Cyberbotics’ Robot Curriculum

by Wikibooks contributors

Created on Wikibooks,
the open content textbooks collection.

Copyright (© 2009 Wikibooks contributors.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation License”.

Contents

1 About this book
Further reading

2 What is Artificial Intelligence?
GOFAI versus New AL o e
History o e
The Turing test o e e
Cognitive Benchmarks 0L
Further reading e

3 What are Robots?
Robots in our every Day’s Life
Robots as Artificial Animals

4 E-puck and Webots

E-puck . . . e
Webots . . . o e e
5 Cyberbotics’ Robot Curriculum/Getting started
Explanations about the Practical Part oL,
Get Webots and install it
Bluetooth Installation and Configuration
Open Webots
E-puck Prerequisites L

6 Cyberbotics’ Robot Curriculum/Beginner programming Exercises
Discovery of the e-puck [Beginner] oL
Robot Controller [Beginner| L
Move your e-puck [Beginner]
Simple Behavior: Finite State Machine (FSM) [Beginner]
Better Collision avoidance Algorithm [Beginner]
The blinking e-puck [Beginner]
E-puck Dance [Beginner]
Line following [Beginner] o

19
19
21

27
27
28
28
31
35

Rally [Beginner] [Challenge] 55

Document Information 57
History o e 57
PDF Information & History 57
Authors e 57
GNU Free Documentation License 59
1. APPLICABILITY AND DEFINITIONS o .. 59
2. VERBATIM COPYING e e e e e e e e 61
3. COPYING IN QUANTITY e s e e e 61
4. MODIFICATIONS o e e s e e e 61
5. COMBINING DOCUMENTS e e e 63
6. COLLECTIONS OF DOCUMENTS e 63
7. AGGREGATION WITH INDEPENDENT WORKS 64
8. TRANSLATION e e s s s 64
9. TERMINATION o e s e e 64
10. FUTURE REVISIONS OF THIS LICENSE 64
ADDENDUM: How to use this License for your documents 65

Chapter 1

About this book

Learning about Intelligent Robots

This book is intended to students, teachers, hobbyists and researchers interested in intelligent
robots. It will help you understanding what robots are, what they can do for you, and most
interestingly how to program them. It includes two parts: a short theoretical part and a longer
practical part. Practical part is decomposed in one chapter about the computer configuration and
five chapters of exercises corresponding to five level of difficulty (see the next section). After reading
this book, you should be able to design your own intelligent robots.

From Beginners to Robotics Experts

Even if you never wrote a computer program before, you will learn easily how to graphically program
the behavior of a simple robot. From this first experience, you will be smoothly introduced to higher
level computer programming and discover more possibilities of intelligent robots. This practical
investigation is organized in projects for which a difficulty level is associated. You are free to stop
at any level if the projects suddenly become too difficult to handle, but if you reach the latest levels
successfully, you should consider yourself as a genuine robotics researcher! Here are the levels of
difficulty:

e beginner: no prior knowledge needed, suitable for children from 8 years old and people without
a scientific background (see Beginner programming Exercises)

e novice: scientific or technological interest needed, suitable for children from 8 years old (see
Novice programming Exercises)
e intermediate: general computer science background needed, intended to student from 12 years

old with some interest in computer science (see Intermediate programming FExercises)

e advanced: programming skills needed, intended to post-graduate students and researchers
(see Advanced Programming Exercises)

e expert: research spirit needed, intended to post-graduate student and researchers (see Cogni-
tive Benchmarks)

http://en.wikibooks.org/wiki//Beginner_programming_Exercises/
http://en.wikibooks.org/wiki//Novice_programming_Exercises/
http://en.wikibooks.org/wiki//Intermediate_programming_Exercises/
http://en.wikibooks.org/wiki//Advanced_Programming_Exercises/
http://en.wikibooks.org/wiki//Cognitive_Benchmarks/
http://en.wikibooks.org/wiki//Cognitive_Benchmarks/

6 CHAPTER 1. ABOUT THIS BOOK

Important: The code to which we refer in the exercises is freely available at sourceforge.net.
You can download it directly from the SVN at this address:

http://robotcurriculum.svn.sourceforge.net/svnroot/robotcurriculum

Easy-to-use robotics Tools

The practical part of this book relies on a couple of software and hardware tools that will allow
you to practice intelligent robot programming for real. These tools are the e-puck robot and the
Webots software. They are both widely used for education and research in Universities worldwide
and are commercially available and well supported. These tools will be described in chapter E-puck
and Webots.

Enjoy Robot Competitions

Several exercises are provided along this book. Starting from very simple introductory exercises in
chapter Beginner programming Exercises, the reader will learn progressively how to create more
and more advanced robotics controllers throughout the following chapters. Finally, the chapter
Cognitive Benchmarks will introduce the reader into the realm of robot competitions through a
cognitive benchmark: Rat’s Life .

Further reading
e Cyberbotics Official Webpage

e E-puck website

ISee their website, Rat’s Life Programming Contest

http://en.wikibooks.org/wiki//E-puck_and_Webots/
http://en.wikibooks.org/wiki//E-puck_and_Webots/
http://en.wikibooks.org/wiki//Beginner_programming_Exercises/
http://en.wikibooks.org/wiki//Cognitive_Benchmarks/
http://www.cyberbotics.com
http://www.e-puck.org
http://ratslife.org

Chapter 2

What is Artificial Intelligence?

Artificial Intelligence (AI) is an interdisciplinary field of study that includes computer science, en-
gineering, philosophy and psychology. There is no widely accepted precise definition of Artificial
Intelligence, because Intelligence is very difficult to define. John McCarthy defined Artificial In-
telligence as “the science and engineering of making intelligent machine” ' which does not explain
what intelligent machines are. Hence, it does not help either to answer the question “Is a chess
playing program an intelligent machine?”.

GOFAI versus New Al

AT divides roughly into two schools of thought: GOFAT (Good Old Fashioned Artificial Intelligence)
and New AI. GOFAI mostly involves methods now classified as machine learning, characterized by
formalism and statistical analysis. This is also known as conventional AI, symbolic Al, logical Al
or neat Al. Methods include:

e Fxpert Systems apply reasoning capabilities to reach a conclusion. An Expert System can
process large amounts of known information and provide conclusions based on them.

e Case Based Reasoning stores a set of problems and answers in an organized data structure
called cases. A Case Based Reasoning system upon being presented with a problem finds a
case in its knowledge base that is most closely related to the new problem and presents its
solutions as an output with suitable modifications.

e Bayesian Networks are probabilistic graphical models that represent a set of variables and
their probabilistic dependencies.

e Behavior Based Al is a modular method building AI systems by hand.

New Al involves iterative development or learning. It is often bio-inspired and provides models
of biological intelligence, like the Artificial Neural Networks. Learning is based on empirical data
and is associated with non-symbolic AI. Methods mainly include:

1 See John McCarthy, What is Artificial Intelligence?

http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

8 CHAPTER 2. WHAT IS ARTIFICIAL INTELLIGENCE?

o Artificial Neural Networks are bio-inspired systems with very strong pattern recognition ca-
pabilities.

o Fuzzy Systems are techniques for reasoning under uncertainty; they have been widely used in
modern industrial and consumer product control systems.

e Fvolutionary computation applies biologically inspired concepts such as populations, mutation
and survival of the fittest to generate increasingly better solutions to a problem. These
methods most notably divide into Ewvolutionary Algorithms (including Genetic Algorithms)
and Swarm Intelligence (including Ant Algorithms).

Hybrid Intelligent Systems attempt to combine these two groups. Expert Inference Rules can
be generated through Artificial Neural Network or Production Rules from Statistical Learning.

History

Early in the 17th century, René Descartes envisioned the bodies of animals as complex but reducible
machines, thus formulating the mechanistic theory, also known as the “clockwork paradigm”. Wil-
helm Schickard created the first mechanical digital calculating machine in 1623, followed by ma-
chines of Blaise Pascal (1643) and Gottfried Wilhelm von Leibniz (1671), who also invented the
binary system. In the 19th century, Charles Babbage and Ada Lovelace worked on programmable
mechanical calculating machines.

Bertrand Russell and Alfred North Whitehead published Principia Mathematica in 1910-1913,
which revolutionized formal logic. In 1931 Kurt Godel showed that sufficiently powerful consistent
formal systems contain true theorems unprovable by any theorem-proving Al that is systemati-
cally deriving all possible theorems from the axioms. In 1941 Konrad Zuse built the first working
mechanical program-controlled computers. Warren McCulloch and Walter Pitts published A Log-
ical Calculus of the Ideas Immanent in Nervous Activity (1943), laying the foundations for neural
networks. Norbert Wiener’s Cybernetics or Control and Communication in the Animal and the
Machine (MIT Press, 1948) popularized the term “cybernetics”.

Game theory which would prove invaluable in the progress of Al was introduced with the paper,
Theory of Games and Economic Behavior by mathematician John von Neumann and economist
Oskar Morgenstern 2.

1950’s

The 1950s were a period of active efforts in Al. In 1950, Alan Turing introduced the “Turing test” as
a way of creating a test of intelligent behavior. The first working AI programs were written in 1951
to run on the Ferranti Mark I machine of the University of Manchester: a checkers-playing program
written by Christopher Strachey and a chess-playing program written by Dietrich Prinz. John
McCarthy coined the term “artificial intelligence” at the first conference devoted to the subject,
in 1956. He also invented the Lisp programming language. Joseph Weizenbaum built ELIZA, a
chatter-bot implementing Rogerian psychotherapy. The birth date of Al is generally considered to
be July 1956 at the Dartmouth Conference, where many of these people met and exchanged ideas.

2Von Neumann, J.; Morgenstern, O. (1953), “Theory of Games and Economic Behavior”, New York

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Swarm_intelligence
https://www.ams.org/bull/2000-37-01/S0273-0979-99-00832-0/home.html

THE TURING TEST 9

1960s-1970s

During the 1960s and 1970s, Joel Moses demonstrated the power of symbolic reasoning for integra-
tion problems in the Macsyma program, the first successful knowledge-based program in mathemat-
ics. Leonard Uhr and Charles Vossler published “A Pattern Recognition Program That Generates,
Evaluates, and Adjusts Its Own Operators” in 1963, which described one of the first machine
learning programs that could adaptively acquire and modify features and thereby overcome the
limitations of simple perceptrons of Rosenblatt. Marvin Minsky and Seymour Papert published
Perceptrons, which demonstrated the limits of simple Artificial Neural Networks. Alain Colmer-
auer developed the Prolog computer language. Ted Shortliffe demonstrated the power of rule-based
systems for knowledge representation and inference in medical diagnosis and therapy in what is
sometimes called the first expert system. Hans Moravec developed the first computer-controlled
vehicle to autonomously negotiate cluttered obstacle courses.

1980s

In the 1980s, Artificial Neural Networks became widely used due to the back-propagation algorithm,
first described by Paul Werbos in 1974. The team of Ernst Dickmanns built the first robot cars,
driving up to 55 mph on empty streets.

1990s & Turn of the Millennium

The 1990s marked major achievements in many areas of Al and demonstrations of various appli-
cations. In 1995, one of Ernst Dickmanns’ robot cars drove more than 1000 miles in traffic at up
to 110 mph, tracking and passing other cars (simultaneously Dean Pomerleau of Carnegie Mellon
tested a semi-autonomous car with human-controlled throttle and brakes). Deep Blue, a chess-
playing computer, beat Garry Kasparov in a famous six-game match in 1997. Honda built the first
prototypes of humanoid robots (see picture of the Asimo Robot).

During the 1990s and 2000s AI has become very influenced by probability theory and statistics.
Bayesian networks are the focus of this movement, providing links to more rigorous topics in statis-
tics and engineering such as Markov models and Kalman filters, and bridging the divide between
GOFATI and New AI. This new school of Al is sometimes called ‘machine learning’. The last few
years have also seen a big interest in game theory applied to AI decision making.

The Turing test

Artificial Intelligence is implemented in machines (i.e., computers or robots), that are observed by
”Natural Intelligence” beings (i.e., humans). These human beings are questioning whether or not
these machines are intelligent. To give an answer to this question, they evidently compare the
behavior of the machine to the behavior of another intelligent being they know. If both are similar,
then, they can conclude that the machine appears to be intelligent.

Alan Turing developed a very interesting test that allows the observer to formally say whether
or not a machine is intelligent. To understand this test, it is first necessary to understand that
intelligence, just like beauty, is a concept relative to an observer. There is no absolute intelligence,
like there is no absolute beauty. Hence it is not correct to say that a machine is more or less
intelligent. Rather, we should say that a machine is more or less intelligent for a given observer.

See in Wikipedia:
test

Tur

http://en.wikipedia.org/wiki/Turing_test
http://en.wikipedia.org/wiki/Turing_test

10

CHAPTER 2. WHAT IS ARTIFICIAL INTELLIGENCE?

Figure 2.1: Asimo: Honda’s humanoid robot

THE TURING TEST 11

Starting from this point of view, the Turing test makes it possible to evaluate whether or not a
machine qualifies for artificial intelligence relatively to an observer.

The test consists in a simple setup where the observer is facing a machine. The machine could be
a computer or a robot, it does not matter. The machine however, should have the possibility to be
remote controlled by a human being (the remote controller) which is not visible by the observer. The
remote controller may be in another room than the observer. He should be able to communicate
with the observer through the machine, using the available inputs and outputs of the machine.
In the case of a computer, the inputs and outputs may be a keyboard, a mouse and computer
screen. In the case of a robot, it may be a camera, a speaker (with synthetic voice), a microphone,
motors, etc. The observer doesn’t know if the machine is remote controlled by someone else or if it
behaves on its own. He has to guess it. Hence, he will interact with the machine, for example by
chatting using the keyboard and the screen to try to understand whether or not there is a human
intelligence behind this machine writing the answers to his questions. Hence he will want to ask
very complicated questions and see what the machine answers and try to determine if the answers
are generated by an Al program or if they come from a real human being. If the observer believes
he is interacting with a human being while he is actually interacting with a computer program,
then this means the machine is intelligent for him. He was bluffed by the machine. The table below
summarizes all the possible results coming out of a Turing test.

The Turing test helps a lot to answer the question “can we build intelligent machines?”. It
demonstrates that some machines are indeed already intelligent for some people. Although these
people are currently a minority, including mostly children but also adults, this minority is growing
as Al programs improve.

Although the original Turing test is often described as a computer chat session (see picture), the
interaction between the observer and the machine may take very various forms, including a chess
game, playing a virtual reality video game, interacting with a mobile robot, etc.

The machine runs an
Artificial Intelligence pro-
gram

The machine is remote
controlled by a human

undetermined: the ob-

. .. successful: the machine is
server is good at recognizing

The observer believes he

faces a human intelligence

human intelligence

intelligent for this observer

The observer believes he
faces a computer program

undetermined: the observer
has troubles recognizing hu-

failed: the machine is not in-
telligent for this observer

man intelligence

Table 2.1: All possible outcomes for a Turing test

Similar experiments involve children observing two mobile robots performing a prey predator
game and describing what is happening. Unlike adults who will generally say that the robots were
programmed in some way to perform this behavior, possibly mentioning the sensors, actuators and
micro-processor of the robot, the children will describe the behavior of the robots using the same
words they would use to describe the behavior of a cat running after a mouse. They will grant
feelings to the robots like "he is afraid of”, "he is angry”, ”he is excited”, "he is quiet”, "he wants
to...”, etc. This leads us to think that for a child, there is little difference between the intelligence
of such robots and animal intelligence.

12

CHAPTER 2. WHAT IS ARTIFICIAL INTELLIGENCE?

= Q

C

Figure 2.2: The Turing test

COGNITIVE BENCHMARKS 13

Cognitive Benchmarks

Another way to measure whether or not a machine is intelligent is to establish cognitive (or intel-
ligence) benchmarks. A benchmark is a problem definition associated with a performance metrics
allowing evaluating the performance of a system. For example in the car industry, some benchmarks
measure the time necessary for a car to accelerate from 0 km/h to 100 km/h. Cognitive benchmarks
address problems where intelligence is necessary to achieve a good performance.

Again, since intelligence is relative to an observer, the cognitive aspect of a benchmark is also
relative to an observer. For example if a benchmark consists in playing chess against the Deep Blue
program, some observers may think that this requires some intelligence and hence it is a cognitive
benchmark, whereas some other observers may object that it doesn’t require intelligence and hence
it is not a cognitive benchmark.

Some cognitive benchmarks have been established by people outside computer science and
robotics. They include 1Q tests developed by psychologists as well as animal intelligence tests
developed by biologists to evaluate for example how well rats remember the path to a food source
in a maze, or how do monkeys learn to press a lever to get food.

AT and robotics benchmarks have also been established mostly throughout programming or
robotics competitions. The most famous examples are the AAAT Robot Competition, the FIRST
Robot Competition, the DARPA Grand Challenge, the Eurobot Competition, the RoboCup com-
petition (see picture), the Roboka Programming Contest. All these competitions define a precise
scenario and a performance metrics based either on an absolute individual performance evaluation
or a ranking between the different competitors. They are very well referenced on the Internet so
that it should be easy to reach their official web site for more information.

The last chapter of this book will introduce you to a series of robotics cognitive benchmarks
(especially the Rat’s Life benchmark) for which you will be able to design your own intelligent
systems and compare them to others.

Further reading
e Artificial Intelligence

e Embedded Control Systems Design/RoboCup

http://en.wikibooks.org/wiki/Artificial_Intelligence
http://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/RoboCup

14

CHAPTER 2. WHAT IS ARTIFICIAL INTELLIGENCE?

Figure 2.3: Aibo Robocup competition

Chapter 3

What are Robots?

Robots are electro-mechanical machines, interacting autonomously with their environment. They
include sensors allowing them to perceive the environment. They also include actuators allowing
them to modify their environment. Finally, they include a micro-processor allowing them to process
the sensory information and control their actuators accordingly.

Robots in our every Day’s Life

There exist few applications of robots in our every days’ life. The most well known applications
are probably toys and autonomous vacuum cleaners (see figure with toy robots), but there are also
grass mower robots, mobile robots in factories, robots for space exploration, surveillance robots,
etc. These devices are becoming increasingly complex in term of sensors, actuators and information
processing.

Robots as Artificial Animals

Like animals, robots can move, perceive their environment and act. Like animals, they need energy
to be able to operate. This is probably why several examples of animal robots were developed for toy
applications. This includes the Sony Aibo dog robot (see figure), the Furby toy and later the Pleo
dinosaur robot. From the mechanical and electronic points of view, these robots are very advanced.
They are equipped with many sensors (distance sensors, cameras, touch sensors, position sensors,
temperature sensors, battery level sensors, accelerometers, microphones, wireless communication,
etc.) and actuators (motors, speakers, LEDs, etc.). They also include a significant processing power
with powerful onboard micro-controllers or micro-processors. Moreover, the latest Aibo robots and
several vacuum cleaner robots are able to search their recharging station, to dock on it, recharge
their batteries and move on once the battery is charged. This makes them even more autonomous.
However, their learning capabilities and ability to adapt to unknown situations is often still very
limited. Hence, this affect to comparison with real animals in term of intelligence. When observing
an Aibo robot and a real dog, there is no doubt for most observers that the dog is more intelligent
than the robot. The same could probably apply if you compare the Pleo toy robot with a real

15

16

CHAPTER 3. WHAT ARE ROBOTS?

Figure 3.1: Two Pleo robots

ROBOTS AS ARTIFICIAL ANIMALS

Figure 3.2: Roomba of first generation: a vacuum cleaner

17

18 CHAPTER 3. WHAT ARE ROBOTS?

Figure 3.3: Asimo: Honda’s humanoid robot

reptile. However, since reptiles appear to be more primitive than dogs, the difference of intelligence
in the Pleo / reptile case may not be as evident as in the Aibo / dog case.

The conclusion we can draw from the above paragraph is that the hardware technology for
intelligent robots is currently available. However, we still need to invent a better software technology
to drive these robots. In other words, we currently have the bodies of our intelligent robots, but
we lack their minds. This is probably the reason why most of the toy and vacuum cleaner robots
described here are still provided with a remote control...

Hence this book will not focus on robot hardware, but rather on robot software because robot
software is the greatest research challenge to overcome to be able to design more and more intelligent
robots.

Chapter 4

E-puck and Webots

This chapter introduces you to a couple of useful robotics tools: e-puck, a mini mobile robot and
Webots, a robotics CAD software. In the rest of this book, you will use both of them to practice
hands-on robotics. Hopefully, this practical approach will make you understand what robots are
and what you can do with them.

E-puck

Introduction

The e-puck robot was designed by Dr. Francesco Mondada and Michael Bonani in 2006 at EPFL,
the Swiss Federal Institute of Technology in Lausanne (see Figure). It was intended to be a tool for
university education, but is actually also used for research. To help the creation of a community
inside and outside EPFL, the project is based on an open hardware concept, where all documents
are distributed and submitted to a license allowing everyone to use and develop for it. Similarly,
the e-puck software is fully open source, providing low level access to every electronic device and
offering unlimited extension possibilities. The e-puck robots are now produced industrially by
GCTronic S.a.r.l. (Switzerland) and Applied AI, Inc. (Japan) and are available for purchase from
various distributors. You can order your own e-puck robot for about 950 Swiss Francs (CHF) from
Cyberbotics Ltd. http://www.cyberbotics. com.
The e-puck robot was designed to meet a number of requirements:

e Neat Design: the simple mechanical structure, electronics design and software of e-puck is an
example of a clean and modern system.

e Flexibility: e-puck covers a wide range of educational activities, offering many possibilities
with its sensors, processing power and extensions.

e Simulation software: e-puck is integrated in the Webots simulation software for easy program-
ming, simulation and remote control of real robot.

e User friendly: e-puck is small and easy to setup on a table top next to a computer. It doesn’t
need any cable (rely on Bluetooth) and provides optimal working comfort.

19

http://www.cyberbotics.com

20 CHAPTER 4. E-PUCK AND WEBOTS

e Robustness and maintenance: e-puck resists to student use and is simple to repair.
e Affordable: the price tag of e-puck is friendly to university budgets.

The e-puck robot has already been used in a wide range of applications, including mobile robotics
engineering, real-time programming, embedded systems, signal processing, image processing, sound
and image feature extraction, human-machine interaction, inter-robot communication, collective
systems, evolutionary robotics, bio-inspired robotics, etc.

Figure 4.1: The e-puck mobile robot

Overview

The e-puck robot is powered by a dsPIC processor, i.e., a Digital Signal Programmable Integrated
Circuit. It is a micro-controller processor produced by the Microchip company which is able to

WEBOTS 21

perform efficient signal processing. This feature is very useful in the case of a mobile robot, be-
cause extensive signal processing is often needed to extract useful information from the raw values
measured by the sensors.

The e-puck robot also features a large number of sensors and actuators as depicted on the
pictures with devices and described in the table. The electronic layout can be obtained at this
address: E-puck electronic layout Each of these sensors will be studied in detail during the practical
investigations later in this book.

speaker
14 Bluetooth
reset

IR receiver

programming
connector

switch 16 pos.
RS232
ring of LEDs

y

accelerometer
ON-OFF — ¥

microphones VGA camera

wheels with P _
stepper motor LilON battery

IR sensors

Figure 4.2: Sensors and actuators of the e-puck robot

Webots

Introduction

Webots is a software for fast prototyping and simulation of mobile robots. It has been developed
since 1996 and was originally designed by Dr. Olivier Michel at EPFL, the Swiss Federal Institute of
Technology in Lausanne, Switzerland, in the lab of Prof. Jean-Daniel Nicoud. Since 1998, Webots
is a commercial product and is developed by Cyberbotics Ltd. User licenses of this software have
been sold to over 400 universities and research centers world wide. It is mostly used for research
and education in robotics. Besides universities, Webots is also used by research organizations and
corporate research centers, including Toyota, Honda, Sony, Panasonic, Pioneer, NTT, Samsung,
NASA, Stanford Research Institute, Tanner research, BAE systems, Vorverk, etc.

The use of a fast prototyping and simulation software is really useful for the development of
most advanced robotics project. It actually allows the designers to visualize rapidly their ideas, to

http://www.e-puck.org/images/electronics/shematics.png

22 CHAPTER 4. E-PUCK AND WEBOTS

check whether they meet the requirements of the application, to develop the intelligent control of
the robots, and eventually, to transfer the simulation results into a real robot. Using such software
tools saves a lot of time while developing new robotics projects and allows the designers to explore
more possibilities than they would if they were limited to using only hardware. Hence both the
development time and the quality of the results are improved by using a rapid prototyping and
simulation software.

Overview

Webots allows you to perform 4 basic stages in the development of a robotic project as depicted on
the figure.

program-

] = . ™ — J & sl b um s
-a‘_-. #51_wnai i camerac | e-puck_inec m-puck.c @ wehotslog
-
8 rotsban . wabatbs
e = Twahots/dist
T
T S U e, Tenli =int maln|int arge, char Targv[|) {
@ rarnlator whk robot initib
: o WhhavlicaTag camara = wb robot
- rovisiy wk_cansra_snable|camera, TINE_STEP*
= for (int 4 = Op 1 € By L++] |

char devics name[10];

-@)simulate; r@transfer-

o)k

Figure 4.3: Webots development stages

The first stage is the modeling stage. It consists in designing the physical body of the robots,
including their sensors and actuators and also the physical model of the environment of the robots.
It is a bit like a virtual LEGO set where you can assemble building blocks and configure them by
changing their properties (color, shape, technical properties of sensors and actuators, etc.). This
way, any kind of robot can be created, including wheeled robots, four legged robots, humanoid
robots, even swimming and flying robots! The environment of the robots is created the same
way, by populating the space with objects like walls, doors, steps, balls, obstacles, etc. All the

WEBOTS 23

physical parameters of the object can be defined, like the mass distribution, the bounding objects,
the friction, the bounce parameters, etc. so that the simulation engine in Webots can simulate
their physics. The figure with the simulation illustrates the model of an e-puck robot exploring an
environment populated with stones. Once the virtual robots and virtual environment are created,
you can move on to the second stage.

speaker
y Bluetooth
reset

IR receiver

programming
connector

switch 16 pos.
RS232
ring of LEDs

]

accelerometer r_, :
ON-OFF — %

microphones VGA camera

wheels with _
stepper motor LilON battery

IR sensors

Figure 4.4: Model of an e-puck robot in Webots

The second stage is the programming stage. You will have to program the behavior of each
robot. In order to achieve this, different programming tools are available. They include graphical
programming tools which are easy to use for beginners and programming languages (like C, C++
or Java) which are more powerful and enable the development of more complex behaviors. The
program controlling a robot is generally a endless loop which is divided into three parts: (1) read
the values measured by the sensors of the robot, (2) compute what should be the next action(s) of
the robot and (3) send actuators commands to performs these actions. The easiest parts are parts
(1) and (3). The most difficult one is part (2) as this is here that lie all the Artificial Intelligence.
Part (2) can be divided into sub-parts such as sensor data processing, learning, motor pattern
generation, etc.

The third stage is the simulation stage. It allows you to test if your program behaves correctly.
By running the simulation, you will see you robot executing your program. You will be able to play
interactively with you robot, by moving obstacles using the mouse, moving the robot itself, etc.
You will also be able to visualize the values measured by the sensors, the results of the processing
of your program, etc. It is likely you will return several times to the second stage to fix or improve
your program and test it again in the simulation stage.

Finally, the fourth stage is the transfer to a real robot. Your control program will be transferred

24 CHAPTER 4. E-PUCK AND WEBOTS

p—s v ey Femote control 10
COMB o
306 - 301 E14 - 436

Camera Camera

243 I4D‘95 SEQI 305 116 IBS‘S? E)EDI 141

‘Welcome to the e-puck interface Running real e-puck {version 1.1.2 June Z006)

Figure 4.5: Transfer from the simulation to the real robot

into the real robot running in the real world. You could then see if your control program behaves
the same as in simulation. If the simulation model of your robot was performed carefully and
was calibrated against its real counterpart, the real robot should behave roughly the same as the
simulated robot. If the real robot doesn’t behave the same, then it is necessary to come back to
the first stage and refine the model of the robot, so that the simulated robot will behave like the
real one. In this case, you will have to go through the second and third stages again, but mostly
for some little tuning, rather than redesigning your program. The figure with two windows shows
the e-puck control window allowing the transfer from the simulation to the real robot. On the left
hand side, you can see the point of view of the simulated camera of the e-puck robot. On the right
hand side, you can see the point of view of the real camera of the robot.

WEBOTS

Features

Thecnical information

Size, weight

70 mm diameter, 55 mm height, 150 g

Battery autonomy

5Wh LiION rechargeable and removable bat-
tery providing about 3 hours autonomy

dsPIC 30F6014A @ 60 Mhz (715 MIPS) 16

Processor bit microcontroller with DSP core

Memory RAM: 8 KB; FLASH: 144 KB

Motors 2 stepper motors with a 50:1 reduction gear,
resolution: 0.13 mm

Speed Max: 15 cm/s

Mechanical structure

Transparent plastic body supporting PCBs,
battery and motors

8 infra-red sensors measuring ambient light

TR sensors and proximity of objects up to 6 cm
Camera VGA color camera with resolution of
480x640 (typical use: 52x39 or 480x1)
. 3 omni-directional microphones for sound lo-
Microphones .
calization
Accelerometer 3D accelerometer along the X, Y and Z axis
LEDs 8 independent red LEDs on the ring, green
LEDs in the body, 1 strong red LED in front
On-board speaker capable of WAV and tone
Speaker
sound playback
Switch 16 position rotating switch on the top of the

robot

PC connection

Standard serial port up to 115 kbps

Wireless

Bluetooth for robot-computer and robot-
robot wireless communication

Remote control

Infra-red receiver for standard remote control
commands

Expansion bus

Large expansion bus designed to add new ca-
pabilities

C programming with free GNU GCC com-

Programming piler. Graphical IDE (integrated develop-
ment environment) provided in Webots
Webots facilitates the use of the e-puck

Simulation robot: powerful simulation, remote control,

graphical and C programming systems

Table 4.1: Features of the e-puck robot

25

26

CHAPTER 4. E-PUCK AND WEBOTS

Chapter 5

Getting started

The first section of this chapter (section Explanations about the Practical Part) explains how to
use this document. It presents the formalism of the practical part, i.e., the terminology, the used
icons, etc.

The following sections will help you to configure your environment. For profiting as much as
possible of this document, you need Webots, an e-puck and a Bluetooth connection between both
of them. Nevertheless, if you haven’t any e-puck, you can still practice a lot of exercises. Before
starting the exercises you need to setup these systems. So please refer to the following sections:

e Section Get Webots and install it describes how to install Webots on your computer.

Section Bluetooth Installation and Configuration describes how to create a Bluetooth connec-
tion between your computer and your e-puck.

Section Open Webots describes how to launch Webots.

Section E-puck Prerequisites describes how to update your e-puck’s firmware.

Chapter 4 in the User Guide describes how to model your own world with Webots.

If you want to go further with Webots you can consider the online user guide User Guide or the
Reference Manual.
Explanations about the Practical Part
Throughout the practical part, you will find different symbols. They have the following meaning;:

: When this symbol occurs, you are invited to answer a question. The questions are
related either to the current exercise or to a more general topic. They are referenced by a number

which has the following form: ”[Q.”+question number+”]”. For example, the third question of the
exercise will have the (.3 number.

27

http://en.wikibooks.org/wiki/#Explanations_about_the_Practical_Part
http://en.wikibooks.org/wiki/#Get_Webots_and_install_it
http://en.wikibooks.org/wiki/#Bluetooth_Installation_and_Configuration
http://en.wikibooks.org/wiki/#Open_Webots
http://en.wikibooks.org/wiki/#E-puck_Prerequisites
http://www.cyberbotics.com/cdrom/common/doc/webots/guide/chapter4.html
http://www.cyberbotics.com/cdrom/common/doc/webots/guide/guide.html
http://www.cyberbotics.com/cdrom/common/doc/webots/guide/guide.html
http://www.cyberbotics.com/cdrom/common/doc/webots/reference/reference.html
Q.3

28 CHAPTER 5. CYBERBOTICS’ ROBOT CURRICULUM/GETTING STARTED

ﬁ : When this symbol occurs, you will be invited to practice. For example you will have
to program your robot to obtain a specific behavior. They are referenced by a number which has
the following form: ”[P.” 4-question number+”]".

=" . When this symbol occurs, only the users who work with a Linux operating system are
invited to read what follows. Note that this curriculum was written using Ubuntu Linux.

‘_ : Ibid for the Windows operating system. Note that this curriculum was also written
using Windows XP.

6 : Ibid for Mac OS X operating system.

Each section of this document corresponds to an exercise. Each exercise title finishes with its
level between square brackets (for example : [Novice]). When an exercise title, a question number
or a practical part number is bounded by the star character (for example: *[Q.5]*), it means that
this part is optional, i.e., this part is not essential for the global understanding of the problem but
is recommended for accruing your knowledge. They can also be followed by the Challenge tag.
This tag means that this part is more difficult than the others, and that it is optional.

Get Webots and install it

The easiest way to obtain Webots is to visit the following website:
http://www.cyberbotics.com
There, you will find all the information about Webots and its installation.

Bluetooth Installation and Configuration

First of all, your computer needs a Bluetooth device to communicate with your e-puck. This kind
of devices is often integrated in modern laptops. The installation of this device is out of the scope
of this document. However, its correct installation is required. So, refer to its installation manual
or to the website of its constructor. This document explains only the configuration of the Bluetooth
connection between your computer and the e-puck. This connection emulates a serial connection.
Refer to your corresponding operating system:

o

First of all, your Linux operating system needs a recent kernel. Moreover, the following
packets have to be installed: bluez-firmware, bluez-pin and bluez-utils'

The commands 1susb (or 1spci according to your Bluetooth hardware) and hciconfig inform
about the success of the installation.

IThis part is inspired by the ”Bluetooth and e-puck” article written by Bonani Michael on the official e-puck
website.

Challenge

BLUETOOTH INSTALLATION AND CONFIGURATION 29

Switch on your e-puck (with the ON-OFF switch) and execute the following command:

> hcitool scan
Scanning ...
00:13:11:52:DE: A8 PowerBook G4 12"

08:00:17:2C:E0:88 e-puck_0202

The last line corresponds to your e-puck. It shows its MAC address (08:00:17:2C:E0:88) and its
name (e-puck_0202). The number of the e-puck (0202) should correspond with its sticker.

Edit the /etc/bluetooth/hcid. conf and change the security parameter from ”auto” to ”user”.

Edit the /etc/bluetooth/rfcomm.conf configuration file and add the following entree (or mod-
ify the existing rfcomm0 entree):

rfcomm0 {
bind yes;
device 08:00:17:2C:E0:88;
channel 1;

comment "e-puck_0202";

rfcommO is the name of the connection. If more than one e-puck is used, enter as entrees
(rfcommO, rfcomml, etc.) as there are robots. The device tag must correspond to the e-puck’s
MAC address and the comment tag must correspond to the e-puck name. rfcomm0 is the name this
connection.

Execute the following commands:

> /etc/init.d/bluez-utils restart
> rfcomm bind rfcommO

A PIN (Personal Identification Number) will be asked to you (by bluez-pin) when trying to
establish the connection. This PIN is a 4 digits number corresponding to the name (or ID) of your
e-puck, i.e., if your e-puck is called “e-puck_0202”, then, the PIN is 0202.

Your connection will be named “rfcomm0” in Webots.

u

‘.,_,,5: This part? was written using Windows XP. There are probably some differences with
other versions of Windows.

2This part is inspired by the third practical work of the EPFL’s Microinformatique course.

30 CHAPTER 5. CYBERBOTICS’ ROBOT CURRICULUM/GETTING STARTED

After the installation of your Bluetooth device, an icon named "My Bluetooth Places” is ap-
peared on your desktop. If it is not the case, right click on the Bluetooth icon in the system tray
and select ”Start using Bluetooth”. Double-click on the "My Bluetooth Places” icon. If you use
"My Bluetooth Places” for the first time, this action will open a wizard. Follow the instructions
of this wizard up to arrive at the window depicted in the first figure of the wizard. If you already
used "My Bluetooth Places”, click on the ”Bluetooth Setup Wizard” item. This action will open
this window.

®, Bluetooth Setup x|

- Welcome to the Bluetooth Setup
B Wizard

\ 7 This Wizard will help you set up your Bluetooth environment.
™ . What would you like to do?

| know the service | want to use and | want to find a
Bluetooth device that provides that service.

" @ | want tofind a specific Bluetooth device and configure
how this computer will use its services,

| want to configure the Bluetooth services that this
— computer will provide to remote devices.

" | want to change the name and/or device type that this
computer displays to other Bluetooth devices.

Back I Next > I Cancel |

Figure 5.1: The first window of the wizard

In this first window, select the second item: ”I want to find a specific Bluetooth device and
configure how this computer will use its services.”. Switch on your e-puck by using the ON/OFF
switch. A green LED on the e-puck should be alight. Click on the Next button.

The second window searches all the visible Bluetooth devices. After a time, an icon representing
your e-puck must appear. Select it and click on the Next button.

This action opens the security window. Here you have to choose four digits for securing the
connection. Choose the same number as your e-puck (if your e-puck is called ”e-puck_0202”, choose
0202 as PIN) and click on the Initiate Paring button.

The opened window (on a figure too) enables you to choose which service you want to use.
Select COM1 (add a tick). If there isn’t any service, it’s maybe because the battery is too low. This
action opens a new window (see the next figure). Here you can select which port is used for the
communication. Select for example ”COM6”.

To finish, click on the Finish button.

Finally, in the "My Bluetooth Places” window (also shown on figure), right click on the ”e-
puck_0202 COM1” icon and select the ” Connect” item.

Your connection will be named ”COM6” in Webots.

BLUETOOTH INSTALLATION AND CONFIGURATION

Search Again I I Show all devices z]

If device you are looking for is not in the list, verify that the device has power and is operational.
Some devices require to press a special button to be Discoverable.

< Back l Next > I Cancel

Figure 5.2: Research the Bluetooth devices

¥, Bluetooth Security Setup a x|

Bluetooth Pairing Proced:)
The Pairing Procedure generates a secret key that will be used for authentication

and encryption in future connections to this device.

To pair with a remate device, the remote device must be in pairable mode and you must
know the PIN code. For information about the PIN code of the remote device, refer to that
device's documentation.

For a brief description of pairing, click Pairing Help. For more Paiting Help I
detailed information, consult your user's manual.

If the remote device does not require a PIN code or if you want to
pair with the device later, click Skip Pairing.

Initiate Pairing
To begin the paiting process, enter the PIN code and click Initiate Pairing.
PIN Code: .. oo|

<Back | SkipPaiing [lIniiatePaing | Cancel

Figure 5.3: The security window

CHAPTER 5. CYBERBOTICS’ ROBOT CURRICULUM/GETTING STARTED

';. Bluetooth Service Selection 5]

32

Select the services you are interested in.
The following services are available through the selected Bluetooth Device.

Select the service that you want to access on the selected device.

Configure

=
Refresh I

<Back [Fiish | Cancel |

Figure 5.4: Selection of the services

Bluetooth Properties 21x|

General |

~\\9 -puck 0202 COM1

[~ Startup Sutematically

v Secure Connection

COM Port: |CUM5 '|

| oK I Cancel Apply

Figure 5.5: Configure the COM port

OPEN WEBOTS 33

% My Bluetooth Places [=101x|
Fle Edt View Buetooth Favortes Toos Help | &

\)E:}-\Jv"/ Seavch‘Folders‘v
address [C:\Program Files\DelBluetooth Software\My Blustooth Places = Do
e-puck_0202

DO\
. e-puck_0202 COM1
Connected: COME

Serial Port Device

\\f ™o Serial Port Device COM1
y‘ Ne nnected

My Device

—_ -
‘ Bluetooth Exchange Folder \L My Device Find Bluetooth Devices
Blustooth Exchange Foider 3 View the services provided Search for nearby Bluetooth d

8 Entire Blustooth Neighborhood ‘) Bluetooth Setup Wizard
Display previously found Bluet... J Configure devices, connection.

=]

Figure 5.6: My Bluetooth places

é If your Bluetooth device is correctly installed, a Bluetooth icon should appear in your
System Preferences. Click on this icon and on the Paired Devices tab. Switch on your e-puck. A
green LED on the e-puck should be alight. Then, click on the New... button. It should open a new
window which scans the visible Bluetooth devices. After a while, the name of your e-puck should
appear in this list. Select the e-puck in the list and click on the Pair button. A pass key is asked.
It is the number of your e-puck coded on 4 digits. For example, if your e-puck has the number 43
on its stickers, the pass key is 0043. Enter the pass key and click on the OK button.

Once pairing is completed, you need to specify a serial port to use in order to communicate
with Webots. So, click the Serial Ports tab. Thanks to the New... button, create an outgoing port
called COM1. Finally, quit the Bluetooth window.

Your connection will be named “COM1” in Webots.

Open Webots

This section explains how to launch Webots. Naturally it depends on your environment. So please
refer to your corresponding operating system:

Yo

™" Open a terminal and execute the following command:

> webots &

You should see the simulation window appear on the screen.

E‘ ~ From the Start menu, go to the Program Files | Cyberbotics menu and click on the
Webots (+ version) menu item. You should see the simulation window appear on the screen.

34 CHAPTER 5. CYBERBOTICS’ ROBOT CURRICULUM/GETTING STARTED

é Open the directory in which you uncompressed the Webots package and double-click on
the webots icon. You should see the simulation window appear on the screen.

E-puck Prerequisites

An e-puck has a computer program (called firmware) embedded in its hardware. This program
defines the behavior of the robot at startup.
There are three possible ways to use Webots and an e-puck:

e The simulation: By using the Webots libraries, you can write a program, compile it and run
it in a virtual 3D environment.

e The remote-control session: You can write the same program, compile it as before and run it
on the real e-puck through a Bluetooth connection.

e The cross-compilation: You can write the same program, cross-compile it for the e-puck
processor and upload it on the real robot. In this case, the previous firmware is substituted
by your program. In this case, your program is not dependent on Webots and can survive
after the rebooting of the e-puck.

In the case of a remote-control session, your robot needs a specific firmware for having talks to
Webots.

For uploading the latest firmware (or other programs) on the real e-puck, select the menu Tool
| Upload to e-puck robot... as depicted in the figure. Then, a message box asks you to choose
which Bluetooth connection you want to use. Select the connection which is linked to the e-puck
and click on the Ok button. The orange LED on the e-puck will switch on. Then, a new message
box asks you to choose which file you want to upload. Select the following file and click on the Ok
button:

...webots_root/transfer/e-puck/firmware/firmware-X.Y.Z.hex

Where X.Y.Z is the version number of the firmware. Then, if the firmware (or an older version)
isn’t already installed on the e-puck, the e-puck must be reseted when the window depicted in the
figure is displayed.

E-PUCK PREREQUISITES 35

=

e-puck crosscompilation.wbt - Webots PRO 5.7.1
File Simulation Wiew Wizard Tools Help

ﬁ O H | G 1 Scene Tree Ctri+T

Text Editor

Log
Upload to e-puck robot...

¢ Preferences...

Figure 5.7: The location of the tool for uploading a program on the e-puck

No firmware present in your e-puck robot ' ™% X I

Press the reset button of your e-puck robot

e — |

Figure 5.8: When this window occurs, the e-puck must be reset by pushing the blue button on its
top

36

CHAPTER 5. CYBERBOTICS’ ROBOT CURRICULUM/GETTING STARTED

Chapter 6

Beginner programming Exercises

This chapter is composed of a series of exercises for beginners. You don’t need prior knowledge to
go through these exercises. The aim is to learn the basics of mobile robotics by manipulating both
your e-puck and Webots. First, you will discover some e-puck devices and their utility. Then, you
will acquire the concept of a robot controller. And finally, you will program a simple robot behavior
by using a Webots module: BotStudio. This module enables to program an e-puck robot using a
graphical interface. You will discover how to use it and what are the notions related to it.

Discovery of the e-puck [Beginner]

As explained in the chapter E-puck and Webots, an e-puck has different devices. Through this
document, you will use some of them: the stepper motors, the LEDs, the accelerometer, the infrared
sensors and the camera. In this exercise, you will discover the utility of each of them. The following
list gives you a quick definition of these devices. You will see in the next chapter all these devices
in more details.

e Stepper motor: A stepper motor® is an electrical motor which breaks up a full rotation into
a large number of steps. An e-puck possesses two stepper motors of 1000 steps. They can
achieve a speed of about one rotation per second. The wheels of the e-puck are fixed to these
motors. They are used to move the robot. They can move independently. Moreover, for
knowing the position of the wheels, an incremental encoder can be used. The e-puck encoder
returns the number of steps since the last reset of the encoder. For example, this ”device”
can be used for turning the wheel of one turn precisely.

e LED: A LED? (Light-Emiting Diode) is a small device which can emit light by using few
energy. An e-puck possesses several LEDs. Notably, 8 around it, 4 in the e-puck body and
1 in front of it. The front LED is more powerful than the others. The aim of these LEDs is
mainly to have a feedback on the state of the robot. They can also be used for illuminating
the environment.

1More information on: Stepper motor
2More information on: Led

37

http://en.wikibooks.org/wiki/Cyberbotics' Robot Curriculum/E-puck_and_Webots/
http://en.wikipedia.org/wiki/Stepper_motor
http://en.wikipedia.org/wiki/Led

38CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

o Accelerometer: An accelerometer® is a device which measures the total force applied on it as
a 3D vector. An e-puck has a single accelerometer. If your e-puck is at rest, the accelerometer
indicates at least the gravitational vector. The accelerometer can be used for detecting a
collision with a wall or for detecting the fall of the robot.

e Infrared (IR) sensor: An e-puck possesses 8 infrared (IR) sensors. An IR sensor is a device
which can produce an infrared light (a light which is out the range of the visible light) and
which can measure the amount of the received light. It has two kind of use. First, only
the received light is measured. In this configuration, the IR sensor measures the light of the
nearby environment. The e-puck can detect for example from where a light illuminates it.
Second, the IR sensor emits infrared light and measures the received light. If there is an
obstacle in front of the IR sensor, the light will bounce on it. The light difference is bigger.
So, the e-puck can estimate the distance between its IR sensors and an obstacle.

Camera: In front of the e-puck, there is also a VGA camera. The e-puck uses it to discover
its direct front environment. It can for example follow a line, detect a blob, recognize objects,
etc.

Note that the stepper motors and the LEDs are actuators. This device have an effect on the
environment. To the contrary, the IR sensors and the camera are sensors. They measure specific
information of the environment. On the following page you can see photos of the mechanical design.

To successfully go through the following exercises, you have to know the existence of other
devices. The e-puck is alimented with a Li-ION battery. It has a running life of about 3 hours. You
can switch on or off your e-puck with the ON/OFF switch which is located near the right wheel.
The robot has also a Bluetooth interface which allows a communication with your computer or with
other e-pucks.

Finally, the e-puck has other devices (like the microphones and the speaker) that you will not
use in this document because the current version of Webots doesn’t support them yet.

<

[Q.1] What is the maximal speed of an e-puck? Give your answer in cm/s. (Hint: The
wheel radius is about 2.1 cm. Look at the definition of a stepper motor above.)

¢

[Q.2] Compare your e-puck with an actual mobile phone. Which e-puck devices were
influenced by this industry?

®

[Q.3] Sort the following devices either into the actuator category or into the sensor
category: a LED, a stepper motor, an IR sensor, a camera, a microphone, an accelerometer and a
speaker.

i

[P.1] Find where these devices are located on your real e-puck. (Hint: look at the figure
Epuck devices.png)

3More information on: Accelerometer

http://www.e-puck.org/index.php?option=com_content&task=view&id=14&Itemid=32
http://en.wikibooks.org/wiki/:Image:Epuck_devices.png
http://en.wikipedia.org/wiki/Accelerometer

ROBOT CONTROLLER [BEGINNER] 39

Robot Controller [Beginner]

In order to understand the concept of a robot controller you will play the role of the robot controller.
You will perceive the sensory information coming from the sensors of the robot and you will be able
to control the actuators of the robot. In this exercise, you will not actually program the behavior
of the robot, but you will nevertheless control the robot.

Open the World File

First of all, you need to open the world file of this exercise. A world file contains the entire
environment of the simulation, i.e., the robot shape, the ground shape, the obstacles shape and
some general information like the position of the camera and even the direction of gravitational
vector. In the simulation window (window (1) in figure below), click on File | Open menu and open:

.../worlds/beginner_robot_controller.wbt

You can also open the world file by clicking on the open button on the tool box of the simulation
window. The e-puck model and its environment are loaded in Webots. In the simulation window,
you can see an e-puck on a green board.

The Webots Windows and the simulation Camera

Webots can display several windows. Some of them were already introduced. You will focus
especially on two of them (which are depicted on a figure):

e The simulation window (1): This window is probably the most important one. It shows a
3D representation of the simulation. In our case, you can see a virtual e-puck and its virtual
environment. If you want to modify the camera orientation, just click and drag with the left
button of the mouse where you want in the panel. Similarly you can modify the position of
the camera by using the right button (Note for the Mac OS X users : if you have a mouse with
a single button, hold down the Ctrl key and click for emulating the right click.). Finally you
can also set the zoom by moving the mouse wheel. There are also two important buttons in
this window: the play/stop button and the revert button. With the first one, the simulation
can be either played or stopped, and with the second one, the entire simulation can be reset.

e The robot window (2): This window shows a 2D representation of the e-puck. The purpose
of this window is to visualize the sensor values and the actuators values in real-time during a
simulation. The figure with the robot window shows the meaning of the values that can be
seen. The red integers correspond to the speed of the motors. They should be initially null.
The green values below correspond to the encoders. The light measured by the IR sensor is
represented by the green integers. While the distance between a IR sensor and an obstacle is
represented by blue integers. So, note that the green and the blue values represent the same
device. The red or black rectangles correspond to the LEDs which are respectively switched
on or off. Finally, the accelerometer is represented both by a 2D vector which corresponds to
the inclination of the e-puck, and by a slider which represents the norm of the acceleration.
This window contains also a drop-down menu to configure the Bluetooth connection.

40CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES
ﬁ [P.1] By using the camera, identify where is the front and the back of your virtual e-puck.
(Hint: the camera is placed in the front of the e-puck)

ﬁ [P.2] Try to place the camera of the simulation window on the e-puck roof in order to
see in front of it. Then, use the revert button.

|Welcome to the e-puck interface

Welcome to Webots! [Z

Figure 6.1: The simulation window (1) and the robot window (2)

The e-puck Movements

Check that the simulation is running by clicking on the start/stop button. Then, click on the virtual
e-puck in order to select it. When your e-puck is selected, white lines appears. They represent the
bounds of your object for the physical simulation. You also remark red lines. They represent
the direction of the IR sensors. While the magenta lines correspond to the field of view of the
camera. Moreover, you can observe the camera values into a little window in the top left part of
the simulation window.

On your keyboard, press the “S” key and the “X” key for respectively increasing or decreasing
the speed value of the left motor. Try to press the “D” key and on the ”C” key for modifying the
speed of the right motor. Now you can move the virtual robot like a remote control toy. Note that
only one key can be pressed at the same time.

ROBOT CONTROLLER [BEGINNER] 41

LEDs e-puck ‘ simulation hd | Mode &

52 52 Bluetooth connection
Po e N
0

— Distance sensors

Accelerometer ~_

Light sensors 4

30 1 1000 1000
Q®F 2585 255
— Stepper motor

T~ Encoder

‘W’elcome to the e-puck interface

Figure 6.2: A description of the robot window

ﬁ [P.3] Try to follow the black band around the board by using these four buttons.
@ [Q.1] Is it easy? What are the difficulties?

[Q.2] There are different kind of movements with an e-puck. Can you list them? (Ex:
the e-puck can go forwards)

@ [Q.3] Try to use the keyboard arrows and the "R” key. What is the utility of these
commands? Explain the difference with the first ones. Are they more practical? Why?

Blinded Movement [Challenge]

The aim of this subsection is to play the role of the robot controller. A robot controller perceives
only the values measured by the robot sensors, treats them and sends some commands to the robot
actuators as depicted in the figure. Note that the sensor values are modified by the environment,
and that a robot can modify the environment with its actuators.

ﬁ [P.4] Hide the simulation window (However, this window has to remain selected so that
the keyboard strokes are working. A way to hide it is to move it partially off-screen) and just look
at the sensor values. Try now to follow the wall as before only with the IR sensor information.

@ [Q.4] What information is useful? From which threshold value do you observe that a
wall is close to the robot?

42CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

Sensors elgluge)l Actuators

_—

Environment

Figure 6.3: The robot controller receives sensor values (ex: IR sensor, camera, etc.) and sends
actuator commands (motors, LEDs, etc.)

Let’s move your real Robot

You probably have a real e-puck in front of you and you would like to see it moving! Webots can
communicate with an e-puck via a Bluetooth connection. It can receive some values from the e-puck
sensors and send some values to command the e-puck actuators. So, Webots can play the role of
the controller. This mode of operation is called a remote-control session.

In order to proceed, configure first your Bluetooth connection as explained in the section Blue-
tooth configuration. Stop the simulation with the start/stop button. Switch on your e-puck with
the ON/OFF switch. Then, in the robot window, select your Bluetooth connection in the drop-
down menu. Behind the e-puck, an orange LED should switch on. To finish press the start/stop
button in order to run the program. Your e-puck should behave the same as in simulation.

7

& [Q.5] Observe the sensor values from the real e-puck. Are they similar as the virtual
ones?

@ [Q.6] Set the motor speeds to 10/10. When the real e-puck moves slowly, it vibrates.
That does not occur in simulation. Could you explain this phenomenon?

Your Progression

Congratulation! You finished the first exercise and stepped into the world of robotics. You already
learned a lot:

http://en.wikibooks.org/wiki/Cyberbotics' Robot Curriculum/Getting_started#Bluetooth_Installation_and_Configuration
http://en.wikibooks.org/wiki/Cyberbotics' Robot Curriculum/Getting_started#Bluetooth_Installation_and_Configuration

MOVE YOUR E-PUCK [BEGINNER] 43

e What is a sensor, an actuator and a robot controller.
e What kind of problems a robot controller must be able to solve.

e What are the basic devices of the e-puck. In particular, the stepper motors, the LEDs, the
IR sensors, the accelerometer and the camera.

e How to run your mobile robot both in simulation and in reality and what is a remote-control
session.

e How to perform some basic operations with Webots.

Move your e-puck [Beginner]

You already learned what a robot controller is. In the following exercises you will create simple
behaviors by using a graphical programming interface: BotStudio. This module is integrated in
Webots. The aim of this exercise is to introduce BotStudio by discovering the e-puck’s movement
possibilities.

Open the World File

Similarly to the first exercise, open the following world file:
.../worlds/beginner_move_your_epuck.wbt

Two windows are opened. The first one is the simulation window that you know. You should
observe a similar world as before except that the size of the board is twice as big. This is because
an e-puck needs room for moving. The second window is the BotStudio window (see figure).

The “forward” State

A BotStudio window is composed of two main parts. The left part is a graphical representation
of an automaton. You will learn to use this part and understand the automaton concept in the
next exercise. The right part represents an e-puck in 2 dimensions. On this representation, you
can observe the e-puck sensors values in real-time. Moreover, you can set the actuators commands.
This interface has also a drop-down menu for choosing a Bluetooth connection in order to create a
remote-control session. This menu is similar to the two drop-down menu of the robot window that
you saw above. In top, there is a tool menu. This menu enables you to create, to load, to save
or to modify an automaton. The last button (the upload button) executes your automaton on the
e-puck.

In the BotStudio window, select the “forward” state (blue rectangle in the middle of the white
area) just by clicking on it. A selected rectangle becomes yellow. In the right part of the BotStudio
window, you can modify the actuator commands, i.e., the motors speed and the LEDs state. If
you want to change the motors speed, click and drag the two yellow sliders. You can set this value
between -100 and 100. 0 corresponds to a null speed, i.e., the wheel won’t turn. A positive value
should turn the wheel forward, and a negative one backwards. If you want to change the state of a
LED, click on its corresponding gray circle (red -> on, black -> off, gray -> no modification).

44CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

forward] [sir‘nu\ation :]

forward

Bienvenue dans BetStudio

Figure 6.4: The BotStudio interface

Configure the “forward” state as follows: all the LEDs are alight, and the motors speeds are
-30/30. Upload it on the virtual e-puck by clicking on the upload button. If the simulation is
running, the virtual e-puck should change its actuators values accordingly. Note that when the
simulation is launched, the right part of BotStudio displays the IR sensors.

ﬁ [P.1] Set the actuators of your virtual e-puck in order to go forward, to go backwards,
to follow a curve and to spin on itself.

@ [Q.1] For each of these moves, what are the links between the two speeds? (Example:
forward : right_speed = left_speed and right_speed > 0 and left_speed > 0)

@ [Q.2] There are 17 LEDs on an e-puck. 9 red LEDs around the e-puck (the back LED
is doubled), 1 front red LED, 4 intern green LEDs, 2 LEDs (green and red) for the power supply
and 1 orange LED for the Bluetooth connection. Find where they are and with which button or
operation you can switch them on. (Hint: some of them are not under your control and some of
them are linked together, i.e. they cannot be switched on or off independently)

The real e-puck’s IR Sensors

The aim of this subsection is to create a remote-control session with your real e-puck. This part
is similar to the subsection in previous exercise where you used the real robot. There are just two

SIMPLE BEHAVIOR: FINITE STATE MACHINE (FSM) [BEGINNER] 45

differences due to the fact that the BotStudio window is used instead of the robot window. For
choosing the Bluetooth connection, there is just one drop-down menu instead of two. So, please
select your Bluetooth connection instead of the simulation item on the top right part of the window.
Then, you have to click on the upload button for starting the remote-control session.

[P.2] Set the actuators such that the e-puck doesn’t move. Try this configuration on
your real e-puck by creating a remote-control session. Put your hands around your real e-puck and
observe the modifications of the IR sensor values in the BotStudio window.

[Q.3] What are the values of the front left IR sensor when there is an obstacle (example:
a white piece of paper) at 1 cm ? At 3em ? At 5 cm ? At 10 cm 7 Starting from which distance
is it difficult to distinguish an obstacle from the noise* ?

Simple Behavior: Finite State Machine (FSM) [Beginner|

In the precedent exercise, you learned to configure a single state. One cannot speak about behavior
yet because your robot doesn’t interact with its environment, i.e., it moves but it hasn’t any reaction.
The goal of this exercise is to create a simple behavior. You will discover what an automaton is, how
it is related to the robot controller concept and how to construct an automaton using BotStudio.

Finite State Automaton

A finite state automaton (FSM)® is a model of behavior. It’s a possible way to program a robot
controller. It’s composed of a finite number of states and of some transitions between them. In our
case, the states correspond to a configuration of the robot actuators (the wheels speed and the LEDs
state), while the transitions correspond to a condition over the sensor values (the IR sensors and
the camera), i.e., under which condition the automaton can pass from one state to another. One
state is particularly important: the initial state. It’s the state from where the simulation begins.
During this curriculum, an automaton will have the same signification as an FSM.

BotStudio enables you to create graphically an automaton. When an automaton is created, you
can test it on your virtual or real e-puck. You will observe in the following exercises that this simple
way to program enables to create a large range of behaviors.

Open the World File and move Objects
Open the following world file:
.../worlds/beginner_finite_state_machine.wbt
This time, there are two obstacles. You can move an object (obstacle, e-puck or even walls) by

selecting the desired object, and drag and drop it by pressing the shift key. The reverse button can
be pressed when you want to reset the simulation.

4Noise is an unwanted perturbation. More information on : Noise
5Source and more information on : Finite state automaton

http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Finite_state_automaton

46CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

Creation of a Transition

In the BotStudio window, create two states with the new state button. Name the first state
”forward” and the second one ”stop” by using the text box at right. You can change the position
of a state by dragging and dropping the corresponding rectangle. Change the motors speed of these
states (forward state -> motors speed: 45|45, stop state -> motors speed: 0[0). Now, you will
create your first transition. Click on the new transition button. Create a link from the ”forward”
state to the "stop” state (the direction is important!). In this transition, you can specify under
which condition the automaton can pass from the ”forward” state to the ”stop” state. Select this
transition by clicking on its text field. It becomes yellow. Rename it to ”front obstacle”. By
dragging the two highest red sliders, change the conditions values over the front IR sensors to have
”>b5" for each of them. You should obtain an automaton as this which is depicted in the figure
called “First automaton”. Select the initial state (the ”forward” state) and test this automaton on
your virtual e-puck by clicking on the upload button.

O a B B [Efs X | 4

front obstacle] [sir‘nu\ation H

forward

T front obstacle

stop

Bienvenue dans BetStudio

Figure 6.5: First automaton

@ [Q.1] What is the e-puck behavior?

@ [Q.2] In the ”forward” state, which actuator command is used? Which condition over
the IR sensors values are tested in the ”front obstacle” transition?

[P.1] Execute the same automaton on the real e-puck.
You finished your first collision avoidance algorithm, i.e., your e-puck doesn’t touch any wall.

SIMPLE BEHAVIOR: FINITE STATE MACHINE (FSM) [BEGINNER] 47

This kind of algorithm is a good alternative to collision detection algorithm because a collision can
engender a robot’s degradation. Of course it isn’t perfect, you can think about a lot of situations
where your robot would still touch something.

U-turn

In this subsection, you will extend your automaton in order to perform a U-turn (a spin on itself of
180 degrees) after an obstacle’s detection. Add a new state called ”U-turn” to your automaton. In
this state, set the motors speed to 30]-30. Add a transition called ”timerl” from the ”stop” state to
the ”U-turn” state. Select this transition. This time, don’t change the conditions of the IR sensors
but add a delay (1 s) to this condition by moving the yellow slider in the middle of the green circle.
The figure called “The timer condition” depicts what you should obtain.

O a B |\ [Ff X 4

timerl] [simulaticn :]

forward

T front obstacle

ER

Ttimerl

U-turn

Bienvenue dans BetStudio

Figure 6.6: The timer condition

ﬁ [P.2] Run the simulation (always with ”forward” state as initial state) both on the virtual
and on the real e-puck.

For performing a perfect U-turn, you still have to stop the e-puck when it turned enough. Add
a new timer (”timer2”) transition from ”U-turn” state to ”forward” state (see next figure).

@ [Q.3] With which delay for the ”timer2” transition does the robot perform a perfect
U-turn? Is it the same for the real robot? Why?

s

48CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

[= T = I - QR = I 2 +

forward

T front obstacle

Ttimer2 ;:Iu—tum

Connextion perdue avec I'e-puck, retour & la simulation...

Figure 6.7: A loop in the automaton

@ [Q.4] You created an automaton which contains a loop. What are the advantage of this
kind of structure?

@ [Q.5] Imagine the two following states: the ”forward” state and the ”stop” state. If
you want to test front IR sensors values for passing from the ”forward” state to the "stop” state,
you will have two possibilities: either you create one transition in which you test the two front IR
sensors values together or you create two transitions in which you test independently the two IR
sensors values. What is the difference between these two solutions?

During this exercise you created an automaton step by step. But there are still several BotStudio
tricks that are not mentioned above:

e For switching from ”bigger than” to ”smaller than” condition (or inversely) for an IR sensor,
click on the gray part of an IR sensor slider.

e If you don’t want to change the speed of a motor in a state, click on the yellow rectangle of
the motor slider. The rectangle should disappear and the motors speed will keep its precedent
value.

e If you want to remove a condition of a transition, set it to 0. The value should disappear.

e There is a slider which wasn’t mentioned. This slider is related to the camera. You will learn
more about this topic in exercise [sec:Line-following].

BETTER COLLISION AVOIDANCE ALGORITHM [BEGINNER] 49

Your Progression

Thanks to the two previous exercises, you learned:
e What is an FSM and how it’s related with a robot behavior
e How to use BotStudio
e How to design a simple FSM

The following exercises will train you to create an FSM by yourself.

Better Collision avoidance Algorithm [Beginner]

At this step, you know what an automaton is. Now, you will reinforce this knowledge through an
exercise of parameters estimation. The structure of the automaton is given (the states and the
transitions) but it doesn’t contain any parameter, i.e., the actuators commands and the conditions
over the sensors values aren’t set. You will set these parameters empirically.

Open the World File
Open the following world file:

.../beginner_better_collision_avoidance_algorithm.wbt

You may have to increase the size of the BotStudio window to see the entire automaton.

Collision Avoidance Automaton

Note that you can store your automaton by clicking on the save as button in the BotStudio window.
You can also load it by clicking on the load button.

ﬁ [P.1] Start with the given automaton (see the figure). There is only its structure, i.e.,
there are states and transitions but their parameters aren’t set. Find the parameters of each state
and each transition such that the e-puck avoids obstacles.

forward

Tleft obstacle T front obstacle Tright obstacle

L wait turn right L wait retum turn left L wait

Figure 6.8: A better collision avoidance automaton

50CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

ﬁ [P.2] Repeat the operation for the real e-puck.

@ [Q.1] Describe your method of research.

The blinking e-puck [Beginner|

Until now, you just have modified existing automata. It is time for you to create them. In this
practical exercise, you will design your own automaton by manipulating LEDs.

Open the World File

Open the following world file:
.../worlds/beginner_blinking_epuck.wbt

Maybe you should increase the size of the BotStudio window for seeing the entire automaton.
In the simulation window, if you don’t see all the LEDs, you can move the camera around the robot
by left clicking. For this exercise, working directly on the real e-puck is more convenient.

Modify an Automaton

@ [Q.1] Without launching the automaton, describe the e-puck behavior. Verify your theory

by running the simulation.

[P.1] Modify the current automaton in order to add the following behavior: the 8 LEDs
will light on and switch off clockwise and they will stay on for 0.2 s.

ﬁ [P.2] Modify the current automaton in order to add the following behavior: when you
cover up the real e-puck with your hands, the LEDs turn in the other direction. Use only 4 LEDs
for this one (front, back, left and right).

Create your own Automaton

A way to design an automaton is first to identify the possible actuators configurations, to create a
state for each of these configurations, to set the parameters of these states, to establish the conditions
to pass from a state to another, to create a transition for each of these conditions and finally to
set the parameters of these conditions. Unfortunately it is not always so easy. For example, in an
automaton, it’s possible to have two states with identical actuators commands. Indeed, if you see
somebody who is running across a street without any context, you don’t know if he’s running to
catch a bus or if he’s leaving a building in fire. He seems identical but it’s internal state is different.

s

E-PUCK DANCE [BEGINNER] 51

ﬁ [P.3] Create a new automaton (press the new graph button in BotStudio). Choose only
the four following LEDs: the front LED, the back one, the left one and the right one. The goal is
to switch on the LED corresponding to the side of the obstacle. Note that if there are obstacles on
two sides of the robot, two LEDs should be on ! Don’t do the case with an obstacle on three or
four sides.

@ [Q.2] If T proposed to repeat the exercise by using the 8 LEDs around the e-puck and
with all the cases up to 8 obstacles, would you do it? Why? Do you find a limitation in BotStudio?

E-puck Dance [Beginner]

The goal of this exercise is to put the fire on the dance floor with your virtual e-puck by creating
the e-puck dance. You can imagine dance as a succession of movements with the same rhythm.
You will be able to model that easily in a finite state automaton.

Open the World File

Open the following world file:
.../worlds/beginner_epuck_dance.wbt

This opens a disco dance floor. Moreover, there is already a very little example of what you can
achieve. I hope you will find a better e-puck dance than the existing one.

Imagine your Dance

ﬁ [P.1] Observe the existing dance. The automaton has a loop shape. The time of every
transition is identical. Create a new automaton or modify the existing one. First of all, choose
a rhythm. The chosen rhythm of the example is a movement every second. It implies that every
timer is set to 1s. Then, you should create a state for each movement you want to see during the
global loop (note that if you want to have twice the same movement during the main loop, you
have to create two states). Then, you have to set the states parameters according to your rhythm.
Finally, link each state with a timer transition. (Hints: for producing a beautiful dance, LEDs are
welcome. You can also perform semi-movements)

Line following [Beginner|

The goal of this exercise is to explore the last device available in BotStudio: the camera. With the
e-puck camera, you can obtain information about the ground in front of it. BotStudio computes ”in
real time” the center of the black line in front of the e-puck. The camera is another e-puck sensor
and the center of the front line is the sensor value of this camera.

s

52CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

A linear Camera

An e-puck has a camera in front of it. Its resolution is 480x640. For technical issues it has a width
of 480 and a height of 640. The most important information for following a line is the last line of
the camera (see the figure called “The field of view of the linear camera”). For this reason, only
the last line of the camera is sent from the e-puck to Webots. Finally an algorithm is applied on
this last line in order to find the center of the black line.

Figure 6.9: The field of view of the linear camera

The problem is that the e-puck sees only at about 5.5 cm in front of it, and sees a line of about
4.5 cm of width. Moreover, this information is refreshed about 2 times per seconds. It is little
information!

@ [Q.1] Imagine that, every 5 s, at 4 m in front of you, you can only see a line of 3 m wide
with always the same angle. What will be your strategy for following the line? Imagine that the
line is intricate. What is the most important factor for following the line?

RALLY [BEGINNER] [CHALLENGE] 53

Open the World File
Open the following world file:

.../worlds/beginner_linear_camera.wbt

This opens a long world. A black line is drawn on the ground. Remark that there is a grain
(Gaussian noise) on the e-puck camera values in order to be more realistic. Indeed, a real camera
doesn’t acquire perfect values. Some noise is always present on a real camera, it comes from several
factors.

Line following Automaton

In the BotStudio interface, you will also find a condition over the camera (figure called “The linear
camera condition in BotStudio”) represented by a slider. The value represents the center of the
black line in front of the robot. When a transition is selected, you can change the condition over
the camera by dragging the slider, and you can change the direction of the test by clicking on the
text field (ex: ”<5” becomes ”>5"). Remark that if there is no line in front of the robot, the center
value can be wrong.

[P.1] Run the given automaton both in the simulation and in the reality. For creating a

real environment, you can draw a line with a large black pen on a big white piece of paper (ex: A2
format). The black line must pass far from the paper bounds.

ﬁ [P.2] Observe the direction (bigger than or smaller than) of the two conditions.

ﬁ [P.3] Try to let go the e-puck as fast as possible by changing parameters of the states
and of the transitions.
Rally [Beginner| [Challenge]
Open the following world file:

.../worlds/beginner_rally.wbt

.1] Create an automaton which can perform a complete turn of this path. (Hint: adap
ﬁPlC t t t hich f lete t f thi th. (Hint: adapt
your speed!)

54CHAPTER 6. CYBERBOTICS’ ROBOT CURRICULUM/BEGINNER PROGRAMMING EXERCISES

Figure 6.10: The linear camera condition in BotStudio

Appendix A

Document Information & History

History

This book was created on the Wikibooks project and developed on the project by the contributors
listed in Appendix A, page 57. For convenience, this PDF was created for download from the project.
The latest Wikibooks version may be found at http://en.wikibooks.org/wiki/Cyberbotics’
_Robot_Curriculum.

PDF Information & History

This PDF was compiled from XTEX on January 14, 2009, based on the 14 January 2009 Wikibooks
textbook.The latest version of the PDF may be found at http://en.wikibooks.org/wiki/Image:
Cyberbotics’ _Robot_Curriculum.pdf.

Authors

Cyberbotics, Olivier Michel, Fabien Rohrer, Nicolas Heiniger, DavidCary, Trollil01, and anonymous
contributors.

95

http://wikibooks.org
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum/LaTeX
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum
http://en.wikibooks.org/wiki/Image:Cyberbotics'_Robot_Curriculum.pdf
http://en.wikibooks.org/wiki/Image:Cyberbotics'_Robot_Curriculum.pdf
http://www.cyberbotics.com/
http://en.wikibooks.org/wiki/User:DavidCary
http://en.wikibooks.org/wiki/User:Trolli101

56

APPENDIX A. DOCUMENT INFORMATION

Appendix B

GNU Free Documentation License

Version 1.2, November 2002
Copyright (© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

57

58 APPENDIX B. GNU FREE DOCUMENTATION LICENSE

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Exam-
ples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that

59

these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

60

APPENDIX B. GNU FREE DOCUMENTATION LICENSE

. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

. List on the Title Page, as authors, one or more persons or entities responsible for authorship of

the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

. Include, immediately after the copyright notices, a license notice giving the public permis-

sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to a Transparent

copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

. Delete any section Entitled “Endorsements”. Such a section may not be included in the

Modified Version.

. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with

any Invariant Section.

61

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Ounly one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

62 APPENDIX B. GNU FREE DOCUMENTATION LICENSE

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

63

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ...
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

	About this book
	Further reading

	What is Artificial Intelligence?
	GOFAI versus New AI
	History
	The Turing test
	Cognitive Benchmarks
	Further reading

	What are Robots?
	Robots in our every Day's Life
	Robots as Artificial Animals

	E-puck and Webots
	E-puck
	Webots

	Cyberbotics' Robot Curriculum/Getting started
	Explanations about the Practical Part
	Get Webots and install it
	Bluetooth Installation and Configuration
	Open Webots
	E-puck Prerequisites

	Cyberbotics' Robot Curriculum/Beginner programming Exercises
	Discovery of the e-puck [Beginner]
	Robot Controller [Beginner]
	Move your e-puck [Beginner]
	Simple Behavior: Finite State Machine (FSM) [Beginner]
	Better Collision avoidance Algorithm [Beginner]
	The blinking e-puck [Beginner]
	E-puck Dance [Beginner]
	Line following [Beginner]
	Rally [Beginner] [Challenge]

	Document Information
	History
	PDF Information & History
	Authors

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

