinary conjugacy class of ¢, form a subgroup of the prime residue class group P, (see
15.2.3), the so-called Galois group of the rational class. The prime residue class group P, is obtained in
GAP as Units(Integers mod n), the unit group of a residue class ring. The Galois group of a rational
class rcl is stored in the attribute GaloisGroup(rcl) as a subgroup of this group.

IsConjugate(G, z, y) 0]
IsConjugate(G, U, V) 0]

tests whether the elements z and y or the subgroups U and V are conjugate under the action of G. (They
do not need to be contained in G.) This command is only a shortcut to RepresentativeOperation.

gap> IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));
true

RepresentativeAction (see 39.5.1) can be used to obtain conjugating elements.

gap> RepresentativeAction(g, (1,2),(3,4));
(1,3)(2,4)

2>

4 »

5»

s

Section 10. Normal Structure 345

37.10 Normal Structure

For the operations Centralizer and Centre, see Chapter 33.

Normalizer(G, U) O
Normalizer(G, g) 0]

Computes the normalizer N¢(U), that is the stabilizer of U under the conjugation action of G. The second
form computes N¢({g)).

gap> Normalizer (g,Subgroup(g, [(1,2,3)1));
Group([(1,2,3), (2,3) 1D

Core(S, U) 0

If § and U are groups of elements in the same family, this operation returns the core of U in §, that is the
intersection of all S-conjugates of U.

gap> g:=Group((1,2,3,4),(1,2));;
gap> Core(g,Subgroup(g, [(1,2,3,4)]1));
Group(Q))

PCore(G, p) F
The p-core of G is the largest normal p-subgroup of G. It is the core of a p-Sylow subgroup of G.

gap> PCore(g,2);
Group([(1,4)(2,3), (1,3)(2,4) 1)

NormalClosure(G, U) 0)
The normal closure of U in G is the smallest normal subgroup of G which contains U.

gap> NormalClosure(g,Subgroup(g, [(1,2,3)]1));
Group([(1,2,3), (1,3,4) 1)

NormalIntersection(G, U) 0

computes the intersection of G and U, assuming that G is normalized by U. This works faster than Inter-
section, but will not produce the intersection if G is not normalized by U.

gap> NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));
Group([(1,3)(2,4) 1)

Complementclasses(G, N) O

Let N be a normal subgroup of G. This command returns a set of representatives for the conjugacy classes of
complements of N in G. Complements are subgroups U of G which intersect trivially with N and together
with N generate G.

gap> Complementclasses(g,Group((1,2)(3,4),(1,3)(2,4)));
[Group([(3,4), (2,4,3) 1) 1

InfoComplement A%

Info class for the complement routines.

1»

2>

4»

5»

6>

7>

346 Chapter 37. Groups

37.11 Specific and Parametrized Subgroups

The Centre of a group (the subgroup of those elements that commute with all other elements of the group)
can be computed by the operation Centre (see 33.4.5).

TrivialSubgroup(G) A
gap> TrivialSubgroup(g);
Group(Q))

CommutatorSubgroup(G, H) O

If G and H are two groups of elements in the same family, this operation returns the group generated
by all commutators [g,h] = g~ 'h~1gh (see 30.12.3) of elements ¢ € G and h € H, that is the group
(9.h] | g € G,h € H).

gap> CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));
Group([(1,4)(2,3), (1,3,4) 1)

gap> Size(last);

12

DerivedSubgroup(G) A

The derived subgroup G’ of G is the subgroup generated by all commutators of pairs of elements of G. It
is normal in G and the factor group G/G’ is the largest abelian factor group of G.

gap> DerivedSubgroup(g) ;
Group([(1,3,2), (1,4,3) 1)

CommutatorLength(G) A

returns the minimal number n such that each element in the derived subgroup (see 37.11.3) of the group G
can be written as a product of (at most) n commutators of elements in G.

gap> CommutatorLength(g);
1

FittingSubgroup(G) A
The Fitting subgroup of a group G is its largest nilpotent normal subgroup.

gap> FittingSubgroup(g);
Group([(1,3)(2,4), (1,4)(2,3) 1)

FrattiniSubgroup(G) A
The Frattini subgroup of a group G is the intersection of all maximal subgroups of G.

gap> FrattiniSubgroup(g);
Group((Q))

PrefrattiniSubgroup(G) A

returns a Prefrattini subgroup of the finite solvable group G. A factor M /N of G is called a Frattini factor
it M/N < ¢(G/N) holds. The group P is a Prefrattini subgroup of G if P covers each Frattini chief factor
of G, and if for each maximal subgroup of G there exists a conjugate maximal subgroup, which contains
P. In a finite solvable group G the Prefrattini subgroups form a characteristic conjugacy class of subgroups
and the intersection of all these subgroups is the Frattini subgroup of G.

8>

9»

10 »

11»

12»

Section 11. Specific and Parametrized Subgroups 347

gap> G := SmallGroup(60, 7);
<pc group of size 60 with 4 generators>
gap> P := PrefrattiniSubgroup(G);
Group([£2 1)

gap> Size(P);

2

gap> IsNilpotent(P);

true

gap> Core(G,P);

Group([1)

gap> FrattiniSubgroup(G);

Group([1)

PerfectResiduum(G) A

is the smallest normal subgroup of G that has a solvable factor group.

gap> PerfectResiduum(Group((1,2,3,4,5),(1,2)));
Group([(1,3,2), (1,4,3), (2,4,5) 1)

RadicalGroup(G) A

is the radical of G, i.e., the largest solvable normal subgroup of G.

gap> RadicalGroup(SL(2,5));

<group of 2x2 matrices of size 2 in characteristic 5>
gap> Size(last);

2

Socle(G) A

The socle of the group G is the subgroup generated by all minimal normal subgroups.

gap> Socle(g);
Group([(1,4)(2,3), (1,2)(3,4) 1)

SupersolvableResiduum(G) A

is the supersolvable residuum of the group G, that is, its smallest normal subgroup with supersolvable factor
group.

gap> SupersolvableResiduum(g) ;
Group([(1,2)(3)4)3 (134)(233)])

PRump(G, p) F

The p-rump of a group G is the subgroup G’ GP? for a prime p.

@example missing!@

1»

2>

3>

4»

5»

348 Chapter 37. Groups

37.12 Sylow Subgroups and Hall Subgroups
SylowSubgroup(G, p) F

returns a Sylow p subgroup of the finite group G. This is a p-subgroup of G whose index in G is coprime
to p. SylowSubgroup computes Sylow subgroups via the operation SylowSubgroupOp.

gap> g:=SymmetricGroup(4);;
gap> SylowSubgroup(g,2);
Group([(1,2), (3,4), (1,3)(2,4) D

With respect to the following GAP functions, please note that by theorems of P. Hall, a group G is solvable
if and only if one of the following conditions holds.

1. For each prime p dividing the order of G, there exists a p-complement (see 37.12.2).

2. For each set P of primes dividing the order of G, there exists a P-Hall subgroup (see 37.12.3).
3. G has a Sylow system (see 37.12.4).

4. @ has a complement system (see 37.12.5).

SylowComplement(G, p) F

returns a p-Sylow complement of the finite group G. This is a subgroup U of order coprime to p such that
the index [G : U] is a p-power. At the moment methods exist only if G is solvable and GAP will issue an
error if G is not solvable.

gap> SylowComplement(g,3);
Group([(3,4)) (1:4) (2:3) 3 (1:3) (2:4)])

HallSubgroup(G, P) F

computes a P-Hall subgroup for a set P of primes. This is a subgroup the order of which is only divisible
by primes in P and whose index is coprime to all primes in P. The function computes Hall subgroups via
the operation HallSubgroupOp. At the moment methods exist only if G is solvable and GAP will issue an
error if G is not solvable.

gap> h:=SmallGroup(60,10);;
gap> u:=HallSubgroup(h, [2,3]);
Group([f1, f2, £3 1)

gap> Size(u);

12

SylowSystem(G) A

A Sylow system of a group G is a set of Sylow subgroups of G such that every pair of Sylow subgroups from
this set commutes as subgroups. Sylow systems exist only for solvable groups. The operation returns fail
if the group G is not solvable.

gap> h:=SmallGroup(60,10);;

gap> SylowSystem(h);

[Group([f1, £2 1), Group([£3 1), Group([£f4 1)]
gap> List(last,Size);

[4, 3, 5]

ComplementSystem(G) A

A complement system of a group G is a set of Hall-p’-subgroups of G, where p’ runs through the subsets
of prime factors of |G| that omit exactly one prime. Every pair of subgroups from this set commutes as

6>

1»

2»

1»

2>

Section 14. Group Properties 349

subgroups. Complement systems exist only for solvable groups, therefore ComplementSystem returns fail
if the group G is not solvable.

gap> ComplementSystem(h) ;

[Group([£3, f4 1), Group([f1, £f2, f4 1), Group([f1, £2, £3 1)]
gap> List(last,Size);

[15, 20, 12]

HallSystem(G) A

returns a list containing one Hall-P subgroup for each set P of primes which occur in the order of G. Hall
systems exist only for solvable groups. The operation returns fail if the group G is not solvable.

gap> HallSystem(h);

[Group([1), Group([f1, £2 1), Group([f1, f2, £3 1),
Group([f1, £2, £3, f4 1), Group([f1, £f2, £f4 1), Group([£3 1),
Group([£3, f4 1), Group([f4 1)]

gap> List(last,Size);

[1, 4, 12, 60, 20, 3, 15, 5]

37.13 Subgroups characterized by prime powers

Omega(G, pl[, nl) F
For a p-group G, one defines Q,(G) = {g € G | g*" = 1}. The default value for n is 1.

@At the moment methods exist only for abelian G and n=1.@

gap> h:=SmallGroup(16,10);

<pc group of size 16 with 4 generators>
gap> Omega(h,2);

Group([f4, f2, £3 1)

Agemo(G, p[, nl) F
For a p-group G, one defines U, (G) = (¢*" | g € G). The default value for n is 1.

gap> Agemo(h,2) ;Agemo(h,2,2);
Group([f4 1)
Group([1)

37.14 Group Properties

Some properties of groups can be defined not only for groups but also for other structures. For example,
nilpotency and solvability make sense also for algebras. Note that these names refer to different definitions
for groups and algebras, contrary to the situation with finiteness or commutativity. In such cases, the name
of the function for groups got a suffix Group to distinguish different meanings for different structures.

IsCyclic(G) P

A group is cyclic if it can be generated by one element. For a cyclic group, one can compute a generating
set consisting of only one element using MinimalGeneratingSet (see 37.21.3).

IsElementaryAbelian(G) P

A group G is elementary abelian if it is commutative and if there is a prime p such that the order of each
element in G divides p.

3>

5p

6»

>

9»

10»

11»

350 Chapter 37. Groups

IsNilpotentGroup(G) P

A group is nilpotent if the lower central series (see 37.16.11 for a definition) reaches the trivial subgroup
in a finite number of steps.

NilpotencyClass0fGroup(G) A

The nilpotency class of a nilpotent group G is the number of steps in the lower central series of G (see
37.16.11);

If G is not nilpotent an error is issued.

IsPerfectGroup(G) P
A group is perfect if it equals its derived subgroup (see 37.11.3).

IsSolvableGroup(G) P

A group is solvable if the derived series (see 37.16.7 for a definition) reaches the trivial subgroup in a finite
number of steps.

For finite groups this is the same as being polycyclic (see 37.14.7), and each polycyclic group is solvable,
but there are infinite solvable groups that are not polycyclic.

IsPolycyclicGroup(G) P

A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups this is the same as if
the group is solvable (see 37.14.6).

IsSupersolvableGroup(G) P
A finite group is supersolvable if it has a normal series with cyclic factors.
IsMonomialGroup(G) P

A finite group is monomial if every irreducible complex character is induced from a linear character of a
subgroup.

IsSimpleGroup(G) P
A group is simple if it has no nontrivial normal subgroups.
IsomorphismTypeInfoFiniteSimpleGroup(G) F

For a finite simple group G, IsomorphismTypeInfoFiniteSimpleGroup returns a record with components
series, name and possibly parameter, describing the isomorphism type of G. The component name is a
string that gives name(s) for G, and series is a string that describes the following series.

(If different characterizations of G are possible only one is given by series and parameter, while name may

give several names.)

"A" Alternating groups, parameter gives the natural degree.

"L" Linear groups (Chevalley type A), parameter is a list [n,q] that indicates L(n, q).
"2A" Twisted Chevalley type 24, parameter is a list [n,q] that indicates 2A(n, q).

"B" Chevalley type B, parameter is a list [n,q] that indicates B(n, q).
"2B" Twisted Chevalley type 2B, parameter is a value ¢ that indicates 2B(2, q).

"C" Chevalley type C, parameter is a list [n,q| that indicates C(n, q).

"D" Chevalley type D, parameter is a list [n,q] that indicates D(n, q).
"2D" Twisted Chevalley type 2D, parameter is a list [n,q] that indicates 2D(n, q).
"3D" Twisted Chevalley type D, parameter is a value ¢ that indicates 2D(4, q).

Section 14. Group Properties 351

"E" Exceptional Chevalley type E, parameter is a list [n,g] that indicates E,(q). The value of n is 6,7 or 8.

"2E" Twisted exceptional Chevalley type Fg, parameter is a value ¢ that indicates ? Eg(q).

"F" Exceptional Chevalley type F, parameter is a value ¢ that indicates F'(4, q).

"2F" Twisted exceptional Chevalley type 2F (Ree groups), parameter is a value ¢ that indicates 2 F (4, q).

"G" Exceptional Chevalley type G, parameter is a value ¢ that indicates G(2, q).

"2G" Twisted exceptional Chevalley type 2G (Ree groups), parameter is a value ¢ that indicates 2G(2, q).

"Spor" Sporadic groups, name gives the name.

12»

13»

14 »

15»

16 »

17»

"Z" Cyclic groups of prime size, parameter gives the size.

An equal sign in the name denotes different naming schemes for the same group, a tilde sign abstract
isomorphisms between groups constructed in a different way.

gap> IsomorphismTypeInfoFiniteSimpleGroup(Group((4,5)(6,7),(1,2,4)(3,5,6)));
rec(series := "L", parameter := [2, 7],

name := "A(1,7) = L(2,7) ~ B(1,7) = 0(3,7) ~ C(1,7) = S8(2,7) ~ 2A(1,7) = U(2\
,7) T A(2,2) = L(3,2)")

IsFinitelyGeneratedGroup(G) P

tests whether the group G can be generated by a finite number of generators. (This property is mainly used
to obtain finiteness conditions.)

IsSubsetLocallyFiniteGroup(U) P

A group is called locally finite if every finitely generated subgroup is finite. This property checks whether
the group U is a subset of a locally finite group. This is used to check whether finite generation will imply
finiteness, as it does for example for permutation groups.

IsPGroup(G) P
A p-group is a finite group whose order (see 28.3.6) is of the form p” for a prime integer p and a nonnegative
integer n. IsPGroup returns true if G is a p-group, and false otherwise.

PrimePGroup(G) A

If G is a nontrivial p-group (see 37.14.14), PrimePGroup returns the prime integer p; if G is trivial then
PrimePGroup returns fail. Otherwise an error is issued.

PClassPGroup(G) A

The p-class of a p-group G (see 37.14.14) is the length of the lower p-central series (see 37.16.13) of G. If G
is not a p-group then an error is issued.

RankPGroup(G) A

For a p-group G (see 37.14.14), RankPGroup returns the rank of G, which is defined as the minimal size of
a generating system of G. If G is not a p-group then an error is issued.

gap> h:=Group((1,2,3,4),(1,3));;
gap> PClassPGroup(h);

2

gap> RankPGroup(h);

2

Note that the following functions, although they are mathematical properties, are not properties in the sense
of GAP (see 13.5 and 13.7), as they depend on a parameter.

18 »

19»

1»

2»

3>

1»

352 Chapter 37. Groups

IsPSolvable(G, p) F

A group is p-solvable if every chief factor is either not divisible by p or solvable.

@Currently no method is installed!@
IsPNilpotent(G, p) F

A group is p-nilpotent if it possesses a normal p-complement.

37.15 Numerical Group Attributes
AbelianInvariants(G) A

returns the abelian invariants of the commutator factor group of the group G. They are given as a list of
the orders of a set of independent generators of G/G’ (see 37.21.5).

gap> g:=Group((1,2,3,4),(1,2),(5,6));;
gap> AbelianInvariants(g);
[2, 2]

Exponent(G) A

The exponent e of a group G is the lem of the orders of its elements, that is, e is the smallest integer such
that g¢ =1 for all g € G

gap> Exponent(g) ;
12

Again the following are mathematical attributes, but not GAP Attributes as they are depending on a
parameter:

EulerianFunction(G, n) O

returns the number of n-tuples (g1, go, ... g,) of elements of the group G that generate the whole group G.
The elements of an n-tuple need not be different.

gap> EulerianFunction(g,2);
432

37.16 Subgroup Series

In group theory many subgroup series are considered, and GAP provides commands to compute them. In
the following sections, there is always a series G = Uy > Uy > -+ > U,, = (1) of subgroups considered. A
series also may stop without reaching G or (1).

A series is called subnormal if every U;;; is normal in U;.
A series is called normal if every U; is normal in G.
A series of normal subgroups is called central if U;/U;41 is central in G/ U;41.

We call a series refinable if intermediate subgroups can be added to the series without destroying the
properties of the series.

Unless explicitly declared otherwise, all subgroup series are descending. That is they are stored in decreasing
order.

ChiefSeries(G) A

is a series of normal subgroups of G which cannot be refined further. That is there is no normal subgroup
N of G with U; > N > U;y;. This attribute returns one chief series (of potentially many possibilities).

2»

3>

4»

5»

6P

7>

8>

Section 16. Subgroup Series 353

gap> g:=Group((1,2,3,4),(1,2));;

gap> ChiefSeries(g);

[Group([(1,2,3,4), (1,2) 1), Group([(2,4,3), (1,4)(2,3), (1,3)(2,4) 1),
Group([(1,4)(2,3), (1,3)(2,4) 1), Group(()) 1]

ChiefSeriesThrough(G, [) @)

is a chief series of the group G going through the normal subgroups in the list . [must be a list of normal
subgroups of G contained in each other, sorted by descending size. This attribute returns one chief series
(of potentially many possibilities).

ChiefSeriesUnderAction(H, G) O

returns a series of normal subgroups of G which are invariant under H such that the series cannot be
refined any further. G must be a subgroup of H. This attribute returns one such series (of potentially many
possibilities).

SubnormalSeries(G, U) O

If U is a subgroup of G this operation returns a subnormal series that descends from G to a subnormal
subgroup V>U. If U is subnormal, V="U.

gap> s:=SubnormalSeries(g,Group((1,2)(3,4)));
[Group([(1,2,3,4), (1,2) 1), Group([(1,2)(3,4), (1,3)(2,4) 1),
Group([(1,2)(3,4) 1)]

CompositionSeries(G) A

A composition series is a subnormal series which cannot be refined. This attribute returns one composition
series (of potentially many possibilities).

DisplayCompositionSeries(G) F
Displays a composition series of G in a nice way, identifying the simple factors.

gap> CompositionSeries(g);
[Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) 1,
Group([(2,4,3), (1,4(2,3), (1,3)(2,4) 1D,
Group([(1,4)(2,3), (1,3)(2,4) 1), Group([(1,3)(2,4) 1), Group((Q) 1]
gap> DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));
G (6 gens, size 5040)
| Z(2)
S (5 gens, size 2520)
| ACT)
1 (0 gens, size 1)

DerivedSeriesOfGroup(G) A

The derived series of a group is obtained by U;+1 = UJ. It stops if U; is perfect.
DerivedLength(G) A

The derived length of a group is the number of steps in the derived series. (As there is always the group, it
is the series length minus 1.)

9»

10 »

11»

12»

13»

14»

354 Chapter 37. Groups

gap> List(DerivedSeries0fGroup(g),Size);
[24, 12, 4, 1]
gap> DerivedLength(g);

3
ElementaryAbelianSeries(G) A
ElementaryAbelianSeriesLargeSteps(G) A
ElementaryAbelianSeries([G, NTI1, NT2, ...1) A

returns a series of normal subgroups of G such that all factors are elementary abelian. If the group is not
solvable (and thus no such series exists) it returns fail.

The variant ElementaryAbelianSeriesLargeSteps tries to make the steps in this series large (by eliminat-
ing intermediate subgroups if possible) at a small additional cost.

In the third variant, an elementary abelian series through the given series of normal subgroups is constructed.
gap> List(ElementaryAbelianSeries(g),Size);
[24, 12, 4, 1]

InvariantElementaryAbelianSeries(G, morph[, N [, finell) O

For a (solvable) group G and a list of automorphisms morph of G, this command finds a normal series of G
with elementary abelian factors such that every group in this series is invariant under every automorphism
in morph.

If a normal subgroup N of G which is invariant under morph is given, this series is chosen to contain N. No
tests are performed to check the validity of the arguments.

The series obtained will be constructed to prefer large steps unless fine is given as true.
gap> g:=Group((1,2,3,4),(1,3));
Group([(1,2,3,4), (1,3) 1)
gap> hom:=GroupHomomorphismByImages(g,g,Generators0fGroup(g),
> [(1,4,3,2),(1,4)(2,3)1);
[(1,2,3,4), (1,30 1 > [(1,4,3,2), (1,4)(2,3)]
gap> InvariantElementaryAbelianSeries(g, [hom]);
[Group([(1,2,3,4), (1,3) 1), Group([(1,3)(2,4) 1), Group(())]I

LowerCentralSeries0fGroup(G) A

The lower central series of a group G is defined as U1 := [G, U;]. It is a central series of normal subgroups.
The name derives from the fact that U; is contained in the i-th step subgroup of any central series.

UpperCentralSeriesOfGroup(G) A

The upper central series of a group G is defined as an ending series U;/U; 41 := Z(G/U;11). It is a central
series of normal subgroups. The name derives from the fact that U; contains every i-th step subgroup of a
central series.

PCentralSeries(G, p) F
The p-central series of G is defined by U := G, U; := [G, U;_1]U,.
JenningsSeries(G) A

For a p-group G, this function returns its Jennings series. This series is defined by setting G; = G and for
i >0, Giy1 = [Gi, G]G}, where j is the smallest integer > i/p.

15 »

16 »

17»

18»

Section 17. Factor Groups 355

DimensionsLoewyFactors(G) A

This operation computes the dimensions of the factors of the Loewy series of G. (See [HB82], p. 157 for the
slightly complicated definition of the Loewy Series.)

The dimensions are computed via the JenningsSeries without computing the Loewy series itself.

gap> G:= SmallGroup(376, 100);

<pc group of size 729 with 6 generators>

gap> JenningsSeries(G);

[<pc group of size 729 with 6 generators>, Group([£3, f4, f5, f6 1),
Group([f4, f5, f6 1), Group([£f5, f6 1), Group([£f5, f6 1),
Group([£5, £6 1), Group([£6 1), Group([£6 1), Group([f6 1),
Group([<identity> of ... 1)]

gap> DimensionsLoewyFactors(G);

(1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 27,
27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16, 14, 13, 11, 10,
8, 7, 5,4, 2, 1]

AscendingChain(G, U) F

This function computes an ascending chain of subgroups from U to G. This chain is given as a list whose
first entry is U and the last entry is G. The function tries to make the links in this chain small.

The option refineIndex can be used to give a bound for refinements of steps to avoid GAP trying to enforce
too small steps.

IntermediateGroup(G, U) F

This routine tries to find a subgroup F of G, such that G > E > U. If U is maximal, it returns false. This
is done by finding minimal blocks for the operation of G on the right cosets of U.

IntermediateSubgroups(G, U) @)

returns a list of all subgroups of G that properly contain U; that is all subgroups between G and U. It
returns a record with components subgroups which is a list of these subgroups as well as a component
inclusions which lists all maximality inclusions among these subgroups. A maximality inclusion is given as
a list [7,7] indicating that subgroup number 7 is a maximal subgroup of subgroup number j, the numbers
0 and 1+length(subgroups) are used to denote U and G respectively.

37.17 Factor Groups

NaturalHomomorphismByNormalSubgroup(G, N) F
NaturalHomomorphismByNormalSubgroupNC(G, N) F

returns a homomorphism from G to another group whose kernel is N. GAP will try to select the image
group as to make computations in it as efficient as possible. As the factor group G/N can be identified with
the image of G this permits efficient computations in the factor group. The homomorphism returned is not
necessarily surjective, so ImagesSource should be used instead of Range to get a group isomorphic to the
factor group. The NC variant does not check whether N is normal in G.

FactorGroup(G, N) F
FactorGroupNC(G, N) 0O

returns the image of the NaturalHomomorphismByNormalSubgroup(G, N). The NC version does not test
whether N is normal in G.

4»

5»

s

1»

356 Chapter 37. Groups

gap> g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g, [(1,2)(3,4),(1,3)(2,4)1);;
gap> hom:=NaturalHomomorphismByNormalSubgroup(g,n) ;

[(1,2,3,4), (1,2) 1 —> [f1xf2, f1]

gap> Size(ImagesSource (hom)) ;

6

gap> FactorGroup(g,n) ;

Group([f£1, £f2 1)

CommutatorFactorGroup(G) A

computes the commutator factor group G /G’ of the group G.

gap> CommutatorFactorGroup(g);
Group([f1 1)

MaximalAbelianQuotient(grp) A

returns an epimorphism from grp onto the maximal abelian quotient of grp. the kernel of this epimorphism
is the derived subgroup.

HasAbelianFactorGroup(G, N) 0]
tests whether G/N is abelian (without explicitly constructing the factor group).
HasElementaryAbelianFactorGroup(G, N) O
tests whether G/N is elementary abelian (without explicitly constructing the factor group).

gap> HasAbelianFactorGroup(g,n);

false
gap> HasAbelianFactorGroup(DerivedSubgroup(g),n);
true
CentralizerModulo(G, N, elm) O

Computes the full preimage of the centralizer C¢/y(elm - N) in G (without necessarily constructing the
factor group).

gap> CentralizerModulo(g,n,(1,2));
Group([(3’4)’ (1’3)(2’4)’ (1s4)(2s3)])

37.18 Sets of Subgroups
ConjugacyClassSubgroups(G, U) @)

generates the conjugacy class of subgroups of G with representative U. This class is an external set, so
functions such as Representative, (which returns U), ActingDomain (which returns G), Stabilizer0-
fExternalSet (which returns the normalizer of U), and AsList work for it.

(The use the [] list access to select elements of the class is considered obsolescent and will be removed in
future versions. Use ClassElementLattice instead.)

2»
>

3>

4»

5»

6»

' d

Section 18. Sets of Subgroups 357

gap> g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;
gap> cl:=ConjugacyClassSubgroups(g,Subgroup(g, [(1,2)]1));
Group([(1,2) 1)G

gap> Size(cl);

6

gap> ClassElementLattice(cl,4);

Group([(2,3) 1D

IsConjugacyClassSubgroupsRep(obj) R
IsConjugacyClassSubgroupsByStabilizerRep(obj) R

Is the representation GAP uses for conjugacy classes of subgroups. It can be used to check whether an
object is a class of subgroups. The second representation IsConjugacyClassSubgroupsByStabilizerRep
in addition is an external orbit by stabilizer and will compute its elements via a transversal of the stabilizer.

ConjugacyClassesSubgroups(G) A

This attribute returns a list of all conjugacy classes of subgroups of the group G. It also is applicable for
lattices of subgroups (see 37.19.1). The order in which the classes are listed depends on the method chosen
by GAP. For each class of subgroups, a representative can be accessed using Representative (see 28.3.7).

gap> ConjugacyClassesSubgroups(g) ;

[Group(())°G, Group([(1,3)(2,4) 1)°G, Group([(1,2) 1)°G,
Group([(2,4,3) 1)°G, Group([(1,4)(2,3), (1,3)(2,4) 1)°G,
Group([(1,2)(3,4), (1,2) 1)G, Group([(1,2)(3,4), (1,4,2,3) 1)"G,
Group([(3,4), (2,4,3) 1)°G, Group([(1,3)(2,4), (1,4)(2,3), (1,2) 1)°G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3) 1)G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2) 1)°G]

ConjugacyClassesMaximalSubgroups(G) A

returns the conjugacy classes of maximal subgroups of G. Representatives of the classes can be computed
directly by MaximalSubgroupClassReps (see 37.18.5).

gap> ConjugacyClassesMaximalSubgroups(g) ;
[AlternatingGroup([1 .. 41)G, Group([(1,2,3), (1,2) 1)°G,
Group([(1,2), (3,4), (1,3)(2,4) 1)°G]

MaximalSubgroupClassReps(G) A

returns a list of conjugacy representatives of the maximal subgroups of G.

gap> MaximalSubgroupClassReps(g);
[A1tC [1 ..41), Group([(1,2,3), (1,2) 1),
Group([(1,2), (3,4), (1,3)(2,4) 1) 1

MaximalSubgroups(G) A

returns a list of all maximal subgroups of G. This may take up much space, therefore the command should
be avoided if possible. See 37.18.4.

gap> MaximalSubgroups(Group((1,2,3),(1,2)));
[Group([(1,2,3) 1), Group([(2,3) 1), Group([(1,2) 1), Group([(1,3) 1)]

NormalSubgroups(G) A

returns a list of all normal subgroups of G.

8>

1»

2>

3>

358 Chapter 37. Groups

gap> g:=SymmetricGroup(4) ;;NormalSubgroups(g) ;
[Group((Q)), Group([(1,4)(2,3), (1,3)(2,4) 1),
Group([(2,4,3), (1,4)(2,3), (1,3)(2,4) 1), Sym([1 .. 41)]

The algorithm for the computation of normal subgroups is described in [Hul98].

MaximalNormalSubgroups(G) A

is a list containing those proper normal subgroups of the group G that are maximal among the proper
normal subgroups.

gap> MaximalNormalSubgroups(g);
[Group([(2,4,3), (1,4)(2,3), (1,3)(2,4) 1D]

37.19 Subgroup Lattice

The GAP package XGAP permits a graphical display of the lattice of subgroups in a nice way.
LatticeSubgroups(G) A

computes the lattice of subgroups of the group G. This lattice has the conjugacy classes of subgroups
as attribute ConjugacyClassesSubgroups (see 37.18.3) and permits one to test maximality /minimality
relations.

gap> g:=SymmetricGroup(4);;

gap> l:=LatticeSubgroups(g);

<subgroup lattice of Sym([1 .. 4]), 11 classes, 30 subgroups>

gap> ConjugacyClassesSubgroups (1) ;

[Group(())°G, Group([(1,3)(2,4) 1)"G, Group([(1,2) 1)°G,
Group([(2,4,3) 1)°G, Group([(1,4)(2,3), (1,3)(2,4) 1)°G,
Group([(1,2)(3,4), (1,2) 1)G, Group([(1,2)(3,4), (1,4,2,3)])"G,
Group([(3,4), (2,4,3) 1)°G, Group([(1,3)(2,4), (1,4)(2,3), (1,2) 1)"G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3) 1)G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2) 1)°G]

ClassElementLattice(C, n) 0

For a class C of subgroups, obtained by a lattice computation, this operation returns the n-th conjugate
subgroup in the class.

Because of other methods installed, AsList(C) can give a different arrangement of the class
elements!

MaximalSubgroupsLattice(lat) A

For a lattice lat of subgroups this attribute contains the maximal subgroup relations among the subgroups
of the lattice. It is a list, corresponding to the ConjugacyClassesSubgroups of the lattice, each entry giving
a list of the maximal subgroups of the representative of this class. Every maximal subgroup is indicated by
a list of the form [cls,nr] which means that the nrst subgroup in class number cls is a maximal subgroup of
the representative.

The number nr corresponds to access via ClassElementLattice and not necessarily the AsList arrange-
ment! See also 37.19.4.

Section 19. Subgroup Lattice 359

gap> MaximalSubgroupsLattice(1);

cr 1, ccf1,113, 001,211, 001,111,
trc2,11,02,2131,02,311, [[(3,11,[3,61,[2,311,
[[2,311, [[(4,11,[3,41,[3,51,1[3,611,
rrrz, 11,066,171, 0[5, 111,

[[5,1]1, (4,11, (4,21, [4,31, 1[4, 411,
tf0,11,09,21, 09,21, [9,31,0[8,11,0[8,21, 8,31,
[8,411]1

(03,11, 03,61, [2,31]1

gap> ul:=Representative(ConjugacyClassesSubgroups (1) [6]);

Group([(1,2)(3,4), (1,2) 1D

gap> u2:=ClassElementLattice(ConjugacyClassesSubgroups (1) [3],1);;
gap> u3:=ClassElementLattice(ConjugacyClassesSubgroups(1l) [3],6);;
gap> u4:=ClassElementLattice(ConjugacyClassesSubgroups(1l) [2],3);;
gap> IsSubgroup(ul,u2);IsSubgroup(ul,u3);IsSubgroup(ul,ud);

true

true

true

4» MinimalSupergroupsLattice(lat) A

For a lattice lat of subgroups this attribute contains the minimal supergroup relations among the subgroups
of the lattice. It is a list, corresponding to the ConjugacyClassesSubgroups of the lattice, each entry giving
a list of the minimal supergroups of the representative of this class. Every minimal supergroup is indicated
by a list of the form [cls,nr] which means that the nrst subgroup in class number cls is a minimal supergroup
of the representative.

The number nr corresponds to access via ClassElementLattice and not necessarily the AsList arrange-
ment! See also 37.19.3.

gap> MinimalSupergroupsLattice(l);

tctf2,11,02,21,02,31,03,11,[3,21,1[3,31, 103,41,
(3,51, (3,61, [4,11,[04,21, 4,31, 1[4,4711,
trfs,11,06,21, 07,211, [[e6,11,[8,21,10[8,311,
trfs,11, 010,111, CC9, 11, 09,21,[9,31, 10,111,
tfto,111, 009 111,001,111, 011,111, (011,111,

[11

gap> last[3];

(ce,11, 08,21, [8,311

gap> ub:=ClassElementLattice(ConjugacyClassesSubgroups(1l) [8],2);
Group([(1,2), (1,4,2) 1)

gap> u6:=ClassElementLattice(ConjugacyClassesSubgroups (1) [8],3);
Group([(1,2), (1,2,3) 1)

gap> IsSubgroup(ub,u2);

true
gap> IsSubgroup(u6,u2);
true
5» RepresentativesPerfectSubgroups(G) A
» RepresentativesSimpleSubgroups(G) A

returns a list of conjugacy representatives of perfect (respectively simple) subgroups of G. This uses the
library of perfect groups (see 48.8.2), thus it will issue an error if the library is insufficient to determine all
perfect subgroups.

6>

7>

8>

1»

360 Chapter 37. Groups

gap> mll:=TransitiveGroup(11,6);

M(11)

gap> r:=RepresentativesPerfectSubgroups(mil);

[Group([(1,6,8)(3,5,11)(7,9,10), (1,7)(4,9(5,10)(8,11) 1),
Group([(1,5,7)(2,9,11)(3,10,6), (1,7)(4,9)(5,10)(8,11) 1),
Group([(1,11)(3,8)(5,6)(9,10), (1,10,7,5)(4,11,9,8) 1),
Group([(1,10,11)(2,7,6)(3,8,9), (1,7)(4,9)(5,10)(8,11) 1), M(11),
Group(()) 1]

gap> List(r,Size);

[60, 60, 360, 660, 7920, 1]

ConjugacyClassesPerfectSubgroups(G) A

returns a list of the conjugacy classes of perfect subgroups of G. (see 37.19.5.)

gap> ConjugacyClassesPerfectSubgroups(mil);

[Group([(1, 6, 8(3, 5,11)(7, 9,10), (1, 7)(4, 9(5,10)(8,11) 1)G,
Group([(1, 5, 7)(2, 9,11)(3,10, 6), (1, 7)(4, 9)(5,10)(8,11) 1)"G,
Group([(1,11)(3, 8)(5, 6)(9,10), (1,10, 7, 5)(4,11, 9, 8)])"G,
Group([(1,10,11)(2, 7, 6)(3, 8, 9), (1, 7)(4, 9(5,10)(8,11) 1)"G,
M(11) "G, Group(O)°G]
Zuppos(G) A

The Zuppos of a group are the cyclic subgroups of prime power order. (The name “Zuppo” derives from
the German abbreviation for “zyklische Untergruppen von Primzahlpotenzordnung”.) This attribute gives
generators of all such subgroups of a group G. That is all elements of G of prime power order up to the
equivalence that they generate the same cyclic subgroup.

Infolattice Vv

is the information class used by the cyclic extension methods for subgroup lattice calculations.

37.20 Specific Methods for Subgroup Lattice Computations
LatticeByCyclicExtension(G [, funcl[, moperfl]) F

computes the lattice of G using the cyclic extension algorithm. If the function func is given, the algorithm will
discard all subgroups not fulfilling func (and will also not extend them), returning a partial lattice. This can
be useful to compute only subgroups with certain properties. Note however that this will not necessarily
yield all subgroups that fulfill func, but the subgroups whose subgroups are used for the construction
must also fulfill func as well. (In fact the filter func will simply discard subgroups in the cyclic extension
algorithm. Therefore the trivial subgroup will always be included.) Also note, that for such a partial lattice
maximality /minimality inclusion relations cannot be computed.

The cyclic extension algorithm requires the perfect subgroups of G. However GAP cannot analyze the function
func for its implication but can only apply it. If it is known that func implies solvability, the computation
of the perfect subgroups can be avoided by giving a third parameter noperf set to true.

gap> g:=WreathProduct (Group((1,2,3),(1,2)),Group((1,2,3,4)));;

gap> l:=LatticeByCyclicExtension(g,function(G)

> return Size(G) in [1,2,3,6];end);

<subgroup lattice of <permutation group of size 5184 with 9 generators>,
47 classes, 2628 subgroups, restricted under further condition 1!.func>

The total number of classes in this example is much bigger, as the following example shows:

2»

3>

Section 20. Specific Methods for Subgroup Lattice Computations 361

gap> LatticeSubgroups(g);
<subgroup lattice of <permutation group of size 5184 with 9 generators>,
566 classes, 27134 subgroups>

InvariantSubgroupsElementaryAbelianGroup(G, homs[, dims]) F

Let G be an elementary abelian group (that is a vector space) and homs a set of automorphisms of G. Then
this function computes all subspaces of G which are invariant under all automorphisms in homs. When
considering G as a module for the algebra generated by homs, these are all submodules. If homs is empty,
it computes all subspaces. If the optional parameter dims is given, only subspaces of this dimension are
computed.

gap> g:=Group((1,2,3),(4,5,6),(7,8,9));
Group([(1,2,3), (4,5,6), (7,8,9) 1)
gap> hom:=GroupHomomorphismByImages(g,g, [(1,2,3),(4,5,6),(7,8,9)],
> [(7,8,9),(1,2,3),(4,5,6)]);
[(1,2,3), (4,5,6), (7,8,9) 1 -> [(7,8,9), (1,2,3), (4,5,6)]
gap> u:=InvariantSubgroupsElementaryAbelianGroup(g, [hom]) ;
[Group(()), Group([(1,2,3)(4,5,6)(7,8,9) 1),
Group([(1,3,2)(7,8,9), (1,3,2)(4,5,6) 1),
Group([(7,8,9), (4,5,6), (1,2,3) 1)]

SubgroupsSolvableGroup(G[, opt]) F

This function (implementing the algorithm published in [Hul99]) computes subgroups of a solvable group
G, using the homomorphism principle. It returns a list of representatives up to G-conjugacy.

The optional argument opt is a record, which may be used to put restrictions on the subgroups computed.
The following record components of opt are recognized and have the following effects:

actions
must be a list of automorphisms of G. If given, only groups which are invariant under all these
automorphisms are computed. The algorithm must know the normalizer in G of the group generated
by actions (defined formally by embedding in the semidirect product of G with actions). This can
be given in the component funcnorm and will be computed if this component is not given.

normal
if set to true only normal subgroups are guaranteed to be returned (though some of the returned
subgroups might still be not normal).

consider

a function to restrict the groups computed. This must be a function of five parameters, C,A,N,B,M
that are interpreted as follows: The arguments are subgroups of a factor F' of G in the relation
F>C>A>N2>B>M. N and M are normal subgroups. C is the full preimage of the
normalizer of A/N in F/N. When computing modulo M and looking for subgroups U such that
UNN = B and (U,N) = A, this function is called. If it returns false all potential groups U
(and therefore all groups later arising from them) are disregarded. This can be used for example to
compute only subgroups of certain sizes.

(This is just a restriction to speed up computations. The function may still return (invariant)
subgroups which don’t fulfill this condition!) This parameter is used to permit calculations of some
subgroups if the set of all subgroups would be too large to handle.

The actual groups C, A, N and B which are passed to this function are not necessarily subgroups of G but
might be subgroups of a proper factor group F=G/H. Therefore the consider function may not relate the
parameter groups to G.

4»

5p

6»

362 Chapter 37. Groups

retnorm
if set to true the function not only returns a list subs of subgroups but also a corresponding list
norms of normalizers in the form [subs,norms].

series
is an elementary abelian series of G which will be used for the computation.

groups
is a list of groups to seed the calculation. Only subgroups of these groups are constructed.

gap> g:=Group((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8));
Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9, (7,8) 1)
gap> hom:=GroupHomomorphismByImages(g,g,

> [(1,2,3),1,2),4,5,6),(4,5),(7,8,9),(7,8)],

> [(4,5,6),(4,5),(7,8,9),(7,8),(1,2,3),(1,2)1);

[(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8 1 —>

[(4,5,6), (4,5), (7,8,9), (7,8), (1,2,3), (1,2)]

gap> 1l:=SubgroupsSolvableGroup(g,rec(actions:=[hom]));;
gap> List(1,Size);

[1, 3,9, 27, 54, 2, 6, 18, 108, 4, 216, 8]

gap> Length(ConjugacyClassesSubgroups(g)); # to compare
162

SizeConsiderFunction(size) F

This function returns a function consider of four arguments that can be used in SubgroupsSolvableGroup
(see 37.20.3) for the option consider to compute subgroups whose sizes are divisible by size.

gap> 1l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
> consider:=SizeConsiderFunction(6)));;

gap> List(1,Size);

[1, 3, 9, 27, 54, 6, 18, 108, 216 1]

This example shows that in general the consider function does not provide a perfect filter. It is guaranteed
that all subgroups fulfilling the condition are returned, but not all subgroups returned necessarily fulfill the
condition.

ExactSizeConsiderFunction(size) F

This function returns a function consider of four arguments that can be used in SubgroupsSolvableGroup
(see 37.20.3) for the option consider to compute subgroups whose sizes are exactly size.

gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
> consider:=ExactSizeConsiderFunction(6)));;

gap> List(1l,Size);

(1, 3, 9, 27, 54, 6, 108, 216]

Again, the consider function does not provide a perfect filter. It is guaranteed that all subgroups fulfilling
the condition are returned, but not all subgroups returned necessarily fulfill the condition.

InfoPcSubgroup Vv

Information function for the subgroup lattice functions using pcgs.

1»

2»

3

4»

5»

Section 22. 1-Cohomology 363

37.21 Special Generating Sets
GeneratorsSmallest(G) A

returns a “smallest” generating set for the group G. This is the lexicographically (using GAPs order of group
elements) smallest list [of elements of G such that G = (I) and [; € (};,...,l;—1) (in particular /; is not the
one of the group). The comparison of two groups via lexicographic comparison of their sorted element lists
yields the same relation as lexicographic comparison of their smallest generating sets.

gap> g:=SymmetricGroup(4);;

gap> GeneratorsSmallest(g);

[(3,4, (2,3), (1,2) 1]
LargestElementGroup(G) A
returns the largest element of G with respect to the ordering < of the elements family.
MinimalGeneratingSet(G) A
returns a generating set of G of minimal possible length.

gap> MinimalGeneratingSet(g) ;
[(2,4,3), (1,4,2,3)]

SmallGeneratingSet(G) A

returns a generating set of G which has few elements. As neither irredundancy, nor minimal length is proven
it runs much faster than MinimalGeneratingSet. It can be used whenever a short generating set is desired
which not necessarily needs to be optimal.

gap> SmallGeneratingSet(g);
[(1,2), (1,2,3,4)]

IndependentGeneratorsOfAbelianGroup(A) A

returns a set of generators g of prime-power order of the abelian group A such that A is the direct product
of the cyclic groups generated by the g;.

gap> g:=AbelianGroup(IsPermGroup, [15,14,22,78]);;
gap> List(IndependentGeneratorsOfAbelianGroup(g) ,0rder);
[2,2,2,3,3,5,7, 11, 131

37.22 1-Cohomology

Let G be a finite group and M an elementary abelian normal p-subgroup of G. Then the group of 1-cocycles
ZY (G /M, M) is defined as

ZHG/M,M)={y: G/M — M |Vg1,90 € G : (g1 M - 2 M) = v(g1 M)** - (g2 M)}

and is a GF(p)-vector space.
The group of 1-coboundaries BY(G/M, M) is defined as

BYG/M,M)={y:G/M — M |3me MVYg € G:~v(gM)=(m) -m}

It also is a GF(p)-vector space.

Let « be the isomorphism of M into a row vector space W and (g1, ..., g/) representatives for a generating
set of G/M. Then there exists a monomorphism 3 of Z*(G/M, M) in the [-fold direct sum of W, such that

B(y) = (a(y(g1 M), ..., a(v(giM))) for every v € Z*(G/M, M).

1»

v

2>

364 Chapter 37. Groups

OneCocycles(G, M) O
OneCocycles(gens, M) O
OneCocycles(G, mpcgs) O
OneCocycles(gens, mpcgs) O

Computes the group of 1-Cocycles Z*(G /M, M). The normal subgroup M may be given by a (Modulo)Pcgs
mpcgs. In this case the whole calculation is performed modulo the normal subgroup defined by the De-
nominator0OfModuloPcgs (mpcgs) (see 43.1). Similarly the group G may instead be specified by a set of
elements gens that are representatives for a generating system for the factor group G/M. If this is done
the 1-Cocycles are computed with respect to these generators (otherwise the routines try to select suitable
generators themselves).

OneCoboundaries(G, M) O

computes the group of 1-coboundaries. Syntax of input and output otherwise is the same as with OneCocy-
cles except that entries that refer to cocycles are not computed.

The operations OneCocycles and OneCoboundaries return a record with (at least) the components:

generators
Is a list of representatives for a generating set of G/M. Cocycles are represented with respect to
these generators.

oneCocycles
A space of row vectors over GF(p), representing Z!. The vectors are represented in dimension a - b
where a is the length of generators and p® the size of M.

oneCoboundaries
A space of row vectors that represents B'.

cocycleTolList
is a function to convert a cocycle (a row vector in oneCocycles) to a corresponding list of elements
of M.

listToCocycle
is a function to convert a list of elements of M to a cocycle.

isSplitExtension
indicates whether G splits over M. The following components are only bound if the extension splits.
Note that if M is given by a modulo pcgs all subgroups are given as subgroups of G by generators
corresponding to generators and thus may not contain the denominator of the modulo pcgs. In
this case taking the closure with this denominator will give the full preimage of the complement in
the factor group.

complement
One complement to M in G.

cocycleToComplement (cyc)
is a function that takes a cocycle from oneCocycles and returns the corresponding complement to
M in G (with respect to the fixed complement complement).

complementToCocycle(U)
is a function that takes a complement and returns the corresponding cocycle.

If the factor G/M is given by a (modulo) pcgs gens then special methods are used that compute a presen-
tation for the factor implicitly from the pcgs.

Note that the groups of 1-cocycles and 1-coboundaries are not Groups in the sense of GAP but vector spaces.

3»

4»

5»

Section 22. 1-Cohomology 365

gap> g:=Group((1,2,3,4),(1,2));;
gap> n:=Group((1,2)(3,4),(1,3)(2,4));;
gap> oc:=0neCocycles(g,n);

rec(oneCoboundaries := <vector space over GF(2), with 2 generators>,
oneCocycles := <vector space over GF(2), with 2 generators>,
generators := [(3,4), (2,4,3)], isSplitExtension := true,
complement := Group([(3,4), (2,4,3) 1),
cocycleToList := function(¢) ... end,
listToCocycle := function(L) ... end,
cocycleToComplement := function(¢) ... end,
factorGens := [(3,4), (2,4,3) 1,
complementToCocycle := function(K) ... end)

gap> oc.cocycleToList ([0%Z(2), Z(2)"0, 0*Z(2), Z(2)°0 1);

[(1,2)(3,4), (1,2)(3,4)]

gap> oc.listToCocycle([(),(1,3)(2,4)]1);

[0%xZ(2), 0%Z(2), Z(2)70, 0%Z(2)]

gap> oc.cocycleToComplement ([0*%Z(2), Z(2)°0, 0%Z(2), Z(2)°0 1);
Group([(1,2), (1,2,3) 1)

gap> oc.cocycleToComplement ([0%Z(2), 0%Z(2), Z(2)70, 0%Z(2) 1);
Group([(3,4), (1,3,4) 1)

gap> oc.complementToCocycle(Group((1,2,4),(1,4)));

[0xZ(2), Z(2)"0, Z(2)"0, Z(2)"0]

The factor group HY(G/M, M) = Z*(G/M,M)/B(G/M, M) is called the first cohomology group. Cur-
rently there is no function which explicitly computes this group. The easiest way to represent it is as a vector
space complement to B! in Z'.

If the only purpose of the calculation of H! is the determination of complements it might be desirable to stop
calculations once it is known that the extension cannot split. This can be achieved via the more technical
function 0COneCocycles.

0COneCocycles(ocr, onlySplit) O

is the more technical function to compute 1-cocycles. It takes an record ocr as first argument which must
contain at least the components group for G and modulePcgs for a (modulo) pegs of M. This record will also
be returned with components as described under OneCocycles (with the exception of isSplitExtension
which is indicated by the existence of a complement) but components such as oneCoboundaries will only
be computed if not already present.

If onlySplit is true, OneCocyclesOC returns false as soon as possible if the extension does not split.

ComplementclassesEA(G, N) O

computes Complementclasses to an elementary abelian normal subgroup N via 1-Cohomology. Normally,
a user program should call Complementclasses (see 37.10.6) instead, which also works for a solvable (not
necessarily elementary abelian) N.

InfoCoh Vv

The info class for the cohomology calculations is InfoCoh.

1»

2>

3>

366 Chapter 37. Groups

37.23 Schur Covers and Multipliers

EpimorphismSchurCover(GU[, pl]) O

returns an epimorphism epi from a group D onto G. The group D is one (of possibly several) Schur covers
of G. The group D can be obtained as the Source of epi. the kernel of epi is the schur multiplier of G.
If pl is given as a list of primes, only the multiplier part for these primes is realized. At the moment, D is
represented as a finitely presented group.

SchurCover(G) O

returns one (of possibly several) Schur covers of G.

At the moment this cover is represented as a finitely presented group and IsomorphismPermGroup would be
needed to convert it to a permutation group.

If also the relation to G is needed, EpimorphismSchurCover should be used.
gap> g:=Group((1,2,3,4),(1,2));;
gap> epi:=EpimorphismSchurCover (g) ;
[£1, £f2, £3 1 —> [(3,4), (2,4,3), (1,4)(2,3)]
gap> Size(Source(epi));
48

If the group becomes bigger, Schur Cover calculations might become unfeasible.

There is another operation which only returns the structure of the Multiplier, and which should work for
larger groups as well.

AbelianInvariantsMultiplier(G) O
returns a list of the abelian invariants of the Schur multiplier of G.

gap> AbelianInvariantsMultiplier(g);

[2]

gap> AbelianInvariantsMultiplier (MathieuGroup(22));
[4, 3]

Note that the following example will take some time.

gap> AbelianInvariantsMultiplier(PSU(6,2));
[2, 2, 3]

At the moment, this operation will not give any information about how to extend the multiplier to a Schur
Cover.

37.24 Tests for the Availability of Methods

The following filters and operations indicate capabilities of GAP. They can be used in the method selection
or algorithms to check whether it is feasible to compute certain operations for a given group. In general, they
return true if good algorithms for the given arguments are available in GAP. An answer false indicates
that no method for this group may exist, or that the existing methods might run into problems.

Typical examples when this might happen is with finitely presented groups, for which many of the methods
cannot be guaranteed to succeed in all situations.

The willingness of GAP to perform certain operations may change, depending on which further information
is known about the arguments. Therefore the filters used are not implemented as properties but as “other
filters” (see 13.7 and 13.8).

1»

2»

3»

4»

5p

6»

Section 2. Tests for the Availability of Methods 367

CanEasilyTestMembership(grp) F

This filter indicates whether a group can test membership of elements in grp (via the operation in) in
reasonable time. It is used by the method selection to decide whether an algorithm that relies on membership
tests may be used.

CanComputeSize(dom) F
This filter indicates whether the size of the domain dom (which might be infinity) can be computed.
CanComputeSizeAnySubgroup(grp) F

This filter indicates whether grp can easily compute the size of any subgroup. (This is for example ad-
vantageous if one can test that a stabilizer index equals the length of the orbit computed so far to stop
early.)

CanComputeIndex(G, H) F

This filter indicates whether the index [G : H] (which might be infinity) can be computed. It assumes
that H < G. (see 37.24.5)

CanComputeIsSubset(A, B) O
This filter indicates that GAP can test (via IsSubset) whether B is a subset of A.

KnowsHowToDecompose(G) P
KnowsHowToDecompose(G, gens) O

Tests whether the group G can decompose elements in the generators gens. If gens is not given it tests,
whether it can decompose in the generators given in GeneratorsOfGroup.

This property can be used for example to check whether a GroupHomomorphismByImages can be reasonably
defined from this group.

1»

2>

3 8 Group
Homomorphisms

A group homomorphism is a mapping from one group to another that respects multiplication and inverses.
They are implemented as a special class of mappings, so in particular all operations for mappings, such as
Image, PreImage, PreImagesRepresentative, KernelOfMultiplicativeGeneralMapping, Source, Range,
IsInjective and IsSurjective (see chapter 31, in particular section 31.8) are applicable to them.

Homomorphisms can be used to transfer calculations into isomorphic groups in another representation, for
which better algorithms are available. Section 38.5 explains a technique how to enforce this automatically.

Homomorphisms are also used to represent group automorphisms, and section 38.6 explains explains GAP’s
facilities to work with automorphism groups.

The penultimate section of this chapter, 38.9, explains how to make GAP to search for all homomorphisms
between two groups which fulfill certain specifications.

38.1 Creating Group Homomorphisms

The most important way of creating group homomorphisms is to give images for a set of group generators
and to extend it to the group generated by them by the homomorphism property.

GroupHomomorphismByImages(G, H, gens, imgs) F

GroupHomomorphismByImages returns the group homomorphism with source G and range H that is defined
by mapping the list gens of generators of G to the list imgs of images in H.

If gens does not generate G or if the mapping of the generators does not extend to a homomorphism (i.e.,
if mapping the generators describes only a multi-valued mapping) then fail is returned.

This test can be quite expensive. If one is certain that the mapping of the generators extends to a homomor-
phism, one can avoid the checks by calling GroupHomomorphismByImagesNC. (There also is the possibility to
construct potentially multi-valued mappings with GroupGeneralMappingByImages and to test with IsMap-
ping that they are indeed homomorphisms.)

GroupHomomorphismByImagesNC(G, H, gensG, gensH) 0]

GroupHomomorphismByImagesNC creates a homomorphism as GroupHomomorphismByImages does, however
it does not test whether gens generates G and that the mapping of gens to imgs indeed defines a group
homomorphism. Because these tests can be expensive it can be substantially faster than GroupHomomor-
phismByImages. Results are unpredictable if the conditions do not hold.

(For creating a possibly multi-valued mapping from G to H that respects multiplication and inverses,
GroupGeneralMappingByImages can be used.)

3>

Section 1. Creating Group Homomorphisms 369

gap> gens:=[(1,2,3,4),(1,2)]1;

[(1,2,3,4), (1,2)]

gap> g:=Group(gens) ;

Group([(1,2,3,4), (1,2) 1)

gap> h:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2) 1D

gap> hom:=GroupHomomorphismByImages(g,h,gens, [(1,2),(1,3)]1);
[(1,2,3,4), (1,2) 1 -> [(1,2), (1,3)]

gap> Image (hom, (1,4));

(2,3
gap> map:=GroupHomomorphismByImages(g,h,gens, [(1,2,3),(1,2)]1);
fail
GroupGeneralMappingByImages(G, H, gensG, gensH) O

returns a generalized mapping defined by extending the mapping from gensG to gensH homomorphically.
(GroupHomomorphismByImages creates a GroupGeneralMappingByImages and tests whether it IsMapping.)

gap> map:=GroupGeneralMappingByImages(g,h,gens, [(1,2,3),(1,2)]1);
[(1,2,3,49), (1,2 1 -> [(1,2,3), (1,2)]

gap> IsMapping(map);

false

A second way to create homomorphisms is to give functions that compute image and preimage. (A simi-
lar case are homomorphisms that are induced by conjugation. Special constructors for such mappings are
described in section 38.6).

GroupHomomorphismByFunction(S, R, fun) F
GroupHomomorphismByFunction(S, R, fun, inufun) F
GroupHomomorphismByFunction(S, R, fun, ‘false, prefun)’ F

GroupHomomorphismByFunction returns a group homomorphism hom with source S and range R, such that
each element s of S is mapped to the element fun(s), where fun is a GAP function.

If the argument snufun is bound then hom is a bijection between S and R, and the preimage of each element
r of R is given by invfun(r), where invfun is a GAP function.

In the third variant, a function prefun is given that can be used to compute a single preimage. In this case,
the third entry must be false.

No test is performed on whether the functions actually give an homomorphism between both groups because
this would require testing the full multiplication table.

GroupHomomorphismByFunction creates a mapping which IsSPGeneralMapping.

gap> hom:=GroupHomomorphismByFunction(g,h,
> function(x) if SignPerm(x)=-1 then return (1,2); else return ();fi;end);
MappingByFunction(Group([(1,2,3,4), (1,2) 1), Group([(1,2,3), (1,2)
1), function(x) ... end)
gap> ImagesSource (hom) ;
Group([(1,2), (1,2) D
gap> Image(hom, (1,2,3,4));
(1,2)

The third class are epimorphisms from a group onto its factor group. Such homomorphisms can be con-
structed by NaturalHomomorphismByNormalSubgroup (see 37.17.1).

5»

370 Chapter 38. Group Homomorphisms

The fourth class is homomorphisms in a permutation group that are induced by an action on a set. Such
homomorphisms are described in the context of group actions, see chapter 39 and in particular section 39.6.1.

AsGroupGeneralMappingByImages(map) A

If map is a mapping from one group to another this attribute returns a group general mapping that which
implements the same abstract mapping. (Some operations can be performed more effective in this represen-
tation, see also 38.10.2.)

gap> AsGroupGeneralMappingByImages (hom) ;
[(1’2’3:4)’ (1:2)] -> [(1,2), (1,2)]

38.2 Operations for Group Homomorphisms

Group homomorphisms are mappings, so all the operations and properties for mappings described in chap-
ter 31 are applicable to them. (However often much better methods, than for general mappings are available.)

Group homomorphisms will map groups to groups by just mapping the set of generators.

KernelOfMultiplicativeGeneralMapping can be used to compute the kernel of a group homomorphism.

gap> hom:=GroupHomomorphismByImages(g,h,gens, [(1,2),(1,3)]);;
gap> Kernel (hom) ;
Group([(1,4)(2,3), (1,2)(3,4) 1)

Homomorphisms can map between groups in different representations and are also used to get isomorphic
groups in a different representation.

gap> mi:=[[0,-1],[1,0]1];;m2:=[[0,-1],[1,11];;

gap> sl2z:=Group(ml,m2);; # SL(2,Integers) as matrix group

gap> F:=FreeGroup(2);;

gap> psl2z:=F/[F.172,F.273]; #PSL(2,Z) as FP group

<fp group on the generators [f1, f2 1>

gap> phom:=GroupHomomorphismByImagesNC(sl2z,psl2z, [m1,m2],

> Generators0fGroup(psl2z)); # the non NC-version would be expensive
rtfto,-t1,0t,011, [C0,-11,[C1,1]111->T1LT*¢E1, £f2]
gap> Kernel(phom); # the diagonal matrices

Group([L [[-1, 01, [0, -1]11, [[-1,01,[0,-1110D)

gap> pl:=(1,2)(3,4);;p2:=(2,4,5);;ab:=Group(pl,p2);;

gap> ahom:=GroupHomomorphismByImages (psl2z,a5,

> Generators0fGroup(psl2z), [p1,p2]); # here homomorphism test is cheap.
[f1, £2 1 -> [(1,2)(3,4), (2,4,5) 1]

gap> u:=PreImage (ahom,Group((1,2,3),(1,2)(4,5)));

Group(<fp, no generators known>)

gap> Index(psl2z,u);

10

gap> isofp:=IsomorphismFpGroup(u);; Image(isofp);

<fp group of size infinity on the generators [F1, F2, F3, F4]>
gap> RelatorsOfFpGroup(Image (isofp));

[F1°2, F4"2, F3°3]

gap> up:=PreImage (phom,u);;

gap> List(Generators0fGroup(up),TraceMat);

[-2, -2, 0, -4, 1, 0]

For an automorphism aut, Inverse returns the inverse automorphism aut~'. However if hom is a bijective
homomorphism between different groups, or if hom is injective and considered to be a bijection to its image,

Section 3. Efficiency of Homomorphisms 371

the operation InverseGeneralMapping should be used instead. (See 30.10.8 for a further discussion of this
problem.)

gap> iso:=IsomorphismPcGroup(g) ;

Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) 1) -> [f1, £2, £3, 4]
gap> Inverse(iso);

#I The mapping must be bijective and have source=range

#I You might want to use ‘InverseGeneralMapping’

fail

gap> InverseGeneralMapping(iso);

[f1, £2, £3, f4 1 -> Pcgs([(3,4), (2,4,3), (1,4(2,3), (1,3)(2,4 1D

38.3 Efficiency of Homomorphisms

GAP permits to create homomorphisms between arbitrary groups. This section considers the efficiency of
the implementation and shows ways how to choose suitable representations. For permutation groups (see 41)
or Pc groups (see 44) this is normally nothing to worry about, unless the groups get extremely large. For
other groups however certain calculations might be expensive and some precaution might be needed to avoid
unnecessarily expensive calculations.

In short, it is always worth to tell a mapping that it is a homomorphism (this can be done by SetIsMapping)
(or to create it directly with GroupHomomorphismByImagesNC).

The basic operations required are to compute image and preimage of elements and to test whether a mapping
is a homomorphism. Their cost will differ depending on the type of the mapping.

Mappings given on generators (GroupHomomorphismByImages, GroupGeneralMappingByImages)

Computing images requires to express an element of the source as word in the generators. If it cannot be
done effectively (this is determined by KnowsHowToDecompose, see 37.24.6 which returns true for example
for arbitrary permutation groups, for Pc groups or for finitely presented groups with the images of the free
generators) the span of the generators has to be computed elementwise which can be very expensive and
memory consuming.

Computing preimages adheres to the same rules with swapped roles of generators and their images.

The test whether a mapping is a homomorphism requires the computation of a presentation for the source
and evaluation of its relators in the images of its generators. For larger groups this can be expensive and
GroupHomomorphismByImagesNC should be used if the mapping is known to be a homomorphism.

Action homomorphisms (ActionHomomorphism)

The calculation of images is determined by the acting function used and — for large domains — is often
dominated by the search for the position of an image in a list of the domain elements. This can be improved
by sorting this list if an efficient method for < to compare elements of the domain is available.

Once the images of a generating set are computed, computing preimages (which is done via the AsGroupGen-
eralMappingByImages) and computing the kernel bahaves the same as for a GroupHomomorphismByImages
in a permutation group.

GAP will always assume that the acting function provided implements a proper group action and thus that
the mapping is indeed a homomorphism.

Mappings given by functions (GroupHomomorphismByFunction, GroupGeneralMappingByFunctions)

Computing images is wholly determined by the function that performs the image calculation. If no function
to compute preimages is given, computing preimages requires mapping every element of the source to find
an element that maps to the requested image. This is time and memory consuming.

1»

372 Chapter 38. Group Homomorphisms

Testing whether a GroupGeneralMappingByFunctions is a homomorphism would require mapping all prod-
ucts of elements and thus should be avoided.

Other operations

To compute the kernel of a homomorphism (unless the mapping is known to be injective) requires the
capability to compute a presentation of the image and to evaluate the relators of this presentation in
preimages of the presentations generators.

The calculation of the Image (respectively ImagesSource) requires to map a generating set of the source,
testing surjectivity is a comparison for equality with the range.

Testing injectivity is a test for triviality of the kernel.
The comparison of mappings is based on a lexicographic comparison of a sorted element list of the source.
For groups this can be simplified:

ImagesSmallestGenerators(map) A

returns the list of images of GeneratorsSmallest (Source(map)). This list can be used to compare group
homomorphisms. (The standard comparison is to compare the image lists on the set of elements of the
source. If however x and y have the same images under a and b, certainly all their products have. Therefore
it is sufficient to test this on the images of the smallest generators.)

38.4 Homomorphism for very large groups

Some homomorphisms (notably particular actions) transfer known information about the source group (such
as a stabilizer chain) to the image group if this is substantially cheaper than to compute the information in
the image group anew. In most cases this is no problem and in fact speeds up further calculations notably.

For a huge source group, however this can be time consuming or take a large amount of extra memory for
storage. In this case it can be helpful to avoid as much automatism as possible.

The following list of tricks might be useful in such a case. (However you will lose much automatic deduction.
So please restrict the use of these to cases where the standard approach does not work.)

Compute only images (or the PreImageRepresentative) of group elements. Do not compute the
images of (sub)groups or the full preimage of a subgroup.

Create action homomorphisms as “surjective” (see ActionHomomorphism) (otherwise the range is
set to be the full symmetric group) However do not compute Range or Image, but only the images
of a generator set.

If you suspect an action homomorphism to do too much internally, replace the action function with
a function that does the same; i.e. replace OnPoints by

function(p,g) return p~g;end;

The action will be the same, but as the action function is not OnPoints, the extra processing for special
cases is not triggered.

1»

3»

4»

1»

Section 6. Group Automorphisms 373

38.5 Nice Monomorphisms

GAP contains very efficient algorithms for some special representations of groups (for example pc groups or
permutation groups) while for other representations only slow generic methods are available. In this case it
can be worthwhile to do all calculations rather in an isomorphic image of the group, which is in a “better”
representation. The way to achieve this in GAP is via nice monomorphisms.

For this mechanism to work, of course there must be effective methods to evaluate the NiceMonomorphism
on elements and to take preimages under it. As by definition no good algorithms exist for the source group,
normally this can only be achieved by using an ActionHomomorphism or a GroupHomomorphismByFunction
(see also section 38.3).

IsHandledByNiceMonomorphism(obj) P

If this property is true, high-valued methods that translate all calculations in 0bj in the image under the
NiceMonomorphism become available for obj.

NiceMonomorphism(obj) A

is a homomorphism that is defined (at least) on the whole of 0bj and whose restriction to obj is injective.
The concrete morphism (and also the image group) will depend on the representation of obj.

NiceObject(obj) A

The NiceObject of obj is the image of obj under its NiceMonomorphism.

A typical example are finite matrix groups, which use a faithful action on vectors to translate all calculations
in a permutation group.

gap> gl:=GL(3,2);

SL(3,2)

gap> IsHandledByNiceMonomorphism(gl) ;

true

gap> NiceObject(gl);

Group([(5,7)(6,8), (2,3,5)(4,7,6) 1)

gap> Image (NiceMonomorphism(gl),Zz(2)*[[1,0,0],[0,1,1]1,[1,0,111);
(2,6)(3,4,7,8)

IsCanonicalNiceMonomorphism(nhom) P

A NiceMonomorphism nhom is canonical if the image set will only depend on the set of group elements but not
on the generating set and < comparison of group elements translates through the nice monomorphism. This
implies that equal objects will always have equal NiceObjects. In some situations however this condition
would be expensive to achieve, therefore it is not guaranteed for every nice monomorphism.

38.6 Group Automorphisms

Group automorphisms are bijective homomorphism from a group onto itself. An important subclass are
automorphisms which are induced by conjugation of the group itself or a supergroup.
ConjugatorIsomorphism(G, g) Q)

Let G be a group, and g an element in the same family as the elements of G. ConjugatorIsomorphism
returns the isomorphism from G to G~g defined by h +— h? for all h € G.

If g normalizes G then ConjugatorIsomorphism does the same as ConjugatorAutomorphismNC (see 38.6.2).

2»

v

5»

374 Chapter 38. Group Homomorphisms

ConjugatorAutomorphism(G, ¢) F
ConjugatorAutomorphismNC(G, ¢) O

Let G be a group, and g an element in the same family as the elements of G such that g normalizes G.
ConjugatorAutomorphism returns the automorphism of G defined by h — hY for all h € G.

If conjugation by ¢ does not leave G invariant, ConjugatorAutomorphism returns fail; in this case, the iso-
morphism from G to G~¢ induced by conjugation with ¢ can be constructed with ConjugatorIsomorphism
(see 38.6.1).

ConjugatorAutomorphismNC does the same as ConjugatorAutomorphism, except that the check is omitted
whether ¢ normalizes G.

InnerAutomorphism(G, g) F
InnerAutomorphismNC(G, ¢) (@)

Let G be a group, and g € G. InnerAutomorphism returns the automorphism of G defined by h +— h’ for
all h € G.

If g is not an element of G, InnerAutomorphism returns fail; in this case, the isomorphism from G to
G~ ¢ induced by conjugation with g can be constructed with ConjugatorIsomorphism (see 38.6.1) or with
ConjugatorAutomorphism (see 38.6.2).

InnerAutomorphismNC does the same as InnerAutomorphism, except that the check is omitted whether
g€ G.

IsConjugatorIsomorphism(hom) P
IsConjugatorAutomorphism(hom) P
IsInnerAutomorphism(hom) P

Let hom be a group general mapping (see 31.8.4) with source G, say. IsConjugatorIsomorphism returns
true if hom is induced by conjugation of G by an element ¢ that lies in G or in a group into which G is
naturally embedded in the sense described below, and false otherwise. Natural embeddings are dealt with
in the case that G is a permutation group (see Chapter 41), a matrix group (see Chapter 42), a finitely
presented group (see Chapter 45), or a group given w.r.t. a polycyclic presentation (see Chapter 44). In all
other cases, IsConjugatorIsomorphism may return false if hom is induced by conjugation but is not an
inner automorphism.

If IsConjugatorIsomorphism returns true for hom then an element g that induces hom can be accessed
as value of the attribute Conjugator0fConjugatorIsomorphism (see 38.6.5).

IsConjugatorAutomorphism returns true if hom is an automorphism (see 31.12.3) that is regarded as a
conjugator isomorphism by IsConjugatorIsomorphism, and false otherwise.

IsInnerAutomorphism returns true if hom is a conjugator automorphism such that an element ¢ inducing
hom can be chosen in G, and false otherwise.

ConjugatorOfConjugatorIsomorphism(hom) A

For a conjugator isomorphism hom (see 38.6.1), Conjugator0fConjugatorIsomorphism returns an element
g such that mapping under hom is induced by conjugation with g.

To avoid problems with IsInnerAutomorphism, it is guaranteed that the conjugator is taken from the source
of hom if possible.

1»

2»

3>

4»

5»

Section 7. Groups of Automorphisms 375

gap> hgens:=[(1,2,3),(1,2,4)];;h:=Group(hgens) ; ;

gap> hom:=GroupHomomorphismByImages (h,h,hgens, [(1,2,3),(2,3,4)1);;
gap> IsInnerAutomorphism(hom) ;

true

gap> ConjugatorOfConjugatorIsomorphism(hom) ;

(1,2,3)

gap> hom:=GroupHomomorphismByImages(h,h,hgens, [(1,3,2),(1,4,2)]);
[(1,2,3), (1,2,4) 1 > [(1,3,2), (1,4,2)]

gap> IsInnerAutomorphism(hom) ;

false

gap> IsConjugatorAutomorphism(hom) ;

true

gap> Conjugator0fConjugatorIsomorphism(hom) ;

(1,2)

38.7 Groups of Automorphisms

Group automorphism can be multiplied and inverted and thus it is possible to form groups of automorphisms.
IsGroupOfAutomorphisms(G) P

indicates whether G consists of automorphisms of another group H. The group H can be obtained from G
via the attribute AutomorphismDomain.

AutomorphismDomain(G) A
If G consists of automorphisms of H, this attribute returns H.
AutomorphismGroup(obj) A

returns the full automorphism group of the object 0bj. The automorphisms act on the domain by the caret
operator ~. The automorphism group often stores a “NiceMonomorphism” (see 38.5.2) to a permutation
group, obtained by the action on a subset of 0bj.

IsAutomorphismGroup(G) P

indicates whether G is the full automorphism group of another group H, this group is given as Automor-
phismDomain of G.

gap> g:=Group((1,2,3,4),(1,3));

Group([(1,2,3,4), (1,3) 1)

gap> au:=AutomorphismGroup(g) ;

<group of size 8 with 3 generators>

gap> GeneratorsOfGroup(au);

[~(1,2,3,4), “(1,3), [(1,2,3,4), (2,4 1 > [(1,2,3,4), (1,2)(3,4) 11
gap> NiceObject(au);

Group([(1,4)(2,6), (2,6)(3,5), (1,2,4,6) 1)

InnerAutomorphismsAutomorphismGroup(autgroup) A

For an automorphism group autgroup of a group this attribute stores the subgroup of inner automorphisms
(automorphisms induced by conjugation) of the original group.

6 »

1»

2»

376 Chapter 38. Group Homomorphisms

gap> InnerAutomorphismsAutomorphismGroup(au);
<group with 2 generators>

InducedAutomorphism(epi, aut) O

Let aut be an automorphism of a group G and epi: G -> H an homomorphism such that ker epi is fixed
under aut. Let U be the image of epi. This command returns the automorphism of U induced by aut via
epi, that is the automorphism of U which maps g~epi to (g~ aut) “epi, for g € G.

gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2) 1)

gap> n:=Subgroup(g, [(1,2)(3,4),(1,3)(2,4)1);
Group([(1,2)(3,4), (1,3)(2,4) 1D

gap> epi:=NaturalHomomorphismByNormalSubgroup(g,n) ;
[(1,2,3,4), (1,2) 1 -> [£f1xf2, f1]

gap> aut:=InnerAutomorphism(g, (1,2,3));

~(1,2,3)
gap> InducedAutomorphism(epi,aut);
~f2

38.8 Calculating with Group Automorphisms

Usually the best way to calculate in a group of automorphisms is to go translate all calculations to an
isomorphic group in a representation, for which better algorithms are available, say a permutation group.
This translation can be done automatically using a NiceMonomorphism (see 38.5.2.)

Once a group knows to be a group of automorphisms (this can be achieved by testing or setting the prop-
erty IsGroupOfAutomorphisms (see 38.7.1), GAP will try itself to find such a nice monomorphism once
calculations in the automorphism group are done.

AssignNiceMonomorphismAutomorphismGroup(autgrp, group) F

computes a nice monomorphism for autgroup acting on group and stores it as NiceMonomorphism in autgrp.
If the centre of AutomorphismDomain of autgrp is trivial, the operation will first try to represent all auto-
morphisms by conjugation (in group or a natural parent of group).

If this fails the operation tries to find a small subset of group on which the action will be faithful.

The operation sets the attribute NiceMonomorphism and does not return a value.

If a good domain for a faithful permutation action is known already, a homomorphism for the action on
it can be created using NiceMonomorphismAutomGroup. It might be stored by SetNiceMonomorphism (see
38.5.2).

NiceMonomorphismAutomGroup(autgrp, elms, elmsgens) F

This function creates a monomorphism for an automorphism group autgrp of a group by permuting the
group elements in the list elms. This list must be chosen to yield a faithful representation. elmsgens is a list
of generators which are a subset of elms. (They can differ from the groups original generators.) It does not
yet assign it as NiceMonomorphism.

Another nice way of representing automorphisms as permutations has been described in [Sim97]. It it not
yet available in GAP, a description however can be found in section 8.3 of “Extending GAP”.

1»

2»

3>

4»

Section 9. Searching for Homomorphisms 377

38.9 Searching for Homomorphisms

IsomorphismGroups(G, H) F

computes an isomorphism between the groups G and H if they are isomorphic and returns fail otherwise.

With the existing methods the amount of time needed grows with the size of a generating system of G.
(Thus in particular for p-groups calculations can be slow.) If you do only need to know whether groups
are isomorphic, you might want to consider IdSmallGroup (see 48.7.5) or the random isomorphism test
(see 44.10.1).

gap> g:=Group((1,2,3,4),(1,3));;

gap> h:=Group((1,4,6,7)(2,3,5,8), (1,5)(2,6)(3,4)(7,8));;

gap> IsomorphismGroups(g,h);

[(1,2,3,4), (1,3) 1 > [(1,4,6,7)(2,3,5,8), (1,2)(3,7)(4,8)(5,6) 1
gap> IsomorphismGroups(g,Group((1,2,3,4),(1,2)));

fail

GQuotients(F, G) O

computes all epimorphisms from F onto G up to automorphisms of G. This classifies all factor groups of F
which are isomorphic to G.

With the existing methods the amount of time needed grows with the size of a generating system of G.
(Thus in particular for p-groups calculations can be slow.)

If the findall option is set to false, the algorithm will stop once one homomorphism has been found (this
can be faster and might be sufficient if not all homomorphisms are needed).

gap> g:=Group((1,2,3,4),(1,2));

Group([(1,2,3,4), (1,2) 1)

gap> h:=Group((1,2,3),(1,2));

Group([(1,2,3), (1,2) 1D

gap> quo:=GQuotients(g,h);

([(1,2,3,4), (1,21 > [(2,3), (1,2) 11

IsomorphicSubgroups(G, H) 0

computes all monomorphisms from H into G up to G-conjugacy of the image groups. This classifies all
G-classes of subgroups of G which are isomorphic to H.

With the existing methods, the amount of time needed grows with the size of a generating system of G.
(Thus in particular for p-groups calculations can be slow.) A main use of IsomorphicSubgroups therefore
is to find nonsolvable subgroups (which often can be generated by 2 elements).

(To find p-subgroups it is often faster to compute the subgroup lattice of the sylow subgroup and to use
IdGroup to identify the type of the subgroups.)

If the findall option is set to false, the algorithm will stop once one homomorphism has been found (this
can be faster and might be sufficient if not all homomorphisms are needed).

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2) 1)
gap> h:=Group((3,4),(1,2));;
gap> emb:=IsomorphicSubgroups(g,h) ;
([@G,4, 1,21 > 11 @4, (1,21,
[3,4), (1,2) 1 —> [(1,3)(2,4), (1,2)(3,4) 11

MorClassLoop(range, classes, params, action) F

This function loops over element tuples taken from classes and checks these for properties such as generating
a given group, or fulfilling relations. This can be used to find small generating sets or all types of Morphisms.

378 Chapter 38. Group Homomorphisms

The element tuples are used only up to up to inner automorphisms as all images can be obtained easily from
them by conjugation while running through all of them usually would take too long.

range is a group from which these elements are taken. The classes are given in a list classes which is a list
of records with components

classes
A list of conjugacy classes representative
One element in the union of these classes size
The sum of the sizes of these classes

params is a record containing optional components:

gens
generators that are to be mapped (for testing morphisms). The length of this list determines the
length of element tuples considered.

from
a preimage group (that contains gens)

to
image group (which might be smaller than range)

free
free generators, a list of the same length than the generators gens.

rels
some relations that hold among the generators gens. They are given as a list [word,order] where
word is a word in the free generators free.

dom
a set of elements on which automorphisms act faithfully (used to do element tests in partial auto-
morphism groups).

aut

Subgroup of already known automorphisms.

action is a number whose bit-representation indicates the requirements which are enforced on the element
tuples found:

1 homomorphism
2 injective
4 surjective

8 find all (otherwise stops after the first find)

If the search is for homomorphisms, the function returns homomorphisms obtained by mapping the given
generators gens instead of element tuples.

The “Morpheus” algorithm used to find homomorphisms is described in section V.5 of [Hul96].

1»

2»

3>

6>

Section 10. Representations for Group Homomorphisms 379

38.10 Representations for Group Homomorphisms

The different representations of group homomorphisms are used to indicate from what type of group to what
type of group they map and thus determine which methods are used to compute images and preimages.

The information in this section is mainly relevant for implementing new methods and not for using homo-
morphisms.

IsGroupGeneralMappingByImages(map) R

Representation for mappings from one group to another that are defined by extending a mapping of group
generators homomorphically. Instead of record components, the attribute MappingGeneratorImages is used
to store generators and their images.

IsGroupGeneralMappingByAsGroupGeneralMappingByImages(map) R
Representation for mappings that delegate work on a GroupHomomorphismByImages.
IsPreimagesByAsGroupGeneralMappingByImages(map) R
Representation for mappings that delegate work for preimages to a GroupHomomorphismByImages.

IsPermGroupGeneralMappingByImages(map)
IsPermGroupHomomorphismByImages(map)

~ =

is the representation for mappings that map from a perm group

IsToPermGroupGeneralMappingByImages(map)
IsToPermGroupHomomorphismByImages(map)

= =

is the representation for mappings that map to a perm group
IsGroupGeneralMappingByPcgs(map) R

is the representations for mappings that map a pcgs to images and thus may use exponents to decompose
generators.

IsPcGroupGeneralMappingByImages(map) R
IsPcGroupHomomorphismByImages(map) R

is the representation for mappings from a pc group

IsToPcGroupGeneralMappingByImages(map)
IsToPcGroupHomomorphismByImages(map)

= =

is the representation for mappings to a pc group

IsFromFpGroupGeneralMappingByImages(map)
IsFromFpGroupHomomorphismByImages(map)

o~ =

is the representation of mappings from an fp group.

IsFromFpGroupStdGensGeneralMappingByImages(map)
IsFromFpGroupStdGensHomomorphismByImages(map)

~ =

is the representation of mappings from an fp group that give images of the standard generators.

39

A group action is a triple (G, Omega, 1), where G is a group, Omega a set and p: Omega x G — Omega a
function (whose action is compatible with the group arithmetic). We call Omega the domain of the action.

Group Actions

In GAP, Omega can be a duplicate-free collection (an object that permits access to its elements via the
Omega[n] operation, for example a list), it does not need to be sorted (see 21.17.4).

The acting function u is a GAP function of the form
actfun(pnt,g)

that returns the image u(pnt, g) for a point pnt € Omega and a group element g € G.
Groups always acts from the right, that is pu(u(pnt, g), h) = u(pnt, gh).

GAP does not test whether an acting function actfun satisfies the conditions for a group operation but
silently assumes that is does. (If it does not, results are unpredictable.)

The first section of this chapter, 39.1, describes the various ways how operations for group actions can be
called.

Functions for several commonly used action are already built into GAP. These are listed in section 39.2.

The sections 39.6 and 39.7 describe homomorphisms and mappings associated to group actions as well as
the permutation group image of an action.

The other sections then describe operations to compute orbits, stabilizers, as well as properties of actions.

Finally section 39.11 describes the concept of “external sets” which represent the concept of a G-set and
underly the actions mechanism.

39.1 About Group Actions

The syntax which is used by the operations for group actions is quite flexible. For example we can call the
operation OrbitsDomain for the orbits of the group G on the domain Omega in the following ways:

OrbitsDomain (G, Omegal, actfun])

The acting function actfun is optional. If it is not given, the built-in action OnPoints (which defines an
action via the caret operator ~) is used as a default.

OrbitsDomain (G, Omega, gens, acts [, actfunl)

This second version (of OrbitsDomain) permits one to implement an action induced by a homomorphism:
If H acts on Omega via p and ¢: G — H is a homomorphism, G acts on Omega via p'(w, g) = p(w, g%):

Here gens must be a set of generators of G and acts the images of gens under a homomorphism p: G — H.
actfun is the acting function for H, the call to ExampleActionFunction implements the induced action of
G. Again, the acting function actfun is optional and OnPoints is used as a default.

The advantage of this notation is that GAP does not need to construct this homomorphism ¢ and the range
group H as GAP objects. (If a small group G acts via complicated objects acts this otherwise could lead to
performance problems.)

1»

2»

3»

4»

5»

6»

7>

s»

Section 2. Basic Actions 381
GAP does not test whether the mapping gens — acts actually induces a homomorphism and the results are
unpredictable if this is not the case.

OrbitsDomain(extset) A

A third variant is to call the operation with an external set (which then provides G, Omega and actfun.
You will find more about external sets in section 39.11.

For operations like Stabilizer of course the domain must be replaced by an element of Omega which is to
be acted on.

39.2 Basic Actions

GAP already provides acting functions for the more common actions of a group. For built-in operations such
as Stabilizer special methods are available for many of these actions.

OnPoints(pnt, g) F

returns pnt ~ ¢. This is for example the action of a permutation group on points, or the action of a group
on its elements via conjugation. The action of a matrix group on vectors from the right is described by both
OnPoints and OnRight (see 39.2.2).

OnRight (pnt, g) F

returns pnt * g. This is for example the action of a group on its elements via right multiplication, or the
action of a group on the cosets of a subgroup. The action of a matrix group on vectors from the right is
described by both OnPoints (see 39.2.1) and OnRight.

OnLeftInverse(pnt, g) F

returns ¢~ ! * pnt. Forming the inverse is necessary to make this a proper action, as in GAP groups always
act from the right.

(OnLeftInverse is used for example in the representation of a right coset as an external set (see 39.11),
that is a right coset Ug is an external set for the group U acting on it via OnLeftInverse.)

OnSets(set, g) F

Let set be a proper set (see 21.19). OnSets returns the proper set formed by the images OnPoints(pnt,
g) of all points pnt of set.

OnSets is for example used to compute the action of a permutation group on blocks.

(OnTuples is an action on lists that preserves the ordering of entries, see 39.2.5.)
OnTuples(tup, g) F

Let tup be a list. OnTuples returns the list formed by the images OnPoints(pnt, ¢) for all points pnt of
tup.

(OnSets is an action on lists that additionally sorts the entries of the result, see 39.2.4.)

OnPairs(tup, g) F
is a special case of OnTuples (see 39.2.5) for lists tup of length 2.

OnSetsSets(set, g) F

Action on sets of sets; for the special case that the sets are pairwise disjoint, it is possible to use OnSets-
DisjointSets (see 39.2.8).

OnSetsDisjointSets(set, g) F

Action on sets of pairwise disjoint sets (see also 39.2.7).

382 Chapter 39. Group Actions

9» OnSetsTuples(set, g) F

Action on sets of tuples.

10» OnTuplesSets(set, g) F

Action on tuples of sets.
11» OnTuplesTuples(set, g) F

Action on tuples of tuples

gap> g:=Group((1,2,3),(2,3,4));;

gap> Orbit(g,1,0nPoints);

[1, 2, 3, 4]

gap> Orbit(g, () ,0nRight);

[O, (1,2,3), (2,3,4), (1,3,2), (1,3)(2,4), (1,2)(3,4), (2,4,3), (1,4,2),
(1,4,3), (1,3,4), (1,2,4), (1,4)(2,3)]

gap> Orbit(g, [1,2],0nPairs);

(1,21, 2,31, (1,31, (3,11, (3,41, [2,11,[1, 4],
L4, 1], [4, 2], (3,21, [2,4]1,[4,31]1

gap> Orbit(g, [1,2],0nSets);

(1,271, 02,3]1, 01,31, [3,41,0[1,471,1[2,41]1

B

gap> Orbit(g, [[1,2],[3,4]],0nSetsSets);
ctft1,21,03,411,C0C01,41,02,311, (01,31, [2,411]1
gap> Orbit(g, [[1,2],[3,4]1],0nTuplesSets);

tccf1,21,03,411, 002,31, (1,411, (01,31, 02,411,
(3,41, 011,211, 001,41, 02,37171,[[2,41,01,311]1
gap> Orbit(g, [[1,2],[3,4]],0nSetsTuples);

ctf1+, 21,033,411, C0C1,41,02,311,[C1,3]1,1[4,211,
(r2,41,03,111, (02,11, (4,311, [[3,271,04,1111
gap> Orbit(g,[[1,2],[3,4]],0nTuplesTuples);

(ccf1,21,03,411, (002,31, 01,4171, (01,371, 04,211,
(3,11, 02,411, (3,41, (11,2711, [[2,11,[4,311,
(1,41, 02,311, [(C4, 11,003,211, [[4,21,01,311,
(3,21, 04,111,[[02,41, (3,111, [[4,31,[02,1111

12» OnLines(vec, g) F

Let vec be a normed row vector, that is, its first nonzero entry is normed to the identity of the relevant field,
OnLines returns the row vector obtained from normalizing OnRight (vec, ¢) by scalar multiplication from
the left. This action corresponds to the projective action of a matrix group on 1-dimensional subspaces.

gap> gl:=GL(2,5);;v:=[1,0]*Z(5)"0;

[z(5)~0, 0%Z(5)]

gap> h:=Action(gl,Orbit(gl,v,0OnLines),OnLines);
Group([(2,3,5,6), (1,2,4)(3,6,5) 1)

13» OnIndeterminates(poly, perm) F

A permutation perm acts on the multivariate polynomial poly by permuting the indeterminates as it permutes
points.

14» Permuted(list, perm)

The following example demonstrates Permuted being used to implement a permutation action on a domain:

15 »

1»

Section 3. Orbits 383

gap> g:=Group((1,2,3),(1,2));;

gap> dom:=[Ilall s nbn s llcll] s

gap> Orbit(g,dom,Permuted) ;

[[IIall, |lbl|’ "C"] s ["C", IIall, IIbll] s [Ilbll, IIall, IICII] s [Ilbll’ "C", Ilall] s
[Ilall , Ilcll s Ilbll] s [IICII , Ilbll , Ilall]]

OnSubspacesByCanonicalBasis(bas, mat) F

implements the operation of a matrix group on subspaces of a vector space. bas must be a list of (linearly
independent) vectors which forms a basis of the subspace in Hermite normal form. mat is an element of
the acting matrix group. The function returns a mutable matrix which gives the basis of the image of the
subspace in Hermite normal form. (In other words: it triangulizes the product of bas with mat.)

If one needs an action for which no acting function is provided by the library it can be implemented via a
GAP function that conforms to the syntax

actfun(omega,g)

For example one could define the following function that acts on pairs of polynomials via OnIntereminates:

OnIndeterminatesPairs:=function(polypair,g)
return [OnIndeterminates(polypair([1],g),
OnIndeterminates(polypair[2],g)];
end;

39.3 Orbits

If G acts on Omega the set of all images of w € Omega under elements of G is called the orbit of w. The
set of orbits of G is a partition of Omega.

Orbit(G[, Omegal, pnt, [gens, acts, 1 act) O

The orbit of the point pnt is the list of all images of pnt under the action.
(Note that the arrangement of points in this list is not defined by the operation.)

The orbit of pnt will always contain one element that is equal to pnt, however for performance reasons this
element is not necessarily identical to pnt, in particular if pnt is mutable.

gap> g:=Group((1,3,2),(2,4,3));;

gap> Orbit(g,1);

[1, 3, 2, 4]

gap> Orbit(g, [1,2],0nSets);

tf1, 21,011,311, [1,41,[02,371, 103,41, [2,41]1]1

(See Section 39.2 for information about specific actions.)

Orbits(G, seeds[, gens, acts][, act]) O
Orbits(zset) A
returns a duplicate-free list of the orbits of the elements in seeds under the action act of G

(Note that the arrangement of orbits or of points within one orbit is not defined by the operation.)
OrbitsDomain(G, Omegal, gens, actsl[, act]) 0]
OrbitsDomain(zset) A

returns a list of the orbits of G on the domain Omega (given as lists) under the action act.

4»

1»

2>

384 Chapter 39. Group Actions

This operation is often faster than Orbits. The domain Omega must be closed under the action of G,
otherwise an error can occur.

(Note that the arrangement of orbits or of points within one orbit is not defined by the operation.)

gap> g:=Group((1,3,2),(2,4,3));;

gap> Orbits(g, [1..5]);

[[1,3,2,41,[51]1]

gap> OrbitsDomain(g,Arrangements([1..4],3),0nTuples);

rrri1,2,31, 03,141,271, [1,4,21,02,3,11,0[2,1,41,
[3,4,11,[1,3,41,[4,2,11,[04,1,31,1[2, 4, 31,
[3, 2,41, 0[4,3,211,

[[1,2,4]1,03,1,41,[1,4,31,[2,3,41, [2,1, 31,
[3, 4,21, 0[01,3,21,0[04,2,3]1,[4,1,21,1[2, 4,11,

[3,2,1]1,04,3,111]1
gap> OrbitsDomain(g,GF(2)"2,[(1,2,3),(1,4)(2,3)],
> [[[Z2(2)70,Z(2)"0], [2(2)70,0%Z(2)]1], [[Z(2)0,0%Z(2)], [0%Z(2),Z2(2)"0]11);
[[<an immutable GF2 vector of length 2>],
[<an immutable GF2 vector of length 2>, <an immutable GF2 vector of length
2>, <an immutable GF2 vector of length 2>]]

(See Section 39.2 for information about specific actions.)
OrbitLength(G, Omega, pnt, [gens, acts, 1 act) O
computes the length of the orbit of pnt.

OrbitLengths(G, seeds[, gens, acts][, act]) O
OrbitLengths(xset) A

computes the lengths of all the orbits of the elements in seegs under the action act of G.

OrbitLengthsDomain(G, Omegal, gens, acts][, act]) 0]
OrbitLengthsDomain(zset) A

computes the lengths of all the orbits of G on Omega.

This operation is often faster than OrbitLengths. The domain Omega must be closed under the action of
G, otherwise an error can occur.

gap> g:=Group((1,3,2),(2,4,3));;
gap> OrbitLength(g, [1,2,3,4],0nTuples);

12
gap> OrbitLengths(g,Arrangements([1..4],4),0nTuples);
[12, 12]

39.4 Stabilizers

The Stabilizer of an element w is the set of all those ¢ € G which fix w.
OrbitStabilizer(G, [Omega, 1 pnt, [gens, acts, 1 act) O

computes the orbit and the stabilizer of pnt simultaneously in a single Orbit-Stabilizer algorithm.
The stabilizer must have G as its parent.

Stabilizer(G [, Omegal, pnt [, gens, acts] [, act]) F

computes the stabilizer in G of the point pnt, that is the subgroup of those elements of G that fix pnt. The
stabilizer will have G as its parent.

3>

1»

Section 5. Elements with Prescribed Images 385

gap> g:=Group((1,3,2),(2,4,3));;
gap> Stabilizer(g,4);
Group([(1,3,2) 1)

The stabilizer of a set or tuple of points can be computed by specifying an action of sets or tuples of points.

gap> Stabilizer(g, [1,2],0nSets);

Group([(1,2)(3,4) 1)

gap> Stabilizer(g, [1,2],0nTuples);

Group((Q))

gap> OrbitStabilizer(g, [1,2],0nSets);

rec(orbit := [[1,21, [1,31, [1,4]1,[2,31,[3,41,[2,411,
stabilizer := Group([(1,2)(3,4) 1))

(See Section 39.2 for information about specific actions.)

The standard methods for all these actions are an Orbit-Stabilizer algorithm. For permutation groups back-
track algorithms are used. For solvable groups an orbit-stabilizer algorithm for solvable groups, which uses
the fact that the orbits of a normal subgroup form a block system (see [LNS84]) is used.

OrbitStabilizerAlgorithm(G, Omega, blist, gens, acts, pntact) F

This operation should not be called by a user. It is documented however for purposes to extend or maintain
the group actions package.

OrbitStabilizerAlgorithm performs an orbit stabilizer algorithm for the group G acting with the genera-
tors gens via the generator images gens and the group action act on the element pnt. (For technical reasons
pnt and act are put in one record with components pnt and act respectively.)

The pntact record may carry a component stabsub. If given, this must be a subgroup stabilizing all points
in the domain and can be used to abbreviate stabilizer calculations.

The argument Omega (which may be replaced by false to be ignored) is the set within which the orbit is
computed (once the orbit is the full domain, the orbit calculation may stop). If blist is given it must be a bit
list corresponding to Omega in which elements which have been found already will be “ticked off” with true.
(In particular, the entries for the orbit of pnt still must be all set to false). Again the remaining action
domain (the bits set initially to false) can be used to stop if the orbit cannot grow any longer. Another
use of the bit list is if Omega is an enumerator which can determine PositionCanonicals very quickly. In
this situation it can be worth to search images not in the orbit found so far, but via their position in Omega
and use a the bit list to keep track whether the element is in the orbit found so far.

39.5 Elements with Prescribed Images

RepresentativeAction(G [, Omegal, d, ¢ [, gens, actsl [, act]) 0]

computes an element of G that maps d to e under the given action and returns fail if no such element
exists.

gap> g:=Group((1,3,2),(2,4,3));;

gap> RepresentativeAction(g,1,3);

(1,3)(2,4)

gap> RepresentativeAction(g,1,3,0nPoints);
(1,3)(2,4)

gap> RepresentativeAction(g,(1,2,3),(2,4,3));
(1,2,4)

gap> RepresentativeAction(g,(1,2,3),(2,3,4));
fail

1»

386 Chapter 39. Group Actions

gap> RepresentativeAction(g,Group((1,2,3)),Group((2,3,4)));
(1,2,4)

gap> RepresentativeAction(g,[1,2,3],[1,2,4],0nSets);
(2,4,3)

gap> RepresentativeAction(g,[1,2,3],[1,2,4],0nTuples);
fail

(See Section 39.2 for information about specific actions.)

Again the standard method for RepresentativeAction is an orbit-stabilizer algorithm, for permutation
groups and standard actions a backtrack algorithm is used.

39.6 The Permutation Image of an Action

If G acts on a domain Omega, an enumeration of Omega yields a homomorphism of G into the symmetric
group on {1,...,|Omegal}. In GAP, the enumeration of the domain Omega is provided by the Enumerator
of Omega (see 28.2.2) which of course is Omega itself if it is a list.

ActionHomomorphism(G, Omega [, gens, acts] [, act]l [, "surjective"]) O
ActionHomomorphism(zset [, "surjective"]) A
ActionHomomorphism(action) A

computes a homomorphism from G into the symmetric group on |Omega| points that gives the permutation
action of G on Omega.

By default the homomorphism returned by ActionHomomorphism is not necessarily surjective (its Range is
the full symmetric group) to avoid unnecessary computation of the image. If the optional string argument
"surjective" is given, a surjective homomorphism is created.

The third version (which is supported only for GAP3 compatibility) returns the action homomorphism that
belongs to the image obtained via Action (see 39.6.2).

(See Section 39.2 for information about specific actions.)

gap> g:=Group((1,2,3),(1,2));;

gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),0nTuples);

<action homomorphism>

gap> Image (hom) ;

Group([(1,9,13)(2,10,14)(3,7,15) (4,8,16)(5,12,17)(6,11,18) (19,22,23) (20,21,
24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,15) (14,16) (17,18) (19,21) (20,
22)(23,24) 1)

gap> Size(Range (hom)) ;Size (Image (hom));

620448401733239439360000

6

gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),0nTuples,

> "surjective");;

gap> Size(Range (hom)) ;

6

When acting on a domain, the operation PositionCanonical is used to determine the position of elements
in the domain. This can be used to act on a domain given by a list of representatives for which Position-
Canonical is implemented, for example a RightTransversal (see 37.7.1).

Action(G, Omega [gens, acts]l [, act]) 0]
Action(zset) A

returns the Image group of ActionHomomorphism called with the same parameters.

3>

1»

Section 7. Action of a group on itself 387

Note that (for compatibility reasons to be able to get the action homomorphism) this image group internally
stores the action homomorphism. If G or Omega are exteremly big, this can cause memory problems. In
this case compute only generator images and form the image group yourself.

(See Section 39.2 for information about specific actions.) The following code shows for example how to create
the regular action of a group:

gap> g:=Group((1,2,3),(1,2));;
gap> Action(g,AsList(g) ,0OnRight);
Group([(1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1)

SparseActionHomomorphism(G, Omega, start [, gens, acts] [, act]) @)
SortedSparseActionHomomorphism(G, Omega, start[, gens, acts] [, act]) 0]

SparseActionHomomorphism computes the ActionHomomorphism(G,dom[, gens, acts] [, act]), where dom
is the union of the orbits Orbit (G, pnt[, gens, acts] [, act]) for all points pnt from start. If G acts on a
very large domain Omega not surjectively this may yield a permutation image of substantially smaller degree
than by action on Omega.

The operation SparseActionHomomorphism will only use = comparisons of points in the orbit. Therefore
it can be used even if no good < comparison method exists. However the image group will depend on the
generators gens of G.

The operation SortedSparseActionHomomorphism in contrast will sort the orbit and thus produce an image
group which is not dependent on these generators.

gap> h:=Group(Z(3)*[[[1,1],[0,1111);

Group([[[Z(3), Z(3) 1, [0%xZ(3), Z2(3) 11 1)

gap> hom:=ActionHomomorphism(h,GF(3)~2,0nRight);;

gap> Image (hom) ;

Group([(2,3)(4,9,6,7,5,8) 1)

gap> hom:=SparseActionHomomorphism(h, [Z(3)*[1,0]],0nRight);;
gap> Image (hom) ;

Group([(1,2,3,4,5,6) 1)

For an action homomorphism, the operation UnderlyingExternalSet (see 39.11.16) will return the external
set on Omega which affords the action.

39.7 Action of a group on itself

Of particular importance is the action of a group on its elements or cosets of a subgroup. These actions
can be obtained by using ActionHomomorphism for a suitable domain (for example a list of subgroups). For
the following (frequently used) types of actions however special (often particularly efficient) functions are
provided:

FactorCosetAction(G, U, [N]) O

This command computes the action of G on the right cosets of the subgroup U. If the normal subgroup N
is given, it is stored as kernel of this action.

gap> g:=Group((1,2,3,4,5),(1,2));;u:=SylowSubgroup(g,2);;Index(g,u);
15
gap> FactorCosetAction(g,u);
<action epimorphism>
gap> Range(last);
Group([(1,9,13,10,4)(2,8,14,11,5)(3,7,15,12,6),
(1,7)(2,8)(3,9)(5,6) (10,11) (14,15) 1)

A special case is the regular action on all elements:

2»

3>

1»

2»

388 Chapter 39. Group Actions

RegularActionHomomorphism(G) A

returns an isomorphism from G onto the regular permutation representation of G.

AbelianSubfactorAction(G, M, N) 0]

Let G be a group and M > N be subgroups of a common parent that are normal under G, such that the sub-
factor M /N is elementary abelian. The operation AbelianSubfactorAction returns a list [phi, alpha, bas]
where bas is a list of elements of M which are representatives for a basis of M /N, alpha is a map from M
into a n-dimensional row space over GF(p) where [M : N] = p™ that is the natural homomorphism of M by
N with the quotient represented as an additive group. Finally phi is a homomorphism from G into GL,(p)
that represents the action of G on the factor M/N.

Note: If only matrices for the action are needed, LinearActionLayer might be faster.

gap> g:=Group((1,8,10,7,3,5)(2,4,12,9,11,6),(1,9,5,6,3,10)(2,11,12,8,4,7));;

gap> c:=ChiefSeries(g);;List(c,Size);

[96, 48, 16, 4, 1]

gap> HasElementaryAbelianFactorGroup(c[3],c[4]);

true

gap> SetName(c[3],"my_group");;

gap> a:=AbelianSubfactorAction(g,c[3],c[4]);

[[(,8,10,7,3,56)(2,4,12,9,11,6), (1,9,5,6,3,10)(2,11,12,8,4,7) 1 —>
[<an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2>]
, MappingByFunction(my_group, (GF(2)~
2), function(e) ... end, function(r) ... end),

Pcgs([(2,8,3,9)(4,10,5,11), (1,6,12,7)(4,10,5,11) 1)]
gap> mat:=Image(all],g);
Group([<an immutable 2x2 matrix over GF2>,
<an immutable 2x2 matrix over GF2>])

gap> Size(mat);

3

gap> e:=PrelmagesRepresentative(al[2], [Z(2),0%Z(2)]);

(2,8,3,9)(4,10,5,11)

gap> e in c[3];e in c[4];

true

false

39.8 Permutations Induced by Elements and Cycles
If only the permutation image of a single element is needed, it might not be worth to create the action
homomorphism, the following operations yield the permutation image and cycles of a single element.

Permutation(g, Omegal, gens, acts][, act]) F
Permutation(g, xset) F

computes the permutation that corresponds to the action of ¢ on the permutation domain Omega (a list of
objects that are permuted). If an external set zset is given, the permutation domain is the HomeEnumerator
of this external set (see Section 39.11). Note that the points of the returned permutation refer to the positions
in Omega, even if Omega itself consists of integers.

If g does not leave the domain invariant, or does not map the domain injectively fail is returned.

PermutationCycle(g, Omega, pnt [, act]) O

computes the permutation that represents the cycle of pnt under the action of the element g¢.

3>

4»

5p

6>

Section 9. Tests for Actions 389

gap> Permutation([[Z(3),-Z2(3)],[Z(3),0%Z(3)]],AsList(GF(3)°2));
(2,7,6)(3,4,8)

gap> Permutation((1,2,3)(4,5)(6,7),[4..71);

(1,2)(3,4)

gap> PermutationCycle((1,2,3)(4,5)(6,7),[4..7]1,4);

(1,2)

Cycle(g, Omega, pnt [, act]) O
returns a list of the points in the cycle of pnt under the action of the element g.

CycleLength(g, Omega, pnt [, act]) O
returns the length of the cycle of pnt under the action of the element g.

Cycles(g, Omega [, act]) O
returns a list of the cycles (as lists of points) of the action of the element g.

CycleLengths(g, Omega, [, act]l) Q)
returns the lengths of all the cycles under the action of the element g on Omega.

gap> Cycle((1,2,3)(4,5)(6,7),[4..7]1,4);

[4, 5]

gap> CycleLength((1,2,3)(4,5)(6,7),[4..7]1,4);
2

gap> Cycles((1,2,3)(4,5)(6,7),[4..71);
[L[4,51,[6,71]1

gap> CycleLengths((1,2,3)(4,5)(6,7),[4..71);
[2, 2]

39.9 Tests for Actions

IsTransitive(G, Omegal, gens, acts]l[, act]) (0]
IsTransitive(zset) P

returns true if the action implied by the arguments is transitive, or false otherwise.

An action is transitive if the whole domain forms one orbit.

Transitivity(G, Omegal, gens, acts]l[, act]) O
Transitivity(zset) A

returns the degree &k (a non-negative integer) of transitivity of the action implied by the arguments, i.e. the
largest integer k such that the action is k-transitive. If the action is not transitive 0 is returned.

An action is k-transitive if every k-tuple of points can be mapped simultaneously to every other k-tuple.

gap> g:=Group((1,3,2),(2,4,3));;
gap> IsTransitive(g,[1..5]);
false

gap> Transitivity(g,[1..4]);

2

Note: For permutation groups, the syntax IsTransitive(g) is also permitted and tests whether the group
is transitive on the points moved by it, that is the group ((2, 3,4), (2, 3)) is transitive (on 3 points).

3>

5p

390 Chapter 39. Group Actions

RankAction(G, Omegal, gens, acts][, act]) 0]
RankAction(zset) A

returns the rank of a transitive action, i.e. the number of orbits of the point stabilizer.

gap> RankAction(g,Combinations([1..4],2),0nSets);

4
IsSemiRegular(G, Omegal, gens, acts][, act]) O
IsSemiRegular(zset) p

returns true if the action implied by the arguments is semiregular, or false otherwise.

An action is semiregular is the stabilizer of each point is the identity.

IsRegular(G, Omegal, gens, actsl[, act]) O
IsRegular(zset) P

returns true if the action implied by the arguments is regular, or false otherwise.

An action is regular if it is both semiregular (see 39.9.4) and transitive (see 39.9.1). In this case every point
pnt of Omega defines a one-to-one correspondence between G and Omega.

gap> IsSemiRegular(g,Arrangements([1..4],3),0nTuples);

true

gap> IsRegular(g,Arrangements([1..4],3),0nTuples);

false
Earns(G, Omegal, gens, acts][, act]) 0
Earns(zset) A

returns a list of the elementary abelian regular (when acting on Omega) normal subgroups of G.

IsPrimitive(G, Omegal, gens, acts]l[, act]) O
IsPrimitive(zset) P

returns true if the action implied by the arguments is primitive, or false otherwise.

An action is primitive if it is transitive and the action admits no nontrivial block systems. See 39.10.

gap> IsPrimitive(g,Orbit(g, (1,2)(3,4)));
true

39.10 Block Systems

A block system (system of imprimitivity) for the action of G on Omega is a partition of Omega which —
as a partition — remains invariant under the action of G.

Blocks(G, Omegal, seed][, gens, actsl[, actl) (0]
Blocks(zset[, seed]) A

computes a block system for the action. If seed is not given and the action is imprimitive, a minimal
nontrivial block system will be found. If seed is given, a block system in which seed is the subset of one
block is computed. The action must be transitive.

4»

Section 10. Block Systems 391

gap> g:=TransitiveGroup(8,3);
E(8)=2[x]2[x]2

gap> Blocks(g, [1..8]);

(r1,81, 02,31, [4,51,[6,71]1
gap> Blocks(g, [1..8],[1,4]);

(c1,41, 02,71, 03,61, [5,81]

(See Section 39.2 for information about specific actions.)

MaximalBlocks(G, Omega [, seed] [, gens, acts] [, act]) O
MaximalBlocks(zset [, seed]) A

returns a block system that is maximal with respect to inclusion. maximal with respect to inclusion) for the
action of G on Omega. If seed is given, a block system in which seed is the subset of one block is computed.

gap> MaximalBlocks(g, [1..8]);
[[1’ 2, 3’ 8] 3 [4’ 5’ 6, 7]]

RepresentativesMinimalBlocks(G, Omegal, gens, acts][, act]) 0]
RepresentativesMinimalBlocks(zset) A

computes a list of block representatives for all minimal (i.e blocks are minimal with respect to inclusion)
nontrivial block systems for the action.

gap> RepresentativesMinimalBlocks(g,[1..8]);
trt+, 21,011,311, 01,41, 01,51, 01,61, [1,7]1,[1,81]1

A11Blocks(G) A

computes a list of representatives of all block systems for a permutation group G acting transitively on the
points moved by the group.

gap> Al1Blocks(g);

tf1,81,01,2,3,8],[1,4,5,81,[1,6,7,8],[1,3],
[1’ 3’ 5, 7], [1, 3’ 4’ 6]’ [1, 5], [1, 3 5’ 6]’ [1’ 2]’
(1,2,4,731,01,41, 01,71, 01,611

The stabilizer of a block can be computed via the action OnSets (see 39.2.4):

gap> Stabilizer(g, [1,8],0nSets);
Group([(1,8)(2,3)(4,5)(6,7) 1)

If bs is a partition of omega, given as a set of sets, the stabilizer under the action OnSetsDisjointSets
(see 39.2.8) returns the largest subgroup which preserves bs as a block system.

gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;

gap> bs:=[[1,2,3,4],[5,6,7,8]]1;;

gap> Stabilizer(g,bs,OnSetsDisjointSets);

Group([(6,7), (5,6), (5,8), (2,3), (3,4)(,7, (1,4, (1,5,4,8)(2,6,3,7) 1)

1»

2»

3>

4»

5»

392 Chapter 39. Group Actions

39.11 External Sets

When considering group actions, sometimes the concept of a G-set is used. This is the set Omega endowed
with an action of G. The elements of the G-set are the same as those of Omega, however concepts like
equality and equivalence of G-sets do not only consider the underlying domain Omega but the group action
as well.

This concept is implemented in GAP via external sets.
IsExternalSet(obj) C

An external set specifies an action act: Omega X G — Omega of a group G on a domain Omega. The
external set knows the group, the domain and the actual acting function. Mathematically, an external set
is the set Omega, which is endowed with the action of a group G via the group action act. For this reason
GAP treats external sets as a domain whose elements are the elements of Omega. An external set is always
a union of orbits. Currently the domain Omega must always be finite. If Omega is not a list, an enumerator
for Omega is automatically chosen.

ExternalSet(G, Omegal, gens, acts][, act]) O

creates the external set for the action act of G on Omega. Omega can be either a proper set or a domain
which is represented as described in 12.4 and 28.

gap> g:=Group((1,2,3),(2,3,4));;

gap> e:=ExternalSet(g,[1..4]);

<xset:[1, 2, 3, 4 1>

gap> e:=ExternalSet(g,g,0nRight);

<xset:<enumerator of perm group>>

gap> Orbits(e);

L[O, (1,2@E,4, (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,4,2), (1,2,3),
(1,3,4), (2,3,4, (1,3,2), (1,4,3), (1,2,4) 1]

The following three attributes of an external set hold its constituents.

ActingDomain(zset) A
This attribute returns the group with which the external set zset was defined.

FunctionAction(wxset) A
the acting function act of xset

HomeEnumerator (zset) A

returns an enumerator of the domain Omega with which zset was defined. For external subsets, this is
different from Enumerator (zset), which enumerates only the subset.

gap> ActingDomain(e);

Group([(1,2,3), (2,3,4) 1)

gap> FunctionAction(e)=0nRight;

true

gap> HomeEnumerator(e) ;

[O, (1,2@3,4), (1,3)(2,4), (1,4)(2,3), (2,3,4), (1,2,4), (1,3,2), (1,4,3),
(2,4,3), (1,2,3), (1,3,4), (1,4,2)]

Most operations for actions are applicable as an attribute for an external set.

6>

>

8»

9>

10 »

11»

12 »

13»

Section 11. External Sets 393

IsExternalSubset(obj) R

An external subset is the restriction of an external set to a subset of the domain (which must be invariant
under the action). It is again an external set.

The most prominent external subsets are orbits:
ExternalSubset(G, zset, start, [gens, acts, lact) O
constructs the external subset of zset on the union of orbits of the points in start.
IsExternalOrbit(obj) R
An external orbit is an external subset consisting of one orbit.
ExternalOrbit(G, Omega, pnt, [gens, acts, 1 act) O
constructs the external subset on the orbit of pnt. The Representative of this external set is pnt.

gap> e:=ExternalOrbit(g,g,(1,2,3));

(1,2,3)°G
Many subsets of a group, such as conjugacy classes or cosets (see 37.9.1 and 37.6.1) are implemented as
external orbits.

StabilizerOfExternalSet (zset) A

computes the stabilizer of Representative (zset) The stabilizer must have the acting group G of zset as
its parent.

gap> Representative(e);

(1,2,3)

gap> StabilizerOfExternalSet(e);
Group([(1,2,3) 1)

ExternalOrbits(G, Omegal, gens, actsl[, act]) O
ExternalOrbits(zset) A

computes a list of ExternalOrbits that give the orbits of G.

gap> ExternalOrbits(g,AsList(g));
[O°G, (2,3,4)°G, (2,4,3)°G, (1,2)(3,4)7°G]

ExternalOrbitsStabilizers(G, Omegal, gens, acts][, act]) @)
ExternalOrbitsStabilizers(zset) A

In addition to ExternalOrbits, this operation also computes the stabilizers of the representatives of the
external orbits at the same time. (This can be quicker than computing the ExternalOrbits first and the
stabilizers afterwards.)

gap> e:=ExternalOrbitsStabilizers(g,AsList(g));
[O°G, (2,3,4°G, (2,4,3)°G, (1,2)(3,4)°G]
gap> HasStabilizerOfExternalSet(e[3]);

true

gap> StabilizerOfExternalSet(e[3]);

Group([(2,4,3) 1)

CanonicalRepresentativeOfExternalSet(zset) A

The canonical representative of an external set may only depend on G, Omega, act and (in the case of
external subsets) Enumerator (zset). It must not depend, e.g., on the representative of an external orbit.
GAP does not know methods for every external set to compute a canonical representative . See 39.11.14.

14 »

15»

16 »

17»

1»

2>

394 Chapter 39. Group Actions

CanonicalRepresentativeDeterminatorOfExternalSet(zset) A

returns a function that takes as arguments the acting group and the point. It returns a list of length 3:
[canonrep, stabilizercanonrep, conjugatingelm). (List components 2 and 3 are optional and do not need to
be bound.) An external set is only guaranteed to be able to compute a canonical representative if it has a
CanonicalRepresentativeDeterminatorOfExternalSet.

ActorOfExternalSet (zset) A

returns an element mapping Representative(xset) to CanonicalRepresentativeOfExternalSet (zset)
under the given action.

gap> u:=Subgroup(g, [(1,2,3)1);;

gap> e:=RightCoset(u, (1,2)(3,4));;

gap> CanonicalRepresentativeOfExternalSet(e);
(2,4,3)

gap> ActorOfExternalSet(e);

(1,3,2)

gap> FunctionAction(e) ((1,2)(3,4),last);
(2,4,3)

External sets also are implicitly underlying action homomorphisms:
UnderlyingExternalSet(ohom) A

The underlying set of an action homomorphism is the external set on which it was defined.

gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),0nTuples);;
gap> UnderlyingExternalSet (hom) ;

(s, 2,31, 01,2,4731,[1,3,27,[1,3,41,10[1, 421,
[1,4,31,[02,1,31,[02,1,41,0[02,3,11,[2, 3,41,
[2,4,11, [2,4,31,[3,1,27]1,[(3,1,41,1[3,2,11,
[3,2,41, [(3,4,11,[(3,4,21, [4,1,21, [4,1, 3],
(4,2, 1], [(4,2,31, [4,3,11,[4,3,21]
SurjectiveActionHomomorphismAttr(zset) A

returns an action homomorphism for zset which is surjective. (As the Image of this homomorphism has to
be computed to obtain the range, this may take substantially longer than ActionHomomorphism.)

39.12 Legacy Operations

The concept of a group action is sometimes referred to as a “group operation”. In GAP 3 as well as in older
versions of GAP 4 the term Operation was used instead of Action. We decided to change the names to
avoid confusion with the term “operation” as in DeclareOperation and “Operations for Xyz”.

The old names still exist as synonyms, however we do not guarantee that they will remain indefinitely in
the system and strongly discourage their further use. They are listed here mainly as a help to users who are
still accustomed to the old names:

RepresentativeOperation(args) obsolete
Obsolete synonym, see 39.5.1.
Operation(args) obsolete

Obsolete synonym, see 39.6.2.

Section 12. Legacy Operations 395

3» OperationHomomorphism(args) obsolete

Obsolete synonym, see 39.6.1.

4» FunctionOperation(args) obsolete

Obsolete synonym, see 39.11.4.

1»

3>

Permutations

GAP offers a data type permutation to describe the elements of permutation groups.

The points on which permutations in GAP act are the positive integers less than 22® — 1, and the image
of a point ¢ under a permutation p is written i?, which is expressed as i"p in GAP. (This action is also
implemented by the function OnPoints, see 39.2.1.) If i"p # 4, we say that ¢ is moved by p, otherwise it is
fixed. Permutations in GAP are entered and displayed in cycle notation, such as (1,2,3)(4,5).

The preimage of the point ¢ under the permutation p can be computed as ¢ / p, without constructing the
inverse of p.

For arithmetic operations for permutations and their precedence, see 30.12.

In the names of the GAP functions that deal with permutations, the word Permutation is usually abbreviated
to Perm, to save typing. For example, the category test function for permutations is called IsPerm.

IsPerm(obj) C
IsPermCollection(obj) C
IsPermCol1Coll(obj) C
are the categories for collections of permutations and collections of collections of permutations, respectively.
PermutationsFamily A%

is the family of all permutations.

Internally, GAP stores a permutation as a list of the d images of the integers 1, ..., d, where the “internal
degree” d is the largest integer moved by the permutation or bigger. When a permutation is read in in cycle
notation, d is always set to the largest moved integer, but a bigger d can result from a multiplication of two
permutations, because the product is not shortened if it fixes d. The images are either all stored as 16-bit
integers or all as 32-bit integers (actually as GAP immediate integers less than 22%), depending on whether
d < 65536 or not. This means that the identity permutation () takes 4m bytes if it was calculated as (1,

., m) * (1, ..., m)~-1. It can take even more because the internal list has sometimes room for more
than d images. For example, the maximal degree of any permutation in GAP is m = 222 — 1024 = 4,193,280,
because bigger permutations would have an internal list with room for more than 222 images, requiring more
than 224 bytes. 224, however, is the largest possible size of an object that the GAP storage manager can deal
with.

Permutations do not belong to a specific group. That means that one can work with permutations without
defining a permutation group that contains them.

gap> (1,2,3);

(1,2,3)

gap> (1,2,3) * (2,3,4);
(1,3)(2,4)

gap> 17°(2,5,17,9,8);

9

gap> OnPoints(17,(2,5,17,9,8));
9

The operation Permuted (see 21.20.15) can be used to permute the entries of a list according to a permutation.

2>

Section 2. Moved Points of Permutations 397

40.1 Comparison of Permutations

p-1 =pl
p_l1 < p 2

Two permutations are equal if they move the same points and all these points have the same images under
both permutations.

The permutation p; is smaller than ps if p; # po and P < P2 where i is the smallest point with Pt #£ P2,
Therefore the identity permutation is the smallest permutation. (see also 30.11)

Permutations can be compared with certain other GAP objects, see 4.11 for the details.

gap> (1,2,3) = (2,3,1);

true

gap> (1,2,3) * (2,3,4) = (1,3)(2,4);

true

gap> (1,2,3) < (1,3,2); #1°(1,2,3) =2<3=1"(1,3,2)
true

gap> (1,3,2,4) < (1,3,4,2); # 2°(1,3,2,4) =4 >1=27(1,3,4,2)
false

SmallestGeneratorPerm(perm) F

is the smallest permutation that generates the same cyclic group as the permutation perm. This is very
efficient, even when perm has large order.

gap> SmallestGeneratorPerm((1,4,3,2));
(1,2,3,4)

40.2 Moved Points of Permutations

SmallestMovedPoint (perm) A
SmallestMovedPoint(C) A

is the smallest positive integer that is moved by perm if such an integer exists, and infinity if perm = Q.
For C' a collection or list of permutations, the smallest value of SmallestMovedPoint for the elements of C
is returned (and infinity if C is empty).

LargestMovedPoint (perm) A
LargestMovedPoint (C') A

For a permutation perm, this attribute contains the largest positive integer which is moved by perm if
such an integer exists, and 0 if perm = (). For C a collection or list of permutations, the largest value of
LargestMovedPoint for the elements of C is returned (and 0 if C' is empty).

MovedPoints (perm) A
MovedPoints(C) A

is the proper set of the positive integers moved by at least one permutation in the collection C, respectively
by the permutation perm.

NrMovedPoints(perm) A
NrMovedPoints(C) A

is the number of positive integers that are moved by perm, respectively by at least one element in the
collection C'. (The actual moved points are returned by MovedPoints, see 40.2.3)

1»

2»

1»

2»

3>

398 Chapter 40. Permutations

gap> SmallestMovedPointPerm((4,5,6)(7,2,8));

2

gap> LargestMovedPointPerm((4,5,6)(7,2,8));

8

gap> NrMovedPointsPerm((4,5,6)(7,2,8));

6

gap> MovedPoints([(2,3,4),(7,6,3),(5,47)]1);
[2,3,4,5,6,7,47]

gap> NrMovedPoints([(2,3,4),(7,6,3),(5,47)1);

7

gap> SmallestMovedPoint([(2,3,4),(7,6,3),(5,47)]1);
2

gap> LargestMovedPoint ([(2,3,4),(7,6,3),(5,47)1);
a7

gap> LargestMovedPoint ([()1);

0

40.3 Sign and Cycle Structure
SignPerm(perm) A

The sign of a permutation perm is defined as (—1)* where & is the number of cycles of perm of even length.

The sign is a homomorphism from the symmetric group onto the multiplicative group {41, —1}, the kernel
of which is the alternating group.

CycleStructurePerm(perm) A

is the cycle structure (i.e. the numbers of cycles of different lengths) of perm. This is encoded in a list [in
the following form: The i-th entry of [contains the number of cycles of perm of length i+1. If perm contains
no cycles of length i+1 it is not bound. Cycles of length 1 are ignored.

gap> SignPerm((1,2,3)(4,5));

-1

gap> CycleStructurePerm((1,2,3)(4,5,9,7,8));
[b 1’ s 1]

40.4 Creating Permutations
ListPerm(perm) F

is a list list that contains the images of the positive integers under the permutation perm. That means that
list[i1 = i~ perm, where i lies between 1 and the largest point moved by perm (see 40.2.2).

PermList (list) F

is the permutation perm that moves points as described by the list list. That means that i~ perm = list[i]
if 4 lies between 1 and the length of list, and i"perm = i if 4 is larger than the length of the list list. It will
signal an error if list does not define a permutation, i.e., if list is not a list of integers without holes, or if
list contains an integer twice, or if list contains an integer not in the range [1..Length(list)].

MappingPermListList(src, dst) F

Let src and dst be lists of positive integers of the same length, such that neither may contain an element
twice. MappingPermListList returns a permutation perm such that src[i] “perm = dst[i]. perm fixes all
points larger than the maximum of the entries in src and dst. If there are several such permutations, it is
not specified which of them MappingPermListList returns.

Section 4. Creating Permutations 399

4» RestrictedPerm(perm, list) F

RestrictedPerm returns the new permutation new that acts on the points in the list list in the same way as
the permutation perm, and that fixes those points that are not in list. list must be a list of positive integers
such that for each i in list the image i~ perm is also in list, i.e., list must be the union of cycles of perm.

gap> ListPerm((3,4,5));

[1, 2, 4, 5, 3]

gap> PermList([1,2,4,5,3]);

(3,4,5)

gap> MappingPermListList([2,5,1,6],[7,12,8,2]);
(1,8,5,12,11,10,9,6,2,7,4,3)

gap> RestrictedPerm((1,2)(3,4),[3..5]);

(3,4)

1»

1»

2»

4]. Permutation Groups

IsPermGroup(obj)

A permutation group is a group of permutations on a finite set of positive integers. GAP does not require
the user to specify the operation domain §2 when a permutation group is defined.

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2) 1)

Permutation groups are groups and therefore all operations for groups (see Chapter 37) can be applied to
them. In many cases special methods are installed for permutation groups that make computations more
effective.

41.1 The Natural Action

The functions MovedPoints, NrMovedPoints, LargestMovedPoint, and SmallestMovedPoint are defined
for arbitrary collections of permutations (see 40.2), in particular they can be applied to permutation groups.

gap> g:= Group((2,3,5,6), (2,3));;

gap> MovedPoints(g); NrMovedPoints(g);

[2, 3, 5,61

4

gap> LargestMovedPoint(g); SmallestMovedPoint(g);
6

2

The action of a permutation group on the positive integers is a group action (via the acting function On-
Points). Therefore all action functions can be applied (see the Chapter 39), for example Orbit, Stabilizer,
Blocks, IsTransitive, IsPrimitive.

If one has a list of group generators and is interested in the moved points (see above) or orbits, it may be
useful to avoid the explicit construction of the group for efficiency reasons. For the special case of the action
of permutations on positive integers via ~, the following functions are provided for this purpose.

OrbitPerms(perms, pnt) F

returns the orbit of the positive integer pnt under the group generated by the permutations in the list perms.
OrbitsPerms(perms, D) F

returns the list of orbits of the positive integers in the list D under the group generated by the permutations
in the list perms.

gap> OrbitPerms([(1,2,3)(4,5), (3,6) 1, 1);

[1, 2, 3, 61

gap> OrbitsPerms([(1,2,3)(4,5), (3,6) 1, [1 .. 61);
[[1,2,3,61,[451]]1

Similarly, several functions concerning the natural action of permutation groups address stabilizer chains
(see 41.5) rather than permutation groups themselves, for example BaseStabChain (see 41.9.1).

1»

2>

1»

2»

Section 8. Symmetric and Alternating Groups 401

41.2 Computing a Permutation Representation
IsomorphismPermGroup(G) A

returns an isomorphism ¢ from the group G onto a permutation group P which is isomorphic to G. The
method will select a suitable permutation representation.

gap> g:=SmallGroup(24,12);

<pc group of size 24 with 4 generators>

gap> iso:=IsomorphismPermGroup(g) ;

<action isomorphism>

gap> Image(iso,g.3%g.4);

(1,4)(2,3)(5,8)(6,7)(9,12) (10,11) (13,16) (14,15) (17,20) (18,19) (21,24) (22,23)

In many cases the permutation representation constructed by IsomorphismPermGroup is regular.
SmallerDegreePermutationRepresentation(G) F

Let G be a permutation group that acts transitively on its moved points. SmallerDegreePermutation-
Representation tries to find a faithful permutation representation of smaller degree. The result is a group
homomorphism onto a permutation group, in the worst case this is the identity mapping on G.

Note that the result is not guaranteed to be a faithful permutation representation of smallest degree, or of
smallest degree among the transitive permutation representations of G. Using GAP interactively, one might
be able to choose subgroups of small index for which the cores intersect trivially; in this case, the actions
on the cosets of these subgroups give rise to an intransitive permutation representation the degree of which
may be smaller than the original degree.

The methods used might involve the use of random elements and the permutation representation (or even
the degree of the representation) is not guaranteed to be the same for different calls of SmallerDegreePer-
mutationRepresentation.

gap> image:= Image(iso);; NrMovedPoints(image);

24

gap> small:= SmallerDegreePermutationRepresentation(image);;
gap> Image(small);

Group([(1,4)(2,3), (1,3)(2,4), (2,3), (2,3, 1D

41.3 Symmetric and Alternating Groups

The commands SymmetricGroup and AlternatingGroup (see 48.1) construct symmetric and alternating
permutation groups. GAP can also detect whether a given permutation group is a symmetric or alternating
group on the set of its moved points; if so then the group is called a natural symmetric or alternating group,
respectively.

IsNaturalSymmetricGroup(group) P

A group is a natural symmetric group if it is a permutation group acting as symmetric group on its moved
points.

IsNaturalAlternatingGroup(group) P

A group is a natural alternating group if it is a permutation group acting as alternating group on its moved
points.

For groups that are known to be natural symmetric or natural alternating groups, very efficient methods
for computing membership, conjugacy classes, Sylow subgroups etc. are used.

3>

4»

5»

1»

2»

402 Chapter 41. Permutation Groups

gap> g:=Group((1,5,7,8,99),(1,99,13,72));;
gap> IsNaturalSymmetricGroup(g) ;
true

gap> g;

Sym([1, 5, 7, 8, 13, 72, 99 1)

gap> IsNaturalSymmetricGroup(Group((1,2)(4,5), (1,2,3)(4,5,6)));
false

The following functions can be used to check whether a given group (not necessarily a permutation group)
is isomorphic to a symmetric or alternating group.

There are no methods yet for IsSymmetricGroup and IsAlternatingGroup!

IsSymmetricGroup(group) P
is true if the group group is isomorphic to a natural symmetric group.

IsAlternatingGroup(group) P
Such a group is a group isomorphic to a natural alternating group.

SymmetricParentGroup(grp) A

For a permutation group grp this function returns the symmetric group that moves the same points as grp
does.

gap> SymmetricParentGroup(Group((1,2), (4,5), (7,8,9)));
SymC [1, 2, 4, 5,7,8,91)

41.4 Primitive Groups
ONanScottType(G) A

returns the type of G of a primitive permutation group G, according to the O’Nan-Scott classification. The
labelling of the different types is not consistent in the literature, we use the following:

1 Affine.
2 Almost simple.
3a Diagonal, Socle consists of two normal subgroups.
3b Diagonal, Socle is minimal normal.
4a Product action with the first factor primitive of type 3a.
4b Product action with the first factor primitive of type 3b.
4c Product action with the first factor primitive of type 2.
5 Twisted wreath product

As it can contain letters, the type is returned as a string.
If G is not a permutation group or does not act primitively on the points moved by it, the result is undefined.

SocleTypePrimitiveGroup(G) A

returns the socle type of a primitive permutation group. The socle of a primitive group is the direct product
of isomorphic simple groups, therefore the type is indicated by a record with components series, parame-
ter (both as described under IsomorphismTypeInfoFiniteSimpleGroup, see 37.14.11) and width for the
number of direct factors.

If G does not have a faithful primitive action, the result is undefined.

Section 5. Stabilizer Chains 403

gap> g:=AlternatingGroup(5);;

gap> h:=DirectProduct(g,g);;

gap> p:=List([1,2],i->Projection(h,i));;

gap> ac:=Action(h,AsList(g),

> function(g,h) return Image(p[1],h) -1*g*Image(p[2],h);end);;
gap> Size(ac) ;NrMovedPoints(ac) ;IsPrimitive(ac, [1..60]);

3600
60
true
gap> ONanScottType(ac);
||3a|l
gap> SocleTypePrimitiveGroup(ac);
rec(series := "A", width := 2,
name := "A(5) ~ A(1,4) = L(2,4) ~ B(1,4) = 0(3,4) ~ C(1,4) = S(2,4) ~ 2A(1,4\

) =U(2,4) =~ A(1,5) = L(2,5) ~ B(1,5) = 0(3,5) ~ C(1,5) = S(2,5) ~ 2A(1,5) = U\
(2,5)", parameter := 5)

41.5 Stabilizer Chains

Many of the algorithms for permutation groups use a stabilizer chain of the group. The concepts of
stabilizer chains, bases, and strong generating sets were introduced by Charles Sims in [Sim70]. A
further discussion of base change is given in section 8.1 in “Extending GAP”.

Let B = [by,..., by] be a list of points, GV = G and GU+Y = Stabe) (b;), such that G(*+Y) = {()}. Then
the list [b1,..., b,] is called a base of G, the points b; are called base points. A set S of generators for G
satisfying the condition < SN G > = G for each 1 < i < n, is called a strong generating set (SGS)
of G. (More precisely we ought to say that it is a SGS of G relative to B). The chain of subgroups G of
G itself is called the stabilizer chain of G relative to B.

Since [b1,..., b,], where n is the degree of G and b; are the moved points of G, certainly is a base for G
there exists a base for each permutation group. The number of points in a base is called the length of the
base. A base B is called reduced if there exists no i such that G() = G+, (This however does not imply
that no subset of B could also serve as a base.) Note that different reduced bases for one permutation group
G may have different lengths. For example, the irreducible degree 416 permutation representation of the
Chevalley Group G2(4) possesses reduced bases of length 5 and 7.

Let R() be a right transversal of G0+ in G(), i.e. a set of right coset representatives of the cosets of G(+1)
in G, Then each element ¢ of G has a unique representation of the form g = r, ... r; with r; € R). The
cosets of GUH1) in G are in bijective correspondence with the points in O := bZ-G(l). So we could represent
a transversal as a list T such that T'[p] is a representative of the coset corresponding to the point p € 0w,
i.e., an element of G() that takes b; to p. (Note that such a list has holes in all positions corresponding to

points not contained in O().)

This approach however will store many different permutations as coset representatives which can be a
problem if the degree n gets bigger. Our goal therefore is to store as few different permutations as possible
such that we can still reconstruct each representative in R(Y), and from them the elements in G. A factorized
inverse transversal T is a list where T'[p] is a generator of G() such that p””! is a point that lies earlier
in O than p (note that we consider O() as a list, not as a set). If we assume inductively that we know
an element r € G that takes b; to p”Pl, then rT[p]~! is an element in G} that takes b; to p. GAP uses
such factorized inverse transversals.

Another name for a factorized inverse transversal is a Schreier tree. The vertices of the tree are the points
in O, and the root of the tree is b;. The edges are defined as the ordered pairs (p, p”*!), for p € O\ {b;}.
The edge (p, p”!) is labelled with the generator T'[p], and the product of edge labels along the unique path
from p to b; is the inverse of the transversal element carrying b; to p.

404 Chapter 41. Permutation Groups

Before we describe the construction of stablizer chains in 41.7, we explain in 41.6 the idea of using non-
deterministic algorithms; this is necessary for understanding the options available for the construction of
stabilizer chains. After that, in 41.8 it is explained how a stabilizer chain is stored in GAP, 41.9 lists operations
for stabilizer chains, and 41.10 lists low level routines for manipulating stabilizer chains.

41.6 Randomized Methods for Permutation Groups

For most computations with permutation groups, it is crucial to construct stabilizer chains efficiently. Sims’s
original construction [Sim70] is deterministic, and is called the Schreier-Sims algorithm, because it is based
on Schreier’s Lemma (p. 96 in [Hal59]): given K = (S5) and a transversal T for K mod L, one can obtain
|S|| T| generators for L. This lemma is applied recursively, with consecutive point stabilizers G() and G(+1)
playing the role of K and L.

In permutation groups of large degree, the number of Schreier generators to be processed becomes too
large, and the deterministic Schreier-Sims algorithm becomes impractical. Therefore, GAP uses randomized
algorithms. The method selection process, which is quite different from Version 3, works the following way.

If a group acts on not more than a hundred points, Sims’s original deterministic algorithm is applied.
In groups of degree greater than hundred, a heuristic algorithm based on ideas in [BCFS91] constructs a
stabilizer chain. This construction is complemented by a verify-routine that either proves the correctness
of the stabilizer chain or causes the extension of the chain to a correct one. The user can influence the
verification process by setting the value of the record component random (cf. 41.7).

If random = 1000 then a slight extension of an unpublished method of Sims is used. The outcome of this
verification process is always correct. The user also can prescribe any integer 1 < z < 999 as the value
of random. In this case, a randomized verification process from [BCFS91] is applied, and the result of the
stabilizer chain construction is guaranteed to be correct with probability at least z/1000. The practical
performance of the algorithm is much better than the theoretical guarantee.

If the stabilizer chain is not correct then the elements in the product of transversals R(™ R("=1 ... R(1)
constitute a proper subset of the group G in question. This means that a membership test with this stabilizer
chain returns false for all elements that are not in G, but it may also return false for some elements of
G; in other words, the result true of a membership test is always correct, whereas the result false may be
incorrect.

The construction and verification phases are separated because there are situations where the verification step
can be omitted; if one happens to know the order of the group in advance then the randomized construction
of the stabilizer chain stops as soon as the product of the lengths of the basic orbits of the chain equals the
group order, and the chain will be correct (see the size option of the StabChain command in 41.7.1).

Although the worst case running time is roughly quadratic for Sims’s verification and roughly linear for the
randomized one, in most examples the running time of the stabilizer chain construction with random= 1000
(i.e., guaranteed correct output) is about the same as the running time of randomized verification with
guarantee of at least 90% correctness. Therefore, we suggest to use the default value random= 1000. Possible
uses of random< 1000 are when one has to run through a large collection of subgroups, and a low value of
random is used to choose quickly a candidate for more thorough examination; another use is when the user
suspects that the quadratic bottleneck of the guaranteed correct verification is hit.

We will illustrate these ideas in two examples.

gap> h:= SL(4,7);;

gap> o:= Orbit(h, [1,0,0,0]1*Z(7)"0, OnLines);;
gap> op:= Action(h, o, OnLines);;

gap> NrMovedPoints(op);

400

We created a permutation group on 400 points. First we compute a guaranteed correct stabilizer chain. (The
StabChain command is described in 41.7.1.)

Section 6. Randomized Methods for Permutation Groups 405

gap> h:= Group(Generators0fGroup(op));;
gap> StabChain(h);; time;

1120

gap> Size(h);

2317591180800

Now randomized verification will be used. We require that the result is guaranteed correct with probability
90%. This means that if we would do this calculation many times over, GAP would guarantee that in least
90% percent of all calculations the result is correct. In fact the results are much better than the guarantee,
but we cannot promise that this will really happen. (For the meaning of the random component in the second
argument of StabChain, see 41.7.1.)

First the group is created anew.

gap> h:= Group(Generators0fGroup(op));;

gap> StabChain(h, rec(random:= 900));; time;
1410

gap> Size(h);

2317591180800

The result is still correct, and the running time is actually somewhat slower. If you give the algorithm
additional information so that it can check its results, things become faster and the result is guaranteed to
be correct.

gap> h:=Group(Generators0fGroup(op));;
gap> SetSize(h, 2317591180800);

gap> StabChain(h);; time;

170

The second example gives a typical group when the verification with random = 1000 is slow. The problem
is that the group has a stabilizer subgroup G such that the fundamental orbit O is split into a lot of
orbits when we stabilize b; and one additional point of O().

gap> pl:=PermList(Concatenation([401],[1..400]1));;
gap> p2:=PermList(List([1..400],i->(i*20 mod 401)));;
gap> d:=DirectProduct (Group(pl,p2),SymmetricGroup(5));;
gap> h:=Group(Generators0fGroup(d));;

gap> StabChain(h);;time;Size(h);

1030

192480

gap> h:=Group(Generators0fGroup(d));;

gap> StabChain(h,rec(random:=900)) ;;time;Size(h);

570

192480

When stabilizer chains of a group G are created with random < 1000, this is noted in the group G, by
setting of the record component random in the value of the attribute StabChainOptions for G (see 41.7.2).
As errors induced by the random methods might propagate, any group or homomorphism created from G
inherits a random component in its StabChainOptions from the corresponding component for G.

A lot of algorithms dealing with permutation groups use randomized methods; however, if the initial stabilizer
chain construction for a group is correct, these further methods will provide guaranteed correct output.

vyVvyVvyVvyyvyy

406 Chapter 41. Permutation Groups

41.7 Construction of Stabilizer Chains

StabChain(GU[, options])

StabChain(G, base)

StabChainOp(G, options)

StabChainMutable(G) A
StabChainMutable(permhomom) A
StabChainImmutable(G)

220

These commands compute a stabilizer chain for the permutation group G; additionally, StabChainMutable
is also an attribute for the group homomorphism permhomom whose source is a permutation group.

StabChainOp is an operation with two arguments G and options, the latter being a record which controls
some aspects of the computation of a stabilizer chain (see below); StabChainOp returns a mutable stabi-
lizer chain. StabChainMutable is a mutable attribute for groups or homomorphisms, its default method
for groups is to call StabChainOp with empty options record. StabChainImmutable is an attribute with
immutable values; its default method dispatches to StabChainMutable.

StabChain is a function with first argument a permutation group G, and optionally a record options as sec-
ond argument. If the value of StabChainImmutable for G is already known and if this stabilizer chain
matches the requirements of options, StabChain simply returns this stored stabilizer chain. Otherwise
StabChain calls StabChainOp and returns an immutable copy of the result; additionally, this chain is stored
as StabChainImmutable value for G. If no options argument is given, its components default to the global
variable DefaultStabChainOptions (see 41.7.3). If base is a list of positive integers, the version StabChain(
G, base) defaults to StabChain(G, rec(base:= base)).

If given, options is a record whose components specify properties of the desired stabilizer chain or which may
help the algorithm. Default values for all of them can be given in the global variable DefaultStabChain-
Options (see 41.7.3). The following options are supported.

base (default an empty list)
A list of points, through which the resulting stabilizer chain shall run. For the base B of the resulting
stabilizer chain S this means the following. If the reduced component of options is true then those
points of base with nontrivial basic orbits form the initial segment of B, if the reduced component
is false then base itself is the initial segment of B. Repeated occurrences of points in base are
ignored. If a stabilizer chain for G is already known then the stabilizer chain is computed via a base
change.

knownBase (no default value)

A list of points which is known to be a base for the group. Such a known base makes it easier to
test whether a permutation given as a word in terms of a set of generators is the identity, since it
suffices to map the known base with each factor consecutively, rather than multiplying the whole
permutations (which would mean to map every point). This speeds up the Schreier-Sims algorithm
which is used when a new stabilizer chain is constructed; it will not affect a base change, however.
The component knownBase bears no relation to the base component, you may specify a known base
knownBase and a desired base base independently.

reduced (default true)
If this is true the resulting stabilizer chain S is reduced, i.e., the case G = GU+1 does not occur.
Setting reduced to false makes sense only if the component base (see above) is also set; in this
case all points of base will occur in the base B of S, even if they have trivial basic orbits. Note
that if base is just an initial segment of B, the basic orbits of the points in B \ base are always
nontrivial.

tryPcgs (default true)
If this is true and either the degree is at most 100 or the group is known to be solvable, GAP will
first try to construct a pcgs (see Chapter 43) for G which will succeed and implicitly construct a

3»

4»

5p

Section 8. Stabilizer Chain Records 407

stabilizer chain if G is solvable. If G turns out non-solvable, one of the other methods will be used.
This solvability check is comparatively fast, even if it fails, and it can save a lot of time if G is
solvable.

random (default 1000)
If the value is less than 1000, the resulting chain is correct with probability at least random/1000.
The random option is explained in more detail in 41.6.

size (default Size(G) if this is known, i.e., if HasSize(G) is true)
If this component is present, its value is assumed to be the order of the group G. This information
can be used to prove that a non-deterministically constructed stabilizer chain is correct. In this case,
GAP does a non-deterministic construction until the size is correct.

limit (default Size(Parent(G)) or StabChainOptions(Parent(G)).limit if this is present)
If this component is present, it must be greater than or equal to the order of G. The stabilizer chain
construction stops if size 1imit is reached.

StabChainOptions(G) AM

is a record that stores the options with which the stabilizer chain stored in StabChainImmutable has been
computed (see 41.7.1 for the options that are supported).

DefaultStabChainOptions \Y%
are the options for StabChain which are set as default.
StabChainBaseStrongGenerators(base, sgs, one) F

If a base base for a permutation group G and a strong generating set sgs for G with respect to base are
given. one must be the appropriate One (in most cases this will be ()). This function constructs a stabilizer
chain without the need to find Schreier generators; so this is much faster than the other algorithms.

MinimalStabChain(G) A

returns the reduced stabilizer chain corresponding to the base [1,2,3,4,...].

41.8 Stabilizer Chain Records

If a permutation group has a stabilizer chain, this is stored as a recursive structure. This structure is
itself a record S and it has (1) components that provide information about one level G(*) of the stabilizer
chain (which we call the “current stabilizer”) and (2) a component stabilizer that holds another such
record, namely the stabilizer chain of the next stabilizer G(+1). This gives a recursive structure where the
“outermost” record representing the “topmost” stabilizer is bound to the group record component stabChain
and has the components explained below. Note: Since the structure is recursive, never print a stabilizer
chain! (Unless you want to exercise the scrolling capabilities of your terminal.)

identity
the identity element of the current stabilizer.

labels
a list of permutations which contains labels for the Schreier tree of the current stabilizer, i.e., it
contains elements for the factorized inverse transversal. The first entry is this list is always the
identity, for reasons explained below under translabels. Note that GAP tries to arrange things
so that the labels components are identical (i.e., the same GAP object) in every stabilizer of
the chain; thus the labels of a stabilizer do not necessarily all lie in the this stabilizer (but see
genlabels below).

408 Chapter 41. Permutation Groups

genlabels
a list of integers indexing some of the permutations in the 1abels component. The labels addressed
in this way form a generating set for the current stabilizer. If the genlabels component is empty, the
rest of the stabilizer chain represents the trivial subgroup, and can be ignored, e.g., when calculating
the size.

generators
a list of generators for the current stabilizer. Usually, it is 1labels{ genlabels }.

orbit
the vertices of the Schreier tree, which form the basic orbit biG (7'), ordered in such a way that the
base point b; is first in the list.

translabels

the factorized inverse transversal that was found during the orbit algorithm carried out with the
inverses of labels{ genlabels 1}, starting from the base point. The directed edge from the point
i to the point 7 = 49 in the Schreier tree is represented by labels[translabels[j]] = ¢ in the
stabilizer chain (note that ¢ can be reconstructed as j‘f1 from this information). The entries in the
translabels component are thus just integers giving the positions of the appropriate labels in the
labels component. The base point itself (i.e., the root of the Schreier tree) corresponds to the entry
1 in translabels. This makes it possible to assign transversal{ orbit } := labels{ transla-
bels{ orbit } 1} (see 21.4.2 in the Reference Manual and transversal below). The translabels
component pays off handsomely in the stabilizer chain conjugation (see 8.1 in “Extending GAP”).

transversal
is another representation of the factorized inverse transversal: as a list with transversal[j] =
labels[translabels[j]] (the base point itself has entry ()). To look up an entry in this list
is faster than to evaluate the expression on the right hand side, and since this operation appears
most often in permutation group code (e.g., in the function InverseRepresentative below), the
speed-up is really worth this extra record component.

stabilizer
If the current stabilizer is not yet the trivial group, the stabilizer chain continues with the sta-
bilizer of the current base point, which is again represented as a record with components labels,
identity, genlabels, generators, orbit, translabels, transversal (and possibly stabilizer).
This record is bound to the stabilizer component of the current stabilizer. The last member of a
stabilizer chain is recognized by the fact that it has no stabilizer component bound.

It is possible that different stabilizer chains share the same record as one of their iterated stabilizer
components.

gap> g:=Group((1,2,3,4),(1,2));;

gap> StabChain(g);

<stabilizer chain record, Base [1, 2, 3], Orbit length 4, Size: 24>
gap> Base0fGroup(g) ;

[1, 2, 3]

gap> StabChainOptions(g);

rec(random := 1000)

gap> DefaultStabChainOptions;

rec(reduced := true, random := 1000, tryPcgs := true)

1»

2»

3»

4»

5»

6>

g

8>

9»

10»

11»

12»

Section 9. Operations for Stabilizer Chains 409

41.9 Operations for Stabilizer Chains

BaseStabChain(S) F
returns the base belonging to the stabilizer chain S.

BaseOfGroup(G) A

returns a base of the permutation group G. There is no guarantee that a stabilizer chain stored in G
corresponds to this base!

SizeStabChain(S) F

returns the product of the orbit lengths in the stabilizer chain S, that is, the order of the group described
by S.

StrongGeneratorsStabChain(S) F
returns a strong generating set corresponding to the stabilizer chain S.
GroupStabChain([G, 1 §) F

constructs a permutation group with stabilizer chain S, i.e., a group with generators Generators(S) to
which S is assigned as component stabChain. If the optional argument G is given, the result will have the
parent G.

OrbitStabChain(S, pnt) F
returns the orbit of pnt under the group described by the stabilizer chain S.

IndicesStabChain(S) F
returns a list of the indices of the stabilizers in the stabilizer chain S.

ListStabChain(S) F
returns a list that contains at position i the stabilizer of the first ¢ — 1 base points in the stabilizer chain S.
ElementsStabChain(S) F
returns a list of all elements of the group described by the stabilizer chain S.

InverseRepresentative(S, pnt) F

calculates the transversal element which maps pnt back to the base point of S. It just runs back through
the Schreier tree from pnt to the root and multiplies the labels along the way.

SiftedPermutation(S, ¢) F

sifts the permutation g through the stabilizer chain S and returns the result after the last step.

The element g is sifted as follows: g is replaced by g * InverseRepresentative(S, S.orbit[1]7g),
then § is replaced by S.stabilizer and this process is repeated until S is trivial or S.orbit[1]~g is not
in the basic orbit S.orbit. The remainder g is returned, it is the identity permutation if and only if the
original g is in the group G described by the original §.

MinimalElementCosetStabChain(S, ¢) F

Let G be the group described by the stabilizer chain S. This function returns a permutation h such that
Gg = Gh (that is, g/h € G) and with the additional property that the list of images under h of the base
belonging to S is minimal w.r.t. lexicographical ordering.

13»

14 »

1»

2>

3>

4»

5»

6 »

A

410 Chapter 41. Permutation Groups

LargestElementStabChain(S, id) F

Let G be the group described by the stabilizer chain S. This function returns the element h € G with
the property that the list of images under h of the base belonging to S is maximal w.r.t. lexicographical
ordering. The second argument must be an identity element (used to start the recursion)

ApproximateSuborbitsStabilizerPermGroup(G, pnt) F

returns an approximation of the orbits of Stabilizer(G, pnt) on all points of the orbit Orbit(G,
pnt), without computing the full point stabilizer; As not all Schreier generators are used, the result may
represent the orbits of only a subgroup of the point stabilizer.

41.10 Low Level Routines to Modify and Create Stabilizer Chains

These operations modify a stabilizer chain or obtain new chains with specific properties. They are rather
technical and should only be used if such low-level routines are deliberately required. (For all functions in
this section the parameter S is a stabilizer chain.)

CopyStabChain(S) F

This function returns a copy of the stabilizer chain S that has no mutable object (list or record) in common
with S. The labels components of the result are possibly shared by several levels, but superfluous labels
are removed. (An entry in labels is superfluous if it does not occur among the genlabels or translabels
on any of the levels which share that labels component.)

This is useful for stabiliser sub-chains that have been obtained as the (iterated) stabilizer component of
a bigger chain.

CopyOptionsDefaults(G, options) F

sets components in a stabilizer chain options record options according to what is known about the group
G. This can be used to obtain a new stabilizer chain for G quickly.

ChangeStabChain(S, basel, reduced]) F

changes or reduces a stabilizer chain S to be adapted to the base base. The optional argument reduced is
interpreted as follows.

reduced = false:
change the stabilizer chain, do not reduce it,

reduced = true:
change the stabilizer chain, reduce it.

ExtendStabChain(S, base) F

extends the stabilizer chain S so that it corresponds to base base. The original base of S must be a subset
of base.

ReduceStabChain(S) F
changes the stabilizer chain S to a reduced stabilizer chain by eliminating trivial steps.
RemoveStabChain(§) F

S must be a stabilizer record in a stabilizer chain. This chain then is cut off at S by changing the entries in
S. This can be used to remove trailing trivial steps.

EmptyStabChain(labels, id[, pntl) F

constructs a stabilizer chain for the trivial group with identity=id and labels={id} U labels (but of course
with genlabels=[] and generators=[]). If the optional third argument pnt is present, the only stabilizer

s»

9>

10»

1»

2»

Section 11. Backtrack 411

of the chain is initialized with the one-point basic orbit [pnt] and with translabels and transversal
components.

InsertTrivialStabilizer(S, pnt) F

InsertTrivialStabilizer initializes the current stabilizer with pnt as EmptyStabChain did, but assigns
the original S to the new S.stabilizer component, such that a new level with trivial basic orbit (but
identical labels and ShallowCopyed genlabels and generators) is inserted. This function should be used
only if pnt really is fixed by the generators of S, because then new generators can be added and the orbit
and transversal at the same time extended with AddGeneratorsExtendSchreierTree.

IsFixedStabilizer(S, pnt) F
returns true if pnt is fixed by all generators of S and false otherwise.

AddGeneratorsExtendSchreierTree(S, new) F

adds the elements in new to the list of generators of S and at the same time extends the orbit and transversal.
This is the only legal way to extend a Schreier tree (because this involves careful handling of the tree
components).

41.11 Backtrack

A main use for stabilizer chains is in backtrack algorithms for permutation groups. GAP implements a
partition-backtrack algorithm as described in [Leo91] and refined in [The97].

SubgroupProperty(G, Prl[, L 1) F

Pr must be a one-argument function that returns true or false for elements of G and the subset of elements
of G that fulfill Pr must be a subgroup. (If the latter is not true the result of this operation is
unpredictable!) This command computes this subgroup. The optional argument L must be a subgroup of
the set of all elements fulfilling Pr and can be given if known in order to speed up the calculation.

ElementProperty(G, Prl[, L[, R]]) F

ElementProperty returns an element 7 of the permutation group G such that the one-argument function
Pr returns true for . It returns fail if no such element exists in G. The optional arguments L and R are
subgroups of G such that the property Pr has the same value for all elements in the cosets Lg and gR,
respectively.

A typical example of using the optional subgroups L and R is the conjugacy test for elements a and b for
which one can set L := Cg(a) and R := Cg(b).

gap> propfun:= el -> (1,2,3)%el in [(1,2,3), (1,3,2) 1;;

gap> SubgroupProperty(g, propfun, Subgroup(g, [(1,2,3) 1));
Group([(1,2,3), (2,3) 1)

gap> ElementProperty(g, el -> Order(el) = 2);

(2,4)

Chapter 40 describes special operations to construct permutations in the symmetric group without using
backtrack constructions.

Backtrack routines are also called by the methods for permutation groups that compute centralizers, nor-
malizers, intersections, conjugating elements as well as stabilizers for the operations of a permutation group
OnPoints, OnSets, OnTuples and OnSetSets. Some of these methods use more specific refinements than
SubgroupProperty or ElementProperty. For the definition of refinements, and how one can define refine-
ments, see Section 8.2 in “Extending GAP”.

3>

4»

412 Chapter 41. Permutation Groups

TwoClosure(G) A

The 2-closure of a transitive permutation group G on n points is the largest subgroup of S,, which has the
same orbits on sets of ordered pairs of points as the group G has. It also can be interpreted as the stabilizer
of the orbital graphs of G.

gap> TwoClosure(Group((1,2,3),(2,3,4)));
Sym([1 ..41)

InfoBckt A

is the info class for the partition backtrack routines.

41.12 Working with large degree permutation groups

Permutation groups of large degree (usually at least a few 10000) can pose a challenge to the heuristics
used in the algorithms for permutation groups. This section lists a few useful tricks that may speed up
calculations with such large groups enormously.

The first aspect concerns solvable groups: A lot of calculations (including an initial stabilizer chain compu-
tation thanks to the algorithm from [Sim90]) are faster if a permutation group is known to be solvable. On
the other hand, proving nonsolvability can be expensive for higher degrees. Therefore GAP will automati-
cally test a permutation group for solvability, only if the degree is not exceeding 100. (See also the tryPcgs
component of StabChainOptions.) It is therefore beneficial to tell a group of larger degree, which is known
to be solvable, that it is, using SetIsSolvableGroup(G,true).

The second aspect concerns memory usage. A permutation on more than 65536 points requires 4 byte per
point for storing. So permutations on 256000 poitns require roughly 1MB of storage per permutation. Just
storing the permutations required for a stabilizer chain might already go beyond the available memory, in
particular if the base is not very short. In such a situation it can be useful, to replace the permutations by
straight line program elements (see 35.9).

The following code gives an example of usage: We create a group of degree 231000. Using straight line
program elements, one can compute a stabilizer chain in about 200 MB of memory.

gap> Read("largeperms"); # read generators in from file

gap> gens:=StraightLineProgGens (permutationlist);;

gap> g:=Group(gens) ;

<permutation group with 5 generators>

gap> # use random algorithm (faster, but result is monte carlo)

gap> StabChainOptions(g) .random:=1;;

gap> Size(g); # enforce computation of a stabilizer chain
3529698298145066075557232833758234188056080273649172207877011796336000

Without straight line program elements, the same calculation runs into memory problems after a while even
with 512MB of workspace:

gap> h:=Group(permutationlist);
<permutation group with 5 generators>
gap> StabChainOptions(h).random:=1;;
gap> Size(h);
exceeded the permitted memory (‘-o’ command line option) at
mlimit := 1; called from
SCRMakeStabStrong(S.stabilizer, [g], param, orbits, where, basesize,
base, correct, missing, false); called from
SCRMakeStabStrong(S.stabilizer, [g], param, orbits, where, basesize,

The advantage in memory usage however is paid for in runtime: Comparisons of elements become much
more expensive. One can avoid some of the related problems by registering a known base with the straight

Section 12. Working with large degree permutation groups 413

line program elements (see StraightLineProgGens). In this case element comparison will only compare the
images of the given base points. If we are planning to do extensive calculations with the group, it can even
be worth to recreate it with straight line program elements knowing a previously computed base:

gap> # get the base we computed already
gap> bas:=BaseStabChain(StabChainMutable(g));
(1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55,

2530, 2533, 2554, 2563, 2569]
gap> gens:=StraightLineProgGens (permutationlist,bas);;
gap> g:=Group(gens);;
gap> SetSize(g,
> 3529698298145066075557232833758234188056080273649172207877011796336000) ;
gap> Random(g);; # enforce computation of a stabilizer chain

As we know already base and size, this second stabilizer chain calculation is much faster than the first one
and takes less memory.

1»

1»

2»

4 2 Matrix Groups

Matrix groups are groups generated by invertible square matrices.

In the following example we temporarily increase the line length limit from its default value 80 to 83 in
order to get a nicer output format.

gap> ml := [[2(3)70, Z(3)°0, Z(3) 1,

> [z2(3), 0x2(3), z(3) 1,
> [0xZ2(3), Z(3), 0%xZ(3) 1 1;;
gap> m2 := [[Z(3), Z(3), z(3)"0],
> [Z(3), 0xZ(3), z(3) 1,
> [Z(3)"0, 0%xZ(3), Z(3) 1 1;;

gap> SizeScreen([83, 1);;

gap> m := Group(ml, m2);

Group(

[[[Z() 0, Z2(3)70, Z(3) 1, [Z2(3), 0%Z(3), Z(3) 1, [0*xz(3), Z(3), 0%2(3) 1 1,
[[z@3), 2(3), z(3)°01, [2(3), 0%2(3), 2(3) 1, [z(3)"0, 0%xZ(3), Z(3) 11 1)

gap> SizeScreen([80, 1);;

IsMatrixGroup(grp) C

For most operations, GAP only provides methods for finite matrix groups. Many calculations in finite matrix
groups are done via a NiceMonomorphism (see 38.5) that represents a faithful action on vectors.

42.1 Attributes and Properties for Matrix Groups

DimensionOfMatrixGroup(mat-grp) A
The dimension of the matrix group.

DefaultFieldOfMatrixGroup(mat-grp) A

Is a field containing all the matrix entries. It is not guaranteed to be the smallest field with this property.

3» FieldOfMatrixGroup(matgrp) A

The smallest field containing all the matrix entries of all elements of the matrix group matgrp. As the
calculation of this can be hard, this should only be used if one really needs the smallest field, use Default-
FieldOfMatrixGroup to get (for example) the characteristic.

gap> DimensionOfMatrixGroup(m) ;

3

gap> DefaultFieldOfMatrixGroup(m) ;
GF(3)

4» TransposedMatrixGroup(matgrp) A

returns the transpose of the matrix group matgrp. The transpose of the transpose of matgrp is identical to
matgrp.

1»

2>

3>

2>

Section 3. GL and SL 415

gap> G := Group([[0,-1],[1,0]11);
Group([L [[O, -1 1, [1,011D)
gap> T := TransposedMatrixGroup(G);

Group(L [[0, 11, [-1,0110D
gap> IsIdenticalObj(G, TransposedMatrixGroup(T));
true

42.2 Actions of Matrix Groups

The basic operations for groups are described in Chapter 39, special actions for matrix groups mentioned
there are OnLines, OnRight, and OnSubspacesByCanonicalBasis.

For subtleties concerning multiplication from the left or from the right, see 42.6.

ProjectiveActionOnFullSpace(G, F, n) F

Let G be a group of n by n matrices over a field contained in the finite field F. ProjectiveActionOn-
FullSpace returns the image of the projective action of G on the full row space F".

ProjectiveActionHomomorphismMatrixGroup(G) F

returns an action homomorphism for a faithful projective action of G on the underlying vector space. (Note:

The action is not necessarily on the full space, if a smaller subset can be found on which the action is
faithful.)

BlowUpIsomorphism(matgrp, B) F

For a matrix group matgrp and a basis B of a field extension L/K, say, such that the entries of all matrices
in matgrp lie in L, BlowUpIsomorphism returns the isomorphism with source matgrp that is defined by
mapping the matrix A to BlownUpMat(A4, B), see 24.12.3.

gap> g:= GL(2,4);;
gap> B:= CanonicalBasis(GF(4));; BasisVectors(B);
[Z(2)70, Z(272)]
gap> iso:= BlowUpIsomorphism(g, B);;
gap> Display(Image(iso, [[Z(4), Zz(2) 1, [0%xZ(2), z(4&)"21 1));
11.
11.1
.11
o1
gap> img:= Image(iso, g);
<matrix group with 2 generators>
gap> Index(GL(4,2), img);
112

42.3 GL and SL

IsGeneralLinearGroup(grp) P
IsGL(grp) P

The General Linear group is the group of all invertible matrices over a ring. This property tests, whether a
group is isomorphic to a General Linear group.

IsNaturalGL(matgrp) P

This property tests, whether a matrix group is the General Linear group in the right dimension over the
(smallest) ring which contains all entries of its elements.

3>

4»

5»

1»

2»

3>

4»

5»

6>

416 Chapter 42. Matriz Groups
IsSpecialLinearGroup(grp) P
IsSL(grp) P

The Special Linear group is the group of all invertible matrices over a ring, whose determinant is equal to
1. This property tests, wether a group is isomorphic to a Special Linear group.

IsNaturalSL(matgrp) P

This property tests, whether a matrix group is the Special Linear group in the right dimension over the
(smallest) ring which contains all entries of its elements.

gap> IsNaturalGL(m);
false

IsSubgroupSL(matgrp) P

This property tests, whether a matrix group is a subgroup of the Special Linear group in the right dimension
over the (smallest) ring which contains all entries of its elements.

(See also section 48.2.)

42.4 Invariant Forms
InvariantBilinearForm(matgrp) A

This attribute contains a bilinear form that is invariant under matgrp. The form is given by a record with
the component matrix which is a matrix m such that for every generator g of m the equation g - m - g*
holds.

IsFullSubgroupGLorSLRespectingBilinearForm(matgrp) P

This property tests, whether a matrix group matgrp is the full subgroup of GL or SL (the property IsSub-
groupSL determines which it is) respecting the InvariantBilinearForm of matgrp.

InvariantSesquilinearForm(matgrp) A

This attribute contains a sesquilinear form that is invariant under matgrp. The form is given by a record with
the component matrix which is is a matrix m such that for every generator g of m the equation g-m-(g")¥
holds, where F' is the FrobeniusAutomorphism of the Field0OfMatrixGroup of G.

IsFullSubgroupGLorSLRespectingSesquilinearForm(matgrp) P

This property tests, whether a matrix group matgrp is the full subgroup of GL or SL (the property IsSub-
groupSL determines which it is) respecting the InvariantSesquilinearForm of matgrp.

InvariantQuadraticForm(matgrp) A

For a matrix group matgrp, InvariantQuadraticForm returns a record containing at least the component
matrix whose value is a matrix). The quadratic form ¢ on the natural vector space V on which matgrp
acts is given by ¢(v) = vQu", and the invariance under matgrp is given by the equation g(v) = q(vM) for
all v € V and M in matgrp.

IsFullSubgroupGLorSLRespectingQuadraticForm(matgrp) P

This property tests, whether the matrix group matgrp is the full subgroup of GL or SL (the property
IsSubgroupSL determines which it is) respecting the InvariantQuadraticForm value of matgrp.

1»

2»

3>

4»

5»

Section 5. Matriz Groups in Characteristic 0 417

gap> g:= Sp(2, 3)33
gap> m:= InvariantBilinearForm(g).matrix;
[[0xz(3), 2(3)70 1, [Z2(3), 0%Z(3) 1]

gap> [0, 1] *m=x* [1, -1 1; # evaluate the bilinear form
Z(3)

gap> IsFullSubgroupGLorSLRespectingBilinearForm(g);

true

gap> g:= SU(2, 4);;

gap> m:= InvariantSesquilinearForm(g).matrix;
[[0xz2(2), z(2)~0 1, [Zz(2)70, 0%Z(2)]]

gap> [0, 1] *m=x* [1, 11]; # evaluate the bilinear form
Z(2)°0

gap> IsFullSubgroupGLorSLRespectingSesquilinearForm(g);

true

gap> g:= GO(1, 2, 3);;

gap> m:= InvariantBilinearForm(g).matrix;

[[0x2(3), Z2(3)°0 1, [Z(3)"0, 0%Z(3)]]

gap> [0, 1] *m* [1, 11]; # evaluate the bilinear form
z(3)"0

gap> q:= InvariantQuadraticForm(g) .matrix;

[[0x2(3), Z(3)70 1, [0%Z(3), 0%Z(3) 1]

gap> [0, 11 xq*x [0, 11]; # evaluate the quadratic form
0%Z(3)

gap> IsFullSubgroupGLorSLRespectingQuadraticForm(g);

true

42.5 Matrix Groups in Characteristic 0

Most of the functions described in this and the following section have implementations which use functions
from the GAP package Carat. If Carat is not installed or not compiled, no suitable methods are available.

IsCyclotomicMatrixGroup(G) P
tests whether all matrices in G have cyclotomic entries.

IsRationalMatrixGroup(G) P
tests whether all matrices in G have rational entries.

IsIntegerMatrixGroup(G) P
tests whether all matrices in G have integer entries.

IsNaturalGLnZ(G) P

tests whether G is GL,(Z) in its natural representation by n x n integer matrices. (The dimension n will
be read off the generating matrices.)

gap> IsNaturalGLnZ(GL(2, Integers));
true

IsNaturalSLnZ(G) P

tests whether G is SL,(Z) in its natural representation by n x n integer matrices. (The dimension n will be
read off the generating matrices.)

6»

i d

8>

10 »

11»

12»

13»

14 »

418 Chapter 42. Matriz Groups

gap> IsNaturalSLnZ(SL(2, Integers));
true

InvariantLattice(G) A

returns a matrix B, whose rows form a basis of a Z-lattice that is invariant under the rational matrix group
G acting from the right. It returns fail if the group is not unimodular. The columns of the inverse of B
span a Z-lattice invariant under G acting from the left.

NormalizerInGLnZ(G) A

is an attribute used to store the normalizer of G in GL,(Z), where G is an integer matrix group of dimension
n. This attribute is used by Normalizer(GL(n, Integers), G).

CentralizerInGLnZ(G) A

is an attribute used to store the centralizer of G in GL,(Z), where G is an integer matrix group of dimension
n. This attribute is used by Centralizer(GL(n, Integers), G).

ZClassRepsQClass(G) A

The conjugacy class in GL,(Q) of the finite integer matrix group G splits into finitely many conjugacy
classes in GL,(Z). ZClassRepsQClass(G) returns representative groups for these.

IsBravaisGroup(G) P
test whether G coincides with its Bravais group (see 42.5.11).
BravaisGroup(G) A

returns the Bravais group of a finite integer matrix group G. If C is the cone of positive definite quadratic
forms @ invariant under g — g* Q * g' for all g € G, then the Bravais group of G is the maximal subgroup
of GL,(Z) leaving the forms in that same cone invariant. Alternatively, the Bravais group of G can also
be defined with respect to the action g — ¢ * Q * g on positive definite quadratic forms . This latter
definition is appropriate for groups G acting from the right on row vectors, whereas the former definition
is appropriate for groups acting from the left on column vectors. Both definitions yield the same Bravais

group.
BravaisSubgroups(G) A
returns the subgroups of the Bravais group of G, which are themselves Bravais groups.
BravaisSupergroups(G) A
returns the subgroups of GL,(Z) that contain the Bravais group of G and are Bravais groups themselves.

NormalizerInGLnZBravaisGroup(G) A

returns the normalizer of the Bravais group of G in the appropriate GL,(Z).

1»

2»

Section 6. Acting OnRight and OnLeft 419

42.6 Acting OnRight and OnLeft

In GAP, matrices by convention act on row vectors from the right, whereas in crystallography the convention
is to act on column vectors from the left. The definition of certain algebraic objects important in crystal-
lography implicitly depends on which action is assumed. This holds true in particular for quadratic forms
invariant under a matrix group. In a similar way, the representation of affine crystallographic groups, as
they are provided by the GAP package CrystGap, depends on which action is assumed. Crystallographers
are used to the action from the left, whereas the action from the right is the natural one for GAP. For this
reason, a number of functions which are important in crystallography, and whose result depends on which
action is assumed, are provided in two versions, one for the usual action from the right, and one for the
crystallographic action from the left.

For every such function, this fact is explicitly mentioned. The naming scheme is as follows: If SomeThing is
such a function, there will be functions SomeThingOnRight and SomeThingOnLeft, assuming action from the
right and from the left, respectively. In addition, there is a generic function SomeThing, which returns either
the result of SomeThingOnRight or SomeThingOnLeft, depending on the global variable CrystGroupDe-
faultAction.

CrystGroupDefaultAction A\

can have either of the two values RightAction and LeftAction. The initial value is RightAction. For func-
tions which have variants OnRight and OnLeft, this variable determines which variant is returned by the
generic form. The value of CrystGroupDefaultAction can be changed with with the function SetCryst-
GroupDefaultAction.

SetCrystGroupDefaultAction(action) F

allows to set the value of the global variable CrystGroupDefaultAction. Only the arguments RightAction
and LeftAction are allowed. Initially, the value of CrystGroupDefaultAction is RightAction

4 3 Polycyclic Groups

A group G is polycyclic if there exists a subnormal series G = C; > Cy > ... > C,, > C,+1 = {1} with
cyclic factors. Such a series is called pc series of G.

Every polycyclic group is solvable and every finite solvable group is polycyclic. However, there are infinite
solvable groups which are not polycyclic.

In GAP there exists a large number of methods for polycyclic groups which are based upon the polycyclic
structure of these groups. These methods are usually very efficient and hence GAP tries to use them whenever
possible.

In GAP 3 these methods have been available for AgGroups only; that is, for groups defined via a power-
commutator presentation, see Chapter 44 for the GAP 4 analogon. This has changed in GAP 4 where these
methods can be applied to many types of groups. For example, the methods can be applied to permutation
groups or matrix groups which are known to be polycyclic. The only exception is the representation as
finitely presented group for which the polycyclic methods cannot be used in general.

At the current state of implementations the methods for polycyclic groups can only be applied to finite
groups. However, a more general implementation is planned.

43.1 Polycyclic Generating Systems

Let G be a polycyclic group with a pc series as above. A polycyclic generating sequence (pcgs for
short) of G is a sequence P := (g1,...,¢,) of elements of G such that C; = (Cj11, g;) for 1 < i < n. Note
that each polycyclic group has a pcgs, but except for very small groups, a pcgs is not unique.

For each index 4 the subsequence of elements (g, ..., g,) forms a pcgs of the subgroup C;. In particular,
these tails generate the subgroups of the pc series and hence we say that the pc series is determined by
P.

Let r; be the index of C;1 in C; which is either a finite positive number or infinity. Then 7; is the order of
9:; Ci+1 and we call the resulting list of indices the relative orders of the pcgs P.

Moreover, with respect to a given pcgs (g1, - - -, gn) each element g of G can be represented in a unique way
as a product g = gy - g5> - - - g5 with exponents ¢; € {0,...,r; —1}, if r; is finite, and ¢; € Z otherwise. Words
of this form are called normal words or words in normal form. Then the integer vector [ey, ..., e,] is
called the exponent vector of the element g. Furthermore, the smallest index k such that e, # 0 is called
the depth of ¢ and ¢ is the leading exponent of g.

For many applica